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Preface

Hysteresis and noise are ubiquitous phenomena in science and engineering playing
an increasingly important role in research and technological developments.
Mathematical modeling and simulations have flourished in both areas laying down
a multidisciplinary framework for their analysis. While the quasistatic study of
hysteresis has reached a certain degree of maturity reflected in the extensive
monographs published over the last 30 years, the stochastic analysis of hysteretic
systems is currently under major developments. Numerous papers dealing with
various manifestations of noise in hysteretic phenomena have been recently
published but their systematic analysis has been rather limited. This book is aimed
at providing a general approach to nonlinear systems with hysteresis driven by
noisy inputs, which leads to a unitary framework for the analysis of various
stochastic aspects of hysteresis. An open access simulation platform with the
models implementation can be used by the readers for learning and researching
many topics discussed here.

This monograph is written for applied scientists and engineers who are inter-
ested in noise or in hysteretic systems. Familiarity with noise and hysteresis
phenomena is recommended but not necessary for the understanding of the book.
Many references are provided at the end of each chapter, which should help the
reader understand the required mathematical background or the practical appli-
cations when necessary. In addition, the book should be useful to researchers or
graduate students willing to implement noise and hysteresis models or to study the
effects of hysteresis and noise in various applications originating from the classical
areas of magnetism and plasticity as well as from superconductivity, photonics,
computer and communication networks, economics, hydrology, biology and
neuroscience.

Due to the wide spectrum of areas in which hysteresis is observed and to the
fact that the origins of hysteresis are often multiple and unclear, there exist a large
number of mathematical models for hysteresis in the literature. The first chapter
offers an overview of the hysteresis models that are being used throughout the
book. The chapter starts with a general classification of hysteresis models,
parameter identification, and inverse modeling techniques. The rectangular hys-
teresis operator is first introduced being the building block of more complex
hysteresis models. Then, the chapter focuses on summarizing the main equations,

v



properties, and characteristics of the Preisach, energetic, Jiles-Atherton, Coleman-
Hodgdon, and Bouc-Wen models. Particular attention is given to the analytical
description of the general properties of hysteresis curves such as differential sus-
ceptibilities, remanence, coercivity, saturation, anhysteretic curve, energy loss,
stability, accommodation, and limit cycle. The last two sections of the chapter are
dedicated to dynamic and vector models of hysteresis. Two general techniques for
modeling of rate-dependent hysteresis are presented, one based on the feedback
(effective field) theory and the other on the relaxation time approximation. At the
end, the chapter provides a general formalism that can be used to generalize scalar
models of hysteresis in order to describe two-dimensional and three-dimensional
vector systems.

The presentation in the first chapter does not make any reference to noise or
other stochastic processes and could be also used by the readers as an introduction
to the area of deterministic hysteretic modeling. This chapter may serve as ref-
erence for people working on finite element techniques in which the system
properties are described by a hysteresis model. After reading Chap. 1, one might
also be interested in reading the Appendix, which provides a description of these
models implementation in HysterSoft�—an open access simulation platform used
throughout the book.

Chapter 2 describes common noise models employed in various areas of
research. In magnetic hysteresis, Gaussian white noise is mostly used as noise
model and is mathematically defined by independent and identically distributed
random variables following a Gaussian distribution. Once the interest in hysteresis
extended beyond the traditional area of magnetism, various noise models appeared
naturally in the hysteresis analysis. For example, pink noise is ubiquitous in multi-
stable electronic systems, brown noise is very common in physical and chemical
diffusion processes, and even white noise is often encountered in its impulsive
from in economics and biological hysteretic systems, so Cauchy or Laplace
probability distributions emerge as better model choices in these systems than
Gaussian white noise. Various noise models and the numerical methods used in
this study to simulate them are discussed in the first part of this chapter. The
second part of the chapter is devoted to introducing the theory of stochastic pro-
cesses defined on graphs recently developed by Freidlin and Wentzell, which
proved to be naturally suited to the stochastic analysis of hysteretic systems. First,
several definitions and general properties of stochastic processes are discussed,
stressing the link between transition probability of Markov processes and the
semigroups of contractions. This relationship provides the characterization tool for
the diffusion processes that can be defined on a graph, a subject that is elaborated
in the final sections of this chapter.

Chapter 3 gives an overview of several common hysteresis phenomena arising
in science and engineering. The interest in this topic has been continuously growing
over the last years and it has extended far beyond the classical areas of magnetism
and plasticity. For example, superconducting hysteresis and economic hysteresis
are well-established scientific domains and many pioneering studies have appeared
in ecology, wireless communications, psychology, and computer science.
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The physical origin of hysteresis is due to the multiplicity of metastable states
exhibited by hysteretic systems. A physical system can persist in a metastable state
for some time, but thermal perturbations usually drive the system to more stable
nearby states. Therefore, the behavior of a hysteretic system could be described as a
nonlinear hysteretic transformation of a stochastic input that consists of a random
internal noise superimposed on a deterministic external input. In other areas such as
economics, computer science, or wireless communication, the external input to a
hysteretic system is considered as a stochastic process due to external noise or its
random nature. Regardless of the reasons that lead to such models, the systematic
study of hysteretic systems driven by stochastic inputs is of relevance to all pre-
viously mentioned areas.

Chapter 4 introduces the concept of thermal relaxation, which is a process that
refers to the change in the output of a system induced by thermal fluctuations.
Examples of thermal relaxation processes can be found in many fields of study,
such as magnetism, electronics, or material science. For instance, the magnetiza-
tion of a ferromagnetic material, the polarization in ferroelectric systems, the
binary state of floating gate transistors in flash memories can all change as a result
of thermal agitation. The chapter focuses on thermal relaxation processes in scalar
and vector hysteretic systems and studies the dynamics of the output variable when
the deterministic input is kept constant over time. A few other phenomena related
to thermal relaxation such as memory loss and data collapse are also discussed.

Chapter 5 analyzes the spectral density of the output of various hysteretic
systems driven by noisy inputs. Closed form analytical solutions for output spectra
are derived for bistable hysteretic systems, as well as for complex hysteretic
systems that can be described through Preisach model as weighted superposition of
symmetric rectangular operators. The mathematical machinery of diffusion pro-
cesses on graphs is used to circumvent the difficulties related to the non-Markovian
property of the output of hysteretic systems. The calculations are appreciably
simplified by the introduction of the ‘‘effective’’ distribution function. The
implementation of the method for the case of Ornstein-Uhlenbeck process is
presented in detail and the general qualitative features of these spectral densities
are examined. Due to the universality of the Preisach model, this approach can be
used to describe hysteresis nonlinearities of various physical origins. In the last
part of this chapter, the spectral density analysis is extended to other models of
hysteresis, such as the energetic model, the Jiles-Atherton model, the Coleman-
Hodgdon model, and the Bouc-Wen model. The statistical technique for the
computation of the output spectra is based on Monte Carlo simulations and Fast
Fourier Transforms. The intrinsic differences between the algebraic, differential,
and integral modeling of hysteresis are well exposed when the systems are driven
by noisy inputs and their stochastic behaviors are compared against each other.

Chapter 6 analyzes the benefits of noise in hysteretic systems by using the
framework developed in the previous chapters. While it is mostly seen as a dis-
ruptive effect, noise can also have a constructive role by helping a system to
overcome a barrier in various activation processes, by providing some degree of
randomness useful in audio or visual perceptions, or by activating some kind of
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resonance response in nonlinear systems. These aspects are introduced and intu-
itively explained while providing a short overview of the key results obtained in
this area. Although the applications of noise benefits spread over many fields, from
climatology and signal processing to nanotechnology and neuroscience, most of
the studies can be theoretically framed into two-state models or simple variants
thereof, while complex multi-stable systems are rarely addressed. The major
contribution of this chapter is to provide a unitary framework for studying con-
structive effects of arbitrary colored noise in complex hysteretic systems and its
implementation in HysterSoft�. Several examples are discussed following the line
of the recent articles published by our group.

Complementary to this book, readers can also download HysterSoft�, which is
a software for the simulation of hysteresis and related phenomena (http://www.
eng.fsu.edu/ms/HysterSoft). It is a user-friendly simulation framework, in which
various mathematical models of hysteresis can be implemented easily. Most
numerical results and figures presented in this book have been generated using
HysterSoft�, which the authors recommend as a tool for learning and under-
standing the concepts discussed in the book. HysterSoft� can also be used to
compute first-order reversal-curves (FORC), FORC diagrams, identify the model
parameters from experimental data, conduct temperature- and stress-dependent
simulations, and analyze the noise passage and stochastic resonance in hysteretic
systems. The program can also be used as a dynamic link library (dll) and called
from other programs such as Matlab, Simulink, or C??.

The first version of HysterSoft� dates from 2004, when Prof. Petru Andrei
worked with Prof. Hans Hauser on hysteresis modeling in magnetic materials at
the Technical Institute of Vienna, Austria. The software was very well received by
the magnetic hysteresis community and it continued to be improved and expanded
over time. In 2011, the software was included in a general finite element simulator
for electronic devices-RandFlux�, but it also continued to be distributed as an
independent simulation platform on the Florida State University website. The
authors are thankful to their collaborators who helped in the development of the
software, in particular to Prof. Alexandru Stancu (Al. I. Cuza University, Roma-
nia), Prof. David Jiles (Iowa State University, USA), Prof. Amr Adly (Cairo
University, Egypt), Prof. Can Korman (Georgetown University, USA), and
Dr. Paul Fulmek (Technical University of Vienna, Austria).

Many of the results presented in this book originate from extensive and
enlightening discussions with Prof. Isaak Mayergoyz (University of Maryland,
USA). The authors are especially grateful to him for his continuous and enthusi-
astic support, as well as for his essential role in their professional formation and
development. Many thanks are also extended to the professors and colleagues who
have been generous in sharing their insights and comments regarding this work, as
well as to the graduate students who provided assistance at various stages of the
manuscript: Dr. Ayodeji Adedoyin, Dr. Liviu Oniciuc, Dr. Octavian Manu, and
Dr. Anca Gindulescu. A special recognition is given to the editors for their
dynamic and continuous involvements and encouragements without which this
book would not have been possible.
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Chapter 1
Mathematical Models of Hysteresis

1.1 Introduction

Hysteresis is a phenomenon found in many areas of engineering, mechanics,
material science, biology, economics, and social sciences. Due to the wide spectrum
of areas in which hysteresis is observed and to the fact that the origins of hysteresis
are often multiple and unclear, there exist a large number of theoretical models of
hysteresis in the literature. It is practically impossible to come up with a single
universal model to describe all hysteresis phenomena. So far, most of the existing
models of hysteresis were initially developed to describe a particular type of hys-
teretic system but their mathematical forms were suitable for multi-disciplinary
extensions.

In this chapter we present several models of hysteresis that will be used in
various applications in subsequent chapters. These models were selected to cover a
broad area of studies including mechanics, magnetics, economics, biology, etc.

The Preisach model was initially developed to describe the dependence of
magnetization on the magnetic field in systems of ferromagnetic particles.
Although the model was proposed in the mid 1930s, it became widely used by the
scientific community only in the mid 1980s, following the classical works by
Mayergoyz [1]. Since then, the model has been extended to describe hysteresis
phenomena in many other areas of science such as electromagnetism, economics,
biology, and geology, and has become one of the most used mathematical models
in the literature. The model has been widely praised for its accuracy in various
applications but also criticized for its constraining hypotheses.

The Bouc-Wen model originates from an early article of Bouc [2] who pro-
posed a first-order differential equation to describe the loading and unloading
curves of the hysteresis loop. The model was subsequently modified by Wen [3]
and used mostly for predicting plastic deformations in mechanical systems. The
Bouc-Wen model is one of the first and most studied models based on the Duhem
hysteresis operator [4] mostly because of its simplicity and to the fact that many of
the model properties can be derived analytically.
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The Jiles-Atherton model appeared in the early 1980s and was initially pro-
posed to model hysteresis curves in magnetic materials [5, 6]. The model equations
were specifically developed to describe the pinning and rotation of the magneti-
zation in ferromagnetic and ferrimagnetic systems and are related to the physical
mechanism of magnetization dynamics in these systems. The model became
widely spread particularly after its introduction in SPICE, one of the first and most
popular general-purpose analog electronic circuit simulators on the market [7]. In
SPICE, the Jiles-Atherton model is used to simulate the magnetic cores of
inductors, transformers, and other components containing ferromagnetic or ferritic
materials.

The Coleman-Hodgdon model appeared in the mid-to-late 1980s as a first-
order differential model of hysteresis [8, 9]. The model can be cast in the form of a
Duhem hysteresis model; it was initially applied to superconductors and ferrites.
Unlike the Jiles-Atherton model, the Coleman-Hodgdon model can be integrated
analytically (at least to some degree) so one can derive closed-form expressions for
many properties of the hysteresis loops such as saturation, energy loss, differential
susceptibilities, etc.

The energetic model (also called the Hauser model) appeared in the early
1990s and was primarily used to describe the statistical behavior of magnetic
domains under an applied field [10]. The model appears in the form of a tran-
scendental equation for the output variable, which can be solved numerically with
relatively little computational overhead. The energetic model has the advantage
that it can be easily inverted (i.e. compute the input variable as a function of the
output) and implemented numerically. Unlike the Bouc-Wen, Jiles-Atherton, and
Colman-Hodgdon models of hysteresis, the energetic model cannot be cast in the
form of a Duhem hysteresis model, and the current state of the model depends not
only on the current value of the input and output, and the direction of variation
(increasing or decreasing) of the input, but also on the past history of the system.

Besides the above models there exists a variety of other hysteresis models in the
literature based on either purely mathematical techniques or more physics-based
approaches. For instance, the models introduced in [11, 12] are based on
Langevin-type approach with positive feedback similar to the effective field
method presented in Sect. 1.7.1 of this book. The models introduced in [13–15] are
based on the superposition of stop or play operators. The ‘‘limiting loop prox-
imity’’ hysteresis model introduced in [16] presents an algebraic model based on
the relative position of the current hysteretic state with respect to the major hys-
teresis loop. This model is particularly attractive because of its simplicity, since it
contains only 4 parameters including the coercive field and the output saturation.
The T(x) model introduced in [17] presents a technique based on fitting the hys-
teresis curves with hyperbolic tangent functions, while the models presented in
[18, 19] are based on evolutionary algorithms.

In addition to the mathematical hysteresis models that have little or no physical
justification, there are many models based on systems of ordinary or partial dif-
ferential equations that are derived from a more detailed physical or phenome-
nological analysis. For instance, the hysteresis induced by charge trapping at the
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oxide–semiconductor interface in field-effect transistors is usually modeled by
solving the semiconductor equations coupled with a trapping model for oxide
charges. The hysteresis obtained by charging and discharging lithium batteries is
usually modeled by the electron and ion transport equations coupled with Butler-
Volmer equations for the reaction rates. Solving these equations usually takes a
long simulation time but produces reliable simulation results.

‘‘How to identify what hysteresis model is best fitted for a given application?’’
This is a question often asked when trying to select a mathematical model to
simulate a hysteretic system. In fact, there is no model which is ‘‘the best’’ and, in
practice, each model has advantages and disadvantages. For instance, the Preisach
model appears to describe the magnetic hysteresis relatively well, but fails to
describe the mechanical hysteresis (e.g. plastic deformation of materials, hyster-
esis induced by friction, etc.) or the hysteresis induced by charging and dis-
charging of energy storage devices, where other models perform much better. Each
model is based on an initial set of hypotheses and it is the user’s job to verify if
these hypotheses hold or not when applied to a given system. In addition, the
numerical complexity of hysteresis models varies significantly from model to
model, which further limits the area of applicability of the model. For instance, it
is relatively easy to use a hysteresis model based on a system of partial differential
equations to predict the discharge characteristic of the battery in a laptop because
of the high computational power of these devices, but it is almost impossible to use
physics-based models in a real-time simulation of transformers with a hysteretic
cores.

1.1.1 Definitions, Notations, and Terminology

In this section we introduce some of the terminology used throughout the book
when referring to hysteresis phenomena.

In general, by hysteresis we understand a ‘‘path-dependent’’ process, in which
the output y depends not only on the current value of the input x, but also on the
past values of the input. The state of a hysteretic system can usually be specified at
any time by a number of variables called state variables. For instance, these
variables can be the current values of the input and output, the values of the input
and output at the last reversal points, etc. If the values of the state variables are
known at time t0 one can completely describe the behavior of the hysteretic system
for any input function x(t [ t0).

Hysteresis may or may not depend on the rate of variation of the input. When it
depends on the rate of variation of the input the hysteresis is called dynamic
hysteresis or rate-dependent hysteresis, when it does not depend on the rate of
variation of the input the hysteresis is called static hysteresis or rate-independent
hysteresis. Depending on whether the input and output are scalar or vector vari-
ables, we distinguish scalar and vector hysteretic systems. Unless otherwise noted,
in this book we refer to static and scalar hysteretic systems.
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The input and output of a hysteretic system can be bounded or unbounded.
A hysteretic system is said to be bounded-input bounded-output (BIBO) stable if
the output variable is bounded for any bounded input variation. Often the output
variable is bounded even when the input approaches the boundaries of the interval
on which it is defined (for instance to �1). In this case the maximum of the
absolute value of the output, ysat, is called output saturation.

A hysteresis curve is a curve plotted in input–output coordinates. A hysteresis
curve in which the input is increasing is called a loading curve, while a hysteresis
curve in which the input is decreasing is called an unloading curve. If the input
cycles between two values x1 and x2 the output variable traces a hysteresis loop,
which can be a closed curve or not. Quite often hysteretic systems have a major
hysteresis loop that is the boundary of the region that encloses all other possible
hysteresis curves. If it exists, the major hysteresis loop can often (but not always)
be obtained by cycling the input variable between �1 and þ1. Hysteresis loops
that are enclosed in the major hysteresis loop are called minor loops.

The input and output of a hysteretic system are often coupled variables. In this
case the input is called generalized force and the output is called generalized
displacement. The energy consumed when the input goes from x1 to x2 is:

w ¼
Z x2

x1

y xð Þdx: ð1:1Þ

If a hysteretic system has a major hysteresis loop, it is customary to define:

(a) The coercive inputs (�xC) are the points where the major hysteresis loop
crosses the horizontal axis (y ¼ 0). In general, coercive inputs are defined for
symmetric major hysteresis loops, with the two critical values equal in mag-
nitude and having opposite sign. Sometimes, we refer to coercive inputs as the
coercive fields or coercive forces. The points where the major hysteresis loop
crosses the horizontal axis are called coercive points.

(b) The remanent output (yR) is the value of the output for which the major
hysteresis loop crosses the vertical axis (x ¼ 0). In general, the remanent
output is defined for symmetric major hysteresis loops, with the two remanent
values equal in magnitude and having opposite sign. The remanent output is
sometimes called remanent displacement. The points where the major hys-
teresis loop crosses the axis x ¼ 0 are called remanent points.

(c) The (differential) susceptibility (v) is the slope of the hysteresis curve a given
point in the input–output plane.

(d) The anhysteretic curve yan x0ð Þ is a curve obtained by representing the final
values of the output as a function of x0, where x0 is the value of the input
obtained as shown in Fig. 1.1. To obtain a point x0; yanð Þ on the anhysteretic
curve, one applies an alternating series of inputs with infinitesimally slowly
decreasing magnitude starting from1 and going to 0, and centered around x0.
Since the anhysteretic curve is defined as a limit process, it might not always
exist (for instance in the case of the rectangular hysteresis operator defined in
Fig. 1.2). If the anhysteretic curve exists, the anhysteretic state obtained for
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x0 ¼ 0 is often the initial state in many hysteretic computations. This state is
called the zero-anhysteretic state or zero-field anhysteretic state.

(e) The initial (or virgin) curve yi xð Þ of a hysteretic system is the curve that is
obtained starting from the zero-anhysteretic state and plotting the output as a
function of an increasing input. The susceptibility on the initial curve at x ¼ 0
is called initial susceptibility (vi). Notice that the initial curve and the initial
susceptibility exist only if the zero-anhysteretic state can be defined.

(f) The differential susceptibilities on the major hysteresis loop at the remanent
(x ¼ 0 and y ¼ yR) and coercive (x ¼ xC and y ¼ 0) points are called remanent
susceptibility and coercive susceptibility and are denoted by vR and vC,
respectively.

(g) Minor loops are called closed if the output variable reaches the initial value
after one minor loop. In the case of closed loops, if the input and output are
coupled variables, the energy lost during a cycle can be computed as

w ¼
Z x2

x1

yU xð Þ � yL xð Þ½ �dx ¼
Z y2

y1

xU yð Þ � xL yð Þ½ �dy; ð1:2Þ

Fig. 1.1 Input used to
measure the anhysteretic
curve. Notice that the
anhysteretic curve might not
always exist since it is
defined as a limit process

Fig. 1.2 Rectangular
hysteretic operator
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where x1, x2, y1, and y2 are the first and last values of the input and output
variables, respectively. yL xð Þ and yU xð Þ are the equations of the loading and
unloading curves in x� y coordinates, and xL yð Þ and xU yð Þ are the equations
of the loading and unloading curves in y� x coordinates. In order for a hys-
teretic system with coupled input and output variables to be physically pos-
sible, the energy lost during a closed hysteresis loop should be positive.

(h) Some hysteretic systems exhibit accommodation, which refers to the slight
shift of minor hysteresis loops when the input variable varies between the
same two values. If the hysteresis loop converges towards a limit hysteresis
loop, that loop is called limit cycle.

It is often important in applications to study the behavior of a hysteresis model
at small values of input variable. In this case the output can usually be expressed as
a quadratic function of the input. This is called the law of Lord Rayleigh, who
studied this behavior for the first time in magnetic hysteresis [20]. The initial curve
can be written as

y ¼ vix� bx2; ð1:3Þ

where vi is the initial susceptibility and b is a parameter that is usually attributed to
irreversible processes. The ? sign refers to the loading curve and the – sign to the
unloading curve starting from the origin. If the input is cycled between two small
values �xm and xm, the output can be written as

y� ym ¼ vi x� xmð Þ � b

2
x� xmð Þ2: ð1:4Þ

In this case, the output is cycled between �ym and ym, where ym ¼ vixm � bx2
m. The

energy consumed during one cycle can be computed from (1.2), which leads to

y ¼ 4
3

bx3
m: ð1:5Þ

1.1.2 Classification of Hysteresis Models

Due to the large number of hysteresis models in the literature it is rather difficult to
perform a comprehensive classification of these models. In this section we provide
some insight into the diversity of these models by looking at the type of equations
that need to be solved and at the amount of past data that needs to be stored to
compute the output variable.

Looking at the type of equations that need to be solved in order to evaluate the
output variable we distinguish:
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(a) Algebraic models, in which the output is computed by solving algebraic
equations;

(b) Differential models, in which the output is computed by solving first or higher
order ordinary or partial differential equations;

(c) Integral models, in which the output is given in the form of an integral
equation;

(d) Other models in which the output is computed either geometrically or
iteratively.

Looking at the amount of past data that needs to be stored to compute the output
variable we distinguish:

(a) Duhem-type models of hysteresis, in which the output can change its func-
tional dependence only when the input changes its direction of variation. In
these models the future behavior of the hysteretic system can be completely
described if the current values of the input and output variables (x, y) and
sign( _x) are known. Mathematically, these models can be expressed as [4]:

_y tð Þ ¼ f1 x; yð Þ _xþ tð Þ þ f2 x; yð Þ _x� tð Þ; ð1:6Þ

where _xþ tð Þ ¼ max 0; _x tð Þð Þ and _x� tð Þ ¼ min 0; _x tð Þð Þ and the superdot denotes
the derivative with respect to time, t. Functions f1 x; yð Þ and f2 x; yð Þ can be
simple algebraic functions or even differential or integral operators. Many of
the existing models of hysteresis are Duhem-type models. For instance the
Bouc-Wen, Jiles-Atherton, and Coleman-Hodgdon can all be written in form
of (1.6).

(b) Non-Duhem-type models of hysteresis, which take into account not only the
coordinates of the last reversal point (x0, y0) and the direction of variation of
the input, but also other data related to the history of the system. Such models
include the Preisach and the energetic models of hysteresis.

Finally, it is worth distinguishing the class of statistical models, in which the
output variable is computed as a superposition of elementary hysteresis operators

y tð Þ ¼
Z Z

. . .

Z
c
_

a1; a2; . . .; aMð Þx tð Þda1da2. . .daM; ð1:7Þ

where c
_

a1; a2; . . .; aMð Þ is any hysteresis operator that acts on x tð Þ and depends on
some intrinsic parameters a1,,…,aM (called model parameters). Examples of such
models include the Preisach and a number of models based on the superposition of
stop operators.
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1.1.3 Parameter Identification Methods

Each hysteresis model contains a number of intrinsic parameters that are usually
denoted by a vector p. These parameters need to be determined carefully before
using the model. The goal of parameter identification methods (often called
parameter determination) is to find an estimate p̂ of vector p using only mea-
surements of the output variable y(t) as a function of input x(t). According to [21]
there are two types of identification methods:

(a) Recursive methods, in which the estimate vector p̂ is found iteratively. Such
methods usually start with an initial guess for the model parameters and update
that guess iteratively till convergence is obtained. These models are often
based on minimization algorithms such as the steepest descends algorithm, the
conjugate gradient method, genetic algorithms, or other iterative techniques.

(b) Nonrecursive methods, in which the estimate vector p̂ is found without
updating the parameters iteratively. The parameters of the nonrecursive
methods are usually directly related to various properties of the input–output
characteristics (such as output saturation, coercive field, etc.) and they can be
obtained without performing iterations.

It should be mentioned that some identifications methods are using a combi-
nation of the above two techniques. Some model parameters are identified directly
from the given data, while some other parameters are identified iteratively.

It is also important to mention that the type of the applications where the model
is used might require different identification techniques. For instance, in applica-
tions where only the major hysteresis loop is important one can determine vector p
by fitting the simulated major hysteresis loop to the experimental one without
looking at the minor loops. In applications where higher order reversal curves are
essential one should use identification methods that take into consideration the
shape of the minor loops as well, even if the accuracy of the major loop is
somewhat compromised.

Next, we summarize the characteristics of two types of recursive methods that
have been used in the literature to compute the parameters of different models of
hysteresis. The first type consists in various evolutionary algorithms, while the
second one is based on linear least-squares minimization. Both identification
techniques are implemented in HysterSoft� and can be used to identify the
parameters of all the hysteresis models included in the software. From our expe-
rience, both kinds of techniques present a number of advantages and limitations
that are discussed below.

1.1.3.1 Identification Techniques Based on Evolutionary Algorithms

Evolutionary algorithms are stochastic search algorithms inspired from biological
evolution and/or the social behavior of various species. These algorithms mimic
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processes from the natural evolution or population systems such as reproduction,
mutation, recombination and selection to compute the optimum set of model
parameters that fit some experimental data. Next, we discuss a few common
features of the existing evolutionary algorithms relevant to the parameter identi-
fication of hysteresis models.

Let us denote the model parameters by p ¼ a1; a2; . . .; aMð Þ, where M is the
total number of model parameters. For instance, in the case of the energetic model,
the model parameters are p ¼ a; k; q;Ne; c; ysatð Þ, while in the case of the Jiles-
Atherton model they are p ¼ a; a; k; c; ysatð Þ (see Sects. 1.3 and 1.4 for notations).
We also assume that we are given an experimental set of input parameters pexp;i

that we can use to compute vector p. Such parameters can be data from the major
hysteresis loop, initial curve, or other simple hysteresis curves, such as the coer-
cive force xC, the remanent value of the output on the major loop yR, the initial
susceptibility vi, the susceptibility at coercivity vC, the susceptibility at remanence
vR, etc. If we denote the values of these parameters as predicted by the mathe-
matical model by pi, the identification problem can be formulated mathematically
as a set of equations:

pi a1; a2; . . .; aMð Þ ¼ pexp;i; i ¼ 1; . . .;N; ð1:8Þ

where N denotes the total number of parameters used in the identification problem.
If entire output curves are used in the identification problem, these curves can be
discretized in a finite number of points ðxi; yiÞ and parameters pi and pexp;i are the
simulated and experimental values of the output at each discretization point. Most
often, Eq. (1.8) forms a system of highly nonlinear equations that might have a
unique solution, multiple solutions, or no solution at all. Hence, instead of
attempting to calculate the exact solution of (1.8), most evolutionary algorithms
will try to define a fitness or objective function such as:

U a1; a2; . . .; aMð Þ ¼
XN

i¼1

wi pi a1; a2; . . .; aMð Þ � pexp;i

� �2 ð1:9Þ

where wi are some positive weighting coefficients. If the minimum of function U is
zero, then Eq. (1.8) are satisfied exactly. The values of the weighting coefficients
depend on the accuracy with which the experimental quantities pexp;i are deter-
mined. For instance, if the critical field and the remanent value of the output on the
major loop are measured with more accuracy than the susceptibility at coercivity
or at the remanent points, the weighting coefficients of xC and yR should be larger
than the weighting coefficients of vC and vR. If a parameter is not used in the
identification procedure, the corresponding weighting coefficient is set to 0.

Writing the identification problem as the solution of a minimization problem
has two major advantages. First, the minimization problem has at least one
solution and, second, there exist many algorithms such as the steepest descend
method or the conjugate gradient method that can be applied to solve multidi-
mensional minimization problems [9]. Evolutionary algorithms usually require the
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successive evaluation of the fitness function for different model parameters. The
model parameters are changed stochastically from one iteration to another
according to the intrinsic laws of the evolutionary model in order to optimize the
objective function.

There is a large number of articles in the literature discussing the parameter
identification of the Jiles-Atherton, Preisach, and other models of hysteresis based on
various metaheuristic optimization algorithms such as genetic algorithms [22–30],
shuffled frog leaping algorithm [31], Nelder-Mead method, particle swarm algo-
rithms [32, 33], simulated annealing [31], or other evolutionary algorithms [34].
Unfortunately, the current evolutionary algorithms do not take advantage of
the intrinsic formulation of current hysteresis models, which are very nonlinear and
whose parameters are subject to complex constraints. For this reason, the objective
function should be evaluated many times, which increases the total computation time
significantly. In addition, the starting values of model parameters (e.g. the chro-
mosomes in genetic algorithms or the initial population in shuffled frog leaping
algorithms) should be close to the optimum solution in order to increase the success
rate of the algorithms. From our experience, evolutionary algorithms are computa-
tionally much more expensive than other types of identification techniques often
diverge, and their applicability is relatively limited.

1.1.3.2 Identification Techniques Based on Linear Least-Square
Minimizations

The linear least square minimization technique can be applied to find the model
parameters a1; a2; . . .; aM that minimize the objective function U. Depending on
the implementation, linear least square algorithms might require the evaluation of
the derivatives of function U with respect to aj:

@U a1; a2; . . .; aMð Þ
�
@aj ¼

XN

i¼1

2wi pi a1; a2; . . .; aMð Þ � pexp;i

� �
@pi a1; a2; . . .; aMð Þ

�
@aj

ð1:10Þ

which, in turn, require the evaluation of the derivatives of parameters pi with
respect to aj. Since often these derivatives cannot be computed analytically, one
can use finite difference approximations to evaluate:

@pi a1; a2; . . .; aMð Þ
�
@aj � pi a1; . . .aj þ e; . . .; aM

� �
� pi a1; . . .aj � e; . . .; aM

� �� ��
2eð Þ

ð1:11Þ

where e is a small parameter. The numerical evaluation of the finite differences in
(1.11) does not require a large computational overhead because the number of
parameters used in the identification problem is relatively small (usually less than
ten) and they can be easily evaluated in most models of hysteresis. The computational
overhead for the calculation of the minimum of function U on a one-processor
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personal computer working at 3 GHz is usually less than 2 s for each of the math-
ematical models used in this book. From our experience, the identification techniques
based on least-square minimizations are computationally faster than the evolutionary
algorithms, but have worse convergence properties [35]. The initial guess of these
techniques should be close (sometimes within a few percentage difference) from the
optimum value in order for this algorithm to converge. This limitation of the tech-
niques based on least-square minimizations is due to the strong nonlinearity of
hysteresis model equations.

1.1.4 Inverse Modeling

In general, hysteresis models provide a procedure to compute the output variable
y(t) as a function of the input variable x(t). In practical applications, it is often
necessary to solve the inverse problem, in which one needs to compute the cor-
responding input variable to a given output variation. This is usually required
when solving optimization problems or trying to design a hysteresis system.

Since hysteresis is a nonlinear and multi-valued function, the inverse problem
might have no solution, one solution, or multiple solutions. One example is to
invert the rectangular hysteresis operator defined in Sect. 1.1.5, which, depending
on the output variable, has no solution (if y is different from 1 or -1) or an infinity
of solutions (if y is either 1 or -1).

Most often it is possible the invert a hysteresis model relatively easily using the
technique described below. Suppose we have a hysteresis model defined as

y tð Þ ¼ Ĉx tð Þ; ð1:12Þ

where Ĉ is the hysteresis operator. We introduce the differential susceptibility of
the system as

_y tð Þ ¼ v̂ _x tð Þ; ð1:13Þ

where v̂ is the susceptibility operator. We suppose that such susceptibility operator
exists, is finite, and has an inverse operator v̂�1 such that v̂�1v̂ ¼ 1. In this case:

_x tð Þ ¼ v̂�1 _y tð Þ: ð1:14Þ

In the case of scalar hysteresis models v̂ is the differential susceptibility and
v̂�1 ¼ 1=v̂. If the hysteresis model is a differential model of hysteresis the com-
putational overhead when solving the direct problem (1.13) is comparable to the
computational overhead when solving the inverse problem (1.14).

Most scalar models of hysteresis used in this book can be written in the form of
(1.13). Hence, it is possible to invert these models by using (1.14). HysterSoft�
implements inverse modeling for all the hysteresis models for which the differ-
ential susceptibility is defined, including the Preisach and the energetic models.
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1.1.5 Numerical Implementation of Hysteretic Models

Most phenomenological hysteresis models can be expressed in the form of tran-
scendental equations, ordinary differential equations, integral equations, or inte-
gro-differential equations. Their numerical implementation can often be done
using standard numerical techniques, however, depending on the required accu-
racy of the final results and on the type of the application, the numerical imple-
mentation might require special attention.

From our experience, transcendental equations such as the ones describing the
energetic model of hysteresis can be solved using the classical bisection technique.
The hysteresis curves are usually monotonically increasing or decreasing so the
output value is expected to be found between the last value of the output and �ysat.
The Newton–Raphson technique is usually not appropriate in hysteresis modeling
because of the high nonlinearity of the hysteresis curves.

Differential models of hysteresis such as the Jiles-Atheron, energetic, and
Bouc-Wen models can usually be integrated using multistep or Runge–Kutta
methods with adaptive stepsize. Most of the existing models are not particularly stiff
or unstable, which justifies the use of standard integration methods. HysterSoft�
uses a fourth-order Runge–Kutta technique with adaptive stepsize to integrate the
differential models of hysteresis as well as the rate-dependent models.

Integral models of hysteresis such as the scalar or vector Preisach model can
also be integrated using standard adaptive one-dimensional or multi-dimensional
integration techniques. It is important to use adaptive techniques since the Preisach
distribution function can often be nonzero only on a relatively small region in the
Preisach plane and the numerical algorithm might miss this region. Depending on
the required accuracy, one might need to use a very refined discretization grid in
the region where the Preisach distribution function is nonzero.

Finally, integro-differential models of hysteresis such as dynamic Preisach
models, can be integrated either using iterative techniques or by computing the
differential susceptibility and integrating it using standard integration methods.

1.1.6 The Rectangular Hysteresis Operator

The rectangular hysteresis operator is one of the simplest hysteresis operators and
often stays at the basis of the statistical hysteresis models such as the Preisach
model. The memory-based behavior of the output is written as (see Fig. 1.2):

y tð Þ ¼ ĉabx tð Þ ¼

1; if x tð Þ[ a
1; if x tð Þ 2 b; a½ � and x t�ð Þ ¼ a

�1; if x tð Þ\b
�1; if x tð Þ 2 b; a½ � and x t�ð Þ ¼ b

8>><
>>:

ð1:15Þ
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where a and b are the ‘‘up’’ and ‘‘down’’ switching values of the input and t� is the
value of the time at the last switching point. If t� does not exist then we need to
specify the initial value of the output variable, which depends on the initial
problem that we are modeling. The output of the rectangular hysteresis operator
can assume only two values +1 and -1. As input x(t) is monotonically increased
the ascending branch abcde is followed; when the input is monotonically
decreased the descending branch edfba is followed.

The output of the rectangular hysteresis is BIBO stable and bounded. In
addition, there are no hysteresis curves inside or outside the (major) hysteresis
loop.

A few other hysteresis operators will be presented in Sect. 1.2.6 when we
discuss about the relation of the Preisach model with other hysteresis model. It will
be shown that a number of other ‘‘elementary’’ hysteresis operators such as the
backslash and elastic–plastic operators can be written as a superposition of rect-
angular hysteresis operators.

1.2 The Preisach Model

1.2.1 Definition

To introduce the Preisach model we consider an infinite set of rectangular oper-
ators ĉab defined in (1.15) and two arbitrary weigh functions P a; bð Þ (with a [ b)
and R að Þ. The output variable is defined as:

y tð Þ ¼
ZZ

a [ b
c
_

abx tð ÞP a; bð Þdadbþ
Z 1
�1

sign x tð Þ � a½ �R að Þda: ð1:16Þ

The first term in the right-hand-side of (1.16) represents purely irreversible
switching processes, while the second term represents reversible switching pro-
cesses. Weight functions P a; bð Þ and R að Þ are called the irreversible and reversible
components of the Preisach distribution. In this book, by the ‘‘Preisach distribu-
tion’’ we will understand in general the set of the two weight functions P a; bð Þ and
R að Þ (Fig. 1.3). A slightly different definition of the Preisach model was given by
Mayergoyz in [36] who allowed the last term in (1.16) to be any real function of x.
This approach leads to slightly different formulations of the Preisach model (which
are sometimes even easier to write analiticallly) but is essentially similar to (1.16).

Writing the Preisach model as the superposition of the two components broadens
the area of applicability of the model by including non-zero reversal susceptibilities
and avoids a number of ambiguities in the identification problem. It has often been
proposed in the literature to remove the last term in (1.16) by keeping only the first
term and allowing the Preisach distribution to be written in terms of the Dirac-delta
function on the diagonal a ¼ b: d a� bð Þ. Although apparently simpler, this
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approach leads to deceptive mathematical constructions such as
R1

0 d xð Þdx and
makes the Preisach identification problem ambiguous.

Equation (1.16) can be interpreted geometrically by looking at the Preisach
plane, which is obtained by representing P a; bð Þ in the a� b coordinates (see

Fig. 1.3). If the input traces the path shown in Fig. 1.4a the c
_

ab operators that are
in the -1 state can be separated by the operators in the +1 state by the separation
line S(t) shown in Fig. 1.4b. This line is often called staircase line. All operators to
the left and below S(t) (i.e. in region 1) are in the +1 state, while the operators to
the right and above S(t) (i.e. in region 2) are in the -1 state. The dependence of the
output variable on the input is shown in Fig. 1.4c.

1.2.2 General Properties and the Representation Theorem

The following properties can be readily verified for the Preisach model (1.16).
Detailed proofs and more explanations can be found in [36].

1. (Wiping-out property) Only the alternating series of dominant input extrema
are stored by the Preisach model. All other input extrema are wiped out. This
property states that the state of the Preisach model is entirely given by the past
dominant alternating extrema of the input variation.

2. (Congruency property) All minor hysteresis loops corresponding to back-and-
forth variations of the input between the same two consecutive extreme values
are congruent.

The following representation theorem is due to Mayergoyz [36]: The wiping-out
property and the congruency property constitute the necessary and sufficient
conditions for a hysteretic system to be represented by the Preisach model (1.16).

Fig. 1.3 Contour plot of the
irreversible component of the
Preisach distribution function
in the Preisach plane. The
units and scale of the
distribution are not shown in
the figure as the Preisach
distribution function is often
normalized to 1
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This representation theorem is important in practical applications because it gives
the conditions under which the Preisach model can be used to simulate a given
hysteretic system.

The Preisach distribution can be identified by measuring the first-order reversal
curves (FORCs) shown in Fig. 1.5. A FORC can be measured by starting from
positive saturation, decreasing the input to a value b, increasing it to a, and
measuring the output variables yb and yab. The irreversible component of the
Preisach distribution is:

P a; bð Þ ¼ 1
2
@2yab

@a@b
; ð1:17Þ

while the reversible component is

R bð Þ ¼ 1
2

lim
a!b

@yab

@a
: ð1:18Þ

HysterSoft� computes the above derivatives using a special numerical tech-
nique based on least-square minimizations initially proposed by Pike [37].

Fig. 1.4 Geometrical interpretation of the Preisach model: (a) time variation of the input,
(b) representation of the Preisach plane (the Preisach distribution is not shown to simplify the
figure), and (c) the input–output hysteresis curve
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1.2.3 Examples of Preisach Analytical Distributions

Various analytical expressions for the reversible and irreversible components of
the Preisach distribution are often being used in the literature. Using analytical
expressions for the Preisach distribution has two main advantages: (1) the number
of model parameters is significantly reduced to a few fitting parameters simpli-
fying the identification problem considerably, and (2) the double integral in (1.16)
can be often computed analytically decreasing the computational overhead of the
model. The second column in Table 1.1 shows a few such analytical distributions.
The first six examples refer to the reversible component R að Þ, while the remaining
examples to the irreversible component of the distribution P a; bð Þ.

In general, the following types of distributions are assumed for R að Þ in the
literature: uniform, exponential, Gaussian, Cauchy and Langevin distributions, as
well as distributions derived from cumulative functions such as Brillouin, tangent
hyperbolic, and Langevin functions. It should be noted that the distributions
derived from tangent hyperbolic and Langevin function are particular cases of the
Brillouin distribution with J ¼ 1=2 and J !1, respectively.

As for the irreversible component of the Preisach distribution, P a; bð Þ, it is
customary to assume distributions in terms of the Dirac delta functions, the uni-
form distribution, or other elementary functions. Line #7 in Table 1.1 shows an
example of a distribution in which all the rectangular operators have the same
coercivity n0, while line #8 shows an example of a distribution in which all the
rectangular operators are symmetric. The non-uniform distributions are usually
written either in terms of coordinates a and b, or in terms of n and g (defined
below) and the Preisach distribution is often written as the product of two terms.

Fig. 1.5 First-order reversal curves used to identify the Preisach distribution. yab is the value of
the output after decreasing from positive saturation to x ¼ b and then increasing the input to
x ¼ a
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(a) When written in terms of a and b, the Preisach distribution is often factorized as

P a; bð Þ ¼ f að Þg bð Þ; ð1:19Þ

where f and g are arbitrary functions of a and b.
(b) When written in terms of n and g, the Preisach distribution is often factorized as

P a; bð Þ ¼ f nð Þg gð Þ; ð1:20Þ

where

n ¼ aþ bffiffiffi
2
p ; ð1:21Þ

g ¼ a� bffiffiffi
2
p : ð1:22Þ

Axis n is called the interaction axis and axis g is the coercivity axis. Functions
f and g in (1.19) and (1.20) are most often assumed to have Gaussian, Cauchy, or
lognormal distributions. For instance, a case which is often encountered in
applications is when both f nð Þ and g gð Þ in (1.20) are given by normal distributions:

P a; bð Þ ¼ ysi

2prnrg
exp � g� g0ð Þ2

2 r2
g

" #
exp � n2

2 r2
n

" #
; ð1:23Þ

where ysi can be identified as the saturation of the distribution, r2
n and r2

g as the
variances of the distribution along the two principal axes, and g0 is the position of
the maximum of the distribution along the g axis. Another distribution that we will
often use in this book is when f nð Þ is given by a normal distribution while g gð Þ is a
lognormal distribution:

P a; bð Þ ¼ ysi

2prnrg
exp � ln g� lð Þ2

2 r2

" #
exp � n2

2 r2
n

" #
; ð1:24Þ

where r2
n is the variance of the distribution along the n axis. One can show that the

mean of the distribution along the g axis is g0 ¼ exp lþ r2

2

� �
and the variance is

r2
g ¼ exp r2ð Þ � 1½ � exp 2lþ r2ð Þ.

1.2.4 Computation of Hysteresis Curves in the Preisach
Model

Since the evaluation of the double integral in (1.16) requires a large computational
cost several techniques have been developed to help the numerical implementation

18 1 Mathematical Models of Hysteresis



of the model. One of the most common procedures is to pre-compute the so called
Everett integrals, defined by:

E a; bð Þ ¼
ZZ

T a;bð Þ
P a0; b0ð Þda0db0 þ

Z a

b
R a0ð Þda0; for all a� b; ð1:25Þ

where triangle T is represented in Fig. 1.6. If these integrals are pre-computed and
stored at all reversal points xi; xiþ1ð Þ [see Fig. 1.4b], the output variable can be
computed as:

y ¼ �E x0; x0ð Þ þ 2
Xn�1

1

E xi; xiþið Þ ð1:26Þ

if the first extreme value of the input x0 was a maximum. If the first extreme value
of the input x0 was a minimum, the output variable can be computed as:

y ¼ E x0; x0ð Þ � 2
Xn�1

1

E xi; xiþið Þ ð1:27Þ

where, in both equations, n is the current number of extreme points stored by the
model.

It is apparent from the above analysis that the Preisach model can be given in
terms of either the Preisach distribution functions P a; bð Þ and R að Þ or the Everett
integral E a; bð Þ. In fact, in many practical applications it might be more advan-
tageous to know the values of the Everett integral E a; bð Þ instead of the Preisach
distribution functions. The third column in Table 1.1 shows the analytical
expressions of the Everett function for the Preisach distributions presented in the
second column. These functions are also implemented in HysterSoft�.

Next, we summarize the analytical equations for the most important hysteresis
curves anddiscuss about the initial susceptibility and the susceptibility at reversal points.

Fig. 1.6 Triangle in the
Preisach plane where the
Everett integral is computed
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(a) Anhysteretic curve. If the anhysteretic curve exists (this usually happens if the
Preisach distribution function does not have singularities), the output can be
evaluated as:

yan xð Þ ¼
ZZ

Aþ xð Þ
P a; bð Þdadb�

ZZ
A� xð Þ

P a; bð Þdadb

þ
Z x

�1
R að Þda�

Z 1
x

R að Þda

ð1:28Þ

In the case when the Preisach distribution is symmetric with respect to the
b ¼ �a axis the anhysteretic curve can be written as

yan xð Þ ¼ 2
Z 1

0
dg
Z ffiffi

2
p

x

0
P

nþ gffiffiffi
2
p ;

n� gffiffiffi
2
p


 �
dnþ 2

Z x

0
R nð Þdn; ð1:29Þ

where n and g are defined in (1.21) and (1.22) (Fig. 1.7). The second column
in Table 1.2 summarizes the anhysteretic functions corresponding to the
Preisach distributions from Table 1.1.

