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Preface

George M. Zaslavsky was born in Odessa, Ukraine in 1935 in a family of an artillery
officer. He received education at the University of Odessa and moved in 1957 to
Novosibirsk, Russia. In 1965, George joined the Institute of Nuclear Physics where
he became interested in nonlinear problems of accelerator and plasma physics.
Roald Sagdeev and Boris Chirikov were those persons who formed his interest in
the theory of dynamical chaos. In 1968 George introduced a separatrix map that
became one of the major tools in theoretical study of Hamiltonian chaos. The work
“Stochastical instability of nonlinear oscillations™ by G. Zaslavsky and B. Chirikov,
published in Physics Uspekhi in 1971, was the first review paper “opened the eyes”
of many physicists to power of the theory of dynamical systems and modern ergodic
theory. It was realized that very complicated behavior is possible in dynamical sys-
tems with only a few degrees of freedom. This complexity cannot be adequately
described in terms of individual trajectories and requires statistical methods. Typi-
cal Hamiltonian systems are not integrable but chaotic, and this chaos is not homo-
geneous. At the same values of the control parameters, there coexist regions in the
phase space with regular and chaotic motion. The results obtained in the 1960s were
summarized in the book “Statistical Irreversibility in Nonlinear Systems” (Nauka,
Moscow, 1970).

The end of the 1960s was a hard time for George. He was forced to leave the
Institute of Nuclear Physics in Novosibirsk for signing Ietters in defense of some
Soviet dissidents. George got a position at the Institute of Physics in Krasnoyarsk,
not far away from Novosibirsk. There he founded a laboratory of the theory of non-
linear processes which exists up to now. In Krasnoyarsk George became interested
in the theory of quantum chaos. The first rigorous theory of quantum resonance was
developed in 1977 in collaboration with his co-workers. They introduced the impor-
tant notion of quantum break time (the Ehrenfest time) after which quantum evolu-
tion began to deviate from a semiclassical one. The results obtained in Krasnoyarsk
were summarized in the book “Chaos in Dynamical Systems” (Nauka, Moscow and
Harwood, Amsterdam, 1985).

In 1984, R. Sagdeev invited George to the Institute of Space Research in Moscow.
There he has worked on the theory of degenerate and almost degenerate Hamilto-
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nian systems, anomalous chaotic transport, plasma physics, and theory of chaos in
waveguides. The book “Nonlinear Physics: from the Pendulum to Turbulence and
Chaos” (Nauka, Moscow and Harwood, New York, 1988), written with R. Sagdeev,
has been a classical textbook for everybody who studies chaos theory. When study-
ing interaction of a charged particle with a wave packet, George with colleagues
from the Institute discovered that stochastic layers of different separatrices in de-
generated Hamiltonian systems may merge producing a stochastic web. Unlike the
famous Arnold diffusion in non-degenerated Hamiltonian systems, that appears only
if the number of degrees of freedom exceeds 2, diffusion in the Zaslavsky webs
is possible at one and half degrees of freedom. This diffusion is rather universal
phenomenon and its speed is much greater than that of Arnold diffusion. Beauti-
ful symmetries of the Zaslavsky webs and their properties in different branches of
physics have been described in the book “Weak chaos and Quasi-Regular Struc-
tures” (Nauka, Moscow, 1991 and Cambridge University Press, Cambridge, 19971)
coauthored with R. Sagdeev, D. Usikov and A. Chernikov.

In 1991, George emigrated to the USA and became a Professor of Physics and
Mathematics at Physical Department of the New York University and at the Courant
Institute of Mathematical Sciences. The last 17 years of his life he devoted to prin-
cipal problems of Hamiltonian chaos connected with anomalous kinetics and frac-
tional dynamics, foundations of statistical mechanics, chaotic advection, quantum
chaos, and long-range propagation of acoustic waves in the ocean. In his New York
period George published two important books on the Hamiltonian chaos: “Physics
of Chaos in Hamiltonian Systems” (Imperial College Press, London, 1998) and
“Hamiltonian chaos and Fractional Dynamics” (Oxford University Press, New York,
2005). His last book “Ray and wave chaos in ocean acoustics: chaos in waveguides”
(World Scientific Press, Singapore, 2010), written with D. Makarov, S. Prants, and
A. Virovlynsky, reviews original results on chaos with acoustic waves in the under-
water sound channel.

George was a very creative scientist and a very good teacher whose former stu-
dents and collaborators are working now in America, Europe and Asia. He authored
and co-authored 9 books and more than 300 papers in journals. Many of his works
are widely cited. George worked hard all his Tife. He loved music, theater, literature
and was an expert in good vines and food. Only a few people knew that he loved
to paint. In the last years he has spent every summer in Provence, France working,
writing books and papers and painting in water-colors. The album with his water-
colors was issued in 2009 in Moscow.

George Zaslavsky was one of the key persons in the theory of dynamical chaos
and made many important contributions to a variety of other subjects. His books and
papers influenced very much in advancing modern nonlinear science.

Sergey Prants
Albert C.J. Luo
Valentin Afraimovich

March, 2010
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Chapter 1

Stochastic and Resonant Layers in Nonlinear
Hamiltonian Systems

Albert C.J. Luo

Abstract In this chapter, stochastic and resonant layers in 2-dimensional nonlinear
Hamiltonian systems are presented. The chaos in the stochastic layer is formed by
the primary resonance interaction in nonlinear Hamiltonians systems. However, the
chaos in the resonant layer is formed by the sub-resonance interaction. The chapter
presented herein is to memorize Professor George M. Zaslavsky for his contribu-
tions in stochastic layers.

1.1 Introduction

The modern theory of dynamics originates from Poincaré’s qualitative analysis.
Poincaré (1892) discovered that the motion of nonlinear a coupled oscillator is sen-
sitive to the initial condition, and qualitatively presented that the inherent character-
istics of the motion in the vicinity of unstable fixed points of nonlinear oscillation
systems may be stochastic under regular applied forces. In addition, Poincaré de-
veloped the perturbation theory for periodic motions in planar dynamical systems.
Birkhoff (1913) continued Poincaré’s work, and provided a proof of Poincaré’s ge-
ometric theorem. Birkhoff (1927) showed that both stable and unstable fixed points
of nonlinear oscillation systems with 2-degrees of freedom must exist whenever
their frequency ratio (or called resonance) is rational. The sub-resonances in peri-
odic motions of such systems change the topological structures of phase trajectories,
and the island chains are obtained when the dynamical systems renormalized with
fine scales are used. The work of Poincaré and Birkhoff implies that the complexity
of topological structures in phase space exists for nonlinear dynamic systems. The
question is whether the complicated trajectory can fill the entire phase space or not.

Albert C.J. Luo

Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville,
Edwardsville, Illinois
e-mail: aluo@siue.edu




2 Albert C.J. Luo

The formal and normal forms in the vicinity of equilibrium are developed through
the Taylor series to investigate the complexity of trajectory in the neighborhood of
the equilibrium. Since the trajectory complexity exists in the vicinity of hyperbolic
points, one focused on investigating the dynamics in such vicinity of hyperbolic
points.

From a topological point of view, Smale’s horseshoe was presented in Smale
(1967). Further, a differentiable dynamical system theory was developed. Such a
theory has been extensively used to interpret the homoclinic tangle phenomenon in
nonlinear dynamics. Smale found the infinite, many periodic motions, and a perfect
minimal Cantor set near a homoclinic motion can be formed. However, Smale’s re-
sults cannot apply to Hamiltonian systems with more than 2-degrees of freedom.
Because the differentiable dynamical system theory is based on the linearization of
dynamical systems at hyperbolic points, it may not be adequate to explain the com-
plexity of chaotic motions in nonlinear dynamical systems. To continue Birkhoff’s
formal stability, Glimm (1963) investigated the formal stability of an equilibrium
(or a periodic solution) of Hamiltonian systems through the rational functions in-
stead of the power series expansion. Such an investigation just gave another kind
of approximation. Though those theories are extensively applied in nonlinear dy-
namical systems, such analyses based on the formal and normal forms are still the
lTocal analyses in the vicinity of equilibrium. Those theories cannot be applied for
the global behaviors of nonlinear dynamical systems.

To understand the complexity of motion in nonlinear Hamiltonian systems, based
on the non-rigorous theory of perturbation, Kolmogorov (1954) postulated the KAM
theorem. In the KAM theorem, Kolmogorov suggested a procedure which ultimately
led to the stability proof of the periodic solutions of the Hamiltonian systems with
2-degrees of freedom. This problem is intimately connected with the difficulty of
small divisors. The aforementioned theorem was proved under different restrictions
(e.g., Arnold, 1963; Moser, 1962). Further, Arnold (1964) investigated the insta-
bility of dynamical systems with several degrees of freedom, and the diffusion of
motion along the generic separatrix was discussed. The results of Arnold (1964)
extended Kolmogorov’s results to the Hamiltonian system with several degrees of
freedom system. The stability in the sense of Lyapunov cannot be inferred. The
KAM theory is based on the separable oscillators with weak interactions. In fact,
once the perturbation exists, the dynamics of the perturbed Hamiltonian systems
may not be well-behaved to the separable dynamical systems. In physical systems,
the interaction between two oscillators in a nonlinear dynamical system cannot be
very small. The KAM theorem may provide an acceptable prediction only when the
interaction perturbation is very weak. The KAM theory is based on separable, in-
tegrable Hamiltonian systems. In fact, the complexity of motions in non-integrable,
nonlinear Hamiltonian systems is much beyond what the KAM theory stated.

