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Preface

In terms of network science and cybersecurity, the challenge is the ability to
perceive, discover, and prevent malicious actions or events within the network.
It is clear that the amount of information traffic data types has been continuously
growing which makes the job of a security analyst increasingly difficult and
complex. Therefore, it is the goal of this book to offer basic research solutions into
promising emerging technologies that will offer and enable enhanced cognitive
and high performance capabilities to the human analyst charged with monitoring
and securing the network. The work contained herein describes the following
research ideas.

Towards Fundamental Science of Cyber Security provides a framework
describing commonly used terms like ‘‘Science of Cyber’’ or ‘‘Cyber Science’’
which have been appearing in the literature with growing frequency, and influ-
ential organizations initiated research initiatives toward developing such a science
even though it is not clearly defined. The chapter offers a simple formalism of the
key objects within cyber science and systematically derives a classification of
primary problem classes within the science.

Bridging the Semantic Gap—Human Factors in Anomaly-Based Intrusion
Detection Systems examines the ‘‘semantic gap’’ with reference to several com-
mon building blocks for anomaly-based intrusion detection systems. Also, the
chapter describes tree-based structures for rule construction similar to those of
modern results in ensemble learning, and suggests how such constructions could
be used to generate anomaly-based intrusion detection systems that retain
acceptable performance while producing output that is more actionable for human
analysts.

Recognizing Unexplained Behavior in Network Traffic presents a framework
for evaluating the probability that a sequence of events is not explained by a given
a set of models. The authors leverage important properties of this framework to
estimate such probabilities efficiently, and design fast algorithms for identifying
sequences of events that are unexplained with a probability above a given
threshold.

Applying Cognitive Memory to CyberSecurity describes a physical imple-
mentation in hardware of neural network algorithms for near- or real-time data
mining, sorting, clustering, and segmenting of data to detect and predict criminal
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behavior using Cognimem’s CM1 K cognitive memory as a practical and
commercially available example. The authors describe how a vector of various
attributes can be constructed, compared, and flagged within predefined limits.

Understanding Cyber Warfare discusses the nature of risks and vulnerabilities
and mitigating approaches associated with the digital revolution and the emer-
gence of the World Wide Web. The discussion geared mainly to articulating
suggestions for further research rather than detailing a particular method.

Design of Neuromorphic Architectures with Memristors presents the design
criteria and challenges to realize Neuromorphic computing architectures using
emerging memristor technology. In particular, the authors describe memristor
models, synapse circuits, fundamental processing units (neural logic blocks), and
hybrid CMOS/memristor neural network (CMHNN) topologies using supervised
learning with various benchmarks.

Nanoelectronics and Hardware Security focuses on the utilization of nano-
electronic hardware for improved hardware security in emerging nanoelectronic
and hybrid CMOS-nanoelectronic processors. Specifically, features such as
variability and low power dissipation can be harnessed for side-channel attack
mitigation, improved encryption/decryption, and anti-tamper design. Furthermore,
the novel behavior of nanoelectronic devices can be harnessed for novel computer
architectures that are naturally immune to many conventional cyber attacks.
For example, chaos computing utilizes chaotic oscillators in the hardware
implementation of a computing system such that operations are inherently chaotic
and thus difficult to decipher.

User Classification and Authentication for Mobile Device Based on Gesture
Recognition describes a novel user classification and authentication scheme for
mobile devices based on continuous gesture recognition. The user’s input patterns
are collected by the integrated sensors on an Android smartphone. A learning
algorithm is developed to uniquely recognize a user during their normal interaction
with the device while accommodating hardware and biometric features that are
constantly changing. Experimental results demonstrate a great possibility for the
gesture-based security scheme to reach sufficient detection accuracy with an
undetectable impact on user experience.

Hardware-Based Computational Intelligence for Size, Weight, and Power
Constrained Environments examines the pressures pushing the development of
unconventional computing designs for size, weight, and power constrained
environments and briefly reviews some of the trends that are influencing the
development of solid-state neuromorphic systems. The authors also provide high
level examples of selected approaches to hardware design and fabrication.

Machine Learning Applied to Cyber Operations investigates machine learning
techniques that are currently being researched and are under investigation within
the Air Force Research Laboratory. The purpose of the chapter is primarily to
educate the reader on some machine learning methods that may prove helpful in
cyber operations.

Detecting Kernel Control-flow Modifying Rootkits proposes a Virtual Machine
Monitor (VMM)-based framework to detect control-flow modifying kernel rootkits
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in a guest Virtual Machine (VM) by checking the number of certain hardware
events that occur during the execution of a system call. Our technique leverages
the Hardware Performance Counters (HPCs) to securely and efficiently count the
monitored hardware events. By using HPCs, the checking cost is significantly
reduced and the temper-resistance is enhanced.

Formation of Artificial and Natural Intelligence in Big Data Environment
discusses Holographic Universe representation of the physical world and its
possible corroboration. The author presents a model that captures the cardinal
operational feature of employing unconsciousness for Big Data and suggests that
models of the brain without certain emergent unconsciousness are inadequate for
handling the Big Data situation. The suggested ‘‘Big Data’’ computational model
utilizes all the available information in a shrewd manner by manipulating
explicitly a small portion of data on top of an implicit context of all other data.

Alert Data Aggregation and Transmission Prioritization over Mobile Networks
presents a novel real-time alert aggregation technique and a corresponding
dynamic probabilistic model for mobile networks. This model-driven technique
collaboratively aggregates alerts in real-time, based on alert correlations, band-
width allocation, and an optional feedback mechanism. The idea behind the
technique is to adaptively manage alert aggregation and transmission for a given
bandwidth allocation. This adaptive management allows the prioritization and
transmission of aggregated alerts in accordance with their importance.

Semantic Features from Web-traffic Streams describes a method to convert
web-traffic textual streams into a set of documents in a corpus to allow use of
established linguistic tools for the study of semantics, topic evolution, and token-
combination signatures. A novel web-document corpus is also described which
represents semantic features from each batch for subsequent analysis. This rep-
resentation thus allows association of the request string tokens with the resulting
content, for consumption by document classification and comparison algorithms.

Concurrent Learning Algorithm and the Importance Map presents machine
learning and visualization algorithms developed by the U.S. National Security
Agency’s Center for Exceptional Computing. The chapter focuses on a cognitive
approach and introduces the algorithms developed to make the approach more
attractive. The Concurrent Learning Algorithm (CLA) is a biologically inspired
algorithm, and requires a brief introduction to neuroscience. Finally, the Impor-
tance Map (IMAP) algorithm will be introduced and examples given to clearly
illustrate its benefits.

Hardware Accelerated Mining of Domain Knowledge introduces cognitive
domain ontologies (CDOs) and examines how they can be transformed into
constraint networks for processing on high-performance computer platforms. The
constraint networks were solved using a parallelized generate and test exhaustive
depth first search algorithm. Two compute platforms for acceleration are
examined: Intel Xeon multicore processors, and NVIDIA graphics processors
(GPGPUs). The scaling of the algorithm on a high-performance GPGPU cluster
achieved estimated speed-ups of over 1,000 times.
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Memristors and the Future of Cyber Security Hardware covers three approaches
to emulate a memristor-based computer using artificial neural networks and
describes how a memristor computer could be used to solve Cyber security
problems. The memristor emulation neural network approach was divided into
three basic deployment methods: (1) deployment of neural networks on the tra-
ditional Von Neumann CPU architecture, (2) software-based algorithms deployed
on the Von Neumann architecture utilizing a Graphics Processing Units (GPUs),
and (3) a hardware architecture deployed onto a field-programmable gate array.

This book is suitable for engineers, technicians, and researchers in the fields of
cyber research, information security and systems engineering, etc. It can also be
used as a textbook for senior undergraduate and graduate students. Postgraduate
students will also find this a useful sourcebook since it shows the direction of
current research. We have been fortunate in attracting outstanding class
researchers as contributors and wish to offer our thanks for their support in this
project.

Dr. Robinson E. Pino works with ICF International and has expertise within
technology development, program management, government, industry, and
academia. He advances state-of-the-art cybersecurity solutions by applying
autonomous concepts from computational intelligence and neuromorphic com-
puting. Previously, Dr. Pino was a senior electronics engineer at the U.S. Air Force
Research Laboratory (AFRL) where he was a program manager and principle
scientist for the computational intelligence and neuromorphic computing research
efforts. He also worked at IBM as an advisory scientist/engineer development
enabling advanced CMOS technologies and as a business analyst within IBM’s
photomask business unit. Dr. Pino also served as an adjunct professor at the
University of Vermont where he taught electrical engineering courses.

Dr. Pino has a B.E. in Electrical Engineering from the City University of New
York and an M.Sc. and a Ph.D. in Electrical Engineering from the Rensselaer
Polytechnic Institute. He is the recipient of numerous awards and professional
distinctions; has published more than 40 technical papers, including three books;
and holds six patents, three pending.

This work is dedicated to Dr. Pino’s loving and supporting wife without whom
this work would not be possible.

ICF International, Fairfax, USA Dr. Robinson E. Pino
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Towards Fundamental Science
of Cyber Security

Alexander Kott

1 Introduction

Few things are more suspect than a claim of the birth of a new science. Yet, in the
last few years, terms like ‘‘Science of Cyber,’’ or ‘‘Science of Cyber Security,’’ or
‘‘Cyber Science’’ have been appearing in use with growing frequency. For
example, the US Department of Defense defined ‘‘Cyber Science’’ as a high pri-
ority for its science and technology investments [1], and the National Security
Agency has been exploring the nature of the ‘‘science of cybersecurity’’ in its
publications, e.g., [2]. This interest in science of cyber is motivated by the rec-
ognition that development of cyber technologies is handicapped by the lack of
scientific understanding of the cyber phenomena, particularly the fundamental
laws, theories, and theoretically-grounded and empirically validated models [3].
Lack of such fundamental knowledge—and its importance—has been highlighted
by the US President’s National Science and Technology Council [4] using the term
‘‘cybersecurity science.’’

Still, even for those in the cyber security community who agree with the need
for science of cyber—whether it merits an exalted title of a new science or should
be seen merely as a distinct field of research within one or more of established
sciences—the exact nature of the new science, its scope and boundaries remain
rather unclear.

This chapter offers an approach to describing this scope in a semi-formal
fashion, with special attention to identifying and characterizing the classes of
problems that the science of cyber should address. In effect, we will map out the
landscape of the science of cyber as a coherent classification of its characteristic
problems. Examples of current research—mainly taken from the portfolio of the
United States Army Research Laboratory where the author works—will illustrate
selected classes of problems within this landscape.

A. Kott (&)
US Army Research Laboratory, Adelphi, MD, USA
e-mail: alexander.kott1.civ@mail.mil

R. E. Pino (ed.), Network Science and Cybersecurity,
Advances in Information Security 55, DOI: 10.1007/978-1-4614-7597-2_1,
� Springer Science+Business Media New York 2014
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2 Defining the Science of Cyber Security

A research field—whether or not we declare it a distinct new science—should be
characterized from at least two perspectives. First is the domain or objects of
study, i.e., the classes of entities and phenomena that are being studied in this
research field. Second is the set of characteristic problems, the types of questions
that are asked about the objects of study. Related examples of attempts to define a
field of research include [5] and [6].

To define the domain of the science of cyber security, let’s focus on the most
salient artifact within cyber security—malicious software. This leads us to the
following definition: the domain of science of cyber security is comprised of
phenomena that involve malicious software (as well as legitimate software and
protocols used maliciously) used to compel a computing device or a network of
computing devices to perform actions desired by the perpetrator of malicious
software (the attacker) and generally contrary to the intent (the policy) of the
legitimate owner or operator (the defender) of the computing device(s). In other
words, the objects of research in cyber security are:

• Attacker A along with the attacker’s tools (especially malware) and techniques
Ta

• Defender D along with the defender’s defensive tools and techniques Td, and
operational assets, networks and systems Nd

• Policy P, a set of defender’s assertions or requirements about what event should
and should not happen. To simplify, we may focus on cyber incidents I: events
that should not happen.

Note that this definition of relevant domain helps to answer common questions
about the relations between cyber security and established fields like electronic
warfare and cryptology. Neither electronic warfare nor cryptology focus on mal-
ware and processes pertaining to malware as the primary objects of study.

The second aspect of the definition is the types of questions that researchers ask
about the objects of study. Given the objects of cyber security we proposed above,
the primary questions revolve around the relations between Ta, Td, Nd, and
I (somewhat similar perspective is suggested in [7] and in [8]. A shorthand for the
totality of such relations might be stated as

I; Td; Nd; Tað Þ ¼ 0 ð1Þ

This equation does not mean we expect to see a fundamental equation of this
form. It is merely a shorthand that reflects our expectation that cyber incidents
(i.e., violations of cyber security policy) depend on attributes, structures and
dynamics of the network of computing devices under attack, and the tools and
techniques of defenders and attackers.

Let us now summarize what we discussed so far in the following definition. The
science of cyber security is the study of relations between attributes, structures and
dynamics of: violations of cyber security policy; the network of computing devices
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under attack; the defenders’ tools and techniques; and the attackers’ tools and
techniques where malicious software plays the central role.

A study of relations between properties of the study’s objects finds its most
tangible manifestation in models and theories. The central role of models in sci-
ence is well recognized; it can be argued that a science is a collection of models
[9], or that a scientific theory is a family of models or a generalized schema for
models [10, 11]. From this perspective, we can restate our definition of science of
cyber security as follows. The science of cyber security develops a coherent family
of models of relations between attributes, structures and dynamics of: violations of
cyber security policy; the network of computing devices under attack; the
defenders’ tools and techniques; and the attackers’ tools and techniques where
malicious software plays the central role. Such models

1. are expressed in an appropriate rigorous formalism;
2. explicitly specify assumptions, simplifications and constraints;
3. involve characteristics of threats, defensive mechanisms and the defended

network;
4. are at least partly theoretically grounded;
5. yield experimentally testable predictions of characteristics of security

violations.

There is a close correspondence between a class of problems and the models
that help solve the problem. The ensuing sections of this chapter look at specific
classes of problems of cyber security and the corresponding classes of models. We
find that Eq. 1 provides a convenient basis for deriving an exhaustive set of such
problems and models in a systematic fashion.

3 Development of Intrusion Detection Tools

Intrusion detection is one of the most common subjects of research literature
generally recognized as falling into the realm of cyber security. Much of research
in intrusion detection focuses on proposing novel algorithms and architectures of
intrusion detection tools. A related topic is characterization of efficacy of such
tools, e.g., the rate of detecting true intrusions or the false alert rate of a proposed
tool or algorithm in comparison with prior art.

To generalize, the problem addressed by this literature is to find (also, to derive
or synthesize) an algorithmic process, or technique, or architecture of defensive
tool that detects certain types of malicious activities, with given assumptions
(often implicit) about the nature of computing devices and network being attacked,
about the defensive policies (e.g., a requirement for rapid and complete identifi-
cation of intrusions or information exfiltration, with high probability of success),
and about the general intent and approaches of the attacker. More formally, in this
problem we seek to derive Td from Nd, Ta, and I, i.e.,

Towards Fundamental Science of Cyber Security 3



Nd; Ta; I ! Td ð2Þ

Recall that Td refers to a general description of defenders’ tools and techniques,
that may include an algorithmic process or rules of an intrusion detection tool, as
well as architecture of an IDS or IPS, and attributes of an IDS such as its detection
rate. In other words, Eq. 2 is shorthand for a broad class of problems. Also note
that Eq. 2 is derived from Eq. 1 by focusing on one of the terms on the left hand
side of Eq. 1.

To illustrate the breadth of issues included in this class of problems, let’s
consider an example—a research effort conducted at the US Army Research
Laboratory that seeks architectures and approaches to detection of intrusions in a
wireless mobile network [12]. In this research, we make an assumption that the
intrusions are of a sophisticated nature and are unlikely to be detected by a sig-
nature-matching or anomaly-based algorithm. Instead, it requires a comprehensive
analysis and correlation of information obtained from multiple devices operating
on the network, performed by a comprehensive collection of diverse tools and by
an insightful human analysis.

One architectural approach to meeting such requirements would comprise
multiple software agents deployed on all or most of the computing devices of the
wireless network; the agents would send their observations of the network traffic
and of host-based activities to a central analysis facility; and the central analysis
facility would perform a comprehensive processing and correlation of this infor-
mation, with participation of a competent human analyst (Fig. 1).

Fig. 1 Local agents on the
hosts of the mobile network
collect and sample
information about hosts-
based and network events;
this information is aggregated
and transmitted to the
operation center where
comprehensive analysis and
detection are performed.
Adapted from Ge et al. [12],
with permission
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Such an approach raises a number of complex research issues. For example,
because the bandwidth of the wireless network is limited by a number of factors, it
is desirable to use appropriate sampling and in-network aggregation and pre-
processing of information produced by the local software agents before trans-
mitting all this information to the central facility. Techniques to determine
appropriate locations for such intermediate aggregation and processing are needed.
Also needed are algorithms for performing aggregation and pre-processing that
minimize the likelihood of preserving the critical information indicating an
intrusion. We also wish to have means to characterize the resulting detection
accuracy in this bandwidth-restricted, mobile environment (Fig. 2).

Equation 2 captures key elements of this class of problems. For example, Td in
Eq. 2 is the abstraction of this defensive tool’s structure (e.g., locations of interim
processing points), behavior (e.g., algorithms for pre-processing), and attributes
(e.g., detection rate). Designers of such a tool would benefit from a model that
predicts the efficacy of the intrusion detection process as a function of architectural
decisions, properties of the algorithms and properties of the anticipated attacker’s
tools and techniques.

4 Cyber Maneuver and Moving Target Defense

Cyber maneuver refers to the process of actively changing our network—its
topology, allocation of functions and properties [13]. Such changes can be useful
for several reasons. Continuous changes help to confuse the attacker and to reduce
the attacker’s ability to conduct effective reconnaissance of the network in prep-
aration for an attack. This use of cyber maneuver is also called moving target
defense. Other types of cyber maneuver could be used to minimize effects of an

Fig. 2 Experiments suggest that detection rates and error rate of detection strongly depend on
the traffic sampling ratio as well as the specific strategy of sampling. Adapted from Ge et al. [12],
with permission

Towards Fundamental Science of Cyber Security 5



ongoing attack, to control damage, or to restore the network’s operations after an
attack.

Specific approaches to cyber maneuver and moving target defense, such as
randomization and enumeration are discussed in [13, 14]. Randomization can take
multiple forms: memory address space layout, (e.g., [15]; instruction set [16, 17];
compiler-generated software diversity; encryption; network address and layout;
service locations, traffic patterns; task replication and breakdown across cores or
machines; access policies; virtualization; obfuscation of OS types and services;
randomized and multi-path routing, and others. Moving Target Defense has been
identified as one of four strategic thrusts in the strategic plan for cyber security
developed by the National Science and Technology Council [4].

Depending on its purpose, the cyber maneuver involves a large number of
changes to the network executed by the network’s defenders rapidly and poten-
tially continuously over a long period of time. The defender’s challenge is to plan
this complex sequence of actions and to control its execution in such a way that the
maneuver achieves its goals without destabilizing the network or confusing its
users.

Until now, we used Td to denote the totality of attributes, structure and
dynamics of the defender’s tools and techniques. Let’s introduce additional
notation, where STd is the structure of the defensive tools, and BTd(t) is the
defender’s actions. Then, referring to Eq. 1 and focusing on BTd—the sub-element
of Td, the class of problems related to synthesis and control of defenders course of
action can be described as

Nd; Ta; I ! BTd tð Þ ð3Þ

An example of problem in this class is to design a technique of cyber maneuver
in a mobile ad hoc spread-spectrum network where some of the nodes are com-
promised via a cyber attack and become adversary-controlled jammers of the
network’s communications. One approach is to execute a cyber maneuver using
spread-spectrum keys as maneuver keys [18]. Such keys supplement the higher-
level network cryptographic keys and provide the means to resist and respond to
external and insider attacks. The approach also includes components for attack
detection, identification of compromised nodes, and group rekeying that excludes
compromised nodes (Fig. 3).

Equation 3 captures the key features of the problem: we wish to derive the plan
of cyber maneuver BTd(t) from known or estimated changes in properties of our
network, properties of anticipated or actually observed attacks Ta, and the
objective of minimizing security violations I. Planning and execution of a cyber
maneuver would benefit from models that predict relevant properties of the
maneuver, such as its convergence to a desired end state, stability, or reduction of
observability to the attacker.
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5 Assessment of Network’s Vulnerabilities and Risks

Monitoring and assessment of vulnerabilities and risks is an important part of
cyber security strategy pursued by the US Government [19] This involves con-
tinuous collection of data through automated feeds including network traffic
information as well as host information from host-based agents: vulnerability
information and patch status about hosts on the network; scan results from tools
like Nessus; TCP netflow data; DNS trees, etc. These data undergo automated
analysis in order to assess the risks. The assessment may include flagging espe-
cially egregious vulnerabilities and exposures, or computing metrics that provide
an overall characterization of the network’s risk level. In current practice, risk
metrics are often simple sums or counts of vulnerabilities and missing patches.

There are important benefits in automated quantification of risk, i.e., of
assigning risk scores or other numerical measures to the network as a whole, its
subsets and even individual assets [20]. This opens doors to true risk management
decision-making, potentially highly rigorous and insightful. Employees at multiple
levels—from senior leaders to system administrators—will be aware of continu-
ally updated risk distribution over the network components, and will use this
awareness to prioritize application of resources to most effective remedial actions.
Quantification of risks can also contribute to rapid, automated or semi-automated
implementation of remediation plans.

However, existing risk scoring algorithms remain limited to ad hoc heuristics
such as simple sums of vulnerability scores or counts of things like missing pat-
ches or open ports, etc. Weaknesses and potentially misleading nature of such

Target @ t0

Attacker Target @ tn

Target @ t1

Target @ t2

Fig. 3 In moving target defense, the network continually changes its attributes visible to the
attacker, in order to minimize the attacker’s opportunities for planning and executing an effective
attack
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metrics have been pointed out by a number of authors, e.g., [21, 22]. For example,
the individual vulnerability scores are dangerously reliant on subjective, human,
qualitative input, potentially inaccurate and expensive to obtain. Further, the total
number of vulnerabilities may matters far less than how vulnerabilities are dis-
tributed over hosts, or over time. Similarly, neither topology of the network nor the
roles and dynamics of inter-host interactions are considered by simple sums of
vulnerabilities or missing patches. In general, there is a pronounced lack of rig-
orous theory and models of how various factors might combine into quantitative
characterization of true risks, although there are initial efforts, such as [23] to
formulate scientifically rigorous methods of calculating risks.

Returning to Eq. 1 and specializing the problem to one of finding Nd, we obtain

I; Td; Ta ! Nd ð4Þ

Recall that Nd refers to the totality of the defender’s network structure, behavior
and properties. Therefore, Eq. 3 refers to a broad range of problems including
those of synthesizing the design, the operational plans and the overall properties of
the network we are to defend. Vulnerabilities, risk, robustness, resiliency and
controllability of a network are all examples of the network’s properties, and Eq. 3
captures the problem of modeling and computing such properties.

An example of research on the problem of developing models of properties of
robustness, resilience, network control effectiveness, and collaboration in networks
is [24]. The author explores approaches to characterizing the relative criticality of
cyber assets by taking into account risk assessment (e.g., threats, vulnerabilities),
multiple attributes (e.g., resilience, control, and influence), network connectivity
and controllability among collaborative cyber assets in networks. In particular, the
interactions between nodes of the network must be considered in assessing how
vulnerable they are and what mutual defense mechanisms are available (Fig. 4).

Fig. 4 Risk assessment of a network must take into account complex interaction between nodes
of the network, particularly the interactions between their vulnerabilities as well as opportunities
for mutual defense. Adapted from [24], with permission
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6 Attack Detection and Prediction

Detection of malicious activities on networks is among the oldest and most
common problems in cyber security [25]. A broad subset of such problems is often
called intrusion detection. Approaches to intrusion detection are usually divided
into two classes, signature-based approaches and anomaly-based approach, both
with their significant challenges [26, 27]. In Eq. 1, the term I refers to malicious
activities or intrusions, including structures, behaviors and properties of such
activities. Therefore, the process of determining whether a malicious activity is
present and its timing, location and characteristics, are reflected in the following
expression:

Td; Nd; Ta ! I ð5Þ

The broad class of problems captured by Eq. 5 includes the problem of deriving
key properties of a malicious activity, including the very fact of an existence of
such an activity, from the available information about the tools and techniques of
the attacker Ta (e.g., the estimated degree of sophistication and the nature of past
attempted attacks of the likely threats), tools and techniques of the defender Td

(e.g., locations and capabilities of the firewalls and intrusion-prevention systems),
and the observed events on the defender’s network Nd (e.g., the alerts received
from host based agents or network based intrusion detection systems).

Among the formidable challenges of the detection problem is the fact that
human analysts and their cognitive processes are critical components within the
modern practices of intrusion detection. However, the human factors and their
properties in cyber security have been inadequately studied and are poorly
understood [28, 29].

Unlike the detection problem that focuses on identifying and characterizing
malicious activities that have already happened or at least have been initiated, i.e.,
I(t) for t \ tnow, the prediction problem seeks to characterize malicious activities
that are to occur in the future, i.e., I(t) for t [ tnow. The extent of research efforts
and the resulting progress has been far less substantial in prediction than in
detection. Theoretically grounded models that predict characteristics of malicious
activities I—including the property of detectability of the activity—as a function
of Ta, Td, Na, would be major contributors into advancing this area of research.

An example of research on identifying and characterizing probable malicious
activities, with a predictive element as well, is [30], where the focus is on
fraudulent use of security tokens for unauthorized access to network resources.
Authors explore approaches to detecting such fraudulent access instances through
a network-based intrusion detection system that uses a parsimonious set of
information. Specifically, they present an anomaly detection system based upon IP
addresses, a mapping of geographic location as inferred from IP address, and usage
timestamps. The anomaly detector is capable of identifying fraudulent token usage
with as little as a single instance of fraudulent usage while overcoming the often
significant limitations in geographic IP address mappings. This research finds

Towards Fundamental Science of Cyber Security 9



significant advantages in a novel unsupervised learning approach to authenticating
fraudulent access attempts via time/distance clustering on sparse data (Fig. 5).

7 Threat Analysis and Cyber Wargaming

Returning once more to Eq. 1, consider the class of problems where the tools and
techniques of the attacker Ta are of primary interest:

I; Td; Nd; ! Ta ð6Þ

Within this class of problems we see for example the problem of deriving
structure, behavior and properties of malware from the examples of the malicious
code or from partial observations of its malicious activities. Reverse engineering
and malware analysis, including methods of detecting malware by observing a
code’s structure and characteristics, fall into this class of problems.

A special subclass of problems occurs when we focus on anticipating the
behavior of attacker over time as a function of defender’s behavior:

I tð Þ; Td tð Þ; Nd; ! Ta tð Þ ð6aÞ

In this problem, game considerations are important—both the defender’s and
the attacker’s actions are at least partially strategic and depend on their assump-
tions and anticipations of each other’s actions. Topics like adversarial analysis and
reasoning, wargaming, anticipation of threat actions, and course of action devel-
opment fall into this subclass of problems.

Fig. 5 There exist multiple
complex patterns of time-
distance pairs of legitimate
user’s subsequent log-ins.
The figure depicts the pattern
of single-location users
combined with typical
commuters that log-in from
more than one location.
Adapted from Harang and
Glodek [30], with permission
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8 Summary of the Cyber Science Problem Landscape

We now summarize the classification of major problem groups in cyber security.
All of these derive from Eq. 1. For each subclass, an example of a common
problem in cyber security research and practice is added, for the sake of
illustration.

Td, Ta, I ? Nd

Td, Ta, I ? SNd(t)—e.g., synthesis of network’s structure
Td, Ta, I ? BNd(t)—e.g., planning and anticipation of network’s behavior
Td, Ta, I ? PNd(t)—e.g., assessing and anticipating network’s security
properties

Nd, Ta, I ? Td

Nd, Ta, I ? STd(t)—e.g., design of defensive tools, algorithms
Nd, Ta, I ? BTd(t)—e.g., planning and control of defender’s course of action
Nd, Ta, I ? PTd(t)—e.g., assessing and anticipating the efficacy of defense

Td, Nd, I ? Ta

Td, Nd, I ? STa(t)—e.g., identification of structure of attacker’s code or
infrastructure
Td, Nd, I ? BTa(t)—e.g., discovery, anticipation and wargaming of attacker’
actions
Td, Nd, I ? PTa(t)—e.g., anticipating the efficacy of attacker’s actions

Td, Nd, Ta ? I

Td, Nd, Ta ? I(t), t \ tnow—e.g., detection of intrusions that have occured
Td, Nd, Ta ? I(t), t [ tnow—e.g., anticipation of intrusions that will occur

9 Conclusions

As a research filed, the emerging science of cyber security can be defined as the
search for a coherent family of models of relations between attributes, structures
and dynamics of: violations of cyber security policy; the network of computing
devices under attack; the defenders’ tools and techniques; and the attackers’ tools
and techniques where malicious software plays the central role. As cyber science
matures, it will see emergence of models that should: (a) be expressed in an
appropriate rigorous formalism; (b) explicitly specify assumptions, simplifications
and constraints; (c) involve characteristics of threats, defensive mechanisms and
the defended network; (c) be at least partly theoretically grounded; and (d) yield
experimentally testable predictions of characteristics of security violations. Such
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models are motivated by key problems in cyber security. We propose and sys-
tematically derive a classification of key problems in cyber security, and illustrate
with examples of current research.
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Bridging the Semantic Gap: Human
Factors in Anomaly-Based Intrusion
Detection Systems

Richard Harang

1 Introduction

Network intrusion detection systems (IDSs) are often broadly divided into two broad
groups; those that attempt to detect ‘‘misuse’’ (typically including signature-based
approaches), and those that attempt to detect ‘‘anomalies’’ [1, 2]. Misuse detection
typically relies on static rules (a.k.a. ‘‘signatures’’) to detect malicious activity [3, 4];
activity that precisely matches a clearly defined set of rules is flagged as potentially
malicious and referred for further action/analysis, while any activity that does not
match any signature is assumed safe. This approach has so far proven quite effective,
and the misuse detector Snort is perhaps one of the most widely deployed IDSs in use
today. The misuse detection approach generally (although not always, see, e.g., [5])
benefits from an acceptably low false positive rate, and assuming adequate com-
putational resources, is capable of detecting any attack it has a signature for. This
low false positive rate comes at a price, however; due to the highly specific nature of
the signatures that misuse detection requires, it is typically ineffective in detecting
novel ‘‘zero-day’’ attacks targeting new vulnerabilities, for which no effective sig-
nature has yet been developed [6] and requires constant maintenance of the signature
database obfuscated variants are developed (although see [7] for convincing argu-
ments that anomaly-based detection will likely fare no better).

Anomaly-based detection generally attempts to fill a complementary role by
applying the powerful and (in other domains) highly successful tools of machine
learning and statistical analysis to the intrusion detection problem in order to detect
variants on existing attacks or entirely new classes of attacks [8]. Such methods have
become fairly widespread in the IDS academic literature, however very few anomaly
detection systems appear to have been deployed to actual use [1], and none appear to
be adopted on anything near the scale of misuse systems such as Snort [3] or Bro [4].
While a brief literature review will reveal hundred of papers examining methods

R. Harang (&)
ICF International, Washington, DC, USA
e-mail: Richard.Harang@ICFI.com

R. E. Pino (ed.), Network Science and Cybersecurity,
Advances in Information Security 55, DOI: 10.1007/978-1-4614-7597-2_2,
� Springer Science+Business Media New York 2014

15



ranging from self-organizing maps [9] to random forests [10] to active learning
methods [11], there are very few that discuss operational deployment or long-term
use of any of these approaches. Several potential reasons for this disparity are
presented in [1], including their unacceptably high false positive rates (see also
discussion in [12]), the severely skewed nature of the classification problem that IDS
research presents, the lack of useful testing data, and the regrettable tendency of
researchers in anomaly detection to treat the IDS as a black box with little regard to
its operational role in the overall IDS process or the site-specific nature of security
policies (referred to by [1] as the ‘‘semantic gap’’).

In the following, we begin by examining the techniques used in several
anomaly IDS implementations in the literature, and provide some discussion of
them in terms of the ‘‘semantic gap’’ of Somners and Paxson. We then provide a
sketch of the base rate fallacy argument as it applies to intrusion detection,
originally presented by Axelsson in [12]. We then extend the results of [12] briefly
to show that the utility of an anomaly IDS is in fact closely related to the semantic
gap as well as the false positive rate. Finally, we return to tree-based classifiers,
present anecdotal evidence regarding their interpretability, and discuss methods
for extracting rules from randomly constructed ensembles that appear to permit
anomaly detection methods to greatly facilitate human interpretation of their
results at only modest costs in accuracy.

2 Anomaly IDS Implementations

The field of anomaly detection has seen rapid growth in the past two decades, and
a complete and exhaustive inventory of all techniques is prohibitive. We attempt to
summarize the most popular implementations and approaches here with illustrative
examples, rather than provide a comprehensive review.

Anomaly detection itself may be split into the two general categories of
supervised and unsupervised learning [2, 8]. Supervised learning remains close to
misuse detection, using a ‘‘training set’’ of known malicious and benign traffic in
order to identify key predictors of malicious activity that will allow the detector to
learn more general patterns that may detect both previously seen attacks as well as
novel attacks not represented in the original training set. Unsupervised learning
often relies on outlier detection approaches, reasoning that most use of a given
system should be legitimate, and data points that appear to stand out from the rest
of the data are more likely to represent potentially hostile activities.

2.1 Categorical Outlier Detection

In [13], a fairly general method for outlier detection in tabular categorical data is
presented in which—for each column in each row—the relative frequency of the
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entry is compared to all other entries in the given column; this method does not
consider covariance between columns, and so has obvious links to e.g., Naïve Bayes
models, but can be operated in OðnmÞ time where n is the number of rows (data
points) in the table, and m the number of columns (attributes). This method is most
appropriate for purely categorical data where no metric or ordering exists, however
they demonstrate that discretization of numerical data allows application of their
method.

In [14], a slightly more general method is presented to allow for outlier
detection on mixed categorical and numerical data, while permitting a varying
number of categorical attributes per item, by examining set overlap for categorical
attributes while monitoring conditional covariance relationships between the
numerical attributes and performing weighted distance calculations between them.
They also apply their method to the KDD’99 intrusion detection data set to
examine its performance, reporting false positive rates of 3.5 %, with widely
varying true positive rates per class of attack (from 95 to 0 %).

In the strictly continuous domain, the work of [15] examines conditional
anomaly detection, i.e., detecting anomalous entries based on their context, by
means of estimation from strictly parametric models. They fit a Gaussian mixture
model to their observed data via maximum likelihood using the expectation–
maximization algorithm, and detect outliers on the basis of low likelihood score.
The work of [15] draws a rather clear distinction between ‘‘environment’’ variables
that are conditioned on, and ‘‘indicator’’ variables that are examined for anomalies,
however this might be readily extended by regenerating their models in sequence,
once for each variable.

This class of outlier detection method generally forms one of the more inter-
pretable ones; because individual points are generally considered in their original
coordinate system (if one exists, c.f. support vector machines, below) or in terms
of marginal probabilities, the explanation for why a particular point was classified
as anomalous is generally amenable to introspection. For instance, in the work of
[13], each field of an ‘anomalous’ entry may be inspected for its contribution to the
score, and the ones contributing most to the score may be readily identified. The
work of [14] is slightly more complex, due to the individualized covariance
scoring, however the notion of set overlap is straightforward and the covariance
relationship between variables lends itself to straightforward explanation. Unfor-
tunately, despite their explanatory power, these methods generally do not appear to
provide comparable performance to more complex methods such as those
described below.

2.2 Support Vector Machines

Both supervised and unsupervised methods using support vector machines (SVMs)
[16] have become extremely widespread due to the good generalization perfor-
mance and high flexibility they afford. One-class SVMs are used in [17] to detect
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‘‘masquerades’’, illicit use of a legitimate account by a third party posing as the
legitimate user, and found to compare favorably to simpler techniques such as
Naïve Bayes. One-class SVMs are also used in conjunction with conventional
signature based approaches in [18] to provide enhanced detection of variations on
existing signatures.

Supervised learning with two-class SVMs has also been applied to the KDD’99
data set in [19], and found to compare favorably to neural network techniques with
respect to training time, however as the most widely used SVMs are by con-
struction binary classifiers (multi-class SVMs are typically constructed on a 1-vs-
all basis from multiple binary SVMs; SVM constructions that explicitly allow
multiple classes exist but are computationally expensive [20]).

SVMs are also commonly used as a component of more complex systems; these
hybrid approaches allow for the generalization power of SVMs to be exploited,
while mitigating some of their common weaknesses, such as poor performance
when dealing with ancillary statistics. In [21], the authors employ rough sets to
reduce the feature space presented to SVMs for training and testing. A feature
extraction step is also used to reduce the input space to one-class SVMs in [6],
allowing them to better control the false positive rate.1 Finally, [22] use a genetic
algorithm to do initial feature extraction for a SVM, also using KDD’99 data; they
also attempted to apply their method to real data, however concluded that their
own network data contained too few attacks to reliably evaluate their method.

While strictly speaking, SVMs are simply maximum margin linear classifiers,
SVMs as commonly used and understood derive their excellent classification
properties from the ‘‘Kernel trick’’, which uses the fact that data can be projected
into certain inner product spaces (reproducing kernel Hilbert spaces) in which
inner products may be computed through a kernel function on the original data
without having to project the data into the space. These spaces are typically
significantly more complex than the original space, but the kernel trick allows any
classification method that may be written entirely in terms of inner products (such
as support vectors) to be applied to those complex spaces based entirely on the
original data, thus finding a separating hyperplane in the transformed space
without ever explicitly constructing it.

While this projection into one of a wide range of high dimensional spaces gives
SVMs their power, it also poses significant barriers to interpretability. Visuali-
zation and interpretation of (for instance) a 41-dimensional separating hyperplane
is well beyond the capabilities of most people; developing an intuition for the
effects of projection into what may be in principle an infinite dimensional space,
and then considering the construction of a separating hyperplane in this space
complicates matters substantially. For illustrative purposes, we have combined the
approach of [23] (see below) with one-class support vector machines, and applied

1 It is also worth noting that [6] use and provide access to a ‘‘KDD-like’’ set of data—that is, data
aggregated on flow-like structures containing labels—that contains real data gathered from
honeypots between 2006 and 2009 rather than synthetic attacks that predate 1999; this may
provide a more useful and realistic alternative to the KDD’99 set.
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it to packet capture data from the West Point/NSA Cyber Defense Exercise [24].
Briefly, the histogram of 3-byte n-grams from each packet was constructed as a
feature vector and provided to the 1-class SVM function within Scikit-Learn [25];
default values were used, and built-in functions were used to recover on support
vector data point (Fig. 3). The norm imposed by the inner product derived from the
kernel function was used to find the nearest point contained within the support of
the SVM (Fig. 1), as well as the nearest point outside the support of the SVM
(Fig. 2).2 These figures provide Scapy [26] dissections of the three packets.

While the mathematical reason that the packet in Fig. 1 is considered ‘normal’
while that of Fig. 2 would be considered ‘anomalous’ is straightforward, from the

Fig. 1 A packet within the support of the 1-class SVM

2 A possibly instructive exercise for the reader: obscure the labels and ask a knowledgeable
colleague to attempt to divine which two packets are ‘normal’ and which is ‘anomalous’, and
why.
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point of view of a human analyst, dealing with this output is difficult. In particular
the transformed space of the SVM does not map neatly to the normal space of
parameters that human analysts work within to determine hostile intent in network
traffic, and the region of high-dimensional space, even assuming that analysts are
willing and able to visualize point clouds in infinite dimensional space, does not
neatly map to threat classes, misconfigurations, or other common causes of
undesired activity. In effect, to either confirm or refute the classification of this
anomaly detector, analysts must launch an entirely independent investigation into
the packet at issue, with very little useful information on where the most fruitful
areas for examination are likely to be.

Fig. 2 A packet outside the support of the 1-class SVM
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2.3 Clustering and Density Estimation

One of the more common forms of unsupervised learning is clustering. Such
approaches in untransformed coordinates have also been examined; the work of
[27] presents an application of an ensemble approach in which k-means clustering
is used to on a per-port basis to form representative clusters for the data; new data
is then assigned to a cluster which may accept or reject it as anomalous. In-place
incremental updating of the clusters and their associated classification rules is
used, and while the approach appears to underperform when compared to other,
more complex ones applied to the KDD’99 data with a false positive rate of
roughly 10 %, the method of cluster assignment and subsequent determination
provides a degree of introspection to the decision not available to the more
complex approaches.

Fig. 3 The support vector
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The work of [23] addresses the problem of transforming the highly variable and
often difficult to model content of individual network packets into a continuous
space amenable to distance-based outlier detection via frequency counts of n-
grams. For a given length n, all possible consecutive n-byte sequences are
extracted from a packet and tabulated into a frequency table, which is then used to
define a typical distribution for a given service (implicitly assuming a high-
dimensional multivariate normal). Once this distribution has stabilized, further
packets are then examined for consistency with this distribution, and ones that
differ significantly are identified as anomalous. While the reported performance of
the classifier is excellent (nearly 100 % accuracy on the DARPA IDS data set that
formed the basis for the KDD’99 data), once packets are grouped per-port and per-
service, the question of interpretability once again becomes a difficult one. While a
priori known attacks in the data, including novel ones, were detected by their
method, they do not discuss the issue of determining the true/false positive status
of an alarm in unlabeled data in any detail.

2.4 Hybrid Techniques

The work of [11] represents an interesting case, which uses a combination of
simulated data and active learning to convert the outlier detection problem into a
more standard classification problem. Simulated ‘‘outlier’’ data is constructed
either from a uniform distribution across a bounded subspace, or from the product
distribution of the marginal distributions of the data, assuming independence, and
adjoined to the original data with a label indicating its synthetic nature (see also
[28], which uses random independent permutations of the columns to perform a
similar task). The real and simulated data, labeled as such, is then passed to an
ensemble classifier that attempts to maximize the margin between the two classes,
using sampling to select points from regions where the margin is small to refine the
separation between the classes. This method is also applied to KDD’99 data, where
the results are actually shown to outperform the winning supervised method from
the original contest. In discussing the motivation for their method, they point out
that a ‘‘notable issue with [most outlier detection methods] … is the lack of
explanation for outlier flagging decisions.’’ While semantic issues are not
addressed in further detail, the explicit classification-based approach they propose
generates a reference distribution of ‘outliers’ that can be used as an aid to
understand the performance of their outlier detection method.

Finally, the work of [9] combines both supervised and unsupervised learning
approaches in order to attempt to leverage the advantages of each. They implement
a C4.5 decision tree with labeled data to detect misuse, while using a self-orga-
nizing map (SOM) to detect anomalous traffic. Each new data point is presented to
both techniques, and the output of both classifiers is considered in constructing the
final classification of the point. While in this case the supervised learning portion
of the detector could provide some level of semantic interpretation of anomalies,
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should both detectors fire simultaneously, the question of how to deal with alerts
that are triggered only by the SOM portion of the detector is not addressed.

2.5 Tree-Based Classifiers

Tree-based ensemble classifiers present alternatives to kernel-based approaches
that rely upon projections of the data into higher-dimensional spaces. From their
initial unified presentation in [28] on through the present day [29], they have been
shown to have excellent performance on a variety of tasks. While their original
applications focused primarily on supervised learning, various methods to adapt
them to unsupervised approaches such as density estimation and clustering have
been developed since their introduction (the interested reader is referred to [29]
and references therein for an overview of the variety of ways that random decision
forests have been adapted to various problems, as well as an excellent selection of
references). Unsurprisingly, random decision forests and variants thereof have
been applied to the anomaly IDS problem as well.

A straightforward application of random decision forests in a supervised
learning framework using the KDD’99 data is provided in [30], reporting a clas-
sification accuracy rate of 99.8 %. Similar work in [10] using feature selection
rather than feature importance yields similar results, reporting classification
accuracy of 99.9 %. Our own experiments have shown that simply blindly
applying the built-in random decision forest package in Scikit-learn [25] to the first
three features of the KDD’99 data in alphabetical order—‘‘Count’’, ‘‘diff_srv_-
rate’’, and ‘‘dst_bytes’’—without any attempt to clean, balance, or otherwise adapt
to the deficiencies of the KDD’99 set, yields over a 98 % accuracy rate in clas-
sifying KDD’99 traffic, with the bulk of the errors formed by misclassifications
within the class of attacks (see Appendix for details).

An outlier detection approach for intrusion detection using a variant of random
decision forests that the authors term ‘‘isolation forest’’ is presented in [31], in
which the data is sub-sampled in extremely small batches (the authors recommend
256 points per isolation tree, and building a forest from 100 such trees), and
iteratively split at random until the leaf size is reduced to some critical threshold.
Using the intuition that anomalies should stand out from the data, it then follows
that the fewer splits that are required to isolate a given point, the less similar to the
rest of the data it is. Explicit anomaly scoring in terms of the expected path length
of a binary search tree is computed. The authors of [31] examine—among other
data sets—the portion of the KDD’99 data representing SMTP transactions, and
report an AUC of 1.0 for the unsupervised detection of anomalies. Several of the
same authors also present on-line versions of their algorithm in [32], taking
advantage of the constant time complexity and extremely small memory footprint
of their method to use sequential segments of data as training and test sets (where
the test set from the previous iteration becomes the training set for the next
iteration), and report similarly impressive results.
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While the authors of [31] and [32] do not explicitly consider the notion of
interpretation in their work, the earlier work of [33] provides an early example of
an arguably similar approach that does explicitly consider such factors. Their
anomaly detection method is explicitly categorical (with what amounts to a density
estimation clustering approach to discretize continuous fields), and operates by
generating a ‘‘rule forest’’ where frequently occurring patterns in commands and
operations on host systems are used to generate several rule trees, which are then
pruned based on quality of the rule and the number of observations represented by
the rule.

Note, however, that in contrast to [31]—which also relies on trees—the
approach of [33] lends more weight to longer rules that traverse more levels of the
tree (where [31] searches for points that on average traverse very few levels of a
tree before appearing in a leaf node). This occurs as the work of [31] (and outlier
detection in general) tacitly assumes that the outlying data is not generated by the
same process as the ‘inlying’ data, and hence the work of [31] searches for regions
containing few points. Rule-based systems, such as [33] and [27] (and to a lesser
extent, [34]) place more emphasis on conditional relationships in the data, in effect
estimating the density for the final partitioning of the tree conditional on the prior
path through the tree.

Also in contrast to many other anomaly IDS methods, [33] made interpretation
of the results of their system—named ‘‘Wisdom and Sense’’—an explicit design
goal, noting that ‘‘anomaly resolution must be accomplished by a human.’’ The
rules themselves, represented by the conjunction of categorical variables, lend
themselves much more naturally to human interpretation than e.g., the high-
dimensional projections common to support vector machines, or the laborious
transformation of categorical data into vectors of binary data which is then blindly
projected into the corners of a high-dimensional unit cube.

3 Anomaly IDSs ‘‘in the wild’’ and the Semantic Gap

Likely due to the complexities enumerated above, experimental results on attempts
to deploy anomaly detection systems are regrettably few and far between. Earlier
methods, such as that of [33] or that of [34], typically report results only on their
own in-house and usually proprietary data. When these systems have been tested
elsewhere (see [35], in which [34] was tested and extended), many configuration
details have been found to be highly site-specific, and additional tuning was
required. As the volume and sensitivity of network traffic increased, along with the
computational complexity of the anomaly detection methods used to construct
anomaly detectors, attempts to deploy such detectors to operational environments
do not appear to be widely reported. The work of [36] provides a notable exception
to this rule, in which several proprietary anomaly detection systems were deployed
in a backbone environment. Details about the anomaly detection methods used in
the commercial products tested in [36] are unavailable (and some are noted as also
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incorporating ‘signature based methods’, though it is unclear at what level these
signatures are being applied), however it is worth remarking that the bulk of the
anomalies being examined in [36] were related to abnormal traffic patterns, rather
than content (e.g., shell code, worms, Trojans, etc.). The volume of traffic and the
extremely low rate of true positives meant that searching for more sophisticated
attacks was essentially infeasible, and indeed the traffic patterns observed at the
backbone level that were flagged as anomalous are much more straightforward to
classify manually than more subtle exploitation attempts. Revisiting our termi-
nology above, the cost a of evaluating a positive result and determining if it is a
true or false positive is relatively low, at least in comparison to attacks that require
content inspection to detect.

It is also worth remarking that in [36] it was observed that the set of true
positive results on which the various anomaly detectors agreed was in fact
extremely small, which suggests that the false negative rate for a single detector is
in all likelihood rather high. This may a practical consequence of Axelsson’s [12]
result, suggesting that to retain a tractable false positive rate, the threshold for
detection has been set rather high in these commercial anomaly detectors, thus
increasing the false negative rate in tandem with the reduction in false positives,
however in the absence of more details on the precise mode of operation and the
numerical choices made in the algorithms, this remains speculative.

Issues with interpretability of anomaly IDS techniques are is explicitly brought
up in [11], in which they point out that many outlier detection methods ‘‘…[tend]
not to provide semantic explanation as to why a particular instance has been
flagged as an outlier.’’ The same observation within the context of IDS work has
been made in some of the earliest work in anomaly-based IDS, including [33]
(who in 1989 wrote ‘‘…explaining the meaning and likely cause of anomalous
transactions … must primarily be accomplished by a human.’’) and [35]
(extending and testing the earlier work of [34]) who note that, in the absence of
automated analysis of audit data, a ‘‘security officer (SO) must wade through
stacks of printed output.’’ They are also are discussed briefly in [1], where the
example of [37] is given, in which the titular question ‘‘Why 6?’’ (or, more
completely, why a subsequence length of 6 turns out to be the minimum possible
value that permits the anomaly IDS to find the intrusions in the test set) ultimately
requires 26 pages and a full publication to answer in a satisfying manner. While
this does not directly address operational issues, the point remains that if the
researchers who study and implement a system require that much effort to
understand why a single parameter must be set the way it is to generate acceptable
performance, it is not a question that analysts responsible for minute-to-minute
monitoring and analysis of network traffic are likely to have the time or inclination
to answer.

At least part of the blame for the resilience of the semantic gap may be laid at
the feet of the availability of data. Analysis methods must be developed to fit the
available data, and regrettably the most commonly-used data set in intrusion
detection research remains the infamous KDD’99 set, which began receiving
criticism as little as 4 years after its initial release (see [38] and [39], for instance)
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but—over the protests of many security researchers [24]—has been and continues
to be widely used, particularly in the field of anomaly detection (see, e.g., [2, 9, 10,
22, 30, 32]).

The KDD’99 set is, superficially, extremely amenable to analysis by machine
learning techniques (although see [38] and [39] for some notable issues); the data
has 42 fields, the majority of which are continuously-valued, while the bulk of the
remainder are Boolean. Only two fields, protocol type and service, are categorical,
and both of these have a limited number of possible values (and, in practice,
appear to be generally ignored in favor of continuous fields for most anomaly IDS
research using this data). This enables and encourages an application of machine
learning approaches that rely on metrics in inner product spaces (or their trans-
formations) to anomaly IDS problems. The contextual information that human
analysts often rely on to determine whether or not traffic is malicious (e.g., source
and destination ports and IP blocks, protocol/port pairs, semantic irregularities
such as malformed HTTP requests, and so forth) is very explicitly not included in
this data, for the precise reason that it is very poorly suited to automated analysis
by machine learning algorithms (recent work on language-theoretic security in fact
suggests that automated analysis of many security problems is in fact in principle
intractable, as it effectively reduces to solving the halting problem [40]).

The root of the semantic gap is thus in part the result of a vicious spiral: with
the only widely used labeled data set being the KDD’99 data, which encourages
the use of machine learning techniques that often rely on complex transformations
of the data that tend to obscure any contextual information, the observation of [12]
means that focus must be placed on reducing false positive rates to render them
useful. This leads to more sophisticated and typically more complex methods,
enlarging the semantic gap, leading to a greater emphasis on reduced false positive
rate, and so forth.

4 The Base-Rate Fallacy, Anomaly Detection, and Cost
of Misclassification

In addition to issues of interpretation, the simple fact that the overwhelming
majority of traffic to most networks is not malicious has a significant impact on the
reliability and usability of anomaly detectors. This phenomenon—the base-rate
fallacy—and the impact it has on IDS systems is discussed in depth in [12]. We
summarize selected relevant points of the argument here.

Briefly, the very low base rate for malicious behavior in a network leads to an
unintuitive result, showing that the reliability of the detector (referred to in [12] as
the ‘‘Bayesian detection rate’’) P IjAð Þ, or the probability that an incident of con-
cern actually has occurred given the fact that an alarm has been produced, is
overwhelmingly dominated by the false positive rate of a detector P Aj � Ið Þ, read
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as the probability that there is an alarm given that no incident of concern actually
took place. A quick sketch by Bayes’ theorem shows that:

P IjAð Þ ¼ P AjIð ÞPðIÞ
P AjIð ÞP Ið Þ þ P Aj � Ið ÞPð� IÞ

where we assume all probabilities are with respect to some constant measure for a
given site and IDS. If we then note that, by assumption, P Ið Þ � Pð� IÞ for any
given element under analysis, we can immediately see that the ratio on the right
hand side is dominated by the P Aj � Ið ÞPð� IÞ term. Since P � Ið Þ is assumed to
be beyond our control, the only method of adjusting the reliability PðIjAÞ is by
adjusting the false positive rate of our detector.

This insight, has led to much work in recent results on reducing false positive
rates in not just anomaly IDSs (see, e.g., [6] and [22]) but also in such misuse
detectors as Snort [5, 18]. The availability of the KDD’99 set, which provides a
convenient test-bed for such methods, despite its age and concerns about its
reliability [38, 39], makes it relatively easy for research to focus on this issue, and
so perhaps accounts for the popularity of KDD’99 despite its well-known issues.

The key insight from the base-rate fallacy argument is there is an extreme
imbalance between the rate of occurrence of hostile traffic and that of malicious
traffic, which in turn greatly exaggerates the impact of false positives on the
reliability of the detector. However, if we extend the argument to include cost of
classification, this same observation suggests a potential remediation. Assume that
the cost of investigating any alarm, whether ultimately associated with an incident
or not, is a, while the cost of not having an alarm when there is an incident (a false
negative result) is b. We then have that

E Cost½ � ¼ aP Að Þ þ bP �AjIð ÞP Ið Þ
¼ a P AjIð ÞP Ið Þ þ P Aj � Ið ÞP � Ið Þ½ � þ bP �AjIð ÞP Ið Þ

And if we once again assume that P Ið Þ � P � Ið Þ, then note that we can
approximate then term a P AjIð ÞP Ið Þ þ P Aj � Ið ÞP � Ið Þ½ � by simply
aP Aj � Ið ÞP � Ið Þ, such that:

E Cost½ � � aP Aj � Ið ÞP � Ið Þ þ bP �AjIð ÞP Ið Þ

We assume that the cost of false negatives—classifying hostile traffic as
benign—may be large enough that we cannot ignore the second term. Note that the
expected cost in this case is now very sensitive to even small changes in the cost of
examining alarms. This suggests that in the event that the false positive rate cannot
be reduced significantly, we may still be able to operate the system at an
acceptable cost by reducing the cost of examining IDS alerts. As we discuss later
sections, current anomaly detectors are not well-suited to this task, and in fact
attempting to reduce the cost by reducing P Aj � Ið Þ have in fact inadvertently led
to increases in a, by virtue of both the need to adapt the heterogeneous data
available to IDS systems to standard machine learning techniques that focus on
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inner product spaces, and the complex transforms of that data undertaken by these
machine learning techniques in order to obtain accurate decision boundaries.

4.1 Cost Versus Threshold Tradeoffs

In many cases, the false positive rate and the false negative rate are related to each
other; see, for instance, [6] where the effect of the support radius of a 1-class SVM
on the true and false positive rate was examined. While shrinking the space
mapping to a decision of ‘anomaly’ (or equivalently, increasing the detection
threshold) clearly will reduce the false positive rate, it also decreases the sensi-
tivity of the detector, and thus the true positive rate PðAjIÞ, and since
P AjIð Þ þ P �AjIð Þ ¼ 1, i.e., every incoming packet must either trigger an alarm or
not trigger an alarm, this must inevitably increase the false negative rate, poten-
tially incurring a significant cost.

As a toy example, consider the Gaussian mixture problem, where our data
comes from the following distribution:

fX xið Þ ¼ P Ið Þp xi; 1; 1ð Þ þ 1� P Ið Þð Þp xi; 0; 1ð Þ

p xi; l; r
2

� �
¼ 1

ffiffiffiffiffiffiffiffiffiffi
2pr2
p exp � 1

2r2
xi � lð Þ2

� �

where for each xi we must determine whether it was drawn from p xi; 1; 1ð Þ, in
which case we deem it anomalous, or p xi; 0; 1ð Þ, in which case it is normal. Put
another way, given some value xi, our task is to decide whether li ¼ 1 or li ¼ 0. If
we assume independence and construct a decision rule based solely on the current
observation xi, then we may fix a false negative rate of P �AjIð Þ ¼ p; giving us a
threshold for xi of xI ¼ U�1

Xjl¼1 pð Þ where U is the standard Gaussian CDF. From

this we can obtain directly the false positive rate for this detector:

P Aj � Ið Þ ¼ 1� UXjli¼0 xI
� �

Using this threshold-based decision rule, we have that the only possible way to
decrease the false positive rate is to increase the threshold xI. As the CDF of xi is
by definition non-decreasing in xi, we have immediately that increasing the
threshold xI will simultaneously decrease the false positive rate while increasing
the false negative rate.

