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Preface

In typical mobile communication systems transmission takes place over a
time-varying fading channel. The stochastic channel fading process can as-
sumed to be bandlimited and its realization is usually unknown to the re-
ceiver. To allow for a coherent signal detection, the channel fading process is
often estimated based on pilot symbols which are periodically inserted into
the transmit symbols sequence. The achievable data rate with this approach
depends on the dynamics of the channel fading process. For this conventional
approach, i.e., performing channel estimation solely based on pilot symbols
and using it for coherent detection (synchronized detection) in a second step,
bounds on the achievable data rate are known. However, in recent years re-
ceiver structures got into the focus of research, where the channel estimation
is iteratively enhanced based on the reliability information on data symbols
(code-aided channel estimation). For this kind of systems, the bounds on the
achievable data rate with synchronized detection based on a solely pilot based
channel estimation are no longer valid.

The study of the possible performance gain when using such receivers with
synchronized detection and a code-aided channel estimation in comparison to
synchronized detection in combination with a solely pilot based channel esti-
mation poses also the question on the capacity of stationary fading channels.
Although such channels are typical for many practical mobile communication
systems, already for the simple case of a Rayleigh flat-fading channel the ca-
pacity and the capacity-achieving input distribution are unknown. There exist
bounds on the capacity, however, most of them are tight only in a limited
SNR regime and rely on a peak power constraint.

Thinking of this, in the present thesis various aspects regarding the capac-

First, bounds on the achievable data rate with i.i.d. zero-mean proper Gaus-
sian input symbols, which are capacity achieving in the coherent case, i.e., in
case of perfect channel knowledge at the receiver, are derived. These bounds
are tight in the sense that the difference between the upper and the lower
bound is bounded for all SNRs. The lower bound converges to the coher-
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ity/achievable data rate of stationary Rayleigh fading channels are treated.
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ent capacity for asymptotically small channel dynamics. Furthermore, these
bounds are extended to the case of multiple-input multiple-output (MIMO)
channels and to the case of frequency selective channels.

The comparison of these bounds on the achievable rate with i.i.d. zero-
mean proper Gaussian input symbols to the achievable rate while using re-
ceivers with synchronized detection based on a solely pilot based channel
estimation already gives an indication on the performance of such conven-
tional receiver structures. However, for systems with receivers based on it-
erative code-aided channel estimation periodic pilot symbols are still used.
Therefore, in a further part of the present work the achievable rate with re-
ceivers based on synchronized detection and a code-aided channel estimation
is studied. For a specific type of such a receiver an approximate upper bound
on the achievable rate is derived. The comparison of this approximate upper
bound and the achievable data rate with receivers using synchronized detec-
tion based on a solely pilot based channel estimation gives an approximate
upper bound on the possible gain by using this kind of code-aided channel es-
timation in comparison to the conventional receiver using a solely pilot based
channel estimation. In addition, the achievable data rate with an optimal
joint processing of pilot and data symbols is studied and a lower bound on
the achievable rate for this case is derived. In this context, it is also shown
which part of the mutual information of the transmitter and the receiver is
discarded when using the conventional receiver with synchronized detection
based on a solely pilot based channel estimation.

Concerning the typically applied periodic pilot symbols the question arises
if these periodic pilot symbols are optimal from an information theoretic per-
spective. To address this question, the mutual information between trans-
mitter and receiver is studied for a given discrete signaling set. The opti-
mum input distribution, i.e., the one that maximizes the mutual information
when restricting to the given signaling set, is given implicitly based on the
Kullback-Leibler distance. Thereon it is shown that periodic pilot symbols
are not capacity-achieving in general. However, for practical systems they
allow for receivers with small computational complexity.
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6.2.5 An Upper Bound on I(x0; y0|ĥ0,x\0) . . . . . . . . . . . . . . . 121
6.2.6 Approximative Upper Bound on the Achievable

Rate with the Iterative Code-Aided Synchronized
Detection based Receiver using the Modified Channel
Estimator (6.19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.7 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Joint Processing of Pilot and Data Symbols . . . . . . . . . . . . . . 137
7.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2 Expressing I(y;x) via the Pilot based Channel Estimate ĥpil 138
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Chapter 1

Introduction

Over the last decade the wireless communication market evolved dynamically,
enabling a variety of new services and applications beside the classical voice
telephony. One example is the mobile internet. This development was enabled
by enhanced technology and rapidly increasing available data rates. While the
demand for higher data rates stimulates the development of systems provid-
ing increased bandwidth, the available frequency spectrum is limited as a
natural resource, requiring that deployed technology uses this resource with
increasing efficiency. Therefore, one of the major goals of telecommunica-
tion research is the increase of spectral efficiency leading to strong efforts to
enhance physical layer design. However, physics of the wireless channel pose
strict limits on the spectral efficiency. To evaluate the performance of systems
in operation it is highly beneficial to know about the ultimate physical limits.
In addition, knowledge on the limits in capacity of the physical communica-
tion channel is a valuable basis on decisions and guidelines for research and
development of physical layer designs. If existing systems show to operate
already close to these ultimate limits, the revenue of putting additional ef-
fort in enhancing existing technology will be very small. Therefore, a reliable
judgment on research perspectives premises a detailed comprehension on the
theoretical limits.

In the context of communication technology, the discipline of information
theory, aims to give answers regarding the limits imposed by the physical
channel. Historically, information theory originated from work on the funda-
mental limits on reliable communication and compression of data by Claude
E. Shannon. In his landmark paper [108], Shannon identified the channel
capacity as the maximum mutual information between the input and the
output of a channel. He stated the channel coding theorem, in which for
discrete memoryless channels (DMC) Shannon proved that all rates below
channel capacity are achievable. In addition, for the additive white Gaussian
noise (AWGN) channel with an average input power constraint Shannon was
able to quantify the channel capacity exactly, as well as to determine the
capacity-achieving input distribution to be Gaussian.

1M. Dörpinghaus, On the Achievable Rate of Stationary Fading Channels, Foundations in signal
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2 1 Introduction

Since Shannon’s days, information theory delivered a variety of valuable
results helping to comprehend the theoretical background of modern com-
munication systems. However, many problems are still open. In addition to
the previously mentioned AWGN channel, in mobile wireless communica-
tion environments the signal is additionally disturbed by a multiplicative
random process which is characterized by a temporal correlation. Therefore,
this channel is not memoryless. The realization of the channel fading process
is typically unknown to both, the transmitter and the receiver. Although this
class of channels applies to many realistic mobile communication systems,
the question on its capacity and on the capacity-achieving input distribution
is still open.

In many typical receivers, estimates of the channel fading process are calcu-
lated to enable coherent detection1. For this purpose, typically pilot symbols,
i.e., symbols which are known to the receiver, are inserted into the transmit
data stream. Due to the temporal correlation of the channel fading process,
they allow to estimate the fading process by interpolation. The principle of
using the estimate of the channel fading process as the actual fading process
for coherent detection is well known and is often referred to as synchronized
detection [79]. The use of such training sequences can be understood as a
specific type of coding [67]. However, their optimality with respect to the
channel capacity has never been shown. Concerning the system design, they
have the advantage to allow for a separation of synchronization and decoding
within the receiver. The aim of the so called inner receiver is to estimate
the unknown channel parameters, while the so called outer receiver performs
decoding of the transmitted information sequence, see Fig. 1.1. This sepa-
ration enables receiver implementations with suitable complexity. While in
conventional designs of a synchronized detection based receiver the channel
estimation is solely based on pilot symbols, recently iterative receiver concepts
have been proposed, see, e.g., the special issue [58], the editorials [110], [111],
and the publications [83] and [98]. Corresponding to these iterative receiver
concepts, synchronization, respectively channel estimation, is enhanced us-
ing reliability information on the transmitted data symbols delivered by the
channel decoder, as shown in Fig. 1.1 in light gray. Regarding the channel
estimation often the term code-aided channel estimation is used in this con-
text. We refer to this receiver structure as iterative code-aided synchronized
detection or iterative synchronization and decoding. The iterative concatena-
tion of synchronization and decoding breaks up the strict separation between
inner and outer receiver.

While for the conventional approach, where synchronized detection is used
in combination with a solely pilot based channel estimation, tight2 upper
and lower bounds on the achievable data rate are known, see [6], [5], and

1 We do not consider differential modulation as their performance is known to be
worse with respect to the achievable rate.
2 The term tight means that the bounds are sufficiently close from an engineering
point of view and is not meant in the sense of mathematical tightness.
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Fig. 1.1: Block diagram of a transmission system with a receiver
based on synchronized detection, exemplary for BPSK and a single-
input single-output flat-fading channel in a simplified discrete-time baseband
representation; iterative code-aided channel estimation in light gray; {xk}
transmit sequence, {hk} channel fading process, {ĥk} estimate of channel
fading process, {nk} additive noise process, {yk} received sequence

[77], for receivers based on iterative code-aided synchronized detection, these
bounds are not valid. Besides the general interest in an answer to the capacity
of fading channels this motivates to study the achievable rate without any
assumption on the use of pilot symbols, i.e., a specific type of coding.

The aim of this thesis is the study of bounds on the achievable rate/
capacity3 of stationary fading channels where the channel state information
(CSI) is unknown to the transmitter and the receiver, while at least the
receiver is aware of the channel law. This capacity is sometimes referred to
as noncoherent capacity.

Beside the fact that a characterization of the channel capacity would enable
the evaluation of the possible performance gain when using code-aided instead
of solely pilot based synchronization, it would also help to answer several
other questions in communication system design. Concerning multiantenna
(MIMO) systems and wideband channels, knowledge of the capacity and
its dependency on the number of transmit antennas, the spatial antenna
correlation and the frequency selectivity of the channel is very important, as
the number of degrees of freedom of the channel increases with the number of
antennas and the bandwidth of the transmitted signal. Thus, spreading the
transmit power over too many transmit antennas or a too large bandwidth,
leads to a degradation of the achievable rate.

3 Depending on context we use the term achievable rate instead of the term capacity
when we make presumptions on the input distribution, e.g., assuming identically
distributed (i.d.) or independent identically distributed (i.i.d.) input symbols, which
are not capacity-achieving in general.
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1.1 Prior Work

In the following, we give a brief overview on the existing literature regarding
the capacity of fading channels. This presentation especially focuses on the
specific assumptions that have been made to simplify the problem. Therefore,
it has not the aim to be an exhaustive list of existing work.

The capacity of fading channels where the channel state information is
unknown has received a lot of attention in the literature. One line of work
considers the simple block fading channel, where the channel is assumed to be
constant over a block of N symbols and changes independently from block
to block. In [75] the capacity of a MIMO block fading channel is studied.
Furthermore, results concerning the optimal input distributions in case of a
low SNR noncoherent MIMO block fading channel have been recently pre-
sented in [115]. The achievable rate for a MIMO block fading channel when
using training sequences for channel estimation has been studied in [48], [94]
and [37]. However, the block fading model is nonstationary and therefore
different from the scenario we consider in the present work.

In contrast, in [6], [5], [77], and [55], the achievable rate of time-continuous
fading channels has been examined under the assumption that estimates of
the channel are available. In [77] a general setting has been studied, whereas
in [6], [5], and [55] the channel estimates are acquired by a solely pilot based
channel estimation. Furthermore, in [22] the achievable rate with solely pi-
lot based synchronized detection has been compared to a lower bound on
the achievable rate with independent identically distributed (i.i.d.) Gaussian
signaling. Opposed to these works, where the channel estimation is solely
based on pilot symbols, recently, also a lower bound on the achievable rate
with joint processing of pilot and data symbols has been given in [56] in the
context of a block fading channel.

Over the last years, the capacity of time-continuous fading channels with-
out any assumption on pilot symbols has been the subject of various contri-
butions. However, this problem turns out to be notoriously difficult. Even for
the memoryless case there is no closed form solution for the capacity [119], [1].
In [68] Lapidoth and Moser introduced a quantity called fading number as
the second-order term in the high signal-to-noise ratio (SNR) asymptotic
expansion of capacity, to characterize the effect of the unknown channel de-
pending on its statistics. Based on the fading number, in [68], [66], and [67] the
asymptotic high SNR capacity of a stationary Gaussian flat-fading channel
has been investigated. This examination shows that the high SNR behavior
significantly depends on the channel model. If the channel fading process is
non-regular, its high SNR slope shows a pre-log behavior, whereas regular
fading yields a log log behavior for high SNR.4 The approach based on the

4 A non-regular fading process is characterized by a channel prediction error variance
converging to zero for infinite SNR. Otherwise the fading process is regular, see also
[24] and Chapter 2.
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fading number has also been used in the further work in [69], [59], and [81]
for a study of the fading number in the MISO case, the derivation of non-
asymptotic upper bounds on capacity, extensions to the MIMO case, and the
characterization of input distributions that achieve the fading number. All of
the works based on the fading number mainly focus on the high SNR regime.

In contrast to this, in [34] an approximate behavior of the capacity for
different SNR regimes depending on the channel prediction error, which is
directly related to the channel dynamics, has been considered. This work
mostly considers fading channels, which are characterized by a first order
Gauss-Markov model, which shows, due to the fact that it is regular, a log log
high SNR behavior of capacity.

The following line of work mainly focuses on the low SNR case. In [105]
lower bounds on capacity for peak power constrained input signals are given.
Furthermore, in [104], [106], and [107] also upper bounds on the capacity
have been derived and analyzed with special emphasizes on the low SNR
regime, including extensions to the MIMO and the frequency selective case.
Furthermore, also [133] focuses on the low SNR case when discussing the
achievable rate for the special case of PSK signaling.

Such a restriction to PSK input symbols has also been made in [97] for
the evaluation of the system capacity of wideband (OFDM) communication.
Furthermore, the peak power constrained capacity for the more general case
of underspread frequency-selective stationary fading channels has been dis-
cussed in [30], [31], [33], and [99]. Therefor, in [33] a detailed derivation of
a discrete-time discrete-frequency system model outgoing from the genuine
continuous-time model is shown. In [101] and [102] this work has been ex-
tended to the MIMO scenario. While the results in these contributions rely
on a strictly limited support of the channel’s scattering function, in [32] the
sensitivity of the capacity on this channel model has been evaluated. Such
an evaluation is important as it has been shown in [60], [62], [61], and [63]
that the high SNR capacity of a frequency-selective fading channel strongly
depends on the details of the considered channel model. I.e., the capacity
grows for asymptotically high SNR bounded or unbounded, depending on
the number of delay paths an their gains.

So far, we discussed prior work on the one hand for the block fading
channel, and on the other hand for the stationary fading channel. A block-
stationary channel is a combination of a stationary and a block fading chan-
nel. Within a block it behaves like the stationary channel with temporal cor-
relation. The blocks themselves might be correlated between each other or
might be independent. The special case where the fading between the blocks
is independent is typically referred to as time-selective block fading channel.
The capacity of such a block-stationary channel has been studied in [71] and
in [11]. These publications mainly focus on the behavior of capacity with
respect to the SNR, the block length, and in [71] the number of antennas.

To gain some more fundamental insight into the behavior of communi-
cation over noncoherent fading channels, for the specific case of a MIMO
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block fading channel, in [134] a capacity expression has been given, which
has the geometric interpretation as sphere packing on the Grassmann man-
ifold. Furthermore, [70] poses the question ‘how perfect need

”

perfect side
information” be?’ and discusses the robustness of nearest neighbor decoding,
which results from the assumption of perfect channel knowledge, with respect
to estimation errors of the channel. An extension of this work to the MIMO
case has been presented in [131].

A further approach to simplify the study on the capacity is to fix the input
distribution. In this context, in [12] the achievable rate for the special case of
Gaussian inputs has been discussed for a Gauss-Markov fading channel. Such
a restriction to Gaussian input symbols will also be used at various places
within the present work to calculate the achievable rate with this kind of
input distribution for stationary fading with a compactly supported power
spectral density.

Remark: Notice, for clarity of presentation we have not always explicitly
stated, if a publication only considers the SISO case or also the MIMO sce-
nario.

1.2 Objectives and Contributions

The general objective of the present work is to get an enhanced comprehen-
sion of the achievable rate of stationary Rayleigh fading channels. So on the
one hand, this study should deliver enhanced bounds on the achievable rate
over this class of channels. On the other hand, it should establish the link
to the bounds on the achievable rate with synchronized detection and, thus,
enable an understanding of the achievable rate with synchronized detection
based receivers including iterative synchronization.

In contrast to many existing bounds on capacity, which focus on the
asymptotic SNR behavior, e.g., [67] for the high SNR regime and, e.g., [107]
for the low SNR regime, our aim is to get bounds on the achievable rate that
are useful over a wide range of the SNR, i.e., the bounds should not be such
loose that they give no insight. Most of the time, we will use the term achiev-
able rate instead of capacity, as in the majority of the following work, we make
restrictions on the input distribution, e.g., assuming identically distributed
(i.d.) or i.i.d. inputs. First, these assumptions on the input distributions sim-
plify the mathematical treatment of the problem and will turn out to perform
well for a wide range of channel parameters. Secondly, in case the channel
realization is known to the receiver, i.e., the coherent scenario, the capacity-
achieving input distribution is i.i.d. zero-mean proper Gaussian. This already
leads to the next demand we have on bounds on the achievable rate. In ad-
dition, different to a lot of the existing work, we are interested in bounds on
the achievable rate which can also be used in combination with proper Gaus-
sian input distributions, i.e., without a peak power constraint. We have two
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motivations to study the achievable rate with i.i.d. zero-mean proper Gaus-
sian inputs: On the one hand, they are capacity-achieving in case of perfect
channel knowledge. Although it is well known that they are not optimal for
unknown channel state information at the receiver [70], in [12] bounds on
the mutual information with Gaussian input distributions have been derived
for a Gauss-Markov fading channel5, showing that at moderate SNR and/or
slow fading, Gaussian inputs still work well. On the other hand, many known
upper bounds on the capacity based on a peak power constraint get loose for
high peak-to-average signal powers. Furthermore, when restricting to peak
power constrained input symbols, the achievable rate will not converge to
the coherent capacity for asymptotically small channel dynamics. In addi-
tion, in many cases the capacity-achieving input distribution becomes peaky
and, thus, impractical for real system design. In contrast, proper Gaussian
input distributions serve well to upper-bound the achievable rate with prac-
tical modulation and coding schemes, see also [93]. Therefore, it is interesting
to see, how the achievable rate behaves for i.i.d. zero-mean proper Gaussian
inputs, which are not peak power constrained. In conclusion, our motivation
is to get bounds which give much insight into the behavior of the achievable
rate over a wide range of the SNR, while we accept for the fact that these
bounds are not longer bounds on capacity when we fix the input distribution.

In the following, we give a detailed overview regarding the subjects studied
in this thesis. In the present work, first, we investigate the achievable rate
of a stationary discrete-time Rayleigh flat-fading channel. Its realization is
unknown to both the transmitter and the receiver, while the receiver is aware
of the channel law. In addition, we assume that the power spectral density
(PSD) of the fading process has compact support. Furthermore, we assume
the support region of the PSD of the channel fading process to be smaller than
the inverse of the symbol duration, i.e, we consider nonregular fading [24].

Under these assumptions, we derive different bounds on the achievable
rate. First, we derive a set of bounds which is based on a pure mathematical
evaluation of the achievable rate. For the derivation of the upper bound,
we need the restriction to i.d. input distributions. Secondly, we derive an
alternative upper bound on the achievable rate, which is based on the channel
prediction error variance. For the derivation of this bound, we assume i.i.d.
input symbols. On the one hand, we evaluate the given bounds for general
i.d. respectively i.i.d. input distributions with an average and a peak power
constraint. On the other hand, we also give the bounds for the special case of
i.i.d. zero-mean proper Gaussian input symbols. Therefore, it is important to
note that the derivation of our upper bounds does not rely on a peak power
constraint. This is a major difference to many other known bounds, e.g.,
in [67] and [107]. The derived bounds depend on the channel dynamics via

5 Notice that in case of Gauss-Markov fading, the PSD of the channel fading process
is characterized by an unbounded support. In contrast to this, within the present
work, we assume a PSD of the channel fading process with bounded support, see
Chapter 2.
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the PSD of the channel fading process. Some of them hold for general power
spectral densities while others only hold for the special case of a rectangular
PSD. We compare the bounds on the achievable rate also to known bounds
on the capacity given in [67] and [107], and to bounds on the achievable rate
when using synchronized detection in combination with a solely pilot based
channel estimation as studied in [6].

Besides the general bounds on the achievable rate with i.d./i.i.d. input
distributions, we also study the achievable rate with a receiver using synchro-
nized detection in combination with iterative code-aided channel estimation,
as it has been previously described, see Fig. 1.1. On the one hand, we clearly
identify the nature of the possible gain by iteratively enhancing the channel
estimation based on reliability information on the data symbols in compari-
son to a solely pilot based channel estimation. The possible gain arises due
to the information contained in the temporal correlation of the channel es-
timation error of a solely pilot based channel estimation. This information
is discarded when using synchronized detection as the detector, which uses
a symbol-wise detection metric, cannot exploit the information contained in
the temporal correlation of the channel estimation error. Although a receiver
using synchronized detection in combination with an iterative code-aided
channel estimation still uses a symbol-wise detection metric, parts of the in-
formation contained in the temporal correlation of the channel estimation
error when using a solely pilot based channel estimation can be exploited by
such an enhanced receiver structure.

In addition to this fundamental understanding of the possible gains, we
give an upper bound on the achievable rate for a specific receiver structure
using synchronized detection with an iterative code-aided channel estimation.
The widely known and studied receiver using synchronized detection based on
an iterative code-aided channel estimation can be deduced by expressing the
common joint ML detection and MAP parameter estimation problem [79]
based on a set of fixed point equations [98], or alternatively based on the
expectation maximization (EM) framework [40]. In contrast, we calculate
an upper bound on the achievable rate for a slightly modified receiver. The
modification lies in the channel estimator which in contrast to the channel
estimator given in [98] does not use the observation yk for the estimation of
the fading weight hk. This modification is required for mathematical reasons.
However, we guess that for small channel dynamics the amount of discarded
information is very small and therefore, this modification is not a severe
restriction. Furthermore, we assume i.i.d. zero-mean proper Gaussian data
symbols. We show which part of the mutual information between the trans-
mitter and the receiver can be exploited by the given receiver structure. I.e.,
we show that there exists a component of the mutual information, which by
the combination of symbol-wise detection and the channel estimator which
does not use the observation yk for the estimation of hk cannot be retrieved.
However, for small channel dynamics, this amount of information seems to
be small. The question if and which part of this information can be retrieved
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when using a channel estimator without the described modification remains
open. The given upper bound on the achievable rate for the studied receiver
still explicitly depends on the channel interpolation error variance at an ar-
bitrary time, which itself is a function of all past and all future data symbols.
Unfortunately, we have not found a closed form solution for an upper bound.
But, at least for small channel dynamics it is reasonable to approximate the
channel interpolation error variance by the interpolation error variance cal-
culated under the assumption that all past and all future transmit symbols
are constant modulus symbols. This leads to an approximative upper bound
which is valuable, as it gives a tighter approximative upper bound on the
achievable rate with a practical receiver structure than the upper bound on
the achievable rate with i.i.d. input symbols.

As already mentioned before, also receivers using synchronized detection
and an iterative code-aided channel estimation, still use a symbol-wise de-
tection metric. However, we show that such a symbol-wise detection metric
is in general not optimal. Therefore, we also study the achievable rate when
performing an optimal joint processing of pilot and data symbols. For this
case we give a lower bound on the achievable rate for the case of a stationary
Rayleigh flat-fading channel. This lower bound, can be seen as an extension
of a lower bound on the achievable rate with joint processing of pilot and
data symbols for the case of a block fading channel recently given in [56].

Afterwards, we extend the bounds on the achievable rate with i.d. in-
put symbols, i.e., again considering no pilot symbols, given for the case of
a single-input single-output (SISO) Rayleigh flat-fading channel, based on
a pure mathematical derivation, to the case of a multiple-input multiple-
output (MIMO) system considering also spatial antenna correlation. As for
the SISO case, we compare the bounds on the achievable rate for i.i.d. zero-
mean proper Gaussian input symbols with bounds on the achievable rate
when using synchronized detection in combination with a solely pilot based
channel estimation as studied in [5].

In addition, we extend the bounds on the achievable rate with i.d. in-
put symbols, which we derive for the SISO flat-fading channel, to the case
of an underspread frequency-selective (wideband) channel with a compactly
supported scattering function. The derivation is based on a discrete-time
discrete-frequency system model derived in [33] for underspread wide-sense
stationary uncorrelated scattering. The main novelty in this context is the
derivation of bounds on the achievable rate with i.i.d. zero-mean proper Gaus-
sian input symbols. Especially the derivation of the upper bound is new as
it is not based on a peak power constraint. In contrast, the bounds on the
capacity given in [33] explicitly require a peak power constraint. However, the
given upper bound for proper Gaussian input symbols holds only for the spe-
cial case of a brick-shaped scattering function and holds only approximately
for finite bandwidth. Also for the frequency-selective case, we compare the
bounds on the achievable rate with i.i.d. zero-mean proper Gaussian input
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symbols to the achievable rate using synchronized detection in combination
with a solely pilot based channel estimation discussed in [4] and [47].

In the further discussion, we again deviate from the assumption on i.d. or
i.i.d. input symbols, which are not optimal in general [107]. For the case of a
block-stationary SISO Rayleigh flat-fading channel with independent faded
blocks, i.e., a time-selective block fading channel, we study the optimum dis-
tribution over a given set of input sequences. Thus, we restrict to discrete
input distributions and drop the assumption on i.i.d. input symbols. There
are two main objectives to study discrete input distributions. First, in [10] it
has been shown that discrete input distributions are capacity-achieving for a
variety of conditionally Gaussian channels with bounded input constraints.
E.g., for the case of a Rayleigh flat-fading channel without temporal corre-
lation, it has been shown that the capacity-achieving input distribution is
discrete with a finite number of mass points [1]. The scenario in the present
work falls into the class of conditionally Gaussian channels. These obser-
vations and secondly the fact that practical realizable systems use discrete
input distributions are the motivation to study the constrained capacity6 for
the given scenario with the restriction to discrete input distributions. We
show that the optimum input distribution over a fixed set of given signaling
sequences is characterized by a constant Kullback-Leibler distance between
the output probability density functions (PDF) conditioned on the individual
input sequences and the unconditional output PDF. For the special case of
PSK signaling, we explicitly characterize the set of optimum input distribu-
tions, which corresponds to a uniform distribution over transmit sequences
that can be distinguished by the receiver. It is shown that the special case of
transmitting one pilot symbol per fading block, i.e., a symbol that is known
to the receiver, and independent input symbols at all other time instances lies
within this set and, thus, is optimum. In addition, the asymptotic high SNR
constrained capacity is degraded by at least a factor of N−1

N with respect to
the case of perfect channel state information at the receiver when consider-
ing time-selective block fading with a block length of N . The result that the
use of one pilot symbol per block and i.i.d. data symbols at all other time
instances for PSK sequences is optimum allows us to conclude that in the
context of stationary fading the use of pilot symbols which are periodically
inserted into the transmit sequence is not optimal from a capacity point of
view, at least when using PSK modulation. However, it should be mentioned
that the use of periodic pilot symbols is a smart approach, as they allow for
receivers of low computational complexity.

6 Here we use the term constrained capacity instead of achievable rate as we optimize
over the input distribution, which is only constrained concerning the set of signaling
points.
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Contributions

The specific contributions of the present work are summarized in the follow-
ing:

• We calculate a new upper bound on the achievable rate with i.d. input
symbols for the specific case of a rectangular PSD. The novelty of this
bound lies in the derivation which is not based on any assumption of a
peak power constraint. Therefore, we can evaluate this bound also for
zero-mean proper Gaussian input symbols. For the case of a peak power
constraint this upper bound is equivalent to an upper bound on capacity
given in [107].

• With the upper bound on the achievable rate and a known lower bound on
the capacity, we have found a set of bounds, which for zero-mean proper
Gaussian inputs is tight in the sense that their difference is bounded. We
are able to bound the gap analytically by γ(1 + 2fd) [nat/channel use],
with the Euler constant γ ≈ 0.577 and the maximum normalized Doppler
frequency fd. Furthermore, the upper bound is equal and the lower bound
converges to the coherent capacity for asymptotically small channel dy-
namics.

• We show that the achievable rate with i.i.d. zero-mean proper Gaussian
input symbols has the same high SNR slope, i.e., pre-log, as the channel
capacity given in [67].

• We derive a new upper bound on the achievable rate with i.i.d. input sym-
bols based on the channel prediction error variance. In contrast to existing
bounds based on the channel prediction error variance, this bound is not
restricted to peak power constrained input symbols. For the derivation
of this upper bound we show that the calculation of the prediction error
variance under the assumption that all past symbols are constant modulus
symbols leads to a lower bound on the output entropy rate conditioned
on the channel input, i.e., h′(y|x) and, thus, to an upper bound on the
achievable rate. This upper bound holds for channel fading processes with
an arbitrary PSD of compact support.

• We compare the different bounding approaches among each other and with
the achievable rate based on a solely pilot based synchronized detection.

• We identify the nature of the possible gain that is achievable when using
iterative synchronization and decoding in comparison to solely pilot based
synchronized detection. This possible gain arises due to the information
contained in the temporal correlation of the channel estimation error pro-
cess. This information is discarded by performing synchronized detection
in combination with a solely pilot based channel estimation as in this case
detection is performed symbol-wise. Although receivers based on synchro-
nized detection and an iterative code-aided channel estimation also use a
symbol-wise detection metric, parts of the information contained in the
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temporal correlation of the channel estimation error when using a solely
pilot based channel estimation can be exploited.

• We give an upper bound on the achievable data rate while using a specific
receiver based on synchronized detection and iterative code-aided channel
estimation, i.e., a receiver consisting of two dedicated units for channel
estimation and decoding. This bound is based on the assumption that
the data symbols are i.i.d. zero-mean proper Gaussian. Differently to the
typically studied receiver based on synchronized detection and iterative
code-aided channel estimation, which can be deduced from the joint ML
detection and MAP parameter estimation problem based on a set of fixed
point equations or by the EM framework, we study a receiver whose chan-
nel estimator does not use the observation yk for the estimation of hk. We
show that there is a part of the mutual information between the transmit-
ter and the receiver which cannot be exploited by this receiver structure.
However, for practical channel dynamics this part seems to be small. The
given upper bound on the achievable rate is a non-closed form expression.
It explicitly depends on the channel interpolation error variance for a spe-
cific but arbitrarily chosen time instant, which itself is a function on all
past and future transmit symbols. For small channel dynamics it is reason-
able to approximate this interpolation error variance by the interpolation
error variance calculated under the assumption that all past and future
transmit symbols are constant modulus symbols. However, we do not have
a proof that this yields a true upper bound. In contrast, for the special
case of constant modulus signaling we are able to give the upper bound
on the achievable rate with this iterative receiver structure in closed form.

• We give a lower bound on the achievable rate in case of an optimal joint
processing of pilot and data symbols for the case of a stationary Rayleigh
flat-fading channel. Here, we assume periodic pilot symbols, where the pilot
spacing is chosen such that the channel is sampled at least with Nyquist
rate. For the data symbols we only apply an average power constraint.
The given lower bound is achievable with i.i.d. zero-mean proper Gaussian
data symbols.

• We extend the bounds on the achievable rate with i.d. input symbols from
the SISO case to the MIMO scenario including spatial antenna correlation.
The main novelty of these bounds lies in the fact that the derivation of the
upper bound does not rely on a peak power constraint and thus enables
bounding of the achievable rate with i.i.d. zero-mean proper Gaussian in-
puts. Like in the SISO case, we compare the bounds on the achievable rate
with i.i.d. zero-mean proper Gaussian inputs to the achievable rate using
synchronized detection in combination with a solely pilot based channel
estimation for i.i.d. zero-mean proper Gaussian data symbols.

• Furthermore, we extend the bounds on the achievable rate with i.d. in-
puts to the case of underspread frequency-selective channels. Therefore,
we assume a brick-shaped scattering function. The main novelty lies in the
derivation of an approximate upper bound on the achievable rate which
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holds also for non-peak power constrained inputs and, thus, enables the
characterization of the achievable rate with i.i.d. zero-mean proper Gaus-
sian input symbols for frequency-selective fading channels depending on
the delay and Doppler spread. Like in the flat-fading case, we compare the
bounds on the achievable rate to the achievable rate with synchronized
detection based on a solely pilot based channel estimation.

• For a time-selective block Rayleigh flat-fading channel and a fixed discrete
set of input sequences, we show that the input distribution that maxi-
mizes the constrained capacity is characterized by a constant Kullback-
Leibler distance between the output PDFs conditioned on the individual
input sequences and the unconditional output PDF. For the special case
of PSK signaling the optimum input distribution corresponds to a uniform
input distribution over all distinguishable input sequences. Furthermore,
the special case of using one specific time instant per fading block for a
pilot symbol is included in the set of constrained capacity-achieving input
distributions. The asymptotic high SNR constrained capacity is degraded
at least by a factor of N−1

N with respect to the case of perfect channel state
information at the receiver, where N is the fading block length. These re-
sults also show that for stationary fading the use of periodically inserted
pilot symbols is not optimal from a capacity point of view while using PSK
modulation.

1.3 Outline

This thesis is structured as follows. In Chapter 2, we introduce the mathemat-
ical system model of the discrete-time SISO flat-fading channel, discuss the
limitation of this system model and give a short recall of the meaning of op-
erational and information theoretic capacity. Subsequently, we derive upper
and lower bounds on the achievable rate with i.d. input symbols for a SISO
system in Chapter 3, which are on the one hand evaluated for peak power
constrained input symbols and on the other hand for i.i.d. zero-mean proper
Gaussian symbols. In addition, we study the tightness of the upper and lower
bound on the achievable rate and we examine the asymptotic high SNR be-
havior of the achievable rate with i.d. inputs and show that the achievable
rate with i.i.d. zero-mean proper Gaussian inputs is characterized by the same
high SNR slope as the channel capacity. Furthermore, we compare the given
bounds on the achievable rate with i.d. input symbols with capacity bounds
given in [107], [105], and [67]. Afterwards, in Chapter 4, an alternative upper
bound on the achievable rate with i.i.d. input symbols is derived based on
the channel prediction error variance. In Chapter 5, bounds on the achievable
rate with solely pilot based synchronized detection are recalled and compared
to the bound on the achievable rate with i.i.d. zero-mean proper Gaussian
inputs. Ensuing, in Chapter 6, we study the achievable rate with iterative
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synchronization and decoding based receivers. Subsequently, in Chapter 7
the achievable rate with an optimal joint processing of pilot and data sym-
bols is examined. In Chapter 8, the discrete-time flat-fading system model
is extended to the case of multiple transmit and receive antennas and the
bounds on the achievable rate given in Chapter 3 are extended to the MIMO
case. Furthermore, we compare the bounds on the achievable rate with i.i.d.
zero-mean proper Gaussian input symbols to the achievable rate while us-
ing synchronized detection in combination with a channel estimation solely
based on pilot symbols. In Chapter 9, we extend the bounds on the achievable
rate with i.d. input symbols to the case of a frequency-selective (wideband)
channel. Furthermore, for comparison we recall bounds on the achievable
rate with synchronized detection in combination with a solely pilot based
channel estimation. In Chapter 10, we study the constrained capacity for a
time-selective block Rayleigh flat-fading channel for a given discrete signaling
set. Finally, in Chapter 11, we summarize the work and give conclusions. The
appendices contain several mathematical derivations and proofs required in
the preceding chapters.



Chapter 2

Discrete-Time Flat-Fading System Model

In the present chapter, we introduce the discrete-time stationary Rayleigh
flat-fading system model as it will be used throughout the following deriva-
tions. Hereby, we also discuss the limitations of the model and recall the defi-
nitions of operational and information theoretic capacity as a basis for our fur-
ther derivations. In this chapter, we restrict to the single-input single-output
(SISO) channel. In Chapter 8 the model is extended to the multiple-input
multiple-output (MIMO) scenario, and in Chapter 9 the frequency-selective
case is discussed.

Fig. 2.1 shows a basic block-diagram of a transmission system based on a
flat-fading channel. This model is based on several simplifications as it only
shows a discrete-time baseband representation as we will use in the following.
This discrete-time representation corresponds to the symbol rate. Clearly, a
symbol rate representation cannot be used to study timing- and frequency
synchronization which would require a modeling with a sampling rate higher
than the symbol rate to get a sufficient statistic. As timing- and frequency
synchronization are out of scope of the present work, for the moment this
model is of sufficient detail to show the main effects concerning capacity
evaluations. In Section 2.3 we discuss the limitations of this model and in
Section 9.1, we extend the model to the case of wide-sense stationary un-
correlated scattering (WSSUS) frequency-selective fading channels, starting
from a continuous-time representation.

Coding &

Modulation
Receiver

ζ ζ̂xk

hk nk

yk yx

p(y|x)

Fig. 2.1: Simplified block diagram of transmission system based on a discrete-
time flat-fading channel
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A binary data sequence ζ of length Ninfo with the elements ζn ∈ {0, 1}
is mapped by encoding and modulation to a transmit symbol sequence of
length N represented by the vector x with the elements xk. The transmit
symbols xk are corrupted by multiplication with the channel fading weight
hk and by additive noise nk. Here, it is important to note that the channel
fading weights hk are assumed to be temporally correlated and the process
{hk} is stationary. With respect to the discrete-time system model shown in
Fig. 2.1, the channel output observations yk are contained in the vector y.
From a mathematical point of view, the effect of the channel is completely
described by the conditional probability density function (PDF) p(y|x). The
aim of the receiver is to find an estimate ζ̂ of the binary data sequence ζ

based on the observation vector y. As we are interested in the evaluation
of the channel capacity/achievable rate, we do not further discuss how the

receiver acquires ζ̂ based on the observation y.
After this brief overview of the system model, we now focus on an exact

mathematical representation of the system model required for further study.
We consider an ergodic discrete-time jointly proper Gaussian [82] flat-fading
channel, whose output at time k is given by

yk = hkxk + nk (2.1)

where xk ∈ C is the complex-valued channel input, hk ∈ C represents the
channel fading coefficient, and nk ∈ C is additive white Gaussian noise. The
processes {hk}, {xk}, and {nk} are assumed to be mutually independent.

We assume that the noise {nk} is a sequence of i.i.d. proper Gaussian ran-
dom variables of zero-mean and variance σ2

n. The stationary channel fading
process {hk} is zero-mean jointly proper Gaussian. In addition, the fading
process is time-selective and characterized by its autocorrelation function

rh(l) = E[hk+lh
∗
k]. (2.2)

Its variance is given by rh(0) = σ2
h.

The normalized PSD of the channel fading process is defined by

Sh(f) =
∞∑

l=−∞
rh(l)e

−j2πlf , |f | < 0.5 (2.3)

where we assume that the PSD exists and j =
√
−1. Here the frequency f

is normalized with respect to the symbol duration TSym. In the following,
we will in general use the normalized PSD and, thus, refer to it as PSD for
simplification. For a jointly proper Gaussian process, the existence of the PSD
implies ergodicity [103]. As the channel fading process {hk} is assumed to be
stationary, Sh(f) is real-valued. Because of the limitation of the velocity of
the transmitter, the receiver, and of objects in the environment, the spread of
the PSD is limited, and we assume it to be compactly supported within the
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interval [−fd, fd], with 0 < fd < 0.5, i.e., Sh(f) = 0 for f /∈ [−fd, fd]. The
parameter fd corresponds to the normalized maximum Doppler shift and,
thus, indicates the dynamics of the channel. To ensure ergodicity, we exclude
the case fd = 0. Following the definition given in [24, Sec. XII.2, p. 564], this
fading channel is sometimes referred to as nonregular.1

For technical reasons in some of the proofs, i.e., the calculation of the
upper bound on the achievable data rate in Chapter 3, its extensions to the
MIMO and the frequency selective case in Chapter 8 and Chapter 9, and the
derivation of the lower bound on the achievable rate with joint processing of
pilot and data symbols in Chapter 7, we restrict to autocorrelation functions
rh(l) which are absolutely summable, i.e.,

∞∑

l=−∞
|rh(l)| <∞ (2.4)

instead of the more general class of square summable autocorrelation func-
tions, i.e.,

∞∑

l=−∞
|rh(l)|2 <∞ (2.5)

which is already fulfilled due to our assumption that the PSD exists. How-
ever, the assumption of absolutely summable autocorrelation functions is not
a severe restriction. E.g., the important rectangular PSD, see (2.8), can be
arbitrarily closely approximated by a PSD with the shape corresponding to
the transfer function of a raised cosine filter, whose corresponding autocor-
relation function is absolutely summable.

2.1 Rayleigh Fading and Jakes’ Model

The assumed Rayleigh fading model is a commonly used fading model which
reasonably describes the channel observed in mobile urban environments with
many scattering objects and no line of sight, see, e.g., [15]. It has to be
mentioned that the Rayleigh model only describes small scale fading. Large
scale fading due to path loss and shadowing is not described by this model
and is also outside the scope of this thesis.

Due to the assumption of relative motion with constant velocity between
transmitter, receiver, and objects in the environment, the fading becomes
temporally correlated. The normalized continuous-time autocorrelation func-
tion is given by [54], [112]

1 For a discussion on the justification if a physical channel fading process is nonregular
based on real world numbers see [66].
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r(t) = σ2
hJ0

(
2πfd

t

TSym

)
(2.6)

where J0(·) is a zeroth-order Bessel function of the first kind. The correspond-
ing PSD Sh(f) in (2.3) of the discrete-time fading process is given by

Sh(f)
∣∣
Jakes

=

{
σ2
h

π
√
f2
d−f2

for |f | < fd

0 for fd ≤ |f | ≤ 0.5
. (2.7)

These correlation properties can be derived analytically for a dense scat-
terer environment with a vertical receive antenna with a constant azimuthal
gain, a uniform distribution of signals arriving at all angles, i.e., in the in-
terval [0, 2π), and with uniformly distributed phases based on a sum of sinu-
soids [54]. The sum-of-sinusoids model can also be used to generate tempo-
rally correlated Rayleigh fading for simulation.

Sometimes the Jakes’ PSD in (2.7) is approximated by the following rect-
angular PSD

Sh(f)
∣∣
rect

=

{
σ2
h

2fd
for |f | ≤ fd

0 for fd < |f | ≤ 0.5
. (2.8)

This approximation entails only a small difference with respect to the perfor-
mance of the corresponding channel estimation [6], [79, pp. 651 and 658]. The
performance of the channel estimation can be measured by the estimation er-
ror variance, which is related to the capacity. For mathematical tractability,
we will also use the rectangular PSD in (2.8) for several derivations.

As already stated, the discrete-time autocorrelation function rh(l) corre-
sponding to a rectangular PSD Sh(f)

∣∣
rect

, which is given by

rh(l) = σ2
hsinc(2fdl) (2.9)

is not absolutely summable. However, the rectangular PSD can be arbitrarily
closely approximated by a PSD with a shape corresponding to the transfer
function of a raised cosine (RC) filter, i.e.,

Sh(f)
∣∣
RC

=





σ2
h

2fd
for |f | ≤ (1 − βro)fd

σ2
h

4fd

[
1− sin

(
2π
2fd

(f−fd)
2βro

)]
for (1− βro)fd < f ≤ (1 + βro)fd

0 for fd(1 + βro) < |f | ≤ 0.5

.

(2.10)

Here 0 ≤ βro ≤ 1 is the roll-off factor. For βro → 0 the PSD Sh(f)
∣∣
RC

approaches the rectangular PSD Sh(f)
∣∣
rect

. Furthermore, the discrete-time

autocorrelation function corresponding to Sh(f)
∣∣
RC

is given by
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rh(l) = σ2
hsinc(2fdl)

cos (βroπ2fdl)

1− 4β2
ro4f

2
d l

2
(2.11)

which for βro > 0 is absolutely summable. Thus, the rectangular PSD in
(2.8) can be arbitrarily closely approximated by a PSD with an absolutely
summable autocorrelation function. Therefore, in the rest of this work, we
often evaluate the derived bounds on the achievable rate for a rectangular
PSD of the channel fading process, although some of the derivations are based
on the assumption of an absolutely summable autocorrelation function.

Typical fading channels, as they are observed in mobile communication
environments, are characterized by relatively small normalized Doppler fre-
quencies fd in the regime of fd ≪ 0.1. Therefore, the restriction to channels
with fd < 0.5, i.e., nonregular fading, in the present work is reasonable.
Depending on the carrier frequency fc, the relative velocity between trans-
mitter and receiver v, and the symbol rate 1/TSym, the maximum normalized
Doppler frequency is given by

fd =
v · fc
c

· TSym (2.12)

where c ≈ 2.998 · 108 m/s is the speed of light. Considering parameters of a
typical mobile communication system, e.g., fc = 2 GHz, a maximum velocity
of v = 300 km/h, and a symbol rate of 1 MHz leads to a maximum Doppler
frequency of only fd ≈ 0.00056.

Notice that although in practical scenarios the observed channel dynamics
are very small, within this work we always consider the range of 0 < fd <
0.5 to get a thorough understanding of the behavior of the bounds on the
achievable rate.

2.2 Matrix-Vector Notation

We base the derivation of bounds on the achievable rate on the following
matrix-vector notation of the system model:

y = Hx+ n = Xh+ n (2.13)

where the vectors are defined as

y = [y1, . . . , yN ]T (2.14)

x = [x1, . . . , xN ]T (2.15)

n = [n1, . . . , nN ]
T . (2.16)

The matrixH is diagonal and defined asH = diag(h) with h = [h1, . . . , hN ]
T .

Here the diag(·) operator generates a diagonal matrix whose diagonal ele-
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ments are given by the argument vector. The diagonal matrix X is given by
X = diag(x). The quantity N is the number of considered symbols. Later on,
we investigate the case of N → ∞ to evaluate the achievable rate.

Using this vector notation, we express the temporal correlation of the
fading process by the correlation matrix

Rh = E[hhH ] (2.17)

which has a Hermitian Toeplitz structure.
Concerning the input distribution, unless otherwise stated, we make the

assumption that the symbols xk are i.d. , with an maximum average power
σ2
x. For the nominal mean SNR we introduce the variable

ρ =
σ2
xσ

2
h

σ2
n

. (2.18)

Notice that we use the term nominal mean SNR as ρ only corresponds to
the actual mean SNR in case σ2

x is the average transmit power. For the case
of a non-peak power constrained input distribution, the achievable rate is
maximized by using the maximum average transmit power σ2

x. Thus, in the
non-peak power constrained case ρ corresponds to the actual mean SNR.

2.3 Limitations of the Model

In this section, we discuss the limitations of the model. Therefore, let us
consider an appropriately bandlimited continuous-time model first, where
the channel output is given by

y(t) = h(t)s(t) + n(t) (2.19)

with h(t) being the continuous-time channel fading process, i.e., the corre-
sponding discrete-time process hk is given by

hk = h(kTSym) (2.20)

where TSym is the symbol duration. Analogously, the continuous-time and
the discrete-time additive noise and channel output processes are related by

nk = n(kTSym) (2.21)

yk = y(kTSym). (2.22)

The continuous-time transmit process s(t) is given by
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s(t) =
∞∑

k=−∞
xkg(t− kTSym) (2.23)

where g(t) is the transmit pulse. We assume the use of bandlimited transmit
pulses, which have an infinite impulse response2. In typical systems often
root-raised cosine pulses are used such that in combination with the matched
filter at the receiver intersymbol interference is minimized. Their impulse
response g(t) and their normalized frequency response G(f) are given by

G(f) =
√
GRC(f) (2.24)

with GRC(f) being the transfer function of the raised cosine filter, cf. (2.10)

GRC(f) =





TSym for |f | ≤ 1−βro

2

TSym

2

[
1 + cos

(
π
βro

[
|f | − 1−βro

2

])]
for 1−βro

2 < |f | ≤ 1+βro

2

0 otherwise

(2.25)

and [3]

g(t) =





1− βro + 4βro

π for t = 0
βro√
2

[(
1 + 2

π

)
sin
(

π
4βro

)
+
(
1− 2

π

)
cos
(

π
4βro

)]
for t = ±TSym

4βro

sin
[
π t

TSym
(1−βro)

]
+4βro

t
TSym

cos
[
π t

TSym
(1+βro)

]

π t
TSym

[
1−

(
4βro

t
TSym

)2
] otherwise

.

(2.26)

In the following, we assume a roll-off factor of βro = 0 corresponding to
sinc transmit pulses and, thus, we have a rectangular PSD with a normalized
bandwidth of 1.

The continuous-time input/output relation in (2.19) has the following
stochastic representation in frequency domain

Sy(f) = Sh(f) ⋆ Ss(f) + Sn(f) (2.27)

where ⋆ denotes convolution and Sy(f), Sh(f), Ss(f), and Sn(f) are the
normalized power spectral densities of the continuous-time processes y(t),
h(t), s(t), and n(t), e.g.,

Ss(f) =

∫ ∞

−∞
E [s(t+ τ)s∗(t)] e−j2πfτdτ (2.28)

2 For a discussion on the contradiction that physical signals must be bandlimited but
on the other hand are not infinite in time the interested reader is referred to [113].
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and correspondingly for the other PSDs. Here we always assume normaliza-
tion with 1/TSym.

We are interested in the normalized bandwidth of the component Sh(f) ⋆
Ss(f), i.e., the component containing information on the transmitted se-
quence {xk}. The normalized bandwidth of the transmit signal s(t) directly
corresponds to the normalized bandwidth of the transmit pulse g(t), which is
assumed to be 1, see above. The normalized bandwidth of the channel fading
process is given by 2fd. Thus, the normalized bandwidth of the component
Sh(f) ⋆ Ss(f) is given by 1 + 2fd.

To get a sufficient statistic, we would have to sample the channel output
y(t) at least with a frequency of 1+2fd

TSym
. As the discrete-time channel output

process {yk} is a sampled version of y(t) with the rate 1/TSym, the discrete-
time observation process {yk} is not a sufficient statistic of y(t). As usually
the normalized maximum Doppler frequency fd is very small, the amount of
discarded information is negligible.

All further derivations are based on the discrete-time model and therefore,
are not based on a sufficient statistic, i.e., information is discarded. Beside the
fact that in realistic systems the dynamics is very small and, thus, the amount
of discarded information is small, in typical systems channel estimation is also
performed at symbol rate signals and therefore also exhibits the loss due to
the lack of a sufficient statistic. In addition, much of the current literature on
the study of the capacity of stationary Rayleigh fading channels, e.g., [67],
and on the achievable rate with synchronized detection, e.g., [6], is based on
symbol rate discrete-time input-output relations and therefore do not ask the
question about a sufficient statistic. However, this should not be understood
as a motivation to use the symbol rate signal model. Furthermore, these
considerations should be kept in mind in the later evaluations, especially, as
we examine the derived bounds not only for very small values of fd.

2.4 Operational and Information Theoretic Capacity

In this section, we first briefly introduce the definition of information theo-
retic capacity given by Shannon and recall the channel coding theorem [108]
linking information theoretic capacity to operational capacity. Furthermore,
we recall results on the extension of Shannon’s definition of capacity, which
was restricted to memoryless channels, to channels with memory, like the
stationary fading channel considered in the present work.

For a memoryless channel the information theoretic capacity Cinfo is de-
fined as the maximum mutual information3 I(y;x) between the channel input
x and the channel output y while maximizing over the distribution of the in-

3 Notice that Shannon [108] defined the capacity without using the mutual informa-
tion, but directly based on the definition of entropy.
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put sample x, i.e., see also [19]

Cinfo = max
p(x)

I(y;x) (2.29)

where the mutual information is given by

I(y;x) = h(y)− h(y|x) (2.30)

and h(·) is the differential entropy defined by

h(y) = Ey [log (p(y))] (2.31)

h(y|x) = Ey,x [log (p(y|x))] . (2.32)

Based on (2.30) the mutual information I(y;x) can be understood as a mea-
sure about the information the random variable y contains about the random
variable x, or alternatively on the reduction of the uncertainty on y when
knowing x.

Besides this mathematical definition of capacity the main contribution of
Shannon was the channel coding theorem. With the channel coding theorem
Shannon proved that for memoryless channels all rates below the capacity
Cop—which in this context often is named operational capacity— are achiev-
able, i.e., for each rate R < Cop there exists a code for which the probability
of an erroneously decoded codeword approaches zero in the limit of an infi-
nite codeword length. Conversely, this means that error-free transmission is
only possible at rates R with R ≤ Cop. The channel coding theorem states
that for memoryless channels, information theoretic and operational capacity
coincide. Therefore, the capacity C for a memoryless channel is given by

C ≡ Cinfo = Cop. (2.33)

Depending on the specific type of channel, it is necessary to introduce fur-
ther constraints, to get a finite capacity. E.g., for the additive white Gaussian
noise (AWGN) channel the capacity is infinite in the case of an unconstrained
input power. Therefore, usually its capacity is given based on a constraint on
the maximum average input power Pav.

In the context of the stationary flat-fading channel model given in (2.1)
and (2.13), we introduce the following constraints on the average power Pav

and the peak power Ppeak,

1

N
E
[
xHx

]
≤ Pav (2.34)

max
1≤k≤N

|xk|2 ≤ Ppeak. (2.35)

The average power constraint will be always used in the following derivations,
while we will use the peak power constraint only at specific places.
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It is important to note that Shannon’s theorem is based on the assumption
of memoryless channels, i.e., all usages of the channel are independent. For
the stationary fading channel considered in the present work, this assumption
does not hold, as the channel fading process is temporally correlated. Due
to this temporal correlation, e.g., the channel observation yk also contains
information on the channel fading weight hk−1 and thus on the previous
transmit symbol xk−1.

The coincidence of information theoretic capacity and operational capac-
ity can be extended to channels with memory under some further condi-
tions [103]. Before discussing this, we introduce the definition of information
theoretic capacity in the context of the stationary fading channel given in
(2.13).

The information theoretic capacity per unit time of the stationary fading
channel model is given by

Cinfo = lim
N→∞

sup
Pgen

1

N
I(y;x). (2.36)

where the supremum is taken over the set Pgen of input distributions given
by

Pgen =

{
p(x)

∣∣x ∈ CN ,
1

N
E[xHx] ≤ Pav, max

1≤k≤N
|xk|2 ≤ Ppeak

}
. (2.37)

The definition of the information theoretic capacity holds whenever the limit
in (2.36) exists.

The peak-power constraint in (2.37) is not generally necessary. Only some
of the following derivations are based on a peak power constraint. The case
of an unconstrained peak-power corresponds to Ppeak = ∞ in (2.37).

Corresponding to the memoryless channel, in case of the stationary fading
channel the operational capacity Cop corresponds to the maximum achievable
rate R, which implies the existence of a code with a decoding error probability
that approaches zero for infinite codeword length, i.e., N → ∞.

Now we recall the conditions required for the coincidence of information
theoretic and operational capacity in case of a channel with memory given
in [103]. To describe these conditions, we quote the following definitions on
weakly mixing and ergodic processes given in [103], which itself cites [74,
Section 5] and [91, p.70].

Define φi(z1, z2, . . . , zn) with i = 1, 2 to be two bounded measurable func-
tions of an arbitrary number of complex variables z1, . . . , zn. Furthermore,
define the operator Mt as limt→∞

1
t

∑t
1 for a discrete-time process {zk}. In

addition we define ψ(t) as

ψ(t) = E
[
φ1(zt1 , . . . , ztn) · φ2(zt∗1+t, . . . , zt∗n+t)

]

− E
[
φ1(zt1 , . . . , ztn) · φ2(zt∗1 , . . . , zt∗n)

]
. (2.38)
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A stationary stochastic process {zk} is

• weakly mixing if, for all choices of φ1, φ2 and times t1, . . . , tn, t
∗
1, . . . , t

∗
n

Mt

[
ψ2(t)

]
= 0 (2.39)

• ergodic if, for all choices of φ1, φ2 and times t1, . . . , tn, t
∗
1, . . . , t

∗
n

Mt [ψ(t)] = 0. (2.40)

Notice, that an ergodic process is also weakly mixing. Based on concepts
concerning information stability and the Shannon-McMillan-Breiman theo-
rem for finite-alphabet ergodic sources, the following proposition is derived
in [103]:
Proposition [103]: If the processes {hk} and {nk} are stationary weakly mix-
ing, and if {hk}, {nk}, and {xk} are mutually independent, then for every
Pav, Ppeak > 0 the information theoretic capacity Cinfo is well defined and
corresponds to the operational capacity Cop.

As we assume that the PSD of the channel fading process Sh(f) in (2.3)
exists, and as the fading process is assumed to be jointly proper Gaussian, the
channel fading process is ergodic. For a discussion on this relation see [103].
For proper Gaussian processes, ergodicity is equivalent to weakly mixing.
Thus, for the system model (2.13) considered in this work, operational and
information theoretic capacity coincide. This allows us to use the term of
information theoretic capacity in the following.

2.4.1 Outage Capacity

For completeness of presentation, we also mention that there exist further
capacity measures. The preceding definition of information theoretic capac-
ity (Shannon capacity) considers the maximum rate being achievable with
a probability of an decoding error that approaches zero for infinitely long
codewords. If we deviate from the focus on an arbitrary small probability of
error, we can also use the definition of outage capacity.

The q%-outage capacity Coutage is defined as the information rate that is
guaranteed for (100− q)% of the channel realizations [84], i.e.,

P (C ≤ Coutage) = q%. (2.41)

Therefore, this definition is especially interesting in the context of channels,
where the channel quality changes over time like fading channels.

However, within the rest of this work we will not use the measure outage
capacity but will restrict to the use of the information theoretic capacity.



Chapter 3

Bounds on the Achievable Rate of a
Flat-Fading Channel

Based on the model of a discrete-time stationary Rayleigh flat-fading channel
introduced in the previous chapter, we calculate bounds on the achievable rate
with identically distributed (i.d.) input symbols within the present chapter.
This assumption will be needed in the derivation of the upper bound on the
achievable rate. Concerning the input distribution, we explicitly discuss the
following two cases: On the one hand, the case of a peak-power constraint
and, on the other hand, the special case of i.i.d. zero-mean proper Gaussian
input symbols. At the end of this chapter, we also compare the bounds on
the achievable rate with i.d. input symbols to existing bounds on the channel
capacity given in [67] and [107]. Parts of the present chapter have already
been published in [28].

Based on the coincidence of operational and information theoretic capacity
as discussed in Section 2.4 and the ergodicity of the channel fading process,
the capacity of the stationary fading channel with an average power constraint
is given by

C = lim
N→∞

sup
P

1

N
I(y;x) = sup

P
I ′(y;x) (3.1)

where I ′(y;x) is the mutual information rate between the channel input and
the channel output defined as

I ′(y;x) = lim
N→∞

1

N
I(y;x). (3.2)

Furthermore, the set P contains all probability density functions p(x) over
the complex space CN with an average power Pav ≤ σ2

x, i.e.,

P =

{
p(x)

∣∣x ∈ CN ,
1

N
E[xHx] ≤ σ2

x

}
. (3.3)
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Note that for the RHS of (3.1) we make a slight misuse of notation. The
set P is defined for input vectors x of length N . Therefore, the exchange of
the limit and the supremum in (3.1), as it is used when expressing C based
on the mutual information rate, is formally not correct. However, to avoid
a further complication of notation, we use the set P also in the context of
information rates. The same holds also in the following for other sets of input
distributions.

As already described in Chapter 2, if not otherwise stated, we assume
i.d. input symbols. As this assumption is not proven to be optimal, in the
following we use the term achievable rate, which we define as

R = sup
Pi.d.

I ′(y;x) (3.4)

where Pi.d. is the set over all probability density functions (PDFs) p(x) with
i.d. elements, i.e.,

Pi.d. =

{
p(x)

∣∣∣∣x ∈ CN , p(xi) = p(xj) ∀i, j, E[|xk|2] ≤ σ2
x ∀k

}
. (3.5)

At some specific points, we will further constrain the input distribution to
be peak power limited. In this case, the set of input distributions is given by

Ppeak
i.d. =

{
p(x)

∣∣∣∣x ∈ CN , p(xi) = p(xj) ∀i, j,

{
E[|xk|2] ≤ σ2

x, p(xk) = 0 ∀xk : |xk|2 > Ppeak

}
∀k
}

(3.6)

which corresponds to the set Pi.d. in (3.5) with a further restriction on the
peak power, i.e., |xk|2 ≤ Ppeak.

3.1 The Mutual Information Rate I′(y; x)

In general, by means of the chain rule, the mutual information rate in (3.2)
can be expanded as [8]

I ′(y;x) = I ′(y;x|h) − I ′(x;h|y) (3.7)

where I ′(y;x|h) is the mutual information rate in case the channel is known
at the receiver, i.e., the mutual information rate of the coherent channel, and
I ′(x;h|y) is the penalty due to the channel uncertainty. It is interesting to
note that the penalty term can be further separated as follows
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I ′(x;h|y) (a)
= I ′(y,x;h) − I ′(y;h)

(b)
= I ′(y;h|x) + I ′(h;x) − I ′(y;h)

(c)
= I ′(y;h|x) − I ′(y;h) (3.8)

where for (a) and (b) we use the chain rule for mutual information and for
(c) we exploit the fact that the mutual information between the channel
fading process described by h and the input sequence x is zero due to the
independency of h and x and, thus,

I ′(h;x) = 0. (3.9)

Obviously, with (3.8) the penalty term corresponds to the difference between
the knowledge on the channel h that can be obtained from the observation
y while knowing the transmit sequences x in comparison to not knowing it.

Within this chapter, we derive bounds on the mutual information rate
I ′(y;x) based on the following straightforward separation into differential
entropy rates,

I ′(y;x) = h′(y) − h′(y|x). (3.10)

Here, h′(·) indicates the differential entropy rate and is defined as

h′(·) = lim
N→∞

1

N
h(·). (3.11)

In Section 3.2, we give a lower and an upper bound on the channel output
entropy rate h′(y), which are independent of the PSD of the channel fading
process Sh(f). In contrast, in Section 3.3 we derive an upper bound and a
lower bound on h′(y|x), where the upper bound holds for an arbitrary PSD
of the channel fading process with compact support. For the lower bound
on h′(y|x) we find a closed form expression only for the special case of a
rectangular PSD. For these derivations, we only assume i.d. input symbols.
Further restrictions on the input distribution, like a peak power constraint or
the assumption on zero-mean proper Gaussian input symbols are applied later
when evaluating the mutual information rate I ′(y;x) based on the bounds
on h′(y) and h′(y|x) in Section 3.4.

3.2 The Received Signal Entropy Rate h′(y)

In this section, we derive an upper bound and a lower bound on h′(y), which
are independent of the PSD of the channel fading process Sh(f).
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3.2.1 Lower Bound on h′(y)

The mutual information with perfect channel state information at the receiver
can be upper-bounded by

I(y;x|h) = h(y|h) − h(y|h,x)
≤ h(y) − h(y|h,x). (3.12)

Here we make use of the fact that conditioning reduces entropy. Thus, we
can lower-bound the entropy rate h′(y) by

h′(y) ≥ I ′(y;x|h) + h′(y|h,x). (3.13)

The mutual information rate in case the channel is known at the receiver,
i.e., the first term on the RHS of (3.13), depends obviously on the input
distribution. Thus, we postpone its further evaluation to Section 3.4.1.3 and
Section 3.4.2 where we derive the bounds on the achievable rate.

The second term on the RHS of (3.13) originates from AWGN and, thus,
can be calculated as

h′(y|h,x) = log
(
πeσ2

n

)
. (3.14)

Hence, a lower bound on the entropy rate h′(y) is given by

h′(y) ≥ h′L(y) = I ′(y;x|h) + log
(
πeσ2

n

)
. (3.15)

3.2.2 Upper Bound on h′(y)

In this section, we give an upper bound on the entropy rate h′(y). First, we
make use of the fact that the entropy h(y) of a zero-mean complex random
vector y of dimension N with nonsingular correlation matrix Ry = E[yyH ]
is upper-bounded by [82]

h(y) ≤ log
[
(πe)N det(Ry)

]
. (3.16)

By Hadamard’s inequality, the determinant of a matrix is upper-bounded
by the product of its diagonal entries. The diagonal entries of Ry are given
by ασ2

xσ
2
h + σ2

n, where ασ
2
x is the average transmit power with α ∈ [0, 1].

Thus, if α < 1 an average power smaller than the maximum average power
σ2
x allowed by the set of input distributions Pi.d. is used by the transmitter.1

Therefore, further upper-bounding the RHS of (3.16) yields

1 Notice that in case we would assume i.i.d. transmit symbols, the upper-bounding
of the RHS of (3.16) by Hadamard’s inequality is not required, as in this case the
correlation matrix Ry is already diagonal with Ry = (ασ2

xσ
2
h + σ2

n)IN .
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h(y) ≤ N log
[
πe(ασ2

xσ
2
h + σ2

n)
]
. (3.17)

Hence, with (3.17) the upper bound h′U (y) on the entropy rate h′(y) is
given by

h′(y) ≤ h′U (y) = log
(
πe
(
ασ2

xσ
2
h + σ2

n

))
. (3.18)

The discussion of the parameter α is postponed until the study of the mutual
information rate.

In Appendix A.1, we give another upper bound on h′(y) for the specific
case of zero-mean proper Gaussian inputs based on numerical integration
to calculate h(yk), i.e., the output entropy at an individual time instant,
based on the output distribution p(yk), see [88]. As this bound can only be
evaluated numerically using Hermite polynomials and Simpson’s rule or by
Monte Carlo integration, we do not further consider it here.

3.3 The Entropy Rate h′(y|x)

In this section, we give an upper bound and a lower bound on the conditional
channel output entropy rate h′(y|x). We recall the derivation of the upper
bound given in [21]. The upper bound holds for an arbitrary PSD of the
channel fading process with compact support. In contrast, to the best of our
knowledge, the lower bound on h′(y|x) is new and only holds for the special
case of a rectangular PSD.

3.3.1 Upper Bound on h′(y|x)

The probability density of y conditioned on x is zero-mean proper Gaussian.
Therefore, its entropy is

h(y|x) = Ex

[
log
(
(πe)N det(Ry|x)

)]
(3.19)

where the covariance matrix Ry|x is given by

Ry|x = Eh,n

[
yyH

∣∣x
]
= Eh

[
XhhHXH

∣∣x
]
+ σ2

nIN

= XRhX
H + σ2

nIN . (3.20)

As the channel correlation matrix Rh is Hermitian and thus normal, the
spectral decomposition theorem applies, i.e.,

Rh = UΛhU
H (3.21)
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where the diagonal matrix Λh = diag (λ1, . . . , λN ) contains the eigenvalues
λi of Rh and the matrix U is unitary.

The following upper-bounding of h(y|x) is already known from [21]. Mak-
ing use of (3.21), Jensen’s inequality and the concavity of the log function,
we can upper-bound h(y|x) in (3.19) as follows

h(y|x) = Ex

[
log det

(
1

σ2
n

XUΛhU
HXH + IN

)]
+N log(πeσ2

n) (3.22)

(a)
= Ex

[
log det

(
1

σ2
n

XHXUΛhU
H + IN

)]
+N log(πeσ2

n) (3.23)

(b)

≤ log det

(
ασ2

x

σ2
n

UΛhU
H + IN

)
+N log(πeσ2

n)

= log det

(
ασ2

x

σ2
n

Λh + IN

)
+N log(πeσ2

n)

=

N∑

i=1

log

(
ασ2

x

σ2
n

λi + 1

)
+N log(πeσ2

n) (3.24)

where ασ2
x is the average transmit power and, thus, α ∈ [0, 1]. For (a) the

following relation is used

det(AB+ I) = det(BA+ I) (3.25)

which holds as AB has the same eigenvalues asBA forA andB being square
matrices [52, Theorem 1.3.20]. For (b) we have used the fact that log det(·)
is concave on the set of positive definite matrices2.

To calculate the bound on the entropy rate h′(y|x), we consider the case
N → ∞, i.e., the dimension of the matrix Λh grows without bound. As Rh

is Hermitian Toeplitz, we can evaluate (3.24) using Szegö’s theorem on the
asymptotic eigenvalue distribution of Hermitian Toeplitz matrices [43], [44].
Consequently,

2 For the special case of independent transmit symbols, (b) can also be shown in two
steps by using Jensen’s inequality and in a second step expressing the determinant
by a Laplacian expansion by minors to calculate the expectation, i.e.,

Ex

[

log det

(

1

σ2
n

XHXUΛhU
H + IN

)]

≤ log Ex

[

det

(

1

σ2
n

XHXUΛhU
H + IN

)]

= log det

(

ασ2
x

σ2
n

UΛhU
H + IN

)

(3.26)

The assumption on i.i.d. input symbols can be made as the upper bound on h(y|x) is
used to establish a lower bound on capacity, which is given by the mutual information
rate for an arbitrary input distribution. Furthermore, the supremum of the lower
bound on h′(y) in (3.15) over all input distributions fulfilling the specific power
constraints, which is required for the calculation of the lower bound on the achievable
rate, is also achieved for i.i.d. input symbols, see Section 3.4.2.
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lim
N→∞

1

N

N∑

i=1

log

(
ασ2

x

σ2
n

λi + 1

)
=

∫ 1
2

− 1
2

log

(
Sh(f)

ασ2
x

σ2
n

+ 1

)
df. (3.27)

Notice that due to the assumption that the PSD (2.3) exists, the condition

∞∑

m=−∞
|rh(m)|2 <∞ (3.28)

holds and, thus, Szegö’s theorem can be applied.
Hence, we get the following upper bound

h′(y|x) ≤ h′U (y|x)

=

∫ 1
2

− 1
2

log

(
Sh(f)

ασ2
x

σ2
n

+ 1

)
df + log(πeσ2

n). (3.29)

The discussion of the factor α, i.e., the average transmit power ασ2
x, is post-

poned until studying the mutual information rate.
At this point, it is interesting to note that for constant modulus (CM)

input symbols the differential entropy rate h′(y|x) is equal to the upper
bound h′U (y|x), i.e.,

h′(y|x)
∣∣
CM

= h′U (y|x) (3.30)

as in this case (3.23) simplifies due to the following relation

XHX
∣∣
CM

= ασ2
xI (3.31)

with the transmit power given by ασ2
x and, thus, (b) succeeding (3.23) holds

with equality.

3.3.2 Lower Bound on h′(y|x) for a Rectangular PSD

In this section, we give a lower bound on the entropy rate h′(y|x) for the
special case of a rectangular PSD, which is a common approximation of the
actual PSD in typical system design.

For the further proof, we derive a circulant matrix which is asymptotically
equivalent to the Toeplitz matrix Rh. Hereby, we follow a specific approach
as shown in [43, Section 4.4], where the circulant matrix is constructed by
sampling the PSD of the channel fading process. For the discussion of the

asymptotic equivalence, we write R
(N)
h instead of Rh, where the superscript

(N) denotes the size of the square matrix Rh.

Let the first column of the circulant matrix C
(N)
h be given by
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(
c
(N)
0 c

(N)
1 . . . c

(N)
N−1

)T
(3.32)

where again the superscript (N) denotes the size of the square matrix C
(N)
h .

The elements c
(N)
k are given by

c
(N)
k =

1

N

N−1∑

l=0

S̃h

(
l

N

)
ej2πk

l
N (3.33)

where S̃h(f) is the periodic continuation of Sh(f) given in (2.3), i.e.,

S̃h(f) =

∞∑

k=−∞
δ(f − k) ⋆ Sh(f) (3.34)

and Sh(f) being zero outside the interval |f | ≤ 0.5 for which it is defined in
(2.3).