The instability zone (or stochastic layer) of Hamiltonian systems, as investigated
in Arnold (1964), is a domain of chaotic motion in the vicinity of the generic sep-
aratrix. Even if the width of the separatrix splitting was estimated, the dynamics of
the separatrix splitting was not developed. Henon and Heiles (1964) gave a numer-
ical investigation on the nonlinear Hamiltonian systems with 2-degrees of freedom
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in order to determine whether or not a well-behaved constant of the motion exists
for such Hamiltonian Systems. Izrailev and Chirikov (1966) first pointed out that
the periodically forced, nonlinear Hamiltonian system with 1-degree of freedom
exhibits a KAM instability leading to the stochastic behavior (or stochastic and res-
onance layers). Walker and Ford (1969) investigated the amplitude instability and
ergodic behavior for nonlinear Hamiltonian systems with 2-degrees of freedom to
develop the verifiable scheme for prediction of the onset of the amplitude instability.
Isolated resonance and double resonance were investigated and the resonance was
determined through the transformed coordinates. Such ergodic behavior in nonlin-
ear Hamiltonian system originates from Birkhoff (1927). In other words, to inves-
tigate the enormous complexity of non-special motions in dynamical systems from
geodesic flows, Birkhoff (1927) presented that the set of non-special motions (or
chaotic motions) is measurable in the sense of Lebesgue, and the set of the special
motions (or regular motion) is of zero measure. Furthermore, the ergodic theory had
been developed in the 20" century and it is as a fundamental base for fractal the-
ory. The thorough study of the geodesic flows in the ergodic theory can be found
in Hopf (1937). Those ideas were generalized by Anosov (1962) to study a class of
differential equations, which can be also referenced to (Sinai,1976). Even though
the ergodic theory is a foundation for fractality of chaotic motions in nonlinear dy-
namical systems, such a theory still cannot provide enough hopes to understand the
complexity of chaotic motions in nonlinear dynamics.

For a nonlinear Hamiltonian system with n-degrees of freedom, it is very dif-
ficult to understand the mechanism of chaotic motions. To date, such a problem
is unsolved. Around (1960) considered extremely simple, nonlinear Hamiltonian
systems to investigate such a mechanism. Melnikov (1962) used the concept in
Poincaré (1892) to investigate the behavior of trajectories of perturbed systems near
autonomous Hamiltonian systems. Melnikov (1963) further investigated the behav-
ior of trajectories of perturbed Hamiltonian systems and the width of the separatrix
splitting were approximately estimated. The width gives the domain of the chaotic
motion in the vicinity of the generic separatrix. Even if the width of the separatix
splitting was approximately estimated, the dynamics of the separatrix splitting was
not developed. From a physical point of view, Chirikov (1960) investigated the reso-
nance processes in magnetic traps, and the resonance overlap was presented initially.
Zaslavsky and Chirikov (1964) discussed the mechanism of 1-dimensional Fermi
acceleration and determined the stochastic property of such a system. Rosenblut et
al. (1966) investigated the appearance of a stochastic instability (or chaotic motion)
of trapped particles in the magnetic field of a traveling wave under a perturbation.
Filonenko et al. (1967) further discussed the destruction of magnetic surface gen-
erated by the resonance harmonics of perturbation. The destruction of such a mag-
netic surface demonstrates the formation and destruction of the resonant surface.
Zaslavsky and Filonenko (1968) gave a systematic investigation of the stochastic
instability of trapped particles through the separatrix map (or whisker motion in
Arnold (1964)), and the fractional equation for diffusion was developed. Zaslavsky
and Chirikov (1972) further presented the stochastic instability of nonlinear oscil-
lations. Chirikov (1979) refined the resonance overlap criterion to predict the onset
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of chaos in stochastic layers. In addition, the most important achievements for pre-
diction of the appearance of chaotic motions were summarized. Escande and Doveil
(1981) used the resonance overlap concept and gave a criterion through a renor-
malization group method (also see, Escande, 1985). The details for the resonance
overlap theory and renormalization group scheme can be referred to references (e.g.,
Lichtenberg and Lieberman, 1992; Reichl, 1992). Though the resonant overlap cri-
terion can provide a rough prediction of the onset of chaotic motion in the stochastic
layers, the mechanism of the chaotic motion in the stochastic layers still cannot be
fully understood until now.

Luo (1995) proposed the resonance theory for chaotic motions in the vicinity
of generic separatrix in nonlinear Hamiltonian systems (also see, Luo and Han,
2001), and it was asserted that chaotic motions in nonlinear Hamiltonian systems are
caused by the resonant interaction. Furthermore, the mechanism for the formation,
growth and destruction of stochastic layers in nonlinear Hamiltonian systems was
discussed in Luo and Han (2001). In Luo et al. (1999), the resonant webs formed in
the stochastic layer were presented, and it was observed that the webs are similar to
the stochastic layer of the parametrically forced pendulum system. The recent inves-
tigations (e.g., Han and Luo, 1998; Luo, 2001b, c, 2002) discovered that the reso-
nance interaction generates the resonant separatrix, and the chaotic motion forms in
vicinity of such a resonant separatrix. The corresponding criteria were presented for
analytical predictions of chaotic motions in 1-DOF nonlinear Hamiltonian systems
with periodic perturbations. The maximum and minimum energy spectrum methods
were developed for numerical predictions of chaotic motions in nonlinear Hamilto-
nian systems (also see, Luo et al., 1999; and Luo, 2002). The energy spectrum ap-
proach is applicable not only for small perturbations but for the large perturbation.
The recent achievements for stochastic layers in periodically forced Hamiltonians
with 1-degree of freedom were summarized in Luo (2004). Luo (2006a) investi-
gated quasi-periodic and chaotic motions in n-dimensional nonlinear Hamiltonian
systems. The energy spectrum method was systematically presented for arbitrary in-
teractions of the integrable nonlinear Hamiltonian systems. The internal resonance
was discussed analytically for weak interactions, and the chaotic and quasi-periodic
motions can be predicted. From a theory for discontinuous dynamical system in
Luo (2006b), Luo (2007a) presented a general theory for n-dimensional nonlinear
dynamical systems. The global tangency and transversality to the separatrix were
discussed from the first integral quantity. The first integral quantity increment was
introduced to investigate the periodic and chaotic flows. In this chapter, only the
stochastic and resonant layers in nolinear Hamilton systems will be presented. For
more materials, readers can refer to Luo (2008).

1.2 Stochastic layers

In this section, the stochastic layers in nonlinear Hamiltonian systems will be de-
scribed geometrically, and the approximate criterions for onset and destruction of
the stochastic Tayers will be presented.
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1.2.1 Geometrical description

Consider a 2-dimensional Hamiltonian system with a time periodically perturbed
vector field, i.e.,

X =f(x,1) + pg(x,r,m); x=(x,)T € R?, (1.1)

where f(x, ) is an unperturbed Hamiltonian vector field on R? and g(x, ) is a peri-
odically perturbed vector field with period T =27 /Q, and

f(x,1) = (fi(x, 1), f2(x, )" and g(x,1,7) = (g1(x,7, M), 82(x,0,m)"  (1.2)

are sufficiently smooth (C",r > 2) and bounded on a bounded set D C R? in
phase space. fi = dHo(x,y)/dy, fo» = —0dHo(x,y)/dx;g1 = IH(x,y,Qt)/dy,g2 =
—dH(x,y,Qt)/dx. If the perturbation (or forcing term) g(x,¢) vanishes, Equation
(1.1) reduces to a 2-dimensional autonomous system x = f(x, 1) corresponding to a
I-degree of freedom system in nonlinear Hamiltonian systems. Therefore the total
Hamiltonian of Eq. (1.1) can be expressed by

H(X,y,t,p) :HO(xayau)+”Hl (x,y,Qt,ﬂ:), (1.3)

with excitation frequency Q and strength u of the perturbed Hamiltonian
Hi(x,y,t,;t) as well. For comparison with the other approximate analysis, such a
perturbation parameter is introduced herein. The Hamiltonian of the integrable sys-
tem in Eq. (1.1) is Hp(x,y,n). Once the initial condition is given, the Hamiltonian
Hy(x,y) is invariant (i.e., Hy(x,y,) = E), which is the first integral manifold.

To restrict this investigation to the 2-dimensional stochastic layer, four assump-
tions for Eq.(1.1) are introduced as follows:

(H1) The unperturbed system of Eq.(1.1) possesses a bounded, closed separatrix
qo(t) with at least one hyperbolic point pg : (x;,,y5).

(H2) The neighborhood of gg(¢) for the point pg : (xp,,yy) is filled with at least three
families of periodic orbits ¢ (f) (0 = a, B,¥) with a, B,y € (0,1].

(H3) For the Hamiltonian energy Es of g4(?), its period Ty is a differentiable func-
tion of E5.

(H4) The perturbed system of Eq.(1.1) possesses a perturbed orbit g(t) in the neigh-
borhood of the unperturbed separatrix qo(t).

From the foregoing hypothesis, the phase portrait of the unperturbed Hamiltonian
system in the vicinity of the separatrix is sketched in Fig.1.1. The following point
sets and the corresponding Hamiltonian energy are introduced, i.e.,

To={(x,y)[(x,y) € qo(1), t € R}U{po} and Ep=Ho(qo(r))  (1.4)

for the separatrix,
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Fo ={(x,y)[(x,y) €40 (t), 1 € R} and Ec = Hy(qo (1)) (1.5)

for the unperturbed,c-periodic orbit and

F={(Gy)|(x,y) €q(t), 1 €R} and E = Ho(q(1)) (1.6)

for the perturbed orbit ¢(7).

The Hamiltonian energies in Eqgs. (1.4) and (1.5) are constant for any periodic
orbit of the unperturbed system but the Hamiltonian energy in Eq. (1.6) varies
with (x,y) € g(¢) of the perturbed system. Note that the unperturbed Hamiltonian
Hy(qs(t)) (c=a,pB,y) and Hy(qo(t)) are C" (r > 2) smooth in Luo and Han (2001).
The hypotheses (H2)—(H3) imply that 75 — o> monotonically as ¢ — 0 (i.e., the pe-
riodic orbit g4 () approaches to go(t) as 6 — 0).