Turning to the cost, we have from above:

E Cost½ � � aP Aj � Ið ÞP � Ið Þ þ bP �AjIð ÞP Ið Þ
¼ a 1� UXjli¼0 xI

� �� �
Pð� IÞ þ bUXjli¼1 xI

� �
P Ið Þ

And (in this example) can optimize with respect to cost by standard methods to
find:
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xI

optð Þ ¼ ln aP � Ið Þ � ln bP Ið Þ½ � þ 1
2

Or more generally, letting f0 denote the density function for normal traffic and f1

denote the density of anomalous traffic, we have the usual form of the weighted
likelihood ratio decision rule3:

f1 xI
� �

f0 xIð Þ ¼
bP Ið Þ

aP � Ið Þ

At this threshold xI, any further increase in xI leads to an increase in the
expected cost of analysis, as the benefit of reduced false positives in the left hand
term begins to be outweighed by the cost of increased false negatives.

Critically, for many IDS deployments, P Ið Þ may be completely unknown, and b
is generally only roughly approximated. This immediately suggests that increasing
the threshold for an anomaly detector may in fact be counterproductive, and in
many cases it is difficult or impossible to know when precisely this tradeoff has
occurred.

While this is—as in [12]—generally grim news for anomaly detection, the
impact of a and b on the cost is also of interest. Security policies, segregating
sensitive resources, and controlling physical access to the most critical systems
and information may provide avenues to reduce b, however we defer this analysis
to others. The dependence on a, however, is worth examining. Notice that—
again—it is a multiplicative factor to the rate of normal traffic, suggesting that
small adjustments in a can have an impact significantly greater than an equal
adjustment in b. Indeed, d

da E Cost½ � � P Aj � Ið ÞP � Ið Þ while d
db E Cost½ � ¼

P �AjIð ÞP Ið Þ where again P Ið Þ � P � Ið Þ. This suggests that reducing the cost to
analysts of examining and diagnosing alarms may provide significant benefit with
respect to the cost of operation of an IDS. As we have seen above, efforts to
control the false positive rate in much of the academic work relating to IDSs have
led to increasingly complex classification systems. We contend that this trend has
in fact significantly increased a, greatly reducing the utility of such systems for
practical use.

3 Note another critical feature: if adversarial actors are capable of crafting their traffic to

approximate f0, such that the quantity 1� f1 xð Þ
f0 xð Þ

			
			 � 2 for some small 2 [ 0, and can control

the rate of malicious traffic they send and hence P Ið Þ, then they may craft their traffic such that
the defenders have no xI that satisfies the above relationship and so cannot perform cost-
effective anomaly detection. We do not discuss this problem in detail, but reserve it for future
work.
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5 Revisiting Tree-Based Anomaly Detectors

As discussed previously, tree-based anomaly IDSs were among the first considered
[33]. The work of [33] focused largely on a host-based approach to detecting
misuse of computer systems on the basis of host actions and made efforts to use the
tree structure to extract rules that could be both automatically applied to audit trail
logs as well as directly interpreted by analysts. While the majority of recent
anomaly IDS work has focused on various very popular and highly successful
kernel methods that have been developed for machine learning in other areas, other
more recent approaches have leveraged the work that has been done in random
decision forests [28, 29] and begun to investigate their application to both
supervised anomaly detection [10, 30] and unsupervised outlier detection [31, 32]
in both batched and online modes. The fact that tree-based ensemble classifiers can
achieve extremely high performance without further transforming the data into a
more complex space to make it easier to separate (although note the empirical
observation in [41] that the best performance is often obtained by including
additional transformations of the covariates) and are typically quite robust to
ancillary data [29, 31] make them attractive targets for anomaly detection algo-
rithms, and initial results [10, 30–32]—albeit often on limited data—have shown
that their performance is comparable or even superior to methods that employ
more complex transformations.

While the semantic gap is not widely addressed in these papers, trees naturally
lend themselves to extracting contextual information and classification rules that
are generally much more interpretable to end users than the distance-based metrics
of kernel methods. They also handle the heterogeneous data observed in networks
more naturally than many other classifiers which either explicitly operate on
features that map naturally to inner product spaces (see virtually any KDD’99-
based paper) or require some transformation of the data to convert it into such a
space (e.g., [23], transforming sequential bytes into n-grams). In particular, the
most common form of splitting rule within continuous covariates in trees—axis-
aligned learners—allow us to extract simple inequalities to define portions of rules
relating to those attributes, and splits of ordinal variables allow us to extract
relevant subsets from such fields. By tracing a path from the root to the final leaf
node of any tree, it is extremely straightforward to extract the ‘‘rule’’ that led to the
classification of the point in question in that leaf node; tabulation of the number of
data points in the training data that fell into each internal node or leaf immediately
gives us conditional probabilities based that may be immediately extracted from
the data. Figure 4 shows a toy example of a decision tree based on the West Point/
NSA CDX data [24] learned in an unsupervised manner similar to [32] (features
selected at random from the available set, continuous features split at a randomly
selected value from the ones available at that node, categorical features selected by
information gain ratio; a maximum of three splits were permitted, and the splitting
was terminated if the proposed split led to a leaf node of fewer than 100 points). A
quick walk down the tree—taking the right-most split at each step—shows that we
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may construct the rule for an ‘anomaly’ learned by this tree as: ‘‘destination
port [ 13,406, not TCP, Source port [ 87’’. This rule is presented using the type
of data that analysts work with on a daily basis (rather than elaborate RKHS
representations, for instance), and the value of the rule may be assessed
immediately.4

While single trees are straightforward to assess, combining rules in multiple
trees is less straightforward. This question was touched on in [33] in the context of
pruning the extensive database of generated rules, but only for strictly categorical
data. They employ several criteria for pruning, beginning with a threshold function
on the quality of the rule (favoring longer, more accurate rules with a smaller
range of acceptable consequents), then removing rules where the predicates form a
simple permutation of some other rule, next removing rules where the consequent
matches some other rule and the predicates form a special case of some other rule,
and finally pruning on number of exemplars of the rule in the data and depth.
These criteria can be easily transferred to the case of continuous covariates.

Fig. 4 A toy decision tree

4 In this case, any outgoing traffic to a relatively high destination port was deemed by an analyst
to be unusual, but ‘‘certainly not a red flag’’; the fact that it was non-TCP and did not originate
from the lower end of the range of registered ports suggested a UDP streaming protocol, which
often communicate across ephemeral ports; the analyst volunteered the suggestion that if it were
in fact UDP it would likely not warrant further analysis. When the same analyst was presented
with the outputs given in Fig. 1 through Fig. 3, they were of the opinion that it was not terribly
useful, and that it not provide them with any guidance as to why it appeared suspicious; the
semantic gap in action.
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Briefly, for all leaf nodes that lead to a classification of ‘anomalous’ in all trees
(note that these nodes will vary depending on what kind of tree is used, either half-
space trees as in [32], isolation trees as in [31], or some variety of density esti-
mation tree as presented above and discussed in [29]), we extract the rules by
walking the tree and identifying upper and lower bounds (if any) for the contin-
uous fields, and the possible values (potentially including the special case of all
values) for the categorical fields. We then attempt to identify the most compact set
of aggregated rules for which the intersection of those sets is non-empty in all
fields. As this process is equivalent to the set cover problem, we approximate the
solution via a greedy algorithm, extracting the maximal set remaining in each
iteration. Each aggregated rule is assigned a weight based on the number and
weight of rules that are subsumed by it. In our example case, illustrated in Table 1,
we used isolation trees of [31], simply taking their default values
(w ¼ 256; t ¼ 100; c wð Þ � 6:1123). We can then define the weight of an aggre-

gated rule as s x;wð Þ ¼ 2�
P

hiðxÞ
nc wð Þ , as any packet that triggers our aggregated rule

would, by definition, trigger all rules subsumed by the aggregated rule.
Note that the aggregated rule is extremely specific, represented in ‘‘natural

units’’ of IDS data, and learned in an entirely unsupervised fashion from the data.
In this case, analyst evaluation of the rule suggested that the primary feature of
interest was the low port number in conjunction with the UDP protocol and the
high rate of data from the external service. This suggested to the analyst a
streaming protocol, consistent with many UDP transactions, but to a non-standard
port. In addition, a feature that appeared to be irrelevant for this rule—the duration
of the transaction—was naturally excluded, and could be easily trimmed from the
display.

While this method takes an aggressive approach to rule pruning, essentially
triggering only on instances that satisfy among the tightest constraints possible
derived from the rule set represented by the trees, a similar approach could be used
in a post hoc fashion, collecting only the subset of rules that the data point of
interest triggered on its path through the forest, and performing a similar greedy
aggregation method on them to determine aggregated rules that it satisfied. While
this does not permit the one-time computation with subsequent amortization of the

Table 1 Seven isolation tree rules and an associated meta-rule

Protocol Transaction
duration

Client
port

Client
packets

Client
BPS

Service
port

Service
packets

Service
BPS

hðxÞ

UDP * * \69 * * * * 2
* * * \65 [0 * * * 2
UDP * * * * * * [12,093 2
* * \23 * * * * [7,21,709 2
* * \137 * * * * [15,13,401 2
* * * * * \3,268 [22 * 2
* * * * * \4,985 * [1,066 2
UDP * \23 \65 [0 \3,268 [22 [15,13,401
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time complexity that pre-processing of the forest permits, the fixed number of trees
in the ensemble mean that the system may operate, similarly to the method of [32],
with constant time complexity (albeit potentially a large constant).

While broader-scale testing on realistic data is necessary, and additional work
to identify the most useful features is required, preliminary results indicate that the
approach of using tree-based anomaly detection systems to identify and extract
human-readable rules describing the generated anomalies is of great promise, and
suggests that anomaly detection systems may well be able cross the semantic gap
and see some degree of deployability in settings beyond the research lab.

6 Conclusion

We present an overview of many current approaches in the literature to anomaly-
based intrusion detection, and examine in detail the issue of the semantic gap first
articulated by [1]. This semantic gap is due in large part to the emphasis of
anomaly detection research on outlier detection methods and machine learning
techniques that have been designed primarily to operate within inner product
spaces, which are not in general representative of the problem space for actual IDS
deployment and operation. The result of [12] shows that the reliability of an
anomaly detector—the probability that investigating an alarm will lead to detec-
tion of malicious or anomalous activity—is directly related to the false positive
rate of the detector, and so much emphasis has been placed on reducing this false
positive rate when treating the IDS as a black box. We extend this result with a
cost analysis to show that in operational deployment, the interpretability of an IDS
alert is also significant, and suggest that tree-based detection methods that operate
in the untransformed space of IDS data not only are better-suited to the IDS
problem space, but also lend themselves more naturally to human interpretation
than high-dimensional kernel-based methods without the sacrifices in accuracy
that have characterized categorical outlier detection methods. We finally show a
proof-of-concept method for extracting rules from ensembles of trees, producing
novel rules for detecting anomalous traffic built in a completely unsupervised
fashion from live network data.

Appendix A

Random decision tree classification of KDD’99 data was performed using the
Scikit-learn [25] package under Python 2.7.2 on a desktop commodity workstation.
Training was performed using the file kddcup.data_10_percent_corrected, and
testing was done on the file kddcup.data.corrected. 494,021 training records were
used, and 4,898,431 test records. The three fields ‘‘Count’’, ‘‘diff_srv_rate’’, and
‘‘dst_bytes’’ were extracted along with the label field in both data sets; all other
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data was discarded. The random decision forest was trained with the following
parameters:

– Classification threshold: simple majority
– No bootstrapping used
– Features per node: 2
– Node splitting by informatin gain
– Minimum leaf samples: 1
– Minimum samples to split: 2
– Max tree depth: 9
– Number of trees: 11

Training the classifier required 4.4 s using a single processor, testing required
approximately 122.8 s.5 The following confusion matrix was produced (note that
we have omitted correct classifications on the diagonal for compactness, and that
we have also omitted rows corresponding to predictions that the classifier never
produced).

Total false negatives: 36204=4898431 � 0:007
Total false positives: 2622=4898431 � 0:0005
The most common errors were misclassification of the IPsweep attack as nor-

mal traffic, and classification of flows corresponding to the Neptune attack as the
Smurf attack. Random inspection of the IPsweep misclassifications suggests that
each ‘‘attack’’ had several records associated with it; while many individual
records were not correctly labeled, all instances that were examined by hand had at
least one record in the total attack correctly classified. As the Smurf and Neptune
attacks are both denial of service attacks, some confusion between the two is to be
expected.

While these results certainly demonstrate that random decision forests are
accurate and efficient classifiers, the alternative that the KDD’99 data is simply not
a terribly representative data set for IDS research should not be excluded.
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Recognizing Unexplained Behavior
in Network Traffic

Massimiliano Albanese, Robert F. Erbacher, Sushil Jajodia,
C. Molinaro, Fabio Persia, Antonio Picariello, Giancarlo Sperlì
and V. S. Subrahmanian

1 Introduction

Intrusion detection and alert correlation techniques provide valuable and com-
plementary tools for identifying and monitoring security threats in complex net-
work infrastructures. Intrusion detection systems (IDS) can monitor network traffic
for suspicious behavior and trigger security alerts accordingly [1–3]. Alert cor-
relation methods can aggregate such alerts into multi-step attack scenarios [4–8].

Intrusion detection has been studied for about 30 years, since it was first
identified in the Anderson report [9], and it is based on the assumption that an
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intruder’s behavior will be noticeably different from that of a legitimate user and
that many unauthorized actions are detectable [3].

Intrusion detection techniques can be broadly classified into signature-based [2]
and profile-based (or anomaly-based) [1] methods. There are advantages and dis-
advantages to each method. The trend today is to use the two methods together to
provide the maximum defense for the network infrastructure. A signature generally
refers to a set of conditions that characterize the direct manifestation of intrusion
activities in terms of packet headers and payload content. Historically, signature-
based methods have been most common when looking for suspicious or malicious
activity on the network. These methods rely on a database of attack signatures and
when one or more of these signatures match what is observed in live traffic, an
alarm is triggered and the event is logged for further investigation. The effec-
tiveness of signature-based intrusion detection is highly dependent on its signature
database. If a signature is not in the database, the IDS will not recognize the attack.

Anomaly-based intrusion detection triggers an alarm when some type of unu-
sual behavior occurs on the network. This would include any event that is con-
sidered to be abnormal by a predefined standard. Anything that deviates from this
baseline of normal behavior will be flagged and logged as anomalous or suspi-
cious. For instance, HTTP traffic on a non-standard port, say port 63, would be
flagged as suspicious. Normal behavior can be programmed into the system based
on offline learning and research, or the system can learn the normal behavior
online while processing the network traffic.

In complex networks, most intrusions are not isolated but represent different
stages of specific attack sequences, with the early stages preparing for the later
ones. In other words, complex attacks consist of multiple steps, each triggering
specific security alerts. This fundamental observation, along with the potentially
large number of alerts deriving from the widespread deployment of IDS sensors,
has prompted significant research in automatic alert correlation techniques. The
goal of correlation is to find causal relationships between alerts in order to
reconstruct attack scenarios from isolated alerts [10]. Although it may not sig-
nificantly reduce the number of alerts, the main role of correlation is to provide a
higher level view of the actual attacks. Existing approaches to alert correlation can
be divided into the following categories based on the criterion used for relating
alerts: scenario-based correlation [4, 5], rule-based correlation [6], statistical
correlation [11, 12], and temporal correlation [13].

From a conceptual point of view, both intrusion detection systems and alert
correlation methods aggregate fine grained information into higher level views of
the attack, although they operate at different levels of abstraction, as shown in
Fig. 1. Moreover, both rely on models encoding a priori knowledge of either
normal or malicious behavior, and cannot appropriately deal with events that are
not explained by the underlying models. In practice, all these methods are inca-
pable of quantifying how well available models explain a sequence of events
observed in data streams (data packets and alerts respectively) feeding the two
classes of tools.
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To address this limitation and offer novel analytic capabilities, we present a
framework for evaluating the probability that a sequence of events—either at the
network traffic level or at the alert level—is unexplained, given a set of models of
previous learned behaviors. Our approach is an application of the framework
proposed in [14] to the cyber security setting. We adapt algorithms from [14] so as
to efficiently estimate the probability that a sequence is unexplained (rather than
computing the exact probability as done in [14]). The computation of approximate
probabilities is done by leveraging the mathematical properties studied in Sect. 3.
Our framework can operate both at the intrusion detection level and at the alert
correlation level, but it is not intended to replace existing tools. In fact, our
framework builds on top of these tools, and analyzes their output in order to
identify what is not ‘‘sufficiently’’ explained by the underlying models. Experi-
ments on a prototype implementation of the framework show that our approach
scales well and provides accurate results.

The rest of the chapter is organized as follows. Section 2 presents the proposed
probabilistic model, whereas Sect. 3, discusses the properties that can be leveraged
to compute approximate probabilities efficiently. Efficient algorithms to recognize
unexplained behaviors are presented in Sect. 4. An experimental evaluation of our
framework is reported in Sect. 5, and concluding remarks are given in Sect. 6.

2 Behavior Model

In this section, we present a framework for evaluating the probability that a
sequence of events is unexplained, given a set of models. As already mentioned
above, this framework can operate both at alert correlation level and at intrusion

Fig. 1 Conceptual diagram
of the relationship between
alert correlation and intrusion
detection
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detection level. Note that the model described in this section has been adapted
from previous work on activity detection for video surveillance applications [14].
The novel contribution of this chapter starts in Sect. 3, where we propose efficient
techniques to compute an approximate probability that a sequence of events is
unexplained.

2.1 Preliminaries

We assume the existence of a set E of observable events,1 and a set A of models2

representing known behavior (either normal or malicious) in terms of observable
events. When an event is observed, an observation is generated. An observation is
a pair a ¼ ðe; tsÞ, where e 2 E is an observable event, and ts is a timestamp
recording the time at which an instance of e was observed. An observation stream
(or observation sequence) S is a finite sequence of observations.

Example 1 Consider the Snort rule alert any any ? any any
(flags:SF,12; msg:‘‘Possible SYN FIN scan’’;).3 This rule detects
when a packet has the SYN and FIN flags set at the same time—indicating a
possible SYN FIN scan attempt—and generates an alert (observation) a ¼ ðe; tsÞ,
where the observable event e is the fact that the SYN and FIN flags are set at the
same time, and ts is the time at which the packet was observed.

Throughout the chapter, we use the following terminology and notation for
sequences. Let S1 ¼ ha1; . . .; ani and S2 ¼ hb1; . . .; bmi be two sequences. We say
that S2 is a subsequence of S1 iff there exist 1� j1\j2\ � � �\jm� n s.t. bi ¼ aji

for 1� i�m. If jiþ1 ¼ ji þ 1 for 1� i\m, then S2 is a contiguous subsequence of
S1. We write S1 \ S2 6¼ ; iff S1 and S2 have a common element and write e 2 S1 iff
e is an element appearing in S1. The concatenation of S1 and S2, i.e., the sequence
ha1; . . .; an; b1; . . .; bmi, is denoted by S1 � S2. Finally, we use S1j j to denote the
length of S1, that is, the number of elements in S1.

Given an observation stream S, and a behavior model A 2A, an occurrence o
of A in S is a subsequence h e1; ts1ð Þ; . . . em; tsmð Þi of S such that the sequence of
events e1; . . .; em represents a possible way of exhibiting behavior A (e.g., a spe-
cific path in the attack graph from initial to target conditions). The relative
probability4 p� oð Þ of the occurrence o is the probability that the sequence of events

1 At the intrusion detection level, observable events may simply be observable packet features.
At the alert correlation level, observable events are alerts generated by the underlying intrusion
detection system.
2 At the intrusion detection level, A is a set of IDS rules. At the alert correlation level, A is a
set of attack models, such as attack graphs.
3 http://www.snort.org/.
4 Probabilities of occurrences must be normalized in order to enable comparison of occurrences
of different behavior models.
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he1; . . .; emi is in fact an instance of the corresponding behavior. The problem of
computing the probability of an occurrence is beyond the scope of our work.
However, several researchers have addressed this problem. For instance, a prob-
abilistic extension of attack graphs is proposed in [15], along with an algorithm for
identifying attack occurrences efficiently. Therefore, we assume that all the
occurrences o of a behavior A and their probabilities can be readily computed.

We use O S;Að Þ to denote the set of all occurrences in S of behaviors in A.
When S and A are clear from the context, we write O instead of O S;Að Þ.

2.2 Probabilistic Unexplained Behavior Model

We now define the probability that an observation sequence is unexplained, given
a set A of known behaviors. We start by noting that the probabilistic nature of
occurrences implicitly involves conflicts. For instance, consider the two occur-
rences o1 and o2 in Fig. 2. In this case, there is an implicit conflict because a2

belongs to both occurrences, but in fact, a2 can only belong to one occurrence, i.e.,
though o1 and o2 may both have a non-zero probability of occurrence, the prob-
ability that they coexist is 0.5 Formally, we say two occurrences oi, oj conflict,
denoted oi¿oj, iff oi \ oj 6¼ ;. We now use this notion to define possible worlds.

Definition 1 (Possible world) A possible world for an observation sequence S
w.r.t. a set of behavior models A is a subset w of O S;Að Þ s.t. 9= oi; oj 2 w; oi¿oj.

Thus, a possible world is a set of occurrences which do not conflict with one
another, i.e., an observation cannot be identified as part of two distinct occurrences
in the same world. We use W S;Að Þ to denote the set of all possible worlds for an
observation sequence S w.r.t. a set of behavior models A; when S and A are clear
from context, we write W.

Example 2 Consider the observation sequence and the two conflicting occur-
rences o1, o2 in Fig. 2. There are three possible worlds: w0 ¼ ;, w1 ¼ o1f g, and
w2 ¼ o2f g. Note that o1; o2f g is not a world as o1 ¿ o2. Each world represents a
way of explaining what is observed. The first world corresponds to the case where
nothing is explained, the second and third worlds correspond to the scenarios
where we use one of the two possible occurrences to explain the observed events.

Note that any subset of O not containing conflicting occurrences is a legitimate
possible world—possible worlds are not required to be maximal w.r.t. set inclusion
�. In the above example, the empty set is a possible world even though there
are two other possible worlds w1 ¼ o1f g and w2 ¼ o2f g which are supersets of it.

5 This assumption makes modeling simpler, but it can be removed or modified in situations
where certain atomic events are shared among multiple attack patterns.
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The reason is that o1 and o2 are uncertain, so the scenario where neither o1 nor o2

occurs is a legitimate one. We further illustrate this point below.

Example 3 Consider an observation sequence where a single occurrence o has
been identified with p� oð Þ ¼ 0:6. In this case, it is natural to say that there are two
possible worlds w0 ¼ ; and w1 ¼ of g and expect the probabilities of w0 and w1 to
be 0.4 and 0.6, respectively. By restricting ourselves to maximal possible worlds
only, we would have only one possible world, w1, whose probability is 1, which is
wrong. Nevertheless, if p� oð Þ ¼ 1, w1 is the only possible scenario. This can be
achieved by assigning 0 and 1 to the probabilities of w0 and w1, respectively.

Thus, occurrences determine a set of possible worlds (intuitively, different ways
of explaining the observation stream). We wish to find a probability distribution
over all possible worlds that (1) is consistent with the relative probabilities of the
occurrences, and (2) takes conflicts into account. We assume the user specifies a
function x : A! R

þ which assigns a weight to each behavior and prioritizes the
importance of the behavior.6 The weight of an occurrence o of behavior A is the
weight of A.

We use C oð Þ to denote the set of occurrences conflicting with o, i.e.,
C oð Þ ¼ o

0 jo0 2 O ^ o
0
¿o

� �
. Note that o 2 C oð Þ; furthermore, C oð Þ ¼ of g when o

does not conflict with any other occurrence. Suppose pi denotes the (unknown)
probability of world wi. As we know the probability of occurrences, and as each
occurrence occurs in certain worlds, we can induce a set of linear constraints that
can be used to learn the values of the pi’s.

Definition 2 Let S be an observation sequence, A a set of behavior models, and O
the set of occurrences identified in S w.r.t. A. We define the linear constraints
LCðS;AÞ as follows:

pi� 0; 8wi 2WP

wi2W
pi ¼ 1

P

wi2Ws:t:o2wi

pi ¼ p� oð Þ � x oð ÞP
oj2C oð Þ x ojð Þ ; 8o 2 O

8
>>><

>>>:

6 For instance, highly threatening behaviors may be assigned a high weight.

Fig. 2 Example of
conflicting occurrences
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The first two types of constraints enforce a probability distribution over the set
of possible worlds. The last type of constraint ensures that the probability of
occurrence o—which is the sum of the probabilities of the worlds containing o—is

equal to its relative probability p� oð Þ weighted by x oð ÞP
oj2C oð Þ x ojð Þ, the latter being the

weight of o divided by the sum of the weights of the occurrences conflicting with
o. Note that: (i) the value on the right-hand side of the last type of constraint
decreases as the amount of conflict increases, (ii) if an occurrence o is not con-
flicting with any other occurrence, then its probability

P
wi2Ws:t:o2wi

pi is equal to
p� oð Þ, i.e., the relative probability returned by chosen tool for identifying behavior
occurrences in observation streams.

Example 4 Consider the observation sequence and occurrences of Fig. 3, and
assume that such occurrences have been identified with the relative probabilities
shown in the second column of Table 1. The table also shows the weights assigned

to the occurrences and the value of p� oð Þ � x oð ÞP
oj2C oð Þ x ojð Þ. The 8 occurrences

determine 49 possible worlds.7 The set of linear constraints of Definition 2 for this
case is shown in Fig. 4.

Fig. 3 Example of observation sequence and occurrences

Table 1 Probabilities and
weights of occurrences

o p� oð Þ x oð Þ p� oð Þ � x oð ÞP
oj2C oð Þ x ojð Þ

o1 0.90 3 0.45
o2 0.80 3 0.30
o3 0.72 2 0.16
o4 0.65 4 0.20
o5 0.77 4 0.28
o6 0.50 3 0.10
o7 0.60 4 0.24
o8 0.70 3 0.30

7 We do not list all the worlds for reason of space.
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In the rest of the chapter, we assume that LCðS;AÞ is solvable. We give two
semantics for a subsequence S

0
of an observation sequence S to be unexplained in a

world w 2W:

1. S
0

is totally unexplained in w, denoted w2
T
S
0
, iff 8ai 2 S

0
; 9= o 2 w; ai 2 o;

2. S
0

is partially unexplained in w, denoted w2
P
S
0
, iff 9ai 2 S

0
; 9= o 2 w; ai 2 o.

Intuitively, S
0

is totally (resp. partially) unexplained in w iff w does not explain
every (resp. at least one) observation in S

0
.

When we have a probability distribution over the set of possible worlds (i.e., a
solution of LCðS;AÞ), the probability that a sequence S

0
is totally (resp. partially)

unexplained can be naturally defined as the sum of the probabilities of the worlds
wi s.t. S

0
is totally (resp. partially) unexplained in wi. This is formally defined as

follows.

Definition 3 Let A be a set of behavior models, S an observation sequence, and S
0

a subsequence of S. Suppose we have a probability distribution / over W obtained
by solving LCðS;AÞ. The probability that S

0
is totally unexplained in S w.r.t. A

and / is

PTðS
0
;A;/Þ ¼

X

wi2Ws:t:wi2T S0
/ wið Þ

Similarly, the probability that S
0

is partially unexplained in S w.r.t. A and / is

PPðS
0
;A;/Þ ¼

X

wi2Ws:t:wi2PS0
/ wið Þ

The previous definition gives the probability that a sequence S
0

is totally (resp.
partially) unexplained for a given solution of LCðS;AÞ. However, in general
LCðS;AÞ can admit multiple solutions, each yielding a probability that a sequence
is totally or partially unexplained. We define the probability interval that a

Fig. 4 Linear constraints for the occurrences of Fig. 3
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sequence S
0
is totally (resp. partially) unexplained by minimizing and maximizing

the probability that S
0

is totally (resp. partially) unexplained subject to the linear
constraints of Definition 2.

Definition 4 Let A be a set of behavior models, S an observation sequence, and S
0

a subsequence of S. The probability interval that S
0
is totally unexplained in S w.r.t.

A is IT S
0
;A

� �
¼ l; u½ �, where:

l ¼minimize
X

wi2Ws:t: wi2T S0
pi

subject to LC S;Að Þ

u ¼maximize
X

wi2Ws:t: wi2T S0
pi

subject to LC S;Að Þ

Likewise, the probability interval that S
0
is partially unexplained in S w.r.t. A is

IP S
0
;A

� �
¼ l

0
; u
0� �

, where:

l0 ¼minimize
X

wi2Ws:t: wi2PS0
pi

subject to LC S;Að Þ

u0 ¼minimize
X

wi2Ws:t: wi2PS0
pi

subject to LC S;Að Þ

Thus, the probability PTðS
0
;A;/Þ (resp. PPðS

0
;A;/Þ) that a subsequence S

0

of S is totally (resp. partially) unexplained w.r.t. a solution / of LC S;Að Þ is the
sum of the probabilities of the worlds in which S

0
is totally (resp. partially)

unexplained. As LC S;Að Þ may have multiple solutions, we find the tightest
interval l; u½ � (resp.½l0 ; u0 �) containing this probability for any solution. Different
criteria can be used to choose a point probability value from an interval l; u½ �, e.g.,
the minimum (l), the maximum (u), or the average (i.e., lþ uð Þ=2).

In the rest of the chapter, we assume that one of the above criteria has been
chosen, and we use PTðS

0
;AÞ (resp. PPðS

0
;AÞ) to denote the probability that S

0
is

totally (resp. partially) unexplained; when A is clear from context, we write
PTðS

0 Þ (resp. PPðS
0 Þ).

Example 5 Consider the observation sequence and occurrences of Fig. 3. The
probability PTðS

0 Þ that the sequence S
0 ¼ ha6; a7; a8; a9; a10i is totally unexplained

is obtained by minimizing and maximizing the objective functionP
wi2Ws:t:w2T S0 pi ¼ p0 þ p1 þ p2 þ p7 þ p8 þ p13 þ p14 þ p18 þ p19 subject to the
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constraints of Fig. 4, which gives IT S
0� �
¼ 0:26; 0:42½ �, that is 0:26�

PT S
0� �
� 0:42. The probability PPðS

0 Þ that the sequence S
00 ¼ a7; a8 is partially

unexplained is obtained by minimizing and maximizing the corresponding
objective function8 which gives IP S

00� �
¼ 0:64; 0:8½ �.

Proposition 1 Consider two subsequences S1 and S2 of an observation sequence
S. If S1 is a subsequence of S2, then PT S1ð Þ�PT S2ð Þ and PP S1ð Þ�PP S2ð Þ.

We now define totally and partially unexplained behaviors.

Definition 5 (Unexplained behavior) Let S be an alert sequence, s 2 0; 1½ � a
probability threshold, and L 2 N

þ a length threshold. Then,

• a totally unexplained behavior is a subsequence S
0

of S s.t. (i) PT S
0� �
� s, (ii)

S
0�� ��� L, and (iii) S

0
is maximal, i.e., there does not exist a subsequence S

00 6¼ S
0

of S s.t. S
0

is a subsequence of S
00
, PT S

00� �
� s, and S

00�� ��� L.

• a partially unexplained behavior is a subsequence S
0

of S s.t. (i) PP S
0� �
� s, (ii)

S
0�� ��� L, and (iii) S

0
is minimal, i.e., there does not exist a subsequence S

00 6¼ S
0

of S s.t. S
00

is a subsequence of S
0
, PP S

00� �
� s, and S

00�� ��� L.

In the definition above, L is the minimum length a sequence must be for it to be
considered a possible unexplained behavior. Totally unexplained behaviors (TUBs
for short) S

0
have to be maximal because, based on Proposition 1, any subsequence

of S
0

is totally unexplained with probability greater than or equal to that of S
0
. On

the other hand, partially unexplained behaviors (PUBs for short) S
0

have to be
minimal because, based on Proposition 1, any super-sequence of S

0
is partially

unexplained with probability greater than or equal to that of S
0
.

Intuitively, an unexplained behavior is a sequence of events that are observed
on a network and poorly explained by known behavior models. Such sequences
might correspond to unknown variants of known behaviors or to entirely new—
and unknown—behaviors. As such, the proposed approach may be help in dis-
covering zero-day attacks, which are unknown to administrators by definition.

An Unexplained Behavior Problem (UBP) instance is a four-tuple
I ¼ hS;A; s; Li, where S is an alert sequence, A is a set of behavior models,
s 2 0; 1½ � is a probability threshold, and L 2 N

þ is a length threshold. We want to
find the sets Otu Ið Þ and Opu Ið Þ of all totally and partially unexplained behaviors in
S, respectively.

The unexplained behavior model presented in this section applies to both alert
correlation and intrusion detection. When used at the intrusion detection level,
observable events are packet features and models are IDS rules. When used at the
alert correlation level, observable events are IDS alerts and models are attack
models, such as attack graphs.

8 This objective function is the sum of 34 variables and is not shown for reasons of space.
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3 Properties

Previous work on the recognition of unexplained activities [14] relies on an
independence assumption to break the large optimization problem of Definition 4
into smaller optimization problems.9 Specifically, [14] uses the transitive closure
of ¿ to determine a partition of the set O of activity occurrences into equivalence
classes O1; . . .;Om, and assume that activity occurrences in one class are inde-
pendent of activity occurrences in another class. Although this assumption is
reasonable in the realm of video data, where periods of low or no activity in the
field of view of a single camera are likely to break the flow of events into inde-
pendent segments, we drop such an assumption for the purpose of identifying
unexplained behaviors in network intrusions. In fact, an observation stream typi-
cally includes alerts from multiple sources, and multiple activities may be
occurring at any given time, making conflict based partitioning ineffective. For
example, conflict based partitioning of the set of occurrences in Fig. 3 leads to a
single equivalence class containing all the occurrences.

In this section, we derive properties that can be leveraged to solve UBPs
efficiently.

3.1 Totally Unexplained Behaviors

First, given a sequence S
0
, we show that lower and upper bounds for PT S

0� �
can be

found without solving the optimization problem of Definition 4. In order to do so,
we introduce the following preliminary definition.

Definition 6 (Maximal intersecting set of occurrences) Let O� be a set of

occurrences. A maximal intersecting set of occurrences for O� is a subset O
0

of O�

such that:

• 8oi; oj 2 O
0
; oi¿oj; and

• 9= O0 � O�s:t:O
0 � O

00 ^ 8oi; oj 2 O
00
; oi¿oj;

Intuitively, a set of occurrences is intersecting iff any two occurrences in the set
conflict. An intersecting set of occurrences is maximal iff no proper superset of it is
an intersecting set.10 We use M O�ð Þ to denote the set of maximal intersecting sets
of occurrences in O�.

9 Indeed, the set of constraints becomes non-linear with the addition of the constraints reflecting
the independence assumption.
10 The problem of finding all the maximal intersecting sets of occurrences is a generalization of
the problem of finding maximal intersecting families of k-sets, but it is more general as
occurrences are not required to have the same length k. As we need to compute maximal
intersecting sets for small sets O� of occurrences, complexity of this problem is not an issue.
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Example 6 Consider the observation sequence of Fig. 3, and let O be the set of all
occurrences recognized in the sequence. The set o4; o5; o6f g is a maximal inter-
secting set of occurrences for O, as o4¿o5, o4¿o6, and o5¿o6, and there is no
proper superset containing pairwise conflicting occurrences. Instead, the
set o3; o4; o5f g is not a maximal intersecting set of occurrences because o3 and o5

do not conflict. In this case, the set of all maximal intersecting sets of occurrences
in O is M Oð Þ ¼ o1; o2f g; o2; o3f g; o3; o4f g; o4; o5; o6f g; o6; o7f g; o7; o8f gf g.

Theorem 1 Consider a subsequence S
0
of an observation sequence S and the set O

of occurrences identified in S w.r.t. a set A of behavior models, and let O� be the
set of occurrences o 2 O such that o\ S

0 6¼ ;. Then

PT S
0

	 

� 1	min 1;

X

o2O�
p� oð Þ � x oð Þ

P
oj2C oð Þx oj

� �

( )

ð1Þ

PT S
0

	 

� 1	 max

O
0 2M O�ð Þ

X

o2O0
p� oð Þ � x oð Þ

P
oj2C oð Þx oj

� � ð2Þ

Proof Consider a solution p0; p1; . . .; pm½ �T of LC S;Að Þ. Then
PT S

0� �
¼

P

wi2Ws:t:wi2T S0
pi. Recalling the definition of totally unexplained sequence,

we can write

PT S0ð Þ ¼
X

wi2W s:t:wi2T S0
pi ¼

X

wi2W s:t: 8ai2S0;9= o2wi;ai2o

pi ð3Þ

Note that the condition 8ai 2 S
0
; 9= o 2 wi; ai 2 o is satisfied by all worlds

except those containing at least one occurrence intersecting S
0
. Therefore,

X

wi2Ws:t: 8ai2S0;9= o2wi;ai2o

pi ¼ 1	
X

wi2Ws:t: 9o2wi;o\ S0 6¼;
pi ð4Þ

Lower bound. Recalling that O� is the set of occurrences intersecting S
0
, and

considering that the condition 9o 2 wi; o\ S
0 6¼ ; is satisfied by all worlds wi

containing an occurrence o 2 O�, with some worlds containing multiple such
occurrences, we can write

X

wi2Ws:t: 9o2wi;o\ S0 6¼;
pi�min 1;

X

o2O�

X

wi2Ws:t: 9o2wi

pi

( )

ð5Þ

Note that the argument
P

wi2Ws:t:9o2wi

pi of the outer summation is the left-hand

side of the constraint for occurrence o in the set of linear constraints of Definition
2. Therefore, combining Definition 2 and Equations 3, 4, and 5, we can write
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PT S0ð Þ � 1	min 1;
X

o2O�
p� oð Þ � x oð Þ

P
oj2C oð Þx oj

� �

( )

ð6Þ

Upper bound. Consider a maximal intersecting set O0 2M O�ð Þ. For any two

occurrences oi; oj 2 O
0
, the sets of worlds Wi ¼ w 2Wjoi 2 wf g and Wj ¼

w 2Wjoj 2 w
� �

are disjoint, as oi¿oj. Additionally, the condition 9o 2
wi; o\ S

0 6¼ ; is satisfied in at least all worlds wi containing an occurrence o 2 O
0
,

therefore,
X

wi2Ws:t: 9o2wi;o\ S0 6¼;
pi�

X

o2O0

X

wi2Ws:t: o2wi

pi ð7Þ

As the above property holds for all O
0 2M O�ð Þ, we can conclude that

X

wi2Ws:t: 9o2wi;o\ S0 6¼;
pi� max

O02M O�ð Þ

X

o2O0

X

wi2Ws:t: o2wi

pi ð8Þ

Finally, combining Definition 2 and Equations 3, 4, and 8, we can write

PT S0ð Þ � 1	 max
O02M O�ð Þ

X

o2O0
p� oð Þ � x oð Þ

P
oj2C oð Þx oj

� � ð9Þ

Example 7 Consider again the observation sequence and occurrences of Fig. 3.
We want to find upper and lower bounds for the probability PT S

0� �
that the

sequence S
0 ¼ a6; a7; a8; a9; a10 is totally unexplained. For this example, O� ¼

o3; o4; o5; o6f g and M O�ð Þ ¼ o3; o4f g; o4; o5; o6f gf g. Applying Theorem 1 we
obtain PT S

0� �
� 1	 0:74 ¼ 0:26 and PT S

0� �
� 1	max 0:36; 0:58f g ¼ 0:42.

Note that, in this case, these bounds coincide exactly with the probability interval
obtained by solving the maximization and minimization problems.

A consequence of Proposition 1 and Theorem 1 is the following theorem, which
provides a sufficient condition for an observation not to be included in any
unexplained behavior.

Theorem 2 Let I ¼ S;A; s; L be a UBP instance. Given an observation a 2 S, if

1	
P

o2Os:t:a2o
p� oð Þ � x oð ÞP

oj2C oð Þ x ojð Þ\s, then there does not exist a subsequence S
0

of

S s.t. (i) a 2 S
0
, (ii) PT S

0� �
� s, and (iii) S

0�� ��� L.

Proof Consider the sequence S
0 ¼ hai: Then, O� ¼ o 2 Ojo\ S

0 6¼ ;
� �

¼
o 2 Oja 2 of g. Therefore, M O�ð Þ ¼ O�f g, i.e., there is only one maximal inter-

secting set in O�, and it coincides with O�. Applying Theorem 1, we can conclude
that
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PT S
0

	 

� 1	

X

o2O�
p� oð Þ � x oð Þ

P
oj2C oð Þx oj

� �\s;

Now, consider a sequence S
00 � S s.t. a 2 S

00
. Since S

0 � S
00
, from Proposition 1 we

can conclude that

PT S
00

	 

�PT S

0
	 


\s:

If the condition stated in the theorem above holds for an observation a, then we
say that a is sufficiently explained. Note that checking whether an observation a is
sufficiently explained does not require that we solve a set of linear constraints,
since this can be done by simply summing the weighted probabilities of the
occurrences containing a. Thus, this result yields a further efficiency. If a is
sufficiently explained, then it can be disregarded for the purpose of identifying
unexplained behaviors.

Given a UBP instance I ¼ hS;A; s; Li and a contiguous subsequence S
0

of S,
we say that S

0
is a candidate iff (1) S

0�� ��� L, (2) 8a 2 S
0
, a is not sufficiently

explained, and (3) S
0
is maximal (i.e., there does not exist S

00 6¼ S
0
is a subsequence

of S
00

and S
00

satisfies (1) and (2)). We use candidatesðIÞ to denote the set of
candidate subsequences. If we look for totally unexplained behaviors that are
contiguous subsequences of S, then Theorem 2 entails that candidate subsequences
can be individually considered because there is no (contiguous) totally unex-
plained behavior spanning two different candidate subsequences.

3.2 Partially Unexplained Behaviors

We now present similar results, in terms of probability bounds, for partially
unexplained behaviors, and show that lower and upper bounds for PP S

0� �
can be

found without solving the optimization problem of Definition 4. In order to do so,
we introduce the following preliminary definition.

Definition 7 (Non-conflicting sequence cover) Let O� be a set of occurrences, and
S
0

an observation sequence. A non-conflicting sequence cover of S
0

in O� is a
subset O

0
of O� such that:

• 8oi; oj 2 O
0
; oi and oj do not conflict; and

• 8a 2 S
0
; 9o 2 O

0
; a 2 o:
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We use C O�; S0ð Þ to denote the set of all minimal sequence covers of S
0

in O�.
Intuitively, a non-conflicting sequence cover of S

0
in O� is a subset of non-con-

flicting occurrences in O� covering11 S
0
.

Theorem 3 Consider a subsequence S
0
of an observation sequence S and the set O

of occurrences identified in S, and let O� be the set of occurrences o 2 O such that
o\ S

0 6¼ ;. Then

PP S
0

	 

� 1	

X

O
0 2C O�;S0ð Þ

min
o2O0

p� oð Þ x oð Þ
P

oj2C oð Þ x oj

� � ð10Þ

PP S
0

	 

� 1	

X

o2O�s:t:S0�o

p� oð Þ � x oð Þ
P

oj2C oð Þ x oj

� � ð11Þ

Proof Consider a solution p0; p1; . . .; pm½ �T of LC S;Að Þ. Then
PP S

0� �
¼

P

wi2Ws:t:wi2
P

S0
pi. Recalling the definition of partially unexplained

sequence, we can write

PT S
0

	 

¼

X

wi2Ws:t:wi2T S0
pi ¼

X

wi2Ws:t:9ai2S0 ;9= o2wi;ai2o

pi ð12Þ

Note that the condition 9ai 2 S
0
; 9= o 2 wi; ai 2 o is satisfied by all worlds except

those where each observation ai 2 S
0

is part of an occurrence, that is the sequence
is totally explained in those worlds. Therefore,

X

wi2Ws:t:9ai2S0 ;9= o2wi;ai2o

pi ¼ 1	
X

wi2Ws:t:8ai2S0 ;9o2wi;ai2o

pi ð13Þ

Lower bound. Given any two non-conflicting sequence covers O
0

and O
00
, the sets

of worlds W
0 ¼ w 2WjO0 � w

� �
and W00 ¼ w 2WjO00 � wf g are disjoint, as

at least one occurrence in O
0

conflicts with at least one occurrence in O
00
. Addi-

tionally, the condition 8ai 2 S
0
; 9o 2 wi; ai 2 o is satisfied by all worlds wi con-

taining a non-conflicting cover of S0. Thus, we can write
X

wi2Ws:t:8ai2S0 ;9o2wi;ai2o

pi ¼
X

O
0 2C O�;S0ð Þ

X

wi2Ws:t:O
0 �wi

pi ð14Þ

11 This is a variant of the set cover problem. This is known to be NP-complete, however we need
to solve only small instances of this problem, so complexity is not an issue.
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Consider any non-conflicting sequence cover O
0 2 C O�; S

0� �
. The set W

0 ¼ fwi 2
WjO0 � wig of worlds containing all the occurrences in O

0
is a subset of the set of

worlds containing o, for each o 2 O
0
. Therefore,

X

wi2Ws:t:O
0 �wi

pi� min
o2O0

X

wi2Ws:t:o2wi

pi ð15Þ

Finally, considering that the above property holds for any O
0 2 C O�; S

0� �
, and

combining Definition 2 and Equations 12, 13, 14, and 15, we can write

PP S
0

	 

� 1	

X

O
0 2C O�;S0ð Þ

min
o2O0

p� oð Þ x oð Þ
P

oj2C oð Þ x oj

� �

Upper bound. Consider the set O
0 ¼ o 2 O�jS0 � o

� �
of all the occurrences o that

cover S
0
, i.e., the occurrences such that fog is a sequence cover for S

0
in O�. S

0
is

totally explained in at least all the worlds containing any of the occurrences in O
0
.

Note that any two set of worlds Wi and Wj containing oi 2 O
0

and oj 2 O
0
,

respectively are disjoint, as oi¿oj. Therefore,
X

wi2Ws:t:8ai2S0 ;9o2wi;ai2o

pi�
X

o2O�s:t:S0 �o

X

wi2Ws:t:o2wi

pi ð16Þ

Finally, combining Definition 2 and Equations 12, 13, and 16, we can write

PP S
0

	 

� 1	

X

o2O�s:t:S0�o

p� oð Þ � x oð Þ
P

oj2C oð Þ x oj

� �

Example 8 Consider again the observation sequence and occurrences of Fig. 3.
We want to find upper and lower bounds for the probability PP S

00� �
that the

sequence S
00 ¼ a7; a8 is partially unexplained. For this example, C O�; S

00� �
¼

o3; o5f g; o4f gf g. Applying Theorem 3 we obtain PP S
00� �
� 1	 0:36 ¼ 0:64 and

PP S
00� �
� 1	 0:2 ¼ 0:8. Note that, in this case, these bounds coincide exactly

with the probability interval obtained by solving the maximization and minimi-
zation problems.

4 Algorithms

Even though our framework can assess the probability that an arbitrary subse-
quence of S is unexplained, we propose algorithms that search for contiguous
subsequences of S, as we believe that contiguous subsequence can more easily be
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interpreted by users (nevertheless, the algorithms could be easily modified to
identify also non-contiguous unexplained subsequences).

We now present algorithms to find totally and partially unexplained behaviors.
These algorithms are a variant of the algorithms in [14]: while the algorithms in
[14] compute the exact probability that a sequence is unexplained, the algorithms
in this chapter compute an approximate probability that a sequence is unexplained
by lever-aging the properties shown in Sect. 3.

Given an observation sequence S ¼ ha1; . . .; ani, we use Sði; jÞ (1� i� j� n) to
denote the subsequence S ¼ ai; . . .; aj.

The FindTUB algorithm computes totally unexplained behaviors in an
observation sequence S. Leveraging Theorem 2, FindTUB only considers can-
didate subsequences of S. When the algorithm finds a sequence S

0 ðstart; endÞ of
length at least L having a probability of being unexplained greater than or equal to
s (line 6), then the algorithm makes it maximal by adding observations on the
right. Instead of adding one observation at a time, S

0 ðstart; endÞ is extended of L
observations at a time until its probability drops below s (lines 8–13); then, the
exact maximum length of the unexplained behavior is found by performing a
binary search between s and e (line 16). Note that PT is estimated by applying
Theorem 1.

The FindPUB algorithm computes all partially unexplained behaviors. To find
an unexplained behavior, it starts with a sequence of a certain length (at least L)
and adds observations on the right of the sequence until its probability of being
unexplained is greater than or equal to s. As in the case of FindTUB, this is done
not by adding one observation at a time, but adding L observations at a time (lines
7–11) and then determining the exact minimal length by performing a binary
search between s and e (line 16). The sequence is then shortened on the left making
it minimal by performing a binary search instead of proceeding one observation at
a time (line 23). Note that PP is estimated by leveraging Theorem 3.

5 Experimental Results

In this section, we present the results of experiments we conducted on a prototype
implementation of the proposed framework. We evaluated running time of the
algorithms as well as accuracy. In the following, we first describe the experimental
setup (Sect. 5.1), and then report the results on the scalability (Sect. 5.2) and
accuracy (Sect. 5.3) of our framework.
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5.1 Experimental Setup

All experiments were conducted on a dataset consisting of network traffic captured
over a 24-h period from the internal network of an academic institution. We used
(1) Wireshark (http://www.wireshark.org/) to capture network traffic and generate
the sequence of packets, and (2) Snort (http://www.snort.org) to analyze such
traffic and generate the sequence of alerts.
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Figure 5 illustrates the experimental setup. As the number of alerts returned by
the IDS may be relatively high, the Alert Aggregation module, that takes as input
the identified alerts, can optionally aggregate multiple alerts triggered by the same
event into a macro-alert, based on a set of ad hoc aggregation rules. For instance,
we defined rules to aggregate alerts such that protocol, source address, and des-
tination address of suspicious traffic are the same, and the alerts are within a given
temporal window. In other words, the events triggering such alerts will be treated
as a single event, thus reducing the amount of data to be processed.

Fig. 5 Experimental setup
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5.2 Scalability Results

We measured the running time of FindTUB for different values of s and L,
varying the length of the data stream to be analyzed. More specifically, in one case
we set the threshold s to 0.6 and used different values of L, namely 10, 50, 75, 100.
In the other case, we fixed the value of L to 50 and varied the threshold s giving it
the values 0.4, 0.6, 0.8.

Figure 6 shows the processing time of FindTUB as a function of the data
stream length (expressed in seconds) for different values of L. Not surprisingly, the
running time increases as the input stream size grows. Moreover, the processing
time decreases as the value of L increases because Algorithm FindTUB can move
forward in the data stream more quickly for higher values of L. Notice also that the
running times is much lower when L� 50.

Figure 7 shows the processing time of FindTUB as a function of the data
stream length for different values of s. Also in this case the running time gets
higher as the input stream length increases. The running time is lower for higher
values of s because the pruning strategy of Algorithm FindTUB becomes more
effective with higher threshold values. Moreover, in this case, the running time
becomes much lower when s� 0:6.

Both figures show that our algorithm scales well—notice that the running time
linearly grows w.r.t. the length of the input.

5.3 Accuracy Results

We measured the accuracy of the framework using the following procedure. Let A
be the set of Snort rules. First, we detected all occurrences of A in the considered
data stream. Then, we executed multiple runs of FindTUB, and at each run i, we
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ignored a different subset Ai of A. Clearly, ignoring models in Ai is equivalent to
not having those models available. Thus, occurrences of ignored behaviors are
expected to have a relatively high probability of being unexplained as there is no
model for them. We measured the fraction of such occurrences that have been
flagged as unexplained by FindTUB for different values of s, namely 0.4, 0.6, 0.8
(L was set to 50).

We considered two settings: one where only ICMP rules in A were ignored,
and another one where only preprocessor rules in A were ignored. The average
accuracy in the former and latter case is shown in Tables 2, 3, respectively. Notice
that the accuracy decreases as the threshold value increases since higher thresholds
are more restrictive conditions for a sequence to be unexplained. Notice also that
in both cases there is no difference in accuracy between s ¼ 0:6 and s ¼ 0:8; this
is because, in this case, the same unexplained sequences were found. These results
show that our framework achieved high accuracy.

We also evaluated the effect of the threshold value on the percentage of
unexplained traffic. We considered three different settings, each characterized by a
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Table 2 Accuracy when
ICMP rules are ignored

s Accuracy (%)

0.4 95.10
0.6 78.75
0.8 78.75

Table 3 Accuracy when
preprocessor rules are
ignored

s Accuracy (%)

0.4 84.21
0.6 73.68
0.8 73.68
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different set of available rules (all Snort rules are available, all Snort rules except
for preprocessor rules are available, and all rules but ICMP rules are considered),
and measured the percentage of unexplained traffic as the threshold varies from 0.1
to 1. We carried out the experiments for two different values of L, namely L ¼ 50
and L ¼ 100—the results are reported in Fig. 8a, b, respectively. Both figures
show that by disregarding rules the percentage of unexplained traffic increases, but
there is no substantial difference between disregarding preprocessor rules and
disregarding ICMP rules. Furthermore, the percentage of unexplained traffic
decreases as the threshold increase because higher threshold values impose more
restrictive conditions for a sequence to be unexplained. Finally, the results for
L ¼ 100 show lower percentages of unexplained traffic than the case L ¼ 50 as
L ¼ 100 is a more restrictive condition for a sequence to be unexplained and thus
the unexplained traffic is expected to be less in this case. This trend is also
confirmed by the results of Fig. 9 where we show how the percentage of unex-
plained traffic varies as the threshold value goes from 0.1 to 1 and different values
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of L are considered. In this case L was set to 10, 50, 100, 200 and all IDS rules
were considered.

6 Conclusions

In this chapter, we presented a probabilistic framework to identify unexplained
behavior in network intrusions. Intrusion detection and alert correlation methods
rely on models encoding a priori knowledge of either normal or malicious
behavior, but are incapable of quantifying how well the underlying models explain
what is observed on the network. Our framework addresses this limitation, by
evaluating the probability that a sequence of events is unexplained, given a set of
models. We derived some important properties of the framework that can be
leveraged to estimate this probability efficiently. The proposed framework can
operate both at the intrusion detection level and at the alert correlation level.
Experimental results show that the algorithms are accurate and scale linearly with
the size of the observation sequence. This confirms the validity of our approach
and motivates further research in this direction.

Acknowledgments The work presented in this chapter is supported in part by the Army
Research Office under MURI award number W911NF-09-1-05250525, and by the Office of Naval
Research under award number N00014-12-1-0461. Part of the work was performed while Sushil
Jajodia was a Visiting Researcher at the US Army Research Laboratory.