(b) Initial curve. The initial hysteresis curve is defined by starting with the system
in the zero-anhysteretic state. The initial curve can be written as:

yi xð Þ ¼ E 1;�1ð Þ þ 2
Z 1
�1

db0
Z max x;�b0ð Þ

b0
P a0; b0ð Þda0

þ 2
Z x

�1
R a0ð Þda0 ð1:30Þ

where, in the case of hysteretic systems with saturation E 1;�1ð Þ ¼ ysat.
In the case when the Preisach distribution is symmetric with respect to the
b ¼ �a axis the initial curve can be written as yi xð Þ ¼ E x;�xð Þ.

Fig. 1.7 Preisach plane used
to compute the anhysteretic
curve. A+ denotes the area
below the anhysteretic
separation line and A- the
area above this line
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(c) Loading curve. The loading major hysteresis curve starts from x ¼ �1 and
can be written in terms of the Everett integral (1.25) as:

yL xð Þ ¼ �E 1;�1ð Þ þ 2E x;�1ð Þ; ð1:31Þ

where, in the case of hysteretic systems with saturation E 1;�1ð Þ ¼ ysat.
(d) Unloading curve. The unloading major hysteresis curve starts from x ¼ 1 and

can be written in terms of the Everett integral (1.25) as:

yU xð Þ ¼ E 1;�1ð Þ � 2E x;þ1ð Þ: ð1:32Þ

(e) Initial susceptibility. The initial susceptibility in the Preisach model can be
computed by taking the derivative of (1.30) with respect to x when x! 0. If
the irreversible component of the Preisach distribution does not have a sin-
gularity at a; bð Þ ¼ 0; 0ð Þ the only contribution to the initial susceptibility
comes from the reversible component:

vi ¼ 2R 0ð Þ: ð1:33Þ

The third column in Table 1.2 summarizes the initial susceptibilities
corresponding to the Preisach distributions from Table 1.1.

Table 1.2 The anhysteretic functions, initial susceptibilities, output saturation, and distribution
parameters for the Preisach distribution functions shown in Table 1.1

ID Anhysteretic curve Initial
susceptibility (vi)

Output
saturation
(ysat)

Distribution
parameters

#1 ysr 1� exp � xj j
r

� �h i ysr

r ysr ysr , r

#2 ysr erf xffiffi
2
p

r

� � ffiffi
2
p

q
ysr

r
ysr ysr , r

#3 ysr
2Jþ1

2J coth 2Jþ1
2J x

� �
� 1

2J coth 1
2J x
� �� �

1 ysr ysr , J

#4 ysr coth 2x
r

� �
� r

2x

� � ysr

3r ysr ysr , r

#5 ysr tanh 2x
r

� �
2ysr

r
ysr ysr , r

#6 2ysr

p arctan x
r

� � 2ysr

pr
ysr ysr , r

#7 ysid a� b� 2n0ð Þ; if a 2 a1; a2½ �
0; otherwise



0

ysi, a1, a2, n0

#8 0; if x ¼ 0
sgnðxÞysi a2 � a1ð Þ; otherwise



0

ysi, a1,

#9 0; if x ¼ 0
1; if x [ 0
�1; if x\0

8<
: 0

1 ysi

#10 Eq. (1.28)
0

� yn ysi, a0, b0, n0, ra,
rb

#11 2ysi

p arctan x
r

� �
0

ysi

R1
0 g sð Þds ysi, r, g gð Þ

#12 ysierf xffiffi
2
p

r

� �
0

ysi

R1
0 g sð Þds ysi, r, g gð Þ
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(f) Susceptibility at reversal points. Let xr be the value of the input at a reversal
point. If the irreversible component of the Preisach distribution does not have a
singularity in the limit a;bð Þ ! xr; xrð Þ the susceptibility at reversal point xr is:

vi ¼ 2R xrð Þ: ð1:34Þ

The last equation can be used to identify the reversible component of the
distribution, R xð Þ.

1.2.5 Generalizations of the Preisach Model

The Preisach model was subject to many modifications over the years. These
modifications were made in order to extend the area of applicability of the model
to other physical (particularly magnetic) systems that do not satisfy the wiping-out
or the congruency properties of the classical Preisach model. In this section we
summarize a few such generalizations that will appear later in the book.

1.2.5.1 The Moving Preisach Model

The moving Preisach model is given by (1.16) in which the input variable in the
right-hand side is changed to an effective input given by

xeff ¼ xþ f x; yð Þ: ð1:35Þ

The above model exhibits the congruency and wiping-out properties in the
operative plane define by variables xeff ; y

� �
.

1.2.5.2 The Input-Dependent Preisach model

The input-dependent Preisach model is obtained using input dependent Preisach
distribution functions P a; b; xð Þ and R a; xð Þ

y tð Þ ¼
ZZ

a�b
c
_

abx tð ÞP a; b; xð Þdadbþ
Z 1
�1

c
_

aax tð ÞR a; xð Þda: ð1:36Þ

The previous equation can be written in a slightly different form due to May-
ergoyz [36], which simplifies the parameter identification technique:

y tð Þ ¼
ZZ

R
c
_

abx tð ÞP a; b; xð Þdadbþ yL þ yU

2
; ð1:37Þ

where rectangle R is defined by a½ and b (see Fig. 1.8a) while yL and yU are the
loading and unloading major hysteresis curves, respectively. Equation (1.37) can
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be derived from (1.36) by splitting integration domain in the first integral into R
and triangles T1 and T2, and observing that the integrals over T1 and T2 combined
with the last term in (1.36) leads to average of the loading and unloading major
hysteresis curves. Notice that, according to definition (1.37) the irreversible Pre-
isach distribution function needs to be defined only for b\x\a.

The input dependent Preisach model has the following properties:

1. (Wiping-out property) Only the alternating series of dominant input extrema
are stored by the Preisach model. All other input extrema are wiped out.

2. (Congruency property) All minor hysteresis loops corresponding to back-and-
forth variations of the input between the same two consecutive extreme values
have equal vertical chords.

The following representation theorem is due to Mayergoyz [36]: The above
wiping-out property and the congruency properties constitute the necessary and
sufficient conditions for a hysteretic system to be represented by the input-
dependent Preisach model (1.36).

The Preisach distribution of the input-dependent Preisach model can be iden-
tified by measuring the second-order reversal curves (SORC) shown in Fig. 1.18.
A SFORC is measured by starting from positive saturation, decreasing the input to
a value b, increasing it to a[ b, decreasing it to x, and measuring the output
variable yabx. The irreversible and reversible components of the Preisach distri-
bution are can be determined as (Fig. 1.8b)

P a; b; xð Þ ¼ 1
2
@2yabx

@a@b
; if b\x\a ð1:38Þ

Fig. 1.8 The Preisach plane and ad second-order reversal curve (SORC) used to compute the
input-dependent Preisach distribution
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The condition that the first-order ascending and descending curves are sym-
metric imply that the Preisach distribution functions need to satisfy the following
equations

P a; b; xð Þ ¼ P �a;�b;�xð Þ and R b; xð Þ ¼ R �b;�xð Þ ð1:39Þ

The Preisach distribution of the input-dependent Preisach model can be com-
puted in HysterSoft� if a set of SORCs are provided.

1.2.5.3 Other Preisach-Type Models

A variety of other Preisach-type models have been developed in the literature. For
instance, the restricted Preisach-model introduced in [36] has been developed to
relax the congruency property of the model to the so called ‘‘comparable’’ minor
loops. A number of other modes were introduced by Della Torre [38–51] in order
to relax the congruency property even more and account for various effects such as
accommodation and memory loss. In these models, the output is computed iter-
atively since Preisach distribution often depends on the current value of the output
variable. Another model with a variable Preisach distribution was introduced in
[52]; this model was shown to be more accurate for particulate ferromagnetic
media, particularly for systems of highly interactive magnetic particles.

Another type of Preisach model was introduced by Roshko et al. [53, 54] and
improved by Stancu et al. [55]. This model was used by a number of research
groups to describe temperature dependent hysteresis in systems of magnetic
particles.

1.2.6 Relation Between the Preisach Model and Other
Models of Hysteresis

A number of other hysteresis models can be directly related to or are special cases
of the Preisach model. Below we present three such models that appeared more
frequently in the literature.

1.2.6.1 Relay Hysteresis Operator

The relay hysteresis operator can be regarded as a generalization of the rectangular
hysteresis operator in the sense that the output can trace two fixed output curves
hU xð Þ or hL xð Þ according to (see Fig. 1.9)
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y tð Þ ¼

hU x tð Þð Þ; if x tð Þ� a
hU x tð Þð Þ; if x tð Þ 2 b; að Þ and x t�ð Þ ¼ a
hL x tð Þð Þ; if x tð Þ� b
hL x tð Þð Þ; if x tð Þ 2 b; að Þ and x t�ð Þ ¼ b

8>><
>>:

ð1:40Þ

where a, b, and t� have the same significance as in (1.15). If no previous switching
exists, the value of the output is either hU x tð Þð Þ or hL x tð Þð Þ depending on the initial
hysteretic state of the system. Depending on the choice of functions hU x tð Þð Þ and
hL x tð Þð Þ, the output of the relay hysteresis operator can be BIBO stable or not. In
addition, there are no hysteresis curves inside or outside the major hysteresis loop
defined by functions hU x tð Þð Þ and hL x tð Þð Þ.

The relay hysteretic operator satisfies the wiping-out and congruency properties
of the input-dependent Preisach model and, hence, can be written in terms of the
Preisach model. The input-dependent Preisach distribution can be identified as:

P ~a; ~b; x
� �

¼ 1
2

hU xð Þ � hL xð Þ½ �d ~a� að Þd ~b� b
� �

; ð1:41Þ

R ~a; xð Þ ¼ 1
2

hU xð Þ þ hL xð Þ½ �d ~a� að Þsgn x� ~að Þ: ð1:42Þ

1.2.6.2 The Backlash (Play) Operator

The backlash operator (also called the play or the Krasnosel’skii-Pokrovskii
operator), is defined by

y tð Þ ¼ max x tð Þ � h;min x tð Þ þ h; y t�ð Þð Þ½ � ð1:43Þ

where h is the coercivity of the hysteretic loop and t- is the time when the last
input extreme was attained. The hysteretic loop is represented in Fig. 1.10a. It is
usually assumed that initial state of the operator is x ¼ y ¼ 0. The backlash

Fig. 1.9 Examples of relay hysteretic operators
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operator is a particular case of the Preisach model, in which the Preisach distri-
bution is given by

P a; bð Þ ¼ ysid a� b� hð Þ and R að Þ ¼ 0: ð1:44Þ

1.2.6.3 The Stop Operator

The stop operator (also called the elasto-plastic or Prandtl operator) is defined by

y tð Þ ¼ min h;max �h; x tð Þ � x t�ð Þ þ y t�ð Þð Þ½ � ð1:45Þ

where t- denotes that last value of the input reversal [see Fig. 1.10b]. It is usually
assumed that initial state of the operator is x ¼ x0 ¼ y ¼ 0. The stop operator is the
dual of the backlash operator and can also be regarded as a particular case of the
Preisach model, in which the Preisach distribution is given by

P a; bð Þ ¼ ysatd a� b� hð Þ and R að Þ ¼ ysatd a� bð Þ: ð1:46Þ

The stop operator stays at the basis of a number of models based on super-
position [56–58]. However, all these models are particular cases of the Preisach
model of hysteresis.

1.3 Jiles-Atherton Model

1.3.1 Definition

The Jiles-Atherton model of hysteresis describes the output variable by the fol-
lowing differential equation [5, 6]:

Fig. 1.10 The backlash (a) and the stop (b) operators
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dy

dx
¼ 1� cð Þ d L xþ ayð Þ � y

k 1� cð Þ sgn _xð Þ � a L xþ ayð Þ � y½ � þ c
dL xþ ayð Þ

dx
; ð1:47Þ

where c, a, and k are the model parameters, which are assumed to be non-negative,
and L is the anhysteretic curve. Although this curve can have different shapes
depending on the type of each hysteretic system, so far, it was mostly assumed to
be a Langevin function:

L xð Þ ¼ ysat coth
x

a

� �
� a

x

h i
; ð1:48Þ

where a is another fitting parameter and ysat is the saturation value of the output.
In Eq. (1.47) d is a parameter that was equal to 1 in the original versions of the
Jiles-Atherton model [5, 6] (note that d was also referring to sign ðd _x=dtÞ in the
original model), but, was latter set to [59]:

d ¼
0; if _x L xþ ayð Þ � y½ � � 0

1; otherwise



ð1:49Þ

in order to avoid curves with negative differential susceptibility (see Fig. 1.11).
HysterSoft� distinguishes between the two cases by setting variable Version to
either Y1992_Jiles when d ¼ 1 or to Y1994_Deane when Eq. (1.49) is used.

The following constraints have to be satisfied by the anhysteretic function in
order for the model to be BIBO stable:

(a) k 1� cð Þ sgn _xð Þ[ a L xþ ayð Þ � y½ � for all possible values of x and y.

(b) 1� ac dL xð Þ
dx [ 0 for any x. If the anhysteretic function is given by (1.48) this

condition is equivalent to 3a [ acysat.

So far, the model has been mostly applied to magnetic hysteresis and introduced in
circuit simulators to model nonlinear inductors and transformers [7, 60]. In magnetic
hysteresis, parameter a accounts for the demagnetization energy, k for domain
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Fig. 1.11 Minor and major loops simulated using the Jiles-Atherton model with d ¼ 1 (left) and
d given by Eq. (1.49) (right)
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pinning, and parameter c is introduced to separate explicitly the reversible and
irreversible components of the magnetization. More information about the derivation
and physical significance of the model parameters can be found in [5, 6, 61, 62].

1.3.2 General Properties of Hysteretic Curves

It can be shown that the Jiles-Atherton model has the following properties:

(a) The output variable is bounded and lies in interval (�ysat,ysat).
(b) The hysteretic state of the Jiles-Atherton model is completely described by

the values of the input, output, and the direction (increasing or decreasing) of
the input variable.

(c) The model displays accommodation effects. If the input is cycled between
two values the hysteresis curves tend towards a limit cycle (see Fig. 1.12).

(d) The differential susceptibility is non-negative when Eq. (1.49) is satisfied but
it can be positive, negative, or 0 when d ¼ 1.

(e) Equation (1.47) can be written in the form of a nonlinear first-order differ-
ential equation by taking the derivative in the last term in (1.47) and using the
chain rule. One obtains:

dy

dx
¼ 1� cð Þ d L xþ ayð Þ � y½ �

k 1� cð Þ sgn _xð Þ � a L xþ ayð Þ � y½ � þ c
dL xeff

� �
d xeff

� � 1þ a
dy

dx


 �
; ð1:50Þ

and after a few rearrangements:

dy

dx
¼

1� cð Þ d L xþayð Þ�y
k 1�cð Þ sgn _xð Þ�a L xþayð Þ�y½ � þ c

dL xeffð Þ
dxeff

1� ac
dL xeffð Þ

dxeff

; ð1:51Þ
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Fig. 1.12 Accommodation
effects and limit cycle in the
Jiles-Atherton model
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where

xeff ¼ xþ ay; ð1:52Þ

is the ‘‘effective’’ value of the input
(f) The anhysteretic curve is given by function L [see Eq. (1.48)]. This fact can

be proved by using the fact that the model has a unique limit cycle and taking
the limit of closed small cycles around the anhysteretic function (similar to
the procedure used to find the anhysteretic curve of the Coleman-Hodgdon
model in Sect. 1.6.2).

(g) If the anhysteretic function L is given by (1.48) the slope of the anhysteretic
function at x ¼ 0 is

van ¼

dL xeffð Þ
dxeff

����
xeff¼0

1� a
dL xeffð Þ

dxeff

����
xeff¼0

¼ ysat

3a� aysat
: ð1:53Þ

(h) The initial susceptibility can be computed by imposing sgn _xð Þ ¼ 1, x ¼ 0 and
y ¼ 0 in (1.51)

vi ¼
c

dL xeffð Þ
dxeff

1� ac
dL xeffð Þ
d xeffð Þ

¼ cysat

3a� acysat
: ð1:54Þ

where, to derive the last term in (1.54) we have assumed again that anhys-
teretic function L is given by (1.48).

(i) The susceptibility at the critical fields can be computed by imposing
sgn _xð Þ ¼ 1, x ¼ xC and y ¼ 0 in (1.51) where xC is the coercive field. One
obtains:

vC ¼
1� cð Þ L xCð Þ

k 1�cð Þ �aL xCð Þ þ c dL xCð Þ
dxC

1� ac dL xCð Þ
dxC

: ð1:55Þ

In most applications dL xCð Þ
dxC

can be neglected in Eq. (1.55), which leads to a
slightly simpler expression for vC.

(j) The coefficient of the quadratic term that enters into the law of Lord Rayleigh
(1.4) can be expresses as a function of the model’s parameters as [63]:

b ¼ a2ysat 1� cð Þ
2k a� caysatð Þ3

: ð1:56Þ

The coefficient of the linear term in the law of Lord Rayleigh is of course given by
the initial susceptibility.
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1.3.3 Parameter Identification Methods

The existing parameter identification methods for the Jiles-Atherton model are
usually iterative techniques based on least-square minimizations, genetic algo-
rithms, or non-iterative techniques. The non-iterative identification methods are
usually based on the following observations:

(1) The output saturation is given by model parameter ysat.
(2) The coercive field of the model is mostly dependent on parameter k. The effect

of the other model parameters on the value of the coercive field is usually
much smaller.

(3) The initial and zero-field anhysteretic susceptibilities [Eqs. (1.54) and (1.53),
respectively] do not depend on parameter k.

(4) The effective input xeff is relatively close to the real input x so the last term in
(1.52) can often be neglected.

(5) The a parameter does not have a significant effect on the value of the coercive
field but changes the remanence point and the differential susceptibilities at the
coercive point significantly.

Next, we summarize an identification method due to Jiles et al. [64] that finds
the model parameters by fitting the initial curve, the anhysteretic curve, and var-
ious parameters from the major hysteresis loop to experimental data. The equa-
tions below can be derived directly from the constitutive equation of the model
(1.47) or from the general properties of the hysteretic curves presented in the
previous subsection.

It is assumed that the anhysteretic function is given by (1.48) and the output
saturation is already measured experimentally and equal to parameter ysat. Hence,
we only need to determine parameters a, a, c, and k. The algorithm proceeds as
follows:

(1) One starts with initial guess for parameter a ¼ 0.
(2) Estimate parameter c using the values of the initial and zero-field anhysteretic

susceptibilities:

c ¼ vi

van

3a� aysat

3a� acysat
ð1:57Þ

(this equation can be obtained from (1.53) and (1.54)).
(3) Estimate parameter a from the anhysteretic susceptibility at x ¼ 0:

a ¼ ysat

2
1

van
þ a


 �
: ð1:58Þ

(4) Compute parameter k from the value of the coercive field xC and the sus-
ceptibility at the coercive field vC:
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k ¼ L xCð Þ
1� c

aþ 1� c

vC � c
dL xeffð Þ

dxeff

����
xe¼xC

2
6664

3
7775: ð1:59Þ

(5) Compute parameter a from the value of the output yR and the differential
susceptibility at remanence vR by solving the following transcendental
equation:

vR ¼ � 1� cð Þ L ayRð Þ � yR

k 1� cð Þ þ a L ayRð Þ � yR½ � þ c
dL xeff

� �
d xeff

� �
xe¼ayR

����� 1þ avRð Þ ð1:60Þ

(6) Repeat steps (3)–(5) till convergence is attaint.
(7) Go to step (2) and repeat the algorithm till the value of parameter c does not

change significantly.

This identification technique is also implemented in HysterSoft�.

1.4 Energetic (Hauser) Model

1.4.1 Definition

The output variable in the energetic (or the Hauser) model is equal to [10, 65, 66]:

y ¼ �ysat; if x� xsat;1; ð1:61Þ

y ¼ ysat; if x� xsat;2; ð1:62Þ

and is computed by solving the following transcendental equation:

x ¼ Neyþ sgn yð ÞhG yð Þ þ sgn y� y0ð Þ k

ysat
þ crhG yð Þ

� �

	 1� j exp � q

jysat
y� y0j j


 �� �
; if xsat;1� x� xsat;2; ð1:63Þ

where

G yð Þ ¼ Gsat
y

ysat


 �
; ð1:64Þ

Gsat sð Þ ¼ 1þ sð Þ1þs 1� sð Þ1�s
h ig

2�1; ð1:65Þ
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xsat;1 ¼ �Neysat � h 2g � 1ð Þ � k

ysat
þ crh 2g � 1ð Þ

� �

	 1� j exp � q ysat þ y0ð Þ
jysat


 �� �
ð1:66Þ

xsat;2 ¼ Neysat þ h 2g � 1ð Þ þ k

ysat
þ crh 2g � 1ð Þ

� �

	 1� j exp � q ysat � y0ð Þ
jysat


 �� �
ð1:67Þ

In the above equations ysat, Ne, h, g, cr, k, and q are positive model parameters
and ysat can be identified as the output saturation. y0 is the value of the output at the
last reversal point. Initially, the simulations start with x ¼ 0 and y0 ¼ 0 and, then,
the output variable is computed using (1.61)–(1.63).

The major hysteresis loop and sample reversal curves are shown in Fig. 1.13. In
these simulations the major loop saturates at xsat;1 ¼ xsat;2 � 42:2. The energetic
model predicts a ‘‘closure’’ point of the loading and unloading branches of the
major loop. The major loop saturates (i.e. y ¼ �ysat) at these ‘‘closure’’ points.

In the literature parameter k is usually normalized by the vacuum permeability
l0 (= 1.256 9 10-6 H/m), so parameter k should be replaced by k=l0 when
comparing the results obtained this section with the ones in the literature. In this
book we would like to extend the area of applicability of the model to non-magnetic
systems, for which reason we define l0 ¼ 1. HysterSoft� allows users to set the
vacuum permeability parameter to 1 or l0, depending on the preference.

Parameter j depends on the past history of the system and, at each reversal
point, it is re-computed as:

j ¼ 2� j0 exp � q

ysatj0
y� y0j j


 �
; ð1:68Þ
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where j0 and y0 are the values of j and y computed at the last reversal point. The
simulation always starts with the initial curve (y0 ¼ 0 and j ¼ 1). At each reversal
point j is calculated by (1.68) and y0 is set to the actual value of the output at this
reversal point. Parameter j varies between 0 and 2.

Notice that Eq. (1.68) is equivalent to imposing that the output variable does
not have discontinuities at reversal points. Indeed, if we consider reversal point
b with coordinates x0; y0ð Þ, point c with coordinates x1; y1ð Þ (see Fig. 1.14), and
take the limit y! y0, Eq. (1.63) gives

x1 ¼ Ney1 þ hG y1ð Þ þ
k

ysat
þ crhG y1ð Þ

� �
	 1� j0 exp � q

j0ysat
y1 � y0j j


 �� �

ð1:69Þ

in the case of curve b-c and

x1 ¼ Ney1 þ hG y1ð Þ �
k

ysat
þ crhG y1ð Þ

� �
	 1� jð Þ ð1:70Þ

in the case of curve c-d. By subtracting the last two equations we obtain (1.68),
where y � y1.

The energetic model has often been used in the literature under the following
two approximations:

exp � q

j

� �
� 0; ð1:71Þ

2g 
 1: ð1:72Þ

In order to keep the generality of the model, we do not use the above
approximations in the following sections. However, many of the properties of the
hysteretic curves presented in the following can be simplified by using (1.71) and
(1.72).

Fig. 1.14 Continuity of
hysteresis curves at reversal
points
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1.4.2 General Properties of Hysteretic Curves

The energetic model has the following properties:

(a) The output variable is bounded and lies in the interval (�ysat, ysat).
(b) The hysteretic state of the energetic model is completely described by the

values of the input, output, parameter j, and direction (increasing or
decreasing) of the input variable.

(c) The model displays accommodation. However, if the input varies alterna-
tively between the same 2 extreme values, say x0 and x1 there exist a limit
cycle between points x0; y0ð Þ and x1; y1ð Þ, which can be computed from
(1.61)–(1.68). The j parameter converges towards jlimit cicle, which is the
solution of the following equation

jlimit cicle ¼ 2� jlimit cicle exp � q

ysatjlimit cicle

y2 � y1j j

 �

: ð1:73Þ

When the limit cycle extends from �ysat to ysat we obtain the major
hysteresis loop and parameter j converges towards j1 defined by

j1 ¼ 2� j1 exp � 2q

j1


 �
: ð1:74Þ

The mapping q! j1 is a bijection (see Fig. 1.15) and j1 increases
monotonically from 1 to 2 when parameter q is varied from 0 to 1.

(d) The initial hysteresis curve (for x [ 0) is given by

x ¼ Neyi þ hG yið Þ þ
k

ysat
þ crhG yið Þ

� �
	 1� exp � qyi

ysat


 �� �
: ð1:75Þ
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(e) The major hysteresis loop of the energetic loop cannot be computed by
starting from the initial state with j ¼ 1, saturating the system in one
direction and, then, in the other direction, because parameter j does not have
a unique value in the limit x! �1 so the ‘‘loading’’ and ‘‘unloading’’
curves that start from �1 depend on the past history of the model. Hence,
for the purpose of the presentation we define the major loop of the energetic
model as the limit cycle when x is cycled between �1. The equations of the
loading yL and unloading yU curves of the major hysteresis loop (defined as
mentioned) can be written as:

x ¼NeyL þ sgn yLð ÞhG yLð Þ

þ k

ysat
þ crhG yLð Þ

� �
	 1� j1 exp � q ysat þ yLð Þ

j1ysat


 �� �
ð1:76Þ

x ¼NeyU þ sgn yUð ÞhG yUð Þ

� k

ysat
þ crhG yUð Þ

� �
	 1� j1 exp � q ysat � yUð Þ

j1ysat


 �� �
ð1:77Þ

If approximations (1.71) and (1.72) hold parameter j � 2 when x! �1
and the major hysteresis loop as defined in Sect. 1.1.1 is identical to the limit
cycle defined above. If these approximations do not hold, the hysteresis
curves can cross and go out of the limit cycle defined by (1.76) and (1.77).

(f) The differential susceptibility of the model is non-negative and can be
expressed in terms of the model parameters as follows

dy

dx
¼ 0; if x� xsat;1 or x� xsat;2; ð1:78Þ

and

dy

dx


 ��1

¼Ne þ hsgn yð ÞG0 yð Þ þ q

jysat

k

ysat
þ crhG yð Þ

� �
exp � q

jysat
y� y0j j


 �

þ sgn y� y0ð Þcrh 1� j exp � q

jysat
y� y0j j


 �� �
G0 yð Þ;

ð1:79Þ

if xsat;1� x� xsat;2, where G0 yð Þ is the derivative of function G yð Þ.
(g) Since G 0ð Þ ¼ G0 0ð Þ ¼ 0 (see Fig. 1.16) the differential susceptibility at the

coercive points (on the major hysteresis loop) becomes

vC ¼
1

Ne þ qk
y2

sat
exp � q

j1

� � : ð1:80Þ

If approximation (1.71) is satisfied, the differential susceptibility at the
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coercive becomes vC � 1
Ne

.

(h) The initial susceptibility is:

vi ¼
1

Ne þ qk
y2

sat

ð1:81Þ

(i) The coercive field is:

xC ¼
k

ysat
1� j1 exp � q

j1


 �� �
: ð1:82Þ

If approximation (1.71) is satisfied, the differential susceptibility at the
coercivity points becomes xC � k

ysat
.

(j) The energy lost during one cycle of the major hysteresis loop can be com-
puted by subtracting Eqs. (1.76) and (1.77) and using (1.1):

w ¼ k 4� 8
q

e�q � 1ð Þ
� �

þ 2crh

Zysat

�ysat

G yð Þ 1� j1 exp � q

j1


 �
cosh � qy

j1ysat


 �� �
dy ð1:83Þ

If approximation (1.71) is satisfied, the integral can be evaluated numerically
to obtain:

w � 4k þ 2:359crh: ð1:84Þ
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(k) The analytical expression for the remanent output can be computed by setting
x ¼ 0 in (1.63) and solving numerically the resulting transcendental equation.

(l) The coefficient of the quadratic term that enters into the law of Lord Rayleigh
(1.4) can be expresses as a function of the model’s parameters as:

b ¼ y3
sat

2
kq2 � hgysat

kqþ y2
satNe

: ð1:85Þ

The last expression can be derived by considering yi is a function of x in (1.75) and
expending expression (1.75) in Taylor series.

1.4.3 Parameter Identification Methods

Next we present a parameter identification method for the energetic model of
hysteresis. The presentation follows closely the method presented in [67] but
deviates significantly in the way the various parameters on the major hysteresis
loop are used. The parameter identification method presented below aims to
determine the six model parameters by using the following data (see Fig. 1.17):

• xC, the coercive field,
• vi, the initial susceptibility,
• vC, the differential susceptibility at coercivity,
• yR, the remanent output on the major loop,
• xR, the input corresponding to output yR on the loading curve.
• xg; yg

� �
, an arbitrary point on the unloading curve of the major loop.
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These variables can be expressed as functions of the six model parameters by
using the following system of equations that can be derived from the model’s basic
equations:

xC ¼
k

ysat
1� j1e�

q
j1

� �
; ð1:86Þ

1
vi
¼ Ne þ

qk

y2
sat

; ð1:87Þ

1
vc
¼ Ne þ

qk

y2
sat

e�
q

j1 ; ð1:88Þ

NeyR þ hG yRð Þ � F �yRð Þ ¼ 0; ð1:89Þ

Neyg þ hG yg

� �
þ F yg

� �
¼ xg; ð1:90Þ

NeyR þ hG yRð Þ þ F yRð Þ ¼ xR; ð1:91Þ

where j1 is given by (1.74) and

F yð Þ ¼ Fsat
y

ysat


 �
; ð1:92Þ

Fsat sð Þ ¼ k

ysat
þ crhGsat sð Þ

� �
1� j1 exp � q

j1
1þ sð Þ

� �
 �
; ð1:93Þ

and Gsat sð Þ is given by (1.65). Equations (1.86)–(1.91) represent a system of six
nonlinear equations that need to be solved for the six model parameters. All model
parameters should be positive in order for the model to describe hysteresis with
positive differential susceptibilities. The conditions under which Eqs. (1.86)–(1.91)
have no solution, one solution, or multiple solutions are analyzed next. For now,
let us note that Eqs. (1.86)–(1.88) involve only parameters k, q, Ne so these three
equations can be solved first. Hence, the following subsection focuses on the
computation of k, q, Ne alone; after that, we present the technique for the com-
putation of the remaining parameters.

1.4.3.1 Computation of k, q, and Ne

Equations (1.87) and (1.88) can be rearranged to obtain the following equation that
needs to be solved numerically for q:

1
vi
� 1

vc


 �
ysat

xc
¼ q

1� e�
q

j1 qð Þ

1� j1 qð Þe�
q

j1 qð Þ
: ð1:94Þ
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j1 qð Þ is given by solving (1.74). Function

f qð Þ ¼ q
1� e�

q
j1 qð Þ

1� j1 qð Þe�
q

j1 qð Þ
ð1:95Þ

has a minimum of 2 at qmin ¼ 0 (see Fig. 1.18). Hence, Eq. (1.94) implies
1
vi
� 1

vc

� �
ysat

xc
� f qminð Þ ¼ 2, which shows that the space of physical parameters

that the energetic model can describe is constrained by the inequality:

1
vi
� 1

vc
þ 2xc

ysat
: ð1:96Þ

Initial susceptibilities that do not specify this inequality cannot be modeled by
the energetic model of hysteresis.

Once Eq. (1.94) is solved for q, parameters k and Ne can be found from:

k ¼ ysatxc

1� j1e�
q

j1
; ð1:97Þ

Ne ¼
1
vi
� qk

y2
sat

: ð1:98Þ

Note that, as long as inequality (1.96) is satisfied, Eq. (1.94) will always have
unique solution, which can be computed by using the standard bisection technique.
It is often important in applications to find the conditions that the physical
parameters should satisfy in order for Ne (which corresponds to the demagnetizing
factor in magnetic materials) to be positive. This condition can be derived by
plugging (1.97) into (1.98) and imposing Ne [ 0. The space of possible physical
parameters for a hysteretic system with xC = 15 and ysat ¼ 1 is represented in
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Fig. 1.18 Function f qð Þ
defined in (1.95)
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Fig. 1.19 by regions 2 and 3. For a system with an initial susceptibility of 7	 10�3

and susceptibility at coercivity of 0.3, we obtain the following set of model
parameters by solving (1.94), (1.97), and (1.98): q ¼ 9:2, k ¼ 15:36, and
Ne ¼ 1:92.

In the next subsections we describe the technique for the computation of
parameters h, g, and cr ¼ 0. We consider two cases that appear often in the
literature: (1) the case when cr ¼ 0, in which the modeled is called the classical
energetic model, and (2) the case when cr [ 0, which gives the complete energetic
model.

1.4.3.2 Computation of h and g in the Classical Energetic Model
(cr ¼ 0)

In the case of the classical energetic model cr ¼ 0 and Eqs. (1.89)–(1.91) simplify
substantially. By substituting h from (1.89) into (1.90) we obtain the following
equation that needs to be solved numerically for g:

xg ¼ Neyg þ
G yg

� �
G yRð Þ

k

ysat
Q yRð Þ � NeysatyR

� �
þ k

l0Ms
Q yg

� �
; ð1:99Þ

where:

Q yð Þ ¼ Qsat
y

ysat


 �
; ð1:100Þ

Qsat sð Þ ¼ 1� j1 exp � q

j1
1þ sð Þ

� �
: ð1:101Þ
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Once parameter g is computed, parameter h can be found by solving Eq. (1.89).
We obtain:

h ¼ k

ysat

Q �yRð Þ
G yRð Þ

� NeysatyR

G yRð Þ
: ð1:102Þ

Equations (1.94), (1.97)–(1.102) should be solved iteratively in order to com-
pute the model parameters. For instance, in the case of a hysteretic system with
ysat ¼ 1, xC ¼ 15, vi ¼ 6:6	 10�3 and vC ¼ 0:33 we obtain h ¼ 0:2 and g ¼ 9.

It is important to analyze now the conditions under which h [ 0 and g [ 0. The
condition h [ 0 implies that yR should be smaller than some limiting value yR;max,
which can be found by solving k

ysat
Q �yR;max

� �
[ NeyR;max. Due to the monotonicity

of functions G and Q, if yR\yR;max Eq. (1.102) will always have unique solution.
The condition g [ 0, on the other hand, gives a limited set of values for xg for any
fixed yg. After some algebraic manipulations one can distinguish two cases:

(1) If yR\yR;max then xg should satisfy xg [ Neyg þ hG yg

� ���
g¼0
þF yg

� �
, which

provides a lower limit for the possible values of the applied fields for which
magnetization can be yg.

(2) If yR [ yR;max then xg is bounded from both above and below as follows

Neyg þ
k

ysat
Q yg

� �
[ xg [ Neyg þ hG yg

� ���
g¼0
þ F yg

� �
; ð1:103Þ

These conditions are important for solving the identification problem because
hysteretic systems that do not satisfy them cannot be modeled by the energetic
model. For instance, in the case of a hysteretic system with xC ¼ 15, ysat ¼ 1,
vi ¼ 6:6	 10�3, vC ¼ 0:33 and yg ¼ 0:835, the space of available physical
parameters is given by region 1 in Fig. 1.20.
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1.4.3.3 Computation of h, g, and cr in the Complete Energetic Model

In the case of the complete energetic model (i.e. when cr [ 0) and parameters g, h,
and cr can be computed from the following equations:

xg ¼ Neyg þ
G yg

� �
G yRð Þ

þ k

ysat
Q yg

� �
þ I yR; yg

� �
; ð1:104Þ

h ¼ 1
G yRð Þ

xRQ �yRð Þ
Q yRð Þ þ Q �yRð Þ � NeyR

� �
; ð1:105Þ

cr ¼
1

hG yRð Þ
Hr

Q yRð Þ þ Q �yRð Þ �
k

yR

� �
; ð1:106Þ

which can be obtained from (1.89)–(1.91). In the last equations we introduced
notation

I yR; yg

� �
¼ xR

Q �yRð Þ þ Q yg

� �
Q yRð Þ þ Q �yRð Þ �

k

ysat
Q yg

� �
� NeyR: ð1:107Þ

Eq. (1.104) is a transcendental equation in g and should be solved numerically. By
using the same line of reasoning as in the previous subsection we can derive the
conditions for which h and g are positive. Condition h [ 0 implies that

xR � NeyRð ÞQ �yRð Þ � NeyRQ yRð Þ
Q yRð Þ þ Q �yRð Þ [ 0; ð1:108Þ

which shows that yR should lie outside the interval yR;min; yR;max

� �
, where yR;min

and yR;max are the roots of the numerator and denominator in (1.108), respectively.
It can be shown that both the numerator and the denominator in (1.108) have
unique solution in interval 0; ysat½ �, which confirms the existence of the limits of
interval yR;min; yR;max

� �
.

The possible values of (yR, yg) that can be described by the complete energetic
model can be found by imposing g [ 0 in Eq. (1.104). It can be shown again that
the possible values of xg that correspond to a measured value of the output equal to
yg depend on whether yg is larger or smaller than yR. Equations somewhat more
complex than the ones derived in the previous subsection hold in this case as well:
if yR\yg, xg should be larger than some minimum value that can be computed by
setting g ¼ 0 and solving (1.104) for xg; if xR [ xg, xg is found between two
critical values that can be computed by solving (1.104) for xg in the limits g ¼ 0
and g ¼ 1. Figure 1.21 shows the space of available physical parameters for a
hysteretic system with xC ¼ 15, ysat ¼ 1, vi ¼ 6:6	 10�3, vC ¼ 0:33 and
yg ¼ 0:8, in the xR � xg plane. Applying Eqs. (1.104)–(1.106) we obtain
h ¼ 0:217, g ¼ 8:24, and cr ¼ 1:32.
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1.5 Bouc-Wen Model

1.5.1 Definition

The output variable satisfies the following equation:

y ¼ akxþ 1� að ÞDkz; ð1:109Þ

where z is a function of the input variable x and its derivative _x, a (0� a� 1) and k
are two model parameters. Function z is usually given in terms of a differential
equation. Table 1.3 presents a few examples used in the literature for the differ-
ential equation that function z can satisfy. It is customary to refer to the last model
on the table as the Bouc-Wen model.

1.5.2 General Properties of Hysteretic Curves

A detail description of various parameter identification methods for the Bouc-Wen
model can be found in [21]. Below we summarize a few general properties of the
model.

(a) Depending on the choice of model’s parameters the Bouc-Wen system can
be BIBO stable or BIBO unstable. A classification of the cases in which the
Bouc-Wen model is BIBO stable is given in Table 1.4 where the following
notations are used
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z0 ¼
ffiffiffiffiffiffiffiffiffiffiffi

A

cþ b
n

s
and z1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
A

c� b
n

s
ð1:114Þ

The domain of BIBO stability denotes the domain of the initial condition (z0)
of the differential Eq. (1.113) for which the model is BIBO stable.

(b) The Bouc-Wen model has a finite output saturation if a ¼ 0. In this case the
output saturation can be computed from the last column in Table 1.4.

(c) If input x tð Þ is periodic and cycling between values x1 and x2 the output
converges uniformly to a continuous function (see Fig. 1.22).

(d) The hysteresis curves obtained by plotting y xð Þ are traced in clockwise
direction. Hence, variable x and y cannot represent a pair of conjugate vari-
ables such as generalized forces and generalized displacements because the
system would produce energy. However, the Bouc-Wen model can be used to
describe correctly other mechanical variables that lead to energy dissipation
(see Chap. 3).
The Bouc-Wen model does not have a major hysteresis loop and the ‘‘coercive
field’’ increases to infinity when x! �1.

(e) The differential susceptibility of the model is

dy

dx
¼ ak þ 1� að Þk A� bsgn z _xð Þ zj jn�c zj jn½ �; ð1:115Þ

where z ¼ y�akx
1�að Þk.

(f) The initial susceptibility is

vi ¼ ak þ 1� að ÞkA: ð1:116Þ

Table 1.4 Classification of BIBO stable Bouc-Wen model parameters [21]

Case Domain of BIBO stability for z0 Upper bound of z(t)

A [ 0 bþ c[ 0 and b� c� 0 �1;1ð Þ max z 0ð Þj j; z0ð Þ
b� c\0 and b� 0 �z1; z1½ � max z 0ð Þj j; z0ð Þ

A \ 0 b� c[ 0 and bþ c� 0 �1;1ð Þ max z 0ð Þj j; z1ð Þ
bþ c\0 and b� 0 �z0; z0½ � max z 0ð Þj j; z1ð Þ

A = 0 bþ c[ 0 and b� c� 0 �1;1ð Þ z 0ð Þj j

Table 1.3 Summary of Bouc models of hysteresis. The Bouc-Wen model of hysteresis is gen-
erally referred to model (1.113)

Reference _z

Bouc [2] _z ¼ D�1 A _x� bz _xj j½ � (1.110)
Bouc [2] _z ¼ D�1 A _x� b sgn zð Þ _xj j � c _x½ � (1.111)
Wen [3] _z ¼ D�1 A _x� b sgn zð Þ _xj j zj jn�c _x zj jn½ � (1.112)
Baber-Noori [68–70] _z ¼ h zð Þ

g A _x� b sgn zð Þ _xj j zj jn�c _x zj jn½ � (1.113)
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1.6 Coleman-Hodgdon Model

1.6.1 Definition

There are two versions of the Coleman-Hodgdon model that have been used to
model static hysteresis in the literature. The first version of the model has been
applied mostly to superconductors [71], while the second version to magnetic
materials [72, 73]. The constituent equations of both versions are presented in this
section.

1.6.1.1 The Direct Coleman-Hodgdon Model

In the direct Coleman-Hodgdon model the output variable satisfies the following
differential equation:

dy

dx
¼ a xð Þsgn _xð Þ � f xð Þ � y½ � þ g xð Þ; ð1:117Þ

where f , g, and a are some piecewise smooth material functions.

1.6.1.2 The Reverse Coleman-Hodgdon Model

In the reverse Coleman-Hodgdon model the output variable satisfies the following
differential equation:

dy

dx
¼ 1

a yð Þsgn _yð Þ � f yð Þ � x½ � þ g yð Þ ; ð1:118Þ
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where f , g, and a are some piecewise smooth material functions. Notice that,
although we have used the same notations, the material functions in (1.118) have a
different significance than the ones in (1.117). All the equations that are derived
from model (1.118) are also valid for (1.117) by interchanging the input and output
variables.

1.6.1.3 Conditions on the Choice of Material Functions

Any piecewise smooth material functions in (1.117) and (1.118) leads to some
kind of hysteresis of the output variable. Below we enumerate a few constraints
that that these functions should satisfy in order to be able to use them in super-
conductor and magnetic systems. Then, we present a few standard functions that
satisfy these constraints and are often used in the literature:

i. f should be a piecewise continuous and even function that increases mono-
tonically, has a derivative with a finite limit f 1ð Þ for large x, and

f 0ð Þ ¼ 0: ð1:119Þ

ii. g should be a piecewise continuous, even function with

lim
x!1

g xð Þ ¼ f 0 1ð Þ: ð1:120Þ

and

f 0 xð Þ� g xð Þ; ð1:121Þ

for all x, in the case of the direct model (1.117), and

f 0 xð Þ� g xð Þ; ð1:122Þ

for all x, in the case of the reverse model (1.118)
iii. a should be a piecewise continuous, even function of x satisfying

a xð Þ[ 0; for all x ð1:123Þ

and

lim
x!�1

a xð Þ[ 0; for all x: ð1:124Þ

Conditions (1.121) and (1.122) guarantee that the hysteresis loops are traced in
counterclockwise direction. Condition (1.120) ensures the closure of the major
loop.

A standard choice for the material functions of the direct Coleman-Hodgdon
model used to model hysteresis in superconductor materials is [71, 74]:
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f xð Þ ¼
A1 arctan A2xð Þ; if xj j � xbp

A1 arctan A2xbp

� �
þ x� xbp; if x [ xbp

�A1 arctan A2xbp

� �
þ xþ xbp; if x\� xbp

8<
: ð1:125Þ

g xð Þ ¼ f 0 xð Þ � 1� A3 exp � A4 xj j
xcl� xj j

� �h i
; if xj j\xcl

f 0 xð Þ ; if xj jcl

(
ð1:126Þ

a xð Þ ¼ a0 sech
x

a1


 �
þ a2 ð1:127Þ

where A1, A2, A3, A4, xbp, xcl, a0, a1, and a2 are some model parameters.
Model (1.118) seems to be more appropriate for magnetic hysteresis, where one

can assume that a yð Þ ¼ a0 (is constant) and [75]:

f yð Þ ¼
D2y; if yj j � ybp

D1 y� yclð Þ þ D2ycl; if y [ ybp

D1 yþ yclð Þ � D2ycl; if y\� ybp

8<
: ð1:128Þ

g yð Þ ¼ 1þ D3ð ÞD2 ; if yj j\ycl

D1 ; if yj j � ycl



ð1:129Þ

a yð Þ ¼ a0 ð1:130Þ

where a0, D1, D2, D3, ybp, and ycl are some model parameters. Another choice
appropriate for magnetic hysteresis described by model (1.118) is given below:

f yð Þ ¼
A1 tan A2yð Þ; if yj j � ybp

A1 tan A2ybp

� �
þ y� ybp

� ��
ls; if y [ ybp

�A1 tan A2ybp

� �
þ yþ ybp

� ��
ls; if y\� ybp

8<
: ð1:131Þ

g yð Þ ¼
f 0 yð Þ � 1� A3 exp � A4 yj j

ycl � yj j


 �� �
; if yj j\ycl

f 0 yð Þ ; if y� yclj j

8><
>: ð1:132Þ

where ls, A1, A2, A3, A4, ybp, and ycl are some model parameters.

1.6.2 General Properties of Hysteretic Curves

In this section we present the general properties of the Coleman-Hodgdon hys-
teresis model (1.118). The properties presented below can be translated to model
(1.117) by interchanging the input and output variables in each equation. These
properties can be derived from Eq. (1.118). The derivation of some of these
properties can be found in [71] and [76].
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(a) The future behavior of the model is completely described by the current
hysteretic state given by the values of the input variable, output variable, and
direction (increasing or decreasing) of the input variable. Hence, the Coleman-
Hodgdon model is a Duhem-type model of hysteresis (see Sect. 1.1.2).