The O-sets of the first integral quantity (or the energy) of the unperturbed Eq.
(1.1DinT's (0 = a, B,7), are defined as

Né (Ep) = {EG||EG Ey| < O, for small ¢ > 0} 1.7)

and the union of the three §-sets with Ej is

N° (Eo) = J N3 (Eo) U{Eo}- (1.8)

For some time ¢, there is a point X = (x5 (t),5(¢))T on the orbit g4 (¢) and this
point is also on the normal f*(x¢) = (—/f2(Xp), f1 (Xo)) Tof the tangential vector of
the separatrix go(z) at a point xg = (xo (¢ ) o(t))T, as shown in Fig. 1.2. Therefore,
the distance is defined as

Fig. 1.1 The phase portrait of the unperturbed system of Eq. (1.1) near a hyperbolic point py,. go(t)
is a separatrix going through the hyperbolic point and splitting the phase into three parts near the
hyperbolic point, and the corresponding orbits g (f) are termed the o-orbit (0 = {a, 3,7}).
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196 () = qo(2) | = max [[xq(z) —Xo(1)
teR

= max/fio(t) — %o + o) —o)P. (19

teR

Lemma 1.1 For Eq. (1.1) with (HD)~(H4),Ve > 0,35, > 0 (0 = &, B,7) so that
llgs(t) — qo(t)|| < € for Es € N% (Ey) at a specific time t.

Proof. Ve > 0, let 85 = €[|Hp]|| > 0 satisfying

|Ec — Eol = [Ho(qc) — Ho(qo)| < [[Hol| - llge — qol[ < ds,

where

|[Hol| = 2‘;13 [1Ho(g5) — Ho(90)| /1lge — goll] -

Since the unperturbed Hamiltonian Hy of orbits g and g is C"-smooth (r > 2)
and 0 < [[Hy]|| < oo for bounded and closed orbits. Therefore, one obtains

|96 (1) = q0(1)]] < 86 /||Hol| = €.
This lemma is proved. u

The e-neighborhood of orbit go(z) is fomed by the three e-sets of Iy for the
c-orbits (6 = a, 3,7), as shown in Fig. 1.2. The bold solid curves denote the sepa-
ratrix go(¢) and the e-neighborhood boundaries, ¢%(¢) (6 = a, ,7), is determined

Fig. 1.2 The e-neighborhood of orbit go(¢). The bold solid curves represent the separatrix go(t)
and the e-neighborhood boundaries ¢4 (¢) determined by n[lax) g5 () — go(r)|| = € (6 = o, B, 7).
1€ [0,00

The solid curves depict all orbits g (#) in the -neighborhood. The energies on the boundary orbits
are given through ES = Hy (45 (1)).
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through n[l(?x) [lg5 () — qo(t)||=¢€ when E& = Hy(q%(¢)). The solid curves represent
1€[0,00

all the o-orbits g4 () in the €- neighborhood.
The three e-sets of I'y for the c-orbits (6 = o, B, 7) are defined by

I ={(x,y)[(x,) € 4o (1), llgo(t) —qo(t)|| < &, 1 €R}. (1.10)
Furthermore, from Eq.(1.8), the unions of the g-sets with Iy are
5=, FsUlo,  Too =Tl (1.11)

The Poincaré map P : I* — I'? ,where the Poinaré mapping set in phase space is:

2nN
= {(XN,YN) (xn,yn) €q(t), tn = - o N=0,1,-~-} cr, (112

where fg is the initial time. Using the above notations, a stochastic layer is defined
through the Poincaré mapping set with nonzero measure as follows:

Definition 1.1 The Poincaré mapping set I is termed the stochastic layer in the
e-sense if the compact, dense set IT belongs to I'§ (or [T C IF) forty = 2N7/Q +
to(N=0,1,...). Similarly, the Poincaré mapping subset Uy C I'¥ is the &-stochastic
layer if Us C T, for ty = 2N7/Q + 1.

o)

A stochastic Tayer of system in Eq. (1.1) is formed through the Poincaré map-
ping set of ¢(¢) in the €-neighborhood for time 7 € [0,0), as shown in Fig. 1.3.
The separation of the stochastic layer by the separatrix gives three sub-stochastic
layers shaded. The sub-layers relative to the o-orbits (0 = «, 3,7) are termed the
o-stochastic Tayer. The more detail description can be referred to Luo (2008).

€
950 1

Bl ,:W _‘,,,“1fI}il]l1I1111z1mmmmﬂﬂlllﬂlﬁm]lﬂ“,,), O
5 . \ . 4 i

i

y-layer B-layer a-layer

Fig. 1.3 A stochastic layer of Eq. (1.1) formed by the Poincaré mapping set of ¢(¢) in the -
neighborhood of go(t) for ¢ € [0,00). The separatrix separates the stochastic layer into three sub-
stochastic layers (i.e., ot-layer and B-layer and y-layer).
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1.2.2 Approximate criterions

The approximate predictions of resonance in the stochastic layer of a 2-dimensional
nonlinear Hamiltonian system will be presented. The incremental energy technique
will be presented first from the approximate first integral quantity increment (or
approximate energy increment). The whisker mapping will be obtained, and the
corresponding criterion will be presented. The Tinearization of the whicker mapping,
the improved standard mapping will be presented and the approximate prediction
of chaos onset will be given. Based on the exact first integral quantity, the energy
spectrum technique will be developed for a numerical prediction of resonances in
the stochastic layer.

A. An incremental energy method

As in Luo and Han (2001), the incremental energy method will be presented for
understanding the resonant mechanism of chaos in the stochastic layer.

Lemma 1.2 For the dynamical system in Eq. (1.1) with (H1)—(H4), if a point (x,y) €
['NTg for some 6 = {a,B,y}, then Hy(q(t)) = Hyo(qs(t)) for some time t.

Proof. Tf the perturbed orbit ¢(¢) in the set I is intersected with an unperturbed orbit
qos(t) in the set I's for some o € {a € [-1,0),B € (0,1],y € [-1,0)} at time ¢,
there is a single point (x,y) € [ NIs. Therefore, for(x,y) € TNTs, we have (x,y) €
qs(t) and (x,y) € q(t). Thus, Hy(q(t)) = Ho(x,y) = Ho(qo(t)), which implies that
the conservative energy is equal for the same point in phase space. This lemma is
proved. ]

The detailed discussion is given as follows. Because the conservative energy H
is the first integral quantity, for the o-layer, the map describing the changes of both
energy Hy and phase ¢ for time transition from #; to t; + 75 in Eq. (1.1) is obtained,
i.e.,

Ei 1 =Ei+AH(¢;) and @y = @i+ A@° (Ejy 1), (1.13)

where E; = H(q(t;)), 0 = @(q(t;)). For a specific external frequency Q, the initial
phase is defined by ¢; = Q. Notice that the energy relationship in the foregoing
can be expressed through the action variable. As in Chirikov (1979) or Lichtenberg
and Lieberman (1992), the phase and energy changes, AQ° (E; 1) and AH® (¢;), are
approximately computed by

AQ°(Eiy1) ~ QT5(Ei1), and

To (Ej)+; To (Ei)+t (1.14)
AHC (@;) ~ [ | {Ho,H, }dt ZMA (f182 — fog1)dr.

The energy and phase changes in Eq. (1.14) for the system in Eq. (1.1) over one
period T4 of the o-orbit are sketched in Fig. 1.4. If E; = E\y expresses the energy of
the separatrix, Equation (1.13) becomes a generalized separatrix map (or a general-
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ized whisker map). When the o-orbit (6 = «, f3,7) is close to the separatrix (i.e.,
Ts — o), the energy increment reduces to the one along the separatrix in Luo and
Han (2001):

To(Ei)+t; E;)+t;

AH" () = Tcl,iinw” | {Ho,H, }dt = llm H/ (f182— fag1)dt

' (1.15)
which can also be obtained through the Melnikov function with a small parameter
W, ie., AH"(@;) = uM(t;) (e.g., Rom-Keder, 1990, 1994, 1995; Zaslavsky and Ab-
dullaev, 1995; Abdullacv and Zaslavsky, 1995, 1996; Ahn et al., 1996; Tomin and
Fishman, 1996).

After the KAM torus in the vicinity of separatrix is destroyed, the stochastic layer
(or the instability zone) will form in such vicinity, and the resonant-separatrix webs
appear as in Luo et al. (1999). Such resonance-separatrix webs are generated by
the interaction of resonances between the unperturbed perturbed orbits and the peri-
odic forcing in the stochastic layer. In this section, the prediction of the onset of the
primary resonance in the stochastic layer will be of great interest. Such resonant in-
teractions in the e-neighborhood of the separatrix are qualitatively illustrated in Fig.
1.5. The hollow circles depict intersection points of the perturbed and unperturbed
orbits. When the perturbed orbit arrived to the (ms : ng) primary resonant unper-
turbed orbit of Eq. (1.1), the resonance between the unperturbed Hamiltonian and
perturbation appears, and the resonant condition for a periodically forced system
with 1-degree of freedom is obtained from Eq. (1.3), i.e.,

mgWs=ns, mg,ng € N are irreducible, (1.16)

Perturbed orbit —

-

/ ¢ N

&=

Fig. 1.4 The energy and phase changes of a perturbed orbit over one period T,based on EZ.
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where ws = 2775 is a frequency of the o-orbit, Q is the excitation frequency and
N is the natural number set. For the (i 4+ 1) iteration of Eq. (1.13), if g(tiy1) =
(xitr1,vir1) is on the unperturbed, resonant orbit, the phase change in the second of
Eq.(1.13) becomes Q4| — @; = 27tmg /ng and E; | is replaced by E("oe) The per-
turbed orbit ¢(r) relative to the (mg : ng)-resonance is represented by g("oe)(r).
Since W = 27/Ts depends on the corresponding energy Eg, the resonant condi-
tions can be directly expressed through Es and €, as shown in Fig. 1.6. In Fig.
1.6(a), E((xm"‘:"”‘) is an unperturbed Hamiltonian energy relative to the (my : ng)-