As we assume that the autocorrelation function of the channel fading pro-
cess is absolutely summable, the PSD of the channel fading process Sh(f) is
Riemann integrable, and it holds that

lim
N→∞

c
(N)
k = lim

N→∞

1

N

N−1∑

l=0

S̃h

(
l

N

)
ej2πk

l
N

=

∫ 1
2

− 1
2

Sh(f)e
j2πkfdf

= rh(k) (3.35)

with rh(k) given by (2.2).
As the eigenvectors of a circulant matrix are given by a discrete Fourier

transform (DFT), the eigenvalues λ̃
(N)
m with m = 1, . . . , N of the circulant

matrix C
(N)
h are given by

λ̃(N)
m =

N−1∑

k=0

c
(N)
k e−j2πk

m−1
N (3.36)

and, thus,

c
(N)
k =

1

N

N∑

m=1

λ̃(N)
m ej2πk

m−1
N (3.37)

so that with (3.33) we get
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λ̃(N)
m = S̃h

(
m− 1

N

)
. (3.38)

Consequently, the spectral decomposition of the circulant matrix C
(N)
h is

given by

C
(N)
h = F(N)Λ̃

(N)
h

(
F(N)

)H
(3.39)

where the matrix F(N) is a unitary DFT matrix, i.e., its elements are given
by

[
F(N)

]
k,l

=
1√
N
ej2π

(k−1)(l−1)
N . (3.40)

Furthermore, the matrix Λ̃
(N)
h is diagonal with the elements λ̃

(N)
m given in

(3.38).

It can be shown that the Toeplitz matrix R
(N)
h and the circulant matrix

C
(N)
h are asymptotically equivalent in case of an absolutely summable auto-

correlation function rh(l), see [43, Lemma 4.6]. In the context of proving this

lemma it is shown that the weak norm of the difference of R
(N)
h and C

(N)
h

converges to zero as N → ∞, i.e.,

lim
N→∞

∣∣∣R(N)
h −C

(N)
h

∣∣∣ = 0 (3.41)

where the weak norm of a matrix B is defined as

|B| =
(

1

N
Tr
[
BHB

]) 1
2

. (3.42)

The convergence of the weak norm of the difference R
(N)
h − C

(N)
h towards

zero is required later on.

By the construction of the circulant matrix C
(N)
h , the eigenvalues λ̃

(N)
m of

C
(N)
h are given by (3.38), i.e.,

λ̃(N)
m =

{
Sh
(
f = m−1

N

)
for 1 ≤ m ≤ ⌈N2 ⌉

Sh
(
f = m−1

N − 1
)
for ⌈N2 ⌉ < m ≤ N

. (3.43)

Thus, if the PSD of the channel fading process Sh(f) is rectangular, the

eigenvalues of the circulant matrix C
(N)
h are given by3

3 Recall that a rectangular PSD Sh(f) corresponds to rh(l) = σ2
hsinc(2fdl) which

is not absolutely summable. However, the rectangular PSD can be arbitrarily closely
approximated by a PSD with a raised cosine shape, whose corresponding correlation
function is absolutely summable, see Section 2.1 for a discussion.
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λ̃(N)
m =

{
σ2
h

2fd
for 1 ≤ m ≤ fdN + 1 ∨ (1− fd)N + 1 ≤ m ≤ N

0 otherwise
. (3.44)

Now, we want to apply the asymptotic equivalence of R
(N)
h and C

(N)
h to

lower-bound the entropy rate h′(y|x) given by

h′(y|x) = lim
N→∞

1

N
h(y|x) (3.45)

with h(y|x) given in (3.22). Thus, we have to show that

lim
N→∞

1

N
Ex

[
log det

(
1

σ2
n

XR
(N)
h XH + IN

)]

= lim
N→∞

1

N
Ex

[
log det

(
1

σ2
n

XC
(N)
h XH + IN

)]
. (3.46)

Using (3.25), equation (3.46) can be rewritten as

lim
N→∞

1

N
Ex

[
log det

(
1

σ2
n

XHXR
(N)
h + IN

)]

= lim
N→∞

1

N
Ex

[
log det

(
1

σ2
n

XHXC
(N)
h + IN

)]
. (3.47)

To prove (3.47) we have to show that the matrices

K
(N)
1 =

1

σ2
n

XHXR
(N)
h + IN (3.48)

K
(N)
2 =

1

σ2
n

XHXC
(N)
h + IN (3.49)

are asymptotically equivalent [43, Theorem 2.4]. This means that we have to
show that both matrices are bounded in the strong norm, and that the weak
norm of their difference converges to zero for N → ∞ [43, Section 2.3].

Concerning the condition with respect to the strong norm we have to show
that

∥∥∥K(N)
1

∥∥∥ <∞ (3.50)
∥∥∥K(N)

2

∥∥∥ <∞ (3.51)

with the strong norm of the matrix B defined by

‖B‖2 = max
k

γk (3.52)

where γk are the eigenvalues of the Hermitian nonnegative definite matrix
BBH . The diagonal matrix XHX contains the transmit powers of the indi-
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vidual transmit symbols. In the case of Gaussian input distributions, for a
given ǫ > 0, there exists a finite value M(ǫ) such that the transmit power is
smaller than M(ǫ) with probability 1 − ǫ. In addition, the strong norms of

R
(N)
h and C

(N)
h are bounded, too. Concerning the boundedness of the eigen-

values of the Hermitian Toeplitz matrix R
(N)
h see [43, Lemma 4.1]. Thus, the

strong norms of K
(N)
1 and K

(N)
2 are asymptotically almost surely bounded,

i.e., with probability converging to 1.

Furthermore, for the weak norm of the difference K
(N)
1 −K

(N)
2 we get for

N → ∞
∣∣∣K(N)

1 −K
(N)
2

∣∣∣ =
∣∣∣∣
1

σ2
n

XHXR
(N)
h + IN −

(
1

σ2
n

XHXC
(N)
h + IN

)∣∣∣∣

=

∣∣∣∣
1

σ2
n

XHX
(
R

(N)
h −C

(N)
h

)∣∣∣∣
(a)

≤ 1

σ2
n

∥∥XHX
∥∥
∣∣∣R(N)

h −C
(N)
h

∣∣∣ (3.53)

where for (a) we have used [43, Lemma 2.3]. Based on the above argumenta-
tion that

∥∥XHX
∥∥ is bounded with probability one, we get for N → ∞

lim
N→∞

∣∣∣K(N)
1 −K

(N)
2

∣∣∣ ≤ lim
N→∞

1

σ2
n

∥∥XHX
∥∥
∣∣∣R(N)

h −C
(N)
h

∣∣∣

= 0 (3.54)

due to (3.41). Thus, we have proved that (3.46) holds and we can express the
entropy rate h′(y|x) by

h′(y|x) = lim
N→∞

1

N

[
Ex

[
log det

(
1

σ2
n

XC
(N)
h XH + IN

)]
+N log(πeσ2

n)

]

= lim
N→∞

1

N

[
Ex

[
log det

(
1

σ2
n

XFΛ̃hF
HXH + IN

)]
+N log(πeσ2

n)

]
.

(3.55)

Here FΛ̃hF
H is the spectral decomposition of the circulant matrix Ch (from

here on we omit the superscript (N) for ease of notation), see (3.39). Thus,
Λ̃h is a diagonal matrix containing the eigenvalues λ̃k as given in (3.44) and
the matrix F is a unitary matrix with the eigenvectors of Ch on its columns.

To calculate a lower bound on h′(y|x) we transform the term in the brack-
ets at the RHS of (3.55) as follows
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Ex

[
log det

(
1

σ2
n

XFΛ̃hF
HXH + IN

)]
+N log(πeσ2

n)

(a)
= Ex

[
log det

(
1

σ2
n

Λ̃hF
HXHXF+ IN

)]
+N log(πeσ2

n)

(b)
= Ex

[
log det

(
σ2
h

2fdσ2
n

F̃HXHXF̃+ I2⌊fdN⌋+1

)]
+N log(πeσ2

n) (3.56)

where for (a) we have used (3.25). For (b), the eigenvalue distribution in
(3.44) is used, and the matrix F̃ is given by

F̃ =
[
f1, . . . , f⌊fdN+1⌋, f⌈(1−fd)N+1⌉, . . . , fN

]
∈ CN×(2⌊fdN⌋+1) (3.57)

where the fi are the orthonormal columns of the unitary matrix F. Now, we
apply the following inequality given in [46, Lemma 1].

Lemma 3.1. Let A ∈ Cm×n with orthonormal rows and m ≤ n. Then

log det
(
Adiag (p1, . . . , pn)A

H
)
≥ trace

[
Adiag(log p1, . . . , log pn)A

H
]

(3.58)

if p1, . . . , pn > 0.

With Lemma 3.1, we can lower-bound (3.56) such that

Ex

[
log det

(
σ2
h

2fdσ2
n

F̃HXHXF̃+ I2⌊fdN⌋+1

)]
+N log(πeσ2

n)

≥ Ex

[
trace

[
F̃Hdiag

(
log

(
σ2
h|x1|2
2fdσ2

n

+ 1

)
, . . . , log

(
σ2
h|xN |2
2fdσ2

n

+ 1

))
F̃

]]

+N log(πeσ2
n)

= trace

[
F̃Hdiag

(
Ex log

(
σ2
h|x1|2
2fdσ2

n

+ 1

)
, . . . ,Ex log

(
σ2
h|xN |2
2fdσ2

n

+ 1

))
F̃

]

+N log(πeσ2
n)

(a)
=

2⌊fdN⌋+1∑

k=1

Ex log

(
σ2
h

2fdσ2
n

|x|2 + 1

)
+N log(πeσ2

n) (3.59)

where (a) results, because all xk are identically distributed and because the
columns of F̃ are orthonormal.
Hence, with (3.55) the entropy rate is given by
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h′(y|x) = lim
N→∞

1

N
h(y|x)

≥ lim
N→∞

1

N

2⌊fdN⌋+1∑

k=1

Ex log

(
σ2
h

2fdσ2
n

|x|2 + 1

)
+ log(πeσ2

n)

= 2fdEx log

(
σ2
h

2fdσ2
n

|x|2 + 1

)
+ log(πeσ2

n) = h′L(y|x). (3.60)

Thus, we have found a general lower bound on the entropy rate h′(y|x) for
i.d. input distributions. To the best of our knowledge, this is the only known
lower bound on the entropy rate h′(y|x) which is not based on a peak power
constraint. Therefore, this bound later on enables the calculation of an upper
bound on the achievable rate with i.d. input symbols with zero-mean proper
Gaussian distribution.

3.3.2.1 Discussion on the Assumption of a Rectangular PSD

For the case of constant modulus (CM) input distributions, it can be shown
that the rectangular PSD maximizes h′(y|x) among all PSDs with a com-
pact support interval [−fd, fd] and a channel power σ2

h. Therefor, we have to
calculate supSh(f)∈S h

′(y|x)
∣∣
CM

where the set S of PSDs is given by

S =

{
Sh(f) = 0 for fd < |f | ≤ 0.5,

∫ 1
2

− 1
2

Sh(f)df = σ2
h

}
. (3.61)

With (3.29) and (3.30) we get

sup
Sh(f)∈S

h′(y|x)
∣∣
CM

= sup
Sh(f)∈S

∫ 1
2

− 1
2

log

(
Sh(f)

ασ2
x

σ2
n

+ 1

)
df + log(πeσ2

n)

= sup
Sh(f)∈S

∫ fd

−fd
log

(
Sh(f)

ασ2
x

σ2
n

+ 1

)
df + log(πeσ2

n)

(3.62)

(a)
=

∫ fd

−fd
log

(
σ2
h

2fd

ασ2
x

σ2
n

+ 1

)
df + log(πeσ2

n) (3.63)

i.e., the PSD Sh(f) which maximizes h′(y|x) is rectangular

Sh(f) =

{
σ2
h

2fd
for |f | ≤ fd

0 otherwise
. (3.64)

The last step in (3.63) can be proven as follows. The Sh(f) that maximizes
(3.62) has to maximize the following functional J for all f and constant c
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J(Sh) =

∫ fd

−fd
log

(
Sh(f)

ασ2
x

σ2
n

+ 1

)
df + c

(∫ fd

−fd
Sh(f)df − σ2

h

)
(3.65)

where the last term accounts for the constraint

∫ 1
2

− 1
2

Sh(f)df = σ2
h. (3.66)

Therefore, the following equation must be fulfilled for each f within the
interval [−fd, fd]

∂J

∂Sh(f)
=

ασ2
x

σ2
n

Sh(f)
ασ2

x

σ2
n

+ 1
+ c = 0. (3.67)

As this equation has to be fulfilled for each f and constant c, Sh(f) must be
constant within the interval [−fd, fd]. Thus, with (3.66), (3.63) follows.

We conjecture that a rectangular PSD of the channel fading process maxi-
mizes h′(y|x) for any i.d. input distribution with an average power ασ2

x. Con-
cerning this discussion see also [11, Section IV-A]. Consequently, the lower
bound in (3.60) then holds only for a rectangular PSD. As this lower bound
on h′(y|x) is finally used for the upper bound on I ′(y;x) and following the
preceding conjecture, we get an upper bound on the achievable rate for a
given maximum Doppler spread fd for the worst case PSD.

3.4 The Achievable Rate

Based on the upper and lower bounds on h′(y) and h′(y|x), we are now able
to give upper and lower bounds on the achievable rate with i.d. inputs.

3.4.1 Upper Bound

3.4.1.1 Peak Power Constrained Input

First, we consider input distributions with a peak power constraint, i.e.,
|xk|2 ≤ Ppeak. For this case, we can upper-bound the supremum of I ′(y;x)

over the set of input distribution Ppeak
i.d. in (3.6) as follows

sup
Ppeak

i.d.

I ′(y;x) ≤ sup
Ppeak

i.d.

{h′U (y) − h′L(y|x)} (3.68)

with h′U (y) and h
′
L(y|x) given by (3.18) and (3.60).
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The calculation of the supremum in (3.68) is done in two steps. The inner

supremum is taken over the constrained set Ppeak
i.d.

∣∣α being characterized by
an average power ασ2

x which holds with equality. Because of the fact that in
(3.6) we only use a constraint on the maximum average input power given

by σ2
x the outer supremum is taken over α ∈ [0, 1]. The set Ppeak

i.d.

∣∣α is given
by

Ppeak
i.d.

∣∣α =

{
p(x)

∣∣∣∣x ∈ CN , p(xi) = p(xj) ∀i, j,

{
E[|xk|2] = ασ2

x, p(xk) = 0 ∀xk : |xk|2 > Ppeak

}
∀k
}

(3.69)

which corresponds to the set Ppeak
i.d. except that the average power is now

fixed to ασ2
x with equality. Such a separation has also been used in [107] and

in [33].
Based on the split of the supremum into two parts (3.68) becomes

sup
Ppeak

i.d.

I ′(y;x) ≤ sup
α∈[0,1]

sup
Ppeak

i.d.

∣∣α
{h′U (y) − h′L(y|x)}

= sup
α∈[0,1]

sup
Ppeak

i.d.

∣∣α

{
log (αρ+ 1)− 2fdEx log

(
σ2
h

2fdσ2
n

|x|2 + 1

)}

= sup
α∈[0,1]



log (αρ+ 1)− 2fd inf

Ppeak
i.d.

∣∣α
Ex log

(
σ2
h

2fdσ2
n

|x|2 + 1

)


(3.70)

with the nominal average SNR ρ given in (2.18).
The term containing the infimum on the RHS of (3.70) can be lower-

bounded in the following way

inf
Ppeak

i.d.

∣∣α
Ex log

(
σ2
h

2fdσ2
n

|x|2 + 1

)

= inf
Ppeak

i.d.

∣∣α

∫ √
Ppeak

|x|=0

log
(

σ2
h

2fdσ2
n
|x|2 + 1

)

|x|2 |x|2p(|x|)d|x|

(a)
=

log
(

σ2
h

2fdσ2
n
Ppeak + 1

)

Ppeak
inf

Ppeak
i.d.

∣∣α

∫ √
Ppeak

|x|=0

|x|2p(|x|)d|x|
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=
log
(

σ2
h

2fdσ2
n
Ppeak + 1

)

Ppeak
ασ2

x (3.71)

where for (a) we have used that all factors of the integrand are positive and
that the term

1

|x|2 log

(
σ2
h

2fdσ2
n

|x|2 + 1

)
=

1

z
log (cz + 1) (3.72)

with c =
σ2
h

2fdσ2
n
and z = |x|2 is monotonically decreasing in z as

∂

∂z

{
1

z
log (cz + 1)

}
=

c

(cz + 1)z
− log(cz + 1)

z2
≤ 0

⇔ cz

cz + 1
≤ log (cz + 1) (3.73)

which holds for cz > −1. Thus, the term in (3.72) is minimized for z =
|x|2 = Ppeak. A similar approach to calculate the infimum in (3.71) has been
used in [33] and [127] for analogous problems. Notice that the result given in
(3.71) means that the infimum on h′L(y|x) for a fixed average transmit power
is achieved with on-off keying.

With (3.71), we get the following upper bound on the RHS of (3.70)

sup
Ppeak

i.d.

I ′(y;x) ≤ sup
α∈[0,1]

{
log (αρ+ 1)− 2fd

ασ2
x

Ppeak
log

(
σ2
h

2fdσ2
n

Ppeak + 1

)}

= sup
α∈[0,1]

{
log (αρ+ 1)− 2fd

α

β
log

(
1

2fd
ρβ + 1

)}
(3.74)

with the nominal peak-to-average power ratio4

β =
Ppeak

σ2
x

. (3.75)

As the argument of the supremum on the RHS of (3.74) is concave in α
and, thus, there exists a unique maximum, it can easily be shown that the
supremum in (3.74) with respect to α ∈ [0, 1] is given by

αopt = min

{
1,

(
2fd
β

log

(
1

2fd
ρβ + 1

))−1

− 1

ρ

}
(3.76)

4 Instead of the common term peak-to-average power ratio we choose the term nom-
inal peak-to-average power ratio, as in case of a peak power constraint, it is not
necessarily optimal to use the maximum average power σ2

x. In case the actual aver-
age power is equal to the maximum average power σ2

x, β corresponds to the actual
peak-to-average power ratio.
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and, thus,

sup
Ppeak

i.d.

I ′(y;x) ≤ log (αoptρ+ 1)− 2fd
αopt

β
log

(
1

2fd
ρβ + 1

)
(3.77)

= I ′
U (y;x)

∣∣
Ppeak

. (3.78)

Hence, we have found an upper bound on the achievable rate with i.d. input
symbols and a peak power constraint for the special case of a rectangular PSD
of the channel fading process. Note that the writing I ′

U (y;x)
∣∣
Ppeak

denotes

an upper bound on the peak power constrained achievable rate. We will use
similar notations in the following.

Furthermore, notice that the case αopt < 1 corresponds to the case that it
is not optimal to use the maximum average transmit power allowed by the
set Ppeak

i.d. . This behavior is a result of the peak power constraint. Therefore,
consider the extreme case β = 1 and fd = 0.5, i.e., an uncorrelated channel.
α = 1 then would correspond to constant modulus signaling, i.e., the trans-
mitter puts all information into the phase of the transmitted signal. As the
channel is uncorrelated from symbol to symbol and unknown to the receiver,
the mutual information rate I ′(y;x) is zero. Therefore, it is better, if the
receiver does not use all its transmit power, i.e., uses an α < 1, enabling
modulation of the magnitude, which leads to a positive I ′(y;x).

The choice αopt = 1, corresponding to the case that it is optimal to use
the maximum possible average transmit power, can be shown to be optimal,
on the one hand, if

1 ≤ ρ ≤ 2fd
β

[
exp

(
1

2

β

2fd

)
− 1

]
(3.79)

or, on the other hand, if

2fd ≤
β

ρ+ 2
for ρ ≤ 1. (3.80)

For a proof of these conditions see Appendix A.2. As in realistic scenarios fd is
close to zero, the condition (3.79) and (3.80) are typically fulfilled. However,
for the parameter range displayed in Fig. 3.1 the conditions in (3.79) and
(3.80) are not always fulfilled.

The upper bound in (3.78) is a special case of the upper bound on the
peak power constrained capacity given in [107]. For a further comparison of
both bounds we refer to Section 3.6.

For a non-peak power constrained upper bound on the achievable rate
with i.d. inputs we have to evaluate the following expression
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sup
Pi.d.

I ′(y;x) ≤ sup
Pi.d.

{h′U (y) − h′L(y|x)}

≤ sup
α∈[0,1]



log (αρ+ 1)− 2fd inf

Pi.d.

∣∣α
Ex log

(
σ2
h

2fdσ2
n

|x|2 + 1

)


(3.81)

where Pi.d.

∣∣α corresponds to Ppeak
i.d.

∣∣α in (3.69) but without having a peak
power constraint. From the calculation of the infimum in (3.71) it is obvious
that in the non-peak power constrained case the infimum on the RHS of
(3.81) becomes zero and, thus,

sup
Pi.d.

I ′(y;x) ≤ log (ρ+ 1) (3.82)

which obviously is loose as it is the capacity of an AWGN channel being
already larger than the coherent capacity of the fading channel.

3.4.1.2 Gaussian Input Distribution

Considering higher order modulation, the nominal peak-to-average power ra-
tio β may become relatively large. For proper Gaussian inputs it is in fact
infinite. Obviously, for large peak powers Ppeak, the second term on the RHS
of (3.77) approaches zero and it can be shown that this bound becomes loose
for β > 1 and high SNR, see Section 3.4.4. Therefore, we now follow a differ-
ent approach. As in the case of perfect receiver side channel knowledge, i.e.,
the coherent scenario, an i.i.d. zero-mean proper Gaussian input distribution
is capacity-achieving, we guess that it will not be highly non-optimal for low
channel dynamics. Thus, we now calculate an upper bound on the achievable
rate with i.i.d. zero-mean proper Gaussian inputs. As for the derivation of the
lower bound h′L(y|x) in (3.60) no assumptions on a peak power constraint
have been made, it still holds for probability distribution functions with an
unbounded support, and we are able to evaluate it for the case of zero-mean
proper Gaussian input symbols. The lower bound on the entropy rate h′L(y|x)
in (3.60) is for zero-mean proper Gaussian transmit symbols with an average
transmit power of ασ2

x given by

h′L(y|x)
∣∣
PG,ασ2

x
= 2fd

∫ ∞

0

log

(
σ2
hασ

2
x

2fdσ2
n

z + 1

)
e−zdz + log(πeσ2

n). (3.83)

Thus, for i.i.d. zero-mean proper Gaussian (PG) input symbols, the achiev-
able rate is upper bounded by
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I ′
U (y;x)

∣∣
PG

= sup
α∈[0,1]

{
log (αρ+ 1)− 2fd

∫ ∞

0

log

(
αρ

2fd
z + 1

)
e−zdz

}

(a)
= log (ρ+ 1)− 2fd

∫ ∞

0

log

(
ρ

2fd
z + 1

)
e−zdz. (3.84)

where (a) follows by showing that the argument of the supremum monoton-
ically increases with α, as

∂

∂α

{
log (αρ+ 1)− 2fd

∫ ∞

0

log

(
αρ

2fd
z + 1

)
e−zdz

}

=
ρ

αρ+ 1
− 2fd

∫ ∞

0

ρ
2fd

z
αρ
2fd

z + 1
e−zdz

(b)

≥ ρ

αρ+ 1
− 2fd

ρ
2fd

αρ
2fd

+ 1
≥ 0. (3.85)

For (b) we use that
ρ

2fd
z

αρ
2fd

z+1 is concave in z and, thus, we can apply Jensen’s

inequality.
Equation (3.84) indicates that due to the lack of a peak power constraint

it is optimal to use the maximum average transmit power σ2
x, i.e., to choose

α = 1. Notice that for the derivation of this upper bound the assumption on
independent input symbols has not been used. Nevertheless, in the context of
proper Gaussian input distributions we will use the term i.i.d. as independent
input symbols are capacity achieving in the coherent scenario.

To the best of our knowledge, the upper bound in (3.84) is new. Most other
available upper bounds on the capacity hold only for input distributions with
a peak power constraint and become loose for high peak-to-average power
ratios, see, e.g., [105] and [107], and also the upper bound on the achievable
rate with i.d. inputs in (3.78), which is equivalent to the capacity upper bound
in [107, Proposition 2.2]. However, it has to be stated that the peak power
constrained upper bounds in [105] and [107] are upper bounds on capacity
and hold for an arbitrary PSD of the channel fading process.

3.4.1.3 Modification based on Coherent Upper Bound

Furthermore, we know that the mutual information rate in case of perfect
channel state information at the receiver I ′(x;y|h) always upper-bounds the
mutual information rate in the absence of channel state information, i.e.,

I ′(y;x) ≤ I ′(x;y|h). (3.86)

Therefore, we can modify the upper bounds as follows



46 3 Bounds on the Achievable Rate of a Flat-Fading Channel

I ′
Umod

(y;x) = min{I ′
U (y;x), sup

P
I ′(x;y|h)}. (3.87)

The term supP I ′(x;y|h) corresponds to the coherent capacity in case the
average power is constrained to σ2

x without any peak power constraint. It is
given by

sup
P

I ′(x;y|h) = lim
N→∞

sup
P

1

N
Eh

[
Ey,x

[
log

(
p(y|h,x)
p(y|h)

)∣∣∣∣h
]]

(a)
= sup

P
Ehk

[
Eyk,xk

[
log

(
p(yk|hk, xk)
p(yk|hk)

)∣∣∣∣ hk
]]

(b)
= sup

P
I(y;x|h) (3.88)

(c)
= Eh

[
log

(
1 + ρ

|h|2
σ2
h

)]

=

∫ ∞

z=0

log (1 + ρz) e−zdz. (3.89)

where for (a) we have used that due to conditioning on the channel fad-
ing vector h the channel uses become independent and the supremum is
achieved for independent input symbols. Effectively, the coherent Rayleigh
flat-fading channel can be interpreted as an AWGN channel with varying
SNR. Furthermore, for (b) we dropped the time index for ease of notation.
The capacity-achieving input distribution is i.i.d. zero-mean proper Gaussian
and the coherent capacity corresponds to an average of the AWGN channel
capacity over all fading realizations, which has been used for (c). Obviously,
the coherent mutual information rate I ′(y;x|h) is independent of the tem-
poral correlation of the channel.

In Fig. 3.1, the upper bound on the achievable rate with a peak power
constraint in (3.78) is shown for different nominal peak-to-average power
ratios β in comparison to the upper bound on the achievable rate for zero-
mean proper Gaussian input symbols in (3.84) (both combined with (3.87)).
This comparison shows that except for β close to 1 and a small to average SNR
or a sufficiently small channel dynamics the upper bound on the achievable
rate for proper Gaussian inputs is lower than the bound based on a peak
power constraint in (3.78). In Section 3.4.4 we will show that the peak power
constrained upper bound on the achievable rate in (3.78) becomes loose with
increasing β.
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Fig. 3.1: Comparison of the upper bounds on the achievable rate for
i.d. input symbols with a peak power constraint in (3.78)/(3.87) and with
i.i.d. zero-mean proper Gaussian inputs in (3.84)/(3.87) in bits per channel
use (cu); (Note, (3.84) also holds for i.d. zero-mean proper Gaussian input
symbols); in addition the peak power constrained lower bound in (3.96)
is shown

3.4.2 Lower Bound

3.4.2.1 No Peak Power Constraint

Using (3.10), (3.15), and (3.29) a lower bound on the capacity is given by

sup
Pi.d.

I ′(y;x) ≥ sup
Pi.d.

{h′L(y) − h′U (y|x)}

= sup
Pi.d.

{
I ′(y;x|h) −

∫ 1
2

− 1
2

log

(
ασ2

x

σ2
n

Sh(f) + 1

)
df

}
. (3.90)

Notice that lower bounds on the achievable rate are also lower bounds on
the capacity. Therefore, in the context of these lower bounds we use the term
capacity in the following.

It is well known that in case of a non-peak power constrained input dis-
tribution the coherent mutual information rate I ′(y;x|h) is maximized for
i.i.d. zero-mean proper Gaussian input symbols. Thus, for an average power
of ασ2

x the first term on the RHS of (3.90) is given by, cf. (3.89)
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sup
Pi.d.|α

I ′(y;x|h) =
∫ ∞

0

log (1 + αρz) e−zdz = I ′(y;x|h)
∣∣
PG,α

(3.91)

where Pi.d.|α corresponds to Pi.d. in (3.5), but with an average transmit power
of ασ2

x.
Inserting (3.91) into (3.90) leads to

sup
Pi.d.

I ′(y;x) ≥ sup
α∈[0,1]

{∫ ∞

0

log (αρz + 1) e−zdz−
∫ 1

2

− 1
2

log

(
α
σ2
x

σ2
n

Sh(f) + 1

)
df

}

(a)

≥
∫ ∞

0

log (ρz + 1) e−zdz −
∫ 1

2

− 1
2

log

(
σ2
x

σ2
n

Sh(f) + 1

)
df

(b)
= I ′

L(y;x)
∣∣
PG

(3.92)

where for (a) we choose α = 1, i.e., use the maximum average transmit
power, which does not maximize the argument of the supremum in general.
Furthermore, note that this lower bound also holds for i.i.d. zero-mean proper
Gaussian inputs and, thus, (b) holds. For the special case that Sh(f) is rect-
angular the lower bound becomes

I ′
L(y;x)

∣∣
PG

=

∫ ∞

0

log (ρz + 1) e−zdz − 2fd log

(
ρ

2fd
+ 1

)
. (3.93)

The bound in (3.92) is already known from [21].
As the mutual information rate is nonnegative, we can further modify the

lower bound as follows:

I ′
Lmod

(y;x) = max{I ′
L(y;x), 0}. (3.94)

3.4.2.2 Peak Power Constraint

Obviously, the lower bound on the achievable rate given in (3.93) does not
hold in case of a peak power constrained input, as in this case the coherent
mutual information rate I ′(y;x|h) is smaller than the RHS of (3.91).

Therefore, in case of a peak power constrained input, we have to evaluate
the following expression, see (3.10), (3.14), and (3.15)

sup
Ppeak

i.d.

I ′
L(y;x) = sup

Ppeak
i.d.

{I ′(y;x|h) + h′(y|x,h) − h′U (y|x)}

(a)
= sup

Ppeak
i.d.

{I(y;x|h) + h′(y|x,h) − h′U (y|x)} . (3.95)
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where Ppeak
i.d. is given by (3.6). Furthermore, for (a) we have used that the

coherent mutual information rate I ′(y;x|h) is maximized for independent
input symbols, cf. (3.88).

The second term on the RHS of (3.95) h′(y|x,h) is independent of the
input distribution. Furthermore, it has been shown that for constant modu-
lus input distributions the upper bound h′U (y|x) corresponds to the actual
entropy rate h′(y|x), see (3.30).

Recall that the achievable rate for an arbitrary input distribution gives
a lower bound on capacity. Thus, based on constant modulus (CM) inputs
with a power σ2

x, and using (3.14), (3.29), and (3.30) a lower bound on the
peak power constrained capacity is obviously given by

sup
Ppeak

i.d.

I ′
L(y;x) ≥ I ′

L(y;x)
∣∣
CM,σ2

x

= I(y;x|h)
∣∣
CM,σ2

x
−
∫ 1

2

f=− 1
2

log

(
σ2
x

σ2
n

Sh(f) + 1

)
df (3.96)

where I(y;x|h)
∣∣
CM,σ2

x
corresponds to the coherent mutual information using

i.i.d. circularly symmetric constant modulus input symbols with power σ2
x.

Hence, we have found a lower bound on the capacity that is achievable with
i.d. input symbols. However, as far as we know there is no closed form solution
for the first term in (3.96), i.e., I(y;x|h)

∣∣
CM,σ2

x
, so it has to be calculated

numerically. In addition, for nominal peak-to-average power ratios β > 1 this
bound is in general not tight. The lower bound (3.96) is shown in Fig. 3.1.
Obviously, this bound becomes loose with an increasing SNR, as it is based
on constant modulus signaling.

3.4.3 Tightness of Bounds on the Achievable Rate

General statements on the tightness of the given bounds are difficult to ob-
tain. In the following we therefore consider on the one hand the case of
asymptotically small channel dynamics, and on the other hand we evaluate
the tightness of the bounds on the achievable rate with i.i.d. zero-mean proper
Gaussian inputs in general.

3.4.3.1 Asymptotically Small Channel Dynamics

It can be shown that for fd → 0, the lower bound

I ′
L(y;x) = h′L(y) − h′U (y|x)

= I ′(y;x|h) + h′(y|x,h) − h′U (y|x) (3.97)



50 3 Bounds on the Achievable Rate of a Flat-Fading Channel

see (3.13), is equivalent to the mutual information rate in case of perfect
channel knowledge

lim
fd→0

I ′
L(y;x) = I ′(x;y|h). (3.98)

This corresponds to the physical interpretation that a channel that changes
arbitrarily slowly can be estimated arbitrarily well, and, therefore, the penalty
term I ′(x;h|y) in (3.7) approaches zero. Thus, for fd → 0, the lower bound
I ′
L(y;x) is tight.
However, notice that this in general not means that I ′

L(y;x) is a tight
lower bound on capacity for fd → 0, as we here do not specify the input
distribution. This can be easily observed when studying the peak power con-
strained lower bound I ′

L(y;x)
∣∣
CM,σ2

x
in (3.96) which is based on constant

modulus signaling. This bound does obviously not converge to the channel
capacity for fd → 0. In contrast, the non-peak power constrained lower bound
I ′
L(y;x)

∣∣
PG

in (3.93) becomes tight for fd → 0 in the sense that it converges
to the coherent capacity. This is also one advantage of our study of bounds
on the achievable rate with non-peak power constrained input symbols. As
the coherent capacity is achieved by non-peak power constrained input sym-
bols, this approach allows to use a lower bound, which becomes tight for
asymptotically small channel dynamics.

3.4.3.2 Gaussian Inputs

Fig. 3.2 shows the upper bound (3.84)/(3.87) and the lower bound
(3.93)/(3.94) on the achievable rate with i.i.d. zero-mean proper Gaussian
input symbols as a function of the channel dynamics, which is characterized
by fd, for different SNRs. Obviously, the achievable rate strongly decreases
with an increasing channel dynamics fd. Furthermore, the gap between the
upper and the lower bound depends on the SNR and gets larger with an
increasing SNR. In the following we study the tightness of the given bounds
analytically. This examination will show that the gap between the upper and
the lower bound is bounded.

To evaluate the tightness of the upper and the lower bound on the achiev-
able rate with i.i.d. zero-mean proper Gaussian input symbols, we first eval-
uate the tightness of the upper and the lower bound on the channel output
entropy rate h′(y) for the special case of proper Gaussian inputs. Afterwards,
we evaluate the tightness of the upper and lower bound on h′(y|x).

The difference between upper bound h′U (y) and h
′
L(y) for i.i.d. zero-mean

proper Gaussian inputs with an average power σ2
x, i.e., α = 1, is given by,

see (3.15), (3.18), and (3.91)
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Fig. 3.2: Upper bound and lower bound on the mutual information rate of
a Rayleigh flat-fading channel with a rectangular PSD over fd under the
assumption of an i.i.d. zero-mean proper Gaussian input distribution

∆h′(y) = h′U (y)
∣∣
α=1

− h′L(y)
∣∣
PG,α=1

= log (ρ+ 1)−
∫ ∞

0

log (1 + ρz) e−zdz. (3.99)

Fig. 3.3 shows this difference.
For ρ→ 0 the difference∆h′(y) converges to zero. For ρ→ ∞ the difference

is given by

lim
ρ→∞

∆h′(y) = γ ≈ 0.57721 [nat/cu] (3.100)

where γ is the Euler constant. The limit in (3.100) can be found in [70].
The difference ∆h′(y) monotonically increases with the SNR, which can be

shown analogously to (3.85), or alternatively with the proof in Appendix A.3.
Thus, ∆h′(y) is bounded by

0 ≤ ∆h′(y) ≤ γ. (3.101)

The difference between the upper bound and the lower bound on h′(y|x)
in case of a rectangular PSD and the assumption of i.i.d. zero-mean proper
Gaussian input symbols with average power σ2

x is given by, see (3.29) and
(3.83)
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Fig. 3.3: Difference ∆h′(y) between upper and lower bound on h′(y) for i.i.d.
zero-mean proper Gaussian inputs

∆h′(y|x) = h′U (y|x)
∣∣
α=1

− h′L(y|x)
∣∣
PG,α=1

= 2fd

{
log

(
ρ

2fd
+ 1

)
−
∫ ∞

0

log

(
ρ

2fd
z + 1

)
e−zdz

}
. (3.102)

For asymptotically small Doppler frequencies ∆h′(y|x) approaches zero in-
dependent of the SNR.

By observing the structural similarity between (3.102) and (3.99), it can
be shown that

lim
ρ→0

∆h′(y|x) = 0 (3.103)

independent of fd. For asymptotically high SNR, and a fixed fd the difference
is bounded by

lim
ρ→∞

∆h′(y|x) = 2fdγ ≈ 2fd · 0.57721 [nat/cu] (3.104)

where the same limit as in (3.100) is used.
Corresponding to ∆h′(y), ∆h′(y|x) is monotonically increasing with the

SNR and thus, it can be bounded by

0 ≤ ∆h′(y|x) ≤ γ2fd [nat/cu]. (3.105)
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Based on ∆h′(y) and ∆h′(y|x) the difference between the upper bound
I ′
U (y;x)|PG in (3.84) and the lower bound I ′

L(y;x)|PG in (3.93) for i.i.d.
zero-mean proper Gaussian input symbols and a rectangular PSD is given by

∆I′(y;x) = I ′
U (y;x)

∣∣
PG

− I ′
L(y;x)

∣∣
PG

= ∆h′(y) +∆h′(y|x). (3.106)

As

lim
ρ→0

∆I′(y;x) = 0

lim
ρ→∞

∆I′(y;x) = γ(1 + 2fd) (3.107)

and as ∆h′(y), ∆h′(y), and, thus, ∆I′(y;x) monotonically increase with the
SNR, we can bound the difference by

0 ≤ ∆I′(y;x) ≤ γ(1 + 2fd) [nat/cu]. (3.108)

3.4.4 The Asymptotic High SNR Behavior

In this section, we examine the slope of the achievable rate over the SNR
for asymptotically large SNRs depending on the channel dynamics5. This
examination also shows that the peak power constrained upper bound is
loose for high SNR and a nominal peak-to-average power ratio β > 1.

It can be shown that for a compactly supported PSD as defined in Chap-
ter 2 the non-peak power constrained lower bound in (3.92) shows the fol-
lowing behavior

lim
ρ→∞

∂I ′
L(y;x)

∣∣
PG

∂ log(ρ)

= lim
ρ→∞

∂

∂ log(ρ)

[ ∫ ∞

z=0

log(ρz + 1)e−zdz −
∫ 1

2

− 1
2

log

(
Sh(f)

σ2
h

ρ+ 1

)
df

]

= lim
ρ→∞



∫ ∞

z=0

ρz

ρz + 1
e−zdz −

∫ 1
2

− 1
2

Sh(f)
σ2
h
ρ

Sh(f)
σ2
h
ρ+ 1

df




= 1− 2fd (3.109)

as Sh(f) 6= 0 for |f | ≤ fd.

5 When using the term high or large SNR slope we refer to the high SNR limit of the
derivative of the achievable rate (bound) with respect to the logarithm of the SNR.
This quantity is often named pre-log.
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In [67] it has been shown that the high SNR slope (pre-log) of the peak
power constrained capacity also corresponds to 1− 2fd, see Section 3.5.

Now, we discuss the high SNR behavior of the upper bound on the achiev-
able rate. We start with the peak power constrained case and restrict here to
the special case of using the maximum average power, i.e., α = 1, although
this is in general not an upper bound on the achievable rate. The motivation
for this will become obvious afterwards. For the peak power constrained up-
per bound given in (3.78) and for the special case α = 1 the derivative with
respect to log(ρ) in the high SNR limit is given by

lim
ρ→∞

∂I ′
U (y;x)

∣∣
Ppeak ,α=1

∂ log(ρ)
= lim
ρ→∞

∂

∂ log(ρ)

[
log(ρ+ 1)− 2fd

1

β
log

(
ρβ

2fd
+ 1

)]

= lim
ρ→∞

[
ρ

ρ+ 1
− 2fd

β

β
2fd

ρ
β
2fd

ρ+ 1

]

= 1− 2fd
β

(3.110)

where β is the nominal peak-to-average power ratio as defined in (3.75). Ob-
viously, if the nominal peak-to-average power ratio β is not equal to one the
slope of the peak power constrained upper bound with the constraint α = 1
is higher than the slope of the non-peak power constrained lower bound cal-
culated in (3.109), although a further constraint on the input, i.e., the peak
power, is introduced. As α = 1 does in general not lead to a supremum on
I ′
U (y;x) over the set Ppeak

i.d. , (3.110) establishes a lower bound on the high
SNR slope of I ′

U (y;x)
∣∣
Ppeak

. In combination with the knowledge that the

asymptotic high SNR slope of the peak power constrained capacity corre-
sponds to 1 − 2fd, see [67], this unveils that the peak power constrained
upper bound on the achievable rate in (3.78) is loose for β > 1 and high
SNR.

On the other hand, the slope of the upper bound for proper Gaussian
inputs given in (3.84) is equal to the slope of the lower bound as calculated in
(3.109) following from the boundedness of the difference ∆I′(y;x), see (3.106).

For this case the difference between the upper bound I ′
U (y;x)

∣∣
PG

and the

lower bound I ′
L(y;x)

∣∣
PG

converges to a constant for high SNR, cf. (3.107).
Thus, both bounds must have the same asymptotic high SNR slope and we
conjecture that the achievable rate I ′(y;x)

∣∣
PG

is also characterized by the
same asymptotic SNR slope.

It is interesting to note that the high SNR slope of the capacity is degraded
by the term 2fd. Now recall the discussion on the limits of the discrete-time
input-output relation in Section 2.3. There it has been shown that symbol
rate sampling does not yield a signal representation with a sufficient statistic
as the normalized received signal bandwidth is given by 1 + 2fd. The excess
bandwidth leading to aliasing is given by 2fd, which exactly corresponds
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to the degradation of the high SNR slope of the achievable rate/capacity.
Up to now, we do not know, if there is an implicit relation between these
observations.

3.5 Comparison to Asymptotes in [67]

In [67], Lapidoth gives bounds for the peak power constrained capacity of non-
coherent Rayleigh fading channels. These bounds are mainly derived to eval-
uate the asymptotic high SNR behavior. He distinguishes between two cases,
nonregular and regular fading introduced by Doob [24]. The case of nonregu-
lar fading is characterized by the property that the prediction error variance
of a one-step channel predictor — having infinitely many observations in
the past — asymptotically approaches zero, when the SNR approaches infin-
ity. As we consider the case that the PSD of the channel fading process is
bandlimited with fd < 0.5, our scenario corresponds to the nonregular case
in [67], which is also named pre-log case. Fig. 3.4 shows a comparison of the
lower bound on the capacity in (3.93)/(3.94) and the upper bound on the
achievable rate with i.i.d. zero-mean proper Gaussian inputs in (3.84)/(3.87)
with the high SNR asymptotes for the capacity in the corresponding pre-log
case given in [67]. In contrast to our upper bound which holds only for proper
Gaussian inputs, [67] does not constrain the input distribution except of a
peak power constraint.

The capacity bounds in [67] are given by [67, eq. (33) and (47)]

C ≤ log log ρ̃− γ − 1 + log

(
1

ǫ2pred(1/ρ̃)

)
+ o(1) (3.111)

C ≥ log

(
1

ǫ2pred(4/ρ̃) +
8
5ρ̃

)
− γ − log

(
1

1− ǫ2pred(4/ρ̃)

)
− log

(
5e

6

)
,

(3.112)

where γ ≈ 0.577 is the Euler constant and ρ̃ is defined as

ρ̃ =
Ppeakσ

2
h

σ2
n

(3.113)

i.e., it is an alternative definition of an SNR based on the peak power Ppeak

instead of the average power σ2
x used for the definition of the average SNR ρ

in (2.18). Furthermore, o(1) depends on the SNR and converges to zero for
ρ̃→ ∞, i.e., f(n) ∈ o(g(n)) if

lim
n→∞

f(n)

g(n)
= 0. (3.114)
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In addition, the prediction error variance ǫ2pred(δ
2) is given by

ǫ2pred(δ
2) = exp

(∫ 1
2

− 1
2

log

(
Sh(f)

σ2
h

+ δ2
)
df

)
− δ2. (3.115)

Although for the bounds on the peak power constrained capacity in [67]
not an explicit average power constraint has been used, but only a peak power
constraint, by this peak power constraint implicitly also a constraint on the
average power is given. This should be obvious, as for the maximum average
power σ2

x the inequality σ2
x ≤ Ppeak must hold. Furthermore, it has to be

considered that in case of using a peak power constraint, it is in general not
optimal to use the maximum average power σ2

x, see Section 3.4.1.1. In case
the maximum average power σ2

x is not used, i.e., E
[
|xk|2

]
< σ2

x, the nominal
SNR ρ as defined in (2.18) is not the actual average SNR. However, in the
case of i.i.d. zero-mean proper Gaussian input symbols, the achievable rate
is maximized when using the maximum average power σ2

x, i.e., in this case
the nominal average SNR ρ is also the actual average SNR.

As the peak power constraint that has been used for the bounds on the
peak power constrained capacity in [67], i.e., for (3.111) and (3.112), implicitly
constrains the average power to σ2

x, for the comparison of the bounds on the
achievable rate with i.i.d. zero-mean proper Gaussian input symbols and the
bounds on the peak power constrained capacity in [67], we choose ρ̃ in (3.111)
and (3.112) to be equal to the nominal average SNR ρ used for the bounds on
the achievable rate with i.i.d. Gaussian input symbols, i.e., set σ2

x = Ppeak.
Fig. 3.4 shows that the bounds on the achievable rate with i.i.d. zero-mean

proper Gaussian input symbols, i.e., the lower bound in (3.93)/(3.94) and our
upper bound in (3.84)/(3.87), are in between the asymptotes for the upper
bound and the lower bound on capacity given in [67]. However, the bounds
in [67] consider a peak power constrained input distribution. Therefore, this
comparison is not absolutely fair. In addition, and this is the main observation
from this comparison, our bounds have the same slope in the high SNR regime
as the high SNR asymptotes for the peak power constrained capacity in [67].

3.6 Comparison to Bounds in [105] and [107]

In [105] and [107] capacity bounds for a Rayleigh flat-fading channel for the
case of a peak power constraint are given. Notice, as these bounds are bounds
on capacity, only the average and the peak power constraint are imposed in
the input signal. Additional constraints, like i.d. input symbols, have not been
used.

First, we want to compare the lower bounds on the capacity given in [105,
(34)/(29)] and in (3.96). Therefore, first consider that in [105] no assumption
on i.d. input symbols has been made. When discarding this assumption, we
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Fig. 3.4: Comparison of the bounds on the achievable rate with i.i.d. zero-
mean proper Gaussian inputs in (3.84)/(3.87) and (3.93)/(3.94) (SNR ρ)
with asymptotic bounds on the peak power constrained capacity in (3.111)
and (3.112) (SNR ρ̃), [67, eq. (33) and (47)] (The asymptotic upper bound
(3.111) only holds for ρ̃ → ∞ as we neglect the term o(1) in (3.111), which
approaches zero for ρ̃→ ∞.); rectangular PSD of the channel fading process

can enhance the lower bound in (3.96), as the following argumentation will
show. Obviously, it might be possible that we can get a larger lower bound
on the capacity as the one in (3.96), if we use the channel only for a fraction
of the time, and transmit nothing during the rest of the time, i.e., split the
time into two blocks. In one of the blocks we use the channel, assuming i.d.
input symbols, and in the other we transmit nothing. The ratio between the
lengths of both blocks is held constant. Thus, in the limit, both blocks are
still infinitely long. With this argumentation we deviate from the assumption
of i.d. input symbols over the complete time horizon.

Using this time sharing argument, a lower bound on the peak power con-
strained capacity for input distributions with an average power σ2

x and a
nominal peak-to-average power ratio β is consequently given by the following
expression

sup
Ppeak

I ′
L(y;x) ≥ max

γ∈[1,β]

{
1

γ
I(y;x|h)

∣∣
CM,γσ2

x
− 1

γ

∫ 1
2

− 1
2

log

(
γσ2

x

σ2
n

Sh(f) + 1

)
df

}

(3.116)
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where Ppeak corresponds to Ppeak
i.d. in (3.6) without the restriction to i.d. input

symbols. The lower bound in [105, (34)/(29)] exactly corresponds to the lower
bound in (3.116).6

In addition, the upper bound on the achievable rate with i.d. input symbols
in (3.78) is a special case of the upper bound on the peak power constrained
capacity given in [107, Proposition 2.2], which is on the one hand an upper
bound on capacity as, except of the peak and average power constraints,
no further assumptions on the input distributions have been made. On the
other hand, the upper bound in [107, Proposition 2.2] holds for arbitrary
PSDs of the channel fading process, while the derivation of the upper bound
in (3.78) is based on the assumption of a rectangular PSD of the channel
fading process. However, the approach of the derivation of the upper bound
on the capacity given in [107] is completely different to our approach and is
inherently based on the peak power constraint while we use this peak power
constraint only in the last bounding step. Therefore, our lower bound on
h′(y|x) in (3.60) also enables to give an upper bound on the achievable rate
for non-peak power constrained input symbols.

As stated we made the assumption on identically distributed (i.d.) input
symbols in the derivation of our upper bound. We do not know if this as-
sumption poses a real restriction. Therefore, it would be necessary to know if
the capacity achieving input distribution is characterized by identically dis-
tributed input symbols. But we have no answer to this question. However,
as in case of a peak power constraint our upper bound on the achievable
rate given in (3.78) corresponds to the upper bound on the peak power con-
strained capacity given in [107, Proposition 2.2], the restriction to identically
distributed inputs seems not to be a severe restriction in the sense that it
leads to an upper bound being lower than the capacity.

However, in [107] it is shown that i.i.d. inputs, i.e., with an additional con-
straint on independent input symbols, are not capacity-achieving in general.
Based on the parameter

λ =

∫ 1
2

− 1
2

|Sh(f)|2df (3.117)

it has been shown in [107] that under the assumption of an absolutely
summable autocorrelation function rh(l), see (2.4), in the asymptotic low
SNR limit i.i.d. inputs are only capacity-achieving in the following two cases

• if λ = σ4
h, corresponding to a memoryless channel,

6 Note that it would also be possible to enhance the lower bound on the capacity
for zero-mean proper Gaussian inputs in (3.93) based on the time sharing argument,
i.e., by discarding the restriction to identically distributed input symbols. However,
as for the derivation of the upper bound on the achievable rate in (3.84) we need the
restriction to i.d. input symbols, such a lower bound without the assumption on i.d.
input symbols would not match this upper bound. Therefore, we do not consider this
further.
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• or with a nominal peak-to-average power ratio of β = 1 and λ ≥ 2σ4
h, i.e.,

when the fading process is nonephemeral.

Notice that the proof in [107] explicitly is based on the asymptotic low SNR
limit. On the other hand, for the high SNR case we have observed that
i.i.d. zero-mean proper Gaussian inputs achieve the same asymptotic high
SNR behavior in terms of the slope (pre-log) as the peak power constrained
channel capacity, see Section 3.5.

3.7 Summary

In this chapter, we have derived bounds on the achievable rate with i.d. input
symbols. The assumption on i.d. input symbols is required in the derivation
of the upper bound on the achievable rate. We explicitly have given an upper
bound for i.d. input symbols in combination with a peak power constraint,
and on the other hand for i.i.d. zero-mean proper Gaussian input symbols.7

Furthermore, we also give lower bounds on capacity, one for Gaussian inputs
and one that is achievable with i.d. peak power constrained input symbols.
The first one is already known from [21] and the second one is related to a
lower bound on the peak power constrained capacity given in [105, (34)/(29)].

The main novelty of the present chapter lies in the new upper bounds on
the achievable rate. These upper bounds are based on a new lower bound on
the conditional channel output entropy rate h′(y|x) for the special case of
a rectangular PSD of the channel fading process. This bound is not based
on a peak power constraint, and therefore allows to give an upper bound on
the achievable rate with i.i.d. zero-mean proper Gaussian inputs in case of a
rectangular PSD of the channel fading process. To the best of our knowledge,
this is the only known upper bound on the achievable rate without a peak
power constraint, which is tight in the sense that its slope (pre-log) corre-
sponds to the slope of the lower bound on the capacity. In addition, based on
the given lower bound on h′(y|x) we also have derived an upper bound on
the achievable rate with i.d. peak power constrained input symbols, which is
identified to be similar to an upper bound on capacity given in [107, Propo-
sition 2.2]. However, for the derivation of our upper bound on the achievable
rate we need the restriction to a rectangular PSD of the channel fading pro-
cess whereas the upper bound on capacity given in [107, Proposition 2.2]
holds for an arbitrary PSD of the channel fading process.

Furthermore, the comparison of the bounds on the achievable rate with
i.i.d. zero-mean proper Gaussian input symbols with the asymptotic bounds
on the peak power constrained capacity given in [67] shows the interesting

7 In the context of proper Gaussian input symbols, we always use the term i.i.d.
inputs, as i.i.d. zero-mean proper Gaussian input symbols are capacity achieving in
the coherent scenario, and as our bounds also hold for i.i.d. input symbols.
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fact that the achievable rate with i.i.d. zero-mean proper Gaussian inputs
is characterized by the same asymptotic high SNR slope as the peak power
constrained capacity. This shows that this kind of input distribution is not
highly suboptimal with respect to its high SNR performance.

With the upper and lower bound on the achievable rate for i.i.d. zero-
mean proper Gaussian inputs we have found a set of bounds, which is tight
in the sense that their difference is bounded. We are able to bound this gap
analytically by γ(1 + 2fd) [nat/cu] with the Euler constant γ ≈ 0.577 and
the maximum normalized Doppler frequency fd. Thus, for the specific case of
proper Gaussian inputs we give bounds, which are tight (in the sense given
above) over the whole SNR range. In contrast, available bounds on capacity
often focus only on a specific SNR range, e.g., [107] discusses the low SNR
regime whereas [67] considers the high SNR regime.

The calculation of bounds on the achievable rate with non-peak power
constrained input symbols has also the advantage that we can use a lower
bound on the achievable rate which converges to the coherent capacity for
asymptotically small channel dynamics. In contrast, lower bounds on the
peak power constrained capacity will not show this behavior, as the coherent
capacity is achieved by non-peak power constrained proper Gaussian input
symbols.



Chapter 4

Bounds on the Achievable Rate of a
Flat-Fading Channel Based on Prediction

In the previous chapter, we have derived bounds on the achievable rate of
a discrete-time flat-fading channel and i.d. input symbols based on a purely
mathematical derivation. In contrast to this, in the present chapter we derive
upper bounds on the achievable rate with i.i.d. input symbols by express-
ing the mutual information rate based on the error variance of a one-step
channel predictor. With respect to this, the effect of the channel dynamics,
i.e., the PSD of the channel fading process, is captured by the one-step pre-
diction error variance. This relation has already been shown in prior work,
e.g., [67], [107], and [96]. Therefore, parts of the following calculations are
closely related to derivations concerning the capacity of wideband OFDM
systems in [96] as well as to [107]. While in [96] constant modulus input dis-
tributions have been considered, we extend this approach to the case of input
distributions with varying magnitude. Therefore, we express the mutual in-
formation at an individual time instant based on the channel prediction error
variance. The channel prediction error variance itself is a random quantity
depending on the distribution of the past transmit symbols. To get to an up-
per bound on the achievable rate, we show that the calculation of the channel
prediction error variance under the assumption that all past transmit symbols
are constant modulus symbols, minimizes the conditional channel output en-
tropy rate h′(y|x) over all i.i.d. input distributions fulfilling an average power
constraint and, thus, can be used to upper-bound the achievable rate. As far
as we know this argumentation is new. In contrast to the upper bound on
the achievable rate given in the previous chapter, the upper bound given in
the present chapter holds for channel fading processes with an arbitrary PSD
with compact support. Furthermore, we try to give an enhanced upper bound
on the channel output entropy rate h′(y) based on channel power prediction.
Unfortunately, we find no closed form solution for this upper bound. Instead,
we will discuss the problems occurring in this bounding approach. Finally,
we compare the upper bounds on the achievable rate based on the channel
prediction error variance with the bounds given in Chapter 3. Parts of the
present chapter have already been published in [27].
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Concerning the assumptions on the input distribution in the present chap-
ter we assume i.i.d. input symbols. In contrast, in the previous chapter
we have only used the restriction to identically distributed input symbols,
whereas independency of the input symbols has not been assumed. However,
notice that the upper bounds on the achievable rate with i.d. input symbols
given in Chapter 3 hold also for i.i.d. input symbols. Therefore, introducing
the further restriction on independent input symbols in the present chapter,
which is required for the following derivations, still allows the comparison of
the bounds on the achievable rate that will be derived within the present
chapter towards the bounds given in the previous chapter.

Furthermore, it is worth mentioning that the derivation of the bounds
within the present chapter does not require the assumption on an absolutely
summable autocorrelation function, see (2.4). I.e., the bounds that are de-
rived in the present chapter hold for the larger class of square summable
autocorrelation functions, in contrast to the upper bounds on the achievable
rate derived in Chapter 3.

The assumption on i.i.d. input symbols requires the definition of the fol-
lowing two sets of input distributions: For the non-peak power constrained
case

Pi.i.d. =

{
p(x)

∣∣∣∣x ∈ CN , p(x) =

N∏

i=1

p(xi), p(xi) = p(xj) ∀i, j,

E[|xk|2] ≤ σ2
x ∀k

}
(4.1)

and for the peak power constrained case

Ppeak
i.i.d. =

{
p(x)

∣∣∣∣x ∈ CN , p(x) =
N∏

i=1

p(xi), p(xi) = p(xj) ∀i, j,

{
E[|xk|2] ≤ σ2

x, p(xk) = 0 ∀xk : |xk|2 > Ppeak

}
∀k
}

(4.2)

corresponding to the sets Pi.d. in (3.5) and Ppeak
i.d. in (3.6) with the additional

restriction to independent input symbols.
As already described, the mutual information rate can be expressed by

differential entropy rates as follows, cf. (3.10)

I ′(y;x) = h′(y) − h′(y|x). (4.3)

In the following, we give expressions or bounds for h′(y) and h′(y|x) based
on channel prediction.
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4.1 Calculation of h′(y|x) based on Channel Prediction

First, we rewrite the entropy rate h′(y|x) based on the prediction error vari-
ance of the one-step predictor. Using the chain rule for differential entropy,
we can express h′(y|x) as follows

h′(y|x) = lim
N→∞

1

N
h(y|x)

(a)
= lim

N→∞

1

N

N∑

k=1

h(yk|x,yk−1
1 )

(b)
= lim

N→∞

1

N

N∑

k=1

h(yk|xk1 ,yk−1
1 )

(c)
= lim

N→∞
h(yN |xN1 ,yN−1

1 ) (4.4)

where yba indicates the subvector of y containing the elements from entry a
to entry b. Equality (a) uses the chain rule for differential entropy, equality
(b) uses the fact that yk conditioned on yk−1

1 and xk1 is independent of the
symbols xNk+1 due to the independency of the transmit symbols. Equality
(c) follows from the ergodicity and stationarity of all processes, see also [19,
Chapter 4.2].

As the following argumentation will show, the channel output yN condi-
tioned on xN1 ,y

N−1
1 is proper Gaussian and, thus, it is fully characterized by

its mean and its variance. The mean can be given as

E
[
yN |xN1 ,yN−1

1

]
= E

[
xNhN + nN |xN1 ,yN−1

1

]

= xNE
[
hN |xN−1

1 ,yN−1
1

]

= xN ĥN (4.5)

where ĥN is the MMSE estimate of hN based on the channel output obser-
vations at all previous time instances and the channel input symbols at these
time instances. Thus, the estimate ĥN is a deterministic function of the ob-
servations and the transmitted symbols at all time instances 1, . . . , N−1, i.e.,

ĥN = E
[
hN |xN−1

1 ,yN−1
1

]
. (4.6)

Based on ĥN the channel output yN can be written as

yN = xNhN + nN = xN

(
ĥN + eN

)
+ nN (4.7)

where eN is the prediction error given by

eN = hN − ĥN . (4.8)
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As both, the noise as well as the fading process, are jointly proper Gaus-
sian, the MMSE estimate is equivalent to the linear minimum mean squared
error (LMMSE). Thus, the estimate ĥN is zero-mean proper Gaussian and

due to the independency of the estimation error eN and the estimate ĥN , it
follows that the estimation error eN is also zero-mean proper Gaussian.

As eN is proper Gaussian, it can be easily seen by (4.7) that yN con-
ditioned on xN1 ,y

N−1
1 is also proper Gaussian. Thus, for the evaluation of

h(yN |xN1 ,yN−1
1 ) we need to calculate the variance of the conditional channel

output yN which is given by

var
[
yN |xN1 ,yN−1

1

]
= E

[∣∣yN − E
[
yN |xN1 ,yN−1

1

]∣∣2
∣∣∣xN1 ,yN−1

1

]

= E

[∣∣∣yN − xN ĥN

∣∣∣
2 ∣∣∣xN1 ,yN−1

1

]

= E

[∣∣∣xN (hN − ĥN ) + nN

∣∣∣
2 ∣∣∣xN1 ,yN−1

1

]

= |xN |2E
[∣∣∣hN − ĥN

∣∣∣
2 ∣∣∣xN−1

1 ,yN−1
1

]
+ σ2

n

= |xN |2E
[
|eN |2

∣∣∣xN−1
1 ,yN−1

1

]
+ σ2

n

= |xN |2σ2
epred (x

N−1
1 ) + σ2

n (4.9)

where

σ2
epred

(xN−1
1 ) = E

[∣∣∣hN − ĥN

∣∣∣
2 ∣∣∣xN−1

1 ,yN−1
1

]

= E
[
|eN |2

∣∣∣xN−1
1 ,yN−1

1

]

(a)
= E

[
|eN |2

∣∣∣xN−1
1

]
(4.10)

is the prediction error variance of the MMSE estimator for ĥN . For (a) we
have used the fact that the estimation error eN is orthogonal and, thus, inde-
pendent of the observations yN−1

1 . Notice, the prediction error variance de-
pends on the input symbols xN−1

1 which is indicated by writing σ2
epred (x

N−1
1 ).

As already stated, the estimate ĥN is zero-mean proper Gaussian and its vari-
ance is given by

σ2
ĥ
(xN−1

1 ) = σ2
h − σ2

epred
(xN−1

1 ). (4.11)

As yN conditioned on xN1 and yN−1
1 is proper Gaussian, using (4.9) and

(4.10) its PDF is given by
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p(yN |xN1 ,yN−1
1 ) =

exp

(
− |yN−ĥNxN |2

|xN |2σ2
epred

(xN−1
1 )+σ2

n

)

π(|xN |2σ2
epred

(xN−1
1 ) + σ2

n)

= p(yN |xN1 , ĥN ) (4.12)

i.e., the estimate ĥN contains all information on h that is contained in yN−1
1

while knowing xN−1
1 . With (4.12) we can use the following substitution

h(yN |xN1 ,yN−1
1 ) = h(yN |xN , ĥN ,xN−1

1 ). (4.13)

Based on this MMSE channel predictor interpretation, we can rewrite the
entropy h(yN |xN , ĥN ,xN−1

1 ) as

h(yN |xN , ĥN ,xN−1
1 ) = ExN

[
E
x
N−1
1

[
log
(
πe
(
σ2
n + σ2

epred (x
N−1
1 )|xN |2

))]]
.

(4.14)

With (4.4), (4.13), and (4.14) we get for i.i.d. input symbols

h′(y|x) = Exk

[
E
x
k−1
−∞

[
log
(
πe
(
σ2
n + σ2

epred,∞
(xk−1

−∞)|xk|2
))]]

(4.15)

where σ2
epred,∞

(xk−1
−∞) is the prediction error variance as given in (4.10) for an

infinite number of channel observations in the past, i.e.,

σ2
epred,∞

(xk−1
−∞) = lim

N→∞
σ2
epred (x

N−1
1 ) = lim

N→∞
E
[
|hN − ĥN |2

∣∣yN−1
1 ,xN−1

1

]

(4.16)

which is indicated by writing σ2
epred,∞

(xk−1
−∞). Note that we have switched the

notation and now predict at the time instant k instead of predicting at the
time instant N with N → ∞. This is possible, as the channel fading process
is stationary, the input symbols are assumed to be i.i.d., and as we consider
an infinitely long past. The channel prediction error variance σ2

epred,∞
(xk−1

−∞)
will be further discussed in Section 4.3.1.

4.2 Upper Bound on h′(y)

Besides the calculation of h′(y|x) based on the channel prediction error vari-
ance given in the previous section, we also want to discuss the channel output
entropy rate h′(y) based on a prediction approach. Pursuing this approach,
we first show a simple alternative derivation of the upper bound on h′(y) in
(3.18), before we try to derive an enhanced upper bound on h′(y) based on
a prediction of the channel output power. However, this derivation does not
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lead to a solution for an enhanced upper bound on h′(y). Nevertheless, we
show the approach and its inherent difficulties.

Based on the chain rule for mutual information, and using that the channel
fading process is stationary and ergodic, and the assumption on i.i.d. input
symbols, we get for the entropy rate of a stationary stochastic process [19,
Chapter 4.2]

h′(y) = lim
N→∞

h(yN |yN−1
1 ). (4.17)

4.2.1 Simple Upper Bound on h′(y)

A simple upper bound on h′(y) is obviously given by the following derivation.
As conditioning reduces entropy, we can upper-bound the RHS of (4.17) by

h(yN |yN−1
1 ) ≤ h(yN ). (4.18)

Using (4.18) and ergodicity and stationarity, we can upper-bound h′(y) by

h′(y) ≤ h(yN )
(a)

≤ log
(
πe
(
ασ2

xσ
2
h + σ2

n

))
= h′U (y) (4.19)

where for (a) we used the fact that proper Gaussian distributions maximize
entropy [82] and that the average transmit power is given by ασ2

x with α ∈
[0, 1] allowing for average transmit powers smaller than the maximum average
transmit power σ2

x, see Section 3.2.2. Obviously this upper bound is equal to
the upper bound (3.18).

4.2.2 Ideas for an Enhanced Upper Bound on h′(y)

In this section, we give an approach for the derivation of an enhanced upper
bound on the entropy rate h′(y). In order to do so, we transform the entropy
h(yN |yN−1

1 ) in (4.17) as follows

h(yN |yN−1
1 ) = h (xNhN + nN |yN−1, yN−2, . . . , y1)

(a)
= h

(
xN |hN |+ nN

∣∣yN−1, yN−2, . . . , y1
)

(4.20)

where (a) holds, as the phase of xN is uniformly distributed and independent
from symbol to symbol and, thus, the phase of yN is independent from the
phase of hN . Hence, all information that is contained in yN−1, . . . , y1 on yN
is about the magnitude |hN |. The assumption on transmit symbols xN with
a uniformly distributed phase, i.e., the assumption that p(xN ) is circularly
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symmetric is not a severe restriction, as we are looking for an upper bound
on the output entropy, and a uniform phase maximizes entropy.

Now, the idea is to find an upper bound on h′(y) by constructing an
estimator for |hN | based on yN−1, . . . , y1 and evaluating its estimation error.
As we aim to find an upper bound, it is not required that this estimator is
optimal, e.g., in the sense that it corresponds to the minimum mean squared

error estimate. Therefore, we use an estimator delivering an estimate |̂hN |2
of the power |hN |2.

The actual channel power |hN |2 can be expressed by

|hN |2 = |̂hN |2 + εN (4.21)

where the estimate

|̂hN |2 = f(yN−1, . . . , y1) (4.22)

is a deterministic function on the prior channel outputs yN−1, . . . , y1 and εN
is the estimation error.

Introducing (4.21) in (4.20) yields

h(xN |hN |+ nN |yN−1, yN−2, . . . , y1)

= h

(
xN

√
|̂hN |2 + εN + nN

∣∣∣∣yN−1, yN−2, . . . , y1

)

≤ h

(
xN

√
|̂hN |2 + εN + nN

∣∣∣∣|̂hN |2
)

= h
(
yN

∣∣∣|̂hN |2
)

(4.23)

where the last bound holds as |̂hN |2 cannot contain more information about
|hN | than yN−1, . . . , y1 due to the data processing inequality. In the next
step, we upper-bound the RHS of (4.23) using the fact that proper Gaussian
random variables are entropy maximizers [82]. Therefore, we use that yN

conditioned on |̂hN |2 is zero-mean, and its variance is given by

E

[
|yN |2

∣∣∣∣|̂hN |2
]
= E

[∣∣∣∣xN
√
|̂hN |2 + εN + nN

∣∣∣∣
2 ∣∣∣∣|̂hN |2

]

= ασ2
x |̂hN |2 + ασ2

xE[εN ] + σ2
n (4.24)

with the average transmit power ασ2
x and α ∈ [0, 1]. Here we assume that the

estimation error εN is independent of the observations yN−1, . . . , y1 and thus

also independent of the estimate |̂hN |2. With (4.24) the entropy rate h′(y) is
upper-bounded by
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h′(y) ≤ h′Uenh
(y) = lim

N→∞
E|̂hN |2 log

(
πe
(
ασ2

x |̂hN |2 + ασ2
xE[εN ] + σ2

n

))
.

(4.25)

In the following, we calculate the expectation of the prediction error E[εN ]
for the estimator defined subsequently. Our aim is to construct a channel
predictor with the following two properties.

• The estimator is conditionally unbiased for asymptotically small channel
dynamics. In addition, as a channel with asymptotic small channel dy-
namics can be estimated arbitrarily well, the following should hold

lim
fd→0

lim
N→∞

|̂hN |2 = |hN |2. (4.26)

• Furthermore, in case of an uncorrelated channel, i.e., rh(l) = σ2
hδl, we aim

to get E[εN ]
∣∣
fd=0.5

= σ2
h and, thus,

E
[
|̂hN |2

] ∣∣∣
fd=0.5

= 0. (4.27)

This behavior can be achieved by the following approach

|̂hN |2 =
1

ασ2
x

N−1∑

l=1

wl ·
(
|yl|2 − σ2

n

)
(4.28)

where the filter coefficients

w = [wN−1, . . . , w1]
T (4.29)

are calculated such that

|̂yN |2 =

N−1∑

l=1

wl ·
(
|yl|2 −

(
σ2
n + ασ2

xσ
2
h

))
+ σ2

n + ασ2
xσ

2
h

=

N−1∑

l=1

wl · |̃yl|2 + σ2
n + ασ2

xσ
2
h

=
̂̃|yN |2 + σ2

n + ασ2
xσ

2
h (4.30)

is the linear minimum mean squared error estimate (LMMSE) of |yN |2. Fur-
thermore, notice that the mean of the observations |yk|2 is given by

E
[
|yk|2

]
= ασ2

xσ
2
h + σ2

n (4.31)

and we define ˜|yk|2 to be the zero-mean process corresponding to |yk|2, i.e.,
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˜|yk|2 = |yk|2 −
(
ασ2

xσ
2
h + σ2

n

)
. (4.32)

Correspondingly,
̂̃|yN |2 is the LMMSE estimate of |̃yN |2.