(b) The initial susceptibility is:

vi ¼
1

g 0ð Þ : ð1:133Þ

(c) The Coleman-Hodgdon model has two solutions, one corresponding to the
loading (L) and the other one to the unloading (U) curves, for each initial
point x0; y0ð Þ. These solutions can be computed by integrating (1.118):

xL yjx0; y0ð Þ ¼ f yð Þ þ x0 � f y0ð Þ½ �e�~a yjy0ð Þ þ
Z y

y0

h sð Þe~a sjyð Þds; for y� y0 ð1:134Þ

xU yjx0; y0ð Þ ¼ f yð Þ þ x0 � f y0ð Þ½ �e~a yjy0ð Þ �
Z y0

y
h sð Þe�~a sjyð Þds; for y� y0 ð1:135Þ

where we have used notations:

~a yjy0ð Þ ¼
Z y

y0

a sð Þds; ð1:136Þ

h sð Þ ¼ g sð Þ � f 0 sð Þ: ð1:137Þ

(d) The equations of the major hysteresis loop can be derived by taking the limits
x0 ! �1 and y0 ! �ysat in the above equations. Using conditions (1.121)
and (1.120) we obtain:

x1L yð Þ ¼ f yð Þ þ
Z y

�1
h sð Þe~a sjyð Þds; ð1:138Þ

x1U yð Þ ¼ f yð Þ �
Z 1

y
h sð Þe�~a sjyð Þds: ð1:139Þ

It is obvious that x1U yð Þ� f yð Þ� x1L yð Þ. It can also be proven that the two
integrals in (1.138) and (1.139) vanish when y! �1, respectively, which
shows that the major hysteresis loop is mainly ‘‘shaped’’ by function f .

(e) It is often assumed in applications that g yð Þ ¼ f 0 yð Þ for all yj j larger than a
‘‘closure’’ value ycl. For y� ycl the unloading curve is identical to f ; for
y� ycl the loading curve is identical to f . The difference between the two
curves of the major loop is:

x1L yð Þ � x1U yð Þ ¼ x1L yclð Þ � x1U yclð Þ
� �

e�~a yj jjsgn yð Þyclð Þ; for yj j[ ycl ð1:140Þ

where x1L yclð Þ � x1U yclð Þ is the difference between the two curves at the
‘‘closure’’ point. Equation (1.140) shows that the difference between the

48 1 Mathematical Models of Hysteresis



loading and unloading curves is mostly governed by material function a and
decreases as e� yj j when y! �1.

(f) The input at coercivity is given by

xC ¼
Z 0

�1
h sð Þe~a sjyð Þds; ð1:141Þ

where we have used (1.119).
(g) The differential susceptibility at coercivity is given by

vC ¼ a 0ð Þ
Z 0

�1
h sð Þe~a sj0ð Þds: ð1:142Þ

(h) The initial hysteresis curve can be computed by setting x0 ¼ y0 ¼ 0 in
(1.134):

xini yð Þ ¼ f yð Þ � f 0ð Þe�~a yj0ð Þ �
Z y

0
h sð Þe~a sjyð Þds; for y� 0: ð1:143Þ

The slope of the initial hysteresis curve at y ¼ 0 is given by (1.133) and the
curvature by

d2y

dx2

����
x¼y¼0

¼ 1
a 0ð Þh 0ð Þ ¼

vi

a 0ð Þ 1� f 0 0ð Þvi½ � : ð1:144Þ

(i) If the input varies periodically between values xm and xM it can be shown that
the output will eventually very between values ym and yM , i.e. the model
displays accommodation, which degenerates into a limit cycle (see Fig. 1.23).
The conditions that xm; xMð Þ and ym; yMð Þ satisfy when the two points are
situated on the limit cycle can be derived by writing Eqs. (1.134) and (1.135)
for the ascending and descending curves. We obtain:

xM ¼ f yMð Þ þ xm � f ymð Þð Þe�~a yM jymð Þ þ
Z yM

ym

h sð Þe~a sjyMð Þds; ð1:145Þ
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xm ¼ f ymð Þ þ xM � f yMð Þð Þe~a ymjyMð Þ �
Z yM

ym

h sð Þe�~a sjymð Þds: ð1:146Þ

Since ~a yMjymð Þ ¼ �~a ymjyMð Þ, after a few rearrangements we obtain:

xM ¼ f yMð Þ þ csch~a yM jymð Þ
Z yM

ym

h sð Þ sinh ~a sjymð Þds; ð1:147Þ

xm ¼ f ymð Þ þ csch~a yMjymð Þ
Z yM

ym

h sð Þ sinh ~a sjyMð Þds; ð1:148Þ

where cschx ¼ sinh xð Þ�1 is the hyperbolic cosecant function. If ym, and yM

are known than Eqs. (1.147) and (1.148) can be used to compute xM and xm

respectively. Hence, for any two limits of the output of the limit cycle there is
a unique set of inputs xm and xM which lead to that limit cycle. The opposite is
also true: for any two values of the input xm and xM there is a unique limit
cycle given by values ym, and yM . The proof of the last statement is a bit more
difficult since it involves the uniqueness of the solution of system (1.145) and
(1.146) and will not be presented here.

(j) Function f is the inverse of the anhysteretic curve. This can be proven by
taking the limit yM ! ym in (1.148). Indeed, if we consider yM ¼ ym þ e,
where e is an infinitesimally small parameter, Eq. (1.148) implies:

xM ¼ f yMð Þ �
R yM

yM�ee!0 h sð Þ sinh ~a sjyM � eð Þds

sinh ~a yM � ejyMð Þ : ð1:149Þ

Using l’Hôpital’s rule, the limit of the last term in (1.149) is zero when e! 0,
and we obtain xM ¼ f yMð Þ.

(k) The energy lost during one limit cycle defined by points xm; ymð Þ and xM; yMð Þ
can be computed as

w ¼
Z yM

ym

xL yjxm; ymð Þ � xU yjxM; yMð Þ½ �dy; ð1:150Þ

where xL yð Þ and xU yð Þ are given by (1.134) and (1.135). To evaluate the
integral in (1.2) it is convenient to change the variable w ¼ y� �y where

�y ¼ ym þ yM

2
ð1:151Þ

and introduce notations:

aþ ¼ csch 2a0 dð Þ
Zd

�d

h wþ yð Þ sinh a0 wþ dð Þdw; ð1:152Þ

a� ¼ csch 2a0 dð Þ
Zd

�d

h wþ yð Þ sinh a0 w� dð Þdw: ð1:153Þ
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With these notations (1.150) becomes

w ¼
Z d

�d
aþe�a0 wþdð Þ � a�ea0 w�dð Þ
h i

dw

þ
Z d

�d

Zw

�d

h sþ �yð Þ ea0 s�wð Þ dsþ
Zd

w

h sþ �yð Þ ea0 w�sð Þ ds

2
64

3
75dw:

Performing the integral in the first term and integrating by parts the last two
terms one obtains:

w ¼ aþ � a�
a0

1� e�2a0d
� �

� e�a0d

a0

Zd

�d

h sþ �yð Þea0sds

� e�a0d

a0

Zd

�d

h sþ �yð Þe�a0sdsþ 2
a0

Zd

�d

h wþ �yð Þdw: ð1:154Þ

Since

aþ � a� ¼ csch 2a0 dð Þ
Zd

�d

h wþ yð Þ sinh a0 wþ dð Þ � sinh a0 w� dð Þ½ �dw

¼ 2 sinh a0dð Þcsch 2a0 dð Þ
Zd

�d

h wþ �yð Þ cosh a0wð Þdw

¼ 1
cosh a0dð Þ

Zd

�d

h wþ �yð Þ cosh a0wð Þdw

Equation (1.154) becomes

w ¼ 2 tanh a0dð Þ
a0 exp a0 dð Þ

Zd

�d

h wþ �yð Þ cosh a0wð Þdw

þ 2
a0

Zd

�d

h wþ �yð Þ 1� cosh a0sð Þ
exp a0dð Þ

� �
dw

¼ 2
a0

Zd

�d

h wþ �yð Þ 1� cosh a0wð Þ
exp a0dð Þ 1þ tanh a0 dð Þ½ �


 �
dw

¼ 2
a0

Zd

�d

h wþ �yð Þ 1� cosh a0wð Þ
cosh a0dð Þ

� �
dw

ð1:155Þ
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If the limit cycle is the major hysteresis loop, �y ¼ 0 and d ¼ 1, and the
energy lost is:

w ¼ 4
a0

Z 1
�1

h sð Þds ¼ 4
a0

Z 1
�1

g sð Þ � f 0 sð Þ½ �ds: ð1:156Þ

It is obvious from the last equation that parameter a0 can be directly related to
the energy lost during one cycle. Also, the sign of g sð Þ � f 0 sð Þ dictates if the
system is consuming or generating energy.

(l) The coefficient of the quadratic term that enters into the law of Lord Rayleigh
(1.4) can be expresses as a function of the model’s parameters as (see (1.144)):

b ¼ 1
a 0ð Þ g 0ð Þ � f 0 0ð Þ½ � : ð1:157Þ

1.6.3 Parameter Identification Methods

In this section we present a few parameter identification methods for the
Coleman-Hodgdon model of hysteresis. To simplify the presentation we assume
that function a yð Þ ¼ a0 is constant. The first method that we present aims at
finding functions f and g and parameter a0 without assuming any particular
functional dependence for these functions. The second and third identification
methods assume particular functional dependences for f and g and the identifi-
cation methods aim at finding the constitutive parameters of these functions.

1.6.3.1 Determination of Functions f and g and Parameter a0

Function f yð Þ can be identified as the inverse of the anhysteretic curve of the
system. Hence, to measure it in practical applications we produce a series of
alternating inputs with decreasing magnitude and centered around x0, and measure
the final value of the output y0. The dependence x0 y0ð Þ defines function f .

Parameter a0 can be identified from the initial susceptibility vi and the curvature

of the initial curve d2y
dx2

���
x¼y¼0

by using:

a0 ¼
vi

1� f 0 0ð Þvi½ �
d2x

dy2

����
x¼y¼0

; ð1:158Þ

which can be derived from (1.144).
Finally, function g yð Þ can be identified by using the measured major hysteresis

loop. For instance, if we know the loading curve x1L yð Þ we can first solve the
following Volterra equation of the first kind and compute h yð Þ:
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x1L yð Þ ¼ f yð Þ þ
Z y

�1
h sð Þea s�yð Þds: ð1:159Þ

Then, we evaluate

g yð Þ ¼ h yð Þ þ f 0 yð Þ: ð1:160Þ

This identification method has the advantage that it provides the exact form of
material functions without pre-assuming any functional dependence.

1.6.3.2 Determination of Parameters a0, D1, D2, and D3

If we assume that the material functions are given by expressions (1.128) and
(1.129) the parameter identification problem can be stated as to find the optimum
values of a0, D1, D2, and D3 that fit the measured hysteresis curves (we assume
that ybp and ycl are evaluated from the ‘‘closure’’ point on the major loop, or are set
to conveniently large values). Parameter D1 can be determined as the susceptibility
for yj j[ ybp, which can be measured experimentally. Parameters D2, D3, and a0

can be computed from the initial susceptibility vi, coercive input xC, and remanent
output yR by solving numerically the following system of equations:

vi ¼ D2 1þ D3ð Þ; ð1:161Þ

xC ¼
D2D3

a0
1� e�a0yclð Þ; ð1:162Þ

yR ¼
D3

a0
1� ea0 ycl�yRð Þ
h i

: ð1:163Þ

An alternative way, which avoids solving the above system numerically is to
compute a0 from the initial susceptibility vi and the curvature of the initial curve
by using (1.158). Then, D3 is computed from (1.163) and D2 from either (1.161) or
(1.162).

1.6.3.3 Determination of Parameters ls; a0;A1;A2;A3 and A4

If the material functions are given by expressions (1.131) and (1.132) the
parameter identification problem becomes to find the optimum values of ls, a0, A1,
A2, A3, and A4 that fit the measured hysteresis curves (we assume again that ybp

and ycl are evaluated from the ‘‘closure’’ point on the major loop or are set to
conveniently large values). Parameter ls can be determined as the differential
susceptibility at saturation ( yj j[ ycl). Parameter a0 can be identified from the
initial susceptibility vi and the curvature of the initial curve by using (1.158).

Parameters A1 and A2 can be determined by using the susceptibility lcl at point
xcl; yclð Þ on the unloading curve of the major loop. We can write xcl ¼ f yclð Þ ¼
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A1 tan A2yclð Þ and vcl ¼ 1
f 0 yclð Þ ¼

cos2 A2yclð Þ
A1A2

which leads to the following transcen-

dental equation for A2:

2A2xclvcl ¼ sin 2A2yclð Þ: ð1:164Þ

Then, A1 can be computed by using

A1 ¼
xcl

tan A2yclð Þ : ð1:165Þ

By imposing the condition that f 0 yð Þ is continuous at y ¼ ybp we obtain:

ybp ¼
arccos A1A2vclð Þ

A2
: ð1:166Þ

Finally, parameters A3 and A4 can be determined using the values of the
coercive input and remanent output. Indeed, using (1.141) and the equation of the
major loop one can derive:

/
Z ycl

yR

exp � A4s

ycl � s
� a0s


 �
ds ¼

Z ycl

0
exp � A4s

ycl � s
� a0s


 �
ds; ð1:167Þ

1
A3
¼ � 1

xC

Z ycl

0
exp � A4s

ycl � s
� a0s


 �
ds; ð1:168Þ

where / ¼ xCea0yR

A1 tan A2yRð Þ. Equation (1.167) should be solved for A4 and (1.168) should
be used to compute A3.

An alternative method to compute parameters A3 and A4 is to compute A3 from
the initial susceptibility

A3 ¼ 1� 1
A1A2vi

ð1:169Þ

and A4 using one of the Eqs. (1.167) or (1.168).

1.7 Dynamic Models of Hysteresis

Dynamic (or rate-dependent) models of hysteresis take into consideration the rate at
which the input variable is changing in time when describing the hysteresis phe-
nomena. The models that are commonly used in the literature for the simulation of
dynamic hysteresis are based either on the feedback theory or on the relaxation time
approximation. Both types of dynamic models are implemented in HysterSoft�.
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1.7.1 Models Based on the Feedback Theory

Dynamic effects can be relatively easily added to any static model of hysteresis by
adding a rate-dependent feedback to the system (i.e. using an effective input). For
instance, a common approach is to modify the input variable x to depend on the
output variable y and on the rate of variation of the output variable y. Denoting the
effective value of the input by xeff we have

y ¼ Ĉxeff ; ð1:170Þ

xeff ¼ xþ F y; _yð Þ; ð1:171Þ

where F is a function of the output variable y and of its derivative with respect to
time, _y. Equations (1.170) and (1.171) represent a system of two equations that
should be solved for y. In the framework of the Preisach model, this system is a
system of integro-differential equations, while in the framework of the Jiles,
energetic and Hodgdon models it becomes a system of differential equations.

Although (1.170) and (1.171) can be solved iteratively, the iterations are par-
ticularly unstable and they will often diverge even when the norm of function F is
much smaller than the norm of x. Therefore, it is recommended to transform
(1.170) and (1.171) into an ordinary differential equation (ODE). If we take the
derivatives of these equations with respect to time and use the chair rule we obtain

_y ¼ v xeff

� �
_xeff ; ð1:172Þ

_xeff ¼ _xþ Fy y; _yð Þ _yþ F _y y; _yð Þ€y; ð1:173Þ

where v is the differential susceptibility operator, Fy and F _y are the partial
derivatives of F with respect to _y and €y. The last two equations can be solved for €y

€y ¼
_y

v xþF y; _yð Þ½ � � _x� Fy y; _yð Þ _y
F _y y; _yð Þ : ð1:174Þ

HysterSoft� converts this second order ODE to a system of first order ODEs and
solves it for any arbitrary function F y; _yð Þ that can be defined by the user.

1.7.2 Models Based on the Relaxation Time Approximation

In the relaxation time approximation, the output variable y tð Þ is described by the
following first-order differential equation:

dy

dt
¼ � y tð Þ � Ĉx tð Þ

s
; ð1:175Þ
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where s is a relaxation time parameter and Ĉ is any regular static (not rate-
dependent) hysteresis operator. The susceptibility can be computed using:

v tð Þ ¼ � y tð Þ � Ĉx tð Þ
s _x tð Þ ; ð1:176Þ

where _x tð Þ is the derivative of the input variable with respect to time. HysterSoft�
integrates Eq. (1.176) numerically to compute the output variable y as a function
of time.

Figure 1.24 presents rate-dependent simulations obtained using the feedback
theory and relaxation time approximation by the energetic model. The static
hysteresis loop (obtained at very low rates of variation of the input) is represented
by dash line. Notice that the rate-dependent processes increase the width the
hysteresis loop and, in this way, the energy lost per cycle.

1.8 Vector Models of Hysteresis

In this section we discuss about vector models of hysteresis in which the input and
output variables are two or three-dimensional vectors. The vector models are
defined by using superposition of scalar models. This approach was initially
introduced by Mayergoyz [77–79] in the framework of the Preisach model and was
later generalized to any scalar model of hysteresis [80].
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Fig. 1.24 Dynamic hysteresis loops obtained using the energetic model coupled with the
feedback theory (a) and the relaxation time approximation (b). In (a) function F y; _yð Þ ¼ �a _y,
where a increases from 0 to 0.1 in steps of 0.02 in the direction indicated by the arrow; in (b) the
relaxation time increases from 0 to 0.01 in steps of 0.002 in the direction indicated by the arrow
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1.8.1 Two-Dimensional Models of Hysteresis

Two-dimensional vector models of hysteresis are constructed as a two-dimen-
sional superposition of scalar models of hysteresis:

y tð Þ ¼
Zp=2

�p=2

û Ĉu x tð Þ � û½ �du; ð1:177Þ

where û is the unit vector along the direction specified by polar angle u, x is the

vector input variable, and Ĉu is the scalar hysteresis operator along direction u. Ĉu

can be any scalar hysteresis operator such as the Preisach, Jiles-Atherton, ener-
getic, or other scalar models.

To understand how to implement Eq. (1.177) in numerical simulations, we
present the main equations for the vector Jiles-Atherton model of hysteresis. The
same analysis can be extended to any other model. In the case of the vector
Jiles-Atherton model each model parameter in Eq. (1.47) as well as the anhyste-
retic function depend on an additional angular parameter u:

dy

dx
¼

1� cu
� �

du Lu xþ auy
� �

� y
� �

ku 1� cu
� �

sgn _xð Þ � au Lu xþ auy
� �

� y
� �þ cu

dLu xþ auy
� �

dx
ð1:178Þ

where:

Lu xð Þ ¼ ysat L
x

au


 �
¼ ysat coth

x

au


 �
� au

x

� �
ð1:179Þ

and du is equal to 0 if _x Lu xþ auy
� �

� y
� �

� 0 and one otherwise. In the above
equations, ysat is the saturation value of the output and au, cu, au, and ku are
functions of u that can be identified by fitting simulations to experimental results.
Notice that in the case of the scalar Jiles-Atherton model of hysteresis a, c, a, and k
are the classical model’s parameters, however, in the framework of the vector
model these parameters become functions of angle u ranging from �p=2 to p=2.

HysterSoft� implements Eq. (1.177) for most scalar hysteresis models pre-
sented in this chapter. To simplify the parameter definition along each direction the
user can define only two sets of parameters, one set along the x-axis, ai 0ð Þ and one
set along the y-axis, ai p=2ð Þ, and HysterSoft� will find the values of the
parameters along any other axis using the following sinusoidal interpolation

ai uð Þ ¼ ai 0ð Þ þ ai p=2ð Þ � ai 0ð Þ½ � sin u ð1:180Þ

for �p=2�u� p=2. An implementation of (1.177) based on the superposition of
stop operators can also be found in [14].
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1.8.2 Three-Dimensional Models of Hysteresis

The three-dimensional vector model is defined as:

y tð Þ ¼
ZZ


jrj¼1

rCh;/ r � x tð Þ½ �dS; ð1:181Þ

where the integration is taken over the unit sphere of radius r, and h and / are the
azimuth and inclination angles of vector r. It should be mentioned that model
(1.181) was initially introduced in [1] for the Preisach model. Due to the high
computational cost required to integrate (1.181), this equation is relatively difficult
to implement in real-time simulations for the Preisach model, however, it becomes
more manageable when used with other models such as the energetic of
Jiles-Atherton models. Given the input vector x tð Þ ¼ xx tð Þ; xy tð Þ; xz tð Þ

� �
, the x, y,

and z components of the output can be computed by using the following equations:

yx tð Þ ¼
ZZ


jrj¼1

Ca h;/ð Þ x tð Þ½ � sin2 h cos / dh d/; ð1:182Þ

yy tð Þ ¼
ZZ


jrj¼1

Ca h;/ð Þ x tð Þ½ � sin2 h sin / dh d/; ð1:183Þ

yz tð Þ ¼
ZZ


jrj¼1

Ca h;/ð Þ x tð Þ½ � sin 2h dh d/; ð1:184Þ

where x tð Þ ¼ xx tð Þ sin h cos /þ xy tð Þ sin h sin /þ xz tð Þ cos h.
In the case of three-dimensional vector models of hysteresis the parameters of

the scalar models depend on two angles u and h. For instance, in the case of the
Jiles-Atherton model:

dy

dx
¼

1� cu;h
� �

du;h Lu;h xþ au;hy
� �

� y
� �

ku;h 1� cu;h

� �
sgn _xð Þ � au;h Lu;h xþ au;hy

� �
� y

� �þ cu;h
dLu;h xþ au;hy

� �
dx

ð1:185Þ

and the Langevin function becomes:

Lu;h xð Þ ¼ Ms L
x

au;h


 �
¼ ysat coth

x

au;h


 �
� au;h

x

� �
: ð1:186Þ

1.9 Summary

This chapter offered an overview of the hysteresis models that are used throughout
the book. After a short general classification of hysteresis models and parameter
identification methods, the rectangular hysteresis operator was introduced.
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Then, the chapter focused on summarizing the main equations, properties, and
characteristics of the Preisach, energetic, Jiles-Atherton, Coleman-Hodgdon, and
Bouc-Wen models. Particular attention was given to the analytical description of
the general properties of hysteresis curves such as differential susceptibilities,
remanence, coercivity, saturation, anhysteretic curve, energy lost, stability,
accommodation, and limit cycle for each model. The second part of the chapter
presented two techniques for the modeling of rate-dependent hysteresis, one based
on the feedback (effective field) theory and the other one on the relaxation time
approximation. Finally, a unified theory of vector models was presented; this
theory can be applied to generalize any scalar model of hysteresis to describe
vector systems. The presentation was mostly addressed to applied scientists and
engineers and we recommend the readers interested in a more precise mathe-
matical formulation of hysteresis phenomena to study monographs [81–85].
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Chapter 2
Noise and Stochastic Processes

2.1 Noise

This section is aimed at familiarizing the reader with most common noise models
in hysteretic systems, emphasizing disruptive and constructive effects of noise on
system behavior. It also addresses the main numerical techniques used for noise
simulation.

2.1.1 Introduction

Everybody hates noise while the world tends to become even noisier. There is an
increasing amount of evidence regarding the negative effects of noise on human
health and environment while the measures taken against noise pollution proved to
be inefficient. For example, World Health Organization (WHO) recommends an
average bellow 35 dB for continuous background noise in hospitals but most of the
measurements presented by numerous scientific articles have indicated average
noise levels between 50 and 70 dB featuring generally flat spectra over the
60–2000 Hz band. A relevant survey on this topic is provided by Busch-Vishniac
and his colleagues from Johns Hopkins University in Ref. [1] indicating a trend of
increasing noise level in hospitals over the last half a century in spite of WHO
recommendations and the implementations of modern noise reduction techniques.
While the general public is much more aware of and concerned about this acoustic
noise, scientists and engineers are most commonly challenged by electromagnetic
noise, from the cosmic microwave background radiation generated by Big Bang to
the electronic noise generated by all electronic circuits.

One of the first areas that addressed noise problem systematically was commu-
nication. It is well-known that transmitted signal can be significantly altered by the
noise existent in a communication channel due to the thermal agitation of molecules,
the interference with other signals moving simultaneously through the same channel
or neighboring ones, defects of the material structure, etc. Various techniques are
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used to reduce these disruptive effects of noise added to the signal such as filtering
the noise out, using redundant coding routines of the transmitted signal, controlling
the transmission environment, or additional processing of the received signal [2, 3].

The interest in noise analysis has significantly expanded during the last years
with the advancement in nanoscience and nanotechnology. Noise is playing a major
role in the behavior of nanoscale systems and its effects are increasingly pronounced
with the decrease in system size. Let us consider the case of magnetic recording
nanotechnology, where thermal noise poses fundamental limits for further
improvements in magnetic data storage density. As predicted theoretically by
Néel-Arrhenius theory [4] and proved experimentally by Wernsdorfer and his
collaborators [5, 6], the switching fields of magnetic nanoparticles decrease with the
increase in the temperature up to some blocking temperature when magnetization
becomes completely unstable. For a 3 nm cubo-octahedral Co nanoparticle con-
sidered in the experiments, the blocking temperature is about 14 K, and, in general,
for nanoparticles with diameters below 20 nm the blocking temperatures were
found to be below 200 K [6–8]. It is apparent that this superparamagnetic effect
found in magnetic nanoparticles and nanograins limits the advances in magnetic
data storage density under the current paradigm. On the other hand, thermal noise
may also play a positive role in achieving higher storage densities by using
the recently developed technology referred as thermally assisted magnetic record-
ing [9, 10]. While high anisotropy media are used in order to provide sufficiently
stable magnetic bits at room temperature, the data are recorded at high temperature
which reduces significantly the coercive field to values accessible by the current
recording heads (see Fig. 2.1). It is foreseen that this recording nanotechnology will

Fig. 2.1 Schematic representation of a heat assisted magnetic recording system. The laser is
heating the memory cell in order to generate fast thermal induced switching of the magnetization
at magnetic fields accessible to the recording head (formed by a current source and a yoke which
amplifies the field in the air-gape)
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be the key for exceeding 1 Tb/in2 storage density. In conclusion, the thermal noise
in nanoscale devices might jeopardize the future development of several nano-
technologies, such as magnetic data recording, but it could also provide the keys for
solving the challenges encountered by such technologies.

Since noise can have only negative effects in linear systems, its potential
benefits seem rather counterintuitive and have been overlooked by researchers for
a long period of time [11]. However, the recent studies on stochastically driven
nonlinear systems proved that such phenomena are quite common and their
applications range from signal processing (dithering effect) and nanotechnology
(thermal assisted magnetic recording; noise enhanced characteristics of nanotube
transistors) to neuroscience (neuron models) and climate models (possible
explanations of ice age) [11–15]. These constructive aspects of noise in hysteretic
systems will be addressed in Chap. 6.

2.1.2 Wiener Process

Almost two centuries ago, Scottish botanist Robert Brown was the first to sys-
tematically analyze the perpetual irregular motion of small pollen grains sus-
pended in water. In general, this random drifting, known today as Brownian
motion, was observed for any small particles suspended in a fluid. A pertinent
explanation of these phenomena did not come until the beginning of twentieth
century, when Albert Einstein published his first paper on Brownian motion that
contains the key ideas for developing a stochastic analysis. Wiener construction
can be seen as the limiting case of the particle Brownian motion as the number of
particles and collision rates go to infinity. In addition to its practical applications in
the various areas such as physics, biology and finance, Wiener process plays a vital
role in stochastic analysis being the foundation for defining more complicated
stochastic processes.

The transition probability function of the Wiener process satisfies the following
Fokker-Planck equation (FPE) [16]:

o

ot
p x; tjx0; t0ð Þ ¼ 1

2
o2

ox2
p x; tjx0; t0ð Þ; ð2:1Þ

with the initial condition p x; t0jx0; t0ð Þ ¼ d x� x0ð Þ. By applying Fourier trans-
formation with respect to x variable, ~p s; tjx0; t0ð Þ ¼

R1
�1 p x; tjx0; t0ð Þeisxdx, Eq.

(2.1) becomes:

o

ot
~p s; tjx0; t0ð Þ ¼ � 1

2
s2~p s; tjx0; t0ð Þ; ð2:2Þ

subject to initial condition ~p s; t0jx0; t0ð Þ ¼ eisx0 , which can be simply solved by
separation of variables leading to the following solution:
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~p s; tjx0; t0ð Þ ¼ eisx0�1
2s2ðt�t0Þ ð2:3Þ

By Fourier inversion, the solution of Eq. (2.1) can be obtained as follows:

p x; tjx0; t0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðt � t0Þ

p e�
ðx�x0Þ2
2ðt�t0Þ ð2:4Þ

As a result, the transition probability for the Wiener process has a Gaussian
shape with the center in x0 and variance (t-t0). Thus the initial d – distribution is
spread in time (see Fig. 2.2) and the variance becomes infinite as t ? ? indi-
cating a high irregularity of the sample paths, as it is illustrated in Fig. 2.3a.

Although Wiener process has continuous paths, they are almost everywhere not
differentiable and have unbounded variation on any finite time interval [17]. If we
return to the physical origins of the Wiener process, this indicates an infinite speed
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of the Brownian particle, which is obviously one of the drawbacks of Wiener
model. A more realistic model, but also more complex, of the Brownian motion is
Ornstein-Uhlenbeck process which will be analyzed in the Sect. 2.1.5.

Another important property of Wiener process is the autocorrelation which is
defined as follows:

Xðt1Þ � Xðt2Þjx0; t0h i ¼
ZZ

R2

x1x2p x1; t1; x2; t2jx0; t0ð Þdx1dx2 ð2:5Þ

By using the Markovian property of Wiener process and assuming that t2 [ t1,
the autocorrelation function can be written as follows:

Xðt2Þ � Xðt1Þjx0; t0h i ¼
ZZ

R2

x1p x2; t2jx1; t1ð Þp x1; t1jx0; t0ð Þdx1dx2 ð2:6Þ

By taking into account the expression for the first two moments of transition
probability density (2.4), one can simply derive the following:

Xðt2Þ � Xðt1Þjx0; t0h i ¼
Z

R

Xðt2Þjx1; t1h ix1p x1; t1jx0; t0ð Þdx1

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðt1 � t0Þ

p
Z

R

x2
1e�

ðx1�x0Þ2
2ðt1�t0Þ dx1

ð2:7Þ

As a result, the Wiener autocorrelation function is

Xðt2Þ � Xðt1Þjx0; t0h i ¼ ðt1 � t0Þ þ x2
0 ð2:8Þ

When t2 is smaller than t1, the Wiener autocorrelation is obtained by simply
replacing t1 with t2 in the final formula. Thus, the general expression can be written
as:

Xðt2Þ � Xðt1Þjx0; t0h i ¼ ðminft1; t2g � t0Þ þ x2
0 ð2:9Þ

It is apparent from formula (2.9) that the Wiener process is not stationary, and
consequently the power spectral density cannot be expressed in the classical terms
as Fourier transform of autocorrelation function. However, a time-dependent
spectrum can be defined according to the Wigner-Ville approach:

SWVðt;xÞ ¼
Z1

�1

x t þ s=2ð Þx� t � s=2ð Þe�isxds ð2:10Þ

where the equality is understood in the mean-square sense, x* denotes the complex
conjugate of x, and i ¼

ffiffiffiffiffiffiffi
�1
p

. For real valued processes only the real part of the
formula is considered. Applying this formula to the Wiener process with t0 = 0
and x0 = 0 it is found that:
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SWVðt;xÞ ¼ 2
sin�xt�

x

� �2

uðtÞ ð2:11Þ

where u(t) is the step function simply pointing out that t [ 0.
It is also customary to define the average spectrum over the certain interval of

length T:

SWVðxÞ ¼
1
T

ZT

0

SWVðt;xÞdt ð2:12Þ

In the case of the Wiener process, the average spectrum is inverse proportional
to x2 as suggested by the simulation presented in Fig. 2.3b.

By using the autocorrelation formula (2.9) and simple algebraic calculations it
can be proven that increments of the Wiener process, X(t)-X(s), are uncorrelated
and have variance (t-s). Since the difference of two Gaussian variables is also
Gaussian, we can conclude that the increments of Wiener process are independent
and identically distributed (i.i.d.) Gaussian random variables with zero mean and
variance (t-s). In addition to the relation with white noise and stochastic differ-
ential equations, this property is also useful for the numerical simulation of the
Wiener process. Thus a random number Z is generated at each time step according
to a standardized normal distribution N(0, 1) and the increments of the sample
paths are computed according to the formula

xðtnÞ � xðtn�1Þ ¼ Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtn � tn�1Þ

p
ð2:13Þ

Simulations of the sample paths using this procedure are presented in Fig. 2.3a.

2.1.3 Itô Stochastic Integral and Differential Equations

Stochastic calculus aimed at extending the benefits of deterministic calculus to the
area of stochastic processes. After several less successful approaches developed by
Wiener and his collaborators, the Japanese mathematician Kyosi Itô introduced a
kind of Riemann-Stieljes integral having Wiener process as integrand and proved
the convergence of the integral sums. For the introduction of Itô’s construction let
us denote Wiener process by W(t) and consider a left-continuous function of time
denoted by G(t), which can be either deterministic or stochastic. The stochastic
integral

R t
t0

Gðt0ÞdWðt0Þ is defined by using Riemann-Stieljes approach as limit of

the integral sums:

Sn ¼
Xn

i¼1

Gðti�1Þ WðtiÞ �Wðti�1Þ½ � ð2:14Þ

over all possible partitions (t0 B t1 B t2 B ��� B tn-1 B tn = t) of the interval
[t0,t], with n approaching infinity. The limit is considered in the mean square sense
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over the probability space X, i.e. lim
n!1

R
X SnðxÞ � SðxÞ½ �2 pðxÞdx ¼ 0. The

convergence of Itô’s integral sums is rather counterintuitive knowing that W(t) is
almost nowhere differentiable and have unbounded variation on any finite time
interval. However, let us note that the choice of the intermediate points is restricted
to be the left limits of the partition intervals which is essential in obtaining the
convergence of the stochastic integral sums.

The construction of a stochastic integral opens the way towards defining and
characterizing more complex stochastic processes via stochastic differential
equations. Thus, a stochastic process X(t) is considered a solution of Itô’s sto-
chastic differential equation (SDE) written as:

dXðtÞ ¼ b XðtÞ; t½ �dt þ r XðtÞ; t½ �dWðtÞ ð2:15Þ

if for all t and t0,

XðtÞ ¼ Xðt0Þ þ
Z t

t0

b Xðt0Þ; t0½ �dt0 þ
Z t

t0

r Xðt0Þ; t0½ �dWðt0Þ ð2:16Þ

where b is the drift coefficient and r is the diffusion coefficient.
The existence and uniqueness of the solution for this equation in a time interval

[t0, T] subject to a given initial condition can be proven [18] under the following
restrictions imposed on the equation coefficients:

• Lipschitz condition: a KL exists such that for all x and y, and all t in the interval
[t0, T],

bðx; tÞ � bðy; tÞj j þ rðx; tÞ � rðy; tÞj j �KL x� yj j; ð2:17Þ

• Growth condition : a KG exists such that for all x, and for all t in the interval [t0, T],

bðx; tÞj j2 þ rðx; tÞj j2�KG 1þ xj j2
� �

: ð2:18Þ

The Lipschitz condition is usually satisfied by the stochastic differential
equation used in practice, but the growth conditions is often violated. This does not
preclude the existence of a solution rather it indicates the solution is unbounded on
the given finite time interval.

In order to connect the two approaches introduced in this chapter to describe a
stochastic process, let us mention that the time evolution of the probability density
characterizing the stochastic process defined by (2.15) is the solution of FPE:

o

ot
p x; tjx0; t0ð Þ ¼ � o

ox
bðx; tÞp x; tjx0; t0ð Þ½ � þ 1

2
o2

ox2
r2ðx; tÞp x; tjx0; t0ð Þ
� �

ð2:19Þ

subject to a d-initial condition p x; t0jx0; t0ð Þ ¼ d x� x0ð Þ and given boundary
conditions.
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The generalization of SDE and FPE to multi-dimensional stochastic processes
XðtÞ is quite straightforward. Thus, multi-dimensional Itô’s SDE reads:

dXðtÞ ¼ b XðtÞ; t½ �dt þ r XðtÞ; t½ �dWðtÞ ð2:20Þ

where b is the drift vector function and r is the diffusion tensor function, while
WðtÞ is the standard multi-dimensional Wiener process. The associated FPE is:

o

ot
p x; tjx0; t0ð Þ ¼ �

Xn

i¼1

o

oxi
biðx; tÞp x; tjx0; t0ð Þ½ �

þ 1
2

Xn

i;j¼1

o2

oxioxj

Xn

k¼1

rikðx; tÞrkjðx; tÞ
 !

p x; tjx0; t0ð Þ
" #

ð2:21Þ

where bi and rij are elements of the drift vector and the diffusion tensor,
respectively.

2.1.4 White Noise

White noise is a stochastic process formed by uncorrelated random variables with
constant mean and nonzero variance. It is apparent that the autocorrelation of a
white noise is a delta function and consequently, its power spectral density is
constant. This explains its name drawn from ‘‘white light’’ which has a flat power
spectral density over the visible electromagnetic frequency band.

The definition of white noise places no restriction on the probability distribution
functions describing the random variables, except the constant mean and variance.
Usually, the notion of white noise is used in a stronger form when the component
random variables are i.i.d. The numerical implementation of white noise used in
this book is based on this idea but various probability density functions (p.d.f.) are
considered. Sample of white noise simulations obtained for Gaussian, uniform,
Cauchy, and Laplace distributions are shown in Fig. 2.4. Although there is an
infinite variety of white noises, the Gaussian type is the overwhelming common
noise model in science and engineering, so common that people use it by default
when refering to white noise. That is partially related to the central limit theorem
of the probability theory stating that the average of a large number of independent
random variables converges, under some conditions, to a random variable with
Gaussian distribution [19]. In addition, white Gaussian noise (WGN) is the formal
derivative of the Wiener process, so it plays a central role in the theory of sto-
chastic differential equation, as it is next discussed.

Let us now recall a definition of the generalized derivative for a deterministic
function. The generalized derivative of a function w integrable over a real domain
D exists and is denoted by dw/dt if the following equality is satisfied for all
infinitely differentiable functions g with compact support in D:
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Z

D

gðtÞ dw

dt
ðtÞdt ¼ �

Z

D

wðtÞ dg

dt
ðtÞdt ð2:22Þ

For differentiable functions the above formula is nothing else than the inte-
gration by parts, so the classical derivative is equal (almost everywhere) to the
generalized derivative. It is known that the Wiener process has continuous paths
but they are almost everywhere not differentiable in the classical sense. Never-
theless, the generalized derivatives exist and they are expected to be realizations of
a WGN since the derivative should involve increments of the Wiener process
which are known to be independent and Gaussian. As a result, the stochastic
differential Eq. (2.15) is often written in the following form, known as Langevin’s
equation:

dX

dt
ðtÞ ¼ b XðtÞ; t½ � þ r XðtÞ; t½ �nðtÞ ð2:23Þ

where nðtÞ is a WGN.
In the end of this section, let us mention that white noise bears a physical

inconsistency, namely it requires infinite energy. It is obvious that integrating the
constant power spectral density over an infinite frequency band would result an
infinite quantity. In practice, a random signal is considered ‘‘white noise’’ if it has
a flat spectrum over a definite bandwidth which is of interest for a specific
application (for example audio frequency band or radio frequency band).

The physical bandwidth of white noise is limited in practice by various factors
such as the mechanism of noise generation, the transmission medium and finite
observation capabilities. The finite spectral band implies some correlations
between the random variables of the noise process, which significantly increases
the mathematical complexity of the problem. A consistent example of finite-band
white noise is the Ornstein-Uhlenbeck process, which is addressed in the next
section.

2.1.5 Ornstein-Uhlenbeck Noise

The Ornstein-Uhlenbeck (OU) processes belong to a class of finite-band WGN,
whose spectral densities are constant in the small frequency region and decrease
to zero inversely proportional to the square frequency in the high frequency region.
More specifically, OU spectral density has a Lorentzian shape, Sðf Þ ¼ r2

	
ðb2 þ 4p2f 2Þ

where r and b are constants characteristic to the process and f is the frequency (see
Fig. 2.5). It is used in modeling various thermal relaxation processes as well as the
evolution of exchange rates, bank interest, or prices.

The mathematical description of the OU process can be simply obtained by
adding a linear drift term to the FPE characterizing the Wiener process. Thus, the
FPE for the transition probability function of the OU noise reads:
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o

ot
p x; tjx0; t0ð Þ ¼ o

ox
bðx� xsÞp x; tjx0; t0ð Þ½ � þ r2

2
o2

ox2
p x; tjx0; t0ð Þ; ð2:24Þ

where b, xs, and r are constants known as drift coefficient, stationary average and
diffusion coefficient, respectively. The solution is subject to the initial condition
p(x, t|x0, t0) = d(x - x0) and has to decay to zero as x goes to infinity. In physical
terms, OU process can be interpreted as a Brownian particle diffusing in a para-
bolic potential U(x) with derivative U’(x) = b(x - xs).

To find the solution of FPE (2.24) let us consider, by simple translation of
variables, t0 = 0 and xs = 0. By applying Fourier transformation with respect to
x variable, ~p s; tjx0; 0ð Þ ¼

R1
¼1 p x; tjx0; 0ð Þeisxdx, Eq. (2.24) becomes:

o

ot
~p s; tjx0; 0ð Þ þ bs

o

os
~p s; tjx0; 0ð Þ ¼ � r2

2
s2~p s; tjx0; 0ð Þ; ð2:25Þ

subject to initial condition ~p s; 0jx0; 0ð Þ ¼ eisx0 , which can be solved by the method
of characteristics. Thus, let us find the characteristic curve from the associated
Lagrange-Charpit equations:

dt

1
¼ ds

bs
¼ � 2d~p

r2s2~p
ð2:26Þ

By integrating the first equation in (2.26) using the separation of variables and
imposing initial condition s(0) = s0, the following solution is found:

sðtÞ ¼ s0ebt ð2:27Þ

By plugging this expression for s in the last term of the formula (2.26) and
solving the corresponding differential equation with respect to t subject to initial
condition eis0x0 , one can use separation of variables to obtain the following
solution:
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~pðs0; tjx0; 0Þ ¼ exp is0x0 þ
r2s2

0

4b
1� e2bt

 �� �

ð2:28Þ

For the clarity of the previous formula, two notations were used for the expo-
nential function. By substituting s0 in (2.28) as a function of s and t obtained from
(2.27), one arrives at the following solution of the partial differential Eq. (2.25):

~pðs; tjx0; 0Þ ¼ exp ix0se�bt � r2s2

4b
1� e�2bt

 �� �

ð2:29Þ

By performing Fourier inversion, a Gaussian distribution with mean x0e-bt and
variance (r2/2b) (1-e-2bt) is obtained. Taking into account the translation of
variable used at the beginning of this derivation, the solution of FPE (2.24) is
obtained. Thus, the transition probability function of the Ornstein-Uhlenbeck noise
are characterized by drift coefficient b, and diffusion coefficient. The average of the
stationary noise xs has the following expression:

p x; tjx0; t0ð Þ ¼ 1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=bÞð1� e�2bðt�t0ÞÞ

p exp � bðx� xs � ðx0 � xsÞe�bðt�t0ÞÞ2

2r2ð1� e�2bðt�t0ÞÞ

" #
;

ð2:30Þ

When t goes to infinity the transition probability exponentially approaches the
stationary distribution, which is Gaussian with mean xs and variance r2/2b. Thus
the initial d-distribution is spread in time (see Fig. 2.6), as happened in the Wiener
process, but the standard deviation converges to a finite value when t ? ?. In
addition, the distribution center drifts away from the initial condition x0 to the
stationary average xs.

Let us now compute the autocorrelation function of the OU process by using
definition (2.5) and the transition probability function previously derived. Based
on the Markovian property of the OU process and assuming that t2 [ t1 [ t0, the
autocorrelation function can be rewritten as follows:
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Xðt2Þ � Xðt1Þjx0; t0h i ¼
ZZ

R2

x2x1p x2; t2jx1; t1ð Þp x1; t1jx0; t0ð Þdx1dx2

¼
Z

R

X t2ð Þjx1; t1h ix1p x1; t1jx0; t0ð Þdx1

ð2:31Þ

As it was previously derived, the expression for average at t2 of an OU process
initiated at (x1, t1) is ðx1 � xsÞe�bðt2�t1Þ, and consequently formula (2.31) becomes:

Xðt2Þ � Xðt1Þjx0; t0h i ¼ e�bðt2�t1Þ
Z

R

ðx1 � xsÞx1p x1; t1jx0; t0ð Þdx1

¼ e�bðt2�t1Þ X2ðt1Þjx0; t0
� 


� xs Xðt1Þjx0; t0h i
� � ð2:32Þ

Since the second moment is the sum of the square average and variance, the
autocorrelation function of the OU process becomes:

Xðt2Þ � Xðt1Þjx0; t0h i ¼ e�bðt2�t1Þ r2

2b
� xsðx0 � xsÞe�bðt1�t0Þ þ ðx0 � xsÞ2 �

r2

2b

� �
e�2bðt1�t0Þ

� �

ð2:33Þ

Let us observe that the autocorrelation expression is significantly simplified
when the initial condition is the stationary average or is considered in the remote
past. Actually, the latter is of much more interest from a practical point of view
and is coined as the stationary correlation function, denoted by \X(t2)X(t1)[s. By
letting t0 ? -? in formula (2.33), one gets:

Xðt2Þ � Xðt1Þh is ¼
r2

2b
e�bjt2�t1j ð2:34Þ

where the absolute value was used in order to account for both t2 [ t1, as con-
sidered in the previous derivation, and t1 [ t2. The fact that the autocorrelation
function depends only on time difference is characteristic to stationary process. It
is natural to require for a stochastic process modeling the noise to be a stationary
memoryless (i.e. Markovian) process. If the Gaussian requirement for the distri-
bution function is added then the OU process is the only one that satisfies all these
three natural characteristics, as it is proven by the Doob theorem [20].

The power spectral density of the OU process can now be easily obtained as the
Fourier transform of the autocorrelation function (2.34) according to the Wiener-
Khinchine theorem [16]. Because we deal with an even correlation function, it is
enough to compute the Fourier integral on the positive axis. Thus,

SðxÞ ¼ 2Re
Z1

0

r2

2b
e�bse�jxsds

8<
:

9=
; ¼

r2

b
Re

1
bþ ix

� �
¼ r2

b2 þ x2
ð2:35Þ
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which proves the Lorentzian shape of the OU spectrum mentioned at the beginning
of this section and illustrated in Fig. 2.5.

Based on FPE (2.24) for OU processes, the associated Itô stochastic differential
equation can be simply written down as:

dX tð Þ ¼ �b X tð Þ � xs½ �dt þ r � dW tð Þ ð2:36Þ

where W(t) is the Wiener process, b and r are the drift and, respectively, diffusion
coefficients of X(t), while xs is the average of the stationary process. The process is
also subject to the initial condition X(0) = x0. While analytical calculations
involving the OU process performed in the book are mainly based on the FPE
approach, numerical simulations are using the Itô SDE description as it is next
discussed.