(mB:n[;)

resonant orbit and Eg is the Hamiltonian energy pertaining to the (mg : ng)-

resonant orbit. The resonant number sets in the stochastic layer for 0 = o, 3, v are
introduced:

Mo Ws=ncQ, Mg, ne € N are irreducible, } (1.17)

Ro = {(’"" 19) | and ||go (1) — g0 (1) || < &

For a given external frequency Q with a constant ns, the frequency @gis relative
to Es. In Fig. 1.6(b), the zoomed view of the resonant relations in the neighbor-
hood of the separatrix with energy E = Ej at a specific excitation frequency Q is
illustrated through the a-and B-layers. Once the resonance energy is close to the
energy of the separatrix, the density of the resonance separatrix increases in the
stochastic layer because of the rapid change of elliptic modulus function. Namely,
as Es — Ey, we have ws — 0. Therefore, from Eq. (1.17), one obtains mgs — 0. A
resonance with large ms will be included in the stochastic layer. For each m, the
(mg : ng)-resonant separatrix possesses mq-center points and mg-hyperbolic points
under the ng-external periods. In the stochastic layer, for E5; — Ejy, the number for

q;}mﬂ ) o

9y(0)

(m.n.) %

(mgn, )

X . 9,

Intersected point

Fig. 1.5 A perturbed orbit g(¢)for Eq.(1.1) and the resonant interactions with the unperturbed
orbits. The circles denote intersections between the perturbed and unperturbed orbits. qg,m":"d
(o = a,fB,7) represents an unperturbed orbit having the (mg : ng)-resonant interaction with the

perturbed orbit.



12 Albert C.J. Luo

center points and hyperbolic points will approach the infinity. When the energy Es
arbitrarily approaches Ey, there are infinite centers and infinite hyperbolic points
on the resonant separatrix. Such an issue in resonant layers will be discussed in
detail. As popularly accepted (e.g., Lu, 2007), the chaos is formed by infinite sta-
ble periodic solutions and infinite unstable periodic solutions. The total resonant
separatrix number is the summation of the resonant orbit relative to the (mg : ng)-
condition with mg € [min{mg},o0) C N. This implies that the infinite resonances
exist in the o-layer (0 = «, 3,¥). The stochastic layer complexity will be formed
by the resonant-web, which can be referred to Luo et al. (1999).

When the perturbation becomes stronger, the perturbed orbit will pass over more
and more unperturbed, periodic orbits, as shown in Fig. 1.5. Therefore, the interac-
tion between the Hamiltonian system and its perturbation increases with increasing

oA
o ,
E/(]’”/A ) H,
@)
o) |
a - layer p-layer
| _ LIS
I |
] | -
o Eim“:"“) E, Egm/,n/,) H,
®)

Fig. 1.6 (a) Resonant conditions of the perturbed system in the stochastic layer and (b) a zoomed
view of resonant conditions in neighborhood of separatrix.
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perturbation strength. The resonant interaction leads to a new resonant overlap, and
such resonant overlap generates a new stochastic layer different in the old stochas-
tic layer because a new, specific resonant-separatrix web is formed in the stochastic
layer. Thus, the prediction of the onset of a specific resonant-separatrix web in the
stochastic lTayer is given by the following theorems.

Theorem 1.1 For a perturbed Hamiltonian Eq. (1.1) with (H1)—(H4), for an arbi-
trarily small €5 > 0, there exists 0 > 0, so that if for (ms : ng) € R5(0 = o, 3,7),

IAHO ()| = [ES"™®) — Ey| < 8, (1.18)

then ||g\"e %) (1;) — qo(1;)|| < &c for all the time t;, i.e., the Poincaré mapping set of
q\me9) (1) is in a G-stochastic layer as t € [0,0).

Proof. Consider Eq.(1.1) with (H1)—(H4). If ") (1;1) = (x;11,yi41) €TNTE,,
for o € {a,B,y}, Lemma 1.2 gives

Ei = Holq"""") (141) = Holqg"*"" (141) = Eg""".
Similarly, if ¢("o*0) (1;) = (x;,y;) € TN, then

E; = Ho(qo(t:)) = Eo = Ho(qo(ti11)),

where go(ti11) = (22, 1,5%,1) € qo(¢) and the normal of its tangential vector inter-
sects with qg,m":"")(t) at (x;+1,yi+1). From Eq. (1.13),

AH (90)| = |Eiy1 — Ei| = [ES"™) — Ey).
Ve > 0, let 8¢ = €||Hp|| > O satisfying
ES"") — Eo| < ||Hol|- |lg"™" (ti11) — qo(ti1) || < €]|Ho|| = S5

Since the unperturbed Hamiltonian Hy of orbits g¢ and g is C" (r > 2) smooth,

0 < [[Holl = sup [[Ho(q(1)) — Ho(qo(t))1/Tla(t) — qo(t)]I] < e,

o#£0

for bounded and closed orbits Therefore, one obtains

lg"e ) (1;:1) — qo(tis1)|| < 8 /|| Holl = €

forall#;, 1, that is,
lg™oe) (1:1.1) — qo(tis1) || < €.

This theorem is proved. |

In Eq. (1.18), the incremental energy AH® (¢ )is a function of the amplitude and

frequency of perturbation. The conservative energy Eém":"") relative to the unper-
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turbed resonant orbit is determined by the resonant condition given in Eq. (1.16).

(
With rr[lax |H (g (mgng) (1)) — Eo| = 85, the foregoing theorem gives the follow-
0
ing corollary.

Corollary 1.1 For a perturbed Hamiltonian in Eq. (1.1) with (H1)-(H4), for an
arbitrarily small €5 > 0, there exists 5((,1) > 0, so that if for (mg,l) : ngl)) ERE (0=

a?}E 7y)7

meg:in m n(
max |AH® ((p,)|—max|E one) _ gy |—|E ° e —Ey |<5G ,  (1.19)
oe{a,B,r}

1
then ||¢ m: "0)( 1) —qo(t)|| < & i.e., the Poincaré mapping sets of ¢' (m: "g))(t) el
is the last one absorbed in the €- stochastic layer.

Proof. Consider Eq.(1.1) with (H1)—(H4). For a 6-resonant orbit g("o*e) (1) € T¢,
Ve > 0, choosing 85 > 0, find (mg) : ng)) € RE satisfying

. ()
max |ES"") — Eo| < |EY " n6”) _ o1 —
RS

Letd = max {ds} >0, we have
oc{a,B,v}

(1)
max max |Eg —Ey| < max |Eg (5 n5) —Eo| =
oc{a.B,y} RE oc{a,B,y}

mo‘ "o‘)

Therefore, from Theorem 1.1,

(1., (1)
g™ "o (1) = qo(0)]| < e.

This corollary is proved. |

After a new stochastic layer is formed, the stochastic layer becomes thicker and
thicker with increasing the perturbation strength until its destruction occurs. The
increase of perturbation strength also leads to the energy increment not satisfying
Eq. (1.18), and then, the enlarged stochastic motion domain is termed the global
stochastic layer in the €-sense. For an approximate prediction of resonant-separatrix
webs in the global stochastic layer, we have the following theorem:

Theorem 1.2 For a perturbed Hamiltonian in Eq. (1.1) with (H1)-(H4) , for an
arbitrarily small €5 > 0, there exists 8 > 0, so that if for (ms : ng) ¢ R5(0 =
,B,7),

IAHC (g0)| = |ES"") — Eo| > 86, (1.20)
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then ||q\">") (1;) — qo(t:) || > €.

Proof. The proof of contradiction is used herein. This theorem can be proved in a
same manner as for Theorem 1.1. [ |

The criterion in Eq. (1.18) can be expressed through the action and natural fre-
quency of unperturbed Hamiltonian system. The onset of a specified resonance in
the stochastic layer is predicted through the incremental energy approach. This ap-
proach is also applicable for strong excitations when the energy increments still
maintain in good accuracy. For the more accurate predictions of the resonance inter-
action in the stochastic layer, a new computational method for the energy increment
should be developed because the sub-resonance is not considered. If the exact energy
increment is given, the above theorems give the exact prediction of the resonance in
the stochastic layer.

B. Accurate standard-mapping technique

Luo (20071) developed the accurate standard mapping technique to determine the
resonant mechanism of the stochastic layer. For linearization of the second equation
in Eq.(1.13) at the period-1fixed point on the (mg : ng)-resonance, for E; 1 = E; =
Ec(,m":”") and @;y | = @i+ 27mg /ng = @Mone) 4 27tm6/n6, equation (1.13) gives:

AHS (8"7")) = 0, and 27tme /g = A@C (ES"")). (1.21)
From Eq. (1.21), """ and E{""*) can be obtained. A near energy is
Ei = E") L AE;, and I; = GU"o ") AE, (1.22)

where GI"") = 9(AQ(Eiy1)) /0 |5, _stroo) - With Eq. (1.22), the lineariza-

tion of the second equation of Eq.(1.13) leads to

iy = I+ G AHZ (@), and @i41 ~ @i+ 141, (1.23)

which gives a generalized standard map. In the above derivation, no approximations
of the period are required. The criteria for the (mq : ng)- resonance in the stochastic
layer can be obtained through the transition from the local stochasticity to global
stochasticity in Eq. (1.23). Setting G4"*"*) AHZ (¢;) = K sin ;, such an equation
presents a standard map (or the Chirikov-Taylor map), i.e.,

Iiy1 =L +Ksing;, and Q;11 ~ @; + ;1. (1.24)

Greene (1968, 1979) developed a method to numerically determine the strength
of the stochasticity parameter when the transition to global stochasticity for Eq.
(1.23) occurs. Therefore, for the special case, the perturbation strength of Eq. (1.1)
is estimated from

IGL ") AHO (¢,)] & 0.9716--- . (1.25)
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Other estimates for the strength of stochasticity parameter can be referred to the
references (e.g., Chirikov, 1979; Lichtenberg and Lieberman, 1992). Luo (2001) de-
veloped an accurate standard map approach based on the accurate whisker map for
such a prediction of the resonance in the stochastic layer. Luo et al. (1999) devel-
oped an energy spectrum approach (numerical method) for prediction of the onset
of resonance in the stochastic layer. A comparison of analytical and numerical pre-
dictions was presented in Luo and Han (2000). From numerical results, the previ-
ous approaches presented in Luo and Han (2000a) are not very accurate for strong
excitations. When the excitation strength is very weak, the accurate and approxi-
mate standard-map methods are in good agreement, and the accurate one is applica-
ble to nonlinear systems with strong excitations. However, the further improvement
should be completed for a more accurate, analytical prediction of the onset of a new
resonant-overlap in stochastic layers of nonlinear Hamiltonian systems with peri-
odical excitations. The energy spectrum is based on the exact energy increments.
Thus, the energy spectrum will be discussed in next section and the corresponding
layer width can be estimated.