References

1. P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, E. Vázquez, Anomaly-based
network intrusion detection: techniques, systems and challenges. Comput. Secur. 28(1–2),
18–28 (2009)

%
 u

n
ex

p
la

in
ed

L=10 L=50 L=100 L=200

100% 

80% 

60% 

40% 

20% 

All rules 

0% 
0 0.2 0.4 0.6 0.8 1

τ

Fig. 9 Percentage of
unexplained traffic vs. s for
different values of L (all IDS
rules are used)

Recognizing Unexplained Behavior in Network Traffic 61



2. A. Jones, S. Li, Temporal signatures for intrusion detection, in Proceedings of the 17th
Annual Computer Security Applications Conference (ACSAC 2001) (IEEE Computer Society,
2001), New Orleans, pp. 252–261

3. B. Mukherjee, L.T. Heberlein, K.N. Levitt, Network intrusion detection. IEEE Netw. 8(3),
26–41 (1994)

4. S.O. Al-Mamory, H. Zhang, Ids alerts correlation using grammar-based approach. J. Comput.
Virol. 5(4), 271–282 (2009)

5. H. Debar, A. Wespi, Aggregation and correlation of intrusion-detection alerts, in Proceedings
of the 4th International Symposium on Recent Advances in Intrusion Detection (RAID 2001),
eds. W. Lee, L. Mé, A. Wespi. Lecture Notes in Computer Science, vol. 2212 (Springer,
2001), Davis, pp. 85–103

6. P. Ning, Y. Cui, D.S. Reeves, Constructing attack scenarios through correlation of in- trusion
alerts, in Proceedings of the 9th ACM Conference on Computer and Communications
Security(CCS 2002) (ACM, 2002), Washington, pp. 245–254

7. S. Noel, E. Robertson, S. Jajodia, Correlating intrusion events and building attack scenarios
through attack graph distances, in Proceedings of the 20th Annual Computer Security
Applications Conference (ACSAC 2004) (2004), Tucson, pp. 350–359

8. L. Wang, A. Liu, S. Jajodia, Using attack graphs for correlating, hypothesizing, and
predicting intrusion alerts. Comput. Commun. 29(15), 2917–2933 (2006)

9. J.P. Anderson, Computer security threat monitoring and surveillance. Technical report, James
Anderson Co., Fort Washington, Apr 1980

10. O. Sheyner, J. Haines, S. Jha, R. Lippmann, J.M. Wing, Automated generation and analysis
of attack graphs, in Proceedings of the 2002 IEEE Symposium on Security and Privacy (S&P
2002), Berkeley, 2002, pp. 273–284

11. X. Qin, A probabilistic-based framework for INFOSEC alert correlation. Ph.D. thesis,
Georgia Institute of Technology, 2005

12. X. Qin, W. Lee, Statistical causality analysis of INFOSEC alert data, in Proceedings of the
6th International Symposium on Re- cent Advances in Intrusion Detection (RAID 2003), eds.
G. Vigna, C. Kruegel, E. Jonsson. Lecture Notes in Computer Science, vol. 2820 (Springer,
2003), Pittsburgh pp. 73–93

13. A.J. Oliner, A.V. Kulkarni, A. Aiken, Community epidemic detection using time- correlated
anomalies, in Proceedings of the 13th International Symposium on Recent Advances in
Intrusion Detection (RAID 2010), eds. S. Jha, R. Sommer, C. Kreibich. Lecture Notes in
Computer Science, vol. 6307 (Springer, 2010), Ottawa, pp. 360–381

14. M. Albanese, C. Molinaro, F. Persia, A. Picariello, V.S. Subrahmanian, Finding ‘‘un-
explained’’ activities in video, in Proceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI 2011), Barcelona, 2011, pp. 1628–1634

15. M. Albanese, S. Jajodia, A. Pugliese, V.S. Subrahmanian, Scalable analysis of attack
scenarios, in Proceedings of the 16th European Symposium on Research in Computer
Security (ESORICS 2011) (Springer, 2011), Leuven, pp. 416–433

62 M. Albanese et al.



Applying Cognitive Memory
to CyberSecurity

Bruce McCormick

1 Introduction

Too much time and effort is spent on analyzing crime after the fact with too little
emphasis on detecting the crime in progress. Through the use of cognitive learning
and recognition, this imbalance can be improved towards more effective and
higher performance techniques.

This chapter deals with a hardware based non-linear classifier than learns from
the data and thereby can be used to detect deviations from the norm, or recognize
patterns in data. In essence, the memory itself learns patterns and reacts to an input
in parallel. It finds the closest match in a fixed amount of time regardless of the
number of comparisons. Neural networks and nonlinear classifiers (more general
than linear) are known to be good pattern recognition engines with the ability to
generalize using imprecise or incomplete data. This chapter is about a commer-
cially available neural network that is natively implemented in a hardware com-
ponent comprising of 1024–256 bytes each—‘‘cognitive memories’’ for pattern
learning and recognition performance/watt acceleration. Additionally this hard-
ware is agnostic to the type of digital data making it useful for biometric pattern
matching, fuzzy matching, extracting profiles, and supporting behavioral analysis.
Exact matching analysis like hash function comparison of 1 versus large N of
unordered, non-indexed files, is also supported.

What this hardware engine is good for is for sorting, clustering, learning,
recognizing and providing anomaly detection in data patterns that are presented to
it in parallel. First is an explanation of the hardware architecture that performs
these functions.
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2 Architectural Overview

The architecture shown below in Fig. 1 illustrates a memory based parallel pro-
cessing unit wherein the input is broadcast to all stored ‘‘prototypes’’ (or ‘‘mod-
els’’, ‘‘data vectors’’) simultaneously as an associative memory. Each prototype
does an L1 (or sum of absolute differences or Manhattan distance) or Lsup cal-
culation of what is stored in that memory location versus what is broadcast at the
input. The results are then used to determine how close the input prototype is to the
‘‘learned’’ or stored information. When this information is close enough in
match—it is categorized with that specific neuron.

In kNN (k Nearest Neighbor) mode—each calculated distance is compared to
all others simultaneously (in a constant 16 clock cycles) to determine who is the
closest to the input pattern. This results in one neuron output being available—the
information communicated is the distance and category associated with that
neuron. Subsequent reads can find the next ‘‘k’’ closest neighbors.

In Radial Basis Function (RBF/RCE) mode it is helpful to think of learning and
recognition. During recognition, the component uses the min/max ‘‘filter’’ on the
output distance to determine which and how many neuron categories the input is
associated with. There can be a match (1 category), no match (0 categories) or
uncertain (where more than one category fires). In this event, it requires further
analysis or features to be looked at to make a decision. In the RBF/RCE learning
mode, a prototype is stored in the first neuron location representing a data pattern

Fig. 1 Architecture of Cognitive Memory
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to be learned. When the next pattern comes, it is looked at to see if it is close
enough to the initial stored pattern to be recognized (using the min/max filter)—if
not, then another neuron/prototype is made with the same category. Now 2 neurons
are committed with different patterns that are used to identify the inputs for the
same category. If the new prototype submitted is a different object or piece of data
with a different category—the hardware will make the determination if one of the
previously stored prototypes will claim it is a match of another category. If so, then
the hardware automatically adjusts the min/max filter used on the distance infor-
mation to exclude the new data point from being recognized by the other neurons.
This is the learning process called ‘‘RCE’’ or Restricted Coloumb Energy. Once all
training examples have been trained in this way, one can use a set of validation
feature sets to verify the accuracy of the classifier. When a previously unseen data
input is submitted, the classifier will either recognize (match within the limits) not
match (no neurons fire) or have neurons fire from different categories (uncertain)
requiring further processing. One can have false positives—which can be miti-
gated with conservative learning (models have to be closer to the stored models to
agree), or false negatives—which require more prototypes to be searched against
to mitigate (Fig. 1).

This type of memory based architecture eliminates the instruction execution
cycle in traditional processing and the movement of data that causes the bottleneck
between CPU and memory. This is achieved by having the memory itself doing the
pattern recognition work in parallel in response to an input or ‘‘stimulus’’. This
architecture is quite useful for many applications in the internet framework
(Fig. 2).. Examples include validating a sender or receiver of a file with biometrics
(offline or real time), detecting a virus or denial of service attack- looking at
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Fig. 2 Using Cognitive Memory in the Internet Framework
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packets/headers for known malicious signatures or searching through files, data for
suspicious activities or correlation to patterns being searched for.

The Cognimem architecture can also be used to learn (associate) historical
variables to outcomes, then apply this to present data. One can also think of it as an
associative memory where each chip maps 2(2048) in a sparse matrix to 2(15)
categories.

3 Biometric Example

In this relatively straightforward example, one would only need to pack the data
into 256 bytes. This data is stored in the cognitive memory in an unordered, non-
indexed fashion. If the data is a fingerprint for example, each fingerprint minutia is
stored as a prototype into the cognitive memory for all the input patterns to be
compared against. With this architecture, virtually an unlimited number of prints
can be compared against in a fixed amount of time regardless of the number of
prints. This comparison of 1–256 byte feature set against N other feature sets is
done in 10 ls. This is significant when one is looking for a ‘‘needle in a haystack’’
quickly and doesn’t have the time for the computationally intensive comparisons
in a sequential fashion. This same technique can be used whether it is an iris
signature, voiceprint, or other unique identifiers of an individual to determine
identification or access rights. If confidence needs to be increased, this can be
combined with other identifiers to gain assurance that the match is a high prob-
ability event. In Fig. 3 a comparison is made of doing 320 versus 3200 versus
32,000 finger prints being searched against (time includes system overhead for
displaying information) to find a match.

Fig. 3 Comparison of 320, 3200, 32 K comparative searches in hardware (left) versus S/W
(right)
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First the recognition was performed in simulation mode and then was performed
through the 40 k neuron hardware system. As can be observed—data base 1, 2 and 3
took 0.46, 7.07 and 284.7 ms for finding the best match in simulation mode.

Conversely, the 40 K neuron Cognimem hardware system took 0.27, 0.38 and
0.337 ms for each data base (@ less than 7 W typical) respectively. Figure 3 is a
screen shot for the fingerprint recognition performance using a 40 k neuron sys-
tem. (Difference in times shown is due to host overhead—comparison processing
is the same) Thus an unknown biometric print can be checked against a large data
base in a fixed amount of time. There are many algorithms in use for doing feature
extraction of an image, object, scene etc., some examples include SIFT, SURF,
ORB and Freak. A compute intensive process then presents itself as these features
are then compared against a known data base.

An example could be detecting an airplane for identification or cars from their
logos. For fastest operation, the Cognimem memory would need to be sufficiently
large to store all the known feature vectors (assuming each vector is less than or
equal to 256 bytes). When a new object presents itself—the feature extractor
submits it to the Cognimem device and in 10 ls the closest one is found.

For some applications this may be faster than what the constraints are and cost
could be traded off against speed. One can do the reverse and store the incoming
vectors into the cognitive memory and then have the data base compared against it
iteratively to find the closest match.

4 Clustering of Data Example

One can take data never seen before and cluster it based on desired comparison
examples or ‘‘random’’ start points for association. Figure 4 below is an example
approach to this:

If you assume a hypercube (hyperspectral image for example) of data that is
1 mpixel by 1 mpixel and is made of 256 planes-each 1 byte deep (256 bytes per
pixel), the process is as follows for clustering:

(1) Start with the first pixel and learn it in a neuron. Set a minimum influence field
and a maximum influence field for that neuron (shown by solid diamond and
dotted diamond respectively). This is your start point for clustering.

(2) Go to the next pixel and determine L1 from the first vector. If it’s distance is
within the minif, you do not store the data in the neurons, but keep track of the
vector being similar (same category) in an external counter. If it is between the
min and max, go to 3, otherwise go to step 4.

(3) If the new pixel L1 is between the min and maxif of the first pixel, you want to
also learn this pixel in this category to keep track of contiguous (still similar)
vectors, but learn it to allow for migration in a ‘‘direction’’ of the similar data.
You accomplish this on the Cognimem device by first learning this new pixel
under context 0 (this shrinks the max influence field of the first neuron to
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exclude the new data point- not shown in diagram) and then learn the new
pixel as another neuron—but same category—and so on. This is the same
process used for tracking an object.

(4) If the new pixel is outside the previous neuron’s influence field, then a new
category (cluster) and neuron is created.

The new data points will either be classified as ‘‘known’’ (within the influence
field of existing neurons) ‘‘unknown’’ (need a new category to learn it) or
‘‘uncertain’’ (Two different categories claim it is within their influence fields). If
you have two clusters forming that eventually overlap each other—this will be
flagged as ‘‘uncertain’’ where the supervisor can go into the data and see if they are
the same category or not based on statistics criteria, other info, etc.

When you have completed the task—clusters of a single neuron or a few
neurons (per your criteria) will be the ‘‘outliers’’.

5 Adaptive Tracking, Virus Detection

The most commonly used technique for virus detection is signature detection. This
consists of taking the content or header of a file and comparing it against signa-
tures in an anti-virus data base. The Cognimem device can certainly be used to
compare incoming data against an unordered, non-indexed list of known malicious
signatures. However, more sophisticated viruses are out there such as code

Fig. 4 Clustering of data
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obfuscating by re-ordering assembly instructions, inserting no-ops or dead code
and replacing subsections of code that have an equivalent operation—thus
‘‘morphing’’ the signature. Tracking of information that morphs in such a way can
be challenging—particularly if the virus detection can only detect exact matches.
If a known ‘‘signature’’ or code string (represented digitally) is learned and is
expected to change, then as it morphs, one can commit a new neuron before the
first neuron loses the recognition. This can be accomplished by monitoring the
distance that the new example is away from the originally learned example. As it
becomes further away, new neurons can be committed by learning the new
example and adding to the same category as the first example. By learning the new
example, the number of neurons firing plus the distances can be tracked and used
in the decision of identifying the morphing example. Another approach would be
to train the Cognitive Memory virus detection system with metamorphic variants
that are equivalent in function to the original code or signature. By using the fuzzy
generalization properties of the nonlinear classifiers in the Cognimem device-
unseen but similar variants are more likely to be caught and flagged for further
inspection.

6 Hash Function

Many applications use hash functions to tag a file uniquely. This can be used to
eliminate extra copies of a file (de-duplication), verify access rights or whether or
not a file has been tampered with between sender and receiver among other things.
Cognitive memory can be used in kNN mode to find exact matches to compare
hash functions of an incoming file against a large list or to check to see if the file is
one that this user is qualified to view or if there has been modifications.

If data is streaming at high bandwidth, one would take the number of patterns
(prototypes, models etc.) that are being searched for and having sufficient hard-
ware with these patterns pipelined to handle the throughput being sought after. For
instance @ 20 gbit ethernet and 2000 patterns—one would have 100 stacks of two
components (each being able to store 1024 patterns) where the data flows into the
parallel search engine in a round robin methodology so that the output would also
stream at the same data rate with a fixed delay for the parallel pipelined search.

By picking the right attributes in the data that are being searched, one could
then be searching for behavioral markers—such as virus morphing from a known
start point. If the file is sufficiently close to the original file that is a known
malware—one could kick it out for further analysis before sending it on.

Link analysis or breadth first search type operations can also be used to
determine associations of information- who knew who, what sources are connected
together.
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7 Product Overview

The product behind these novel solutions is Cognimem’s CM1 K comprising of
1024 cognitive memories or processing elements. A block diagram and die photo
are shown in Figs. 5 and 6 respectively. Each processing element learns by storing
digital data up to 256 bytes and compares these stored models to a broadcasted
vector to be fuzzy or exact matched against. The learning process can be in situ
real time, updated at a later date to include new knowledge or preloaded from
previous training offline. For simple kNN, comparison vectors are just written into
the processing memory elements prior to finding the closest neighbors.

This architecture is set up as a 3-layer network with an input layer, processing
layer and an output search/sort layer, all done directly in hardware. Each silicon
chip contains 1024 of the processing elements and can share the recognition,
vector comparison task with N number of components on the same parallel bus.

A modular board (‘‘module’’) incorporating 4 of these components that are
connected through a dynamically reconfigurable Lattice XP2 FPGA was also built.
This architecture provides the customer with the flexibility of creating user-defined
interconnect topologies as required by application constraints. Local fast non-
volatile Magnetoresistive Random Access Memory (MRAM) is also provided for
fast local loads of pre-trained datasets during system power-up. Conversely, the

Fig. 5 Block diagram of silicon chip
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same local storage can be used to store large datasets to be compared to a single
pattern loaded into the system at runtime at real-time speeds (Figs. 7, 8).

A cardinal connect topology which allows arrays of modules as well as a
vertical connection through a ‘‘spine’’ of up to 14 modules (Ten were used in this
system) each is possible. This flexible architecture can be configured to have all

Fig. 6 Die photo

Fig. 7 Block diagram of modular board
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processing elements working together on a common problem (like finding 1 iris or
fingerprint among 40 thousand with very low latency) or subsets of the same
problem (like searching for an anomaly in a hyperspectral image) where the image
is partitioned to be processed in parallel on different modules. The processing
element that finds the closest match alerts the user in as little as 10 ls regardless of
the number of data vectors being searched against, giving unprecedented low
latency performance for large data base applications (Fig. 9).

Several orders of magnitude of performance per watt advancement have been
achieved with this architecture. 0.13 Petaops equivalent of sustained performance
under 250 W of power is theoretically possible. 0.13 Petaops are calculated as
follows: 1000 components 9 1024 processing elements each 9 5+ operations
(compare, multiplex, subtract, accumulate, search and sort minus load and store) 9

256 byte connections 9 100 K/sec.
Host communications for handling the throughput requirements can be pro-

vided by various standard computer peripheral technologies (e.g. USB 2.0/3.0,
eSATA, Fiber, iSCSI, etc.…) via the component’s 16-bit parallel bus. Addition-
ally, the system can be segmented into smaller storage clusters which would allow
multiple bus connections, one bus feeding each cluster. Connectivity and the final
system topology are both decisions that will be dictated by application require-
ments. Each module, which contains four 1024 chips (memory modules) comes
with a USB device connector and four LVDS cardinal connectors, providing
countless connectivity options.

Fig. 8 Top down picture of
4,096 processing element
board
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Communications between he host and the system occur through register transfer
commands. These commands control the load/learning, comparison, and retrieval
functions of the system. There are also three SDKs available to help accelerate the
adoption of this technology, C, NET, and Java libraries.

For more information see www.cognimem.com, www.digikey.com

Fig. 9 Example column of
boards
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Understanding Cyber Warfare

Yan M. Yufik

‘‘It doesn’t matter how far ahead you see if you don’t
understand what you are looking at.’’

Garry Kasparov, 2007. How Life Imitates Chess. p. 50

The history of computing devices goes back to the invention of the abacus in
Babylonia in the sixteenth century BC. In the three and a half millennia which
followed, a variety of calculating devices were introduced, some of them stun-
ningly sophisticated but all sharing a common limitation: a device could store data
only as long as programs for the data manipulation remained in the mind of the
user. The first breakthrough occurred circa 1830 AD, when Babbage designed an
‘‘Analytical Engine’’, run by programs stored on punch cards. The digital revo-
lution was brought about by the idea that programs can be stored in the same
medium as the data [1]. Finally, ARPANET was introduced in 1970, creating a
foundation for the internet of today. Students of history readily point out that the
benefits of technological advancement have often been accompanied by unin-
tended and unforeseeable problems. The digital revolution and the emergence of
the World Wide Web is the case in point: both brought about unprecedented
benefits but also introduced a new form of warfare wrought with unprecedented
risks and vulnerabilities. This article discusses the nature of such risks and vul-
nerabilities and the approaches to mitigating them. The discussion is preliminary,
aimed at articulating suggestions for further research rather than detailing a par-
ticular method. The following two notions are addressed.

First, vulnerabilities are inherent in the von Neumann architecture or, more
generally, in the concept of a programmable device: any legitimate program can be
caused to malfunction with the help of another program (malware). The vulner-
ability seems to be inescapable due to two factors: (a) defense programs designed
to neutralize a particular malware turn into a new vulnerability once their algo-
rithms become known to the opponent, and (b) defenses of increasing sophisti-
cation quickly reach a level of complexity where their use in real time becomes
impossible or impractical. As a result, cyber warfare faces an ever expanding
frontier where advantages gained by ‘‘outcomputing’’ the opponent are likely to
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only be temporary. Second, one can speculate that if the last revolution was
brought about by discovering a way to download programs into the device, the
next one will commence when a way is found to ‘‘download’’ understanding.
Stated differently, emulating mechanisms in the brain endowing the humans with
the ability to understand their environment can be expected to yield radical
changes in the information processing technology in general and in the methods of
cyber warfare in particular. Mechanisms of understanding are the focus of the
discussion. With the next revolution pending, the intent is to direct inquiry towards
technology that can serve a dual purpose: applying computational power to help
analysts to understand complex situations as they unfold, and applying human
understanding to help the device to overcome computational bottlenecks.

Discussion is broken into five sections. Section 1 states the problem, Sect. 2
reviews defense tools, Sect. 3 discusses psychology of understanding, Sect. 4
hypothesizes the underlying neuronal mechanisms, Sect. 5 makes tentative design
suggestions.

1 The Cyber Warfare Problem

Cyber warfare poses problems of uniquely high complexity, due to an interplay of
multiple factors not encountered in conventional warfare [2, 3]. To name a few:

• The World Wide Web is a topologically complex object of astronomical size
• The web has multi-layered architecture
• Conventional warfare uses weapons of limited variety and known characteris-

tics. By contrast, cyber warfare can use a practically unlimited variety of
weapons the characteristics and impact of which cannot be known in advance.

• Conventional weapons (except biological and chemical) have restricted radius
of impact while cyber weapons can self-replicate and self-propagate across the
system.

• Losing a particular function or capability can have a domino effect bringing
down other functions and capabilities in the network, etc.

Cyber threats cannot be eliminated: detecting a new type of malware and
constructing countermeasures gives temporary protection that remains effective
only until the opponent figures out how they work. As a result, cyber defenses can
have no fixed ‘‘perimeter’’: every ‘‘attack-response’’ cycle brings on another cycle,
thus causing the perimeter to expand. Because of that, cyber warfare has the
potential of becoming a ‘‘black hole’’ in the computing universe, consuming ever
growing resources without appreciable gains in security.

Figure 1 captures the essence of the problem: Orchestrating the deployment of
countermeasures comprised of tools, computational resources and cognitive
resources of human analysts, to maximize protection of assets from the current and
anticipated threats and to maintain performance throughout the network at or
above the levels required by the mission.
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Deployment decisions face a high a degree of uncertainty regarding the situ-
ation in the battle space [4]:

• attacker-induced ‘‘smokescreens’’ can generate a flood of false alerts while some
of the attack components can be indistinguishable from benign activities,

• attack components can be launched from different locations and separated by
large time intervals,

• multiple attacks can be carried out in parallel, etc.

Accordingly, the problem can be expressed as probabilistic resource optimi-
zation, as follows:

A set X of N assets X = {x1, x2,…,xN} having different relative values Ai

(i = 1, 2,…,N) is placed on the vertices of network G. Assets are engaged in
mission performance which is predicated on maintaining the assets’ operational
capacity as well as maintaining accessibility between the assets: a path should
exist between any two assets in X (more generally, capacity values can be asso-
ciated with the edges, with the requirement to maintain capacity above some
threshold). Assets of the highest value are critical: losing a critical asset aborts the
mission. Otherwise, the impact of asset losses is cumulative: from partially
degrading to failing the mission, when the sum of losses exceeds some cata-
strophic level. Assets are interdependent, to a varying degree: degradation (loss) of
asset xi entails degradation (loss) of asset xj with probability xij = xij (xi, xj). Loss
or degradation of an asset compromises accessibility (e.g., removes edges incident
to the corresponding vertex or degrades their capacities). Attacks are composed of
M exploits Z = {z1, z2,…,zM} propagating along the edges in G and having

Fig. 1 Countermeasures are deployed dynamically to mitigate the impact of the current and
anticipated threats (ISO/IEC 15408-1. Information technology—Security techniques. Part 1:
introduction and general model, 2005)
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different relative effectiveness lij respective different assets lij = lij (xi, zj).
Defenses are comprised of K resources R = {r1, r2,…,rK} having different relative
effectiveness kqj against the adversarial exploits, kqj = kqj (rq, zj). Solving the
problem produces allocation matrix jjQijjj mapping the resource set {r1, r2, …, rK}
onto the exploits set {z1, z2,…,zM} in a manner yielding maximum protection, that
is, minimum cumulative losses F

FðjjQijjjÞ ! min ð1Þ

This problem statement subsumes a number of special cases, as listed below:
A) Optimize sensor placement for maximum coverage 

using minimal number of sensors.
B) Detect attacks early at the onset, predict their final 

composition and likely targets.
C) Maximize detection reliability (minimize false 

positive – false negative detection rates).
D) Deploy defenses to protect critical assets while 

minimizing service degradation.  
E) Optimize defensive measures vis-à-vis 

lost/degraded functions and anticipated repair time
F) Optimize information presentation to the human 

analyst to facilitate situational awareness.
G) Other. 

min                                      

The objective function is comprised of nested multiplicative terms, with the
depth of nesting determined by the number of interdependencies taken into
account. For example, if simultaneous exploits are presumed to be interdependent
(degrading one can cause degradation (reduced efficiency) in some of the other
ones), the objective function takes the form

FðjjQijjjÞ ¼
XM

i¼1
Vi 1�

YM

j¼1
1� bji

YK

q¼1
eqjðQijÞ

h in o
! min ð2Þ

here Vi is the level of threat posed by exploit zi, bji is the probability that degrading
exploit zj will degrade zi, ejj = 1-xjj, xjj is the probability that resource rq will
degrade exploit zi.

Nested multiplicative terms entail explosive combinatorial complexity. The
complexity is vastly increased if cyber networks are coupled with physical net-
works [5] and if allocation of resources is optimized over the duration of the
mission

Z T

0
FðjjQijðtÞjjÞdt ! min ð3Þ

Equation 3 connotes that resource ri can be allocated to exploit zj (qij = 1) at
some moment in time and re-allocated at some other moment (qij = 0). Dynamic
resource allocation enables maneuvering, e.g., accepting a degree of performance
degradation early in the mission (e.g., withholding some capabilities to avoid their
exposure) in order to prevent unacceptable risks later in the course of mission
duration T. Such capability is clearly desirable but, under realistic conditions,
computationally infeasible.
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In general, procedures for allocating interdependent resources do not have
polynomial running times [6]. Approximations are obtained by partitioning the
problem into minimally interdependent subproblems: the solution becomes fea-
sible if the degree of correlation between variables across subproblems is suffi-
ciently low. Otherwise, the solution amounts to generating and comparing all the
alternatives which is feasible only for toy size problems. Accordingly, if the
solution is to be squeezed into small time windows, breaking the problem in Eq. 3
into minimally interdependent subproblems of manageable size is an inescapable
necessity. The trade-off is between a narrow window and weak optimization and a
wider window and stronger optimization.

To summarize, the complexity of the cyber warfare problem is due to uncer-
tainty and interdependencies inherent on the cyber battle field. Methods for
assessing probabilities are laborious but known. By contrast, computational
techniques that would allow solving Eq. 3 in realistic, real-time scenarios are not
known. The remainder of the paper argues that headway can be made if a cyber-
analyst is given the means to interact not only with specific software tools but with
an umbrella process orchestrating their deployment. The analyst acts as a ‘‘con-
ductor of the orchestra,’’ or supervisor [7–11]. The discussion is prefaced by a
brief review of the tools.

2 Tools of Cyber Warfare

Tools can be grouped into three categories: ‘‘A—determining what is going on,’’
‘‘B—figuring out what to do about it’’ and ‘‘C—helping the analyst to make sense
of A and B.’’ Category A has been receiving the most attention, partly because
success in B is predicated on succeeding in A and partly because of the difficulty
inherent in diagnosing activities designed to resist diagnosis.

Accordingly, diagnosis employs several approaches. A rich repertoire of
techniques (‘‘attack graphs’’) is centered on analyzing penetration routes through
which multi-step attacks can access network devices and exploit vulnerabilities
[12, 13]. Attack graph characteristics (e.g., the shortest path) and their derivatives
are used as security metrics and probabilistic security estimates [14, 15].

Performance of network devices depends probabilistically on the confluence of
conditions in other devices across the network. These interdependencies have been
modeled using probabilistic (Bayesian) inference, Petri—net techniques [16] and a
number of methods from the arsenal of probabilistic risk analysis [17].

The advantages of diagnosing threats lie in predicting their course. Time Series
Analysis, Hidden Markov Model and a variety of statistical prediction methods
have been tried out in predicting attack trends [18–20]. Less formal and, it appears,
more powerful approaches involve construction of languages optimized for
describing attack scenarios. Such descriptions need to be specific enough to allow
matching against observable changes in the network and general enough to allow
variations in the manner those changes can be carried out. Compromise is reached
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by defining entities and relations in the network in a probabilistic fashion. For
example, the Cyber Security Modeling Language (CySeMoL) supports describing
‘‘attack steps’’ and probabilities of degrading particular assets in each step (the
possible to accomplish attribute). Target values and ‘‘accomplish’’ probabilities
define the risks and the losses (see Fig. 1) [21]. A variety of ‘‘attack’’ languages
focus on particular stages: ‘‘detection languages’’ (e.g., SNORT (Pearson Educa-
tional), STATL [22]) specialize in describing early attack manifestations
(intrusions).

Notably, there are no comprehensive languages to date in the ‘‘figuring out what
to do category’’, that is, no ‘‘response language’’ exits providing a level of support
for response scripting and on-line adjustment comparable to that provided by
‘‘attack languages’’ [22].

Finally, tools in the ‘‘C—helping the analyst’’ category are even more scarce
than those in the B category. It is recognized that in a cyber battle, as in a
conventional battle, success demands decision expediency, that is, ability to
complete OODA (Observe, Orient, Decide, Act) cycles faster than the opponent
[23]. Decision aids intended to facilitate the analyst through the cycle focus on
helping to visualize conditions in the network (Noel et al., [24]; [25] and helping to
aggregate (fuse) information). While networks are inherently amenable to visu-
alization, aggregation presents a steep challenge. It has been argued that fusion for
cyber warfare is not only in ‘‘infancy’’ but remains largely undefined: ‘‘indeed,
fusion to provide information and knowledge beyond identifying objects is, per-
haps the only certain definition for high level information fusion’’ The fusion task
can be described in technical terms (detecting malicious activity ? tracking and
correlating alerts ? projecting threat and assessing impact) and psychological
terms (perceiving ? comprehending ? anticipating) [26, p. 108]. The next sec-
tion detours into psychology and visits the subject of comprehension. To motivate
the detour, I shall point at the benefits. The anticipated benefit is novel decision
technology allowing collaborative solution of Eq. 3 by the analyst (or team of
analysts) and decision aid, with speed and accuracy not accessible to either party
individually. Solving Eq. 3 in real time enables coordinated erecting, re-shaping
and dismantling firewalls limiting access to parts of the network, combined with
counter-attacks coordinated across the network (tracing adversarial exploits to
their sources and disabling the sources).

3 Situation Understanding

What lies ‘‘beyond identifying objects’’? Understanding (terms ‘‘comprehension’’
and ‘‘understanding’’ will be used interchangeably) mediates between perceiving
an object and anticipating its behavior. Webster’s Dictionary defines understand-
ing, or grasp as: ‘‘the power to apprehend general relations of particulars.’’ More
colloquially, understanding can be defined as ‘‘seeing forest behind the tress.’’
How does that work? The question has two aspects: one aspect concerns
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psychological manifestations of understanding while the other one concerns the
underlying neuronal mechanisms. This section addresses the former aspect by
referencing findings in the literature and the latter one—by outlining a proposal.

In the context of decision aiding, understanding is often viewed as a component
of ‘‘situation awareness’’ that includes ‘‘the perception of the elements in the
environment within a volume of time and space, the comprehension of their
meaning and the projection of their status in the near future’’ ([27, p. 36]). This
definition subordinates comprehension to awareness and connotes the idea that
comprehending the meaning of the elements is almost coincidental with perceiving
them. The idea is in keeping with Artificial Intelligence (AI) where ‘‘under-
standing’’ is taken to signify nothing else but possession of knowledge and pro-
cedures [28, p. 447] so that, for example, understanding a scene equates to
applying procedures, such as neural networks, appropriate for recognizing the
elements in the scene. A substantive distinction between AI and the ‘‘situation
awareness’’ (SA) construct is due to applicability constraints that are acknowl-
edged in the latter but not in the former: the elements need to be proximal (‘‘within
a volume of time and space’’) and projections reach only into the ‘‘near future.’’
The distinction is particularly important in the cyber domain: elements of cyber-
attacks can be far apart in time and space and their consequences and those of the
countermeasures must be projected into the distant as well as the near future. The
proximal and the distant can be separated by combinatorial explosions (think of
playing chess where projecting just three moves generates about nine million
continuations [29]). AI techniques do not scale [30] and thus can be of limited help
in either containing such explosions computationally or assisting analysts in the
task. On the other hand, the ‘‘situation awareness’’ construct can retain its utility,
providing the emphasis is placed on the comprehension component. That is, aiding
the analyst in understanding situations unfolding across large networks and over
significant time intervals (Eq. 3) necessitates requirements and performance
metrics different from those proven adequate under the ‘‘proximity’’ constraints
[31]. What are the differences?

Measuring SA involves determining subject’s ability to recall ‘‘the elements,’’
such as parameters and their values in a simulated process controlled by the
subject. During measurement, control is interrupted and subjects are questioned
about the elements while facing a blanked display [31]. High SA scores indicate
that the elements were noticed and registered in the subject’s memory. Invoking
the chess example helps in illustrate where SA measures need to be augmented.
When players are exposed briefly to a position, master level players recall the
pieces and their places on the board faster and more accurately than novices. If the
exposure is very brief, even masters might experience difficulties in discerning
and/or recalling individual pieces but would still capture the dominant relation-
ship, or the overall ‘‘character of the position’’ (e.g., whites have a weak left flank,
etc.) [29, 32, 33]. Moreover, the ability to capture a specific relationship (e.g.,
checking) varies with the distance and direction on the board (diagonal checks are
much less likely to be detected than the vertical and horizontal ones) [29]. These
findings are consistent with the Universal Law of Generalization stating that the
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probability of confusing two items is a negative exponential function of the dis-
tance between them in some psychological space [34]. It appears that dimensions
of that internal space include temporal and geometrical characteristics of the
external elements and, importantly, task-specific relationships between the ele-
ments. Performing external tasks (reinforcing a position in chess; hardening a
network against anticipated attacks, etc.) is predicated on figuring out routes
through the internal space which involves two collaborating mechanisms: noticing
and registering the elements populating the space, on the one hand, and capturing
the relationships between them, or ‘‘seeing forest behind the trees,’’ on the other.
Somehow, the collaboration makes possible moving through the space without
hitting combinatorial ‘‘land mines.’’ SA measures address the first mechanism;
additional measures are needed to address the second one. The remainder of this
section suggests three measurable constituents of that mechanism and their role in
the performance of even the simplest tasks, followed by a discussion of how these
constituents can be carried out in the neuronal substrate.

Deriving from the theory and experiments by Piaget [35–39], the suggested
constituents are unification, coordination and contraction, as defined in the fol-
lowing examples (due to Piaget) (A) A child considers his nanny two different
persons depending on whether she is in the city where the child lives or in the city
where the grandparents live. (B) A child is presented with two glasses having
different shapes but equal volumes. As the child watches, the short glass is filled
with liquid (say, coke), emptied into the tall glass and filled again. When asked to
choose, the child chooses the tall glass ‘‘because it has more coke.’’ The experi-
ment can be repeated many times, with the same outcome. (C) Two domino chips
are stood on end next to each other. As the child watches, one unit is pushed over
and knocks down the other one. Next, multiple units are placed in a row, some at
small intervals and some at intervals larger than the length of the unit. When asked
to predict what will happen to the last unit in a row if the first one is pushed over,
the child proceeds to consider the units consecutively along the row and ultimately
fails in either predicting the end result or suggesting re-arrangements that could
alter it. Again, repeated demonstrations do not change the outcome.

In all three examples, elements do not combine into a unified memory structure,
instead remaining isolated. As a result, the subjects can apprehend neither the fact
that some elements remain invariant in a series of episodes (e.g., the traveling
nanny), nor the relationships transcending the series. Take the ‘‘two glasses’’
experiment. The child confuses taller with larger, which is a minor mistake. The
more fundamental one is a failure to integrate consecutive observations into a
unified whole: the (short glass–coke) association must be superposed onto the (tall
glass–coke) association so that a unified structure (short glass–coke–tall glass) is
produced necessary for the ‘‘invariant contents—varying container’’ relationship
to be apprehended.

Coordination is predicated on unification and involves interaction between the
parts of a whole in such a manner that some integrative property of the whole is
preserved when some of the part properties are changing (the notion is consistent
with that entertained in [40], I am grateful to Srinivasan of the HRL for pointing
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that out). An associative whole might resist re-shaping its boundaries which will
manifest in restricting one’s attention to elements within the boundaries that are
relevant to the task at hand while blocking off the irrelevant ones. Another man-
ifestation is the ability to foresee changes in one part of the whole in response to
changes in some other part, however remote, without considering changes in the
connecting structure. For example, once the domino task is understood, one can
foretell the falling of the last unit after the first one is pushed over without mentally
tracing, step-by-step as a child does, the fate of the intermediate units. Return
again to chess to appreciate the magnitude of advantages yielded by coordination.
Before the legal moves are firmly remembered, novices are liable to considering
the illegal ones. At the next stage in learning the game, near-term consequences of
one’s moves are routinely overlooked, such as immediate exposure of own pieces
resulting from taking the opponent’s piece. However, from that stage on, illegal
moves stop slipping in into the thought process. Former world champion Kasparov
reported a 15 move look-ahead in one of his games [41]. Without counting the
possibilities in a 15 ply look-ahead, one can assume that their number exceeds the
number of molecules in our galaxy, which leads to an inescapable conclusion that
weak moves don’t come to the attention of a master player, no more than illegal
ones enter the attention of even a mediocre player [32]. That is, coordination not
only carves out small pockets in the astronomically-sized combinatorial volume,
but makes possible skipping over swaths of combinations inside the pockets.

Finally, contraction consists in reversibly replacing a multitude of elements
with a single one, which equates to collapsing a part of the combinatorial volume
into a single point (mathematically inclined readers will notice that the definition
of contraction echoes the definition of a set (a set is manifold treated as a unity)).
Example in Fig. 2 illustrates the work of contraction, in conjunction with the other
two constituents of understanding.

Fig. 2 Understanding the task of turning an arrangement of coins upside down in a minimum
number of moves. 1 No unified structure is formed, one can see no other solutions but moving all
the coins (10 moves). 2 Partial unification reveals a part that can remain intact (six moves). 3 A
globally unified structure emerges allowing coordination to split the entire arrangement into an
invariant and varying parts in a relationship (b revolves around a), contraction removes the
elements in a from consideration (replaces a with a*) limiting solution to the elements in b (three
moves). 4 Coordination allows considering the moving all the elements in b* jointly, as a unit,
thus reducing solution to one move
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4 Mental Models

Understanding the problem in Fig. 4a involves constructing a model, as in Fig. 4b.
Such construction is a form of productive thinking [42] which does not reduce to
applying ‘‘knowledge and procedures’’ (what knowledge, what procedures?) or to
‘‘pattern recognition’’ (the circular arrangement a is not immanent to the heap
arrangement in Fig. 2a, there is no circular shape hiding inside the heap and
waiting to be recognized). Neither is such construction a form of information
fusion—the latter term connotes irreversible amalgamation of informational ele-
ments, while mental models are amenable to reversible assembly and disassembly,
and operations on them are also reversible (e.g., one can alternate freely between a
in Fig. 2c and a* in Fig. 2d without changing either). The notion is important and
can be best explained by comparing properties of mental models to those of neural
networks.

In neural networks, inputs received in the input layer propagate to the output
layer via connections of adjustable strength (weights). Weights get adjusted
(trained) for different inputs until some desirable output characteristics are
obtained in which case the configuration of weights is said to constitute a model of
the input allowing the network to recognize subsequent inputs generalized over the
training set. Neural network modeling is irreversible: changing the weights after
training vacates the results and disables recognition. The implication would be that
one can form and run such models in one’s mind but can’t think about them
without risking distorting or erasing memories of the very events responsible for
forming the models. The implication seems to hold for animals where models are
formed by conditioning and triggered by environmental cues but not for the
humans who form their models in self-initiated and self-directed internal activities
(thinking, seeking understanding, as in Fig. 2). A proposal as to how that might
work will be presented momentarily, after some brief comments.

Transition in one’s memory from fragmented to regularized structures entails
reduced entropy and increased order in the underlying neuronal substrate
(accompanied by increased entropy and disorder in the environment). This can be
carried out in two radically different ways. Fishes can be trained to recognize
circles and other shapes [43], and so can neural nets. In both cases adaptive
internal changes are driven from the outside, and input is mapped onto the orga-
nization inside. Such externally driven adaptive growth of internal organization
corresponds to ‘‘negentropy extraction.’’ Alternatively, adaptive increments in the
internal order can be self-directed and internal organization can be mapped out-
ward onto the input, as in Fig. 2b and 2c: A built-in gestalt mechanism groups
coins into horizontal and inclined rows in the former and some other mechanism is
responsible for the circular grouping in the latter. This process corresponds to
‘‘negentropy production’’, achieving understanding via constructing and manipu-
lating mental models is presumed to be such a process [44–46].
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The key points in the proposal are as follows:

1. A neuronal pool is comprised of a sensory module interacting with the envi-
ronment, and a control module interacting with the sensory module. Associative
links form and grow in strength when sensory neurons repetitively co-respond
to contiguous stimuli. Overlapping stimulation in consecutive episodes pro-
duces associative chains gradually merging into a connected network.
Mind the difference between a neuronal pool and a neural network: NN has a
fixed organization comprised of fixed sets of neurons and links and responds to
different inputs by changing the strength of the links thus changing the value of
the output. By contrast, a neuronal pool has a flexible organization and
responds to different inputs by selecting different responding neurons thus
changing the composition of the output. To underscore: neurons responding to
the environment are always the same in NN and vary in the pool. Conditions in
the environment change and so do the response compositions.

2. A pool is a self-organizing dissipative system. Due to dissipation, a pool can’t
respond momentarily but needs time to mobilize, that is, to compose the
response. Neurons need time to recuperate. Recuperation period and mobili-
zation rate determine pool’s dynamics.

3. A pool has a limited life span. Survival for the duration of the life span is
contingent on maintaining energy and nutrient inflows above some critical
minima. Survival under changing conditions requires anticipatory mobilization:
appropriate neuronal groups (responses are likely to be rewarded) need to be
composed and lined up ahead of time. Intelligence is rooted in and is an
expression of anticipatory mobilization in the neuronal pool.

4. Anticipatory mobilization involves different mechanisms, conditioning being
the foundational, and understanding being the advanced one. Conditioning
operates on proximal stimuli, while understanding stretches the capability to
allow indefinite separation between the stimuli. Understanding mechanisms are
built on top of the processes optimized for handling contiguous stimuli. The
range of mechanisms maximizes the chances of survival for the duration of the
life span by optimizing composition of neuronal groups, their relative stability,
and the order in which they are lined up.

5. Maladaptive neuronal compositions are punished twice: energy and nutrients
are withheld, and adjustment work siphons off extra energy. Thermodynamics
drives the pool towards seeking stable and successful compositions, optimized
dynamically by the internal energy cost–external energy reward trade-offs. The
process underlies the subjective experience of apprehending progressively more
general and persisting characteristics of the environment (the invariants).

6. Progression from conditioning-based to human level intelligence (understand-
ing) is due to a confluence of two biophysical processes in the neuronal sub-
strate. First, formation of a connected network permeating the sensory module
gives it gel-like properties (malleable but firm enough to allow adjustments in
some groups to propagate and trigger adjustments throughout the volume).
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Second, formation of neuronal groups is a form of phase transition in the gel:
neurons get packed into cohesive groups (called packets), separated by energy
barriers (surface tension) from their surroundings. Surface tension resists the
pulling of neurons from their packets of residence. Reduction of surface tension
favors merger, while splitting pressure between surfaces (lateral inhibition)
pushes packets apart. The interplay produces near-optimal packets connected
into a network (called virtual network). Figure 3 illustrates the notion.

7. Grouping is spontaneous. The deliberate (attentive, conscious, self-directed)
control interferes to fine-tune the results which includes forming groups of
packets and shuffling neurons between packets. Operations on packets are
reversible because they have (almost) no impact on the strength of the under-
lying associative connections. Figure 4 explains the concept.
Packets shield from combinatorial explosions. For example, if one glass is
screened off, the idea of drinking from the other one and looking for more
behind the screen doesn’t come to the mind of an adult but does occur to
children up to a certain age. The same mechanism underlies the ability to steer
clear of weak moves in chess, as opposed to considering and rejecting them.

8. The spontaneous and deliberate processes in the pool constitute a self-catalytic
loop where increased negentropy production inside the pool entails increased
energy intake from the outside providing internal energy surplus sufficient for
keeping up or increasing the production. Figure 5 identifies contraction as the
innermost negentropy-producing operation.

The metaphor of ‘‘thermodynamic hand’’ moving in psychological space
underscores the reversibility of cognitive operations: one can think about B after
thinking about A and return back to A, or think about A repetitively. The Universal
Law of Generalization holds that psychological space is Euclidian; the ‘‘hand’’
pushes elements apart and brings them together (see Fig. 4b) in search for
groupings appropriate for the task.

More to the point, one can experience the grouping gestalt in Fig. 2b, organize
the solution accordingly, and overcome the gestalt in favor of a different grouping.
For example, air traffic controllers were found to be influenced by a grouping
gestalt which caused them to detect more readily the impeding collisions between

Fig. 3 An associative network is a superposition of three networks: a physical network is formed
from neurons having synaptic connections; a functional network forms on top of the physical one
as a result of exercising synaptic connections; and a virtual network forms on top of the
functional one and comprises neuronal packets. Strengthening of synaptic links has no impact on
the physical network, grouping neurons has no impact on the strength of synaptic links

86 Y. M. Yufik



aircraft belonging to the same group than between those in different groups.
Adequate performance required overcoming the gestalt- based grouping in and
forming groups appropriate for the task [47].

5 Supervisory Control in the Cyber Battle Space

To prosecute efficient cyber defense, the analyst needs to understand the situation
as it unfolds. Understanding is contingent on forming adequate mental models
which, under realistic scenarios, can cause extreme or even insurmountable cog-
nitive burden. At the same time, automating defense puts computer under an

Fig. 4 1 Two episodes at time A and B might or might not (depending on the duration of the A–
B interval) link into a chain at time C following by unification and formation of a packet at time
D. 2 Successful unification allows attentive re-grouping (elements are ‘‘nudged’’ to one or the
other group) experienced as alternating between two views while maintaining awareness of both.
Chaining and operations on packets have no impact on the weights (a and b)

Fig. 5 Achieving
understanding (grasp, insight,
‘‘seeing forest behind the
trees’’) involves oscillating
between awareness of
multiple elements and
awareness of their unity.
Contracting is the key
operation imposing order on
the input. Metaphorically, it
corresponds to alternating
between clinching elements
in a closed fist and holding
them in an open palm
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overwhelming computational burden. The proposal is to take steps towards
establishing a supervisory relationship between the parties: computer helps the
analyst to form and validate mental models and analyst helps computer to deal
with NP-complete tasks. In the end the analyst has the final say.

Productive collaboration is possible because, in this case, computational and
cognitive strategies are in sync: a realistic approach to solving Eq. 3 in real time is
to find a way to break the problem into manageable pieces consistent with the
human strategy of organizing problem elements into cohesive groups in order to
achieve understanding. However, there are significant differences that need to be
reconciled. In particular, the computer deals with probabilities and digital entities
in a manner that is mathematically efficient but alien to the cognitive process while
analyst deals with values and psychological entities (e.g., topological features) in a
manner that is psychologically efficient but has no adequate computational
expression.

The situation calls for an intermediary. That is, dialogue via a representation
format that is comprehensible to the analyst and, at the same time, allows the
computer to use human input where it matters most, which is decomposition of the
problem. A potential approach could be to extract a subset of the optimization such
that the analyst can intuitively interact with it.

In particular, it is not unreasonable to expect that analysts will relate easily to a
graph that retains network topology and has vertices and edges weighted by the
relative value of the corresponding network elements. Weights are computation-
ally estimated, adjusted by the analyst and vary depending on the mission. The
‘‘value graph’’ is partitioned into non-overlapping clusters under a suitably defined
minimization criteria, such as lexicographic minimization over the cluster set (the
cumulative value of the first cluster exceeds that of the second one, etc.) Following
that, partitioning of the ‘‘value graph’’ can be used to inform decomposition of the
optimization problem. Partitioning of the ‘‘value graph’’, however, presents steep
combinatorial challenges:

• the ‘‘value graph’’ partitioning problem is a fraction of the original optimization
problem so it might be amenable to solution in real time with accuracy sufficient
for the task,

• it has been shown that methods of problem partitioning exist that obtain both
streamlined decision making and accelerated computation [9, 48, 49,50].
Accordingly, it can be expected that (a) near-optimal partitioning of ‘‘value
graphs’’ can be obtained with the help of feedback from the analyst that is
intuitive to the analyst and informative to the computation procedure, (b) the
results of graph partitioning can be used to obtain weakly optimal solutions of
the allocation problem in real time.

Figure 6 illustrates the rough idea.
The format of information presentation in a v-display can change reflecting

different levels of information aggregation, with the top level summarizing the
main situational trend, such as
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‘‘There has been growing threat over the last X hours directed at assets A, B, C.’’

This summary maps directly onto memory organization underlying human
situational understanding: it unifies a mass of data acquired over time into a
simple, task- relevant structure establishing a relationship between the variable and
invariant components of the situation (as in Fig. 2). Reaching such global
understanding makes lower- level data elements and events also understandable
(e.g., [51]). Analyst’s inquiries about such lower-level elements constitute feed-
back used to streamline and accelerate the underlying computation.
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Design of Neuromorphic Architectures
with Memristors

Dhireesha Kudithipudi, Cory Merkel, Mike Soltiz, Garrett S. Rose
and Robinson E. Pino

1 Introduction

The advent of nanoscale memristor devices, which provide high-density multi-
level memory, ultra-low static power consumption, and behavioral similarity to
biological synapses, represents a major step towards emulating the incredible
processing power of biological systems. In particular, memristors provide an
avenue for designing neuromorphic implementations of artificial neural networks
(ANNs) in hardware. The neuromorphic design paradigm, pioneered by Carver
Mead [1], seeks to imitate biological information processing using analog or
mixed signal circuits, generally leading to higher computational efficiency, lower
power consumption, and massive parallelism.

The material and results presented in this paper have been cleared for public release, unlimited
distribution by AFRL, case number 88ABW-2013-0820. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of AFRL or its contractors.

D. Kudithipudi (&) � C. Merkel � M. Soltiz
NanoComputing Research Lab, Department of Computer Engineering,
Rochester Institute of Technology, Rochester, NY 14623, USA
e-mail: dxkeec@rit.edu

C. Merkel
e-mail: cem1103@rit.edu

M. Soltiz
e-mail: mgs4513@rit.edu

G. S. Rose
Information Directorate, Air Force Research Laboratory, Rome, NY 13441, USA
e-mail: Garrett.Rose@rl.af.mil

R. E. Pino
ICF International, Baltimore, MD, USA
e-mail: Robinson.Pino@icfi.com

R. E. Pino (ed.), Network Science and Cybersecurity,
Advances in Information Security 55, DOI: 10.1007/978-1-4614-7597-2_6,
� Springer Science+Business Media New York 2014

93



This chapter provides a concise overview of hybrid CMOS/memristor hardware
neural networks (CMHNNs), our group’s recent research in this area, and the
associated design challenges. Section 2 provides background on thin-film memr-
istor operation, and discusses how specific memristor properties can be leveraged
to design analog synapse circuits. Section 3 gives an overview of a neural logic
block (NLB) designed using memristor-based synapses as well as memristor or
CMOS-based digital activation functions. Section 4 provides a brief discussion on
different CMHNN network topologies, and Sect. 5 concludes this chapter.

2 CMOS/Memristor Synapse Circuits

Historically, biological neural networks have served as benchmarks for comparing
different software and hardware ANN designs. Indeed, the holy grail of many
ANN researchers is to emulate the extraordinary performance, robustness, effi-
ciency, and learning capacity of the human brain [2]. However, the neocortex
alone contains approximately 20 billion neurons, each making synaptic connec-
tions to *7,000 (on average) other neurons, for a total of *1.4 9 1014 synapses
[32]. Therefore, emulating even a small fraction of the brain’s functionality in a
hardware based neural network (HNN) requires careful attention to the design of
artificial synapses implemented in hardware. In general, each hardware synapse
serves three functions: (i) storing weights between neurons, (ii) providing a
physical interconnection between neurons, and (iii) facilitating the modulation/
programming of weights between neurons. Achieving all of these functions in a
low-power, low-area circuit is critical to achieve the high connectivity required for
large HNN implementations.

Designs that rely on expensive weight storage circuits, such as capacitor cir-
cuits, suffer from large area overheads leading to poor scalability [3]. In the rest of
this section, we discuss the design of hardware synapse circuits for a new gen-
eration of HNNs based on the integration of CMOS technology with nanoscale
memristive devices (CMHNNs). We show that the physical features of thin-film
memristors enable the design of compact, low-power synapses that facilitate the
implementation of biologically-plausible learning algorithms.

2.1 Memristor Overview and Models

A memristor is a two-terminal passive circuit element that imposes a non-linear
relationship between its terminal voltage vmðtÞ and the resulting current imðtÞ. A
simple definition is given by the state-dependent Ohm’s law [4]:
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im tð Þ ¼ G xð Þvm tð Þ;
dx

dt
¼ f x; vm tð Þð Þ;

ð1Þ

where x is a state variable, GðxÞ is the state-dependent conductance (sometimes
called memductance) of the device, and f governs how x changes over time. We
use this definition because it is immediately apparent that G xð Þ can serve as a
synaptic weight between two neurons and can be modulated by adjusting the
memristor’s state variable. Note that G and f are also functions of a number of
constants related to the memristor’s initial state and physical characteristics, as
well as environmental factors such as temperature [5]. We define a memristor
model as the tuple ðG; f ; xÞ. The exact form of G and f , as well as the physical
meaning of x all depend on the memristor’s physical realization and will also have
an impact on how the devices are used to design hardware synapses.

Several thin-film transition metal oxides, such as TiO2, HfO2, etc. [6] have
exhibited the behavior described in (1). The physical switching mechanism for
these devices is often described as a field-assisted uniform drift of defects (e.g.
oxygen vacancies). The resulting defect profile directly influences the device’s
conductance. Assuming the defect drift is linear in the applied electric field, one
can derive the widely-used linear memristor model:

GðxÞ ¼ Ronxþ Roff ð1� xÞ
� ��1

;

f ðx; vmðtÞÞ ¼
l

D2 vm tð Þ
G xð Þ ;

x ¼ w

D
;

ð2Þ

where Ron is the resistance when x ¼ 0, Roff is the resistance when x ¼ 1, l is the
defect drift mobility, D is the film thickness, and w is the distance that the defects
have drifted into the film. This model has had some success in predicting thin-film
memristor behavior [7]. However, it does not accurately reflect some phenomena
that have been observed, such as non-linear drift, defect/dopant diffusion, tem-
perature variations, and threshold voltages. Some of these behaviors have been
captured in better physical models, but they are too complex for large-scale circuit
simulation. In order to have high accuracy and fast simulations, we resort to an
empirical model based on physical memristor data. The model assumes that the
memristance versus applied voltage is a piecewise linear function [8]:

M tiþ1ð Þ ¼ M tið Þ �
DrDtvm tiþ1ð Þ
t� �ð Þvm� �ð Þ

; ð3Þ

where M is the memristance, Dr is the difference between the low resistance (LRS)
and high resistance (HRS) states, t� �ð Þ is the time it takes to switch between the
LRS and HRS (HRS and LRS), and vm� �ð Þ is the negative (positive) threshold
voltage.
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2.2 Synapse Circuits

Memristors have several important characteristics that make them ideal for use in
synapse circuits. Their small footprint—potentially on the order of square nano-
meters—paired with their integration into high-density crossbars—1/4F2, where F
is the crossbar wire half-pitch—enables high connectivity with reduced area
overhead. In fact, by stacking layers of memristive switching layers, densities as
high as 1014 bits/cm2 can be achieved [9], which approaches the estimated number
of synapses in the neocortex. The non-volatility of memristors reduces their static
power consumption and thermal stress, which may be important to ensure constant
memristor write times across a chip [5]. This is especially important for imple-
menting HNN learning algorithms that require a fixed learning rate. The most
important feature of memristors for HNNs is multi-level storage capacity, enabling
conductance-coded weight storage in a single device. Finally, the behavioral
similarity of thin-film memristors to biological synapses enables simplified
implementations of local learning rules [7, 10–12].

In theory, a single memristor is sufficient to provide all three synaptic functions
(weight storage, physical interconnection, and weight modulation) [7]. This is
especially true for networks of spiking neurons that implement spike time-
dependent plasticity (STDP)-based Hebbian/anti-Hebbian learning. Networks of
analog spiking neurons with single-memristor synapses are presented in Perez-
Carrasco et al. [13], Afifi et al. [10], and a digital implementation is proposed in
Ebong and Mazumder [3]. However, these implementations require neurons to
output three different voltage levels, complicating the hardware neuron design.
Furthermore, the digital implementation requires a complex spiking sequence
controlled by a finite state machine. Single memristors have also been used for
binary synapse (ON and OFF states only) realization in cellular neural networks
[14]. However, additional circuitry is generally needed in a memristor-based
synapse design (switches, current mirrors, etc.) depending on which type(s) of
learning algorithms (e.g. supervised or unsupervised learning, synchronous or
asynchronous learning) and neuron designs (e.g. neuron transfer function, analog/
digital implementation) are present in the network. In [15], a series combination of
an ambipolar thin-film transistor (TFT) and a memristor is used for synaptic
transmission and weight storage in a spiking neural network. The gate of the TFT
is controlled by the pre-synaptic neuron, enabling or disabling a constant voltage
to pass through the memristor, creating a memductance-modulated current at the
input of the post-synaptic neuron. The authors demonstrate learning in a two-
neuron network with an average-spike frequency-based learning rule. Kim et al.
[16, 17] propose a memristor synapse based on a bridge circuit and a differential
amplifier. It can be programmed to implement both positive (excitatory) and
negative (inhibitory) weights. It also has good noise performance due to its fully
differential architecture. However, it requires three MOSFETs, five memristors,
and additional training circuitry (depending on which learning algorithm is being
implemented). Another synapse design, presented in Liu et al. [18], incorporates
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two memristors which can be trained to provide a desired ratio of excitation to
inhibition. The synapse also allows bidirectional communication. However, the
authors do not include a detailed description of the training circuitry, and the
design also consumes a constant static power, which could cause high power
consumption in large networks. Another memristor-based synapse design is pro-
posed in Rose et al. [12]. The design operates in subthreshold, resulting in low
power consumption. However, the charge sharing technique that the authors
employ requires separate pre-charge and evaluate phases of operation, similar to
dynamic logic.