We now aim to calculate the mean of the estimation error εN , which is
given by

E [εN ] = E
[
|hN |2 − |̂hN |2

]
. (4.33)

Using (4.28) and (4.30) the estimate |̂hN |2 of |hN |2 can be calculated based

on an estimate
̂̃|yN |2 of |̃yN |2 as follows

|̂hN |2 =
1

ασ2
x

(
|̂yN |2 − σ2

n − ασ2
xσ

2
h

(
1−

N−1∑

l=1

wl

))

=
1

ασ2
x

(
̂̃|yN |2 + (ασ2

xσ
2
h + σ2

n)− σ2
n − ασ2

xσ
2
h

(
1−

N−1∑

l=1

wl

))

=
1

ασ2
x

(
̂̃|yN |2 + ασ2

xσ
2
h

N−1∑

l=1

wl

)
. (4.34)

Substituting (4.34) into (4.33) yields

E [εN ] = E

[
|hN |2 − 1

ασ2
x

(
̂̃|yN |2 + ασ2

xσ
2
h

N−1∑

l=1

wl

)]

= σ2
h −

1

ασ2
x

E

[
̂̃|yN |2

]
− σ2

h

N−1∑

l=1

wl

(a)
= σ2

h

(
1−

N−1∑

l=1

wl

)
(4.35)

where (a) results from the fact that
̂̃|yN |2 is zero-mean.

In Appendix A.4, we show that for an infinitely long past, i.e., N → ∞,
the mean of the error of the channel power prediction is given by

E [εpred] = lim
N→∞

E [εN ] = σ2
hHpred(0) (4.36)

with

Hpred(0) =

√√√√exp

(∫ 1
2

− 1
2

log

(
S|̃y|2(f)

S|̃y|2(0)

)
df

)
(4.37)
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where S|̃y|2(f) is the PSD of the process
{
|̃y|2
}
.

Furthermore, in Appendix A.4 closed form expressions for E [εpred] are
given for the special case that the channel fading process is characterized by
a rectangular PSD, see (A.44) and (A.45).

Computation of the upper bound given in (4.25), requires to discuss also

the distribution of the estimate |̂hN |2. And this poses the major unsolved
problem in the derivation of an enhanced upper bound on h′(y). We know

that with (4.33) the power of |̂hN |2 is given by

σ2
ĥ
= E

[
|̂hN |2

]
= σ2

h − E[εN ]. (4.38)

However, we are not able to give further statements on the PDF p
(
|̂h|2
)
and,

thus, based on (4.25) we can only give the following non-closed form solution
for the enhanced upper bound on h′(y)

h′(y) ≤ h′Uenh
(y) = E|̂h|2 log

(
πe
(
σ2
n + ασ2

xE[εpred] + ασ2
x |̂h|2

))
. (4.39)

where E[εpred] is given by (A.44), and (A.45).
Notice that further upper-bounding based on Jensen’s inequality leads to

the simple upper bound on h′(y) given in (4.19).
However, it can easily be seen that for fd → 0 the upper bound h′Uenh

(y)
becomes tight, as the mean of the estimation error E[εpred] becomes zero
and, thus, h′Uenh

(y) converges to h′(y|h). On the other hand, in case the
channel changes arbitrary slowly, it can be estimated arbitrary well, hence
h′(y) approaches h′(y|h), showing that h′Uenh

(y) becomes tight for fd → 0.
In contrast, this is not the case for h′U (y) given in (4.19).

4.3 Upper Bound on the Achievable Rate

Based on (4.3), (4.4), and (4.17) the mutual information rate I ′(y;x) can be
expressed as

I ′(y;x) = lim
N→∞

{
h(yN |yN−1

1 )− h(yN |yN−1
1 ,xN1 )

}
. (4.40)

In the following, we will refer to the separation of mutual information given
in (4.40) as channel prediction separation.

With (4.19) and (4.15), we can give the following upper bound on the
achievable rate with i.i.d. input symbols
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I ′(y;x) ≤ log
(
ασ2

xσ
2
h + σ2

n

)
− Exk

[
Exk−1

−∞

[
log
(
σ2
n + σ2

epred,∞
(xk−1

−∞)|xk|2
)]]

= log (αρ+ 1)− Exk

[
E
x
k−1
−∞

[
log

(
1 +

σ2
epred,∞

(xk−1
−∞)

σ2
n

|xk|2
)]]

.

(4.41)

Obviously, the upper bound in (4.41) still depends on the channel pre-
diction error variance σ2

epred,∞
(xk−1

−∞) given in (4.16), which itself depends on

the distribution of the input symbols in the past. Effectively σ2
epred,∞

(xk−1
−∞)

is itself a random quantity. For infinite transmission lengths, i.e., N → ∞,
its distribution is independent of the specific time instant k, as the channel
fading process is stationary and as the transmit symbols are i.i.d..

In the following section we will upper-bound the RHS of (4.41) by maxi-
mizing the RHS of (4.41) over all i.i.d. input distributions of the past input
symbols xk−1

−∞ with an average power ασ2
x. Frankly speaking, we want to

find the i.i.d. input distribution of the past transmit symbols, that yields
a distribution of the channel prediction error variance σ2

epred,∞
(xk−1

−∞) which

maximizes the RHS of (4.41).

4.3.1 The Prediction Error Variance σ2
epred,∞

(xk−1
−∞)

The prediction error variance σ2
epred,∞

(xk−1
−∞) in (4.16) depends on the distri-

bution of the input symbols xk−1
−∞ . To construct an upper bound on the RHS

of (4.41) we need to find a distribution of the transmit symbols in the past,
i.e., xk−1

−∞ , which leads to a distribution of σ2
epred,∞

(xk−1
−∞), which maximizes

the RHS of (4.41). Therefore, we have to express the channel prediction error
variance σ2

epred,∞
(xk−1

−∞) as a function of the transmit symbols in the past,

i.e., xk−1
−∞ . In a first step, we will give such an expression for the case of a

finite past time horizon, i.e., for σ2
epred (x

N−1
1 ) as given in (4.10). The channel

prediction error variance in (4.10) can be expressed by

σ2
epred (x

N−1
1 ) = σ2

h − rH
y
N−1
1 hN |xN−1

1

R−1

y
N−1
1 |xN−1

1

ryN−1
1 hN |xN−1

1
(4.42)

where R
y
N−1
1 |xN−1

1
is the correlation matrix of the observations yN−1

1 while

the past transmit symbols xN−1
1 are known, i.e.,

R
y
N−1
1 |xN−1

1
= E

[
yN−1
1 (yN−1

1 )H
∣∣xN−1

1

]

= E
[(
XN−1h

N−1
1 + nN−1

1

) (
XN−1h

N−1
1 + nN−1

1

)H ∣∣xN−1
1

]

= XN−1RhX
H
N−1 + σ2

nIN−1 (4.43)
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with XN−1 being a diagonal matrix containing the past transmit symbols
such that

XN−1 = diag
(
xN−1
1

)
. (4.44)

Furthermore, the vectors hN−1
1 and nN−1

1 contain the channel fading weights
and the noise samples from time instant 1 to time instant N − 1. In addition,
Rh is the autocorrelation matrix of the channel fading process corresponding
to (2.17), but of dimension (N − 1)× (N − 1), which is not explicitly stated.

The cross correlation vector r
y
N−1
1 hN |xN−1

1
between the fading weight hN

and the observation vector yN−1
1 while knowing the past transmit symbols

xN−1
1 is given by

r
y
N−1
1 hN |xN−1

1
= E

[
yN−1
1 h∗N

∣∣xN−1
1

]

= E
[(
XN−1h

N−1
1 + nN−1

1

)
h∗N
∣∣xN−1

1

]

= XN−1rh,pred (4.45)

with

rh,pred = [rh(−(N − 1)) . . . rh(−1)]
T

(4.46)

where rh(l) is the autocorrelation function as defined in (2.2).
Substituting (4.43) and (4.45) into (4.42) yields

σ2
epred

(xN−1
1 ) = σ2

h − rHh,predX
H
N−1

(
XN−1RhX

H
N−1+σ

2
nIN−1

)−1
XN−1rh,pred

= σ2
h − rHh,pred

(
Rh + σ2

n

(
XH
N−1XN−1

)−1
)−1

rh,pred

(a)
= σ2

h − rHh,pred
(
Rh + σ2

nZ
−1
)−1

rh,pred (4.47)

where for (a) we have used the following substitution

Z = XH
N−1XN−1 (4.48)

i.e., Z is a diagonal matrix containing the powers of the individual transmit
symbols in the past from time instant 1 to N − 1. For ease of notation we
omit the index N − 1.1

Remember that we want to derive an upper bound on the achievable rate
with i.i.d. input symbols by maximizing the RHS of (4.41) over all i.i.d.
distributions of the transmit symbols in the past with an average power ασ2

x.

1 Note that the inverse of Z in (4.47) does not exist, if a diagonal element zi of the
matrix Z is zero, i.e., one transmit symbol has a zero power. However, as the represen-
tation of the prediction error variance in the first line of (4.47) shows, σ2

epred
(xN−1

1 ) is

continuous in zi = 0 for all i and, thus, this does not lead to problems in the following
derivation.



4.3 Upper Bound on the Achievable Rate 73

Obviously, the distribution of the phases of the past transmit symbols xN−1
1

has no influence on the channel prediction error variance σ2
epred (x

N−1
1 ). Thus,

it rests to evaluate, for which distribution of the power of the past transmit
symbols the RHS of (4.41) is maximized. In the following, we will show that
the RHS of (4.41) is maximized in case the past transmit symbols have a
constant power ασ2

x. I.e., calculation of the prediction error variance under
the assumption that the past transmit symbols are constant modulus symbols
with transmit power |xk|2 = ασ2

x maximizes the RHS of (4.41) over all i.i.d.
input distributions for the given average power constraint of ασ2

x.
To prove this statement, we use the fact that the expression in the expec-

tation operation at the RHS of (4.41) (but here for the case of a finite past
time horizon), i.e.,

log

(
1 +

σ2
epred (x

N−1
1 )

σ2
n

|xN |2
)

= log

(
1 +

|xN |2
σ2
n

(
σ2
h − rHh,pred

(
Rh + σ2

nZ
−1
)−1

rh,pred

))
(4.49)

is convex with respect to each individual element of the diagonal of Z, i.e., of
z = diag(Z). The proof of the convexity of (4.49) is given in Appendix A.5.
Based on this convexity, we can apply Jensen’s inequality yielding

Ez

[
log

(
1 +

|xN |2
σ2
n

(
σ2
h − rHh,pred

(
Rh + σ2

nZ
−1
)−1

rh,pred

))]

≥ log

(
1 +

|xN |2
σ2
n

(
σ2
h − rHh,pred

(
Rh + σ2

n (Ez [Z])
−1
)−1

rh,pred

))

= log

(
1 +

|xN |2
σ2
n

(
σ2
h − rHh,pred

(
Rh +

σ2
n

ασ2
x

IN−1

)−1

rh,pred

))

= log

(
1 +

|xN |2
σ2
n

σ2
epred,CM

)
(4.50)

where σ2
epred,CM

is the channel prediction error variance in case all past trans-

mit symbols are constant modulus symbols with power ασ2
x. Here the index

CM denotes constant modulus.
As this lower-bounding of the LHS of (4.50) can be performed for an

arbitrary N , i.e., for an arbitrary long past, we can also conclude that

E
x
k−1
−∞

[
log

(
1 +

σ2
epred,∞

(xk−1
−∞)

σ2
n

|xk|2
)]

≥ log

(
1 +

σ2
epred,CM,∞

σ2
n

|xk|2
)

(4.51)

where σ2
epred,CM,∞

is the channel prediction error variance in case all past

transmit symbols are constant modulus symbols with power ασ2
x and an
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infinitely long past observation horizon. In this case the prediction error vari-
ance is no longer a random quantity but is constant for all time instances
k.

Thus, with (4.41) and (4.51) we can give the following upper bound on
the achievable rate with i.i.d. transmit symbols

I ′(y;x) ≤ I ′
U (y;x) = log (αρ+ 1)− Exk

[
log

(
1 +

σ2
epred,CM,∞

σ2
n

|xk|2
)]

.

(4.52)

Note that constant modulus input symbols are obviously in general not
the capacity maximizing input distribution. However, we only use them to
find a distribution of σ2

epred,∞
(xk−1

−∞) that maximizes the RHS of (4.41).

In Appendix A.6 based on [129], we recall the known result that for con-
stant modulus input symbols and an infinitely long observation interval the
prediction error variance is given by, cf. [67]

σ2
epred,CM,∞

=
σ2
n

ασ2
x

{
exp

(∫ 1
2

− 1
2

log

(
1 +

ασ2
x

σ2
n

Sh(f)

)
df

)
− 1

}
(4.53)

For the special case of a rectangular PSD, (4.53) becomes

σ2
epred,CM,∞

=
σ2
n

ασ2
x

{
exp

(
2fd log

(
1 +

σ2
hασ

2
x

2fdσ2
n

))
− 1

}
. (4.54)

Thus, with (4.52) and (4.53) we have found an upper bound on the achiev-
able rate with i.i.d. input symbols.

4.3.2 Effect of Constraints on the Input Distribution

As in Chapter 3, we evaluate the upper bound given in (4.52) for different
constraints on the input distribution. Following exactly the same argumen-
tation as in Section 3.4.1.1 for the case of a peak power constraint, we get
the following upper bound on the achievable rate with i.i.d. input symbols

sup
Ppeak

i.i.d.

I ′
U (y;x)

= sup
α∈[0,1]

sup
Ppeak

i.i.d.

∣∣α

{
log (αρ+ 1)− Exk

[
log

(
1 +

σ2
epred,CM,∞

σ2
n

|xk|2
)]}

= sup
α∈[0,1]

{
log (αρ+ 1)− α

β
log

(
1 +

σ2
epred,CM,∞

σ2
h

ρβ

)}
(4.55)
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where it has to be considered that the prediction error variance σ2
epred,CM,∞

depends on α. Furthermore, the set Ppeak
i.i.d.

∣∣α corresponds to the set Ppeak
i.i.d. with

an average transmit power fixed to ασ2
x. Now, we would have to calculate the

supremum of the RHS of (4.55) with respect to α which turns out to be diffi-
cult due to the dependency of σ2

epred,CM,∞
on α. However, σ2

epred,CM,∞
monoton-

ically decreases with an increasing α. Furthermore, the RHS of (4.55) mono-
tonically increases with a decreasing σ2

epred,CM,∞
. Therefore, we can upper-

bound the RHS of (4.55) by setting α = 1 within σ2
epred,CM,∞

in (4.53), i.e.,

σ2
epred,CM,∞

∣∣
α=1

, yielding

sup
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α∈[0,1]

{
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log
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σ2
h

ρβ

)

= I ′
U (y;x)

∣∣
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(4.56)

with

αopt = min



1,

(
1

β
log

(
1 +

σ2
epred,CM,∞
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α=1

σ2
h

ρβ

))−1

− 1

ρ



 . (4.57)

As the bound in (4.56) becomes loose for nominal peak-to-average power
ratios β → ∞, we also give an upper bound on the achievable rate with i.i.d.
zero-mean proper Gaussian input symbols which is given by

I ′
U (y;x)

∣∣
pred,PG

= log (ρ+ 1)−
∫ ∞

z=0

log

(
1 +

σ2
epred,CM,∞

∣∣
α=1

σ2
h

ρz

)
e−zdz

(4.58)

where we set α = 1, as in the non-peak power constrained case the upper
bound is maximized for the maximum average transmit power σ2

x.
As far as we know, this upper bound on the achievable rate is new. The

innovation in the derivation of this bound lies in the fact that we separate
the input symbols into the one at the time instant xk and the previous input
symbols contained in xk−1

−∞ . The latter ones are only relevant to calculate the
prediction error variance. The prediction error variance itself is a random
variable depending on the distribution of the past transmit symbols. To de-
rive an upper bound on the achievable rate we have to find the i.i.d. input
distribution of the transmit symbols with average power ασ2

x which leads to
a distribution of the prediction error variance which maximizes the upper
bound on the achievable rate. We have shown that this maximum is given
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for constant modulus input symbols, which led to a constant prediction error
variance for all time instances.

As the assumption on constant modulus symbols is only used in the context
of the prediction error variance, the upper bound on the achievable rate still
holds for any i.i.d. input distribution with the given average power constraint.
This allows us to evaluate this bound for the case of i.i.d. zero-mean proper
Gaussian input symbols, leading to (4.58). To the best of our knowledge this
argumentation is new.

4.4 Comparison to Bounds given in Chapter 3

In this section, we compare the bounds on the achievable rate with i.i.d. input
symbols based on the channel prediction separation with the bounds on the
achievable rate given in Chapter 3.

4.4.1 Numerical Evaluation

All following comparisons are for a rectangular PSD as the upper bounds on
the achievable rate derived in Chapter 3 only hold for this type of PSD.

Fig. 4.1 shows the upper bound on the achievable rate with i.i.d. input
symbols and a peak power constraint based on the channel prediction sep-
aration in comparison to the upper bound on the achievable rate given in
Section 3.4. For both upper bounds we used in addition the combination
with the coherent upper bound (3.87). For the case of a nominal peak-to-
average power ratio β = 1, the upper bound given in Chapter 3 (3.78) and
the prediction based upper bound (4.56) coincide. For β = 2, the prediction
based upper bound is lower than the upper bound (3.78). Obviously, for the
shown parameters the upper bound on the achievable rate based on predic-
tion in (4.56) is tighter than the upper bound given in (3.78). At this point it
is important to consider the following. The previous statement on tightness
holds only when considering i.i.d. input symbols. As it has been stated in
Section 3.6 the upper bound on the achievable rate in (3.78), which has been
derived under the assumption of i.d. peak power constrained input symbols,
is in terms of its expression equal to the upper bound on the peak power
constrained capacity, i.e., without the restriction to i.d. input symbols, given
in [107, Prop. 2.2]. On the other hand, the prediction based upper bound in
(4.56) holds only for i.i.d. input symbols. The comparison of the prediction
based upper bound on the achievable rate with i.i.d. input symbols to the
lower bound on the peak power constrained capacity in [107, (32)], i.e., with-
out any restriction to i.i.d. input symbols, which we recently have displayed
in [27, Fig. 1], shows indeed that the prediction based upper bound on the
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Fig. 4.1: Comparison of the upper bound on the achievable rate
with a peak power constraint given in (4.56)/(3.87) based on channel
prediction with the upper bound given in (3.78)/(3.87); in addition the lower
bound on the peak power constrained capacity (3.96)/(3.94) is shown
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Fig. 4.2: Comparison of the upper bound on the achievable rate
with i.i.d. zero-mean proper Gaussian input symbols based on the
channel prediction separation (4.58)/(3.87) with the upper bound given in
(3.84)/(3.87); in addition the lower bound on the achievable rate with i.i.d.
zero-mean proper Gaussian input symbols (3.93)/(3.94) is shown

achievable rate with i.i.d. input symbols in (4.56) is not an upper bound on
the peak power constrained capacity. This statement can be drawn, as the
prediction based upper bound for i.i.d. input symbols in (4.56) is smaller than
the lower bound on the peak power constrained capacity [107, (32)] for some
choices of the system and channel parameters.

The prediction based upper bound (4.56) as well as (3.78) both become
loose for β > 1 and high SNR or β very large, see Section 3.4.4 for (3.78).
For comparison in Fig. 4.1 the lower bound on the peak power constrained
capacity given in (3.96)/(3.94) is shown. However, this lower bound is in
general not tight as it is based on a constant modulus input distribution.

Furthermore, Fig. 4.2 shows the prediction based upper bound on the
achievable rate with i.i.d. zero-mean proper Gaussian input symbols given in
(4.58) in comparison to the upper and lower bound on the achievable rate
with i.i.d. zero-mean proper Gaussian inputs given in Section 3.4. As before,
both upper bounds are shown in combination with the coherent upper bound
(3.87).

Concerning the upper bounds on the achievable rate with i.i.d. zero-mean
proper Gaussian input symbols, a comparison of the prediction based upper
bound (4.58) and the bound given in (3.84) shows, that it depends on the
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channel parameters, which one is tighter. It can easily be shown that for
fd → 0 and for fd = 0.5 both bounds are equal. For other channel dynamics
fd it depends on the SNR ρ which bound is tighter. In Fig. 4.2 it can be
observed that for the small SNR of 0 dB the prediction based upper bound
(4.58)/(3.87) is smaller than (3.84)/(3.87) while for 12 dB the latter one is
smaller and thus tighter. An analytical comparison turns out to be difficult
as in both cases we use a very different way of lower bounding h′(y|x), which
is further discussed in Section 4.4.2.

4.4.2 Relation of Bounds on h′(y|x)

In this section, we discuss the relation between the bounds on the entropy
rate h′(y|x) calculated in Section 3.3 and the lower bound on h′(y|x) based
on the prediction error variance, i.e., (4.15) in combination with (4.53).

First, we consider the special case of constant modulus input symbols.
Recall that for the special case of constant modulus input symbols the upper
bound h′U (y|x) in (3.29) corresponds to the actual value of h′(y|x), cf. (3.30).
Thus, for constant modulus input symbols it holds that

h′(y|x)
∣∣
CM

=

∫ 1
2

− 1
2

log

(
Sh(f)ασ

2
x

σ2
n

+ 1

)
df + log(πeσ2

n). (4.59)

On the other hand, the entropy rate h′(y|x) based on the channel pre-
diction separation in (4.15) can only be given in closed form for constant
modulus signaling, as otherwise no closed form expression for the predic-
tion error variance σ2

epred,∞
(xk−1

−∞) is available. Assuming constant modulus

signaling, h′(y|x) in (4.15) yields in combination with (4.53)

h′(y|x)
∣∣
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n
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df (4.60)

which exactly corresponds to (4.59).
This result is not surprising, as under the assumption of constant modulus

inputs for both derivations no bounding has been used.
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For the lower-bounding of h′(y|x) in case of a general input distribution, on
the one hand in Section 3.3.2 inequality (3.58) has been used. On the other
hand, for the bounds based on the channel prediction separation, we have
shown that h′(y|x) is lower-bounded in case the prediction error variance
σ2
epred,∞

(xk−1
−∞) is calculated based on constant modulus input symbols. An

analytical comparison of these bounding techniques turns out to be difficult.

4.5 Summary

In the present chapter, we have derived an upper bound on the achievable
rate with i.i.d. input symbols based on a prediction separation of mutual in-
formation. Based on this separation, the conditional channel output entropy
rate h′(y|x) can be expressed by the one-step channel prediction error vari-
ance, which is a well known result, see e.g., [67], [105], and [107]. We show
that for i.i.d. input symbols the prediction error variance σ2

epred,∞
(xk−1

−∞) cal-
culated under the assumption of constant modulus symbols yields an upper
bound on the achievable rate. As the constant modulus assumption is only
used in the context of σ2

epred,∞
(xk−1

−∞), we can still give upper bounds on the
achievable rate for general i.i.d. input symbol distributions, even for the case
without a peak power constraint.

Furthermore, we have tried to give a new upper bound on the channel
output entropy rate h′(y) based on channel power prediction. Unfortunately
this derivation does not lead to a closed form solution.

Comparing the upper bounds on the achievable rate with i.i.d. input sym-
bols based on channel prediction calculated within the present chapter with
the ones based on a pure mathematical derivation given in Chapter 3, it de-
pends on the channel parameters which one is tighter. A further difference of
the bounds lies in the fact that the ones given in Chapter 3 are based on a
pure mathematical derivation, while the bounds in the present chapter give
the link to a physical interpretation. Furthermore, for the derivation of the
bounds in Chapter 3, the assumption of an absolutely summable autocorre-
lation function has been required, while this restriction is not necessary for
the derivations in the present chapter. Finally, the upper bound given in the
present chapter holds for channel fading processes with an arbitrary PSD of
compact support, while the one given in Chapter 3 holds only for rectangular
PSDs.



Chapter 5

Pilot Based Synchronized Detection

In this chapter, we compare the achievable rate with i.i.d. zero-mean proper
Gaussian inputs as it has been considered in the two previous chapters to
the achievable rate while using synchronized detection in combination with a
solely pilot based channel estimation, as it is used in many typical receivers.
In the context of synchronized detection, the receiver tasks are separated into
two units. In the so-called inner receiver the unknown channel fading weights
are estimated and then used for coherent detection/decoding1 in the outer
receiver.

In the first part of the present chapter, we shortly introduce the principle of
synchronized detection. Afterwards, we recall existing bounds on the achiev-
able rate while using synchronized detection in combination with a solely
pilot based channel estimation given in [6] and [4]. In this context we also
discuss, why a receiver using synchronized detection with a solely pilot based
channel estimation cannot exploit the complete mutual information between
transmitter and receiver. Finally, we compare these bounds to the bounds
on the achievable rate with i.i.d. zero-mean proper Gaussian input symbols
given in Chapter 3 to judge on the performance of pilot based synchronized
detection with respect to the achievable rate.

5.1 Synchronized Detection

The task of the receiver is to decide on the most likely transmitted sequence x
based on the observation of the channel output y.2 Relying on the discrete-
time input-output relation given in (2.13), we can express this task in a
mathematical way as

1 We use the terms detection and decoding interchangeable.
2 Notice that this corresponds to a receiver which aims to minimize the frame error
rate.

M. Dörpinghaus, On the Achievable Rate of Stationary Fading Channels, Foundations in signal
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x̂ = argmax
Px

p(y|x) (5.1)

where Px is the set of all possible transmit sequences that can be gener-
ated by the transmitter. This set depends on the channel encoder and the
modulation and is defined as the codebook. Obviously, (5.1) corresponds to
maximum likelihood (ML) sequence detection. We assume here that all trans-
mit sequences x in the set Px are generated by the transmitter with equal
probability.

In case the probability of occurrence of the different sequences x is not
equal, and the receiver has knowledge on p(x), the receiver can make use of
this knowledge by applying MAP detection instead, i.e.,

x̂ = argmax
Px

p(x|y)

= argmax
Px

p(y|x)p(x). (5.2)

However, we assume the transmitted sequences x to be equally likely and,
thus, the MAP receiver in (5.2) becomes equivalent to the ML receiver in
(5.1).

For zero-mean Gaussian fading channels, as introduced in Chapter 2, the
conditional PDF p(y|x) is given by

p(y|x) = 1

πN det
(
Ry|x

) exp
(
−yHR−1

y|xy
)

(5.3)

with, cf. (3.20)

Ry|x = XRhX
H + σ2

nIN . (5.4)

The evaluation of (5.1) therefore incorporates the calculation of a quadratic
form and is prohibitively complex.

Based on a high SNR approximation, the solution of the optimization
problem in (5.1) is approximatively equivalent to the solution of the following
optimization problem [79, Section 12.2]

{
x̂, ĥ

}
= argmax

Px,h
p (h|y,x) p(y|x)

= argmax
Px,h

p (y|x,h) p (h) (5.5)

which is known as joint ML detection with MAP parameter estimation. For
the special case of a jointly Gaussian problem as the one we discuss here,
i.e., a proper Gaussian fading process and proper Gaussian noise, and con-
stant modulus signaling the solution to the optimization problem in (5.5) is
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exactly equivalent to the solution of the optimization problem in (5.1), see
Appendix A.7 for a proof3.

The solution space for ĥ is continuous whereas the solution space of x̂ is
discrete. Therefore, the natural approach to the solution of (5.5) is to first
maximize p(h|y,x) with respect to h by MAP estimation for each possible
sequence x and then choosing the sequence x with the largest likelihood,
i.e., [79]

ĥ(x) = argmax
h

p(h|y,x) (5.6)

x̂ = argmax
Px

p
(
y|x,h = ĥ(x)

)
p(h = ĥ(x)). (5.7)

The notation ĥ(x) denotes that the estimate depends on the channel input

symbols x. Furthermore, writing p(y|x,h = ĥ(x)) denotes that the channel

estimate ĥ(x) is used as it would be the true value, see also (5.18).
Obviously, the first step corresponds to channel estimation, and the sec-

ond step to detection/decoding based on the channel estimate ĥ. For this
approach the channel has to be estimated conditioned on all possible input
sequences x which is prohibitively complex. Therefore, in conventional syn-
chronized detection based receivers an approximative solution of (5.6) and
(5.7) is achieved by performing the first step, i.e., the channel estimation
based on pilot symbols, which are introduced into the transmit symbol se-
quence and are known to the receiver. Based on these channel estimates,
the receiver can perform coherent detection/decoding of the data sequence.
Fig. 5.1 shows the resulting structure.

5.1.1 Channel Estimation

For channel estimation, pilot symbols are multiplexed into the transmit sym-
bol sequence. Based on the noisy channel observations at the pilot time in-
stances, the channel fading process can be estimated by interpolation. For
the Rayleigh fading model introduced in Chapter 2 the channel interpolation
problem is jointly Gaussian. Hence, the MAP channel estimate in (5.6) cor-
responds to the MMSE estimate which is linear. Therefore, Wiener filtering
delivers MMSE, and, thus, MAP channel estimates.

We assume that the pilot symbols are introduced periodically into the
transmit symbol sequence with a pilot spacing L, i.e., each L-th symbol of
the transmitted symbol sequence {xk} is a pilot symbol. To get a sufficient

3 Note that in [79, Section 12.2.6 A] it has been stated that the solution of the
optimization problem in (5.5) is equal to the solution of (5.1) for jointly Gaussian
problems. There no restriction to constant modulus input distributions has been
made. However, this equivalence does not hold in general as the proof in Appendix A.7
shows.
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Fig. 5.1: Block diagram of a synchronized detection receiver with a
pilot based channel estimation, flat-fading channel, simplified discrete-
time baseband representation; π/ π−1 interleaving / deinterleaving; the index
pil denotes that the channel estimate is solely based on pilot symbols and
the index Dn indicates the n-th data symbol position

channel estimation quality, the pilot spacing L is chosen so that the channel
fading process is sampled at least with Nyquist rate, i.e.,

L ≤ 1

2fd
. (5.8)

The pilot symbols are constant modulus symbols, i.e., each having the trans-
mit power σ2

x. Note that thereby we deviate from the assumption that the
channel input symbol stream consists of i.i.d. or i.d. symbols, as it has been
used for the bounds on the achievable rate that have been calculated in the
previous chapters.

Based on the pilot symbols, we estimate the channel fading process {hk},
with {ĥpil,k} being the channel estimation process. Here the index pil in-
dicates that the channel estimation is solely based on pilot symbols. Based
on the channel estimates ĥpil,k the channel output observations yk can be
rewritten as

yk = hkxk + nk

=
(
ĥpil,k + epil,k

)
xk + nk

= ĥpil,kxk + epil,kxk + nk

= ĥpil,kxk + ñk (5.9)

where epil,k = hk − ĥpil,k is the channel estimation error. The noise ñk =
epil,kxk+nk depends on the channel input xk and is in general non-Gaussian.
Based on the matrix-vector notation introduced in Section 2.2 the input-
output relation in (5.9) can be expressed by



5.1 Synchronized Detection 85

y = X
(
ĥpil + epil

)
+ n (5.10)

where ĥpil = [ĥpil,1, . . . , ĥpil,N ] and epil = [epil,1, . . . , epil,N ].
Furthermore, we introduce the following subvectors xP and xD, where the

first one contains all pilot symbols contained in x and the latter one contains
all data symbols of x, i.e., the pilot symbol vector is given by

xP =
[
x1, xL+1, . . . , x⌊N−1

L ⌋L+1

]
(5.11)

where we assume without loss of generality that x starts with a pilot symbol.
The observation vector at the pilot symbol time instances yP and the channel
weight vector at the pilot time instances hP are defined accordingly.

As already stated the channel estimates ĥpil are given by LMMSE estima-
tion, i.e.,

ĥpil = E [h|yP ,xP ]

= RhhP

(
σ2
xRhP + σ2

nI⌊N
L ⌋
)−1

X∗
PyP (5.12)

with

RhP = E
[
hPh

H
P

]
(5.13)

RhhP = E
[
hhHP

]
(5.14)

and XP = diag(xP ). Notice, ignoring edge effects the LMMSE estimation in
(5.12) can be realized by a set of L FIR filters.

Following similar ideas as in Section 4.1 it can be shown that the channel
estimation error is zero-mean proper Gaussian, i.e., epil,k ∼ CN (0, σ2

epil
), see

also [6]. Furthermore, in [6] it is shown that for an infinitely long observation
interval the channel estimation error variance σ2

epil is independent of the time

instant k due to the condition (5.8). However, it has to be kept in mind
that the channel estimation error epil,k at different time instances is not
independent, i.e., it is temporally correlated [90].

Given an infinitely long observation interval and a pilot spacing that fulfills
the Nyquist condition (5.8), the channel estimation error variance σ2

epil
can

be calculated as

σ2
epil = E

[∣∣∣hk − ĥpil,k

∣∣∣
2
]

=

∫ 1
2

− 1
2

Sepil(f)df

(a)
=

∫ 1
2

− 1
2

Sh(f)
ρ
L
Sh(f)
σ2
h

+ 1
df (5.15)
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where ρ specifies the SNR and is given in (2.18) and where Sepil(f) is the
PSD of the channel estimation error process in case the channel estimation
is solely based on pilot symbols. It is given in (A.144) in Appendix A.12 and
has been used for (a). For the special case of a rectangular PSD Sh(f) the
estimation error variance is given by

σ2
epil

=
2fdL

2fdL+ ρ
σ2
h. (5.16)

In addition, the channel estimates are also zero-mean proper Gaussian, i.e.,
ĥpil,k ∼ CN (0, σ2

ĥpil
) with

σ2
ĥpil

= σ2
h − σ2

epil . (5.17)

5.1.2 Interleaving and Detection/Decoding

As shown in Fig. 5.1, the estimate ĥpil,D, i.e., the elements of ĥpil at the data
symbol time instances are used for detection/decoding. Due to the temporal
correlation of the fading process {hk}, adjacent symbols are characterized by
a similar channel attenuation. As typical channel encoders, e.g., convolutional
codes, turbo codes, etc. are designed for white noise channels, i.e., are not
able to correct burst errors very well, usually channel interleaving π and dein-
terleaving π−1 is used. Thus, the input to the detector/decoder is given by
y′
D = π(yD). The deinterleaver breaks up the channel correlation. However,

as the interleaving process corresponds to a permutation of the symbols, it
can easily be seen that the interleaver only has the effect that the temporal
correlation of the underlying channel fading process of adjacent symbols of
the vector y′

D, i.e., the input to the detector/decoder is broken up. This is im-
portant to achieve a sufficient coding gain. Concerning information theoretic
interpretations, it should be kept in mind that the correlation of the elements
of y′

D which have been adjacent before deinterleaving, i.e., in the vector yD,
remains unchanged. Therefore, interleaving, which is a permutation, has no
influence on the mutual information.

Now we discuss the detection/decoding, i.e., the step in (5.7). Without
any approximations the metric corresponding to (5.7) is given by [79]

Lx =
(
y −Xĥ(x)

)H
R−1
n

(
y −Xĥ(x)

)
+
(
ĥ(x)

)H
R−1
h

(
ĥ(x)

)
(5.18)

where Rn is the correlation matrix of the additive noise. As we assume white
noise, it is diagonal with

Rn = σ2
nIN . (5.19)
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Due to the approximation to the solution of (5.6) and (5.7) by estimating the

channel solely based on pilot symbols the channel estimate ĥ(x) is substituted

by ĥ(xP ) = ĥpil, which is independent of the data symbols contained in
xD. Furthermore, (5.7) translates into maximizing (5.18) over all possible
data sequences xD. With this approximation and as the pilot sequence is
deterministic, (5.6) and (5.7) become

ĥpil = argmax
h

p(h|yP ,xP ) (5.20)

x̂D = argmin
Px

∥∥∥y −Xĥpil

∥∥∥
2

(5.21)

where we have used (5.19). The second term at the RHS of (5.18) can be
neglected as it does not depend on xD.

Now we look at the problem from another perspective. We aim to perform
detection while using the channel estimate ĥpil that is solely based on pilot
symbols, see (5.20). We know that the channel estimation error, which is
described by the vector epil, cf. (5.10), is zero-mean proper Gaussian with
the following covariance matrix

Repil = E
[
epile

H
pil

]
. (5.22)

The diagonal elements of Repil are given by σ2
epil in (5.15). As it already has

been stated the channel estimation error process {epil,k} is not white but tem-
porally correlated, thus Repil is not diagonal. In this regard, see also the PSD
corresponding toRepil which is given by Sepil(f) in (A.144) in Appendix A.12.

Performing ML sequence detection in this case would correspond to

x̂D = argmax
Px

p
(
y|x, ĥpil

)
. (5.23)

Obviously, p(y|x, ĥpil) is proper Gaussian and given by

p(y|x, ĥpil) =

exp

{
−
(
y −Xĥpil

)H (
XRepilX

H + σ2
nIN

)−1
(
y −Xĥpil

)}

πN det
(
XRepilX

H + σ2
nIN

) .

(5.24)

Notice the difference between the first term of (5.18) and the metric corre-
sponding to (5.24). The latter one accounts for the channel estimation error
in the covariance matrix, i.e., XRepilX

H+σ2
nIN , while the first one does not.

Obviously, using a metric different to the one corresponding to (5.24), which
considers the channel estimation error, leads to mismatch decoding.

However, it has been shown above that in the special case of constant
modulus signaling the joint ML detection and MAP parameter estimation
problem in (5.5) is no approximation and leads to the exact solution of the
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genuine optimization problem in (5.1). Joint ML detection and MAP pa-
rameter estimation corresponds to evaluating (5.6) and (5.7), i.e., using the
channel estimate as it would be the actual channel realization for detection.
When studying (5.24) for constant modulus input symbols, this still leads
to a different decoding metric than the one given in (5.21), i.e, when us-
ing the channel estimate as it would be the actual channel realization, as
the matrix Repil is not diagonal, i.e., the channel estimation error is tempo-
rally correlated [90]. We assume that this difference arises from the fact that
for the derivation of (5.21) we have assumed that the channel is estimated
solely based on pilot symbols, which is an approximation to the genuine syn-
chronized detection approach described by (5.6) and (5.7). Therefore, to get

optimum ML decoding based on the pilot based channel estimate ĥpil, we
have to use a metric corresponding to (5.24).

As already stated at the beginning of this section, the decoder works with
an interleaved observation sequence y′

D. Using standard decoding techniques
the temporal correlation of the estimation error cannot be exploited during
decoding. Neglecting these temporal correlations we get the following approx-
imation for (5.24)

p(y|x, ĥpil) ≈
exp

{
−
(
y −Xĥpil

)H (
XXHσ2

epil
+ σ2

nIN

)−1 (
y −Xĥpil

)}

πN
∏N
k=1

(
|xk|2σ2

epil + σ2
nIN

) .

(5.25)

The bounds on the achievable rate with synchronized detection in combi-
nation with a solely pilot based channel estimation which we recall in the
following section are based on this approximation.

Furthermore, and this is important to note, in the rest of this work, when
using the term synchronized detection, we assume that the decoder uses a
metric corresponding to (5.25). I.e., the channel estimation error variance
is considered by the decoder, while the correlation of the channel estimation
error process is not exploited. Obviously, with this usage of the term synchro-
nized detection we deviate from its genuine definition, as due to considering
the estimation error variance in the decoding metric, the channel estimate is
not used as it would be the actual channel realization.

Definition 5.1. In this work, we use the term synchronized detection for
receiver structures, where the channel is estimated and then used for sub-
sequent decoding based on the metric given in (5.25). This means that the
detector/decoder treats the estimation error process as additional additive
white noise.

For completeness we additionally mention the following fact. Standard de-
tectors/decoders are designed under the assumption that the noise variance
is independent of the transmitted symbols. Therefore, a further approxima-
tion of the PDF in (5.25) is required. Approximation of the symbol powers
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contained in XXH by their expectation σ2
x leads to

p(y|x, ĥpil) ≈
1

πN
(
σ2
xσ

2
epil

+ σ2
n

)N exp




−

∥∥∥y −Xĥpil

∥∥∥
2

σ2
xσ

2
epil + σ2

n




. (5.26)

Notice that for the special case of constant modulus input symbols the ap-
proximation step from (5.25) to (5.26) is not required as both are equal due
to the fact that |xk|2 = σ2

x. Based on (5.26) we get the following decoding
metric

x̂D = argmin
Px

∥∥∥y −Xĥpil

∥∥∥
2

(5.27)

which corresponds to (5.21). Obviously, when discarding the information con-
tained in the temporal correlation of the channel estimation error, for the
special case of constant modulus symbols, we get to the same ML detection
metric, as it has been given for the case the detector uses the channel estimate
as it would be the actual channel realization.

As this metric corresponds to a Euclidean distance which can be separated
as follows

∥∥∥y −Xĥpil

∥∥∥
2

=

N∑

n=1

∣∣∣yn − xnĥpil,n

∣∣∣
2

(5.28)

standard decoders based on a symbol-wise detection/demapping, i.e., the
Viterbi decoder or the MAP decoder, with a complexity that grows linear
with N can be used.

In summary, the following important facts should be kept in mind: The
genuine definition of synchronized detection states that the channel estimate
is used as it would be the actual realization of the channel fading process.
Deviating from this definition, we use the term synchronized detection, as-
suming that decoding is based on a metric, taking into account the channel
estimation error variance but not its temporal correlation, see Definition 5.1.
This corresponds to a symbol-wise detection, to which we sometimes refer to
as coherent detection. The last assumption arises from the fact that usually
decoding is performed after deinterleaving and typical decoders are not able
to exploit the temporal correlation of the channel estimation error process.
This fact is also kept by the bounds on the achievable rate that we recall in
the following section.

In addition, the specific influence of the channel estimation error depend-
ing on the symbol powers |xk|2 is typically not used in detection/decoding.
However, the bounds on the achievable rate in the following section are not
based on this restriction and we also do not include this into the definition
of the term synchronized detection given before.
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5.2 Achievable Rate

In this section, we recall results on the achievable rate based on synchronized
detection with a pilot based channel estimation as described in the previous
section. These bounds are given in [6] and [4]. Before we discuss these bounds,
we study the relation between the achievable rate with synchronized detection
in combination with a solely pilot based channel estimation and the mutual
information rate I ′(y;x) considered in the previous chapters. Therefore, we
use the vectors xD and xP containing all data symbols, respectively all pilot
symbols of x. Accordingly we define yP , yD, hD, and ĥpil,D.

In the following, we assume that the data symbols are i.i.d.. Furthermore,
for the discussion on the achievable rate with solely pilot based synchronized
detection we do not use any peak power constraint, so that it is in general
optimal to use the maximum average transmit power, i.e., E

[
|xk|2

]
= σ2

x,
cf. (4.1). Consequently, the parameter ρ defined in (2.18) corresponds to the
actual mean SNR.

Based on these definitions and assumptions, we are able to rewrite the
mutual information between the channel input and the channel output as
follows:

I(y;x) = I(yP ,yD;xP ,xD)
(a)
= I(xD;yP ,yD|xP ) + I(yP ,yD;xP )
(b)
= I(xD ;yP ,yD,xP )− I(xD;xP ) + I(yP ,yD;xP )
(c)
= I(xD;yP ,yD,xP )
(d)
= I(xD;yP ,yD|xP ) + I(xD;xP )
(e)
= I(xD;yD|xP ,yP ) + I(xD;yP |xP ) + I(xD;xP )
(f)
= I(xD;yD|yP ,xP )
(g)
= I

(
xD;yD

∣∣ĥpil,D,xP

)

(h)
= I

(
xD;yD

∣∣ĥpil,D

)
(5.29)

where (a), (b), (d), and (e) are based on the chain rule for mutual information.
For (c) we have used the fact that the pilot symbols contained in xP are
non-random, and, thus, I(xD;xP ) = 0 and I(yP ,yD;xP ) = 0. Equality
(f) is based on the fact that I(xD;yP |xP ) = 0 as yP does not carry any
information on the data symbols xD, and we use again that I(xD ;xP ) = 0
due to the fact that the pilot symbols are non-random. Equality (g) holds

due to the fact that the channel estimate ĥpil,D is a deterministic function

of yP and xP , and ĥpil,D contains all information about hD given by yP
while xP is known. In Section 7.2 we also give a formal derivation of this
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equality. As the pilot symbols are not only known, but also are deterministic,
the conditioning on xP can be ignored in (h). Nevertheless, in general, xP has
to be considered for the calculation of the correlation matrix of the channel
estimation error Repil in (5.22). But for the special case of constant modulus
pilot symbols, as they are assumed here, Repil does not explicitly depend on
xP .

The derivation steps shown in (5.29) are not the direct way to get from

I(y;x) to I(xD;yD|ĥpil,D). However, the shown approach gives some addi-
tional insights. On the one hand, the mutual information I(y;x), i.e., the
mutual information between all channel input symbols and all channel obser-
vations is equal to the mutual information I(xD;yP ,yD,xP ), showing that
the pilot symbols can also be understood as additional information at the re-
ceiver side. On the other hand, (5.29) gives the important result that I(y;x)
can be expressed by I(xD;yD|ĥpil,D), i.e., the mutual information between
all input data symbols xD and all channel output observations at the data
symbol time instances yD, based on the side information xP ,yP , i.e., the
information on the channel delivered by the pilot symbols. This information
is expressed by the estimate ĥpil,D.

Obviously, I(xD ;yD|ĥpil,D) is related to the achievable rate while us-

ing synchronized detection. The relation between I(xD;yD|ĥpil,D) and the
achievable rate with synchronized detection is discussed in the following. More
specifically, within the present chapter we discuss the case of synchronized
detection with a solely pilot based channel estimation. In contrast, in Chap-
ter 6, we will discuss the case of iterative code-aided synchronized detection,
where reliability information on the data symbols is iteratively fed back to
the channel estimator to enhance channel estimation quality, see Section 6.1.

Notice that the use of pilot symbols which are periodically multiplexed
into the transmit symbol stream is not optimal in the sense of maximizing
the mutual information I(y;x). In Chapter 10, for PSK signaling the opti-
mal distribution over the set of possible input sequences has been studied,
where optimality is stated with respect to maximizing the achievable rate
constrained to a fixed set of input sequences. This examination shows that
the set of input distributions maximizing the achievable rate includes the use
of a subset of all transmit sequences, where at one specific symbol position
a fixed symbol is used. This means that for this scenario, the use of one sin-
gle pilot symbol and of i.i.d. transmit symbols at all other time instances is
optimal in the sense of maximizing mutual information. In contrast to this,
we use pilot symbols which are periodically inserted into the transmit sym-
bol stream. The advantage of this approach is that it enables a separation
of channel estimation and decoding. This allows a receiver implementation
with low complexity.

As it has already been stated, following the synchronized detection ap-
proach the channel estimate is used in the decoder corresponding to Defini-
tion 5.1. The channel estimation error is treated as additional noise, cf. (5.9).
Considering the discussion on interleaving in Section 5.1.2, the temporal cor-
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relation of the estimation error is not exploited by typical channel decoders.
This means that the estimation error of adjacent input symbols/bits to the
channel decoder is assumed to be independent. Thus, the RHS of (5.29),

i.e., the term I(yD;xD|ĥpil,D) is only an upper bound on the achievable
rate while using synchronized detection with a solely pilot based channel es-

timation. Therefore, we introduce the quantity I
(
yD;xD

∣∣ˇ̂hpil,D

)
where we

assume that
ˇ̂
hpil,D is an estimate of the channel fading hD with the same

statistical properties as ĥpil,D except that the estimation error is temporally
uncorrelated.4

Thus, I
(
yD;xD

∣∣ˇ̂hpil,D

)
is the mutual information while using synchro-

nized detection with a solely pilot based channel estimation and a decoder
which does not exploit the temporal correlation of the channel estimation
error. Obviously, the following relation must hold

I
(
yD;xD

∣∣∣ˇ̂hpil,D

)
≤ I

(
yD;xD

∣∣∣ĥpil,D

)
. (5.31)

Assuming that the pilot spacing L fulfills the Nyquist channel sampling
condition (5.8) leads in combination with an infinite observation interval to
the fact that the channel estimation error variance is independent of the
symbol time instant. Using this, the fact that the channel fading process is
ergodic, and the assumption that the estimation error is temporally uncorre-

lated, the rate corresponding to I
(
yD;xD

∣∣ ˇ̂hpil,D

)
is given by

I ′
(
yD;xD

∣∣∣ ˇ̂hpil,D

)
= lim
N→∞

1

N
I
(
yD;xD

∣∣∣ˇ̂hpil,D

)

=
L− 1

L
I
(
yDk

;xDk

∣∣∣ĥpil,Dk

)
(5.32)

where the indexDk indicates an arbitrarily chosen data symbol. The prefactor
L−1
L accounts for the loss of time instances that are used for pilot symbols

and cannot be used for data transmission.
As the pilot symbols are deterministic, it is possible to use the following

substitution

I ′
(
yD;xD

∣∣∣ˇ̂hpil,D

)
= I ′

(
y;x

∣∣∣ ˇ̂hpil

)
(5.33)

which we apply in the following to get a notation being consistent with the
rest of this work.

4 Notice that it is not sufficient to substitute yD, xD, and ĥpil,D by the corresponding

deinterleaved quantities y′
D, x′

D, and ĥ′
pil,D as the permutation by π has no influence

on the mutual information, i.e.,

I
(

yD;xD

∣

∣

∣
ĥpil,D

)

= I
(

y′
D;x′

D

∣

∣

∣
ĥ′
pil,D

)

. (5.30)
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In [77] and [6], bounds for I ′(y;x
∣∣ ˇ̂hpil

)
have been derived. We briefly sum-

marize the bounding approach. Obviously, for the derivation of a lower bound

on I ′
(
yD;xD

∣∣∣ˇ̂hpil,D

)
a lower bound on I

(
yDk

;xDk

∣∣∣ĥpil,Dk

)
in (5.32) is re-

quired. Therefore, the following separation is used

I
(
yDk

;xDk

∣∣∣ĥpil,Dk

)
= h(xDk

|ĥpil,Dk
)− h(xDk

|yDk
, ĥpil,Dk

)

(a)
= h(xDk

)− h(xDk
|yDk

, ĥpil,Dk
). (5.34)

where (a) is based on the independency of xDk
and ĥpil,Dk

. In [77] it is shown
that the second term on the RHS of (5.34) is upper-bounded by

h(xDk
|yDk

, ĥpil,Dk
) ≤ Eĥpil,Dk

log

(
πe

σ4
xσ

2
epil

+ σ2
nσ

2
x

σ2
x|ĥpil,Dk

|2 + σ2
xσ

2
epil + σ2

n

)
. (5.35)

Furthermore, for zero-mean proper Gaussian data symbols the first term on
the RHS of (5.34) becomes

h(xDk
) = log

(
πeσ2

x

)
. (5.36)

Inserting (5.35) and (5.36) into (5.34) and (5.32) results in the following lower
bound on the achievable rate with solely pilot based synchronized detection
and i.i.d. zero-mean proper Gaussian data symbols

I ′
(
y;x

∣∣∣ ˇ̂hpil,D

)
≥ I ′

L

(
y;x

∣∣∣ ˇ̂hpil,D

)

=
L− 1

L
Eĥpil,k

log

(
1 +

σ2
x|ĥpil,k|2

σ2
epil
σ2
x + σ2

n

)
(5.37)

=
L− 1

L

∫ ∞

z=0

log

(
1 +

σ2
x(σ

2
h − σ2

epil)

σ2
epil
σ2
x + σ2

n

z

)
e−zdz (5.38)

=
L− 1

L

∫ ∞

z=0

log (1 + ρηz) e−zdz (5.39)

where

η =
1−

σ2
epil

σ2
h

1 +
σ2
epil

σ2
x

σ2
n

(5.40)

is the SNR degradation factor.

On the other hand, in [6] it is shown that I ′(y;x
∣∣ ˇ̂hpil

)
can be upper-

bounded by
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I ′
(
y;x

∣∣∣ ˇ̂hpil

)
≤ I ′

U

(
y;x

∣∣∣ ˇ̂hpil

)
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L
Eĥpil,k

log
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1 +
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epilσ

2
x + σ2

n

)
+
L− 1

L
Exk

log
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2
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n

|xk|2σ2
epil + σ2

n

)

= I ′
L

(
y;x

∣∣∣ ˇ̂hpil

)
+∆I′(y;x|ˇ̂hpil)

. (5.41)

The derivation of this upper bound is in principle based on the same approach
as we will use it below in Section 6.2.5 in another context. For i.i.d. zero-mean
proper Gaussian data symbols (5.41) becomes

I ′
U
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) ∣∣∣∣
PG
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−
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log
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ρ
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z + 1
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e−zdz

)

= I ′
L

(
y;x

∣∣∣ ˇ̂hpil

)
+∆I′(y;x|ˇ̂hpil)

∣∣∣∣
PG

. (5.42)

By using Jensen’s inequality, it is obvious that the term ∆I′(y;x|ˇ̂hpil)
is non-

negative and indicates the tightness of the upper and the lower bound on

I ′(y;x
∣∣ ˇ̂hpil

)
. Furthermore, for σ2

epil → 0, i.e., perfect channel knowledge,

∆I′(y;x|ˇ̂hpil)
becomes 0. Regarding the bounding of ∆I′(y;x|ˇ̂hpil)

∣∣
PG

notice its

similarity to ∆h′(y) in Section 3.4.3.2.
Effectively, these bounds show that for synchronized detection with a solely

pilot based channel estimation, the achievable rate is decreased with respect
to the case of perfect channel knowledge by two factors. First, the SNR is
decreased by a factor η in (5.40) which arises because of an increased noise
variance due to the estimation error and the fact that the variance of the
channel estimate σ2

ĥpil
is smaller than σ2

h. Secondly, the achievable rate is

decreased compared to the case of perfect channel knowledge by the factor
(L−1)/L, as each L-th symbol is used for a pilot symbol and cannot be used
for data transmission.
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5.2.1 Comparison to the Achievable Rate with i.i.d.
Gaussian Inputs

In this section, we compare the upper and the lower bound on the achiev-
able rate with pilot based synchronized detection in (5.39) and (5.42) to the
bounds on the achievable rate with i.i.d. zero-mean proper Gaussian input
symbols that have been derived in Chapter 3.
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Fig. 5.2: Comparison of bounds on the achievable rate with pilot based syn-
chronized detection (SD) to bounds on the achievable rate with i.i.d. input
symbols; in both cases i.i.d. zero-mean proper Gaussian (data) symbols are
assumed; rectangular PSD Sh(f)

Fig. 5.2 shows the bounds on the achievable rate using synchronized de-
tection, (5.39) and (5.42), in comparison to the bounds on the achievable rate
with i.i.d. input symbols, i.e., the lower bound (3.93)/(3.94) and the upper
bound (3.84)/(3.87) for a rectangular PSD of the channel fading process. For
the case of synchronized detection, we choose the pilot spacing L that maxi-
mizes (5.39). In both cases the data symbols are zero-mean proper Gaussian
with an average power σ2

x.
For fd ≥ 0.25, the achievable rate with synchronized detection is zero.

This is due to the fact that in order to fulfill the Nyquist criterion, see (5.8),
all symbols are pilot symbols. The unsteady behavior in the upper and lower
bounds arise due to the fact that the pilot spacing can only be chosen as
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an integer number. We can see that for low channel dynamics, i.e., small
fd, the achievable rate with synchronized detection is smaller than the lower
bound on the achievable rate with i.i.d. input symbols, and, thus, lower than
the channel capacity. This shows that with respect to the achievable rate,
synchronized detection in combination with a solely pilot based channel es-
timation is suboptimal.

5.2.2 Optimized Pilot-to-Data Power Ratio

As discussed above, there exist two effects leading to a reduction of the achiev-
able data rate while using synchronized detection in combination with a solely
pilot based channel estimation compared to the case of perfect channel knowl-
edge at the receiver side. On the one hand, this is the reduction in the number
of data symbols depending on the pilot spacing L, which reduces the data
rate by the factor L−1

L , and, on the other hand, the SNR loss due to the
channel estimation error, which increases the data rate only logarithmically
with increasing η. Therefore, from intuition, it is reasonable to make the pilot
spacing as large as possible, while ensuring Nyquist sampling of the channel
fading process by the pilot symbols, and to compensate the effect of the in-
creased estimation error variance by optimizing the ratio between pilot and
data power

ν =
σ2
p

σ2
d

(5.43)

where σ2
p is the power of the pilot symbols and σ2

d is the average power of
the data symbols. This approach has already been evaluated in [4].

The maximum pilot spacing that can be chosen while fulfilling Nyquist
sampling would be L = ⌊1/(2fd)⌋. As here the pilot spacing is not a continu-
ous function of fd closed form evaluation becomes difficult. Therefore, in the
following we use the approximation

L =
1

2fd
. (5.44)

For the important range of small fd the difference in terms of the achievable
rate is very small.

Writing both, the pilot power σ2
p and the average data power σ2

d as a
function of ν and the overall average transmit power σ2

x yields
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σ2
p =

1

2fd +
1
ν (1− 2fd)

σ2
x (5.45)

σ2
d =

1

1− 2fd + 2fdν
σ2
x. (5.46)

The overall average transmit power σ2
x is held constant.

For a rectangular PSD Sh(f) of the channel fading process and, thus, with
σ2
epil in (5.16) (for the SNR of the pilot symbols) and with the pilot spacing

in (5.44) the SNR degradation factor becomes

η =
ρν

(ρ(1 + ν)− 2fd(1− ν) + 1)(2fd(ν − 1) + 1)
. (5.47)

According to [4] the optimum choice of the power ratio is given by

νopt =

√
(1− 2fd)2 + ρ(1− 2fd)

2fd(2fd + ρ)
(5.48)

and due to Nyquist sampling of the channel fading process the pre-factor to
the log becomes

L− 1

L
= 1− 2fd. (5.49)

Finally, the upper bound and lower bound on the achievable rate for syn-
chronized detection and pilot power boosting are given by

I ′
(
y;x

∣∣∣ ˇ̂hpil

)
≥ I ′

L

(
y;x

∣∣∣ ˇ̂hpil

)

= (1− 2fd)

∫ ∞

z=0

log (1 + ηρz) e−zdz (5.50)

I ′
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∣∣∣ ˇ̂hpil

)
≤ I ′
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)
+ (1− 2fd)E|xD|2 log

(
σ2
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2
epil + σ2

n

|xD|2σ2
epil
z + σ2

n

)

(5.51)

where xD is an arbitrary data symbol with average power E
[
|xD|2

]
= σ2

d and
where, corresponding to (5.16), the estimation error variance is given by

σ2
epil =

2fdL

2fdL+ ρ
σ2
p

σ2
x

σ2
h =

1

1 + ρ
σ2
p

σ2
x

σ2
h (5.52)

as the SNR at the pilot symbol time instances is given by ρ
σ2
p

σ2
x
. For the special

case of zero-mean proper Gaussian data symbols, (5.51) becomes
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e−zdz. (5.53)
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Fig. 5.3: Comparison of bounds on the achievable rate with pilot based syn-
chronized detection with optimized pilot-to-data power ratio (SD νopt) to
bounds on the achievable rate with i.i.d. input symbols; in both cases i.i.d.
zero-mean proper Gaussian (data) symbols are assumed; approximation for
the pilot spacing L = 1/(2fd); rectangular PSD Sh(f)

In Fig. 5.3 the achievable rate in case of using synchronized detection
and pilot power-to-data power ratio optimization, see (5.50) and (5.53), is
compared to the bounds on the achievable rate without pilot symbols, i.e.,
the lower bound (3.93)/(3.94) and the upper bound (3.84)/(3.87) for i.i.d.
zero-mean proper Gaussian input symbols.

Obviously, the gap between the achievable rate with synchronized detec-
tion and pilot power optimization towards the lower bound on the achiev-
able rate (3.93)/(3.94) is smaller compared to the case without pilot power
optimization. However, for small fd the achievable rate with synchronized
detection and pilot power optimization is still lower than the lower bound
(3.93)/(3.94), and thus lower as the channel capacity.
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Nevertheless, the bounds using synchronized detection lie close to the lower
bound on the achievable rate with an i.i.d. zero-mean proper Gaussian in-
put distribution, indicating that the loss while restricting to synchronized
detection in combination with a solely pilot based channel estimation is rela-
tively small for low channel dynamics as they are typically observed in mobile
channels.

5.3 Summary

In this chapter, we have recalled the principle of synchronized detection and
have given a definition, how we use this term within the present work. This
definition mainly states that synchronized detection means that the receiver
estimates the channel allowing for coherent detection/decoding. The detec-
tor/decoder treats the channel estimation error as additive white noise, i.e.,
it discards the temporal correlation of the estimation error process. This is
motivated by the fact that standard detectors/decoders do not exploit the
information contained in the temporal correlation of the estimation error
process.

In the second part of the present chapter, we have shown that the mutual
information I(y;x) can be expressed in terms of the mutual information of
the data symbols and the corresponding channel output observations condi-
tioned on the information on the channel fading process delivered by the pilot

symbols, which is expressed by ĥpil,D, i.e., I
(
xD;yD

∣∣ĥpil,D

)
. We show that

this is an upper bound on the achievable rate with synchronized detection in
combination with a solely pilot based channel estimation, which cannot be
achieved as the detector/decoder does not exploit the temporal correlation
of the channel estimation error.

Furthermore, we have recalled bounds on the achievable rate based on
synchronized detection in combination with a solely pilot based channel esti-
mation and compared them to the bounds on the achievable rate with i.i.d.
input symbols, assuming zero-mean proper Gaussian data symbols in both
cases. This comparison has shown that the achievable rate with pilot based
synchronized detection stays below the achievable rate with i.i.d. input sym-
bols for the very relevant case of small channel dynamics fd. An exact eval-
uation of this gap is not possible as the bounds are not tight. However, for
small channel dynamics this gap is not very large and becomes even smaller
when using an optimized pilot-to-average data power ratio for the synchro-
nized detection approach. For fd → 0 the bounds on the achievable rate with
synchronized detection and a solely pilot based channel estimation approach
the coherent capacity.



Chapter 6

Iterative Code-Aided Synchronized
Detection

In the previous chapter, we have derived bounds on the achievable rate us-
ing synchronized detection in combination with a solely pilot based channel
estimation. In recent years receivers using iterative code-aided channel es-
timation got into the focus of research. The main idea behind this type of
receivers is that—additionally to the pilot symbols which are used for an
initial channel estimation and decoding—the channel estimation is enhanced
by iteratively feeding back reliability information on the data symbols ac-
quired by the channel decoder. Subsequently, this enhanced channel estimate
is used in a further decoding step, permitting enhanced decoding results. We
will refer to this type of receiver as iterative code-aided synchronized detec-
tion or iterative synchronization and decoding interchangeable. To evaluate
the possible performance gain that can be achieved by receivers using itera-
tive code-aided channel estimation and synchronized detection in comparison
to receivers based on synchronized detection and a solely pilot based chan-
nel estimation, our aim is to study the achievable rate with such a type of
receiver. For a specific type of such a receiver, which is a slight modifica-
tion of the typically studied code-aided channel estimation based receiver,
we give an upper bound on the achievable rate. This upper-bound is not
a closed from expression. It explicitly depends on the channel interpolation
error variance for an arbitrary time instant, and, thus, on all past and all fu-
ture transmit symbols. However, for small channel dynamics, it is reasonable
to approximate the channel interpolation error variance by the interpolation
error variance calculated under the assumption that all past and future trans-
mit symbols are constant modulus symbols. Based on this approximation we
also numerically evaluate the upper bound.

As in case of the bounds on the achievable rate based on channel predic-
tion given in Chapter 4, the derivations within the present chapter hold for
square summable autocorrelation functions. I.e., the restriction to absolutely
summable autocorrelation functions in (2.4) is not required.

Before starting with the derivation of this upper bound, we recall the
principle of a receiver based on iterative code-aided channel estimation and
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synchronized detection, i.e., iterative synchronization and decoding, and give
an interpretation of the possible performance gain of this scheme in com-
parison to synchronized detection in combination with a solely pilot based
channel estimation. Furthermore, we describe the modification of the typi-
cally studied iterative code-aided channel estimation based receiver, for which
we afterwards derive an upper bound on the achievable rate.

6.1 Principle of Iterative Code-Aided Synchronized
Detection

Here, we recall the principle of iterative code-aided synchronized detection.
Fig. 6.1 shows the basic block diagram of a receiver following this principle.
Before discussing the block-diagram in Fig. 6.1 we briefly recall the genuine
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Fig. 6.1: Block diagram of a receiver based on iterative code-aided
synchronized detection, SISO flat-fading channel; π/ π−1 interleaving /
deinterleaving

principle of synchronized detection explained in Section 5.1 which can be
formally expressed by the following set of equations, cf. (5.6) and (5.7)

ĥ(x) = argmax
h

p(h|y,x) (6.1)

x̂ = argmax
Px

p
(
y|x,h = ĥ(x)

)
p(h = ĥ(x)). (6.2)

Remember, (6.1) corresponds to the channel estimation task, whereas equa-
tion (6.2) expresses the detection/decoding task over the set of sequences

contained in Px based on the assumption that the channel estimate ĥ(x)
corresponds to the actual realization of the channel fading process h. The
notation ĥ(x) already shows that the estimate depends on the channel input
sequence x. In Chapter 5, we have restricted to the case that the channel esti-
mate ĥ is solely based on deterministic pilot symbols, allowing for a sequential
processing of channel estimation and detection/decoding. In the present sec-
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tion, we consider the more general case, where also data symbols are used for
channel estimation.

In typical code-aided synchronized detection based receivers—as they are
recently studied in the literature, see, e.g., [125], [83], [41], [98], and [40]—
both components, i.e., the channel estimator and the detection/decoding unit,
are coupled iteratively, see Fig. 6.1. Typically, the first channel estimation is
solely based on pilot symbols due to the lack of knowledge on the data sym-
bols. Based on this channel estimate, the detector/decoder generates likeli-
hood information on the transmitted sequence x. Based on this likelihood
information an enhanced channel estimate can be generated. This enhanced
channel estimate itself is used in the subsequent detection/decoding step to
get an enhanced estimate of x, yielding updated reliability information on x.
This procedure is repeated several times.

In [98] it has been systematically shown that a corresponding receiver
structure can be motivated by expressing the joint ML detection and MAP
parameter estimation problem in (5.5) based on a set of fixed point equa-
tions. By iteratively solving the set of fixed point equations, the algorithm
converges to one fixed point. In general there exists not necessarily only one
fixed point, i.e., one solution to the set of fixed point equations, see [29] for
a corresponding discussion on Turbo decoding. However, one solution of this
set of fixed point equations corresponds to the solution of the genuine op-
timization problem in (5.5). This solution will be termed correct fixed point
in the following.1 The iterative solution of the set of fixed point equations
motivates the iterative code-aided synchronized detection approach. In the
following, we briefly recall the derivation of this approach, which is given
in [98, Chapter 7]. The same receiver structure can also be derived based on
the expectation maximization (EM) framework [20], see [40].

We start with the joint optimization problem in (5.5)

{
x̂, ĥ

}
= argmax

Px,h
p (y|x,h) p (h) (6.3)

which is an high SNR approximation to the genuine ML receiver given in
(5.1), and which can be shown to be optimal in case of a jointly Gaussian
problem, i.e., jointly proper Gaussian fading and additive Gaussian noise,
and constant modulus signaling, see the discussion in Section 5.1 and the
proof in Appendix A.7. In a first step, in [98] the optimization problem in
(6.3) is rewritten as the following optimization problem

{
λ̂I , ĥ

}
= argmax

λI ,h
p (y|λI ,h) p (h) (6.4)

where λI is a vector containing the reliability information of the informa-
tion bits corresponding to the transmitted sequence x. There exists a bijec-

1 Note that the correct fixed point does not necessarily correspond to the correct
code word.



104 6 Iterative Code-Aided Synchronized Detection

tive mapping of λI on x. This means that the discrete detection/decoding
problem is transferred to a continuous parameter estimation problem. The
optimization problem in (6.4) can be expressed by a set of fixed point equa-
tions [98]. The principle is briefly summarized in the following. This is mainly
done for the channel estimator, which is moreover slightly rewritten to con-
sider not only BPSK modulation but arbitrary signal constellations. For the
detection/decoding, we will abstract from the presentation in [98] and do not
consider the soft-information exchange within the detection/decoding unit,
i.e., between the soft-demapper and the MAP-decoder. We only discuss the
detection metric, which is sufficient in the context of the present work, such
that detection/decoding is presented by a descriptor giving the reliability
information delivered by the decoder.

The log-likelihood function corresponding to (6.4) is given by

L(λI ,h) = log (p(y|λI ,h)) + log (p(h)) . (6.5)

For a solution of the optimization problem in (6.4) the maximum of (6.5)
has to be determined. Obviously, the following conditions are necessary for a
local maximum of L(λI ,h)

∂

∂λI
L(λI ,h) = 0 (6.6)

∂

∂h
L(λI ,h) = 0. (6.7)

This leads to the following expression for h

h =

{ ∑

xi∈Px

p(xi|y,λI ,h)
1

σ2
n

XiX
H
i +R−1

h

}−1 ∑

xi∈Px

p(xi|y,λI ,h)
1

σ2
n

X∗
iy

(6.8)

where p(xi|y,λI ,h) gives the probability of the different sequences xi based
on the soft-information λI delivered by the decoder. Equation (6.8) can be
identified as a channel estimator.

For the special case of constant modulus input symbols (6.8) simplifies to

h =

{
σ2
x

σ2
n

IN +R−1
h

}−1 ∑

xi∈Px

p(xi|y,λI ,h)
1

σ2
n

X∗
iy

= Rh

{
Rh +

σ2
n

σ2
x

IN

}−1
1

σ2
x

X̃∗y (6.9)

with X̃ being a diagonal matrix containing the soft-symbols x̃k, given by
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[
X̃
]
kk

= x̃k =
∑

xi∈Px

p(xi|y,λI ,h)xi,k. (6.10)

Obviously, for this special case of constant modulus input symbols the chan-
nel estimator has the structure of an LMMSE estimator. Thus, the channel
estimates are calculated based on filtering of the soft-symbols.

The soft-information is contained in the PDFs p(xi|y,λI ,h), which will
be delivered by the decoder. Thus, based on the current soft-information on
the transmitted sequence x expressed by the soft-symbols x̃k, we can get an
enhanced estimate of the channel fading vector h, which is enhanced with
respect to the first purely pilot symbol based channel estimate.

Now, we turn our attention to the detector/decoder. The set of fixed point
equations given in [98] consists, on the one hand, of the equation describing
the channel estimator given in (6.8) and, on the other hand, of fixed point
equations for all code bits describing detection/decoding. Due to the process-
ing of soft-information detection/decoding corresponds to a soft-demapper
followed by a MAP-decoder. To get the equations of the fixed point sys-
tem corresponding to the detection/decoding, we would have to differentiate
the log-likelihood function in (6.5) with respect to the soft-information λI .
As initially stated we prescind from this here and depict detection/decoding
based on a description function, indicating the used detection metric, and
delivering the reliability information on the transmitted sequence, i.e.,

{
p
(
xi
∣∣y,λI ,h

)}
= Dec (p(y|x,h), ∀xi ∈ Px) (6.11)

where the set Px contains all possible transmit sequences xi. Corresponding
to (6.3), the PDF p(y|x,h) is given by

p(y|x,h) = 1

πNσ2
n

exp

(
− 1

σ2
n

‖y −Xh‖2
)
. (6.12)

Note that we do not give a mathematical derivation of (6.11) based on
the derivative of the log-likelihood function. We just use that a typical de-
coder delivers reliability information on the transmitted sequence, which can
be mapped to p

(
xi
∣∣y,λI ,h

)
. The assumption that decoding is based on

p(y|x,h) is motivated by the log-likelihood function (6.5).
Now, based on the following set of equations, the optimization problem in

(6.4) is tried to be solved iteratively
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ĥ(n) =

{ ∑

xi∈Px

p
(
xi|y,λ(n−1)

I , ĥ(n−1)
) 1

σ2
n

XiX
H
i +R−1

h

}−1

×
∑

xi∈Px

p
(
xi|y,λ(n−1)

I , ĥ(n−1)
) 1

σ2
n

X∗
iy (6.13)

{
p
(
xi
∣∣y,λ(n)

I , ĥ(n)
)}

= Dec
(
p(y|x,h = ĥ(n)), ∀xi ∈ Px

)
. (6.14)

Here the decoder, identified by the function Dec, calculates the
soft-information on the transmitted sequence x based on the channel esti-
mate ĥ(n). This soft-information is used to determine the probabilities of the

sequences xi, i.e., p
(
xi
∣∣y,λ(n)

I , ĥ(n)
)
. The superscript (n) is the iteration

number. Thus, following the principle of synchronized detection, the detec-
tor/decoder here uses the channel estimate as it would be the actual channel

fading weight, which is indicated by writing p(y|x,h = ĥ(n)) in (6.14). In [98]
it has been shown that in case of convergence to the correct fixed point, the
solution of the equation set (6.13) and (6.14) corresponds to the solution of
the joint optimization problem in (6.4) and thus of (6.3). However, in [98]
no statements on the convergence requirements of the iterative process are
given.