C. Energy spectrum and layer width

For the numerical prediction of resonances in the stochastic layer, Luo et al. (1999)
developed an energy spectrum technique, and the resonant characteristics in stochas-
tic layers are investigated through the energy spectra. This technique computes the
maximum and minimum energies of the Poincaré mapping points as in Eq. (1.3).
From Lemma 1.2, the perturbed energy can be measured by the unperturbed Hamil-
tonian. Thus, the unperturbed Hamiltonian for each Poincaré mapping point of Eq.

(I.T)is

H(gN) :H()(XN,H') EHO(XN,)’N,U), (126)

and its minimum and maximum energies are determined by

Epax = max {HéN)} and Eni, = I{Inin {HéN)}. 1.27

The minimum layer width defined in Luo et al. (1999) is

w= rr{})in) [IX(E™™ 1) —x(E™"1)| = [|x™* —x™"|, (1.28)
t€[0,00
where || - || is a norm. Two points X™* and x™" on the normal vector f'(xg) =

(—f,(x0),f, (x0))T of the tangential vector of separatrix at point X are the closest
between the maximum and minimum energy orbits X(Emax,t) and X(Epin,?) which
can be obtained by Eq. (1.27) with Eax and E iy, as shown in Fig. 1.2.
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1.3 Resonant layers

Consider a 2-dimensional Hamiltonian system as

x=f(x,p) +g(x,5,7); x=(x,y)" €R? (1.29)

where f(x, ) is a Hamiltonian vector field defined on R? and g(x,,T) is a T271/Q-
periodic (fixed period) Hamiltonian vector field in time #, and Q denotes excitation
frequency. Specifically, they are of the form

f(X’p') = (fl (Xap')afZ(X,p'))T and g(X’tﬂt) = (gl (X,[,E),gz(x,l‘,ﬂ:))T (1.30)

and are assumed to be sufficiently smooth (C”,r > 2) and bounded on bounded sets
D C R? in phase space. The total energy of such a system is,

H(X,y,t,p) :HO(xayau)+Hl (x,y,t,n), (1.31)

where Hy (x,y,) and H; (x,y,,T) are energy functions of the conservative and per-
turbed Hamiltonians, respectively.

To restrict the discussion on the 2-dimensional resonant lTayer (or band) in per-
turbed nonlinear Hamiltonian systems, the following hypothesis will be used.

(Ala) There is a bounded open domain D C R? and in such a domain, there is only
one center equilibrium p.:(x.,y.) around which a family of periodic flows
qa(t) = (x(2),ya(2)) (ot € [1,00)) of the unperturbed Hamiltonian exists.

(A1b) There is an open domain D C R? bounded by a separatrix (i.e.,qo(t) =
(x0(2), yo(t)):x0 € go(t)) with hyperbolic points, and then in such a do-
main there is a center equilibrium p.: (x.,y.) around which a family of peri-
odic flows (i.e., Xq € go () for o € (0,1]) of unperturbed Hamiltonian with
lim sup inf [|xa () —x0(2)|] = O exists.
=0 tcR X0€q0(t) XEqa(t)

(Alc) There is an open domain D C R? bounded by an internal boundary formed
by a separatrix (i.e., Xg € go(t)) with hyperbolic points. On the outside of the
separatrix, a family of periodic flows (i.e., Xq € g () for a € (0,00)) of the
unperturbed Hamiltonian exists. lim sup inf ||xe — X0|| = 0.

a—0 R X0€q0(t) XEq(1)
(A2) Hy(q(t)) = Eq and Ty, is the period of g4 (¢)and its frequency @y, is greater
than zero (i.e. Wy > 0). The frequency is a differentiable function of E4 (i.e.,
dwy /dEy #0). Namely, dwy /dEq > 0, d@y /dEqy < 0 and d@y /dEy > 0 are

for cases in (Ala), (A1b) and (Alc), respectively.

Without loss of generality, consider the second type of domain is bounded by
the separatrix, as shown in Fig. 1.7(a). In this domain, there is a center point. The
separatrix is sketched by a dashed curve. All the periodic flows in this domain will
be formed around the center point in Fig. 1.7(b). The natural frequency at the cen-
ter point is maximum. With increasing energy, the frequency will decrease (i.e.,
dwy /dEy < 0) or the flow period will increase (i.e., dTy/dEq > 0). When a peri-
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odic flow in the family of periodic flows in such a domain approach the separatrix,
the natural frequency will approach zero (i.e., limg, g, @y = 0) or the correspond-
ing period approaches infinity (i.e., limg, g, Ty, = o).

bounded open subset D

: \ /
\- / “‘I!|||||[ mm ]H ![“;!"

y >
.I generic separatix

X (@)

,/ generic separatrix

(®)

Fig. 1.7 (a) An open domain D bounded by the separatrix and (b) periodic flow of the unperturbed
system of Eq.(1.1). g¢(¢) is the periodic flow of the unperturbed system in domain D C R?. This
periodic flow existing on the inside of separatrix can be called the librational (or local) periodic

flows.
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1.3.1 Layer dynamics

To investigate chaotic motions in a resonant separatrix layer, for a given energy Eq,
the Hamiltonian is

Ho(Xo,Ya) = Eq (1.32)
from which
Ya =Ya(Xa,Ea). (1.33)
The action variable is defined by
Jo = y{yadxa. (1.34)
So we have
H()(Ja) zEa. (].35)
The angle variable is defined by
0o = ot + 600, (1.36)
with OHo(Ju)
: 0lVa
6 = — = Mgy . ].37
o aJ(x (04 ( )

From the foregoing hypotheses, the periodic flow g4 (t) = (x¢(?),yo(¢)) in the do-
main D can be expressed by

x“z.x“(.]a,ea) andya:ya(.]a,ea). (].38)

Substitution of Eq.(1.38) into Eq.(1.30) and using Fourier expansion give

H(J(Z,ea,t)
= Ho(Jo) +H, (Ja,Ga,Qt)
= Ho(Jo) +Z Zm{ Ja ) cos(mmgt — nQt + ‘Van )
+H1((n2:n> (Jo) cos(maqt +nQi + Vfan )}- (1.39)

Letting o = (my, — nQ)t, we have

H (Jo, 0q,1)

Y, Eo, (i Valos [ M+ = 1yl
+H) () cos @¢a+wm+ wih | b (1.40)
1(my:n) m m
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If the following resonance condition holds as
mgy = n, (1.41)

then we have .
Jo = I and Eo = E™. (1.42)

To define a generating function, we have

G
H i
()(Ja,ea,l> + ot
_ (m:n) dHy (Ja) (m:n) JdG
—HO(Ja )+ EX Jo J(mn) (Ja_Joc )""y
1 a2I'IO(JOC) (m:n)\2
T ‘Ja:J&’”” (Ja— IS+ 4 hot. (1.43)
HI i-]Oh 9067t5
= X, K, {1 cos | g+ L0y
my 1(m:n) m m
FHD  Ug)cos | Mg+ MM o o] L (1.44)
1(mj:n) m m
Letting
aHO(JOC) (m:n) JdG
Yy — 2= 1.
B Ja—=Jo ) B (1.45)
the generating function can be defined as
m:n Qt m:n
G = —0ut(Jo — IS 5:—“”“27")(1&—1& 0. (1.46)
Furthermore, we have a new coordinate (P, Qg )
_ G 1 min 1
Pa==73o= — (U —J"Y and 8y = Wt = 370 = (Pt Q). (147)

If po, =0, we have Jy = Jé‘min)_ The variable p, gives the difference between the

instant/y, and the resonance Jé,m:"), which defines the gap of the resonant se-paratrix
layer. Because the natural frequency g, is a function of energy E, or the action
variable Jy, the relation between the resonance frequency and energy is illustrated
in Fig. 1.8 from the resonance relation in Eq. (1.41). The resonant frequency distri-
butions along the conservative energy are different for four resonant layers. Further,
their resonant structures are distinguishing from each other. The specific (m:n)-

resonant frequency and natural frequency are expressed by Q™) ang a)<m "), re-
spectively. The corresponding resonant condition in Eq. (1.41) becomes,

mal™" = pQmn) (1.48)
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To guarantee the resonant layers in a certain gap, consider a neighborhood of a

natural frequency wy close to a)&m:”), ie.,

|0 — w,(;’“">| = |0y — L qimn)| < ¢ and
m

. (1.49)
T(ES™) = — o T(Ea) = o,
Wy Wo,

where € << 1 and T (E) is the nonlinear period. From the foregoing condition, with
Eqgs.(1.43) and (1.44), we obtain

G (m:n) 132H0(Ja)

H(Jy,00,t)+— ~E 2p2
(OCa (o 2] )+ 8t o 2 aJé mp

o

Jazjr(;n:rl)
- mn) - m nimy—m _
+ Zanl {Hl((rrzln)(‘]é )7pa)cos {;lfpa + %Qtﬁ' llfém)J

+HD (0 5 cos {% 0o + WQI n w&*,;)J } (1.50)

1(m;:n)

Rescaling gives the following variables as

_ oG d’Hy(Jo)

H(Ja,ea,t) = H(Ja,ea,t) + W _Ea,B = Tza ‘Ja:J((xm:”)
mBﬁ(X = Pa,H(Pa,(Pa,[) = BI__I(JOH 9057[)791:2"(2 (]5])
Ut =BH{) (8™ pa), UL =BH ) (8™ pa).