Our group has adopted the synapse design from Rajendran et al. [19], which
uses a single memristor, an NMOS current mirror, and a local trainer circuit. A
generalization of the design is shown in Fig. 1. The memristor is connected to a
training circuit or a presynaptic neuron and current mirror depending on the
control signal /. When connected between the presynaptic neuron and the current
mirror, the memristor modulates the current iipost as

iipost ¼ KvmG: ð4Þ

Note that vm will be a function of the presynaptic output voltage, as well as the
current mirror’s minimum input voltage. The mirror factor, K, could be used to
adjust the resolution of the output current. In our work we have a used a simple
CMOS current mirror with K ¼ 1. However, cascode mirrors or wide-swing
mirrors may be required to achieve necessary output impedances. This will be
especially true when several such synapses are connected to the same post-syn-
aptic neuron. The local trainer circuit increases or decreases the memristor’s
conductance depending on the error signal, which comes from a supervised
learning unit. In our simulations, we have implemented the well-known Perceptron
learning rule:

wij ¼ wij þ axiðy�j � yjÞ: ð5Þ

Here, wij is the weight of the ith synapse connected to the jth post-synaptic
neuron. Since our design uses binary output neurons, the weight is simply equal to
KvmG and the input xi is ‘1’ when the presynaptic neuron’s output is high.
Otherwise it is ‘0’. y�j is the expected output of the jth neuron in the Perceptron,
and yj is the actual output. The parameter a is the learning rate and is related to the
activity factor of /, the write voltages, and the state of the memristor. It can be
shown that this rule will always converge to a global minimum in the weight

Fig. 1 Current mirror-based
synapse
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space, provided that there is one. It should be noted that this circuit will consume
no static power, aside from the leakage of the trainer circuit, making it scalable to
large network implementations.

3 Neural Logic Blocks

The concept of a memristor-based neural logic block (NLB) was first introduced in
Chabi et al. [20] as a robust alternative to the configurable logic block (CLB)
approach to FPGA design. The authors’ design is based on a memristor crossbar
with threshold logic, bipolar, and binary output neurons. The network is trained to
perform linearly-separable functions using the least-mean-squares (LMS) training
algorithm, which, from an implementation standpoint, is identical to the Percep-
tron learning algorithm [21]. Earlier publications also explored neuromorphic
approaches to memristor-based configurable logic. A memristor crossbar-based
self-programmable logic circuit is presented in Borghetti et al. [22]. The authors
demonstrate programming of sum-of-products operations, and self-programming
of an AND function. However, only two states (ON and OFF) of each memristor
device were used, limiting the scalability of such an approach. Another technique,
which is the basis of our NLB design, is proposed in Rajendran et al. [19, 23].
Here, several current mirror-based synapses, like the one shown in Fig. 1, are used
as NLB inputs, and a current comparator is used as a threshold logic neuron.
However, training is performed offline, so no local trainer is needed. NLBs based
on subthreshold synapses are proposed in Rose et al. [12], along with a local/global
training circuit that implements a Perceptron learning rule.

In general, an NLB is a self-contained single-layer neural network. If the
neurons have a threshold logic binary transfer function, then the NLB is a Per-
ceptron. A block diagram of the NLB considered in our work is shown in Fig. 2.
Several synapses (N) identical to the one described in the last section are con-
nected to a common output node, which is the input to a current analog-to-digital
converter (ADC). The ADC’s output is a ð2N � 1Þ-bit thermometer code. The
output of the neuron is a function of the thermometer-encoded input. Since the
thermometer code is a one-to-one function of the weighted sum of the inputs
ðxN . . .x1Þ, then without loss of generality, the output can be described as

Fig. 2 Neural logic block
design
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y ¼ f
X

xiwi

� �
; ð6Þ

where f is the activation function. Although not explicitly shown, it should be
noted that the ADC can actually be considered part of the activation function.

We have shown in our previous work that training f and the weights in parallel
enables the implementation of non-linearly separable functions, such as XOR in a
single NLB [24]. Furthermore, the trainable, or adaptive activation function can be
implemented using additional memristors, instead of area-consuming flip-flops,
which also enables a completely non-volatile network. The major advantage of
NLBs in general, and our design specifically, is the large gain in energy efficiency
over conventional lookup table-based configurable logic. This is attributed to their
low static power consumption and (for our design) ability to implement non-
linearly separable functions in a single layer. This last point is demonstrated in
Fig. 3. A 4-input NLB is trained to perform a 4-input XOR function. The block is
trained using the supervised Perceptron learning rule.

4 CMHNN Topologies

Engineering an artificial neural network is an empirical, ad-hoc process, and is
strongly dependent on the ANN’s target application. Table 1 lists some common
ANN applications and the topologies that have been used for them.

The task of choosing a network topology becomes even more difficult in the
case of CMHNNs because of the additional constraints and tradeoffs exhibited by
hardware design choices: power vs. speed, size vs. noise tolerance, stability vs.
bandwidth, etc. Our group is currently studying two topologies for CMHNNs that
demonstrate stark contrast: (i) feedforward Perceptron networks (two-layer and
MLP) because of their utility in several applications and the abundance of learning

Fig. 3 Training a 4-input NLB to perform an XOR function
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algorithms and (ii) random recurrent neural networks (reservoirs) because of their
temporal integration ability.

4.1 Perceptron Networks

The Perceptron was introduced by Rosenblatt [25]. His probabilistic feedforward
brain model introduced some important concepts still used today, such as an
artificial neuron’s weighted summation of inputs and non-linear threshold acti-
vation function [21]. As we showed in the previous section, a single NLB can be
used to implement a Perceptron network. By combining multiple Perceptrons, each
trained separately, we can implement multi-layer reconfigurable logic. To dem-
onstrate this, we trained feedforward networks of our NLBs to implement ISCAS-
85 benchmark circuits. The networks were trained using the Perceptron learning
rule in (5). Our circuits also used the empirical PWL memristor model discussed
above, along with 45 nm predictive technology models for the CMOS portions of
the design. The energy-delay product results are shown in Fig. 4. RANLB,
MTNLB, and ANLB are three different implementations of our adaptive activation
function NLB design. The MTNLB (multi-threshold NLB) design [26] outper-
forms the standard lookup table approach, as well as the threshold logic gate
approach (with monotonic activation functions) in all cases. The improvement is
attributed to the reduction in NLBs required for a specific function, since each
NLB is able to compute both linearly separable and non-linearly separable
functions.

4.2 Reservoir Computing

A major limitation of feedforward networks is that they cannot efficiently solve
temporal problems, such as prediction, and speech recognition [27]. Random
recurrent neural networks or reservoirs, however, naturally integrate temporal
signals. The reservoir-based RNN paradigm (reservoir computing) is based on the

Table 1 ANN topologies for
different applications [31]

Application Topology

Pattern recognition MLP, Hopfield, Kohonen, PNN
Associative memory Hopfield, recurrent MLP, Kohonen
Optimization Hopfield, ART, CNN
Function approximation MLP, CMAC, RBF
Modeling and control MLP, recurrent MLP,

CMAC, FLN, FPN
Image Processing CNN, Hopfield
Classification MLP, Kohonen, RBF, ART, PNN
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work of Jaeger [28] and Maass et al. [29] and can be generalized mathematically
by Schrauwen [27]

xðt þ 1Þ ¼ f ðWres xðtÞ þWinp uðtÞ þWout yðtÞ þWbiasÞ;
yðt þ 1Þ ¼ Wres xðt þ 1Þ þWinp uðtÞ þWout yðtÞ þWbias

ð7Þ

where x is the state of the reservoir, u and y are the inputs and outputs of the
network, t is time, f is the activation function of the reservoir neurons, and Wi is
the weight matrix between i and j (‘‘res’’ = reservoir,‘‘inp’’ = input,‘‘out’’ = out-
put,‘‘bias’’ = external bias). Training of these networks is simplified by only
modifying the output weights. Very simple CMHNN implementations of reser-
voirs have been demonstrated in Kulkarni and Teuscher [30].

5 Conclusions

In this chapter, we provided a brief overview of CMOS/memristor hybrid
implementations of artificial neural networks, with specific attention given to our
recent work. This new generation of hardware neural networks represents a major
step towards emulation of biological systems. However, several challenges and
open questions remain, especially from a circuit design perspective, including: (i)
how to provide a good signal-to-noise ratio while maintaining memristor voltages
that are below threshold and (ii) how to ensure stability in the presence of noise,
especially in the case of recurrent neural networks. More generally, a major
challenge is deciding on a synapse design, neuron design, network topology, and
other CMHNN parameters given a target application.

Fig. 4 Energy-delay product results for ISCAS-85 benchmarks implemented using the two
proposed designs, RANLB and MTNLB, and a comparison to a TTGA with minimum and
maximum memristance values and a standard LUT
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Nanoelectronics and Hardware Security
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1 Introduction

In recent years, several nanoelectronic device and circuit technologies have
emerged as possible avenues for continued scaling of future integrated circuits
(IC). Nanoelectronics in the context of this chapter is differentiated from CMOS in
that the underlying physics that governs device behavior is in some way funda-
mentally different from that of classical MOSFET transistors. For example, thin
film metal oxide memristors depend on properties such as electromigration and
other physical state changes that may be considered parasitic for CMOS. While a
variety of nanoelectronic device types exist, each with their own interesting
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behaviors, there are some characteristics that do appear in common for most
technologies. For example, process parameter variability is a common feature for
many nanoscale devices. Emerging systems that make use of nanoelectronic
devices will either need to cope with or harness nanoscale issues such as
variability.

Another field that has gained increasing interest in recent years is that of
hardware security. Specifically, IC designers today must cope with a range of
potential security and trust issues such as IC counterfeiting, piracy, Trojan
insertion and potential side-channel attacks. Many of these hardware security
issues can be mitigated through the inclusion of unique identifiers in the design of
the IC itself. Unique identifiers for increased hardware security often rely on the
inherent variability of device parameters within an integrated circuit. Thus, from
this perspective, the inherent variability of nanoelectronic devices is potentially
useful in the development of high density security primitives.

This chapter begins in Sect. 2 with an overview of two specific hardware
security concerns: trust within the IC design flow and side-channel attacks. Some
examples of countermeasures for these threats using CMOS are also provided.
Section 3 provides an overview of one particular nanoelectronic device considered
in this work for hardware security: the memristor. Circuit level structures for
memristive physical unclonable functions that can be used as unique identifiers are
discussed in Sect. 4. As another example of uses of nanoelectronics for security,
memristor based mitigation for potential side-channel attacks is discussed in
Sect. 5. Finally, some concluding remarks are provided in Sect. 6.

2 An Overview of Hardware Security

Since the mid 1970s, information security has evolved from primarily focusing on
the privacy of stored and in-transit data to incorporating trust, anonymity, and
remote ground truthing. Over this 40-year time frame, the usage scenario of
security technologies has evolved from securing physical premises with main-
frame computers to securing lightweight, low-cost, and low-power mobile phones,
tablets, and sensors. Concurrently, new security metrics such as resiliency against
physical and side channel attacks have emerged.

2.1 Threats to Trust: IC Piracy and Counterfeiting

There is an ever-growing industry in counterfeit and recirculated electronics.
Experts estimate that nearly 10 % of global technology products include coun-
terfeit components, totally over $7.5 billion dollars in yearly losses to the U.S.
semiconductor industry. Even within the U.S. DoD supply chain, over one million
components are suspected of being fraudulent [1]. As the cost and complexity of
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systems increase, so do the losses associated with parts failure. One of the chief
difficulties in curtailing this problem is the lack of secure, unique identifiers to
verify the authenticity and trust of electronic products. Researchers have proposed
Physical Unclonable Functions (PUFs) as a solution.

2.1.1 Potential Countermeasures

PUFs [2–4] are functions that map intrinsic properties of hardware devices into
unique ‘‘bits’’ of information, which can then be used as security primitives.
With respect to CMOS, these unique bits are derived from device performance
differences arising from normal process variability, e.g., propagation delay in a
ring oscillator. Typical security primitives include unique identifiers, secret
keys, and seed elements in pseudo-random bit generators. With the advances in
nanoscale technology, new physical properties have become available to
potentially exploit as PUF sources which may allow for more ubiquitous use in
the field.

2.2 The Threat of Side-Channel Attacks

Conventional approaches to cryptanalysis exploit vulnerabilities in cryptographic
algorithms. A cryptosystem realized on a physical device exudes the information
related to the device’s operation through unintentional outputs known as side
channels. This side channel information can be in the form of execution time,
power consumed, or electromagnetic radiation, as shown in Fig. 1. A Side Channel
Attack (SCA) exploits the side channel information to gain information about the
cryptographic algorithm and secret keys. Based on the side channel information
used, various intrusion techniques, such as power analysis attacks [5], timing
attacks [6], and electromagnetic attacks [7, 8], have been proposed. Since the
seminal SCA attack reported by P.Wright in 1965, SCA attacks have been suc-
cessfully used to break the hardware or software implementations of many cryp-
tosystems including block ciphers (such as DES, AES, Camellia, IDEA, etc.),
stream ciphers (such as RC4, RC6, A5/1, SOBER-t32, etc.), public key
ciphers(such as RSA-type ciphers, ECC, XTR, etc.), to break message authenti-
cation code schemes, to break the implementation of cryptosystems and protocols,
and even to break networking systems. SCAs are growing in significance because
they are non-invasive, easy to mount, and can be implemented using readily
available hardware [9, 10]. Kocher et al. introduced and demonstrated SCA power
attacks in 1999, which extract and analyze the power consumed for different
operations to predict the secret key information [5]. In this chapter, focus will be
on SCA power attacks due to the sensitivity and variability of this parameter in
nanoelectronic devices.
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There are three fundamental types of SCA power attacks: Simple Power
Analysis (SPA) [5, 9, 10], Differential Power Analysis (DPA) [5, 9–11], and
Correlation Power Analysis (CPA) [9, 10, 12, 13]. SPA correlates the Hamming
weights of the secure data with the power drawn for that computation. SPA
requires a detailed knowledge of the implementation of the cryptographic algo-
rithm to observe the variations in the power drawn for different computations [5,
10, 11, 14, 15].

DPA is based on the principle that the bit-toggles from 1 ? 0 and 0 ? 1 yields
significantly distinct power dissipation [5, 7, 13]. DPA needs no detailed imple-
mentation knowledge of the cryptographic algorithm and is capable of detecting
smaller scale variations that may otherwise be overshadowed by noise and mea-
surement errors while performing SPA [5, 7, 13]. DPA can be countered by
introducing random execution patterns or logic/circuit level adjustments [14–19].
CPA is similar to DPA, with additional statistical power leakage models to
approximate its power contribution [13]. Current flattening [20] and randomization
[21] are adopted to counter the CPA.

In general, a countermeasure to a power attack can be successful if the power
drawn is decoupled from the actual computation. Conventional hardware imple-
mentations using CMOS have a strong correlation between the power drawn and
the associated computation. The countermeasures for these implementations
therefore are limited to hiding or masking information, rather than the physical
implementation choice itself. Choosing non-conventional and nanoelectronic
crypto system implementations, such as Memristors, provides an additional degree
of security by their inherent non-linear and reconfigurable nature. The power
dissipated in these devices can be decoupled from the actual computation by
reconfiguring them to perform different fundamental operations with the same
current drawn.

Fig. 1 High-level representation of the side-channel information leakage exuded from a crypto
system
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2.2.1 Potential Countermeasures

Countermeasures against side-channel attacks are devised so as to obscure the
information leaked through the side-channel. The main goal of the countermeasure
is to achieve disconnect between the power profile and the data/operation exe-
cuted. At the circuit-level, most countermeasures rely on specialized logic styles
and devices, for hiding and/or masking. Hiding ensures consistent power
consumption activity regardless of the computational state. At the circuit level,
dual-rail logic [22], asynchronous logic, current mode logic, and wave dynamic
differential logic (WDDL) [19], produce uniform dynamic power for different bit
toggles. The major disadvantage of hiding with just CMOS is that it requires
capacitive balancing of cells and wires within the chip layout level in order to
achieve constant power consumption. These techniques also suffer from excess
area and power overheads. An ultra low voltage (ULV) logic using floating gates
has been proposed in [16] due to its high speed and low-correlation between the
input pattern and supply current, thus making the encryption scheme more resis-
tant to power attacks. Masking at the circuit-level is achieved through dual pre-
charge logic. All of these techniques either incur high area overhead (e.g., 100 %
in case of dual rail logic) or require significant design time to maintain capacitive
balancing of the cells. Moreover, each technique only covers a specific type of
attack.

At the logic level hiding introduces unpredictability in the output power traces
and can be achieved using non-deterministic or current flattening techniques.
Masking involves randomizing the input data and thereby generating unpredictable
side-channel information. Randomization is achieved by shuffling data before
computation [23] or inserting non-functional [24] or functional [16] execution
steps that intervene with regular computation. Current flattening techniques pro-
posed by Mursen et al. [24] use non-functional instructions intervene with the
typical cryptographic algorithm instructions. These additional instructions provide
adequate current discharge time to maintain a constant value of the current. For
example, an AES based coprocessor [19] has been designed for biometric pro-
cessing and employs this technique for any bit transaction. However, use of
additional instructions leads to a significant increase in the overall power con-
sumption. To address this issue dynamic voltage and frequency scaling have been
suggested in [25]. Nevertheless, the power consumption during the non-functional
instruction is distinguishable because of its peculiar nature and the original power
trace can be recovered by applying a simple time shifting method [24].

Non-deterministic processing overcomes this problem by executing the pro-
gram in out-of-order as described by May et al. [26]. This diminishes the asso-
ciation between the instructions and corresponding power trace. The cluttered
power trace pattern makes it difficult to mount a DPA attack. The out-of-order
execution requires judicial run time control to avoid erroneous execution. In [27],
a non-deterministic processor with an additional pipeline stage, a mutation unit, is
used to randomize the instruction executed while retaining the original execution
program. These countermeasures are often not applicable to general-purpose
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architectures as they bank upon the specialized hardware that requires custom
design-flows.

At the system-level, balancing employs another microprocessor to perform a
complementary execution in parallel to the normal execution and thereby bal-
ancing the overall power consumption [17]. The second processor is used for
balancing only when the first processor invokes execution of a cryptographic
algorithm or secure application. There are various weaknesses in this technique,
which hampers its practicality. First, power dissipation for any two processors is
never the same, so power analysis can be refined to mount an attack if the same
core is consistently used for cryptographic operation. Second, engaging the second
processor only during cryptographic computation reveals the operation time with
unique power profile. These weaknesses can be addressed only if the power profile
of the device is scrambled enough to hide the operation time information. The
inherent variability in memristor-based structures generates a variable power
profile even for repeat/redundant instructions, which makes it an attractive fabric
to implement. Additionally, the use of memristor devices can address constraints
such as manual intervention, high power, and area consumption. For example, the
run-time reconfigurability of the memristors can draw current spikes that are not
linearly related to the functional operation. This will reduce the need of an
application specific hardware to hide or mask side channel information and the
associated design-time and fabrication costs.

3 Memristive Devices and Circuits

Memristive devices or resistive RAM (ReRAM) are effectively two terminal
electrical potentiometers. That is to say, memristive devices have tunable resis-
tance values yet do not require energy to persist at any resistance state or are non-
volatile. By applying the appropriate electrical bias for the required duration, the
device may be repeatedly switched between at least two resistance states: a high
resistance state (HRS) and a low resistance state (LRS). A SET operation switches
the device from the HRS to the LRS; a RESET operation does the reverse.
Throughout this chapter, a HRS is a logic ‘0’, and an LRS is a logic ‘1’.

There is no single memristor device design. Typically, these devices are as
simple as metal–insulator-metal (MIM) structures, where the insulating materials
have been chalcogenides [28, 29], metal oxides [30, 31], perovskites [32, 33], or
organic films [34, 35]. Though the gambit of devices demonstrating the switching
behaviors thus described may be understood to be ‘‘memristors’’ [34], the exact
switching mechanism, parameters, and style will depend upon the specific material
stack. It is worth mentioning that many of the MIM structures studied to date are
technically memristive systems [36, 37] due to their nonlinear switching behavior.
In this chapter the terms memristor and memristive device are used interchange-
ably to refer to the family of devices comprising memristors and memristive
systems.
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Variations in device properties mean that certain flavors of memristive devices
may be optimally suited for different applications. Typically, memristive devices
considered for digital logic or memory applications are engineered for binary or
discrete multi-level states, where abrupt state transitions are desirable. Other
devices demonstrate a more analog transition between the two extreme resistance
states. In this chapter, we show that both behaviors may be used to develop
hardware security primitives.

3.1 Analog Memristors and Write Time

In the simplest analog model, memristors are modeled as two resistors, Ron as the
LRS value and Roff as the HRS value, weighted by a factor a that varies between 0
and 1 over time. In short, the memristance may be written as
MðtÞ ¼ aðtÞRon þ 1� aðtÞð ÞRoff . While the model is more complex in practice, the
idea remains the same.

One method for fabricating memristors consists of placing a TiO2-X layer with
oxygen vacancies on a TiO2 layer without oxygen vacancies and sandwiching
them between metallic electrodes [35]. Though conical phase change regions were
later shown to be responsible for device switching [38], this device can still be
modeled as two series resistors (Ron and Roff) that represent doped and undoped
regions of TiO2, respectively. In the model, the boundary between the regions (w),
the thickness of the active layer, moves between 0 and D as a function of an
applied electric field where a = w/D. In this way, the transition from the LRS to
the HRS is an analog process.

This model has been expanded in [39, 40] to account for variable mobility as
described by:

MðtÞ ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2gDRuðtÞ
D2R2

0

� lRon

� �s

; ð1Þ

where constants R0 is the maximum resistance (R0 & Roff), Q0 is the charge
required for w to migrate from 0 to D, DR is the difference between Roff and Ron,
and g (±1) is the polarity of the applied voltage signal. The flux u(t) is simply the
integral of the applied voltage over the entire usage history of the device:

u tð Þ ¼ Z
Vappl tð Þdt: ð2Þ

Of particular importance to the memristive write-time based PUF considered
here is the impact of variations in the device thickness D, similar to the simplified
relationship shown in Eq. (1). More specifically, variability in D translates to
variations in the read and write-times of the memristor when using the device as a
memory cell [41]. For example, a memristor being SET from HRS to LRS will
only exhibit a logic ‘1’ output if the SET time (i.e., write time to SET the
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memristor) is greater than some minimum twr,min. If, however, the SET time is
chosen to be at or near the nominal twr,min, then variations in D will dictate that the
output is nearly as likely to be a logic ‘0’ as it is a logic ‘1’. This probabilistic
status for the output voltage is undesirable for conventional memory systems but
can be leveraged in the implementation of PUF circuits.

3.2 Discrete Memristors

Binary state memristors have only two distinct states, and the transition between
the two is typically abrupt. These properties make these devices ideally suited for
digital logic and memory elements. Filament creation and rupture is frequently
cited as the switching mechanism for these devices.

A PUF circuit was designed specifically for Al/CuxO/Cu memristive devices to
exploit unique properties detailed in prior research [42]. Unlike most other
memristive devices, the Al/CuxO/Cu devices switch for any voltage polarity
combination, i.e., they are completely nonpolar. The CuxO layer is grown via a
plasma oxidation process [43]. By virtue of this fabrication process, the oxide
thickness and oxygen concentration will vary slightly across the sample. Figure 2
depicts lateral switching (devices in series) of a pair of Al/CuxO/Cu devices.

In practice, many memristive materials, including the TiO2 [44] and Al/CuxO/
Cu [42] devices considered here, require a forming step to initialize the devices.
An elevated voltage is applied across the device to cause the first SET, after which
the device can cycle between the HRS and LRS at significantly lower voltages.
Prior to this step, the device operates as a regular resistor. The difference in
behavior is easy to detect and thus is a prime candidate for tamper detection. In our
designs, the memristors are only formed during device provisioning where the
PUF challenge response pairs are recorded in a secure environment.

The forming step required to initialize memristor function is of great value for
the certification of trust. It serves as a red flag when a device has been activated
signaling that the security of the PUF may have been compromised. In addition,

Fig. 2 Representative
experimental data from a
laterally switched
100 9 100 lm Al/CuxO/Cu
memristive devices described
in [42]. The blue curve shows
the required initial forming
step. The black curve shows
typical switching values
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such evidence can function as a warning sign alerting the user to suspect fabri-
cation and supply chains.

4 Memristive Physical Unclonable Functions

Some intro to the concept of a memristive PUF…

4.1 Memristive Memory Based PUF Cell

As mentioned for the analog memristors, variations in the thickness D of a
memristor leads to variability in the write time (and by extension the read time) of
the device. This property is leveraged in the construction of a simple memory-
based PUF cell where the SET time twr is chosen to be the minimum SET time
required to switch the memristor from the HRS to the LRS state, twr,min. If the
actual SET time of a particular memristor, twr,actual, is greater than twr,min, then the
output voltage when reading the memory cell is likely a logic ‘0’. Likewise,
twr,actual less than twr,min will likely lead to an output voltage of logic ‘1’. By
choosing the SET time close to twr,min, the likelihood that the output is logic ‘1’ or
logic ‘0’ should each be nearly 50 %.

The circuit shown in Fig. 3 is an implementation of a single bit of a memristive
memory-based PUF. This circuit is essentially a 1 bit equivalent of the memristive
memory presented in prior work [45–47]. Two control signals are used to deter-
mine whether the circuit is writing or reading the memristor (R=W) and, if writing,
the polarity of the write (NEG). The circuit works as a PUF by first performing a
RESET of the memristor by applying NEG = 1 and R=W ¼ 1 long enough to
guarantee the memristor is in the HRS state. Next, a SET pulse is applied for the
nominal write time corresponding the twr,min (NEG = 0 and R=W ¼ 1). After the
SET operation, the memristor can be read at the output by applying R=W ¼ 0.

Challenge

Response

NEG

1

0
M

NEG

0

1

0

1

R/W R/W

1

0

VRD

VWR

VWRFig. 3 A 1-bit memristive
memory-based PUF cell that
leverages variations in
memristor write times
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The Challenge for this particular memristive PUF is applied as an input to an
XOR function with the output of the simple memory cell as the other input. The
output of this XOR is the Response bit of the PUF cell which depends on the
Challenge and the random output of the memristive memory cell. When the
likelihood that the output of the memory cell is logic ‘1’ is 50 %, then the chance
that the Response can correctly be guessed is equivalent to guessing the outcome
of a coin flip.

One way to determine the nominal twr,min is by running Monte Carlo simula-
tions and producing a histogram of the minimum SET time to SET the TiOx

memristor modeled earlier. Figure 4a, b show plots of the distribution of the SET
time for 2 % and 5 % variation in thickness, respectively. From each of these
plots, it is clear that the expected minimum SET time for the circuit in Fig. 3 is
around 7 ls. Figure 4a, b also show that the standard deviation for the SET time
increases with increasing variation in thickness, as is expected. The Monte Carlo
simulations were run for 1000 iterations for each variation parameter considered.

Figure 4c, d show the distributions of the output of a read operation to the
memory cell after a 7 ls write pulse for 2, 5 % variation in thickness. As was done
for the write time distributions, Monte Carlo simulations were run for 1000 iter-
ations using T-Spice. It is clear from Fig. 4 that the likelihood that the output is
logic ‘0’ is close to that of logic ‘1’, though it appears a logic ‘0’ is slightly more
likely. It can also be seen that as the variation in thickness increases the likelihood
for a logic ‘1’ is improved over that of logic ‘0’.

4.2 Lateral Switching PUF Cell

It has been experimentally demonstrated that Al/CuxO/Cu memristive device
switching is filament-based [42]. A consequence thereof is a required forming step.
The devices will SET at lower voltages only after the forming operation. Thus, by
performing a SET operation first, one can test the forming status to verify that all
the devices are still in their virgin state. Since the initial switching properties of
these devices will be used for the proposed PUF circuit, the ability to verify that
the devices have not been previously SET/RESET is critical.

The details of experimentally demonstrated lateral switching (switching two
devices in series) are described in detail in [42, 48]. In brief, a pair of MIM devices
with a common ground may be switched laterally, where one top electrode (TE) is
biased and the other TE is electrically grounded (Fig. 5). While this configuration
is merely two devices in series, the applied voltage polarity is reversed across the
second device. Thus, lateral switching in this configuration (where two devices
have a common substrate) has only been observed for devices demonstrating
completely nonpolar switching. However, this protocol in theory may also be
achieved using other memristive devices asymmetrically arranged in series.

The protocol for PUF bit retrieval (generation) is SET-RESET. During a lateral
SET operation, both devices are written to the LRS; however, after a lateral
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RESET operation, only one of the two devices switches to the HRS. The other
remains in the LRS, though, due to process variations, which of the two devices is
in the LRS is independent of the device to which the voltage bias is applied.
Additionally, over subsequent lateral SET/RESET operations, the persistent LRS
device is invariant.

Fig. 5 Physical structure of
the lateral switching
configuration

Fig. 4 Monte Carlo simulation results showing the distribution of the write time required to
write a logic 1 (a, b) and the output voltage (c, d) given 2 % (a, c) and 5 % (b, d) variation in the
thickness of the TiOX memristor. Given such variability in device thickness, the chances that the
output of a read operation yields a logic ‘1’ or logic ‘0’ can be made to be close to 50 % by
choosing a write time at the center of the write time distribution, in this case 7 ls
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Figure 6 illustrates a simple CMOS-memristive circuit that leverages the
structure from Fig. 4 in the construction of a cell that can be used to build a PUF.
Specifically, a PUF leverages unclonable physical disorders in the IC design
process to produce unique responses (outputs) upon the application of challenges
(inputs) [49].

There is one control signal (R=W) in the circuit in Fig. 6 which is used to select
between the lateral SET/RESET and the read mode of the two series memristors
M1 and M2. If R=W is 0, then the node between M1 and M2 is left floating and
either VWR (SET) or –VWR (RESET) is applied across the pair. On the other hand,
when R=W is 1, the circuit is in an operation or read mode, where VRD is driven
across both devices and a load resistance.

As described for the structure in Fig. 5, after formation and a RESET, one
memristor will be in the HRS state while the other remains in the LRS state. Due
to the inherent variability of both memristive devices, which memristor is in the
HRS and which the LRS is entirely random. Figure 6 also shows how one of the
outputs from one of the two memristors can be selected using an arbitrary Chal-
lenge bit. The Challenge bit could be one bit of an externally supplied PUF
challenge. The corresponding output or Response bit would then be one bit of the
hardware specific response portion of the security key. Thus, the circuit shown in
Fig. 6 constitutes 1 bit of a memristive PUF circuit. Again, the requirement of a
forming step means that the memristive device values cannot be read or deter-
mined in the foundary without tripping the tamper detection mechanism.

A unique device signature in CMOS can also be derived from an unwritten
Static Random Access Memory (SRAM) circuit. An SRAM cell consists of two
transistors connected in a butterfly like fashion. Due to threshold voltage mismatch
caused by process variations, one transistor will be stronger than the other. This
mismatch is then used to generate the random signature. However, an attacker in

M1

M2

Challenge

0

1
Response

VWR

VRD

0

1

0

1

R/W

R/W

R/W

Fig. 6 A 1-bit filament
growth based PUF cell that
leverages the stochastic
nature of filament formation
in some memristors
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the manufacturing chain can easily read this unique signature and use it to spoof
the hardware. Unlike with the memristor-based lateral switching PUF, this tam-
pering is not irrefutable.

5 SCA Mitigation via Memristive Crossbars

In this section, the use of emerging hybrid CMOS/memristor circuits is proposed
to mitigate side-channel attacks, particularly power attacks. A highly integrated
architecture is proposed which deters the hacker by masking the actual power
information associated with the switching activity. The solution is multi-fold as
described below.

In this technique, we add different types of noise into the power consumption
measurements available to the attacker, reducing the signal to noise ratio (SNR)
without fundamentally altering the system architecture. Noise can be generated in
the amplitude domain (e.g., by consuming random amounts of power) or in the
temporal domain (e.g., by randomizing operation timing). Consider an array of
memristors shown in Fig. 7, where each memristor is iso-input in nature. When
implementing a specific function each memristor can be used as a bi-level memory
element, multi-level memory element, a control knob to monitor power, or as a
look-up table based logic element. Also, the underlying physical architecture that
interfaces with the CMOS layer is not altered with the reconfigurability (refer to
Fig. 7). At any given instance each memristive device can be used for several of
these functionalities simultaneously. For example, a memristor can be used
actively as a memory element while it is simultaneously being used as a passive
monitor. Monitors are used to measure on-chip environmental parameters such as
temperature or frequency. When inserted between logic or memory blocks,
monitors also add noise or leakage current to the total current drawn. While this
specific technique utilizing the reconfigurable feature of memristors does com-
plicate the initial guess for a side-channel attack, a static placement of these
devices can potentially be traced to the cracking of the secret key, assuming
enough traces are used.

To ensure that the power profile is truly random, monitors are dynamically
placed during runtime in unused sections of the crossbar fabric. Since each
physical configuration of the monitors and other functional blocks yield a different
power signature, this method of dynamic placement creates a unique power profile,
which is leaked through the side-channels. Furthermore, dynamic placement of the
monitors allows the designer the flexibility to monitor power with higher resolu-
tion in areas (encryption and decryption blocks) that are prone to side-channel
attacks. This information can be utilized to generate random power profiles even
during an ideal state or maintain a uniform profile for a continuous period of time.
Active placement of the monitors can be controlled at the operating system level,
although hardware solutions for control may also be possible.
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Of all the side-channel power attacks, differential power analysis is of particular
concern as it is very effective in identifying the secret key. The hacker uses the
information of the power drawn during the switching activity from 0 ? 1 or
1 ? 0, and then performs statistical analysis of the measured power traces to
determine the secret key. To make the set or sequence of operations less dependent
on the secret key transitions, active and inactive power drawn for various transi-
tions can be maintained and balanced using multi-level memristive memory ele-
ments. Each single memristive memory cell can store 3 data bits, rather than a
single bit. The power drawn from this multi-level device will be closer to that of a
single transition, whereas the current drawn is utilized for data storage or trans-
mission of multiple bits. This is extremely useful in generating unpredictable
behavior.

In general, hardware implementations are most efficient if they can take
advantage of some inherent parallelism. With the proposed memristor switching
arrays there is an inherent advantage to implement the parallel structures in 3D or

Fig. 7 Block level representation of the memristive switching arrays integrated with CMOS. An
inset of a single memristive switching array is shown with heterogeneous functionality
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otherwise. The throughput of the combinatorial units can be doubled or increased
by a factor of N, by multiplying the number of inner product combinations N times
to extract the 128-bit secret key.

Using SPICE-level simulations, Table 1 provides a comparison between the
proposed CMOS/memristor technology and existing technologies is made for a
simple 4-bit full adder circuit. Though the logic required for the full block cipher
in Fig. 6 is more complex than that of a full adder, the results in Table 1 still
provide useful insight into the expected gains for using CMOS/memristor tech-
nology for SCA countermeasures. Specifically, since the main side-channel to be
obscured is power it is important that the ratio between the active power and
standby power be as small as possible. As can be seen in Table 1, the CMOS/
memristor technology offers the lowest active power to standby power ratio as
compared to sub-threshold, super-threshold and dual-rail CMOS designs. From
this perspective, it is expected that the CMOS/memristor implementation will offer
the strongest level of security against potential side-channel attacks. It is also
worth noting that the CMOS/memristor implementation is superior to pure CMOS
implementations in terms of area footprint, delay and overall power dissipation.

6 Conclusions

In this chapter, we have highlighted a few novel features of nanoelectronic
devices, specifically memristors, and demonstrated how they can be used for
constructing security primitives. The features listed in this chapter are based on
both experimental and theoretical device research. Using the features listed, device
physicists can now engineer nanodevices, not only for memory and logic appli-
cations, but also for security applications. Similarly, security researchers can
develop mathematical proofs for these security primitives by abstracting the
features of nanodevices. Circuit designers can act as a bridge between device
engineers and security researchers and construct circuits that will harness these
devices to satisfy mathematical strengths. Overall, the idea of using nanoelec-
tronics for security applications will be a new and interesting avenue of research
for both electronic and security researchers.

Table 1 Performance metrics comparing pure CMOS to proposed CMOS/memristor structure
for a 4-bit full adder

Logic technology Area (# FETs) Delay Standby power Total power Active to
standby ratio

Super-Vth CMOS 110 s 15PGE 53PGE 2.53
Sub-Vth CMOS 110 50 s 5PGE 20PGE 3
Dual-Rail CMOS 220 s 27PGE 118PGE 3.37
CMOS/memristor 20 s/3 5PGE 16PGE 2.2

PGE represents the power dissipation of a 2-input CMOS NAND gate
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Specifically, memristive devices are good candidates for PUFs due to the
heightened effects of process variations on system characteristics. Two specific
circuits are discussed which leverage different properties of memristors. First, a
memristive memory cell based PUF is presented which leverages variability in the
SET time of the memristor. The second memristive PUF considered depends on
the ability to read and write two devices laterally, or as a single unit. Preliminary
experimental results using Al/CuxO/Cu devices demonstrate lateral switching
wherein, one of two devices becomes fixed in an LRS. Furthermore, preliminary
results suggest that which particular device eventually ends up in LRS is random.

The memristor based crossbar is also discussed as a potential countermeasure to
side-channel attacks. Specifically, for dynamic power analysis attacks, logic
implemented using hybrid CMOS-memristor based crossbars exhibits active
power that is very low relative to the standby power of the same system. This low
active power allows memristor based systems to generate power profiles that are
essentially in the noise and difficult for an attacker to interpret.

More experimental work needs to be done to better understand the switching
mechanisms that drive memristors of various flavors, e.g., binary or analog. More
experimental data should also be collected for the particular structures considered
in this chapter. For example, more measurements of many more lateral switching
memristor pairs must be made to better demonstrate the random nature of the
lateral switching mechanism. Furthermore, improved device models developed
from sound experimentation can be leveraged to better understand the physical
parameters of different types of memristors that can be leveraged for PUF
operation.
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User Classification and Authentication
for Mobile Device Based on Gesture
Recognition

Kent W. Nixon, Yiran Chen, Zhi-Hong Mao and Kang Li

1 Introduction

Intelligent mobile devices, sometimes called smart mobile devices, have become
the boilermaker of the electronics industry in the last decade. The shipment of
smartphones and tablets triples every six years, and is anticipated to reach a
volume of 1.7B in 2017 [1]. Mobile devices have become widely used in many
aspects of everyday life, spanning uses such as communication, web surfing,
entertainment, and daily planning. Also, almost all mobile devices are now
equipped with some sort of cellular network connection and/or Wi-Fi modules,
with the majority of them being connected to the internet regularly or from time to
time.

A recent statistics shows that around 66 % of intelligent mobile devices store a
moderate to significant amount of private data [2]. The typical sensitive infor-
mation on the mobile device includes personal contacts, passwords, social net-
working info, employment and salary info, online banking account, a local copy of
cloud-based documents, etc. In [3], a survey shows that once the device is lost or
an unauthorized access is wrongly granted, those data will be immediately under
severe security risk.

Password and keypad lock are two commonly implemented methods of mobile
device security protection. Interestingly, although many consumers agree that the
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data security is important, only 49 % of them have enabled at least one security
mechanism on their devices [3]. The currently available security solutions require
extra operations on top of normal operations, e.g., typing a password before being
granted access to the device, which may be the primary cause for such a low
adoption rate. Some biometrics solutions, such as fingerprints, etc. often require
additional hardware support, leading to even lower utilization.

In this chapter, we present our latest research on mobile user classification and
authorization based on gesture usage recognition. Different from other biometrics
solutions, gesture is uniquely defined by the interaction between a user and their
smartphone’s hardware design, and evolves throughout the whole life of the user.
The required sensing technologies, such as touch screens, gyroscopes, acceler-
ometers, gravity sensors, etc., have been equipped in most modern mobile devices.
It offers an evolutionary security protection over the operation time of the mobile
device.

2 Security Solutions of Mobile Device

2.1 Conventional Security Solutions

Mobile devices are now used in many aspects of our daily life, either if used for
productivity purposes or just pure entertainment. Only 22 % smartphones are
strictly for personal usage. The rest of smartphones are used either exclusively for
business purposes, or for both personal and business matters. Following the
increase of data storage capacity, more and more data are temporarily or even
permanently retained on the smartphone, which incurs severe concerns about data
security.

The security solutions employed in the cell phone have existed for a long time,
being utilized much before the smartphone. Although it is one of the most common
security solutions, a password is also the most vulnerable one. Due to the
restrictions implied by their usage model, smartphone passwords usually comprise
of a combination of only 4–6 numeric digits. The number of unique passwords
available with so few characters is very limited, and therefore easily hacked by
existing software or hardware methods. The use of less robust passwords, e.g.,
using birthday or other meaningful combination as the password, puts the data
integrity of smartphone at immediate risk.

Very recently, another security solution has been introduced into smartphone
design, namely, the track pattern. The track pattern requires the user to trace across
some nodes shown on the screen using their finger, following some preset
sequence. Obviously, as the number of available sequences may be more than the
number of combinations available to password users (e.g., 10000 for 4-digit), it is
assumed to offer better protection than a traditional password. However, the track
pattern scheme may not in fact be as safe as the manufacturers claim. As the
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Achilles’ heel of the track pattern solution, the operation of tracing the pattern will
leave am inerasable track on the screen due to the dirt and oils present on the user’s
hand. If the track is discovered and interpreted, the track pattern can be easily
hacked.

Although many users agree that the data safety is a real concern during the
operation of mobile devices, very few people turn on either of the above two
protections. We believe that this is because the current password and track pattern
protection methods each require an additional operation on top of the normal
operations of the smartphones. In some cases, these additional operations can be
annoying or even generate some safety issue, e.g., unlocking the cell phone during
driving.

2.2 Biometrics Solutions

Note that the password and track pattern only record simple information like digit
combination or node sequence. Hence, they are very easy to be replicated. In some
applications that require a higher level of security, many biometrics solutions have
been developed. These solutions are generally linked to some unique biological
characteristics of the user’s.

Two poplar biometric security solutions for general data protection are iris and
fingerprint scans. The unique patterns of an individual’s iris and fingerprint can be
recognized by a device as the only passport to normal access and operation. Very
recently, human facial features are also used as a method of authentication.
Apparently, the information carried by biometric characteristics is irreproducible
and the corresponding security solution must be much safer than simple passwords
or track patterns. However, these solutions require a special device in order to
extract the biometric information, leading to additional hardware cost and the
inconvenience of the usage model.

Moreover, these biometric solutions are based on static information per se. In
military applications, such solutions may not be able to protect the safety of both
the data and the user simultaneously. For example, fingers may be removed from a
captured soldier in order for enemy agents to be able to pass through a fingerprint
recognition system. In extreme cases such as these, linking the security protection
to the biologic characteristics actually increases the threat to a user’s safety and
still could not necessarily protect the data.

2.3 Requirements of Mobile Device Security Solutions

We have summarized the desired characteristics of a security solution for intel-
ligent mobile devices in the list below:
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• The solution must be coded by unique characters.
• The code must be irreproducible.
• The code must be difficult to hack, or the hacking cost must be sufficiently high.
• The solution must be able to protect the safety of both data and users.

As we shall show in the next section, the recognition of gesture usage satisfies
all the above conditions while offering an adaptive and evolutionary security
solution.

3 Why Use Gesture to Protect Your Smartphone

3.1 Why Gesture is Unique

The human hand is one of the most complex organs. Figure 1 shows the muscle–
tendon structure of a human hand [4]. The subtle operation of the gesture is
affected by the biological features of the hand, such as finger length, rotational
radian, fingertip area, and palm size, as well as the muscle–tendon parameters.
These biological features are irreproducible across users, and changes over time
with the user’s medical condition and age [5].

Gesture denotes the way we use our fingers to control the mobile device. The
combination of the above mentioned biological features are responsible for the
diversity of gesture. In fact, the finger dynamic behaviors can be more complicated
since these behaviors may also have a ‘‘feedback’’ impact on the musculoskeletal

Fig. 1 Muscles of a human finger [4]
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parameters in Fig. 2, which may make gesture a more attractive method for user
identification.

Besides the physical and biological factors of the user, e.g., the structure and the
biological features of human hands, much human–machine interaction information
is also generated during gesture operations. Some examples include:

• Preferable Finger: Even for the same gesture operation, different user may have
different preferable finger to execute it.

• Preferable Screen Area: Every user has his/her preferable screen area even for
the same operation due to the unique comfortable room between the human
hand features (e.g., palm size) and the cell phone’s physical configuration (e.g.,
screen size).

• Wrist/Finger Angle and Holding Position: They are usually linked to the
physical and medical condition of the user and reflected as the preferable screen
area and other sensing parameters.

The information associated with gesture operations is much richer than just the
physical motion of the fingers on the touch screen. There are many sensing
parameters describing many details on gesture operations, including:

• Tap Frequency: The frequency of taping the finger on the touchscreen.
• Sliding Speed: The speed of the finger moving on the touchscreen.
• Sliding Angle and Radian: Describing the curve shape of finger motion on the

touchscreen.
• Pressure Strength: Describing how hard the finger pressing on the touchscreen.
• Pressing Time: Duration of the finger press on the touchscreen.
• Contact Area: Area of the finger contact with the touchscreen. It usually depends

on the fingertip area and is correlated with the pressure strength.

Obviously all of the parameters related to the gesture operations are more than
what we listed above. If we can recognize the gesture patterns by using these
parameters and link it to a unique user identity, we will be able to classify the user
and provide a more reliable security solution.

Fig. 2 Muscle-tendon
parameters such as flexor and
passive torques are both user-
dependent and behavior-
dependent [5]
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3.2 Sensing Capability of Mobile Devices

Modern mobile devices embed many sensors that can be used to extract the
required parameters. Table 1 lists the sensors integrated on the Samsung Galaxy
Nexus S. Of the ten sensors, only the first five are really of interest, as the last five
are ‘‘software sensors’’—virtual sensors created using data collected from the first
five dedicated hardware sensors.

Figure 3 shows a typical sensor data collection over time for a 3-axis accel-
erometer and gyroscope. The sensed data patterns change during the motion of the
user, e.g., on the bus or other moving target, walking, lying on the bed, etc. These
sensors can also detect the position in which the device is being held. Consider-
ations such as this will cause the same gestures completed on the same mobile
device to show some differences under different scenarios.

Table 1 Sensors integrated
on samsung galaxy nexus S

Name Model (if applicable)

3-axis accelerometer KR3DM
3-axis magnetic field sensor AK8973
Light sensor GP2A
Proximity sensor GP2A
Gyroscope sensor K3G
Rotation vector sensor Software sensor
Gravity sensor Software sensor
Linear acceleration sensor Software sensor
Orientation sensor Software sensor
Corrected gyroscope sensor Software sensor

Fig. 3 Accelerometer and gyroscope data collection
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Thanks to the latest display technology, touchscreens can record many finger
motion parameters during the operation of the mobile device, such as movement
track, pressure strength, and contact area, etc. These parameters can be combined
with the those detected by still other sensors to derive much additional
information.

3.3 Functional Mechanism of Gesture Security Solution

Figure 4 shows the gesture-based security solution for mobile devices. The
interaction between the mobile device and user generates the gesture operations
whose parameters are recorded by the embedded sensors and touchscreen. Once
collected, these data are sent to the pattern recognition algorithm in order to
determine whether the operation was executed by a rightful and authorized user of
the device, or by an attacker. If the pattern is confirmed, the minute differences
between the current operation and the stored patterns will be characterized and
used to further tune the stored verification patterns. Otherwise, the system needs to
identify whether the pattern is simply a new for an existing user, or is in fact being
used by an invader. A local database for all trained patterns will be retained on the
mobile devices for fast access. However, if the number of patterns is too large,
only the most frequent patterns will be stored on the mobile device while the
others may be kept in the cloud. Note that the recognition of gesture can be
executed in the background and shall not interrupt the standard function of ges-
tures in other applications. Our target is that the continuous execution of this
gesture recognition algorithm will not noticeably decrease the overall performance
of the device.
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4 Experimental Results

4.1 Experimental Setup

To demonstrate the potential of the proposed gesture-based security scheme, we
analyze the plethora of additional information that can be gathered during con-
ventional password entry. An application was created to collect the gesture
information generated by a user while entering their password into a device. Three
different combinations are tested to analyze the impact of the distance between the
keys in the password, as shown in Fig. 5. The key distance varies from the min-
imum to the maximum.

4.2 Pressing Time Distributions

We first compare the pressing time distributions (PTDs) of three volunteers for the
combination of 1245, as shown in Fig. 6. The timeline begins when the finger
touches the screen for the first digit. The distribution of the first digit is the time
when the finger leaves the screen. Starting with the second digit, the two distri-
butions denote the time when the finger touches and leaves the screen, respec-
tively. The distances between two adjacent digits are almost equal while the
distributions increase following the rising of the order of the digits. However, the
patterns of three volunteers are very different, as we can observe.

4.3 Combination Dependent PTD

Figure 7 shows the PTD of different combinations for each volunteer. Slight
differences are observed in the combinations, especially the timing distributions.
However, in conventional password entry systems, the time duration for which the
finger touches the screen is entirely irrelevant to the device.

Fig. 5 Three tested combinations. a 1245. b 3176. c 9043
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4.4 Contact Area and Pressure

Table 2 summarizes the statistics of the contact area for all volunteers. There are
significant differences of the gesture behavior across the volunteers with different
gender and age. Also, the contact area deviations are tiny for the different com-
binations for one user, indicating stable gesture behavior. However, the differences
between the users are large.

Table 3 summarizes the statistics of the pressure strength for all volunteers.
Similar conclusions can be drawn for all the users and password combinations.
Very interestingly, the physical features or even the gender information of the
users may be exposed by the above data. For example, a large contact area indi-
cates a large fingertip, or generally an adult (compared to a child) or a male user
(compared to a female user).

5 Future Research

Although our initial results proved the informational richness of the gestures used
to interact with mobile devices, many technical obstacles still need to be overcome
in order to enable the technology. For example, a proper learning algorithm must
be developed to recognize the gesture patterns. The capacity of the pattern

Timeline

Fig. 6 Pressing time distributions of three volunteers
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Fig. 7 Pressing time distributions of different combinations

Table 2 Summary of contact area statistics

Average Comb1 Comb2 Comb3 Std. Dev.

Volunteer 1 0.1707 0.1762 0.1715 0.0029
Volunteer 2 0.1456 0.1541 0.1529 0.0046
Volunteer 3 0.1977 0.2008 0.1998 0.0015
Std. Dev. 0.0212 0.0191 0.0192

Table 3 Summary of pressure strength statistics

Average Comb1 Comb2 Comb3 Std. Dev.

Volunteer 1 0.5293 0.5561 0.5411 0.0134
Volunteer 2 0.4611 0.5013 0.4910 0.0208
Volunteer 3 0.5668 0.6100 0.5796 0.0222
Std. Dev. 0.0436 0.0443 0.0363
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database should not be too small or too large, and should equally balance accuracy
and processing time considerations. The algorithm must be neither under- nor
over-trained. As another example, the relationship between the gesture variance
and the ambient parameters (e.g., daytime or nighttime) and user’s medical/racial
conditions will be also analyzed. Finally, a portable recognition platform must be
established to allow transferring the gesture database from one device to another
one, each of which may have different hardware configurations, so that the security
solution is not limited to a specific device.

6 Conclusions

In this work, we reveal the demands on an adaptive and evolutionary security
solution for intelligent mobile devices. As one promising candidate, gesture offers
almost all desired characteristics of ideal data protection schemes. Its resilience to
hacking is guaranteed by both the complexity of the gesture operation as well as
the unique nature of a user’s biological features. We then discuss the method to
recognize the user’s gesture as the data security protection, including the software
and hardware requirements for doing so. Our analysis demonstrates that gesture
offers a promising and user-friendly solution for mobile device data protection,
though many technical obstacles still need to be overcome.
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Hardware-Based Computational
Intelligence for Size, Weight, and Power
Constrained Environments

Bryant Wysocki, Nathan McDonald, Clare Thiem, Garrett Rose
and Mario Gomez II

1 Introduction

Nanoelectronic research is enabling disruptive enhancements for computational
systems through the development of devices which may enable autonomous
human-system interactions. Intelligent platforms that collaborate with their human
operators have the capacity to enhance and compliment the human capability,
adding resiliency and adaptability to current systems while reducing operator
tedium. Programmable machines are limited in their ability to address such fuzzy
combinatorialy complex scenarios. Neuromorphic processors, which are based on
the highly parallelized computing architecture of the mammalian brain, show great
promise in providing the environmental perception and comprehension required
for true adaptability and autonomy.

It is challenging to anticipate the capabilities and forms that future computa-
tionally intelligent systems may take, but recent advancements in nanotechnology,
biologically-inspired computing, and neuroscience are providing models and
enabling technologies that are accelerating the development of such systems. Thus,
as illustrated in Fig. 1, neuromorphic computing design is truly a multidisciplinary
technology area. This chapter briefly examines many of the breakthroughs and
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trends that are influencing the development of solid-state neuromorphic systems
and surveys a variety of approaches to hardware design and fabrication.

2 Neuromorphic Processors over Software for Embedded
Systems

Advanced sensor platforms provide an overwhelming and exponentially growing
supply of data. Geospatial systems for example, generate crushing amounts of data
that choke communications channels and restrict or prohibit real-time analysis.
This has created a strong demand for autonomous pattern recognition systems [1–
3]. Software applications running on high performance processors using conven-
tional Turing computation have been very successful but are failing to efficiently
scale to the required processing speeds while maintaining a viable power budget
for embedded systems. Increased performance and bandwidth within the Turing
formalism can alleviate some of the strain but are only part of a more sophisticated
solution. Massively parallel neuronal architectures are achieving the reduced size,
weight, and power (SWAP) requirements needed for embedded platform appli-
cations and are benefiting from advances in supporting fields. This fundamentally
different approach, often referred to as neuromorphic computing, is thought to be
better able to solve fuzzy perception and classification problems historically dif-
ficult for traditional, von Neumann-based computers.

The focus of processor enhancement took a historic shift from increased clock
speeds to multi-core design around 2005. Power and performance issues redirected
the trend of transistor scaling that lasted over 30 years towards multi-threaded par-
allel architectures [4]. But the utility of multi-core systems is limited by the restricted
scaling of parallelization (Amdahl’s argument), software optimization complexities,
and memory storage and retrieval issues [5, 6] such that more and more researchers
are investigating unconventional computing methods for the next era of enabling
technologies. Researchers look to the physical world for inspiration for information
processing algorithms and architectures based on the thermodynamic, chemical,
quantum, and biological processes for non-classical approaches to computation and
sense making.

Fig. 1 Multidisciplinary
nature of neuromorphic
computing design
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Neuromorphic computing seeks to mimic brain functions and efficiencies
through parallel operation, reconfigurability, high density, and low power con-
sumption. High performance computer based simulations can emulate brain
function, but are incredibly inefficient and slow. Additionally, the energy
requirements of the fetch, decode, and execute model of von Neumann computers
grows exponentially with scaling and limits the use of Teraflop systems to only the
largest research facilities. Modern supercomputers typically consume 4–7 MW of
power, enough to power over 5,000 homes, with the largest supercomputers
consuming over 12 MW of power and approaching $10 M in yearly operational
costs. The largest obstacle to extreme scale computing is in fact power and it has
been estimated that Exaflop systems would require approximately 1 GW [7]. This
is roughly the average output of the Hoover Dam or a nuclear power plant for
operation. With the growth of big data and the internet, data centers are also
becoming significant draws on U.S. and global power production at approximately
2.0 % and 1.3 % respectfully in 2010, with many single centers having nearly a
100 MW capacity [8]. Even at the other extreme of computer processing, the
average desktop uses between 50 and 160 W of power which is still too much for
most embedded systems. The need for increased intelligence with reduced power
consumption in computational systems is great for all levels of computing.

The DOD is the nation’s largest energy user and energy efficiency, as a force
multiplier, is a top priority. The demand for autonomy and computationally
intelligent systems provides increasing pressure for the development of next
generation processors. Many of the platforms which could benefit most from on-
board high performance computing are constrained by size weight and power
limitations. This is the ideal niche for hardware-based neuromorphic processors
which compliment traditional computing with newfound adaptability and resil-
ience on a reduced requirements budget. Enabling technology advancements are
spurring neuromorphic hardware development and expanding the engineer’s
toolbox.

3 Hardware Design Considerations

The availability of novel technologies spurred by advancements in nanotechnol-
ogy, hybrid fabrication, and neuroscience has provided circuit designers with
previously unavailable options. This section examines some of those options.