Note, the approach to find a solution for the joint ML-detection and MAP
parameter estimation problem in (6.3) based on iteratively solving a set of
fixed point equations, corresponds to the solution of an optimization prob-
lem, i.e., the search for a point in a multidimensional space. In contrast, the
question on the achievable rate, as it is the main topic of the present work,
is related to the convergence region. In this regard consider that the achiev-
able rate is related to the amount of different codewords, normalized to the
codeword length, that can be distinguished by the receiver in the limit of an
infinite codeword length. On the other hand, the hereby determined packing
of the codewords is related to the convergence region of the iterative solution
of the set of fixed point equations described before.

As it has already been stated, the aim of the work given in [98] is to show
that the joint optimization problem in (6.3) corresponds to a specific fixed
point solution of the equation system given in (6.13) and (6.14). For details
we refer to [98, Chapter 7]. It is important to recognize that the components
described by the equations in (6.13) and (6.14), i.e., the channel estimator
and the decoder, are not optimal in general. The only statement that can be
given is that the correct fixed point solution of (6.13) and (6.14) corresponds
to the solution of the optimization problem in (6.3). That means that only in
the neighborhood of the correct fixed point, the channel estimator becomes
optimal in the sense that it exploits all available information. To see this,
we assume that in the first iteration there is no reliability information on the
transmit symbol xk. This leads to the fact that the corresponding soft-symbol
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x̃k is zero2. Thus, yk is not used for channel estimation. Nevertheless yk also
contains information on the channel, which thus is not exploited. Obviously,
(6.13) is in general not a MAP estimator, as it does not exploit all available
information. However, at the correct fixed point, corresponding to perfect
knowledge on the transmitted sequence x, the channel estimator in (6.13)
uses all available information.

The approach to express the joint optimization problem in (6.3) based on
a set of fixed point equations results in decoding based on using the channel
estimate as it would be the actual channel realization. We have already argued
in Section 5.1.2 that using the channel estimate as it would be the actual
channel realization leads to mismatched decoding, as the channel estimation
is characterized by a channel estimation error. Therefore, corresponding to
the discussion in Section 5.1.2, let us for the moment assume that the metric
of the decoder is based on p(y|x, ĥ), i.e., accounts for the channel estimation
error, and therefore, decoding is expressed by

{
p
(
xi
∣∣y,λ(n)

I , ĥ(n)
)}

= Dec
(
p(y|x, ĥ(n)), ∀xi ∈ Px

)
. (6.15)

For detection/decoding the conditional PDF p(y|x, ĥ(n)) is required, cf.
(5.24)

p(y|x, ĥ(n)) =

exp

{
−
(
y −Xĥ(n)

)H (
XR

(n)
e XH + σ2

nIN

)−1(
y −Xĥ(n)

)}

πN det
(
XR

(n)
e XH + σ2

nIN

) .

(6.16)

In contrast to the case of a purely pilot based channel estimation as consid-

ered in Chapter 5, now the channel estimation error covariance matrix R
(n)
e

depends on the soft-symbols and, thus, on the iteration (n). Here, the index
pil is omitted, as the channel estimation now is not only based on pilot sym-
bols as in Chapter 5 but additionally on the data symbols. The estimation
error variance at different symbol time instances, i.e., the diagonal elements

of R
(n)
e are in general not equal. Furthermore, as in the case of pilot based

synchronized detection the estimation error is not white, i.e., R
(n)
e is not

diagonal.
As already argued in Section 5.1.2, typically decoders do not exploit the

temporal correlation of the channel estimation error. In addition, due to in-
terleaving it is spread over the whole length N of the observation sequence.
Neglecting the temporal correlation of the estimation error leads to the ap-
proximate PDF

2 We assume here zero-mean input symbols, see Section 6.2.1.



108 6 Iterative Code-Aided Synchronized Detection

p(y|x, ĥ(n)) ≈ 1

πN
∏N
k=1

(
|xk|2σ2,(n)

ek + σ2
n

) exp




−

N∑

k=1

∣∣∣yk − xkĥ
(n)
k

∣∣∣
2

|xk|2σ2,(n)
ek + σ2

n





(6.17)

where σ
2,(n)
ek are the diagonal entries ofR

(n)
e . Notice, decoding with respect to

this metric then is related to synchronized detection corresponding to Defini-
tion 5.1 stating that the estimation error is treated by the detector/decoder
as additive white noise. As receivers based on iterative code-aided synchro-
nized detection use a symbol-wise detection metric (coherent detection), the
following derivation of the upper bound on the achievable rate with such a
receiver structure is based on the assumption that detection/decoding uses
the metric corresponding to (6.17), i.e., using (6.15) with (6.17).

In addition, consider the following. Also the effect that the noise variance

|xk|2σ2,(n)
ek +σ2

n depends on the individual time instant k is typically not used

in decoding, leading to the following further approximation of p(y|x, ĥ(n)),
cf.(5.26)

p(y|x, ĥ(n)) ≈ 1

πN (σ2
xσ

2
e + σ2

n)
N

exp

{
−‖y −Xĥ(n)‖2

σ2
xσ

2
e + σ2

n

}
(6.18)

where we have approximated |xk|2σ2,(n)
ek by σ2

xσ
2
e . Typically the estimation

error variances σ
2,(n)
ek are unknown to the receiver, except for the case that

the channel estimation is solely based on pilot symbols. In this case, it can be
calculated analytically. Therefore, suitable assumptions for σ2

e in (6.18) have
to be made. In [40] the effect of a mismatch between the actual estimation
error variance and the value used for decoding has been examined based on
Monte Carlo simulations. This examination shows, that the performance in
terms of the BER of the iterative synchronization and decoding algorithm is
robust in case the estimation error variance assumed for decoding is smaller
than the actual value. Therefore, one reasonable choice of σ2

e is to assume
it corresponding to the case of perfect decoder feedback, i.e., calculating the
channel estimation error variance under the assumption that all data symbols
are perfectly known. However, the approximation given with (6.18) is not
considered for the calculation of the upper bound on the achievable rate in
the following.

6.1.1 Modified Channel Estimation Unit

As it has already been stated, we have not been able to derive an upper bound
on the achievable rate with the receiver described by (6.13) and (6.15) with
(6.17), but only for a slightly modified version. The modified receiver has a
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slightly different channel estimator, which for the calculation of the estimate
ĥk, i.e., the k-th entry of ĥ, does not use the corresponding observation yk.
Therefore, the channel estimator in (6.13) is substituted by the following one:

ĥ
(n)
k =

[{ ∑

xi∈Px

p
(
xi|y,λ(n−1)

I , ĥ(n−1)
) BkXiX

H
i

σ2
n

+R−1
h

}−1

×
∑

xi∈Px

p
(
xi|y,λ(n−1)

I , ĥ(n−1)
) BkX

∗
i

σ2
n

y

]

k

, ∀k (6.19)

where [a]k denotes the k-th element of the vector a. Furthermore, Bk is a
diagonal matrix, whose diagonal elements are given by

[Bk]l,l =

{
1 for l 6= k
0 for l = k

. (6.20)

This means that by multiplication of Xi with Bk the k-th diagonal element
of Xi is multiplied by zero, corresponding to the case of not using the obser-
vation yk and the soft-information on xk for the estimation of ĥk. Although
it is not the typically studied channel estimator for code-aided channel esti-
mation, this channel estimator is also known from literature, see, e.g., [95].

6.2 Achievable Rate with Iterative Code-Aided
Synchronized Detection

Before calculating bounds on the achievable rate with a receiver following
the principle of iterative code-aided synchronized detection as it has been
presented in Section 6.1, we want to get an understanding, which gain in
principle can be achieved while iteratively enhancing the channel estimation
based on soft-information on the data symbols delivered by the decoder.
Therefore, recall the following expression for I(y;x) derived in (5.29)

I(y;x) = I
(
xD;yD

∣∣ĥpil,D

)
. (6.21)

Obviously, with iterative code-aided synchronized detection we are not able

to get a mutual information larger than I
(
xD;yD

∣∣ĥpil,D

)
. Now, recall that

in case of synchronized detection with a solely pilot based channel estima-

tion as it has been studied in Chapter 5, only parts of I
(
xD;yD

∣∣ĥpil,D

)
can

be used. The reason for this is that the interpolation based channel estima-
tion leads to an estimation error process {epil,k} with epil,k defined in (5.9)
which is temporally correlated [90]. The detector/decoder does not exploit
the temporal correlation of the channel estimation error process. Therefore, in
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Section 5.2 we have introduced the mutual information I
(
yD;xD

∣∣∣ ˇ̂hpil,D

)
,

where the artificial channel estimation vector
ˇ̂
hpil,D corresponds to ĥpil,D,

except that the temporal correlation of the corresponding channel estimation

error process is assumed to be white. Hence, I
(
yD;xD

∣∣∣ ˇ̂hpil,D

)
is smaller

than I
(
xD;yD

∣∣ĥpil,D

)
, see (5.31). Thus, the following difference is an up-

per bound on the possible gain while using iterative code-aided synchronized
detection instead of synchronized detection with a solely pilot based channel
estimation

G = I
(
xD;yD

∣∣ĥpil,D

)
− I

(
yD;xD

∣∣∣ˇ̂hpil,D

)
. (6.22)

This means that in case of convergence of the iterative synchronized detec-
tion based receiver to the case of error-free decoding, the receiver based on
iterative synchronization and decoding can retrieve parts of the information
that have been discarded by ignoring the temporal correlation of the chan-
nel estimation error process in case of synchronized detection in combination
with a solely pilot based channel estimation. Thus, for a given pilot spacing
the difference G gives an upper bound on the possible gain by iterative code-
aided synchronized detection in comparison to solely pilot based synchronized
detection. The difference G will depend on the pilot spacing. However, it is
not assured if the iterative receiver will converge to error-free decoding. Fur-
thermore, we have not shown that the first term on the RHS of (6.22), i.e.,

I
(
xD;yD

∣∣ĥpil,D

)
can be achieved by iterative code-aided synchronized de-

tection. Therefore, the difference G is only an upper bound to the maximum
possible gain while using iterative synchronization and decoding in compari-
son to solely pilot based synchronized detection.

6.2.1 Upper-Bounding Approach on the Achievable
Rate

One of the main goals of the present chapter is the derivation of an upper
bound on the achievable rate with a receiver following the principle of syn-
chronized detection in combination with a code-aided channel estimation as
it has been discussed previously, i.e., a receiver that is described by the modi-
fied channel estimator in (6.19) and by a detector using a symbol-wise metric,
i.e., described by using (6.15) in combination with (6.17).

Before starting with the derivation of the upper bound on the achievable
rate with such a receiver structure, we shortly describe the approach we will
take to calculate this upper bound. Let us for the moment assume that the
transmitted sequence consists out of i.i.d. data symbol and no pilot symbols.
Now, bear in mind that we use a detector using a symbol-wise detection



6.2 Achievable Rate with Iterative Code-Aided Synchronized Detection 111

metric, see (6.17). I.e., the detector is not able to exploit any information
contained in the temporal correlation of the channel estimation error. This
allows us to evaluate the achievable rate based on the mutual information
at an arbitrarily chosen time instant k, cf. the discussion in Section 5.2.
Furthermore, consider that due to our assumption on i.i.d. transmit symbols
the only dependency between the individual time instances is established by
the channel correlation. To evaluate the achievable rate at the time instant k,
we have to consider the knowledge on hk given by all time instances different
from k. I.e., we want to express the information on the channel given by
all time instances different from the arbitrarily chosen time instant k by an
estimate ĥk of the channel at the time instant k. Now, we want to calculate
an upper bound on the mutual information between the channel input xk
and the channel output yk. Obviously, the mutual information between xk
and yk is maximized if the estimation error variance of the channel estimate
ĥk is minimized. More frankly speaking, the better the channel estimate, i.e.,
the smaller the channel estimation error variance, the larger is the mutual
information between xk and yk. To get an upper bound on the achievable rate,
we assume that all transmit symbols in the past and in the future are known,
which obviously lower-bounds the channel estimation error variance. I.e., an
upper bound on the achievable rate at the time instant k is given by the
mutual information I(yk;xk|ĥk,x\k). Note that the estimation error variance

of ĥk depends on the distribution of all transmit symbols except the one at the
time instant k, i.e., on x\k. Here x\k corresponds to x without the element
xk. This is the reason, why it has to be additionally conditioned on x\k
and not only on ĥk. I.e., I(yk;xk|ĥk,x\k) expresses the mutual information
between the channel input and the channel output at the time instant k,
when knowing the channel estimate ĥk. In the following we will show that
this estimate ĥk is an MMSE estimate of hk based on all channel output
observations except of yk, i.e., y\k and all transmit symbols except of xk,
i.e., x\k. Due to the Gaussian nature of the problem the estimator is linear.

Thus, the channel estimate ĥk exactly corresponds to the channel estimate
given by the modified channel estimator in (6.19) if all past and all future

transmit symbols are perfectly known. Note that the MMSE estimate ĥk is
only based on y\k and x\k, i.e., it does not use yk, like the channel estimator

in (6.19). I.e., the estimator ĥk corresponds to an interpolation.

In conclusion, I(yk;xk|ĥk,x\k) is an upper bound on the achievable rate
when using a receiver based on iterative code-aided channel estimation, as it
is described by the channel estimator in (6.19), which does not use yk for the
estimation of hk and the coherent detector described by (6.15) in combination
with (6.17). In the following section this statement will be formally derived.

Note that this statement holds also in case we use pilot symbols, as long
as we suppose that the time instant k is used to transmit a data symbols and
not a pilot symbol. This should be obvious, as the term I(yk;xk|ĥk,x\k),
which is used as an upper bound on the achievable rate with the given re-
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ceiver structure, corresponds to the case that all past and all future transmit
symbols are known. At this point it is irrelevant if these symbols are known
data symbols or pilot symbols.

The mutual information I(yk;xk|ĥk,x\k) depends on the estimation error

variance of ĥk, which itself is a random quantity, whose distribution depends
on the distribution of the past and future transmit symbols contained in x\k.
This is analogous to the case of channel prediction discussed in Chapter 4.
In the case of channel prediction it has been shown that an upper bound on
the achievable rate is given if the channel prediction error variance is calcu-
lated under the assumption that all symbols in the past are constant modulus
symbols. In contrast, we have no proof that the mutual information rate cor-
responding to I(yk;xk|ĥk,x\k), i.e., considering an infinitely long past and
future for the calculation of the estimation error variance, is also maximized
by the calculation of the channel interpolation error variance under the as-
sumption that all past and future transmit symbols with respect to the time
instant k are constant modulus symbols. Therefore, we can only give a non-
closed form solution for an upper bound on the achievable rate, which still
depends on the channel interpolation error variance and, thus, on the distri-
bution of all past and future transmit symbols. However, for small channel
dynamics it seems reasonable that the channel interpolation error variance
can be well approximated by the interpolation error variance calculated un-
der the assumption that all past and future transmit symbols are constant
modulus symbols. Notice that the assumption on constant modulus input
symbols is only made in the context of the interpolation error variance and
not to calculate the mutual information at the time instant k. Therefore, in
the latter context xk is still assumed to be arbitrarily distributed.

In the derivation below we use the following assumptions on the data sym-
bols. We assume i.i.d. zero-mean input symbols. The motivation for the fact
that the symbols have zero-mean is given on the one hand by the fact that
in the coherent case the capacity-achieving input distribution also is i.i.d.
zero-mean, and on the other hand by the fact that in case of pilot based syn-
chronized detection the rate maximizing data symbols are also zero-mean.
The assumption on i.i.d. input symbols significantly simplifies the presenta-
tion of the derivation, and, as it has already been discussed before, still allows
the incorporation of pilot symbols in the final step of the calculation of the
upper bound.

Corresponding to Chapter 5, we do not use any peak power constraint so
that it is in general optimal to use the maximum average transmit power, i.e.,
E
[
|xk|2

]
= σ2

x, cf. (4.1). Hence, the parameter ρ defined in (2.18) corresponds
to the average SNR.
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6.2.2 The Channel Interpolation Separation Inequality

Motivated by the preceding discussion, within the present section we derive an
upper bound on the mutual information rate I ′(y;x) based on a separation of
the transmission in past time instances, the present time instant, and future
time instances. Hereby, we separate the mutual information rate I ′(y;x)
into the term I(yk;xk|ĥk,x\k), which, as motivated before is shown to be
an upper bound to the achievable rate with the given receiver structure, and
an additional term, which cannot be exploited by the receiver described by
(6.19) and (6.15) in combination with (6.17). In the following, we refer to
such a separation as channel interpolation separation.

As already known from (3.2), the mutual information rate between the
input and the output of the channel is defined by

I ′(y;x) = lim
N→∞

1

2N + 1
I(y;x) (6.23)

where now the vectors x and y are of length 2N + 1. In this chapter, we
assume without loss of generality that the length of the vector x is odd and
that its elements have the following mapping to the time instances

x = [x−N , . . . , x−1, x0, x1, . . . , xN ]
T
. (6.24)

The vectors y and h are constructed correspondingly.
Now, we separate the mutual information I(y;x) in a way that will al-

low us to bound the achievable rate with iterative code-aided synchronized
detection as described in Section 6.2.1. Therefore, we introduce the vector

x\0 = [x−N , . . . , x−1, x1, . . . , xN ]
T

(6.25)

i.e., the element at the time instant 0 is discarded. In the following, we use
a corresponding notation for y\0. Here the time instant 0 corresponds to the
arbitrary time instant k in the description of the bounding approach given
in Section 6.2.1.

To derive an upper bound on I ′(y;x) based on the channel interpolation
separation, we separate I(y;x) as follows

I(y;x) (a)
= I(y0;x|y\0) + I(x;y\0)

(b)
= I(y0;x0|y\0,x\0) + I(y0;x\0|y\0) + I(x;y\0)

(c)
= I(y0;x0|y\0,x\0) + I(y0;x\0|y\0) + I(x\0;y\0|x0) + I(x0;y\0)

(d)
= I(y0;x0|y\0,x\0) + I(y0;x\0|y\0) + I(x\0;y\0) (6.26)

where for (a)-(c), we have used the chain rule for mutual information. Finally,
for (d) we have used the independency of the transmit symbols, and therefore
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I(x0;y\0) = 0 (6.27)

and

I(x\0;y\0|x0) = I(x\0;y\0). (6.28)

Obviously (6.26) is equivalent to

I(y;x) − I(x\0;y\0) = I(y0;x0|y\0,x\0) + I(y0;x\0|y\0). (6.29)

In the following, we show that for N → ∞ the LHS of (6.29) is an upper
bound on the mutual information rate I ′(y;x). Therefore, we rewrite the
LHS of (6.29) as follows

I(y;x) − I(y\0;x\0) = h(y) − h(y|x) − h(y\0) + h(y\0|x\0)

(a)
= h(y0|y\0) + h(y\0)− h(y0|y\0,x)− h(y\0|x)− h(y\0) + h(y\0|x\0)

(b)
= h(y0|y\0)− h(y0|y\0,x)

= I(y0;x|y\0)

(c)

≥ I(y0;x|y−1
−N )

(d)
= I(y0;x0

−N |y−1
−N )

= h(y0|y−1
−N )− h(y0|x0

−N ,y
−1
−N ) (6.30)

where, e.g., y−1
−N is a subvector of y containing the symbols from time instant

−N to −1. Equality (a) is based on the chain rule for differential entropy,
and for (b) we have used that

h(y\0|x) = h(y\0|x\0) (6.31)

due to the independency of the transmit symbols. Furthermore, inequality (c)
holds as the knowledge on the channel output observations yN1 will increase
the mutual information between y0 and x as they contain information on h0.
Additionally, (d) holds due to the independency of the transmit symbols and
the fact that knowledge of the future transmit symbols xN1 does not help
to estimate the channel weight h0 in case the channel outputs yN1 are not
known.

Taking finally the limit N → ∞ of the RHS of (6.30) yields

lim
N→∞

{
h(y0|y−1

−N )− h(y0|x0
−N ,y

−1
−N )

}
= h′(y) − h′(y|x) = I ′(y;x) (6.32)

using the definition of the entropy rate for stationary ergodic processes [19,
Chapter 4.2].
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Hence, with (6.29), (6.30), and (6.32) we get the following upper bound
on the mutual information rate I ′(y;x)3,

I ′(y;x) ≤ lim
N→∞

{
I(y0;x0|y\0,x\0) + I(y0;x\0|y\0)

}
. (6.34)

In the following, we discuss the two terms at the RHS of (6.34). We ar-
gue that the second term at the RHS of (6.34), i.e., I(y0;x\0|y\0) cannot
be exploited by the receiver structure described by (6.19) and (6.15) in com-
bination with (6.17). In this regard note that I(y0;x\0|y\0) is a component
of the upper bound on the mutual information rate between the transmitter
and the receiver. However, a corresponding term also arises when using the
prediction separation in (6.33), i.e., I(yN ;xN−1

1 |yN−1
1 ), which does not yield

an upper bound, but the actual mutual information rate. As the second term
at the RHS of (6.34) cannot be exploited by the discussed receiver structure,
by calculating an upper bound on the first term on the RHS of (6.34), i.e.,
I(y0;x0|y\0,x\0), we will get an upper bound on the achievable rate with
the iterative code-aided synchronized detection based receiver structure de-
scribed by (6.19) and (6.15) in combination with (6.17). We start with the
discussion of the first term, i.e., I(y0;x0|y\0,x\0).

6.2.3 The Term I(y0; x0|y\0, x\0)

Obviously, I(y0;x0|x\0,y\0) corresponds to the mutual information between
y0 and x0 when knowing the transmit symbols and the channel output at all
time instances except of zero. This exactly corresponds to the assumptions
we discussed in Section 6.2.1 in the context of describing the approach for the
derivation of an upper bound on the achievable rate with the receiver based
on iterative synchronization and decoding described by (6.19) and (6.15) in
combination with (6.17). In the following, this relation will become even more
obvious by identifying that conditioning on y\0 and x\0 is equivalent to con-

ditioning on the MMSE estimate ĥ0 and x\0 which is based on y\0 and x\0.
Similar to the argumentation in the context of the channel predictor in

Section 4.1, conditioning on x\0 and y\0 is equivalent to the conditioning

3 Notice a similar derivation based on a separation of the transmit interval into the
current time instant N and all previous time instances 1, . . . , N − 1 leads to the
following equality

I′(y;x) = lim
N→∞

{

I(yN ;xN |yN−1
1 ,xN−1

1 ) + I(yN ;xN−1
1 |yN−1

1 )
}

. (6.33)

In case of such a prediction separation we get an equality while in case of the inter-
polation separation in (6.34) we get an inequality. This difference arises due to the
fact that using the chain rule of mutual information and the definition of the mu-
tual information rate for a stationary stochastic process, I′(y;x) can be canonically
expressed based on channel prediction while this is not possible for interpolation.
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on the MMSE interpolation ĥ0 and x\0. This results from the fact that ĥ0
contains all information on h0 being contained in y\0 while knowing x\0,

which will be shown in the following. As ĥ0 is an MMSE estimate, it is given
by

ĥ0 = E
[
h0|x\0,y\0

]
. (6.35)

Analogous to the prediction case, it can be shown that the estimate ĥ0 is
zero-mean proper Gaussian. Due to the fact that the estimation error

e0 = h0 − ĥ0 (6.36)

and the estimate ĥ0 are independent, it follows that the estimation error e0
is also zero-mean proper Gaussian. Its variance is given by

σ2
eint(x\0) = E

[∣∣∣h0 − ĥ0

∣∣∣
2 ∣∣∣x\0,y\0

]

= E
[
|e0|2

∣∣∣x\0,y\0
]

(a)
= E

[
|e0|2

∣∣∣x\0
]

(6.37)

where the index int denotes interpolation. Equality (a) is based on the fact
that the estimation error is orthogonal to and, thus, independent of the ob-
servation vector y\0. Obviously, the interpolation error variance depends on
the past and future transmit symbols, which is indicated by the notation
σ2
eint(x\0). Therefore, the variance of the estimate ĥ0 is given by

σ2
ĥ
(x\0) = σ2

h − σ2
eint(x\0). (6.38)

Following the same argumentation as in case of the channel predictor, see
Section 4.1, the channel output y0 conditioned on y\0,x is proper Gaussian
with mean, cf. (4.5)

E
[
y0|x,y\0

]
= E

[
x0h0 + n0

∣∣x,y\0
]

= x0E
[
h0
∣∣x\0,y\0

]

= x0ĥ0. (6.39)

and variance
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var
[
y0|x,y\0

]
= E

[∣∣y0 − E
[
y0|x,y\0

]∣∣2
∣∣∣x,y\0

]

= E

[∣∣∣y0 − x0ĥ0

∣∣∣
2 ∣∣∣x,y\0

]

= |x0|2E
[∣∣∣h0 − ĥ0

∣∣∣
2 ∣∣∣x\0,y\0

]
+ σ2

n

= |x0|2σ2
eint(x\0) + σ2

n. (6.40)

Thus, the PDF p(y0|y\0,x) is given by

p(y0|y\0,x) =
1

π(|x0|2σ2
eint(x\0) + σ2

n)
exp

(
− |y0 − ĥ0x0|2
|x0|2σ2

eint(x\0) + σ2
n

)

= p(y0|ĥ0,x). (6.41)

For comparison see (4.12) in the context of the channel prediction. Using
(6.41) also p(y0|y\0,x\0) can be expressed by

p(y0|y\0,x\0) =

∫
p(y0|y\0,x)p(x0|y\0,x\0)dx0

=

∫
p(y0|ĥ0,x)p(x0)dx0

= p(y0|ĥ0,x\0). (6.42)

Based on (6.41) and (6.42) the following identity holds

I(x0; y0|x\0,y\0) = I(x0; y0|ĥ0,x\0). (6.43)

Thus, the first term on the RHS of (6.34) is the mutual information between

the input and the output of the channel if an MMSE estimate ĥ0 is available,
which is based on all past and future channel observations and the knowledge
of all transmit symbols except the current one.

We want to explain why I(x0; y0|ĥ0,x\0) is an upper bound on the achiev-
able rate with the iterative code-aided channel estimation based receiver given
by (6.19) and (6.15) in combination with (6.17). In this regard, consider that
the only dependency between the individual time instances is established by
the channel correlation. In case all past and all future transmit symbols are
known, corresponding to I(x0; y0|ĥ0,x\0), all information on h0 given by the
past and future channel output observation y\0 and the knowledge on x\0 is

carried by ĥ0 and x\0. Note that for the calculation of ĥ0, the observation y0
is not used, which exactly corresponds to the channel estimator described by
(6.19). Furthermore, observe that for the case of perfect knowledge of all past
and all future transmit symbols the estimator in (6.19) exactly corresponds

to the MMSE interpolator ĥ0 in I(x0; y0|ĥ0,x\0) with the estimation error

variance σ2
eint(x\0) given in (6.37). This means that the term I(x0; y0|ĥ0,x\0)
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corresponds to the mutual information at the arbitrarily chosen data sym-
bol time instant 0 if all past and all future transmit symbols are perfectly
known. Obviously, the assumption of perfect knowledge of all past and all
future transmit symbols results in an upper bound to the actual achievable
mutual information at the arbitrarily chosen data symbol time instant 0.

Furthermore, it is important to recognize that this argumentation only
holds in case we assume a symbol-wise detection as described by (6.17). If
detection would be performed over the whole sequence, evaluation of the mu-
tual information for a single time instant, as it is done with I(x0; y0|ĥ0,x\0)
would be meaningless, as the information contained in the temporal correla-
tion of the channel estimation error is not captured. In this context see also
the discussion in Section 5.2.

Based on this argumentation, we are now able to interpret the representa-
tion of the mutual information rate in (6.34). It is the sum of two terms. The
first term on the RHS of (6.34), which is the main contribution, is related
to a coherent Rayleigh flat-fading channel, i.e., a channel whose optimum de-
tection metric can be evaluated symbol-wise. In comparison to the genuine
fading channel its fading variance is modified due to the estimation error and
given by σ2

h − σ2
e . In addition, its noise variance is given by |xk|2σ2

e + σ2
n.

However, the fact that the effective noise variance depends on the transmit
symbol xk is a difference to a coherent fading channel. Furthermore, the sec-
ond term on the RHS of (6.34) can be viewed as a correction term which
describes the amount of information contained in the temporal correlation of
the channel estimation error, which cannot be exploited by the symbol-wise,
i.e., coherent, detector. Thus, the first term on the RHS of (6.34) accounts
for the detector imperfection. This imperfection is corrected by the second
term, which is then dependent on the correlation of the channel estimation
error. However, the second term cannot be exploited by the receiver structure
described by (6.19) and (6.15) in combination with (6.17).

6.2.4 The Term I(y0; x\0|y\0)

As already discussed, the information contained in the term I(y0;x\0|y\0)
cannot be exploited by the receiver structure described by (6.19), (6.15), and
(6.17). In the present section, we try to interpret the term I(y0;x\0|y\0) in
more detail. Therefor, consider that the only relation between the individual
symbol time instances is established by the correlation of the channel fad-
ing process. Thus, using the chain rule for mutual information, we rewrite
I(y0;x\0|y\0) such that its relation to the fading weight h0 becomes explicit:
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I(y0;x\0|y\0) = I(h0, y0;x\0|y\0)− I(h0;x\0|y)
= I(y0;x\0|h0,y\0) + I(h0;x\0|y\0)− I(h0;x\0|y)
(a)
= I(h0;x\0|y\0)− I(h0;x\0|y) (6.44)

where for (a) we have used that I(y0;x\0|h0,y\0) is zero, as

I(y0;x\0|h0,y\0) = h(y0|h0,y\0)− h(y0|x\0, h0,y\0)

(b)
= h(y0|h0)− h(y0|h0) = 0 (6.45)

where (b) follows from the fact that y0 is independent of y\0 and of x\0 while
conditioning on h0.

Expressing the RHS of (6.44) in terms of differential entropies allows to
discuss the meaning of the term I(y0;x\0|y\0) more easily:

I(y0;x\0|y\0) = I(h0;x\0|y\0)− I(h0;x\0|y)
=
(
h(h0|y\0)− h(h0|y\0,x\0)

)
−
(
h(h0|y) − h(h0|y,x\0)

)

(a)
=
(
h(h0|y\0)− h(h0|ĥ0,x\0)

)
−
(
h(h0|y)− h(h0|ĥ0, y0,x\0)

)

(6.46)

where for (a) we have substituted the condition on y\0,x\0 by the condition

on ĥ0,x\0, where ĥ0 is the MMSE estimate of h0, which is based on the
knowledge of y\0 and x\0, cf. (6.35), see Section 6.2.3.

The difference on the RHS of (6.46) is related to the amount of information
on the channel fading weight h0 that can be retrieved, on the one hand, while
using the observation y0, and on the other hand, while not using it. Let us
first look at the difference in the first pair of brackets on the RHS of (6.46),
i.e.,

I(h0;x\0|y\0) =
(
h(h0|y\0)− h(h0|ĥ0,x\0)

)
. (6.47)

The first term on the RHS of (6.47) is the uncertainty in h0 while condi-
tioning on the observation sequence y\0. Furthermore, the second term, i.e.,

h(h0|ĥ0,x\0) is the remaining uncertainty in h0, when we condition on the

MMSE estimate ĥ0 and on x\0. Thus, this term corresponds to the entropy
of the channel estimation error. Overall, the difference on the RHS of (6.47)
is related to the reduction of uncertainty in h0 while knowing the observation
sequence y\0, when using the channel estimator which exploits the knowledge
on x\0.

Analogously, the difference in the second pair of brackets on the RHS of
(6.46), i.e.,
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I(h0;x\0|y) =
(
h(h0|y) − h(h0|ĥ0, y0,x\0)

)
(6.48)

corresponds to the difference in (6.47) discussed before, except that in all
terms additionally it is conditioned on y0. I.e., the second term on the RHS of
(6.48) is the remaining uncertainty in h0 when conditioning on y0 in addition

to the MMSE estimate ĥ0 and x\0. This entropy can be understood as the
entropy of the estimation error of an enhanced channel estimator, which
additionally uses the observation y0. Also in the first term on the RHS of
(6.48) it is conditioned on y0, so that the difference in (6.48) is related to
the reduction of uncertainty in h0 while knowing the observation sequence y,
when using the channel estimator which exploits the knowledge on x\0.

The term I(y0;x\0|y\0) is equal to the difference of (6.47) and (6.48).
Therefore, it is related to the additional information on h0 contained in y0
while knowing y\0. The fact that this additional information on h0 contained
in y0 cannot be exploited by the given receiver structure, i.e., using the chan-
nel estimator in (6.19) in combination with the detector in (6.15) and the
symbol-wise detection metric in (6.17), is supported by the following obser-
vation. First, consider that the observation y0 is also used at the input of the
detection unit. Nevertheless, with the given structure, where y0 is not used
for channel estimation, the information contained in I(y0;x\0|y\0) cannot be
exploited. At this point again consider that detection works symbol-wise, and
that y0 contains additional information on h0, which can only be exploited
when using it in combination with y\0 and x\0, indicated by the conditioning
on y\0 in I(y0;x\0|y\0). However, this is not possible for the detector due
to its symbol-wise metric. This supports the statement at the end of Sec-
tion 6.2.3 that the term I(y0;x\0|y\0) is a correction term to the first term
on the RHS of (6.34), i.e., I(y0;x0|y\0,x\0), accounting for the fact that the
detector cannot exploit the temporal correlation of the channel estimation
error.

This observation, i.e., that the term I(y0;x\0|y\0) accounts for the tempo-
ral correlation of the channel estimation error, which cannot be exploited by
the receiver structure given by (6.19), (6.15), and (6.17) is also supported by
the fact that in case of an uncorrelated channel, i.e., E [hkh

∗
l ] = 0, ∀k 6= l

the term I(y0;x\0|y\0) becomes zero.
However, as we want to derive an upper bound on the achievable rate for

the iterative receiver structure described by (6.19) and (6.15) with (6.17), we
do not need to consider the term I(y0;x\0|y\0) any further, as it cannot be
exploited by this receiver structure.

Concerning the magnitude of the information contained in I(y0;x\0|y\0),
at least for small channel dynamics, the additional information on h0 de-
livered by y0 is small. The reason is that the adjacent symbols, where the
transmit symbols are assumed to be known, already deliver much information
on h0. Therefore, we guess that for small channel dynamics the additional
information on h0 contained in y0 and, thus, I(y0;x\0|y\0) is small.
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6.2.4.1 Can I(y0; x\0|y\0) be exploited by using the channel
estimator in (6.13)?

Obviously, the modified channel estimator in (6.19) never uses the observa-

tion y0 to estimate ĥ0. In contrast to this, the genuine channel estimator in
(6.13) uses the observation y0, at least, if soft-information on the transmit
symbols x0 is available. However, note that in case no reliability information
on x0 is available, the corresponding soft-symbol given by the corresponding

diagonal element of
∑

xi∈Px
p
(
xi|y,λ(n−1)

I , ĥ(n−1)
)

X∗
i

σ2
n
is zero, and, thus, y0

is multiplied by zero and not used for channel estimation.
Furthermore, consider that for the initial channel estimation in the receiver

no reliability information on x0 is available, as the initial channel estimation
is based on pilot symbols. However, in further channel estimation iterations
there is reliability information on x0, which is delivered by the decoder. Ef-
fectively, the decoder gains this information on x0 using the dependencies
between the transmit symbols given by the code. Due to this reliability in-
formation on x0, in later channel estimation iterations the observation y0 is
used by the estimator in (6.13). However, it is difficult to model this in the
given information theoretic framework with i.i.d. data symbols.4

Due to this gap between the receiver exploiting code dependencies, on
the one hand, and the information theoretic treatment based on i.i.d. data
symbols, on the other hand, we are not able to give an answer to the question,
if and which part of the information contained in the term I(y0;x\0|y\0) can
be exploited when using the genuine channel estimator in (6.13), which also
uses the observation y0, in combination with the symbol-wise detector given
by (6.15) and (6.17). However, note that parts of I(y0;x\0|y\0) arise due to
the upper-bounding in (6.34).

6.2.5 An Upper Bound on I(x0; y0|ĥ0, x\0)

Recalling the discussion in the previous sections, it should now be obvious
that an upper bound on I(x0; y0|ĥ0,x\0) is also an upper bound on the
achievable rate with the receiver using iterative code-aided synchronized de-
tection described by (6.19), (6.15), and (6.17) in Section 6.1. Therefore, we

calculate an upper bound on I(x0; y0|ĥ0,x\0).

In this regard, we express I(x0; y0|ĥ0,x\0) based on differential entropies:

4 Note that the assumption on i.i.d. input distributions is not a contradiction to the
use of a codebook with codewords, which obviously means that data symbols are
not independent. When speaking about i.i.d. input distributions as they are used to
calculate the mutual information, the distribution for the generation of the codebook
is meant. Of course, reliable communication in the sense of a diminishing probability
of an erroneous decoded codeword for infinite codeword lengths requires the use of a
code.
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I(x0; y0|ĥ0,x\0) = h(y0|ĥ0,x\0)− h(y0|x0, ĥ0,x\0). (6.49)

For the upper-bounding a similar approach is applied, as it has been used
to calculate the upper bound on the achievable rate with solely pilot based
synchronized detection in [6]. The difference is that in [6] the channel estimate
is solely based on the pilot symbols, whereas here it is based an all past and
all future symbols.

6.2.5.1 Calculation of h(y0|x0, ĥ0, x\0)

Based on ĥ0 the channel output y0 can be written as

y0 = x0h0 + n0 = x0

(
ĥ0 + e0

)
+ n0 (6.50)

where ĥ0 is the MMSE estimate of h0 based on x\0,y\0, see (6.35).
As the channel estimation error e0 is zero-mean proper Gaussian, see Sec-

tion 6.2.3, the channel output y0 conditioned on ĥ0,x, i.e., y\0,x, is obviously

proper Gaussian, see also Section 6.2.3. Thus, the entropy h(y0|x0, ĥ0,x\0) is

completely described by the variance of y0 conditioned on x and ĥ0, which is
given in (6.40). Thus, we can rewrite the entropy h(y0|x0, ĥ0,x\0) as follows

h(y0|x0, ĥ0,x\0) = Ex0

[
Ex\0

[
log
(
πe
(
σ2
n + σ2

eint(x\0)|x0|2
))]]

. (6.51)

Notice, the interpolation error variance σ2
eint(x\0) given in (6.37) depends on

the distribution of the input symbols x\0.

6.2.5.2 Upper Bound on h(y0|ĥ0, x\0)

Now, we discuss the first term on the RHS of (6.49)

h(y0|ĥ0,x\0) = h(y0|x\0,y\0). (6.52)

In this expression, we do not condition on x0. Thus, here y0 is not proper
Gaussian. The expectation and the variance are given by

E
[
y0|x\0,y\0

]
= E

[
h0x0 + n0|x\0,y\0

]
= 0 (6.53)
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var
[
y0|x\0,y\0

]
= E

[
|y0|2|x\0,y\0

]

= E
[
|h0x0 + n0|2|x\0,y\0

]

= σ2
xE
[
|h0|2|x\0,y\0

]
+ σ2

n

= σ2
xE
[
|ĥ0 + e0|2|x\0,y\0

]
+ σ2

n

= σ2
x

(
|ĥ0|2 + σ2

eint(x\0)
)
+ σ2

n. (6.54)

As proper Gaussian random variables maximize entropy [82], h(y0|ĥ0,x\0)
can be upper-bounded by

h(y0|ĥ0,x\0) ≤ Ex\0

[
Eĥ0

[
log
(
πe
(
σ2
n + σ2

xσ
2
eint(x\0) + σ2

x|ĥ0|2
)) ∣∣x\0

]]

= Ex\0

[∫ ∞

0

log
(
πe
(
σ2
n + σ2

xσ
2
eint(x\0) + σ2

x(σ
2
h − σ2

eint(x\0))z
))
e−zdz

]
.

(6.55)

6.2.5.3 Derivation of an Upper Bound on I(x0; y0|ĥ0, x\0)

Inserting (6.55) and (6.51) into (6.49) yields the following upper bound

I(x0; y0|ĥ0,x\0)

≤ Ex\0

[ ∫ ∞

0

log
(
σ2
n + σ2

xσ
2
eint(x\0) + σ2

x(σ
2
h − σ2

eint(x\0))z
)
e−zdz

− Ex0

[
log
(
σ2
n + σ2

eint(x\0)|x0|2
)]
]
. (6.56)

Obviously, until now we have not discussed the channel interpolation error
variance σ2

eint(x\0). Like the channel prediction error variance, the channel
interpolation error variance σ2

eint(x\0) is a random variable. Its distribution
depends on the distribution of the past and future transmit symbols, which
are contained in the vector x\0. It is difficult to give a general statement on
the behavior of (6.56) with respect to σ2

eint(x\0). Therefore, in the following
we will discuss two cases. On the one hand, the case that the data symbols
are constant modulus symbols, and on the other hand, the case that the data
symbols are zero-mean proper Gaussian.

Constant Modulus Input Distribution

For a constant modulus (CM) input distribution, i.e., |x0|2 = σ2
x, the upper

bound in (6.56) becomes



124 6 Iterative Code-Aided Synchronized Detection

I(x0; y0|ĥ0,x\0)
∣∣
CM

≤
∫ ∞

0

log

(
1 +

σ2
x(σ

2
h − σ2

eint,CM
)

σ2
n + σ2

xσ
2
eint,CM

z

)
e−zdz (6.57)

where σ2
eint,CM

is the channel interpolation error variance in case all past and
all future transmit symbols are constant modulus symbols. For the case of
an infinite past and future time horizon this estimation variance is no longer
random and can be given in closed form, see (6.75) in Section 6.2.5.4. Thus,
for this case (6.57) is already an upper bound on the achievable rate with
constant modulus symbols in closed form, which can be easily evaluated.

Proper Gaussian Input Distribution

For a zero-mean proper Gaussian distributed x0 the upper bound in (6.56)
becomes

I(x0; y0|ĥ0,x\0)
∣∣
PG

≤ Ex\0

[ ∫ ∞

0

log
(
σ2
n + σ2

xσ
2
eint(x\0) + σ2

x(σ
2
h − σ2

eint(x\0))z
)
e−zdz

−
∫ ∞

z=0

log
(
σ2
n + σ2

eint(x\0)σ
2
xz
)
e−zdz

]
. (6.58)

It can be shown that the RHS of (6.58) monotonically decreases with
σ2
eint(x\0), see Appendix A.8. However, as the channel interpolation error

variance σ2
eint(x\0) is itself a random quantity, this statement does not help us

to construct an upper bound on the achievable rate. Instead, as in Chapter 4,
we would have to construct an upper bound on the RHS of (6.58) by finding
the input distribution of the past and future transmit symbols contained in
x\0 among all distributions with i.i.d. input symbols and a maximum average
power of σ2

x, which leads to a distribution of the channel interpolation error
variance σ2

eint(x\0) that maximizes the RHS of (6.58).

6.2.5.4 The Interpolation Error Variance σ2
eint

(x\0)

The interpolation error variance σ2
eint(x\0) depends on the distribution of all

input symbols in the past and in the future, i.e., x\0. To upper-bound the
RHS of (6.58) we, therefore, would need to find the distribution of the input
symbols x\0 among all i.i.d. input distributions with average power σ2

x, which
maximizes the RHS of (6.58).

Similar to Section 4.3.1 for the case of channel prediction, we express the
interpolation error variance σ2

eint(x\0) as a function of the past and future
transmit symbols. For the case of a finite past and future time horizon we
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get

σ2
eint(x\0) = σ2

h − rHy\0h0|x\0
R−1

y\0|x\0
ry\0h0|x\0

(6.59)

where Ry\0|x\0
is the correlation matrix of the observations y\0 while the

past and future transmit symbols x\0 are known, i.e.,

Ry\0|x\0
= E

[
y\0(y\0)

H
∣∣x\0

]

= E
[(
X\0h\0 + n\0

) (
X\0h\0 + n\0

)H ∣∣x\0
]

= X\0Rh\0X
H
\0 + σ2

nI2N (6.60)

with X\0 being a diagonal matrix containing the past and future transmit
symbols such that

X\0 = diag
(
x\0
)
. (6.61)

In addition, the vectors h\0 and n\0 contain the channel fading weights and
the noise samples for all time instances except of the time instant 0. The
matrix Rh\0 is given by

Rh\0 = E
[
h\0h

H
\0

]
. (6.62)

The cross correlation vector ry\0h0|x\0
between the fading weight h0 and

the observation vector y\0 while knowing the past transmit symbols x\0 is
given by

ry\0h0|x\0
= E

[
y\0h

∗
0

∣∣x\0
]

= E
[(
X\0h\0 + n\0

)
h∗0
∣∣x\0

]

= X\0rh,int (6.63)

with

rh,int = [rh(−N) . . . rh(−1) rh(1) . . . rh(N)]
T

(6.64)

where rh(l) is the autocorrelation function as defined in (2.2).
Introducing (6.60) and (6.63) into (6.59) results in

σ2
eint(x\0) = σ2

h − rHh,intX
H
\0

(
X\0Rh\0X

H
\0 + σ2

nI2N

)−1

X\0rh,int

= σ2
h − rHh,int

(
Rh\0 + σ2

n

(
XH

\0X\0
)−1

)−1

rh,int

(a)
= σ2

h − rHh,int

(
Rh\0 + σ2

nZ
−1
\0

)−1

rh,int (6.65)
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where with (a) Z\0 is defined by

Z\0 = XH
\0X\0 (6.66)

i.e., Z\0 is a diagonal matrix containing the powers of the individual transmit
symbols in the past and in the future. Obviously, the channel interpolation
error variance is independent of the phases of the past and the future transmit
symbols, but only depends on their individual powers. Therefore, we can
rewrite (6.58) as

I(x0; y0|ĥ0,x\0)
∣∣
PG

≤ Ez\0

[∫ ∞

0

log
(
σ2
n + σ2

xσ
2
eint(z\0) + σ2

x(σ
2
h − σ2

eint(z\0))z
)
e−zdz

−
∫ ∞

z=0

log
(
σ2
n + σ2

eint(z\0)σ
2
xz
)
e−zdz

]
(6.67)

with σ2
eint(z\0) = σ2

eint(x\0) and where the vector z\0 corresponds to the
diagonal of the matrix Z\0.

For the derivation of an upper bound on the RHS of (6.67) we would
have to maximize the RHS of (6.67) over all distributions of the individual
elements of z\0, i.e., the powers of the individual transmit symbols, with
a given maximum average power σ2

x. Here it has to be considered that we
assume that the elements of z\0 are i.i.d.. If it would be possible to show that
the argument of the expectation operation on the RHS of (6.67), i.e.,
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(6.68)

is concave with respect to each individual element of the diagonal of Z\0
and using Jensen’s inequality, this would mean that the RHS of (6.67) is
maximized in case the channel interpolation variance σ2

eint(z\0) is calculated
under the assumption that all past and future transmit symbols are constant
modulus symbols with power σ2

x. This approach would be analogous to the
channel prediction case discussed in Section 4.3.1. Unfortunately, we have
not been able to prove the concavity of the RHS of (6.68) with respect to
the individual elements of z\0. In contrast to the upper bound based on
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channel prediction discussed in Section 4.3.1, evaluation of the concavity of
the RHS of (6.68) is more difficult, as the channel interpolation variance is
also contained in the first integral of (6.68), corresponding to the upper bound

on h(y0|ĥ0,x\0).
Nevertheless, for small channel dynamics it is reasonable to approximate

the channel interpolation error variance σ2
eint(z\0) by the channel estimation

error variance calculated under the assumption that all past and all future
transmit symbols are constant modulus symbols. Therefore, consider that
in case of small channel dynamics, the calculation of the channel estimate
corresponds to a weighted averaging of many channel output observations.
Furthermore, it can easily be shown that in case of a constant channel the
distribution of the past and future input symbols is irrelevant, only their
average power has an influence on σ2

eint(z\0). Thus, we are able to approximate
σ2
eint(z\0) by assuming that all past and future transmit symbols are constant

modulus symbols with power σ2
x. The advantage of this specific assumption

on the distribution of the past and future transmit symbols is that, when
additionally considering an infinite long observation horizon in the past and
in the future, we are able to give a closed form expression for σ2

eint(z\0).
For an infinitely long time horizon in the past and in the future, as it has to

be considered when calculating the mutual information rate
I ′(x0; y0|ĥ0,x\0)

∣∣
PG

corresponding to I(x0; y0|ĥ0,x\0)
∣∣
PG

, see (6.67), the dis-

tribution of the channel interpolation error variance σ2
eint(z\0) at each indi-

vidual time instant is equal. In addition, for the case that all past and all
future transmit symbols are assumed to be constant modulus symbols, the
channel interpolation error is a constant for all time instances. Therefore,
for the channel interpolation error variance calculated under the assumption
that all past and all future transmit symbols are constant modulus symbols,
i.e., the elements of x\0 are constant modulus symbols with power |xk|2 = σ2

x,
and an infinitely long past and future time horizon we introduce the following
notation

σ2
eint,CM,∞

= lim
N→∞

E

[∣∣∣h0 − ĥ0

∣∣∣
2 ∣∣∣x\0 : CM,y\0

]
. (6.69)

The index CM denotes constant modulus.
The assumption on constant modulus transmit symbols is obviously in

contrast to the assumption on i.i.d. zero-mean proper Gaussian input sym-
bols. However, we use the assumption on constant modulus input symbols
only in the context of the channel interpolation error variance σ2

eint(z\0).
In addition, the assumption on i.i.d. constant modulus input symbols to

calculate σ2
eint(z\0) is not a severe restriction due to the following reasons.

First, the case of using pilot symbols is included, as the pilot symbols are
also assumed to be constant modulus symbols with a power of σ2

x. Secondly,
this unveils also that the approximate upper bound calculated under the
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assumption that σ2
eint(z\0) is calculated for past and future data symbols

with constant modulus also holds for the special case of using pilot symbols.
Now we calculate the channel interpolation error variance σ2

eint,CM,∞
. As

the problem is jointly Gaussian, the MMSE estimator is linear and the filter
input is given by

ỹk = hk +
nk
xk
. (6.70)

As we assume constant modulus input symbols and as the noise samples nk
are i.i.d. and circularly symmetric, we can rewrite (6.70) as

ỹk = hk +
ñk
σx

(6.71)

where ñk has the same statistical properties as nk. The PSD of the process
{ỹk} is given by

Sỹ(f) = Sh(f) +
σ2
n

σ2
x

. (6.72)

As the channel interpolation error for a process which is characterized by the
PSD Sỹ(f) is in general given by [90]

σ2
eint,ỹ,∞

=

{∫ 1
2

− 1
2

[Sỹ(f)]
−1
df

}−1

(6.73)

we get for the interpolation error variance of ỹ0

σ2
eint,ỹ,∞

=
σ2
n

σ2
x

{∫ 1
2

− 1
2

[
σ2
x

σ2
n

Sh(f) + 1

]−1

df

}−1

. (6.74)

The interpolation error variance of h0 is then given by subtraction of σ2
n/σ

2
x

from σ2
eint,ỹ,∞

, yielding

σ2
eint,CM,∞

=
σ2
n

σ2
x



{∫ 1

2

− 1
2

[
σ2
x

σ2
n

Sh(f) + 1

]−1

df

}−1

− 1


 . (6.75)

For the special case of a rectangular PSD, (6.75) can be explicitly given as

σ2
eint,CM,∞

=
σ2
h

ρ
(

1
2fd

− 1
)
+ 1

(6.76)

which is obviously zero for fd → 0. On the other hand, for fd = 1
2 (6.76)

becomes
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σ2
eint,CM,∞

∣∣
fd=

1
2

= σ2
h. (6.77)

Notice, it should be quite obvious that the interpolation error variance
σ2
eint,CM,∞

is in general smaller than the prediction error variance σ2
epred,CM,∞

given in (4.53). For a proof of this, we refer to Appendix A.10. This also causes
that the channel interpolation separation of mutual information introduced
in Section 6.2.2 leads to an upper bound on the mutual information rate
I ′(y;x).

6.2.6 Approximative Upper Bound on the Achievable
Rate with the Iterative Code-Aided Synchronized
Detection based Receiver using the Modified
Channel Estimator (6.19)

With (6.58) and (6.75) we get the following approximate upper bound

I ′(x0; y0|ĥ0,x\0)
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= I ′
U (y0;x0|ĥ0,x\0)
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PG
. (6.78)

Based on the discussions in Section 6.2.1 - Section 6.2.5, this is an approx-
imate upper bound on the achievable rate with the receiver described by
(6.19), (6.15), and (6.17), i.e, using iterative code-aided synchronized detec-
tion with the modified channel estimator presented in Section 6.1.1 and i.i.d.
zero-mean proper Gaussian data-symbols.

Notice, if we could prove that the calculation of σ2
eint(x\0) under the as-

sumption that x\0 are constant modulus symbols maximizes the RHS of

(6.58), (6.78) would be a true upper bound on I ′(x0; y0|ĥ0,x\0)
∣∣
PG

.
Notice that this bound holds without any assumption on the use of pilot

symbols. In case we use pilot symbols, the achievable rate decreases as the
pilot symbols are deterministic. Therefore, for a pilot spacing L the bound
in (6.78) can be modified as follows



130 6 Iterative Code-Aided Synchronized Detection

I ′(x0; y0|ĥ0,x\0)
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. (6.79)

We can give no statement on the amount of required pilot symbols, i.e., the
pilot spacing L that assures convergence of the iterative code-aided synchro-
nized detection based receiver in Fig. 6.1 to error-free decoding. In contrast
to (6.79), the bound in (6.78) holds irrespectively of any assumptions on the
pilot spacing L and obviously upper-bounds the bound in (6.79).

6.2.7 Numerical Evaluation

In the present section, we numerically evaluate the new approximate upper
bound on the achievable rate with the receiver using iterative synchronization
and decoding with the modified channel estimator presented in Section 6.1.1,
which is described by (6.19), (6.15), and (6.17), and i.i.d. zero-mean proper
Gaussian data input symbols. This approximate upper bound is given in
(6.78). Furthermore, we compare it to the general bounds on the achievable
rate with i.i.d. zero-mean proper Gaussian inputs, i.e., the upper bound in
(3.84)/(3.87) and the lower bound in (3.93)/(3.94). In addition, we also com-
pare the approximate upper bound in (6.78) with the achievable rate in case
of synchronized detection in combination with a solely pilot based channel
estimation discussed in Chapter 5, i.e., the lower bound in (5.39) and the up-
per bound in (5.42). Here, we only consider the case without pilot-to-average
data power ratio optimization.

Fig. 6.2 shows the comparison of the different bounds. Obviously, for the
important range of small channel dynamics the approximate upper bound
on the achievable rate with the iterative synchronization and decoding based
receiver given in (6.78) is smaller than the upper bound on the achievable
rate with i.i.d. zero-mean proper Gaussian input symbols, i.e., without con-
straining to the iterative code-aided synchronized detection based receiver
described by (6.19), (6.15), and (6.17) in Section 6.1. Thus, the approximate
upper bound in (6.78) is valuable, as it gives a tighter upper bound for a
realistic iterative code-aided synchronized detection based receiver than the
one given in (3.84)/(3.87).

As on the other hand both upper bounds on the achievable rate, the general
one in (3.84)/(3.87), as well as the approximate one in (6.78) for the iterative
synchronization and decoding based receiver, are not tight, we are not able
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Fig. 6.2: Approximate upper bound on the achievable rate with the
iterative code-aided synchronized detection (i-SD) based receiver
using the modified channel estimator (6.19) given in (6.78) in com-
parison to bounds on the achievable rate with i.i.d. input symbols and in
comparison to bounds on the achievable rate with solely pilot based syn-
chronized detection (SD) without pilot power optimization; in all cases i.i.d.
zero-mean proper Gaussian (data) symbols are assumed; rectangular PSD
Sh(f)

to judge on the actual performance loss due to the restriction to the iterative
code-aided synchronized detection based receiver as described in Section 6.1
and based on the channel estimator in (6.19), i.e., the loss being reflected
by the fact that the information corresponding to I(y0;x\0|y\0) cannot be
exploited.

Furthermore, as the iterative synchronization and decoding based approx-
imate upper bound in (6.78) is not tight, it is not directly possible to evaluate
the possible gain while using iterative code-aided synchronized detection in
comparison to synchronized detection with a solely pilot based channel esti-
mation.

On the other hand, the approximate bound (6.79) enables to evaluate
the maximum possible gain that can be achieved by iteratively enhancing
the channel estimation using the estimator in (6.19) instead of restricting
to a solely pilot based channel estimation in case the pilot spacing is al-
ready given. In the following, we choose the maximum pilot spacing fulfilling
Nyquist sampling of the channel fading process, i.e., L = ⌊1/(2fd)⌋. This
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pilot spacing is reasonable as, due to Nyquist sampling of the channel fading
process, it leads to channel estimates of sufficient quality and, thus, gives
good conditions for low bit error rates (BER) after decoding. However, the
BER will furthermore depend on the SNR and the specific code and its code
rate. In Fig. 6.3 we show the modified approximate upper bound given in
(6.79) with L = ⌊1/(2fd)⌋ in comparison to the bounds on the achievable
rate with synchronized detection in combination with a solely pilot based
channel estimation. For the latter ones the pilot spacing which maximizes
the lower bound on the achievable rate with solely pilot based synchronized
detection has been chosen. Notice that this pilot spacing might be smaller
than the one corresponding to Nyquist sampling of the channel fading pro-
cess, see Section 5.2. Furthermore, it should be noticed that the approximate
upper bound in (6.79) is not a strict upper bound on the achievable rate,
as it might be possible to choose a larger pilot spacing than L = ⌊1/(2fd)⌋.
The maximum possible pilot spacing still assuring convergence to error-free
decoding is an open question.

Obviously, for small channel dynamics the approximate upper bound on
the achievable rate with the receiver using iterative code-aided synchronized
detection is significantly above the bounds on the achievable rate with syn-
chronized detection in combination with a solely pilot based channel esti-
mation. However, consider that we only show an approximate upper bound,
therefore, the obvious gap is only an upper bound on the possible gain while
using the discussed iterative synchronization and decoding scheme.

To further evaluate the possible performance gain while using iterative syn-
chronization and decoding in comparison to solely pilot based synchronized
detection, we would have to find and upper bound that holds also when using
the genuine channel estimator in (6.13), which also uses the observation yk
for the estimation of hk. Additionally, a tight lower bound on the achievable
rate with such a receiver structure is required. Clearly, the lower bound on
the achievable rate with solely pilot based synchronized detection given in
(5.39) is a lower bound on the achievable rate with iterative synchronization
and decoding. But obviously it is not tight, as the possible gain due to an
enhanced channel estimation quality based on the reliability information on
the data symbols is not used. Within this work we do not show a tighter
lower bound.

Small Channel Dynamics

If we evaluate the approximate upper bound on the achievable rate with the
iterative synchronization and decoding based receiver in (6.78) for
σ2
eint,CM,∞

→ 0, i.e., for asymptotically small channel dynamics, we get

I ′
U (y0;x0|ĥ0,x\0)

∣∣
PG,σ2

eint,CM,∞
=0

=

∫ ∞

0

log (1 + ρz) e−zdz (6.80)
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Fig. 6.3: Approximate upper bound on the achievable rate with
the iterative code-aided synchronized detection based receiver us-
ing the modified channel estimator (6.19) and a pilot spacing
corresponding to Nyquist channel sampling (i-SDPil) (6.79) (L =
⌊1/(2fd)⌋); for comparison: bounds on the achievable rate with solely pilot
based synchronized detection (SD) without pilot power optimization; in all
cases i.i.d. zero-mean proper Gaussian data symbols are assumed; for solely
pilot based SD the pilot spacing that maximizes the lower bound on the
achievable rate has been chosen; notice, due to the given pilot spacing L
(6.79) is not a strict upper bound on the achievable rate with the iterative
code-aided synchronized detection based receiver; rectangular PSD Sh(f)

which obviously corresponds to the coherent capacity. This behavior can also
be observed in Fig. 6.2.

6.3 Summary

In the present chapter, we have derived an upper bound on the achievable
rate with the iterative code-aided synchronized detection based receiver de-
scribed by (6.19), (6.15), and (6.17) in Section 6.1. Therefore, we have recalled
the principle of iterative code-aided synchronized detection. Furthermore, we
identified the nature of the possible gain by iteratively enhancing the channel
estimation based on reliability information on the data symbols. This pos-
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sible gain arises from the utilization of parts of the information contained
in the temporal correlation of the channel estimation error process, which
have been discarded while using a receiver based on synchronized detection
in combination with a solely pilot based channel estimation as described in
Chapter 5.

For the specific structure of an iterative code-aided synchronized detection
based receiver as described by (6.19), (6.15), and (6.17) we have derived an
upper bound on the achievable rate with i.i.d. zero-mean proper Gaussian
data symbols. Note that this receiver is slightly modified with respect to the
typically studied receiver based on iterative code-aided channel estimation, as
the channel estimator does not use the observation yk for the estimation of hk.
The typically studied receiver structure, which is also described in Section 6.1,
results from a set of fixed point equations, which is derived based on the joint
ML detection and MAP parameter estimation problem. We have shown that
this modified receiver cannot exploit the complete mutual information of the
transmitter and the receiver, the information corresponding to I(y0;x\0|y\0)
cannot be retrieved. This is a result of the fact of the combination of a symbol-
wise detection metric with the channel estimator which does not use yk for
the estimation of hk. However, for channel dynamics as they are typically
observed in mobile environments, we guess that the amount of discarded
information due to the modification of the channel estimator is small. We do
not know if and which part of the information I(y0;x\0|y\0) can be retrieved
when using the genuine channel estimator given in (6.13).

Unfortunately, the given upper bound on the achievable rate with the
receiver based on iterative code-aided synchronized detection described by
(6.19), (6.15), and (6.17) is a non-closed form expression, as it still depends
on the channel interpolation error variance for an arbitrarily chosen time in-
stant k, and, thus, is a function of the distribution of all transmit symbols in
the past and in the future with respect to the time instant k. We are not able
to give a closed form solution. Nevertheless, for small channel dynamics, it
is reasonable to approximate the channel interpolation error variance by the
channel interpolation error variance calculated under the assumption that
all past and all future transmit symbols are constant modulus symbols with
power σ2

x. Based on this approximation we have also numerically evaluated
the upper bound. If the statement that the calculation of the channel inter-
polation error variance under the assumption of constant modulus transmit
symbols in the past and in the future yields an upper bound on the RHS
of (6.58) could be proven, e.g., by showing the concavity of (6.68) with re-
spect to each individual element of the diagonal of Z\0, the upper bound
in (6.78) would be a true upper bound. In contrast, for the case of constant
modulus signaling, we can give a closed form solution for the upper bound on
the achievable rate with the discussed receiver based on code-aided iterative
synchronized detection.

The approximate upper bound on the achievable rate with the studied
receiver based on iterative code-aided synchronized detection described by
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(6.19), (6.15), and (6.17) is independent of the used amount of pilot symbols.
However, we also have given a modified version of the approximate upper
bound taking the rate loss due to pilot symbols into account. This bound can
be used to give an approximative upper bound on the maximum possible per-
formance gain for a fixed pilot spacing when using iterative synchronization
and decoding instead of a solely pilot based synchronized detection approach
as discussed in Chapter 5. But it has to be clearly stated that due to the
restrictive assumption on a given pilot spacing this bound is not a true upper
bound on the achievable rate with a receiver based on iterative synchroniza-
tion and decoding, as we do not know how many pilots are required to assure
convergence of the iterative receiver to error-free decoding. Furthermore, it
holds only when using the modified channel estimator, which does not use yk
for the estimation of hk. However, we assume that the additional information
by using the genuine channel estimator in (6.13) is small in case of typical,
i.e., small, channel dynamics.

To further evaluate the performance gain of iterative synchronization and
decoding in comparison to synchronized detection used in combination with
a solely pilot based channel estimation, it would be necessary to derive an
upper bound which holds also when using the genuine channel estimator
in (6.13), which results from the set of fixed point equations as described
in Section 6.1. Furthermore, the derivation of a tight lower bound on the
achievable rate with iterative code-aided channel estimation and synchronized
detection is required. However, within this work we do not give such a lower
bound. For comparison we only have used the lower bound on the achievable
rate with solely pilot based synchronized detection, which is not tight as it
does not show the gain due to an enhanced channel estimation based on the
reliability information on the data symbols. Recently, for the special case
of a block fading channel a lower bound on the achievable rate when using
a joint processing of pilot and data symbols has been given in [56]. In the
following chapter, we extend this approach to the scenario of a stationary
Rayleigh flat-fading channel as it is considered in the present work. However,
note that this lower bound on the achievable rate with joint processing of
pilot and data symbols is not a lower bound on the achievable rate with the
receiver based on synchronized detection and an iterative code-aided channel
estimation as discussed in the present chapter, i.e., the receiver described
by (6.19), (6.15), and (6.17). Therefor, consider that this form of receiver
processing is obviously not optimal, which can be seen from the fact that the
information corresponding to the term I(y0;x\0|y\0) cannot be exploited by
the given receiver structure.



Chapter 7

Joint Processing of Pilot and Data
Symbols

In the previous chapter we have discussed the achievable rate with iterative
code-aided channel estimation. As it has already been stated there, also this
approach is not optimal, as it is based on a coherent detection metric, i.e., the
detection is performed symbol-wise, although the channel estimation error is
temporally correlated. Therefore, in the present chapter we study the achiev-
able rate with an optimal joint processing of pilot and data symbols. This
means that we assume an optimal receiver processing without any restriction

of pilot
and data symbols we derive a lower bound on the achievable rate. As in the
previous chapters we consider a discrete-time Rayleigh flat-fading channel as
it is described in Chapter 2. Parts of the present chapter have already been
published in [26].

For the case of a joint processing of pilot and data symbols there is not
much knowledge on the achievable rate. Very recently, in [56] the value of
joint processing of pilot and data symbols has been studied in the context
of a block fading channel. To the best of our knowledge, there are no results
concerning the gain of joint processing of pilot and data symbols for the
case of stationary fading channels. The lower bound on the achievable rate
with a joint processing of pilot and data symbols for the case of a stationary
Rayleigh flat-fading channel that we give in the present chapter can be seen
as an extension of the work for the block fading channel in [56].

Before we derive the lower bound on the achievable rate, we rewrite the
mutual information between the transmitter and the receiver based on a
channel estimate which is solely based on pilot symbols, as it has already
been used in (5.29) in Section 5.2. However, in the present chapter we give
a formal derivation of this representation. We give this derivation within the
present chapter, as this is an essential part in the derivation of the lower
bound on the achievable rate with the joint processing of pilot and data sym-
bols. Finally, we compare the given lower bound on the achievable rate with
joint processing of pilot and data symbols to bounds on the achievable rate
with i.i.d. zero-mean proper Gaussian input symbols given in Chapter 3, i.e.,

M. Dörpinghaus, On the Achievable Rate of Stationary Fading Channels, Foundations in signal
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to a coherent, i.e., symbol-wise detection. For this joint processing
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without the assumption on pilot symbols inserted into the transmit sequence.
Furthermore, we compare the lower bound with joint processing of pilot and
data symbols to bounds on the achievable rate with synchronized detection
based on a solely pilot based channel estimation as it has been discussed in
Chapter 5 and with the upper bound on the achievable rate with the specific
receiver based on synchronized detection and iterative code-aided channel
estimation as it has been discussed in Chapter 6.

7.1 System Model

Concerning the channel, we consider a stationary Rayleigh flat-fading channel
with a compactly supported PSD of the channel fading process and fd <

1
2

as it is introduced in Chapter 2.
As in Chapter 5.2, for the following derivation we use the subvectors xD

containing all data symbols of x and the vector xP containing all pilot sym-
bols of x. Correspondingly, we define the vectors hD, hP , yD, yP , nD, and
nP .

The transmit symbol sequence consists of data symbols with a maximum
average power σ2

x, i.e.,

1

ND
E
[
xHDxD

]
≤ σ2

x (7.1)

with ND being the length of the vector xD, and periodically inserted pilot
symbols with a fixed transmit power σ2

x. Each L-th symbol is a pilot symbol.
We assume that the pilot spacing is chosen such that the channel fading
process is sampled at least with Nyquist rate, i.e.,

L <
1

2fd
. (7.2)

7.2 Expressing I(y; x) via the Pilot based Channel

Estimate ĥpil

Before we quantitatively discuss the value of a joint processing of data and
pilot symbols, we rewrite the mutual information between the transmitter
and the receiver based on a solely pilot based channel estimate, as it has
already been used in (5.29) in Section 5.2. However, here we show a formal
derivation, to which we refer in the following derivation of the lower bound
on the achievable rate with a joint processing of pilot and data symbols.

Recall that the mutual information between the transmitter and the re-
ceiver is given by I(xD ;yD,yP ,xP ), see (5.29) (c). As the pilot symbols are
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known to the receiver, the pilot symbol vector xP is found at the RHS of the
semicolon. We separate I(xD;yD,yP ,xP ) as follows

I(xD ;yD,yP ,xP )
(a)
= I(xD;yD|yP ,xP ) + I(xD;yP |xP ) + I(xD;xP )
(b)
= I(xD;yD|yP ,xP ) (7.3)

where (a) follows from the chain rule for mutual information and (b) holds
due to the independency of the data and pilot symbols. Up to this point the
derivation is analogous to Section 5.2, cf. (5.29) (f).

Now, we formally show that the conditioning on yP ,xP in (7.3) is equal to

conditioning on a solely pilot based channel estimate ĥpil, see (5.12), and xP .
To prove that the condition on yP and xP in (7.3) can be substituted by

ĥpil and xP let us consider ML sequence detection. The receiver has to find
the most likely data sequence xD based on the observation y while knowing
the pilot symbols xP , i.e.,

x̂D = arg max
xD∈PxD

p(y|x)

= arg max
xD∈PxD

p(yD|xD,yP ,xP ) (7.4)

with the set PxD containing all data sequences xD that can be generated by
the transmitter. It can be shown that the PDF p(yD|xD,yP ,xP ) is proper
Gaussian and, thus, is completely described by the conditional mean and
covariance

E [yD|xD,yP ,xP ] = XDE [hD|yP ,xP ] = XDĥpil,D (7.5)

cov[yD|xD,yP ,xP ] = XDRepil,DX
H
D + σ2

nIND (7.6)

where XD = diag(xD) and IND is an identity matrix of size ND × ND.