By using the finite difference technique and the fact that
W sþ tð Þ ¼ W sð Þ þ N 0; 1ð Þt1=2, where N 0; 1ð Þ is a random variable normally dis-
tributed with zero average and unit variance, one obtains the following approximate
updating formula:

x t þ Dtð Þ � x tð Þ � b x tð Þ � xs½ �Dt þ r � N 0; 1ð Þ Dtð Þ1=2 ð2:37Þ

Although Eq. (2.37) has often been used in the literature to generate OU pro-
cesses, it is reliable only when Dt is relatively small. An exact updating formula
has been derived in [21] by integrating (2.36) and by using the properties of
normal variables:

xðt þ DtÞ ¼ xðtÞe�bDt þ r2	
2b

� �
ð1� e�2bDtÞ

h i 1=2
Nð0; 1Þ ð2:38Þ

in which it is assumed that x0 ¼ xs ¼ 0.
As expected, this updating formula is reduced to (2.37) when Dt\\1=b. It is

noteworthy that Eq. (2.38) splits explicitly the random process into two terms: the
first one is the mean and the second one is proportional to the standard deviation of
x tð Þ. Since the time step Dt is usually constant, the factors in (2.38) can be
computed in advance and stored in order to increase the computational efficiency.
This latter approach has been used in our book to generate OU processes
numerically. Sample paths of OU are shown in Fig. 2.7.

2.1.6 Brownian Motion in a Double Well-Potential

In this section, the discussion is extended from the Brownian motion in one-well
potential reflected by Ornstein-Uhlenbeck process to the Brownian motion in
double-well potential which obeys the following Fokker-Planck equation:
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o

ot
p x; tjx0; t0ð Þ ¼ o

ox

dU

dx
ðxÞp x; tjx0; t0ð Þ

� �
þ r2

2
o2

ox2
p x; tjx0; t0ð Þ; ð2:39Þ

where U(x) denotes a function at least twice differentiable having two minima
inside the interval of interest for the problem, as illustrated in Fig. 2.8.
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Fig. 2.8 Plot of double-well
potential U(x) and the
stationary distribution ps(x)

0 20 40 60
-4

-2

0

2

4
x-

x 0

t

b = 1, σ  = 1, x
s
-x

0
 = 0

0 20 40 60
-4

-2

0

2

4

x-
x 0

t

b= 1, σ  = 1, x
s
-x

0
 = 2

0 20 40 60

-10

-5

0

5

10

x-
x 0

t

b = 1
σ  = 5, x

s
-x

0
 = 0

0 20 40 60

-2

-1

0

1

2

x-
x 0

t

b = 5, σ  = 1, x
s
-x

0
 = -1

(a) (b)

(c) (d)

Fig. 2.7 Simulated sample paths of the Ornstein-Uhlenbeck process starting at x0 for different
values of b, r, xs
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Let us first find the stationary distribution, which is obtained by solving the
following differential equation:

0 ¼ d

dx

dU

dx
ðxÞps xð Þ

� �
þ r2

2
d2psðxÞ

dx2
ð2:40Þ

Since both the probability function and its derivatives have to approach zero
when x goes to infinity, the constant corresponding to the first integration is zero
and Eq. (2.40) is equivalent to the following:

dpsðxÞ
dx

¼ � 2
r2

dU

dx
ðxÞps xð Þ ð2:41Þ

which can be easily solved using separation of variables.
It is apparent from formula (2.41) that the minima for potential U(x) are

maxima for the stationary probability ps(x) representing metastable states (see also
Fig. 2.8). A natural problem to be discussed is the transition between the two
metastable states induced by noise. It is intuitively clear that the time needed to
pass from one metastable state to another is mostly spent by surmounting the
potential barrier between the states. The latter can be seen as the time needed for
the Brownian particle initially located in one minimum to escape from the cor-
responding half-bounded interval ending the maximum point. In order to compute
this exit time let us impose an absorbing boundary condition on Eq. (2.39) at the
maximum point M, i.e. p(M,t|x0, 0) = 0. The corresponding solution will provide
the probability that, at time t, the particle starting at x0 is still in the first potential
well, which will be denoted by G(x0, t) and has the following expression:

Gðx0; tÞ ¼
Z M

�1
p x; tjx0; 0ð Þdx ð2:42Þ

In other words, G(x0, t) represents the tail distribution of the first exit time from
the potential well and consequently, the mean first exit time, denoted by T(x0) can
be expressed as follows:

T x0ð Þ ¼ th i ¼
Z1

0

t
o

ot
ð1� Gðx0; tÞÞdt ¼

Z1

0

Gðx0; tÞdt ð2:43Þ

where the last equality is obtained using integration by parts.
By taking into account that the transition probability satisfies the backward

Fokker-Planck equation as function of initial condition x0 and time t, G(x0, t) obeys
the following equation:

o

ot
G x0; tð Þ ¼ dU

dx0
ðx0Þ

o

ox0
G x0; tð Þ þ r2

2
o2

ox2
0

G x0; tð Þ ð2:44Þ
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subject to the initial condition G(x0, 0) = 1 for all x0 smaller than M and boundary
condition G(M, t) = 0 and decays to zero as x0 goes to minus infinity for all t [ 0.
By integrating this equation over time from 0 to infinity, the equation for the mean
first exit time is obtained:

dU

dx0
ðx0Þ

d

dx0
T x0ð Þ þ

r2

2
d2

dx2
0

T x0ð Þ ¼ �1: ð2:45Þ

with the boundary conditions T(M) = 0 and decays to zero when x0 goes to minus
infinity. It is apparent that Eq. (2.45) is a linear first order differential equation in
terms of the derivative of T, so the analytical solution is readily available:

dT

dx0
x0ð Þ ¼ e

2Uðx0Þ
r2 � 2

r2

Zx0

�1

e�
2UðxÞ

r2 dxþ c

0
@

1
A ð2:46Þ

where c is an integration constant that is to be determined from the boundary
conditions on T. Let us mention that if instead of -? is considered a finite left
bound with reflective boundary condition, the derivative of T is equal to zero at
that point, so the constant c is also zero. By integrating (2.46) and taking into
account the boundary conditions T(M) = 0, the following closed form expression
is obtained for the mean first exit time:

T x0ð Þ ¼
2
r2

ZM

x0

e
2UðxÞ

r2

Zx

�1

e�
2UðyÞ

r2 dy

0
@

1
Adx ð2:47Þ

Once U(x) is explicitly given, the expression (2.47) can be further simplified by
computing the two integrals. Here, let us consider that diffusion strength r2 is
relatively small compared to the height of the potential barrier. On the one hand,
exp[2U(x)/r2] is sharply peaked at x = M so the main contribution to the first
integral comes from a close neighborhood of M, where U(x) can be approximated
by U(M)–b(x-M)2 with b a constant from Taylor approximation formula. On the
other hand, exp[-2U(x)/r2] is very small near x = M so the inner integral is very
slowly varying in the close neighborhood of M significant for the first integral. As
a result, the inner integral can be approximated by setting the integral limit
x = M and the resulting constant can be removed from inside the first integral.
Moreover, the main contribution to this integral comes from the neighborhood of
minimum m1, where U(x) can be approximated by U(m1) ? a(x-m1)2 with a a
constant that comes from the Taylor approximation formula. By taking into
consideration all these observations, the mean first exit time of a particle located at
metastable state m1 can be approximated by the following formula:
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T m1ð Þ � 2
r2

ZM

�1

e�
2½Uðm1Þþaðy�m1Þ2 �

r2 dy

ZM

m1

e
2½UðMÞ�bðx�MÞ2 �

r2 dx

� 2
r2

e
2ðUðMÞ�Uðm1ÞÞ

r2

Z1

�1

e�
2aðy�m1Þ2

r2 dy

ZM

�1

e�
2bðx�MÞ2

r2 dx

ð2:48Þ

It is relatively easy to show that the first integral gives r
ffiffiffiffiffiffiffiffiffiffi
p=2a

p
and the second

integral gives r
ffiffiffiffiffiffiffiffiffiffiffi
p=8b

p
. In conclusion, when noise strength is relatively small

compared to the potential barrier, the escape time can be approximated by the
following expression:

T að Þ � p

2
ffiffiffiffiffiffi
ab
p e

2ðUðbÞ�UðaÞÞ
r2 ð2:49Þ

This result is known as Arrhenius formula and has been frequently used in modeling
thermal relaxation phenomena, where the noise strength is proportional to the
absolute temperature of the system (r2/2 = kT, k is the Boltzmann’s constant).

The analytical solutions for the transition probability function of the Brownian
motion in double-well potential are much more difficult to find than in the case of
one-well potential where Fourier method was effective. These solutions can be
obtained in terms of eigenfunctions for FPE (2.39) with the eigenvalues determining
the rates of decay to the stationary state [16, 22]. Here, we focus on numerical
simulations of the process which are addressed by solving the associated SDE:

dX tð Þ ¼ � dU

dx
ðXðtÞÞdt þ r � dW tð Þ ð2:50Þ

By using the finite difference technique and W sþ tð Þ ¼ W sð Þ þ N 0; 1ð Þt1=2, where
N(0,1) is a random variable normally distributed with zero average and unit var-
iance, one obtains the following approximate updating formula:

x t þ Dtð Þ � x tð Þ � dU

dx
xðtÞð ÞDt þ r � N 0; 1ð Þ Dtð Þ1=2 ð2:51Þ

Simulated sample paths of Brownian motion in a Landau potential and variants
thereof are plotted in Fig. 2.9. The Landau potential is a standard case of double-
well potential with UðxÞ ¼ �ðb=2Þx2 þ dx4, where constants b and d are positive
constants.

2.1.7 Pink (1/f) Noise

Pink noise is a stochastic process with the power spectral density inverse pro-
portional to frequency, also known as ‘‘1/f noise’’. The name of ‘‘pink noise’’ is
often extended to any noise with a power spectral density of the form 1/f a where a
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is usually close to 1. Pink noise is considered an intermediate class of noise
between the white noise, obtained for a = 0, and the Wiener noise featuring a
spectrum with a = 2.
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Fig. 2.9 Simulated sample paths of Brownian motion in various potentials UðxÞ ¼ ðbxsÞx�
ðb=2Þx2 þ dx4 and the associated spectra for different values of b, xs and d
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The pink noise was first observed experimentally by Johnson in 1925 [23] when
was trying to measure the noise spectrum in triode vacuum tubes. In addition to the
white noise spectrum predicted by Schottky [24] he also observed an unexpected
1/f noise at low frequency. In the following years this strange noise appeared again
and again in many different electrical devices, as well as in systems from other
areas of science and technology, such as biology, astronomy, geophysics, psy-
chology and economics [25, 26]. Several examples are provided in Fig. 2.10.

Although these phenomena are widely spread in nature and their analysis led to
more than 1500 scientific publications [27], a unified explanation is still missing.
An early approach proposed by Johnson [23] and Shottky [24] was to consider the
superposition of various OU relaxation process with different relaxation rates. This
model was successful in explaining the pink noise in vacuum tubes but less suited
in other cases from the area of electronics. Another idea was to look for diffusion
processes as possible origins of pink noise. That was not very difficult from the
mathematical point of view but failed at giving consistent physical meaning to the
mathematical assumptions used to derive 1/f spectrum [28]. Following the Man-
delbrot’s work [29] on fractals, pink noise has often been associated to fractal
phenomena due to its scale invariance, i.e. it does not change if scales of frequency
or time are multiplied by a common factor. Moreover, since various nonlinear

Fig. 2.10 Examples of 1/f noises. Curves are illustrative based on data from the indicated
sources. Adjacent pairs of tick marks on the horizontal axis beneath each figure indicate one
decade of frequency. Reprinted with permission from [26]
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systems have fractal attractors, many researchers have looked for dynamical
systems with complex behavior mimicking a noise process. A pioneering work in
this direction has been performed by Bak, Tang and Wiesenfeld who introduced
the so-called self organized criticality as an explanation for 1/f noise [30, 31]. In
conclusion, numerous models have been designed to explain the origin of the pink
noise and generate its characteristics. Although no universal approach has been
developed, ad-hoc models were pretty successful in studying these ubiquitous
phenomena.

The simulations of pink noise used in this book are based on the generation of
white noise processes and Fourier transforms. If Wiener noise featuring an 1/f 2

spectrum can be interpreted as the integral of white noise then pink noise featuring
an 1/f spectrum could be seen as some kind of half-integral of white noise. Let us
consider that n(t) is a sample path of white noise and compute its Fourier trans-
form. Then, dividing the result by x1/2 and taking an inverse Fourier transform,
one obtaines a function of time, denoted by p(t), which defines a sample path of
pink noise. This procedure can be mathematically expressed as follows:

pðtÞ ¼ 1
2p

Z1

�1

Z1

�1

nð~tÞejx~td~t

0
@

1
Ax�1=2ejxtdx

¼
Z1

�1

nð~tÞ 1
2p

Z1

�1

x�1=2ejxð~t�tÞdx

0
@

1
A d~t

ð2:52Þ

This equality shows explicitly that pink noise can be constructed as a linear
convolution of white noise with a specific kernel (or Green’s function) and
explains the time correlations in the pink noise. Since there are various types of
white noise depending on its probability distribution, a given 1/f spectrum can also
be associated to a variety of pink noise processes including Gaussian and Laplace
noises (Fig. 2.11).

2.1.8 Other Classes of Colored Noise

In general, colored noise is the complementary notion of white noise including
noises with flat spectrum only on a finite frequency band and noises with non-flat
spectrum. In other words, colored noise spikes are correlated to each other. As it
was previously mentioned, white noise bears a physical inconsistency since it
requires infinite energy. So practically, all real noises are colored to some degree
and pure white noise is only used in theoretical analyses due to its simplicity.

Wiener process featuring 1/f 2 spectrum, pink noise characterized by 1/f spec-
trum, and Ornstein-Uhlenbeck noise with its Lorentzian spectrum are most com-
mon models of colored noise. However, from case to case there is a large variety
of colored noises, so modeling noise with arbitrary spectrum is desired.
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Our approach generalizes the technique used in the previous section for simulating
pink noise. Thus, let us consider an arbitrary positive frequency function f(x)
sought as the noise spectrum. One first generates numerically an IID process n(t) in
the time domain as it is done in the white noise case. This process is then con-
verted to the frequency domain by using standard FFT techniques. In order to
obtain the desired colored noise c(t) one has to multiply the flat spectrum of the
converted signal by the chosen function and convert the signal back to the time
domain. This procedure can be mathematically expressed as follows:

cðtÞ ¼ 1
2p

Z1

�1

Z1

�1

nð~tÞejx~td~t

0
@

1
A ffiffiffiffiffiffiffiffiffiffi

f ðxÞ
p

ejxtdx

¼
Z1

�1

nð~tÞ 1
2p

Z1

�1

ffiffiffiffiffiffiffiffiffiffi
f ðxÞ

p
ejxð~t�tÞdx

0
@

1
A d~t

ð2:53Þ
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Fig. 2.11 Simulated sample paths of pink noise (left) and the associated spectra (right) for
Gaussian and Laplacian distribution
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It should be noted that the computational cost for the generation of the colored
noise is relatively small and depends on n as O n log nð Þ where n is the length of the
signal.

In Fig. 2.12a sample paths of colored noise with a spectrum directly proportional
to f (represented in Fig. 2.12b) are generated from white Gaussian noise by using
the algorithm previously described. This type of noise is known as blue noise and is
often detected and used in image processing. Efficient algorithms for dithering were
developed by using blue noise. It was found that retina cells are arranged in blue-
noise-type pattern which generates a good visual resolution [32]. Simulated sample
paths of a colored noise with a spectrum directly proportional to f 2 are plotted in
Fig. 2.13a and the corresponding averaged spectrum is represented in Fig. 2.13b.
This is known as violet noise and can be seen as a derivative of white noise. It is
apparent that infinite-band blue of violet noise also require infinite energy, so such
noises can only exist on a finite band. Figure 2.14b shows a finite band spectrum
with triangular shape which has violet part and a Brown part. The sample paths
associated to this spectrum are represented on the left part of that figure.
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Fig. 2.13 Sample paths of violet noise (left) and the associated spectra (right)
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Fig. 2.12 Sample paths of blue noise (left) and the associated spectra (right)
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Many other classes of noise can be defined based on the characteristics of their
spectra but they are much less encountered in hysteretic systems and consequently,
they are not addressed in this book. However, they can be easily generated and
applied to specific applications by using the Noise Module of HysterSoft and by
following the procedure presenting above.

In conclusion, most common noise models in hysteretic systems have been
presented along with the main numerical techniques used in this book for noise
simulations. It has been emphasized that noise may also play a constructive role in
nonlinear systems in opposition to the general image of noise as nuisance.
Regardless of their positive or negative roles, it is clear that a physical system is
influenced by internal of external noise leading to a stochastic behavior of the
system output. The next part of the Chapter is devoted to the theory of stochastic
processes defined on graphs, which proved to be naturally suited to the stochastic
analysis of the hysteretic system outputs.

2.2 Stochastic Processes Defined on Graphs

This section is devoted to introducing the theory of stochastic processes defined on
graphs that was recently developed by Freidlin and Wentzell. Their papers [33, 34]
are used as a guide for presenting the basic concepts of this theory. First, several
definitions and general properties of stochastic processes are discussed, stressing
the relation between transition probabilities of Markov processes and semigroups
of contractions. This relation allows the characterization of diffusion processes
defined on a graph, which is addressed in the second part of this section and is later
applied to the analytical study of hysteretic systems with stochastic input. Readers
without a background in measure theory and functional analysis might find
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Fig. 2.14 Sample paths of colored noise (left) with finite-band triangular spectrum represented
on the (right) figure
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difficult to understand this theoretical construction so they can pass directly to the
Sect. 2.3.3 part where the theory is applied to the case of Orstein-Uhlenbeck
process defined on a graph.

2.2.1 General Properties of Diffusion Processes

Consider a probability space {X, F, P} where X is the set of outcomes known as
sample space, F is a collection of subsets of X which forms r-algebra, and P is the
probability measure returning the probability of a specific event in X. In addition,
let us consider two real intervals X (phase space) and T (time interval). Let us
remind that a stochastic process is a family of random variables {X(t)}, t e T,
defined on X with values in X. For each fixed x e X a function x:T ? X, is
obtained as x(t) = X(t)(x) and is known as the trajectory or sample path of the
process X(t). A stochastic process is called (right) continuous if ‘‘almost all’’ of its
trajectories are (right) continuous, where ‘‘almost all’’ means a property valid on a
subset of X which has measure 1.

The collection of probability distribution functions ft1t2...tr of random variables
(X(t1), X(t2), … X(tr)) for any natural number r and for any t1, t2, … tr e T is known
as the finite-dimensional family of distributions of process X(t). In general, the
finite-dimensional family of distributions is not uniquely defining a stochastic
process, but there is a large class of stochastic processes1 for which it determines
‘‘almost’’ unique a continuous stochastic process. All processes considered in this
section satisfy this property.

A homogeneous Markovian process with respect to a non-decreasing system of
r-algebras Nt � F, where t 2 T ¼ 0;1½ Þ, is by definition a couple formed by a
stochastic process X(t) and a collection of probability measures px, x 2 X, on {X,
F}, which satisfy the following conditions:

(1) for any t, random variable X(t) is measurable with respect to r-algebra Nt;
(2) for any t and any Borel set C � X, Pðt;CjxÞ ¼ PxðXðtÞ 2 CÞ is a Borel

function with respect to variable x;
(3) Pð0;XnfxgjxÞ ¼ 0;
(4) if t; u 2 T ; t� u; x 2 X; and C � X is a Borel set, then equality

PxfXðuÞ 2 CjNtg ¼ Pðu� t;CjxÞ

is satisfied almost certainly with respect to the measure Px, where PxfAjNtg
represents the conditional probability of the event in relation to r-algebra Nt;
(5) if u	 0 then for each x 2 X exists x0 2 X such that the equality

1 See Kolmogorov continuity theorem [34].
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Xðt þ uÞð Þðx0Þ ¼ XðtÞð ÞðxÞ

is satisfied for all t.

Intuitively, Markov processes can be interpreted as stochastic processes without
memory. The definition considered that the process X(t) is defined for any
t 2 ½0;1Þ. However it should be noted that many problems lead to processes
Xð�Þð ÞðxÞ that are defined only for a finite range ½0; nðxÞ�, where random variable

nðxÞ is called terminal time. Since no such processes are used in this book, we
have simplified to a certain extent this definition.

The notion of homogeneity for a Markov process is directly related to property
(5), which implies the invariance of the set of Markov process trajectories at the
translation of time. Function P(t,C|x) is called the transition probability function of
the Markov process and determines, to a certain degree of equivalence,2 the sto-
chastic process. Thus, the properties and proper analysis of Markov processes
are often reduced to the properties and analysis of transition probabilities. For the
rigorous foundation of this schematic presentation the reader may consult the
monographs by Dynkin [34] and Mandl [35].

A Markov process can be associated to a semigroup of contractions St acting on
the Banach space B of bounded and measurable functions on X endowed with the
supremum norm. It is defined by the formula:

ðStf ÞðxÞ ¼
Z

X
f ðyÞPðt; dyjxÞ ð2:54Þ

The infinitesimal generator A of this semigroup, and hence of the associated
Markov process, is defined by the following formula:

Af ¼ lim
t!0

Stf � f

t
ð2:55Þ

where convergence is considered the supremum norm. In general, A cannot be
defined for all elements of B. A special problem related to the definition of
infinitesimal generator is the boundary condition (x 2 FrfXg). Thus, different
types of behavior of Markov process at phase space boundary correspond to dif-
ferent boundary conditions for the functions f defining the domain D(A) of the
infinitesimal generator. For each function f 2 DA, the function utðxÞ ¼ Stf ðxÞ is
the unique (bounded) solution of the following Cauchy problem:

outðxÞ
ot
¼ AutðxÞ; lim

t!0
utðxÞ ¼ f ðxÞ ð2:56Þ

If the transition probability of stochastic process is continuous then the semigroup
St (and hence the infinitesimal generator A) uniquely determines this transition

2 See Theorem 3.2, page 85, Ref. [34].
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probability and all finite-dimensional family of distributions for the Markov
process.

An important class of Markov processes is composed of diffusion processes,
which requires some additional restrictions on the transition probability functions.
Let us consider that, for each x 2 X the following limits exist:

lim
t!0

t�1 1�
Z

X

Pðt; dyjxÞ

2
4

3
5 ¼ 0 ð2:57Þ

lim
t!0

t�1 1�
Z

X

ðy� xÞPðt; dyjxÞ

2
4

3
5 ¼ bðxÞ ð2:58Þ

lim
t!0

t�1 1�
Z

X

ðy� xÞ2Pðt; dyjxÞ

2
4

3
5 ¼ r2ðxÞ ð2:59Þ

where the function b(x) is known as the drift coefficient, while r(x) C 0 as diffu-
sion coefficient of the transition probability, and hence of the associated Markov
process. A Markov process satisfying these conditions is called diffusion process.
Note that the action on the class C2(X) functions of the infinitesimal generator
associated to a diffusion process is given by:

Af ¼ lim
t!0

t�1
Z

X

f ðyÞPðt; dyjxÞ � f ðxÞ

2
4

3
5 ¼ 1

2
r2ðxÞ d

2f

dx2
ðxÞ þ bðxÞ df

dx
ðxÞ ð2:60Þ

which clarifies to some extent, the conditions imposed to define diffusion pro-
cesses. This relationship also suggests a deep connection between the diffusion
processes and elliptical differential operators.

Differential operator G defined by the formula:

G ¼ 1
2
r2ðxÞ o2

ox2
þ bðxÞ o

ox
ð2:61Þ

is known as differential generator of the diffusion process. In some conditions of
weak regularity imposed on the drift and diffusion coefficients, the diffusion
process is uniquely determined by its differential generator, meaning that any two
processes with the same differential generator generate the same distribution in the
space of trajectories (sample paths).

If there is a positive real constant K such that for any x; y 2 X these coefficients
satisfy:

• Lipschitz condition : bðx; tÞ � bðy; tÞj j þ rðx; tÞ � rðy; tÞj j �K x� yj j;
• Growth condition : bðx; tÞj j2þ rðx; tÞj j2�K 1þ xj j2

� �
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then exits a unique fundamental solution, denoted by q(t, x, y), of equation
ou=ot ¼ Gu satisfying the appropriate initial and boundary conditions. This
solution is precisely the transition probability density associated to the given
diffusion process. Thus,

P t;Cjxð Þ ¼
Z

C

q t; yjxð Þdy ð2:64Þ

Equation oq=ot ¼ Gq is called backward Kolmogorov equation of the diffusion
process. In the end, let us note that a stochastic process is called conservative if
P t;Xjxð Þ ¼ 1 for any t and x.

2.2.2 Diffusion Processes Defined on Graphs

The theory of stochastic processes on a graph has been recently developed by
Freidlin and Wentzell [36]. This theory was first applied to the study of random
perturbations of Hamiltonian dynamical systems [33, 36]. Then, it has been
realized that this mathematical technique is naturally suitable for the analysis of
noise in hysteretic systems [37–41]. In this section, we give a short description of
diffusion processes on a graph based on the previously cited references and
adapted to the problems of interest in this book. In the end, the initial-boundary
value problem for the transition probability density of the diffusion process
Z(t) defined on a graph is derived.

Consider a connected graph Z with vertices V1,…, Vm and edges E1,…, En

(see an example in Fig. 2.15). On each edge Ej is taken a coordinate xj and the
distance between two points on the graph is the length of the shortest path con-
necting those two points measured using the coordinate xj. Note that the definition
of Markov processes given in the previous section can be generalized easily for the
case when phase space is considered to be the graph Z, by replacing the symbol X
representing a real interval with the symbol Z representing the convex graph.
Similarly a semigroup of contractions St and an infinitesimal operator A, is asso-
ciated to the Markov process.

Fig. 2.15 The graph on
which the diffusion process is
defined
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Several edges can meet at a vertex Vk; we will write Ej * Vk if the edge Ej has
the vertex Vk as its end. For a function f : Z ! R and a segment Ej * Vk,
ðdf=dxjÞðVkÞ denotes the derivative function f with respect to the coordinate xj

considered towards inside of the edge Ej. A diffusion process X j(t) is associated
with each edge Ej and is defined by the differential generator:

Gj ¼ bj xj


 � o

oxj
þ

r2
j xj


 �
2

o2

ox2
j

ð2:65Þ

where, bj and rj are continuous functions that satisfy Lipshitz condition (2.62) and
growth condition (2.63).

For any nonnegative constants ak and vkj, with ak þ
P

j:Ej 
Vk

vkj [ 0 for

k = 1,…,m, one can define an operator A as:

Af ðzÞ ¼ Gjf ðzÞ; pentru z 2 Ej ð2:66Þ

for all functions f from C(Z) that satisfy the following conditions:

1. f is twice continuously differentiable inside the edges Ej;
2. if Ej * Vk then lim

z!Vk ;z2Ej

Gjf zð Þ exists and is independent of j; this limit will be

denoted by Gf (Vk);
3. for each vertex Vk

akAf Vkð Þ ¼
X

j:Ej 
Vk

vkj
of

oxj
Vkð Þ; ð2:67Þ

these conditions at the vertices will be further called ‘‘gluing’’ conditions.
The following result has been proven by Freidlin and Wentzell in Ref. [36]:

Theorem The operator A defined above is the infinitesimal generator of a con-
tinuous semigroup of linear operators on C(Z) corresponding to a continuous
conservative Markov process Z(t) on the graph Z.

Conversely, let Z(t) be a continuous conservative Markov process defined on
the graph Z whose trajectories coincide, up to the exit from the edge Ej, with the
diffusion process generated by the operator Gj defined by formula (2.65) and
whose associated semigroup of linear operators leads C(Z) into itself. Then there
exist unique positive constants vkj and ak satisfying ak þ

P
j:Ej 
Vk

vkj [ 0 such that

the infinitesimal generator associated to the Markov process Z(t) is the operator A
defined above.

Intuitively, constants ak describe how much time the process spends in Vk and
constants vkj, are (roughly speaking) proportional to the probabilities that the
process will ‘‘move’’ from vertex Vk along the edges Ej.
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For the models used in the next chapters the following facts can be established:

• Since the process has no delay at the vertices, ak = 0 for all k.
• In each interior vertex of the graph there are connected three edges and there is

zero probability that the process will move from the vertex to one edge (so the
associated vkj coefficient is also zero) while random motion along the other two
are equally probable (so the associated vkj coefficients are equal to one).

The graphs shown in Fig. 2.16 represent typical vertex connections for the prob-
lems discussed in this book. For these graphs there is zero probability to move
from V1 along the edge E3 and equal probability to move from V1 along the edges
E1 and E2. Consequently, v13 = 0, v11 = 1, v12 = 1 and taking into account the
coordinates on each edges, the following gluing condition can be derived for
vertex V1:

dfE1

dx
x1ð Þ ¼

dfE2

dx
ðx1Þ ð2:68Þ

Similar assertions are valid for each interior vertex and analogous interface con-
ditions can be derived.

The next task is to specify the partial differential equations for the transition
probability density q t; zjz0; 0ð Þ corresponding to the Markov process Z(t). The
following notation for the transition probability density is used on each edge Ej:

q jð Þ t; xjz0; 0ð Þ ¼ q t; zjz0; 0ð Þjz2Ej
ð2:69Þ

According to the theory of Markovian processes, the following equality is valid
forq jð Þ:

Xk

j¼1

Z

Ej

f
oqðjÞ

ot
dx ¼

Xk

j¼1

Z

Ej

Gjf

 �

qðjÞdx ð2:70Þ

Integrating by parts in formula (2.70) and taking into account the interface
conditions presented above and the fact that f can be chosen arbitrary in the
domain of the infinitesimal operator AY, one finds that the transition probability
density q t; zjz0; 0ð Þ satisfies the following forward Kolmogorov equation:

Fig. 2.16 Typical graph configurations used in the analysis of hysteretic systems
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oqj x; tjz0; 0ð Þ
ot

þ Ljqj x; tjz0; 0ð Þ ¼ 0 on each edge Ej ð2:71Þ

where

L̂jq ¼ �
1
2

o2

ox2
r2

j xð Þq
� �

þ o

ox
bj xð Þq

 �

ð2:72Þ

and ‘‘vertex’’ type boundary conditions which express the continuity of the tran-
sition probability density at the transition between two edges (for example, edges
E1 and E2 from the graphs shown in Fig. 2.16) and zero boundary condition
imposed on the third edge connected at that vertex. On the other hand, the
probability current has to be conserved at each vertex. For vertex V1 from
Fig. 2.16, these conditions can be expressed analytically as follows:

q1 x1; tjz0; 0ð Þ ¼ q2 x1; tjz0; 0ð Þ ; q3 x1; tjz0; 0ð Þ ¼ 0 ;

oq2

ox
x1; tjz0; 0ð Þ þ oq3

ox
x1; tjz0; 0ð Þ ¼ oq1

ox
x1; tjz0; 0ð Þ :

ð2:73Þ

and the transition probability decays to zero at the external noise of the graphs.
In addition, the initial conditions is q z; 0jz0; 0ð Þ ¼ dzz0

.

2.2.3 Examples: Ornstein-Uhlenbeck Processes on Graphs

In this section, it is shown how the theory of stochastic processes on graphs can be
applied to specific problems. Examples of Ornstein-Uhlenbeck processes defined
on graphs are presented and the explicit forms of the initial-boundary value
problems for the associated transition probability function are derived and solved.

The corresponding transition probability function q t; zjz0; 0ð Þ can be expressed
by its four components qi t; xjx0; 0ð Þ corresponding to the four edges Ei of the graph
represented in Fig. 2.17 and defined on the following intervals:

Fig. 2.17 The graph on which the Ornstein-Uhlenbeck process is defined
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q1 t; xjx0; 0ð Þ is defined for x 2 �1; bð Þ
q2 t; xjx0; 0ð Þ is defined for x 2 b; að Þ
q3 t; xjx0; 0ð Þ is defined for x 2 b; að Þ
q4 t; xjx0; 0ð Þ is defined for x 2 a;1ð Þ

ð2:74Þ

Since qi t; xjx0; 0ð Þ are associated to Ornstein-Uhlenbeck processes (2.89) on these
intervals, they are the solutions of the corresponding Fokker–Planck equations
defined on the intervals given in formula (2.74):

o

ot
qi x; tjx0; 0ð Þ ¼ o

ox
bðx� xsÞqi x; tjx0; 0ð Þ½ � þ r2

2
o2

ox2
qi x; tjx0; 0ð Þ; ð2:75Þ

where xo is the coordinate of initial point zo located on the edge Ei0 . The solutions
of Eqs. (2.75) are subject to the initial condition qi x; t0jx0; t0ð Þ ¼ dii0dðx� x0Þ and
to the following ‘‘vertex’’ boundary conditions:

q1ðb�; tjx0; 0Þ ¼ q2ðbþ; tjx0; 0Þ
q3ðbþ; tjx0; 0Þ ¼ 0

q3ða�; tjx0; 0Þ ¼ q4ðaþ; tjx0; 0Þ
q2ða�; tjx0; 0Þ ¼ 0

ð2:76Þ

oq1

ox
ðb�; tjx0; 0Þ ¼

oq2

ox
ðbþ; tjx0; 0Þ þ

oq3

ox
ðbþ; tjx0; 0Þ

oq4

ox
ðaþ; tjx0; 0Þ ¼

oq2

ox
ða�; tjx0; 0Þ þ

oq3

ox
ða�; tjx0; 0Þ

while p1 x; tjx0; 0ð Þ and p4 x; tjx0; 0ð Þ have to decay to zero as x goes to minus
infinity and plus infinity, respectively.

In order to solve these initial boundary value problems let us observe that the
sum of these components q̂ x; tjx0; 0ð Þ defined in Eq. (2.77) satisfies Eq. (2.75) for
all real values of x except a and b, while vertex boundary conditions prove the
continuity and differentiability of this function at a and b and zero decays at �1.

q̂ x; tjx0; 0ð Þ ¼
q1 x; tjx0; 0ð Þ for x 2 �1; bð Þ

q2 x; tjx0; 0ð Þ þ q3 x; tjx0; 0ð Þ for x 2 b; að Þ
q4 x; tjx0; 0ð Þ for x 2 a;1ð Þ

8><
>: ð2:77Þ

By continuity extension, it is clear that q̂ x; tjx0; 0ð Þ satisfies Eq. (2.75) on the entire
real axes subject to initial condition dðx� x0Þ and zero decays at infinity as
boundary conditions. Consequently, q̂ x; tjx0; 0ð Þ is the standard time-dependent
transition probability function of the OU process, which was found in Sect. 1.1.5
to have expression (2.30). As a result,
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ffiffiffi
b
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr2ð1� e�2btÞ

p e
�bðx�xs�ðx0�xsÞe�bt Þ2

2r2ð1�e�2bt Þ ¼
q1 x; tjx0; 0ð Þ ; x 2 �1; bð Þ
q2 x; tjx0; 0ð Þ þ q3 x; tjx0; 0ð Þ ; x 2 b; að Þ
q4 x; tjx0; 0ð Þ ; x 2 a;1ð Þ

8<
:

ð2:78Þ

The transition probability functions of the OU process is completely defined by
this formula on the edges E1 and E4 of the graph. In addition, the sum of the two
transition probability functions corresponding to edges E2 and E3 is determined, so
only one of them is left to be found in order to solve completely the problem. Let
us consider that i0 = 2 and choose q2 to be found, otherwise choose q3. Function
q2 is the solution of Eq. (2.75) on the interval b; að Þ subject to the initial condition
q2 x; 0jx0; 0ð Þ ¼ 0 and to the boundary conditions:

q2 b; tjx0; 0ð Þ ¼
ffiffiffi
b
p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� e�2btÞ

p e
� bðb�x0Þ2

2r2ð1�e�2bt Þ; q2 a; tjx0; 0ð Þ ¼ 0 ð2:79Þ

By using Laplace transformation ~q2ðx; sjx0; 0Þ ¼
R1

0 e�stq2ðx; tjx0; 0Þ dt Eq. (2.75)
becomes:

r2

2
o2~q2

ox2
x; sjx0; 0ð Þ þ bðx� xsÞ

o~q2

ox
x; sjx0; 0ð Þ þ ðb� sÞ~q2 x; sjx0; 0ð Þ ¼ 0 ð2:80Þ

which can be solved in terms of special mathematical functions. Hence by con-

sidering q
_

2ðx; sjx0; 0Þ ¼ ~q2ðx; sjx0; 0Þ expðbðx� xsÞ2
.

r2Þ, one obtains the fol-

lowing equation:

r2

2
o2q

_

2

ox2
x; sjx0; 0ð Þ � bðx� xsÞ2

2r2
þ s� b

2

" #
q
_

2 x; sjx0; 0ð Þ ¼ 0 ð2:81Þ

This equation has two linearly independent solutions, known as parabolic cylinder

functions U s
b� 1

2 ;
ffiffiffiffi
2b
p

r ðx� xsÞ
� �

and V s
b� 1

2 ;
ffiffiffiffi
2b
p

r ðx� xsÞ
� �

[42]. Consequently,

the solution can be expressed as linear combination of U and V with the coeffi-
cients, dependent of s, determined from the boundary conditions. In conclusion, a
closed form analytical expression for the transition probability q2 can be found in
terms of inverse Laplace transforms of the parabolic cylinder functions.

Much simpler analytical results can be found for the stationary distributions. By
taking t ? ? in expression (2.78), one obtains:

q̂st xð Þ ¼
ffiffiffi
b
p

r
ffiffiffi
p
p e�

bðx�xsÞ2

2r2 ¼
qst

1 xð Þ ; x 2 �1; bð Þ
qst

2 xð Þ þ qst
3 xð Þ ; x 2 b; að Þ

qst
4 xð Þ ; x 2 a;1ð Þ

8<
: ð2:82Þ
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while qst
2 has to satisfy the equation:

r2

2
o2

ox2
qst

2 xð Þ þ o

ox
bðx� xsÞqst

2 ðxÞ
� �

¼ 0 ð2:83Þ

and boundary conditions:

qst
2 bð Þ ¼

ffiffiffiffiffiffiffiffi
b

pr2

r
e�

bðb�xsÞ2

2r2 ; qst
2 að Þ ¼ 0 ð2:84Þ

It is known that the general solution of linear differential Eq. (2.83) has the
following form:

qst
2 xð Þ ¼ e�

bðx�xsÞ2

2r2 c

Za

x

e
bðy�xsÞ2

2r2 dyþ d

0
@

1
A ð2:85Þ

where c and d are constants that can be found from boundary conditions (2.84).
The null-condition at x ¼ a implies d = 0, while the condition at x ¼ b leads to:

c ¼
ffiffiffiffiffiffiffiffi

b

pr2

r Za

b

e
bðy�xsÞ2

2r2 dy

0
B@

1
CA
�1

ð2:86Þ

In conclusion, the stationary probability function of the Ornstein-Uhlenbeck pro-
cess defined on graph Z has the following expression, while a sample obtained for
a noise input characterized by b = 1, r = 1, and xs = -0.5, and vertex coordi-
nates b = -1 and a = 1 is plotted in Fig. 2.18:
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Fig. 2.18 Stationary
probability components for
an Ornstein-Uhlenbeck
process defined on graph Z
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1 xð Þ ¼

ffiffiffi
b
p

r
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p
p e�
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2r2 ; x 2 �1; bð Þ
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qst
3 xð Þ ¼

ffiffiffi
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p

r
ffiffiffi
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p e�

bðx�xsÞ2

2r2

Zx
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e
bðy�xsÞ2

2r2 dy

0
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e
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; x 2 b; að Þ

qst
4 xð Þ ¼

ffiffiffi
b
p

r
ffiffiffi
p
p e�

bðx�xsÞ2

2r2 ; x 2 a;1ð Þ

ð2:87Þ

An approximation of the transition probability function defined by (2.75) and
(2.76) can be obtained by replacing the stationary distribution q̂st xð Þ of the
Orstein-Uhlenbeck process on the real line with the transition probability function
q̂ x; tjx0; 0ð Þ of the Orstein-Uhlenbeck process on the real line:

q1 x; tjx0; 0ð Þ ¼
ffiffiffi
b
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr2ð1� e�2btÞ

p e
�bðx�xs�ðx0�xsÞe�bt Þ2

2r2ð1�e�2bt Þ ; x 2 �1; bð Þ

q2 x; tjx0; 0ð Þ �
ffiffiffi
b
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr2ð1� e�2btÞ

p e
�bðx�xs�ðx0�xsÞe�bt Þ2

2r2ð1�e�2bt Þ

Za

x

e
bðy�xsÞ2

2r2 dy

Za

b

e
bðy�xsÞ2

2r2 dy

0
B@

1
CA
�1

; x 2 b; að Þ

q3 x; tjx0; 0ð Þ �
ffiffiffi
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p
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pr2ð1� e�2btÞ
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Samples of these transitions probability functions obtained for a noise input
characterized by b = 1, r = 1, xs = -0.5, x0 = 0 and vertex coordinates b = -1
and a = 1 are plotted in Fig. 2.19 at selected instants of time.

In the next chapters, it is proven that the stochastic analysis of various hys-
teretic systems driven by OU processes can be reduced to the analysis of OU
processes defined on graphs and the solutions derived here will be useful in
expressing the stochastic characteristics of the output.

In the second example, we consider the same graph Z represented in Fig. 2.17
but the Ornstein-Uhlenbeck processes XiðtÞ on each edge are governed by different
differential generators:

Gi ¼ �b x� xi
s


 � o

ox
þ r2 xð Þ

2
o2

ox2
ð2:89Þ

2.2 Stochastic Processes Defined on Graphs 99



where x1
s ¼ x2

s ¼ ~xs and x3
s ¼ x4

s ¼ xs. While on edges E1 and E2, the process can
be interpreted as a Brownian motion in a parabolic potential defined on ð�1; a�
reaching minimum at ~xs. On edges E3 and E4, the process can be interpreted as a
Brownian motion in a parabolic potential defined on ½b;1Þ reaching minimum at
xs. A graphic representation of these potentials is shown in Fig. 2.20, with con-
tinuous and dashed lines, respectively. The associated transitions probability
functions are the solutions of the following Fokker-Planck equations on the cor-
responding intervals:

o

ot
qi x; tjx0; 0ð Þ ¼ o

ox
bðx� xi

sÞqi x; tjx0; 0ð Þ
� �

þ r2

2
o2

ox2
qi x; tjx0; 0ð Þ; ð2:90Þ

and subject to the initial boundary conditions described in the previous example,
partially given in (2.76). A similar procedure using Laplace transformation can be
used to find closed form analytical expressions for these components of the
transition probability function in terms of inverse Laplace transforms of the par-
abolic cylinder functions. Much simpler analytical results can be found for the
stationary distributions. The components of the stationary distribution for the OU
process defined on graph Z are the solutions of the following equations:

Fig. 2.20 The potential
wells for the Brownian
motion representing the noise
characterization for edges E1

and E2 (continuous line) and
E3 and E4 (dashed line),
respectively
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and are subject to the following boundary conditions:
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2 ðb
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while pst
1 xð Þ and pst

4 xð Þ have to decay to zero as x goes to minus infinity and plus
infinity, respectively.

It is known that the general solutions of linear differential Eqs. (2.91) can be
written in the following forms:

qst
i xð Þ ¼ e�

bðx�~xsÞ
2

2r2 ci

Za

x

e
bðy�~xsÞ

2

2r2 dyþ di

0
@

1
A; i ¼ 1; 2

qst
i xð Þ ¼ e�

bðx�xsÞ
2

2r2 ci

Zx

b

e
bðy�xsÞ

2

2r2 dyþ di

0
B@

1
CA; i ¼ 3; 4

ð2:93Þ

where ci and di are constants that will be found in our problem from boundary
conditions (2.92). The null-conditions qst

2 ða�Þ ¼ 0 and qst
3 ðbþÞ ¼ 0 implies

d2 = d3 = 0, while zero decay at minus infinity and plus infinity for pst
1 xð Þ and

pst
4 xð Þ, respectively, implies c1 = c4 = 0. Moreover, qst

1 ðb�Þ ¼ qst
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d1 ¼ c2
R a
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4 ðaþÞ leads to the relation
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b expðbðy� xsÞ=2r2Þdy. The boundary conditions for the derivatives in

(2.92) implies c2 = c3 that will be denoted by c. As a result,
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where c is determined from the normalization condition for the total stationary

probability function
R b
�1 qst

1 ðxÞdxþ
R a

b qst
2 ðxÞdxþ

R a
b qst

3 ðxÞdxþ
R1

a qst
4 ðxÞdx ¼ 1.

An example of the stationary distribution (2.94) obtained for a noise input char-
acterized by b = 1, r = 1, xs = -0.5, ~xs ¼ 0:5, and vertex coordinates b = -1
and a = 1 is plotted in Fig. 2.21.
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This example of OU process governed by different equations on each edge of
the graph is used in describing the stochastic behavior of bistable hysteretic sys-
tems where noise is state dependent. In Chap. 5 we will prove that coherence
resonance phenomena take place in such system driven by state dependent noise.
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Chapter 3
Stochastically Driven Hysteretic Systems
in Science and Engineering

3.1 Magnetic Hysteresis

The rectangular loop, one of the simplest hysteretic system, can be physically
interpreted as the response of the magnetization in a ferromagnetic particle with
uniaxial anisotropy under the action of an external magnetic field applied along the
anisotropy axis. The particle size is assumed to be small enough to determine a
uniform magnetization inside the particle for any values of applied field. The free
energy g of such a physical system is outlined in Fig. 3.1 for four representative
cases that correspond to points A, B, C and D on the rectangular loop represented in
Fig. 3.2. Magnetization values corresponding to a magnetic field are given by one
of the minimum points for the free energy. For magnetic fields h \ b or h [ a, there
exists only one minimum for free energy, namely m = -1 (case A) or m = 1 (case
C). If, however, the magnetic field h is in interval (b, a) then the corresponding free
energy has two minimum points m = -1 and m = 1 (cases B and D).

The particle magnetization may persist in a metastable state for some time, but
thermal noise usually drives it to the other metastable state. In specific cases, this
transition time is much greater than the observation time and, therefore, the sto-
chastic aspects are neglected. There are situations, however, when the hysteretic
system reliability depends on the transition time. In the context of magnetic data
storage technology [1], two states (þ1 and -1) are possible in the absence of
magnetic field and they correspond to the values 1 and 0 in the terminology of
binary information. By applying an appropriate magnetic field pulse, the magne-
tization can be switched from one state to another, which means that the memory
cell is rewritten. When the transition happens in the absence of the magnetic field
due to thermal noise, the stored information is lost. This phenomenon, known as
super-paramagnetic effect, is increasingly pronounced as the memory cell gets
smaller, being the main obstacle in improving data storage density in magnetic
hard disk drives [2–4].

The basic description of superparamagnetic phenomenon is usually provided by
using the Brownian motion in a double well potential analyzed in Sect. 2.1.6.