3.1 CMOS Implementations

The pressure for increased speed and efficiency is pushing the limits of CMOS
technology which are expected by many to hit-the-wall by 2022. The diminishing
financial return on investment for the continued scaling of CMOS technology may
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force mainstream fabrication to stall with 350 mm wafers at the 22 nm node.
While there are numerous technological possibilities for the extension of CMOS,
there has been increased focus on a number of beyond CMOS candidates such as
memristors, nanowires, nanotubes, and graphene, in addition to entirely new
architectures such as nano-crossbar and 3D networks on a chip [9]. These alter-
natives, however, must compete with the fact that CMOS based VLSI is a rela-
tively inexpensive and well proven technology that will continue to see drops in
fabrication prices on older nodes from 0.5 lm down to 45 nm. CMOS platforms
also benefit from the availability of standardized modeling software for system
design such as Spice and Verilog-A. CMOS is so engrained into processor design
that it proves very difficult to avoid and is present in many neuromorphic schemes.
Reconfigurability is a drawback for CMOS that can be overcome through the
development of hybrid technologies where memristive devices add some
plasticity.

3.2 Hybrid Designs

Many of the new nano-enabled technologies are not strictly compatible within
current CMOS fabrication lines. They require front-of-line or back-of-line pro-
cessing and often have special packaging needs. Great effort is underway, how-
ever, to bring these capabilities into mainstream fabrication lines.

Memristors for example, take numerous forms of construction based on a
variety of technologies, including resistive random access memory (ReRAM),
phase change RAM (PCRAM), magnetoresistive RAM (MRAM), and spin-
transfer torque MRAM (SST-RAM). Thus, a wide range of performance charac-
teristics can be achieved using varied material and architectural designs, all
demonstrating the characteristic pinched I-V hysteresis and non-volatility. Such
variety makes standardization slow, but gives neuromorphic circuit designers
expanded fabrication options.

There are two critical tasks for successful memristive device integration with
CMOS: manufacturability and usability. Concerning the former, the devices to be
used must consist of materials that are permitted inside a CMOS foundry, which
further restricts the materials allowed in the front end of line (FEOL) as compared
to the back end of line (BEOL). All the processing steps needed to make the
devices’ structure must be scalable to fabricate devices en masse. Lastly, all of the
devices must be functionally identical (though some applications may actually
exploit device non-uniformities). Part of the difficulty of manufacturing memris-
tive devices is that the physics of device switching is not well understood at
nanometer size scales. In particular, ReRAM (of which PCRAM is a subset) may
be composed of binary metal oxides, chalcogenides, or perovskites, among other
materials, and switch due to filament formation, vacancy migration, phase change,
or other processes [10]. At these scales, small variations in the device size or
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material composition often have large effects upon subsequent device switching
parameters.

However, because of this variety of materials and mechanisms, different device
resistance values, switching voltages, and switching times are available to the
circuit designer. When considering the appropriate device metrics of reliability and
endurance that must be attained, one must first consider the intended use of the
device. For von Neumann computing applications, if these devices are to replace
Flash or SRAM, then endurance cycles of about 106 and write speeds of a couple
tens of nanoseconds must be achieved, respectively. Even if memristive devices
cannot meet these requirements, SWAP savings may still be achieved by strate-
gically replacing some transistors in a circuit. For devices used in neuromorphic
applications, the range of addressable resistance values and the operative voltages
will be more critical than the write speed. Because of these varied ends, there will
likely be a variety of memristive device ‘‘flavors’’ available to the circuit designer
in the future.

3.3 Analog Versus Digital

Analog systems allow the device physics to do the computation which more
closely mimics the nonlinear dynamics of biological systems. This is not unsimilar
to structures built on Bayesian classification and regression, artificial neural net-
works, or kernel methods which often utilize non-linearities to project the input
into higher-dimensional spaces for improved separability. Some main advantages
to analog designs, besides their compatibility with natural signals, are their large
bandwidth and real-time performance. But such complex circuits are difficult to
reliably design and lack reprogramability limiting their applications [11]. Sub-
threshold analog circuits are additionally sensitive to device variations, which can
result in reduced bit resolutions after digital conversions; fortunately many of the
applications for neuromorphic systems do not require such exactness. Indeed, they
are designed to solve the fuzzy computational problems too ambiguous for tra-
ditional processing. In reality, few computational systems are completely analog
and there are nearly always points where the information is most useful in one
form or the other. There are several practical benefits of digital systems that are
well known. Chief among these benefits is their insensitivity to noise followed by
comparatively cheap fabrication costs and high device densities [12]. The most
probable near term realizations of large scale neuromorphic circuits will continue
to use both analog and digital circuitry for what they respectively do best.
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4 Selected Design Examples

There are many hardware implementations of neuromorphic computing. This
section takes a high level look at a few selected architectures.

4.1 Crossbar Nanomatrix

Crossbar architectures containing memristive nodes have the potential to serve as
high-density memory fabrics, or, with the addition of active components, as
crossbar-based nanoelectronic circuits. Such designs, however, are not without
their challenges which become more evident at the nanoscale with half-pitches
approaching 10–20 nm. Issues with leakage currents, energy consumption, active
device alignment, addressing and fan-outs are typical [13, 14]. Never-the-less,
crossbars remain a viable and promising method for memristor implementation as
these challenges are addressed.

Two different crossbar implementations of CMOS-memristor architectures are
considered as examples in this section as detailed in Fig. 2. The first architecture is
simply a crossbar array where each crosspoint consists of a single memristor. Since
memristors are essentially resistive devices, such a crossbar is typically limited
due to sneak path currents and other parasitics. In the case of a typical neuro-
morphic computation, however, vector inputs can be represented by voltages
applied simultaneously to all input rows of the crossbar. If the columns of the same
crossbar each drive an independent load, then the resulting output will be deter-
mined by the sum of the currents through each memristor in the column resulting
from the product of the respective input voltages and memristance values. If
analog input voltages represent elements of an input vector and the memristance

Fig. 2 Nanomatrix
illustration. Cells (white
boxes) can be single
memristors or the patented
2T1M cells
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values correspond to the weights of associated synapses, then the output is a vector
resulting from a neuromorphic computation.

A second, competing implementation is based on a 2T1M cell, two transistors
and one memristor, at each crosspoint in the array. The two transistors in this basic
cell comprise a current mirror which isolates the input voltages on each row from
the output seen on the columns. Such an arrangement is certainly not as dense as
the purely memristive crossbar, but it does benefit from improved noise margins
and the lack of back-driving (unregulated current). Thus, one implementation
provides the greatest benefits in terms of performance (memristor only) while the
other is likely more robust (2T1M). These structures (1M, 2T1M) are examined in
more detail in the next section.

4.2 CMOS/Memristor Hybrid

Here the single memristor (1M) crossbar and the 2T1M structures are examined as
examples of CMOS-memristive neuromorphic implementations. In prior related
work, the 2T1M structure has been explored for use as part of a basic threshold
logic cell [15–18]. Specifically, the memristive element in a 2T1M cell is used as a
weight for a particular input and several of these cells are connected at their
outputs such that the resulting currents can be summed together. A P-type metal-
oxide-semiconductor (PMOS) current mirror cell is used to drive a reference
current against the summed current representing the weighted sum of the inputs.
The reference current in this case would function as the threshold for this CMOS-
memristive threshold logic gate. The functionality of this circuit as a threshold gate
can be described as:

Y ¼
0 if

P Vi
Mi

\Iref

1 if
P Vi

Mi
� Iref

(

; ð1Þ

where Mi is the memristance value for corresponding input Vi with the ‘‘mem-
conductance’’ (memristor conductance) 1/Mi representing the weight for that input
[15, 18]. The reference current Iref represents a threshold such that if the weighted
sum is less than the threshold, then the output is low. Otherwise the output is high.
In the 2T1M based implementation, the final comparison between the weighted
sum and the reference current is made by the fighting of the two currents on the
output column [16]. Figure 3 shows a three input threshold logic gate constructed
with 2T1M cells.

Threshold logic gates like that shown in Fig. 3 were explored as part of a
collaboration between AFRL and the Polytechnic Institute of NYU (NYU-Poly).
In that earlier work, an algorithm was developed to map Boolean logic functions to
a circuit comprising of 2T1M based threshold logic gates by adjusting the weights
for the desired functionality. For the 3-input circuit shown in Fig. 3, the energy
and delay have been calculated and can be seen in Table 1 for several possible
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Boolean functions. The average delay is around 1 ns with only a few femto-Joules
of energy consumed per function [15].

Mapping Boolean logic functions to threshold logic gates as shown in Fig. 3 is
useful for early benchmarking of such circuits and comparing the performance to
pure CMOS implementations. However, threshold logic actually supersedes
Boolean logic and is particularly useful for non-Boolean operations, such as in
neuromorphic approaches to computing. Thus, the threshold logic circuit shown in
Fig. 3 can be particularly useful for implementing artificial neural networks.

As a dense alternative to CMOS-memristive 2T1M cells, the basic crossbar
structure has been considered for several years for implementing nanoelectronic
logic and memory [15, 19–21]. Clear advantages for a crossbar array with only 2-
terminal memristors at each crosspoint is the density and low expected power
consumption. The basic crossbar array, however, does suffer from several disad-
vantages, namely, sneak path currents, back-driving and a potential intolerance to
noise. Back-driving results from the fact that each memristive crosspoint is
resistive such that current can flow in either direction and with no built-in way to
differentiate the output of the circuit from the input. That said, back-driving and
noise intolerance can be mitigated by carefully designing the peripheral circuitry.

Fig. 3 A 3-input current mirror threshold gate which uses the memristors as weights and Iref as
the threshold [15]

Table 1 Characteristics of some 2T1M based gates mapped to boolean logic [15]

Function Memristance (MX) Energy (10-15 J) Transistor count Delay (ns)

A B C

AB 1.2 1.2 - 9.10 12 1.97
A ? B 0.6 0.6 - 8.98 12 0.982
ABC 1.2 1.2 1.2 6.8 14 1.92
A ? B ? C 0.4 0.4 0.4 7.29 14 0.637
AB ? BC ? CA 0.8 0.8 0.8 6.65 14 1.19
AB ? AC 0.6 1.2 1.2 6.93 14 0.928
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Several examples of CMOS-memristive memory design exist where the CMOS
peripheral circuitry is designed to take full advantage of the dense, memristive,
crossbar array memory [20, 22, 23].

The issue of sneak paths is particularly troubling for memristive crossbar array
based circuits. Without inserting diodes (1D1M) or transistors (1T1M) along with
memristors within each crosspoint of the crossbar, the output of any column is
dependent not only on the selected memristive cell but on every other device in the
array as well. Essentially, the unselected devices in a crossbar memory, for
example, can be considered as being in parallel to the selected device such that
current will flow through and depend on both paths. To make matters worse, for
larger sized arrays the resistance of the unselected path (consisting of all unse-
lected devices) becomes smaller such that more current will flow through the
unselected devices than through the selected device. Put another way, as the
crossbar array size grows the outputs depend less on the selected devices than on
the unselected devices [22].

While the use of 1T1M or 2T1M cells provides solutions to the sneak path issue
it is still worthwhile to explore ways to make use of the high density single
memristor (1M) cells. As mentioned earlier, neuromorphic computing is one
example that could actually leverage the sneak path issue as a feature. Specifically,
consider the case where the rows of a crossbar are driven by voltage inputs
representing the input vector and the columns are all pulled through independent
loads such that the voltages at the columns represent the output vector. In this same
array, the memconductance of each memristive crosspoint would be used to rep-
resent a synaptic element. Since the columns are each connected to a load at their
outputs, the only sneak paths of concern are those within each column. These
particular sneak paths would be used to add the products of input voltages and
respective memconductance values to form the output voltage or the respective
output of a neuron.

In addition to the circuits required to implement recall functions, consideration
must be given to how these circuits are to be trained, or, in some cases, directly
configured. In prior work, several supervised training techniques have been
explored for circuits such as the 2T1M threshold logic circuit shown in Fig. 3 [24–
26]. The primary issue with implementing supervised training techniques in
hardware is that a significant amount of area overhead could be required.
Memristor burn-in, when required, must also be considered.

One approach for mitigating this hardware overhead is to clearly separate the
training circuitry between what must be included with each synapse or weight ele-
ment (local trainer) and what can be shifted to more of a neuron level (global trainer)
[26]. The reasoning here is that there are many more weight elements than there are
neurons so reducing the overhead for what is required per weight element can have a
dramatic improvement on the overall overhead. In the hardware based cases con-
sidered thus far, the training circuitry would follow a supervised training model.

As an example of the training circuitry considered in prior work for 2T1M
based threshold logic circuits [15], the stochastic gradient descent model [26] has
been employed. Stochastic gradient decent works by incrementally adjusting the
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weights (i.e., memristance values) based on whether or not the output matches a
given expectation. An illustration of the local/global trainer division for this
particular approach is shown in Fig. 4. Here, the memristor would be part of a
weighting cell (e.g., 2T1M) and the ‘‘Sum ? Threshold’’ block would represent
the threshold based neuron circuitry.

For the implementation in Fig. 4, training consists of providing a series of
expected outputs (Yexp) along with the corresponding input vectors (A, B, C, etc.).
The global trainer in this case compares the expected output Yexp with the actual
output Y and determines if a weight adjustment is required and, if so, whether the
weight should be increased or decreased. Two signals, in addition to a clock, are
communicated from the global trainer to all local trainers whether adjustments are
required and in what direction: M+ is high for a required positive adjustment while
M- is high for a required negative adjustment. Each local trainer receives M+ and
M- signals and if the input (A, B, C, etc.) associated with the particular weight is
high then the local trainer will adjust the memristive weight by a set increment
depending on M+ and M-. In Figs. 5 and 6, this is demonstrated with an example
for a 3-input 2T1M based threshold logic gate being trained to implement the
function Y = AB ? AC [26].

4.3 ASIC Artificial Neural Networks

The implementation of real-time ANNs is ideal for pattern recognition in plat-
forms with severe Size, Weight and Power (SWAP) constraints. These restrictions
practically rule out traditional software approaches which often run too slowly due
to the inherent serial nature of von Neumann architectures or require high per-
formance processing for operation. While nano-enabled neuromorphic architec-
tures are extremely promising, their realization will take time. Meanwhile, there
exist commercially available technologies that offer partial solutions. In particular,

Local 
Trainer

A

MA

MA+

MA-

in1

Sum
+

Threshold

Y

Y

Global Trainer Yexp

R/WClk_b

M+

M-

clkSEL

Fig. 4 Fully connected perceptron with training circuitry [26]
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parallel processing capabilities are afforded by FPGAs [27] and general-purpose
computing on graphics processing units (GPGPUs). The focus of this section is
concerned with the recent availability of application-specific integrated circuits
(ASIC) based on zero instruction set computing (ZISC). They offer a reduction in
footprint and power with native support for massively parallel operations. It is
technically feasible, using current state-of-the-art fabrication techniques at the
22 nm CMOS node, to manufacture ASIC ANN chips approaching 500,000 par-
allel neurons.

A recently avaiable, fully parallel, silicon-based neural network chip (CM1K)
developed by CogniMem Technologies Inc., and based on IBM’s earlier series of
ZISC chips [28, 29], provides a scalable network for pattern recognition. The
CM1K is configured with two available types of non-linear classifiers: a Radial
Basis Function Network (RBF) and a K-Nearest Neighbor classifier (KNN). The
chip possesses 1024 neurons, each with its own memory for trained signature
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Fig. 5 Simulation results for training a configurable logic block to AB ? AC logic functionality
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storage and a processor for recognition and distance calculations. The memory
within every neuron contains 256 elements, each with an 8-bit capacity for a total
of 256 bytes of information per neuron. The identical neurons learn and respond to
vector inputs in parallel while they incorporate information from all the trained
neurons in the network through a bi-directional parallel neuron bus. Execution of
the recognition logic is independent of the number of participating neurons, and
multiple chips can be cascaded in parallel for scalable implementation. Figure 7
shows the general topology of such a restricted coulomb energy network. Cog-
niMem recently demonstrated a cascaded network of 100 chips with over 100,000
parallel neurons, all contained within 1/10 of a cubic foot and consuming less than
20 W of power yet performing at a level equivalent to 13.1 Teraops of pattern
recognition performance [30]. Additional details regarding CM1K operation and
architecture may be found in [31, 32].

In such an architecture, the operational status of each neuron can be in one of
three possible states: idle, ready-to-learn, and committed. The idle neurons are
empty of knowledge but can be trained sequentially with the next neuron in the
chain configured in the ready-to-learn state. Once a neuron is trained it becomes
committed and any pre-existing influence fields are adjusted to accommodate the
new knowledge. During recognition, the input vector is passed to all the committed
neurons in parallel, where it is compared to the stored vector or trained prototype.
If the distance between the input vector and a neuron prototype falls within the
influence field, the neuron ‘‘fires’’ generating local output signals consisting of fire
flag, signal distance, and category type. In the case that no neurons fire, the input
signal can be used to train the ready-to-learn neuron with the unrecognized sig-
nature. This provides the means for recognition and training to be accomplished
simultaneously.

Fine tuning of neuron sensitivity for a specific signature can be manually
adjusted by adjusting the neuron active influence field or the distance from ideal,
where a neuron will still recognize the target as a specific category. The distances
can be calculated using one of two norms: the Manhattan method,

Fig. 7 Neural network
diagram. Each input node
accepts a maximum of 256
elements (9N), each with 8-
bit resolution. These are fed
in parallel to up to 1024
neurons. All recognition
events are passed through to
the output layer with the
associated category and
confidence level
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DMan ¼
Xn

i¼1

Vi � Pijj ; ð2Þ

where DMan is the sum of the differences between n dimensional vector signatures
Vi and Pi, or the Lsup method,

DL sup ¼ Max Vi � Pij;j ð3Þ

where DLsup is the maximum separation of Vi and Pi. A neuron fires when the input
vector lies within a specified distance, that is, falls within the influence field of a
neuron in the decision space.

These types of networks work exactly like their software counterparts but
without the excessive overhead required to run simulations. This makes them ideal
candidates for SWAP constrained environments while offering many of the ben-
efits of more experimental neuromorphic schemes. Cascaded networks exceeding
1 million parallel neurons are under development.

4.4 ASIC Large Scale Networks

Neuromorphic computing goals such as emulating a mouse’s brain prove daunting
due to the processing power required to emulate all 4 million neurons, much less
that of a household cat, with approximately 300 million neurons. At the same time,
extraordinary examples of pattern recognition and behavior are evident throughout
the animal kingdom with significantly fewer neurons. For example, the round-
worm, with 302 neurons and 8,000 synapses, can sense and track waterborne
chemical signatures and navigate towards their locations [33]. Hardware neural
networks built on ASICs have recently scaled beyond 40,000 parallel processors or
neurons and are fast approaching million neuron networks. Since many typical
classification problems can be addressed with as little as a few hundred active
neurons, schemes for the optimization of larger networks need further refinement.

For example, such large scale parallel networks offer new possibilities for the
speed-up of big data analysis. One such method to increase data throughput in
parallel systems is to assign multiple processors the same operation but staggered
in time using the single instruction multiple data (SIMD) scheme [34–36]. In this
method, banks of identically trained neurons concurrently process high speed data
with a linear reduction of processing times as 1/N, where N is the number of
neuronal banks employed. The design is based on the single instruction multiple
data (SIMD) paradigm as depicted in Fig. 8.

This approach takes advantage of the massively parallel nature of neuromorphic
circuitry while utilizing surplus neurons for increased speed. Each neuronal bank
is made from many individually trained processors that operate on the data
independently. Within a given neuronal bank the multiple instructions, single data
(MISD) paradigm is used to analyze the data. In other words, the data is fed to a
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common bus and is visible to all neurons in the bank for comparison to a target
signature stored in the neuron’s memory.

Another biologically inspired use of parallel processing is through multiple
instruction, multiple data (MIMD) methods [37]. Here, every neuron, or small
group of neurons, can operate on its own unique data stream to conduct specialized
operations. This architecture is found in biological systems that are heavy on
sensory perception where relatively weak processors act on numerous sensor
inputs resulting in sensor-rich feedback controls. A fly for example, can have
80,000 sensory input sites and 338,000 neurons such that 98% of the neurons are
used in perception [38]. The ratio of sensors to processers in these biological
systems is in sharp contrast to many of our high performance systems that are built
on few sensors with HPCs.

Lastly, serial architectures allow for the construction of decision trees and
hierarchical networks where past computations affect current actions. Serial pro-
cessing is, of course, fundamental to our perception and the traditional powerhouse
behind computing performance. Only recently has the push for parallelism in
computer architectures taken such a noteworthy role. The sequential transmission
and analysis of sensory information within the brain is central, and in many senses
is only complemented by parallel acceleration where appropriate.

Most designs will utilize multiple schemes within the overall system archi-
tecture. A simplified breakdown of basic processing methods discussed above is
given below:

Single Instruction Multiple Data (SIMD)
Multiple processors performing the same operation but staggered in time
Increased data rates throughput parallelism
Banks of identically trained neurons
Utilize surplus neurons for increased speed

Fig. 8 A diagram depicting the SIMD process where multiple parallel neuron banks perform the
same operations but are staggered in time resulting in increased data throughput where tp is the
processing time of a single neuron bank
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Multiple Instruction Single Data (MISD)
Many operations on same data at the same time
Functional parallelism
Each neuron in a bank has own unique target signature
Increased functionality and speed
Multiple Instruction Multiple Data (MIMD)
Many sensors processed simultaneously
Perceptual parallelism
Distributed memory
Biologically inspired
Serial Processing
Allows for hierarchical structures
Redundancy
Decision trees
Self-learning

5 Concluding Remarks

A brief look at the issues and challenges of developing solid state neuromorphic
computing systems for SWAP constrained environments has been presented.
Various concepts involving crossbar nanomatrices, CMOS/memristor hybrids, and
ASIC artificial neural networks have been examined. Work continues to refine and
mature the concepts so that they can be integrated into and utilized by future
systems.
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Machine Learning Applied
to Cyber Operations

Misty Blowers and Jonathan Williams

1 Introduction

Cyber attacks have evolved from operational to strategic events, with the aim to
disrupt and influence strategic capability and assets, impede business operations,
and target physical assets and mission critical information. With this emerging
sophistication, current Intrusion Detection Systems (IDS) are also constantly
evolving. As new viruses have emerged, the technologies used to detect them have
also become more complex relying on sophisticated heuristics. Hosts and networks
are constantly evolving with both security upgrades and topology changes. In
addition, at most critical points of vulnerability, there are often vigilant humans in
the loop.

Despite the sophistication of the current systems, there is still risk that there will
be insufficient time and resources for the war fighter to respond in a contested
environment. The cyber environment can change rapidly and evolving strategies
are sometimes combined with sophisticated multi-stage phased attacks. Current
automatic cyber offensive and defensive capabilities will not remain competitive
when they heavily rely on human oversight, a set of pre-defined rules and heu-
ristics, and/or threshold based alerting. An autonomous system is needed which
can operate with some degree of self-governance and self-directed behavior.
Machine learning can help achieve this goal. Machine learning techniques can help
cyber analysts both defensively and offensively. This chapter will investigate
machine learning techniques that are currently being research and are under
investigation. The purpose of this chapter is to educate the reader on some machine
learning methods that may prove helpful in cyber operations.
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2 Machine Learning

Machine learning is a branch of Artificial Intelligence that focuses on the study of
methods and techniques for programming computers to learn. Learning is the
science of getting computers to act without being explicitly programmed; it may
be supervised, unsupervised, or semi-supervised, or it may be governed by the
principals of Darwinian Evolution. However, the methods presented in this
research may not be best suited for every challenge in cyber operations. A learning
algorithm that performs exceptionally well in certain situations may perform
comparably poorly in other situations [1, 2]. For some applications, the more
simplistic methods are most appropriate.

2.1 Supervised Learning

In supervised learning, a ‘‘teacher’’ is available to indicate one of three things:
whether a system is performing correctly, if it is achieving a desired response, or if
it has minimized the amount of error in system performance. This is in contrast to
the unsupervised learning where the learning must rely on guidance obtained
heuristically [3, 4]. Supervised learning is a very popular technique for training
artificial neural networks.

2.1.1 Artificial Neural Networks

The study of Artificial Neural Networks (ANNs) originally grew out of a desire to
understand the function of the biological brain, and the relationship between the
biological neuron and the artificial neuron. ANNs have become an increasingly
popular tool to use for prediction, modeling and simulation, and system identifi-
cation. Many sources in literature discuss the basic structure and implementation
of ANNs [3].

ANNs consist of processing units, called neurons, or nodes, and the connections
(called weights) between them. The ANNs are trained so that a particular input
leads to a specific target output. A simplified illustration of this training mecha-
nism is shown in Fig. 1. The network is adjusted based on a comparison of the
output and the target until the network output matches, or nearly matches, the
target [5].

ANNs have the ability to derive meaning from complicated or imprecise data.
They can be used to extract patterns and detect trends that are too complex to be
noticed by either humans or other computer techniques.

In order to consider the operation of ANNs it is important to introduce some of
the terms used. The neuron forms the node at which connections with other
neurons in the network occur. Unlike the biological neural networks which are not
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arranged in any consistent geometric pattern, those in the electronic neural net-
work are generally arranged in one or more layers which contain neurons per-
forming a similar function. Depending on the type of network, connections may or
may not exist between neurons within the layer in which they are located.

A single-input neuron is shown in Fig. 2. The scalar input, p, is multiplied by the
scalar weight, w to form wp, which is one of the terms that is sent to the summer. If
the neuron includes a bias, another input, 1, is multiplied by a bias, b, and then it is
passed to the summer. The summer output, n, often referred to as the net input, goes
into a transfer function, f, which produces the scalar neuron output, a.

Fig. 1 A simplified illustration of the neural network training mechanism. The network is
adjusted based on a comparison of the output and the target until the network output matches, or
nearly matches, the target

Fig. 2 Within a single input neuron the scalar input, p, is multiplied by the scalar weight, w, to
form wp, which is one of the terms that is sent to the summer. If the neuron includes a bias then it
is also passed to the summer. The net input, n, goes to the transfer function, f, which produces the
scalar neuron output, a
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The transfer function may be linear or nonlinear. A particular transfer function
is chosen to satisfy some specification of the problem that the neuron is attempting
to solve. A variety of transfer functions are presented in the Mathworks training
documentation for further study [6].

Typically, a neuron has more than one input. A neuron with multiple inputs is
shown in Fig. 3. The individual inputs p1, p2, …, pr are each weighted by corre-
sponding elements w1,1, w1,2,…, w1,R of the weight matrix W.

Some neural network models have several layers of networks. Each layer has its
own weight matrix, its own bias vector, and net input vectors. Internal layers are
often hidden to simplify the model. Hidden layers within the network also take part
in producing output when the training is complete. The number of hidden layers is
problem dependent, as an increase in the number of hidden layers increases the
complexity [5].

It is important, however, to recognize the limitations of ANNs. ANNs have
generally been shown to perform as very good multi-dimensional interpolators. In
this context, they are limited by the boundaries of the information submitted to
them during the training phase of their development. For real world applications, if
the bounds of the information provided during the training phase does not extend
to cover the entire region of anticipated future interest, then the network model
must be retrained when changes are made to the environment that they model.

In an Intrusion Detection System, an ANN may be trained to recognize patterns
characteristic of malicious activity or an attack. For example, as an input, the ANN
could receive all the features an individual packet. Then, based on the weights
established during training, it would output whether it believed the packet to
represent an intrusion. Given that an ANN is a supervised learner, it would require
a labeled data set for training, and would suffer from the drawbacks mentioned in
the preceding paragraph.

Fig. 3 A multiple input
neuron inputs p1, p2, …pr are
each weighted by
corresponding elements w1,1,
w1,2,….w1, R of the weight
matrix W
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2.2 Unsupervised Learning

In machine learning, unsupervised learning is a class of problems in which one
seeks to determine how the data are organized. It is distinguished from supervised
learning and reinforcement learning in that the learner is given only unlabeled
examples [7].

Barlow [8] explains the biological parallel of unsupervised learning, and how
these algorithms provide insights into the development of the cerebral cortex and
implicit learning in humans.

According to Barlow, much of the information that pours into our brains arrives
without any obvious relationship to reinforce and is unaccompanied by any other
form of deliberate instruction. The redundancy contained in these messages
enables the brain to build up its ‘‘working modules’’ of the world around it.
Redundancy is the part of our sensory experience that distinguishes meaningful
information from noise [9]. The knowledge that redundancy gives us about pat-
terns and regularities in sensory information is what drives unsupervised learning.
With this in mind, one can begin to classify the forms that redundancy takes and
the methods of handling it [8].

During the analysis of any large dataset, as is the case in cyber operations, the
researcher needs assistance in finding the relevant data. In order to find patterns out
of what appears to be chaos, clustering can be used. Cluster analysis is used to
classify samples automatically into a number of groups using measures of asso-
ciation [10]. It can help the researcher find hidden relationships, allowing them to
have a better understanding of the data and to build models that capture associated
patterns of behavior.

2.2.1 Cluster Analysis

Two major categorizations of cluster analysis methods are discussed in this
chapter: density-based and partition based. The key differences between them are
in the way the clusters are formed.

Density-based approaches apply a local cluster criterion. Clusters are regarded
as regions in the data space in which the objects are dense, and which are separated
by regions of low object density (noise). These regions may have an arbitrary
shape and the points inside a region may be arbitrarily distributed. DBSCAN is an
example of this method. This will be explained in more detail later in this chapter.

In partitioning clustering, the data set is initially partitioned, often randomly,
into k clusters. These initial clusters are then iteratively refined using some method
until the chosen partitioning criterion is optimized. The K-Means algorithm is one
of the most well-known and commonly used partitioning methods.

The K-means algorithm is a method of cluster analysis that aims to partition
m observations (samples) into k clusters in which each observation belongs to the
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cluster with the nearest mean. The basic algorithm depicted in algorithm 1 [11,
12].

Algorithm 1 K-Means Algorithm

1. Begin initialize m, c, l1, l2, …, lc

2. do classify n observations according to nearest li

3. recompute li

4. until no change in li

5. return l1, l2, …, lc

6. end
7. where m is the number of observations, c is the number of clusters, and ui is a

specific cluster centroid within the set of clusters from 1 to c.

One criticism in using the K-Means algorithm is that the number of groups must
be predefined before creating the clusters. In other words, it is sometimes difficult
to know how to pick the best value for K. Choosing a number smaller than the
number of naturally occurring clusters yields centroids that include many unrelated
samples. The selection of a number larger than the number of naturally occurring
clusters yields centroids that are competing for highly related samples. To over-
come this obstacle, a cluster evaluator may be used which attempts to minimize
the inter- to intra-cluster distance.

Figure 4 provides further clarification on the K-Means algorithm [13]. In the
first step, each point is assigned to one of the initial centroids to which it is closest,
depicted as a cross. After all the points are assigned to a centroid, the centroids are
updated. In step two, points are assigned to the updated centroids, and then the
centroids are recalculated again. In Fig. 4, steps 2, 3, and 4 show two of the
centroids moving to the two small groups of points in the bottom of the figures.
The algorithm terminates in step 4, because no more changes need to be made to
the centroids. The centroids have identified the natural grouping of clusters [13].

To assign an observation to a closest centroid, as described in the preceding
paragraph, a proximity measure is required to quantify the notion of ‘‘closest’’.
Most often, one of two distance measures are used: the Euclidean (L2) distance
measure and the Manhattan (L1) distance [13]. While the Euclidean distance

Step 1 Step 2 Step 3 Step 4

Fig. 4 The K-means algorithm is an example of a partitioning method. This illustration shows
how it can be used to find three clusters in a sample of data
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corresponds to the length of the shortest path between two samples (i.e. ‘‘as the
crow flies’’), the Manhattan distance refers to the sum of distances along each
dimension (i.e. ‘‘walking round the block’’). The Euclidean distance dE is defined
by Eq. 1, and the Manhattan distance dM (or city-block distance) is defined by
Eq. 2 [10].

Given N observations, xi = (xi1, …, xin)T, i = 1, 2, …, N the following equa-
tions may be used to find the distance between the jth and kth observations.

dE j; kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

jxji � xkij ^ 2

 !vuut ð1Þ

dM j; kð Þ ¼
Xn

i¼1

xji � xki

�� �� ð2Þ

There have been several works on calculating distance to solve certain pattern
recognition problems [14–16]. The methods used depend on the nature, and size,
of the data. It also depends on if the algorithm is being used with the k-means
clustering method, or another method. Experiments were conducted with both
distance functions to see which would perform the best.

In addition to the previously noted challenge of picking the right number of
starting clusters, another common criticism of the K-Means algorithm is that it
does not yield the same result with each run. This is attributed to the fact that the
resulting clusters depend on the initial random assignments [17]. This obstacle can
be overcome, however, by fixing the initial assignments. In the implementation of
the K-Means algorithm, the random number generator used for initial assignments
was provided the same seed, resulting in repeatable pseudo-random numbers. Still
another disadvantage is that when the data set contains many outliers, K-Means
may not create an optimal grouping. This is because the outliers are assigned to
many of the allocated groups. The remaining data becomes divided across a
smaller number of groups, compromising the quality of clustering for these
observations [18].

One extension of the K-Means algorithm is the quality threshold k-means.
Quality is ensured by finding clusters whose diameter does not exceed a given
user-defined diameter threshold. This method prevents dissimilar samples from
being forced under the same cluster and ensures that only good quality clusters will
be formed [19].

Another extension of the K-Means algorithm is the fuzzy-k-means algorithm.
This algorithm is based on concepts from fuzzy set theory. Fuzzy set theory is
based on the idea that humans work with groups of entities that are loosely defined,
able to admit elements according to some scale of membership rather than an
absolute yes/no test [20]. In using fuzzy k-means, a sample’s membership to a
cluster is a function of its distance to the centroid. While it does not solve any of
the initialization problems of k-means, it offers users a soft degradation of
membership instead of the hard binary relations of the original algorithm.
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K-means is excellent for partition-based cluster analysis but DBSCAN is useful
when a density-based analysis solution is needed. DBSCAN stands for density
based spatial clustering of applications with noise. It focuses on the notion of
density reachability [21]. A point q is directly density reachable from a point p if q
is within a set distance, epsilon (e), from p, and there is also a set number of points,
called ‘‘minPts’’, within a distance of q from p. Two points, p and q, are density
reachable if there is a series of points from p to q that are all directly density
reachable from the previous point in the series. All points within a cluster formed
by DBSCAN are density reachable, and any point that is density reachable from
any point in the cluster, belongs to the cluster. The basic DBSCAN algorithm
operates as follows:

Algorithm 2 DBSCAN

1. Choose an unvisited point P from the data set and mark it as visited. Finished
if there are none.

2. Find all the neighbors of point P (points within a distance of (e).
3. If the number of neighbors is less than minPts, mark P as noise and return to

step 1.
4. Create a new cluster and add P to the cluster.
5. Repeat steps 6-9 for each point P’ of the neighbors of P
6. If P’ is not visited, mark it as visited. Otherwise return to step 5.
7. Find the e neighbors of P’
8. If the number of neighbors of P’ is not less than minPts, join the neighbors of

P’ with the neighbors of P.
9. If P’ does not belong to a cluster, add it to the cluster of P.

10. Return to step 1

Much like the K-Means clustering algorithm, DBSCAN has the issue of
choosing the proper inputs to the algorithm. DBSCAN takes two inputs, epsilon
and minPts. In an attempt to find the optimal value of e, a e evaluator may be used.
The evaluator relies on the use of a k-distance graph. To generate this graph, the
distance to the kth nearest point is determined for each point that is to be clustered.
Generally, minPts is used as the value for k. This list of distances is then sorted
from smallest to largest. The plotting of this list results in a gradually upward
sloping line that suddenly increases greatly in slope towards the end. Choosing
epsilon to be the value of the distance just before the large increase in slope, results
in the best clustering. Noise points whose k-nearest distance is large will not be
clustered, and core points with a small k-nearest distance will be clustered with
nearby points (Fig. 5).
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2.3 Evolutionary Computation and Genetic Algorithms

Another method in machine learning is through evolutionary computation and
genetic algorithms. The Genetic Algorithm is based on an analogy to biological
evolution. An initial population is created consisting of a learned set of generated
rules. Based on the notion of survival of the fittest, a new population is formed to
consist of the fittest rules and their offspring. The fitness of a rule is represented by
its classification accuracy on a set of training examples. Offspring are generated by
crossover and mutation. The process continues until a population P evolves when
each rule in P satisfies a pre-specified threshold. This method is sometimes slow
but easily parallelizable. Seeded solutions may also be injected into the solution set
to speed up the computation speed.

Figure 6 shows a simplistic example of how the genetic operators work.

Fig. 6 The figure shows how the genetic operators work. With a single point cross over one
crossover point is selected, then this portion of the string is copied from the beginning of the
chromosome to the crossover point, the remainder is copied from the other parent to create a new
chromosome. Mutation simply changes a single bit on the chromosome

Fig. 5 In the first image,
points p and q are directly
density reachable. In the
second image, points p and
q are density reachable [22]
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3 Cyber Defensive Applications

This section will discuss methods in which a semi-supervised learning approach
and a rules-based genetic algorithm could be used for intrusion detection.

3.1 The Intrusion Detection System

Security concerns are becoming increasingly important to the Department of
Defense with the increasing reliance on networking capabilities to provide quick
and reliable information to the analyst. It is estimated that the ratio of false alarms
to true alarms in most commercial signal based intrusion detection systems may
vary from 5:1 to 20:1. Too many false alarms overwhelm the system operator and
eventually the alarms become ignored [23]. Another challenge in intrusion
detection is the fact that normal behavior continuously changes and new attacks
continuously emerge. The environment is dynamic and there is an increasing need
for robust solutions.

For this reason, an Adaptive Cluster Tuning (ACT) method using semi-super-
vised learning approach for targeted detection and characterization of cyber-
attacks was investigated [24]. This approach controls the number of alarms output
to the system operator, and allows the operator to tune the detection model based
upon the emergence of patterns of events that deviate from normal behavior. It also
allows the analyst to focus in on more threats that are important and relax the
bounds around threats that are of lower priority. With such a system the analyst
may have access to information about that detailed characterization of a given
attack.

There are two types of major detections to be considered; misuse detection and
anomaly detection. Attacks are one type of anomaly and may be further described
in terms of attacks against availability (denial of service), attacks against confi-
dentiality (eavesdrop), and attacks against integrity (attempt to modify commu-
nication contents or data in the system). One key benefit of the approach is the
ability to assign attack attribution to the events of interest based upon historical
attribution of events that were characterized by similar patterns.

Machine learning algorithms are particularly useful for this application because
there are valuable implicit regularities and anomalies that may be discovered.
Machine learning also allows for adaptation to changing conditions.

3.1.1 Data Analysis

Although this research is not limited to a single data set, the data set that was
initially evaluated is the data set used for The Third International Knowledge
Discovery and Data Mining Tools Competition, which was held in conjunction
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with KDD-99, The Fifth International Conference on Knowledge Discovery and
Data Mining. The competition task was to build a network intrusion detector, a
predictive model capable of distinguishing between intrusions or attacks, and
normal conditions [25]. This database contains a standard set of data including a
wide variety of intrusions simulated in a military network environment. This data
set is intended to be used as a starting point to build the framework for the
proposed approach. It is fully understood that new threats have emerged since this
data set was developed, and it is the intention that this program will investigate
data sets that are more recent as they are identified and become available.

The full KDD CUP training dataset contains 4,898,431 connection records. A
connection is a sequence of TCP packets starting and ending at some well-defined
times, between which data flows to and from a source IP address to a target IP
address under some well-defined protocol. Associated with each connection record
are 41 different features. These features are a mixture of continuous and symbolic
data types.

A file containing 10 % of the training data contains 494,021 connection records.
There are 97,278 normal records and the other 396,743 records are various types of
attacks. In addition, there is an unlabeled test data set containing 2,984,154 con-
nection records, and a file containing 10 % of the test data with 311,029 records.
There is also a labeled version of the 10 % of the test data. In that file, 60,593 of
the records are ‘‘normal’’ and the other 250,436 records are various types of
attacks. The file containing 10 % of the training data contains 22 different attack
types and the file containing 10 % of the test data contains 38 different attack
types.

Each connection record is labeled either as ‘‘normal’’ or as a specific attack
type. There are four main categories of attack types; DOS (denial of service), R2L
(unauthorized access from a remote machine), U2R (unauthorized access to a local
super user privileges, and probing (surveillance and other probing).

The datasets lend themselves very well to existing semi-supervised learning
algorithms that have been applied to other research domains by the PI. Each
connection record is a discrete state that can be represented as a feature vector and
is labeled as either normal or an attack. The specific attack type is specified, and
this information will be used for the attribution study of the proposed approach.
Nine of the features for each record are symbolic or discrete which are not gen-
erally useful in the current algorithmic, but this still leaves 32 useful features.

3.1.2 Data Pre-Processing

The first part of the ACT system is to filter out the poor quality data. Care needs to
be taken to ensure that we do not remove anomalies that may be characteristic of
events of interest. Since the data set under consideration is a simulated data set,
this step may not initially seem as important as it is when a real world data set is
considered. However, this step is especially important when trying to discriminate
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attacks that periodically generate false alarms because they are so closely related
to events that may be normal.

One of the simplest of the feature selection processes is an algorithm that was
developed to make use of some very simple statistical analysis methods [24, 26].
This method helps prune the data set so that the most relevant features are used for
the analysis. The Tukey Quick Test is a simple statistical test that has been used to
find which features vary the most between two classes. In prior work [24], this
principal was demonstrated to be useful because of its speed and robustness when
dealing with large data sets, and subsequent real time processing. The entire data
set is considered as the total population and each class is considered a sample from
the population. The basic algorithm is depicted in Algorithm 3 [26].

Algorithm 3 Feature Selection Algorithm

1. Locate the largest and smallest values of the overall population.
2. If both the largest and smallest value occurs in the same sample, we cannot

conclude that the means of the two samples are different.
3. Locate the largest and smallest values in sample 1.
4. Locate the largest and smallest values in sample 2.
5. Consider the sample containing the smallest value in the two samples com-

bined, as found in Step1. Count the number of values in this sample that are
smaller than the smallest value in the other sample.

6. Consider the sample containing the largest value in the two samples combined,
as found in Step 1. Count the number of values in this sample that are larger
than the largest value in the other sample.

7. The sum of the counts obtained in Step 5 and 6 is the numerical value of the test
statistic T.

Correlation methods like Spearman’s rank correlation will provide further
analysis of the features selected from the process described above. Spearman’s
rank correlation is a nonparametric (nonlinear) correlation analysis that may be
used to determine the correlation of each proposed input variable to the output
variable (Xi, Yi). The analysis is a measure of the strength of the associations
between two variables of a collection of subsets of data. The total number, n, raw
scores (Xi, Yi) are converted to ranks xi, yi. The differences di = xi - yi between
the ranks of each observation on the two variables are calculated. The rank cor-
relation is then determined by the formula described in Eq. 3.

q ¼ 1� 6
P

d2
i

nðn2 � 1Þ : ð3Þ

Because the Spearman rank correlation coefficient uses ranks, it is much easier
to compute than other correlation methods. Once the rankings have been calcu-
lated, a threshold value is selected which will determine if the variables identified
are significantly correlated enough to be retained in the set of input variables.
Those variables not significantly correlated are not selected.
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Another statistical measurement that may be used to rank features is infor-
mation gain. Information gain measures the reduction of entropy achieved by
learning the value of a particular feature. A more detailed explanation on infor-
mation gain can be found in the following Ref. [27].

3.1.3 Semi-Automated Intelligence with Analyst Feedback

As previously noted, in developing intelligent IDS some consideration must be
given to the desired level of autonomous operation. A recent US Patent Appli-
cation [28] shows a method that allows for adjustment of false alarms for objects or
events of higher interest with a semi-supervised learning approach. This approach
controls the number of alarms output to the system operator, and allows the
operator to tune the detection model based upon the emergence of patterns of
events that deviate from normal behavior. It also allows the analyst to focus on
threats that are more important and relax the bounds around threats that are of
lower priority. A graphical user interface may be used to provide the analyst access
to information about that detailed characterization of any given attack.

The clustering methods described in this chapter have an added benefit in that
they enhance the class separation to help discriminate one attack type from another
and to discriminate periods of normalcy. This is important because the attacker
sometimes tries to disguise the attack to make things appear normal.

In this example, major classes to be considered will be a class of normalcy and
the classes of system attack. Within each class, several sub-classes will emerge.
The main classes are used for the supervised portion of the learning system. The
sub-classes that emerge do so in a manner that would be considered ‘‘unsuper-
vised’’, or without prior example. Because many ‘‘normal’’ operations appear
similar to periods of times when the system is under attack, there is a great deal of
overlap between the two classes. For this reason, each class is characterized
separately. Figure 7 helps illustrate this point.

Within this method, the model can be adjusted by changing threshold values to
accommodate the tolerance level for false alarms or the cost benefit from early
detection. In order to understand what information the various clusters represented,
the information from the attack categories attack types are mapped to the clusters
which were defined by attack indicator vectors. Further research and analysis is
needed to verify that the clusters formed are unique to certain attacks of interest.

In cases where there is significant overlap in the feature space, the clusters
formed are considered ‘‘weak clusters’’. For these regions of the feature space
where significant overlap exist, the clusters may be eliminated or adjusted based
upon the analyst feedback.

Normalcy is also characterized by clusters. The input vectors that vary sig-
nificantly from both the previously characterized events and the clusters of nor-
malcy may be flagged, on the fly, and the cluster they form may prompt a response
from the end user to characterize the unknown as a new event of interest or a state
of normalcy. It will also prompt the user to enter the suspected causes of the event.
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The system can then be updated so that when these new events are encountered in
the future, they will be identified.

The steps described in Fig. 8 are further detailed below:

1. Data preprocessing
The first step in this method is the data pre-processing step. In operation, an
analyst would load the data file and select the interval that will serve as the
training data set. For extreme large data sets, it is important that the analyst use
a feature selection technique to determine which features to use to create the
feature vectors that will be mapped into the multi-dimensional feature space.

Feature analysis table: Various statistical analysis techniques may be performed
on the data that to determine the optimal inputs. These results should be graphi-
cally displayed for the analyst so that they may have the option to manually
override the features which will be used an inputs to the model. An example of this
graphical interface is shown in Fig. 9.

2. Clustering/threshold adjustment
Training: The next step is to associate the designated feature vectors into their
clusters and evaluate/optimize the thresholds.

Threshold optimization: After the clusters have been trained, the thresholds for
each of the clusters are optimized. To do this, first, each data entry from the
validation set is assigned to the nearest cluster. The validation set consists of data

Fig. 7 Example of machine learning process for intrusion detection. The top row shows the
learning phase where a repository of models is developed for each class and subclass of attack
types. In the testing and identification phase, an uncharacterized event will be compared to the
trained models
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from the file initially loaded in the data-preprocessing screen, beginning where the
training set ended and spanning the same amount of time as the training set. The
thresholds for each cluster are then dynamically optimized in an attempt to
maximize the detection rate accuracy while also meeting the selected minimum
detection rate. The detection rate is the percentage of attack indicating entries in
the validation set that are correctly classified as attack-indicating (fall within their
cluster’s threshold). The false alarm rate is the percentage of non-fault indicating
records in the validation set which are incorrectly classified as attack-indicating.

3. Event attribution: At this stage of the process, the analyst may view the attack
types associated with the various patterns that have formed. Since more than
one event may be associated with a given cluster, this report may be most
useful if it is given as a breakdown of percentage of associated attacks with
each cluster.
Desired detection slider: The detection rate is the percentage of correct
detections in the validation set that are correctly classified as detections. A
desired detection slider allows the user to select the minimum detection rate on
a per cluster basis.

Fig. 8 The figure is an example of how an adaptable cluster tuning (ACT) method may be used
for an IDS. The analyst could have input into the system as described above. Analyst inputs and
outputs are shown in red
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4. Start intrusion monitoring system: The method is now configured so that an
analyst or operator can evaluate future attacks of interest. An analyst is notified
when an attack is present and provided with information about the attack
attribution in the form of a pie chart. Feedback is provided to the system based
upon the operator’s inputs.

Figure 10 shows the performance of the Quality Threshold K-Means Method as
compared to some other machine learning approaches. It should be noted that this
method has the added advantage over the rest in that it allows for analyst
adjustment for key targets of interest. These values have been optimized for
comparison purposes, but the user should note that adjusting one region of the
feature space for high priority attack types might cause the overall performance of
this method to decrease. The reason for this is because there will be lower reward
for detecting attack types of lower priority.

4 Genetic Algorithm Applications

Genetic algorithms have many uses in the cyber domain. A Genetic Algorithm
(GA) is a family of computational models based on principles of evolution and
natural selection. A GA employs a set of adaptive processes that mimic the con-
cept of ‘‘survival of the fittest’’. They have been studied in a robust manner [29,
30] and with specific applications in mind.

Fig. 9 An example interface for feature extraction is shown above. Each row in the table
represents a column (or particular feature) from the original data set. In this example, the first
value in the row is the name of the data feature. The next three values are the T-relative strength,
information gain and mean difference for the data from that sensor. Each column in the table can
be sorted by clicking on the column header
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Chief among these applications is unbiased, real-time detection and analysis of
anomalies across an entire network [31]. Genetic algorithms may provide a sig-
nificant advantage to both defender and attacker, but the advantage is far stronger
for the defender because anomalies can be detected within digital traffic on a
computer network [32]. Some IDS use genetic algorithms [33–35] to train their
detectors while other IDS are entirely based on these concepts [36]. They create an
environment in which the attacker would need to camouflage network traffic
signatures in addition to the already difficult tasks of finding and exploiting vul-
nerabilities. A proactive defender can therefore require an attacker to add tre-
mendous complexity, time and cost to their tactics to bypass defenses.

Defender’s systems will harden with each attack because machine learning
becomes more intelligent and effective over time thus creating exponentially more
secure systems over time [30]. This technology has the potential to enable cyber
security systems to detect, evaluate and counter threats by assessing anomalies
within packets, data traffic sessions and user behaviors across the entire network
[31]. The eventual result of network defended by these techniques will be trust-
worthy enclaves in cyberspace that will have observable security metrics that may
be modeled so that abnormalities are readily identified and acted upon [29].

The genetic algorithm approach starts with an initial population (often times
randomly generated), and then evolves optimal solutions through selection,
crossover, and mutation. Finally, the best individual is selected once the optimi-
zation criterion is met [38, 39, 40]. The GA evolves the existing set of chromo-
somes by combining and refining the genes contained within each chromosome.
The objective is to produce new chromosomes that form a new generation of

Fig. 10 The figure shows the
performance of different
machine learning methods on
the KDD data set. The
average percentage accuracy
is determined by the number
of correctly classified attack
types and the correctly
classified periods of normal
operation
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possible solutions to evaluate. The crossover operation allows the GA to create
new chromosomes that share positive characteristics while simultaneously
reducing the prevalence of negative characteristics in an otherwise reasonably fit
solution. The final step in the refinement process is mutation. The mutation phase
randomly changes the value of a gene from its current setting to a completely
different one.

4.1 Remote Vulnerabilities

Mistakes in computer operating systems and applications may create vulnerabil-
ities that an attacker can identify and exploit. A sophisticated attacker might use
genetic algorithm techniques to detect previously unknown vulnerabilities. How-
ever, these methods also provide defenders with an advantage over attackers
because the same techniques can be used by defenders to identify vulnerabilities
and eliminate them before deploying a system as a part of a routine security
checklist. By identifying vulnerabilities before an attacker does, defenders are able
to eliminate the vulnerability, deceive attackers by masking the vulnerability or
entrap attackers with a ‘‘honeypot’’ [37] system that is not truly vulnerable [30].

Vulnerabilities can be eliminated by patching software or reducing and/or
eliminating the attack surface. Software patches are routine computer adminis-
trative tasks. Attack surface reduction can be achieved by configuring a firewall to
block network access to a vulnerable resource or by taking a vulnerable system
offline to prevent the vulnerability from being used to cause further damage.
Deception can be achieved by redirecting logical network addresses to protected
areas. Entrapment is a more robust type of deception usually achieved with a
honeypot. These methods can be greatly improved by using a genetic algorithm.

4.1.1 Hybrid Honeypot

The Hybrid Honeypot method makes use of genetic algorithms to improve the
defenders objectives. Honeypots are decoy computer resources set up for the
purpose of monitoring and logging the activities of entities that probe, attack or
compromise them [37]. A honeypot is useful for deceiving an attacker and causing
them to spend valuable resources (primarily time) within the decoy environment.
The attacker may think that they are delving deeper into a vulnerable network, but
they are actually attacking an environment setup specifically to entrap and monitor
their activity.

The hybrid honeypot used a network tap, span port, hub, or firewall, and col-
lected traffic based information that traversed a given network. This traffic data
was then used by the GA for the creation of a set of rules for an Intrusion
Prevention Rule based system. Intrusion prevention follows the same process of
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gathering and identifying data and behavior, with the added ability to block or
prevent the activity [37].

The hybrid architecture combined the best features of low and high interaction
honeypots. It helped in detecting intrusions attacking the system. The low interac-
tion honeypot provided enough interaction to attackers to allow honeypot to detect
interesting attacks. It provided information about attacks and attack patterns [37].

5 Machine Learning for Behavior Analysis for Insider
Threats

Machine learning once again provides the defender more advantages than the
attacker when considered in the case of insider threats. Although attackers can use
machine learning to impersonate the ‘‘signature’’ activities of an identity, they are
limited to behaving exactly as that identity would [30]. The attacker must know how
that person (identity) has behaved in the past and how the system will perceive their
every movement, especially from a security and permissions standpoint [30].

The defender’s advantage is that machine learning creates a ‘‘pattern of life’’ for
every known, authenticated user. This representation of all past behavior can be
monitored both on a particular workstation and across a computer network. A
robust pattern of life for all known users allows network defenders to evaluate
patterns and identify anomalies with a degree of precision that would be very
difficult to achieve with conventional computer programming techniques [30].

6 Conclusion

Machine learning is at the forefront of network defense technology but humans
will always have a role in the decision making process. It can enable humans to
make rapid, well-informed decisions through network-wide sensing coupled with
unbiased detection and analysis [29].

Machine learning techniques present methods for making sense of cyber data,
alerting when suspicious and possibly malicious activity occurs on monitored
networks, and provides a means to design strategic cyber operations which carry
out the intended effects rapidly and with greater precision. There is growing
complexity associated with today’s complex network environments and there is
not enough man-power to manually analyze the increasing amounts of data. It is
becoming more and more difficult to understand cyber operations and vulnera-
bilities. The adaptive and autonomous techniques discussed in this chapter show
promising results to be of great use to the cyber warriors of tomorrow.
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Detecting Kernel Control-Flow Modifying
Rootkits

Xueyang Wang and Ramesh Karri

1 Introduction

System level virtualization allows users to run multiple operating systems (OS) on
a single physical machine. Virtualization can help enterprise users utilize hardware
more effectively through server consolidation, and it can make it easy for devel-
opers to test programs on different OSes. General computer users can also benefit
from this technology [1]. For example, they can concurrently run applications on
different OSes.

Although virtualization can improve the system reliability and security by
isolating virtual machines (VM) and inspecting VM-based execution, it cannot
protect VMs themselves from malicious attacks [2]. A VM may become a victim
of viruses and malware just like a traditional non-virtualized machine. Kernel
rootkits are formidable threats to computer systems. They are stealthy and can
have unrestricted access to system resources. By subverting the OS kernel directly,
kernel rootkits are used by attackers to hide their presence, open backdoors, gain
root privilege and disable defense mechanisms [3].

Kernel rootkits perform their malicious activities in two ways: modifying the
non-control data in the kernel data structures and hijacking the kernel control-flow
to conceal resources from system monitoring utilities.

There are not many kernel rootkits of the first category. One example of this
kind of rootkit is based on direct kernel object manipulation (DKOM) [4]. The
DKOM rootkits hide malicious processes by just unlinking the process objects
from the double-linked list for process enumeration. However, by only manipu-
lating kernel objects without modifying the control flow and executing their own
code, the function of this kind of rootkit is limited. The DKOM rootkits can only
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manipulate the kernel objects that are in the memory and used for accounting
purposes, but is not able to accomplish other rootkits’ purposes such as hiding
files. Since the modifications only target particular data structures, such as process
linked lists, it can be easily located. Techniques for detecting DKOM rootkits have
been developed [5, 6].

The kernel rootkits which modify the control-flow are the most common and
pose the most threat to system security. A recent analysis [7] indicates that more
than 95 % of Linux kernel rootkits persistently violate control-flow integrity.
Control-flow modification makes the detection difficult because we do not know
what the rootkits will modify. These rootkits may hijack the kernel static control
transfers, such as changing the text of kernel functions or modifying the entries of
system call table. The control-flow modifying rootkits may also hijack the
dynamic control transfers, such as dynamic function pointers.

1.1 Detection Techniques and Limitations

There has been a long line of research on defending against control-flow modi-
fying rootkits. Host-based rootkit detection techniques run inside the target they
are protecting, and hence are called ‘‘in-the-box’’ techniques. Rkhunter [8] and
Kstat [9] detect the malicious kernel control-flow modification by comparing the
kernel text or its hash and the contents of critical jump tables to a previously
observed clean state. Other techniques try to enforce kernel control-flow integrity
by validating the dynamic function pointers that might be invoked during the
kernel execution. All the pointers should target valid code according to a pre-
generated control-flow graph [10]. Patchfinder [11] applies execution path analysis
for kernel rootkit detection. It counts the number of executed instructions by
setting the processor to single step mode. In this mode, a debug exception (DB)
will be generated by the processor after every execution of the instruction. The
numbers counted during the execution of certain kernel functions will be analyzed
to determine if the functions are maliciously modified. The main problem with the
‘‘in-the-box’’ techniques is that the detection tools themselves might be tampered
with by advanced kernel rootkits, which have high privilege and can access the
kernel memory.