The vector ĥpil,D is an MMSE channel estimate at the data symbol time
instances based on the pilot symbols, which is denoted by the index pil. Due
to the jointly proper Gaussian nature of this problem, the MMSE estimate is
linear, i.e., it is an LMMSE estimate. Furthermore, the corresponding channel
estimation error

epil,D = hD − ĥpil,D (7.7)

is zero-mean proper Gaussian and

Repil,D = E
[
epil,De

H
pil,D|xP

]
(7.8)

is its correlation matrix, which is independent of yP due to the principle of
orthogonality in LMMSE estimation.
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Based on (7.5) and (7.6) conditioning of yD on xD,yP ,xP is equivalent

to conditioning on xD, ĥpil,D,xP , i.e.,

p(yD|xD,yP ,xP ) = p(yD|xD, ĥpil,D,xP ) (7.9)

as all information on hD delivered by yP is contained in ĥpil,D while con-
ditioning on xP . See (4.12) in Section 4.1 and (6.41) in Section 6.2.3 for
analogous derivations in the context of channel prediction and interpolation.

Thus, (7.4) can be written as

x̂D = arg max
xD∈PxD

p(yD|xD, ĥpil,D,xP )

= arg max
xD∈PxD

p(y|xD , ĥpil,xP ). (7.10)

For ease of notation in the following we will use the metric on the RHS of
(7.10) where ĥpil corresponds to ĥpil,D but also contains channel estimates
at the pilot symbol time instances, i.e.,

ĥpil = E [h|yP ,xP ] . (7.11)

Note that the solely pilot based channel estimate ĥpil in (7.11) exactly cor-
responds to the solely pilot based channel estimate in Chapter 5, see (5.12).

Based on ĥpil, the genuine input/output relation of the channel given in
(2.13) can be expressed by, cf. (5.10)

y = X(ĥpil + epil) + n (7.12)

where epil is the estimation error including the pilot symbol time instances,
i.e.

epil = h− ĥpil. (7.13)

As the channel estimation is an interpolation, the error process is not white
but temporally correlated, i.e.,

Repil = E
[
epile

H
pil|xP

]
(7.14)

is not diagonal, cf. (7.25). As the estimation error process is zero-mean proper
Gaussian the PDF in (7.10) is given by, cf. (5.24)

p(y|xD, ĥpil,xP ) = CN
(
Xĥpil,XRepilX

H + σ2
nIN

)
(7.15)
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where CN (µ,C) denotes a proper Gaussian PDF with mean µ and covariance
C and where IN is the N ×N identity matrix.1

Corresponding to (7.9), we can also rewrite p(yD|yP ,xP ) as follows

p(yD|yP ,xP ) =
∫
p(yD|xD,yP ,xP )p(xD|yP ,xP )dxD

(a)
=

∫
p(yD|xD, ĥpil,D,xP )p(xD)dxD

= p(yD|ĥpil,D,xP ) (7.16)

where for (a) we have used (7.9) and the independency of xD of xP and yP .
See (6.42) in Section 6.2.3 for an analogous derivation in the context of the
channel interpolation.

Based on (7.9) and (7.16), we can also rewrite (7.3) as

I(xD;yD|yP ,xP ) = I(xD ;yD|ĥpil,xP )

(a)
= I(xD;yD|ĥpil) (7.17)

where (a) holds as the pilot symbols are deterministic.
Thus we have given a formal derivation of equality (5.29). We show this

derivation including the definition of the solely pilot based channel estimate
ĥpil in the context of the study of the achievable rate with a joint processing
of pilot and data symbols, as it is used in the following derivation of a lower
bound on the achievable rate with joint processing of pilot and data symbols.

Obviously, as it has already been stated in Section 5.2, I(xD;yD|ĥpil) is
still equal to the complete mutual information between the transmitter and
the receiver. The receiver based on synchronized detection and a solely pilot
based channel estimation only uses parts of this information, as the temporal
correlation contained in the channel estimation error epil is not exploited by
the detector, see the discussion in Section 5.2.

7.3 Lower Bound on the Achievable Rate with Joint
Processing

Now, we give a new lower bound on the achievable rate for a joint process-
ing of data and pilot symbols. The following approach can be seen as an
extension of the work in [56] for the case of a block fading channel to the sta-
tionary Rayleigh flat-fading scenario discussed in the present work. Therefore,
analogously to [56] we decompose and lower-bound the mutual information

1 Note that for the case of data transmission only (7.15) becomes p(y|xD) =

CN (0,XRhXH + σ2
nIN ) as in this case ĥpil = 0 and Repil

= Rh, cf. (5.3) in
Section 5.1.
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between the transmitter and the receiver I(xD;yD,yP ,xP ) as follows

I(xD;yD,yP ,xP )
(a)
= I(xD ;yD,yP ,xP ,h)− I(xD;h|yD,yP ,xP )
(b)
= I(xD;yD,h)− h(h|yD,yP ,xP ) + h(h|xD,yD,yP ,xP )
(c)

≥ I(xD;yD,h)− h(h|yP ,xP ) + h(h|xD,yD,yP ,xP )
(7.18)

where (a) follows from the chain rule for mutual information. For the first
term in (b) we have used the fact that due to the knowledge on h, the
knowledge on yP and xP does not increase the mutual information between
xD and yD. Finally, (c) is due to the fact that conditioning reduces entropy.
Note, the first term on the RHS of (7.18) is the mutual information in case
of perfect channel knowledge.

In the following we deviate from the derivation given in [56]. Now, we
calculate both differential entropy terms at the RHS of (7.18). Therefore, we
rewrite the RHS of (7.18) as follows

I(xD ;yD,yP ,xP ) ≥ I(xD ;yD,h)− h(h|yP ,xP ) + h(h|xD,yD,yP ,xP )
(a)
= I(xD ;yD,h)− h(h|ĥpil,xP ) + h(h|ĥjoint,xD,xP )

(b)
= I(xD;yD,h)− h(ĥpil + epil|ĥpil,xP ) + h(ĥjoint + ejoint|ĥjoint,xD,xP )

(c)
= I(xD;yD,h)− h(epil|xP ) + h(ejoint|xD,xP )
(d)
= I(xD;yD,h)− ExP

[
log det

(
πeRepil

)]
+ ExP ,xD

[
log det

(
πeRejoint

)]

(e)
= I(xD;yD,h)− log det

(
Repil

)
+ ExD

[
log det

(
Rejoint

)]
(7.19)

where for the second term in (a) we have substituted the condition on yP by

ĥpil, which is possible as the estimate ĥpil contains the same information on
h as yP while conditioning on xP . Corresponding to the solely pilot based
channel estimate ĥpil, based on xD, xP , yD, and yP , we can calculate the

estimate ĥjoint, which is based on data and pilot symbols. Like ĥpil this
estimate is a MAP estimate, which, due to the jointly Gaussian nature of the
problem, is an MMSE estimate, i.e.,

ĥjoint = E [h|yP ,xP ,yD,xD] . (7.20)

Thus, for (a) we have substituted the conditioning on yD and yP by con-

ditioning on ĥjoint in the third term, as ĥjoint contains all information on h
that is contained in yD and yP while xD and xP are known. For equality
(b) we have used for the second term that h can be expressed as a sum of

its estimate ĥpil and the estimation error epil, cf. (7.12). Analogously, for

the third term we used the separation of h into the estimate ĥjoint and the
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corresponding estimation error ejoint, i.e.,

ejoint = h− ĥjoint. (7.21)

Equality (c) is due to the fact that the addition of a constant does not change
differential entropy and that the estimation error epil is independent of the

estimate ĥpil, and analogously ejoint, which depends on xP and xD, is inde-

pendent of ĥjoint due to the orthogonality principle in LMMSE estimation.
Finally, (d) follows from the fact that the estimation error processes are zero-
mean jointly proper Gaussian. Here the error correlation matrices are given
by (7.14) and by

Rejoint = E
[
ejointe

H
joint|xD,xP

]
. (7.22)

For (e) we have used that the pilot symbols are deterministic. Therefore,
the expectation over xP in the second and third term can be removed. How-
ever, the channel estimation error ejoint depends on the distribution of the
data symbols xD.

Concerning the third term on the RHS of (7.19) it can be shown that the
differential entropy rate h′(ejoint|xD,xP ), i.e.,

h′(ejoint|xD,xP ) = lim
N→∞

1

N
h(ejoint|xD,xP ) (7.23)

is minimized for a given maximum average transmit power σ2
x if the data sym-

bols are constant modulus (CM) symbols with power σ2
x, see Appendix A.11.

Within this proof the restriction to an absolutely summable autocorrelation
function rh(l), see (2.4), is required.

Thus, based on (7.19) a lower bound for the achievable rate with joint
processing of data and pilot symbols is given by

I ′(xD;yD,yP ,xP ) = lim
N→∞

1

N
I(xD;yD,yP ,xP )

≥ lim
N→∞

1

N

{
I(xD;yD,h)− log det

(
Repil

)
+ log det

(
Rejoint,CM

)}

(a)
= lim

N→∞

1

N
I(xD;yD,h)−

∫ 1
2

− 1
2

log

(
Sepil(f)

Sejoint,CM(f)

)
df (7.24)

with Rejoint,CM corresponding to (7.22), but under the assumption of CM data
symbols with transmit power σ2

x. As Rejoint,CM only depends on the distribu-
tion of the magnitude of the data symbols contained in xD, which is constant
and deterministic, we can remove the expectation operation with respect to
xD. Note that the CM assumption has only been used to lower-bound the
third term at the RHS of (7.19), and not the whole expression at the RHS
of (7.19). For (a) in (7.24) we have used Szegö’s theorem on the asymp-
totic eigenvalue distribution of Hermitian Toeplitz matrices [44]. Sepil(f) and
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Sejoint,CM(f) are the PSDs of the channel estimation error processes, on the
one hand, if the estimation is solely based on pilot symbols, and on the other
hand, if the estimation is based on data and pilot symbols, assuming CM
data symbols. They are given by

Sepil(f) =
Sh(f)

ρ
L
Sh(f)
σ2
h

+ 1
(7.25)

Sejoint,CM(f) =
Sh(f)

ρSh(f)
σ2
h

+ 1
. (7.26)

The derivation of these PSDs is given in Appendix A.12.
However, the application of Szegö’s theorem for (a) in (7.24) requires sev-

eral steps, which we discuss in the following. The limit over the second and
the third term on the LHS of (a) in (7.24) can be transformed as follows

lim
N→∞

1

N

{
log det

(
Repil

)
− log det

(
Rejoint,CM

)}

(a)
= lim

N→∞

1

N

{
log det

(
Cepil

)
− log det

(
Cejoint,CM

)}

(b)
= lim

N→∞

1

N

{
log det

(
FΛepilF

H
)
− log det

(
FΛejoint,CMF

H
)}

= lim
N→∞

1

N

{
log det

(
FΛepilΛ

−1
ejoint,CM

FH
)}

(c)
=

∫ 1
2

− 1
2

log

(
Sepil(f)

Sejoint,CM(f)

)
df

(d)
=

∫ 1
2

− 1
2

log



ρSh(f)

σ2
h

+ 1

ρ
L
Sh(f)
σ2
h

+ 1


 df (7.27)

where for (a) we have substituted the Toeplitz matrices Repil and Rejoint,CM

by their asymptotic equivalent circulant matricesCepil andCejoint,CM , see [43].
Furthermore, for (b) we have used the spectral decompositions of the circulant
matrices given by

Cepil = FΛepilF
H (7.28)

Cejoint,CM = FΛejoint,CMFH (7.29)

where Λepil and Λejoint,CM are diagonal matrices containing the eigenvalues
of Cepil and Cejoint,CM , and the matrix F is a unitary DFT-matrix whose
elements are given by

[F]k,l =
1√
N
ej2π

(k−1)(l−1)
N . (7.30)
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For (c) in (7.27) we have then used Szegö’s theorem on the asymptotic eigen-
value distribution of Hermitian Toeplitz matrices [44]. Therefore, first con-
sider that the matrix FΛepilΛ

−1
ejoint,CM

FH on the LHS of (c) is again a circulant
matrix and that there exists an asymptotically equivalent Toeplitz matrix.
Furthermore, the eigenvalues of Cepil are samples of the PSD Sepil(f) and
the eigenvalues of Cejoint,CM are samples of the PSD Sejoint,CM(f). Here we
assume a construction of the circulant matrices as described in [43, (4.32)],
which holds for absolutely summable autocorrelation functions, see (2.4). Fur-
thermore, the application of Szegö’s theorem requires that the log-function
is continuous on the support of the eigenvalues of the matrix ΛepilΛ

−1
ejoint,CM

.

This means that we have to show that the eigenvalues of ΛepilΛ
−1
ejoint,CM

are
bounded away from zero and from infinity. That this is indeed the case will
become obvious after introducing Sepil(f) and Sejoint,CM(f) given in (7.25)
and (7.26) as it has been done in (d). Obviously, the argument of the log at
the RHS of (7.27) is larger than zero and smaller than infinity on the interval
f ∈ [−0.5, 0.5]. Therefore, the integral on the RHS of (7.27) exists, implying
that also the LHS of (c) in (7.27) is bounded and, thus, that the eigenval-
ues of ΛepilΛ

−1
ejoint,CM

are bounded away from zero and from infinity. Thus, in
conclusion we have shown that Szegö’s theorem is applicable and that (a) in
(7.24) holds.

The first term on the RHS of (7.24) is the mutual information rate in case
of perfect channel state information

lim
N→∞

1

N
I(xD;yD,h) = lim

N→∞

1

N
I(xD;yD|h)

= lim
N→∞

1

N
I(xD;yD|hD). (7.31)

For an average power constraint as given in (7.1), (7.31) is maximized by
i.i.d. zero-mean proper Gaussian (PG) data symbols, i.e.,

lim
N→∞

1

N
I(xD;yD|hD)

∣∣
xD∼i.i.d. PG

=
L− 1

L
I(xDk

; yDk
|hDk

)
∣∣
PG

=
L− 1

L
EhDk

[
log

(
1 + ρ

|hDk
|2

σ2
h

)]

=
L− 1

L

∫ ∞

z=0

log (1 + ρz) e−zdz

=
L− 1

L
Cperf(ρ) (7.32)

where the subscript Dk denotes an arbitrary data symbol time instant, the
factor (L − 1)/L arises as each L-th symbol is a pilot symbol, and Cperf(ρ)
corresponds to the coherent capacity, cf. (3.89).

Thus, with (7.24), (7.25), (7.26), (7.31) and (7.32) we get the following
lower bound on the achievable rate with joint processing
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RL,joint =
L− 1

L
Cperf(ρ)−

∫ 1
2

− 1
2

log



ρSh(f)

σ2
h

+ 1

ρ
L
Sh(f)
σ2
h

+ 1


 df (7.33)

This lower bound is achievable with i.i.d. zero-mean proper Gaussian data
symbols.

7.3.1 Fixed Pilot Spacing

With (7.33) we have found a lower bound on the achievable rate with joint
processing of data and pilot symbols, for a given pilot spacing L and station-
ary Rayleigh flat-fading.

For the special case of a rectangular PSD2 of the channel fading process
as defined in (2.8) the lower bound in (7.33) becomes

RL,joint

∣∣
rect.Sh(f)

=
L− 1

L

∫ ∞

z=0

log (1 + ρz) e−zdz − 2fd log

(
ρ

2fd
+ 1

ρ
L2fd

+ 1

)
.

(7.34)

7.3.2 Optimal Pilot Spacing

Obviously, the lower bound in (7.34) still depends on the pilot spacing L. In
case the pilot spacing is not fixed, we can further enhance it by calculating the
supremum of (7.34) with respect to L. In this regard, it has to be considered
that the pilot spacing L is an integer value. Furthermore, we have to take
into account that the derivation of the lower bound in (7.34) is based on
the assumption that the pilot spacing is chosen such that the channel fading
process is at least sampled with Nyquist rate, i.e., (7.2) has to be fulfilled.
In case the pilot spacing L is chosen larger than Nyquist rate, the estimation
error process is no longer stationary, which is required for our derivation.
At this point it is also important to remark that periodically inserted pilot
symbols do not maximize the achievable rate. For the special case of PSK
signaling, it is shown in Chapter 10 that the use of a single pilot symbol,
i.e., not periodically inserted pilot symbols, is optimal in the sense that it
maximizes the achievable rate. However, in the present chapter we restrict
to the assumption of periodically inserted pilot symbols with a pilot spacing

2 Recall that a rectangular PSD Sh(f) corresponds to rh(l) = σ2
hsinc(2fdl) which

is not absolutely summable. However, the rectangular PSD can be arbitrarily closely
approximated by a PSD with a raised cosine shape, whose corresponding correlation
function is absolutely summable, see Section 2.1 for a discussion.
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fulfilling (7.2), which is customary and reasonable as this enables detection
and decoding with manageable complexity.

For these conditions, i.e., positive integer values for L fulfilling (7.2), it
can be shown that the lower bound RL,joint

∣∣
rect.Sh(f)

in (7.34) is maximized

for

Lopt =

⌊
1

2fd

⌋
. (7.35)

To prove this statement we differentiate the RHS of (7.34) with respect to
L and set the result equal to zero, which yields that the RHS of (7.34) has a
unique local extremum at

L̃opt =
1

2fd

Cperf(ρ)ρ

ρ− Cperf(ρ)
. (7.36)

Numerical evaluation shows that the factor
Cperf(ρ)ρ
ρ−Cperf(ρ)

is larger than one. As

(7.36) is the only local extremum of the RHS of (7.34), the constraint in
(7.2), the fact that L is an integer value, and the fact that RL,joint

∣∣
rect.Sh(f)

monotonically increases with L for L < L̃opt shows that the lower bound is
maximized by Lopt in (7.35).

Substituting L in (7.34) by Lopt in (7.35) yields a lower bound on the
achievable rate with joint processing in case the pilot spacing can be arbi-
trarily chosen while fulfilling (7.2).

7.4 Numerical Evaluation

Fig. 7.1 shows a comparison of the bounds on the achievable rate for synchro-
nized detection based on a solely pilot based channel estimate as discussed in
Chapter 5 and the lower bound on the achievable rate with joint processing
of data and pilot symbols given in the present chapter.

On the one hand, the lower bound on the achievable rate for joint process-
ing in (7.34) is compared to bounds on the achievable rate with synchronized
detection and a solely pilot based channel estimation, i.e, (5.39) and (5.42),
for a fixed pilot spacing. As the upper and lower bound on the achievable
rate with synchronized detection and a solely pilot based channel estimation
are relatively tight, we choose the pilot spacing such that the lower bound on
the achievable rate for synchronized detection and a solely pilot based chan-
nel estimation in (5.39) is maximized. It can be seen that except for very
high channel dynamics, i.e., very large fd, the lower bound on the achiev-
able rate for joint processing is larger than the bounds on the achievable rate
with synchronized detection using a solely pilot based channel estimation.
This indicates the possible gain while using joint processing of data and pilot
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Fig. 7.1: Comparison of bounds on the achievable rate with synchro-
nized detection and a solely pilot based channel estimation (SD) to
lower bounds on the achievable rate with joint processing of data
and pilot symbols; except of LB joint Lopt the pilot spacing L is chosen
such that the lower bound for SD with a solely pilot based channel estimation
(5.39) is maximized; rectangular PSD Sh(f)

symbols for a given pilot spacing. Note, the observation that the lower bound
for joint processing for large fd is smaller than the bounds on the achievable
rate with synchronized detection and a solely pilot based channel estimation
is a result of the lower bounding, i.e., it indicates that the lower bound is not
tight for these parameters.

On the other hand, also the lower bound on the achievable rate with
joint processing and a pilot spacing that maximizes this lower bound, i.e.,
(7.34) in combination with (7.35), is shown. In this case the pilot spacing
is always chosen such that the channel fading process is sampled by the
pilot symbols with Nyquist rate. Obviously, this lower bound is larger than
or equal to the lower bound for joint processing while choosing the pilot
spacing as it is optimal for synchronized detection and a solely pilot based
channel estimation. This behavior arises from the effect that for synchronized
detection and a solely pilot based channel estimation in case of small fd a
pilot rate is chosen that is higher than the Nyquist rate of the channel fading
process to enhance the channel estimation quality. In case of a joint processing
all symbols are used for channel estimation anyway. Therefore, a pilot rate
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Fig. 7.2: Comparison of the lower bound on the achievable data
rate with joint processing given in (7.34) with the approximate
upper bound (6.79) on the achievable rate with the iterative code-
aided channel estimation based receiver (i-SD) described by (6.19),
(6.15), and (6.17) (L = ⌊1/(2fd)⌋ for both, cf. (7.35)); in addition bounds
on the achievable rate with synchronized detection and a solely pilot based
channel estimation (SD) given in Chapter 5 are shown for a pilot spacing
that maximizes the lower bound in (5.39); rectangular PSD Sh(f)

higher than Nyquist rate always leads to an increased loss in the achievable
rate as less symbols can be used for data transmission.

In Fig. 7.2 the lower bound on the achievable rate with a joint processing of
pilot and data symbols given in (7.34) is compared to the approximate upper
bound on the achievable rate with the receiver based on iterative code-aided
channel estimation (described by (6.19), (6.15), and (6.17)) given in (6.79).
For both bounds the pilot spacing has been chosen such that the channel
fading process is sampled with Nyquist rate, i.e., L = ⌊1/(2fd)⌋, see (7.35).
Note that the lower bound is an actual lower bound on the achievable rate
with joint processing, i.e., with the optimal receiver. In contrast to this, the
iterative code-aided channel estimation based receiver described by (6.19),
(6.15), and (6.17) is not able to exploit the information corresponding to the
term I(y0;x\0|y\0), see Section 6.2.2–6.2.4. Although the given upper bound
on the achievable rate is an upper bound for a specific receiver based on iter-
ative code-aided channel estimation, which is not optimal, the upper bound
is larger than the lower bound on the achievable rate with joint processing.
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In addition, as in Fig. 7.1 for comparison we again show the bounds on the
achievable rate with synchronized detection and a solely pilot based channel
estimation with a pilot spacing that maximizes the lower bound in (5.39).
This comparison gives an indication on the gain that can be expected when
using enhanced receivers with code-aided channel estimation in comparison
to a solely pilot based channel estimation.
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Fig. 7.3: Comparison of the lower bound on the achievable rate with joint
processing of data and pilot symbols and a pilot spacing Lopt that maxi-
mizes this bound, i.e., (7.34) in combination with (7.35), with bounds on the
achievable rate with i.i.d. zero-mean proper Gaussian (PG) input symbols;
rectangular PSD Sh(f)

Fig. 7.3 shows the lower bound on the achievable rate for joint processing of
data and pilot symbols when choosing L as given in (7.35), which maximizes
the lower bound in (7.34). This lower bound is compared to the bounds on the
achievable rate with i.i.d. zero-mean proper Gaussian input symbols that have
been given in Chapter 3. Obviously, for some parameters the lower bound on
the achievable rate for joint processing of data and pilot symbols, which is
achievable with i.i.d. zero-mean proper Gaussian data symbols, is larger than
the lower bound on the achievable rate with i.i.d. zero-mean proper Gaussian
input symbols, i.e., without the assumption of any pilot symbols. However,
this observation does not allow to argue that in these cases the use of pilot
symbols is better than i.i.d. symbols, as we only compare lower bounds.
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7.5 Summary

In the present chapter, we have studied the achievable rate with joint process-
ing of pilot and data symbols in the context of stationary Rayleigh flat-fading
channels. Therefor, in the first part we have formally shown that the mutual
information between the transmitter and the receiver can be expressed via
the solely pilot based channel estimate ĥpil. This solely pilot based channel
estimate is used in the derivation of a lower bound on the achievable rate with
joint processing of pilot and data symbol, which is the main contribution of
the present chapter.

We have compared this lower bound on the achievable rate with joint pro-
cessing of pilot and data symbols, on the one hand, with the bounds on the
achievable rate with synchronized detection and a solely pilot based channel
estimation and, on the other hand, with the upper bound on the achievable
rate with the iterative synchronized detection based receiver studied in Chap-
ter 6. These comparisons give an indication on the possible gain in terms of
the achievable rate when using a joint processing of pilot and data symbols
in comparison to the typically used synchronized detection based on a solely
pilot based channel estimation. Furthermore, we have compared the lower
bound on the achievable rate with joint processing of pilot and data symbols
with the bounds on the achievable rate with i.i.d. zero-mean proper Gaussian
input symbols derived in Chapter 3.



Chapter 8

MIMO Flat-Fading Channels

In the present chapter, we extend the bounds on the achievable rate with
i.d. input symbols given in Chapter 3 for the discrete-time flat-fading SISO
channel to the MIMO case, including spatial antenna correlation. Beside the
constraint on i.d. input symbols in temporal domain, as it has been also
used in the SISO case, we furthermore do not optimize over the spatial input
covariance matrix, but restrict to zero-mean input symbols on the individual
transmit antennas which are characterized by a spatial covariance as it is
optimal in case of a coherent channel.

Within this chapter, we first introduce the MIMO system model. After-
wards, we extend the bounds on the achievable rate given in Chapter 3 to
the MIMO scenario. Finally, we compare these bounds to existing bounds on
the achievable rate using synchronized detection in combination with a solely
pilot based channel estimation.

Like in the SISO case, the main novelty in the present chapter is the
derivation of an upper bound on the achievable rate, which is not explicitly
based on a peak power constraint. Therefore, it allows to give an upper bound
on the achievable rate with i.i.d. zero-mean proper Gaussian input symbols.
The main derivation steps for the extension of the bounds from the SISO case
to the MIMO case are similar to the ones used in [102] where capacity bounds
for peak power constrained MIMO wideband channels have been derived.

As the MIMO channel capacity is not the main subject of the present
work, for further reading we give a brief overview on literature regarding
the MIMO fading channel capacity. A general overview of results on the
capacity of MIMO channels is given in [42]. The basic papers concerning the
use of multiple antennas and the capacity of coherent spatially uncorrelated
MIMO fading channels are [36] and [120]. Results concerning the capacity
of spatially correlated MIMO fading channels in the coherent case are, e.g.,
given in [123], [124], [17], and [57]. Regarding further reading on capacity
results for the noncoherent capacity we refer back to Section 1.1. In addition,
the scenario of spatial antenna correlation in the noncoherent case has been
examined in [53], [114] and [132], where the first and the second one discuss
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this problem in the context of a block fading channel and the third one
assumes a temporally uncorrelated channel, i.e., both setups are different to
ours.

8.1 MIMO System Model

In this section, we extend the SISO system model given in Chapter 2 to the
MIMO case.

The input-output relation of the MIMO channel with nT transmit anten-
nas and nR receive antennas for an individual time instant k is given by

ỹ(k) = H̃(k)x̃(k) + ñ(k) (8.1)

where x̃(k) = [x1(k) . . . xnT (k)]
T ∈ CnT×1 is the channel input vector trans-

mitted over the nT transmit antennas at time k, the nR × nT matrix H̃(k)
is defined by

[
H̃(k)

]
ij
= hij(k) (8.2)

and represents the channel fading matrix with the complex-valued fading co-
efficients hij(k), 1 ≤ i ≤ nR, 1 ≤ j ≤ nT of the different subchannels.
Furthermore, ñ(k) = [n1(k) . . . nnR(k)]

T ∈ CnR×1 is the additive white Gaus-
sian noise vector. ỹ(k) = [y1(k) . . . ynR(k)]

T ∈ CnR×1 is the received signal
vector at time instant k.

Corresponding to the SISO case, the study of the achievable rate is based
on a matrix-vector notation incorporating the temporal domain. Therefore,
we use the following representation, considering a transmission duration of
N symbol intervals

y = Xh+ n (8.3)

where h results from stacking the vectors

h̄ij = [hij(1) . . . hij(N)]T ∈ CN×1, 1 ≤ i ≤ nR, 1 ≤ j ≤ nT (8.4)

containing the fading weights of the subchannel from transmit antenna j to
receive antenna i over time, as follows

h =
[
h̄T11 . . . h̄

T
1nT

. . . h̄TnR1 . . . h̄
T
nRnT

]T ∈ CN ·nT ·nR×1. (8.5)

Define

x̄j = [xj(1) . . . xj(N)]
T ∈ CN×1, 1 ≤ j ≤ nT (8.6)
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Fig. 8.1: Simplified block diagram of transmission system based on a discrete-
time flat-fading MIMO channel with nT = nR = 2 antennas

to be the vector consisting of the transmit symbols of transmit antenna j
over time, and X̄j = diag(x̄j). Hence, the N · nR ×N · nT · nR matrix X is
given by

X = InR ⊗
[
X̄1 . . . X̄nT

]
(8.7)

where ⊗ denotes the Kronecker product and InR the nR×nR identity matrix.
Furthermore, the received signal vector y and the noise vector n are given

by y =
[
ȳT1 . . . ȳ

T
nR

]T ∈ CN ·nR×1 and n =
[
n̄T1 . . . n̄

T
nR

]T ∈ CN ·nR×1 where

ȳi = [yi(1) . . . yi(N)]
T ∈ CN×1, 1 ≤ i ≤ nR (8.8)

n̄i = [ni(1) . . . ni(N)]
T ∈ CN×1, 1 ≤ i ≤ nR. (8.9)

Analogously we define x =
[
x̄T1 . . . x̄

T
nT

]T
. Fig. 8.1 shows exemplarily a block-

diagram of a 2× 2 MIMO system.
In the following, we describe the statistical properties of the different quan-

tities. First, we assume the processes {H̃(k)}, {x̃(k)}, and {ñ(k)} to be mu-
tually independent.

Furthermore, we assume that the elements of the noise sequence {nj(k)} at
receive antenna j are i.i.d. proper Gaussian random variables of zero-mean
and variance σ2

n. In addition, the noise sequences at the different receive
antennas are mutually uncorrelated, so that

Rn = E[nnH ] = σ2
nIN ·nR . (8.10)

Concerning the channel input, we assume that the transmit sequences
at the individual transmit antennas {xj(k)} consist of zero-mean i.d. input
symbols. Furthermore, we assume that the covariance of the input symbols
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over the different transmit antennas at time instant k is given by

Rx̃ = E
[
x̃(k)(x̃(k))H

]
, ∀k. (8.11)

The average transmit power is limited to P , i.e.,

P ≥ E
[
(x̃(k))H x̃(k)

]
. (8.12)

Notice that in case of a non-peak power constrained input it is optimal to use
the maximum average transmit power, see the discussion in Section 3.4.1.1.

For the MIMO system, we define the nominal SNR ρ as

ρ =
Pσ2

h

σ2
n

. (8.13)

We name ρ the nominal mean SNR, as it only corresponds to the mean SNR if
the maximum average power P is used, i.e., if (8.12) holds with equality. As for
non-peak power constrained input symbols the achievable rate is maximized
by using the maximum average transmit power P , in this case ρ corresponds
to the actual mean SNR.

As in the SISO case, the channel fading processes {hij(k)} are zero-mean
jointly proper Gaussian. Concerning their temporal statistics, we make the
same assumptions as in the SISO case, see Chapter 2. Therefore, the temporal
correlation of each individual subchannel process {hij(k)} is given by (2.2)
and the PSD (2.3), where we assume that all subchannels are characterized by
the same PSD. Therefore, the temporal correlation matrix of the individual
subchannels is given by

Rh̄ = E
[
h̄ijh̄

H
ij

]
, ∀i, j. (8.14)

8.1.1 Spatially Uncorrelated Channel

In case of spatially uncorrelated transmit antennas, we assume uncorre-
lated input symbols at the different transmit antennas, which are capacity-
achieving in case of perfect channel knowledge, i.e., Rx̃ is diagonal, see [120].
Their maximum average individual transmit power is given as

σ2
x =

P

nT
. (8.15)

As in case of a spatially uncorrelated channel the fading processes {hij(k)}
of the different subchannels are independent, we get

Rh = E
[
hhH

]
= InR ⊗ InT ⊗Rh̄. (8.16)
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8.1.2 Spatial Antenna Correlation

We also want to discuss the achievable rate of MIMO systems with spatial
correlation corresponding to the separable correlation model, see, e.g., [109]
and [123]. This model falls into the class of the unitary independent uni-
tary (UIU) model [123]. We now show how this model can be attributed to
the model of a MIMO system without spatial correlation using a unitary
transformation. The same approach has also been used in [102] and [53].

We assume that the spatial channel correlation of the transmit and the re-
ceive antennas are separable, allowing the following separation of the channel
matrix

H̃(k) = Θ̃
1
2

RH̃w(k)
(
Θ̃

1
2

T

)T
(8.17)

where Θ̃T and Θ̃R are the spatial transmit and receive correlation matrices,
being independent of the time index k and deterministic. The elements of the
matrix H̃w(k) are i.i.d. zero-mean proper Gaussian with variance σ2

h.
The eigenvalue decomposition of the spatial transmit and receive correla-

tion matrices are given by

Θ̃T = ŨT Φ̃ŨH
T (8.18)

Θ̃R = ŨRΨ̃ŨH
R (8.19)

where the matrices ŨT and ŨR are unitary and their columns are the eigen-
vectors of Θ̃T and Θ̃R. Furthermore, the matrices Φ̃ = diag(φ1, . . . , φnT )
and Ψ̃ = diag(ψ1, . . . , ψnR) are diagonal and contain the eigenvalues of the
spatial transmit and receive antenna correlation. Using these decompositions,
the system model in (8.1) can be transformed as follows

ỹ(k) = H̃(k)x̃(k) + ñ(k)

= Θ̃
1
2

RH̃w(k)
(
Θ̃

1
2

T

)T
x̃(k) + ñ(k)

= ŨRΨ̃
1
2 ŨH

R H̃w(k)Ũ
∗
T Φ̃

1
2 ŨT

T x̃(k) + ñ(k). (8.20)

In the following, we use the unitary transformation given in [53], [102] to get
a spatially decorrelated system model

ŨH
R ỹ(k) = Ψ̃

1
2 ŨH

R H̃w(k)Ũ
∗
T Φ̃

1
2 ŨT

T x̃(k) + ŨH
R ñ(k)

⇔ y̆(k) = Ψ̃
1
2 H̆w(k)Φ̃

1
2 ˜̃x(k) + n̆(k) (8.21)

where
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y̆(k) = ŨH
R ỹ(k) (8.22)

n̆(k) = ŨH
R ñ(k) (8.23)

H̆w(k) = ŨH
R H̃w(k)Ũ

∗
T (8.24)

˜̃x(k) = ŨT
T x̃(k). (8.25)

Due to the independence of the elements of ñ(k) and the unitarity of ŨH
R ,

n̆(k) and ñ(k) are identically distributed, i.e., n̆(k) ∼ ñ(k). Using the same

argumentation, we get H̆w(k) ∼ H̃w(k). Furthermore, unitary transforma-
tions preserve norms, therefore ˜̃x(k) fulfills the same power constraint as x̃(k).
Finally, the transformed channel output vector y̆(k) is a sufficient statistic
of ỹ(k). Due to these properties, the spatially decorrelated system model in
(8.21) exhibits the same mutual information as the original one in (8.1). The
elements of the transmit vector ˜̃x(k) contain the signal transmitted on the
different transmit eigenmodes and do not directly correspond to the symbols
transmitted over the individual antennas. The same holds for the channel out-
put vector y̆(k), whose elements represent the observations on the individual
receive eigenmodes.

8.1.2.1 Spatial Channel Input Correlation

We would still have to find the spatial covariance matrix Rx̃ of the input
symbols, see (8.11), which maximizes the achievable rate. As this is out of
the scope of the present work, we apply the spatial input covariance that
is optimal for the case of perfect CSI at the receiver and statistical channel
knowledge at the transmitter. Furthermore, we guess that for the important
case of small channel dynamics the input distribution that is optimal for the
coherent case will not be highly non-optimal for the noncoherent case.

Let the eigenvalue decomposition of the spatial transmit signal correlation
matrix be given by

Rx̃ = VαPVH (8.26)

where the columns of the unitary matrix V are the eigenvectors of Rx̃ and
the diagonal matrix αP = αdiag(p1, . . . , pnT ) contains the eigenvalues of
Rx̃ which correspond to the average transmit powers put onto the transmit
eigenmodes. The factor α ∈ [0, 1] allows for average transmit powers being
smaller than the maximum average transmit power P . Hence,

nT∑

j=1

pj = P. (8.27)

For perfect channel state information at receiver side, in [57] and [123] it
has been shown that the capacity-achieving input correlation is character-
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ized by eigenvectors corresponding to the eigenvectors of the spatial channel
transmit covariance matrix, i.e.,

V = Ũ∗
T . (8.28)

Introducing this into the spatially decorrelated channel model in (8.21), we
get

y̆(k) = Ψ̃
1
2 H̆w(k)Φ̃

1
2 P̃

1
2 x̆(k) + n̆(k) (8.29)

with

P̃ =
P

σ2
x

(8.30)

and x̆(k) being a vector with i.i.d. zero-mean symbols with variance ασ2
x

and σ2
x = P/nT . For the coherent and non-peak power constrained case, the

optimum transmit powers pj have been numerically evaluated in [124] by
iteratively solving an implicit system of equations. A closed form solution for
the optimum transmit powers is as far as we know not available.

Remark: To keep notation simple, in the following derivation we use (8.29)
instead of (8.1) without changing the notation of the temporally stacked
representation in (8.3). Comparing (8.29) with (8.1), and identifying the H̃

with Ψ̃
1
2 H̆w(k)Φ̃

1
2 P̃

1
2 , the correlation matrix of the stacked channel vector

h in (8.5), including the transmit power allocation P̃, is given by

Rh = E
[
hhH

]
= Ψ̃⊗ (Φ̃P̃)⊗Rh̄. (8.31)

Thus, for the evaluation of a spatially correlated system in comparison to a
spatially uncorrelated system, (8.16) has to be substituted by (8.31) for Rh.

8.2 Bounds on the Achievable Rate

Corresponding to the SISO case in Chapter 3, we study the achievable rate of
a MIMO system with i.d. zero-mean input symbols in the temporal domain.
Analogous to the SISO case the restriction to i.d. input symbols in temporal
domain is required in the following derivations for mathematical reasons. Fur-
thermore, we assume the input symbols on the individual transmit antennas
to be zero-mean and we assume the spatial covariance matrix of the transmit
symbols on the individual transmit antennas to be given by the one that is
capacity-achieving in the coherent case. On the one hand, we give bounds on
the achievable rate for the case of a peak power constraint and on the other
hand for the special case of i.i.d. zero-mean proper Gaussian input symbols.
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Corresponding to (3.1) the ergodic capacity C of the MIMO channel is
given by

C = sup
PMIMO

I ′(y;x) (8.32)

where PMIMO is the set containing all PDFs p(x) over the complex set CN ·nT

with an average power P , i.e.,

PMIMO =

{
p(x)

∣∣x ∈ CN ·nT ,
1

N
E
[
xHx

]
≤ P

}
. (8.33)

As in Chapter 3, we simplify the problem and do not study the capacity
in general but restrict to i.d. input symbols x̆(k), see (8.29), i.e., the vector
input symbols at the different time instances are i.d., as it has already been
stated in Section 8.1. In addition, we restrict to zero-mean input symbols
x̆(k). Furthermore, we assume the spatial transmit covariance matrix Rx̃ to
be fixed to the one that is capacity-achieving in the coherent case as it has
been discussed in Section 8.1.1 and Section 8.1.2.1. As we discuss the spatially
correlated case based on the unitary transformation in (8.29), and use the
simplified notation as discussed in the remark at the end of Section 8.1.2.1,
in the following we assume that

Rx̆ = ασ2
xInT = α

P

nT
InT (8.34)

where the factor α ∈ [0, 1] allows for using an average transmit power being
smaller than the maximum average transmit power P , cf.(8.12).

Furthermore, the normalized input power matrix P̃ in (8.30) is chosen
such that it maximizes the coherent capacity, see Section 8.1.2.1 under the

constraint trace
[
P̃
]
= nT .

Therefore, in the following we use the term achievable rate R which we
define as

R = sup
PMIMO, i.d.

I ′(y;x) (8.35)

with the set PMIMO, i.d. given by

PMIMO, i.d. =

{
p(x)

∣∣∣∣x ∈ CN ·nT , p(x̆(k)) = p(x̆(l)) ∀k, l, P̃ fixed

{
E [x̆(k)] = 0, E

[
x̆(k) (x̆(k))

H
]
=
αP

nT
InT , α ∈ [0, 1], ∀k

}}

(8.36)
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where we have used the substitution of (8.1) by (8.29), see remark at the end
of Section 8.1.2.1.

At some specific points, we further introduce a peak power constraint on
the input symbols. Therefore, we define the following set of input distributions

Ppeak
MIMO, i.d. =

{
p(x)

∣∣∣∣x ∈ CN ·nT , p(x̆(k)) = p(x̆(l)) ∀k, l, P̃ fixed,

{
E [x̆(k)] = 0,E

[
x̆(k) (x̆(k))

H
]
=
αP

nT
InT , α ∈ [0, 1],

p(x̆(k)) = 0 ∀x̆(k) : (x̆(k))H x̆(k) > Ppeak

}
∀k
}

(8.37)

which corresponds to the set PMIMO, i.d. with a further restriction to the peak

power, i.e., (x̆(k))
H
x̆(k) ≤ Ppeak.

As in Chapter 3, the derivation is based on the separation of the mutual
information rate given in (3.10). Therefore, in Section 8.2.1 the lower and the
upper bound on the channel output entropy rate h′(y) derived in Section 3.2.1
and Section 3.2.2 are extended to the MIMO case. Afterwards, in Section 8.2.2
the upper and lower bound on the conditional channel output entropy rate
h′(y|x) derived in Section 3.3 for the SISO case are extended to the MIMO
case.

8.2.1 The Received Signal Entropy Rate h′(y)

8.2.1.1 Lower Bound on h′(y)

Corresponding to the derivation in Section 3.2.1 the channel output entropy
rate is lower-bounded by

h′(y) ≥ h′L(y) = I ′(y;x|h) + h′(y|h,x). (8.38)

The first term on the RHS of (8.38) I ′(y;x|h) is the mutual information
rate in case of perfect channel knowledge. As it depends on the input distri-
bution, we postpone its evaluation to Section 8.2.3.2 where we derive bounds
on the achievable rate.

The second term on the RHS of (8.38) originates from AWGN and, thus,
can be calculated as

h′(y|h,x) = nR · log
(
πeσ2

n

)
. (8.39)

Introducing (8.39) into (8.38) gives a lower bound on h′(y).



162 8 MIMO Flat-Fading Channels

8.2.1.2 Upper Bound on h′(y)

Analogously to the SISO case, we make use of the fact that the entropy
h(y) of the complex random vector y of dimension N · nR with nonsingular
correlation matrix Ry = E[yyH ] is upper-bounded by [82]

h(y) ≤ log
[
(πe)N ·nR det(Ry)

]
. (8.40)

Based on the spatially decorrelated input-output relation in (8.29) the cor-
relation of the channel output y̆ is given by

Ry̆ = Ey̆

[
y̆y̆H

]

= E
[
Ψ̃

1
2 H̆w(k)Φ̃

1
2 P̃

1
2 x̆(k)(x̆(k))HP̃

1
2 Φ̃

1
2 (H̆w(k))

HΨ̃
1
2

]
+ σ2

nInR

= Ψ̃σ2
hα

nT∑

j=1

(pjφj) + σ2
nInR . (8.41)

The factor α ∈ [0, 1] allows for an average transmit power smaller than P .
Consequently, the channel output entropy rate can be upper-bounded by

h′(y) ≤ 1

N
log
[
(πe)N ·nR det(Ry)

]

(a)

≤ log [(πe)nR det(Ry̆)]

= nR log (πe) +

nR∑

i=1

log


ψiσ2

hα

nT∑

j=1

(pjφj) + σ2
n


 = h′U (y). (8.42)

where (a) results from discarding the temporal correlation.
For the special case of a spatially uncorrelated channel we get

h′(y) ≤ nR log
(
πe
(
αPσ2

h + σ2
n

))
= h′U (y). (8.43)

8.2.2 The Entropy Rate h′(y|x)

In this section, we extend the upper and the lower bound on h′(y|x), given
in Section 3.3 for the SISO case, to the MIMO case.

8.2.2.1 Upper Bound on h′(y|x)

Corresponding to the SISO case the probability density function of y con-
ditioned on x is zero-mean proper Gaussian. Its covariance matrix Ry|x is
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given by

Ry|x = XRhX
H + σ2

nIN ·nR

= X
(
Ψ̃⊗ (Φ̃P̃)⊗Rh̄

)
XH + σ2

nIN ·nR (8.44)

where we used (8.31). Thus, the entropy h(y|x) is given by

h(y|x) = Ex

[
log
(
(πe)N ·nR det(Ry|x)

)]
(8.45)

= Ex



nR∑

i=1

log


(πe)N det


ψi

nT∑

j=1

pj
σ2
x

φjX̄jRh̄X̄
H
j + σ2

nIN






 .

(8.46)

In the next steps, we principally follow the same ideas as they have been
used in [102]. By rewriting the sum of matrices in (8.46) by means of stacked
matrices we get

h(y|x) = Ex



nR∑

i=1

log det


ψi
σ2
n

(
X̄1 . . . X̄nT

) (
(Φ̃P̃)⊗Rh̄

)



X̄H
1
...

X̄H
nT


+ IN


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=

nR∑

i=1

nT∑

j=1

log det

(
ψiαφjpj
σ2
n

Rh̄ + IN

)
+NnR log
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log det
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ψiαφjpj
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+NnR log
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πeσ2
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)
. (8.47)

Here, (a) follows from the fact that for a matrix A of dimension m × n
and a matrix B of dimension n ×m with m ≤ n, the product BA has the
same eigenvalues as AB, counting multiplicity, together with an additional
n − m eigenvalues equal to 0, [52, Theorem 1.3.20]. Equation (3.25) is a
special case of this theorem. For (b), we have used the concavity of log det on
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the set of positive definite matrices. Furthermore, we assume zero-mean input
symbols on the individual transmit antennas and have used the independency
of the elements of x̄k and x̄l for k 6= l, i.e., the independency of the transmit
symbols on the individual transmit eigenmodes, which for the special case
of a spatially uncorrelated channel corresponds to the independency of the
symbols transmitted over the individual transmit antennas. In addition, we
have used that the average power per eigenmode E [[x̆(k)]l] ∀k, l, i.e., before
weighting with the matrix P̃, see (8.29), is given by ασ2

x. Equality (c) follows
from the the fact that the matrix (Φ̃P̃) is diagonal. For (d), we have used the
spectral decomposition of the channel correlation matrix Rh̄ as in the SISO
case, see (3.21).

As in the SISO case, we evaluate the case N → ∞ based on Szegö’s
theorem and finally get the following upper bound

h′(y|x) ≤ h′U (y|x)

=

nR∑

i=1

nT∑

j=1

∫ 1
2

− 1
2

log

(
ψiαpjφj
σ2
n

Sh(f) + 1

)
df + nR log

(
πeσ2

n

)
. (8.48)

For the special case of a spatially uncorrelated channel, (8.48) simplifies to

h′U (y|x) = nRnT

∫ 1
2

− 1
2

log

(
αP

nTσ2
n

Sh(f) + 1

)
df + nR log

(
πeσ2

n

)
. (8.49)

Obviously, the pre-log of the first summand of this bound scales with the
number of transmit antennas nT and the number of receive antennas nR and
the support of Sh(f).

8.2.2.2 Lower Bound on h′(y|x) for a Rectangular PSD

In this section, we extend the lower bound on h′(y|x) for a rectangular PSD,
which is derived in Section 3.3.2 for the SISO case, to the MIMO scenario.

The entropy h(y|x) given in (8.46) can be lower-bounded as follows

h(y|x) = Ex
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+NnR log
(
πeσ2

n

)



8.2 Bounds on the Achievable Rate 165

= Ex

[
nR∑

i=1

log det

(
ψi
σ2
n

ZRh̄ + IN

)]
+NnR log

(
πeσ2

n

)
(8.50)

where Z = diag(z(1), . . . , z(N)) and

z(k) =

nT∑

j=1

pj
σ2
x

φj |xj(k)|2. (8.51)

For (a), we have used the following inequality that has been proven in [102,
Lemma 4]

det(IN +A⊙B) ≥ det (IN + (IN ⊙A)B) (8.52)

for A and B being N ×N nonnegative definite Hermitian matrices. Here ⊙
denotes the Hadamard product.

Now, following exactly the same approach as in the SISO case based on the
asymptotic equivalence of Toeplitz and circulant matrices, see Section 3.3.2,
we substitute the Toeplitz matrix Rh̄ by a circulant matrix Ch̄ with the
eigenvalue distribution given in (3.44) which corresponds to a rectangular
PSD of the channel fading process for N → ∞. As in Section 3.3.2, the
spectral decomposition of Ch̄ is given by

Ch̄ = FΛ̃hF
H (8.53)

with F being unitary and Λ̃h being diagonal and containing the eigenvalues
given in (3.44).

Based on this, the entropy rate h′(y|x) in (8.50) can be lower-bounded by

h′(y|x) ≥ lim
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(b)
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Ex log
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φj |xj(1)|2 + 1
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+ nR log(πeσ2

n)

= h′L(y|x) (8.54)
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where for (a) we have used the asymptotic equivalence of ψi

σ2
n
ZRh̄ + IN and

ψi

σ2
n
ZCh̄ + IN , which can be shown analogously as in the SISO case in Sec-

tion 3.3.2. In addition, for (b) we have used the spectral decomposition of
Ch̄ and (3.25). The remaining steps are analogous to the ones in the SISO
case, see Lemma 3.1 and cf. (3.59)–(3.60). In the second last line of (8.54) for
xj(k) the time instant k = 1 is chosen as an arbitrary time instant.

With (8.54) we have found a general expression for the lower bound on
h′(y|x) for i.d. input distributions. As the derivation of this bound is not
based on a peak power constraint, it enables us to give upper bounds on the
achievable rate for proper Gaussian input symbols.

8.2.3 The Achievable Rate

Based on the derived lower and upper bounds on h′(y) and h′(y|x) we now
give upper and lower bounds on the achievable rate with temporally i.i.d.
zero-mean proper Gaussian inputs and the constraint on a fixed spatial input
signal covariance matrix as discussed above. Furthermore, we also give bounds
on the achievable rate with temporally i.d. peak power constrained input
symbols.

8.2.3.1 Upper Bound

Gaussian Input Distribution

Obviously, with (3.10) an upper bound on the achievable rate is given by

I ′(y;x) ≤ h′U (y)− h′L(y|x) (8.55)

with h′U (y) and h′L(y|x) given by (8.42) and (8.54). Now, we give an up-
per bound on the mutual information rate I ′(y;x) for the special case of
a zero-mean proper Gaussian input distribution, with i.i.d. input elements
in temporal and also in the eigenmode domain given by the inputs of the
spatially decorrelated system model in (8.29). This means that the elements
of x̆(k) are i.i.d.. Due to the transformation in (8.29) this corresponds to the
capacity-achieving input distribution in case of perfect channel state infor-
mation at the receiver side. In this case and for an average power of ασ2

x

per element of x̆(k), i.e., per eigenmode the lower bound on h′(y|x) in (8.54)
becomes
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h′L(y|x)
∣∣
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= 2fd
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

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e−ujduj

+ nR log(πeσ2
n) (8.56)

where the index PG indicates i.i.d. zero-mean proper Gaussian input symbols.
With (8.56) we get

sup
α∈[0,1]
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log
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U (y;x)

∣∣
PG

(8.57)

where (a) corresponds to the observation that the upper bound is maximized
by using the maximum average power P , which can be shown analogous to
the SISO case discussed in Section 3.4.1.2. To the best of our knowledge the
upper bound in (8.57) is new.

Corresponding to (3.87) in the SISO case, the upper bound in (8.57) can
also be modified based on the coherent capacity which forms an upper bound
to the noncoherent capacity. The coherent capacity in the MIMO scenario is
given by (8.64) and for the special case of a spatially uncorrelated channel
by (8.66), see below.

Peak Power Constraint

For the case of a peak power constraint, we have to calculate the following
supremum

sup
Ppeak

MIMO, i.d.

I ′(y;x) ≤ sup
Ppeak

MIMO, i.d.

{h′U (y)− h′L(y|x)} . (8.58)

Following in principle the same bounding approach as for the SISO case in
Section 3.4.1.1, the supremum in (8.58) yields



168 8 MIMO Flat-Fading Channels

sup
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MIMO, i.d.
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(8.59)

with the nominal peak-to-average power ratio β defined by, cf. (3.75)

β =
Ppeak

P
. (8.60)

For the derivation of (8.59) we have used that
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(8.61)

where (a) results from a similar argumentation as in (3.71). Furthermore,

the set Ppeak
MIMO,i.d.|α corresponds to Ppeak

MIMO,i.d. in (8.37) but with an average
transmit power fixed to αP with equality.

Notice that the calculation of the supremum in (8.58) is based on the as-
sumption of a fixed spatial input covariance matrix Rx̃ in (8.11) and, there-
fore, on a fixed P̃ in the transformed channel in (8.29). Hence, the powers
pj in (8.59) are fixed. Furthermore, we assume that they are chosen such
that they would be optimal in case of a coherent channel. For a spatially
uncorrelated channel (8.59) simplifies to

I ′
U (y;x)

∣∣
Ppeak

= sup
α∈[0,1]

{
nR log (αρ+ 1)− 2fd

α

β
nR log

(
1

2fd
ρβ + 1

)}

(8.62)

as in this case ψi = 1, φi = 1, and pj = P/nT .
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With (8.59), we have found an upper bound on the achievable rate with
temporally i.d. distributed input symbols with a peak power constraint. Here
it has to be stressed again that the transmit covariance matrix Rx̃, see (8.11)
is not optimized, but taken as it would be optimal in case of perfect CSI at
the receiver. Notice that this upper bound only holds for a rectangular PSD
of the channel fading process. As in the case of Gaussian input distributions,
the upper bound in (8.59) can be modified using the coherent upper bound,
cf. (3.87).

8.2.3.2 Lower Bound

No Peak Power Constraint

Now, we give a lower bound on the achievable rate with non peak power
constrained input symbols. Obviously, as a lower bound on the achievable
rate, this bound is also a lower bound on the capacity. Furthermore, this
lower bound holds also when restricting to i.i.d. zero-mean proper Gaussian
input symbols.

Using (8.38) and (8.48), a lower bound on the capacity that can be achieved
with temporally i.d. input symbols is given by

sup
PMIMO, i.d.

I ′(y;x) ≥ sup
PMIMO, i.d.

{h′L(y) − h′U (y|x)}

= sup
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
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(8.63)

where PMIMO, i.d.|α corresponds to PMIMO, i.d., but with a maximum average
transmit power of αP .

The first term on the RHS of (8.63), i.e., I ′(y;x|h) is the mutual infor-
mation rate in case of perfect channel knowledge. It is well known that the
supremum of this term, i.e., the capacity, is achieved for i.i.d. zero-mean
proper Gaussian input vectors over time and is given by
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sup
PMIMO, i.d.|α

I ′(y;x|h) = sup
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H̃Rx̃H̃
H

)

(8.64)

where PMIMO|α corresponds to PMIMO but with a maximum average power
of αP . Notice, we express I ′(y;x|h) based on the genuine system model in
(8.1), i.e., not based on the spatially decorrelated model in (8.29).

Thus, we get
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(8.65)

where for (a) we choose α = 1, i.e., use the maximum average transmit power,
which does not maximize the argument of the supremum over α in general. In
addition, the last equality holds as the given lower bound is achievable with
i.i.d. (in temporal domain) zero-mean proper Gaussian input symbol vectors
x̃(k).

Expressions for the coherent capacity, i.e., the first term on the RHS of
(8.65) will be recalled in the following. Thus, with (8.65) we have found a
lower bound on the capacity. Notice, the modification of the lower bound
(8.65) based on the nonnegativity of mutual information that has been used
in (3.94) for the SISO case can also be applied in the MIMO case.

Spatially Uncorrelated MIMO Channel

In [120] it has been shown that in case of a coherent and spatially uncorrelated
MIMO fading channel spatially independent transmit symbols, i.e., Rx̃ =
σ2
xInT are capacity-achieving. The capacity is then given by the following

closed form solution of (8.64) for α = 1
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sup
PMIMO

I ′(y;x|h) =
∫ ∞

0

log

(
1 +

ρ

nT
λ

)m−1∑

k=0

k![Ln−mk (λ)]2

(k + n−m)!
λn−me−λdλ

(8.66)

where m = min{nT , nR}, n = max{nT , nR}, Lij are the associated Laguerre
polynomials, and ρ is the SNR as defined in (8.13).

Introducing (8.66) into (8.65) results in a lower bound on the capacity with
non-peak power constrained input symbols in case of a spatially uncorrelated
channel.

Spatially Correlated MIMO Channel

For the case of spatially correlated coherent fading channels, the capacity-
achieving input covariance matrix Rx̃ has already been discussed in Sec-
tion 8.1.2.1.

The capacity for this case has been studied in [123] based on an asymptotic
analysis. This analysis is asymptotic in the number of transmit and receive
antennas and is based on means of random matrix theory. The coherent
capacity converges almost surely to

sup
PMIMO

1

nR
I ′(y;x|h)

= µE [log(1 + ρΛΓ (ρ))] + E [log(1 + ρΛRΥ (ρ))]− µρΓ (ρ)Υ (ρ) (8.67)

where µ = nT

nR
and

Γ (ρ) =
1

µ
E

[
ΛR

1 + ρΛRΥ (ρ)

]
(8.68)

Υ (ρ) = E

[
Λ

1 + ρΛΓ (ρ)

]
(8.69)

with the expectation over Λ and ΛR whose distributions are given by the
asymptotic empirical eigenvalue distribution of Φ̃P and Ψ̃. In [123] it has
been shown that this asymptotic approximation already becomes tight for a
relatively small number of antennas. Therefore, (8.67) only holds explicitly
for an asymptotic number of antennas, and approximately already for a few
number of transmit and receive antennas [123].

Peak Power Constraint

Obviously, the lower bound in (8.65) does not hold when we introduce a peak
power constraint. Corresponding to the SISO case discussed in Section 3.4.2.2,
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we can also give the following lower bound on the achievable rate with a peak
power constraint

sup
Ppeak

MIMO, i.d.

I ′
L(y;x) = sup
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where I
(
y̆; x̆

∣∣h̃
) ∣∣

CM,P
is the coherent mutual information for input sym-

bol vectors x̆(k) consisting of i.i.d. zero-mean circularly symmetric con-
stant modulus input symbols with power σ2

x = P/nT , cf. (8.29). Thus, with
I ′
L (y;x) |Ppeak

we have found a lower bound on the peak power constrained
capacity that is achievable with temporally i.d. input symbols. However, as
the bound in (8.70) corresponds to a lower bound for constant modulus sig-
naling it is not tight in general. Like in the SISO case, there is no closed form
solution available for the coherent capacity with constant modulus inputs,
i.e., the first term in (8.70) has to be calculated numerically, see, e.g., [49] for
PSK signaling.

For the case of frequency-selective MIMO fading channels, a lower bound
that is related to (8.70) is known from [102], see Section 8.2.3.6 for a detailed
discussion.

8.2.3.3 Numerical Evaluation for Gaussian Inputs

Fig. 8.2a to Fig. 8.2c show the bounds on the achievable rate with i.i.d.
zero-mean proper Gaussian inputs and no spatial channel correlation for an
SNR of 6 dB for an equal number of transmit and receive antennas, one
receive antenna and various transmit antennas, and one transmit antenna
and various receive antennas. Obviously, these bounds become very loose for
an increasing number of transmit and receive antennas.

Fig. 8.2d shows exemplarily for nT = nR = 5 the effect of the SNR on the
bounds on the achievable rate, showing that the gap between the upper and
lower bound decreases with an decreasing SNR.

For fd → 0 the well known effects of the number of transmit and receive an-
tennas in case of a coherent channel, e.g., described in [120], can be observed.
That means that for an equal number of transmit and receive antennas the
capacity approximately increases linearly with the number of antennas. For
one receive antenna the capacity slightly increases with an increasing number
of transmit antennas, approaching the AWGN channel capacity for nT → ∞.
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For one transmit antenna and with an increasing number of receive antennas,
the capacity increases approximately logarithmically. These results are obvi-
ous, as in case of fd → 0 the second term in the lower bound on the capacity
in (8.65) approaches zero and thus (8.65) approaches the coherent capacity.
Obviously, the lower bound becomes tight for fd → 0.

For larger fd it is in general difficult to give statements on the achievable
rate as the bounds are not tight.

In general, it has to be considered that all bounds shown in Fig. 8.2 hold
only while using the input distribution being capacity-achieving in case of a
coherent channel. In the case of a spatially uncorrelated channel as considered
in Fig. 8.2 this means that we assume i.i.d. input symbols in time and over
the transmit antennas, which are all zero-mean proper Gaussian. In general,
these input distributions will not be capacity-achieving in the noncoherent
scenario. And if we deviate from this assumption, we could also enhance the
bounds on the achievable rate. Therefore, consider, e.g., Fig. 8.2a. Obviously,
the lower bound for nT = 1 is larger than the lower bound for nT = 5 for
fd > 0.05. This means, that when switching of transmit antennas, we get a
larger lower bound on the achievable rate. But switching of antennas means
to modify the input distribution, which is not captured by our bounds as
we initially made the assumption that we use the input distribution that is
capacity-achieving in case of a coherent channel. Likewise, studying Fig. 8.2b,
it can be observed that the upper bound on the achievable rate with nT = 5
transmit antennas is smaller than the upper bound for nT = 1 transmit
antennas for fd > 0.03. However, as the upper bounds and the lower bounds
on the achievable rate are not tight, the given bounds are not sufficient to
give statements on the optimum number of transmit antennas depending on
the channel dynamics.

8.2.3.4 Tightness

In this section, we discuss the tightness of the upper and the lower bound
on the achievable rate with i.i.d. zero-mean proper Gaussian inputs for the
special case of a spatially uncorrelated channel.

In contrast to the SISO case discussed in Section 3.4.3.2, it is difficult to
evaluate the tightness of the upper and the lower bound on the achievable
rate given in (8.57) and (8.65) based on the tightness of the upper and lower
bounds on h′(y) and h′(y|x). Therefore, we evaluate the tightness based on
the following separation of the mutual information rate, given by inserting
(3.8) into (3.7)

I ′(y;x) = I ′(y;x|h) − I ′(y;h|x) + I ′(y;h). (8.71)

The first term on the RHS of (8.71) I ′(y;x|h), which is the coherent mutual
information rate, is known and given in (8.66).
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Fig. 8.2: Achievable rates with i.i.d. zero-mean proper Gaussian in-
put distribution, spatially uncorrelatedMIMO channel; upper bound (8.57)
in combination with coherent capacity, cf. (3.87)/(8.66); lower bound (8.65)
in combination with nonnegativity of mutual information, cf. (3.94); rectan-
gular PSD Sh(f)

On the one hand, we can express the lower bound on the achievable rate
in (8.63) as follows

I ′
L(y;x) = h′L(y)− h′U (y|x)

= I ′(y;x|h) + h′(y|h,x) − I ′
U (y;h|x) − h′(y|h,x)

= I ′(y;x|h) − I ′
U (y;h|x) (8.72)

where I ′
U (y;h|x) is an upper bound on I ′(y;h|x). As the comparison with

(8.71) shows, for the lower bound on the achievable rate I ′
L(y;x), we use an

upper bound on I ′(y;h|x) and the following lower bound

I ′
L(y;h) = 0. (8.73)
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On the other hand, we can express the upper bound in (8.57) by

I ′
U (y;x) = h′U (y) − h′L(y|x)

= h′U (y) − h′(y|h) − h′L(y|x) + h′(y|h) + h′(y|x,h) − h′(y|x,h)
= I ′

U (y;h)− I ′
L(y;h|x) + I ′(y;x|h) (8.74)

where I ′
L(y;h|x) is a lower bound on I ′(y;h|x) and I ′

U (y;h) is an upper
bound on I ′(y;h). The upper bound on I ′(y;h) is given by

I ′
U (y;h) = h′U (y) − h′(y|h)

= h′U (y) − I ′(y;x|h) − h′(y|x,h). (8.75)

For h′U (y), we use the upper bound in (8.43) given by the fact that the
entropy rate is maximized for proper Gaussian random variables.

The upper and lower bound on I ′(y;h|x) in (8.72) and (8.74) can be
expressed as

I ′
L(y;h|x) = h′L(y|x) − h′(y|h,x) (8.76)

I ′
U (y;h|x) = h′U (y|x) − h′(y|h,x) (8.77)

where h′U (y|x) and h′L(y|x) have been calculated in (8.48) and (8.56).
Now consider that the upper bound I ′

U (y;h|x) is used to lower-bound
I ′(y;x) in (8.72). As mutual information is always nonnegative, a simple
lower bound on I ′(y;x) is given by zero. Therefore, for the final lower bound
I ′
Lmod

(y;x), cf. (3.94), we use the upper bound I ′
U (y;h|x) only if it is smaller

than I ′(y;x|h), see (8.72). Therefore, we can introduce the following auxiliary
quantity

I ′
Uuseful

(y;h|x) = min {I ′
U (y;h|x), I ′(y;x|h)} . (8.78)

Note that I ′
Uuseful

(y;h|x) is not an upper bound on I ′(y;h|x).
Fig. 8.3 shows the upper and lower bounds on I ′(y;h|x) and an approxi-

mative (finite observation interval length) numerical evaluation of I ′(y;h|x)
for a spatially uncorrelated channel, i.i.d. zero-mean proper Gaussian inputs,
nT = nR = 5 transmit and receive antennas, and an SNR of 6 dB. This fig-
ure clearly shows that the upper bound I ′

U (y;h|x) is very close to I ′(y;h|x)
for the channel dynamics fd where I ′

Uuseful
(y;h|x) is not anyway given by

I ′(y;x|h), see (8.78). Therefore, the gap between the lower bound I ′
L(y;x)

and the actual achievable rate I ′(y;x) is mainly given by the term I ′(y;h)
which we lower-bound by zero, see (8.73). Therefore, to get a tighter lower
bound on the achievable rate we need a tighter lower bound on I ′(y;h) than
the one given in (8.73). That means that a tighter lower bound on the output
entropy rate h′(y) would be required.

To evaluate the tightness of the upper bound I ′
U (y;x) we have to study

how tight I ′
U (y;h) and I ′

L(y;h|x) are, see (8.74). Fig. 8.3 shows I ′
L(y;h|x) in
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I ′
Uuseful

(y;h|x) is not an upper bound on I ′(y;h|x); rectangular PSD Sh(f)

comparison to its approximative numerical evaluation. Obviously, for fd = 0
and fd = 0.5 I ′

L(y;h|x) becomes tight, while in between there is a gap. For
the upper bound I ′

U (y;h) in (8.75) we use the upper bound h′U (y) in (8.43)
and thus it is based on the entropy maximizing characteristic of proper Gaus-
sian random variables. We know that this bound is increasingly loose with an
increasing number of receive antennas and depending on the channel dynam-
ics. For small channel dynamics it is very loose due to the fact that its calcu-
lation h′U (y) assumes that the receive symbols at different time instances are
independent. This assumption has been taken implicitly, as the upper bound
is based on proper Gaussian random variables. In fact, the receive symbols
at the different time instances are uncorrelated. As proper Gaussian random
variables that are uncorrelated are also independent, during upper bounding
we discard all dependencies between the received symbols at different time
instances, while in fact the observations ỹ(k) at different time instances are
not independent. But also for the extreme case of an uncorrelated channel,
i.e., fd = 0.5, the upper bound h′U (y) is still loose, as due to the bound-
ing based on proper Gaussian random variables the observations of different
receive antennas are assumed to be independent. This is not the case in real-
ity as the observations at the different receive antennas depend on common
transmit symbols. In fact, the observations of different receive antennas at
the same time instant are uncorrelated, but not independent.
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In conclusion it can be stated that for tighter upper and lower bounds on
the achievable rate tighter upper and lower bounds on the channel output
entropy rate h′(y) are strongly required. Furthermore, a tighter lower bound
on I ′(y;h|x) would be valuable, whereas the tightness of I ′

U (y;h|x) is not a
major issue. For the SISO case we already tried to give an enhanced upper
bound on h′(y), see Section 4.2.2. However, already in the SISO case we did
not get to a solution for an enhanced upper bound on h′(y).

8.2.3.5 Effect of Antenna Correlation

In this section, we show the effect of spatial antenna correlation on the
achievable rate. For zero-mean proper Gaussian input symbols in Fig. 8.4 the
bounds on the achievable rate for a MIMO channel with nT = nR = 5 trans-
mit and receive antennas have been plotted for different SNRs and different
spatial antenna correlations including a comparison to the case of uncorre-
lated transmit and receive antennas. For the spatially correlated channel the
asymptotic approximation in (8.67) has been used. Furthermore, the spa-
tial transmit signal covariance matrix Rx̃ has been chosen as discussed in
Section 8.1.2.1. The antenna correlation matrices ΘT and ΘR are given by

[
ΘT/R

]
k,l

= e−0.05d2T/R(k−l)2 (8.79)

where dT is the antenna spacing between the individual transmit antennas of
a linear antenna array, and analogous dR is the antenna spacing of the linear
receive antenna array both in wavelengths. This model has also been used
in [122], however, only for spatial correlation at the transmitter side.

Fig. 8.4a shows the effect of spatial antenna correlation for an SNR of
6 dB. Both transmit and receive antennas are correlated with dT = dR = 1.
Obviously, for small channel dynamics (fd < 0.01) it can be stated that
the antenna correlation reduces the achievable rate. Fig. 8.4b and Fig. 8.4c
show the cases where spatial correlation exists only at the transmitter or
the receiver side. Also in these two cases the antenna correlation reduces the
achievable rate for small channel dynamics. Due to the fact that the bounds
are rather loose, it is not possible to give statements on the effect of spatial
channel correlation in general. As the upper and lower bound on the mutual
information get closer for smaller SNR, in Fig. 8.4d to Fig. 8.4f we plot the
upper and lower bounds on the achievable rate for a very low SNR of −6 dB
and for different spatial antenna correlations. Fig. 8.4d shows the achievable
rate for spatial correlation at the transmit and the receive antennas, Fig. 8.4e
shows the achievable rate for the case of spatially correlated receive antennas
and uncorrelated transmit antennas, and Fig. 8.4f shows the achievable rate
for the case of spatially uncorrelated receive antennas and spatially corre-
lated transmit antennas. First we look at very small channel dynamics. For
a very small SNR of −6 dB it can be observed that spatial correlation at the
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receiver side reduces the achievable rate, see Fig. 8.4e, spatial correlation at
the transmitter side significantly increases the achievable rate, see Fig. 8.4f,
and Fig. 8.4d shows a superposition of both effects. General statements on
the effect of channel correlation for higher channel dynamics and higher SNR
are rather difficult.

For the case of perfect channel state information at the receiver side and
covariance information at the transmitter side, in [57] the following state-
ments are given

• spatial correlation at the receiver side always decreases capacity
• spatial correlation at the transmitter side decreases capacity for high SNR

and is beneficial for low SNR.

In contrast to [57], we consider the case where the receiver does not know
the realization of the channel, but only its statistics. The assumption on
the knowledge of the channel at the transmitter side are the same in [57]
and the present work, i.e., assuming knowledge of the channel statistics. For
asymptotically small channel dynamics, the results we observe correspond to
the behavior shown in [57] for the case of perfect CSI at the receiver, which
clearly must be the case, as for asymptotically small channel dynamics, the
channel can be estimated arbitrarily well.

To conclude, it can be said that due to the gap between upper and lower
bounds on the achievable rate, it is not possible to get a general understanding
on the effect of spatial correlation. E.g., for the wideband case, it has been
stated in [102] that for sufficiently large bandwidths transmit and receive
correlation is beneficial, which is rather different to the coherent setting,
where receive antenna correlation is always detrimental. This behavior is
explained in [102] by the effect that channel uncertainty decreases due to
receive antenna correlation. Due to the lack of tightness of our bounds, we do
not observe this behavior here for the flat-fading case, however, e.g., Fig. 8.4e
is not in contradiction to this.