M. Dimian and P. Andrei, Noise-Driven Phenomena in Hysteretic Systems,
Signals and Communication Technology 218, DOI: 10.1007/978-1-4614-1374-5_3,
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The central result of that section is the Arrhenius formula, also known in mag-
netism as Néel-Arrhenius formula [5], expressing the mean time of switching
between two magnetization states as exponential function of the energy barrier
divided by the noise energy. Since the energy barrier is proportional to the volume
of the magnetic particle, the mean time of the magnetization switching induced by
thermal noise decreases exponentially with the decrease in the particle volume;
this fact leads to a minimum volume that the particle needs to have in order to

g
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-1 +1

m

-1 +1
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Fig. 3.1 Free energy profile for a magnetic particle with uniaxial anisotropy under several
magnetic fields applied along the anisotropy axis

Fig. 3.2 The diagram of the
magnetization versus applied
magnetic field in a
ferromagnetic object with
uniaxial anisotropy subject to
an external magnetic field
applied along the anisotropy
axis
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satisfy the stability condition for the recording data. Similarly, since the thermal
noise energy is proportional to the absolute temperature, the mean time of the
magnetization switching induced by thermal noise decreases significantly with the
increase in temperature; this leads to a limit for the operating temperature above
which the stability condition for the recording data is not satisfied [6, 7]. These
results predicted by Néel-Arrhenius theory have been explicitly proved experi-
mentally by Wernsdorfer and his collaborators [8, 9] in the case of Cobalt
nanoparticles.

Next, let us consider a magnetic particle with uniaxial anisotropy subject to a
magnetic field applied on a direction non-collinear to the anisotropy axis, denoted
by x. Let us consider y-axis in the plane formed by anisotropy axis and the applied
field (see Fig. 3.3). It is apparent from symmetry considerations that the particle
magnetization lies in the same plane. The part of free energy g dependent on
magnetization particle is given by:

g ¼ ka sin2 h�m � h; ð3:1Þ

where ka is the anisotropy constant and h is the angle between the magnetization
m and the easy axis. The formula is normalized such that the magnetization
magnitude is equal to unity. The first energy term is known as anisotropy energy
and originates from the intrinsic properties of the particle, such as magnetcrys-
talline anisotropy or shape anisotropy, while the second energy term is known as
Zeeman energy and characterizes the particle interaction with the applied magnetic
field.

Since the applied magnetic field is fixed and the magnetization magnitude is
assumed constant (and normalized to 1) throughout the process, the free energy is
a one-variable function having the following explicit expression:

gðhÞ ¼ ka sin2 h� hx cos h� hy sin h: ð3:2Þ

The metastable states of this system correspond to the minima of free energy
which can be found among the zeros of its derivatives. Thus, the metastable
orientations of the magnetizations are solutions of the following equation:

ka sin h cos hþ hx sin h� hy cos h ¼ 0 ð3:3Þ

Fig. 3.3 Configuration of the
magnetization in a small
particle with uniaxial
anisotropy subject to a
uniform magnetic field
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By expressing sin h and cos h from formula (3.3) in terms of tan(h/2), the
problem is reduced to a quartic equation with respect to tan(h/2) which may have
two or four real solutions, depending on the applied magnetic field. The minimum
points can be identified by checking the positivity condition on the second
derivative of free energy. Since only one of them can be minimum in the first case
and only two in the second case, it can be concluded that (hx, hy)-plane is divided
in two different regions where the system has one and two metastable states,
respectively. On the boundary between these two regions the second derivative of
the free energy with respect to h should also be zero and consequently, these
critical magnetic fields ðhc

x; hc
yÞ are subject to the following conditions:

2ka sin h cos hþ hc
x sin h� hc

y cos h ¼ 0

2ka ðcos2 h� sin2 hÞ � hc
x cos hþ hc

y sin h ¼ 0

�
ð3:4Þ

This linear system with respect to ðhc
x; h

c
yÞ leads to the following solutions:

hc
x ¼ �2ka cos3 h and hc

y ¼ 2ka sin3 h: ð3:5Þ

As a result, the implicit form of the critical curve separating the two regions in (hx,
hy)-plane is given by:

hc
x

� �2=3þ hc
y

� �2=3
¼ 2kað Þ2=3; ð3:6Þ

which represents an astroid (see Fig. 3.4) known in magnetic recording commu-
nity as the Stoner-Wohlfarth (SW) asteroid [10].

In conclusion, when the applied field corresponds to a point in the (hx, hy)-plane
located inside the SW astroid, the magnetic system features two metastable states,
its current state depending on the magnetic field history. When the applied field
corresponds to a point located outside the SW astroid, the system features only one
metastable state (the equilibrium).
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Fig. 3.4 Normalized Stoner-
Wohlfarth astroid in the (hx,
hy)-plane
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The thermal noise is expected to have a shrinking effect on the critical field
curve, fact confirmed experimentally by Wernsdorfer and his collaborators [8] and
represented in Fig. 3.5.

In order to study the general effects of thermal noise in such non-symmetric
cases, i.e. magnetic field is applied on a direction non-collinear to the anisotropy
axis, one needs to take into account the dynamics of the magnetization. The
motion of magnetic moment M in a uniform magnetic field H, can be intuitively
decomposed into two components: a precessional motion about the direction of the
magnetic field, see Fig. 3.6a, and a relaxation motion that tends to orient the
magnetic moment along the direction of the field, see Fig. 3.6b.

The short introduction to modeling magnetization dynamics presented here
follows the lines of publication [11] which can be consulted for additional details.
First, let us consider the precessional motion, which can be mathematically
expressed in the following form:

dM

dt
¼ �cM�H; ð3:7Þ

where c ¼ l0c0, with l0 ¼ 4p10�7 H=m½ � is the permeability of the vacuum and c0

is a quantity characteristic to the magnetic moment that can be determined from
experiments or computed by considering the physical origin of the magnetic

Fig. 3.5 Temperature
dependence of the switching
field of a 3 nm Co cluster,
measured in the plane defined
by the easy and medium hard
axes. Reprint with permission
from [8]

Fig. 3.6 Schematic
representation of the
magnetization motion
induced by a magnetic field:
a Precessional component,
b Relaxation effect due to the
damping
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moment. Thus, for the magnetic moment originating from the orbital motion of a
particle with mass m0 and charge q0 the absolute value of gyromagnetic ratio is
c0 ¼ g q0j j=2m0, where g is the gyromagnetic factor (g * 2 for a free electron).

The equation for the precessional motion can be theoretically justified either on
quantum or classical grounds. By considering a ‘‘static’’ particle with spin in a
uniform magnetic field, the time evolution for the mean value of the spin operator
can be derived using either the Schrödinger equation (see [12]) or equivalently, the
Von Neumann equation (see [13]). On the classical ground, Eq. (3.7) can be jus-
tified assuming that the magnetic moment arises from a ‘‘circular’’ motion of an
electron and using Newton’s law for the angular momentum, as well as the relation
between the magnetic moment and the angular momentum (see [14]). The idea of
this classical explanation was first given by Sir Joseph Larmor, and that is why the
precessional motion of the magnetic moment about the magnetic field is often
called Larmor precession. One may also think of deriving Eq. (3.7) from a varia-
tional principle. The magnetic moment M can be regarded as a ‘‘classical top’’ with
principal moments of inertia (0, 0, C), and the Lagrangian formulation of this top
case leads to Eq. (3.7) (see [15]). However, each one of these derivations contains
assumptions (indicated by quotation marks), which are physically inconsistent.
Consequently, they cannot be considered as derivations of Eq. (3.7), but rather as
justifications of this equation. In spite of these difficulties, Larmor precession offers
accurate explanations of numerous experiments involving the magnetic moment
behavior in a uniform magnetic field, such as nuclear magnetic resonance, para-
magnetic and ferromagnetic resonance [14], and magnetization reversals [16, 17].

Next, we consider the relaxation motion of the magnetic moment, which can be
quantitatively described by adding a dissipative (damping) correction term to
Eq. (3.7). The ‘‘dissipated’’ energy is actually transformed by various mechanisms
into the thermal energy of the system. Although these mechanisms are partially
known [18, 19], they are too complex to be taken into account in an explicit
derivation of the damping correction term at a macroscopic level. In order to
describe the experimental results, various phenomenological expressions are
employed. Most notable ones were given by Landau and Lifshitz for the
description of energy losses in the magnetic domain wall motion in ferromagnetic
materials [20], and by Bloch for the description of nuclear magnetic relaxation
[21]. Since then, these expressions have been successfully applied to various
physical phenomena involving dissipation of the magnetic energy. The Landau-
Lifshitz expression is mostly used for the description of various dissipative pro-
cesses in which the norm of the magnetic moment is conserved, while the Bloch
expression is appropriate to complementary cases.

The Landau-Lifshitz expression for the damping term reads:

� caL

M2
M� M�Hð Þ; ð3:8Þ

where aL is a damping parameter with the dimensionality of the magnetic field,
and M is the norm of the magnetic moment M. Nowadays, it is preferred to call
dimensionless parameter a ¼ aL=M as the damping parameter, and this convention
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is used throughout this book. This damping parameter may take a large interval of
values depending on the various types of magnetic materials and experiments
involved. The experiments involving magnetization reversals in ferromagnetic thin
films and nanoparticles used in magnetic data storage indicate rather small values
for the damping parameter on the order of 10-3 up to 10-1.

Bloch used the following expression for the damping term:

�Mx

s2
;�My

s2
;
Ms �Mz

s1

� �
; ð3:9Þ

where z is the direction of the applied magnetic field, Ms is the magnetization
saturation value in the equilibrium state, and the parameters s1 and s2 account for
the relaxation times in the longitudinal and transverse directions, respectively.
Since we focus here on magnetization dynamics that conserves the norm of the
magnetic moment, we do not extend further the discussion of Bloch equation.

The dissipative term given by formula (3.8) is somehow atypical, in the sense
that it cannot be derived in terms of the standard Rayleigh dissipation function. By
using the standard Rayleigh function to introduce the dissipative effects in the
Lagrangian formulation for the conservative precessional motion, Gilbert [22]
derived the following damping term:

� caG

M
M� dM

dt
; ð3:10Þ

where aG [ 0 denotes the Gilbert dimensionless damping parameter.
In conclusion, the general equation of motion for a magnetic moment in

homogeneous applied field can be written as:

dM

dt
¼ �cGM�H� cGaG

M
M� dM

dt
; ð3:11Þ

in the Gilbert form, known as Landau-Lifshitz-Gilbert equation. Here, cG is
identical to c, but the G index is used for the clarity of future considerations. By
using the damping term given by formula (3.8), the equation of motion has the
following form:

dM

dt
¼ �cM�H� ca

M
M� M�Hð Þ: ð3:12Þ

This equation is known as Landau-Lifshitz equation. It can be simply proved
that Eqs. (3.11) and (3.12) are mathematically equivalent. However, there is some
physical discrepancy between them if one thinks at c as a physical constant with its
value given by the physical origin of the magnetic moment. Nevertheless, this
discrepancy is considerable diminished when a is a small parameter, as it is usually
the case in practical applications.

The Landau-Lifshitz equation can be easily generalized to describe the behavior
of the magnetic moment in complex environments substituting the magnetic field
H by the effective field Heff, which is derived using the magnetic energy
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g associated to the environment Heff ðMÞ ¼ �rMg. By normalizing the magne-
tization m = M/M, and the effective field heff = Heff/M, the Landau-Lifshitz
equation can be written in the following dimensionless form:

dm

dt
¼ �m� heff � a m�m� heff ; ð3:13Þ

where time is measured in units of (cM)-1.
The thermal noise effects can be included in this description by considering a

vector white noise in the effective magnetic field:

heff ðmÞ ¼ �rmgþ hthðtÞ ð3:14Þ

The thermal field is explicitly defined by zero-mean normal variables with
correlations:

\hth
i ðt1Þhth

j ðt2Þ[ ¼ 2a
kT

v
dijdðt1 � t2Þ ¼ 2

a
b

dijdðt1 � t2Þ ð3:15Þ

where indices i, j = 1, 2, 3 correspond to the Cartesian coordinates x, y, z, k is the
Boltzman’s constant, T is the absolute temperature and v is the particle volume.
Actually, according to the fluctuation–dissipation theorem [23] the introduction
dissipation term requires a fluctuating terms. The Fokker–Planck equation for the
probability density function q of the magnetization was first derived by using Wang
and Uhlenbeck methods [24]. A simpler derivation has been later provided by
Coffey in [25] based on Einstein’s approach. This so-called Brown’s Fokker–Planck
equation has the following form:
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� �
ð3:16Þ

In the particular case of uniaxial anisotropy with the magnetic field applied
along easy axis, the free energy g is independent of u and can be reduced to the
following expression:

gðhÞ ¼ � 1
2

cos2 h� hx cos h ¼ � 1
2

m2
x � hxmx ð3:17Þ

Consequently, the probability density function is also independent of u and its
expression in terms of mx will be denoted by p(mx,t) leading to a much simpler
expression for Brown’s Fokker–Planck Eq. (3.16):

1þ a2

a
op

ot
¼ o

omx
ð1� m2

xÞ
dg

dmx
pþ 1

b
op

omx

	 
� �
ð3:18Þ
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The stationary equation obtained by making the left hand side equal zero, can
be simply integrated once with respect to mx, so the stationary probability function
ps satisfies the following relation:

ð1� m2
xÞ

dg

dmx
ps þ

1
b

dps

dmx

	 

¼ 0 ð3:19Þ

where the constant of integration was found to be zero by evaluating the
expression from the left hand side at mx = 1. It is apparent from (3.19) that the
factor inside the square parentheses must be zero, which can be rearranged as
follows:

opsðmxÞ
omx

¼ �b
ogðmxÞ
omx

psðmxÞ ð3:20Þ

which can be easily solved by separation of variables. In conclusion, the stationary
distribution for the magnetization motion of a magnetic particle with uniaxial
anisotropy driven by an external magnetic field h applied along the anisotropy axis
and by thermal noise of energy 1/b is found:

psðmxÞ ¼ a0ebðð1=2Þm2
xþhxmxÞ ð3:21Þ

where a0 is found from the normalization condition for ps. The non-stationary
distribution, i.e. the solution of Eq. (3.18), can be expressed as a series:

pðmx; tÞ ¼ psðmxÞ þ
X1
n¼1

anpnðmxÞe�knt ð3:22Þ

where pn(mx) and kn are the eigenfunctions and eigenvalues, respectively, asso-
ciated to the Eq. (3.18). Thus, they are the solutions of the following Sturm–
Liouville problem on [-1, 1]:

d

dmx
ð1� m2

xÞe�bgðmxÞ d

dmx
ðebgðmxÞpnðmxÞÞ

� �
� bð1þ a2Þ

a
knpnðmxÞ ¼ 0 ð3:23Þ

Most of the articles published in this area in 1960’s and 1970’s have presented
analytical formulas and numerical results for the eigenvalues and eigenfunctions in
this axially symmetric case. Except in the early stages of an approach to equi-
librium, the only appreciably time dependent term in the series solution (3.22) is
p1(mx), which corresponds to the longest relaxation time (1/k1).

In the general case, the magnetic field can be applied at any angle with respect
to the anisotropy axis, while the anisotropy may have non-uniaxial characteristics.
Consequently, the symmetry of the problem breaks and the solution of the
Eq. (3.16) should be found in the general form:

qðh;u; tÞ ¼ qsðh;uÞ þ
X1
n¼1

~anqnðh;uÞe�
~knt ð3:24Þ
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where qn(h,u) and ~kn are the eigenfunctions and eigenvalues, respectively, asso-
ciated to the Eq. (3.16). The analysis of this equation is beyond the scope of this
book but the reader interested in this topic can consult the excellent monograph
published by Coffey, Kalmykov and Waldron [25]. Here, we just remind the result
presented in Fig. 3.5 about the shrinking effect of the thermal noise on the critical
field curve confirmed experimentally by Wernsdorfer and his collaborators in the
case of uniaxal anisotropy [8].

Most of the magnetic materials have much more complex behavior and can not
be framed into the uniform magnetization approach presented above. As an
example, Fig. 3.7 illustrates the nonuniform magnetic structure of a micrometric
part from a magnetic recording media (a film of cobalt with iron-oxide doping).
A NT-MDT atomic force microscope is used in magnetic force microsopy mode to
visualize the topography and magnetic profile of the given micrometric sample. In
order to address this non-uniform behavior, multi-spin and micromagnetic models
are involved at microscale and hysteretic models are used at macroscale.

A common discrete approach to describe the magnetization behavior in nano-
structures is based on Landau-Lifshitz-type equation for each magnetic moment
with the effective field obtained from a Heisenberg-type Hamiltonian including the
external applied field, exchange interaction, dipole–dipole interaction, and the
contribution of magnetocrystalline anisotropy. This semi-clsssical multi-spin
description of magnetic structures leads to complex many-body problems, which
are normally tractable only by numerical methods. In Fig. 3.8 are shown samples
of metastable magnetic configurations obtained using this approach for a spherical
nanoparticle featuring a radial anisotropy for the surface spins and uniaxial
anisotropy for core spins. Due to computer limitations, the investigations are
restricted to very small systems with diameters of a few nanometers. Therefore, the
only way to approach larger magnetic systems is to ignore the discrete nature of
matter and to use a continuum approximation.

Fig. 3.7 Topography (left) and magnetic profile (right) of a magnetic recording media obtained
by using a magnetic force microscope
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A popular continuum-mechanics approach to describe the magnetization
behavior can be traced back to the works of Landau and Lifshitz, Brown, and
Aharoni, and it is known as micromagnetics. A general presentation of the mic-
romagnetics can be found in the classical book of Brown [15] and in the one edited
by Rado and Suhl [26]. A seminal overview of this domain is presented in the book
of Aharoni [27], while recent reviews of analytic and numerical micromagnetics,
compared to experimental results, can be found in the books of Kronmuller and
Fahnle [28], and Hubert and Schafer [29].

Micromagnetics theory has been mainly applied to the calculation of quasistatic
magnetization processes in micrometric structures. The classical approach was
based on the analytical and numerical study of the static Brown equation and its
linearized form. The increasing computational capabilities made possible a new
approach based on the dynamic Landau-Lifshitz equation with the effective field

Fig. 3.8 Samples of magnetic configuration for a multi-spin system corresponding to saturation
states (negative (a) and positive (d)) and two intermediate states (negative (b) and positive (c)).
Gray arrows represent core spins and black arrows represent surface spins
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derived from the Brown Hamiltonian. However, the complexity of the dynamic
approach may generate unacceptable large errors in describing long-time scale
processes. For example, a standard problem proposed by the National Institute for
Standards and Technology (NIST) was simulated by various computational groups
and the numerical results had been submitted during 1997–1998 [30]. The wide
distribution of these results raised many doubts concerning the reliability of the
numerical methods applied to solve this complex problem. As a consequence,
NIST proposed simpler standard problems related to the short time scale processes.
In this case, the submitted numerical results tend to agree with each other on a time
scale below 1 ns. A large number of research articles and Ph.D. theses concentrate
nowadays in this area, providing valuable numerical algorithms to approach
Landau-Lifshitz type equations for continuum media.

As an example, this approach is used in Fig. 3.9 to illustrate the magnetic
vortices in spherical Permalloy particles the vortex. The simulation is performed
by using Nmag software [31], which is a finite-element micromagnetic simulation
package based on Python scripts running on a Linux virtual machine. For a better
visualization, the magnetization of each finite element of the continuous structure
is represented by an arrow. By increasing the applied magnetic field from a large
negative value generating the negative saturation of the magnetization (a) to a
large positive value generating the positive saturation (f), the magnetization
evolves through various vortex states (b)–(e).

In conclusion, micromagnetics offers a valuable tool for describing the magne-
tization behavior in magnetic materials, but the complexity of this integro-differ-
ential problem limits the computational analysis to micrometer structures. This scale
limitation is even greater when the stochastic form of the Landau-Lifshitz equation
is used to analyze the thermal effects on magnetization behavior subject to applied
fields. Numerous phenomenological models have been developed to describe the
magnetization behavior at larger scales with a special interest in hysteresis.

By using Preisach formalism, complex hysteretic behavior could be described
as a weighted superposition of responses of elementary hysteresis operators to the
given magnetic field. Preisach models have been extensively used in modeling
hysteretic phenomena in magnetic materials with various applications ranging
from magnetic recording technologies to electrical machines. A description of
Preisach models with deterministic inputs has been provided in Chap. 1.

Preisach-type models with stochastic input were introduced by Mayergoyz and
Korman to offer a unified and detailed description of hysteresis and ‘‘after-effect’’
in magnetic materials [32–35]. Key computations in these viscosity models are
based on the relation between randomly induced switchings of rectangular loops
and the exit problem for stochastic processes, which is a well studied problem in
the theory of diffusion processes. Later, another technique for these computations
was discovered which uses the recently developed theory of diffusion processes on
graphs [36] developed by Freidlin and Wentzell. This theory was first applied to
the study of random perturbations of Hamiltonian dynamical systems [36, 37].
Then it was realized that this mathematical technique is naturally suited to the
analysis of noise in hysteretic systems [38–41]. In the following chapters, this
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model will be extensively used for analytical and numerical analysis of thermal
relaxation and spectral noise density of hysteretic systems.

Although Preisach models have enjoyed a dominant role in hysteresis modeling
of magnetic materials over many years, other hysteresis models such as the
Jiles-Atherton, energetic, and Coleman-Hodgdon models have shared its success
and popularity.

Fig. 3.9 Samples of magnetic configuration in horizontal and vertical plane for a spherical
magnetic particles using micromagnetic modeling. By increasing the applied magnetic field,
magnetization switches from the negative (a) to positive (f) saturation state using a vortex
mechanism reflected in (b)–(e)
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The Jiles-Atherton model (see Sect. 1.3) is particularly suited for soft magnetic
materials, in which the magnetization change is due to domain wall motion
[42, 43]. The restraining force on the displacement of the domain walls is caused
the pinning of the walls at the defect sites and expressed in terms of the pinning
constant, k. The interaction between the magnetic moments is modeled using the
mean-field approximation (see Sect. 1.7.1), and captured by a single mean-field
parameter a. Subsequent versions of the model have included the reversible
change in magnetization in order to reduce the difference between the anhysteretic
and irreversible magnetization [44]. This reversibility is captured by parameter
c. Together with the saturation of the magnetization and the initial slope of the
anhysteretic curve the model can be written as an ordinary differential equation
with 5 parameters, which are related to the physical phenomena in the magnetic
system.

The energetic model is suited for both crystals and systems of magnetic particles
(see Sect. 1.4). The model equations were derived by minimizing the total mag-
netic energy of the system, which included reversible and irreversible components
[45]. The reversible energy consists of magnetocrystalline and shape anisotropy
and is responsible for the rotation of the magnetization at strong fields and for the
reversible wall motion at low fields. The irreversible energy is caused by pinning
centers, such as grain boundaries, nonmagnetic inclusions, and misorientations of
the crystallites. By carefully including the grain orientations and the energy of the
applied field, the model can describe accurately magnetization curves in all crys-
tallographic directions [46]. Although the derivation of the model equations is
somewhat more complicated than in the case of the Jiles-Atherton model, the
energetic model can be expressed as a transcendental equation for the magneti-
zation. The 6 parameters of the model are strongly related to the physical phe-
nomena that take place during the magnetization change. Both the Jiles-Atherton
and the energetic models have suffered a number of improvements over the
years and were adjusted to model stress and temperature dependent magnetizations
[47–50].

The Coleman-Hodgdon model (see Sect. 1.6) was developed as a purely
mathematical model of hysteresis without offering any insight into the physics of
the magnetization process [51, 52]. The model parameters do not relate too much
with the physical mechanisms of the magnetization change and they need to be
identified carefully by using proper fitting techniques such as least-square mini-
mization or evolutionary techniques (see Sect. 1.1.3). Although somewhat criti-
cized for its non-physical structure, the model was used successfully to describe
magnetic hysteresis in superconductors [53], ferrite [54] and ferromagnetic
materials [55]. Subsequent modifications of the model allowed the description of
rate-dependent hysteresis with remarkable accuracy [54, 56].

The software accompanying this book (HysterSoft�) can perform different
types of simulations with deterministic or noisy inputs for any of the above hys-
teresis model, predefined or user-defined. Numerous examples are provided in the
next chapters of this book.
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3.2 Hysteresis in Mechanical Systems

The study of hysteretic phenomena in mechanical systems has a similar history to
the one in magnetism. It seems to date back to the work of Ewing [57] who
analyzed the deformation of a steel wire produced by an external force and noticed
that the deformation did not disappear completely when the force was removed.
Moreover, by applying a cycling stress to the material, a closed curve is obtained
in the stress–strain space. When a cycling stress is applied to the material, the
strain describes a closed curve as a function of stress. This phenomenon attributed
to fatigue is called elastic hysteresis; sometimes it is also known as plastic hys-
teresis being a dual manifestation of the elasto-plasticity characteristic of the
hysteretic material. The systematic analysis of elasto-plasticity was initiated by
Prandtl [58, 59] in the 1920’s based on superposition of ‘‘stop’’ operators, which
were presented in Sect. 1.2.6.

Twenty years later similar results were rediscovered by Ishlinski [60] and the
model became popular as Prandtl-Ishlinski models. Fig. 3.10 presents sample
hysteresis loops of the strain as a function of the stress in steel and closely
resemble to the results obtained by Prandtl-Ishlinski model.

Such hysteresis loops have been obtained experimentally and theoretically by a
number of authors and for many types of the elastic material [61–72]. Much of the
work in the literature focuses on the analysis of stress–strain response under dif-
ferent geometries, temperatures, loading conditions, and for systems with more
than one degree of freedom. The hysteretic properties of elastic systems are usually
needed for the estimation of crack growth rates and lifetime of these systems.

Many other mechanical systems present hysteresis. Most often the hysteresis is
due to friction forces that appear between various mechanical components of the
system. In addition to the special case of elasto-plasticity previously discussed, we
analyze in this section we analyze a few examples that are often encountered in
practical applications. First, we look at two simplified mechanical systems based
on elastic springs, after which we summarize a few other applications which
involve the Bouc-Wen model.
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Let us consider a spring with stiffness k connected to a single body of mass
m and to the wall (see Fig. 3.11a). We assume that the spring is initially
unstretched and the coefficient of friction between the body and the horizontal
surface is l. If x is the displacement of the body from the initial position when a
quasistatic force F is applied to the body, it is straightforward to show that:

kx tð Þ ¼ max F tð Þ � lmg;min F tð Þ þ lmg; kx t�ð Þð Þ½ � ð3:25Þ

which is nothing else but the backlash operator presented in Sect. 1.2.6 and shown
in Fig. 3.11b. The initial force required to move the mass away from the initial
position is equal to maximum friction force lmg, where g is the gravitational
acceleration. The slope of the oblique lines in Fig. 3.11b is equal to the inverse of
the spring stiffness, 1=k.

As discussed in Chap. 1, the backlash operator is a particular type of the
Preisach model, in which the Preisach function is distributed on a line parallel to
the b ¼ a. Hence, the mechanical system presented in Fig. 3.11a can be modeled
by the Preisach model in which the distribution in given by (see Fig. 3.12):

P a; bð Þ ¼ 1
k
d a� b� lmgð Þ ð3:26Þ

where d is the Dirac delta function.
In the above analysis we have assumed that the body is always in mechanical

equilibrium and the total force acting on it is zero. If the external force F(t) is not
quasi-static and the body can accelerate and decelerate, the dynamics of the system
can be modeled by the following equations, which also involve the backlash
operator:

m€x tð Þ þ m _x tð Þ þ f tð Þ ¼ F tð Þ ð3:27Þ

kx tð Þ ¼ max f tð Þ � lmg;min f tð Þ þ lmg; kx t�ð Þð Þ½ � ð3:28Þ

Fig. 3.11 Example of a mechanical system with hysteresis (a) in which the displacement x as a
function of applied force F can be modeled by the backlash (play) hysteresis operator (b)
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where the overdot denotes the derivative with respect to time and f tð Þ is the
restoring force. To extend the generality of the problem we have assumed in (3.27)
that mass m is also subject to a damping force proportional to the velocity
Fdamping ¼ �m _x tð Þ.

Now let us focus on a more complex mechanical system containing n bodies of
masses m1, m2,… mn connected to n springs with stifnesses k1, k2,… kn like in
Fig. 3.13. If we denote by x1, x2,… xn the relative displacements of each body with
respect to the initial position and we assume that force F acts quasistatically, it can
be shown that the displacement of the last body xn can be modeled by a super-
position of backlash operators, which can be represented in the Preisach plane by a
distribution of lines along the interaction axis b ¼ a (see Fig. 3.14). The coordi-
nates f1, f2,… fn of these lines can be expressed as a function of the coefficients of
friction and the masses of each body:

fn ¼ lnmng; fn�1 ¼ fn þ ln�1mn�1g; . . .; f1 ¼ f2 þ l1m1g ð3:29Þ

The Preisach distribution can be mathematically written as:

P a; bð Þ ¼
Xn

k¼i

1
ki

d a� b� fið Þ ð3:30Þ

where fi are given by (3.29). It is apparent from this discussion that if the system
consists of an infinity of continuously distributed springs and masses, the total
displacement can be modeled by the Preisach model, in which the distribution is
continuous.

It should be noted that there are many works in the literature that aim to develop
hysteresis models based on the superposition of backlash (and stop) operators. One
of the most cited such superposition is the Prandtl-Ishlinskii model, which was

Fig. 3.12 The Preisach plane
corresponding to the
mechanical system shown in
Fig. 3.11a
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initially proposed by Prandtl [59] and then rediscovered by Ishlinskii [60]. This
model can also be written in terms of the Preisach model of hysteresis.

For the remaining of this section we summarize a few other mechanical systems
that present hysteresis and have been modeled in the literature by using the Bouc-
Wen model. A common feature of all the mechanical systems is that they are
governed by the Newton’s second law of motion, which can be rearranged to
obtain an analytical expression for the restoring force f tð Þ as function of the
excitation force F tð Þ:

f tð Þ ¼ F tð Þ � m€x tð Þ � m _x tð Þ ð3:31Þ

where x tð Þ denotes the relative displacement of the mechanical system. Equa-
tion (3.31) has been written for the case when only one mechanical component is

Fig. 3.13 Mechanical system in which the displacement of the last block, xn, can be modeled by
a distributed set of backlash operators

Fig. 3.14 The Preisach plane
corresponding to the
mechanical system shown in
Fig. 3.13
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allowed to move in only one direction (i.e. one degree of freedom), however, it can
easily be generalized to more mechanical components and 3-dimensional systems.
In this case (3.31) becomes a system of 3 N equations where N is the number of
degrees of freedom. The restoring force can be decomposed into an elastic akx tð Þ
and a hysteretic part 1� að ÞDkz tð Þ, where a, k, and D are some given parameters:

f tð Þ ¼ akx tð Þ þ 1� að ÞDkz tð Þ: ð3:32Þ

In the above equation z tð Þ is a hysteretic parameter that could be in principle
modeled by any hysteretic model. In mechanical systems z tð Þ is often model by the
Bouc-Wen model described in Sect. 1.5.

Model (3.31)–(3.32) is represented schematically in Fig. 3.15. This model has
been used in the literature to describe the dynamic performance of seat suspensions
in off-road machines [73], non-linear hysteretic absorbers and dampers [74–77],
magnetorhelological dampers [78, 79], rubber bushing in vehicle suspension
models [80], piezo-electric actuators [81], seismic protection device (such as
elastomeric base isolators and buckling restrained dissipative braces) [82], deg-
radation and pinching of structural systems under seismic demand [83], and to
analyze random vibrations in mechanical hysteretic systems [84–87].

The accurate modeling of hysteretic systems driven by stochastic input opens
opportunities to optimize and design the mechanical systems for controlling
unwanted effects such as vibrations, throbbing, fluctuations and noise.

3.3 Hysteresis in Superconductive Materials

It is well-known that thermal noise is affecting the resistivity of a material, which
decreases when lowering the temperature. What came as a surprise one century
ago was that this monotonic behavior reaches zero at a finite temperature, coined
as critical temperature. Onnes first proved that the resistance of mercury abruptly
disappears at 4.19 K and an electric current generated by a battery in a

Fig. 3.15 Representation of
mechanical systems with
hysteresis described by the
Bouc-Wen model
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superconductor ring persists with the same intensity long after the battery was
removed. Although a complete and satisfactory theoretical explanation emerged
only half a century later, the breakthrough of the experimental discovery was
immediately recognized and brought Onnes the Nobel Prize in 1913. In the sub-
sequent decades, this phenomenon has been observed in several other materials but
it seemed to be limited by a critical temperature of 30 K according to some
interpretations of the microscopic theory proposed by Bardeen, Cooper and
Schrieffer (BCS) in the late 1950’s. Consequently, the 1986 discovery by Bednorz
and Müller of a cuprate superconductor with a transition temperature of 35 K has
opened a major challenge for the theoretical physics. Many other superconductors
have been discovered since then, reaching a critical temperature of 138 K at
ambient pressure and even 164 K under high pressure [88]. All these high tem-
perature superconductors are characterized by a continuous second order phase
transition from superconductive state to normal state within an increasing mag-
netic field which was explained by Abrikosov (Nobel Prize, 2003) based on the
formation of vortex lattices in magnetic fields. It was found that these so-called
type-II superconductors exhibit an irreversible behavior in the sense that a change
in the monotonicity of an input parameter, such as temperature, pressure, applied
electric or magnetic field, does not lead to a reversible change of the system but
rather to a hysteretic effect. These effects are well captured by the Bean Model,
which resembles the hysteretic models of ferromagnetism but the role of magne-
tization domains is played in superconductors by the domains of current density
[89, 90].

The Bean Model postulates that for weak applied fields or currents, the outer
part of the sample has a constant magnitude of the super current density, denoted
by Jc, while the interior is shielded from these fields and currents. When the
applied field or current increases in magnitude, the zero-region shrinks and van-
ishes for sufficiently strong applied field or current. In the non-zero region, also
known as critical state, the relation between magnetic field H and current density
J is given by the Maxwell curl equation:

r�H ¼ J ð3:33Þ

The analysis presented bellow follows the line of book [91].
Let us examine the case of a rectangular slab oriented as shown in Fig. 3.16

subject to a magnetic flux applied along z-direction. It is natural to assume that the
magnetic field inside the slab is also oriented along vertical direction and conse-
quently, the current density is in the horizontal plane.

If we neglect the current density component Jx at the ends of the loops,
Eq. (3.33) becomes:

d

dx
HzðxÞ ¼ JyðxÞ ð3:34Þ

According to the Bean’s postulate on the critical state in the low field case, the
current density has the following expression:
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JyðxÞ ¼
Jc; �a� x� � a0

0; �a0 � x� a0

�Jc; a0 � x� a

8<
: ð3:35Þ

where a is the width of the slab and a0 is the penetration depth of the critical state.
By solving Eq. (3.34) under this assumption, one obtains a linear dependence of
the internal magnetic field on x in the critical state region, as follows:

HzðxÞ ¼
H0

a0þx
a0�a

� �
; �a� x� � a0

0; �a0 � x� a0

H0
x�a0

a�a0

� �
; a0 � x� a

8<
: ð3:36Þ

where the internal field is subject to boundary conditions Hzða0Þ ¼ 0 ¼ Hzð�a0Þ
and HzðaÞ ¼ H0 ¼ Hzð�aÞ, where H0 is the magnitude of the external applied

Fig. 3.16 Superconducting slab of thickness 2a subject to an applied magnetic field H0 directed
along z. The induced shielding current density J flowing in the y direction inside a z-cross-section
is presented below and total field inside y-cross-section is presented on the right
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field. As a result, the critical current density Jc and applied magnetic field H0 are
related to each other by the following expression:

Jc ¼
H0

a� a0
: ð3:37Þ

In the high field case, the critical state extends over the entire sample, so the
current density and internal magnetic field read as follows:

JyðxÞ ¼
Jc ; �a� x� 0

�Jc ; 0� x� a

(
and HzðxÞ ¼

H0 � H�
aþ x

a

� �
; �a� x� 0

H0 þ H�
x� a

a

� �
; 0� x� a

8><
>: :

ð3:38Þ

where characteristic field H* is related to the critical current density H� ¼ Jca.
It is apparent that the increase in the applied surface field H0 generates the

increases in internal field and current density which also proceed inwards. The
snapshots presented in Fig. 3.17a show the field configurations for x axis as the
applied field H0 is successively increased from 0 to 2H*.

If we consider that the magnetic field is decreasing after achieving the maxi-
mum value, the previous profile is partially wiped out by the new linear profile.
Such an example is provided in Fig. 3.17b, where the external field is first
increased up to H�=2 and then decreased to 0.

Next now let us proceed to the calculation of the average magnetic flux density
B since, in practice, B and H0 are experimentally measured and their relation was
found to exhibit hysteresis. The average magnetic flux Bz is defined as follows:

Bz ¼
l0

2a

Za

�a

HzðxÞdx ð3:39Þ

Fig. 3.17 a Internal field in a superconducting slab for increasing values of the applied field
from 0 to 2H*; b Final configuration of internal field when the applied field is first increased up to
H*/2 and then decreased to 0
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Let us assume that no magnetic field and no current density are present in the
superconductor at the initial instant of time t0.

A back-and-forth variation of the external magnetic field H0(t) reaching a
maximum value Hm (\ H*) is then applied to the sample. The internal field
configuration at time t1 when the external magnetic field is reduced to zero is
similar to the one shown in Fig. 3.17b and, by using definition (3.39), the fol-
lowing expression of the average magnetic flux is found:

Bzðt1Þ ¼
l0H2

m

4H�
ð3:40Þ

This clearly suggests the hysteretic behavior exhibited by B versus H0 relation
in this superconductor model. In general, the ascending and descending branches
of the hysteresis loop obtained by magnetic field oscillation between Hm and -Hm

can be described by the following formula:

BzðtÞ ¼ �l0
H2

m

2H�
� Hm 	 H0ðtÞð Þ2

4H�

" #
ð3:41Þ

where the upper signs correspond to the descending branch of the loop, while the
lower signs correspond to the ascending branch. Similar procedures can be employed
to derive B versus H0 relation for other profiles of the external magnetic field.

This Bean model captures the main features of the hysteretic behavior in
superconductor and has been used by many experimentalists for data interpretation
and characterization. It was also subject to various generalizations (known as
critical state models) which considered different relationships between the internal
field and current density. Mayergoyz and his collaborators have proven that
wiping-out property and congruency property hold for Bean model and conse-
quently, it can be described by the Preisach model presented in Chap. 1 [92, 93].

At high enough temperature, a decay of magnetic flux is observed in most of
type II superconductors. This phenomenon, known as flux creep, may be inter-
preted as a stochastic change of flux profile do to the thermally activated jumps of
magnetic vortices from one pinning state to another. The behavior can be math-
ematically described by employing hysteretic models driven by stochastic input,
similar to the approach of after-effects in magnetic materials discussed in the first
section of this chapter.

3.4 Hysteresis in Molecular Materials

The remarkable evolution in miniaturization process of technological devices is
rapidly approaching the molecular scale, and consequently, it has led to an
intensive research effort on molecular materials. They are attractive not only for
their miniaturization potential but also for novel properties and enhanced perfor-
mance achieved by using synthetic chemistry. The challenge remains to master, at

3.3 Hysteresis in Superconductive Materials 127

http://dx.doi.org/10.1007/978-1-4614-1374-5_1
http://dx.doi.org/10.1007/978-1-4614-1374-5_1


the molecular level, the traditional functions of information storage, communi-
cation and processing.

An important class of molecular materials is represented by spin-crossover
compounds (SCO) that have become of great interest recently due to their potential
applications in memories, sensors, switches, and display devices [94–96]. These
materials are particularly interesting because upon application of heat, light,
pressure or a magnetic field they feature a phase transition between a low-spin
(LS) diamagnetic ground state and a high-spin (HS) paramagnetic state, accom-
panied by color and volume change. This short introduction to SCO follows the
lines of publications [97, 98] which can be consulted for additional details.

Spin crossover phenomena occurs in some octahedrically coordinated transition
metal compounds with 4–7 electrons in the 3d orbital. As a consequence of the
splitting of the energy of d orbitals into the t2g and eg sets in a ligand field,
octahedral complexes may exist in high or low spin states. The transition takes
place due to the competition between d and P, where d is the splitting energy
between the t2g and eg orbitals and P is the spin pairing energy (see Fig. 3.18). The
spin crossover was first observed experimentally by Cambi and Szego [99] in 1931
when studying temperature variation of the magnetic susceptibility in a series of
Fe(III) 3d5 compounds. Nowadays, a large and expanding SCO compounds
database is available with spin transitions generated by various stimuli.

Depending on the interactions intensity among the molecules and the material
characteristics, a first order LS-HS transition can take different shapes with and
without hysteresis. The most common stimulus used in producing the spin tran-
sition in SCO is the variation of temperature (i.e. the intensity of thermal noise).
According to the type and the intensity of the interactions, the SCO compounds
present different magnetic behaviors with the temperature variation: gradual,
discontinued transition (with hysteresis), two-step transition with and without
hysteresis, etc. [100] (see Fig. 3.19).

In general, gradual transitions are observed in systems with weak intermolec-
ular interactions, where each metallic center undergoes a spin transition almost
independently of its neighbors. On the other hand, the presence of hysteresis may

Fig. 3.18 Electronic
diagram of the HS and LS
states for a Fe(II) ion in an
octahedral ligand field
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be associated to the presence of strong long—range interactions within the solid or
with a change of crystallographic phase. The presence of the flat region in two-step
type transition is generally connected to the existence of two different crystallo-
graphic sites in the system [101] or to antiferromagnetic type of the short-range
interaction. These cooperative effects are reflected in the behavior of SCO mate-
rials subject to other factors, such as pressure, magnetic field or light.

The spin transition generated by the application of an external pressure can be
explained by internal modification of the atomic metal–ligand distances or the
crystallographic structure [102–104]. The spin transition can also be triggered by
applying a magnetic field, which favors HS state of the molecule by Zeeman effect
[105, 106]. A significant research interest has been devoted to the spin transitions
induced by light. The light induced excited spin state trapping (LIESST) effect was
first observed in 1984 on the [Fe(ptz)6](BF4)2 compound (ptz = propyltetrazole),
by Decurtins et al. [107]. It was observed that the irradiation of the compound with
a 514 nm light generates a transition from the fundamental state (LS) to the HS
state. An explication of the phenomenon was given by using two successive
intersystem sequences. The proper irradiation of LS state (term 1A1) populates one
of the excited levels 1T1. The system is going to relax in a non radiative way to a
triplet intermediary state 3T1, then to the metastable HS state 5T2 (or returns in the
fundamental state 1A1) [108].

In conclusion, hysteresis phenomena in molecular materials, such as spin-
crossover compounds, are induced by various factors and are affected by thermal,
acoustic, and electromagnetic noises. Consequently, hysteresis modeling with
stochastic input has a significant importance in understanding the behavior of these
materials and in designing practical applications of these materials.

Fig. 3.19 Graphical
representation of different
spin transition behavior
induced by variation of
temperature: a gradual;
b with hysteresis; c in two
steps; and d in two steps with
hysteresis
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3.5 Hysteresis in Electronic Systems

Hysteresis is often added in electronic systems in order to prevent unwanted rapid
commutations, to compensate noise, or to digitize an analog signal. The most
common and simple circuit to exhibit this property is Schmitt trigger (ST) which is
characterized by two metastable states and a rectangular hysteretic loop for the
relation between input voltage and output voltage [109]. When the positive tran-
sition of its output is generated by positive-going input the ST is represented by a
non-inverted rectangular hysteretic loop embedded in a buffer, as seen in
Fig. 3.20a, while when it is generated by negative-going input, the hysteretic
symbol is inverted, as seen in Fig. 3.20b. There exist nowadays various imple-
mentation techniques of ST involving comparators, operational amplifiers, discrete
transistors as well as some transistor–transistor logic circuits. More complex
hysteretic electronic systems can be obtained by parallel connection of ST triggers
with various thresholds, which resembles in the continuous approximation to the
defining procedure for the Preisach model. Besides the interest of their own, the
hysteretic electronic circuits play an important role in the experimental analysis of
noise induced phenomena in hysteretic systems due to the possibility to control the
noise characteristics of the input.

Thus, modern electronic noise generation provides the opportunity to control
the noise strength and correlation as well as the shape of noise spectrum providing
a wide range of known noisy environments in which the hysteretic systems can be
investigated.

The relevance of hysteresis for electronics has significantly increased during the
last 5 years due to the seminal results on memristor-type nanoelement presented
by a group of researchers from Hewlett-Packard [110]. Thus the pinched hysteretic
loop in the voltage-input plane has become one of the fingerprints of what appears
to be the fourth basic circuit element, namely memory resistance or memristor.
Such an element has been postulated by Chua in 1971 [111] based on some logical
considerations on the relations between the four fundamental circuit variables used
in the definition of the three classical circuit elements. Thus, current i, voltage v,
charge q, and flux-linkage u can be combined in six possible pairs, five of them
leading to well-known relations in the circuit theory. By definition, i is related to
q and u is related to v. The characteristic law for resistor, inductor, and capacitor
relates v and i, u and i, as well as q and v, respectively. As Chua observed, the

Fig. 3.20 The symbols for standard (non-inverting) Schmitt trigger (a) and for inverting Schmitt
trigger (b)
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relation between u and q is missing, so it might be possible for a fourth funda-
mental element that is characterized by such a relation to exist (Fig. 3.21). He also
proved in [111] that the behavior of this missing element is similar to the one of a
nonlinear resistor with memory and cannot be described by combinations of the
other three fundamental elements.

Since then, several generalizations of the memristor have been proposed which
do not necessarily start from the relation between the flux linkage and charge.
They try to bring the memristor concept closer to the recent experimental findings,
especially in the nanoeletronics. Although Chua has tried to provide a unitary view
on these extensions [112, 113], the results are still debatable in the scientific
community. Nevertheless, the pinched hysteretic loop in the i-v plane became a
fingerprint of any passive electronic circuit element that adhere to the class of
memristors, independent of the physical mechanism leading to this hysteresis.

Noise is ubiquitous in electronic systems and has multiple sources, both
intrinsic and extrinsic. The voltage or current signal applied to the system bears
some external noise, while Johnson noise (due to thermal motion of the charged
particles), shot noise (resulting from the flow of current over a potential barrier) or
pink noise (whose origins are not completely understood) are often present in
electronic systems and generate a stochastic behavior of the system output.

Fig. 3.21 The current–voltage characteristics for a resistor (a), inductor (b), capacitor (c) and
memristor (d) assuming a sinusoidal voltage applied to each element
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3.6 Hysteresis in Wireless Communications

The hysteresis in wireless communications is mainly related to the hand-off (or
handover) process [114]. In order to provide a continuous and high quality service
to mobile users, a wireless communication network should be capable of changing
the communication channel while a call is still in progress. This hand-off process is
needed for a user moving out of the range of the current communication tower, for
load balance and for interference reduction.

Let us discuss as a handoff example, the transfer made between two base
stations. When a mobile user passes from the coverage area of one antenna tower
to the coverage area of another antenna tower within a call’s duration, the transfer
should be made without interrupting the call. Intuitively one might think that the
transfer should be performed when the strength of signal received by the user from
the first tower becomes weaker than the strength of the signal received from the
second tower. That would correspond to location B from the scenario depicted in
Fig. 3.22. The problem with this approach to the handoff decision is related to the
fluctuations of the signal received from the two antenna towers which results into
many (and random) switching of the user connection with the two towers.