The new Hamiltonian becomes

(my 1)
(m:n)

Q(m:n)

(m, :n,)

0 B Ec E(m:n) E

s

Fig. 1.8 The neighborhood of the (m : n)-resonant frequency for the inside separatrix.
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1 - _
H(pa, @ot) ~ =pg+ U]((m);,,) cos(Qq + Wt(xn))

2
+US ), €0S(a + 219 + Yla)
) m ny(m; —m) -)
—1-2”] Zml {U](m]:nl)cos {;(pa—l-—m Qt+WO‘"1J
+U$meﬂﬁﬁh+ﬂ@£29m+wﬁwy (1.52)
. m m

Because the primary resonance is relatively isolated, herein the other resonance
terms in Eq. (1.52) is ignored except for the (m : n)-resonance, the approximate
Hamiltonian is expressed by

H(pav(p(l?t)
1 _
~ Ep%‘—i—U( )

1(m:n)

cos(Qq + l{l&?) + Ul(an) cos( Qg + Q1 + l[/é;;)). (1.53)

It is assumed that the two parameters U f() and U are independent of py, and

m:n) 1 (m:n)

the corresponding dynamical system is

Po = Pa,
Pa = —U\ ) sin(9a + Vi) — U\ sin(9 +Qut+ Yiar)). (154)

(m:n)
This equation represents a kind of parametrically excited pendulum. The dynam-
ics in the neighborhood of the(m : n)-resonant separatrix can be investigated through
Eq. (1.54). The resonance effects of Eq. (1.52) give the sub-resonance for the(m : n)-

resonance. Without the perturbation of U l((tn):n)’ the separatrix of such a parametric
pendulum can be illustrated in Fig.1.9(a). The red and yellow circles are the center
and hyperbolic points of the unperturbed pendulum in Eq.(1.54), respectively. The
two thin dash curves are the inner and outer boundaries of the resonant separatrix
layer. BecauseUl((;z:n)is relative to external excitation and energy orbit, the reso-
nant separatrix will be changed with frequency and amplitude. The sub-resonance
can be obtained from the perturbed system in Eq. (1.53). On the other hand, from
the differential equation, the self-similar structure may not exist. The sub-resonant
structure is strongly dependent on the energy analysis of Eq. (1.54). Based on a
certain sub-resonance in the(m : n)-resonant separatrix layer, the sub-sub-resonance
can be obtained by repeating the same procedure to obtain a new equation similar
to Eq.(1.54). Such a sub-resonant structure is sketched in Fig.1.9(b). This renormal-
ization procedure cannot lead to a self-similar sub-resonance structure. Indeed, the
sub-resonant structure in the resonant layer is relative to the corresponding parent-
resonance separatrix of Eq.(1.54), but such a sub-resonant structure cannot be gen-
erated by simply copying from its parent primary-resonance. From the foregoing
discussion, the dynamics of the parametric pendulum is a key to understand the
mechanism of stochasticity in a neighborhood of the(m : n)-resonant separatrix.
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L/ |
Resonant orbit
X

®)

Fig. 1.9 Resonant layer in nonlinear Hamiltonian systems with separatrix: (a) appearance and
(b) disappearance. The solid and hollow circles represent the center and hyperbolic points. The
irregular small curcles are the sub-resonances in the neighborhood of the primary resoance (color
plot in the book end).

1.3.2 Approximate criterions

To develop the criterions for appearance, growth and destruction of primary reso-
nance layers, consider an (m; : ny)-primary resonance closest to the (m : n)-resonant
separatrix. In the Chirikov overlap criterion and renormalization technique, from Eq.
(1.52), the following new energy form is considered.

1 - -
H(pOH §0a7f> ~ Ep(zx + Ul((m)n) COS((plX + W((Xrl))

+U1(_) ) C0s %(pa_‘_—n](m’]n—m)

(m1:n1

Qr+yl,)|. (155)

As in Chirikov (1979) and Reichl (2002), the corresponding Chirikov resonance
overlap criterion becomes
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() - _
\/U1<m:n>+\/U1<mlznl>—1~ (1.56)

From renormalization, the criterion becomes

) R
\/U1<m:n> T \/Uum]:nl) ~0.7. (1.57)

From author’s points of view, once the (m : n)-resonant separatrix is formed, with
increasing excitation strength, the sub-resonance in its neighborhood will be devel-
oped first from Eq. (1.54). Of course, from Eq. (1.52), the other primary resonance
may have a certain effect as external excitations. Until such a resonant layer ap-
proaches an unperturbed orbit from which the (m; : ny)-primary resonance can be
formed, the (m : n)-resonant layer almost cannot be destroyed, and the effects of the
(my : ny)-primary resonance to the (m : n)-resonant layer are very small compared

to the Ul((tn):n)
(my : ny)-primary resonance will not be strongly involved in the (m : n)-resonant
layer. Therefore, it is very doubtable that the criterions in Egs. (1.56) and (1.57),
given by the Chirikov overlap criterion and the renormalization technique, can pro-
vide a reasonable prediction of the global stochasticity of the resonant layer. In
addition, it is not clear that the two existing criteria can be used for the appearance

or disappearance of the resonant layer.

-term. In other words, before such a resonant layer is destroyed, the

A. Onset conditions

To discuss the appearance, growth and destruction of the (m : n)-resonant layer,
The geometrical intuitions of both just after onset and just before destruction of the
resonant layer are sketched. Two kinds of resonant layers are sketched in Figs.1.8
and 1.9. The (m : n)-resonant layer is formed in the neighborhood of its primary
resonant separatrix. With increasing excitation strength, the width of the resonant
layer will increase.

For an approximate estimate of the resonant layer width, the theorem given in
Luo (2008) is adopted. In other words, if the farthest energy boundary of the pri-
mary (m : n)-resonant layer is the energy of the (my : ny)-primary resonant orbit,
the primary (m : n)-resonant layer will be destroyed. However, the onset of the pri-
mary resonant layer will be estimated through the standard mapping technique. To
understand the formation mechanism of the primary resonant layer, the onset of the
primary (m : n)-resonant layer will be discussed first as follows.

The energy increment along the (m : n)-resonant orbit of the perturbed conserva-
tive system is approximated by

Ta(ED) i dH (x,y,t To(Ei)+H;
AHy = / dHx1) 4, _ / {Ho, Hi }pousion d1
ti JIi

dt

To(Ej)+t;
= /[ (figz— frg1)dt = Upf (@), (1.58)
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where f; is the initial time and f (¢;) is a bounded and periodic function. Without
loss of generality, in Eq. (1.58), consider the following form,

AH() = U() sin O;, (1 59)

in which Uy is a system parameter function excluding the initial phase angle ¢; =
Qt;. For a perturbed orbit in the neighborhood of the prescribed resonant orbit, the
change of phase angle over one period is

AQ = @11 — @i = QT (Eiy1) = Vo(Eiv1), (1.60)

where Vj is a function associated with energy E;. To calculate this new energy it-
eratively, we introduce the following notation: E;{; = w;y; at the (i+ 1)th period
and the corresponding phase angle is @;;1. Equations (1.59) and (1.60) can now be
written as,

wiy1 = w; +Upsin@; and @1 = @; +Vo(wiy1). (1.61)

The resonant separatrix layer can be investigated by iteration of the mapping in
Eq. (1.61). Although this mapping is not based on the accurate energy increment, it
is enough good as an approximate, analytical expression because the exact compu-
tation of the energy increment only can be done numerically. In the neighborhood of
the resonant separatrix layer, Equation (1.61) can be linearized about a fixed point
and the standard mapping can be obtained. Considering a period-1 of the iterative
map for a specific resonance of (m : n), its fixed point can be easily determined by
Wir1 =w; = wp and @;11 = @; + 2mn/n = @y + 2mn/n. This implies,

2r
Upsingy = 0,Vp (wo) = Tm (1.62)
Defining a new dimensionless energy
IVo(Wit1)
I =———"— j — 1.63
1 awl+1 (Wl WO)? ( )

Wit1=Wo

and linearization of Eq. (1.60) about the fixed point yields
liy1 =L+ Esing; and Qi1 = @; + 111, (1.64)

where & = UpdVy/0Wiy1|w;,1=w,- From Eq. (1.64), the mechanism involved in
the transition to the global stochasticity in a nonlinear Hamiltonian system is
very clear. The coefficient = is the only control parameter for the characteriza-
tion of the KAM tori. For the standard map, a critical value of & is attained when
E=E*=0.9716354---. At this value, the last remaining KAM torus is broken.
When this happens, we have

A%
UO(Q—W() =

(1]

*. (1.65)
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The transition from the local stochasticity to global stochasticity implies chaos
appears in such a standard mapping. This appearance condition is as a condition
for the appearance of resonant layers in the neighborhood of the(m : n)-resonant
separatrix. For a generalized case in Eq. (1.61), it can be discussed in a similar
fashion. The corresponding criteria can be developed for the global stochasticity of
motion in the primary resonant layer.