8.2.3.6 Relation to Bounds in [102]

A comparison of our upper and lower bounds on the achievable rate shows
some similarity to the upper and lower bounds on the peak power constrained
capacity given in [102] for frequency-selective wideband channels. Besides the
difference of flat and frequency selectivity, the major difference lies in the up-
per bounding technique. The derivation of the upper bound given in [102] is
based on the peak power constraint. Therefore, the bounding technique that
has been used in [102] for the upper bound cannot be applied when consider-
ing non peak power constrained proper Gaussian inputs. For the derivation of
the upper bound on the achievable rate, we have used a completely different
bounding technique, which does not rely on the peak power constraint. This
enables to upper bound the achievable rate with zero-mean proper Gaus-
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Fig. 8.4: Effect of spatial antenna correlation on the achievable rate,
nT = nR = 5 antennas, i.i.d. zero-mean proper Gaussian input vector sym-
bols, spatial input correlation Rx̃ chosen as it would be optimal in case of
perfect CSI at the receiver, dT/R = ∞ indicates uncorrelated antennas; upper
bound (8.57) in combination with coherent capacity, cf. (3.87)/(8.67); lower
bound (8.65) in combination with nonnegativity of mutual information, cf.
(3.94); rectangular PSD Sh(f)
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sian input symbols. Nevertheless, it has to be stated that the upper bound
in [102] holds for general PSDs of the channel fading process, whereas our
bound only holds for the special case of a rectangular PSD. Furthermore,
the upper bound given in [102] is a bound on capacity, whereas our upper
bound is only a bound on the achievable rate, as we restrict to temporally
identically distributed input symbols. This restriction has been required for
our derivation. In addition, we constrain the spatial input covariance matrix
and use the one that is optimal for the coherent channel.

Now, we discuss the relation between the lower bound on the peak power
constrained capacity in (8.70) and the corresponding lower bound on capacity
given in [102]. Therefore, note that corresponding to the SISO case, see Sec-
tion 3.6, based on a time sharing argument, which corresponds to discarding
the assumption on i.d. input symbols in temporal domain, the lower bound
(8.70) can be enhanced, yielding

sup
Ppeak

MIMO

I ′
L(y;x)

≥ max
γ∈[1,β]





1

γ
I
(
y̆; x̆

∣∣h̃
) ∣∣

CM,γP
− 1

γ

nR∑

i=1

nT∑

j=1

∫ 1
2

− 1
2

log

(
γ
ψipjφj
σ2
n

Sh(f)+1

)
df





(8.80)

where Ppeak
MIMO corresponds to Ppeak

MIMO, i.d. in (8.37), but without the restric-
tion to i.d. inputs in temporal domain. The bound in (8.80) corresponds in
principle, i.e., except of the difference between flat and frequency selective
fading to the lower bound on capacity given in [102].

8.3 Comparison with Pilot Based Synchronized
Detection

As for the SISO case, we now compare the previously derived bounds on the
achievable rate with an i.i.d. zero-mean proper Gaussian input distribution to
bounds on the achievable rate with synchronized detection, where the channel
estimation is solely based on pilot symbols. Here, we will restrict to the case
of a spatially uncorrelated channel.

The achievable rate in a MIMO system based on the principle of synchro-
nized detection and a pilot based channel estimation has been studied in [5],
which is principally an extension of [6] to the MIMO case. Corresponding to
the discussion for the SISO scenario in Chapter 5, we recall the results of [5]
for the MIMO case in this section.

Fig. 8.5 shows a block diagram of a synchronized detection based MIMO
system. As already explained in Chapter 5, the channel is estimated based on
pilot symbols which are periodically inserted into the transmit symbol stream.
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The channel estimates are used for a coherent, i.e., symbol-wise, detection.
Due to the fact that in a MIMO system, the signal at each receive antenna is a
superposition of the transmitted signals of all transmit antennas, orthogonal
pilot sequences are required to enable estimation of each subchannel, i.e., from
each transmit antenna j to each receive antenna i. To achieve orthogonality,
nT pilot symbols are required within one channel sampling period L, where L
has to fulfill (5.8) to sample the channel fading process at least with Nyquist
rate.

Based on the estimates ĥpilij (k) of the channel fading weights hij(k), the
channel output ỹ(k) can be rewritten as

ỹ(k) = ˆ̃Hpil(k)x̃(k) + Ẽpil(k)x̃(k) + ñ(k) (8.81)

with [ ˆ̃Hpil(k)]i,j = ĥpilij (k) and where [Ẽpil(k)]ij = epilij (k) = hij(k) − ĥpilij (k)
is the channel estimation error.

The channel estimation error variance is given by, cf. (5.15)

σ2
epil

=

∫ 1
2

− 1
2

Sh(f)
ρ
L
Sh(f)
σ2
h

+ 1
df (8.82)

which for the case of a rectangular PSD of the channel fading process yields,
cf. (5.16)

σ2
epil =

2fdL

2fdL+ ρ
σ2
h (8.83)
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ĥ
pil′

21D

ĥ
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with ρ being the average SNR as defined in (8.13). Note, for (8.83) it is
assumed that the pilot power is equal to the average data symbol power.

Obviously, this estimation error variance corresponds to the one in the
SISO case, although the transmit power is now split over several antennas.
The use of orthogonal pilot sequence leads to this fact. This observation can
be easily verified, considering that orthogonality can be achieved by trans-
mitting a pilot symbol with power P from one transmit antenna while the
other antennas transmit nothing at this time instant. This is then repeated
for all transmit antennas.

As already discussed in the SISO case, the channel estimation errors at
different time instances are correlated. This temporal correlation is — due
to interleaving — not exploited by the channel decoding unit. Therefore, in
the following we calculate bounds on the achievable rate with synchronized
detection and a solely pilot based channel estimation based on artificial chan-

nel estimates
ˇ̂
H̃pil(k) that have the same statistics as the channel estimates

ˆ̃Hpil(k), except that the corresponding channel estimation errors are tempo-
rally uncorrelated, see the discussion in Section 5.2.

8.3.1 Achievable Rate with Pilot Based Synchronized
Detection

Corresponding to the SISO case, the achievable rate is degraded by two fac-
tors with respect to the case of perfect channel knowledge. Firstly, there is
a degradation because the time instances where pilot symbols are transmit-
ted are lost for data transmission. This degradation leads to a pre-log factor
(L − nT )/L. Secondly, there is a loss as the SNR is degraded due to the
channel estimation error by the factor

η =
σ2
h − σ2

epil

σ2
n + σ2

epil
P

σ2
n

σ2
h

. (8.84)

In [5], it is shown that the achievable rate with synchronized detection

I ′(y;x
∣∣ ˇ̂hpil

)
, where

ˇ̂
hpil is the estimate of h, which is additionally character-

ized by a temporally uncorrelated estimation error, is for zero-mean proper
Gaussian data symbols lower-bounded by
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I ′
(
y;x

∣∣ ˇ̂hpil

)
≥ I ′

L

(
y;x

∣∣ ˇ̂hpil

)

=
L− nT
L

EH̃(k) log det

(
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P

nTσ2
n
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)

(8.85)
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(8.86)

where the second term is the capacity of a MIMO channel with an SNR
degradation η, cf. (8.64) and (8.66). Furthermore, in [5] it is shown that

I ′(y;x
∣∣ ˇ̂hpil

)
is upper-bounded by

I ′
(
y;x

∣∣ ˇ̂hpil

)
≤ I ′

U

(
y;x

∣∣ ˇ̂hpil

)

= I ′
L

(
y;x

∣∣ ˇ̂hpil

)
+
L− nT
L

nREx̃(k) log

(
Pσ2

epil
+ σ2

n

(x̃(k))H x̃(k)σ2
epil + σ2

n

)

(8.87)

where x̃(k) is the input vector at time instances where data symbols are
transmitted, and E[(x̃(k))H x̃(k)] = P . The second term in (8.87) accounts
for the non-Gaussianity of the term Ẽpil(k)x̃(k) in (8.81). It is nonnegative
and approaches zero for σ2

epil
→ 0.

For zero-mean proper Gaussian data symbols (8.87) yields

I ′
U

(
y;x

∣∣ ˇ̂hpil

) ∣∣
PG

= I ′
L

(
y;x

∣∣ ˇ̂hpil

)
+
L− nT
L

nR

∫ ∞

z=0

log

(
Pσ2

epil + σ2
n

P
nT
σ2
epilz + σ2

n

)
znT−1e−z

Γ (nT )
dz

= I ′
L

(
y;x

∣∣ ˇ̂hpil

)
+∆I(y;x|ˇ̂hpil)

∣∣
PG
. (8.88)

With increasing nT , the difference ∆I(y;x|ˇ̂hpil)

∣∣
PG

decreases. This can be in-

tuitively seen based on the fact that (x̃(k))H x̃(k) in (8.87) converges to P
for nT → ∞. On the other hand, ∆I(y;x|ˇ̂hpil)

∣∣
PG

increases with nR.

Fig. 8.6 shows the achievable rate with synchronized detection in com-
bination with a solely pilot based channel estimation in comparison to the
bounds on the achievable rate with i.i.d. zero-mean proper Gaussian input
symbols. The pilot spacing L is chosen such that the lower bound in (8.86) is
maximized. As the bounds on the achievable rate with i.i.d. zero-mean proper
Gaussian inputs are not tight, it is not possible to give general statements
on the performance of synchronized detection with a solely pilot based chan-
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Fig. 8.6: Comparison of bounds on the achievable rate with pilot
based synchronized detection (SD) to the achievable rate with i.i.d.
symbols; in both cases i.i.d. zero-mean proper Gaussian (data) symbols are
assumed, MIMO, nT = nR, SNR 6 dB; lower and upper bound for SD par-
tially overlap; the upper and lower bound on the achievable rate with i.i.d.
inputs in (8.57) and (8.65) are modified by the coherent capacity and the
nonnegativity of mutual information, cf. (3.87)/(8.66) and (3.94); rectangu-
lar PSD Sh(f)

nel estimation. However, it can be observed that in the important region of
small channel dynamics, which correspond to realistic mobile channels, the
achievable rate with pilot based synchronized detection without pilot-to-data
power ratio optimization stays below the lower bound on the achievable rate
with i.i.d. zero-mean proper Gaussian inputs. This shows that synchronized
detection with a solely pilot based channel estimation is not optimal with
respect to the channel capacity.

8.3.1.1 Optimized Pilot-to-Data Power Ratio

Corresponding to the SISO case, see Section 5.2.2, the achievable rate can be
increased by optimizing the ratio ν between power spent for pilot symbols
and power used for data symbols, see (5.43). The achievable rate for this
case has been examined in [4] and the results will be recalled briefly in the
following. As in the SISO case, we use the approximation
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L =
1

2fd
(8.89)

for L = ⌊1/(2fd)⌋, see the discussion in Section 5.2.2.
Due to the additional pilots required to achieve orthogonality, the data

power σ2
d and the pilot power σ2

p are given by (cf. (5.45) and (5.46) for the
SISO case)

σ2
p =

1

2fdnT + 1
ν (1− 2fdnT )

P (8.90)

σ2
d =

1

1− 2fdnT + 2fdnT ν
P (8.91)

where these powers are the sum powers transmitted over all transmit antennas
at one time instant, i.e.,

E
[
(x̃D(k))

H x̃D(k)
]
= σ2

d (8.92)

(x̃P (k))
H x̃P (k) = σ2

p. (8.93)

Here the indices D and P notify data and pilot symbols.
For a rectangular PSD Sh(f) and, thus, with σ

2
epil

in (8.83) (for the SNR of

the pilot symbols), and with the pilot spacing in (8.89) the SNR degradation
factor η becomes

η =
ρν

(ρ(1 + ν)− 2fdnT (1− ν) + 1)(2fdnT (ν − 1) + 1)
. (8.94)

For a MIMO system, the optimum ratio ν given in (5.48) for the SISO
case generalizes for the MIMO scenario to [4]

νopt =

√
(1 − 2fdnT )2 + ρ(1− 2fdnT )

2fdnT (2fdnT + ρ)
. (8.95)

The upper and lower bound on the achievable rate for the MIMO case are
given by
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∣∣ ˇ̂hpil

)

= (1− 2fdnT )EH̃(k) log det
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nTσ2
n

ηH̃(k)(H̃(k))H
)
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∫ ∞

0

log

(
1 +

ρ

nT
ηz

)m−1∑

k=0

k![Ln−mk (z)]2

(k + n−m)!
zn−me−zdz

(8.96)
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Due to (8.89) the estimation error variance (8.83) becomes

σ2
epil =

2fdL

2fdL+ ρ
σ2
p

P

=
1

1 + ρ
σ2
p

P

(8.98)

with ρ and σ2
p given by (8.13) and (8.90).

For zero-mean proper Gaussian data symbol vectors x̃D(k) (8.97) yields
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(8.99)

Fig. 8.7 shows the comparison of the bounds on the achievable rate with
i.i.d. zero-mean proper Gaussian input symbols, i.e., without any pilot sym-
bols, to the bounds on the achievable rate with synchronized detection in
combination with a solely pilot symbol based channel estimation and pilot-
to-average data symbol power ratio optimization (where we used the approxi-
mation L = 1

2fd
). Also for the latter case the data symbols are i.i.d. zero-mean

proper Gaussian distributed.
As the bounds on the achievable rate with i.i.d. zero-mean proper Gaus-

sian inputs, i.e., without the use of any pilot symbols, are not tight, it is not
possible to give general statements on the performance of pilot based syn-
chronized detection in comparison to the achievable rate with i.i.d. Gaussian
input symbols. For small channel dynamics, the achievable rate with pilot
based synchronized detection is slightly smaller than the lower bound on the
achievable rate with i.i.d. zero-mean proper Gaussian inputs. This indicates
that from a capacity point of view synchronized detection with a solely pi-
lot based channel estimation is not optimal. However, this does not allow
the statement that the performance of pilot based synchronized detection is
close to be optimal, as we do not know how tight the lower bound on the
achievable rate with i.i.d. inputs given in (8.65) is, see Section 8.2.3.4.

It seems likely that with increasing channel dynamics the achievable rate
with solely pilot based synchronized detection is significantly lower than the
channel capacity due to the following reasons: The major difference between
the SISO and the MIMO case is that in the MIMO case the amount of re-
quired pilot symbols while using synchronized detection does not only depend
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Fig. 8.7: Comparison of bounds on the achievable rate with pi-
lot symbol based synchronized detection (SD) and optimized pi-
lot power to the achievable rate with i.i.d. input symbols; in both
cases i.i.d. zero-mean proper Gaussian (data) symbols are assumed; MIMO,
nT = nR, SNR 6 dB; lower and upper bound for SD partially overlap; the
upper and lower bound on the achievable rate with i.i.d. inputs in (8.57) and
(8.65) are modified by the coherent capacity and the nonnegativity of mu-
tual information, cf. (3.87)/(8.66) and (3.94); for SD approximation L = 1

2fd
;

rectangular PSD Sh(f)

on the channel dynamics, but also on the number of transmit antennas. As
the number of required pilot symbols increases linearly with the number of
transmit antennas, much space is lost for data symbols, significantly lowering
the achievable rate. This loss is a constructive loss to enable the estimation
of the individual subchannels based on orthogonal pilot sequences for syn-
chronized detection. It is not given by the nature of the channel. Therefore
it seems likely that in MIMO systems, with increasing channel dynamics the
achievable rate with synchronized detection and a channel estimation solely
based on pilot symbols stays below the channel capacity, with a gap, which
increases with the number of transmit antennas and the channel dynamics.
However, we have not been able to support this in general by the bounds
given within this chapter. We only see that for low channel dynamics, the
achievable rate with solely pilot based synchronized detection stays below the
lower bound on the achievable rate with i.i.d. input symbols, showing that
solely pilot based synchronized detection is not capacity-achieving.
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8.4 Summary

In the present chapter, we have extended the bounds on the achievable rate
with temporally i.d. input symbols, which are given in Chapter 3 for SISO
channels, to the MIMO case, including spatial antenna correlation. We fur-
thermore assume that the input symbols on the individual transmit antennas
are zero-mean and that the spatial correlation matrix of the input symbols
over the different transmit antennas has been chosen as it would be optimal
in case of perfect receiver side channel knowledge. The main novelty is that
for the derivation of the upper bound, no peak power constraint on the in-
put symbols is required. This enables to give bounds on the achievable rate
with i.i.d. zero-mean proper Gaussian input symbols. Besides this, most of
the derivation steps used for the extension of the bounds on the achievable
rate with i.d. input symbols given in Chapter 3 to the MIMO case are sim-
ilar to [102]. Unfortunately, the derived bounds are loose, especially for an
increasing number of transmit and receive antennas.

Furthermore, we have compared the derived bounds on the achievable rate
with i.i.d. zero-mean proper Gaussian input symbols to the achievable rate
with synchronized detection in combination with a solely pilot based channel
estimation. Due to the looseness of the new bounds for i.i.d. inputs, we are
not able to give a general statement on the performance of synchronized
detection with a solely pilot based channel estimation with respect to the
channel capacity. Only for small channel dynamics we have observed that
the achievable rate with synchronized detection in combination with a solely
pilot based channel estimation stays below the achievable rate with i.i.d.
zero-mean proper Gaussian input symbols.

It should be recognized that the main bounding steps do not rely on the
assumption of a fixed spatial input signal covariance matrix Rx̃. Thus, these
bounds enable a further study of the effect of the spatial input covariance
matrix.



Chapter 9

Frequency-Selective Channels

In the previous chapters, we have considered the case of frequency flat-fading
channels. In this chapter, we extend the bounds on the achievable rate de-
rived in Chapter 3 to the case of frequency-selective (wideband) channels.
To get to a mathematically tractable discrete-time discrete-frequency system
model, we use the approach given in [33] which is a fairly general model for
an underspread wide-sense stationary uncorrelated scattering (WSSUS) sce-
nario. For a self contained exposition, we here recall the derivation of this
model, which is given in [33], and which is based on the continuous-time
input-output relation of the actual channel. For a deeper discussion, we refer
to [33]. The main motivation of this chapter is the derivation of bounds on
the achievable rate with i.i.d. zero-mean proper Gaussian input symbols, i.e.,
input symbols without a peak-power constraint. In contrast to this, the ca-
pacity bounds given in [33] are based on a peak power constraint. Therefore,
both approaches mainly differ in the derivation of the upper bound, while in
other places there are some similarities.

Furthermore, we recall bounds on the achievable rate with synchronized
detection using a solely pilot based channel estimation in the context of
frequency-selective channels and OFDM given in [4] and [47]. Additionally,
we compare them with the achievable rate with i.i.d. input symbols for the
case of zero-mean proper Gaussian data symbols.

As the capacity of frequency selective fading channels is not the main fo-
cus of the present work, we give a brief overview of literature in this area for
further reading. In recent years there has been a wide range of publications
concerning the capacity of frequency selective channels especially focussing
on the large bandwidth limit. Already in the coherent case, the behavior of
channel capacity in the wideband limit strongly depends on the input power
constraints. I.e., for a peak power constrained input signal and infinite band-
width the capacity can converge to zero, whereas in the case of a non-peak
power constrained input the capacity converges to the capacity of an AWGN
channel, which also holds for fading channels. These effects have been studied
in detail in [121], [78], [128], and [117]. Most of these works also implicitly con-
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sider the noncoherent case as in the wideband limit receiver knowledge of the
channel fading coefficients is useless, see, e.g., [128]. Obviously, the wideband
capacity strongly depends on the input signal constraints. This has also been
observed in [92], where it has been shown that duty-cycled direct-sequence
spread spectrum signaling is wideband capacity achieving if the number of
independent fading path that can be resolved grows sublinearly with the
bandwidth, whereas duty-cycled pulse position modulation only achieves the
wideband capacity if the number of delay paths increases sublogarithmically.
For prior work concerning the noncoherent capacity being more related to
our work, we refer back to Section 1.1.

9.1 Channel Model

Up to now, we have always discussed discrete-time channel models. However,
such a discrete-time channel model has to be linked to the underlying physical
channel, which is time-continuous. Such a link is given in [33] in the context
of the frequency selective WSSUS channel model, which is a fairly general
model for a SISO channel. In this work, a solid derivation of a discrete-
time discrete-frequency signal model for an underspread frequency selective
WSSUS channel has been given. For completeness of presentation, we now
recall this derivation.

In [33] the wireless channel is described by a linear operator H, which
projects the inputs signal x(t) onto the output signal z(t). The input signal
x(t) is an element of the Hilbert space of square integrable functions denoted
by L2 and the output signal z(t) lies in a subset of L2. Based on the kernel of
the channel operator kH(t, t

′), the noise-free input-output relation is given by

z(t) =

∫

t′
kH(t, t

′)x(t′)dt′ =

∫

τ

hH(t, τ)x(t − τ)dτ. (9.1)

For the expression at the RHS of (9.1) the variables t and t′ are substituted
by an absolute time t and a delay τ and, thus, hH(t, τ) is the time-varying
channel impulse response.

Often the following transformations of the time-varying channel impulse
response are used1

LH(t, ν) =

∫

τ

hH(t, τ)e
−j2πντdτ (9.2)

SH(f, τ) =

∫

t

hH(t, τ)e
−j2πftdt. (9.3)

1 Note, to get a consistent notation with the rest of this work, the Doppler shift is
denoted by f and the frequency by ν, which is exactly the other way round as it is
commonly used in literature concerning frequency selective channels.
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where LH(t, ν) is the time-varying transfer function and SH(f, τ) is named
spreading function. Based on the latter one, the input-output relation is given
by

z(t) =

∫

f

∫

τ

SH(f, τ)x(t − τ)ej2πftdτdf (9.4)

showing that the channel output signal z(t) is a superposition of weighted
copies of the channel input x(t). These copies are delayed in time by τ and
altered in frequency by the Doppler shift f .

9.1.1 Stochastic Characterization

Often it is assumed that the time-varying transfer function LH(t, ν) is a
zero-mean jointly proper Gaussian random process in t and in ν. In [33],
the publications [126] and [100] are cited, which support this assumption
by measurements for narrowband and for wideband channels. As LH(t, ν)
is assumed to be zero-mean jointly proper Gaussian, its statistics are com-
pletely characterized by its correlation function, which is four-dimensional. In
addition, the channel is assumed to be wide-sense stationary in time and un-
correlated in the delay domain, which is typically referred to as WSSUS [7].
Thus, LH(t, ν) is wide-sense stationary in time and frequency, resulting in
SH(f, τ) being uncorrelated in the Doppler shift f and the delay τ . Hence,
the channel’s time-frequency correlation function rH(t, ν) and the scattering
function SH(f, τ), i.e., the stochastic quantities corresponding to LH(t, ν) and
SH(f, τ), are given by

rH(t− t′, ν − ν′) = E [LH(t, ν)L∗
H(t

′, ν′)] (9.5)

SH(f, τ)δ(f − f ′)δ(τ − τ ′) = E [SH(f, τ)S
∗
H(f

′, τ ′)] . (9.6)

The two functions are related by a two-dimensional Fourier transform

SH(f, τ) =

∫

t

∫

ν

rH(t, ν)e
−j2π(tf−τν)dtdν. (9.7)

The function SH(f, τ) corresponds to the spectrum of the channel fading
process.

9.1.2 The Underspread Assumption

As the velocity of the transmitter, the receiver, and of objects in the envi-
ronment are limited, cf. Chapter 2, the maximum Doppler shift f0 is limited.
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Furthermore, we assume that the maximum delay is given by 2τ0. To simplify
notation and without loss of generality, we assume scattering functions that
are centered at τ = 0 and f = 0. This corresponds to the removal of all fixed
frequency and delay shifts, which, as they are constant over time, have no
influence on the capacity. Consequently, the scattering function is supported
on a rectangle of spread ∆H = 4f0τ0, i.e.,

SH(f, τ) = 0 for (f, τ) /∈ [−f0, f0]× [−τ0, τ0]. (9.8)

The channel is named underspread , if ∆H < 1 holds, see [33] and references
there in. Most wireless communication channels are highly underspread, i.e.,
with ∆H ≈ 10−3 for typical mobile channels, see, e.g., [79] and references in
[33]. This underspread assumption will be important in the following, as this
is a prerequisite to discretize the channel operator based on a well-structured
set of approximate eigenfunctions.

The problem that arises in the discretization of the channel operator H is
the fact that the left and right singular functions of its kernel are themselves
random. As the set of singular functions form the basis of the input and the
output space, their knowledge is required for a diagonalization of the channel
operator H. Therefore, the diagonalization of the channel, which leads to a set
of scalar input-output relations, requires perfect knowledge of the channel,
which is not available.

However, due to the underspread assumption, the eigenfunctions of H are
approximately normal, allowing to approximate the singular value decom-
position by an eigenvalue decomposition. Thus, any signal g(t) that is well
localized in time and frequency is an approximate eigenfunction of H, i.e.,
the mean-squared error E

[
||〈Hg, g〉g −Hg||2

]
is small due to the underspread

assumption. Therefore, based on a set of deterministic orthogonal eigenfunc-
tions in [33] an approximate channel operator H̃ is constructed. Beside the
fact that these eigenfunctions need to be well localized in time and frequency,
they should be well structured to be suitable for further analysis. As the
support of the scattering function SH(f, τ) is strictly limited, the samples
LH(nT, kF ) with T ≤ 1/(2f0) and F ≤ 1/(2τ0) completely describe LH(t, ν)
due to the Nyquist theorem. In [33] the Weyl-Heisenberg set has been chosen
as a well structured set of eigenfunctions. This set is given by {gn,k(t)}, with
the orthonormal functions gn,k(t) = g(t−nT )ej2πkFt. To be well localized in
time and frequency it is required that TF > 1, see [33] which cites [16]. A
large product TF leads to an improved time-frequency localization of g(t),
but decreases the dimensions of the signaling space compared to a choice of
TF close to one.

The approximate channel operator H̃ can be easily diagonalized due to
the deterministic set of orthonormal functions. Obviously, this requires no
knowledge on the realization of H. Furthermore, practical transmit signals
x(t) are bandlimited and, thus, can be modeled as a finite sum ofK frequency
slots due to the fact that g(t) is well concentrated in frequency, i.e.,
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x(t) =

∞∑

n=−∞

K−1∑

k=0

〈x, gn,k〉gn,k(t) (9.9)

where 〈x, gn,k〉 = x[n, k] is the transmit symbol at time slot n in the frequency
slot k.

Using the approximate channel operator H̃, the received signal is given by

y(t) = (H̃x)(t) + n(t) (9.10)

where n(t) is additive white Gaussian noise. Projection of y(t) onto {gn,k(t)}
delivers

y[n, k] = 〈y, gn,k〉 = 〈H̃x, gn,k〉+ 〈n, gn,k〉
=
∑

n′,k′

x[n′, k′]〈H̃gn′,k′ , gn,k〉+ n[n, k]

= LH(nT, kF )x[n, k] + n[n, k]

= h[n, k]x[n, k] + n[n, k]. (9.11)

Thus, an input-output relation for all time and frequency slots (n, k) is found.
Orthonormality of the set {gn,k(t)} implies that n[n, k] is jointly proper Gaus-
sian.

9.1.2.1 OFDM Interpretation

Furthermore, in [33] the following interpretation of the discussed approximate
channel operator is given. Obviously, the input signal x(t) in (9.9) is given
by the modulation of discrete-data symbols onto a set of orthogonal signals,
which corresponds to pulse-shaped OFDM [65]. Based on this interpretation,
it is possible to give a physical interpretation of the error that arises by
approximating the genuine channel operator H by H̃. Therefore, we project
the noise free version of y(t), which is named z(t), onto the eigenfunctions
gn,k(t)

〈z, gn,k〉 =
∞∑

n′=−∞

K−1∑

k′=0

x[n′, k′]〈Hgn′,k′ , gn,k〉

= 〈Hgn,k, gn,k〉x[n, k] +
∞∑

n′=−∞

K−1∑

k′=0
(n′,k′) 6=(n,k)

x[n′, k′]〈Hgn′,k′ , gn,k〉 (9.12)

where the first term on the RHS (9.12) is the desired signal and the second
term arises due to intersymbol interference (ISI) and intercarrier interference
(ICI). For the approximative channel H̃ the first term on the RHS of (9.12)
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is approximated by LH(nT, kF )x[n, k]. Thus, using (9.11) can be identified
as a pulse shaped OFDM transmission over the genuine channel H ignoring
ISI and ICI.

If the function g(t) is well chosen, ISI and ICI can be reduced. This re-
duction increases with an increasing product TF , but leads to a loss in di-
mensions of the signaling space. A factor of TF ≃ 1.25 is given as a good
tradeoff between both effects in [33], which in this regard refers, e.g., to [65]
and [76]. A corresponding loss of signaling dimensions also occurs due to the
cyclic prefix when using cyclic prefix OFDM.

9.1.3 Discrete-Time Discrete-Frequency Input-Output
Relation

Based on the approximative channel operator H̃ [33] gives a discrete-time
discrete-frequency input-output relation of the frequency-selective fading
channel. With (9.11) the input-output relation for each individual time and
frequency slot is given. Concatenating the input-output relations in frequency
dimension leads to the following matrix-vector notation

ỹn = H̃nx̃n + ñn (9.13)

where n indicates the n-th time slot. The input vector x̃n, the output vector
ỹn, the noise vector ñn and the channel matrix H̃n all at time slot n are
defined as follows

x̃n = [x[n, 0], . . . , x[n,K − 1]]
T ∈ C

K (9.14)

ỹn = [y[n, 0], . . . , y[n,K − 1]]
T ∈ C

K (9.15)

ñn = [n[n, 0], . . . , n[n,K − 1]]
T ∈ C

K (9.16)

h̃n = [h[n, 0], . . . , h[n,K − 1]]
T ∈ C

K (9.17)

H̃n = diag
(
h̃n

)
(9.18)

where K is the number of used subcarriers. Notice, here the tilde is used
for the subcarrier domain, in contrast to Chapter 8 where it is used for the
spatial domain.

Further concatenation over time domain leads to the input-output relation

y = Hx+ n = Xh+ n (9.19)

where the vectors are defined by
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x =
[
x̃T1 , . . . , x̃

T
N

]T ∈ C
KN (9.20)

y =
[
ỹT1 , . . . , ỹ

T
N

]T ∈ C
KN (9.21)

n =
[
ñT1 , . . . , ñ

T
N

]T ∈ C
KN (9.22)

h =
[
h̃T1 , . . . , h̃

T
N

]T
∈ C

KN (9.23)

H = diag(h) (9.24)

X = diag(x) (9.25)

where N is the number of considered time slots. Later on, for the derivation
of the achievable rate, we will study the case N → ∞.

9.1.3.1 Stochastic Characteristics

The channel correlation over the subcarrier domain and between two time
slots with a temporal distance nT is given by

R
h̃[n] = E

[
h̃n+n′ h̃Hn′

]

=




rH[n, 0] r∗H[n, 1] . . . r∗H[n,K − 1]
rH[n, 1] rH[n, 0] . . . r∗H[n,K − 2]

...
...

. . .
...

rH[n,K − 1] rH[n,K − 2] . . . rH[n, 0]


 (9.26)

where the channel correlation function rH[n, k] is given by

rH[n, k] = E [h[n+ n′, k + k′]h∗[n′, k′]]

= E [LH((n+ n′)T, (k + k′)F )L∗
H(n

′T, k′F )] . (9.27)

The corresponding two-dimensional PSD is given by

Sh(f̃ , τ̃ ) =

∞∑

n=−∞

∞∑

k=−∞
rH[n, k]e

−j2π(nf̃−kτ̃), |f̃ |, |τ̃ | ≤ 0.5 (9.28)

where

f̃ = fT (9.29)

τ̃ = τF. (9.30)

The relation between the PSD Sh(f̃ , τ̃ ) and the scattering function SH(f, τ)
is given by [33]
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Sh(f̃ , τ̃ ) =
1

TF

∞∑

n=−∞

∞∑

k=−∞
SH

(
f̃ − n

T
,
τ̃ − k

F

)
. (9.31)

The variance of each channel coefficient is given by

σ2
h =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

Sh(f̃ , τ̃)df̃dτ̃ =

∫

f

∫

τ

SH(f, τ)dfdτ (9.32)

as the Nyquist condition holds due to T ≤ 1/(2f0) and F ≤ 1/(2τ0).
The correlation matrix of the stacked vector h is given by

Rh = E
[
hhH

]

=




R
h̃[0] RH

h̃
[1] . . . RH

h̃
[N − 1]

Rh̃[1] Rh̃[0] . . . RH
h̃
[N − 2]

...
...

. . .
...

R
h̃[N − 1] Rh̃[N − 2] . . . Rh̃[0]


 (9.33)

which is a two-level Hermitian Toeplitz matrix as the process {h[n, k]} is
stationary in time and frequency.

As the noise over time slots and subcarriers is independent we get

E
[
nnH

]
= σ2

nIKN . (9.34)

This completes the derivation of the discrete-time discrete-frequency sys-
tem model given in [33].

As in Chapter 3 for the temporal domain, we here assume that the input
signal consists of i.d. symbols in temporal and in subcarrier domain, each
with an average transmit power of

E
[
|x[n, k]|2

]
= ασ2

x ∀n, k (9.35)

with α ∈ [0, 1]. Here σ2
x is the maximum average power per subcarrier and

time slot and is given by

σ2
x =

PT

K
(9.36)

with P being the maximum average transmit power.
Furthermore, the nominal mean SNR ρ is given by

ρ =
Pσ2

h

σ2
n

. (9.37)

Notice that ρ only corresponds to the average SNR if P is the actual average
transmit power, i.e., α = 1 in (9.35). As in the case of non-peak power
constrained input symbols, the achievable rate is maximized by using the
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maximum average transmit power, for non-peak power constrained inputs ρ
corresponds to the actual mean SNR.

9.2 Bounds on the Achievable Rate

As in Chapter 3 for the flat-fading SISO case and also in Chapter 8.2 for the
MIMO case, we derive bounds on the achievable rate with i.d. input symbols
in temporal and in subcarrier domain. Therefore we use the separation of the
mutual information rate I ′(y;x) into the channel output entropy rate h′(y)
and the conditional channel output entropy rate h′(y|x), cf. (3.10). As in the
flat-fading case discussed in Chapter 3, the restriction to i.d. input symbols
is required in the following derivation.

Parts of the derivations in this section are closely related to the calculation
of bounds on the capacity of frequency-selective wideband channels discussed
in [33] for peak power constraint inputs. The differences between the approach
taken in [33] and the approach taken in the present work will be discussed in
Section 9.2.3.5.

In accordance with Chapter 3 and Chapter 8.1, we do not calculate the
capacity, which is given by

C = sup
POFDM

I ′(y;x) = lim
N→∞

1

NT
sup

POFDM

I(y;x) (9.38)

with

POFDM =

{
p(x)

∣∣∣∣x ∈ CNK ,
1

NT
E[xHx] ≤ P

}
. (9.39)

Instead, we restrict to input symbols which are i.d. in the temporal and
in the frequency domain and therefore use the term achievable rate which is
then given by

R = sup
POFDM, i.d.

I ′(y;x) (9.40)

where the set of input distributions is restricted to

POFDM, i.d. =

{
p(x)

∣∣∣∣x ∈ CNK , p(x[n, k]) = p(x[m, l]) ∀k, l, n,m,

E[|x[n, k]|2] ≤ σ2
x ∀n, k

}
. (9.41)

In some cases, we further constrain the input using a peak power con-
straint. Therefore, we define
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Ppeak
OFDM, i.d. =

{
p(x)

∣∣∣∣x ∈ CNK , p(x[n, k]) = p(x[m, l]) ∀k, l, n,m,

{
E[|x[n, k]|2] ≤ σ2

x, p(x[n, k]) = 0 ∀x[n, k] : |x[n, k]|2 > Ppeak

K

}
∀n, k

}

(9.42)

which effectively corresponds to the set POFDM, i.d. as defined in (9.41) with
the further restriction of the input power for the transmit symbols on the
individual subcarriers to a maximum power of Ppeak/K, i.e., |x[n, k]|2 ≤
Ppeak/K.2 Notice, we use a peak power constraint per subcarrier. As the
power is defined in the time domain, i.e., based on a complete OFDM symbol,
cf. (9.36), we use the notation Ppeak/K for the peak power per subcarrier.
Furthermore, recognize that the peak power constraint per subcarrier is not
only a mathematical requirement, sometimes regulation also imposes peak
power constraints in specific frequency bands.

9.2.1 The Channel Output Entropy Rate h′(y)

9.2.1.1 Lower Bound on h′(y)

Analogous to Section 3.2.1 for the flat-fading SISO scenario, the channel
output entropy rate h′(y) is lower bounded by, cf. (3.13)

h′(y) ≥ I ′(y;x|h) + h′(y|h,x) (9.43)

where the first term in (9.43) is the coherent mutual information rate. It will
be further evaluated in Section 9.2.3.2 depending on the input constraints.

The second term on the RHS of (9.43) arises due to the additive white
Gaussian noise and, thus, is given by

h′(y|x,h) = 1

NT
log det

(
πeσ2

nIKN
)
=
K

T
log
(
πeσ2

n

)
. (9.44)

9.2.1.2 Upper Bound on h′(y)

Corresponding to Section 3.2.2, we now derive an upper bound on h′(y).
Analogously to (3.16), we use the fact that zero-mean jointly proper Gaussian
random variables are entropy maximizers for a given correlation matrix, thus

h(y) ≤ log det (πeRy) . (9.45)

2 Note that differently to P , Ppeak is normalized by the OFDM symbol duration T .
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Assuming an average transmit power per subcarrier of ασ2
x with α ∈ [0, 1],

the diagonal elements of the correlation matrix Ry are given by

[Ry]l,l = E
[
|y[l, l]|2

]
= ασ2

xσ
2
h + σ2

n. (9.46)

Thus, using Hadamard’s inequality the entropy rate h′(y) is upper-bounded
by

h′(y) ≤ 1

NT
log det

(
πe
(
ασ2

xσ
2
h + σ2

n

)
IKN

)

=
K

T
log
(
πe
(
ασ2

xσ
2
h + σ2

n

))
= h′U (y). (9.47)

9.2.2 The Entropy Rate h′(y|x)

Corresponding to Section 3.3, we derive an upper and a lower bound on the
conditional channel output entropy rate h′(y|x) within this section.

9.2.2.1 Upper Bound on h′(y|x)

Analogous to Section 3.3.1, the PDF of the conditional channel output is
zero-mean proper Gaussian with the correlation matrix notationally corre-
sponding to (3.20). Thus, as in the flat-fading case, the conditional channel
output entropy h(y|x) can be upper-bounded using Jensen’s inequality and
the concavity of the log-function by, cf. (3.24)

h(y|x) = Ex

[
log det

(
πe
(
XRhX

H + σ2
nIKN

))]
(9.48)

(a)
= Ex

[
log det

(
πe
(
XHXRh + σ2

nIKN
))]

(b)

≤ log det
(
πe
(
ασ2

xRh + σ2
nIKN

))

= log det

(
ασ2

x

σ2
n

Rh + IKN

)
+KN log

(
πeσ2

n

)
(9.49)

where for (a) we have used the identity given in (3.25) and (b) follows from
the concavity of log det on the set of positive definite matrices. Furthermore,
for (b) we assume that the average transmit power per subcarrier is given by
ασ2

x with α ∈ [0, 1] to allow for average transmit powers smaller than σ2
x.

For the evaluation of the achievable rate, we study the case of an infinite
long transmission interval, i.e., N → ∞. For this case the entropy rate h′(y|x)
is upper-bounded by
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h′(y|x) ≤ lim
N→∞

1

NT
log det

(
ασ2

x

σ2
n

Rh + IKN

)
+
K

T
log
(
πeσ2

n

)
. (9.50)

Now the derivation differs from the flat-fading case as the matrix Rh is a
two-level Toeplitz matrix. Based on an extension of Szegö’s theorem on the
asymptotic eigenvalue distribution of Toeplitz matrices given in [80, Theorem
3.4], [39], which has been also applied on equal respectively similar problems
in [33] and [96], the RHS (9.50) is given by

h′(y|x) ≤ lim
N→∞

1

NT
log det

(
αPT

σ2
nK

Rh + IKN

)
+
K

T
log
(
πeσ2

n

)

=
1

T

∫ 1
2

f̃=− 1
2

log det

(
αPT

σ2
nK

Sh(f̃) + IK

)
df̃ +

K

T
log
(
πeσ2

n

)
(9.51)

where

Sh(f̃) =
∞∑

n=−∞
Rh̃[n]e

−j2πnf̃ , |f̃ | ≤ 0.5 (9.52)

is the matrix valued power spectral density of the multivariate channel fading
process {h̃n}.

Opposed to the time domain where we have been interested in the limit
of an infinitely long transmission interval and thus we could apply Szegö’s
theorem on the asymptotic eigenvalue distribution of Toeplitz matrices, the
number of subcarriers in the frequency domain K is finite. Thus, the evalua-
tion of (9.51) requires the calculation of the eigenvalues of Sh(f̃). As there is
no closed form solution for the eigenvalues of Sh(f̃), this requires a numer-
ical evaluation which will be challenging for large bandwidths, i.e., a large
number of subcarriers K. In [33, Lemma 3], the following upper bound on
first term on the RHS of (9.51) is given

1

T

∫ 1
2

f̃=− 1
2

log det

(
αPT

σ2
nK

Sh(f̃) + IK

)
df̃ ≤ 2f0

K−1∑

i=0

log

(
1 +

αP

σ2
n2f0K

di

)

(9.53)

where

di = Re

{
2

K

K−1∑

k=0

(K − k)rH[0, k]e
−j2π ik

K

}
− rH[0, 0]. (9.54)

In Appendix A.13, we recall the proof of inequality (9.53) given in [33].
With (9.53) and (9.51), we get the following upper bound on h′(y|x)
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h′(y|x) ≤ 2f0

K−1∑

i=0

log

(
1 +

αP

σ2
n2f0K

di

)
+
K

T
log
(
πeσ2

n

)

= h′U (y|x). (9.55)

9.2.2.2 Lower Bound on h′(y|x) for a Brick-Shaped Scattering
Function

In this section, we extend the lower bound on the conditional channel output
entropy rate h′(y|x), which has been derived in Section 3.3.2 for the flat-
fading SISO case, to the frequency-selective case. As in the flat-fading case,
we have to make some restrictions to the scattering function SH(f, τ). We
assume that the scattering function is brick-shaped, i.e., that its support
region is given by (f, τ) ∈ ([−f0, f0]× [−τ0, τ0]) and that within this interval
SH(f, τ) is constant. Thus, we assume

Sh(f̃ , τ̃ ) =

{
σ2
h

4f̃0 τ̃0

(
f̃ , τ̃

)
∈ [−f̃0, f̃0]× [−τ̃0, τ̃0]

0 (f̃0 < |f̃ | < 0.5) ∨ (τ̃0 < |τ̃ | < 0.5)
. (9.56)

For the evaluation of the lower bound, we introduce the following stacking
of the channel fading weights over time. We define the vector h̄k containing
all channel fading weights over time for the subcarrier k, i.e.,

h̄k = [h[1, k], . . . , h[N, k]]T ∈ CN . (9.57)

The autocorrelation matrix for the temporal domain is given by

Rh̄[k] = E
[
h̄k+k′ h̄

H
k′
]

=




rH[0, k] r∗H[1, k] . . . r∗H[N − 1, k]
rH[1, k] rH[0, k] . . . r∗H[N − 2, k]

...
...

. . .
...

rH[N − 1, k] rH[N − 2, k] . . . rH[0, k]


 . (9.58)

Due to our assumption on a brick-shaped scattering function, the channel
correlation matrix Rh can be rewritten using the Kronecker product

Rh = Rh̄[0]⊗Rh̃[0] (9.59)

with Rh̃[0] as defined in (9.26) and Rh̄[0] as defined in (9.58).
Proceeding along the lines of the proof for the flat-fading case given in

Section 3.3.2, based on the asymptotic equivalence of Toeplitz and circulant
matrices, we substitute the temporal correlation matrix Rh̄[0] by a circulant
matrix Ch̄[0] with the decreasingly ordered eigenvalues given by
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λh̄,n =

{
1

2f̃0
for 1 ≤ n ≤ 2f̃0N

0 otherwise
. (9.60)

Due to the asymptotic equivalence of Toeplitz and circulant matrices, for
N → ∞, this corresponds to a rectangular shaped PSD of the channel fading
process. Therefore, to calculate the entropy rate h′(y|x) we substitute Rh by

Ch = Ch̄[0]⊗Rh̃[0]. (9.61)

Furthermore, we use the spectral decomposition of Ch given by

Ch = UΛhU
H (9.62)

where the diagonal matrix Λh = diag(λ1, . . . , λKN ) contains the eigenvalues
of Ch and the matrix U is unitary. As the matrix Ch can be expressed as a
Kronecker product of Ch̄[0] and Rh̃[0], its eigenvalues are given by

{
λi = λh̄,nλh̃,k

∣∣∣∣k = 1, . . . , K, n = 1, . . . , N

}
(9.63)

with λh̄,n, n ∈ {1, . . . , N} being the decreasingly ordered eigenvalues of Ch̄[0]
and λ

h̃,k, k ∈ {1, . . . , K} being the eigenvalues of Rh̃[0] [89].
Corresponding to (9.48) the conditional channel output entropy rate

h′(y|x) is given by

h′(y|x) = lim
N→∞

1

NT
Ex

[
log det

(
πe
(
XRhX

H + σ2
nIKN

))]

(a)
= lim

N→∞

1

NT

[
Ex

[
log det

(
1

σ2
n

RhX
HX+ IKN

)]
+KN log

(
πeσ2

n

)]

(9.64)

where for (a) we have used (3.25).
The matrix Rh is a two-level Toeplitz matrix, cf. (9.59). With [14, Theo-

rem 1], which is an extension of Szegö’s theorem, it can be shown that the
matrix Rh in (9.59) is asymptotic equivalent to the matrix Ch in (9.61).
Based on this, corresponding to Section 3.3.2, it holds that the matrix
1
σ2
n
RhX

HX+ IKN is asymptotically equivalent to the matrix
1
σ2
n
ChX

HX+ IKN . Thus the entropy rate h′(y|x) in (9.64) can be expressed

by

h′(y|x) = lim
N→∞

1

NT

[
Ex

[
log det

(
1

σ2
n

ChX
HX+ IKN

)]
+KN log

(
πeσ2

n

)]

(c)
= lim

N→∞

1

NT

[
Ex

[
log det

(
1

σ2
n

ΛhU
HXHXU+ IKN

)]
+KN log

(
πeσ2

n

)]

(9.65)



9.2 Bounds on the Achievable Rate 203

where for (c) we have used (9.62) and again (3.25).
Obviously, with (9.60) and (9.63) at maximum ⌊2f̃0N⌋K eigenvalues of

Ch are different from zero.
Now, we introduce a further restriction. We assume that all the eigenvalues

λi of Ch that are unequal to zero have the same value c. To fulfill the power
normalization given in (9.32), this constant c is given by

c =
σ2
h

4f̃0τ̃0
. (9.66)

This corresponds to the case that the decreasingly ordered eigenvalues of the
channel correlation matrix in the frequency domain λ

h̃,k are given by

λh̃,k =

{
σ2
h

2τ̃0
for 1 ≤ k ≤ 2τ̃0 ·K

0 otherwise
. (9.67)

In case of infinitely many subcarriers, i.e., an infinite bandwidth, this in
combination with (9.60) would correspond to the brick-shaped scattering
function as given in (9.56). Obviously, in reality, the number of subcarriersK
is finite, different to the transmission length N which we finally always assume
to be infinite. Therefore, the assumption on the eigenvalue distribution in
(9.67) can only be understood as an approximation.

Thus, by construction, ⌊2f̃0N⌋⌊2τ̃0K⌋ of the eigenvalues of the set

{λ1, . . . , λKN} are nonzero and all of them have the value
σ2
h

4f̃0 τ̃0
. Based on

these assumptions, we can rewrite the term in the outer brackets on the RHS
of (9.65) as follows

Ex

[
log det

(
σ2
h

4f̃0τ̃0σ2
n

ŨHXHXŨ+ I⌊2f̃0N⌋⌊2τ̃0K⌋

)]
+KN log

(
πeσ2

n

)

(9.68)

where the matrix Ũ is given by

Ũ =
[
ua1 , . . . ,ua⌊2f̃0N⌋⌊2τ̃0K⌋

]
∈ CNK×⌊2f̃0N⌋⌊2τ̃0K⌋. (9.69)

Here, uai are the orthonormal columns of the unitary matrix U with ai

taken from the set
{
a1, . . . , a⌊2f̃0N⌋⌊2τ̃0K⌋

}
corresponding to the eigenval-

ues λi which are nonzero. Based on the inequality (3.58) in Lemma 3.1 in
Section 3.3.2, we can lower-bound (9.68) as follows
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Ex

[
log det

(
σ2
h

4f̃0τ̃0σ2
n

ŨHXHXŨ+ I⌊2f̃0N⌋⌊2τ̃0K⌋

)]
+KN log

(
πeσ2

n

)

≥ Ex

[
trace

[
ŨHdiag

(
log

(
σ2
h

4f̃0τ̃0σ2
n

|x[1, 1]|2 + 1

)
, . . . ,

log

(
σ2
h

4f̃0τ̃0σ2
n

|x[N,K]|2 + 1

))
Ũ

]]
+KN log

(
πeσ2

n

)

= trace

[
ŨHdiag

(
Ex log

(
σ2
h

4f̃0τ̃0σ2
n

|x[1, 1]|2 + 1

)
, . . . ,

Ex log

(
σ2
h

4f̃0τ̃0σ2
n

|x[N,K]|2 + 1

))
Ũ

]
+KN log

(
πeσ2

n

)

(a)
=

⌊2f̃0N⌋⌊2τ̃0K⌋∑

i=1

Ex log

(
σ2
h

4f̃0τ̃0σ2
n

|x|2 + 1

)
+KN log

(
πeσ2

n

)
(9.70)

where for (a) we have used the fact that all x[n, k] are identically distributed
and that the columns of Ũ are orthonormal.

Thus based on the approximation of the eigenvalues of R
h̃[0] by the eigen-

values given in (9.67), we get the following approximative lower bound on
the entropy rate

h′(y|x) = lim
N→∞

1

NT
h(y|x)

& lim
N→∞

1

NT





⌊2f̃0N⌋⌊2τ̃0K⌋∑

i=1

Ex log

(
σ2
h|x|2

4f̃0τ̃0σ2
n

+ 1

)
+KN log

(
πeσ2

n

)




=
2f̃0⌊2τ̃0K⌋

T
Ex log

(
σ2
h

4f̃0τ̃0σ2
n

|x|2 + 1

)
+
K

T
log
(
πeσ2

n

)

= h′L(y|x) (9.71)

where we use the sign & to indicate that this lower bound holds only approx-
imately.

9.2.3 The Achievable Rate

Based on the upper and lower bounds on h′(y) and on h′(y|x) we give upper
and lower bounds on the achievable rate with i.d. input symbols in temporal
and in subcarrier domain within this section. On the one hand, we give these
bounds for the case of a peak power constraint and, on the other hand, we
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evaluate the bounds on the achievable rate for the special case of using i.i.d.
zero-mean proper Gaussian inputs.

9.2.3.1 Upper Bound

Gaussian Input Distribution

For the special case of i.i.d. zero-mean proper Gaussian input symbols, an
upper bound on the achievable rate is given by

I ′
U (y;x)

∣∣
PG

= sup
α∈[0,1]

{
h′U (y) − h′L(y|x)

∣∣
PG

}

= sup
α∈[0,1]

{
K

T
log

(
T

K
αρ+ 1

)

− 2f̃0⌊2τ̃0K⌋
T

∫ ∞

z=0

log

(
T

4f̃0τ̃0K
αρz + 1

)
e−zdz

}

(a)
=

K

T
log

(
T

K
ρ+ 1

)
− 2f̃0⌊2τ̃0K⌋

T

∫ ∞

z=0

log

(
T

4f̃0τ̃0K
ρz + 1

)
e−zdz

= I ′
U (y;x)

∣∣
PG

& I ′(y;x)
∣∣
PG

(9.72)

which holds only approximately due to the fact that we do not have infinitely
many subcarriers. Here ρ is the average SNR as defined in (9.37). The supre-
mum is achieved for α = 1, i.e., the upper bound is maximized while using
the maximum average transmit power. The proof of (a) is analog to the
frequency flat case discussed in Section 3.4.1.2. Thus, we have found an ap-
proximative upper bound on the achievable rate with i.i.d. zero-mean proper
Gaussian input symbols for the case of a frequency-selective fading channel
under the assumption of a brick-shaped scattering function. To the best of
our knowledge, this is the only available (approximative) upper bound on the
achievable rate with i.i.d. non-peak power constrained input symbols. Other
bounds, e.g., the bounds on the capacity given in [33] make explicit use of the
peak power constraint in their derivation and therefore cannot be applied to
non-peak power constrained input distributions as proper Gaussian inputs.
On the other hand, it has to be stated that the bounds given in [33] are
bounds on the capacity holding for arbitrary scattering functions of compact
support, while our approximative upper bound is only an upper bound on the
achievable rate, as we assume i.d. input symbols in temporal and subcarrier
domain, which has been required within our derivation. Furthermore, for our
derivation, we have to restrict to brick-shaped scattering functions, which is
further approximated due to the fact that we do not have infinitely many
subcarriers.
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As in the flat-fading case, we can modify the approximative upper bound
on the achievable rate given in (9.72) based on the fact that the achiev-
able rate is always upper-bounded by the coherent mutual information rate
I ′(x;y|h), i.e., cf. (3.87)

I ′
Umod

(y;x) = min{I ′
U (y;x), I ′(x;y|h)}. (9.73)

As in case of perfect CSI at the receiver i.i.d. zero-mean proper Gaussian
input symbols are capacity-achieving, we get

I ′(y;x|h)
∣∣
PG

= sup
POFDM

I ′(y;x|h) = K

T

∫ ∞

z=0

log

(
1 +

PT

K

σ2
h

σ2
n

z

)
e−zdz

=
K

T

∫ ∞

z=0

log

(
1 +

T

K
ρz

)
e−zdz. (9.74)

Effectively, this is the capacity of K parallel Rayleigh flat-fading channels,
each having an input power PT/K. Furthermore, to get to the information
rate, we normalize by T , the duration of one time slot, respectively one OFDM
symbol.

Peak Power Constraint

Based on the peak power constrained input set Ppeak
OFDM, i.d. in (9.42) we get

the following approximative upper bound on the achievable rate with peak
power constrained i.d. input symbols

sup
Ppeak

OFDM, i.d.

I ′
U (y;x) = sup

Ppeak
OFDM, i.d.

{h′U (y) − h′L(y|x)}

= sup
Ppeak

OFDM, i.d.

{
K

T
log

(
ασ2

xσ
2
h

σ2
n

+ 1

)
− 2f̃0⌊2τ̃0K⌋

T
Exlog

(
σ2
h

4f̃0τ̃0σ2
n

|x|2 + 1

)}

(a)

≤ sup
α∈[0,1]

{
K

T
log

(
ασ2

xσ
2
h

σ2
n

+ 1

)

− 2f̃0⌊2τ̃0K⌋
T

ασ2
xK

Ppeak
log

(
σ2
h

4f̃0τ̃0σ2
n

Ppeak

K
+ 1

)}

= sup
α∈[0,1]

{
K

T
log

(
αPTσ2

h

Kσ2
n

+ 1

)
− 2f̃0⌊2τ̃0K⌋

T

α

β
log

(
σ2
hPT

4f̃0τ̃0σ2
nK

β + 1

)}

= sup
α∈[0,1]

{
K

T
log

(
T

K
αρ+ 1

)
− 2f̃0⌊2τ̃0K⌋

T

α

β
log

(
T

4f̃0τ̃0K
ρβ + 1

)}

= I′
U (y;x)

∣∣
Ppeak

(9.75)
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where ρ is the nominal mean SNR as defined in (9.37). The derivation of
inequality (a) is based on the same approach as it has been used in (3.70)
- (3.74). In addition, we have used (9.36) and the nominal peak-to-average
power ratio

β =
Ppeak

σ2
xK

. (9.76)

The α maximizing (9.75) is given by

αopt = min



1,

(
2f̃0⌊2τ̃0K⌋

Kβ
log

(
T

4f̃0τ̃0K
ρβ + 1

))−1

− K

Tρ



 . (9.77)

Apparently, also this approximative upper bound can be used in combination
with the coherent upper bound, cf. (9.73).

9.2.3.2 Lower Bound

No Peak Power Constraint

To get a lower bound on the capacity without a peak power constraint, we
have to calculate

sup
POFDM, i.d.

I ′(y;x) ≥ sup
POFDM, i.d.

I ′
L(y;x)

= sup
POFDM, i.d.

{h′L(y)− h′U (y|x)}

(a)
= sup

POFDM, i.d.

{I ′(y;x|h) − h′U (y|x)} + h′(y|h,x)

(b)
= sup

α∈[0,1]

{
I ′(y;x|h)

∣∣
PG,α

− h′U (y|x)
}
+ h′(y|h,x)

(9.78)

where for (a) we have used (9.43). Furthermore, (b) is based on the fact that
h′U (y|x) given in (9.55) only depends on the input distribution in form of
the average transmit power αP and the coherent mutual information rate
I ′(y;x|h) is maximized for i.i.d. zero-mean proper Gaussian inputs. The in-
dex PG, α denotes zero-mean proper Gaussian input symbols and an average
power equal to αP . Thus, the first term on the RHS of (9.78) corresponds to
(9.74) but with an average transmit power of αP .

Thus, with (9.74), (9.44), and (9.55) we get the following lower bound on
the channel capacity
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sup
POFDM, i.d.

I ′
L(y;x)

= sup
α∈[0,1]

{
K

T

∫ ∞

z=0

log

(
1+

T

K
αρz

)
e−zdz − 2f0

K−1∑

i=0

log

(
1+

αP

σ2
n2f0K

di

)}

(a)

≥ K

T

∫ ∞

z=0

log

(
1 +

T

K
ρz

)
e−zdz − 2

f̃0
T

K−1∑

i=0

log

(
1 +

ρT

σ2
h2f̃0K

di

)

(9.79)

(b)
= I ′

L(y;x)
∣∣
PG

(9.80)

where for (a) we choose α = 1, i.e., use the maximum average transmit
power, which does not maximize the argument of the supremum in general.
Furthermore, for (a) we have substituted f0 by its normalized pendant f̃0,
see (9.29). Obviously, the lower bound in (9.79) is achievable with i.i.d. zero-
mean proper Gaussian input symbols in temporal and in frequency domain
and, thus, (b) holds.

If we use the assumption on a brick-shaped scattering function as it has
been used in the derivation of the lower bound on h′(y|x) in Section 9.2.2.2,
the di in (9.79) which are defined by (9.54) can be approximated by

di ≈
{

σ2
h

2τ̃0
for 1 ≤ i ≤ ⌊2τ̃0K⌋

0 otherwise
. (9.81)

Based on the assumption of a bricked-shaped scattering function and the
approximation in (9.81), we get for (9.79)

sup
POFDM, i.d.

I ′
L(y;x) =

K

T

∫ ∞

z=0

log

(
1 +

T

K
ρz

)
e−zdz

− 2
f̃0
T
⌊2τ̃0K⌋ log

(
1 +

T

4f̃0τ̃0K
ρ

)
. (9.82)

As in the flat-fading case, this lower bound can be modified using the fact
that the mutual information rate is nonnegative, cf. (3.94).

Peak Power Constraint

As the lower bound given in (9.79) is based on the coherent capacity which
is achieved for zero-mean proper Gaussian inputs, which are non-peak power
constrained, we have to modify the lower bound when the input symbols are
peak power constrained. Corresponding to the discussion for the flat-fading
case in Section 3.4.2.2 a lower bound on the capacity in case of a peak power
constraint is given by
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sup
Ppeak

OFDM, i.d.

I ′
L(y;x) = sup

Ppeak
OFDM, i.d.

{I ′(y;x|h) + h′(y|x,h) − h′U (y|x)}

(a)
= sup

Ppeak
OFDM, i.d.

{
1

T
I(ỹ; x̃|h̃) + h′(y|x,h) − h′U (y|x)

}

(b)

≥ K

T
I(y[n, k];x[n, k]|h[n, k])

∣∣
CM,PT

K

− 2
f̃0
T

K−1∑

i=0

log

(
1 +

ρT

σ2
h2f̃0K

di

)

(9.83)

(c)
=
K

T
I(y[n, k];x[n, k]|h[n, k])

∣∣
CM,PT

K

− 2
f̃0
T
⌊2τ̃0K⌋ log

(
1 +

T

4f̃0τ̃0K
ρ

)

(9.84)

= I ′
L(y;x)

∣∣
Ppeak

(9.85)

where (a) results from the fact that the supremum of the coherent mutual in-
formation rate I ′(y;x|h) is achieved for independent OFDM symbols and for
(b) we have used that I(ỹ; x̃|h̃) corresponds to the coherent mutual informa-
tion of K parallel flat fading channels. In case of a peak power constraint, we
lower-bound it based on the assumption of constant modulus signaling, see
Section 3.4.2.2. Thus, I(y[n, k];x[n, k]|h[n, k])

∣∣
CM,PT

K

is the coherent mutual

information of a subcarrier when using i.i.d. circularly symmetric constant
modulus input symbols with power PT/K. As in the flat-fading case, the co-
herent mutual information with constant modulus inputs has to be evaluated
numerically. In addition, equality (c) in (9.84) holds for the special case of a
brick-shaped scattering function corresponding to (9.82). It is based on the
approximation in (9.81).

9.2.3.3 The Effect of the Channel Bandwidth B

The bounds on the achievable rate can also be expressed in terms of the
bandwidth B. The bandwidth B is given by

B = KF (9.86)

where K is the number of frequency subcarriers and F is their frequency
spacing. For simplicity, from now on we use the following approximation

⌊2τ̃0K⌋ ≈ 2τ̃0K. (9.87)

For a sufficiently large number of subcarriers K, i.e., large bandwidths B,
this approximation works well, i.e., it has a small influence on the bounds on
the achievable rate.

Based on the bandwidth B, we get the following expressions for the ap-
proximative upper bound and the lower bound on the achievable rate with
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i.d. input symbols, a peak power constraint, and a brick-shaped scattering
function

I ′
U (y;x)

∣∣
Ppeak

= sup
α∈[0,1]

{
B

TF
log

(
TF

B
αρ+ 1

)
− 4f̃0τ̃0B

TF

α

β
log

(
TF

4f̃0τ̃0B
ρβ + 1

)}

(9.88)

I ′
L(y;x)

∣∣
Ppeak

=
B

TF
I(y[n, k];x[n, k]|h[n, k])

∣∣
CM,PTF

B

− 4f̃0τ̃0B

TF
log

(
1 +

TF

4f̃0τ̃0B
ρ

)
.

(9.89)

For the case of i.i.d. zero-mean proper Gaussian inputs and a brick-shaped
scattering function, we get

I ′
U (y;x)

∣∣
PG

=
B

TF
log

(
TF

B
ρ+ 1

)
− 4f̃0τ̃0B

TF

∫ ∞

z=0

log

(
TF

4f̃0τ̃0B
ρz + 1

)
e−zdz

(9.90)

I ′
L(y;x)

∣∣
PG

=
B

TF

∫ ∞

z=0

log

(
1 +

TF

B
ρz

)
e−zdz − 4f̃0τ̃0B

TF
log

(
1 +

TF

4f̃0τ̃0B
ρ

)
.

(9.91)

Here we have to give an important remark. Note that the first term on the
RHS of (9.91) corresponds to the coherent capacity given in (9.74). The coher-
ent capacity is achieved for i.i.d. zero-mean proper Gaussian input symbols,
i.e., independent symbols in time and in frequency. Obviously, for B → ∞ the
first term on the RHS of (9.91) is non-zero. But this is in contradiction to a
result given in [78], stating that large bandwidths cannot effectively utilized
by spreading the power uniformly in time and frequency. They show that
for such input signals the capacity converges to zero for infinite bandwidth,
which obviously is in contradiction to our result. We do not know the reason
for disagreement. It might be a result of the orthonormal basis that has been
chosen for the discretization. In [78] a different discretization has been chosen.
Such a discrepancy has also been observed in [33], and there also the differ-
ent discretization is mentioned as a possible reason. However, the numerical
evaluations in Section 9.2.3.4 will show that for small to medium bandwidths
the expression for the coherent capacity in (9.74) shows reasonable results.
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9.2.3.4 Numerical Evaluation

In this section, we numerically evaluate and compare the approximative upper
bound and the lower bound on the achievable rate with i.i.d. zero-mean proper
Gaussian input symbols in temporal and in subcarrier domain given in (9.90)
and in (9.91). Furthermore, we compare the approximative upper bound on
the achievable rate with i.d. peak power constrained input symbols given
in (9.88) with the approximative upper bound for i.i.d. zero-mean proper
Gaussian inputs (9.90). Corresponding to the numerical evaluation in [33],
we choose the following system parameters which apply for an IEEE 802.11a
system with a transmit power of 200mW, a very strong pathloss of 118 dB,
and a receiver noise figure of 5 dB,

• a symbols duration of T = 0.35ms and a subcarrier spacing F = 3.53 kHz,
yielding TF ≈ 1.25. 3

• the receive power is normalized by the noise spectral density to

P

1W/Hz
= 2.42 · 107 1

s
. (9.92)

Fig. 9.1 shows the approximative upper bound and the lower bound on the
achievable rate with i.i.d. zero-mean proper Gaussian input symbols given in
(9.90) and (9.91) for the previously given system parameters and a flat brick-
shaped scattering function. Concerning the support of the scattering function,
we consider the following two cases:

• A maximum delay τ0 = 0.5µs and a maximum Doppler spread of f0 =
5Hz, leading to the spread ∆H = 4f0τ0 = 10−5.

• A large spread of ∆H = 4f0τ0 = 10−3 to show the effect of the channel
dynamics and the delay spread.

Notice, that these bounds are based on the assumption that ICI and ISI are
neglected, see Section 9.1.2. For the parameter range evaluated here, i.e., the
low SNR, the AWGN will be the dominating noise component and negligence
of the interference is reasonable.

In addition, in Fig. 9.1 also the capacity in case of perfect channel state in-
formation is shown. It can be clearly observed, that for the case of no channel
state information at the receiver side the achievable rate increases with an
increasing bandwidth up to a certain bandwidth, which is typically named
critical bandwidth [33], and then decreases for a further bandwidth exten-
sion. For B → ∞ the achievable rate again approaches zero. This behavior
can be explained as follows. Up to the critical bandwidth the achievable rate
increases due to additional degrees of freedom of the channel that can be used
for communication increases. A further extension of the bandwidth leads to
a reduction of the achievable rate. This effect occurs due to the increase in

3 This also corresponds to the general guideline on the choice of the ratio T
F

= τ0

f0

given in [33], [64], [65], and [76].



212 9 Frequency-Selective Channels

0.001 0.01 0.1 1 10 100 1000 10000
0

5

10

15

20

25

30

35

40

45

 

 

bandwidth B [GHz]

[M
b
it
/
s]

approximate UB (9.90)
LB (9.91)

∆H = 10−3

∆H = 10−5

perfect CSI

Fig. 9.1: Bounds on the achievable rate with i.i.d. zero-mean proper
Gaussian inputs in temporal and in subcarrier domain; perfect CSI corre-
sponds to coherent capacity supPOFDM

I ′(y;x|h) (9.74)

the number of degrees of freedom of the channel, leading, in the context of
channel estimation, to an increasing channel estimation error variance. In this
regard, consider that the transmitted power is held constant and is transmit-
ted over a larger bandwidth, i.e., the SNR per subcarrier decreases with an
increasing bandwidth.

The critical bandwidth obviously decreases with an increasing spread of
the scattering function ∆H. Also the maximum of the achievable rate de-
creases with an increasing spread ∆H. This corresponds to the previous ex-
planations. An increasing spread ∆H corresponds to a less correlated channel
in the temporal and in the frequency domain, i.e., more degrees of freedom
of the channel, and, thus, in the context of channel estimation, to a larger
channel estimation error variance and a decreased rate.

Furthermore, it has to be considered that the achievable rate is always
upper-bounded by the perfect CSI capacity, see (9.73). Up to a specific band-
width, the lower bound and the perfect CSI capacity virtually coincide. How-
ever, there is still a gap, which cannot be identified due to the scaling in
Fig. 9.1.

Fig. 9.2 shows the approximative upper bound on the achievable rate with
i.d. peak power constrained input symbols (9.88) in comparison to the ap-
proximative upper bound on the achievable rate with i.i.d. zero-mean proper
Gaussian inputs (9.90), which also holds for i.d. input symbols. As it has al-
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Fig. 9.2: Comparison of approximative upper bounds on the achiev-
able rate with i.d. inputs for a peak power constraint in (9.88) and
with zero-mean proper Gaussian inputs in (9.90); notice, (9.90) holds
also for i.d. input symbols; nominal peak to average power ratios β; perfect
CSI corresponds to coherent capacity supPOFDM

I ′(y;x|h) (9.74); in addition
the lower bound on the peak power constrained capacity in (9.89)
is shown

ready been observed in the flat-fading case in Section 3.4.1, with an increas-
ing nominal peak-to-average power ratio β the approximative upper bound
in (9.88) is increasing. For β → ∞ the second term in (9.88) approaches zero
and thus the bound becomes loose. For β = 2 the peak power constrained
approximative upper bound (9.88) is already larger than the approximative
upper bound on the achievable rate for zero-mean proper Gaussian inputs
(9.90). Furthermore, the lower bound on the peak power constrained capac-
ity in (9.89) is shown. As this lower bound is by construction also a lower
bound on the achievable rate with constant modulus input symbols, it be-
comes loose towards smaller bandwidths, as in this case the subcarrier SNR
increases. With increasing subcarrier SNR the achievable rate with constant
modulus input symbols stays increasingly below the capacity.
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9.2.3.5 Comparison to Capacity Bounds in [33]

In [33] bounds on the capacity of peak power constrained frequency-selective
fading channels are given. Now, we compare these capacity bounds to the
bounds on the achievable rate with peak power constrained i.d. input symbols
given in (9.83) and (9.88).

Therefore, note that corresponding to the flat-fading case in Section 3.6,
the lower bound in (9.83) can be enhanced by using the time sharing argu-
mentation and, thus, by skipping the assumption on i.d. input symbols in
temporal domain. This leads to

sup
Ppeak

OFDM

I ′
L(y;x)

≥ max
γ∈[1,β]

{
1

γT
I(ỹ; x̃|h̃)

∣∣
CM,γPT

− 1

γ
2
f̃0
T

K−1∑

i=0

log

(
1 +

γρT

σ2
h2f̃0K

di

)}

(9.93)

where Ppeak
OFDM corresponds to Ppeak

OFDM, i.d. in (9.42) but without the restriction
to i.d. input symbols in temporal domain. The lower bound on capacity in
(9.93) exactly corresponds to the lower bound given in [33, (48)].