This ping-pong phenomenon between the towers can be avoided by using
hysteresis margin for the handoff decision. Thus the transfer is performed when the
average signal strength from the target tower is higher than the average signal
strength from the current tower plus a given threshold (see point C from Fig. 3.22).
Once the transfer is made smaller, the user will connect to the previous tower only
when the corresponding signal becomes higher than the one received from the
newly connected tower plus the given threshold. It is apparent that the ping-pong
phenomenon is thus avoided. In a real wireless network the user received signals
from more than two towers and the decision involves a more complex hysteretic
system.

The tendency of heterogeneous wireless communications to merge into one
global network has opened a new area of handoff problems in wireless

Fig. 3.22 The representation
of the signal power received
by a mobile user from two
antenna towers when moving
from one tower towards
another
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communications, namely ‘‘vertical’’ handoff [115]. In the heterogeneous networks,
both horizontal handoff and vertical handoff take place as illustrated in Fig. 3.23.
Thus, the simultaneous existence of access technologies with different character-
istics leads to a complex decision problem of determining the best available net-
work at best time to perform the handoff, a problem that is still under intensive
research focus [115, 116].

3.7 Economic Hysteresis

The transition from natural sciences and engineering areas to the social sciences
opens the door for a more general discussion regarding the concept of hysteresis.
Although the basic human intuition consider naturally that history influences the
present and future behavior, the Newtonian paradigm of science has completely
overturned this belief stating that the motion of an object can be predicted in terms
of present quantities, while the history of the object motion is irrelevant. More-
over, while this temporal action at a ‘‘distance’’ is not admitted, Newton has
introduced the spatial action at a distance which seems also counterintuitive. The
history of natural sciences proved him right but the debate about the ontological
interpretation of hysteresis phenomena is still open in the social sciences. Nev-
ertheless, the epistemological hysteresis is ubiquitous both in natural and social
sciences and describes phenomena whose state-equations are not known or are far
too complex to be used for a successful prediction.

Although ideas related to hysteresis in economic theories can be traced back
until the end of nineteen century [117], the first consistent use of the term and its
hypothesis is associated to Georgescu-Roegen [118, 119] in the second half of the
last century. He argued that various historical factors, such as consumption
experience, can influence the economic equilibrium. Although it raised significant

Fig. 3.23 Representation of horizontal and vertical handoff processes
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interest in the economic community [120–122], no analytical studies to
quantify hysteretic effect in economic systems have been performed until 1980’s
[123, 124]. Since then hysteresis modeling has been widely used in economics,
especially in the studies related to unemployment, finance and international trade.

As an illustrative example, let us represent the individual agents as hysterons
that can aggregate to provide a macroeconomic model of employment or another
economical characteristic considered as output [125]. Thus each individual firm
has two price thresholds, denoted by a and b (a[b), corresponding to the market
entry and the market exit, respectively. Due to various factors, such as location,
technologies, management, different firms are generally characterized by different
entry and exit values. When firm status is active, it has one unit of labor, while
exiting the market generates zero units of labor, so the entry-exit process can be
related to unemployment. Preisach hysteretic model and its generalizations (dis-
cussed in Chap. 1) are often used to describe the aggregation process of individual
firms from a given market [126]. Due to the random nature of economical indi-
cators, it is natural to consider the Preisach model driven by stochastic input [127]
as a macroeconomic model of unemployment.
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Chapter 4
Noise Driven Relaxation Phenomena
in Hysteretic Systems

This chapter focuses on the description of relaxation phenomena induced by noise
in hysteretic systems. First, we discuss the role of temperature in hysteretic sys-
tems and introduce the concept of thermal relaxation and its connection to rate-
independent and rate-dependent hysteresis. Then, we investigate the effects of
noise in various scalar and vector hysteretic systems, define scalar and vector
viscosity coefficients and discuss about the data collapse phenomenon. Special
consideration is given to the memory loss in the Preisach model and the degra-
dation of the Preisach distribution as a function of time.

4.1 Temperature in Hysteretic Systems

Temperature is usually introduced as a scalar quantity that gives a measure of how
hot or cold a physical system is. It relates to properties and phenomena such as the
internal energy of the system, heat transfer between two bodies, and work, and
stays at the basis of the laws of thermodynamics. Statistical mechanics was the first
one to give a microscopic interpretation of the temperature based on the kinetic
energy of individual molecules and ions that constitute the system, and advanced
the fact that there is a direct connection between the total kinetic energy of
individual particles and temperature. It is exactly this finding from the area
of statistical mechanics that people are usually using to generalize the concept of
temperature to other, often nonphysical systems. For instance, we introduce the
concept of temperature in economic [1–4] and financial systems [1], in social
physics [2, 3], in simulated annealing [4], and in stochastic neural networks [5, 6],
in which cases we discuss about economic temperature, financial temperature,
social temperature, annealing temperature, etc. In this section we introduce the
concept of temperature in hysteretic systems (which may or may not be physical
systems) and relate it to the power of the noise in the system. The temperature will
be modeled by a stochastic process superimposed on the input applied to the
system, as will be discussed in the next sections.
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First, let us understand the role of temperature in physical systems. It is
instrumental to start this discussion by assuming that the input variable is fixed and
looking at the free energy of the system as a function of some intrinsic parameters
that the free energy depends on. For instance, such intrinsic parameters can be the
position of a particle on a wavy surface, the position of the domain wall along the
direction of wall motion in the case of bulk ferromagnetic materials, or the angle
between the easy axis and the magnetization in the case of ferromagnetic nano-
particles. The equilibrium states of the physical system are defined as those states
which minimize the value of the free energy of the system. For simplicity, let us
assume next that the energy depends only on one intrinsic parameter that we
denote by h (see Fig. 4.1) and the output variable can be computed as a function of
h, using a simple relation y(h). The equilibrium states of the system are given by
the points of local minimum represented in the figure. For instance, states denoted
by ‘‘State 1’’ and ‘‘State 2’’ are both possible equilibrium points and they result in
values of the output variable equal to y(h1) and y(h2), respectively.

In order for the system to change from one state to another it has to overcome
certain energy barriers. The height of these energy barriers dictate the transition
rates of the system from one state to another. For instance, in the case shown in
Fig. 4.1, according to statistical mechanics the transition rate to pass from ‘‘State 1’’
to ‘‘State 2’’ is equal to [7–10].

p12 ¼
1
s0

exp �w12

kT

� �
; E mtf g ¼ 0; t� 0 ð4:1Þ

where w12 is the energy barrier that the system has to overcome to move from
‘‘State 1’’ to ‘‘State 2’’, k is Boltzmann constant, T is the absolute temperature, and
s0 is some time constant characterizing the process. Equation (4.1) implies that
any physical system has a natural tendency to shift from higher energy states to
lower energy states and, one can show that, after some time, it will spend most of
its time in the state with the lowest energy state, also called the ground state.
Hence, we can say that the output of our physical system (which is also a hysteretic
system because it can live in more than one state for the same value of the input

Fig. 4.1 The free energy of a
hysteretic system as a
function of some intrinsic
parameter h. Equilibrium
states are the states of local
minima

142 4 Noise Driven Relaxation Phenomena in Hysteretic Systems



variable) is shifting in time and going towards a final state, which we call the
thermal anhysteretic state. The higher the absolute temperature in Eq. (4.1) the
faster the system is moving towards the thermal anhysteretic state. This slight
change of the output of the hysteretic system from higher energy states to lower
energy states is called thermal relaxation.

Examples of thermal relaxation processes can be found in many fields of study,
such as magnetism, electronics, material science, and others [11, 12]. For instance,
the magnetization of a ferromagnetic material, the polarization in ferroelectric
systems, the binary state of floating gate transistors in flash memories can all
change as a result of thermal relaxation.

It is now important to discuss about the connection between thermal relaxation
and, rate-dependent hysteresis. Suppose we apply an input x(t) to a hysteretic
system and study its thermal relaxation. If the absolute temperature in (4.1) is low
enough, let us say T � 0, the transition rate over any finite barrier wij [ 0 is very
small and the hysteretic system will not be able to jump over these barriers. Hence,
after we apply an input x, the output of the system will change very little or not
change at all because all the transition rates are negligible. When the temperature
of the system is large enough so the transition rates cannot be neglected the state of
the system can change even during the duration of the same experiment because of
thermal relaxation, leading to a rate-dependent hysteresis phenomena.

There is a lot of work on the modeling of thermal relaxation in hysteretic
systems. Most of this work was done by the magnetics community who has studied
the effect of temperature and Barkhausen jumps in magnetic hysteresis. Many of
the existing models for thermal relaxation are based on the Preisach model because
this model can be written as a superposition of rectangular loops, for which it is
relatively easy to build a relaxation model [10, 13–16]. Some other works are
based on other phenomenological models such as the Coleman-Hodgdon [17],
Jiles-Atherton [18], or other models of hysteresis as described in Chap. 1.

In this chapter we generalize the concept of temperature to any hysteretic
system (physical and nonphysical). To increase the generality of the problem we
do not look at the free energy of the system (which is usually defined only for
physical systems) but simply define the temperature as a quantity proportional to
the energy of fictive noise that we superimpose on the input variable. Our
approach is more general than other approaches that exist in the literature, which
usually can be applied to a particular hysteresis model (for instance, the approach
in Ref. [17] can be applied to the Coleman-Hodgdon model, the approach in
Ref. [10] can be applied to the Preisach model, etc.). Although we will discuss
only about the case when the input variable is kept constant over time, the analysis
in this chapter can also be applied to quasistatic input variations, i.e. when the rate
of input variations is much lower than the rate of noise fluctuations. Such cases
will be consider in Chap. 6 when we discuss about noise induced resonance in
bistable systems.
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The next three sections deal with thermal relaxation in scalar systems of hys-
teresis, while the last section of the chapter deals with thermal relaxation in vector
systems. A few other phenomena related to thermal relaxation such as memory
loss in Preisach systems and data collapse are also discussed.

4.2 Thermal Relaxation in Scalar Hysteretic Systems

In this section we consider the thermal relaxation of scalar hysteretic systems, i.e.
the input and output are both scalar quantities. As it is often done in the literature
[19–24], thermal fluctuations are modeled by a zero-average stochastic process mt

superimposed over the input signal x (see Fig. 4.2). Throughout this chapter we
will assume that the applied input x is allowed to vary over time only for t \ 0. For
t [ 0 the value of the applied input x is constant and equal to its value at t = 0.
The effective value of the input is

xt ¼ xþ mt; E mtf g ¼ 0; t� 0; ð4:2Þ

where E . . .f g denotes the expected value of the enclosed variable. The stochastic
process mt is called input noise or thermal noise and the value x is the holding value
of the input. Thermal relaxation occurs for t [ 0.

If C is the hysteretic operator, the output variable is

yt ¼ Cxt ¼ C xþ mtð Þ: ð4:3Þ

Since mt is a stochastic process, it is often desirable to compute the expected
value of the output, which is

E ytf g ¼ E C xþ mtð Þf g: ð4:4Þ

The type of the stochastic process mt is given by the nature of the hysteretic
system. In most cases the variance of the noise is directly proportional to the
absolute temperature T. For instance, in systems of small and non-interacting
magnetic particles the covariance of mt (which, in this case, is equal to the variance
of mt) is given by [11, 25]

E m2
t

� �
¼ 2jTg

V
; ð4:5Þ

where j is the Boltzmann constant, V is the volume of a particle, and g is the
dissipation constant. Hence, by increasing (or decreasing) the temperature of a
hysteretic system we mean increasing (or decreasing) the variance of the input noise.

Fig. 4.2 Modeling thermal
relaxation using a noisy input
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4.2.1 Monte-Carlo Algorithm for Thermal Relaxation

The expected value of the output, E ytf g, is relatively difficult to evaluate ana-
lytically, since, in most cases, requires solving highly nonlinear and history-
dependent stochastic equations. In the following we present a numerical algorithm
for the computation of E ytf g based on Monte-Carlo simulations. This algorithm
has the advantage that it is universal in the sense that it can be applied to
describing thermal relaxation in the framework of any model of hysteresis such as
the Preisach model, the Jiles-Atherton model, or the Energetic model and can be
used for any type of noise [26].

The basic idea for the evaluation of E ytf g is to generate a large number of noise
instances mt;i, compute the output of the system for each such instance, and use
(4.4) to evaluate the expected value of the output. This algorithm is represented in
Fig. 4.3. The most computationally expensive part of the algorithm is the
numerical evaluation of the output variable for each noise sample. From our
experience the number of computations required to evaluate E ytf g varies between
10 and 1000 depending on the magnitude of the noise, on the type of the hysteresis
model, and, often, on the model parameters. Usually, the computation time is a few
seconds on a normal personal computer operating at 3 GHz for all the models
presented in Chap 1.

In the next three subsections we present analytical and numerical results related
to thermal relaxation in scalar models of hysteresis.

4.2.2 Thermal Relaxation of One Hysteron

In this section we consider the thermal relaxation of one hysteron with critical
fields a and b (b� a), and compute the expected value of the output as a function
of time. This problem has been solved analytically by Mayergoyz [27] for the
cases when thermal noise mt is described by a discrete time i.i.d. process or by an
Ornstein–Uhlenbeck random process. When the thermal noise is modeled by a

Fig. 4.3 Monte-Carlo
algorithm for the evaluation
of E ytf g
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discrete time i.i.d. process the analytical derivation of the expected value of the
output variable is relatively straightforward. A derivation similar to the one in
[27] is presented in the next paragraphs. When the thermal noise is an
Ornstein–Uhlenbeck random process the computation of E ĉabxt

� �
is more com-

plicated as it involves the solution of the ‘‘exit problem’’ [28–30]. In this case
E ĉabxt

� �
can be expressed semi-analytically in terms of the Laplace transforms

and parabolic cylinder functions. A derivation of the statistical properties of the
output in the case of the Ornstein–Uhlenbeck noise can be found in [27, 30].

If the noise is an i.i.d. random process the expected value of the output is

E ĉabxt

� �
¼ P ĉabxt ¼ 1

� �
� P ĉabxt ¼ �1

� �
¼ 2P ĉabxt ¼ 1

� �
� 1

¼ 2 Pþþab P ĉabxt�1 ¼ 1
� �

þ P�þab P ĉabxt�1 ¼ �1
� �� �

� 1

¼ 2 Pþþab � P�þab

� �
P ĉabxt�1 ¼ 1
� �

þ 2P�þab � 1

¼ Pþþab � P�þab

� �
E ĉabxt�1
� �

þ 1
� �

þ 2P�þab � 1;

ð4:6Þ

where we have considered that time t is discrete (t = 0, 1, 2,…) and used the total
probability theorem. Quantities P�þab and Pþþab are the probabilities for the hysteron

to switch from the -1 and þ1 and to remain in the +1 state, from time t-1 to
t. These probabilities can be calculated as:

Pþþab ¼
Z 1

b
q xð Þdx; ð4:7Þ

P�þab ¼
Z 1

a
q xð Þdx; ð4:8Þ

where q xð Þ is the probability density function of the i.i.d. input noise. Equa-
tion (4.6) is a recurrence equation, which can be solved for E ĉabxt

� �
:

E ĉabxt

� �
¼ Pþþab � P�þab

� �t
y0
ab � y1ab

� �
þ y1ab; ð4:9Þ

where y0
ab ¼ E ĉabx0

� �
¼ ĉabx0 is the initial value of the output variable, which can

be either þ1 or -1 and

y1ab ¼
P�þab þ Pþþab � 1

P�þab � Pþþab þ 1
ð4:10Þ

is the limiting value of the output when t!1.
In the special case when a ¼ b

E ĉaaxtf g ¼ y1aa ¼ 2P�þaa � 1: ð4:11Þ

Figure 4.4 presents the expected value of the output of one hysteron when the
noise is Gaussian and Ornstein–Uhlenbeck with different magnitudes. The initial
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state is y0
ab = þ1 and the critical fields of the hysteron are a ¼ 1 and b ¼ �1. The

analytical results obtained by using Eq. (4.9) in the case of Gaussian noise are
represented with dashed line. We note the good agreement between the analytical
and the Monte-Carlo results. The expected value of the output decreases mono-
tonically to 0 as a function of time in every case. At t ¼ 1 the hysteron loses
completely the memory of its initial state.

4.2.3 Thermal Relaxation in the Preisach Model

In the case of the Preisach model the expected value of the output can be computed
using superposition [27]. Indeed, taking the expected value in (1.16) we obtain that

E ytf g ¼
ZZ

a�b
P a; bð ÞE cabxt

n o
da dbþ

Z 1
�1

R að ÞE c
_

aaxt

n o
da ð4:12Þ

where P a; bð Þ and R að Þ are the irreversible and reversible components of the
Preisach distribution function. Equation (4.12) shows that the expected value of
the output can be computed using the Preisach model, in which the Preisach
distribution is replaced with the ‘‘effective’’ Preisach distribution

E ytf g ¼
ZZ

a�b
Peff

x a; bð Þ da dbþ
Z 1
�1

Reff
x að Þda ð4:13Þ

where

Peff
x a; bð Þ ¼ P a; bð ÞE cabxt

n o
ð4:14Þ

Reff
x að Þ ¼ R að ÞE c

_

aaxt

n o
ð4:15Þ
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Fig. 4.4 Expected value of the output of one hysteron in the presence of Gaussian (left) and
Ornstein–Uhlenbeck (right) noises. The dashed lines show the results computed using (4.9)
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The irreversible and reversible components of the effective Preisach distribution
Peff

x a; bð Þ and Reff
x að Þ depend on the holding value of the input x but are not

dependent on the history of the hysteretic system.
If the input noise is i.i.d. the expected value of the output at (discrete) time t is:

E ytf g ¼
ZZ

a� b
P a; bð Þ Pþþab � P�þab

� �t
y0
ab � y1ab

� �
þ y1ab

h i
da db

þ
Z 1
�1

R að Þ 2P�þaa � 1
� �

da;

ð4:16Þ

and the irreversible and reversible components of effective Preisach distribution
are

Peff
x a; bð Þ ¼ P a; bð Þ Pþþab � P�þab

� �t
y0
ab � y1ab

� �
þ y1ab

h i
ð4:17Þ

Reff
x að Þ ¼ R að Þ 2P�þaa � 1

� �
ð4:18Þ

where P�þab and Pþþab are given by (4.7) and (4.8). y0
ab is equal to þ1 or -1,

depending on the initial state (‘‘up’’ or ‘‘down’’) of the elementary hysteresis loop
with switching values a and b.

Figure 4.5 presents sample relaxation results when the input noise is Gaussian
and Ornstein–Uhlenbeck. The irreversible component of the Preisach distribution
is assumed to be normal along the interaction axis and lognormal along the
coercivity axis [see Eq. (1.24)] with g0 ¼ 1, rg ¼ 0:3, rn ¼ 0:3; the reversible
component is normal with rR ¼ 0:3, the saturation ysat ¼ 1 and S ¼ 0:9. The
initial state for the simulations represented in Fig 4.5 is obtained by first saturating
the systems and, then, bringing the input to 0 (to the remanent state). Figure 4.6
presents similar simulation results obtained by starting from a different initial state.
This initial state is reached by starting from the zero-field anhysteretic state and
applying an input equal to the coercive field (xC).
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Fig. 4.5 Thermal relaxation in the case of the Preisach model when the input noise is Gaussian
(left) and Ornstein–Uhlenbeck (right) distributed. The analytical results are computed using
(4.16). The initial state of the system is the remanent state
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4.2.4 Thermal Relaxation in the Framework of Other
Models of Hysteresis

It is difficult to derive analytical expressions for the expected value of the output in
the case of most models of hysteresis. This task was somewhat simplified in the
case of the Preisach model because the model could be expressed as a linear
superposition of elementary rectangular hysteresis operators, however, it is prac-
tically impossible to derive analytical expressions for the expected value of the
output in the case of the other models of hysteresis presented in Chap. 1. In this
subsection we present a few simulation results for thermal relaxation in the case of
the Jiles-Atherton model, Coleman-Hodgdon model, energetic model, and Bouc-
Wen models. It is shown that all these models of hysteresis predict qualitatively
similar output relaxation behaviors.

In order to compare the results obtained using different models we have
selected the parameters of the Jiles-Atherton, energetic, and Coleman-Hodgdon
models in such a way to describe approximately a major hysteresis loop with
saturation ysat � 1, coercivity xc � 1, and remanence yr � 0:4. In the case of the
Bouc-Wen model we have imposed ysat � 1. The model parameters are given
below:

1. Jiles-Atherton model: a ¼ 1:3, a ¼ 2, c ¼ 0:1, and k ¼ 1:2.
2. Energetic model: cr ¼ 0:1, g ¼ 8, h ¼ 0:1, k ¼ 0:1, Ne ¼ 2, and q ¼ 10.
3. Coleman-Hodgdon model: A1 ¼ 1, A2 ¼ 1:6, A3 ¼ �1:3, A4 ¼ 0:3, a ¼ 1,

ybp ¼ ycl ¼ 1.
4. Bouc-Wen model: A ¼ 6, a ¼ 0, b ¼ 0:5, D ¼ 1, c ¼ 0:1, k ¼ 1, and n ¼ 1:1.

The initial state for the first three models was obtained by applying an input of
x ¼ 20 to saturate the system and, then, setting x ¼ 0 to arrive at the remanent
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Fig. 4.6 Thermal relaxation in the case of the Preisach model when the input noise is Gaussian
(left) and Ornstein–Uhlenbeck (right) distributed. The analytical results are computed using
(4.16). The initial state of the system is obtained by starting from the zero-anhysteretic state and
applying an input equal to the value of the coercive field (x ¼ xC)
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point. In the case of the Bouc-Wen model (since it describes clockwise hysteresis)
we have applied an input of x ¼ �20 and, then, set x ¼ 0. The results of the
simulations are presented in Fig. 4.7. The thermal noise was always chosen
Gaussian with the magnitude indicated in each figure. It is remarkable that all
models considered in this study predict qualitatively similar results. The small
differences come from the fact that the models are intrinsically built to describe
different output dynamics for the same input process.

Figure 4.8 presents results for the thermal relaxation in the case of the Coleman-
Hodgdon model for different input histories with the same holding value of the
input. Note that the value of the output converges towards the same final value,
which shows that the effect of the input noise is to erase the past history of
the system. This phenomenon is universal in the sense that it can be observed for all
the models of hysteresis used in this book. Even vector models of hysteresis, as we
will see in Sect. 4.5.1, lose their past history in the presence of thermal noise. In the
next section we analyze the memory loss in hysteretic systems in more details by
looking at the Preisach model.
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Fig. 4.7 Thermal relaxation in the case of the energetic, Jiles-Atherton, Coleman-Hodgdon, and
Bouc-Wen models of hysteresis. Gaussian input noise is assumed in all cases
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4.3 Memory Loss in Preisach Systems

An interesting phenomenon observed during the thermal relaxation of hysteretic
systems is the gradual loss of memory of the initial state with time. As shown in
Chap. 1 the memory of the Preisach model is stored in the shape of the line of
separation between positive and negative hysterons. At time t = 0 the line of
separation (the ‘‘stairline’’) is well-defined. The hysterons above this line are all in
the �1 state, while the hysterons below are in the +1 state. After t = 0 the line of
separation can change its position and the state of the hysterons above and below
this line becomes nondeterministic.

In order to analyze the loss of memory in the Preisach model we use the Monte-
Carlo method to simulate a large number of relaxations and take the average of the
state of each hysteron at the end of the simulation [31]. In this way we compute
the expected value of each hysteron in the Preisach plane for any initial state.
Theresults of these simulations are presented in Figs. 4.9, 4.10, and 4.11 for dif-
ferent initial states and for different types of noise. To graphically represent the loss
of memory we compute the absolute value of each hysteron in the Preisach plane
E ĉabxt

� ��� �� as well as the effective Preisach distribution Peff
x a; bð Þ given by

Eq. (4.14). Quantity E ĉabxt

� ��� �� is close to 1 when the hysteron is either in theþ1 or

-1 state with high probability; the closer the value of E ĉabxt

� ��� �� is to 0 the more
likely the hysteron has lost the memory of its initial state. At t = 0 all hysterons are
either in the -1 or þ1 states and the ‘‘stairline’’ is well-defined.

Figure 4.9 shows the separation line and the irreversible component of the
effective Preisach distribution in the case of a Gaussian noise with increasing
standard deviation when the initial state is the zero-field anhysteretic state [obtained
by applying an alternative input with decreasing magnitude (see Chap. 1)]. During
thermal relaxation the ‘‘stairline’’ is becoming less defined, which is indicated
by the broadening of the separation line on the figures on the left in Fig. 4.9.
The positive and negative region of the Preisach distribution lose their deterministic
character as shown on the figures on the right.
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Figure 4.10 shows the broadening of the separation line and the irreversible
component of the effective Preisach distribution when the input noise is Cauchy
and Ornstein–Uhlenbeck. Note that in all cases the separation line is losing its
deterministic character and the state of the hysterons in the Preisach plane is
becoming uncertain with time.

Finally, Fig. 4.11 shows the separation line and the Preisach distribution when
the initial state is obtained as follows: first we apply a strong input to saturate the

Fig. 4.9 (Left figures) Degradation of the separation line between the þ1 and -1 hysterons
during memory loss for different standard deviations of the Gaussian noise. (Right figures) The
degradation of the positive and negative regions of the irreversible component of the effective
Preisach distribution during memory loss
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system, then we apply an input equal to minus the coercive field (x ¼ �xC), and
finally set the input to x ¼ xC. In these simulations the noise is Ornstein–Uhlen-
beck with b ¼ 1 and the standard deviation is indicated on each figure. Note again
the broadening of the separation line between the hysterons in the þ1 state
and those in the -1 state. The higher the temperature the faster the separation line
loses its initial shape and becomes parallel to line b ¼ �a, which is separation line
in the anhysteretic state. For this reason, it has often be suggested to obtain the
zero-field anhysteretic state by setting the input to 0 and keeping the system at a
high temperature. Although this might produce similar results, the two techniques
are fundamentally different. The zero-field anhysteretic state is a well defined state
in which all hysterons are either in the -1 or þ1 state. By keeping the system at
high temperature for a long time, the state of the system loses its deterministic
character and the hysterons are found randomly in the þ1 or -1 state in such a
way that the total output averages to 0. As soon as the thermal noise is removed the
hysterons with a\x will be in the þ1 state the ones with b [ x will be in the -1
state. The hysterons with b\x\a will keep their nondeterministic state.

Fig. 4.10 (Left figures) Degradation of the separation line between the þ1 and -1 hysterons
during memory loss for in the case of Cauchy and Ornstein–Uhlenbeck noises. (Right figures)
The degradation of the positive and negative regions of the irreversible component of the
effective Preisach distribution during memory loss
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4.4 Viscosity Coefficients and Data Collapse Phenomena

The expected value of the output E ytf g might often be approximated to change
approximately logarithmically in time. In such cases, it is relevant to introduce the
viscosity coefficient, defined as

Fig. 4.11 (Left figures) Degradation of the separation line between the þ1 and -1 hysterons
during memory loss for in the case of Ornstein–Uhlenbeck noise. (Right figures) The degradation
of the positive and negative regions of the irreversible component of the effective Preisach
distribution during memory loss
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S ¼ dE ytf g
d ln t

ð4:19Þ

This viscosity coefficient depends mainly on the past history of the system but it
can also depend on time. If the expected value of output E ytf g increases in time
than S [ 0, if E ytf g decreases than S\0. To illustrate how the viscosity coefficient
is computed in applications we present the time-dependence of the expected value
of the output as a function of the holding value of the input variable in Fig. 4.12a
and the corresponding values of the viscosity coefficient in Fig. 4.12b in the case
of the Preisach model. The initial state in these simulations is obtained by applying
a strong input to bring the system to positive saturation and, then, decrease the
input to the holding value x (shown on the x-axis in Fig. 4.12b). The analytical
results obtained by using Eqs. (4.16) and (4.19) are represented by continuous
lines, while the numerical results obtained after Monte-Carlo averaging are rep-
resented by symbols. The noise is assumed Gaussian distributed in all cases. Note
that the viscosity coefficient has one maximum around the value of the coercive
field.

Figure 4.13 presents results obtained with the Preisach, Jiles-Atherton,
Coleman-Hodgdon, and energetic models of hysteresis, when the initial state is the
zero-field anhysteretic state. Notice the qualitative agreement between all the
models of hysteresis used in these simulations. The slight quantitative disagreement
comes from the different behavior of the models to the same input signal.

An interesting property of the viscosity coefficient is the data collapse property
observed by Mayergoyz [33, 34] in the framework of the Preisach model of
hysteresis. The data collapse property refers to the universality of following
factorization of the viscosity coefficient:

S x; Tð Þ ¼ S0
x

f Tð Þ

	 

g Tð Þ ð4:20Þ
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Fig. 4.12 a Decrease of the expected value of the output in the case of the Preisach model for
different holding values x0 of the input. The holding values of the input increase from -3 to 3 in
steps of 1. b Viscosity coefficient as a function of the holding value of the input. (� 2008 IEEE,
[32])
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where x is the holding value of the input at which the thermal relaxation is
observed, and f , g, and S0 are some functions. Practically, if we represent the
viscosity coefficient as a function of x for different noise magnitudes, all curves
collapse into one universal curve S0 after appropriate scaling. Such an example is
presented in Fig. 4.14, in which we show the viscosity coefficient as a function of
the applied field for different noise magnitudes. These curves have been computed
by using the Preisach model. The data collapse phenomenon has been verified by
both theoretical computations and experimental measurements [27] using scalar
models.

4.5 Thermal Relaxation in Vector Hysteretic Systems

In this section the analysis of thermal relaxation is generalized to multidimensional
hysteretic systems. First, we analyze the displacement of the output vector, after
which we define and analyze the viscosity coefficients.
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4.5.1 Output Displacement in Vector Systems

The analysis presented in Sect. 4.2 can be extended to multidimensional (vector)
hysteretic systems. In these systems the deterministic input and the input noise are
vector quantities

xt ¼ xþ mt; E mtf g ¼ 0 ð4:21Þ

If C is the vector hysteretic operator, the output variable can be computed as

yt ¼ Cxt ¼ C xþ mtð Þ ð4:22Þ

and the expected value of the output is

E ytf g ¼ E C xþ mtð Þf g ð4:23Þ

The Monte-Carlo algorithm presented in Fig. 4.3 for the evaluation of E ytf g
can be generalized to multidimensional hysteresis systems. To illustrate the
behavior of the expected value of the output, next, we present sample simulation
results for isotropic two-dimensional systems. The simulations are performed by
using the energetic, Jiles-Atherton, and Preisach models in two dimensions. In
each case we consider three initial states of the hysteretic system, labeled by ‘‘A’’,
‘‘B’’, and ‘‘C’’:

‘‘State A’’ First we bring the system to the zero-field anhysteretic state by
applying a strong rotating and decreasing input like in Fig. 4.15a, after
which we apply a constant input x ¼ xx; xy

� �
and wait for thermal

relaxation (see Fig. 4.15b).

Fig. 4.14 Data collapse
phenomenon simulated using
the Preisach model. (� 2008
IEEE, [32])
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‘‘State B’’ We bring again the system to the zero-field anhysteretic state by
applying a strong rotating and decreasing input. Then, we apply an
input x ¼ 0; xy

� �
, change it to x ¼ xx; xy

� �
, and wait for thermal

relaxation (see Fig. 4.15c).
‘‘State C’’ First we saturated the system by applying a strong input in the

x-direction, after which we bring the field to x ¼ 0; xy

� �
, change it to

x ¼ xx; xy

� �
, and wait for thermal relaxation (see Fig. 4.15d).

The results of the simulations are presented in Fig. 4.16. In all cases we observe
that the trajectory of the output vector is linear and converges towards the same
final point. The coordinates of the final point do not depend on the initial state of
the system. This important property is similar to the property of scalar systems of
hysteretic in which the output is converging towards the same final state (see
Fig. 4.8).

In the case of anisotropic systems the trajectory of the output vector during
thermal relaxation is not always a straight line as shown in the simulations pre-
sented in Fig. 4.17. The simulations were performed by using the vector Preisach
model for an anisotropic system with coercive fields of 0.6 along the easy axis (the
x- axis) and 3 along the hard axis (the y-axis). Note that, although the output vector
was initially oriented in the positive direction, due to thermal agitation, it has
eventually switched its orientation in the opposite direction. Such curved trajec-
tories can be observed particularly when the output vector goes from one easy
direction to another easy direction of the hysteretic system.

Fig. 4.15 a Obtaining the zero-field anhysteretic state in two dimensions. b–d Diagrams
showing how the initial states labeled ‘‘A’’, ‘‘B’’, and ‘‘C’’ are obtained
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One can also see that, in anisotropic systems, the output vector can cross the
direction of the input vector. This is a pure anisotropic phenomenon, which is not
met in the case of isotropic systems. In the simulations presented in Fig. 4.16 the
output vector was moving to the direction of the applied field, but never crossed it.

4.5.2 Viscosity Coefficients in Vector Systems

The definition of the viscosity coefficient (4.19) can be applied only to hysteretic
systems in which the direction of the output vector is constant. This usually
happens in (a) isotropic systems and (b) when the direction of the input is fixed. If
any of the two conditions are not satisfied the output vector might change its
direction in time and (4.19) cannot be used. This discussion prompts us to look for
a more general definition of the viscosity coefficient that can be reduced to the
scalar one in the case of one-dimensional systems and, if possible, preserve the
data collapse property introduced in Sect. 4.4.

The generalization of the scalar viscosity coefficient to multidimensional sys-
tems is challenging particularly because the trajectory of the output can deviate
substantially from a straight line in vector systems. For instance, as shown in the
previous section, the output variable can change direction and the path described
by the output vector can be curved (see Fig. 4.17b). One way to generalize the
viscosity coefficient to vector systems is to consider that (4.19) can be written for
each component of the output, i.e.:

yi tð Þ� yi 0ð Þ þ Si xð Þ log t; ð4:24Þ

where i the index of component (i ¼ x; y; z in the case of three-dimensional sys-
tems) and Si x; Tð Þ are the viscosity coefficients corresponding to each axis.
However, if we consider that (4.24) is valid in each dimension one can show that
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the trajectory of the output should always be a straight line, which is not true for
many anisotropic materials (see Fig. 4.17b). Indeed, by considering two different
axes, i and j, the slope of the projection of the output on the plane i; jð Þ is

dyi

dyj
¼ Si xð Þ

Sj xð Þ ; ð4:25Þ

which is time-independent. The only way to make the trajectory of the output not
to follow a straight line would be to consider that the viscosity coefficients along
each direction are time-dependent.

A better approach to generalize the scalar viscosity coefficient to vector systems
is to look at the total length of the trajectory described by the output vector [32].
For instance, in the case of three-dimensional system, where the output is
y ¼ yx; yy; yz

� �
, the total length of the trajectory described by the output vector

from time t1 till time t2 is:

Dy t1; t2ð Þ ¼
Z t2

t1

dy ¼
Z t2

t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dy2

x þ dy2
y þ dy2

z

q

¼
Z t2

t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dyx

dt

� 
2

þ dyy

dt

� 
2

þ dyz

dt

� 
2
s

dt

ð4:26Þ

By introducing (4.24) into (4.26) we obtain that

Dy t1; t2ð Þ ¼ S3D xð Þ log
t2
t1
; t2 [ t1; ð4:27Þ
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where

S3D xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

x xð Þ þ S2
y xð Þ þ S2

z xð Þ
q

ð4:28Þ

is the ‘‘effective’’ viscosity coefficient. Equation (4.27) is the vector generalization
of the scalar definition (4.19).

In order to test if the total length of the trajectory described by the output vector
can be approximated as depending logarithmically in time we plot Dy t1; t2ð Þ as a
function of time, t2 on a linear scale in Fig. 4.18 and on a logarithmic scale in the
inset of this figure. It is apparent that Dy t1; t2ð Þ depends more or less logarithmi-
cally on time, which supports the definition given in (4.27).

Next, we present the results of simulations for the viscosity coefficient and data
collapse phenomena in vector hysteretic systems. We have performed the
following two types of simulation experiments:

Simulation 1. First we saturate the system in the positive x-direction, then we
apply an input xi along the x-axis, followed by a holding field xi in
the y-direction, xi; xið Þ; then we wait for thermal relaxation (see
Fig. 4.19a).

Simulation 2. We come again from positive saturation to an input xi along the
x-axis, after which we apply a field of the same magnitude xi along
the y-direction, and finally remove the field along the x-direction,
so that the final holding value of the field is 0; xið Þ; then, we wait for
thermal relaxation (see Fig. 4.19b).

These simulations were performed for values of xi ranging from positive to
negative saturation. Each time the viscosity coefficient was obtained using (4.28),
where x is the holding value of the input. The first type of experiment corresponds

Fig. 4.18 Absolute length of
the trajectory described by
the output vector during
thermal relaxation on a linear
scale and on a log scale (the
inset). (� 2008 IEEE, [32])
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to a first-order rotational process, while the second type corresponds to a second-
order process [36].

The viscosity coefficients obtained by using the first type of simulations
(‘‘Simulation 1’’) are represented in Fig. 4.20 for different noise magnitudes. The
inset of this figure shows the scaled curves of the viscosity coefficients. It is
remarkable that even for this relatively simple type of experiment we obtain two
peaks for the viscosity curves. This is a purely vectorial effect that can be
attributed to rotational changes of the output vector during relaxation. It is also
interesting to observe that the two peaks correspond to values of the input that are
close to critical fields of the system, which in our simulations are approximately
�0:6. All the viscosity curves seem to scale into one universal curve just like in the
case of scalar relaxation phenomena.

In Fig. 4.21 we have represented the viscosity coefficients obtained using the
second type simulations (‘‘Simulation 2’’) at the same magnitudes of the noise.
The viscosity coefficient curves show two or even three maxima, depending on the
values of the noise magnitudes. At low noise magnitudes, the viscosity coefficient
curves show only two maxima because, during the duration of the simulation

Fig. 4.19 Procedures used to obtain the initial state of the 2-dimensional hysteretic system

Fig. 4.20 Viscosity
coefficient as a function of the
input for different noise
magnitudes: (from bottom to
top) 0.25, 0.5, 0.8, 1.2, 1.6, 2,
2.5, and 3. The initial state is
obtained as shown in
Fig. 4.19a. The inset shows
the data collapse property. (�
2008 IEEE, [32])
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experiment the thermal agitation is not strong enough to clear the system history
completely. At high noise magnitudes the viscosity coefficient curves show three
maxima, which correspond to the number of reversal points and the holding field
in Fig. 4.19b. It is apparent from these simulations that the more complex the
history of the system is the more maxima can appear on the viscosity curves. In
addition, the data collapse phenomena are more difficult to observe for higher
rotational reversal-curves.
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Chapter 5
Noise Spectral Density of Hysteretic
Systems

5.1 Spectral Density of Bistable Hysteretic Systems
with Diffusion Input

In this section, closed form expressions for the spectral densities of bistable
hysteretic systems driven by diffusion inputs are found by analytical means using
the theory of stochastic processes on graphs. In the particular case of Ornstein-
Uhlenbeck (OU) input, the output spectra are explicitly computed and analyzed,
discussing the influence of input drift and diffusion coefficients, as well as of the
rectangular loop width on the output spectra characteristics. The spectrum of
bistable hysteretic system driven by colored noise is analyzed by numerical means
using the Monte-Carlo method presented in Chap. 2. Since complex hysteretic
nonlinearities with stochastic input can be described through Preisach formalism
as weighted superposition of stochastically driven rectangular loop operators, this
analysis is also useful for better understanding of spectra in complex hysteretic
systems discussed in the next sections.

5.1.1 Statement of the Problem

Consider the bistable system with hysteresis represented in Fig. 5.1 that can be
mathematically described by the following input–output relation:

Iba tð Þ ¼ ĉbaX tð Þ ¼

1; if X tð Þ[ a;
�1; if X tð Þ\b;
1; if XðtÞ 2 b; að Þ and X t�ð Þ ¼ a;
�1; if XðtÞ 2 b; að Þ and X t�ð Þ ¼ b;

8>><
>>:

ð5:1Þ

with t� is the value of time at which the last threshold (a or b) was attained.
The noise might have different characteristics when the system is in one state

compared to the other (the transition may involve changes leading to different
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internal noise characteristics). Thus, the input process X(t) is assumed to be
described by the Itô stochastic differential equations:

dX tð Þ ¼ b�1 XðtÞð Þdt þ r�1ðXðtÞÞdWðtÞ ð5:2Þ

where W(t) is the Wiener process, while b± and r± are the drift and diffusion
coefficients characterizing the process in +1 and -1, respectively.

In the particular case of Ornstein-Uhlenbeck (OU) processes, we considered
bþ1 xð Þ ¼ �bðx� x0Þ, b�1 xð Þ ¼ �bðx� ~x0Þ, and r�1ðxÞ ¼ r. Since the OU pro-
cess can be interpreted as a Brownian motion in a parabolic potential, the noise in
state +1 can be related to the potential represented by interrupted lines in Fig. 5.1b
while the noise in state -1 can be related to the potential represented by the
continuous line in Fig. 5.1b.

The autocorrelation function of the output process is:

CIðsÞ ¼ E IðsÞ � Ið0Þf g ¼
X

is¼�1

X
i0¼�1

is � i0 � qðis; i0Þ ð5:3Þ

where E{...} denotes the expected value, while q(is, i0) is the joint probability
density function. The latter is usually found from the product of the transition
probability function q(is|i0) and the stationary probability distribution qs(i0) for the
given process:

qðis; i0Þ ¼ qðisji0Þqsði0Þ ð5:4Þ

According to Wiener-Khinchine theorem [1], the output spectral density can be
expressed as the Fourier transform of the autocorrelation function:

Fig. 5.1 a The input–output (x, i) diagram of a bistable system characterized by a rectangular
loop; b Potential wells for the Brownian motion representing the noise characterization for the
two metastable states in the case of OU input

168 5 Noise Spectral Density of Hysteretic Systems



SiðxÞ ¼ 2Re
Z1

0

CiðsÞe�jxsds

8<
:

9=
; ð5:5Þ

Although the computation of the spectral density might seem straightforward
from the above presentation of the problem there is a fundamental difficulty in
finding the autocorrelation function in Eq. (5.3): the hysteretic systems, even in
their simplest forms, are memory dependent, and consequently, the output pro-
cesses are non-Markovian. As a result, the classical approach for the calculation of
autocorrelation function involves the Chapman-Kolmogorov equation for the
transition probability function, which is not available for non-Markovian pro-
cesses. Here, the mathematical theory of diffusion processes defined on graphs
[2–4] introduced in Sect. 2.2 is used to overcome these difficulties. The presen-
tation follows the line of articles [5–8] published by our group.

5.1.2 Embedding Output Process into a Markovian Process
Defined on Graph

One can notice for a bistable hysteretic system that the joint specification of current
values of input and output leads to a two dimensional stochastic process that has no
memory dependence. As a result, the non-Markovian output process I(t) of this
system can be embedded into a two-component stochastic process Z(t) = (I(t),
X(t)) that is a Markovian process defined on graph Z shown in Fig. 5.2. According
to the theory of stochastic processes on a graph, the transition probability function
qðztjz0Þ for the process Z(t) satisfies the following forward Kolmogorov equation:

oq ztjz0ð Þ
ot

þ L̂ n
x q ztjz0ð Þ ¼ 0 ð5:6Þ

where L̂ n
x is the second order differential operator associated to the input noise

process for each edge En of the graph. For the diffusion process (5.2) this operator
has the following expression:

Fig. 5.2 The graph Z on which the diffusion process Z(t) is defined
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L̂ n
x f

� �
ðxÞ ¼ � 1

2
o2

ox2
r2

nðxÞf ðxÞ
� �

þ o

ox
bn xð Þf ðxÞ½ � ð5:7Þ

The initial condition for the transition probability function has a d distribution
concentrated at z0. In addition, the solution should decay to zero when
x approaches infinity and should satisfy certain boundary conditions at the graph
vertices V1 (x = b) and V2 (x = a). These vertex boundary conditions charac-
terize the behavior of process Z(t) at the interior vertices, relating the transition
probability functions that corresponds to different edges connected to a specific
vertex. According to the theory of Markovian processes on graphs presented in
Refs. [2–9] and summarized in Sect. 2.2 of this book, these gluing relations ensure
a well-defined Markovian process on the entire graph and depend on the time spent
in the vertex under consideration by the process and the probabilities that the
process will ‘‘move’’ from the vertex along the edges connected to it.

Since our process has no delay on the vertices and there is zero probability to
move from vertex V1 along edge E3, while random motion along the edges E1 and
E2 are equally probable, we arrive at the following vertex boundary conditions for
the process Z(t) at vertex V1 (x = b):

qðzt ¼ ð�1; b�Þjz0Þ ¼ qðzt ¼ ð�1; bþÞjz0Þ; qðzt ¼ ð1; bþÞjz0Þ ¼ 0;

oq
ox
ðzt ¼ ð�1; b�Þjz0Þ ¼

oq
ox
ðzt ¼ ð�1; bþÞjz0Þ þ

oq
ox
ðzt ¼ ð1; bþÞjz0Þ ð5:8Þ

Here b+ and b- account for the right and left limits of the function, respectively.
In other words, these vertex boundary conditions express the continuity of the

transition probability function when the move from one edge to another happens
without switching the output value i and zero boundary condition is imposed on
the third edge connected to that vertex. In addition, the probability current must be
conserved at each vertex. Analogous boundary conditions are derived for vertex
V2 (x = a). In the particular case of the OU process, similar initial-boundary-value
problems for the transition probability function have been postulated in [10, 11].
Here, the initial-boundary-value problem is defined on a graph and it was derived
based on the theory of diffusion processes on graphs introduced in Sect. 2.2.

In conclusion, the transition probability function for Markovian process Z(t) is
completely defined as the solution of the initial boundary value stated above.
Consequently, it can be used to compute the correlation matrix for Markovian
process Z(t):

CZ sð Þ ¼
Z1

�1

Z1

�1

X
is;i0

zT
s z0q zsjz0ð Þqs z0ð Þdxsdx0 ð5:9Þ

where zT denotes the transpose of vector z, while qs is the stationary distribution of
process Z(t) satisfying the time-independent boundary value problem
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corresponding to the initial-boundary value problem stated above. Explicitly, it is
the solution of the following set of equations:

1
2

o2

ox2
r2

nðxÞqsði; xÞ
� �

� o

ox
bn xð Þqsði; xÞ½ � ¼ 0 ð5:10Þ

defined on each edge En of the graph Z which satisfies the time independent vertex
boundary conditions at vertex V1:

qs �1; bþ
� �

¼ qs �1; b�ð Þ; qs 1; bþ
� �

¼ 0; ð5:11Þ

similar V2 conditions, and it decays to 0 at infinity.
Auto-correlation function CI (s) of the output process for a bistable system with

hysteresis can be now seen and computed as the first element of the correlation
matrix (5.9) for Markovian process Z(t). Therefore, the fundamental difficulty
related to the non-Markovian property of output process I(t) was circumvented by
embedding the process into two-component Markovian process Z(t) defined on
graph Z. We have now a well-defined path to compute the autocorrelation function
of the output process and its spectral density. Since the complexity of these cal-
culations is relatively high, several techniques are next used to reduce this com-
plexity and to derive a closed form expression for the spectral density.