With the development of virtualization, the virtual machine monitor (VMM)
based ‘‘out-of-the-box’’ detection techniques have been widely studied. VMM-
based techniques move the detection facilities out of the target VM and deploy
them in the VMM. The isolation provided by virtualization environment signifi-
cantly improves the tamper-resistance of the detection facilities because they are
not accessible to rootkits inside the guest VMs.

Garfinkel and Rosenblum [12] first introduced virtual machine introspection to
detect intrusion. It leverages a virtual machine monitor to isolate the intrusion
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detection service from the monitored guest. XenAccess [13], VMwatcher [14], and
VMWall [15] are virtual machine introspection techniques using memory acquisi-
tion. These techniques obtain the guest states from the host side by accessing guest
memory pages. However, there is a ‘‘semantic gap’’ between the external and internal
observation. To extract meaningful information about the guest state from the low
level view of the physical memory state, the detection tools require detailed
knowledge of the guest OS implementation. For example, to retrieve the information
of a guest VM’s process list, the detection tools need to know where this particular
data structure is laid out in the guest kernel memory. The location may vary from one
implementation to another. Acquiring this detailed knowledge can be a tough task
especially when the kernel source code is not available. In regards to security,
because the knowledge of the guest OS that the detection tools rely upon is not bound
to the observed memory state, those techniques are subject to advanced attacks that
directly modify the layout of the guest kernel data structures. The DKSM [16] attack
manipulates the kernel structures to fool the detection tools. Moreover, due to the
complexity of an OS kernel, there are a large number of kernel objects that might be
touched for a certain kernel execution. It is almost impossible to check every single
object. When one kernel object is being monitored, an attacker can simply find other
targets.

There are also several VMM-based techniques which do not use memory
acquisition. NICKLE [17] is a VMM-based approach which defends the kernel
rootkits by using a memory shadowing technique. The shadowing memory is
isolated by virtualization so it is inaccessible to the guest VM. Only authenticated
kernel code in the shadow memory can be executed. NICKLE is effective in
preventing unauthorized kernel code from executing in the kernel but cannot
protect the kernel control-flow. This makes it susceptible to self-modifying code
and ‘‘return-into-libc’’ style attacks. A more important problem is it significantly
increases the memory usage. It may double the physical memory usage of a guest
VM in the worst case, making it not applicable to virtualization system where
many guests are running. Lares [18] monitors a guest VM by placing its hooking
component inside the guest OS and protecting it from the hypervisor. These hooks
would be triggered whenever certain monitored events were executed by the guest
OS. This technique requires modification to the guest OSes, making it not appli-
cable to close-source OSes like Windows.

1.2 HPC-Based ‘‘Out-of-the-Box’’ Execution Path Analysis

To overcome the challenges that the current ‘‘out-of-the-box’’ detection techniques
face, we propose an ‘‘execution-oriented’’ VMM-based kernel rootkit detection
framework which performs integrity checking at a higher level. It validates the
whole execution of a guest kernel function without checking any individual object
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on the execution path. Our technique models a kernel function in the guest VM
with the number of certain hardware events that occur during the execution.
Such hardware events include total instructions, branches, returns, floating
point operations, etc. If the control-flow of a kernel function is maliciously
modified, the number of these hardware events will be different from the original
one. These monitored hardware events are efficiently and securely counted from
the host side by using Hardware Performance Counters (HPCs), which exist in
most modern processors.

HPCs are a set of special-purpose registers built into modern microprocessors’
performance monitoring unit (PMU) to store the counts of hardware-related
activities. HPCs were originally designed for performance debugging of complex
software systems. They work along with event selectors which specify the certain
hardware events, and the digital logic which increases a counter after a hardware
event occurs. Relying on HPC-based profilers, the developers can more easily
understand the runtime behavior of a program and tune its performance [19].

HPCs provide access to detailed performance information with much lower
overhead than software profilers. Further, no source code modifications are nee-
ded. The hardware events that can be counted vary from one model to another. So
does the number of available counters. For example, Intel Pentium III has two
HPCs and AMD Opteron has four.

HPC-based profiling tools are currently built into almost every popular oper-
ating system [20, 21]. Linux Perf [22] is a new implementation of performance
counter support for Linux. It is based on the Linux kernel subsystem Perf_event,
which has been built into 2.6+ systems. The user space Perf tool interacts with the
kernel Perf_event by invoking a system call. It provides users a set of commands
to analyze performance and trace data. When running in counting modes, Perf can
collect specified hardware events on a per-process, per-CPU, and system-wide
basis.

Our technique takes advantage of both the virtualization technology and the
HPC-based profiling. The events are automatically counted by the HPCs, so the
checking latency and the performance overhead are significantly reduced. Also,
the security is enhanced because the HPCs count the events without a guest’s
awareness, and they are inaccessible to a guest VM. Since the validation is based
on the entire execution flow of a system call, there is no need to check the
individual steps on the execution path. It does not matter if the rootkits hijack the
static or dynamic control transfers, and it does not matter if the rootkits exploit
kernel code injection, function pointer modification, or some other advanced
techniques such as self-modifying code and return-oriented attacks. As long as the
kernel execution path is persistently changed and the rootkits’ own tasks are
performed, the number of hardware events that occur during the execution will be
different, and can be measured.
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2 Design Details

2.1 Threat Model

We target a kernel rootkit which has the highest privilege inside the guest VM. The
rootkit has full read and write access to guest VM’s memory space, so it can
perform arbitrary malicious activities inside the guest VM’s kernel space. In order
to hide its presence in the guest VM, the kernel rootkit modifies the kernel control-
flow and executes its own malicious code. We assume that the VMM is trust-
worthy. And the rootkit cannot break out of the guest VM and compromise the
underlying VMM.

2.2 System Call Analysis Using HPCs

To detect control-flow modifying kernel rootkits, our technique focuses on vali-
dating the execution of system calls. System calls are the main interface that a user
program uses to interact with the kernel. In order to achieve stealth, a common
action that a kernel rootkit performs is to fool the user monitoring utilities (like ps,
ls, netstat in Linux). These monitoring utilities retrieve the information about the
system states by invoking some system calls. The rootkits usually manipulate the
normal execution of these system calls to prevent the monitoring tools from
obtaining the correct information. For example, the Linux ps command will return
the status of all the running processes. The system calls invoked by the ps com-
mand include sys_open, sys_close, sys_read, sys_lseek, sys_stat64, sys_fstat64,
sys_getdents64, sys_old_mmap, etc. To hide itself and other malicious processes, a
rootkit modifies these system calls so that the information about the malicious
processes will not appear in the list returned by ps. The modifications usually
result in a different number of monitored hardware events from the uninfected
execution.

To profile the execution of system calls in a guest VM using HPCs, the profiler
in the host should have the following capabilities: (1) it should be aware of the
occurrence of system calls in a guest VM; (2) it should be able to trigger the HPCs.
The existing HPC-based profiling tools cannot meet our design requirements
because they are not able to capture the beginning and exit of a system call in a
guest VM. So the number of hardware events obtained by a profiling tool cannot
be exactly pinned to the execution of a monitored system call. To resolve this
issue, our technique connects the profiling tool with the VMM, which is capable of
intercepting system calls in the guest VM. The technique can be implemented with
any HPC-based profiler. Our proof-of-concept design is based on the Linux Perf
and the virtualization environment is built with the Kernel-based Virtual Machine
(KVM).
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KVM is a full virtualization solution for Linux on hardware containing virtu-
alization extensions (Intel VT [23] or AMD-SVM [24] that can run unmodified
guest images. In KVM, a guest VM resides in the user space running as a single
process and is scheduled like any other normal process. A modified QEMU [25] is
used to emulate guest VMs’ I/O activities. The processor with hardware virtual-
ization extensions has two different modes: host mode and guest mode. The host
machine runs in host mode compatible with conventional non-virtualized pro-
cessors. The guest VMs run in a de-privileged guest mode. Execution of virtual-
ization-sensitive instructions in guest mode will trap to the host, which is called
VM-exit. In this way, the host can manage the guests’ accesses to virtualized
resources. The host maintains a data structure called virtual machine control block
(VMCB) to control behaviors of guest VMs. When a guest VM exits to the host, all
its CPU states are stored into certain fields located in the VMCB. These states are
restored from the VMCB when the CPU switches back from host mode to guest
mode.

As shown in Fig. 1, the system calls in a guest VM are intercepted by the KVM
module. The KVM module communicates with Perf_event kernel service to ini-
tialize, enable/disable, read and close HPCs. The checking components, which
include the KVM module, the Perf_event tool and the HPCs, are deployed outside
of the target VM. This isolation prevents the kernel rootkits in the guest VM from
compromising the checking procedure. The Perf_event kernel service is called to
launch a per-process profiling task and enables the HPCs only when a monitored
system call is run in the guest VM. By doing so, the counted events are exactly
contributed by the execution of the monitored system call in the specific guest VM.

For a given system call, the number of hardware events that occur during the
execution varies when different inputs are applied. In our design, to determine if an
unusual number of events is caused by the malicious modification to the system
call, the counts of hardware events of a monitored system call are compared with
those of the corresponding unmodified system call invoked with the same input.

Hardware 

QEMU

KVM module

Guest Applications
(ring 3)

Normal process
(ring 3)

Guest OS (ring 0)

Linux kernel & KVM
Perf_event 

kernel service

HPCs

Guest VM

Host OS

syscalls

Fig. 1 Structure of the
VMM-based rootkit detection
technique with HPCs
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2.3 System Call Interception

To perform the HPC-based check, the execution of a monitored system call should
be intercepted by the VMM. System calls are implemented in two ways: interrupt-
based system calls and sysenter-based system calls.

Interrupt-based system calls are invoked by executing a software interrupt
(INT, with interrupt vector 0x80 for Linux and 0x2e for Windows) instruction,
while a kernel can exit from the system call by executing an IRET assembly
instruction. The interception of interrupt-based system calls is directly supported
by AMD-SVM processors by setting certain bits in the VMCB. Intel VT-exten-
sions currently cannot directly support trapping user interrupts, such as system
calls. Ether [26] solves this problem by replacing the system call entry address
with an illegal address. The illegal address causes a page fault that can be captured
by the VMM. Nitro [27] solves this problem by virtualizing the interrupt descriptor
table (IDT).

User space processes enter and exit sysenter-based system calls by executing
SYSENTER and SYSEXIT instructions respectively. The sysenter-based system
call interception is not directly supported by current hardware assisted virtual-
ization techniques. To implement our design on such platforms, a simple way is
disabling CPU features related to sysenter mode in the host OSes to force guest
systems to use interrupt-based system calls. Nitro uses another way to achieve this.
It captures sysenter-based system calls by injecting system interrupts to guest
VMs.

An interrupt vector indicates the type of interrupts (0 9 00 for divide error,
0 9 01 for debug, 0 9 80 for system call, etc.). To determine that a capture of an
INT instruction is caused by a system call, the interrupt vector needs to be
checked. When a guest VM exits by executing an INT instruction, the address of
the instruction is stored in the guest VM’s EIP register. By retrieving the address
of the INT instruction from the EIP field in the VMCB, we can access guest
memory to get the interrupt vector.

Besides capturing the entry and exit of a system call execution, the system call
number also should be determined. A system call number is an integer stored in the
guest VM’s EAX register when a system call is invoked. This value can be
obtained from the EAX field in the VMCB.

3 Security Analysis

With the isolation provided by virtualization and the benefits of using HPCs, the
execution path analysis is very secure and tamper-resistant. Here, we discuss some
possible attacks and show how they can be defended by our technique.

First, the attacks may try to tamper with the counting process. If the event
counting is inside the guest VM, the kernel rootkit may disable the counters when
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its own code is executed and resume the counting when the control-flow returns to
the normal execution. In this case, the malicious actions will not be detected since
the counts remain the same as the unmodified execution. In our design, the
hardware events are counted by the host. The HPCs are out of reach to the rootkits.

Second, the attacks may tamper with the analysis process. Even though the
counters are working properly and count all the true numbers, a rootkit may
directly manipulate the analysis. Consider Patchfinder, the ‘‘in-the-box’’ execution
path analysis technique, as an example. Since the counts are stored in the memory,
the kernel rootkits who have full access to the memory can just replace an actual
number with a ‘‘good’’ number. For our VMM-based design, the counted events’
numbers are read from HPCs by the trusted host and all the analyses are performed
by the host. The guest kernel rootkits cannot interfere with the analyses because
they do not have access to the host memory.

Although difficult, consider the scenario that an advanced rootkit may modify
the execution path but keep the total number of instructions unchanged. Specifi-
cally, the rootkit replaces an original function with its own function that executes
the same number of instructions. In our HPC-based design, we can monitor
multiple hardware events of a guest’s execution at the same time. Besides the total
number of instructions, we can also count the number of branches, returns, floating
point operations, etc. It is extremely hard for a rootkit, almost impossible, to
modify a normal execution path with the number of all these events unchanged.

Last, if a clever attacker is aware of the occurrence of a check, it may undo
modifications when the check is performed and activate itself again when the
check is over. In our design, the detection processes are running in the host without
a guest’s awareness. The only thing the guest can see is the execution of a test
program. However, from the guest’s point of view, the execution of a test program
is no different from the execution of other programs. So a guest is not able to know
when it is being monitored. Additionally, we can randomize the intervals between
checks to avoid attackers’ prediction of checking period.

The only limitation of our technique is detecting short-life kernel modifications.
Nevertheless, the reason why attackers employ a rootkit is that they try to perform
long-term functionality in the target system without being discovered. So they
need a rootkit to provide long-term stealth for the malicious activities. According
to this basic goal, a short-life rootkit is useless. Since our technique focuses on
detecting kernel rootkits not other short-life attacks, this limitation can be
neglected.

4 Evaluation

To evaluate the effectiveness of our technique, we test our technique with a real-
world kernel rootkit: SUCKIT 1.3b [28].

SUCKIT, Super User Control Kit, is one of the widely known kernel rootkits. It
runs under Linux and is used to hide processes, hide files, hide connections, get
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root privilege, etc. It replaces the system call table with its own copy, and then
uses its own system call table to redirect to the malicious system calls. Figure 2
shows the execution flow of the SUCKIT kernel rootkit.

In our evaluation, SUCKIT 1.3b is run on a Redhat 7.3 guest VM with Linux
kernel 2.4.18 and the host runs Ubuntu 11.10 with Linux kernel 3.0.16. We check
three system calls, sys_open, sys_read, sys_getdents64, which are usually the
targets for a kernel rootkit. Three hardware events, retired instructions, retired
returns, and retired branches, are monitored simultaneously for the execution of
each system call. The counted number of an infected system call is compared with
the number of the original one. Table 1 shows the experimental results.

From the results, we can see that in order to introduce their own functionality,
the rootkits usually significantly modify the original system calls. The difference in
the number of events between normal and infected executions is very notable. For
SUCKIT 1.3b, all the three monitored system calls are maliciously modified. The
system call sys_open is modified most heavily. The number of hardware events
counted from the infected sys_open is more than ten times as the original one.

Choose interrupt 
handler

Choose system call
Original

 syscall _A()
Modified 

syscall_A()

Interrupt descriptor 
table

Original syscall 
table

syscall table (copy)

Application 

User mode

Kernel 
mode

Execution flow

Fig. 2 Execution flow of the SUCKIT kernel rootkit

Table 1 Number of hardware events counted from the execution of original and infected system
calls

Events monitored System calls monitored

sys_open sys_read sys_getdents64

Retired instructions Original 1081 370 1808
Infected 10119 590 6200

Retired returns Original 17 6 24
Infected 132 15 140

Retired branches Original 191 78 160
Infected 2663 104 1805
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5 Conclusion

Control-flow modifying rootkits are the most common kernel rootkits and pose the
most threat to system security. In this work, we present a VMM-based framework
to detect control-flow modifying kernel rootkits in guest VMs. The checking is
performed by validating the execution of system calls in the guest VM. The
validation is based on the number of specified hardware events that occur during
the execution of a guest system call. We leverage Hardware Performance Counters
(HPCs) to automatically count these hardware events. We implement a prototype
of our design on Linux with Perf tool and Kernel-based Virtual Machine (KVM).
Our experimental results demonstrate its practicality and effectiveness.
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Formation of Artificial and Natural
Intelligence in Big Data Environment

Simon Berkovich

1 Introduction: Big Data Algorithmics in the Laws
of Nature

The amount of information associated with Life and Mind overwhelms the
diversification of the material world. Disregarding the information processing in
the foundation of Nature modern science gets into a variety of complications. The
paradigm of fundamental physics that does not explicitly incorporate an infor-
mation processing mechanism is not just incomplete, it is merely wrong. As John
A. Wheeler tersely said: ‘‘the physical world is made of information with energy
and matter as incidentals’’.

Realization of information processing encounters two types of problems related
to hardware and to software. In this paper, we contemplate in a broad sense the
software problems in connection to the situation of the inundation of information
dubbed Big Data. The hardware problems associated with this Big Data situation
have been addressed in some general way in our previous publications. As an issue
of practical computer engineering these problems has been outlined in [1]. The
hardware model of the informational infrastructure of the physical world in the
form of a cellular automaton mechanism has been described with numerous
ramifications in [2–5].

Constructive solutions for natural science necessitate elegant operational
algorithms. Any algorithm is workable, but inappropriate algorithms translate into
clumsy ad hoc theories. The ingenious algorithmic solutions devised for the Big
Data situation transpire as effective laws of nature.

The Big Data situation stumble upon two types of problems: how to exercise
meaningful actions under overabundance of information and how to actually
generate objects having extremely rich information contents. Starting with Sect. 2,
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we introduce a computational model for Big Data that goes beyond ordinary
Turing computations. The incapability to explicitly use all the available Big Data
leads to the concept of bounded rationality for Artificial Intelligence as depicted in
Sect. 3. This approach emphasizes the Freudian idea of the decisive role of
unconsciousness for Natural Intelligence, which is delineated in Sect. 4.

Generating bulkiness through step-by-step growth is not suitable for mass
production. Thus, creation of Mind implicates usage of Cloud Computing as
described in the above-mentioned Sect. 4. In this case, the tremendous contents of
human memory are built-up through joining an already existing repository of
information. Section 5 considers both types of Big Data developments. Mental
problems, like neuroses, schizophrenia, and autism, are believed to present pure
software distortions of the context background brought about by Cloud Comput-
ing. Also considered is the other part of massive Big Data formations, which is the
method for self-reproduction of macromolecule configurations.

The suggested Big Data algorithms can be fulfilled in the physical world
organized as an Internet of Things. Section 6 concludes with an overview of
experimental possibilities to verify this surmised construction. It presents the most
compelling Experimentum Crucis exposing the Internet of Things in the frame-
work of the Holographic Universe.

2 The Computational Model for Big Data

Information processing begins with the idea of a computational model. Compu-
tational model is an abstract scheme for transforming information. It operates in
the following cycling: extracting an item of data from the memory—transforming
the given item of data—returning the transformed item to the memory. The first
idea of this kind with memory presented as an infinite tape having sequential
access was introduced by Alan Turing as a formal definition of the concept of an
algorithm. John von Neumann had introduced a practical computational model
using random access memory for the realization of first computers. Remarkably,
despite of the tremendous successes of computer technology at all fronts in more
than half a century the basic computational model stays the same. This indicates at
something of fundamental significance. The famous Church-Turing Thesis con-
veys an informal statement that all reasonable computational models are in fact
equivalent in their algorithmic expressiveness. In simple words, any calculation
that can be done on one computer can be done on another computer; the difference
is only in performance. This immediately raises the question about the brain. Thus,
on one hand the facilities of the brain have to be equated with those of a con-
ventional computer, on the other hand, this does not seem likely.

We introduce a somewhat different computational model specifically suitable
for a Big Data environment (Fig. 1). In this computational model the extraction of
a data item from memory is determined by the whole bulk of data. Thus, only a
relatively small part of the given Big Data explicitly contributes to actual
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computations, the vast majority of these Big Data contributes to the computations
implicitly by determining what data items should be extracted for definite usage.
So, access to specific data items in this computational model is determined by the
context of all data. This context-addressable access is different from that in tra-
ditional associative memories. It is similar to what is provided by Google’s
PageRank algorithm. Some hardware/software details for the realization of the
presented computational model are discussed in [1].

3 Bounded Rationality Approach to Artificial Intelligence

Potentials of Turing computations may be expanded with a speculative assumption
of an ‘‘Oracle’’—a black box guiding the choice of available alternatives. In com-
plexity theory, an ‘‘Oracle machine’’ is an abstraction to study decision problems.
The lofty question of P = NP, i.e., whether non-deterministic and deterministic
decision problems are equivalent in their efficiency is not strictly resolved yet, but
the extraordinary power of ‘‘Oracle’’ computations is quite obvious.

The Big Data computational model exhibits the features of an ‘‘Oracle
machine’’. The selections of appropriate data items by a genuine ‘‘Oracle’’ or by a
huge context—‘‘pseudo-Oracle’’ are indistinguishable. The alternative: a truly
supernatural ‘‘Oracle’’ vs. simulated ‘‘pseudo-Oracle’’ can be compared with the
alternative: ‘‘Free Will’’ versus ‘‘Determinism’’. Thus, random choices with really
random generators or with pseudo-random procedures, as well as life or pre-
recorded TV shows, are indistinguishable.

The problem of ‘‘Artificial Intelligence’’ is usually associated with making
clever decisions under an abundance of data, real or synthetic. In general, this
might involve creating a very elaborate model for the system of study, so it would
be able to accommodate as much as possible of all of the available data. However,
in many practical cases this is unrealistic. A more sensible approach would be to
utilize a simplified model of the system, which is guided by an ‘‘Oracle’’. An
exemplar of an ‘‘Oracle’’ could be produced within the suggested computational

Fig. 1 The ‘‘Big Data’’
computational model
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model using a rich context of Big Data. So, this ‘‘Artificial Intelligence’’ system
could acquire ‘‘Intuition from Context’’ (Fig. 2).

The classical target for Artificial Intelligence is the game of chess. The success
in this direction has been achieved primarily by application of high computational
power. With the suggested approach we are planning to test another scheme: a
beginner displays several possible moves in accordance with some simplified
understanding of the game; an ‘‘Oracle’’ (a qualified human or a supercomputer)
makes a best selection of the displayed moves. Thus, a substantial playing
improvement could be anticipated. It would be interesting to explore this approach
for the game of Go that is more computationally challenging than the game of
chess. A possible beneficial influence of this arrangement on the mental state of the
implicated human player will be brought up in Sect. 5.1.

4 Realization of Natural Intelligence

In 1943 McCulloch and Pitts introduced a formal computational unit—an artificial
neuron. An elaborate network of these units is able to solve intricate multidi-
mensional mathematical problems [6]. At the same time, there is a strong belief
that complex artificial neural network activities should exhibit the sophistication of
the brain. Yet the approach to the conception of the brain as a ‘‘complex’’ network
of neurons is inadequate, since slow erratic combinations of electrical and
chemical processes in neuron systems cannot match the high performance char-
acteristics of the brain in terms of processing power and reliability. It becomes
apparent that understanding of the brain needs a radical paradigm shift towards
extracorporeal organization of human memory [7]; also, see the analysis in [8].
Extracorporeal realization of biological memory is based on our cellular autom-
aton model of the physical world resulting in the organization of Nature as an
Internet of Things [2–5, 9]. Corresponding illustrations are given below in Figs. 3

Fig. 2 Decision-to-data problem

192 S. Berkovich



and 4. Since the organization of the brain operates with tremendous amounts of
information its workings should be presented within a construction that is able to
handle the suggested computational model for Big Data.

The information capacity of human memory should be virtually unlimited as
everything is continuously recorded and never erased. From this perspective John
von Neumann estimated that the capacity of human memory is about
2.8 9 1020 bits [10]. The tremendous amount of information stored in human
memory is used implicitly as a passive context, while only a rather small portion of
this information is active explicitly. In the book [11], it is somehow estimated that
humans of 80 years age actively employ only a very tiny piece of all memory
information—about 1 Gb. Influences of the passive background on the workings
of the brain are in accordance with Freud’s theory of unconsciousness. The role of
the unconsciousness in mental diseases is discussed in the next Sect. 5.1.

The computational model with context-addressable access could be beneficial
for a broad number of applications when the information processing performance
increases with the accumulation of examples. Particular instances include learning
a language, pattern recognition, reinforcing the skills etc. Building up a large
context allows approaching the effective solutions of almost all problems. How-
ever, some of the information processing tasks, for example, arithmetic calcula-
tions, would be done more smoothly with ordinary computational models rather
than employing Big Data contexts.

The main operational mechanism for the implementation of the Big Data
computational model is streaming. The significance of the streaming capacity for
the organization of the brain is exposed through the effect of the so-called Penfield
movies [12]. This effect was observed by stimulation of different parts of the brain
during surgery. The subject of this stimulation began to relive earlier periods of
time in the greatest detail including various sensory components—visual, auditory,

Fig. 3 Cellular automaton unfolding into the holographic universe
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olfactory, and even somatic. Two circumstances are relevant to our Big Data
consideration: first, the recall produces random samples of true experience, usu-
ally, of no significance in the life of the patient—context background, and second,
the appearing pictures are ‘‘time-ordered’’, the events go forward but never
backwards—this enables the organization of streaming.

The principles of holography materialize the extracorporeal placement of
human memory. Holographic organization of the Brain and the Universe is a
popular topic for abstract theoretical speculations (see [13]). In our concept, the
holographic mechanism is a secondary construction atop of the cellular automaton
model of the physical world (Fig. 3). Realization of a holographic mechanism
entails clear technical requirements: a reference beam generating wave trains
pulses and a relatively thin recording medium in compliance with spatial and
temporal coherence. This leads to a special design of holographic memory with
spreading recording layer (Fig. 4). The presented construction naturally incorpo-
rates the otherwise inconceivable property of the Universe nonlocality.

The spreading activation layer of the holographic memory acquires and retains
signals from all the events in the Universe. Among those are signals from the
brains that are recorded as the states of its memory. This information is modulated
by the conformational oscillations of the particular DNAs, so the whole holo-
graphic memory of the Universe is shared among the tremendous variety of bio-
logical organisms [14].

We would like to single out two prominent physical properties in relation to the
considered construction: the tridimensionality of space and the anisotropy of the
Cosmic Microwave Background. As long as physical and biological processes rely
on the informational control of the holographic mechanism it is necessary that the
waves involved in this mechanism propagate in accordance with the Huygens
principle, i.e., with sharply localized fronts. Otherwise, the interference of holo-
graphic waves will blur. Huygens principle occurs strictly only in 3D space; this
implicates the tridimensionality for the physical space and, hence, for the space of
perception [15].

Fig. 4 Layered holographic
memory: origin of
nonlocality and mesoworld
sophistication
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The appearance of the anisotropy of the Cosmic Microwave Background is of
remarkable significance. To a very great surprise of cosmologists, in about the year
of 2003 a certain pattern built-in in the Cosmic Microwave Background has been
discovered [16]. This pattern was called the Axis-of-Evil as it merely should not be
there—as commonly understood the Cosmic Microwave Background must be
uniform. There had been put forward a number of esoteric ideas that the unex-
pected imprint in the Cosmic Microwave Background is a message from a
Supreme Being or from a neighboring Universe. In our theory, the Cosmic
Microwave Background is not a post-creation remnant of the cooling down matter,
but an accompanying factor of the layered holographic activities. Our explanation
of the anisotropy of the Cosmic Microwave Background Cosmic is natural, easy,
and neat. The Cosmic Microwave Background is indeed uniform if observed from
the center—the pole issuing reference beam. But when observed from the
eccentric position of the Solar system these activities become distorted. Our model
exactly predicts the angle between the dipole and quadrupole axes: -40� [17] (see
Fig. 5). If necessary, higher order axes can be also exactly calculated and com-
pared. Another, more simple and clear manifestation of the Holographic Universe
is referred to in the conclusion.

Full realization of the surmised computational scheme for the organization of
the brain with the required holographic memory parameters does not seem realistic
with the hardware resources available on Earth. As long as the major operation
needed for the organization of the brain is massive stream processing, partial
realization of this functionality for the suggested Big Data computational model
can go in two directions.

First, following the way suggested in [1] the required stream processing could
be arranged with the pipelining that has a distinctive capability to effectively
accommodate on-the-fly computations for an arbitrary algorithm. The most
essential part of this processing is the suggested technique for on-the-fly cluster-
ization. This type of the brain functionality would be most suitable for special
intelligent tasks, such as knowledge discovery—formulation and verification of
hypotheses.

Fig. 5 Anisotrophy of the cosmic microwave background ‘‘Axis-of-Evil’’—eccentric observa-
tion of holographic recordings predicated theoretically several years before the actual discovery
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Second, in a much broader sense, the imitation of Natural Intelligence could be
achieved by direct implementation of the basic holographic scheme for the brain
by emulation of the smart unobtainable hardware of the Universe with digital
holography. This can be approached with Cloud Computing (Fig. 6). At a given
Internet site ‘‘layers’’ of the holographic transformations for different objects are
calculated with different angles of the incident reference beam. Search for a
specified object is done by a sequential lookup for best matches with the digital
holograms in the recorded layers. The incidence angle of the reference beam
reconstructed even from partial match identifies the object. The computational
process consists of iterations of these sequential lookups.

The mental activities of the brain are supposed to be completely software-
programmable with such a Cloud Computing arrangement. The characteristic
feature of ‘‘subconscious’’ processing—manipulation with small quantities of data
whose selection is holistically determined by the entire data contents—can be
exactly accommodated in the given framework. The selection procedure can be
paralleled with an iterative version of Google’s PageRank, where a uniquely
specified item rather than a subset of items must be extracted. This specification
may simply rely on a kind of ‘‘I am feeling lucky’’ button, and might be enhanced
using the established procedure for on-the-fly clustering.

5 Big Data Fabrication of Biological Configurations

The Big Data environment poses obvious challenges to the organization of
information processing when the huge amounts of data have to be reduced to
something that makes sense. Away from that, different complications arise in
relation to Big Data circumstances when it is necessary to produce objects with
tremendous structural variety. This is an important existential question. A viable

Fig. 6 Emulation of cognitive facilities of the brain with digital holography
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object has to be created in a relatively small number of steps, say in O(1) using
algorithms terminology. Algorithmic constructions that take O(N) steps for cre-
ating very large objects would not be practicable. A productive resolution of the
Big Data induced concerns presents a decisive issue for bio-medical objects. Here
we will show two characteristic instances of these Big Data problems that can be
effectively resolved within our concept of the physical world as an Internet of
Things, as it combines informational and physical processes. These two Big Data
creations are related to the informational filling of human memory and to the
reproduction of the material variety of macromolecules.

5.1 Joining the Cloud and Mental Disorders

Let us consider how human memory could be amassed with the Big Data. Human
brain contains about 1011 neurons and 1014 synapses. It is believed that updates of
the synapses somehow develop the contents of human memory. Let us assume that
chemical processes associated with one update take 1/100 s. So, getting one update
at a time would lead to formation of the whole system of synapses in about
30,000 years. Thus, assuming that a child of 3 years of age acquires a system of
synapses, which is in essence prepared, this system should have been continuously
reorganized with the pace of 106 updates per second.

In terms of algorithmic effectiveness, formation of a Big Data memory structure
by individual updates, even performed in parallel, does not appear feasible. In our
conception of the physical world as an Internet of Things the problem of the for-
mation of biological memory is efficiently resolved in a simple way with much less
time and effort. This can be achieved merely by joining the holographic Cloud. The
required updates of the Cloud contents are done at the pace of the repetition rate of
the holography reference beam—1011 Hz. The information substance obtained from
the Cloud basically constitutes the background context for the Big Data computa-
tional model. Evolution of this context while transferring from one generation to the
next one is a conservative process. For good or for worse, the core of this context—
paradigms, habits, myths, morality, etc.—cannot undergo rapid transformations.
This context changes slowly. In a sense, the fact of contest conservatism keeps up
with the von Neumann’s saying: ‘‘It is just foolish to complain that people are selfish
and treacherous as it is to complain that the magnetic field does not increase unless
the electric field has a curl. Both are laws of nature’’.

Possible disruptions of the considered process for acquiring the context back-
ground for newly developed organism can result in mental disorders, like neuroses,
schizophrenia, and autism. In most cases of such disorders changes in the physical
constituents of the brain are insignificant. So, it is a software rather than a hardware
problem.

Various details associated with the considered mental disorders seem to cor-
roborate our hypothetical scheme of their origin. First, let us start with the issue of
heredity. The article [18] reports a sensational observation that ‘‘older men are more
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likely than young ones to father a child who develops autism or schizophrenia’’. The
study found that ‘‘the age of mothers had no bearing on the risk for these disorders’’.
The explanation of this observation implicates ‘‘random mutations that become
more numerous with advancing paternal age’’. It is questionable that the alleged
mutations occur at random because of the doubts why should these mutations target
specifically mental disorders. In our concept, the observed effect can be elucidated
considering the diagram in Fig. 4: the amount of the holographic layers accumu-
lating the father’s life information increases with father’s age; so when this infor-
mation is used to create the context background for the newborn child it might
encounter more disruption influences. Also, the suspected transgeneration epige-
netic influences on autism could be related to the same surmised mechanism for the
context background formation. Very surprisingly, as indicated in [19], ‘‘The mental
health of a child’s mother during pregnancy is widely considered a risk factor for
emotional and behavioral problems later in the child’s life. Now a new study finds
that the father’s mental health during the pregnancy also plays a role.’’

More than 500 genes have so far been implicated in autism showing that no
clear genetic cause will be identified [20]. Thus, it is vital to look at the role of the
environmental factors. Babies exposed to lots of traffic-related air pollution in the
womb and during their first year of life are more likely to develop autism,
according to [21]. In our view, nanodust affecting DNA conformational oscilla-
tions, and, hence, their communicating facilities, changes the context background.
Finally, let us turn our attention to some possibilities of recovery as reported in
[22]: ‘‘Doctors have long believed that disabling autistic disorders last a lifetime,
but a new study has found that some children who exhibit signature symptoms of
the disorder recover completely.’’ In our concept, this self-cure could be enhanced
by applying the technique exhibited in Fig. 2.

5.2 3D Printing and Self-Replication of Macromolecules

The organization of the physical world as an Internet of Things allows Big Data
configurations to be produced not just for informational structures but for material
constructions as well. The former are being developed through joining the Cloud
Computing process, while the latter making use of quantum mechanics provide
what can be called quantum ‘‘3D printing’’. Thus, an impact of information signals
on material activities is exercised in synapses gaps where the propagation of
electro-chemical pulses in axons and dendrites continues by chemical neuro-
transmitters. This way neural activity inside the brain can be modulated by the
information control from the outside extracorporeal memory.

A vital Big Data operation in living systems is self-replication of macromole-
cules. This is largely related to the creation of proteins in morphogenesis and
metabolism. The regular way of protein production according to the Central Dogma
of molecular biology: DNA—mRNA—protein is not sufficient. Two main reasons
can be pointed out. First, it is not feasible to have bulkiness fabricated step-by-step.
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And second, in many circumstances the proteins are to be exactly reproduced with
their folding structures, like prions in the case of ‘‘Mad Cow disease’’. The other way
for macromolecules reproduction that we will present here has been suggested in
[23]. The Big Data malfunctions associated with protein reproductions constitute for
the brain ‘‘hardware’’ problems—neurological diseases, while above mentioned
disruptions associated with the creation of contextual background constitute for the
brain ‘‘software’’ problems—mental disorders.

The suggested procedure of self-replications of macromolecules is depicted in
Fig. 7. It is based on our interpretation of quantum mechanics behavior as a result
of interactive holography [24]. The involvement of the holographic mechanism
directly exposes the dominant quantum property of nonlocality that otherwise
appears inconceivable. The specifics of the quantum mechanics behavior are
essentially determined by the interaction of two entities: the actual particles and
their holographic feedback images. It has been shown that quantum transitions as
random walks of these entities are described by Schrödinger’s equation. The
imprecision in localization of a particle between actual and virtual entities leads to
the fundamental quantum principle of uncertainty. In relation to macromolecules
this produces mesoscopic displacements of their components that leads to an
effective algorithmic procedure for reproduction of the ‘‘Big Data’’ structures.

The facilities for self-reproduction possibility of macromolecules should reveal
new yet not recognized properties of the physical world as anticipated by P.L.
Kapitsa [25]. The surmised algorithm for self-replication of macromolecules
develops by means of swapping of particles with their holographic placeholders as
illustrated and explicated in Fig. 7. The suggested self-replication algorithm can be
figuratively imagined as ‘‘Xerox’’ copying. The proliferation of proteins in bio-
logical organisms by means of application of this algorithm is analogous to the
creation of Gutenberg’s Galaxy of books thanks to a breakthrough invention of the
printing press.

Fig. 7 The algorithm for
reproduction of
macromolecules.
1 Macromolecule
components with holography
copies. 2 Random scattering
of the components over both
place. 3 Two half-full
patterns are reconstructed to
completeness
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6 Conclusion: Experimentum Crucis

Coping with the ‘‘Big Data’’ situation constitutes the key problem for purposeful
behavior in natural and artificial systems. Human reaction to the Big Data envi-
ronment is bounded rationality—a decision-making process complying with
cognition limitations and imposed deadlines. The ideology of bounded rationality
leads to a computational model of the brain that goes beyond the traditional Turing
algorithmics. This Big Data computational model reveals the unconsciousness as
the basis for sophistication.

The effectiveness of the given computational model encourages evaluating this
approach for the general paradigm of the organization of biological information
processing. Such a consideration leads to the view of the physical world as an
Internet of Things. This kind of theoretical edifice is inspired by the practical
advancements in modern information technology. Similarly, creation of the steam
engine in the Industrial Revolution promoted the theory of thermodynamics. The
new paradigm of the physical world as an Internet of Things materializes in the
framework of the Holographic Universe. Distinctively, information processes in
this construction realize the most mysterious property of the physical world—
quantum nonlocality. Nowadays, conventional interpretation of quantum theory
encounters more and more serious complications. Thus, several prominent sci-
entists say that ‘‘the absurdity of the situation’’ cannot be ignored any longer and
quantum mechanics is going to be replaced with ‘‘something else’’ [26].

Introduction of a new idea encounters fierce opposition from the public in
general, and this work should not be an exclusion. Yet—an exceptional circum-
stance—this work clearly shows why opposition to new ideas actually happens.
People do not debate about the validity of arguments as logic is integrated in
human mental process. People argue about the interpretations of premises that are
determined by the scheme of the built-up ‘‘Big Data’’ context background.
Therefore, there is basically no chance to make people to change their mind. The
famous words of Max Plank manifestly present the pessimistic reality in confor-
mity with the considered scheme: ‘‘A new scientific truth does not triumph by
convincing opponents and making them see the light, but rather because its
opponents eventually die, and a new generation grows up that is familiar with it.’’

The surest way to confirm a new theory is Experimentum Crucis. This meth-
odology attracts an experiment that is consistent with the new theory, but is in an
irreconcilable disagreement with the established theory. Overall, experiments do
not positively prove a theory; but they can only surely disprove it. So, as long as a
new idea cannot prevail directly, it can do it by a counterattack with an Experi-
mentum Crucis that undermines opponent’s paradigm.

As a matter of fact, holography mechanism is quite sensitive to objects loca-
tions. Thus, the eccentric positioning of the Solar System in the Holographic
Universe (Fig. 4) determines the otherwise incomprehensible anisotropy of the
Cosmic Microwave Background. Yet, a more compelling Experimentum Crucis
for the establishment of the given construction should be simple and sensible. As
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such, we consider the ‘‘calendar effect’’ introduced in [23]. As seen in Fig. 4, the
position of the Earth changes due to its motion on the solar orbit; so we can expect
annual variations in all phenomena that are related to quantum mechanics. This
‘‘calendar effect’’ is of universal applicability, and it is apparently clear, like, for
example, the statement that nearly all bodies expand when heated. Currently, most
vivid examples of the surmised calendar effect have been determined for two
phenomena: annual variability of the rates of radioactive decay in physics [27] and
‘‘seasonal’’ variations in cardiac death rates in biology [28]. Less clear-cut
examples of calendar effect for numerous bio-medical occasions have been
described; as to physics, these calendar variations have to be anticipated for a
number of fine quantum effects whose outcomes should systematically fluctuate
from month to month.

The most articulate manifestation of the calendar effect through variations of
heart attacks [28] can be regarded as a generalization of the celebrated Michelson
experiment, at this time with a positive outcome, where holography plays the role of
interferometry and ailing hearts serve as detectors for malformed proteins (Fig. 8).
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Alert Data Aggregation and Transmission
Prioritization over Mobile Networks

Hasan Cam, Pierre A. Mouallem and Robinson E. Pino

1 Introduction

Network-based and host-based intrusion detection systems (IDS) in wireless
mobile networks rely on the ability of mobile nodes to monitor transmission
activities of each other and analyze packet contents to detect intrusions. However
it is shown experimentally that these types of IDSs generate high amounts of false
alarms [1, 2], leading to poor intrusion detection performance and affecting
adversely the already bandwidth-limited communication medium of wireless
mobile networks. Therefore, alert aggregation is needed to reduce the amount of
alerts without losing important information, while improving accuracy of decision
making process. This work presents a multi-stage real-time alert aggregation
technique for mobile networks that greatly reduces the amount of alert and data
transmitted and attempts to maximize the bandwidth utilization. The goal is to
transmit the alerts generated by all nodes to a central repository, like Forward
Operating Base (FOB), where they are processed, analyzed and a feedback is
provided accordingly.

This technique uses alert attributes, such as source IP addresses, to create a
number of alert attribute sets where each set is constituted of one or more attri-
butes. As raw alerts are generated, they are aggregated into meta-alerts according
to an attribute set. The meta-alerts of each set are kept in a separate queue. A
probabilistic distribution function is then calculated for each queue to determine
the importance of meta-alerts within, which also dictates the queue that gets
transmitted first. If a node is within range of the FOB, it transmits its meta-alerts
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directly to it. However if a node is not within range, then it would transmit its
meta-alerts to an adjacent node that is closest to the FOB. That node would then
aggregate the meta-alerts it receives from adjacent nodes with its own meta-alerts
before it forwards the results. This work greatly reduces the amount of bandwidth
required to transmit the alerts. It also prioritizes the alerts for transmission so that
important alerts get transmitted first.

The rest of this chapter is organized as follows. Section 2 discusses the related
work on data aggregation. Section 3 present the proposed data aggregation and
prioritization techniques. Section 4 describes the experimental setup and results.
Section 5 concludes with final remarks and future work.

2 Related Work

In order to mitigate the adverse impact of high rates of intrusion detection systems
alerts, several alert aggregation techniques [3–6] have been proposed in the lit-
erature to simplify and aid in the analysis of such alerts. However most of those
techniques focus on wired networks, where bandwidth and distance is not usually a
concern. Relatively fewer research efforts have been made to mobile ad-hoc
networks based IDS. Some of that research includes consensus voting among
mobile nodes [7], adding additional components to detect routing misbehavior [8],
or a combination of the two [9]. The technique presented in this chapter takes
advantage of consensus voting among nodes but further extends it by aggregating
alerts across neighboring nodes. It also prioritizes the aggregated alerts based on
their criticality and takes into account alert patterns and feedback from analysts.

Alert aggregation in general encompasses techniques such as normalization [4],
correlation [5] and aggregation [3, 6]. Normalization centers on the ‘‘translation’’
of the alerts that originate from different intrusion detection systems and sensors
into a standardized format that is understood by analysis components. There has
been some work done towards achieving a common representation of alerts [4],
however there are still several gaps that faces normalization. The most significant
gap is the lack of a common taxonomy of attacks, resulting in each IDS classifying
alerts differently. Some effort have been made to address this gap [10, 11], but it is
still far from wide acceptance.

Correlation centers on finding the relationships between alerts in order to
reconstruct attack scenarios from isolated alerts. Correlation aims at providing an
abstraction of raw alerts, giving analyst a higher level view of attack instances.
However, correlation is not as effective at reducing the number of the raw alerts.
There are several correlation techniques and they have been extensively covered in
the literature [12, 13].

Aggregation centers on grouping alerts with common parameters. Alerts can be
grouped based on shared attributes [14], root causes [15] or a combination of the
two. Several techniques have been used for alert aggregation, such as data mining,
machine learning, and neural network. The work presented in this chapter will
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focus mainly on the aggregation technique as it offers the highest level of alert
reduction among the three different techniques.

Additionally, work has been done in the area of alert prioritization, which aims
at classifying alerts based on their severity/importance [16]. The goal is to help
analysts or systems administrators to take appropriate actions based on the class of
alerts. However the work available in the literature is somewhat limited and still
lack maturity. This chapter also tackles this topic and presents a prioritization
scheme to maximize bandwidth efficiency.

3 Alert Aggregation Technique

This section presents our alert aggregation technique. We begin by describing the
network topology in which this technique operates, and then present the proposed
technique. We then discuss the implementation of each step in a distinct subsection
using algorithms and providing examples.

Protocol Alert Aggregation
Input: locally generated alerts
Output: Meta-Alerts and Feedback.

1. Aggregate locally generated alerts
2. If non-local meta-alerts are received from other nodes, aggregate them with

local meta-alerts
3. Prioritize and prepare meta-alerts for transmission
4. When transmission window is available, transmit meta-alerts to FOB if within

range, or to an adjacent node that is closest to FOB
5. FOB receives meta-alerts and processes them
6. Feedback is formulated by the FOB and propagated back to the nodes.

Figure 1 shows the timing diagram of the protocol above for a node Nk. Note
that for nodes that are within one hop of the FOB, timing t2–t3 would be zero.

timet0 t2 t3t1

Intermediate nodes 
(if any) re-transmits 
Nk‘s alerts and may 
re-aggregate them

t4

Meta-Alerts 
Processed

Alerts 
Aggregated 

and Prioritized

FOB receives 
meta-alerts of 

adjacent nodes

t5 t6

Meta-Alerts 
Analyzed and 

Feedback 
Determined

Feedback 
Propagated

Nodes receive 
feedback and adjust 
Aggregation levels

Local alerts are 
generated and non-

local meta-alerts 
are received by 

node Nk

Nk transmits 
meta-alerts

Fig. 1 Timing for protocol alert aggregation
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3.1 Network Topology

Figure 2 shows an example of the network topology in which this technique shall
operate. It is comprised of mobile nodes, each running an IDS, and a forward
operating base (FOB), also known as base station, that receives the alerts from the
nodes and analyzes them.

Each node aggregates the alerts it generates/receives and sends the resulting
meta-alerts to an adjacent node with a lower hop count than the current node. The
nodes that are within one hop of the FOB sends their meta-alerts directly to the
FOB. The FOB would then process and analyzes the received meta-alerts and
provide feedback to the nodes.

Next, we describe the Alert aggregation algorithm for local and non-local alerts.

3.2 Local Alert Aggregation

The most significant alerts attributes are usually considered to be source and
destination (i.e., target) IP addresses, and signatures or anomaly/behavioral pat-
terns, depending on whether IDS is based on signatures or anomaly/behavioral
patterns. The other attributes may include port numbers, event detection time-
stamp, event duration, TCP status flags, service type, and size of transmitted data.
Alerts can be classified as categorical (e.g., IP addresses, port numbers) and
continuous (e.g., duration).

In the proposed algorithm, a number of alert attribute sets are formed such that
each set is constituted by one or more alert attributes, and an attribute can be a

1 hop

2 hop

3 hop

FOB

Fig. 2 Network topology
(add a bit more information
about figure)
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member of more than one set. Some examples for sets of attributes could be:
{signatureID}, {signatureID, srcIP}, {signatureID, srcIP, portID}, {signatureID,
duration}, {signatureID, srcIP}, and {signatureID, srcIP, dstIP, portID}. The meta-
alerts of each set are kept in a separate queue. As for the meta-alerts parameters
that are not part of the attribute set, they are stored as a list within the same meta-
alert.

The proposed algorithm denotes a raw alert by a 7-tuple: raw-alert ID, source IP
address (srcIP), destination IP address (dstIP), signature type or ID (sigID), Port ID
(portID), alert event occurrence time (T), node ID and log data (logdata).

Similarly, the aggregated alerts, called meta-alerts, are denoted as follows:
meta-alert ID number, number of raw alerts represented by a particular meta alert
(N), time of meta-alert updating (Te), aggregate attribute 1 through n, and a list of
tuples holding the raw alert parameters not used in the aggregation.

Figure 3 shows an example of Alert Aggregation. It shows the aggregation of
three raw alerts generated at a single node into one meta-alert based on two
attributes, srcIP and SigID.

Each attribute set is represented by a meta-alert queue. Attributes can be used in
multiple queues, for example the attribute set of queue one can be {SigID}, and the
attribute of queue two can be {SigID, SrcIP}.

The local alerts aggregation algorithm is shown next. It takes as input raw alerts
and output meta-alerts to be send to the next node.

Algorithm: Local Alert Aggregation 
Input: Raw Alerts  
Output: Meta-Alerts (grouped in queues) 

1. Initialize Attribute Sets 
2. Initialize meta-alerts queues 
3. For each alert read:  

If queues empty: 
then  

Randomly assign Alert to queue and generate meta-alert 
else  

Check Queue with highest attribute count,  
 if Alert can be aggregated: 
 then  

Aggregate Alert 
   else  

Check remaining queues,  
If Alert can be aggregated: 

        then 
Aggregate Alert 

    else 
                 Randomly assign Alert to queue and generate new meta-alert 

Upon the receipt of a new raw alert, we check if the queues are empty, if they
are, the raw alert is assigned to a random queue and a Meta-Alert is created
containing that alert.
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For each subsequent raw alert received, we check if the alert can be aggregated
with existing meta-alerts, starting with the queues that have the highest number of
attributes. If it can, then the alert is aggregated, if not, then we check the remaining
queues for possible aggregation. If no aggregation is possible, and then the alert is
assigned to a random queue and a new meta-alert is created containing the
received alert.

Figure 4 further shows the steps taken when a new raw alert is received.

AlertID1 Src IP1Raw Alert 1 Dst IP1 Sig ID1 Port ID1 T1

AlertID2 Src IP1Raw Alert 2 Dst IP2 Sig ID1 Port ID2 T2

AlertID3 Src IP1Raw Alert 3 Dst IP2 Sig ID1 Port ID3 T3

Alert 
Aggregation on 

{SrcIP,SigID} 

MA ID MA TeMeta-Alert 1
Number 
of Raw 
Alerts

Src IP Sig ID
{ID1, dstIP1, portID1, T1, Node1, logdata1}
{ID2, dstIP2, portID2, T2, Node1, logdata2}
{ID3, dstIP2, portID3, T3, Node1, logdata3}

Node1

Node1

Node1

Log Data1

Log Data2

Log Data3

Fig. 3 Alert aggregation example

New Raw 
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Are MA 
Queues 
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Yes
Determine Queue 

with highest 
Aggregate 

Attribute Count

Assign the alert to 
a Random Queue

Can the 
new Alert be 
Aggregated 
w/ Existing 

MA

Create a new
MA

No

Aggregate the 
new Alert with 
Existing MA

YesNo
Has all 
Queues 
been 

checked

Yes

No

Create a new
MA

Assign the new 
alert to a Random 

Queue

Fig. 4 Aggregation of local raw alerts into meta-alerts (MA)
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3.3 Non-local Alert Aggregation

In addition to handling local alerts, each node is capable of receiving meta-alerts
from adjacent nodes. The non-local meta-alerts are aggregated with local meta-
alerts when possible, and the resulting meta-alerts are forwarded to the next node.
The non-local meta-alerts aggregation algorithm is shown next. It takes as input
the meta-alerts received from other nodes, and adds them to existing queues or
generates new queues.

Algorithm: non-local meta-alerts Aggregation. 
Input: Non-local meta-alerts queues  
Output: none 

1. For each non-local meta-alert queue received: 
Compare its attribute set to the attribute sets of local meta-alert queues,  
If attribute set match: 
 then 

Aggregate its meta-alerts with existing meta-alerts in local queue 
Discard non-local meta-alerts queue 

else 
 Store non-local meta-alerts queue as local 

Figure 5 shows the handling of non-local meta-alerts.

3.4 Alert Prioritization

Since bandwidth is limited in the type of deployments, alerts need to be prioritized
so that the most critical alerts get transmitted first once a transmission window
becomes available. Alert prioritization is achieved by calculating the probability
distribution for each queue. The meta-alerts of the queue with the highest value are

New 

non-local Meta-
Alert is received

Attribute 
Set 

matches 
local MA?

NoAdd the meta-

Alert to Queue

Yes

Aggregate the 

meta-Alert with 
Existing MA

Yes

Can the 
new Meta-

Alert be 
Aggregated

No
Create a new 

Queue and store 
non-local MA in it

Fig. 5 Handling of non-local meta-alerts
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chosen to be forwarded to the next node in the network (or to the FOB in the case
of the nodes connected to the FOB).

Additionally, each node that receives meta-alerts from other nodes will deter-
mine which meta-alerts set to forward first based on the value of their polynomial
distribution functions.

Figure 6 shows an example for a single node of the aggregation of generated
alerts, and the aggregation of local and non-local meta-alerts. It also shows the
transmission prioritization of queues.

The meta-alerts queues transmission prioritization is shown next. It calculates
the multinomial distribution function for each queue and prioritizes the trans-
mission. The prioritization expires after a preset period of time, as long as the
number of new raw alerts does not exceed a certain threshold. If the new number
of new raw alerts is above the threshold, then the prioritization is considered
invalid even if the expiry time has not elapsed, meaning the distribution function
needs to be recalculated.

Raw Alerts Non-local Meta-Alerts

Q1 Q2 Qk

Q i

Local Alerts 
Aggregation

Distribution 
Function 

Calculation

NQ 1 NQ 2 NQ k

Transmit to 
Next Node

Prioritize 
Queue 

Transmittal
Q j

Assign to one Queue

Local and non-
local Meta-Alerts 

Aggregation
Qi Qj

Fig. 6 Aggregation of raw alerts and aggregation of local and non-local meta-alerts for a single
node
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Algorithm: meta-alerts queues prioritization. 
Input: meta-alerts queues  
Output: none 

1. Check prior multinomial distribution function value for each queue 
If value exists and has not expired: 
then 

Read the number of incoming alerts since the last calculation 
If the number above the pre-set threshold: 
then 
 Calculate multinomial distribution function 
else 
 Prior value still valid, no need to re-calculate 

else 
 Calculate multinomial distribution function 

2. Prioritize transmission order based on calculated value 

3.4.1 Distribution Functions Calculation

To aggregate alerts based on the alerts attributes or parameters, our technique
assumes: (1) an attack instance is a random process generating alerts, and (2)
attributes of alerts have different probability distributions.

We compute (1) categorical attributes have multinomial distributions; (2)
continuous attributes have standard normal distributions. Note that multinomial
distribution of an alert with a categorical attribute set is equal to the product of
probabilities of all event(s) that lead to the alert generation. If an alert has two
categorical attributes, say signature ID and source IP address, then its multinomial
distribution equals the product of their probabilities. In a multinomial distribution,
each trial results in one of some fixed finite number k of possible outcomes, with
probabilities p1,���, pk.

The multinomial distribution can be calculated using a probability mass func-
tion, with the following equation:

P Qj

� �
¼ N!

ðn1!n2!. . .nk!Þ
Yk

i¼1

pni
i ð1Þ

where
Qj is meta-queue j
N is the number of raw alerts
k is the number meta-alerts in Q
ni is the number of alerts aggregated in meta-alert i
pi is the probability of observing meta-alert i

Additionally, pi can be calculated as follows:
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pi ¼ WAi �WIAi �
ni

N
ð2Þ

where
Pi is the probability of meta-alert i
WAi is the weight of attributes of the queue containing meta-alert i
WIAi is the weight of the values of attributes of meta-alert i
ni is the number of alerts in meta-alert i
N is the number of raw alerts

The weights of the attributes and the weights of the values of the attributes are
calculated using a combination of historical data, analysts feedback and incident
reports.

As far as normal distribution, it can be calculated using the following proba-
bility density function:

/ xð Þ ¼ 1
ffiffiffiffiffiffi
2p
p e�

1
2x ð3Þ

3.5 Alert Transmission

As bandwidth is limited in this type of deployments, Meta-Alerts are transmitted
when bandwidth becomes available. The alert transmission algorithm is shown
next. It takes as input the ordered meta-alerts queues and transmits them based on
the availability of transmission windows. Before transmittal, it checks if the meta-
alert timer has not expired, and that the raw alerts contained within that meta-alert
have not been previously transmitted within other meta-alerts. If they haven’t, they
are transmitted, if they have, then they are stripped out and discarded.

While transmission window is open:  
check meta-alert time 
If meta-alert time has expired: 
 Then 
  Discard alert 

else 
Check transmitted alerts list,  
If alert has been transmitted: 
Then 
  Discard alert 
else 

Transmit alert 
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3.6 Feedback Propagation

Based on the analysis of received meta-alerts, the analyst at the FOB might choose
to give particular attention to certain alerts, or might choose to increase the
amounts of raw packet data received that pertain to certain alerts. To achieve that,
a feedback transmission mechanism that uses multicast is proposed. The FOB
would multicast its feedback preference to all connected nodes, and those nodes
would in turn forward that message to their connected nodes. Simple routing
algorithms are used to avoid routing loops.