For the special case of a brick-shaped scattering function also the upper
bound on the capacity given in [33, Theorem 1] is equal to the approxima-
tive upper bound on the achievable rate with i.d. input symbols given in
(9.88), which thus obviously is not only an approximation but a real upper
bound. However, the upper bound given in [33] is an upper bound on capac-
ity, as for its derivation no further assumptions, like the assumption on i.d.
input symbols as it has been required for the derivation of (9.88), have been
made. Furthermore, the upper bound in (9.88) only holds for the special case
of a brick-shaped scattering function and holds only approximately as the
asymptotic equivalence of Toeplitz and circulant matrices would only hold
for infinite bandwidth. In contrast, the capacity upper bound given in [33] has
been rigorously proven and holds for arbitrary scattering functions. However,
the derivation of the upper bound given in (9.88) based on the lower bound
on h′(y|x) in (9.71) is new, and its derivation is not explicitly based on the
assumption of a peak power constraint. Thus, it enables the derivation of an
upper bound on the achievable rate with zero-mean proper Gaussian input
symbols given in (9.90). In contrast to this, the approach taken to derive the
upper bound on capacity given in [33] is inherently based on the peak power
constraint, which is used in combination with the relation between mutual
information and MMSE given in [45], and cannot be applied to non-peak
power constrained input distributions.



9.3 Comparison with Pilot Based Synchronized Detection 215

9.3 Comparison with Pilot Based Synchronized
Detection

In this section, we compare the bounds on the achievable rate with i.i.d. zero-
mean proper Gaussian input signals in (9.90) and (9.91) to the achievable rate
with synchronized detection where the channel estimation is solely based on
pilot symbols. Bounds on the achievable rate with synchronized detection
using a solely pilot based channel estimation for an OFDM system have been
given in [47] and [4]. In the following we recall these bounds to attain a
self contained exposition. In this section, we assume that the covariance in
frequency domain and in time domain are independent, i.e.,

rH(t, ν) = rH,F (t)rH,D(ν) (9.94)

where rH,F (t) describes the temporal correlation of the channel fading weights
for the individual delay paths, and rH,D(ν) describes the correlation of the
subcarriers in frequency domain. Thus, (9.94) means that all delay paths have
an identical temporal correlation. This assumption corresponds to (9.59) as
it has been used for the derivation of the lower bound on h′(y|x).

Based on the temporal autocorrelation function the PSD of the channel
fading process of the individual delay tap is given by

Sh(f) =

∫ ∞

t=−∞
rH,F (t)e

−j2πtfdt. (9.95)

Furthermore, the power delay profile is given by

ρ(τ) =

∫ ∞

ν=−∞
rH,D(ν)e

j2πντdν. (9.96)

Due to (9.94) also the following relation holds, cf. (9.7)

SH(f, τ) = Sh(f)ρ(τ). (9.97)

Corresponding to the flat-fading case, we can rewrite the channel input-

output relation using the pilot based channel estimate ˆ̃Hpil,n as follows, cf.
(9.13)

ỹn
(a)
= H̃nx̃n + ñn + ĩn
(b)
= ˆ̃Hpil,nx̃n + Ẽpil,nx̃n + ñn + ĩn (9.98)

where for (a) we still consider the ICI and ISI terms, i.e., see (9.12)
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[
ĩn

]
k
=

∞∑

n′=−∞

K−1∑

k′=0
(n′,k′) 6=(n,k)

x[n′, k′]〈Hgn′,k′ , gn,k〉 (9.99)

and for (b) we expressed the diagonal channel fading matrix H̃n by its es-

timate ˆ̃Hpil,n and the estimation error Ẽpil,n, cf. (5.9). The variance of the
interference on the individual time-frequency slots is given by

σ2
i = E

[∣∣[in]k
∣∣2
]

(9.100)

where it is assumed to be independent of the specific time-frequency slot.

LSC

LSym

Fig. 9.3: Example of the pilot grid with LSym = 6 and LSC = 4; pilot symbols
in gray, data symbols in white

We assume that dedicated pilot symbols for channel estimation are regu-
larly inserted into the OFDM symbols. Each LSC-th subcarrier is used for a
pilot symbol in each LSym-th OFDM symbol, see Fig. 9.3. Furthermore, we
presume that the number of OFDM symbols N is a multiple of LSym and
that the number of subcarriers K is a multiple of the pilot subcarrier spacing
LSC. Then, the transmitted block of N OFDM symbols contains

NK

(
1− 1

LSymLSC

)
(9.101)

data symbols and NK/(LSymLSC) pilot symbols.
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Recall that the scattering function SH(f, τ) has a support that is limited
to [−f0, f0]× [−τ0, τ0], see (9.8). As it has been discussed for the flat-fading
case, the pilot spacing has to be chosen such that the channel sampling fulfills
the Nyquist criterion to achieve a sufficient channel estimation quality. Con-
cerning the temporal domain, therefore the pilot spacing LSym must satisfy

LSym ≤ 1

2f0T
=

1

2f̃0
. (9.102)

Also concerning the sampling on the frequency domain the Nyquist cri-
terion has to be fulfilled. As we assume that the delay spread is limited to
[−τ0, τ0], each LSC-th subcarrier has to carry pilot symbols with

LSC ≤ 1

2τ0F
=

1

2τ̃0
. (9.103)

The pilot symbols are assumed to have constant modulus, each having a
power of σ2

p.

9.3.1 Channel Estimation

Now, we shortly describe the principle of LMMSE channel estimation in the
context of an OFDM system and briefly recall the derivation of an expression
for the channel estimation error variance given in [4] and [47]. The channel
estimation is solely based on pilot symbols. Therefore, we introduce the vec-
tors xP and yP corresponding to x and y given in (9.20) and (9.21), but only
containing the time-frequency slots used for pilot symbols.

In principle, LMMSE channel estimation in an OFDM system is done in
three steps [4]. In the first step by multiplication of the elements of received
pilot symbol vector yP with the corresponding elements of xP , the modu-
lation is removed in the frequency domain. In the second step an IDFT is
performed, giving snapshots of the time domain channel impulse response.
These snapshots are then interpolated in the time domain by Wiener filtering.
In the third step the estimated channel impulse responses are interpolated in
the frequency domain by a DFT transformation of the zero padded impulse
responses.

In the following, we assume a rectangular PSD of the channel fading pro-
cess, i.e.,

Sh(f̃) =

{
1

2f̃0
for |f̃ | ≤ f̃0

0 otherwise
(9.104)

which is normalized to the OFDM symbol duration, see (9.29).
In the discrete-time signal representation the channel consists of
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κ = ⌈B2τ0⌉ (9.105)

channel delay taps. The samples of the power delay profile are given by ρl,
l = 1, . . . , κ, cf. (9.96), with

κ∑

l=1

ρl = σ2
h. (9.106)

We assume a uniform power delay profile, i.e., ρl = σ2
h/κ. This assumption

in combination with the rectangular PSD Sh(f̃) in (9.104) approximates the
case of a brick-shaped scattering function given in (9.56).

Under these assumptions and for an infinitely long observation interval,
i.e., infinitely many OFDM symbols, the estimation error variance for an
individual time-frequency slot is given by [4], [47]

σ2
epil

= E

[∣∣∣h[n, k]− ĥpil[n, k]
∣∣∣
2
]
=

2f̃0LSymσ
2
h

2f̃0LSym + K
κLSC

σ2
hσ

2
p

(σ2
n+σ2

i )

(9.107)

where σ2
p is the power of the pilot symbols.

From now on, we use the following approximation expressing the κ- delay
taps in discrete-time based on the continuous time two-sided delay spread
2τ0, cf. (9.105)

κ = ⌈B2τ0⌉ ≈ B2τ0 (9.108)

with the system bandwidth B. Using the normalized maximum delay τ̃0 as
defined in (9.30) and the relation (9.86), we can approximate κ by

κ = K2τ̃0. (9.109)

Therefore, the estimation error variance in (9.107) becomes

σ2
epil =

2f̃0LSymσ
2
h

2f̃0LSym + 1
2τ̃0LSC

σ2
hσ

2
p

σ2
n+σ

2
i

= σ2
h

4f̃0τ̃0LSymLSC

4f̃0τ̃0LSymLSC +
σ2
hσ

2
p

σ2
n+σ

2
i

(9.110)

where
σ2
hσ

2
p

σ2
n+σ

2
i
corresponds to the average SNR of the pilot symbols, including

interference. Due to Nyquist sampling, this estimation error variance holds
for all time-frequency slots.
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9.3.2 Achievable Rate with Pilot Based Synchronized
Detection

In this section, we recall a lower bound on the achievable rate with solely
pilot based synchronized detection given in [4] and [47]. In [4] also an upper
bound on the achievable rate with synchronized detection is given. It has
already been observed in the flat-fading case that the gap between the upper
and the lower bound is relatively small. Therefore, here we discuss only the
lower bound.

Following the same argumentation as in Section 5.2, any correlation of the
channel estimation error process in temporal and in frequency domain is not
exploited while using solely pilot based synchronized detection. Furthermore,
this holds also for correlations of the interference term in in (9.98). As the
channel estimation error variance in (9.110) is equal for all time-frequency
slots and as each subcarrier corresponds to a flat-fading channel, a lower
bound on the achievable rate with i.i.d. zero-mean proper Gaussian data
symbols is given by, see [4] and cf. (5.37)

I ′
(
x;y

∣∣ ˇ̂hpil

)
= lim
N→∞

1

NT
I
(
x;y|ˇ̂hpil

)

≥ K

T

(
1− 1

LSymLSC

)
Eĥpil[n,k]

log

(
1 +

|ĥpil[n, k]|2σ2
d

σ2
epil
σ2
d + σ2

n + σ2
i

)

=
K

T

(
1− 1

LSymLSC

)∫ ∞

z=0

log (1 + ρηz) e−zdz. (9.111)

where the notation of
ˇ̂
hpil corresponds to (5.33). Moreover, σ2

d is the average
power of the data symbols on the individual subcarriers. Furthermore, it is
used that the channel estimates are zero-mean proper Gaussian with variance
σ2
h−σ2

epil
. In addition, the last equality in (9.111) follows from the definition

of the average SNR ρ in (9.37) and the SNR degradation factor η, which
describes the SNR degradation with respect to the case of perfect channel
state information at the receiver side, and which is defined by

η = ηI
(σ2
h − σ2

epil)σ
2
d

Pσ2
h

(
1 + ηI

σ2
epil

σ2
d

σ2
n

) . (9.112)

The factor ηI in (9.112) describes the SNR degradation factor due to ICI and
ISI and is given by

ηI =
σ2
n

σ2
n + σ2

i

. (9.113)
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Although the following steps are quite similar to the flat-fading case dis-
cussed in Section 5.2 and although the bound is only recalled from [4], in the
following we give the lower bound on the achievable rate for the case with
and without pilot power optimization depending on the bandwidth B. This
enables a direct comparison to the achievable rate with i.i.d. input symbols.

9.3.2.1 Equal Pilot and Average Data Symbol Power

In case the average power of the data symbols and the pilot power are chosen
to be equal, i.e., the case without pilot-to-data power ratio optimization, the
pilot and the average data power are given by

σ2
p = σ2

d = σ2
x. (9.114)

With (9.36), (9.37), (9.86), (9.110), (9.112), (9.113), and (9.114) the lower
bound on the achievable rate with synchronized detection based on a solely
pilot based channel estimation in (9.111) can be expressed as a function of
the channel bandwidth B by

I ′
L

(
x;y

∣∣ ˇ̂hpil

) ∣∣∣∣
SD

=
B

TF

(
1− 1

LSymLSC

)∫ ∞

0

log


1+z

ηIρ
TF
B

4f̃0τ̃0LSymLSC

(
1+ B

ηIρTF

)
+1


 e−zdz.

(9.115)

Obviously, the lower bound in (9.115) only depends on the product
LSymLSC and not on the individual factors. For the numerical evaluation
in Section 9.3.2.4, we choose the LSymLSC such that (9.115) is maximized.

9.3.2.2 Pilot-to-Data Power Ratio Optimization

Corresponding to the flat-fading case the pilot-to-average data power ratio
can be optimized, cf. Section 5.2.2 and [4]. The achievable rate depends on
the ratio between the pilot and the average data symbol power

ν =
σ2
p

σ2
d

. (9.116)

Following the same argumentation as in Section 5.2.2, it is beneficial to
choose the maximum possible pilot spacings in temporal and in frequency
domain which fulfill the Nyquist conditions in (9.102) and (9.103) and then
to optimize ν.
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Obviously, the pilot spacings LSym and LSC can only be integer numbers.
To simplify the analysis, we use the following approximations

LSym =
1

2f̃0
(9.117)

LSC =
1

2τ̃0
. (9.118)

Choosing the pilot spacing as in (9.117) and (9.118), and using (9.116),
the SNR degradation factor η becomes

η =
η2Iρ

T 2

K2 ν(
4f̃0τ̃0(ν − 1) + 1

) [
ηIρ

T
K (1 + ν)− 4f̃0τ̃0(1− ν) + 1

] . (9.119)

The factor η is maximized for the following pilot power to average data
power ratio [4]

νopt =

√√√√√√

(
1− 4f̃0τ̃0

)2
+ ηIρ

T
K

(
1− 4f̃0τ̃0

)

4f̃0τ̃0

(
4f̃0τ̃0 + ηIρ

T
K

) . (9.120)

Notice, (9.119) as well as (9.120) correspond to (5.47) and (5.48) in the
flat-fading case.

Finally, for the pilot spacings given in (9.117) and (9.118) the lower bound
on the achievable rate in (9.111) becomes

I ′
(
x;y

∣∣ ˇ̂hpil

)
≥ B

(
1

TF
− 4f0τ0

)∫ ∞

z=0

log (1 + ρηz) e−zdz

= I ′
L

(
x;y

∣∣ ˇ̂hpil

) ∣∣∣∣
SD,νopt

(9.121)

where we have used (9.29), (9.30), and (9.86), and where η is given by (9.119)
with (9.120).

9.3.2.3 The Interference Power

For the evaluation of the lower bound on the achievable rate with pilot based
synchronized detection a statement on the SNR degradation due to inter-
ference, i.e., the factor ηI is required. In [4] the SNR degradation factor ηI
has been discussed in detail with respect to intercarrier interference (ICI).
As the motivation of the discussion of the achievable rate with pilot based
synchronized detection is mainly given by the comparison to the bounds on
the achievable rate with i.i.d. zero-mean proper Gaussian input symbols given
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in (9.90) and (9.91), for which the ISI and ICI terms have been completely
neglected, see (9.11) and (9.12), in the following we also ignore the interfer-
ence term, and thus assume ηI = 1. A detailed discussion of the ISI and ICI
terms is beyond the scope of the present work. For a discussion on the valid-
ity of this assumption, we refer to [33]. Recently in [32] the capacity bounds
given in [33] have been extended to consider interference. For the case of
synchronized detection and a study of the term ηI due to ICI, we refer to [4].

9.3.2.4 Comparison to Achievable Rate with i.i.d. Gaussian Input

In this section, we compare the lower bound on the achievable rate with
synchronized detection in combination with a solely pilot based channel es-
timation to the bounds on the achievable rate with i.i.d. zero-mean proper
Gaussian input symbols in (9.90) and (9.91) for the case of a brick-shaped
scattering function. We choose the same system parameters that have been
used in Section 9.2.3.4. Notice that for the derivation of the synchronized
detection based bound on the achievable rate, the brick-shaped scattering
function has been approximated in the delay domain with a discrete-time
uniform power delay profile.

For the comparison, it has also to be considered that the bounds on the
achievable rate with i.i.d. input symbols given in (9.90) and (9.91) are cal-
culated under the assumption that ICI and ISI can be neglected, see (9.11)
and (9.12). Therefore, in the following we assume ηI = 1.

Fig. 9.4 shows the comparison of the lower bound on the achievable rate
with solely pilot based synchronized detection with and without pilot-to-data
power ratio optimization to the bounds on the achievable rate with i.i.d. input
symbols. For both cases the data symbols are assumed to be zero-mean proper
Gaussian distributed.

In Fig. 9.4 it can be observed that the difference between the lower bound
on the achievable rate without and with pilot-to-data power ratio optimiza-
tion is hardly visible, in fact the curves are overlapping. Obviously, with
the optimization of the pilot spacings LSym and LSC we can achieve nearly
the same effect as with optimizing the pilot-to-average data power ratio and
choosing the maximum possible pilot spacing with respect to the Nyquist
sampling of the channel fading process.

Concerning the comparison of the achievable rate with solely pilot based
synchronized detection and i.i.d. zero-mean proper Gaussian data symbols to
the bounds on the achievable rate with i.i.d. zero-mean proper Gaussian input
symbols, we observe that the first one stays significantly below the second
one. The gap increases with the channel spread ∆H, at least for bandwidths
up to the critical bandwidth. With decreasing channel bandwidths, i.e., less
degrees of freedom of the channel resulting in smaller channel estimation er-
rors, the bounds on the achievable rate with synchronized detection and with
i.i.d. input symbols come closer. In contrast, the gap increases with an in-
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Fig. 9.4: Comparison of the lower bounds on the achievable rate
with synchronized detection (SD) and a solely pilot based chan-
nel estimation to the lower bound and the approximative upper
bound on the achievable rate with i.i.d. input symbols; both cases
with i.i.d. zero-mean proper Gaussian (data) symbols; for SD bounds without
and with pilot power optimization are shown; notice, the lower bounds on the
achievable rate with SD with and without optimization of the pilot power are
overlapping; assumption ηI = 1; perfect CSI corresponds to coherent capacity
supPOFDM

I ′(y;x|h) (9.74)

creasing system bandwidth B, at least up to reasonable bandwidths, i.e., the
critical bandwidth. For B → ∞ all bounds decay to zero. For the design of
communication systems this means that for systems using bandwidths corre-
sponding to the critical bandwidth, a significant gain can be achieved while
not restricting to a solely pilot based channel estimation for synchronized
detection. However, it has to be stated that the majority of communication
systems use bandwidths that are significantly smaller than the critical band-
width (except of ultra-wideband (UWB) systems). In this case, depending on
the channel dynamics characterized by ∆H, the achievable rate with solely
pilot based synchronized detection is closer to the achievable rate with i.i.d.
input symbols. However, there is still a gap, which due to the scaling in
Fig. 9.4 is not visible.
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9.4 Summary

In this chapter, we have extended the bounds on the achievable rate with i.d.
input symbols given in Chapter 3 for the flat-fading case to the frequency-
selective case. Therefore, we have recalled the discrete-time discrete-frequency
approximation of the wide-sense stationary uncorrelated scattering channel
that has been given in [33]. This approximation works well for highly un-
derspread channels. The main novelty within the present chapter lies in the
fact that for the derivation of the upper bound on the achievable rate no use
of a peak power constraint has been made, enabling to give an approximate
upper bound on the achievable rate with i.i.d. zero-mean proper Gaussian in-
put symbols. However, due to the finite bandwidth, this upper bound holds
only approximately. Beside the evaluation of the bounds for proper Gaussian
inputs, we also evaluate the bounds for peak power constrained inputs. The
resulting approximate upper bound for i.d. inputs is exactly equivalent to the
upper bound on capacity given in [33]. But in contrast to the upper bound
on the peak power constrained capacity in [33] the approximate upper bound
given in the present work is restricted to brick-shaped scattering functions
and is, due to the assumption on i.d. input symbols, not an upper bound
on the capacity. The lower bound on capacity with i.d. input symbols can
easily transferred to the lower bound on capacity given in [33] by using the
time sharing argument and, thus, discarding the assumption on i.d. inputs in
temporal domain.

Based on system parameters, corresponding to realistic systems like IEEE
802.11a, we have evaluated the bounds on the achievable rate. In the second
part of the present chapter, we have recalled known bounds on the achievable
rate with synchronized detection in combination with a solely pilot based
channel estimation and compare them to the previously derived bounds on
the achievable rate with i.i.d input symbols, assuming in both cases zero-
mean proper Gaussian data symbols. This comparison shows that depending
on the channel bandwidth and the channel dynamics, the achievable rate
with a solely pilot based synchronized detection stays below the achievable
rate with i.i.d. input symbols. However, for typical system bandwidths the
gap is relatively small in comparison to the achievable rate. If on the other
hand the system is operated close to the critical bandwidth, the gap becomes
significant. For these comparisons it has to be kept in mind that ISI and
ICI has been neglected. Concerning future work, including the interference
into the derivations is highly relevant. The interference will have a strong
influence on the high SNR behavior, as in this case the interference becomes
the dominating factor in comparison to the additive noise. Therefore, we also
did not discuss any high SNR behavior within this chapter, as the results
would be misleading when ICI and ISI are neglected. Furthermore, in [63] it
has been observed that the high SNR behavior of multipath fading channels
is very sensitive to the details of the power delay profile of the channel.



Chapter 10

Optimum Discrete Signaling

In this chapter, we consider a time-selective block Rayleigh flat-fading chan-
nel. Within a block its temporal correlation corresponds to the stationary
fading channel as it has been introduced in Chapter 2. The difference is that
after a block of N transmit symbols, the fading state switches to a new
independent realization. The stationary fading introduced in Chapter 2 cor-
responds to the special case of an infinitely large block size N . The motivation
to study now a time-selective block Rayleigh flat-fading channel is on the one-
hand given by the fact that in many real systems communication on a specific
channel resource is of finite length, consider therefore, e.g., a system using
frequency hopping. On the other hand, this study enables statements on the
achievable rate with receivers that operate blockwise, i.e., where channel esti-
mation as well as detection/decoding is performed blockwise. This also means
that for channel estimation within an individual block, no observations of the
adjacent blocks are used. As before, we assume that the channel state infor-
mation is unknown to transmitter and receiver, while the receiver is aware of
the channel law. As already stated, even though there exist bounds on the
capacity for flat-fading channels, neither exact expressions for the capacity,
nor the capacity-achieving input distribution are known. In Chapter 3 and
Chapter 4 different bounds on the achievable rate under the assumption of
i.d. or i.i.d. input distributions have been derived. These bounds are given
on the one hand for a peak power constrained input and on the other hand
for zero-mean proper Gaussian input symbols. Thus, the derivation of these
bounds is taken over the set of continuous input distributions. In contrast
to this, in the present chapter we restrict to discrete input distributions.
Furthermore, we drop any assumption on i.d. or i.i.d. input symbols.

Our motivation to study discrete input distributions is twofold. First, in
[70], it has been shown that Gaussian input distributions, which are capacity-
achieving in case the receiver is aware of the channel state, are in general not
capacity-achieving in case the channel state is unknown to the receiver. In
contrast, discrete input distributions are capacity-achieving for a variety of
conditionally Gaussian channels with bounded input constraints, i.e., with
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a peak power constraint, [10]. E.g., for the case of a Rayleigh flat-fading
channel without temporal correlation, it has been shown that the capacity-
achieving input distribution is discrete with a finite number of mass points
[1]. The scenario in the present paper falls into the class of conditionally
Gaussian channels. These observations and secondly the fact that practical
realizable systems use discrete input distributions are the motivation to study
the achievable rates for the given scenario with the restriction to discrete
input distributions.

This leads us to the following question: We have a bounded and closed
subset S ⊂ CN , where N is the fading block length which corresponds to
the length of the transmit sequence in symbols, and a maximum number M
of support points xi ∈ S, i = 1, . . . ,M , corresponding to the signaling se-
quences. What is then the optimum choice of the support points and what
is their optimum distribution p = [p1, . . . , pM ], with pi being the probabil-
ity of transmitting the sequence xi, that maximizes the mutual information
between channel input and output?

In the present chapter, we restrict to the special case where the set S
consists of a fixed amount of predefined support points x1, . . . ,xM repre-
senting the possible transmit sequences. Then, the input distribution p that
maximizes the mutual information can be evaluated. We refer to this input
distribution as the optimum input distribution. Furthermore, we name the
maximum mutual information constrained to a given set of support points
constrained capacity. In contrast to previous chapters, we use here the term
constrained capacity instead of the term achievable rate, as we explicitly op-
timize over the input distribution for a given signaling set.

For additive noise channels, this problem has been examined in [35]. We
here extend the results in [35] to time-selective block Rayleigh flat-fading
channels, where the receiver has no knowledge of the channel state. The
channel fading process within a block is characterized by a compactly sup-
ported power spectral density (PSD) with a normalized maximum Doppler
frequency fd < 0.5, i.e., it is assumed to be nonregular [24], [67]. This means
that within the block the channel has the same characteristics as described
in Chapter 2. However, from block to block it changes to an independent new
fading state.

We show that the optimum input distribution p is characterized by a
constant Kullback-Leibler distance between the output PDFs conditioned on
the individual input sequences and the unconditional output PDF. For PSK
signaling, we explicitly characterize the set of optimum input distributions p.
The special case of transmitting one pilot symbol per block, i.e., a symbol that
is known to the receiver, and i.i.d. data symbols at all other time instances lies
within this set and, thus, is optimal. In addition, we show that the asymptotic
high SNR constrained capacity is degraded at least by a factor of N−1

N with
respect to the case of perfect channel state information at the receiver. The
results of the present chapter have already been published in [25].
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The capacity of time-selective block fading channels and also optimum
discrete input distributions for noncoherent fading channels have also been
studied in prior contributions. The time-selective block fading channel studied
in the present chapter is a special case of the block-stationary fading channel,
which considers also the more general case that the blocks are correlated
between each other, see [71] and [11]. The capacity of time-selective block
fading channels and block-stationary fading channels has been discussed, e.g.,
in [71] and [11]. These publications mainly focus on the behavior of capacity
with respect to the SNR, the block length, and in [71] the number of antennas.
The first one studies the MIMO case and the second one examines a peak
power constrained SISO channel. Examinations of optimum discrete input
distributions in the context of noncoherent fading channels have, e.g., been
presented in [115] for low SNR MIMO block fading channels. Also the work
in [50] on unitary space-time modulation can be mentioned in this context,
where motivated by information-theoretic considerations a signaling scheme
for the noncoherent MIMO block fading channel is proposed, which is not
based on explicit pilot symbols. However, in [50] it is not shown that the
proposed constellation design is capacity achieving, instead the motivation is
based on a high SNR argumentation.

10.1 Capacity of a Discrete Input Time-Selective Block
Fading Channel

As already stated, we use the same system model as it has been introduced for
the discrete time flat-fading channel in Chapter 2. The input-output relation
is given by (2.1)

yk = hkxk + nk (10.1)

and in matrix-vector notation by (2.13)

y = Hx+ n = Xh+ n (10.2)

where the vectors contain N symbols. Within such a block of N symbols
the fading has the same statistical properties as described in Chapter 2, i.e.,
corresponding to a compactly supported PSD with a normalized maximum
Doppler frequency fd < 0.5.

Due to the restriction to finite size transmit constellations, the input sym-
bol xk is a discrete random variable with Q support points. Consequently,
the input vector x is a random variable with

M = QN (10.3)

support points x1, . . . ,xM ∈ CN .
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The mutual information of the channel model given in (10.2) can be cal-
culated as

I(y;x) = h(y)− h(y|x). (10.4)

In the following, we examine the constrained mutual information rate
of the channel given by (10.2). The constraint is given by the discrete in-
put distribution, where the input vector x is from the finite set S given by
S = {x1, . . . ,xM}. We are going to determine the optimum probability distri-
bution p = [p1, . . . , pM ] with pi the probability of transmitting the sequence
xi, which maximizes

C =
1

N
max
p∈C

I(y;x) (10.5)

where the set C is convex and given by

C =

{
p = [p1, . . . , pM ]

∣∣∣∣∣
M∑

i=1

pi = 1, pi ≥ 0

}
. (10.6)

Now, we discuss the meaning of the quantity C defined in (10.5). For
infinite block lengths, i.e., N → ∞, the quantity C in (10.5) corresponds
to the constrained capacity of the stationary channel model described in
Chapter 2 with the constraint given by the fixed discrete signaling set S. For
the identification of (10.5) as the constrained capacity, an infinite block length
is necessary. This assumption on an infinite block length (codeword length)
is required by the coding theorem, stating that for each rate smaller than the
capacity C there exists a code for which the probability of an erroneously
decoded codeword approaches zero in the limit of infinite codeword lengths.
For a detailed introduction to the concept of Shannon capacity and its proof
based on joint typicality we refer, e.g., to [19].

We can also restrict to a finite block length N and assume that coding is
performed over an infinite amount of these finite length transmission blocks.
In this case, the question on the meaning of the quantity C in (10.5) arises. If
we consider a stationary fading process, the channel fading process is corre-
lated over adjacent blocks. Obviously, this correlation is not captured while
evaluating C in (10.5). Therefore, in case of a finite block length N the quan-
tity C can be interpreted in the following two ways.

First, for the case of a stationary fading channel as introduced in Chapter 2
it can be understood as a constrained capacity where we introduce the further
constraint that the receiver performs detection/decoding and also channel
estimation blockwise. Any side information of the channel fading process
that is delivered by the observations in the adjacent transmission blocks is
not exploited, even not for channel estimation.

Alternatively, it is also possible to argue that for finite N the quantity
defined in (10.5) corresponds to the constrained capacity of a time-selective
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block fading channel, where now the constraint again is only given by the
fixed discrete signaling set S. This time-selective block fading channel has
the same characteristics inside the block as the channel model introduced in
Chapter 2, but fades independently between the individual blocks of length
N . However, this model is obviously not any longer stationary.

Subsequently, we will understand the quantity defined in (10.5) as the
constrained ergodic capacity of a time-selective block fading channel with
a block length N . The constraint arises from the restriction to the finite
set S with M support points, corresponding to the possible set of signaling
sequences.

10.1.1 Optimum Discrete Input Distributions

Now, we study the constrained capacity of the time-selective block fading
channel with a discrete input distribution defined in (10.5). This corresponds
to evaluate the input distribution p that maximizes (10.5). Therefore, we
first give expressions for the entropies h(y) and h(y|x) in (10.4).

For the calculation of the channel output entropy conditioned on the chan-
nel input h(y|x), the conditional probability density function p(y|x) is re-
quired. As y conditioned on x is zero-mean jointly proper Gaussian, we get

p(y|x) = 1

πN det
(
Ry|x

) exp
(
−yHR−1

y|xy
)

(10.7)

with, cf. (3.20)

Ry|x = XRhX
H + σ2

nIN . (10.8)

The distribution of the channel output is given by

p(y) =

M∑

i=1

pip(y|xi). (10.9)

Hence, p(y) is a mixture of the conditional densities p(y|xi).
The entropies in (10.4) are given by

h(y) = −
∫
p(y) log p(y)dy

= −
∫ M∑

i=1

pip(y|xi) log




M∑

j=1

pjp(y|xj)


 dy (10.10)
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h(y|x) = −
∫ ∫

p(y,x) log p(y|x)dxdy

= −
∫ M∑

i=1

pip(y|xi) log p(y|xi)dy. (10.11)

By interchanging summation and integration, we get for the mutual informa-
tion

I(y;x) = −
M∑

i=1

pi

∫
p(y|xi) log




M∑

j=1

pjp(y|xj)


 dy

+

M∑

i=1

pi

∫
p(y|xi) log p(y|xi)dy

=

M∑

i=1

pi

∫
p(y|xi) log

(
p(y|xi)∑M

j=1 pjp(y|xj)

)
dy

=

M∑

i=1

piD


p(y|xi)

∣∣∣∣∣

∣∣∣∣∣
M∑

j=1

pjp(y|xj)


 (10.12)

where

D (g||h) =
∫
g log

( g
h

)
(10.13)

is the Kullback-Leibler distance or the relative entropy between the densities
g and h, see also [19].

We now seek to find the distribution p = [p1, ..., pM ] that maximizes
(10.12). This will be pursued in the following by calculating the gradient
of f = I(y;x) with respect to p and using directional derivatives. However,
we would like to point out that there also exists an alternative approach as
described at the end of the section.

In the following derivation, we closely follow the lines in [35]. Therefore,
we calculate the gradient

∇f =

(
df

dpi

)

i=1,...,M

(10.14)

with the elements given by
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df

dpi
=

d

dpi

M∑

k=1

pk

∫
p(y|xk)


log p(y|xk)− log




M∑

j=1

pjp(y|xj)




 dy

=

∫
p(y|xi) log p(y|xi)dy −

∫
p(y|xi) log




M∑

j=1

pjp(y|xj)


 dy − 1.

(10.15)

The directional derivative of f at p̂ = [p̂1, . . . , p̂M ] in the direction of p is
given by

〈∇f(p̂),p− p̂〉 =
M∑

i=1

(pi − p̂i) (ci − bi(p̂)) (10.16)

where

bi(p̂) =

∫
p(y|xi) log




M∑

j=1

p̂jp(y|xj)


 dy (10.17)

ci =

∫
p(y|xi) log p(y|xi)dy. (10.18)

Due to the concavity of the log function, bi(p̂) is concave in C for i = 1, . . . ,M .
It can be shown that the mutual information f = I(y;x) is concave in

p on the convex set C, see [38, Theorem 4.4.2]. Thus, the maximum of f
is attained at p̂ ∈ C if and only if the directional derivatives at p̂ in any
direction p ∈ C are nonpositive, i.e.,

M∑

i=1

(pi − p̂i)(ci − bi(p̂)) ≤ 0. (10.19)

Hence, p̂ is an optimum point iff

M∑

i=1

p̂i(ci − bi(p̂)) = max
p∈C

M∑

i=1

pi(ci − bi(p̂))

= max
i=1,...,M

(ci − bi(p̂)). (10.20)

Equality is only achieved if and only if ci − bi(p̂) equals some constant χ for
all i with p̂i > 0. Recognizing that

ci − bi(p̂) = D


p(y|xi)

∣∣∣∣∣

∣∣∣∣∣
M∑

j=1

p̂jp(y|xj)


 (10.21)
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we state the following proposition.

Proposition 10.1. Given the signaling vectors x1, . . . ,xM ∈ CN for the in-
put variable x, the distribution p̂ is optimum, i.e., achieves the constrained
capacity, if and only if

D


p(y|xi)

∣∣∣∣∣

∣∣∣∣∣
M∑

j=1

p̂jp(y|xj)


 = χ (10.22)

for some χ ∈ R and all indices i with p̂i > 0.

Thus, for the optimum p̂ the Kullback-Leibler distance

D
(
p(y|xi)

∣∣∣∣∑M
j=1 p̂jp(y|xj)

)
is constant for all i with positive p̂i. With

(10.12), the constrained ergodic capacity amounts to

C =
1

N
max
p∈C

I(y;x) = 1

N
χ. (10.23)

Alternatively, we can use the analogy of our problem to the problem of
finding the capacity-achieving input distribution of the discrete memoryless
channel (DMC). Due to the restriction to a finite set of input sequences
with finite length, the Rayleigh fading channel is similar to the DMC, except
that its output is continuous. For the DMC a characterization of the capacity-
achieving distribution is given in [38, Theorem 4.5.1.]. The same methodology,
essentially the Karush-Kuhn-Tucker conditions, may be used in our context,
yielding Proposition 10.1.

In conclusion that means, that in order to find the optimum input distri-
bution p̂ for a given signaling set S, we have to find a vector p that leads

to an equal Kullback-Leibler distance D
(
p(y|xi)

∣∣∣∣∑M
j=1 p̂jp(y|xj)

)
for all

its elements i. For general input distributions using phase and magnitude
components, e.g., QAM signal constellations, we did not find a closed form
solution on the constrained capacity-achieving input distribution. Therefore,
in the following we restrict to discrete constant modulus input sets, i.e., PSK
signaling, which enable a further analytical treatment.

10.2 Constant Modulus Input Distributions

In this section, we give an explicit characterization of the optimum input
distribution p for the special case of constant modulus input distributions,
i.e., PSK type signaling with

xk = σx exp

(
j2π

i

Q

)
, i = 0, . . . , Q− 1 (10.24)
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where σ2
x = |xk|2, ∀k. Here, j is the imaginary unit, i.e., j =

√
−1. Without

loss of generality, in the following we assume σ2
x = 1.

10.2.1 Distinguishable Transmit Sequences

For input signals given by (10.24), the probability density function of the
output conditioned on the input sequence (10.7) can be simplified to

p(y|xi) =
exp

(
−yHXi

(
Rh + σ2

nIN
)−1

XH
i y
)

πN det (Rh + σ2
nIN )

. (10.25)

It can be shown that the density function conditioned on the two input
sequences xm and xn is equal, i.e.,

p(y|xn) = p(y|xm) (10.26)

if and only if

xn = xm exp (jφ) for some φ ∈ [0, 2π). (10.27)

Thus, transmit sequences fulfilling the constraint given in (10.27) cannot be
distinguished by the receiver.

We select a subset S0 ⊆ S of maximal cardinality such that the elements
of S0 are pairwise distinguishable, i.e.,

p(y|xn) 6= p(y|xm) for any xn 6= xm ∈ S0. (10.28)

It is easy to see that |S0| = M
Q = QN−1.

10.2.2 Optimum Input Distribution

Based on S0, the Kullback-Leibler distance in (10.22) can be transformed to

D


p(y|xi)

∣∣∣∣∣

∣∣∣∣∣
M∑

j=1

p̂jp(y|xj)


 =

∫
p(y|xi) log

(
p(y|xi)∑M

j=1 p̂jp(y|xj)

)
dy

=

∫
p(y|xi) log

(
p(y|xi)∑

xj∈S0
p(y|xj)

∑
{k|xk=xjejφ} p̂k

)
dy (10.29)

where we have used (10.26) and (10.27). Based on Proposition 10.1 we can
now give the following proposition.
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Proposition 10.2. The distribution

∑

{k|xk=xlejφ}
p̂k = ψ =

Q

M
=

1

QN−1
, ∀l : xl ∈ S0 (10.30)

is optimum, i.e., it achieves the constrained capacity.

Intuitively, the optimum input distribution corresponds to a uniform dis-
tribution over the space of distinguishable transmit sequences.

Proof. We have to show that for the input distribution given in (10.30), the
Kullback-Leibler distance (10.29) is independent of the index i. With (10.21)
the Kullback-Leibler distance can be expressed by ci − bi(p̂), with ci and
bi(p̂) given in (10.18) and (10.17).

We first show that the term ci given in (10.18) is independent of the index
i for constant modulus input distributions. All signaling sequences xi can be
generated based on an arbitrarily chosen vector x1 ∈ S as

xi = Uix1 (10.31)

where the matrix Ui is diagonal, orthonormal and, thus, unitary.
The conditional density p(y|xi), see (10.25), obeys the following property

p(y|xi) = p(y|Uix1) = p(UH
i y|x1). (10.32)

With (10.32), we get

ci =

∫
p(y|xi) log p(y|xi)dy

=

∫
p(UH

i y|x1) log p(U
H
i y|x1)dy

=

∫
p(y|x1) log p(y|x1)dy (10.33)

as Ui is unitary. Thus, ci is independent of the index i.
For bi(p̂) we get with (10.29) and (10.30)

bi(p̂) =

∫
p(y|xi) log


ψ

∑

xj∈S0

p(y|xj)


 dy

=

∫
p(UH

i y|x1) log


ψ

∑

xj∈S0

p(y|xj)


 dy

=

∫
p(y|x1) log


ψ

∑

xj∈S0

p(y|UH
i xj)


 dy
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(a)
=

∫
p(y|x1) log


ψ

∑

xj∈S0

p(y|xj)


 dy (10.34)

where we used (10.32) and for (a) we applied the following relation

∑

xj∈S0

p(y|UH
i xj) =

∑

xj∈S0

p(y|xj). (10.35)

Equation (10.35) holds, as we sum over all elements xj of S0, which is of
maximal cardinality. In addition, let us assume that the diagonal projection
matrix Ũk differs from the identity matrix only in one entry. Applying this
matrix to all elements xj of S0 leads to a new set S ′

0 of distinguishable
sequences of maximum cardinality. Considering in addition, that an arbitrary
matrix Ui can be constructed by a product of matrices Ũk where in each one
only one element differs from 1, i.e.,

Ui =
∏

k

Ũk (10.36)

UH
i xj is a projection into a new set S ′

0. As
∑

xj∈S0
p(y|xj) is equal for all

possible sets S0, equation (10.35) holds.
Therefore, bi(p̂) is independent of the index i for the distribution (10.30).

Finally, we have shown that for the distribution in (10.30), the Kullback-

Leibler distance D
(
p(y|xi)

∣∣∣∣∑M
j=1 p̂jp(y|xj)

)
is constant, and, thus, (10.30)

is optimum. ⊓⊔

With (10.22), (10.23), (10.29), and (10.30) the constrained capacity is
given by

C =
1

N

∫
p(y|xi) log

(
p(y|xi)

1
QN−1

∑
xj∈S0

p(y|xj)

)
dy

=
N − 1

N
log(Q)− 1

N

∫
p(y|xi) log

(∑
xj∈S0

p(y|xj)
p(y|xi)

)
dy

=
N − 1

N
log(Q)− 1

N

∫
p(y|xi) log

(
1 +

∑
xj∈S0\xi

p(y|xj)
p(y|xi)

)
dy.

(10.37)

10.2.3 Asymptotic SNR Behavior

As we assume the PSD of the channel fading process to be compactly
supported and characterized by a maximum normalized Doppler frequency
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fd < 0.5, there are eigenvalues of the channel covariance matrix Rh which are
close to zero, if fd is not close to 0.5 and if the block length N is sufficiently
large. Here, the adjective sufficiently strongly depends on fd. Thus, in this
case Rh is close to singular. As in addition, the sequences constituting the
set S0 are distinguishable, numerical evaluation shows that the second term
on the RHS of (10.37) is close to zero and hence,

lim
ρ→∞

C ≈ N − 1

N
log(Q) (10.38)

with ρ being the mean SNR defined in (2.18), for N sufficiently large and fd
sufficiently small for a given constellation size Q. Furthermore, it depends on
the constellation size if the behavior described in (10.38) can be observed.
For smaller constellation sizes Q a behavior corresponding to (10.38) is seen
already for smaller block lengths N as in this case the distance between the
signaling points in the signaling space is larger.

Considering perfect channel state information, the mutual information
achieves log(Q) if the SNR is so large that the conditional channel out-
put PDF p(y|x,h) becomes so peaky that erroneous decoding occurs with
probability close to zero. Here, in the noncoherent case, besides the additive
Gaussian noise we have the additional random component introduced by the
fading channel. Therefore, also in case of an infinite high SNR, there is still
random. The amount of this random depends on the PSD Sh(f). For the
special case of a rectangular PSD or the Jakes’ spectrum the PSD Sh(f) is
described by the single parameter fd. That means that for fd → 0, the condi-
tional PDFs p(y|xi) in (10.37) also become more peaky. On the other hand,
the required peakiness resulting in a behavior as given in (10.38) depends on
the distance of the signal points in the signaling space, which is a result of
the constellation size Q and the block length N . Thus, the behavior depicted
in (10.38) corresponds to the case where the randomness introduced by the
channel is sufficiently small, allowing the PDFs p(y|xi) to become sufficiently
peaky when the SNR is increased to infinity. This behavior can already be
observed for the parameters N = 6 and fd = 0.2 and Q = 2 used in the
numerical evaluation in Section 10.2.5, see Fig. 10.1.

10.2.4 Interpretation

The optimum input distribution given in (10.30) intuitively corresponds to
a uniform distribution over the space of distinguishable transmit sequences.
One specific solution, being included in the set of optimum input distributions
is to use only distinguishable transmit sequences, i.e., sequences taken from
one set S0, thus fulfilling (10.28), i.e., given by the distribution
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p̂i =

{
Q
M for xi ∈ S0

0 for xi /∈ S0
. (10.39)

As the cardinality of a subset S0 is QN−1, the constrained capacity is limited
to N−1

N log(Q), independent of fd, corresponding to (10.38).
In case the set S0 is constructed such that all used transmit sequences are

characterized by having a fixed symbol at a predetermined time instant, this
solution corresponds to the use of one pilot symbol and i.i.d. data symbols
at all other time instances1. This intuitively explains why at least one sig-
naling dimension, i.e. the information transmitted by one symbol, is lost for
providing a phase reference for the receiver.

The above result should not be understood in the way that it is not possible
to use all the transmit sequences of the set S. In this case, it has to be assured
that the information that is mapped to non-distinguishable sequences x is
equivalent, as the differentiation between these sequences is impossible.

Following the argumentation in Section 10.2.3, and using the fact that for
N → ∞ the channel correlation matrix Rh becomes asymptotically singular
for fd < 0.5, for an infinite SNR ρ we get

lim
N→∞

lim
ρ→∞

C = log(Q) (10.40)

which corresponds to the case where the receiver knows the channel fading
process.

10.2.5 Numerical Results

Fig. 10.1 shows the result of a numerical evaluation by Monte Carlo simula-
tion of (10.37) for Q = 2, i.e., BPSK, and forQ = 4, i.e., QPSK. The temporal
correlation of the channel fading process within a block is determined by the
Jakes’ spectrum with maximum Doppler frequency fd, see Section 2.1. Thus
the corresponding covariance matrix is given by (2.17) and the autocorrela-
tion function rh(l) = J0(2πfdl), where J0 is the zeroth-order Bessel function
of the first kind. For comparison also the mutual information in case of perfect
channel state information (CSI) is shown.

For infinite SNR, i.e., ρ → ∞, the curves in Fig 10.1 show the behavior
described in (10.38). In addition, we see that for a given SNR and a given
sequence length, i.e., block length, of N the constrained capacity decreases

1 Note that the statement on i.i.d. data symbols is not a contradiction to the use
of a codebook with codewords, which obviously means that data symbols are not
independent. When speaking about i.i.d. data symbols to calculate the mutual in-
formation, the distribution for the generation of the codebook is meant. Of course,
reliable communication in the sense of a diminishing probability of an erroneous de-
coded codeword for infinite codeword lengths requires the use of a code.
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with increasing fd. Furthermore, it should be noted that the fading block
length N influences the constrained capacity. The smaller the block length
N is, the smaller is the constrained capacity. Notice, this is not shown in
Fig. 10.1.

As the numerical evaluation is based on a Monte Carlo simulation, the cal-
culation time increases with the number of distinguishable transmit sequences
QN−1, i.e., exponentially in N . Therefore, we have restricted to N = 6 for
numerical evaluation.
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Fig. 10.1: Effect of Q and fd on the constrained capacity (10.37), numerical
evaluation; Sh(f) given by a Jakes’ spectrum

10.3 What about Periodic Pilot Symbols in Stationary
Fading?

The fact that for a time-selective block fading channel and PSK modulation,
it is optimal to use one pilot symbol per block and i.i.d. data symbols at
all other time instances allows the following statement. In the context of a
stationary fading channel and for the special case of PSK modulation, the use
of pilot symbols which are periodically inserted into the transmit sequence,
as it has been described in Chapter 5, is not optimal with respect to the
achievable rate. This can be seen as the stationary fading channel corresponds
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to the case of a time-selective block fading channel with an infinite block
length.

However, for practical receiver design also the decoding complexity is a
major issue. Therefore, consider that in general the ML-decoding that has to
be performed by the receiver to find the transmitted sequence of maximum
likelihood means to evaluate

x̂ = arg max
x∈{Wx}

p(y|x) (10.41)

where Wx is the set of all possible codewords. In addition, the conditional
output PDF is given by, see (10.7)

p(y|x) = 1

πN det(Ry|x)
exp

(
−yHR−1

y|xy
)

(10.42)

and the correlation matrix Ry|x is given by, cf. (3.20)

Ry|x = XRhX
H + σ2

nIN . (10.43)

The evaluation of (10.41) is obviously quite complex, as, if no approximations
are made, p(y|x) has to be evaluated for all x contained in Wx.

In contrast, in the coherent case, i.e., if the channel is known, the detection
can be simplified as follows

x̂ = arg max
x∈{Wx}

p(y|x,h)

= arg max
x∈{Wx}

1

πNσ2N
n

exp

(
− 1

σ2
n

‖y −Hx‖2
)

= arg max
x∈{Wx}

N∏

k=1

1

πσ2
n

exp

(
− 1

σ2
n

|yk − hkxk|2
)
. (10.44)

Obviously, here the demapping can be performed per symbol, leading to a
much lower decoding complexity.

In case the channel is unknown, it can be estimated based on pilot symbols
which are periodically inserted into the transmit symbol sequence. Based on
the channel estimates coherent detection can be performed, see Chapter 5. 2

Thus, from an engineering point of view, the use of pilot symbols, which are
periodically inserted into the transmit sequence, is a good solution to achieve
a high spectral efficiency in combination with receivers of low computational
complexity.

Nevertheless, there are various approaches to noncoherent detection and
decoding, which, based on different approximations, try to decrease the com-
putational complexity. The use of block based demodulation has been stud-

2 Remark: Due to the channel estimation error, in this case coherent detection cor-
responds to mismatch decoding, see Section 5.1.2.
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ied, e.g., in [23] and [130]. The combination of such a block based demodu-
lation using a noncoherent metric with iterative demodulation and decod-
ing has been studied in a variety of contributions, e.g., to name just a
few [18], [73], [72], [51], [86], [85], and [13]. All of these approaches use a
serially concatenated scheme, where the inner code corresponds to a modu-
lation coder, which is connected with an outer code by interleaving. On the
receiver side demodulation and decoding is then performed iteratively. Some
of the works are restricted to constant phase or block fading channels, or
at least use a corresponding metric as an approximation in case of a time
varying channel, see, e.g., [13], [85], and [18]. Other contributions explicitly
consider time varying channels, see, e.g., [72], [51], and [86]. These works
solve the problem arising from the exponential complexity of noncoherent
detection in various ways. Reductions in receiver complexity can, e.g., be
achieved by discretizing the phase space, see, e.g., [13] and [86]. Depending
on the choice of the inner code, often referred to as modulation code, the
noncoherent demodulation can also be simplified or approximated leading to
a reduced decoding complexity. For inner modulation coding, most of the
mentioned publications consider a differential encoder.

10.4 Conclusion

In this chapter, we have considered a time-selective block Rayleigh flat-fading
channel, where the channel state is unknown to the transmitter and receiver,
while the receiver is aware of the channel law. The channel is thus station-
ary and temporally correlated within a block, whereas between the blocks of
length N it fades independently. It has been shown that for a given discrete
signaling set, the optimum input distribution is characterized by a constant
Kullback-Leibler distance between the output PDFs conditioned on the indi-
vidual input sequences and the unconditional output PDF. We showed this
based on directional derivatives. On the other hand, this fact can also be
shown using the analogy of the given scenario to a discrete memoryless chan-
nel, for which it is a well known result that the capacity achieving input
distribution is characterized by a constant Kullback-Leibler distance. The
corresponding proof given in [38] is based on Karush-Kuhn-Tucker condi-
tions. For the special case of PSK signaling sequences, we have derived an
explicit expression for the optimum input distribution achieving the con-
strained capacity, which corresponds to a uniform distribution over the space
of distinguishable transmit sequences. Furthermore, we have identified the
strategy of transmitting one pilot symbol and i.i.d. data symbols at all other
time instances as being included in the set of optimum input distributions.
For asymptotic high SNR, the constrained capacity is at least degraded by a
factor of (N−1)/N compared to the case of perfect channel state information
at receiver side.
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The observation that for time-selective block fading the use of a single
pilot symbol per block and i.i.d. data symbols at all other time instances is
optimal for PSK modulation shows that, at least for PSK modulation, pilot
symbols which are periodically inserted into the transmit sequence, as it has
been described in Chapter 5, are not optimal with respect to the achievable
rate in case of stationary fading. Nevertheless, from an engineering point of
view they have the advantage that they allow for coherent detection and,
thus, enable receivers with a low computational complexity.

The extension of the approach discussed in the present chapter to signaling
sets making use of the amplitude component, e.g., QAM signal constellations
would be highly interesting. Furthermore, a general optimization over the
input distribution, including the choice of the optimal signaling constellation,
is of high relevance.
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Conclusion

The motivation of the present work has been the lack of knowledge on the
achievable rate of stationary fading channels, where neither the transmitter
nor the receiver has knowledge on the channel fading process, while the re-
ceiver is aware of the law of the channel. This channel— which is often referred
to as noncoherent fading channel— corresponds to the common scenario of a
wireless communication system. In many typical communication systems the
receiver attains knowledge of the channel fading process based on pilot sym-
bols, i.e., symbols which are known to the receiver and which are regularly
introduced into the transmit data stream. These pilot symbols allow for a
low complexity channel estimation followed by coherent detection/decoding,
often named synchronized detection. From an information theoretic point of
view, the use of pilot symbols can be understood as a specific type of coding.
However, this type of coding has never been proven to be optimal. There-
fore, it is highly interesting to know how close the achievable rate of systems
based on synchronized detection with a solely pilot based channel estimation
is to channel capacity, i.e., the ultimate limit on the data rate still allowing
for error-free transmission. While tight1 bounds on the achievable rate are
known in case of using synchronized detection in combination with a solely
pilot based channel estimation, the capacity of the corresponding channel,
i.e., without any restricting assumptions on pilot symbols or the applied re-
ceiver structure, is still a topic of research. Besides the general interest in the
capacity of the noncoherent channel, the emerging research on receivers based
on iterative synchronization and decoding, i.e., using reliability information
on data symbols to iteratively enhance the channel estimation, strongly moti-
vates the study on the capacity of this kind of channel. The reason for this is
that the existing bounds on the achievable rate with synchronized detection
in combination with solely pilot based channel estimation are not longer valid
for iterative code-aided synchronized detection based receivers. Therefore, an

1 The term tight means that the bounds are sufficiently close from an engineering
point of view and is not meant in the sense of mathematical tightness.
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evaluation of the capacity would also allow to study the maximum possi-
ble gain while using iterative synchronization and decoding in comparison
to solely pilot based synchronized detection. Furthermore, knowledge on the
capacity of noncoherent channels is also important concerning other system
design parameters like the number of useful antennas in MIMO scenarios,
and the dependency of the capacity on the system bandwidth in the context
of frequency selective wideband channels.

As the study of the noncoherent capacity turns out to be very challenging,
we simplify the problem by introduction of some constraints on the input
distribution and, thus, we do not use the term capacity but the term achiev-
able rate. This means that for the derivation of the bounds on the achievable
rate we restrict to i.d. or i.i.d. input symbols. Furthermore, we aim to get
bounds on the achievable rate with i.i.d. zero-mean proper Gaussian inputs,
as they are capacity achieving in the coherent scenario. This requires that
the derivation of the bounds on the achievable rate does not rely on any peak
power constraint. This aspect is different to most of the existing work on
capacity bounds for noncoherent fading channels.

In the following, we summarize the specific contributions and findings of
the present work. We start with the study of the achievable rate of a discrete-
time Rayleigh flat-fading channel with i.d. input symbols, which is charac-
terized by a PSD of the channel fading process that is compactly supported.
Furthermore, the channel fading process is assumed to be nonregular with a
maximum normalized Doppler frequency fd < 0.5. We calculate a new upper
bound on the achievable rate with i.d. input symbols for the specific case of
a rectangular PSD. The novelty of this bound lies in its derivation which is
not based on any assumption of a peak power constraint. Therefore, we can
evaluate this bound also for proper Gaussian input symbols. Furthermore,
evaluation of this bound for a peak power constraint leads to the same ex-
pression, as the upper bound on the peak-power constrained capacity given
in [107]. With the upper bound on the achievable rate and a known lower
bound on the capacity that we re-derive within this work, we have found a
set of bounds, which for i.i.d. zero-mean proper Gaussian inputs is tight in
the sense that their difference is bounded for all SNRs. We are able to bound
the gap analytically by (1+2fd)γ [nat/cu] with the Euler constant γ ≈ 0.577
and the maximum normalized Doppler frequency fd. Furthermore, the lower
bound on the achievable rate with i.i.d. zero-mean proper Gaussian input
symbols converges to the coherent capacity for asymptotically small chan-
nel dynamics and thus becomes tight. In case of a peak power constraint,
it is not possible to calculate bounds, which show this behavior, as in this
case the lower bound will always be lower than the coherent capacity, also
for asymptotically small channel dynamics. This is a result of the fact that
the capacity-achieving input distribution in the coherent case is non-peak
power constrained. Moreover, the derived bounds show that the achievable
rate with i.i.d. zero-mean proper Gaussian input symbols has the same high
SNR slope (pre-log) as the peak power constrained channel capacity, which
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for a compactly supported PSD is given by 1 − 2fd. In addition, it is shown
that the peak power constrained capacity upper bound is loose for a nominal
peak-to-average power ratio β > 1 and high SNR, which is not the case for
the upper bound on the achievable rate with i.i.d. zero-mean proper Gaus-
sian inputs. Summing up, for the specific case of zero-mean proper Gaussian
inputs we get bounds on the achievable rate, which are tight in the sense of
a bounded difference over the whole SNR range. In contrast, other available
bounds on capacity mostly are tight only in a specific SNR range, e.g., [107]
focuses on the low SNR regime whereas [67] considers the high SNR regime.

For the specific case of i.i.d. input symbols, i.e., with the further restric-
tion to independent input symbols, we derive another upper bound which is
based on the one-step channel prediction error variance. The derivation of
this bound is based on the fact that the calculation of the channel predic-
tion error variance under the assumption that all past transmit symbols are
constant modulus symbols yields an upper bound on the achievable rate. In
contrast to other capacity bounds based on this approach, the derivation is
not restricted to peak power constrained input symbols. One motivation to
study this bound is the link to the physical interpretation of channel pre-
diction. Furthermore, this bound holds for arbitrary compactly supported
PSDs of the channel fading process. In contrast, the upper bound on the
achievable rate with i.d. input symbols given before holds only for rectangu-
lar PSDs. For i.i.d. zero-mean proper Gaussian inputs the comparison of this
upper bound on the achievable rate to the one given before shows that their
ordering depends on the SNR.

To evaluate the performance of synchronized detection in combination
with a solely pilot based channel estimation, we compare its achievable rate
to the achievable rate with i.i.d. symbols, i.e., without any assumption on
pilot symbols. This comparison shows that for channel dynamics as they are
typically observed in mobile environments the achievable rate with a pilot
based synchronized detection is lower than the lower bound on the achiev-
able rate with i.i.d. symbols, where in both cases we assume zero-mean proper
Gaussian data symbols. When considering an optimized pilot-to-data power
ratio, this gap becomes smaller but still exists. However, it has to be men-
tioned that this gap is relatively small in comparison to the achievable rate,
indicating that for a SISO system the loss due to the restriction to synchro-
nized detection in combination with a solely pilot based channel estimation
is small.

Obviously, parts of the information leading to this gap might be exploitable
while using receivers based on iterative synchronization and decoding. There-
fore, we have studied the achievable rate with this type of receiver. These
receivers iteratively enhance the channel estimation based on reliability in-
formation on the data symbols given by the decoder. We show that the pos-
sible gain of this arises due to the information contained in the temporal
correlation of the channel estimation error in case of using a channel esti-
mation which is solely based on pilot symbols. This information is discarded
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while using synchronized detection, as the detector/decoder does not exploit
the information contained in the correlation but treats the estimation error
as a white process. Although receivers based on synchronized detection and
an iterative code-aided channel estimation also use a symbol-wise detection
metric, parts of the information contained in the temporal correlation of the
channel estimation error when using a solely pilot based channel estimation
can be retrieved by using an iterative code-aided channel estimation. Further-
more, we give an upper bound on the achievable rate for a specific iterative
code-aided synchronized detection structure. In contrast to the typically stud-
ied receiver based on synchronized detection and iterative code-aided channel
estimation, which can be motivated by expressing the joint ML detection and
MAP parameter estimation problem based on a set of fixed point equations2,
we have given an upper bound on the achievable rate for a slightly modified
receiver. The modification lies in the channel estimator, which does in general
not use the observation yk for the estimation of hk. However, from a prac-
tical point of view, for low channel dynamics, we guess that the amount of
hereby discarded information is rather small. Furthermore, we assume i.i.d.
zero-mean proper Gaussian data symbols. We show that this receiver can-
not exploit the complete mutual information between the transmitter and
the receiver. The information corresponding to I(yk;x\k|y\k), which seems
to be small for practical, i.e., small, channel dynamics, cannot be retrieved.
The question if and which part of this information can be exploited with-
out the modification to the channel estimator remains open. Unfortunately,
the given upper bound on the achievable rate for the specific receiver based
on iterative synchronized detection is a non-closed form expression, as it ex-
plicitly depends on the channel interpolation error variance at an arbitrarily
chosen time instant k and, thus, is a function of the distribution of all past
and all future transmit symbols with respect to this time instant. We have
not found a closed form solution. However, for small channel dynamics it is
reasonable to approximate the channel interpolation error variance by the
channel interpolation error variance calculated under the assumption that all
past and all future transmit symbols are constant modulus symbols. Based
on this approximation we have numerically evaluated the upper bound on the
achievable rate with the discussed iterative code-aided synchronized detec-
tion structure. Due to the approximation of the channel interpolation error
variance, these results are only an approximation. The proof that this ap-
proach leads to an actual upper bound is missing. Opposed to this, for the
case of constant modulus signaling, we can give a closed form solution for
the upper bound on the achievable rate with the specific receiver based on
synchronized detection and iterative code-aided channel estimation.

In contrast to the general upper bound on the achievable rate with i.i.d.
zero-mean proper Gaussian inputs, for asymptotically small channel dynam-
ics the upper bound on the achievable rate for the studied receiver using

2 Notice, the same receiver can also be derived on the basis of the EM framework.
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synchronized detection based on an iterative code-aided channel estimation
and for i.i.d. zero-mean proper Gaussian data symbols converges to the coher-
ent capacity. As the evaluation of this upper bound based on approximating
the channel interpolation error variance with the interpolation error variance
calculated under the assumption of constant modulus input symbols in the
past and in the future is lower than the upper bound on the achievable rate
with i.i.d. zero-mean proper Gaussian input symbols for small channel dy-
namics, it gives a valuable upper bound on the achievable rate for the realistic
iterative code-aided synchronized detection based receiver as it has been de-
scribed before. The evaluation of this approximative upper bound for a fixed
pilot spacing enables to give an approximate upper bound on the possible
gain by using the specific iterative code-aided synchronized detection based
receiver instead of a solely pilot based synchronized detection. As the amount
of information that is discarded by the modification of the channel estimator
seems to be small, the approximate upper bound also gives an indication
for an upper bound on the possible gain by using iterative code-aided syn-
chronized detection in general. A lower bound on the achievable rate with
iterative synchronization and decoding is obviously given by the lower bound
on the achievable rate with synchronization in combination with a solely pilot
based channel estimation. However, as in this case the channel estimation is
solely based on pilot symbols, it is not very tight.

As it has been discussed, receivers based on synchronized detection and
an iterative code-aided channel estimation still use a symbol-wise detection
metric, which is not optimal. Therefore, we also study the achievable rate
with an optimal joint processing of pilot and data symbols, and give a lower
bound on the achievable rate for the case of a stationary Rayleigh flat-fading
channel. This lower bound can be seen as an extension of a lower bound
on the achievable rate with joint processing of pilot and data symbols for
the case of a block fading channel given in [56]. Furthermore, we compare
this lower bound to the bounds on the achievable rate with synchronized
detection and a solely pilot based channel estimation and to the approximate
upper bound on the achievable rate with the receiver based on synchronized
detection and iterative code-aided channel estimation discussed in Chapter 6.
We observe that the approximative upper bound on the achievable rate with
the iterative synchronized detection based receiver is larger than the lower
bound on the achievable rate with joint processing of pilot and data symbols.
This is not self-evident as the receiver based on synchronized detection and
iterative code-aided channel estimation discussed in Chapter 6 cannot exploit
all information, i.e., the information corresponding to I(yk;x\k|y\k) cannot
be retrieved by the receiver. In general the comparison of the lower bound
on the achievable rate with joint processing of pilot and data symbols to
the bounds on the achievable rate with synchronized detection using a solely
pilot based channel estimation and to the upper bound for the receiver based
on iterative code-aided channel estimation discussed in Chapter 6 gives an
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indication on the possible gain when using enhanced receiver structures which
also use data symbols for channel estimation.

In a further step, we extend the bounds on the achievable rate with i.d.
inputs to the MIMO case, including spatial antenna correlation. As in the
SISO case, the main innovation concerning these bounds is the fact that their
derivation does not rely on a peak power constraint and, thus, enables bound-
ing of the achievable rate with i.i.d. zero-mean proper Gaussian inputs. When
evaluating these bounds for peak power constrained input symbols, they are
closely related to bounds on capacity for the frequency selective MIMO chan-
nel given in [102]. Unfortunately, it has to be stated that these bounds become
quite loose with an increasing number of receive antennas. This also obstructs
general statements on the effect of spatial antenna correlation. Only for the
special case of small channel dynamics, we see the same effects as they are
observed for the case of perfect CSI at the receiver, i.e., antenna correlation
at the receiver side decreases the achievable rate, while for antenna correla-
tion at the transmitter side the effect depends on the SNR. For a high SNR
antenna correlation decreases the achievable rate while it helps for low SNR.

In the context of the MIMO scenario, the comparison of the bounds on the
achievable rate with i.i.d. zero-mean proper Gaussian inputs to the achiev-
able rate based on synchronized detection in combination with a solely pilot
based channel estimation shows that for the important range of small chan-
nel dynamics the achievable rate with a pilot based synchronized detection
is slightly lower than the lower bound on the achievable rate with i.i.d. zero-
mean proper Gaussian inputs. However, due to the looseness of the bounds,
it is not possible to give general statements on the performance loss in the
achievable rate while restricting to pilot based synchronized detection.

Furthermore, we extend the bounds on the achievable rate with i.d. inputs
to underspread frequency-selective channels and a brick-shaped scattering
function, where we neglect intercarrier and intersymbol interference. As the
derivation is not based on the assumption of a peak power constraint, these
bounds can also be evaluated for proper Gaussian input symbols, which is the
main novelty in this context. However, the upper bound holds only approx-
imately, as an approximation on the eigenvalue distribution of the channel
correlation matrix is required, which is not tight for finite bandwidths. In case
of a peak power constraint our approximative upper bound on the achievable
rate with i.d. input symbols is equivalent to the upper bound on capacity
given in [33] and our lower bound can easily be modified by a time shar-
ing argumentation yielding also the lower bound on capacity given in [33].
We compare the bounds on the achievable rate with i.i.d. zero-mean proper
Gaussian input symbols to the achievable rate with synchronized detection
in combination with a solely pilot based channel estimation and zero-mean
proper Gaussian data symbols. Therefore, we use realistic channel param-
eters as they are encountered for IEEE 802.11a systems. This comparison
shows that the achievable rate with a solely pilot based synchronized detec-
tion stays below the achievable rate with i.i.d. zero-mean proper Gaussian
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input symbols with a gap that depends on the channel bandwidth and the
channel dynamics. However, for typical system bandwidths the gap is rela-
tively small in comparison to the achievable rate. If on the other hand the
system is operated close to the critical bandwidth, the gap becomes signifi-
cantly larger. For these comparisons it has to be kept in mind that the ISI
and ICI has been neglected. Concerning future work, the study of the effect
of interference onto the achievable rate is highly relevant.

Up to this point, we have considered the achievable rate with constraints on
the input distribution like i.d. or i.i.d. input symbols. However, as it has been
shown in [107] that at least i.i.d. input symbols are not optimal in general,
we deviate from this assumption. Therefore, for a fixed set of discrete input
sequences and a time-selective block Rayleigh flat-fading channel, we have
studied the input probability distribution, i.e., the probability of occurrence
of the individual input sequences, that achieves the capacity constrained to
the given input set. The discrete input distribution that achieves the con-
strained capacity is characterized by a constant Kullback-Leibler distance
between the output PDFs conditioned on the individual input sequences and
the unconditional output PDF. For the special case of PSK signaling the op-
timum input distribution corresponds to a uniform input distribution over all
distinguishable input sequences. Furthermore, the special case of using one
specific time instant for a pilot symbol and i.i.d. data symbols at the other
time instances is included in the set of constrained capacity-achieving input
distributions. In addition, for the time-selective block fading channel with
block length N the asymptotic high SNR constrained capacity is degraded
at least by a factor of N−1

N with respect to the case of perfect channel state
information at the receiver. Concerning this work, it would be interesting to
find the constrained capacity-achieving input distributions for more general
modulation schemes including amplitude modulation, i.e., QAM. In addition,
it is known that for the considered channel the capacity-achieving input dis-
tribution itself is discrete with a finite number of mass points [10]. Therefore,
optimization with respect to the optimum number of signaling points as well
as with respect to their localization and their distribution is an important
open problem.

The finding that for time-selective block fading and PSK modulation the
use of a single pilot symbol per block and i.i.d. data symbols at all other time
instances is optimal also means that, at least for PSK modulation, period-
ically inserted pilot symbols are not optimal with respect to the achievable
rate in the context of stationary fading. Nevertheless, the use of periodic pi-
lot symbols is a smart approach, as they allow for a high spectral efficiency
in combination with receivers of low computational complexity. Besides of
this, also different alternatives have been proposed in literature to get to a
noncoherent decoding with suitable complexity.

In conclusion, this work has delivered some new bounds and concepts
concerning the understanding of the capacity/achievable rate of stationary
fading channels and their relation to the achievable rate with synchronized
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detection and iterative synchronization and decoding. However, the general
question on the capacity and the capacity-achieving input distribution of
stationary fading channels, which turns out to be notoriously difficult to
answer, remains open.



Appendix A

Mathematical Derivations and Proofs

A.1 Modified Upper Bound on h′(y) for PG Inputs

In this appendix, we derive an alternative upper bound on the channel output
entropy rate h′(y) for the special case of zero-mean proper Gaussian input
symbols, which is tighter than the one given in (3.18). This derivation is
based on work given in [88], [87]. On the other hand its evaluation requires
some more complex numerical methods. Therefore, we do not further use this
bound. For completeness of presentation, we give it within this appendix.

Obviously, an upper bound on the entropy h(y) is given by assuming an
uncorrelated channel fading process, i.e., its correlation matrix is assumed to
be diagonal. While assuming an uncorrelated channel fading process, more
randomness is introduced into the channel output vector y, leading to an
increased entropy. Furthermore, an uncorrelated channel leads to independent
channel observations. Thus, h′(y) is upper-bounded by

h′(y) ≤ h(yk). (A.1)

The major difference between this upper bound and the upper bound given in
(3.18) is that the latter one implicitly corresponds to the case that the channel
observations yk are proper Gaussian, while the RHS of (A.1) still corresponds
to the actual channel output entropy of the individual time instances. The
upper bounding in (A.1) only discards the temporal dependencies between
the different observations.

In the following we calculate the entropy h(yk) for the specific case of
zero-mean proper Gaussian input symbols with an average power σ2

x

h(yk) = −Eyk [log(p(yk))]

= −
∫

C

∫

C

p(yk|xk)p(xk)dxk log
(∫

C

p(yk|xk)p(xk)dxk
)
dyk
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(y) (A.3)

where γ ≈ 0.57721 is the Euler constant. To the best of our knowledge the
first integral in (A.2) cannot be calculated analytically. However, it can be
evaluated numerically using Hermite polynomials and Simpson’s rule, see
[88], [87], [116], or by Monte Carlo integration.

For the evaluation of the tightness of h′U2
(y), in Fig. A.1 the difference

∆h′(y),2 = h′U2
(y) − h′L(y)

∣∣
PG

(A.4)

is shown in comparison to the difference ∆h′(y) given in (3.99). Obviously, the
upper bound h′U2

(y) is tighter than the upper bound h′U (y) given in (3.18).
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A.2 Calculation of Sufficient Conditions for αopt = 1 in
(3.76)

In this appendix, we give conditions on the parameters fd, ρ, and β so that
αopt = 1 in (3.76), i.e., the upper bound in (3.74) is maximized by choosing
the maximum average power σ2

x. Therefor, we have to evaluate for which
parameter choice the following inequality holds

(
2fd
β

log

(
ρβ

2fd
+ 1

))−1

− 1

ρ
≥ 1

⇔ 2fd
β

log

(
ρβ

2fd
+ 1

)
≤ ρ

1 + ρ
. (A.5)

The following calculations are closely related to a corresponding problem
in [33, Appendix C]. We divide the evaluation into the two cases ρ > 1 and
ρ ≤ 1.