B. Vanishing conditions

Once this resonant separatrix layer is formed, with increasing the excitation, the
other sub-resonant separatrix layers will merge in the resonant layer until they come
into contact the closest resonant orbit. When this case occurs, the resonant layer
will be destroyed, and a new stochastic motion near that resonant orbit will be in-
volved in, and suddenly, the width of the resonant layer will become large. The two
primary resonant layers will be overlapped each other. Based on this reason, the
Chirikov resonant overlap criterion and the renormalized criterion may be used as a
condition for the destruction of a certain, primary resonant layer. Such a mechanism
is qualitatively sketched in Fig. 1.9. Again it is postulated that when the resonant
layer is destroyed, the energy increment in Eq.(1.28) is given by the energy differ-
ence between the two closest resonant orbits, one of which is associated with the
destroyed resonant layer. From Luo (2008), we have

min (|E£{”2i"2) — EJ"|, |ESgmm) — Eg{":">|> = |AH™" | ~ Up|f(@p)|.  (1.66)

Equation (1.66) constitutes the critical condition for the disappearance of the (m :
n)-resonant separatrix layer. From the foregoing equation, the excitation strength for
disappearance of the resonant layer can be computed. To determine the excitation
strength for appearance of the resonant layer, equation (1.65) will be used. For a
better prediction of resonant layers, the effects of the secondary resonances should
be considered in the vicinity of the primary resonant layer. Because the energy incre-
ment is computed by an approximate expression, with increasing excitation strength,
such a prediction is not accurate. To verify the valid of the approximate prediction,
the numerical prediction should be completed through the energy increment for non-
linear Hamiltonian systems.

C. Energy increment spectrum

The exact energy increment can be computed numerically. Luo et al. (1999) devel-
oped the energy spectrum approach, which was used for the numerical prediction of
the onset of resonance in the stochastic layer. In the energy spectrum, the maximum
and minimum conservative energies are computed through the Poincaré mapping
section. As discussed in Section 1.2.2C, the energy spectrum for resonant layer can
be determined by the energy increment spectrum. Using the Poincaré map section
in Eq. (1.29), the Poincaré map is defined by P : ¥ — X. Such a technique com-
putes the maximum and minimum energies of the Poincaré mapping points as in
Eq. (1.31). The unperturbed Hamiltonian energy for each Poincaré mapping point
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of Eq. (1.29) is
H(gN) :Ho(XN,l-l) EH()(XN,_YN,IJ-)- (1.67)

However, in computation of conservative energy for a specified resonant layer,
the energy changes in energy spectrums cannot be observed clearly. To observe
the energy changes caused by the sub-resonance for the specified resonant layer, the
minimum and maximum energy increments with respect to the unperturbed resonant
orbit are introduced herein. On the other hand, the initial condition is chosen from
the specific resonant orbit. The initial energy is Ho(xo,p) = ES™", so the energy
increment (or the first integral quantity increment) should be computed by

L(to,kT) = AHy (19, kT ) = H(()N) (xn, 1) — Ho(xo, 1),

that is,

Ay = max {H(()N) - Eg;":”)} and Afimin = min {H(EN) - E&’":”)} . (168)

For the appearance and disappearance of the resonant layer for a specific reson-
ance, the maximum or minimum energy increment will have a big jump between
the two closest resonant separatrices. From the minimum and maximum energy in-
crement spectra, The width of a resonant separatrix layer is computed like the one
of a stochastic Tayer in Luo et al. (1999), i.e.,

w= min [[X(ET™, 1) — x(EM™ ][ = [[xm~ — xmm]]] (1.69)

1€[0,)
where || - || is a norm and the minimum and maximum energies are computed by
EN™ = AEjpax +E§Cm:”>,Egﬂﬂ = AEnin fEéCmm. Two points xp** and xg‘i“ on the

normal vector £ (xﬁj,’":”)) =(—f (xﬁ;":”)), il (xﬁj,’":”)))T of the tangential vector of un-
perturbed resonant orbit at point szm:n) are the closest between the maximum and
minimum energy orbits X(Eg*,¢) and x(Eg"™,¢), which can be obtained from Eq.
(1.3T) with EJ™ and E™. The detailed discussion on the energy increment spec-
trum can be referred to Luo (2002).

1.4 A periodically forced Duffing oscillator

In this section, the stochastic resonant layers in a periodically forced Duffing oscil-
lator will be presented as an example to show how to apply the theory of stochastic
and resonant layers, presented in the previous sections.
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1.4.1 Approximate predictions

Consider a periodically forced Duffing oscillator with twin-well potentials
% — ogx+ opx® = Qgcos (1.70)

where ¢ > 0 and o > 0 are system parameters, Qq and € are the excitation strength
and frequency, respectively. The total energy for Eq. (1.70) is

H(x,y) = Ho(x,y) + H1(x,y), (1.71)

and the time-independent Hy (unperturbed) and time-dependent H; (perturbation)
in the Hamiltonian of Eq. (1.71) are

Hy = %xz — %Otlxz + %azx“, Hy = —%szocoth. (1.72)

For the unperturbed system of Eq. (1.69), there is a generic separatrix (homo-
clinic orbit) pertaining to the saddle point (0,0) for Hy = Ey = 0. For the given
energies, a phase portrait for the unperturbed Duffing with twin-well potentials is il-
Tustrated in Fig. 1.10. In the potential well, the orbit is termed the small motion orbit
(or s-orbit), and the orbit outside the potential wells is termed the Targe motion orbit
(or [-orbit), and the separatrix between the two orbits is termed the homoclinic orbit
as well. The chaos in vicinity of the homocilinic separatrix and resonant separatrices

10 - h

Velocity, y
o
o
\

l-orbit

-20 | | |
-2.0 -1.0 0.0 1.0 20

Displacement, x

Fig. 1.10 Phase portrait for an unperturbed Duffing with twin-potential wells. In the potential
wells, the orbit is termed the small motion orbit (or s-orbit) and the orbit outside the potential
wells is termed the large motion orbit (or /-orbit) and the separatrix between the two orbits is the
homoclinic orbit.
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inside and outside the homoclinic separetix will be presented, which will be called
the stochastic and resonant layers of the periodically forced Duffing oscillator.

A. Resonant layers inside separatrix

For a given energy E; satisfying Hy = Es < Ey in the two potential wells, the solution
of the small motion orbit is

K (ks o5t
b/

10 = +eydn NA

' K-(k ) ot K (ks) st (.73
W =30 = [ Z2ksn [75' - ,ks:| cn [75' - ,ks:| :
2 T T

where cn, sn and dn are the Jacobi-elliptic functions, K (k) the complete elliptic
integral of the first kind, and k; the modulus of the Jacobi-elliptic function. The
modulus kg, the response amplitude e; and the natural frequency @; are:

2(02 + dopEy)! 2 2 N
ks = (alt WE) = e, = 2T s
o + (a? +4mEy)!/? (2—K), V2K (k)

Once an external force exerts to the unperturbed Duffing oscillator, the total energy
H (x,y) changes around the initially given energy H = Hy = E;. For a small external
force, an approximate estimate of the energy is given by

H(x,y) ~ Ho(x,y°) + H; (x°,y°), (1.75)

and
— ,l 2 ~ 71 0y2
H (x,y) = 5% QpcosQt ~ 2(x )*Qocos Q. (1.76)

Substitution of Eq. (1.73) into Eq. (1.76), and use of Fourier series expansion lead
to

ey - nK'
H (x,y) =~ — ;‘}{QD {coth+ Z sech [mK }
m=1

x [cos(mas — Q)t + cos(mms + Q)t]}. (1.77)

From Eq. (1.77), the resonant condition is

mas = Q. (1.78)

Because all other terms in H; (x,y) will average to zero over one period T =
27/Q except for the term of the (m: 1) primary resonance (i.e., an averaging of
Hamiltonian in Eq. (1.77)), its magnitude H, in the potential well is:

H =~ V200 sec
= 2mm./ 00

(1.79)

mak’ (k")
K(kgml))



30 Albert C.J. Luo

where K'(kgmtl)) = K(ké(mtl)), KD — 31— (k£'11:1))2 and k (,.1)is obtained from
Eq. (1.74) with the resonant condition, i.e.,

L) _ 2 (x12+4(x2E§m:1)

S - )
oy + \/a12+4a2E£m:')

in which Es(mzl) is a (m : 1)resonant energy.

The energy increment AH = H(x,y) — Hy(x°,y0) ~ H; (x%,y9) is caused by exci-
tation, and the averaging of energy increment is computed by AH = H;. The energy
increment in the one of twin wells along the (m : 1) resonant orbit is computed by

(1.80)

Ts+t;
AH; (@) = /t (fig2— fog1)dt

T+ .
= x§°>y§°> QocosQedr = Q0Q§m'l) sin @;, (1.81)

L

where ¢; = Qt; and

fi=y=2xg =qx— X,

(1.82)
f2 = 0,82 =xQpcosQ;
(m:1
0 = [ 2 10 secn | MK ") (183)
s - o (m:1) : .
2 K(ks )
The phase change from Eq. (1.74) is:
2nQ 2Q./2 — k2K (k,
AP (E,) = == = Klks), (1.84)

Wy £\ O

From the energy increment in Eq. (1.81) and phase change, the accurate whisker
map for the (m : 1)-resonant layer of the Duffing oscillator is

ESY B ~ 000" sin g,

m: m: ].85
ame 20y2— ("D PKEY) (5
o Vo '

Therefore, the excitation strength for the onset of the (m : 1)-resonant layer in
the potential wells is approximately estimated by

Qi1 — Qi =

0.9716
Q0™ et Gy’
Os G

(1.86)

whnere
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5/2
_ Qa2 (k)2 _ Cdmye
Gl = — [ ] 2K(k§m'1))f#E(k§m'l>) . (1.87)
(k" /oy 1= (k™2

As in Section 1.3, from Eq.(1.81), the approximate condition for the destruction
of the (m : 1)-resonant layer in the potential wells is

Qo = min— {|E’"1 C gD e E<’"*111>|}. (1.88)

S

Based on this condition, the(m+1: 1) or (m — 1 : 1)-resonant motion will be inter-
acted with the (m : 1)-resonant layer.