4 Experimental Validation

4.1 Experiment Setup

To evaluate the algorithms presented, 2 weeks’ worth of data were collected
across ten nodes, from October 1st 2012 till October 14 2012, from an enterprise-
scale production network intrusion detection system (NIDS), using a combination
of Snort Emerging Threats (ET) and Vulnerability Research Team (VRT) rule sets.
Figure 7 shows the nodes inter-connectivity and the connection to the Forward
Operating Base (FOB). Alerts flow from the outer most nodes towards the FOB.
For simplicity we assume that no routing loops exist and that each node transmits
to a single node.

To perform the Data Aggregation at each node, we use the same attribute sets
across all nodes, with each attribute set corresponding to a meta-alert Queue. Note
that the attribute sets are not set in stone and can be defined/modified based on the
analysis of previously collected data and feedback from analysts. The attribute sets
used are shown in Table 1.

N2

N3

N7

N1

N9

N5N4

N6 N8 N10

FOB

Fig. 7 Field nodes connectivity
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The total number of alerts collected was approximately 1.5 million across the
ten nodes. Table 2 shows the number of alerts collected at each node.

4.2 Experiment Setup

We first run the aggregation algorithm locally at each node. The raw alerts are
aggregated and divided among the five queues. The resulting meta-alerts are
shown in Table 3.

The total number of meta-alert in Table 3 represents a worst case scenario,
when no non-local meta-alert aggregation occurs, meaning the FOB will receive
all the meta-alerts generated at each node. This can be due to the fact that
bandwidth is available and that meta-alerts get transmitted without any delay.
Even though this is considered a worst case scenario, the total number of meta-
alerts received by the FOB is 1,109, which represents a reduction of 99.92 % when
compared to the total number of raw alerts (* 1.5 million).

Next we compare the size on disk of the raw alerts to the size of meta-alerts.
Additionally we compute the size of the logs for each alert (also known as trim file,
which represents the raw data stream for the time where the alert occurred). Since

Table 1 Attribute sets

Attribute set Description

{AlertID} IDS alert ID
{AlertID, srcIP} IDS alert ID, source IP address
{AlertID, srcIP, portID} IDS alert ID, source IP address, destination port ID
{AlertID, srcIP, portID, dstIP} IDS alert ID, source IP address, destination port ID,

destination IP address
{AlertID, duration} IDS alert ID, duration of alert

Table 2 Raw alerts count per node Node ID Raw alerts

1 339,311
2 148,320
3 216,802
4 228,448
5 307,169
6 33,660
7 43,326
8 22,779
9 111,707
10 119
Total 1,451,633
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the log files cannot be compressed or reduced, we consider three alternatives to
transmitting those logs:

1. Transmit all logs for all alerts.
2. Transmit the logs for the first alert only in a given meta-alert.
3. Do not transmit any log files, instead store them locally.

Table 4 summarizes the results observed.
A reduction of 57.14 % is realized for the alerts disk size (alerts only). As for

total size reduction, for alternative 1, the reduction is 7.96 %, which is expected,
since the raw logs consume a significant amount of disk space when compared to
alerts. For Alternative 2, the reduction is 92.57 %, which is a great improvement
over alternative 1, and most likely to be used among the three alternatives.

As mentioned earlier, the results presented in Table 3 would be the worst case
results since no non-local meta-alert aggregation was done. The best case scenario
would be when each node receives all possible non-local meta-alerts before it
transmits its own meta-alerts, which means each node would have an opportunity
to run the non-local meta-alert aggregation algorithm, resulting in further com-
pression. Table 5 shows the results of simulating this scenario, where nodes N3,
N4 and N5 do not transmit until they receive the meta-alerts from nodes N7, N8,

Table 3 Local alert aggregation per nodes

Node ID Raw alerts Meta-alerts Queue 0 Queue 1 Queue 2 Queue 3 Queue 4

1 339,311 129 29 18 19 30 33
2 148,320 93 15 21 14 23 20
3 216,802 43 14 7 5 5 12
4 228,448 165 32 34 33 39 27
5 307,169 169 30 38 33 39 29
6 33,660 350 71 62 71 77 69
7 43,326 70 13 15 24 10 8
8 22,779 35 8 6 6 7 8
9 111,707 48 8 8 11 13 8
10 119 7 2 1 2 1 2
Total 1,451,633 1,109 222 210 218 244 216
Reduction 99.92 %

Table 4 Size (in Kb) of raw and meta-alerts

Amount Size of alerts Log (trim)
files size

Total size Reduction
%

Raw alerts 1,451,633 8,876 54,808 63,684 –
Meta-alerts with full log files 1,109 3,805 54,808 58,612 7.96
Meta-alerts with partial log files 1,109 3,805 929 4,734 92.57
Meta-alerts with no log files 1,109 3,805 – 3,805 94.03
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N9 and N10. Similarly nodes N1 and N2 do not transmit until they received the
meta-alerts from nodes N4 and N5.

As we can observe in the table above, the total number of meta-alerts received
at the FOB in the best case scenario is 710, which represents a reduction of
35.98 % when compared to the total number of meta alerts noted in Table 3, and a
reduction of 99.95 % when compared to raw alerts (1.5 million).

Furthermore, the size of the meta-alerts received by the FOB is 3,120 Kb, which
is a reduction of 18 % when compared to the size of meta-alerts recorded in
Table 4. Table 6 summarizes the results observed.

A reduction of 64.85 % is realized for the alerts disk size (alerts only). As for
total size reduction, for alternative 1, the reduction is 9.04 %, which is expected,
since the raw logs consume a significant amount of disk space when compared to
alerts. For Alternative 2, the reduction is 93.89 %, which is a great improvement
over alternative 1, and the most likely to be used among the three alternatives.

The following figure shows the size of meta-alerts (in blue) and the corre-
sponding data for those meta-alerts (in red) that are transmitted by each node. Note
that nodes 1, 2, 3 and 5 transmit a higher amount of data since they receive meta-
alerts from other nodes and aggregate those alerts with the local meta-alerts
(Fig. 8).

Table 5 Local and non-local meta-alert aggregation (best case scenario)

Node ID Local MA Received non-local MA Aggregated local and
non-local MA

Total MA received
at the FOB

1 129 412 445 710
2 93 352 390
3 43 420 412
4 165 – 165
5 169 90 187
6 350 – 350
7 70 – 70
8 35 – 35
9 48 – 48
10 7 – 7

Table 6 Size (in Kb) of local and non-local meta-alerts

Amount Size of alerts Log (trim)
files size

Total size Reduction
%

Raw alerts 1,451,633 8,876 54,808 63,684 –
Meta-alerts with full log files 710 3,120 54,808 57,928 9.04
Meta-alerts with partial log files 710 3,120 769 3,889 93.89
Meta-alerts with no log files 710 3,120 – 3,120 95.10
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5 Conclusion and Future Work

This book chapter has presented a new alert data aggregation technique based on
alerts attribute sets for alerts generated by intrusion detection systems in mobile
networks. It has also presented techniques for alert transmission and prioritization,
and feedback control. We’ve also simulated our aggregation techniques using real
alerts captured from an enterprise network and the results show that our techniques
can achieve a very high percentage of aggregation and adapt to the available
bandwidth to maximize its efficiency.

In this chapter, we do not consider computing power or the energy available at
each node. Taking them into consideration might affect how often we can prior-
itize meta-alerts since the prioritization process is a computing intensive operation.
Future work will include further analysis of those additional parameters in order to
optimize alert aggregation and energy consumption. Future work also includes
further examination of the utilization, and how it might affect our aggregation
models, and how risk is assessed based on the chosen models.
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Semantic Features from Web-Traffic
Streams

Steve Hutchinson

1 Objective

Techniques and processes for semantic analysis of prosaic documents are well
established. Indeed, numerous probabilistic, generative models have been devel-
oped and are shown to adequately model somewhat complex relationships between
authors, links/references/citations, hierarchy of topics, bi-gram ordering of tokens
and other interesting relationships. Semantic analysis has also effectively been
applied to music genre similarity matching, and to other types of media such as
streams of Twitter messages. Some of the issues arising when considering a stream
as a corpus have been addressed in the works of Wang et al. [1, 11].

In cyber-security, there is a growing requirement to conduct meaningful
semantic analysis of streams, but, in this case, applied to online browsing sessions.
This application area is significantly different from traditional document classifi-
cation with semantic analysis in that:

• The corpus does not have a unifying domain or feature that relates all corpus
members to be considered as a batch of documents.

• The corpus is comprised of weakly or irregularly delimited ‘pseudo-documents’
which may also be nested or interleaved during capture and chronologically
ordered.

• The semantics in which we have interest pertain to the pairing of an information
retrieval request and its responses. We combine the request and responses
together to form a document. We are more interested in the semantics of the
session as informed by semantic analysis of the constituent documents observed.

• The documents in each such corpus were neither authored by, nor classified or
grouped by the requester.
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This paper focuses on a segmentation and tokenization process to prepare for
semantic and topic analysis. The resulting output from the process can be used to
form semantic feature vectors for subsequent machine-learning and profiling
processes. These latter processes are not described here.

2 Processing Web-Traffic as Corpora

A significant issue when dealing with online traffic as documents is related to the
difference between a fixed corpus and a stream or session. We need a way to track
topic-words between corpora and observed sessions. Since in traditional methods,
semantic topics are usually determined by probabilistic analysis of numeric vector-
space document vectors that represent term (word token) frequencies, we would like
each TermID to represent the same word throughout the entire lifetime of obser-
vations as well as across users (represented and anonymized by IP address). This
suggests that a pre-defined lexicon should form the basis for word tokenization.

Another significant issue in semantic analysis concerns the recognition and
resolution of synonyms. Although not usually a concern in traditional semantic
analysis, we anticipate analysis scenarios where domain-specific synonym set
creation and resolution will significantly improve semantic analysis of these
streams. This notion is of course dependent upon a lexicon-based approach.

In order to make use of the extant computational methods for semantic analysis,
it is desirable to map the characteristics of web traffic into formats compatible with
these methods. Thus, a TermID:Frequency (T:F) document matrix representation
of these web pseudo documents will allow analysis of blocks or sets of documents
using existing tools. A (T:F) representation is similar to the classic TF-IDF (term-
frequency inverse document frequency) and is widely supported by document
classification and semantic analysis tools.

3 Related Work

In linguistic analysis, segmentation is the process of partitioning a content corpus
into smaller segments, usually into ‘documents’ and ‘sentences’ within documents.
Segmentation is greatly facilitated by the presence of punctuation in written and
electronic corpora; such punctuation (such as the period, semicolon, or other
characters) often faithfully represent the author’s intent to delimit such clauses and
sentences. Similarly, segmentation into documents is often facilitated by the ori-
ginal structural organization of the corpus; each document is often contained
within a separate file in a file system, or is delimited by an end-of-file marker in a
multi-document archive.

In other forms of discourse, especially in conversations, transcriptions, and
streaming/media, sentence- and document-delimiters are seldom available. Others
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have proposed solutions (albeit often application-specific) to segmentation. Hearst
[2] describes the method of ‘TextTiling’ in which the goal is to annotate each
document with appropriate sub-structure. Principle clues of sub-structure are
obtained via the presence of ‘headings’ and ‘subheadings’ to divide the text. In the
absence of these heading markers, TextTiling implements an algorithm for lexical
cohesion to partition the text document into multi-paragraph segments reflecting a
subtopic structure.

Jain [3] proposes a method to divide documents into segments based upon topic
and subtopics. Such labeled subsections or paragraphs would facilitate analyses
and retrieval by a semantic query. This technique employs the TextTiling of [2]
using a sliding window. Similarity scores between adjacent groups of sentences
allow groupings of sentences by similarity, as an indicator of topic.

Kern [4, 9] observes that there is a difference between linear text segmentation
(splitting a long text into chunks of consecutive text blocks or sentences) and
hierarchical text segmentation to split documents into finer grained, topic-seg-
ments. They also observe that the motivation for authors to insert a paragraph
break is not identical to the topic shift detected by lexical cohesion and other
algorithms. Kern proposes a method, TSF (‘TextSegFault’), which uses a sliding
window approach to identify topic boundaries by parametric similarity and dis-
similarity measures between blocks within sentences.

4 Our Purpose for Segmentation

The above cited methods for segmentation operate by performing delimiter-based,
or content sentence coherence algorithms on the original, ordered content. Many of
the above methods purpose to annotate or label each paragraph or group of sen-
tences with a prevailing topic semantic for subsequent query or analysis. For our
proposed (future) analysis of web-traffic sessions, we use a different model for
documents. Here, we consider a document to commence with an observed HTTP
request and consist of all the assembled response content received for this (each)
request. This approach has two principle characteristics: (1) it allows the content of
the request string to be associated with the resulting response text—for use in
document classification studies; (2) it results in each document being expressed by
a bag of tokens with no other discernible structure.

5 Tokenization

In linguistic analysis, tokenization is the method used to assign a unique, integer
identifier, the TermID, to each distinct character string of interest. Documents can
thus be represented as un-ordered, or ordered sequences of tokens, by their Ter-
mIDs. It is customary to remove undesired strings during this process; this is often
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accomplished through use of a stop-word lexicon. Stemming is another typical
process used to regularize related strings into one, common representation and
TermID. A common stemming algorithm is the ‘Porter Stemmer’ developed by
Martin Porter in 1980 [5]. The above methods are natural-language specific, that is
semantic analysis and tokenization are driven by language-specific lexicons, and
stemming algorithms when appropriate.

Futrelle [6] develops a method called Extreme Tokenization, to apply to HTML
documents in the biology literature domain. In this method, papers (documents)
are converted to a sequence of tokens (integer Token IDs or TIDs) including
tokens for the HTML markup, and labeled with a generated Sequence ID (SID)
which functions as the accession number for each Archival Token Sequence
(ATS). White space is reduced to a single blank-space token. Entities and other
contiguous sequences of characters [a-zA-Z0-9] are also retained. A lexicon is
constructed after tokenization which maps between TIDs and strings. Other spe-
cialized lexicons are generated to identify capitalizations, delimiter cases (full
stop, comma, etc.), so as to avoid re-parsing during search, display, and sentence
boundary detection. Documents thus processed are stored as XML documents for
compatibility with databases, storage containers, and document processing query
systems.

6 Motivation for Future Exploration

Our motivation for this work in segmentation and tokenization to form a novel
corpus type for web-traffic is the desire to form a time-series of semantic spectra
and support two analyses: (1) longitudinal spectral evolution—modeling similar-
ities and differences of spectra over some longer time period to identify repeating
topic ‘spectral lines’ that characterize a workstation (user’s) browsing; and (2) a
differential comparison technique to measure the difference between two sets of
spectra, or possibly to match an observed spectrum to an existing archived set. The
analogue between emission-spectra in quantum mechanics and semantic analysis
has been studied in Wittek [7, 10] although for a different purpose.

7 Implementation

To implement segmentation and tokenization appropriate for semantic analysis of
web-traffic, we amend the processes above with these additional functions: (1) we
use GET-response sets as the means to define and segment traffic into documents,
(2) construe all web-browser traffic sessions as a set and use this sequence of
documents forming a windowed-corpus for subsequent analysis, (3) include the
string-literal contents of the GET request with the response content, forming a
document type more compatible with existing document clustering and
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classification analysis, (4) define a new type of document corpus with its members
not associated by a common domain or attribute set, but rather associated by the
utilization intent of a specific user, (5) and use a lexicon to generate canonical
representations of topic semantics for comparison and aggregation across corpora
(windowed corpora).

The detailed steps of this process are shown below:

Process step Description

Traffic collection A sensor with visibility into the subnet containing the IP
addresses of interest collects streams of (web)
traffic—essentially all session flows that contain the
IP of interest either as a source or destination. The
collection tool should capture entire packets, rather
than truncating (such tools often truncate at 53 bytes
by default)

Segmentation Formation of ‘documents’. Each document commences
with a GET/POST request, accumulates all responses
for the immediately enclosing GET, and terminated
by the next GET/POST

Tokenization: structural cleaning to
tokens

Removal of punctuation and delimiters, replacing each
with one space to preserve token integrity. After
cleaning, tokens are the remaining strings of
printable characters delimited by spaces

Tokenization: stop-word removal Removes tokens that appear in a crafted stop-word list,
appropriate for this type of web-traffic. Try to
remove key-tokens of key-value pairs (KVPs)

Tokenization: lexical mapping and
(future) synonym resolution

Although lexicon TermID mapping, could be applied
after semantic analysis by mapping the resulting
topic-words into a standard lexicon, we choose to
perform this mapping beforehand to reflect a
(domain specific) resolution of synonyms. This step
also forms an IP-address specific auxiliary lexicon,
allowing it to be observed and managed separately

Document matrix: canonical
representation with a chosen
lexicon

Use a static lexicon when converting tokens to TermIDs
so that the same word, and hence the same topic
semantics are retained across analysis batches, and
between different user-sessions

Formation of term: frequency
document vectors

Using TermIDs from the standard lexicon.
Create an auxiliary lexicon to contain IP-specific entities

that have semantic and differential value
Semantic analysis Choose a standard number of topics (N). Non-parametric

analysis could be performed and considered in the
future. In this study, we chose topic size of 10 with
each expressing a vector of the top 10 words for each
topic

Use a standard method on the resulting corpus of web
documents. Perform threshold or ranking selection
for the size of the set of tokens representing each
topic

Semantic feature vectors Identified by IP address and time-range. Archiving and
machine learning techniques for trend and anomaly
analysis
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In the above multi-step process to perform lexicon-driven tokenization of web-
traffic streams, the first step is to segment the observed traffic into sessions.
Typically in cyber-security, we form collected sets of observed traffic to and from
one selected IP address (at a time). Streams are further segmented into non-
overlapping batches of flows during an observation period. (It is customary to
accumulate traffic into hour-long sets for subsequent processing and analysis).
Lastly, sessions are segmented into pseudo documents by combining each GET/
POST request with related response traffic; this pair constitutes a document.

Tokenization implements lexical parsing to separate words from other content
strings and characters. Through tokenization, we endeavor to make web-traffic
resemble a traditional document by:

• Translation of domain-specific delimiters into appropriate token strings. As an
example, in web-traffic, the forward-slash acts as a delimiter in the URL path
component. Also, in a URL, the query character (‘?’) delimits the path/file
component from clauses of the query. The equals and ampersand characters (‘=’,
‘&’) are used to delimit key-value pairs in a URL.

• Translation of punctuation to a standard delimiter (space). After special char-
acter delimiters are identified, the resulting tokens are delimited by a space
character. (In the future, we will retain key-value pairs for special processing
during tokenization. The value components are often related to the ‘semantics’
of the enclosing web-page, context, and container, and can be used in semantic
analysis, whereas the key string components are often scripting variable names
and query keywords which are often of lesser interest).

• Selective preservation of numeric and special characters. In many instances,
mixed case, mixed alpha-numeric, and the URL components described above
have semantic significance and thus are preserved in our tokenization process.

After tokenization, the resulting output is a set of delimited strings, where a
string is a space-delimited, contiguous sequence of printable characters.

Finally, there are certain strings or tokens we treat as a ‘word’ if that identical
string is found in our selected lexicon. In traditional document analysis, stemming
is performed to convert alternate forms into a canonical form. For example, the
words ‘walking’, ‘walks’, and ‘walked’ would be converted to the single stem:
‘walk’. We maintain that stemming is not appropriate for our intended treatment of
web-traffic, because we are interested in the dispersion, frequency and implied
semantics of the distinct forms of words. This is consistent with our similar
treatment of named entities, as well as other alpha-numeric tokens when it is likely
they are being used in a semantically interesting manner (that is, they are not being
used to delimit or compose containers themselves).
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8 Concepts for Processing of Web-Traffic Streams

Most of the concepts and processes we employ for web-traffic streams are well
understood and precise. Since our process extends some of these notions to sur-
mount particular problems inherent to web-traffic, we restate some of these con-
cepts and explain those aspects we deem particularly important. Other concepts we
extend for particular situations. We also readily acknowledge that while certain of
these concepts involving lexicons and stop-word lists have been implemented
heuristically, there can be a more precise algorithmic derivation of these lists that
currently are manually created and managed for our case study.

String—one or more displayable ASCII characters delimited on the right side
by a string delimiter (often a white-space). A string could include any other
printing characters except delimiter(s), which are implementation specific.

Token—a string of alpha-numeric characters surrounded or delimited by white-
space.

Word—is a token where the sequence of alpha characters form a ‘word’ from a
natural language and thus can be found in a lexicon. The same lexicon is used in
this process to provide canonical source to consistently map words to TermIDs.

Lexicon—is a list of words that are pertinent to the domain of interest. Unlike a
dictionary, a lexicon contains no other labeling or indications of semantics.

Synonym—a word that has nearly the same meaning (semantic) as another
word in the corpus.

Synonym resolution—a process that identifies sets of words sharing a common
semantic in the domain of interest. This set can be resolved to one representative
word, and hence one TermID, prior to semantic analysis.

Named Entity—the proper- or given-name for an object. Named Entities thus
refer to an object, but will not appear in a lexicon. When performing synonym
resolution, named entities could be consistently replaced by a lexicon word of the
class to which the entity belongs (domain specific).

Stop-word list—in a given natural language, there are certain word strings that
are so frequently occurring and that have little semantic importance individually
that to account for their occurrence frequency would dramatically skew the results.
These words are enumerated in a stop-word list so that they may be removed from
the documents universally and prior to tokenization to TermIDs.

Markup, container, and scripting stop-words—web traffic is communicated
using the HTML markup language to present and render content within the various
containers supported by the markup. Typical containers that utilize markup tags to
convey structure and presentation are lists, text areas, tables, preformatted text
areas, hyperlinks and targets, images, active scripting function code, and other
non-textual content. Tag-names, certain attributes, and attribute-value pairs have
no useful semantics and should be removed. While web-browser applications
employ HTML and XML parsers to accurately separate content from markup, in
typical traffic collection by a sensor network, we can not guarantee that web-pages
and containers will be captured intact due to sampling techniques and the
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suppression of binary or non-ascii content. Therefore, we can not rely on a strict
HTML or XML parser to properly differentiate all markup and scripting from
content. JavaScript and other active content also present significant difficulties in
processing prior to semantic analyses.

Auxiliary lexicon—one intent of our process is to recognize additional, non-
English words that should participate in semantic analysis. This is commonly done
in document classification of biology and chemistry corpora, where certain strings
have high semantic content. Adding such strings to a lexicon will defeat the
intention of a canonical representation of documents as TermIDs. We choose
instead to form a more dynamic lexicon for each monitored IP address. During
tokenization, we represent words by TermIDs from the canonical lexicon, and
auxiliary strings by TermIDs from the address-specific lexicon. Each processing
run will add new auxiliary words to this lexicon, and then assign the corresponding
TermIDs from this lexicon.

The above definitions and concept extensions are important to allow the deri-
vation and analysis of semantic and topic concepts from segmented, parsed, and
transformed web-traffic. While these concepts and definitions are compatible with
traditional semantic analysis of (English) prosaic documents, we anticipate that
there are three significant differences in our process that allow more effective
analyses of web-traffic:

1. The notion of stop word removal pertains as well to the removal of ‘non-
content’ tokens. These are usually associated with HTML-code and HTML-
format-markup.

2. Mixed alpha-numerics, and indeed pure or delimited numerics may also con-
tribute significantly to semantic analysis for the purpose of web-traffic semantic
characterization and comparisons. This is similar to the retention of numerics
and non-word strings in bioinformatics.

3. Our notion of a web-document is formed by segmentation of surface-level
(non-nested) GET or POST occurrences. In this manner, a document is formed
by concatenation of all tokens observed from the initial request (GET/POST)
through all subsequent responses, from possibly multiple servers and streams.
With the natural, chronological order of traffic capture, this GET segmentation
should faithfully represent all content related to the comparable GET so long as
the session renders in just one browser-window (hence, reflecting the response
of a single thread). The assumption we make is that all rendering in the one
window pertains to the same set of topics as segmented by the GETs.
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9 Processing Algorithms for Web-Traffic Segmentation
and Tokenization

Our current process employs Perl scripts to prepare an ASCII traffic capture (file)
to transform it into a document matrix file with (T:F) vectors per document.

TOKENIZE—reads a raw ASCII file and

1. Performs EOL/Newline removal to concatenate all lines into a pseudo-stream
2. Performs segmentation—by creating a new document each occurrence of

‘GET’ or ‘POST’ is observed.
3. The following punctuation is converted to white-space in cases where the

punctuation is not acting as a delimiter:

$line =~ s/\x0A/*A*/g; # remove newlines
$line =~ s/\x0D/*D*/g;
$line =~ s/\n/ /g; # remove puncts
$line =~ s/[\.\,\;\*\(\)\'\"\`]/ /g;
$line =~ s/GET /GETT /g; # prevent deletion

# of GET

4. Non-printing character glyphs, shown as period characters (‘.’) are inserted by
the traffic capture rendering process. These are converted to spaces. Resulting
white-space is collapsed into just one space, thus forming a GET/POST
delimited set of tokens.

5. A token is emitted to the output file if it has a length [ minTokenLength. The
default is 4 characters. (Because of this, we replace ‘GET’ by ‘GETT’ to allow
this token to be retained, along with the corresponding POST method-verb
under default conditions).

6. This tokenization has preserved all potentially interesting tokens of non-
punctuation printable characters of at least a minimum length.

DOC2MAT—performs lexical analysis, transformation, and output represen-
tation in (T:F) vectors, preserving word-oriented tokens and document segmen-
tation. DOC2MAT is a re-implementation of the doc2mat.pl utility provided by
the CLUTO project from George Karypis’s lab at University of Minnesota, circa
2004. The original doc2mat.pl performs:

1. Conversion of document tokens to vectors of Term:Freq (T:F) pairs per doc-
ument record

2. Optional: suppress standard stopword removal (-nostop)
3. Optional: remove all numerics or mixed alpha-numerics (-skipnumeric)
4. Optional: use custom stopword list (-mystoplist=file)
5. Optional: suppression of Porter Stemming (-nostem)
6. Optional: minimum word length (-minwlen=4), default is 3
7. Optional: emission of tokenized reassembly of each document to a tokenized

file.

Our reimplementation of DOC2MAT is augmented to use a common (canon-
ical) lexicon as a stable basis for TermID consistency across multiple batch
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processing runs. As such, each TermID always represents the same word, and we
assume that each word asserts the same semantic when emitted from topic anal-
ysis. Some restrictions or complications include: domain specific semantics of the
same word, synonym resolution in the domain, and named-entities which should
also be resolved to an appropriate synonym. DOC2MAT performs the following:

1. The custom stop-list is first applied. After each execution run of DOC2MAT, a
new-word list is written to a file for subsequent re-use. This new-word list will
contain: non-words, named-entities, and non-content words like some markup
and code tokens (words that often appear as valid words in the lexicon). It is
most important that these non-content words be removed using this custom stop
list. The current code and markup stoplist was manually created from a small
set of typical web-browsing session documents. Although not complete nor
totally accurate, it is likely to suffice for subsequent web-traffic pre-processing.
A more formal construction would use the keywords from the JavaScript lan-
guage and keywords from the HTML/CSS language specifications. It is likely
that the removal of these words will not significantly impair the subsequent
semantic/topic analysis.

2. Attempts to transform each token into the TermID from the lexicon.
3. If the token is not found in the lexicon, then it is added to a new-token list and

assigned a new unique TermID.
4. Document (T:F) vectors are emitted, using the WORDID{$word} structure

which consists of all words found in the corpus. TermIDs from the lexicon are
always used consistently. New TermIDs generated by the retained, non-word
tokens are appended to this combined lexicon and should be archived and
associated with the specific IP address monitored in this corpus. TermIDs from
new-words could later be added to a lexicon should we wish them to be mapped
consistently across systems.

5. The first run for a corpus will generate (T:F) pairs corresponding to words in
the lexicon and for new-tokens found in this corpus. By copying the new-word
list to the custom stopword list, a second run will suppress all of these non-word
tokens if that is the desired result. Alternatively, the new-word list can be
edited, removing interesting words that should be retained in the output when
the resulting subset is used as the new custom stoplist.

10 Lexicon Selection

The lexicon chosen for this work is the 2of12inf.txt lexicon from Kevin
Atkinson’s site (http://wordlist.sourceforge.net). This lexicon was selected for this
work due to the following features:

1. Familiarity (this author has used this lexicon frequently for applications in
word-games and cryptography).
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2. The desire to use a relatively large lexicon to optimize its utility for positive-
filtration of web traffic. This is a primary means to select tokens that relate to
topic content semantics rather than markup or code script tokens. This lexicon
version from the year 2003 consists of 81520 words.

3. An overt preference for American-English words, including expected plurals,
and hyphenations, again in an effort to recognize tokens related to content
semantics.

4. The need to select an established and stable lexicon, since it is used to generate
documents and corpora where each observed word is represented by the same
TermID for all past and future documents.

11 Semantic Analysis

As we stated before, the focus of this work is the preparation process to transform
collected web-traffic into a (T:F) representation form that could allow effective
semantic analysis and document classification treatment. We feel it is important to
at least show the effectiveness of our process by inspection of output from a typical
analysis algorithm. We choose latent Dirichlet allocation (LDA) as representative
of a modern, Bayesian-model approach for corpus analysis.

Since LDA is a parametric algorithm, we need to select appropriate parameters
such as the anticipated number of topics (N) and also a rank-sensitive topic word
selector function. In our small case study from collection of a student’s web traffic
for a typical day, we selected N = 10 topics, and for each such topic, selected the
top or most significantly weighted 10 words per topic. These were selected ad-hoc
during the refinement of processing and are certainly not optimal.

In future work, it may be desirable to retain larger topic word sets, providing
their weights as well, so that threshold or mass-distribution interpretations can be
applied for different types of analyses. Non-parametric analyses could also be used
and likely combined with a mass-distribution sensitive interpretation.

12 Results

For our case study, we deployed a collection sensor on a small network, and col-
lected roughly 24 h of web traffic between students and the internet, much of which
came from the use of an academic, online learning portal. Tcpdump (actually
Windump) was used to collect all traffic from a router span-port on the inside
network. Parameters supplied to Windump caused it to collect all web traffic, retain
complete, non-truncated packet contents, and write the collected traffic to separate
files depending upon the IP address of the internal system-browser.

• Web traffic collected for the selected system amounted to 2.1 MB on the day of
collection.
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• WebStops list was 3 KB from 297 tokens of HTML, container, and JavaScript
markup.

• OtherStops list was 23 KB from 2248 tokens, manually labeled as variable
names and scripting attributes.

• 2of12inf.txt lexicon is 857 KB from 81520 English words, including plurals.
• Auxwords list was 45 KB from 5808 words representing named entities and

significant identifiers, retained for this IP address.
• The TermID space was 87326 unique token-words, although some TermIDs for

words in the intersection of the lexicon and the markup stopword list will never
be included.

• After lexicon-based tokenization, the (T:F) document matrix retained 218
documents and was 157 KB.

• We compiled the LDA application in C from Daichi Mochihashi at NTT
Communications Science Laboratories [8] on a dual-core Lenovo T60 with
2 GB RAM and running WinXP.

• Algorithms corresponding to the various components of the process were
developed in object-oriented Perl(5) using both the Win32 and Linux64 envi-
ronments. The only required Perl module was Getopt-Std for handling of
command-line arguments.

• LDA processing converged in 12 s after 20 overall iterations.
• The output from LDA produced an ‘alpha’ vector and a ‘beta’ matrix of size

(87326 9 10 FLOATS) corresponding to the contributions from the words
represented in the rows, to the N = 10 columns of the beta matrix.

• The function ‘unLDA’ operated to sort each column in the beta matrix and
presented the top 10 words representing each of the 10 topics.

Samples and excerpts from this case study appear in the Appendix.

Lexicons for Web-Traffic 

(English) Lexicon

HTML and container markup

Named Entities Values and IDs

Keys of KVPs

I II IVIII V VI

(sparse)

TermIDs in use in corpus

+ +

Fig. 1 Various lexicons used in our process to represent and analyze web-stream content. Three
of the lexicons are (mostly) removed using stop-word lists. These sub-lexicons (II, III, V) would
distract from semantic analyses that use T:F representations
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13 Summary

We have developed methods for processing of web-traffic streams, preparing them
in a manner that retains IP system specific lexicon-based representations for
subsequent semantic analysis. Tokens and words that are deemed to have inter-
esting contribution to semantic analysis are selected by a set of lexicons and
stopword lists. In a small case study, the results of semantic analysis using LDA
produced a set of 100 tokens for 10 topics. Cursory examination of these results
show a roughly equal proportion of English lexicon words and numerical IDs or
entities which seems to be a reasonable summary of the web-traffic collected.
Future work should develop a more deterministic creation of the lexicons and stop-
words, as well as investigate the opportunities afforded by non-parametric analyses
of classifications and topics.

A.1 Appendix: Sample Representations

The following excerpt illustrates typical web-traffic captured by Snort, TCPdump,
and other string-oriented capture tools. These tools often add line-feeds following
header records to enhance human readability. Other, binary data are rendered as
ASCII characters, or as ‘.’ when the corresponding byte is not a printable character
(Fig. 1).

A.2 Raw Data (from TCPdump)

17:51:47.430269 IP 209.133.xx.yyy.80 > 10.10.10.241.2798: 
P13442:14899(1457) ack 3803 win 14060
E...Q%@....'..J...P.b))....OP.6.G\.. valign="top"><td width="50%"   
valign="top" ><a href="#endNav_489037_1"><img src="/images/spacer.gif" 
alt="Skip Module: Goodwin College Student Annoucements" height="1"
width="1" border="0"></a><table border="0" bgcolor="#000000" 
cellspacing="0" cellpadding="1" width="100%"><tr><td><table border="0" 
bgcolor="336699" cellspacing="0" cellpadding="2" width="100%"><tr><td 
bgcolor="336699" width=5><img src="/images/spacer.gif" width=2 
alt=""></td><td width="100%" bgcolor="336699" ><a name="Goodwin College 
Student Annoucements"></a><h2 class="moduleTitle"><font color = 
"FFFFFF">Goodwin College Student 
Annoucements&nbsp;</font></h2></td></tr></table><table border="0" 
cellspacing="0"
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A.3 Raw Traffic Strings After Tokenization

GETT HTTP/1 Accept: Accept-Language: en-us User-Agent: Mozilla/4 
compatible MSIE Windows 
GETT /csi?v=3&s=webhp&action=&e=17259 28143 28506 28662 28832 28986 
29013&ei=5dRqTdbkIsW3tgf18tz0DA&expi=17259 
GETT HTTP/1 Accept: image/gif image/jpeg image/pjpeg image/pjpeg 
application/x-shockwave-flash application/vnd 
GETT /edgedesk/cgi-bin/login exe?bind=mail ascus HTTP/1 Accept: image/gif 
image/jpeg image/pjpeg image/pjpeg 

A.4 After Stop-Word Removal and Mapping
to the Lexicon TermIDs

A validation display of token expansion from (T:F) back to lexicon word[T] per
document. Documents #25 and #26 are shown:

[25] 33184:1 79943:1 406:1 2633:1 5958:2 59866:1 58600:1 53364:1 79078:1 
28355:1   
[25] here which access another being replace redirected please wait 
forwarded 

[26] 72729:1 31229:2 17093:1 62691:1 39238:1 40394:1 40657:1 21162:2 
1979:1 1926:1 12983:1 35072:2 56748:1 51620:1 23929:7 48837:1 29048:1 
77649:1 61498:1 3391:3 45458:3 73217:5 3614:2 75614:1 77659:1 1924:1 
80282:2 46667:1 77825:2 79908:2 25143:1 406:3 80569:2 79279:1 46662:2 
[26] these greeting customized save keywords least less docs always also 
code illegal qualified pending entered open functions used role area month 
time artifact unable users already will navigational validate when 

A.5 WebStops

The webstops list contains many word tokens that comprise HTML markup and
containers in web pages, such as tables, JavaScript functions, list structures, and
style sheets. These words relate to the construction of such containers common to
all web pages, and hence, are devoid of semantic content. These tokens, even
though colliding with some lexicon words, must be removed so that the high
frequency of these tokens does not dominate (T:F) sensitive semantic analysis
algorithms like latent Dirichlet allocation.

academic block chars

accent body check

accept bold class

action border click

agent bottom clip

(continued)
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A.6 CustomStopWords

Modern web pages contain other non-lexicon words associated with JavaScript
code, variable names and values. JavaScripting markup attributes also typically
contain numerous key-value pairs. We observe that the values of KVPs most often
contain semantically interesting content. The current process tries to retain these
values, as well as other named entities, while removing non-lexicon keys and
variable names. The following custom stopword list was formed after examination
of a small set of web-pages, and was labeled by the author for subsequent use on
this dataset. We also suggest that a more accurate and dynamic result should
process the KVPs early in tokenization by splitting on the equals character (‘‘=’’).
HTML and JavaScript keywords can be formally enumerated and removed. Var-
iable names will be more difficult to determine precisely; it is likely partial-word
stemming of segments may yield satisfactory performance since most often,
variables consist of concatenated words, sometimes camel-cased, for self docu-
mentation. Entropy measures of the discovered components could also improve
recognition of variable names.

bbnj puvq carin

pbtpid panose callout

errorh btngradientopacity imcspan

yvlq abpay unexpectedtype

validatedelete pubi headerbgcolor

logout rssheadlinecell colheader

classe brea codebase

(continued)

(continued)
align bounding close

alive box color

application boxes colorful

author browse comma

auto browser common

background bundle compatibility

banner button compatible

batch buttons connection

before bytes console

begin cache content

bind cancel continue

blackboard center control

blank char cookie

character cookies

characters copy
. . . .
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A.7 Semantic Analysis After LDA (Latent Dirichlet Allocation)

Treating such vectors in their pre-converted form would preserve anonymity while
allowing trending, differentiation and anomaly analysis and comparisons. The
following output has been expanded to the original words as a validation step to
show correspondence to the original corpus documents.

TOPIC: 0 --------------------------------
17520 2011 wjq1 306627 30729 4506 2152 50727 1460 course 

TOPIC: 1 --------------------------------
1460 6432 17520 2864 2861 2803 2011 7504 version 1466 

TOPIC: 2 --------------------------------
1460 17520 2842 2832 2813 prop 7544 batches call from 

TOPIC: 3 --------------------------------
course 1460 time 17520 252320 assessment 284540 2011 6432 alert 

TOPIC: 4 --------------------------------
1460 entered than 17520 deployment course contain announcement i18n time 

TOPIC: 5 --------------------------------
calendar discussion forum board entry course 1460 month 2811 284540 

TOPIC: 6 --------------------------------
calendar month 1460 discussion course forum board entry 2830 long 

TOPIC: 7 --------------------------------
forum your 2815 course blight 284540 discussion 1460 board 3774 

TOPIC: 8 --------------------------------
calendar course forum discussion board 1460 2835 2831 your month 

TOPIC: 9 --------------------------------
2851 65392 12px 2852 2844 16616 solid repeat hover 1460 
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sfri offborder jrskl
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sethttpmethod nprmodpipe active
. . . .

236 S. Hutchinson

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.7624&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.7624&rep=rep1&type=pdf


4. R. Kern, M. Granitzer, Efficient linear text segmentation based on information retrieval
techniques. MEDES 2009, Lyon, France, pp. 167–171, 2009

5. M. Porter, An algorithm for suffix stripping. Program 14, 130–137 (1980)
6. R. Futrelle, A. Grimes, M. Shao, Extracting structure from HTML documents for language

visualization and analysis. Biological Knowledge Laboratory, College of Computer and
Information Science, Northeastern University, in ICDAR (Intl. Conf. Document Analysis and
Recognition), Edinburgh, 2003

7. P. Wittek, S. Daranyi, Spectral composition of semantic spaces, in Proceedings of QI-11, 5th
International Quantum Interaction Symposium, Aberdeen, UK, 2011

8. D. Mochihashi, lda, a Latent Dirichlet Allocation package. NTT Communication Science
Laboratories, 2004. http://chasen.org/*daiti-m/dist/lda/

9. G. Stumme, A. Hotho, B. Berendt, Semantic Web Mining State of the Art and Future
Directions (University of Kassel, Kassel, 2004)

10. J. Williams, S. Herrero, C. Leonardi, S. Chan, A. Sanchez, Z. Aung, Large in-memory cyber-
physical security-related analytics via scalable coherent shared memory architectures. 2011
IEEE Symposium on Computational Intelligence in Cyber Security (CICS), 2011

11. P. Wittek, S. Daranyi, Connecting the dots: mass, energy, word meaning, and particle-wave
duality, in QI-12, 6th International Quantum Interaction Symposium, Paris, France, 2012

Semantic Features from Web-Traffic Streams 237

http://chasen.org/~daiti-m/dist/lda/


Concurrent Learning Algorithm
and the Importance Map

M. R. McLean

This chapter describes machine learning and visualization algorithms developed
by the Center for Exceptional Computing, a Department of Defense research
laboratory. The author hopes that these tools will advance not only cyberspace
defense related applications, but also a number of other applications where cog-
nitive information processing can be integrated. The chapter begins by describing
the difference between conventional and cognitive information processing. There
are pros and cons for using either of these approaches for problem solving and the
ultimate decision of which to use is entirely related to the problem at hand.
However, this chapter will focus on the cognitive approach and introduce the
algorithms that were developed to make the approach more attractive. The Con-
current Learning Algorithm (CLA) is a biologically inspired algorithm, and will
require a brief introduction to neuroscience. This introduction is necessary to
familiarize the reader with the unique biological aspects that form the foundation
for the CLA; the detailed algorithmic description will follow. Finally, the
Importance Map (IMAP) algorithm will be introduced and examples given to
clearly illustrate its benefits, spanning from neural network development to end
user applications. By the end of this chapter the reader should have a firm
understanding of the unique abilities afforded by these algorithms and be able to
implement them into code.

For the past 60+ years information processors have been typically based on the
Harvard or Von Neumann architecture. These processors require four steps to
process one instruction: (1) fetch the instruction and data from memory; (2) decode
the instruction; (3) execute the instruction on the data; and (4) store the result to
memory. Each processed instruction does one basic operation and a program can
easily consist of millions of instructions. Using this paradigm is referred to as an
algorithmic approach. One obvious issue with this approach is that it restricts the
problem solving capability to algorithms that are precisely defined. This restriction
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sounds reasonable, however, there are many problems that do not have an exact
algorithm or that change over time. Another problem with the algorithmic
approach is that it requires specialized skills to translate algorithms into programs
and often requires that the system be developed by different individuals. The
software development process can be slow, expensive, and prone to errors. Fur-
thermore, the developed software executes a very specialized, rigid program that
cannot adapt or improve over time. This is where neural networks may provide a
better solution than the traditional software development method.

Neural networks use a non-algorithmic approach to problem solving. They are
trained by example, similar to the human learning process. The neural network is
presented data and asked to evaluate it; if it is evaluated incorrectly the network
weights are adjusted. Training a neural network does not require learning a special
language, just examples with correct classifications. Neural networks have a
remarkable ability to derive understanding from highly dimensional, complex, and
imprecise data. They are able to extract patterns and detect trends that are too
complex to be noticed by either humans or other computer techniques. They learn
without bias and can discover relationships that are not intuitively obvious. Over
time a neural network becomes more accurate as it is presented more data,
eventually becoming an ‘‘expert’’ at the selected concept.

So why aren’t more people using neural networks? Neural networks are not
perfect, and their same strengths can also be their weaknesses. There are certainly
issues to implementing a reliable neural network system. As mentioned, neural
networks are unbiased, finding any correlation of the inputs to the outputs. This is
exacerbated as the dimensionality of the data increases, a real world example
should clearly illustrate this problem. A neural network system was created to
differentiate between enemy and allied tanks. Many images of the both enemy and
allied tanks were taken and used to train the neural network. The neural network
achieved very high accuracy in the lab, so a field demonstration was scheduled to
show the program manager the system capability. On the day of the demonstration
the neural network performed miserably. A lengthy analysis showed that the
pictures of the enemy tanks were taken on a sunny day and the pictures of the
allied tanks were taken on an overcast day—the neural network had classified the
tanks based on sunny or overcast days. Until recently, the only way to know if a
neural network had learned the intended concept correctly was to run many
training and test iterations with as much training data as possible. The example
above shows this approach does not scale well with increasing dimensionality and
has resulted in many other failed implementations. Neural networks have always
been a fairly opaque black box with minimal visibility into what was actually
learned, impeding the adoption of neural networks into the mainstream. Another
problem with neural networks is they classify data without giving any insight into
the reasoning behind the classification. This makes it difficult for an end user to
trust the system and often leads to a failed implementation. Later in this chapter
the IMAP algorithm will be discussed, it shows the concepts the neural network
has learned and resolves the many of problems discussed above.
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The CLA is called as a supervised learning algorithm, meaning the neural
network requires correctly classified data for training. The dataset contains a series
of input vectors and the associated target answer. CLA uses a process called
gradient descent to minimize the network error; however, only the direction of the
gradient is used to modify the decision surface created by the neural network. The
direction of learning is a delta value, computed by subtracting the target answer
from the actual neural network output. Once the delta values for all the outputs
have been computed, all nodes in the neural network can learn concurrently, hence
the name of the algorithm. This unique ability greatly speeds up network learning
and can take advantage of today’s highly parallel architectures.

The basic element of the CLA neural network is called a node, which is similar
to a neuron in the cerebral cortex of the brain. A node has a number of inputs
connected to it called edges, which are similar to the dendrites of a neuron. The
node function of CLA is very similar to other supervised learning algorithms
except there is an added attribute to each of the edges.

Figure 1 is the diagram of the CLA node. The input vector is designated x1…xn

and each of it’s elements connects, via a graph edge, to the node. The added
attribute unique to CLA is the influence value denoted by Sj,i and the final edge
attribute Wj,i, represents the synaptic weight that gets adjusted during training.
Every feed forward connection will have these three attributes. The influence is
unique to CLA and its origin and importance are discussed next.

In the brain there are billions of neurons and each occupy a unique location in
3-D space. Every neuron has an output connection called an axon. The axon
conducts a pulse called an action potential that propagates information to other
neurons. There are two basic types of axons in the brain: myelinated and unmy-
elinated. The myelinated axons are used to connect the hemispheres in the brain
and control muscle movements. The myelin sheath covering the axon results in the
action potential having low latency and low resistance, enabling long distance
neural communication. Without myelinated neurons, multi-sensory models in our
brain would be difficult or impossible to develop. The myelinated axons have a
white appearance and compose the white matter in the brain. However, the bulk of
the computation in the cerebral cortex takes place using unmyelinated or grey
matter axons. Being unmyelinated, the activation potential or signal of these axons
degrade in strength and speed over their lengths. This limited interaction creates ‘‘a
sphere of influence’’—as the length of the axon increases its influence on other
nodes decreases according to the inverse square law.

Fig. 1 CLA node
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Figure 2 shows how the influence between nodes decreases over distance; the
horizontal axis is distance between nodes and the vertical axis is influence. A
simple non-temporal explanation is to consider the termination connections of the
axon as a cone, as the connection length increases and the cross sectional area
decreases quadratically. The electronics equation of the resistance of a conductor
clearly supports this hypothesis.

X ¼ q� L

A
ð1Þ

Equation 1 is the equation for the resistance (X) of a conductor where q is the
conductance of the material, L is the length of the conductor, and A is the cross
sectional area in units2. Since q is a constant, it can be ignore in the equation,
leaving an inverse square law for the change in resistance as the length increases.
As its termination connections gets longer, an axon’s ability to influence nodes
decreases, creating sensory interpretation diversity and functional partitioning
throughout the cortical regions. As previously mentioned, all neurons occupy a
unique location in 3D space; when sensory information is presented to these
neurons, each will perceive the input differently, which increases diversity and
enhancing the ability to learn. Emergent functional partitioning, created by the

Fig. 2 Influence versus
distance
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influence, enables many local computations to occur simultaneously and
independently.

CLA integrates this influence into its learning mechanism. The influence
attribute for the connections of the network is calculated by first setting up the
node layout and layer mappings in 3D space. In CLA, the node layout and layer
mapping algorithms are completely flexible and can be adjusted to best suit the
problem. In the cerebral cortex the nodes are laid out in six distinguishable stri-
ations or layers. Figure 3 shows how CLA uses a similar node layout; in this
example there are only four layers, however CLA has no restriction on the number
of layers in the network. The four layers in Fig. 3 are, from bottom to top: the input
layer, hidden layer, output layer, and a delta layer. Each of these layers will be
discussed shortly. For now, note that the nodes position in 3D space will be
important for influence computation.

After laying out the nodes, CLA connects nodes between the layers in a process
called layer mapping. Figure 4 shows a partial mapping between layer 0 and layer
1 due to influence thresholding. This means only nodes that meet or exceed a
certain threshold influence are connected to each other. The traditional supervised
learning approach is a fully connected network, where the current layer connects to
all nodes on the previous layer. Fully connected neural networks are computa-
tionally intensive and more susceptible to noise. For example, consider a fully
connected network with a lower layer of 10,000 nodes—every node in the current
layer would have 10,000 connections. If there is a significant signal on only one of
the node’s inputs, the signal-to-noise ratio (SNR) would be 1/10,000, or 0.00001.
By partially connecting nodes based on their influence, the SNR of the network
can be adjusted to better suit the problem. In this example, restricting the current
nodes to connect to only the 100 most influential nodes in the previous layer would
increase the SNR by two orders of magnitude, thereby increasing the overall

Fig. 3 CLA node layout

Concurrent Learning Algorithm and the Importance Map 243



network stability. One drawback to this approach is that it may require additional
layers to be added to the network.

The CLA nodes use influence during computation and to limit connectivity
between layers. The first step in calculating the influence is to compute the dis-
tance from one node to another node in 3D space, accomplished using the
Euclidean distance formula for three dimensions (Eq. 2). In this equation The
distance between nodej and nodei is calculated.

Dj;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2 þ ðzi � zjÞ2

q

ð2 : Euclidean Distance in 3D spaceÞ

Since the influence follows the inverse square law, Eq. 3 shows the complete
calculation of the influences of a node; the ‘1’ in the denominator ensures there is
no division by 0 resulting in a continuous curve (see Fig. 2). Note that this
equation is also the derivative of the arc tangent (atan’) and will be used later in
the CLA calculations.

Sj;i ¼
1

1þ D2
j;i

ð3 : Influence computationÞ

The CLA mapping is repeated for all connections in the network. CLA is not
restricted to connections between consecutive layers—each layer can be connected
to any and all following layers, increasing the learning speed. Finally, CLA makes

Fig. 4 CLA partial connectivity
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use of feedback connections between the top most layer of nodes (the delta layer)
and the lower layers. The feedback mapping is as flexible as the feed forward
connection; however, every node besides an input nodes has to be connected to at
least 1 delta node. The feedback connection from the delta nodes have an input and
an influence, but no weight. The input to the feedback connection is the output of
the delta node, which, as discussed previously, is target minus actual output. This
delta value gets scaled by the influence of the connection and is used by the node
for learning.

Once the influences for all the network connections are calculated, there is no
further need to consider the neural network in 3D, and for clarity normal 2D
diagrams will suffice. As mentioned, Fig. 1 shows the model of a single node in the
CLA algorithm; these nodes are connected together to create a neural network
(Fig. 5).

This network has an input layer (on the left) with three solid nodes, one hidden
layer (in the middle) with three nodes and an output layer (on the right) with three
nodes. The outputs actually feed into the delta nodes described earlier; however,
the delta layer is only used during training and is responsible for sending difference
between the target and actual signals to each node. There is an additional input to
all hidden and output nodes called the bias, which sets thresholding for node firing.
The input and influence of the bias is always 1, so the connection weight is simply
added to the sum of the node.

Supervised learning networks operate in two modes: training and evaluation. In
training mode, a randomized percentage of the data, normally 80–90 %, is pre-
sented to the neural network. Weights are adjusted to minimize the overall error
between the target data and the actual output of the neural network. When the error
has been sufficiently minimized, the other 10–20 % of data is used to test how well
the network has learned the concept. This accuracy of the neural network on the
test dataset is a measure of how well the neural network generalizes. Cross vali-
dation can also be used to better characterize the network’s generalization capa-
bility. For example, completing only a single test without any cross validation has
a possibility that the dataset was created with test vectors nearly identical to the
ones used to train the network. This would be a very biased test case and is the

Fig. 5 Network structure
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reason that some method of cross validation is normally used. Cross validation
trains the network multiple times, holding back a different test set for each session
and provides assurance that the network has learned correctly. It also gives an
indication that the size of the dataset is sufficient for the concept being learned.

Both the training and the test datasets contain an input vector and a target
vector. The network completes an epoch when all the vectors in the training
dataset are presented to it. Normally, the order of the training vectors are then
randomized and another epoch is completed. This process repeats until the desired
error between the target and actual output of the network meets user defined
requirements. There are two methods of training: on-line and batch mode. In on-
line training, the weights are adjusted after each input vector is applied. On-line
training could potentially be very fast, however, if the dataset is very large, and the
concept complex, then the neural network may have problems learning. Batch
mode only updates the weights only at the end of an epoch. While very slow, this
method better portrays the overall gradient of the error surface. CLA uses both of
these learning methods; the one applied is based on the characteristics of the
problem and the dataset.

For the on-line method, consider the input vector represented by X and con-
taining n number of elements. These inputs are real valued numbers and a dataset
would contain multiple input vectors resulting in a 2D array or matrix. Every input
vector in the dataset must contain the same number of elements. When the input
vector is applied, the network evaluation proceeds layer by layer starting with the
first hidden layer and ending at the output layer. Equation 4 shows the formula for
CLA node evaluation (for further clarification refer to Fig. 1).

DPj ¼
Xn

i¼0

ðxj;iÞðsj;iÞðwj;iÞ
 !

þ wbias ð4 : CLA node evaluationÞ

f ðDPjÞ ¼ ThresholdðxÞ; atanðxÞ ð5 : Activation functionÞ

In Eq. 4, x is the ith input to the jth node, s is the influence of the connection,
and w is the synaptic weight. The CLA node computes a dot product or multiply
accumulate operation on all of its inputs, adds the bias, then applies the activation
function to the dot product to determine the actual output. Equation 5 shows that a
threshold function can be used as the node’s activation function. CLA also has the
unique ability to learn non-linearly separable concepts using a multi-layer network
consisting of only threshold nodes. It is also worth noting that the s and w values
cannot be combined while in training mode—the influence reflects the system’s
environment and scales the input’s contribution to the node. However, after
training is complete, the influence and weight could be combined and would
provide improved performance.

Systematically, the CLA evaluation process is explained as follows: for node j
loop, through all the nodes connections, multiplying the input, influence, and
weight values, sum the result and add the bias. Apply the activation function to this
result and do this for every node in the layer. This continues for every layer in the
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network until the output layer is reached, meaning the network has been evaluated
and the actual values are Youtput

n . Using the actual outputs and the targets values
from the training data, the node’s direction of learning can be computed. The
formula for the direction calculation is shown in Eq. 6.

Dirl
j ¼

Poutputs
i¼0 ðTargeti � ActualiÞSj;i

outputs
ð6 : Learning directionÞ

This equation calculates the mean learning direction Dirl
j

� �
of the jth node on

the lth layer. The delta value (Target-Actual) for the ith output is scaled by the
influence S of the ith delta node connection. This is done for all the outputs
connected to the node, each result is summed together and the total sum is then
divided by the number of outputs. The mean learning direction is not dependent on
intermediate calculations from consecutive layers like back propagation. This
implies that given enough hardware resources, all the nodes in the neural network
could be trained concurrently.

The next value computed is the derivative of the atan’(DP), which is similar to
the back propagation computation of partial derivatives using the chain rule. In
Eq. 7 DP is the dot product as calculated in Eq. 4. The computation contributes to
a unique learning rate for each node in the network and also bounds the synaptic
weight values. As the dot product of the node increases, the amount of learning is
reduced non-linearly similar to the influence (see Fig. 2).

Atan0ðDPj;iÞ ¼
1

1þ ðDP2
j;iÞ

ð7 : Arc tangent derivativeÞ

The arc tangent derivative is the last calculation needed to complete the weight
update. For each node in the neural network a delta change amount is calculated as
shown in Eq. 8. This is the total amount of change the node will make and is then
scaled by each connection in proportion to its impact (see Eq. 9).

Dj ¼ g
Dirj

ð1þ DP2
j Þ

ð8 : Node change computationÞ

wj;i ¼ wj;i þ Djðxj;iÞðsj;iÞ ð9 : Weight updateÞ

In Eq. 9, wj,i is the weight of the ith input, g is a constant learning rate of the
network, xj,i is the ith input of the node and sj,i is the associated influence of the
connection. The calculation is repeated for all connections to the node, then for all
the nodes in the network and completes the weight modification for the error
produced by the input vector. This process continues for each input vector in the
training set and the accumulated mean squared error (MSE) is returned at the end
of each epoch. Equation 10 shows the MSE calculation, where N is the number of
input vectors in the dataset, O is the number of outputs, target is the expected
output value, and actual is the network output.
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MSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

PO
j¼1ðtargeti;j � actuali;jÞ2

q

NO
ð10 : Mean squared errorÞ

The neural network is trained epoch by epoch until the MSE is reduced to a user
defined value. The network is then tested to ensure it generalizes correctly. The
test vectors are presented consecutively and the neural network is evaluated; any
errors recorded are presented to the user. Here some form cross validation would
ensure the generalization capability of the network, but that requires the neural
network to be trained and tested repeatedly by selecting different training and test
vectors from the dataset.