5.1.3 Closed Form Expression for Output Spectral Density

The spectral density for output process I(t) is the first element of the spectral
density matrix of process Z(t), which is the Fourier transform of the correlation
matrix given in (5.9). Once the solutions for the transition probability functions
and stationary distribution are found from initial boundary value problem (5.6–5.8)
and boundary value problem (5.10, 5.11), respectively, the correlation matrix (5.9)
can be computed and, by taking its Fourier transform, one can compute the
spectral density. However, this computation can be significantly simplified by the
introduction of an auxiliary function:

gðz; tÞ ¼
Z1

�1

X
i0

i0 q zt ¼ zjz0ð Þqsðz0Þ dx0 ð5:12Þ

and its half-line Fourier transform:

G z;xð Þ ¼
Z1

0

g z; sð Þe�jxsds ð5:13Þ

By using the previous definitions and relations, it can be proven that the latter
function is the solution of the following equation:
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jx G z;xð Þ þ Ln
xG z;xð Þ ¼ iqsðzÞ ð5:14Þ

subject to certain vertex boundary conditions. The spectral density for the output
process I(t) can be directly expressed in terms of G z;xð Þ:

SðxÞ ¼ 2Re
Z1

�1

X
i¼�1

i Gðz;xÞ dx

8<
:

9=
; ð5:15Þ

Moreover, since ði=jxÞqs zð Þ is a particular solution of inhomogeneous
Eq. (5.14), the function defined as:

G0 z;xð Þ ¼ G z;xð Þ � i

jx
qs zð Þ ð5:16Þ

is the solution of the homogeneous equation:

jx G0 z;xð Þ þ Ln
xG0 z;xð Þ ¼ 0 ð5:17Þ

subject to certain vertex boundary conditions. The particular solution of Eq. (5.14)
stated above has only an imaginary part, and consequently, it does not contribute
to the spectral density, which can be then written in the following form:

SðxÞ ¼ 2Re
Z1

�1

X
i¼�1

i G0ðz;xÞ dx

8<
:

9=
; ð5:18Þ

G0 z; tð Þ can be expressed in terms of its spatial derivatives by using Eqs. (5.18)
and (5.7), fact that leads to the compensation the integral in Eq. (5.18) by the
spatial derivative. As a result, the computation of the spectral density is now
reduced to finding the solutions of two boundary value problems, one for sta-
tionary probability density qs and one for function G0, and calculating several
derivatives of these solutions at vertex points.

For example, in the case of the OU process, the output spectral density can be
written as follows:

SabðxÞ ¼
2r2

x
dqs

dx
ð1; bþÞ þ dqs

dx
ð�1; a�Þ

� ��

� Im
dG0

dx
ð1; bþ;xÞ þ dG0

dx
ð1; aþ;xÞ

�
� dG0

dx
ð1; a�;xÞ

�	
: ð5:19Þ

The corresponding boundary value problems can be explicitly integrated
leading to analytical solutions in terms of the Gaussian functions and integrals, and
the parabolic cylinder functions [12].

As a test for this method, let us consider a hard limiter (HL) system, which
corresponds to the limit case when a = b = 0 and, consequently it is described by
the following step function:
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I00 tð Þ ¼ ĉ00X tð Þ ¼ 1; if X tð Þ� 0
�1; if X tð Þ\0

�
ð5:20Þ

and an Ornstein-Uhlenbeck input process defined by the following SDE:

dX tð Þ ¼ �bXðtÞdt þ rXðtÞdWðtÞ ð5:21Þ

According to the definition of autocorrelation function for the output process:

CHLðsÞ ¼ EfI00ðt þ sÞ � I00ðtÞg ¼ P Xðt þ sÞXðtÞ[ 0f g � P Xðt þ sÞXðtÞ\0f g
ð5:22Þ

where the probability of a negative product can be expressed as:

P Xðt þ sÞXðtÞ\0f g ¼
Z1

0

Z0

�1

q xtþs; xtð Þdxtþsdxtþ
Z0

�1

Z1

0

q xtþs; xtð Þdxtþsdxt

ð5:23Þ

while the probability of the positive product is simply 1� P Xðt þ sÞXðtÞ\0f g.
As it was proved in 2.1.5, the stationary correlation function for the OU process

has expression (2.34), so the stationary joint distribution is:

q xtþs; xtð Þ ¼ b

2pr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2bs
p exp � b

2r2ð1� e�2btÞ ðx
2
tþs þ x2

t � 2e�btxtþsxsÞ
� �

ð5:24Þ

By plugging q xtþs; xtð Þ into formula (5.23) and by using the properties of
Gaussian integrals, one arrives at following formula for the probability of having a
negative product:

P Xðt þ sÞXðtÞ\0f g ¼ 1
2
� 1

p
arcsinðe�bsÞ ð5:25Þ

and a complementary formula for the probability of a positive product:

P Xðt þ sÞXðtÞ[ 0f g ¼ 1� P Xðt þ sÞXðtÞ\0f g ¼ 1
2
þ 1

p
arcsinðe�bsÞ ð5:26Þ

By plugging the last two expressions into formula (5.22), the autocorrelation of
the hard-limiter system is found to be:

CHLðsÞ ¼
2
p

arcsinðe�btÞ ð5:27Þ

This result can be traced back to the work of van Vleck [13, 14] and it is often
known as ‘‘arcsine law’’. In conclusion, the output spectral density for the hard-
limiter system (5.20) driven by the Ornstein-Uhlenbeck process (5.21) has the
following analytical expression:
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SHL xð Þ ¼ 4
p

Z1

0

arcsin e�bt
� �

cos xtð Þdt ð5:28Þ

It is expected the output spectral density for a rectangular loop should approach the
output spectral density of a HL system when thresholds a and b tend to zero.
Consequently, formula (5.19) can be tested in this limit case against the classical
formula (5.28). The results of this comparison featured an excellent agreement
between the two approaches, as it is also apparent from Fig. 5.3. Let us notice that
the diffusion coefficient of the input process does not influence the spectral density
for the hard-limiter system.

5.1.4 Spectral Analysis of a Bistable Hysteretic System

Next, we examine the influence of the input parameters and system characteristics
on the spectral density Sab (x) of the output of a rectangular loop based on Refs.
[6–9]. Besides the interest in its own right, this analysis will be also useful for the
understanding of the spectral density of Preisach systems. In Fig. 5.4, the
dependence of the spectral noise density on the loop width is presented. For
narrow loops, the spectral noise density is similar to the one of a step operator
(hard limiter system) where the region of the white noise is connected to the region
of 1=f 2 noise through an intermediate region of 1=f behavior (the frequency
f ¼ x=2p). This intermediate frequency region is reduced as the loop is broad-
ened, and the variations of the loop width lead mostly to self-similar transfor-
mations of the spectral noise density graph. Another interesting observation that
emerges from this analysis is related to the transformation of the spectral band. It is
known that memoryless nonlinearities broaden spectral bands. However, memory
effects may lead to opposite results as shown in Fig. 5.4.

By analyzing the formula for Saa(x) and the related boundary-value problems,
the following scaling property can be derived:

Fig. 5.3 Output spectral
densities of the rectangular
loop (a = -b = 0.01;
plotted with symbols) and the
hard limiter system
(a = b = 0; plotted with
lines) driven by symmetric
Ornstein-Uhlenbeck type
inputs (x0 ¼ ~x0) for selected
values of the drift coefficient
b = 0.5, 1, and 3. (� 2008
NANO, [7])
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Saa x0; b; rð Þ;xð Þ ¼ a
r


 �2
S11

x0

a
; b

a
r


 �2
; 1

� �
;x

a
r


 �2
� �

ð5:29Þ

The advantage provided by formula (5.29) is that the computation of the output
spectral density for a symmetric rectangular loop with OU inputs is reduced to the
computation of the spectral density S11.

The effect of the input stationary average x0 can be seen from Fig. 5.5. It is
apparent that when x0 is increased, output signals ‘‘stabilize’’ around +1 and,
consequently, the spectral noise density is diminished. The influence of the drift
coefficient b (or its inverse that represents the correlation time of the input process)
on the output spectral density is represented in Fig. 5.6. Thus, sample noise spectra
for a hard limiter system (a = b = 0) are plotted in Fig. 5.6a, while sample
spectra for a rectangular loop with a = -b = 1 are plotted in Fig. 5.6b. In the
insets of the two figures, the level of flat spectrum region is plotted against b. As it
is apparent from the two figures and their insets, the influence of input noise
temporal correlation on the output spectra is quite different when the loop width is
negligible with respect to noise strength than in the case when the two are com-
parable. When the noise strength is dominant ða� b� rÞ, the system behaves as
a hard limiter system: The bandwidth of the output spectrum is narrowing, and the

Fig. 5.4 Spectral density Saa

of a rectangular loop for
various widths of the loop a
plotted in a log–log scale.
The Ornstein-Uhlenbeck
input parameters are:
b = r=1, x0 ¼ ~x0 ¼ 0. (�
2004 APS, [6])

Fig. 5.5 Spectral density S11

for various values of the input
average value x0

(b = r = 1). (� 2004 APS,
[6])
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level of flat spectrum region is increasing as the correlation time increases (see the
inset of Fig. 5.6a). When the memory property becomes prominent, the monotonic
behavior presented above is no longer valid, and some extrema for the flat spec-
trum level and bandwidth appear at some specific correlation time (see the inset of
Fig. 5.6b).

These analytical results are also providing the opportunity to test the Monte-
Carlo approach to modeling and simulation noise induced phenomena in hysteretic
systems presented/and tested for thermal relaxation phenomena in the previous
chapter. A very good agreement is observed between the numerical simulations
and the analytical results for the spectral analysis of rectangular loops driven by
Ornstein-Uhlenbeck noise, which demonstrates the reliability and accuracy of
Monte-Carlo technique developed for stochastic hysteretic system.

By these numerical means implemented in HysterSoft�, the spectral analysis of
rectangular loop driven by colored noise can be performed. When the noise
spectrum increases with frequency as f 2, so-called violet noise, the output spec-
trum stays almost constant for most of the frequency interval, except for high-
frequency region where it features an increase slightly higher than a linear
dependence of f. When the noise spectrum increases with frequency as f, so-called
blue noise, a similar behavior is observed for low-frequency region, while a slight
spectrum increase is observed for high-frequency region. The simulations per-
formed for various input power-law spectrum f k; k[ 0, lead to the conclusion that
the corresponding output spectra feature a flat region for low-frequency region and
a power law with an exponent slightly different than for high frequency.

The behavior corresponding to a power-law input spectrum f k; k\0, is sig-
nificantly different than the one described above. When the noise spectrum is
proportional to 1/f, coined as pink noise, the output spectrum follows a similar
pattern for low frequency, with an exponent slightly higher than 1, while a 1/f 2

Fig. 5.6 (a) Power spectral density for a hard limiter system for selected values of correlation
time sc ¼ 1=b plotted in a log–log scale (r = 1, x0 = 0); in the inset, the level of flat spectrum
region is plotted against b; (b) Spectral density S11 for selected values of the correlation time
sc ¼ 1=b plotted in a log–log scale (r = 1, x0 = 0); in the inset, the level of flat spectrum region
against b. (� 2010 IEEE, [8])
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behavior is present for high frequencies. When the noise spectrum is proportional
to 1/f 2, known as Brownian noise, the output spectrum follows a similar behavior,
except that the exponent is slightly higher than 2 for low-frequency region. The
decay in the output spectra for high frequency was common to all power-law input
spectra with considered in our analysis.

Sample of these simulations for output spectrum of rectangular loop ĉ�1;1

driven by colored Gaussian noise are shown in Fig. 5.7. By using HysterSoft� the
reader can generate a wide variety of colored noises and analyze their spectral
transformation by a general bistable system with hysteretic rectangular loop.

Next, let us consider that noise has different characteristics in one state of the
system than in the other. As a case study, we take a noise described by an OU

Fig. 5.7 Noise input
spectrum and the
corresponding output
spectrum for rectangular loop
ĉ�1;1 in the case of (a) pink
Gaussian noise input (1/f) and
Brownian noise input (1/f 2);
(b) blue Gaussian noise input
(f) and violet Gaussian noise
input (f 2)
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process with bþ1 xð Þ ¼ �bðx� x0Þ in +1 state and by an OU process with
b�1 xð Þ ¼ �bðx� ~x0Þ in -1 state, while diffusion coefficient is the same in both
states. As mentioned above, noise in state +1 can be interpreted as a Brownian
motion in a parabolic potential represented by the interrupted line in Fig. 5.1b
while the noise in state -1 can be interpreted as a Brownian motion in a parabolic
potential represented by the continuous line in Fig. 5.1b. In the case of symmetric
noise (x0 ¼ ~x0), the monotonic behavior of the output spectral density with respect
to the frequency is a common feature of bistable hysteretic system. The symmetry
breaking (x0 6¼ ~x0) can lead to non-monotonic behavior and more precisely to the
appearance of a maximum in the output spectra, as can be observed from Fig. 5.8
obtained by using Eq. (5.19). That can be related to the manifestation of an almost
regular behavior of the system output, so pure noise input can lead to almost
periodic sequences of -1 and 1. This noise induced phenomena is known as
coherence resonance [11, 15].

In conclusion, output power spectral density of bistable hysteretic systems with
diffusion input has been found by analytical means by using the theory of sto-
chastic processes on graphs. In the particular case of OU input, the output spectra
have been explicitly computed and analyzed, discussing the influence of input drift
and diffusion coefficients, as well as of the rectangular loop width on the output
spectra characteristics. While it is mostly experienced as a disruptive effect, noise
can also have a constructive role, activating a resonance response of the system. It
was proven that certain bistable hysteretic systems driven by ‘‘state-dependent’’
noise inputs manifest of an almost regular behavior of the system output. The
spectrum of bistable hysteretic system driven by colored noise has been analyzed
by numerical means using the Monte-Carlo method presented in Chap. 2. Since
complex hysteretic nonlinearities with stochastic input can be described through
Preisach formalism as weighted superposition of stochastically driven rectangular
loop operators, this analysis is also useful for better understanding of spectra in
complex hysteretic systems such as the ones discussed in the next sections.

Fig. 5.8 Output spectral
densities of the rectangular
loop (a = -b = 0.5) driven
by asymmetric Ornstein-
Uhlenbeck type inputs for
selected values of the
diffusion coefficient r.
(� 2008 NANO, [7])
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5.2 Spectral Density of Symmetric Preisach Systems
with Diffusion Input: Analytical Approach

In this section, closed form expressions for the spectral densities of symmetric
Preisach hysteretic systems driven by diffusion inputs are found by analytical
means. The theory of stochastic processes on graphs is used to circumvent the
difficulties related to the non-Markovian property of the output of hysteretic
systems, while the explicit calculations are appreciably simplified by the intro-
duction of the ‘‘effective’’ distribution function. The implementation of the method
for the case of Ornstein-Uhlenbeck process is presented in detail and general
qualitative features of these spectral densities are examined. Due to the univer-
sality of the Preisach model, this approach can be used to describe hysteresis
nonlinearities of various physical origins.

5.2.1 Statement of the Problem

Consider complex hysteretic nonlinearities that can be modeled through the
Preisach formalism (see Sect. 1.2) as weighted superposition of rectangular loops.
For many hysteretic systems (especially magnetic materials), the Preisach distri-
bution is narrowly peaked around the diagonal line a ¼ �b and consequently, it
can be approximated by lðaÞdðaþ bÞ. For these materials, the symmetric Preisach
model is constructed as a weighted superposition of symmetric rectangular loops
ĉa ¼ ĉað�aÞ with the weight function lðaÞ which will be considered Preisach dis-
tribution for that symmetric system. Thus the symmetric Preisach model takes the
following form:

y tð Þ ¼
Za0

0

ĉax tð Þl að Þda ¼
Za0

0

ia tð Þl að Þda ð5:30Þ

where:

ia tð Þ ¼ ĉax tð Þ ¼

1; if x tð Þ[ a;
�1; if x tð Þ\� a;
1; if xðtÞ 2 �a; að Þ and x t�ð Þ ¼ a;
�1; if xðtÞ 2 �a; að Þ and x t�ð Þ ¼ �a;

8>><
>>:

ð5:31Þ

with t- is the value of time at which the last threshold (a or -a) was attained.
The input process x(t) is assumed to be described by the Itô stochastic differ-

ential equation:

dX tð Þ ¼ b XðtÞð Þdt þ rðXðtÞÞdWðtÞ ð5:32Þ
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where W(t) is the Wiener process, while b and r are the drift and diffusion
coefficients, respectively. The stochastic nature of the input leads to random
switchings of the rectangular loop operators ĉa and, therefore, the output of the
Preisach model is a stochastic process as well, denoted by Y(t).

The autocorrelation function of the output process Y(t) is:

CY sð Þ ¼ E Y sð ÞY 0ð Þf g ¼
Za0

0

Za0

0

E ĉbX sð ÞĉaX 0ð Þ
� �

l bð Þl að Þdbda ; ð5:33Þ

Thus, we can express the autocorrelation function as a weighted superposition of
cross-correlation functions Cba(s) of two-dimensional processes (Ib(t), Ia(t)),
representing the outputs of two symmetric rectangular loops:

CY sð Þ ¼
Za0

0

Za0

0

Cba sð Þl bð Þl að Þdbda; ð5:34Þ

Cross-correlation functions Cba(s) are not even functions, but Cba(-
s) = Cab(s) and consequently, the correlation function of the Preisach system
CY(s) is even.

According to the Wiener-Kinchine theorem [10], the process’s spectral density
is the Fourier Transform of the autocorrelation function. Because we deal with an
even correlation function, the spectral density of the output process can be
expressed as:

SY xð Þ ¼ 2Re
Z1

0

CY sð Þe�jxsds

8<
:

9=
; ¼

Za0

0

Za0

0

Sba xð Þl bð Þl að Þdbda; ð5:35Þ

where Sba(x) is the ‘‘cross-spectral density’’ for the two-dimensional process
(Ib(t), Ia(t)) and it is related to the cross-correlation function Cba(s) as follows:

Sba xð Þ ¼ 2Re
Z1

0

Cba sð Þe�jxsds

8<
:

9=
; : ð5:36Þ

5.2.2 Calculation Method for the Output Correlation
Function Using Markovian Processes on Graphs

The Preisach model describes hysteresis nonlinearities with non-local memories.
For this reason, the output process Y(t) cannot be embedded as a component of
some finite-dimensional Markov process. However, the previous expression shows
that this spectral density can be expressed as a weighted superposition of spectral
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densities for much simpler processes (Ib(t), Ia(t)). These processes are still non-
Markov, but they can be embedded in higher dimensional Markov processes.

In order to compute Sba(x), let us consider the three component process
Z tð Þ ¼ Ib tð Þ; Ia tð Þ;X tð Þ

� �
. Because the rectangular loop operators describe hys-

teresis with local memory, the joint specification of current values of input and
output uniquely define the states of this hysteresis. As a result, Z(t) is a Markovian
process. In addition, only certain combinations of Ib(t), Ia(t) and X(t) are possible,
and they are presented on the graph Z shown in Fig. 5.9. The binary process
Ib(t) and Ia(t) assume constant values on edges of the graph Z.

Applying the theory of stochastic processes on graphs (see Sect. 2.2.2), the
following initial-boundary value problem for the transition probability density
function q z; tjz0; 0ð Þ of the Markovian process Z(t) defined on the graph Z can be
derived. On each edge of this graph, q z; tjz0; 0ð Þ satisfies the following forward
Kolmogorov equation:

oq z; tjz0; 0ð Þ
ot

þ Lxq z; tjz0; 0ð Þ ¼ 0 ð5:37Þ

where L̂x is the second order elliptic operator associated with the input diffusion
process defined in (5.32) and is specified by the expression:

L̂xq ¼ �
1
2

o2

ox2
r2 xð Þq
� �

þ o

ox
b xð Þqð Þ ð5:38Þ

The function q z; tjz0; 0ð Þ satisfies the initial conditions:

q z; 0jz0; 0ð Þ ¼ dibi0b
diai0ad x; x0ð Þ ð5:39Þ

Fig. 5.9 The graph on which three component process Z is defined
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and it has to decay to zero for x going to infinity. In addition, the so-called
‘‘vertex’’ type boundary conditions (2.73) at graph vertices have to be satisfied.
These ‘‘vertex’’ type boundary conditions express the continuity of the transition
probability density when the transition from one graph edge occurs without
switching of the rectangular loop, and zero boundary condition is imposed on the
third graph edge connected to this vertex. Moreover, the probability current has to
be conserved at each vertex. For example, at the vertex V1 (corresponding to
x = -a, in the case a[ b), these conditions are explicitly written as:

q �1;�1;�aþð Þ; tjz0; 0ð Þ ¼ q �1;�1;�a�ð Þ; tjz0; 0ð Þ;
q �1; 1;�aþð Þ; tjz0; 0ð Þ ¼ 0;

oq
ox
�1; 1;�aþð Þ; tjz0; 0ð Þ þ oq

ox
�1;�1;�aþð Þ; tjz0; 0ð Þ ¼ oq

ox
�1;�1;�a�ð Þ; tjz0; 0ð Þ:

ð5:40Þ

It is apparent that the stationary probability density of the process Z(t) is the
solution of the following boundary value problem:

L̂xqs zð Þ ¼ 0 on each graph edge,
‘‘vertex’’ boundary conditions at each graph vertex:

�
ð5:41Þ

Taking into account the facts presented above, the cross-correlation function
Cba(s) can be seen as a component of the correlation matrix CZ(s) for the Markov
process Z(t):

CZ sð Þ ¼ E ZT sð ÞZ 0ð Þ
� �

¼
R1
�1

R1
�1

P
ia;ib

P
i0a;i
0
b

zT z0q z; s; z0; 0ð Þdxdx0

¼
R1
�1

R1
�1

P
ia;ib

P
i0a;i
0
b

zT z0q z; sjz0; 0ð Þqs z0ð Þdxdx0
ð5:42Þ

In the above formula, the sums are taken over all graph values of the (ib, ia) and
(i0b,i0a), respectively. This convention is maintained throughout the book.

5.2.3 Closed Form Expression for the Output Spectral
Density

To simplify the computation of the cross-correlation function, the ‘‘effective’’
distribution function g z; sð Þ is introduced:

g z; sð Þ ¼
Z1

�1

X
i0a;i
0
b

i0aq z; sjz0; 0ð Þqs z0ð Þdx0 ð5:43Þ
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A similar function has been previously proposed in [16] and used in the analysis
of noise in semiconductor devices.

By using Eq. (5.37) on each edge of the graph, the initial condition (5.39), and
‘‘vertex’’ type boundary conditions for transition probability density, as well as
boundary value problem (5.41) for stationary probability density, one can derive
the following initial boundary value problem for the ‘‘effective’’ distribution
function:

og z;sð Þ
os þ Lxg z; sð Þ ¼ 0 on each graph edge,

g z; 0ð Þ ¼ iaqs zð Þ;
lim

x!�1
g z; sð Þ ¼ 0;

‘‘vertex’’ boundary conditions:

8>>><
>>>:

ð5:44Þ

Using formulas (5.42) and (5.43) the cross-correlation function Cba(s) can be
expressed by the formula:

Cba sð Þ ¼
Z1

�1

X
ia;ib

ibg ib; ia; x
� �

; s
� �

dx ð5:45Þ

Thus, in order to find the cross-correlation function Cba(s), one has to solve first
the boundary value problem (5.41) for stationary distribution qs zð Þ, then the ini-
tial-boundary value problem (5.44) for the ‘‘effective’’ distribution function g z; sð Þ,
and finally to compute integral (5.45). According to the Eq. (5.36), another inte-
gration has to be performed for the computation of the cross-spectral density
Sba(x). However, by introducing the one-side Fourier transform of the ‘‘effective’’
distribution function:

G z;xð Þ ¼
Z1

0

g z; sð Þe�jxsds ð5:46Þ

the cross-spectral density Sba(x) can be written in the form:

Sba xð Þ ¼ 2Re
Z1

0

X
ia;ib

ibGðz;xÞdx

8<
:

9=
; ð5:47Þ

Performing the Fourier transformation of the initial-boundary-value problem
(5.44), we arrive at the following boundary-value problem for G z;xð Þ:

jxG z;xð Þ þ LxG z;xð Þ ¼ iaqs zð Þ on each graph edge,
lim

x!�1
G z;xð Þ ¼ 0;

‘‘vertex’’ boundary conditions:

8<
: ð5:48Þ
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For example, these ‘‘vertex’’ boundary conditions at vertex V1 (x = -a) are:

G �1;�1;�aþð Þ;xð Þ ¼ G �1;�1;�a�ð Þ;xð Þ;
G �1; 1;�aþð Þ;xð Þ ¼ 0;

oG

ox
�1; 1;�aþð Þ;xð Þ þ oG

ox
�1;�1;�aþð Þ;xð Þ ¼ oG

ox
�1;�1;�a�ð Þ;xð Þ

ð5:49Þ

Because the stationary probability distribution satisfies the differential equation
of the boundary-value problem (5.41), function ia=jxð Þqs zð Þ is (for each x) a
particular solution for the non-homogeneous differential equation in (5.48). Taking
into account the linearity of operator Lx, G z;xð Þ can be written as:

G z;xð Þ ¼ G0 z;xð Þ þ ia
jx

qs zð Þ ð5:50Þ

where G0 z;xð Þ is a solution of the corresponding homogeneous equation. Since
the particular solution is purely imaginary, it does not contribute to the cross-
spectral density Sba(x). Thus,

Sba xð Þ ¼ 2Re
Z1

0

X
ia;ib

ibG0ðz;xÞdx

8<
:

9=
; ð5:51Þ

with G0 z;xð Þ satisfying the following boundary-value problem:

jxG0 z;xð Þ þ LxG0 z;xð Þ ¼ 0 on each graph edge,
lim

x!�1
G0 z;xð Þ ¼ 0;

inhomogeneous‘‘vertex’’ - type boundary conditions:

8<
: ð5:52Þ

Next, we describe these inhomogeneous ‘‘vertex’’-type boundary conditions.
First, by inspecting ‘‘vertex’’ boundary conditions for G z;xð Þ and qs zð Þ, it can be
observed that, when transition from one edge to another occurs without switching
of the rectangular loops, G z;xð Þ and qs zð Þ corresponding to these edges are
continuously matched and ia does not change its value. Consequently, the corre-
sponding G0 z;xð Þ is also continuously matched in this case. On the third edge
connected to the vertex, zero boundary condition is valid. Until this point, inho-
mogeneous ‘‘vertex’’ boundary type conditions coincide with the previous ones.
This coincidence is also maintained in the boundary conditions for derivatives at
vertices V2-5 (x ¼ �b). However, the difference appears in the conditions for
derivatives at vertices V1 and V6 (x ¼ �a). Namely, from the boundary condition
(5.49) for the derivative of G z;xð Þ, we have:
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oG0

ox
�1; 1;�aþð Þ;xð Þ þ 1

jx
oqs

ox
�1; 1;�aþð Þ þ oG0

ox
�1;�1;�aþð Þ;xð Þ

þ �1ð Þ
jx

oqs

ox
�1;�1;�aþð Þ ¼ oG0

ox
�1;�1;�a�ð Þ;xð Þ þ �1ð Þ

jx
oqs

ox
�1;�1;�a�ð Þ :

ð5:53Þ

Taking into account the boundary condition for stationary probability distri-
bution, the following boundary condition for G0 z;xð Þ is derived:

oG0

ox
�1; 1;�aþð Þ;xð Þ þ oG0

ox
�1;�1;�aþð Þ;xð Þ

þ 2
jx

oqs

ox
�1; 1;�aþð Þ ¼ oG0

ox
�1;�1;�a�ð Þ;xð Þ : ð5:54Þ

By using similar arguments, the inhomogeneous ‘‘vertex’’ boundary condition
at the vertex V6 is found to be:

oG0

ox
1; 1; a�ð Þ;xð Þ þ oG0

ox
1;�1; a�ð Þ;xð Þ

� 2
jx

oqs

ox
1;�1;�aþð Þ ¼ oG0

ox
1; 1; aþð Þ;xð Þ : ð5:55Þ

In the case a\ b, the boundary conditions for vertices corresponding to x ¼ �a
take the following form:

oG0

ox
ib; 1;�a�
� �

;x
� �

þ oG0

ox
ib;�1;�a�
� �

;x
� �

� 2
jx

oqs

ox
ib;�1;�a�
� �

¼ oG0

ox
ib;�1;�a�
� �

;x
� �

: ð5:56Þ

Now, the method for the calculation of the spectral density can be summarized
as the sequence of the following steps:

Step 1: Solve boundary value problem (5.41) for stationary distribution qs zð Þ.
Step 2: Solve boundary value problem (5.52) for G0 z;xð Þ
Step 3: Calculate cross-spectral density Sba xð Þ by using formula (5.51)
Step 4: Calculate spectral density SY xð Þ by using formula (5.35).

The following observations can simplify the implementation of the above steps:

1. For a given input, first three steps of the method are independent of Preisach
function l(a). Therefore, once Sba(x) are precomputed, they can be used for
any ‘‘symmetric’’ Preisach system (5.30). In other words, the spectral density of
a hysteretic system can be computed as a weighted superposition of cross-
spectral densities Sba(x) precomputed at the third step, with the weight being
given by the Preisach function of that system.
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2. As can be observed from Eq. (5.51), the cross-spectral densities Sba(x) are
expressed as linear combinations of G0(z, x) corresponding to different edges.
This indicates that it may not be necessary to find an explicit expression for
G0(z, x) on every edge, but rather their linear combinations mentioned above.

3. By using the expression (5.38) for operator L̂x, an important simplification can
be made. From formula (5.52) follows G0 z;xð Þ ¼ j=xð ÞL̂xG0 z;xð Þ. By
substituting the later expression into formula (5.51), one can obtain:

Sba xð Þ ¼ 2Re
Z1

0

X
ia;ib

ib
j

x

� �
L̂xG0ðz;xÞdx

8<
:

9=
;

¼ � 2
x

Im
Z1

0

L̂x

X
ia;ib

ibG0ðz;xÞ
 !

dx

8<
:

9=
; : ð5:57Þ

The derivatives in the operator L̂x can be integrated and this results in a simple
expression for the spectral density in terms of the first derivatives of G0 z;xð Þ at
vertex points (see, for example, the next section).

4. The boundary-value problems (5.41) and (5.52) defined on the entire graph Z,
can be sequentially reduced to the boundary-value problems defined on the real
line intervals which are more tractable analytically and numerically. Efficient
numerical algorithms for solving these problems defined on the real line
interval are three-diagonal matrix solvers described, for instance, in Ref. [17].

The above observations produce further simplifications in the method for
computations of the spectral density once a specific form of the input stochastic
process is given. These advantages will be further exploited in the next section
where the Ornstein-Uhlenbeck process is used as a model of driving noise.

The proposed method is conceptually valid for Preisach systems with non-
symmetric rectangular loops, although the complexity of calculations will be
appreciably increased.

5.2.4 Example: Spectral Density of Symmetric Preisach
Systems with Ornstein-Uhlenbeck Input

In this section we shall apply the method developed in the previous section to the
case when the input is an Ornstein-Uhlenbeck (OU) process. As has been dis-
cussed in 2.1.5, the OU process satisfies:

L̂xq ¼ �b
o x� x0ð Þq½ �

ox
� r2

2
o2q
ox2

ð5:58Þ
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Step 1
For the OU input process, the boundary-value problem (5.41) for the stationary

distribution of the process z tð Þ defined on the graph Z from Fig. 5.9 can be solved
by using the first example in Sect. 2.2.3. Thus, by adding the stationary distri-
butions corresponding to edges E6 and E7 as well as to edges E4 and E5, we end up
to the problem solved there and the results are:

~qst
1 xð Þ ¼ q̂st xð Þ; x 2 �1;�að Þ

~qst
2 xð Þ ¼ q̂st xð Þ 1� /�aa xð Þð Þ; x 2 �a; að Þ

~qst
3 xð Þ ¼ q̂st xð Þ/�aa xð Þ; x 2 �a; að Þ

~qst
4 xð Þ ¼ q̂st xð Þ; x 2 a;1ð Þ

ð5:59Þ

where

q̂s xð Þ ¼
ffiffiffiffiffiffiffiffi

b

pr2

r
e�b x� x0ð Þ2=r2

; /a1a2
xð Þ ¼

R x
a1

eb y� x0ð Þ2=r2

R a2

a1
eb y� x0ð Þ2=r2

ð5:60Þ

Similarly to the previous derivation, the components of the stationary distri-
butions for edges E6 and E7 as well as for edges E4 and E5 can be determined
leading to the following expression:

qs zð Þ ¼

q̂s xð Þ on E1 andE10;
q̂s xð Þ 1� /�aa xð Þð Þ on E2 and E8;
q̂s xð Þ/�aa xð Þ on E3 and E9;
q̂s xð Þ 1� /�aa xð Þð Þ 1� /�bb xð Þ

� �
on E4;

q̂s xð Þ 1� /�aa xð Þð Þ/�bb xð Þ on E5;

q̂s xð Þ/�aa xð Þ 1� /�bb xð Þ
� �

on E6;
q̂s xð Þ/�aa xð Þ/�bb xð Þ on E7;

8>>>>>>>><
>>>>>>>>:

ð5:61Þ

The results for the case a\ b are obtained by interchanging a and b.
Step 2

Next, the boundary-value problem (5.52) defined on the graph Z is reduced to
boundary-value problems defined on line intervals, which are better tractable both
analytically and numerically. This procedure is very useful because it could be
applied to Steps 1 and 2 of the method in the case of a general input diffusion process.

First, we formulate the boundary-value problem for G0 x;xð Þ ¼
P

ia;ib
G0 y;xð Þ,

where the sum is taken over all graph edges:

jxG0 x;xð Þ þ LxG0 x;xð Þ ¼ 0; x 2 ð�1;þ1Þn �a; af g;
lim

x!�1
G0 x;xð Þ ¼ 0;

oG0

ox �a�;xð Þ � oG0

ox �aþ;xð Þ ¼ 2
jx

ffiffiffiffiffiffi
b

pr2

q R a
�a eb y� x0ð Þ2=r2

� ��1

;

oG0

ox a�;xð Þ � oG0

ox aþ;xð Þ ¼ � 2
jx

ffiffiffiffiffiffi
b

pr2

q R a
�a eb y� x0ð Þ2=r2

� ��1

:

8>>>>>>>><
>>>>>>>>:

ð5:62Þ
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The solution of this problem coincides with the solution of problem (5.52) for
edges E1 and E10. In addition, it will also help to simplify the expression for the
cross-spectral density.

Second, we formulate the boundary-value problem for G0 1; x;xð Þ ¼P
ib

G0 ð1; ib; xÞ;x
� �

, where the sum is taken over ‘‘central’’ graph edges. In the

case a\ b, G0 1; x;xð Þ ¼
P

ia
G0 ðia; 1; xÞ;xð Þ.

From formulas (5.52) and (5.61), we find:

jxG0 1; x;xð Þ þ LxG0 1; x;xð Þ ¼ 0; x 2 �a; að Þ;
G0 1;�a;xð Þ ¼ 0;
G0 1; a;xð Þ ¼ G0 a;xð Þ

8<
: ð5:63Þ

for the case of a [ b and

jxG0 1; x;xð Þ þ LxG0 1; x;xð Þ ¼ 0; x 2 �b; bð Þn �a; af g;
G0 1;�b;xð Þ ¼ 0;
G0 1; b;xð Þ ¼ G0 b;xð Þ;

oG0

ox 1;�a�;xð Þ � oG0

ox 1;�aþ;xð Þ ¼ 2
jx

ffiffiffiffiffiffi
b

pr2

q
/�bb �að ÞR a

�a
e

b y�x0ð Þ2=r2
;

oG0

ox 1; a�;xð Þ � oG0

ox 1; aþ;xð Þ ¼ � 2
jx

ffiffiffiffiffiffi
b

pr2

q
/�bb að ÞR a

�a
e

b y�x0ð Þ2=r2
;

8>>>>>>>>>><
>>>>>>>>>>:

ð5:64Þ

for the case of a\b.
It is obvious that G0 �1; x;xð Þ ¼ G0 x;xð Þ � G0 1; x;xð Þ in both cases. The

solutions of these problems coincide with the solution of problem (5.52) for edges
E2, E3 and E8, E9. To completely solve problem (5.52), one should find the
solution for the ‘‘central’’ edges E4-7. However, it will be shown below that the
cross-spectral density can be expressed in terms of the previously found functions,
and consequently, the solution of problem (5.52) for these ‘‘central’’ edges is not
necessary. Thus, the boundary-value problem (5.52) defined on the entire graph Z
was reduced to the boundary-value problems defined on line intervals.

In the case of an OU input process, the specific form of the operator L̂x is
helpful in order to find explicit analytical solution to problem (5.52) in terms of
parabolic cylinder functions [12]. Namely, one can observe that if a function ~f
satisfies the differential equation for the parabolic cylinder functions:

o2~f

o~x2
~x;xð Þ þ � 1

4
~x2 þ 1

2
� j

x
b

� �� �
~f ~x;xð Þ ¼ 0; ð5:65Þ

then f x;xð Þ ¼ ~f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b x� x0ð Þ

p �
r;x

� �
e�b x�x0ð Þ2=2r2

represents a solution to:

jxf x;xð Þ þ L̂xf x;xð Þ ¼ 0; ð5:66Þ

with L̂x defined by Eq. (5.58). Let f1 and f2 be the solutions of Eq. (5.66) corre-
sponding to the parabolic cylinder functions that vanish at þ1 and �1,
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respectively. The solution of problem (5.52) on each graph edge can be expressed
as a linear combination of these functions:

G0 ði1; i2; xÞ;xð Þ ¼ k1 i1; i2;xð Þf1 x;xð Þ þ k2 i1; i2;xð Þf2 x;xð Þ ð5:67Þ

The coefficients k1 i1; i2;xð Þ and k2 i1; i2;xð Þ corresponding to each edge are
found (for a given frequency) by matching the inhomogeneous ‘‘vertex’’ boundary
conditions of the problem (5.52) (for that frequency). Thus, the analytical
expression for the solution of the problem (5.52) can be expressed in terms of
parabolic cylinder functions. Besides the importance in its own right, the described
analytical approach can be used for the testing of the accuracy of numerical
techniques.
Step 3

Using observation (3) from the previous section, the cross-spectral density
Sba xð Þ can be expressed as:

Sba xð Þ ¼ � 2
x

Im
Z1

�1

r2

2
o2

ox2

X
ia;ib

ibG0

 !
� b

o

ox
x� x0ð Þ

X
ia;ib

ibG0

 !
dx

8<
:

9=
;
ð5:68Þ

The derivatives in (5.68) can be integrated and appropriate vertex boundary
conditions can be used for simplification. By using formulas (5.52) and (5.61–5.66),
one can derive the following formula for the cross-spectral density, for a\b:

Sba xð Þ ¼ 4r
ffiffiffi
b
p

x2
ffiffiffi
p
p R b

�b eb y�x0ð Þ2=r2
dy

� 2r2

x
Im

oG0

ox
1;�bþ;x
� �

� oG0

ox
1; b�;xð Þ þ oG0

ox
bþ;x
� �� �

; ð5:69Þ

while for a[ b we have:

Sba xð Þ ¼ 4r
ffiffiffi
b
p

x2
ffiffiffi
p
p R a

�a eb y�x0ð Þ2=r2
dy

� 2r2

x
Im

X
ia

oG0

ox
1; ia;�bþ;x
� �

� oG0

ox
1; ia; b

�;xð Þ
� �

þ oG0

ox
bþ;x
� �( )

:

ð5:70Þ

According to Eq. (5.67), G0 y;xð Þ can be represented in terms of parabolic
cylinder functions on each graph edge, hence explicit analytical formula in terms
of parabolic cylinder functions can be given for cross-spectral density Sba(x).

Results of the calculations for the cross-spectral density Sba xð Þ using formulas
(5.69) and (5.70) are presented in Fig. 5.10 where OU input process with
b ¼ r ¼ 1 and x0 ¼ xs ¼ 0 has been considered.
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Variations of the cross-spectral density Sba(x) with respect to the widths b and
a of the two loops are presented in Fig. 5.10a–c for selected values of the fre-
quency while their diagonal sections (Saa(x)) are compared in Fig. 5.10d for a
better understanding of the relation between them. The cross-spectral density has
negligible values outside of a finite region around the origin and this region
becomes smaller when the frequency is increased. It can be clearly observed that
the maximum of Saa(x) becomes more pronounced and it is shifted towards
‘‘wider loops’’ as the frequency is decreased. This suggests that two Preisach
systems whose Preisach distributions coincide near the origin, should have
approximately the same spectral noise densities for high frequencies. The com-
putational results feature monotonic variations of Sba(x) with respect to x for
fixed b and a, which leads to the conclusion that the spectral noise density SY xð Þ
of a Preisach system should be a decreasing function of frequency, regardless of
the shape of the Preisach distribution. It is also expected that Sba(x) is decreased
for every b and a as x0 is shifted from zero.
Step 4

Using formulas (5.69) and (5.70) for cross-spectral densities Sba(x) in Eq.
(5.35), the spectral density for the output process of a Preisach system

Fig. 5.10 Variation of cross spectral density Sba with respects to the widths b and a of the two
loops, for x = 0.5 (a), 1 (b), 2 (c); (d) Diagonal sections Saa are plotted for different frequencies
f (x = 2pf). (� 2004 APS, [6])
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characterized by distribution l and driven by an OU process can be found. Results
of the calculations for the spectral density SY xð Þ of a Preisach system with uni-
form distribution, l að Þ ¼ 1; a 2 0; 1ð Þ, are presented in Fig. 5.11.

As a final remark let us mention that in the limit of b!1 with r=b maintained
constant, the Ornstein-Uhlenbeck process converges to a white noise process.
Consequently, the output spectral density for the white noise input can be obtained
either directly or as a limit of the result obtained for the Ornstein-Uhlenbeck
process. In Refs. [18–20], Radons derived directly the output spectral density for a
white noise input using a different technique and proved that long-time tails and
even 1/f noise are quite general features of the class of symmetric Preisach models
driven by uncorrelated noise.

5.3 Numerical Approach to Noise Spectral Analysis
in Hysteretic Systems

For the numerical calculation of the output spectral density, a sufficiently large
number of realizations of the noise input are generated according to the technique
presented in Chap. 2 for the specific class of noise given in the problem. Then, the
Fast-Fourier-Transform (FFT) technique is used to evaluate the spectral density of
each output signal and average the output spectra to obtain their expected values.
The power spectral density of the output signal is computed as:

SY xð Þ ¼ lim
T!1

E YT xð Þj j2
n o

2T
ð5:71Þ

where YT xð Þ ¼
R T
�T y tð Þe�jxtdt is the ‘‘truncated’’ Fourier transform of the output

signal y(t). This approach has been implemented numerically in HysterSoft� and
used to compute the noise spectral densities of the output signal for various hysteretic
systems. For the simulations presented in this chapter, the spectrum of the output
signal has been computed by averaging over 500 statistical (Monte-Carlo)

Fig. 5.11 Spectral density SY

for a hysteretic system with
uniform Preisach distribution
for different values of input
average value x0

(b = r = 1). (� 2004 APS,
[6])
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simulations, which provided a very good accuracy of the results. The total time to
evaluate SY (x) on a one-processor computer operating at 3 GHz is less than a second
for the energetic and Jiles-Atherton Models and less than a minute for the Preisach
Model. The reliability of this numerical approach was successfully tested against
several analytical results provided in the previous section (Sect. 5.1) for the hard
limiter system, the hysteretic rectangular loop, and symmetric Preisach systems.

In this section, sample of the simulation results obtained using various hysteresis
models driven by OU noise inputs are presented and analyzed. In the case of
energetic, Jiles-Atherton, Preisach and Coleman-Hodgdon models, the parameters
are chosen such that the corresponding major hysteretic loops have the same
coercive input xc = 1.28, output saturation ysat = 7.7 9 105, and output rema-
nence yR = 4 9 105. These values, measured in A/m, characterize the major
hysteretic loop of a permalloy ferrite [21]. The rest of models parameters and
simulation are given in the subsections dedicated to a specific model. As discussed
in the final subsections, the intrinsic differences between the algebraic, differential,
and integral modeling of hysteresis are well exposed when the systems are driven
by noisy inputs and their stochastic behaviors are compared against each other [22].

This analysis can be extended to the noise model of interest to the reader by
selecting the noise model in HysterSoft� and running associated simulations.

5.3.1 Preisach Model

The Preisach distribution was identified on a discrete mesh of points using a set of
first-order reversal-curves and employing Eqs. (1.17) and (1.18). This discrete
distribution was then fitted to a 2-D normal distribution in order to speed up the
computations:

P a; bð Þ ¼ ysatS

2p HriHrc
� exp � aþ b� 2H0ð Þ2

4H2
ri

� a� bð Þ2

4H2
rc

" #
; ð5:72Þ

where S ¼ 0:88, Hri ¼ 2.23 A/m, Hrc ¼ 0.49 A/m, and the average value of the
critical fields of the particles was found to be H0 ¼ 1.9 A/m. The reversible
component of the Preisach distribution was also approximated by a normal
distribution:

R að Þ ¼ ysat 1� Sð Þffiffiffiffiffiffi
2p
p

Hrr

� exp � a2

4H2
rr

� �
; ð5:73Þ

where Hrr ¼ 2.12. The initial hysteretic state in all simulations was assumed the
zero-field anhysteretic curve (also known as the a.c. demagnetized state magne-
tism). In Fig. 5.12 the major hysteresis curve and an output realization of this
Preisach system driven by an OU input are presented. The output spectra for
different values of the noise strength are plotted in Fig. 5.13.
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5.3.2 Energetic Model

The parameters of the EM have been identified by using the technique presented in
Sect. 1.4.3: h ¼ 0:4, k ¼ 1:2, g ¼ 8:24, cr ¼ 0:02, q ¼ 10, and Ne ¼ 3:5	 10�7.
In Fig. 5.14 the major hysteresis curve and an output realization of this EM driven
by an OU input are presented. The output spectra are plotted in Fig. 5.15 for
different values of the noise strength.

5.3.3 Jiles-Atherton Model

The parameters of the JAM used in the simulations presented in this section are
k ¼ 2:44, a ¼ 4:36, a ¼ 1:7	 10�5, and c ¼ 0:49 In Fig. 5.16 the major hysteresis

Fig. 5.12 Major hysteresis loop (a) and Minor hysteresis loops driven by an noisy input having
an Ornstein-Uhlenbeck distribution with b = r = 1 (b)

Fig. 5.13 Spectral density of
the output of Preisach Model
for different values of noise
strength r
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curve and an output realization of this JAM driven by an OU input are presented.
The output spectra for different values of the noise strength are plotted in Fig. 5.17.