For ρ > 1 the RHS of (A.5) can be lower-bounded by

ρ

1 + ρ
≥ 1

2
(A.6)

yielding the following sufficient condition for (A.5) to hold
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[
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. (A.7)

Thus, αopt = 1 holds if

1 < ρ ≤ 2fd
β

[
exp

(
1

2

β

2fd

)
− 1

]
. (A.8)

Now, we discuss the case ρ ≤ 1. Using the inequality 1
x log(x+ 1) ≤ 1√

x+1

for x ≥ 0, for ρ ≤ 1 the LHS of (A.5) can be upper-bounded by

2fd
β

log

(
ρβ

2fd
+ 1

)
≤ ρ√

ρβ
2fd

+ 1
. (A.9)

Based on (A.9), inequality (A.5) holds if the following sufficient condition is
fulfilled
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ρ√
ρβ
2fd

+ 1
≤ ρ

1 + ρ

⇔ 2fd ≤
β

ρ+ 2
(A.10)

so that we get the second condition

2fd ≤
β

ρ+ 2
for ρ ≤ 1. (A.11)

Thus, if (A.8) or (A.11) is fulfilled, (3.76) yields αopt = 1.

A.3 Proof of Monotonicity of ∆h′(y)

In this section, we prove the monotonicity of the difference ∆h′(y) given in
(3.99).

Proof. The difference can be transformed as follows

∆h′(y) = log (ρ+ 1)−
∫ ∞

0

log (ρz + 1) e−zdz

=
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0
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)
e−zdz. (A.12)

To show monotonicity, we take the derivative of ∆h′(y) with respect to the
SNR ρ yielding

∂∆h′(y)
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As the factor in front of the integral is positive,∆h′(y) monotonically increases
if

∫ ∞

0

1− z

ρz + 1
e−zdz ≥ 0. (A.14)

Next, we show that this condition is fulfilled. Therefore, we rewrite the LHS
of (A.14) as
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The condition in (A.14) is fulfilled if

∫ ∞

0

1 + ρ

ρz + 1
e−zdz ≥ 1. (A.16)

In the following we show that (A.16) holds. Therefore, we evaluate the be-
havior of the integrand in (A.16) given by f(z)e−z with

f(z) =
1 + ρ

1 + ρz
. (A.17)

The goal is to lower-bound f(z), enabling to show that (A.16) holds. The
function f(z) monotonically decreases and is convex in z, as

∂f(z)

∂z
= − ρ(1 + ρ)

(1 + ρz)2
≤ 0 (A.18)

∂2f(z)

∂z2
=

2ρ2(1 + ρ)

(1 + ρz)3
≥ 0 ∀z ∈ [0,∞[. (A.19)

Evaluation of f(z) for the following values

f(0) = 1 + ρ (A.20)

f(1) = 1 (A.21)

lim
z→∞

f(z) = 0 (A.22)

shows that f(z) > 0 for z ≥ 0. We now lower bound f(z) by a tangent f1(z)
to f(z) in the point z = 1, which is given by

f1(z) =
1 + 2ρ

1 + ρ
− ρ

1 + ρ
z. (A.23)

As in addition f(z) is positive, we can lower-bound it by 0. Thus, the integral
in (A.16) is lower-bounded by
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1 + ρ

ρz + 1
e−zdz ≥

∫ z0

0

f1(z)e
−zdz (A.24)



256 Appendix A. Mathematical Derivations and Proofs

where z0 is the argument for which the tangent f1(z) becomes zero, i.e.,
f1(z0) = 0, and it is given by

z0 =
1 + 2ρ

ρ
. (A.25)

Thus, the RHS of (A.24) is given by
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Hence, we have shown that the condition given in (A.16) is fulfilled and, thus,
∆h′(y) is monotonically increasing. ⊓⊔

A.4 Calculation of E[εpred] for the Enhanced Upper
Bound on h′(y)

In this appendix, we calculate the mean of the channel power prediction er-
ror E [εpred] of the estimator defined in Section 4.2.2 in the context of the
enhanced upper bound on the channel output entropy rate h′(y). Further-
more, we give closed form expressions for E [εpred] for the special case that
the channel fading process is characterized by a rectangular PSD.

We want to calculate E [εpred] which corresponds to E [εN ] for an infinite
number of observations in the past, i.e.,

E [εpred] = lim
N→∞

E [εN ] . (A.27)

Recalling (4.35), E [εN ] is given by

E [εN ] = σ2
h

(
1−

N−1∑

l=1

wl

)
. (A.28)

For the calculation of E [εN ], we need to discuss the behavior of the filter co-
efficients wl contained in w, i.e., of the LMMSE predictor defined by (4.30)
and (4.29). Note that the filter coefficients contained in w are the filter coeffi-

cients, yielding an LMMSE estimate of |̃yN |2 based on the zero-mean samples
˜|y1|2, . . . , ˜|yN−1|2. Obviously, (A.28) is the difference between the constant σ2

h

and the output of the filter given by the coefficients in w when the constant
σ2
h is at its input. Obviously, it corresponds to the estimation error of the
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predictor in case a constant lies at its input. Note that here the filter coeffi-
cients w are chosen corresponding to the dynamics of the channel, and not
for a constant channel.

For the discussion of (A.28) first consider the case that we want to predict
the value aN at the time instance N of a zero-mean process {ak} based on
an infinite number of observations in the past, i.e., N → ∞. If âN is the
prediction of aN , the prediction error is given by

eaN = aN − âN . (A.29)

Let Hpred(f) be the innovation filter yielding eaN based on a1, . . . , aN−1 and
N → ∞.

For N → ∞, the prediction error variance of the one-step predictor is
given by, see [44, Chapter 10.8] and cf. (A.67)

σ2
ea,pred

= exp

(∫ 1
2

− 1
2

log (Sa(f)) df

)
(A.30)

where Sa(f) is the PSD of the filter input process. Due to the fact that the
prediction error process {eak} is white the following relation holds [90]

σ2
ea,pred

= Sa(f) |Hpred(f)|2 . (A.31)

Thus, based on (A.30) and (A.31) we obtain the following implicit expres-
sion for the prediction innovation filter Hpred(f)

|Hpred(f)|2 =
exp

(∫ 1
2

− 1
2

log (Sa(f)) df
)

Sa(f)
. (A.32)

Identifying |̃yN |2 with aN and
̂̃|yN |2 with âN , the difference on the RHS

of (A.28) corresponds to the output of the innovation filter Hpred(f) in case
the constant σ2

h lies at its input. As the input signal is a constant, we have
to evaluate the innovation filter for f = 0, and (A.28) becomes

E [εpred] ≡ lim
N→∞

E [εN ] = σ2
hHpred(0). (A.33)

Based on (A.32), Hpred(0) is given by

Hpred(0) =

√√√√exp

(∫ 1
2

− 1
2

log

(
S|̃y|2(f)

S|̃y|2(0)

)
df

)
(A.34)

where S|̃y|2(f) is the PSD of the process
{
|̃y|2
}
.
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For the determination of S|̃y|2(f), we calculate its autocorrelation function

first. The autocorrelation function of the process
{
˜|yk|2

}
is given by

r|̃y|2(l) = E
[
˜|yk|2 ˜|yk+l|2

]

= E
[
|yk|2|yk+l|2

]
−
(
ασ2

xσ
2
h + σ2

n

)2

= E
[
|xkhk + nk|2|xk+lhk+l + nk+l|2

]
−
(
ασ2

xσ
2
h + σ2

n

)2

=

{
4α2σ4

xσ
4
h + 4ασ2

xσ
2
hσ

2
n + 2σ4

n −
(
ασ2

xσ
2
h + σ2

n

)2
for l = 0

α2σ4
xE
[
|hk|2|hk+l|2

]
+ 2ασ2

xσ
2
hσ

2
n + σ4

n −
(
ασ2

xσ
2
h + σ2

n

)2
for l 6= 0

(a)
=

{
3α2σ4

xσ
4
h + 2ασ2

xσ
2
hσ

2
n + σ4

n for l = 0
α2σ4

x[rh(l)]
2 for l 6= 0

= α2σ4
x[rh(l)]

2 +
(
2α2σ4

xσ
4
h + 2ασ2

xσ
2
hσ

2
n + σ4

n

)
δl (A.35)

where δl is the Kronecker delta and where rh(l) is the autocorrelation function
of the channel fading process {hk} as defined in (2.2). For (a) we used the
fact that

E
[
|hk|2|hk+l|2

]
= σ4

h + [rh(l)]
2. (A.36)

Based on the autocorrelation function r|̃y|2(l) in (A.35) we can calculate

the PSD of the process
{
˜|yk|2

}
which is given by

S|̃y|2(f) =
∞∑

l=−∞
r|̃y|2(l)e

−j2πlf

= α2σ4
x

∞∑

l=−∞

{
[rh(l)]

2e−j2πlf
}
+ 2α2σ4

xσ
4
h + 2ασ2

xσ
2
hσ

2
n + σ4

n.

(A.37)

For the special case that the channel fading process is characterized by a
rectangular PSD, the corresponding time-continuous autocorrelation function
is given by, cf. (2.9)

rh(t) = σ2
hsinc

(
2fd

t

TSym

)
. (A.38)

The spectrum of the time-continuous autocorrelation function corresponding
to [rh(l)]

2 as it occurs in (A.37) is given by

S̄|h|2(f) =
σ4
hTSym
2fd

tri

(
f

2fd

)
(A.39)
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where tri indicates the triangular function given by

tri(t) =

{
1− |t| for |t| < 1
0 otherwise

. (A.40)

Thus, the PSD corresponding to the discrete-time process {|hk|2} is given by

S|h|2(f) =
∞∑

k=−∞

σ4
h

2fd
tri

(
f − k

2fd

)
. (A.41)

Now we distinguish the following two cases

• fd <
1
4 , i.e., the case that S|h|2(f) consists of non-overlapping replicas,

• 1
4 ≤ fd ≤ 1

2 , i.e., the replicas are overlapping.

For these two cases we get the following PSDs in the interval f ∈ [− 1
2 ,

1
2 ]

S|̃y|2(f)

∣∣∣∣
fd<

1
4

=
α2σ4

xσ
4
h

4f2
d

max {2fd − |f |, 0}+ 2α2σ4
xσ

4
h + 2ασ2

xσ
2
hσ

2
n + σ4

n

(A.42)

S|̃y|2(f)

∣∣∣∣
1
4≤fd≤ 1

2

=
α2σ4

xσ
4
h

4f2
d

max {2fd − |f |, 4fd − 1}+ 2α2σ4
xσ

4
h + 2ασ2

xσ
2
hσ

2
n

+ σ4
n. (A.43)

Thus, for the special case of a rectangular PSD of the channel fading
process we get with (A.33) and (A.34) the following E[εpred]

E[εpred]
∣∣
fd<

1
4

= σ2
h exp

{
1

2

(
1− 2

4f2
d

α2σ4
xσ

4
h

(
α2σ4

xσ
4
h

2fd
+ 2α2σ4

xσ
4
h + 2ασ2

xσ
2
hσ

2
n + σ4

n

))

× log


1−

α2σ4
xσ

4
h

2fd
α2σ4

xσ
4
h

2fd
+ 2α2σ4

xσ
4
h + 2ασ2

xσ
2
hσ

2
n + σ4

n


− 2fd

}

(A.44)

E[εpred]
∣∣
1
4≤fd≤ 1

2

= σ2
h exp

{
1

2

(
1− 2

4f2
d

α2σ4
xσ

4
h

(
α2σ4

xσ
4
h

2fd
+ 2α2σ4

xσ
4
h + 2ασ2

xσ
2
hσ

2
n + σ4

n

))

× log


1−

(1− 2fd)
α2σ4

xσ
4
h

4f2
d

α2σ4
xσ

4
h

2fd
+ 2α2σ4

xσ
4
h + 2ασ2

xσ
2
hσ

2
n + σ4

n


− (1− 2fd)

}
.

(A.45)



260 Appendix A. Mathematical Derivations and Proofs

These expressions for E[εpred] hold for the special case of a rectangular PSD.
It can easily be checked, that (A.44) and (A.45) fulfill the conditions given
in (4.26) and (4.27).

A.5 Proof of Convexity of (4.49)

In this appendix, we will show that the expression at the RHS of (4.49), i.e.,

log

(
1 +

|xN |2
σ2
n

σ2
epred

(xN−1
1 )

)

= log

(
1 +

|xN |2
σ2
n

(
σ2
h − rHh,pred

(
Rh + σ2

nZ
−1
)−1

rh,pred

))
(A.46)

is convex with respect to the individual elements of the diagonal matrix Z.
For this purpose, in a first step we rewrite the channel prediction error

variance as follows

σ2
epred (x

N−1
1 ) = σ2

epred (z) = σ2
h − rHh,pred

(
Rh + σ2

nZ
−1
)−1

rh,pred

(a)
= σ2

h − rHh,pred

(
R−1
h −R−1

h

(
1

σ2
n

Z+R−1
h

)−1

R−1
h

)
rh,pred

(b)
= σ2

h − rHh,pred

(
R−1
h −R−1

h

(
1

σ2
n

(
ziVi + Z\i

)
+R−1

h

)−1

R−1
h

)
rh,pred

= σ2
h − rHh,pred

(
R−1
h −R−1

h

[(
1

σ2
n

Z\i +R−1
h

)

×
{(

1

σ2
n

Z\i +R−1
h

)−1
zi
σ2
n

Vi + I

}]−1

R−1
h

)
rh,pred

= σ2
h − rHh,pred

(
R−1
h −R−1

h

{(
1

σ2
n

Z\i +R−1
h

)−1
zi
σ2
n

Vi + I

}−1

×
(

1

σ2
n

Z\i +R−1
h

)−1

R−1
h

)
rh,pred

(c)
= σ2

h − rHh,pred

(
R−1
h −R−1

h

{
I− zi

1 + ziλmax

(
Z\i
σ2
n

+R−1
h

)−1
Vi

σ2
n

}

×
(
Z\i
σ2
n

+R−1
h

)−1

R−1
h

)
rh,pred
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= σ2
h − rHh,pred

(
R−1
h −R−1

h

(
1

σ2
n

Z\i +R−1
h

)−1

R−1
h

)
rh,pred

− zi
1 +ziλmax

rHh,predR
−1
h

(
Z\i
σ2
n

+R−1
h

)−1
Vi

σ2
n

(
Z\i
σ2
n

+R−1
h

)−1

R−1
h rh,pred

(d)
= σ2

epred
(z\i)

− zi
1 +ziλmax

rHh,predR
−1
h

(
Z\i
σ2
n

+R−1
h

)−1
Vi

σ2
n

(
Z\i
σ2
n

+R−1
h

)−1

R−1
h rh,pred

(e)
= σ2

epred
(z\i)−

zia

1 + ziλmax
(A.47)

where for (a) we have used the matrix inversion lemma. For (b) we have
separated the diagonal matrix Z as follows

Z = Z\i + ziVi (A.48)

where Z\i corresponds to Z except that the i-th diagonal element is set to
0, Vi is a matrix with all elements zero except of the i-th diagonal element
being equal to the 1, and zi is the i-th diagonal element of the matrix Z. For
(c) we have used that the matrix

zi

(
1

σ2
n

Z\i +R−1
h

)−1
1

σ2
n

Vi = ziB (A.49)

is of rank 1 and, therefore, the following equality holds (Sherman-Morrison
formula)

(I+ ziB)−1 = I− zi
1 + ziλmax

B (A.50)

where λmax is the non-zero eigenvalue of B.
Furthermore, (d) is based on the definition

σ2
epred (z\i) = σ2

h − rHh,pred

(
R−1
h −R−1

h

(
1

σ2
n

Z\i +R−1
h

)−1

R−1
h

)
rh,pred

(A.51)

which is the prediction error variance if the observation at the i-th time
instant is not used for the channel prediction. This becomes obvious by com-
parison with (A.47(a)). Finally for (e) we have used the substitution

a = rHh,predR
−1
h

(
1

σ2
n

Z\i +R−1
h

)−1
1

σ2
n

Vi

(
1

σ2
n

Z\i +R−1
h

)−1

R−1
h rh,pred

≥ 0 (A.52)
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where the nonnegativity follows from the fact that Vi is positive semidefinite.
Thus, with (A.47) we have found a separation of the channel prediction

error variance σ2
epred (z) into the term σ2

epred (z\i) being independent of zi, and
an additional term, which depends on zi. Note that a and λmax in the second
term on the RHS of (A.47) are independent of zi. Note that the element i is
an arbitrary chosen element, i.e., we can use this separation for each diagonal
element of the matrix Z.

By substituting the RHS of (A.47) into (A.46) we get

log

(
1 +

|xN |2
σ2
n

σ2
epred

(xN−1
1 )

)

= log

(
1 +

|xN |2
σ2
n

(
σ2
epred

(z\i)−
zia

1 + ziλmax

))
= K. (A.53)

Recall that we want to show the convexity of (A.53) with respect to the
element zi. Therefore, we calculate its second derivative with respect to zi:

∂K

∂zi
= −

|xN |2
σ2
n

a
(1+ziλmax)2

1 + |xN |2
σ2
n

(
σ2
epred (z\i)− zia

1+ziλmax

)

∂2K

(∂zi)2
=

|xN |2
σ2
n

a·2λmax(1+ziλmax)
(1+ziλmax)4(

1 + |xN |2
σ2
n

(
σ2
epred

(z\i)− azi
1+ziλmax

))2

×
{
1 +

|xN |2
σ2
n

(
σ2
epred (z\i)−

a

1 + ziλmax

(
zi +

1

2λmax

))}
.

(A.54)

Now we show that the second derivative is nonnegative, i.e.,

∂2K

(∂zi)2
≥ 0. (A.55)

Therefore, first we will show that λmax is nonnegative. This can be easily
done based on the definition of the eigenvalues of the matrix B

Bu = λmaxu

⇔
(

1

σ2
n

Z\i +R−1
h

)−1
1

σ2
n

Viu = λmaxu

⇔ 1

σ2
n

Viu =

(
1

σ2
n

Z\i +R−1
h

)
λmaxu

⇔ 1

σ2
n

uHViu = λmaxu
H

(
1

σ2
n

Z\i +R−1
h

)
u

(a)⇒ λmax ≥ 0 (A.56)
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where (a) follows from the fact that the eigenvalues of
(

1
σ2
n
Z\i +R−1

h

)
are

nonnegative, asRh is positive definite and the diagonal entries of the diagonal
matrix Z\i are also nonnegative. In addition, obviously Vi is also positive
semidefinite.

With λmax, zi, and a being nonnegative, for the proof of (A.55) it rest to
show that

σ2
epred (z\i)−

a

1 + ziλmax

(
zi +

1

2λmax

)
≥ 0. (A.57)

To prove this inequality we calculate the derivative of the LHS of (A.57) with
respect to zi, which is given by

∂

∂zi

{
σ2
epred (z\i)−

a

1 + ziλmax

(
zi +

1

2λmax

)}
= − a

2(1 + ziλmax)2

≤ 0 (A.58)

where for the last inequality we have used (A.52). I.e., the LHS of (A.57)
monotonically decreases in zi. Furthermore, for zi → ∞ the LHS of (A.57)
becomes

lim
zi→∞

{
σ2
epred

(z\i)−
a

1 + ziλmax

(
zi +

1

2λmax

)}

= lim
zi→∞

{
σ2
epred (z\i)−

a

1 + ziλmax
zi

}

(a)
= lim

zi→∞
σ2
epred (z)

(b)

≥ 0 (A.59)

where (a) follows due to (A.47), and where (b) holds as the prediction er-
ror variance must be nonnegative. As the LHS of (A.57) is monotonically
decreasing in zi and as its limit for zi → ∞ is nonnegative, (A.57) must hold.

Thus, with (A.57) inequality (A.55) holds, i.e., the second derivative of
(A.53) with respect to zi is nonnegative and, thus, (A.53) and (A.46) is
convex in zi.

In conclusion, we have shown that (A.46) is convex in each zi for i =
1, . . . , N − 1.

A.6 One-Step Prediction Error Variance

In this appendix, we calculate the prediction error variance
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σ2
e = E

[
|hN − ĥN |2

]
(A.60)

where ĥN is the LMMSE estimate of hN based on an infinite number of noisy
observations in the past

yk = hk + nk, k = 1, . . . , N − 1. (A.61)

The prediction error variance σ2
e for this case is known, see e.g., [67].

For completeness of presentation, here we give a derivation that is closely
related to the calculation of the estimation error variance in the context of
filtering stationary sequences in white noise in [129]. The difference between
the problem discussed in the present work and the one discussed in [129]
is that in the latter one also an observation yN is available and used for
estimation of hN . Therefore, this problem is titled filtering in contrast to the
prediction considered here.

Following the approach in [129], the prediction error variance is given by

σ2
e =

det(B)

det (Ry,N−1)
(A.62)

where

Ry,N−1 = Rh,N−1 + σ2
nIN−1 ∈ CN−1×N−1 (A.63)

is the autocorrelation matrix of the past N − 1 observation. Here the index
N − 1 indicates the size of the matrix Ry,N−1. Rh,N−1 corresponds to (2.17)
but with dimension N − 1×N − 1.

The matrix B is given by

B =

(
Ry,N−1 bH

b rh(0)

)
(A.64)

where

b = [rh(N − 1), rh(N − 2), . . . , rh(2), rh(1)] . (A.65)

The estimation error variance (A.62) can be transformed to

σ2
e =

det (Ry,N)

det (Ry,N−1)
− σ2

n. (A.66)

ForN → ∞ the ratio of the determinants in (A.66) becomes, [118, Satz XVII],
[44, Chapter 5.2, eq. (13)]

lim
N→∞

det (Ry,N)

det (Ry,N−1)
= exp

(∫ 1
2

− 1
2

log
(
σ2
n + Sh(f)

)
df

)
(A.67)
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and, thus, the prediction error variance is given by

lim
N→∞

σ2
e = σ2

n

{
exp

(∫ 1
2

− 1
2

log

(
1 +

Sh(f)

σ2
n

)
df

)
− 1

}
. (A.68)

A.7 Proof of Equivalency of (5.1) and (5.5) for CM
input symbols

In the present appendix, we show that the optimization problems in (5.1),
i.e., ML sequence detection, and (5.5), i.e., joint ML detection with MAP
parameter estimation, are equivalent in terms of the detected data sequence if
the channel fading process and the additive noise are zero-mean jointly proper
Gaussian, and if the input symbols have a constant modulus. Therefore, we
use the representation given in (5.6) and (5.7), which is equivalent to (5.5).
Starting from (5.7) the following holds:

x̂ = argmax
x

p
(
y|x,h = ĥ(x)

)
p
(
h = ĥ(x)

)

= argmax
x

exp
(
−(y−Xĥ(x))HR−1

n (y−Xĥ(x))
)

det (πRn)

exp
(
−(ĥ(x))HR−1

h ĥ(x)
)

det (πRh)

= argmax
x

{
−(y −Xĥ(x))HR−1

n (y −Xĥ(x)) − (ĥ(x))HR−1
h ĥ(x)

}

(a)
= argmax

x

{
−
(
y −X

(
RhX

H(XRhX
H +Rn)

−1y
))H

R−1
n

×
(
y −X

(
RhX

H(XRhX
H +Rn)

−1y
))

−
(
RhX

H
(
XRhX

H +Rn

)−1
y
)H

R−1
h

×RhX
H
(
XRhX

H +Rn

)−1
y
}

= argmax
x

{
yH
(
XRhX

H +Rn

)−1
y
}

(b)
= argmax

x
p(y|x) (A.69)

where for (a) we have used that the MMSE channel estimate ĥ, which corre-
sponds to the MAP estimate in (5.6) is given by, cf. (A.107)

ĥ(x) = RhX
H
(
XRhX

H +Rn

)−1
y. (A.70)

The matrix Rn is the autocorrelation matrix of the additive Gaussian noise,
which for the special case of white noise is given by Rn = σ2

nIN . Furthermore,
(b) holds only in case of constant modulus input symbols as p(y|x) is given by
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p(y|x) = 1

det (π (XRhXH +Rn))
exp

(
yH
(
XRhX

H +Rn

)−1
y
)

(A.71)

where the determinant in the denominator is in general not independent of
x. However, for the special case of constant modulus input symbols the de-
terminant is given by det(σ2

xRh+Rn) and is independent of x. In conclusion,
we have shown that the optimization problem in (5.5), i.e., the first line of
(A.69), and the optimization problem in (5.1) corresponding to the last line
of (A.69) are equal for the special case of constant modulus input symbols.

A.8 Proof of Monotonicity of (6.58)

In this appendix, we prove that the RHS of (6.58), i.e., the argument of the
expectation operation, monotonically decreases with an increasing interpola-
tion error variance σ2

eint(x\0) on the interval σ2
eint(x\0) ∈ [0, σ2

h].

Proof. The argument of the expectation operation at the RHS of (6.58) can
be rewritten as follows

∫ ∞
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xσ
2
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x(σ
2
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∫ ∞
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∫ ∞
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∫ ∞
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log
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1 +

σ2
xσ

2
eint(x\0)

σ2
n

z

)
e−zdz

=

∫ ∞

z=0

log (1 + c+ (ρ− c) z) e−zdz −
∫ ∞

z=0

log (1 + cz) e−zdz (A.72)

where we use (2.18) and define

c =
σ2
xσ

2
eint(x\0)

σ2
n

(A.73)

with c ∈ [0, ρ]. We define the first and the second integral in (A.72) as g1(c)
and g2(c)

g1(c) =

∫ ∞

z=0

log (1 + c+ (ρ− c) z) e−zdz

g2(c) =

∫ ∞

z=0

log (1 + cz) e−zdz. (A.74)
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Based on the monotonicity and curvature of g1(c) and g2(c) with respect to
c, we prove the monotonicity of (A.72) with respect to c. The first and second
derivative of g1(c) and g2(c) are given by

∂g1(c)

∂c
=

∫ ∞

z=0

1− z

1 + c+ (ρ− c)z
e−zdz ≥ 0 (A.75)

∂2g1(c)

∂c2
=

∫ ∞

z=0

−(1− z)2

(1 + c+ (ρ− c)z)2
e−zdz ≤ 0 (A.76)

∂g2(c)

∂c
=

∫ ∞

z=0

z

1 + cz
e−zdz ≥ 0 (A.77)

∂2g2(c)

∂c2
=

∫ ∞

z=0

−z2
(1 + cz)2

e−zdz ≤ 0. (A.78)

The inequality in (A.75) is shown in Appendix A.9. Hence, g1(c) as well
as g2(c) monotonically increase with c and are concave. Therefore, if we
can prove the following inequality, we have shown that (A.72) monotonically
decreases with σ2

eint(x\0),

g1(c = ρ)− g1(c = 0) ≤ g2(c = ρ)− g2(c = 0). (A.79)

The LHS and the RHS of (A.79) are given by

g1(c = ρ)− g1(c = 0) = log(1 + ρ)−
∫ ∞

z=0

log(1 + ρz)e−zdz (A.80)

g2(c = ρ)− g2(c = 0) =

∫ ∞

z=0

log(1 + ρz)e−zdz. (A.81)

Introducing (A.80) and (A.81) into (A.79) yields

log(1 + ρ)−
∫ ∞

z=0

log(1 + ρz)e−zdz ≤
∫ ∞

z=0

log(1 + ρz)e−zdz

⇔ log(1 + ρ) ≤ 2

∫ ∞

z=0

log(1 + ρz)e−zdz

⇔ 0 ≤
∫ ∞

z=0

{
log
(
(1 + ρz)2

)
− log(1 + ρ)

}
e−zdz = s(ρ). (A.82)

To prove (A.82) for ρ ≥ 0, we show that s(ρ), i.e., the RHS of (A.82) mono-
tonically increases with ρ and use that s(ρ = 0) = 0. The derivative of s(ρ)
with respect to ρ is given by

∂s(ρ)

∂ρ
=

∫ ∞

z=0

{
2z

1 + ρz
− 1

1 + ρ

}
e−zdz. (A.83)

To prove that s(ρ) monotonically increases with ρ we show that the RHS of
(A.83) is nonnegative, i.e., that the following inequality holds:
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∫ ∞

z=0

{
2z

1 + ρz
− 1

1 + ρ

}
e−zdz ≥ 0

⇔
∫ ∞

z=0

2z + ρz − 1

1 + ρz
e−zdz ≥ 0

⇔ 1− 2

∫ ∞

z=0

1− z

1 + ρz
e−zdz ≥ 0

⇔ 1

ρ

[∫ ∞

z=0

1 + ρ

1 + ρz
e−zdz − 1

]
≤ 1

2

⇔
∫ ∞

z=0

1 + ρ

1 + ρz
e−zdz ≤ ρ

2
+ 1. (A.84)

The integrand of the integral on the LHS of (A.84) is given by f(z)e−z with

f(z) =
1 + ρ

1 + ρz
. (A.85)

To show that (A.84) holds we upper-bound f(z). The function f(z) mono-
tonically decreases and is convex in z, as

∂f(z)

∂z
= − (1 + ρ)ρ

(ρz + 1)2
≤ 0 (A.86)

∂2f(z)

∂z2
=

2(1 + ρ)ρ2

(ρz + 1)3
≥ 0 ∀z ∈ [0,∞[. (A.87)

As

f(0) = 1 + ρ (A.88)

f(1) = 1 (A.89)

we can upper-bound f(z) by a secant between 0 and 1 and by f(1) for z > 1,
i.e., by the function

f1(z) =

{
−ρz + 1 + ρ for 0 ≤ z ≤ 1
1 for z > 1

. (A.90)

Hence, (A.84) holds if the following inequality holds:

∫ 1

z=0

(−ρz + 1 + ρ)e−zdz +

∫ ∞

z=1

e−zdz ≤ ρ

2
+ 1

⇔ ρ

e
+ 1 ≤ ρ

2
+ 1 (A.91)

which obviously holds as e ≈ 2.718. Thus, s(ρ) monotonically increases with
ρ. Hence, we have shown that (A.82) holds and, therefore, (A.79) is shown.
This concludes the proof that (A.72) monotonically decreases with c for c ∈
[0, ρ]. ⊓⊔
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A.9 Proof of Inequality (A.75)

In this appendix, we prove the following inequality for c ∈ [0, ρ] and ρ ∈ [0,∞)

∫ ∞

z=0

1− z

1 + c+ (ρ− c)z
e−zdz ≥ 0. (A.92)

Proof. The LHS of (A.92) can be rewritten as

∫ ∞

z=0

1− z

1 + c+ (ρ− c)z
e−zdz

=
1

(ρ− c)2

(
(ρ+ 1) exp

(
1 + c

ρ− c

)
E1

(
1 + c

ρ− c

)
+ c− ρ

)
(A.93)

where En(x) is the En-function defined as follows

En(x) =

∫ ∞

1

e−xt

tn
dt. (A.94)

We have to show that
(
(ρ+ 1) exp

(
1 + c

ρ− c

)
E1

(
1 + c

ρ− c

)
+ c− ρ

)
≥ 0

⇔ exp

(
1 + c

ρ− c

)
E1

(
1 + c

ρ− c

)
≥ ρ− c

ρ+ 1
. (A.95)

The integral expression in (A.94) can be expressed by the following asymp-
totic expansion [2, 5.1.51]

En(x) =
e−x

x

[
1− n

x
+
n(n+ 1)

x2
− n(n+ 1)(n+ 2)

x3
+ . . .

]
. (A.96)

Using (A.96) for the case n = 1 and introducing this into the LHS of (A.95),
the inequality (A.95) is equivalent to

(A.95) ⇔ ρ− c

1 + c

∞∑

k=0

k!(−1)k
(
ρ− c

1 + c

)k
≥ ρ− c

ρ+ 1

⇔
∞∑

k=0

k!(−1)k
(
ρ− c

1 + c

)k
≥ 1 + c

1 + ρ

(a)⇐
∞∑

k=0

k!(−1)k
(
ρ− c

1 + c

)k
≥ 1 (A.97)

where for (a) we used that c ≤ ρ. Furthermore, we now use the substitution
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a =
ρ− c

1 + c
(A.98)

where due to the constraints on ρ and c it follows that a ≥ 0. With (A.98)
(A.97) is equivalent to

(A.97) ⇔
∞∑

k=0

k!(−1)kak ≥ 1

⇔
∞∑

k=1

k!(−1)kak ≥ 0

⇔
∞∑

k=1

(2k)!a2k −
∞∑

k=1

(2k − 1)!a2k−1 ≥ 0

⇔
∞∑

k=1

(2k − 1)!a2k−1 {2ka− 1} ≥ 0 (A.99)

which is obviously true, as for all a > 0 the factor (2ka − 1) in (A.99) is
positive from a specific k on. This specific k depends on the value of a.
Furthermore, infinitely many of these positive terms which are weighted by
increasing prefactors due to the factorial are summed up. For the case a = 0,
the LHS of (A.99) is 0 and thus the inequality (A.99) also holds, which
concludes the proof of (A.92). ⊓⊔

A.10 Comparison of Interpolation and Prediction Error
Variance

In this section, we compare the interpolation error variance σ2
eint,CM,∞

, see

(6.75), and the prediction error variance σ2
epred,CM,∞

|α=1, see (4.53). Both of
them are calculated under the assumption of the transmit symbols being
constant modulus with |xk|2 = σ2

x.
From intuition, it is clear that the interpolation error variance σ2

eint,CM,∞
is

smaller than the prediction error variance σ2
epred,CM,∞

|α=1, as also the knowl-
edge of future observations is used for the estimation. This is a well known
result that, e.g., has been shown in [90]. In the following, we also show this
relation based on a different proof to the one in [90].

The prediction error variance upper-bounds the interpolation error vari-
ance as the following derivation shows:
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σ2
eint,CM,∞

=
σ2
n

σ2
x



{∫ 1

2

− 1
2

[
σ2
x

σ2
n

Sh(f) + 1

]−1

df

}−1

− 1




=
σ2
n

σ2
x


exp


log



{∫ 1

2

− 1
2

[
σ2
x

σ2
n

Sh(f) + 1

]−1

df

}−1



− 1




=
σ2
n

σ2
x

[
exp

(
− log

(∫ 1
2

− 1
2

[
σ2
x

σ2
n

Sh(f) + 1

]−1

df

))
− 1

]

(a)

≤ σ2
n

σ2
x

[
exp

(
−
∫ 1

2

− 1
2

log

{[
σ2
x

σ2
n

Sh(f) + 1

]−1
}
df

)
− 1

]

=
σ2
n

σ2
x

[
exp

(∫ 1
2

− 1
2

log

[
σ2
x

σ2
n

Sh(f) + 1

]
df

)
− 1

]
= σ2

epred,CM,∞

∣∣∣
α=1

(A.100)

where (a) follows from Jensen’s inequality.

A.11 Proof for Minimization of h′(ejoint|xD, xP ) in (7.23)
by CM Modulation

In this appendix, we will show that the differential entropy rate
h′(ejoint|xD,xP ) in (7.23), which depends on the distribution of the data
symbols contained in xD, is minimized for constant modulus input symbols
among all distributions of the data symbols with an maximum average power
of σ2

x.
The MAP channel estimate based on pilot and perfectly known data sym-

bols is given by

ĥjoint = argmax
h

p(h|y,x)

= argmax
h

p(y|h,x)p(h)

= argmax
h

{log(p(y|h,x)) + log(p(h))} (A.101)

with

p(y|h,x) = 1

πNσ2N
n

exp

(
−|y−Xh|2

σ2
n

)
(A.102)

p(h) =
1

πN det(Rh)
exp

(
−hHR−1

h h
)
. (A.103)

Thus, (A.101) becomes
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ĥjoint = argmax
h

{
− 1

σ2
n

|y −Xh|2 − hHR−1
h h

}
. (A.104)

Differentiating the argument of the maximum operation at the RHS of
(A.104) with respect to h and setting the result equal to zero yields

− 1

σ2
n

{
−XHy +XHXh

}
−R−1

h h = 0 (A.105)

and, thus,1

ĥjoint = Rh

(
Rh + σ2

nX
−1XH−1

)−1

X−1y. (A.107)

With (A.107) the channel estimation error correlation matrix Rejoint is given
by

Rejoint = E

[(
h− ĥjoint

)(
h− ĥjoint

)H ∣∣∣∣x
]

= Rh −Rh

(
Rh + σ2

n(X
HX)−1

)−1
Rh. (A.108)

Thus, the differential entropy h(ejoint|xD,xP ) becomes

h(ejoint|xD,xP ) = Ex

[
log det

(
πeRejoint

)]

= log
(
(πe)N det(Rh)

)
+ Ex

[
log det

(
IN −

(
Rh + σ2

n(X
HX)−1

)−1
Rh

)]
.

(A.109)

The argument of the expectation operation in the last summand on the RHS
of (A.109) can be rewritten as

log det
(
IN −

(
Rh + σ2

n(X
HX)−1

)−1
Rh

)

= log det
(
IN −

(
IN +R−1

h σ2
n(X

HX)−1
)−1
)

(a)
= log det

(
IN −

[
IN −

(
1

σ2
n

Rh + (XHX)−1

)−1

(XHX)−1

])

= − log det

(
1

σ2
n

RhX
HX+ IN

)
(A.110)

1 Note that the inverse of X in (A.107) does not exist, if a diagonal element of the
diagonal matrix X is zero, i.e., one transmit symbol has zero power. However, as the
channel estimates can be rewritten as

ĥjoint = RhX
H

(

XRhX
H + σ2

nIN
)−1

y (A.106)

it is obvious that the elements of ĥjoint are continuous in xk for all k, and, thus, this
does not lead to problems in the following derivation.
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where (a) follows from the matrix inversion lemma. Inserting (A.110) into
(A.109) yields

h(ejoint|xD,xP ) = log
(
(πe)N det(Rh)

)
− Ex

[
log det

(
1

σ2
n

RhX
HX+ IN

)]
.

(A.111)

As the matrix X = diag(x) is diagonal, the product XXH is also diagonal
and its diagonal elements are the powers of the individual transmit symbols.
In the following we substitute this product by

Z = XXH (A.112)

and z = diag(Z) contains the diagonal elements of Z.
The aim of this appendix is to show that the entropy rate h′(ejoint|xD,xP )

corresponding to the entropy in (A.111) is minimized by constant modulus
data symbols with the power σ2

x among all input distributions fulfilling the
maximum average power constraint in (7.1), which is here relaxed to

E
[
xHx

]
= E

[
N∑

k=1

zk

]
≤ Nσ2

x (A.113)

where the zk with k = 1 . . .N are the elements of z. Therefor, in a first step,
we study the entropy in (A.111), i.e., a finite transmission length N . Let the
set P be the set containing all input distributions fulfilling the maximum
average power constraint in (A.113). Note that this set P includes the case
of having pilot symbols. However, when using pilot symbols, the transmit
power of each L-th symbol is fixed to σ2

x. For the moment, we allow all input
distributions contained in P . Later on, we will come back to the special case
of using pilot symbols.

We want to find the input vector z that minimizes (A.111) provided that
the average power constraint is fulfilled. Therefor, we first show that the
argument of the expectation operation on the RHS of (A.111), i.e.,

g(Z) = log det

(
1

σ2
n

RhZ+ IN

)
(A.114)

is concave in Z. To verify the concavity of g(Z), we follow along the lines
of [9, Chapter 3.1.5] and consider an arbitrary line Z = Z̄ + t∆. Based on
this, we define g(t) as
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g(t) = log det

(
1

σ2
n

Rh

(
Z̄+ t∆

)
+ IN

)

= log det

(
1

σ2
n

Rh

)
+ log det

(
Z̄+ σ2

nR
−1
h + t∆

)

(a)
= log det

(
1

σ2
n

Rh

)
+ log det (Q+ t∆)

= log det

(
Rh

σ2
n

)
+ log det

(
Q

H
2

(
IN + tQ−H

2 ∆Q− 1
2

)
Q

1
2

)

= log det

(
Rh

σ2
n

)
+ log det (Q) + log det

(
IN + tQ−H

2 ∆Q− 1
2

)

= log det

(
1

σ2
n

RhZ̄+ IN

)

+ log det
(
IN + t

(
Z̄+ σ2

nR
−1
h

)−H
2 ∆

(
Z̄+ σ2

nR
−1
h

)− 1
2

)

(b)
= log det

(
1

σ2
n

RhZ̄+ IN

)
+

N∑

k=1

log (1 + tλk) (A.115)

where for (a) we have used the substitution Q = Z̄+σ2
nR

−1
h to simplify nota-

tion. Furthermore, the λk in (b) are the eigenvalues of
(
Z̄+ σ2

nR
−1
h

)−H
2 ∆

(
Z̄+ σ2

nR
−1
h

)− 1
2 .

Based on (A.115) the derivatives of g(t) with respect to t are given by

dg(t)

dt
=

N∑

k=1

λk
1 + tλk

(A.116)

d2g(t)

dt2
= −

N∑

k=1

λ2k
(1 + tλk)

2 . (A.117)

As the second derivative d2g(t)
dt2 is always negative, g(Z) is concave on the set

of diagonal matrices Z with nonnegative diagonal entries.
Based on the concavity of g(Z) with respect to Z we can lower-bound

h(ejoint|xD,xP ) in (A.111) by using Jensen’s inequality as follows, cf. (A.114):

h(ejoint|xD,xP ) = log det
(
(πe)N det(Rh)

)
− Ez [g(Z)]

≥ log det
(
(πe)N det(Rh)

)
− log det

(
1

σ2
n

RhE [Z] + IN

)
.

(A.118)

Recall, that we want to show that constant modulus data symbols with
the power σ2

x minimize the entropy rate h′(ejoint|xD,xP ). Therefore, from
here on we consider the entropy rate which is given by
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h′(ejoint|xD,xP ) = lim
N→∞

1

N
h(ejoint|xD,xP )

= lim
N→∞

1

N

[
log det

(
(πe)N det(Rh)

)
− log det

(
1

σ2
n

RhE [Z] + IN

)]
.

(A.119)

In the next step, we show for which kind of distribution of z fulfilling
the maximum average power constraint in (A.113) the RHS of (A.119) is
minimized. I.e., we have to find

lim
N→∞

1

N
sup
P

log det

(
1

σ2
n

RhE [Z] + IN

)
(A.120)

where the set P contains all input distributions fulfilling the maximum aver-
age power constraint in (A.113).

For the evaluation of (A.120) we substitute the Toeplitz matrix Rh by an
asymptotic equivalent circulant matrixCh, which is possible, as we are finally
interested in the supremum in (A.120) for the case of an infinite transmission
length, i.e., N → ∞. In the following, we will formalize the construction of
Ch and show that the following holds

lim
N→∞

1

N
sup
P

log det

(
1

σ2
n

RhE [Z] + IN

)

= lim
N→∞

1

N
sup
P

log det

(
1

σ2
n

ChE [Z] + IN

)
(A.121)

Therefore, we express the channel correlation matrix Rh by its spectral
decomposition

Rh = R
(N)
h = U(N)Λ

(N)
h

(
U(N)

)H
(A.122)

where we introduced the superscript (N) to indicate the size of the matrices.

Furthermore, the matrix U(N) is unitary and Λ
(N)
h = diag(λ

(N)
1 , . . . , λ

(N)
N ) is

diagonal and contains the eigenvalues λ
(N)
k of R

(N)
h .

Analogously to (3.33) in Section 3.3.2, see also [43, Section 4.4, Eq. (4.32)],

we construct a circulant matrix C
(N)
h which is asymptotically equivalent to

the Toeplitz matrix R
(N)
h . In terms of its spectral decomposition it is given

by, cf. (3.39)

C
(N)
h = F(N)Λ̆

(N)
h

(
F(N)

)H
(A.123)

where the matrix F(N) is a unitary DFT matrix, i.e., its elements are given
by
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[
F(N)

]
k,l

=
1√
N
ej2π

(k−1)(l−1)
N . (A.124)

Furthermore, the matrix Λ̆
(N)
h is diagonal containing the eigenvalues of C

(N)
h .

Its elements λ̆
(N)
k with k = 1, . . . , N are given by, cf. (3.38)

λ̆
(N)
k = S̃h

(
k − 1

N

)
(A.125)

where S̃h(f) is the periodic continuation of Sh(f), see (3.34).

By this construction the circulant matrixC
(N)
h is asymptotically equivalent

to the Toeplitz matrix R
(N)
h , see [43, Lemma 4.6] and also Section 3.3.2, if

∞∑

k=−∞
|rh(k)| <∞ (A.126)

which is assumed to be fulfilled.
To exploit the asymptotic equivalence of R

(N)
h and C

(N)
h for the current

problem, we have to show that the matrices in the argument of the log det
operation on the LHS and the RHS of (A.121), i.e.,

K
(N)
1 =

1

σ2
n

R
(N)
h E [Z] + IN (A.127)

K
(N)
2 =

1

σ2
n

C
(N)
h E [Z] + IN (A.128)

are asymptotically equivalent. However, this has already been shown in Sec-

tion 3.3.2, cf. (3.48) and (3.49) and substitute E [Z] by XHX. As K
(N)
1 and

K
(N)
2 are asymptotically equivalent, with [43, Theorem 2.4] the equality in

(A.121) holds. For ease of notation, in the following we omit the use of the
superscript (N) for all matrices and eigenvalues.

Based on (A.121) the evaluation of the supremum in (A.120) can be sub-
stituted by

lim
N→∞

1

N
sup
P

log det

(
1

σ2
n

ChE [Z] + IN

)

(a)
= lim

N→∞

1

N
sup
P

log det

(
1

σ2
n

FΛ̆hF
HE [Z] + IN

)

(b)
= lim

N→∞

1

N
sup
P

log det

(
1

σ2
n

Λ̆hF
HE [Z]F+ IN

)
(A.129)

where for (a) we have used (A.123) and (b) is based on (3.25).

As the matrix 1
σ2
n
Λ̆hF

HE [Z]F+ IN in the argument of the logarithm on

the RHS of (A.129) is positive definite, using Hadamard’s inequality we can
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upper-bound the argument of the supremum on the RHS of (A.129) as follows

log det

(
1

σ2
n

Λ̆hF
HE [Z]F+ IN

)
≤

N∑

k=1

log

(
1

σ2
n

λ̆k
[
FHE [Z]F

]
k,k

+ 1

)

(A.130)

where
[
FHE [Z]F

]
k,k

are the diagonal entries of the matrix FHE [Z]F. Note,

this means that distributions of the input sequences z which lead to the case
that the matrix FHE [Z]F is diagonal maximize the RHS of (A.129). Using
(A.130), the RHS of (A.129) is given by

lim
N→∞

1

N
sup
P

log det

(
1

σ2
n

Λ̆hF
HE [Z]F+ IN

)

= lim
N→∞

1

N
sup
P

N∑

k=1

log

(
1

σ2
n

λ̆k

(
1

N

N∑

l=1

E [zl]

)
+ 1

)

= lim
N→∞

1

N
sup
P

N∑

k=1

log

(
1

σ2
n

λ̆k

(
E

[
1

N

N∑

l=1

zl

])
+ 1

)
. (A.131)

It rests to evaluate the supremum on the RHS of (A.131). However, as the
logarithm is a monotonically increasing function with the maximum average
power constraint in (A.113) the supremum in (A.131) is given by

lim
N→∞

1

N
sup
P

N∑

k=1

log

(
1

σ2
n

λ̆k

(
E

[
1

N

N∑
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zl

])
+ 1

)

= lim
N→∞

1

N

N∑

k=1

log

(
σ2
x

σ2
n

λ̆k + 1

)

(a)
= lim

N→∞

1

N
log det

(
σ2
x

σ2
n

Ch + 1

)

(b)
= lim

N→∞

1

N
log det

(
σ2
x

σ2
n

Rh + 1

)
(A.132)

where (a) is based on (A.123) and for (b) we have used the asymptotic equiv-
alence of the circulant matrix Ch and the Toeplitz matrix Rh.

Now, using (A.121), (A.129), (A.131), and (A.132) the supremum in
(A.120) is given by

lim
N→∞

1

N
sup
P

log det

(
1

σ2
n

RhE [Z] + IN

)
= lim

N→∞

1

N
log det

(
σ2
x

σ2
n

Rh + IN

)
.

(A.133)
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However, this means that the entropy rate h′(ejoint|xD,xP ) in (A.119) is
lower-bounded by

h′(ejoint|xD,xP )

= lim
N→∞

1

N

[
log det

(
(πe)N det(Rh)

)
− log det

(
1

σ2
n

RhE [Z] + IN

)]

≥ lim
N→∞

1

N

[
log det

(
(πe)N det(Rh)

)
− log det

(
σ2
x

σ2
n

Rh + IN

)]

(a)
= lim

N→∞

1

N
log det

(
πeRejoint,CM

)
(A.134)

where for (a) we have used (A.109) and (A.110), and where Rejoint,CM is the
estimation error correlation matrix in case all input symbols have a constant
modulus with power σ2

x, i.e., cf. (A.108)

Rejoint,CM = Rh −Rh

(
Rh +

σ2
n

σ2
x

IN

)−1

Rh. (A.135)

This mean, that the entropy rate h′(ejoint|xD,xP ) is minimized for the given
maximum average power constraint in (7.1) when all input symbols are con-
stant modulus input symbols with power σ2

x. Note that this includes the case
that each L-th symbol is a pilot symbol with power σ2

x and all other symbols
are constant modulus data symbols with power σ2

x.
In conclusion, we have shown that the differential entropy rate

h′(ejoint|xD,xP ) is minimized by constant modulus data symbols with power
σ2
x, i.e.,

h′(ejoint|xD,xP ) ≥ h′(ejoint|xD,xP )
∣∣
CM

= lim
N→∞

1

N
log det

(
πeRejoint,CM

)
. (A.136)

A.12 Estimation Error Spectra Sepil
(f) and Sejoint,CM

(f)

In this appendix we will calculate the estimation error spectrum Sepil(f) of
a solely pilot based channel estimation in (7.25), see also (5.15). Afterwards,
based on Sepil(f) we also derive the estimation error spectrum Sejoint,CM(f)
in (7.26) for a channel estimation based on all pilot and data symbols for the
special case of constant modulus data symbols.

First, we calculate the PSD Sepil(f) of the channel estimation error in case
of a solely pilot based channel estimation. The channel estimation error in
the frequency domain is given by
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EN (ej2πf ) =

N∑

k=1

epil,k · e−j2πfk (A.137)

where epil,k are the elements of the vector epil in (7.13). In the following we
are interested in the case N → ∞. As in this case the sum in (A.137) does
not exist, in the following we discuss limN→∞

1
NEN (ej2πf ), which can be

expressed as follows

lim
N→∞

1

N
EN (ej2πf )

(a)
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1
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EN,l(e
j2πLf )e−j2πlf

(b)
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1
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[
HN,l(e

j2πLf )−Wl(e
j2πLf )

YN,P (e
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σx

]
e−j2πlf

(c)
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N→∞

1

N

[
HN (ej2πf )−

L∑

l=1

W (ej2πLf )ej2πlf
YN,P (e

j2πLf )

σx
e−j2πlf

]

= lim
N→∞

1

N

[
HN (ej2πf )− L ·W (ej2πLf )

YN,P (e
j2πLf )

σx

]

(d)
= lim

N→∞

1

N

[
HN (ej2πf )− L ·W (ej2πLf )

[
HN,P (e

j2πLf ) +
NN,P (e

j2πLf )

σx

] ]
.

(A.138)

For (a) we have used that the estimation error in frequency domain is the sum
of the interpolation errors at the individual symbols time instances between
the pilot symbols, where the temporal shift yields the phase shift of 2πlf .
Here EN,l(e

j2πLf ) is the frequency transform of the estimation error at the
symbol position with the distance l to the next pilot symbols, i.e.,

EN,l(e
j2πLf ) =

N
L∑

k=1

epil,(k−1)L+1+l · e−j2πfkL, for l = 0 . . . L− 1 (A.139)

where without loss of generality we assume that N is an integer multiple of L
and that the transmit sequence starts with a pilot symbol. Equality (b) results
from expressing EN,l(e

j2πLf ) by the difference between the actual channel
realization and the estimated channel realization at the different interpolation
positions in time domain transferred to frequency domain. Here, without loss
of generality, we assume that the pilot symbols are given by σx. Furthermore,
Wl(e

j2πLf ) is the transfer function of the interpolation filter for the symbols
at distance l from the previous pilot symbol. In addition, YN,P (e

j2πLf ) is the
channel output at the pilot symbol time instances transferred to frequency
domain. For (c) we have used that the sum of the phase shifted channel
realizations in frequency domain at sampling rate 1/L corresponds to the
frequency domain representation of the fading process at symbol rate. In
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addition, we have used that for N → ∞ the interpolation filter transfer
functionWl(e

j2πLf ), which is an MMSE interpolation filter, can be expressed
as

Wl(e
j2πLf ) =W (ej2πLf )ej2πlf (A.140)

i.e., the interpolation filter transfer functions for the individual time shifts are
equal except of a phase shift. Finally, for (d) we have expressed YN,P (e

j2πLf )
as the sum of the frequency domain representations of the fading process and
the additive noise process.

Based on (A.138) the PSD Sepil(f) is given by

Sepil(f) = lim
N→∞
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N
E
[
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]
(A.141)

where for (a) we have used that Sh(f) is real and, thus, the MMSE filter
W (ej2πLf ) is also real, see below.

The MMSE filter transfer function W (ej2πLf ) is given by
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W (ej2πLf ) =
Sh(e

j2πLf )

Sh(ej2πLf ) +
σ2
n
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x

=
1
LSh(e

j2πf )

1
LSh(e

j2πf ) +
σ2
n

σ2
x

(A.142)

where we have used that

Sh(e
j2πLf ) =

1

L
Sh(e

j2πf ). (A.143)

Inserting (A.142) into (A.141) yields

Sepil(f) = Sh(e
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j2πf )
ρ
L
Sh(ej2πf )

σ2
h

+ 1

(b)
=

Sh(f)
ρ
L
Sh(f)
σ2
h

+ 1
(A.144)

where (a) results from (A.143) and for (b) we simplified the notation and
substituted ej2πf by f to get a consistent notation with (2.3).

The PSD Sejoint,CM(f) is then obviously given by setting L = 1 in (A.144),
i.e.,

Sejoint,CM(f) =
Sh(f)

ρSh(f)
σ2
h

+ 1
(A.145)

as all data symbols are assumed to be known and of constant modulus with
power σ2

x, cf. (7.24).

A.13 Proof of Inequality (9.53)

In this appendix, we recall the proof of the inequality (9.53) given in [33] for
completeness of presentation.
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The goal is to derive an upper bound on the term

1

T

∫ 1
2

f̃=− 1
2

log det

(
PT

σ2
nK

Sh(f̃) + IK

)
df̃ (A.146)

that can be easily evaluated and becomes tight for a large bandwidth, i.e.,
K → ∞. In order to show tightness in the case of an infinitely large ma-
trix Sh(f̃) the asymptotic equivalence of Toeplitz and circulant matrices [43]
is used. Therefore, (A.146) is upper-bounded by substituting the Toeplitz
matrix Sh(f̃) by its asymptotic equivalent circulant matrix. The advantage
in the evaluation of the determinant of a circulant matrix lies in the fact
that its eigenvalues can be computed efficiently by using the discrete Fourier
transformation.

Let T be a Hermitian Toeplitz matrix of dimension K ×K. In addition,
let F be the K ×K DFT matrix, i.e., a matrix with the elements

[F]k,l =
1√
K

exp

(
j2π

(k − 1)(l − 1)

K

)
. (A.147)

By identifying the Hermitian Toeplitz matrix T with PT
σ2
n
Sh(f̃), an upper

bound on the following log det expression in (A.146) is required

log det

(
IK +

1

K
T

)
(a)
= log det

(
IK +

1

K
FHTF

)

(b)

≤ log det

(
IK +

1

K
D

)

(c)
= log det

(
IK +

1

K
FDFH

)
(A.148)

where D is a diagonal matrix containing the diagonal entries of FHTF on its
diagonal. For (a) and (c) the fact that the DFT matrix F is unitary is used,
and (b) corresponds to Hadamard’s inequality. Obviously, by construction T
and FDFH are asymptotically equivalent, thus the difference of the LHS and
the RHS of the inequality (A.148) disappears for K → ∞.

To apply the inequality (A.148) to the upper-bounding of (A.146), the
diagonal entries of PT

σ2
n
FHSh(f̃)F, which can be identified with FHTF, have

to be evaluated. The entries of the Hermitian Toeplitz matrix Sh(f̃) are given
by

Sh(f̃) =




c0(f̃) c−1(f̃) . . . c−(K−1)(f̃)

c1(f̃) c0(f̃) . . . c−(K−2)(f̃)
...

...
. . .

...

cK−1(f̃) cK−2(f̃) . . . c0(f̃)


 (A.149)
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with c−k(f̃) = c∗k(f̃) and with

ck(f̃) =

∞∑

n=−∞
rH[n, k]e

−j2πnf̃

(a)
=

1

T
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n=−∞

∫

τ
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T
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e−j2πkFτdτ

(b)
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n=−∞

∫ τ0

−τ0
SH

(
f̃ − n

T
, τ

)
e−j2πkFτdτ (A.150)

where (a) follows from (9.7) and the Poisson summation formula, and (b)
uses the fact that the support of the spectrum is limited to [−τ0, τ0] in the
delay domain. Thus, the i-th element on the main diagonal of FHSh(f̃)F,
which are denoted as di(f̃) can be expressed by

di(f̃) =
1

K

K−1∑

p=0

K−1∑

q=0

cq−p(f̃)e
−j2π i(q−p)

K
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1
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(K − |k|)ck(f̃)e−j2π
ik
K

= Re

{
2

K

K−1∑

k=0

(K − k)ck(f̃)e
−j2π ik

K

}
− c0(f̃) (A.151)

where the substitution k = q − p and the relation c−k(f̃) = c∗k(f̃) has been
used.

With (A.151) the following upper bound on (A.146) can be given

1

T

∫ 1
2

f̃=− 1
2

log det

(
PT

σ2
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df̃

≤ 1
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=
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log
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)
df

(b)
=

∫ f0

−f0

K−1∑

i=0

log

(
1 +
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σ2
nK

di(fT )

)
df (A.152)

where for (a) the normalization f = f̃ /T has been used and (b) follows from
the support of the spectrum SH (f, τ) which is limited to [−f0, f0] in the
Doppler domain.
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For an easy to evaluate upper bound, the dependency of di(fT ) on f
still is an obstacle. This dependency can be removed as follows by further
upper-bounding with the help of Jensen’s inequality

∫ f0

−f0

K−1∑

i=0

log

(
1 +

PT

σ2
nK

di(fT )

)
df ≤ 2f0
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2f0σ2
nK
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)

(A.153)

with the definition

di = T

∫ f0

−f0
di(fT )df. (A.154)

For the evaluation of this integral with (A.151) the evaluation of the following
expression is needed

T

∫ f0

−f0
ck(fT )df =

∞∑

n=−∞

∫ f0

−f0

∫ τ0

−τ0
SH

(
f − n

T
, τ
)
e−j2πkFτdτdf

=

∫ f0

−f0

∫ τ0

−τ0
SH (f, τ) e−j2πkFτdτdf

= rH[0, k] (A.155)

where (A.150) has been used. Thus, it follows that

di = Re

{
2

K

K−1∑

k=0

(K − k)rH[0, k]e
−j2π ik

K

}
− rH[0, 0] (A.156)

as stated in (9.54). Thus, with (A.152), (A.153), and (A.156) the proof of
(9.53) is complete.



Abbreviations

AWGN additive white Gaussian noise
BER bit error rate
BPSK binary phase-shift keying
CM constant modulus
CSI channel state information
cu channel use
DFT discrete Fourier transformation
DMC discrete memoryless channel
EM expectation maximization
i.d. identically distributed
i.i.d. independently identically distributed
ICI intercarrier interference
IDFT inverse discrete Fourier transformation
ISI intersymbol interference
LB lower bound
LHS left hand side
LLR log-likelihood ratio
LMMSE linear minimum mean-square error
MAP maximum a posteriori
MIMO multiple-input multiple-output
MISO multiple-input single-output
ML maximum likelihood
MMSE minimum mean-square error
OFDM orthogonal frequency division multiplexing
QPSK quadrature phase-shift keying
PDF probability density function
PG proper Gaussian
PSD power spectral density
PSK phase-shift keying
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286 Abbreviations

RC raised cosine
RHS ride hand side
SD synchronized detection
SNR signal-to-noise rate
SISO single-input single-output
UB upper bound
UWB ultra-wideband
WSSUS wide-sense stationary uncorrelated scattering



List of Symbols

General

a,A, b, B, . . . scalars
a,b, . . . vectors
A,B, . . . matrices
[A]k,l element on k-th row and l-th column of A
AT transpose of A
a∗ complex conjugate of a
AH conjugate transpose (Hermitian) of A
det(A) determinant of A
trace(A) trace of A
diag(a) diagonal matrix with a on its main diagonal
a ⋆ b convolution of a and b
A⊗B Kronecker product of A and B
A⊙B Hadamard product of A and B
〈a, b〉 inner product of a and b
⌊a⌋ largest integer equal or smaller than a
⌈a⌉ smallest integer equal or larger than a
log(a) logarithm of x to the base e

sinc(a) sinc-function, sinc(a) = sin(πa)
πa

tri(a) triangular function, see (A.40)
En(a) generalized exponential integral, see (A.94)
J0(·) zeroth order Bessel function
δ(k), δk Dirac delta function, Kronecker delta at k
|A| weak norm (Hilbert-Schmidt norm) of A, see (3.42)
‖A‖ strong norm (operator norm) of A, see (3.52)
C complex plane
γ ≈ 0.577 Euler constant
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288 List of Symbols

Probability and Statistics

p(a) probability density function
p(a|b) conditional probability density of a given b
E[a] expectation of the random variable a
var[a] variance of the random variable a
CN (µ,C) jointly proper Gaussian random distribution with mean µ and

covariance C

Communication and Information Theory

I(y;x) mutual information of x and y
I ′(y;x) mutual information rate of x and y
h(y) differential entropy of y
h′(y) differential entropy rate of y
D(g‖h) Kullback-Leibler distance between the probability

distribution functions g and h

xk,x channel input, vector: temporally ordered
hk,h fading channel, vector: temporally ordered
nk,n additive noise, vector: temporally ordered
yk,y channel output, vector: temporally ordered
X,H diagonal matrices with x and h on the main diagonal
N transmit sequence length

ĥk, ĥ, ĥpil,k, ĥpil, ĥjoint channel estimates: general, solely pilot based, joint
based on pilot and data symbols

ek, epil,k, epil, ejoint channel estimation error: general, solely pilot based
channel estimation, joint channel estimation based
on pilot and data symbols

ˇ̂
hpil artificial channel estimation vector with an uncorre-

lated estimation error

xD,yD, ĥpil,D channel input, channel output, channel estimate: all
at data symbol time instances only

xP ,yP channel input and output at pilot symbol time in-
stances
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alk vector containing the time instances from k to l of the
process {ak}

a\k a without the time instant k

Ppeak peak power
σ2
x maximum average power (SISO flat-fading)
α scaling factor for average power, α ∈ [0, 1]
ρ (nominal) mean SNR
β nominal peak-to-average power ratio
ν pilot-to-average data power ratio
σ2
p pilot symbol power (if not equal to average data symbol

power)
σ2
d average data symbol power (if not equal to pilot symbol

power)

σ2
h, σ

2
ĥ
, σ2
n variance of the channel fading weight hk, the channel

estimate ĥk, and the additive Gaussian noise

σ2
epred (x

N−1
1 ),

σ2
epred,∞

(x−∞
k−1),

σ2
epred,CM,∞

one-step channel prediction error variance, finite past,
infinite past, infinite past and CM transmit symbols

σ2
eint(x\0), σ

2
eint,CM,∞

channel interpolation error variance: general case, for
CM data symbols and an infinite observation horizon

σ2
epil

estimation error variance of solely pilot based channel
estimates

Rh channel autocorrelation matrix
Λh diagonal matrix with eigenvalues of Rh on its diagonal
λi eigenvalues of Rh

Ch circulant matrix being asymptotic equivalent to Rh

F(N),F DFT matrix of size N ×N , see (3.40)

Repil ,Rejoint ,
Rejoint,CM

correlation matrices of channel estimation error: solely
pilot based channel estimation, joint estimation based
on pilot and data symbols, joint estimation in case of
CM data symbols

Cepil ,Cejoint,CM circulant matrices being asymptotic equivalent to Repil

and Rejoint,CM

Λepil ,Λejoint,CM diagonal matrices containing the eigenvalues of Cepil

and Cejoint,CM
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TSym symbol duration
f normalized Doppler frequency (flat-fading)
fd maximum normalized Doppler frequency
rh(l) channel correlation function
Sh(f) channel power spectral density

Sepil(f),
Sejoint,CM(f)

power spectral density of channel estimation error: solely
pilot based channel estimation, joint estimation based on
pilot and CM data symbols

L pilot spacing
η SNR degradation factor when using solely pilot based

synchronized detection

λI vector containing reliability information on the informa-
tion bits

x̃k, X̃ soft-symbols

P set of all input PDFs with a maximum average power σ2
x,

see (3.3)
Pi.d. set of all input PDFs with a maximum average power σ2

x

and i.d. input symbols, see (3.5)

Ppeak
i.d. set of all input PDFs with a maximum average power σ2

x,
a peak power of Ppeak and i.d. input symbols, see (3.6)

Ppeak
i.d. |α set of all input PDFs with an average power ασ2

x, a peak
power of Ppeak and i.d. input symbols, see (3.69)

Pi.i.d. set of all input PDFs with a maximum average power σ2
x

and i.i.d. input symbols, see (4.1)

Ppeak
i.i.d. set of all input PDFs with a maximum average power σ2

x,
a peak power of Ppeak and i.i.d. input symbols, see (4.2)

Px,PxD set of possible transmit (data) sequences (codebook)
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MIMO

nT , nR number of transmit and receive antennas

H̃(k), x̃(k), ỹ(k), ñ(k) channel fading matrix, channel input, channel output,
and additive noise at time instant k

h̄ij , x̄j , ȳi, n̄i vectors containing temporally ordered channel fading
weights for subchannel from transmit antenna j to
receive antenna i, channel input of transmit antenna
j, channel output at receive antenna i, additive noise
at receive antenna i

X̄j diagonal matrix with x̄j on its diagonal

h,y,n channel vector, output vector, and additive noise vec-
tor, resulting from stacking h̄ij of all subchannels,
and ȳj and n̄j of all receive antennas

X equals InR ⊗
[
X̄1 . . . X̄nT

]

y̆(k), n̆(k) channel output and additive noise vector of spatially
decorrelated channel model

x̆(k) vector of transmit signals on individual eigenmodes
with normalized power

H̆w(k) channel fading matrix of spatially decorrelated chan-
nel model, elements are i.i.d.

ˆ̃Hpil(k) solely pilot based estimate of channel fading matrix
at time instant k

ˇ̂
hpil artificial channel estimate corresponding to ˆ̃Hpil(k)

but with a temporally uncorrelated estimation error

Rx̃ spatial covariance of transmit symbol vector
V unitary matrix, columns being the eigenvectors of Rx̃

αP diagonal matrix containing the eigenvalues ofRx̃, i.e.,
the transmit powers in the transmit eigenmodes

P̃ normalized power distribution matrix, i.e., P̃ = 1
σ2
x
P

pj maximum average transmit power on transmit eigen-
mode j

P maximum average transmit power over all antennas
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Rh̄ temporal correlation of channel fading weights on individual
subchannel

Rh channel correlation matrix containing spatial and temporal
dimensions

Θ̃T , Θ̃R transmit and receive antenna correlation

ŨT , ŨR unitary matrices, columns being eigenvectors of Θ̃T and Θ̃R

Φ̃ diagonal matrix containing the eigenvalues of Θ̃T

φj diagonal elements of Φ̃

Ψ̃ diagonal matrix containing the eigenvalues of Θ̃R

ψi diagonal elements of Ψ̃

PMIMO set of all input PDFs with a maximum average power P over
all input antennas, see (8.33)

PMIMO,i.d. set of all input PDFs with an input covariance matrix be-
ing capacity-achieving in the coherent case, a maximum av-
erage power P over all input antennas, and temporally i.d.
distributed input vectors, see (8.36)

Ppeak
MIMO,i.d. set of all input distributions with an input covariance matrix

being capacity-achieving in the coherent case, a maximum av-
erage power P and a peak power constrained to Ppeak over all
input antennas, and temporally i.d. distributed input vectors,
see (8.37)

Frequency Selective Channel

H linear channel operator in the Hilbert space of square inte-
grable functions

τ delay
τ0 maximum delay
f Doppler shift
f0 maximum Doppler shift
∆H channel spread ∆H = 4f0τ0
rH(t, ν) time-frequency correlation function
SH(f, τ) scattering function
LH(t, ν) time-varying transfer function
{gn,k(t)} Weyl-Heisenberg set of eigenfunctions
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T spacing of samples of LH(t, ν) in time domain (OFDM
symbol duration)

F spacing of samples of LH(t, ν) in frequency domain
(OFDM subcarrier spacing)

ρ(τ) power delay profile
ρl sample of the power delay profile (average channel power

of the l-th delay path)

K number of frequency slots (subcarriers per OFDM sym-
bol)

B bandwidth of transmit signal, i.e., B = KF

h[n, k], x[n, k],
y[n, k], n[n, k]

channel fading weight, channel input, channel output,
additive noise at time instant n and frequency slot k

h̃n, x̃n, ỹn, ñn vectors of channel weights, channel input symbols, chan-
nel output observations, additive noise samples at time
slot n over all frequency slots

H̃n diagonal matrix with h̃n on its diagonal

h,x,y,n channel, input, output, additive noise vector contain-
ing all time and frequency slots, i.e., stacked vectors
h̃n, x̃n, ỹn, ñn

H,X diagonal matrices with h and x on the main diagonal

ˆ̃Hpil,n solely pilot based estimate of H̃n
ˇ̂
hpil artificial channel estimate corresponding to ˆ̃Hpil,n but

with an uncorrelated channel estimation error in tempo-
ral and frequency domain

ĩn interference vector at time slot n over all frequency slots
σ2
i interference power
ηI SNR degradation factor due to interference

P maximum average transmit power
Ppeak/K peak power constraint per subcarrier
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rH[n, k] channel correlation function over time and frequency slots
Rh̃[n] channel correlation matrix over subcarriers, between two time

slots with a temporal distance n
Rh̄[k] channel correlation matrix over time, between two subcarriers

with a subcarrier distance k
Rh channel correlation matrix containing frequency and temporal

dimension

Sh(f̃ , τ̃ ) two-dimensional PSD of channel fading process

f̃ normalized Doppler shift, i.e., f̃ = fT
τ̃ normalized delay, i.e., τ̃ = τF
Ch̄[0] circulant matrix being asymptotic equivalent to Rh̄[0]
λh̄,n eigenvalues of Ch̄[0]
λ
h̃,k eigenvalues of Rh̃[0]

Sh(f̃) matrix valued power spectral density of the multivariate chan-
nel fading process {h̃n}

LSym pilot spacing in time domain
LSC pilot spacing in subcarrier domain

POFDM set of all input PDFs with a maximum average power of P , see
(9.39)

POFDM,i.d. set of all input PDFs with a maximum average power of P and
i.d. input symbols on all frequency and time slots, see (9.41)

Ppeak
OFDM,i.d. set of all input PDFs with a maximum average power of P ,

i.d. input symbols on all frequency and time slots, and a peak
power constrained to Ppeak/K per subcarrier, see (9.42)

Discrete Input Distributions

Q constellation size, cardinality of modulation scheme
S set of transmit symbol sequences x of length N
M cardinality of input set S
S0 set of pairwise distinguishable transmit sequences of maximal car-

dinality

pk probability of occurrence of input sequence xk
p vector containing all pk for k ∈ {1, . . . ,M}
C set over all input distributions p
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