Although CLA brings many benefits to supervised learning, it still has the
discussed weakness of being a black box. Neither designer nor end user under-
stands the reason for the classification. Even with the testing and cross validation
methods, CLA still faces the ‘curse of dimensionality’: when the input vector has a
high number of elements and the number of input vectors is proportionately small,
there is a good chance there will be coincidental correlations that have nothing to
do with the desired concept. The IMAP visualization addresses this issue by
showing how each element of an input vector contributes to a particular output
value (classification). If the neural network had five outputs, there would be five
unique importance maps created for the applied input vector. The importance maps
created are the same size as the input vector, and can be represented in 1, 2 or even
3 dimensions. To illustrate the usefulness of this tool, consider an example using
the face images data set downloaded from the University of California Irvine’s
machine learning repository. There are 640 greyscale images each at a resolution
of 120 9 113 pixels, for a total input vector length of 13,560. The image values
were normalized from -1 to 1 and the network was trained to identify people
wearing sunglasses. The CLA achieved *96 % accuracy against this dataset.

In Fig. 6, the green overlayed dots on the screen indicates those pixels were
important to be dark and the red indicates they were important to be light for the
classification. Clearly, the concept of wearing sunglasses has not been learned
completely, since there are many important elements not on the facial region.
While the network achieves a *96 % accuracy on test cases and may indicate the
concept has been learned, the importance map shows considerably more infor-
mation. Figure 7 shows the IMAPs for the a needle in a haystack (NIH) dataset, a
synthetic dataset where a single pixel is correlated to the output. The NIH data
represents a set of 16 9 16 8-bit greyscale images.

Figure 7 shows how the IMAP can take a highly dimensional dataset and
display the single element responsible for the output. Also, in both previous cases
the IMAP can be used to reduce the dimensionality of the dataset. Eliminating
unneeded input vector elements directly reduces the noise and leads to a more
stable neural network. Dimensionality reduction also decreases the amount of
computation required to train and evaluate the neural network. A single IMAP
alone should not be used to reduce dimensionality, since the IMAP shows the
important input elements for a particular input vector. A more sound approach
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would be to average all the correctly classified vectors for a single output state (for
NIH all vectors correctly classified as a 1). The average IMAP for this classifi-
cation shows a more general concept of what the neural network considers
important. Using the reduced input vectors may cause overall accuracy of the
neural network to decrease, but the errors that occur may help identify incorrectly
labeled input vectors or outliers. For all of these reasons, IMAPs prove to be a very
useful diagnostic tool with profound impacts on fielded systems.

IMAPs are also be extremely useful for the users of the neural network. Nor-
mally, a neural network system delivers classification without explanation. In an
anomaly detection system, the analyst only receives a classification of anomalous
behavior and would need to look through the highly dimensional data to verify it is
truly anomalous. If the network is wrong, the user has no idea what caused the
error. This can be frustrating and lead to the user having a lack of confidence in the
system. However, IMAPs would greatly reduce the analyst’s search space,
showing the user exactly why it classify the data as anomalous. Even if the
classification is wrong, the user understands why and can see how the network
improves over time—the network interacts with the user. This interaction can lead
to increased customer confidence in the system and a willingness to continue to
improve the system.

Fig. 6 IMAPS of sunglasses recognition

Fig. 7 NIH IMAPs
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There are two different methods to build IMAPs; top-down and bottom-up.
Both end up with the same result, but depending on your network configuration
one may perform better. The top-down implementation uses a recursive algorithm
that propagates from the output all the way down to the inputs computing each
input elements importance. The bottom-up approach is a little more straightfor-
ward and will be discussed in detail. The first thing that needs to be done is store
the dot product of each of the output nodes, then set an element in the input vector
to 0, re-evaluate the network and subtract new output from the original. This
difference is the impact that particular element had on each of the outputs. Once
this is accomplished for every element in the input vector, the impacts are then
normalized for each output IMAP. Below is a snippet of Python code to implement
the building of an importance map.

This chapter discussed the difference between the traditional algorithmic
approach to problem solving and the neural networks approach. It discussed the
biological grounding for adding an influence on each of the neural networks
connections and discussed the resulting emergent behavior. The chapter then
explained some general principles of how to use neural networks, as well as the
specifics of implementing the CLA. Finally, the IMAP algorithm was discussed
and explained how this visualization algorithm is very useful to both the neural
network designer and the end user. It was then discussed how the IMAP can be
used to mitigate the curse of highly dimension data and give insights on concept
the neural network has learned. With this information you should be able to
harness the enhanced capability of these algorithms and apply them to your
applications.
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Hardware Accelerated Mining
of Domain Knowledge

Tanvir Atahary, Scott Douglass and Tarek M. Taha

1 Introduction

Computer aided decision making is becoming increasingly important in a variety
of applications. Two particular ones are in making sense of large amounts of data
and in decision making in autonomous systems. Although humans are very good at
decision making, computer aides are highly useful when dealing with large
amounts of data and when high speed decision making is needed.

This chapter introduces a cognitively enhanced complex event processing
(CECEP) architecture being developed at the Air Force Research Laboratory
(AFRL) and examines the acceleration of this architecture to enable high speed
decision making. The second section of the chapter describes the research effort
underlying the development of the CECEP architecture. This description of the
AFRL research effort contextualizes the research discussed later in the chapter and
clarifies the importance of constraint satisfaction problem (CSP) acceleration
within the architecture. The third section of the chapter formally defines CSPs [1–
4] and illustrates the role the solution of CSPs play in the architecture. Example
cognitive domain ontologies (CDOs), or formal representations of structural and
relational domain knowledge, will show how CSP enables: (1) activity monitoring;
and (2) inference from evidence to likely causes. Activity monitoring is a valuable
capability in CECEP models and agents that are required to identify signatures of
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intent. Inference from evidence to likely causes, a type of inference referred to as
abduction, is a valuable capability in models and agents that are required to gather
and make sense of observational data. Both capabilities can be exploited in cyber/
physical system intrusion detection. The fourth and fifth sections of the paper
examine related research efforts and examine the details of GPGPU architectures
utilized. The sixth section describes research efforts to accelerate CSP in the
CECEP architecture. This section explains how algorithms responsible for CSP in
the CECEP architecture have been parallelized and evaluated on multi-core
computers and GPGPUs. The seventh section provides results and analysis of the
acceleration efforts while the last section concludes with a summary of findings.

2 Large-Scale Cognitive Modeling in AFRL

For the last 3 years, an AFRL Large-Scale Cognitive Modeling (LSCM) research
effort has worked to close capability gaps retarding the development and fielding
of advanced training, automated sense making, and decision support capabilities
built using cognitive models and agents. Generally, the LSCM initiative has
endeavored to enhance and accelerate the practice of cognitive modeling in AFRL.
Specifically, the LSCM initiative has researched and developed:

(a) Domain-specific languages (DSLs) tailored to the needs of cognitive modelers.
(b) Authoring environments in which users employ these DSLs to specify models

and agents.
(c) Code-generation technologies that transform models and agents specified in

these authoring environments into executable artifacts.
(d) A cognitively enhanced complex event processing (CECEP) architecture in

which models and agents are executed.
(e) A net-centric associative memory application [5] enabling models and agents

executing in the CECEP architecture to store and remember declarative
knowledge.

(f) A constraint-based knowledge representation and mining application [6] that
allows agents executing in the CECEP architecture to produce and recognize
actions using domain knowledge rather than fixed rules.

(g) Analysis and visualization capabilities that help cognitive scientists under-
stand and analyze models functioning more like autonomous agents than
programs.

To reduce model and agent development costs in AFRL research efforts, the
LSCM research initiative is developing a DSL called the research modeling lan-
guage (RML). The RML DSL is used by AFRL cognitive scientists to specify
models and agents that execute in a net-centric CECEP architecture. The RML has
been developed using the Generic Modeling Environment (GME); a meta-mod-
eling tool for creating and refining domain-specific modeling languages and pro-
gram synthesis environments [7–9].
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In order to maximize scalability and interoperability during execution/simula-
tion, RML and the GME-based authoring environment require users to conceive of
and specify their models and agents as complex event processing agents. The
graphical/textual RML DSL allows cognitive modelers to efficiently specify
models and agents in this way using representations of:

Events: objects that serve as records of activities in a system. Objects capture the
details of events with attributes and data properties. Event objects can be used to
represent data that a decision aid is making sense of through inference and
hypothesis generation.
Event Patterns: templates matching one or more events in an event cloud con-
stituting a representation of context. Event patterns can be used to enable a
decision aid to detect correlational, temporal, and causal relationships between
events representing a decision situation.
Event Pattern Rules: associations specifying actions that occur after an event
pattern is matched with a subset of events in an event cloud. Event pattern rules
can be used to enable a decision aid to produce abstract events that combine and
aggregate attributes of event patterns.
Behavior Models: sets of event pattern rules arranged into finite state machines
that explicitly represent behavior-specific combinations of cognitive state, con-
textual factors, alternative courses of action, and failure. Behavior models can be
used to enable a decision aid to monitor simple, complex, concurrent, and hier-
archically organized activities and therefore make sense a complex decision
situation.
Cognitive Domain Ontologies: representations of domain knowledge capturing: (1)
entities, structures, and hierarchies in a domain; and (2) relations between these
entities. Cognitive domain ontologies (CDOs) can be used to represent constraint
knowledge a decision aid can process in order to develop and refine hypotheses
relating observational data to likely causes.

Modeling in RML is based on the specification of procedural knowledge
(behavior models) and domain knowledge (CDOs). Simulation of RML models
and agents is based on the execution of code artifacts produced with code gen-
erators in the CECEP architecture. The CECEP architecture consists of the fol-
lowing central net-centric components:

soaDM: an associative memory application that allows RML models and agents to
store and retrieve declarative knowledge. Declarative knowledge is represented
and processed in a semantic network [5].
soaCDO: a knowledge representation and mining application that allows RML
models and agents to store and exploit domain knowledge. Domain knowledge is
represented in CDOs and processed by a constraint-satisfaction framework [6].
Esper: a complex event processing framework that allows RML models and agents
to base actions on context assessment and procedural knowledge. Procedural
knowledge is represented in RML behavior models and processed using pattern
matching and event abstraction capabilities provided by Esper [10].
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Through these components, the CECEP architecture incorporates model and
agent capabilities based on declarative, procedural, and domain knowledge pro-
cessing into the Esper framework. The resulting event-driven architecture is an
advanced cognitive modeling and simulation framework with which AFRL cog-
nitive scientists can develop and field decision aids and instructional technologies
based on cognitive models and agents. A functional representation of the CECEP
architecture is shown in Fig. 1.

The CECEP architecture includes a number of IO ‘‘Adapters’’ or event input/
output streams. These adapters allow models and agents specified in RML to be
integrated into software-based instructional systems. The architecture includes
event sources based on soaDM, soaCDO, and Esper. RML behavior models
interacting with Esper underlie agent logic. CDOs processed in soaCDO underlie
domain knowledge. Finally, semantic networks processed in soaDM underlie
declarative memory. Figure 1 illustrates with arrows how these event sources
produce events through: (a) the execution of agent logic; (b) the querying of
databases containing long-term knowledge; (c) the mining of domain knowledge;
and (d) interactions with a large-scale declarative memory. It is these event sources
based on agent logic, declarative memory, domain knowledge, and databases that
‘‘cognitively enhance’’ CEP in CECEP. The event cloud (a form of knowledge
blackboard or working memory) and pattern matcher (a form of rule engine) in the
architecture are technologically realized through Esper.

Models and agents specified in the RML authoring environment are not directly
executed. RML specifications are instead translated into executable code artifacts
in the following ways:

Declarative Knowledge: is specified as events and relations and processed by code
generators that produce files that configure the soaDM semantic network.
Procedural Knowledge: is specified as behavior models and processed by code
generators that produce NERML, a text-only DSL formally equivalent to RML
that is then translated into Java. Code generation is divided into these steps to
support modelers that prefer to specify models and agents directly in NERML.

Fig. 1 The CECEP
architecture in which RML
models and agents are
executed
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Java files generated from either RML or NERML interact with Esper and govern
the behavior of models and agents.
Domain Knowledge: is specified in CDOs and processed by code generators that
produce constraint-networks for use in soaCDO.

soaCDO was originally developed in screamer+ [11], a LISP based non-
deterministic programming environment that utilizes chronological back tracking
algorithms. Screamer+ is fairly efficient in its processing, but carries out evalua-
tions in a serial manner. Complex CDOs can enable powerful autonomous agents,
but have large state spaces. These can be slow to search using the serial search
algorithms utilized by the screamer+ environment.

This chapter examines how CDOs can be accelerated to enable more powerful
autonomous agents by converting CDOs into constraint networks and solve them
using a parallel generate and test exhaustive depth first search algorithm on
multicore hardware. Two computing platforms were examined: Intel Xeon pro-
cessors and NVIDIA GPGPUs (general purpose graphical processing units).
GPGPUs can have several hundred processing core and thus provide significant
speedups over Intel Xeon processors (which typically have less than 10 cores).

3 Constraint Satisfaction Problems in the CECEP
Architecture

3.1 Definition of CSPs

A CSP [1–4] consists of 3 components: (1) a set of variables, (2) a finite set of
values for each of the variables, and (3) a set of constraints restricting the values
that the variables can take simultaneously. A feasible solution to a CSP is found
when each variable can be assigned a value that meets the constraints. A CSP
could be solved with an objective to find one solution, all solutions, or an
approximate solution. Depending on the solution space, a CSP is classified as
having a finite or infinite domain.

Finite domain CSPs are solved using systematic search algorithms [12–16].
These algorithms can solve a problem or prove that no solutions exist. Approxi-
mate solutions are typically sought for infinite domain CSPs through non-sys-
tematic search approaches [3, 13]. These infinite domain searches are typically
incomplete and thus cannot guarantee that a solution will be found, or that one
exists. The CECEP architecture requires finite domain CSPs because all con-
straints within the system need to be satisfied, and hence, exact solutions are
needed.
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3.2 CSP and the Processing of Domain Knowledge
Representations in CECEP

RML intelligent agents can effectively use behavior models to trace actions, make
sense of data/observations, and determine courses of actions that match goals to
situation affordances. Behavior models are particularly effective in task contexts
where it is relatively easy to capture anticipated (correct or incorrect) sequences of
action. In contexts where multiple actions are appropriate, it can be difficult to
specify RML behavior models covering large spaces of alternative actions. Agents
executing in the CECEP architecture use CDOs to track and comprehend actions
under these circumstances. This section demonstrates how a CDO can be used to
capture structural and relational domain knowledge in such a way that constraint-
satisfaction processes in soaCDO allow an RML instructional agent to: (1) make
sense of actions and intentions; and (2) determine the appropriateness of actions
and intentions. Capturing and processing domain knowledge this way in the CE-
CEP architecture greatly reduces the burden of behavior model specification.

Figure 2 shows a CDO capturing structural domain knowledge related to a
track/aircraft classification task. CDOs capture structural domain knowledge in
tree-like structures consisting of:

Entities: indicates by gray circles. Entities represent domain constructs. In Fig. 2,
entities describe the structural attributes of the set of track (or aircraft) entities that
are to be classified. Note that in CDOs, the root entity determines the entity set of
interest.
Structural Decompositions: indicated by rectangles labeled ‘‘and.’’ Decomposi-
tions represent fixed entity sub-structures. In Fig. 2, a track_decomposition indi-
cates that track entities are comprised of position, movement, ews, model, and
assessment sub-entities. Additionally, assessment entities are comprised of threat
and type sub-entities.
Choices: indicated by rectangles labeled ‘‘xor.’’ Choices represent alternative
entity sub-structures. In Fig. 2, ews_choices, model_choices, threat_choices, and
type_choices capture alternative sub-entity choices the trainee will ultimately have
to choose between. For example, to classify a track, an agent will likely have to
determine its ews choice and certainly have to determine its threat and type
choices.
Entity Properties: indicated by attached ‘‘*’’ values. Attached values represent
entity properties.

CDOs additionally capture relational domain knowledge in a constraint lan-
guage. Domain-specific constraints specified in the constraint language express
complex relationships between entities represented in the tree-like structure.
Table 1 lists example constraints that capture a sub-set of the classification ‘‘rules’’
governing track/aircraft classification.
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CDOs are transformed into constraint networks by soaCDO. The mapping
between CDOs translated into constraint networks and the components of a CSP
previously defined are:

(1) CSP variables

a. ‘‘choices’’ and ‘‘attached variables’’ in a translated CDO,

(2) CSP variable values

a. ‘‘entities’’ below choices,
b. ‘‘values’’ that attached variables can take on,

(3) CSP constraints

a. ‘‘constraints’’ expressing additional relational domain knowledge in a
CDO.

These constraint networks are then searched over by a non-deterministic CSP
constraint solver. CDO ‘‘solutions’’ are conveyed as sets of events into the CECEP

Table 1 Domain-specific constraints integrated into the track entities cognitive domain ontology

Name Specification

C1 iff ews_choices is arinc_564 then model_choices is b_747
C2 iff ews_choices is apq_120 then model_choices is f_4
C3 iff ews_choices is apg_63 then model_choices is f_15
C4 iff ews_choices is foxfire then model_choices is mig_25
C5 if model_choices is f_4

then threat_choices is assumed_hostile hostile assumed_friendly or friendly
type_choices is strike

C6 if model_choices is f_15
then threat_choices is assumed_friendly or friendly
threat_choices is not (assumed_hostile or hostile)
type_choices is strike

C7 if model_choices is b_747
then threat_choices is friendly
threat_choices is not (assumed_hostile or hostile)
type_choices is commercial

C8 if model_choices is mig_25
then threat_choices is assumed_hostile or hostile
threat_choices is not (assumed_friendly or friendly)
type_choices is strike

C9 if speed is between 350 and 550,
altitude is between 25000 and 36000
then model_choices is b_747
threat_choices is friendly
type_choices is commercial
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event cloud through an adapter. Choices can be limited through ‘‘assertions’’ that
fix the value of a choice or attached variable value. Constraint propagation uti-
lizing assertions can produce solutions that can be exploited by an RML model or
agent. For example, when an RML agent is executing in the CECEP architecture, it
can use task environment events to assert the values of choices in a CDO. Table 2
shows the impact assertions can have.

Table 2 shows how constraint-based search in soaCDO can determine from
observed speed and altitude track values that a classification agent should assess
the track as friendly and commercial. Notice how the bi-directional implication
(iff) underlying C1 in Table 1 allows a classification agent to infer (through the
exploitation of constraint knowledge) that the ews_choice will be arinc_564.

In contexts where ambiguity or equally effective actions are possible, it would
be virtually impossible to develop an effective RML agent using only behavior
models. In such contexts, it is often the case that multiple actions should be
considered adequate. Specifying all possible event patterns and event pattern rules
under these circumstances would be costly and error prone. Domain knowledge in
CDOs significantly decreases the burden of specifying classification agents under
these circumstances. Table 3 shows how constraint-based search in soaCDO can
determine from observed ambiguous speed and altitude and ews_choice track
values that a classification agent can appropriately classify a track 4 ways.

Under these circumstances, constraint-based search in soaCDO allows the agent
to ‘‘mine’’ courses of action in structural/relational domain knowledge in CDOs
rather than forward-chaining through procedural knowledge in behavior models.
In other words, constraint-based search in soaCDO allows the agent designer to
develop: (1) a representation of domain knowledge that will allow an agent to
determine ‘‘what’’ actions are contextually appropriate; and (2) a simplified set of
behavior models that represent ‘‘how’’ to procedurally realize chosen actions.
Separation of the ‘‘what’’ and ‘‘how’’ concerns makes it significantly easier to
develop agents that manage ambiguity or must consider equally effective actions.

Figure 3 shows a CDO that allows a CECEP agent to exploit inference from
evidence to likely causes. Domain-specific constraints similar to those in Table 4
allow the agent to infer from evidence obtained from binary code inspection to
expectations about binary behavior. Follow-on ‘‘troubleshooting’’ actions

Table 2 Illustration of how speed and altitude assertions allow an agent to determine the single
correct track/aircraft classification

Assertions Speed is 500
altitude is 30000

Solutions Track
position {* altitude = 30000}
movement {* speed = 500}
ews {ews_choices = arinc_564}
model {model_choices = b_747}
assessment {threat_choices = friendly}, {type_choices = commercial}

Note solution is an abstraction of events returned by soaCDO
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producing additional evidence from a targeted analysis of binary behavior allow
the agent to strengthen or weaken hypotheses about likely binary_classification.

Agents similar to the one just discussed can exploit declarative, procedural, and
domain knowledge in the CECEP architecture while monitoring, classifying, and
making sense of complex patterns of events in an event cloud. Adapters can
integrate packet sniffers, instrumented reverse engineering tools, and interaction
with humans into the CECEP architecture. CECEP agents could have a substantial
impact as monitoring agents in net-centric computing infrastructures or reverse
engineering tools. To have these impacts, CECEP agents must be able to represent
and mine large and complex CDOs. To ensure the feasibility of mining of large
CDOs, a high-performance CSP capability must be developed and incorporated
into soaCDO. The next section describes an effort to do precisely this.

Table 3 Illustration of how speed, altitude, and ews_choices assertions allow a tutor agent to
determine the courses of action a trainee can undertake when the threat_choices aspect of a track
is ambiguous

Assertions Speed is 500
altitude is 15000
ews_choices is apq_120

Solutions Track
position {* altitude = 15000}
movement {* speed = 500}
ews {ews_choices = apq_120}
model {model_choices = f_4}
assessment {threat_choices = hostile}, {type_choices = strike}
Track
position {* altitude = 15000}
movement {* speed = 500}
ews {ews_choices = apq_120}
model {model_choices = f_4}
assessment {threat_choices = friendly}, {type_choices = strike}
Track
position {* altitude = 15000}
movement {* speed = 500}
ews {ews_choices = apq_120}
model {model_choices = f_4}
assessment {threat_choices = assumed_friendly}, {type_choices = strike}
Track
position {* altitude = 15000}
movement {* speed = 500}
ews {ews_choices = apq_120}
model {model_choices = f_4}
assessment {threat_choices = assumed_hostile}, {type_choices = strike}
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4 Related Acceleration Work

The process of traversing a search tree for CSPs falls under the general category of
graph search. Significant work has been done in the acceleration of generalized
graph search and tree search on various parallel computing platforms [17–24]. For
CSP acceleration specifically, significant work has been done on infinite domain
CSPs; in particular Boolean satisfiability (SAT) [2] problems have been examined
extensively [25–29]. The acceleration of finite domain CSPs, however, has not
received significant attention.

Several recent studies have examined the acceleration of finite domain CSPs
[30]. Rolf and Kuchcinski [31] utilized up to eight Intel Xeon processors to
explore two forms of parallelization: parallel consistency for global variables [32]
and parallel search. In [33] they examine the combination of these two approaches
and achieved a speedup of between two and six on eight processors over one
processor. The algorithms examined were Sudoku, LA31, and n-Queens. A limited
set of GPU based acceleration of board games (Sudoku, connect-4, reverse) have
been released by NVIDIA [34].

5 GPGPU as an Acceleration Device

NVIDIA’s CUDA GPU architecture consists of a set of scalar processors (SPs)
operating in parallel. Eight SPs are organized into a streaming multiprocessor
(SM), with several SMs on a GPU (see Fig. 4). Each SM has an internal shared
memory along with caches (a constant and a texture cache), a multi-threaded
instruction (MTI) unit, and special functional units (SFU). The SMs share a global
memory. A large number of threads are typically assigned to each SM. The MTI
can switch threads frequently to hide longer global memory accesses from any of
the threads. Both integer and floating point data formats are supported in the SPs.
The Tesla C2070 GPGPU [35] used in this study has a single graphic processing
chip (based on the NVIDIA Tesla GF100 GPU) with 448 CUDA cores [34]. It is

Table 4 Domain-specific constraints integrated into the potential_malware entities cognitive
domain ontology

Name Specification

C1 if syscall_bypass_choice is process_list
then stealth is process_concealment
type_binary_classification_choice is rootkit_component

C2 if initialization_choice is pe_header
then persistence is halt_resistent

C3 if binary_code_choice is normal_code
then binary_classification_choice is nominal
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capable of 1.03 TFLOPs of processing performance and comes standard with
6 GB of GDDR5 memory at 144 GB/s bandwidth.

In the CUDA programming language, tasks are divided between the CPU host
and GPGPU device. Typically the host code calls the GPGPU device code (called
the kernel). To be effective a kernel should have thousands of threads distributed
across the CUDA cores on the GPGPU. Threads are lightweight, with low
switching costs. Each CUDA core runs a single thread at a time and switches to
other threads whenever there is a memory access delay. Running thousands of
threads on the GPGPU allows cores to hide memory access latencies by switching
to other threads that are not waiting on memory accesses. In the NVIDA CUDA
environment, identical threads are grouped into blocks, while a group of identical
blocks forms a grid. In the systems studied, a CUDA kernel supports 1 grid only.
Thus a kernel can have a very large number of identical threads running under it,
leading to massive amounts of parallelism.

6 Hardware Acceleration of CDOs

In order to accelerate CDOs through specialized parallel hardware, it is necessary
to convert a CDO into an equivalent constraint network for solving. The searching
of this constraint network based on the input constraints provides the solution
sought. This section starts by examining how a CDO can be converted to a CSP

Fig. 4 GPGPU architecture
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and then examines how the search of the CSP can be parallelized on to specialized
parallel hardware.

6.1 Representing CDOs as CSPs

In this study, a CDO is represented as an equivalent tree structure that can be
searched through a CSP. Consider the example CDO in Fig. 5 describing a set of
ball entities. Figure 6 shows a multi-layered tree representation of this CDO, with
each layer corresponding to a specialization. The total number of leaf nodes in this
tree represents all possible types of ball entities. For instance, the node labeled 14
is a brown colored, medium sized football.

A user would typically search for one or more solutions from a CDO based on a
set of constraints. For the CDO in Fig. 5, a set of constraints could be:

If sport is baseball, then size is small and color is white.
If sport is football, then size is medium and color is brown.
If sport is basketball, then size is large and color is orange.

Finding the solution to the CDO can be treated as solving a constraint satis-
faction problem to determine which leaf node(s) within the search tree in Fig. 6
satisfy the user constraints. An exhaustive depth first search algorithm was used to
check each leaf node for a match to the user constraints.

6.2 CSP Search Algorithm

An exhaustive depth first search algorithm was written to search for solutions to
the CSP within the search tree, as given by Algorithm 1. In this algorithm the
number of leaf nodes within the tree is given by N, while the number of choices
within the tree is given by M. The algorithm makes N iterations, where each
iteration evaluates one leaf node within the tree (line 1). For each leaf node i, the
choices associated with that node are first generated (line 2). Thus in Fig. 6, when
i is 14, the values of choices(1 to M) are {football, medium, brown}, with M = 3
as there are three choices.

Algorithm 1

CSP search algorithm

1. For i = 1 to N
2. choices(1 to M) = generate_choice_values(i);
3. If (constraints_satisfied(choices(1 to M), constraints(1 to P)) == TRUE)
4. Add i to solution_space;
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Once choice values are generated, they are compared against each of the
constraints provided (line 3). In Algorithm 1, the number of constraints is given by
P. If the choices associated with the leaf node under evaluation satisfy all the
constraints, then the index for that node is added to the solution_space list (line 4).

A C implementation of the algorithm was developed and tested on an Intel
Xeon processor. The output of the C program was verified to be correct by
comparing to a screamer+ evaluation of the CDO (as in Fig. 5). The C program
was about 30 % faster than the screamer+ runtime.

6.3 Parallelizing Search

Each iteration in Algorithm 1 evaluates whether a leaf node within a search tree
(such as Fig. 6) satisfies all the constraints provided. This evaluation can be carried
out independently for each leaf node. A multi-threaded C implementation of the
algorithm was developed on a six core Intel Xeon X5650 2.66 GHz processor,
where the leaf nodes in the tree were distributed across the threads. The POSIX
thread library was utilized in this code. As shown in the results section, large trees
gave a linear speedup based on the number of active threads within the system.

Fig. 5 CDO representing properties of sports balls

Fig. 6 Tree representing different combinations of properties in the sports balls CDO in Fig. 5
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A GPGPU implementation of the algorithm was developed using the NVIDIA
CUDA framework. This study utilized CUDA 4.0 with the NVIDIA C2070
GPGPU, where a CUDA kernel is able to process 65535 9 1024 (about 67 million
threads) threads. Each CUDA thread evaluated only one leaf node. Since the
constraint satisfaction calculations for each leaf node in the search tree is inde-
pendent, the threads did not need to synchronize with other each other.

The runtime of a GPGPU application can be reduced significantly by data
transfers between the GPGPU memory and the host system memory. In this study,
the amount of data transfers was minimal because the CDO/CSP and the con-
straints could be described by small data structures.

These data items needed to be transferred only once into the GPGPU global
memory before the start of the search kernel. Once execution was completed, only
the solutions had to be transferred back to the host system memory. In this study,
the number of solutions was typically small. When there were more solutions, the
search would be aborted after a limited set of solutions were found.

A multi-GPGPU version of the program was developed where the host for each
GPGPU communicated with other hosts through MPI. The search tree leaf nodes
were distributed evenly amongst all the compute nodes through MPI. This was
carried out on the Condor cluster at the Air Force Research Lab (ARFL/RI) [36].
This is a heterogeneous cluster consisting of 84 servers, each with two NVIDIA
GPGPUs and 1716 Sony Playstation 3 based Cell processors. This study utilized
the C2070 GPGPUs on this cluster for the MPI based studies.

7 Results

To examine the impact of CDO complexity on runtime, five synthetic CDOs of
varying complexities were developed as shown in Table 5. Each CDO was similar
to the CDO in Fig. 5, except that the number of choices and entities under each
choice was changed. Five CDOs with 8 to 12 choices under the root entity were
developed. The number of entities under each choice was made the same as the
number of choices in the CDO. Thus the CDO in Fig. 5 has three choices, and each
choice has three entities under it. Table 5 shows the properties of the CSP trees

Table 5 Synthetic CDO’s and CSP’s Examined

CDO CSP tree

Choices Entities under each choice Tree levels Leaf
Nodes

8 8 8 2 9 107

9 9 9 4 9 108

10 10 10 1 9 1010

11 11 11 3 9 1011

12 12 12 9 9 1012
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corresponding to these CDOs. These CSP trees have the same number of levels as
choices in their corresponding CDOs. As shown in Table 5, the number of leaf
nodes increases exponentially with the number of choices in the CDO.

Table 6 and Fig. 7 show the runtime for searching through each entire CSP tree
in Table 5. The number of constraints for each case was set to the number of tree
levels. The 8 Xeon cores were utilized through multi-threading, while the 8
GPGPUs were used through MPI.

Table 5 shows that the number of leaf nodes increases logarithmically with the
tree size. This causes the logarithmic increase in runtimes seen in Fig. 7. For trees
with 10 levels, the execution time on one Xeon core was 2,512 s (approximately
42 min) and for trees with 11 levels it became 79,144 s (approximately 22 h). An
increase of just one level in the tree increased the computation time by almost 30
times. The Xeon runtime of the tree with 12 levels was estimated based on the
runtime of the smaller trees, as the actual runtimes were too long to run on
computers available.

Table 7 shows the speedup of the different parallel configurations in Table 6.
The multicore version of the code provided a speedup roughly equivalent to the

Table 6 Run time of search trees on different platforms

Tree
levels

Constraints 1 Intel xeon core 8 Intel xeon cores 1 GPU 4 GPUs 8 GPUs

10 10 2512 s 321 s 20 s 5.7 s 3 s
(42 min) (5 min 2 s)

11 11 79,144 s 9720 s 628 s 158 s 79 s
(22 h) (2.7 h) (10 min

28 s)
12 12 2,592,000 s* 328,320 s* 20,721 s 5400 s 2700 s

(30 days) (3.8 days) (5.75 h) (1.5 h) (45 min)

* Estimated CPU run time

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

8 9 10 11 12

E
ce

cu
tio

n 
T

im
e(

s)

Tree Levels

1 Xeon core 
8 Xeon core
1 GPU
8 GPUs

Fig. 7 Run time comparison
of CPU, multi-CPU and one
GPU

Hardware Accelerated Mining of Domain Knowledge 267



number of cores used (8 cores), indicating that the search process utilized is high
parallelizable. A single GPGPU provided speedups of over 125 times the Xeon
processor. The speedup with four and eight GPGPUs increased slightly with tree
size. This is likely to the overhead of MPI communications having a greater impact
on the smaller tree.

Given that the runtimes in Table 6 increase linearly with the number of nodes
within the search tree, a simple model can be developed to predict the runtimes for
larger trees. Eq. (1) represents the runtime in terms of the time to compute one
constraint on a GPU, the number of constraints provided by the user, the number of
nodes in the CSP search tree, and the number of GPUs utilized.

Execution time ¼ ðNumber of nodes in treeÞ � ðNumber of constraintÞ � ðTime required to compute one constraintÞ
Number of GPUs

ð1Þ

The results of this equation are plotted in Fig. 8 for different tree levels using 1,
4, and 8 GPUs. The results show that the measured data fall along the trend lines
from Eq. (1). The plot shows that the run time would increase exponentially with
problem size as expected. This makes a strong case of reducing the search space
through tree pruning appoarches.

Table 7 Speedups over single CPU (based on data in Table 6)

Tree levels 8 Intel xeon cores 1 GPU 4 GPUs 8 GPUs

10 7.8 125.6 440.7 837.3
11 8.1 126.0 500.9 1001.8
12* 7.9 125.1 480.0 960.0

* Speedup over estimated single CPU run time
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8 Conclusion

This chapter introduced a cognitively enhanced complex event processing (CE-
CEP) architecture being developed in the Air Force Research Laboratory (AFRL).
CECEP enables computer aided decision making through the mining of domain
knowledge. The cognitive domain ontology (CDO) data structure within this
architecture can require extremely long computational run times to search using
the situational constraints seen by an agent. This study examined the paralleliza-
tion of this search process onto multicore processors and GPGPU clusters.
Speedups of almost a 1000 times were seen using eight NVIDIA Tesla C2070
GPGPUs over one Xeon X5650 processor core. Speedups of this level will allow
more complex CDOs to be examined in real time on reactive agents and thus
enable systems with enhanced intelligence to be designed.
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Memristors and the Future of Cyber
Security Hardware

Michael J. Shevenell, Justin L. Shumaker, Arthur H. Edwards
and Robinson E. Pino

1 Introduction

Much of today’s cyber defense infrastructure exists as software executing on various
forms of digital hardware. Historically speaking this approach has been adequate,
yet it is widely acknowledged that the gap between new data and available pro-
cessing power is cause for great concern. Many different hardware acceleration
technologies have been successfully employed over the years to address this prob-
lem, these include programmable logic devices, graphics processors, vectorized
instruction sets as well as multi-core and distributed processing architectures. One
technology that is poised to narrow this gap is the memristor, a two-terminal analog
memory device. After the devices first tangible appearance in 2008 researchers have
identified several key areas in which memristors will have a significant impact with
cyber security being one. In the near term memristors will be utilized as binary
storage devices, whose performance will rival flash memory technology. It is also
very likely that memristive programmable logic gates will outperform existing
CMOS technologies. However, the most significant contribution from the memristor
is likely to be the exploitation of what is known as the nonlinear device region.

When used as binary devices, memristors are programmed using ‘‘set’’ and
‘‘reset’’ pulses. These ‘‘set’’ and ‘‘reset’’ pulses form low and high resistance states
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respectively. The device may be ‘‘on’’, ‘‘off’’ or somewhere in-between. Regard-
less of the whether the device is bipolar, unipolar or nonpolar each has a voltage
threshold such that when it is exceeded a change in resistance occurs. This is
known as the Nonlinear Device Region. Once the resistance is altered it remains in
that state, hence it has ‘‘memristance’’. Unfortunately, the NDR is rather chaotic
and cannot be captured by a simple low order curve fit. As research matures on
characterizing the NDR for different memristor materials it will become possible
to exploit memristance to its full potential. The memristance resolution is therefore
a function of material properties and the model governing its control. Many dif-
ferent material configurations of been derived in the development of these Metal–
Insulator/Oxide-Metal devices, each exhibiting unique properties. Switching
speed, resistance ratios and NDR behavior vary among the many material
implementations. The memristor therefore offers a multitude of capabilities for a
new class of analog computing device hardware where the stored value does not
require energy to maintain its integrity.

Researchers are now designing new analog computing architectures that exploit
the NDR in a manner that compliments existing CMOS technology for the purpose
of increasing performance and reducing power consumption. This is analogous to
the manner in which PGA’s are coupled with central processing units to speed up
parallel algorithms. A memristive computing architecture will have major impli-
cations toward improving the performance of cyber threat detection. One of the
envisioned computer architectures for performing threat detection draws from our
knowledge of the brain and its complex architecture. The brain is very good at
performing associations and making predictions. The cerebral cortex and neo-
cortex are largely responsible for these functions. As the functional understanding
of these regions in the brain improves it will lead to higher fidelity neural network
architectures. This does not mean the system will be intelligent, but should provide
for a more efficient computing architecture.

One concept that has been widely publicized about memristors is their ability to
mimic the behavior of a biological synapse. The strengthening and weakening of
the synapse is the result of an electrochemical response resulting from the time
differential in pre and post synaptic neuronal firing known as Spike Time
Dependent Plasticity. It has been shown, with varying success, that STDP neural
networks are able to function as a dynamically reconfigurable hardware able to
adapt to changing stimuli in situ. It is this type of dynamic hardware that is
necessary to meet the challenges of modern cyber threats. Regardless of the
training algorithm or network architecture it is important to note that a neural
network is an analog process in nature and should exist on analog hardware. While
analog Application Specific Integrated Circuits that mimic specific mechanisms
within the brain exist, none are utilizing the memristor as the fundamental com-
puting element commercially.

In order to transition from digital processor based computing to analog
memristor based computing researchers have many fundamental challenges to
overcome. Currently, a memristor based computer is not in existence; however
researchers are developing systems to emulate the neuromorphic parallel
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computing architectures envisioned for memristor technology. The first challenge
is to develop a suitable research framework to begin emulation experimentation
and characterization of a memristor based computer. The emulation of the
memristor computer must employ the following fundamental characteristics.

Memristor Computer Fundamental Characteristics:

• Learning: A memristor computer must be trained to learn an internal repre-
sentation of the problem. No algorithm is needed.

• Generalization: Training the memristor computer with suitable samples.
• Associative Storage: Information is stored on the memristor according to its

content.
• Distributed Storage: The redundant information storage is distributed over all

memristor neurons.
• Robustness: Sturdy behavior in the case of disturbances or incomplete inputs.
• Performance: Efficient massive parallel structure.

Researchers have engineered a range of frameworks which utilizes approaches
and techniques to satisfy the fundamental characteristics of a memrister computer.
The various frameworks have made successful attempts to emulate the memristor
computer by utilizing the neural network approach.

2 Basic Memristor Computer Neural Network Approach

Computers today can perform complicated calculations, handle complex control
tasks and store huge amounts of data. However, there are classes of problems
which a human brain can solve easily, but a computer can only process with a high
computational power. Examples are character recognition, cognitive decision
making, image interpretation and network intrusion detection. The class of prob-
lems suitable for emulating human activity is also suitable for the memristor
computer. One area of research investigation of the memrister computer is to apply
neural networks to network and host-based intrusion detection.

Network based intrusion detection attempts to identify unauthorized, illicit, and
anomalous behavior based solely on network traffic. A network IDS, using either a
network tap, span port, or hub collects packets that traverse a given network. Using
the captured data, the IDS system processes and flags any suspicious traffic. Unlike
an intrusion prevention system, an intrusion detection system does not actively
block network traffic. The role of a network IDS is passive, only gathering,
identifying, logging and alerting.

Host based intrusion detection attempts to identify unauthorized, illicit, and
anomalous behavior on a specific device. HIDS generally involves an agent
installed on each system, monitoring and alerting on local OS and application
activity. The installed agent uses a combination of signatures, rules, and heuristics
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to identify unauthorized activity. The role of a host IDS is passive, only gathering,
identifying, logging, and alerting.

The most important property of a property of a Neural Network is to auto-
matically learn coefficients in the Neural Network according to data inputs and
outputs. When applying the Neural Network approach to Intrusion Detection, we
first have to expose the neural network to normal data and to network attacks.
Next, we automatically adjust the coefficients of the neural network during the
training phase. Performance tests are then conducted with real network traffic and
attacks to determine the detection rate of the learning process.

Neural network can be used to learn users behavior. A neural network can learn
the predictable behavior of a user and fingerprint their activities. If a user’s
behavior does not match his activities, the system administrator can be alerted of a
possible security breech.

Unlike computers, the human brain can adapt to new situations and enhance its
knowledge by learning. It is capable to deal with incorrect or incomplete infor-
mation and still reach the desired result. This is possible through adaption. There is
no predefined algorithm, instead new abilities are learned. No theoretical back-
ground about the problem is needed, only representative examples.

The neural approach is beneficial for the above addressed classes of problems.
The technical realization is called neural network or artificial neural network
(ANN). They are simplified models of the central nervous system and consist of
intense interconnected neural processing elements. The output is modified by
learning. It is not the goal of neural networks to recreate the brain, because this is
not possible with today’s technology. Instead, single components and function
principles are isolated and reproduced in neural networks.

The traditional problem solving approach analyses the task and then derives a
suitable algorithm. If successful, the result is immediately available. Neural net-
works can solve problems which are difficult to describe in an analytical manner.
But prior to usage, the network must be trained.

Biological neural systems are an organized and structured assembly of billions
of biological neurons. A simple biological neuron consists of a cell body which has
a number of branched protrusions, called dendrites, and a single branch called the
axon as shown in Fig. 1. Neurons receive signals through the dendrites from
neighboring connected neurons [1]. When these combined excitations exceed a
certain threshold, the neuron fires an impulse which travels via an axon to the other
connected neurons. Branches at the end of the axons form the synapses which are
connected to the dendrites of other neurons. The synapses act as the contact
between neurons and can be excitatory or inhibitory. An excitatory synapse adds to
the total of signals reaching a neuron and an inhibitory synapse subtracts from this
total. Although this description is very simple, it outlines all those features which
are relevant to the modeling of biological neural systems using artificial neural
networks. Generally, artificial neuron models ignore detailed emulation of bio-
logical neurons and can be considered as a unit which receives signals from other
units and passes a signal to other units when its threshold is exceeded. Many of the
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key features of artificial neural network concepts have been borrowed from bio-
logical neural networks. These features include local processing of information,
distributed memory, synaptic weight dynamics and synaptic weight modification
by experience. An artificial neural network contains a large number of simple
neuron-like processing units, called neurons or nodes along with their connections.
Each connection generally ‘‘points’’ from one neuron to another and has an
associated set of weights [2, 3].

• Dendrites: Carry electric signals from other cells into the cell body
• Cell Body: Sum and threshold the incoming signals
• Axon: Signal transfer to other cells
• Synapse: Contact point between axon and dendrites
• Neurons: The neuron in neural networks is the equivalent to nerve cells in the

central nervous system.

Neural networks are models of biological neural structures. The starting point
for most neural networks is a model neuron, as in Fig. 2. This neuron consists of
multiple inputs and a single output. Each input is modified by a weight, which
multiplies with the input value. The neuron will combine these weighted inputs
and, with reference to a threshold value and activation function, use these to
determine its output. This behavior follows closely our understanding of how real
neurons work.

While there is a fair understanding of how an individual neuron works, there is
still a great deal of research and mostly conjecture regarding the way neurons
organize themselves and the mechanisms used by arrays of neurons to adapt their
behavior to external stimuli. There are a large number of experimental neural
network structures currently in use reflecting this state of continuing research.

In our case, we will only describe the structure, mathematics and behavior of
that structure known as the back propagation network. This is the most prevalent
and generalized neural network currently in use.

Fig. 1 Synapse of interconnection neurons [1]
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To build a back propagation network, proceed in the following fashion. First,
take a number of neurons and array them to form a layer [4, 5]. A layer has all its
inputs connected to either a preceding layer or the inputs from the external world,
but not both within the same layer. A layer has all its outputs connected to either a
succeeding layer or the outputs to the external world, but not both within the same
layer.

Next, multiple layers are then arrayed one succeeding the other so that there is
an input layer, multiple intermediate layers and finally an output layer, as in Fig. 3.
Intermediate layers, that is those that have no inputs or outputs to the external
world, are called [ hidden layers. Back propagation neural networks are usually
fully connected. This means that each neuron is connected to every output from the
preceding layer or one input from the external world if the neuron is in the first
layer and, correspondingly, each neuron has its output connected to every neuron
in the succeeding layer [2].

Fig. 2 Neural network
neuron model

Fig. 3 Neural network
layers
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Generally, the input layer is considered a distributor of the signals from the
external world. Hidden layers are considered to be categorizers or feature detectors
of such signals. The output layer is considered a collector of the features detected
and producer of the response. While this view of the neural network may be
helpful in conceptualizing the functions of the layers, you should not take this
model too literally as the functions described may not be so specific or localized.

Learning in a neural network is called training. One of the basic features of
neural networks is their learning ability. To obtain the expected result, the
network must reach an internal representation of the problem. Like training in
athletics, training in a neural network requires a coach, someone that describes to
the neural network what it should have produced as a response. From the dif-
ference between the desired response and the actual response, the error is
determined and a portion of it is propagated backward through the network. At
each neuron in the network the error is used to adjust the weights and threshold
values of the neuron, so that the next time, the error in the network response will
be less for the same inputs.

3 Learning Methods are Subdivided into two Classes

3.1 Supervised Learning

The network is trained with samples of input–output pairs. The learning is based
on the difference between current and desired network output.

3.2 Unsupervised Learning

The network is only trained with input samples, the desired output is not known in
advance. Learning is based on self-organization. The network autonomously
divides the input samples into classes of similar values

4 Emulation of the Memristor Computer

The memristor computer emulated neural network approach can be divided into
three basic deployment methods. The first basic deployment method uses software
based algorithms installed onto the traditional von Neumann CPU architecture
(VNCA) using x86 CPUs second, software based algorithms deployed on the
VNCA utilizing a Graphics Processing Units (GPUs) and third, a hardware
architecture deployed onto a field-programmable gate array (FPGA).
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5 Traditional Von Neumann CPU Architecture Approach

The most common deployment method is using neural networks on Linux
systems using multiple x86 CPUs or a cluster of computers which execute
custom neural network application software. The multiple CPU configuration is
usually one system and the cluster is usually configured in this manner. The
components of a cluster are usually connected to each other through fast local
area networks, each node (computer used as a server) running its own instance of
an operating system.

One of the important objectives of the CPU or Cluster approach is to parallelize
the training of the neural network by using a VNAC approach is to take advantage
of multiple systems and CPUs. The approach uses neural network simulators
which are software applications that simulate the behavior of artificial or biolog-
ical neural networks. They focus on one or a limited number of specific types of
neural networks. They are typically stand alone and not intended to produce
general neural networks that can be integrated in other software. Simulators
usually have some form of built-in visualization to monitor the training process.
Some simulators also visualize the physical structure of the neural network.

Besides the hardware as basic condition for any parallel implementation, the
software has to be considered as well. Parallel programming must take the
underlying hardware into account. First, the problem has to be divided into
independent parts which can later be processed in parallel. Since this requires a
rather deep understanding of the algorithm, automatic routines to parallelize the
problem based on an analysis of data structures and program loops usually lead
only to weak results. Some compilers of common computer languages offer this
option. In most cases a manual parallelization still offers more satisfying results.
Fortunately neural networks provide originally a certain level of parallelism as
already mentioned above.

Commonly used mathematical or technical computer languages (C, C++, For-
tran) are also available on parallel computers, either with specialized compilers or
with particular extensions to code instructions controlling the parallel environment.
Using a parallelizing compiler makes working not very different from a sequential
computer. There are just a number of additional instructions and compiler options.
However, compilers that automatically parallelize sequential algorithms are limited
in their applicability and often platform or even operating system dependent.
Obviously, the key to parallel programming is the exchange or distribution of
information between the nodes. The ideal method for communicating a parallel
program to a parallel computer should be effective and portable which is often a
conflict. A good compromise is the Message Passing Interface (MPI) which was
originally designed to be used with homogeneous computer clusters (Beowulf). It
complements standard computer languages with information distribution instruc-
tions. Since it is based on C or Fortran and its implementation is pretty effective and
available on almost all platforms and operating systems, it has evolved into the
probably most frequently used parallel programming language [6].
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In case of a heterogeneous computer cluster a similar system the Parallel
Virtual Machine (PVM) is widespread and has become the de facto standard. It
was developed to provide a uniform programming environment for computer
clusters consisting of different nodes running possibly different operating systems,
which are considered to be one virtual parallel computer. Since real parallel
computers and homogeneous clusters are a subgroup of heterogeneous clusters,
PVM is also available on these systems. Two additional parallel programming
environments which have similar features as PVM are Pthreads and OpenMP.

6 The GPU Approach

The graphics processing unit (GPU) configuration can also be implemented on the
VNCA approach on both the single system multiple CPU or the cluster environ-
ment. The GPU is a specialized computer graphics card. The GPU is designed to
rapidly manipulate and alter memory to accelerate the building of images in a
frame buffer intended for output to a display. Modern GPUs are very efficient at
manipulating computer graphics, and their highly parallel structure makes them
more effective than general-purpose CPUs for algorithms where processing of
large blocks of data is done in parallel. This parallel computing capability make
them well suited for implementing neural network algorithms [7, 8, 9]. Since a
Neural Network requires a considerable number of vector and matrix operations to
get results, it is very suitable to be implemented in a parallel programming model
and run on a GPU [10].

The reason memristor computer emulation using a neural network is suitable
for GPU is that the training and execution of a neural network are two separate
processes. Once properly trained, no writing access is required while using a
neural network. Therefore, there is no synchronization issue that needs to be
addressed. Moreover, neurons on a same network level are completely isolated,
such that neuron value computations can achieve highly parallelization.

To successfully take advantage of the GPU, applications and algorithms should
present a high degree of parallelism, large computational requirements and be
related with data throughput rather than with the latency of individual operations.
Since most ML algorithms and techniques fall under these guidelines, GPUs
provide an attractive alternative to the use of dedicated hardware by enabling high
performance implementations of ML algorithms. Furthermore, the GPU peak
performance is growing at a much faster pace than the CPU performance and since
GPUs are used in the large gaming industry, they are mass produced and regularly
replaced by new generation with increasing computational power and additional
levels of programmability. Consequently, unlike many earlier throughput oriented
architectures, they are widely available and relatively inexpensive.

Over the past few years, the GPU has evolved from a special purpose processor
for rendering graphics into a highly parallel programmable device that plays an
increasing role in scientific computing applications. The benefits of using GPUs

Memristors and the Future of Cyber Security Hardware 281



for general purpose programming have been recognized for quite some time.
Using GPUs for scientific computing allowed a wide range of challenging prob-
lems to be solved, providing the mechanisms for researchers to study larger
datasets. However, only recently, General Purpose computing on GPU (GPGPU)
has become the scientific computing platform of choice, mainly due to the
introduction of NVIDIA Compute Unified Device Architecture (CUDA) platform,
which allows programmers to use industry standard C language together with
extensions to target a general purpose, massively parallel processor (GPU).

The CUDA architecture exposes the GPU as a massive parallel device that
operates as a co-processor to the host (CPU). CUDA gives developers access to the
virtual instruction set and memory of the parallel computational elements in CUDA
GPUs. Using CUDA, the latest Nvidia GPUs become accessible for computation
like CPUs. Unlike CPUs, however, GPUs have a parallel throughput architecture
that emphasizes executing many concurrent threads slowly, rather than executing a
single thread very quickly. This approach of solving general-purpose (i.e., not
exclusively graphics) problems on GPUs is known as GPGPU [11].

GPUs are being applied to Intrusion Detection systems deep packet inspection
problem for finding several patterns among several independent streams of char-
acters. The highly parallelism of the GPU computation power is used to inspect the
packet contents in parallel. Packets of each connection which are in right order
compose a stream of characters. Therefore, both levels of parallelism, fine grain
and coarse grain, are apparent [10].

The fine grain parallelism, as a fundamental block, is achieved by parallel
matching of several patterns against packets of a connection. The coarse grain is
achieved by parallel handling of several connections between separate blocks. This
approach became possible using CUDA enabled GPUs. A similar approach will be
possible using the memristor computer using less energy and increased processing
speed.

7 The Field Programmable Gate Array (FPGA) Approach

The third approach to emulating a memristor computer uses a hardware archi-
tecture deployed onto a field programmable gate array (FPGA). FPGAs are
semiconductor devices that are based around a matrix of configurable logic blocks
(CLBs) connected via programmable interconnects. FPGAs can be reprogrammed
to desired application or functionality requirements after manufacturing. This
feature distinguishes FPGAs from Application Specific Integrated Circuits
(ASICs), which are custom manufactured for specific design tasks. Although one-
time programmable (OTP) FPGAs are available, the dominant types are SRAM
based which can be reprogrammed as the design evolves [12].

Parallelism, modularity and dynamic adaptation are three computational char-
acteristics typically associated with neural networks. FPGA based reconfigurable
computing architectures are well suited to implement neural networks as one can
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exploit concurrency and rapidly reconfigure to adapt the weights and topologies of
a neural network. FPGA realization of neural networks with a large number
of neurons is still a challenging task because neural network algorithms are
‘‘multiplication-rich’’ and it is relatively expensive to implement.

Usually neural network chips are implemented with neural network trained
using software tools in computer system. This makes the neural network chip
fixed, with no further training during the use or after fabrication. To overcome this
constraint, training algorithm can be implemented in hardware along with the
neural network. By doing so, neural chip which is trainable can be implemented.

The limitation in the implementation of neural network on FPGA is the number
of multipliers. Even though there is improvement in the FPGA densities, the
number of multipliers that needs to be implemented on the FPGA is more for lager
and complex neural networks.

The training algorithm is selected mainly considering the hardware perspective.
The algorithm should be hardware friendly and should be efficient enough to be
implemented along with neural network. This criterion is important because the
multipliers present in neural network use most of the FPGA area.

One hardware technique for training is using the back propagation algorithm.
The back propagation training algorithm is a supervised learning algorithm for
multilayer feed forward neural network. Since it is a supervised learning algo-
rithm, both input and target output vectors are provided for training the network.
The error data at the output layer is calculated using network output and target
output. Then the error is back propagated to intermediate layers, allowing
incoming weights to these layers to be updated [6].

Basically, the error back-propagation process consists of two passes through the
different layers of the network: a forward pass and a backward pass. In the forward
pass, input vector is applied to the network, and its effect propagates through the
network, layer by layer. Finally, a set of outputs is produced as the actual response
of the network. The training of the neural network algorithm on the FPGA is
implemented using basic digital gates. Basic logic gates form the core of all VLSI
design. So, neural network architecture is trained on chip using back propagation
algorithm to implement basic logic gates. The architecture of the neural network is
implemented using basic digital gates i.e., AND, OR, NAND, NOR, XOR, XNOR
function [13].

With the ever-increasing deployment and usage of gigabit networks, traditional
network intrusion detection systems (IDSs) have not scaled accordingly. More
recently, researchers have been looking at hardware-based solutions that use
FPGAs to assist network IDSs, and some proposed systems have been developed
that can be scaled to achieve a high speed over 10 Gbps.

FPGA-based implementations of neural networks can be used to detect the
system attacks at a high speed and with an acceptable accuracy. Hardware based
solution using an FPGA are necessary to fit the high speed performance require-
ments of modern IDS systems [14, 15, 16]. However, the appropriate choice of the
hardware platform is subject to at least two requirements, usually considered
independent each other: (1) it needs to be reprogrammable, in order to update the
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intrusion detection rules each time a new threat arises, and (2) it must be capable
of containing the typically very large set of rules of existing NIDSs [12].

Ever increasing deployment of higher link rates and the ever growing Internet
traffic volume appears to challenge NIDS solutions purely based on software.
Especially, payload inspection (also known as deep packet inspection) appears to
be very demanding in terms of processing power, and calls for dedicated hardware
systems such as FPGA based systems. FPGA based systems using neural network
algorithms takes as input training data to build normal network behavior models.
Alarms are raised when any activity deviates from the normal model.

8 Conclusions

In this chapter we covered three approaches to emulate a memristor computer
using neural networks, and to demonstrate how a memristor computer could be
used to solve Cyber security problems. The memristor emulation neural network
approach was divided into three basic deployment methods. The first basic
deployments of neural networks are software based algorithms deployed on the
traditional Von Neumann CPU architecture (VNCA) using x86 CPUs second,
software based algorithms deployed on the VNCA utilizing a Graphics Processing
Units (GPUs) and third, a hardware architecture deployed onto a field-program-
mable gate array (FPGA).
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