Figures 5.13, 5.15, and 5.17 show the results of the power spectral density of
the magnetization computed by using the EM, JAM, and the PM, respectively, for
different values of the diffusion coefficient (or noise strength) r ranging from 40
for the top-most curves to 0.02 for the bottom-most curves. Let us remind that the
spectrum of the magnetic field (noise input) has a Lorentzian-shape, which is flat
in the low-frequency region and has 1/f 2 decay for high-frequency region. As
observed from these figures the last property is transferred by the hysteretic sys-
tems and the output spectra features a 1/f 2 at high frequency region. It is inter-
esting to note that all models predict a flat spectrum at low frequencies and large
magnitudes of the input signal (large values of r) and an increase of the low-
frequency components for values of r slightly lower than the coercive input, xc. As
opposed to the PM and EM, the JAM also predicts an increase in the power spectra

Fig. 5.14 Major hysteresis loop (a) and minor hysteresis loops driven by an noisy input having
an Ornstein-Uhlenbeck distribution with b = r = 1 (b)

Fig. 5.15 Spectral density of
the output of energetic model
for different values of noise
strength r
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at low frequencies even for relatively low values of r. In general, the hysteretic
systems with OU input presented monotonic spectral densities and the increase in
the input average xo resulted in the decrease in the output noise.

5.3.4 Coleman-Hodgdon Model

The reverse Coleman-Hodgdon model with (1.117) with the material functions
given by (1.127) and (1.128) is used below. The model parameters were identified
as A1 = 1, A2 = 2 9 10-6, A3 = -0.7, A4 = 0.01, a = 8 9 10-7, xcl ¼ 2:5, and
ycl ¼ 3	 106. In Fig. 5.18 the major hysteresis curve and an output realization of
this Coleman-Hodgdon system driven by an OU input are presented. The output
spectra are plotted in Fig. 5.19 for different values of the noise strength.

Fig. 5.16 Major hysteresis loop (a) and minor hysteresis loops driven by an noisy input having
an Ornstein-Uhlenbeck distribution with b = r = 1 (b)

Fig. 5.17 Spectral density of
the output of Jiles-Atherton
Model for different values of
the noise strength r
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5.3.5 Bouc-Wen Model

Three sets of parameters have been used in the case of the Bouc-Wen model:

Set 1: A = 2, a = 0, b = 0.5, D = 2, c = 0.1, k = 1, n = 1;
Set 2: A = 2, a = 0, b = 0.5, D = 1, c = 0.1, k = 1, n = 4;
Set 3: A = 2, a = 0.7, b = 0.5, D = 1, c = 0.1, k = 1, n = 1.1.

These parameters correspond to hysteresis loops that resemble the stop operator
often used in elasticity and plasticity (Figs. 5.20, 5.21, 5.22 and 5.23). Figures
5.20, 5.21, and 5.22 present the major hysteresis curves and the output realization
for the Bouc-Wen model with the parameters given above. The output spectra are
plotted in Fig. 5.15 for different values of the noise strength.

In conclusion, the numerical approach used here provides a relatively fast and
reliable way to analyze the power spectral densities of complex hysteretic systems.

Fig. 5.18 Major hysteresis loop (a) and minor hysteresis loops driven by a noisy input having an
Ornstein-Uhlenbeck distribution with b = r = 1 (b)

Fig. 5.19 Spectral density of
the output of Coleman-
Hodgdon model for different
values of the noise strength r
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Fig. 5.20 Hysteresis loops driven by a deterministic input with simple monotonic variation
(a) and a noisy input having an Ornstein-Uhlenbeck distribution with b = r = 1 (b) the
parameters of the Bouc-Wen model are defined in Set 1

Fig. 5.22 Hysteresis loops driven by a deterministic input with simple monotonic variation
(a) and a noisy input having an Ornstein-Uhlenbeck distribution with b = r = 1 (b) the
parameters of the Bouc-Wen model are defined in Set 3

Fig. 5.21 Hysteresis loops driven by a deterministic input with simple monotonic variation
(a) and a noisy input having an Ornstein-Uhlenbeck distribution with b = r = 1 (b) the
parameters of the Bouc-Wen model are defined in Set 2
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Fig. 5.23 Spectral densities
of the output of Bouc-Wen
model for different values of
the noise strength r in the
case of the model parameters
defined by Set 1 (a), Set 2 (b),
and Set 3 (c)
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According to our analysis, the output spectra deviate significantly from the Lo-
rentzian shape of the input process for values of the diffusion coefficient near and
smaller than the coercive field. The intrinsic differences between the transcen-
dental, differential, and integral modeling of hysteresis yield significantly different
spectra at low frequency region, which reflect the diverse long-time correlation
behavior. It is also apparent from this study that the spectral analysis is a powerful
characterization tool that can be used to design filters based on hysteretic systems.
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Chapter 6
Constructive Effects of Noise in Hysteretic
Systems

6.1 Introduction

Since everyone senses the negative effects of noise, its potential benefits seem
counterintuitive. As it was discussed in Sect. 2.1.1, intentionally applied noise is
helping sub-threshold constant signals to surpass the activation threshold of a
system. Thus, the system can switch from one metastable state (let us say 0-state)
to the other (1-state) with the help of noise, even when the constant signal acting
on this switching is not strong enough to produce it alone. Noise is also acting in
other instants of time towards diminishing the constant signal but that does not
have an effect on the system state. In conclusion, thermal noise may play a positive
role in achieving higher storage density in magnetic recording nanotechnology by
using heat assisted magnetic recording (HAMR). In 2012, Seagate Technology has
demonstrated an operating prototype of a hard disk drive based on HAMR fea-
turing 1 Tb/in2 areal storage density, which is significantly higher than 600 Gb/in2

used in today’s hard disk drives.
What is more difficult to grasp regarding the benefits of noise is the help

provided by the random nature of noise. Let us start with an example which is not
particularly included in the area of hysteresis but might open some perspective in
our intuitive approach to these phenomena. Everybody is familiar to hand sieving
for separating particles of different sizes, so it is apparent that a purely noisy shake
of the sieve will have constructive effects in practice, such as sifting flour or
separating stones from sand. The first known example of using noise to enhance
the performance of modern technologies is given in the 1940’s by British naval air
fleet, when they realized that their navigations systems perform better when the
airplanes were flying than when they were on the ground. It was determined that
the vibrations from plane engine help the rigid components (cranks, gears, cogs,
etc.) of the navigation system to move smoother avoiding, for example, the pos-
sibility for some of them to stick together. As a result, small motors were installed
on all British navigation systems just to provide the vibrations needed by the rigid
mechanisms to operate more fluidly [1]. This concept was later generalized to
signal processing becoming a fundamental technique, known as dithering, that is
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today used in numerous digital systems from various areas such as audio and video
processing, communications, radio-location and detection, seismology.

Another major direction in the analysis of noise benefits is provided by sto-
chastic resonance phenomena. Let us consider a bistable system and a sinusoidal
input that is not strong enough to switch the system from one metastable state to
another. By applying a relatively small amount of noise, transitions between the
states may happen but are rare events, while by applying a relatively large amount
of noise, the transitions would be too frequent and irregular, without relevant
correlation to the initial sinusoidal input. However, for an intermediate level of
noise, some regularity of the transitions can be observed in correlation to the initial
sinusoidal frequency. This noise-induced phenomenon is coined as stochastic
resonance. The idea was proposed almost 30 years ago in a model for climate
change and it spread very fast across various areas of science and engineering.

6.2 Dithering

In order to illustrate the dithering technique, let us consider an analog-to-digital
convertor (ADC). Although the information is mostly generated in an analog form,
its transmission is desired in a digital form due to better performances in encoding,
compressing, and encrypting the digital signal. Thus, the digital signal is better
protected against communication channel noise and fading, needs a lower trans-
mission rate, and can better prevent eavesdropping and interception. The ADC
involves sampling (time digitization) and quantization (amplitude digitization) of
the analog signal. The quantization errors are inherent and the dithering technique
is trying to decrease this error with the help of noise. For example, let us consider
two quantization levels (0 and 1) and the quantization rule of truncating to zero all
positive sub-unitary values smaller 0.5 and rounding off to one all positive sub-
unitary values larger or equal to 0.5. By applying noise, an initial value which is
below 0.5 threshold may get above this threshold and be rounded off to 1. Thus,
when the sampling rate is high compared to the rate of analog signal change,
consecutive values of the initial signal may be approximated by 0 or 1 even when
they are all below 0.5. This provides a local average of the digital dithered signal
closer to the initial local average of the analog signal than the digitized non-
dithered signal (which is zero for this interval of time). When the digital signal is
received and smoothed out, these local averages play an important role in the
smoothing process, so the resulting signal coming from the digitized dithered
signal may be a better approximation of the initial analog signal than the digitized
non-dithered signal. In conclusion, the quantization error may be reduced by this
random selection of 0 and 1 with a probability depending on the difference
between the given signal value and the 0.5 threshold.

The spectral comparison between the digitized forms of the initial and dithered
signal provides a more compelling support for the previous conclusion as it is dis-
cussed in the next example. However, we invite the reader to consult references [1–3]
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for a more rigorous and detailed analysis of this idea. A digitized form of a pure
sinusoidal signal is presented in Fig. 6.1a while its power spectrum is presented in
Fig. 6.1c. In addition to the peak corresponding to the original sinusoidal signal
(located at 1 MHz) multiple peaks with significant height can be identified in this
spectrum. They correspond to the higher order harmonics generated by the digiti-
zation process. When the dither noise is added to the original signal, the digitization
process of this noisy sinusoidal signal generates a digitized form presented in
Fig. 6.1b and its corresponding power spectrum presented in Fig. 6.1d. By com-
paring the two power spectra, it is apparent that no major peaks can be identified in
the dithered spectrum except the one corresponding to the original sinusoidal signal.
However, the ground noise level has been increased in the dithered signal. In con-
clusion, the dithered technique is trying to reduce the higher order harmonics gen-
erated by the digitization process on the expense of increasing the level of ground
noise.

The dithering technique has been extensively used in ADC to decrease the
distortion of low-frequency signal due to digitization process and its applications
have been mainly focused on audio signals. During the last years the technique
was successfully generalized to higher frequencies and the area of applications was
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significantly extended [4–6]. As an example of this extended range of applications,
let us consider dithering in digital graphics. A standard image used to test pro-
cessing algorithm is Lena, which is presented in Fig. 6.2a. It is a grey version of
this image with grey level varying from 0 (white) to 1 (black). A standard purely
black and white version, where all pixels with grey intensity lower than one half
are changed to white and all others to black, is presented in Fig. 6.2b. Now, let us
consider dithered versions of the grey picture where zero-average Gaussian noise
is added to the pixels. The standard procedure to generate a pure black-and-white
image is next applied. Two realizations of the dithered image with Gaussian noise
having different strength (standard deviations) are presented in Fig. 6.2c and 6.2d.
As a general rule reflected by this example, zero or low noise generates a blotchy
black-and-white image since large areas are represented by a single color; a large
amount of noise added to the original image generates a grainy black-and-white
image lacking significant details of the original; nevertheless, an intermediate
amount of noise generates a more accurate representation of the original than the
non-dithered version. This dithering technique can be obviously applied to colored

Fig. 6.2 (a) Grey version of Lena standard image; (b) Black-and-white version of the original
image; (c) Black-and-white version of a dithered image with moderate noise; (d) Black-and-white
version of a dithered image with large noise. (based on Ref. [7])
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pictures when several quantized colors are used to generate an approximate ver-
sion of the original image. By taking advantage of the human eye tendency to mix
two colors in close proximity to one another, the noise-added image looks grainy
but also more accurate than non-dithered version since the colors blend together
more smoothly. A detailed account of dithering in digital graphics can be found in
Ref. [6].

6.3 Noise Induced Resonances in Bistable Systems

In Sects. 4.2.2 and 5.1.4, noise induced relaxations and spectral noise densities for
a bistable hysteretic system driven solely by noise have been computed and
analyzed. Here, the discussion is extended for bistable hysteretic systems driven by
a noisy sinusoidal signal:

xðtÞ ¼ X0 sinð2pf tÞ þ nðtÞ; ð6:1Þ

where n(t) is a noise component superimposed on a sinusoidal component of
frequency f and magnitude X0. The case of symmetric hysteretic loop is considered
for the sake of clarity but the analysis can be extended to non-symmetric cases. Let
us assume that the magnitude X0 is smaller than the hysteretic threshold, so the
deterministic signal is not strong enough to generate any switching in the system
state. With the help of a weak noise, the switching is possible but as a rare event
and at irregular intervals of time. This case is illustrated in Fig. 6.3. When strong
noise is added to the sinusoidal input, the switching in the system state would be
too frequent and irregular, with little correlation to the deterministic input. This
case is illustrated in Fig. 6.4. However, for an intermediate level of noise, some
regularity of the transitions can be observed in correlation to the initial sinusoidal
frequency, as illustrated by Fig. 6.5. This noise-induced regular transitions in the
presence of an oscillatory signal is known as stochastic resonance.

Fig. 6.3 A sub-threshold sinusoidal input with weak noise and the resulting output of the
bistable hysteretic system
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This stochastic resonance concept was first proposed in [8] by Benzi and his
collaborators for the Brownian motion in a Landau potential (see 2.1.6) which is
also subject to a small periodic forcing. They proved that a peak in the power
spectrum appears which is absent when either the forcing term or noise is absent. It
was then applied to a stochastically perturbed Budyko-Sellers model for the var-
iation of the global earth temperature in an attempt to explain the almost periodic
occurrence of ice age [9]. Although subsequent experimental data did not confirm
this hypothesis regarding climate change, the concept of stochastic resonance has
spread fast in many other areas of science and engineering. The experimental
confirmations coming few years later in a study of a bistable electronic system [10]
and a bidirectional ring laser [11] have provided the needed confidence to the
extensive theoretical analysis. Another significant breakthrough in this area of
research came with proof of stochastic resonance in biological systems such as

Fig. 6.4 A sub-threshold sinusoidal input with strong noise and the resulting output of the
bistable hysteretic system

Fig. 6.5 A sub-threshold sinusoidal input with an intermediate level of noise and the resulting
output of the bistable hysteretic system
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crayfish mechanoreceptors [12] and cricket cercal sensory system [13]. A detailed
account of the developments in this area for the first two decades can be found in
the review paper [14] and the book of Ando and Graziani [15]. The latter also
provides a Matlab-based simulation software for the analysis of stochastic reso-
nance in bitable and quasi-linear systems.

The last decade has been marked by numerous studies on the constructive role of
noise in nervous systems, ranging from synapsis to cortex, as well as by extensive
theoretical search on finding new systems manifesting stochastic resonance along
with the general conditions under which such phenomena occur [16–21].

A significant element has been added to this field by proving that several
dynamical systems can exhibit a coherent behavior solely induced by noise,
phenomenon that was first named stochastic resonance without external periodic
driving [22], and later autonomous stochastic resonance [23] and coherence res-
onance [24, 25]. The last term has been adopted by many other authors during the
last years so it is also used in this book to describe these noise induced phenomena.
Coherence resonance was demonstrated in a number of experimental studies
including electronic circuits [26], laser systems [27], chemical reaction systems
[28, 29], and neural systems [30]. In Sect. 5.1.4, it has been shown that coherence
resonance may take place in bistable hysteretic systems with the internal noise
characteristics depending on the system state.

From a theoretical point of view, most of these studies can be framed into two-
state models or simple variants thereof, while complex multi-stable systems are
rarely addressed. The extensive experience of hysteretic modeling community [31]
may significantly contribute to the analysis of noise benefits in systems with
complex metastable configurations. So, one of the goals of this book is to provide a
unitary framework for studying noise-induced phenomena in complex hysteretic
systems and its implementation in an open-access academic software. By using
this framework and HysterSoft�, various differential, integral, and algebraic
models of hysteresis in an arbitrary colored noise environment can be considered
by graduate students, as well as advanced researchers, for the analysis of con-
structive effects of noise in hysteretic system with complex metastable state
configurations. Several examples are provided in the next section following the
line of the recent articles [32–34] published by our group.

6.4 Noise-Induced Resonance in Complex Hysteretic
Systems

In the first part of this section, the noise component of input, see (6.1), is a white
Gaussian noise which is simulated by a discrete-time i.i.d. random process, nor-
mally distributed with zero average and standard deviation equal to r.

First class of systems addressed in this analysis is defined by the Preisach
formalism as a weighted superposition of elementary hysteron operators described

6.3 Noise Induced Resonances in Bistable Systems 207

http://dx.doi.org/10.1007/978-1-4614-1374-5_5
http://dx.doi.org/10.1007/978-1-4614-1374-5_5


by rectangular loops. An extensive account of Preisach model (PM) and its vari-
ants can be found in Sect. 1.2. Here we consider the classical PM with normal
distributions along the interaction and critical fields with parameters rn ¼ 0:1,

rg ¼ 0:1, g0 ¼
ffiffiffi
2
p

, ysat ¼ 1, and S ¼ 1, where S ¼ ysi=ysat is the squareness fac-
tor. Examples of the input–output diagrams simulated by using PM driven by a
sinusoidal input with and without noise are presented in Fig. 6.6 (left). The topic
of magnetic stochastic resonance in PM was addressed for the first time in [35, 36].

The second hysteresis model considered in this analysis is the Jiles-Atherton
model (JAM), which has the input–output relation described by a differential
equation which involves the monotonicity of the input variables. A detailed
description of this model can be found in Sect. 1.3. Examples of the input–output
diagrams simulated by using the JAM driven by a sinusoidal input with and
without noise are presented in Fig. 6.6 (right) for the following model parameters:
k = 1.3, c = 0.08, a = 0, a = 0.5, and ysat = 1.

The third class of systems are using the energetic model (EM), in which the
output is related to the input by a transcendental algebraic equation involving the
past values of reversal points of the output, as presented in Sect. 1.4. Examples of
the input–output diagrams simulated by using EM driven by a sinusoidal input with
and without noise are presented in Fig. 6.7 (left), where we have used the following
model parameters: cr = 0.1, Ne = 0, q = 11, h = 0.4, and g = 8.24; the other
parameters have been selected in order to achieve a coercive field of 1 and ysat = 1.

The last class considered in this analysis is described by Coleman-Hodgdon
Model (CHM) in which the input–output relation is a differential one, as described
in Sect. 1.6. In our simulations we use, A1 = 0.2, A2 = 1, A3 = -2, A4 = 0.25,
a = 1, ls = 1, and ybp = ycl = 2.5. Examples of the input–output diagrams
simulated by using CHM driven by a sinusoidal input with and without noise are
presented in Fig. 6.7 (right).

Let us note that significant amplifications of the output signal can be observed
in Figs. 6.6 and 6.7 for all four types of hysteretic models in the presence of noise.
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Fig. 6.6 Input-output diagrams for Preisach (left) and Jiles-Atherton (right) models driven by a
sinusoidal input without (dotted lines) and with noise (continuous lines)

208 6 Constructive Effects of Noise in Hysteretic Systems

http://dx.doi.org/10.1007/978-1-4614-1374-5_1
http://dx.doi.org/10.1007/978-1-4614-1374-5_1
http://dx.doi.org/10.1007/978-1-4614-1374-5_1
http://dx.doi.org/10.1007/978-1-4614-1374-5_1
http://dx.doi.org/10.1007/978-1-4614-1374-5_1
http://dx.doi.org/10.1007/978-1-4614-1374-5_1
http://dx.doi.org/10.1007/978-1-4614-1374-5_1


High amplification and regularity of the output have been identified when the
coercive field of the major loop, the magnitude of the deterministic signal, and
the noise strength satisfy certain conditions. In order to find these conditions for
the stochastic resonance behavior, the output signal amplification (SA) and signal-
to-noise ratio (SNR) have been computed. An intermediate step in this attempt was
to compute the output spectral density. To this purpose, a sufficiently large number
of realizations for the stochastic input underlying (6.1) have been generated and
the corresponding output signals have been computed by using the hysteretic
model under consideration. Then, the Fast Fourier Transform technique was
applied to each output signal and the results were averaged out over the all real-
izations. Additional details regarding the calculation for output spectral density for
complex hysteretic systems have been presented in the previous Chapter.

Finally, the SNR and the SA were computed by evaluating the Fourier com-
ponents of the output corresponding to frequency f of the input sinusoid. The SNR
was computed as the ratio between the mean l1 and the standard deviation r1 of
the averaged signal:

SNR ¼ 10 log l1=r1ð Þ; ð6:2Þ

while the SA as the ratio between mean l1 and the magnitude of the Fourier
component of the output signal corresponding to the same frequency f but com-
puted in the absence of noise:

SA ¼ 10 log l1=l10ð Þ; ð6:3Þ

This noise characterization technique is implemented in HysterSoft� and can
be used by the reader for the systems of interest. The sample models used in this
comparison have major loops with both the critical field and saturation equal to 1,
as shown in Fig. 6.8. The Coleman-Hodgdon and Energetic examples have been
chosen to have similar major loops. However, the minor loops are relatively
different from one class to another due to the fundamental differences between
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Fig. 6.7 Input-output diagrams for Energetic (left) and Coleman-Hodgdon (right) models driven
by a sinusoidal input without (dotted lines) and with noise (continuous lines)
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these models, and lead to significantly different characteristics of noise induced
amplification, as it is apparent by comparing the simulations shown in Fig. 6.9.
The signal amplification decreases with the increase in sinusoid amplitude, as
expected, but the resonant noise strength increases (Coleman-Hodgdon) or stays
constant (Energetic). Let us remark that the variation of output signal amplification
with noise strength features a maximum even for sinusoid amplitude higher than
the critical field of the hysteretic model (Fig. 6.10).

Due to the high degree of hysteretic loop squareness for the selected PM, the
signal amplification is much higher than the SA of the other models used in our
comparison. However, the input noise is also significantly amplified by this PM
and consequently, the range of SNR is similar to all models, as it is also apparent
from Fig. 6.11. The high degree of loop squareness makes this system behavior
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Fig. 6.8 The major hysteretic loops for four models used in our comparison
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rather similar to the behavior of bistable systems, which have been extensively
analyzed over the last years. Thus, this PM shape of SNR variation with the noise
strength r and the resonant value of r for weak periodic signals can be
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approximated by the analytical results based on small signal analysis of bistable
systems and the exit problem approach applied to a Brownian motion in a semi-
finite interval or a potential well [37–39].

SNR characteristics for the models considered in this analysis indicate a clear
maximum at non-zero noise strength, which is a fingerprint of stochastic reso-
nance, but the resonant noise strength variation with the deterministic input
amplitude follows significantly different monotonic paths for each type of models.
Once the degree of loop squareness is reduced and the complexity of metastable
state landscape of a general hysteretic system is manifested, the noise induced
resonance characteristics have significantly different features than the ones known
from usual stochastic resonance phenomena obtained for bistable systems and their
variants.

It is also clear from this analysis that systems having approximately the same
major hysteretic loops (as it can be seen Fig. 6.9 for Energetic and Coleman-
Hodgdon examples) respond in a completely different manner to a noisy input. By
exploring higher order reversals curves and minor hysteretic loops, a noisy input
emphasizes the fundamental differences between the hysteresis models related to
memory, accommodation, thermal relaxation, and other relevant characteristics.

Important changes have also been observed in the input–output diagrams and
signal amplification characteristics when applying the dynamic Jiles-Atherton
model to investigate stochastic resonance phenomena. In Fig. 6.11 are presented
four examples of input–output diagrams obtained for the dynamic Jiles-Atherton
model driven by sinusoidal inputs with noise, when the relaxation time parameter s
is considered 0, 0.2, 1, and 2, respectively. The sinusoidal amplitude X0 in these
examples is taken 1.2, so it is larger than the critical field of the model and yet
important signal amplification is happening. The variation of output signal
amplification and signal-to-noise-ratio with respect to input noise strength for
selected sub-threshold values of sinusoid amplitude is represented in Fig. 6.12 in
the case of s equal to 0 and 0.1. Although SA changes with the change of
relaxation rate s, the SNR remains almost constant, the observation confirm by
simulations made for higher values of s, as well. Consequently, these dynamic
Jiles-Atherton models maintain the SNR features of static Jiles-Atherton model.

In conclusion, white noise can have a constructive effect in various complex
hysteretic systems, activating some kind of resonance response. The quantities
used to characterize this behavior are signal amplification and signal-to-noise ratio,
which displays a maximum at the resonance noise strength. The statistical tech-
nique includes various algebraic, differential and integral models of hysteresis and
is implemented in HysterSoft� (Fig. 6.13).

In the final part of this Chapter, the influence of noise color on noise-induced
resonance phenomena in complex hysteretic systems is investigated. In general,
colored noise is the complementary notion of white noise including noises with flat
spectrum only on a finite frequency band and noises with non-flat spectrum.
Practically all real noises are colored to some degree, but white noise is much
more convenient for theoretical analysis due to its mathematical simplicity.
In Chap. 2, the main types of colored noise are discussed along with the numerical

212 6 Constructive Effects of Noise in Hysteretic Systems

http://dx.doi.org/10.1007/978-1-4614-1374-5_2
http://dx.doi.org/10.1007/978-1-4614-1374-5_2


-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6
O

ut
pu

t

Input

τ = 0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

O
ut

pu
t

Input

τ = 0.2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

O
ut

pu
t

Input

τ = 1

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

O
ut

pu
t

Input

τ = 2

Fig. 6.12 Input-output diagrams for four dynamic Jiles-Atherton models driven by sinusoidal
inputs with noise. The relaxation time s is considered 0, 0.2, 1, and 2, respectively
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techniques used to simulate them. Here, the colored noise is numerically generated
according to the method described in Sect. 2.1.8 starting from a discrete-time i.i.d.
random process, normally distributed with zero average and standard deviation
denoted by r. For a consistent comparison between the effects of different types of
colored noise, the noise power is normalized to unity in all cases. The noise
spectrum is considered proportional to f a but arbitrary colored noise can be by
considered and studied by the reader using HysterSoft�.

In the case of a bistable hysteretic systems, the computational results for SNR
characteristics indicates a maximum at non-zero noise strength for sub-threshold
sinusoidal signal, which is a fingerprint of stochastic resonance [40, 41]. The
resonant noise strength is decreasing with the increase in the amplitude of external
oscillation but this variation follows quantitatively different paths for each case of
noise color analyzed. For a fixed external amplitude, the maximum of the SNR
decreases and moves towards large noise intensities when decreasing the power
coefficient a [34]. As expected, the constructive effects of noise disappear in
bistable hysteretic systems when external signal is strong enough to overcome the
system threshold (supra-threshold sinusoidal signals). Similar conclusions were
obtained by using different techniques in References [11, 12], where the case a� 0
was analyzed. However, the characteristics of this behavior change significantly
when multi-stable hysteretic systems are analyzed.

Samples of the simulation results for the EM driven by noisy oscillatory input
are presented in Fig. 6.14, where SA and SNR are plotted against the noise
strength for selected values of sinusoid amplitude in the case of blue, white, pink,
and red noise. Samples of SNR characteristics for the PM are plotted in Fig. 6.15
in the case of white and pink noise. The models have been selected to describe a
hysteretic system in which the major loop has both the critical field and saturation
equal to 1, as it was in the rectangular loop case. However, smoother transitions
from negative to positive saturations make these complex systems exhibit SR for
sub-critical as well as for supra-critical field values of sinusoid amplitude. While
PM maintains the rectangular loop feature of decreasing the resonant noise
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strength when the amplitude of external oscillation is increased, the EM has an
opposite behavior for positive values of power coefficient a. As it is also apparent
from the last two figures, for a fixed external amplitude, the maximum of the SNR
decreases and moves toward large noise intensities when decreasing a.
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Appendix A
Hysteresis Modeling in HysterSoft�

HysterSoft� is a computer program for the simulation of hysteresis and related
phenomena in hysteretic systems (http://www.eng.fsu.edu/ms/HysterSoft). It pro-
vides a user-friendly simulation framework, in which various mathematical models
of hysteresis can be implemented numerically relatively easy. HysterSoft� version
1.0 comes with the following models already implemented by default (these
models are called predefined models): the backlash operator, the Bouc-Wen model,
the Coleman-Hodgdon model, the stop (elastic-plastic) operator, the energetic
model, the Jiles-Atherton model, the Langevin model, the limiting-loop proximity
model, the Preisach model (including the cases in which the Preisach distribution
is specified analytically or using discrete values defined on a mesh), and the
rectangular-loop model. Users can also add additional models to the program by
using predefined templates. These models are called user-defined models.

HysterSoft� can also be used to compute first-order reversal-curves (FORCs)
diagrams, identify the model parameters from experimental data, conduct
temperature and stress dependent simulations, perform noise passage analysis in
hysteretic systems, etc. Most of these simulations can be performed by any
hysteretic model either predefined or user-defined. The program can also be used
as a dll library and called from other programs such as Matlab, Simulink, or C++.

In addition, HysterSoft� can be used to define hysteresis models for the electric
permittivity and magnetic permeability. These models can be imported directly in
RandFlux� and used to simulate electronic circuits containing hysteretic
inductors, transformers, and capacitors.

A list of the most important features in HysterSoft� is given below:

1. Direct and inverse hysteresis modeling
2. Dynamic hysteresis modeling (e.g. frequency-dependent hysteresis modeling)
3. FORCs computations
4. Identify the Preisach distribution function using an experimental set of FORCs

in the case of the scalar Preisach model and a set of FORCs measured at
different angles in the case of the vector Preisach model.

5. Vector hysteresis modeling

M. Dimian and P. Andrei, Noise-Driven Phenomena in Hysteretic Systems,
Signals and Communication Technology 218, DOI: 10.1007/978-1-4614-1374-5,
� Springer Science+Business Media New York 2014

219

(http://www.eng.fsu.edu/ms/HysterSoft)


6. Noise passage analysis in hysteretic systems
7. Stochastic analysis of hysteretic systems
8. Thermal relaxation in both scalar and vector models
9. User-defined models of hysteresis

10. Possibility to use HysterSoft� as a library
11. Parameters identification tools for all the models (including the user-defined

models)
12. Perform ‘‘loop simulations’’, which are more complex simulations defined by

the user.

A.1 Simulations Using Scalar Models of Hysteresis

HysterSoft� can perform different types of simulations by using the modules
implemented in the program. These types of simulations can be performed using
any hysteresis model, predefined or user-defined. The modules can be selected
from the main combo-box in the scalar model window.

A.1.1 Modules Available for Scalar Models of Hysteresis

Module A. (Input and output are defined using the GUI) Simulate hysteresis
curves be varying the input in the case of direct hysteresis modeling
or output in the case of inverse hysteresis modeling using the track
bars from the graphical user interface. This module can be used to
simulate static hysteresis curves, visualize the current hysteretic state
(e.g. the Preisach plane) in real time, compute the major hysteresis
loop, initial and anhysteretic curves.

Module B. (Input defined from file) Simulate hysteresis curves using the values
of the input in the case of direct hysteresis modeling or output in the
case of inverse hysteresis modeling defined in a file or in a textbox.
The input or output should be defined one value per line. HysterSoft�
will parse these values and compute the hysteretic curves. The user
can use symbolic notations (or user-defined parameters) for the main
physical parameters like in the following listing:

//sample input file
0
P1
-Hc
100

In the above example HysterSoft� will start from 0, apply an input
equal to the value of user-defined parameter P1 (which is set in the
options property grid), then another value equal to minus the
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coercive field of the material, and finally 100. The final values of the
input and output are stored in the FinalX and FinalY variables.
This module can be used in loop simulations, but cannot be used to
perform dynamic simulations.

Module C. (Input defined analytically) Compute the output variable if the input
is a function of time defined analytically. The input signal should be
defined using the InputSignal editor-. When defining the input
signal it is convenient to use variables such as tMin, tMax, Hc,
P1, P2, P3, P4, etc. in order to easily modify the signal from the
property grid. It is also convenient to use such variables when
performing loop simulations.
This module allows to perform rate-dependent simulations by setting
the EffectiveField or RelaxationTime variables. The
relaxation time should be a real number, while the effective field
should be a string variable that defines the effective field as a
function of the normalized rate (i.e. time derivative) of the output
variable. For instance, by setting the EffectiveField variable to

1.2*dm

HysterSoft� will assume that the input of the system is equal to

xeff tð Þ ¼ x tð Þ þ 1:2
_y tð Þ
ys

ð0:1Þ

Rate-dependent simulations are particularly convenient for
simulating frequency-dependent hysteresis.

Module D. (FORCs computation) Compute a set of first-order reversal-curves.
The user can define the maximum applied input (XMax), the number
of reversal curves (Reversals), and the number of points per
curve (Resolution) in the property grid. Dynamic models cannot
be used when computing FORCs. If one needs to compute FORCs
using a dynamic model it is recommended to define the input signal
analytically by using the previous module (Module C).

Module E. (Thermal relaxation) Perform simulations involving thermal relax-
ation. Thermal relaxation simulations are performed by adding a
‘‘thermal noise’’ to the input of a hysteresis model. The initial state
can be obtained in two ways. The first way is to bring the hysteretic
system in a given state by running a simulation with any other
module (for instance modules A–C), then copying the hysteretic
state, and using it in the thermal relaxation module. The second way
to set the initial state is to use the FirstFieldToApply and
SecondFieldToApply variables: before any thermal relaxation
simulation HysterSoft� starts from the zero anhysteretic state and
applies an input equal to FirstFieldToApply, then another
input equal to SecondFieldToApply, and, then, performs the
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thermal relaxation simulations. If one does not want to use these
variables (and, for instance, use the current hysteretic state in the
memory) one needs to set the FirstFieldToApply and
SecondFieldToApply to NaN.
The user can select different types of noise to use in the thermal
relaxation including Ornstein-Uhlenbeck, Gaussian, Laplace,
Cauchy, and uniformly distributed noise by setting the
TypeOfNoise variable. For each type of noise the user can set
the magnitude of the noise and different other parameters
characteristic to the noise selected. In addition, the user can
change the spectrum of the noise by changing the
NormalizeInputSpectrum variable. By default the
NormalizeInputSpectrum is set to 1, which means that the
input noise is multiplied by 1 (i.e. left unchanged), however the user
can change this variable to a frequency dependent function in order
to modify the color of the noise. In this way, one can use colored
noise inputs such as pink, blue, or violet noises.
The user can define the number of total averages for which the
expected values of the output variable is computed, the experiment
time, and the time step of the thermal noise. After the simulation is
performed HysterSoft� will set the ViscosityCoefficient
variable to the value of the viscosity coefficient.
This module can be used in loop simulations.

Module F. (Noise passage analysis) Analyze the noise passage characteristics
through hysteretic systems. This module allows the user to compute
the output spectrum of any model of hysteresis if the input spectrum
is given. The input spectrum can be of any type described in the
previous module. This module can be used in loop simulations.

Module G. (Stochastic resonance) Perform stochastic resonance simulations.
This module can be used to compute the signal amplification (SA)
and signal-to-noise ratio (SNR) in stochastic resonance. By default,
the input signal is sinusoidal, but can be changed using the Signal
Editor. In addition, parameters P1 and P2 can be used to easily
modify the input signal, for instance when performing loop
simulations. The input noise is defined in the same way like in the
previous two modules. The signal amplification and signal-to-noise
ratio are stored in the SA and SNR variables and can be used in loop
simulations.
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A.1.2 Loop Simulations

Loop simulations refer to simulations that are performed multiple times, each time
for a different set of model parameters or input signals. For instance, such
simulations are convenient to perform when computing the anhysteretic curve,
when computing hysteresis curves for different values of model parameters, or
when simulating the thermal relaxation, noise passage, or stochastic resonance for
different parameters of the input noise.

Loop simulation can be performed using the ‘‘Loop simulation’’ editor. By
default, HysterSoft� performs two embraced iteration loops for two different
parameters. The parameters and the values that these parameters take during each
simulation can be set in the ‘‘Major loop’’ and ‘‘Minor loop’’ tabs of the ‘‘Loop
simulation’’ editor. The user can specify what variables to save on the hard disk,
what curves from the output window to save, and what image files to produce after
each iteration. The file names can be defined using parameters between two $
characters. For instance

Output_Hc_$Hc$.dat

will be expended by replacing $Hc$ with the current value of the coercive field.
Most of the figures showing simulation results in this book are produced using the
loop simulation module in HysterSoft�.

A.1.3 Inverse Modeling

Inverse modeling can be performed by using the first two modules (Module A and
Module B). Using inverse modeling the user needs to specify the values of the
output for which the input needs to be computed and set the ModelingType
variable to InverseModeling.

In the case of user-defined models, inverse modeling can be performed only if
the model implements the Susceptibility or the ChangeY functions (see
Sect. A.3).

A.1.4 Parameter Identification Tools

HysterSoft� implements three types of methods to determine the model
parameters:

1. evolutionary identification techniques such as swarm optimization, genetic
algorithms, and the Nelder-Mead method;

2. the Levenberg–Marquardt algorithm;
3. iterative techniques.
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In addition, HysterSoft� implements model specific, parameter identification
tools (for instance in the case of the energetic and Jiles-Atherton models). The
values of the physical parameters that should be used in the identification problem
(such as the coercive field, the output saturation, the remanence, initial
susceptibility, etc.) can be specified in the graphical user interface.

In the case of user-defined models, the model parameters that appear in the
parameter identification editor should be identified using the
[IdentificationModelParameter] attribute (see Sect. A.3).

A.2 Simulations Using Vector Models of Hysteresis

By default, HysterSoft� adds a two-dimensional vector model of hysteresis to any
scalar model. The vector model is defined using superposition as explained in
Chap. 1. Similar to the case of scalar models of hysteresis, HysterSoft� has a
number of modules that can be used to perform vector simulations. These modules
are summarized below.

Module A. (Input and output are defined using the GUI) Simulate vector
hysteresis curves be varying the input using the buttons on the
graphical user interface (these buttons can also be pressed using the
arrow buttons on the keyboard).

Module B. (Input defined from file) Simulate hysteresis curves be using the
input from a file or from a textbox. Both the x and y components of
the input should be defined one the same line. HysterSoft� will
parse these values and compute the output variable. Shortcuts for
various parameters can also be used like in the next example

//sample input file for vector simulations
0, 0
HcX, 0
HcX, HcY
P1, P2
0, -P3

In this example HysterSoft� starts from (xx, xy) = (0, 0), than applies
(HcX, 0), (HcX, HcY), (P1, P2), and finally (0, -P3). The values of
HcX, HxY, P1, P2, P3, etc. will be expended to the numerical
values defined by the user in the property grid. The final value of the
input and output components after the simulation are given by the
FinalX_x, FinalX_y, FinalY_x, and FinalY_x variables.
These variables can be used in loop simulations.

Module C. (FORCs computation) Compute vectorial FORCs, by specifying the
maximum applied input (XMax), the number of reversal curves
(Reversals), the number of points per curve (Resolution),
and the angle (Angle) under which the FORCs are computed.
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These values can all be specified in the property grid. Dynamic
models cannot be used when computing vectorial FORCs.

Module D. (Thermal relaxation) Perform vectorial thermal relaxation simula-
tions. The initial hysteretic state can be specified by using the copy
and paste features like in the case of scalar models. The user can also
specify the magnitude of the noise, the number of averages, and the
number of points in which the thermal relaxation is computed.
The parameters of the scalar hysteresis model in any particular
direction are computed using the values of the parameters in the x
and y directions, as explained in Sect. 1.8.1. The parameters in the x
and y directions can be defined by the user using the model property
grid.

A.3 Defining New Hysteresis Models

New scalar and vector hysteresis models can be easily defined in HysterSoft�. To
define a new scalar model, start the ‘‘New Scalar Model’’ editor from the ‘‘Scalar
Models’’ menu. Using this editor one can define the equations of the new model,
properties that should appear in the property grid, default values for the model
parameters, the parameters that appear in the parameter identification tool, etc. The
easiest way to learn how to define new hysteresis models is to start with the
examples that come with the installation kit.

The code of the new model should be written in C# and should contain the
definition of the model as a C# class. This class should be inherited from the
UserDefinedModel class (which is internally implemented in HysterSoft�).
Any user-defined model should define at least one of the following two functions

double Susceptibility(double x, double y, int
sensOfVariation)
or
double ChangeX(double x)

The first function defines the susceptibility of the model, while the second
describes how the output variable changes when the input becomes equal to x).
The first function is convenient for use in differential models of hysteresis, while
the second one in algebraic models. Once any of the above functions is
implemented the user can perform any of the types of simulations presented above,
including thermal relaxation and noise passage analysis.

Now let us look at an example that comes by default in HysterSoft�. This
example implements the Jiles-Atherton model.
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The Susceptibility function is mandatory (because we do not implement
the ChangeX function). The rest of all other functions and properties are optional,
including the default constructor.

The [IdentificationModelParameter(…)] attribute for properties is
also optional and tells HysterSoft� that the given property defines a model
parameter that should appear in the Parameter Identification Tool (see
Sect. A.1.4). The two parameters of the IdentificationModelParameter
attribute denote the minimum and maximum values within which HysterSoft� can
search during the parameter identification.

Functions SpecialFunctions.Langevin and SpecialFunctions.
dLangevin are internally defined in HysterSoft� and they compute the
Langevin function and the derivative of the Langevin function. The user can use
his or her own implementations for these functions.

The ToString function defines a name of the current model.
Next let us look at another example that implements the Langevin model, which

is an algebraic model.

Notice that HysterSoft� will always define a variable Ms, which is by default
equal to 1. Since hysteresis is a history dependent phenomenon, HysterSoft�
allows users to recall the previous values of the input and output variables. The
following predefined variables can be used from anywhere inside the class
definition (including from inside functions Susceptibility and ChangeX):

• state.X – the last value of the input
• state.Y – the last value of the output
• state.XReversal – the last value of the input reversal
• state.YReversal – the last value of the input reversal
• state.pastX[i] – the previous i-th value of the input
• state.pastY[i] – the previous i-th value of the output

Notice in the last example that HysterSoft� will not be able to perform inverse
modeling simulations because the class does not implement the
Susceptibility or the ChangeY functions.
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A.4 Saving the Model Parameters

The parameters of any model of hysteresis can be saved in xml files that later can
be re-loaded and used in other simulations. By default, HysterSoft� assigns the
.hyst file extension to any model parameter file. Models parameters files are in
general compatible from one version of HysterSoft� to another.

A.5 Computing the Scalar Preisach Distribution Function
From First-Order Reversal-Curves

The ‘‘Scalar FORCs Analysis’’ tool in HysterSoft� can be used to compute the
Everett distribution and the reversible R(a) and irreversible P(a, b) Preisach
distributions if a set of FORCs is provided. The set of FORCs should be given as a
3-column file giving the values of the reversal field, current field, and current
output for each curve, like in the example below:

The user can specify any number of reversal curves, each having any number of
points. The reversal fields and the points on each reversal curve can be distributed
non-uniformly, however, in order to increase the accuracy of computations it is
recommended to use uniform distributions. HysterSoft� will automatically detect
the number of reversal curves and points on each curve. FORCs should be given as
ASCII files with extension .forcs.

The Everett distribution can be saved as a .everett file, while the computed
Preisach distribution as a .preisach file. The structure of the .preisach file
is similar to the structure of the .forcs file and consists of 3 columns giving the
values of the reversible component of the Preisach distribution R(a) when a = b
and the irreversible component of the Preisach distribution irreversible P(a, b)
when a[ b. This is a sample .preisach file
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The .everett and .forcs files can be loaded by the Preisach model with
discrete Preisach distributions and used to perform frequency-dependent
simulations or thermal and noise analysis.

To identify the Preisach distributions of the vector Preisach model, HysterSoft�
allows users to load multiple.forcsfiles and vector distributions. This can be done
using the ‘‘Load FORCs Analysis’’ and ‘‘Load Multiple FORCs’’ tools.

A.6 Computing the Vector Preisach Distribution Function
from a Set of First-Order Reversal-Curves

To identify the Preisach distributions of the vector Preisach model, HysterSoft�
allows users to load multiple .forcs files and vector distributions. This can be
done using the ‘‘Load FORCs Analysis’’ and ‘‘Load Multiple FORCs’’ tools. The
FORCs in each angular direction need to be specified in different files and loaded
in the software. HysterSoft� can compute the Preisach distribution function for
both two-dimensional and three-dimensional FORCs in the case of isotropic
hysteretic systems, and only for two-dimensional FORCs in the case of anisotropic
systems. Notice that two-dimensional FORCs should be specified along each polar
angle u, while three-dimensional FORCs should be specified along each polar and
azimuthal angles u and h

A.7 Performing Temperature and Stress Dependent
Simulations

Temperature and mechanical stress change the shape of the hysteresis loops in
most magnetic and electric hysteretic systems. For instance, in the case of
magnetic systems, increasing the temperature will usually decrease the value of the
coercive field, output remanence and saturation, while increasing the stress will
increase the output remanence and make the shape of the major loop more
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rectangular. Temperature and stress dependent hysteresis curves can be computed
using the energetic and Jiles-Atherton models of hysteresis. The values of the
temperature and stress can be specified in the parameter window of the model.

A.8 Using HysterSoft� as a Library

Most HysterSoft� functions can be called from other Windows applications (such
as Matlab, C, Fortran, etc.). There are two ways to call HysterSoft� functions
from other programs:

• load the HysteresisLibrary.dll file as a .NET assembly, selecting the desired
hysteresis model, and call the public functions and properties (recommended)

• use HysterSoft as a COM object (not recommended; this way is obsolete and is
kept for compatibility with old versions of HysterSoft�).

Below there are a few examples that show how to call HysterSoft� from Matlab
by loading HysteresisLibrary.dll as an assembly. These examples can also be found
in the /Matlab subdirectory from the installation directory of HysterSoft�.

Example 1: Loading the HysterSoft library, selecting a model, setting model
parameters, and computing the values of some physical parameters.
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Note that the model parameters have an underscore character after the
parameter name. This is because variables in Matlab cannot start with the
underscore character, so all the variables that start with an underscore in
HysterSoft� will be renamed in Matlab.

The following table shows the class names of the scalar hysteresis models
currently implemented in HysterSoft�.

Example 2: Solving inverse problems.

Example 3: Ploting the major hysteresis loop.

Model Command

Backlash operator BacklashOperator()

Bouc-Wen BoucWenModel()

Coleman-Hodgdon HodgdonModel()

Elastic-plastic operator ElasticPlasticOperator()

Energetic (Hauser) EnergeticModel()

Jiles-Atherton JilesModel()

Langevin LangevinModel()

Limiting-loop proximity LimitingLoopProximity()

Preisach JilesModel()

Rectangular loop RectangularLoopModel()

Model Command

Backlash operator VectorBacklashOperator()

Bouc-Wen VectorBoucWenModel()

Coleman-Hodgdon VectorHodgdonModel()

Elastic-plastic operator VectorElasticPlasticOperator()

Energetic (Hauser) VectorEnergeticModel()

Jiles-Atherton VectorJilesModel()

Langevin VectorLangevinModel()

Limiting-loop proximity VectorLimitingLoopProximity()

Preisach VectorPreisachModel()

Rectangular loop VectorRectangularLoopModel()
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Example 4: Saving and loading material parameters, displaying the hysteretic
state window, and the parameter identification window.

Example 5: Working with vector models. The following example shows how
to use the 2-D vector Preisach model.

The following table shows the class names of the vector hysteresis models
currently implemented in HysterSoft�.
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