B. Resonant layers outside separatrix

For the given energy E; satisfying Hy = E; > Ey, the solution of the large motion
orbit in Luo and Han (1998) is

2K (k) ayt
O =¢cn %,kl ,

2
2K (k) ayt 2K (k) oot
Y ==+ /2T n {7( oL ,kl} dn {7( oL ,k,}
2 Kk T T

The modulus %;, the response amplitude ¢;, the natural frequency w; are

(1.89)

o +\/(X2+4(X2E1 242
k= : o= = 2T (g 90)
2\/0? +4aE, 2k —1) o 2V2kiK (k)

Substitution of Eq.(1.89) into Eq.(1.76) and using Fourier series expansion lead to

Hy (1) ~ ﬂesQo{ Y sech [ 2n—1) 7;1;}

2kK

X [cos[(2n — 1) — Q]t +cos[(2n — 1) o, + Qt]]}. (1.91)

The resonant condition for the corresponding resonant separatrix layer is

Cn—No =0 (1.92)

and the magnitude H, for the (2n— 1 : 1)- resonant layer outside the homoclinic
orbit is

AH ~ H ~ ech |(2n—1)

(2n-Dzyar 2K ()

1

100 (2n—1:1)
V2Q00 nK'(k; )] (1.93)
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where
1) oy + \/0‘124‘40‘2151(2%1:1)
I = —, (1.94)
2\/0512 +4(x2El(2"71'1)
and E,(znfm) is a resonant energy. The energy increment along the (2n—1: 1)
resonant orbit outside the potential well is
T+t
¢;) ~ Yy, “Qpcos(L2)dr = Sln(Pia .
AH} 00y cos(Qr)de = Qo™ (1.95)
Jit
where )
1y 2V27Q K (k™"
Ql(zn ) V271Q0, S (k; ) (1.96)

N ech l(Zn —1)

Similarly, the excitation strength for the onset of the (2n — 1 : 1)-resonant layer
outside the potential well is

2K(kl(2n—1:1)) :

0.9716

Qo ~ Q§2n71:1)G§2n71:1)’

(1.97)

where

2Q [2(k(2n~]:]))2_]]5/2

(2n—1:1) _
Gl - (k (2n—1:1) ) \/—
(2n—1:1)\2
1 1—-2(k 1
k) ((12nfl'l ) BRI (0s)
1= (k™ )2

The approximate destruction condition for the (2n— 1: 1)-resonant separatrix layer
is

. ] : —J: — 1
0o = min — {|El(2n+1 1)_E (2n—1:1) | |E (2n-3 1)_El(2n 1 1)|}. (1.99)
g
C. Stochastic layer

Due to the presence of the two symmetric wells in the unperturbed Eq. (1.70), the
energy increments of the perturbed orbit should be computed through the two in-
ner orbits possessing the same energy in the stochastic Tayer. Therefore, the energy
increment along the inner (m : 1) resonant orbit is computed from Eq. (1.70), i.e.,

. T+
AH* (¢;) 22[ (fig2— fog1)dt
_2V21000 S

sin @;, (1.100)
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where @y = Q1, K' (k™) = K(k!™) and k! = /1 — (k")? are related to the (m: 1)-
resonance, and

fi=yfo=aix—opx';g; = 0,82 = Qgcos (Qx). (1.101)

In a same manner, the energy increment along the ((2n — 1) : 1) resonant orbit is

N 1)+t
AH' (¢;) = /t (f182— fag1)dt

o ImC) K k(anl:l)
%msech (anl)% sing;.  (1.102)
o 2K (k)

where K’(kl(z"*l:l)) = K(k;(znfm)) and k;(znfm) =4/1— (kl(z"fltl))2 are related to
the (2n— 1: 1)-resonance. From Eq. (1.70), the energy increment along the homo-
clinic orbit is

AH"(@;) = lim AH*(¢;) = lim AH'(¢;)

Ts—o0 Tj—o0

230070 (1.103)

G 2]

From Theorem 1.1 and E = 0, the condition for the onset of the (m : 1)resonant-
separatrix web in the inner stochastic layer is

sin @;.

= /tw (fig2— frg1)dt =

AT ()] = |E™ ). (1.104)

Substitution of Eq. (1.100) into Eq. (1.104) yields the excitation strength for the
onset of the (m : 1)resonant-separatrix web in the inner stochastic layer:

|E£m1)|

a3 1.1
70 > cos (1.105)

Qo=

mak' (k"))
K(kEml)) :

If AFS (¢;) is replaced by AH" (@) in Eq.(1.103), the excitation strength is predicted
approximately from

27:9 ] (1.106)

In the vicinity of separatrix, equations (1.105) and (1.106) give very close predic-
tions of the resonance in the stochastic layers.

From Theorem 1.1 and Ey = 0, the condition for the onset of the ((2n—1) : 1)
resonant-separatrix web in the outer stochastic layer is

AR (¢)] = [, (1.107)
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Substitution of Eq. (1.102) into Eq. (1.107) yields the excitation strength for the
onset of the ((2n— 1) : 1) resonant-separatrix web, i.e.,

2n-1:1 2n-1:1
Qo = —|El( ! % cosh nK/(k’( ))]

If AH! (¢;) is replaced by AH"(¢;), the excitation strength is given by

(2n—1:1)
E Q nQ
00=E_—1. /% comh L al]. (1.109)

The predictions of resonance in the stochastic Tayers can be given by the ap-
proximate and accurate standard mapping approaches, which can be referred to Luo
(1995), Luo and Han (1998), and Luo (2008).

1.4.2 Numerical illustrations

From the theoretical conditions, numerical illustrations for chaos in the periodic
forced Duffing oscillator will be given. Energy spectrum method will be employed
for numerical predictions, and analytical and numerical predictions will be given.
Stochastic and resonant layers will be illustrated by Poincaré mapping sections.

A. Stochastic layers

For a better understanding of the above definitions, a resonant-separatrix web of the
5%_order in the outer stochastic layer for o = ap = 1.0, Q = 4.0 and Qy = 0.45
is shown. The layer width, minimum and maximum energy orbits for that resonant
separatrix web are illustrated in Fig. 1.11. For the Duffing oscillator, the Tayer width
is [x™aX — x™in| at y = O which can be determined numerically. Using the above
definition, the maximum and minimum energy spectra are shown in Fig. 1.12 for
Qo =0.2 and oy = ap = 1.0 in Eq. (1.70). The maximum and minimum energy
are computed from 10,000 iterations of Poincaré map for each excitation frequency.
Qa(m1) (or QB2n=1:1)y denotes a maximum value of excitation frequency when the
(m:1)-order inner (or (2n— 1 : 1)-order outer) resonant separatrix disappears in the
stochastic layer. To view the energy jump clearly, four specific areas in the spectra
are zoomed. The energy jumps occur at QB (') =133 QPG —2 73 QG =3 51
for the outer stochastic layer and, at Q*21) = 2.67 and Q*3)) = 3,39 for the in-
ner stochastic lTayer. The specific values are critical excitation frequencies for the
disappearance of the resonance in the stochastic layer. For instance, if an excitation
frequency chosen for Qp = 0.2 is greater than QP(31) = 2.73, then, the resonant-
separatrix of lower than 5™ order in the outer-layer and of lower than 3™ order in the
inner-layer will not appear. For Qg = 0.2, the resonant-separatrix of the first order in
the inner stochastic Iayer cannot be observed because the Hamiltonian arrives at the
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minimum energy Eq = —0.25 (for o = o = 1.0) until this resonant separatrix ap-
pears. Based on the minimum and maximum energies in Fig. 1.12, the width of the
stochastic layer is computed, as shown in Fig. 1.13. The numerical and analytical
predictions of excitation strengths for the inner and outer resonant-separatrices ap-
pearing in the stochastic layer are illustrated in Fig. 1.14(a) and (b), respectively. The
solid curves denote the analytical predictions and the hollow-circle curves represent
the numerical predictions. The two predictions are in a good agreement. However,
in the derivation of analytical conditions, only the primary resonance is used and the
incremental energy is approximately computed by the unperturbed orbits rather than
the perturbed ones. The aforementioned reasons are two major factors to cause the
difference between the analytical and numerical predictions of excitation strength.
For numerical simulations of the resonant-separatrix webs in the stochastic layer,
we use a 2"d-order symplectic scheme (e.g., Feng and Qin, 1991; McLach-lan and
Atela, 1992) with time step At = 105~ 10T, where T = 27 /€, and a precision
of 1076. For a; = oy = 1.0 and Q = 4.0, the resonant-separatrix webs in the stochas-
tic Tayers generated by 20,000 Poincaré mapping points of Eq. (1.70) are illustrated
in Fig.1.15 for Qyp = 0.98 and Qy = 0.2. As discussed in Luo and Han (2001), the
stochastic layer of Duffing oscillator is separated into the inner and outer stochastic
layers by the homoclinic orbit, as shown in Fig.1.15, and the resonant structures of
the inner and outer stochastic layers are very distinguishing owing to the different
resonance. In Fig.1.15(a), the (3:1) and (5:1)-order resonant separatrix webs are in
the outer stochastic layer at Qp = 0.98, and the subresonant separatrix in the vicinity
of the (5:1)-order resonant separatrix is also clearly observed. When the excitation

2.0

1.0

Velocity, y
o
o

-1.0

X | f( Xy ) | Emin Enmx

-2.0
-2.0 -1.0 0.0 1.0 2.0

Displacement, x

Fig. 1.11 A description of layer width, minimum and maximum energy through an outer resonant-
separatrix web of the 5"-order in the stochastic layer for the twin-well Duffing oscillator at Qg =
and Q =4.0.
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Fig. 1.12 Minimum and Maximum energy spectra for the stochastic layer in the twin-well Duffing
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Fig. 1.13 The width of the stochastic layer in the twin-well Duffing oscillator for @y = a; = 1.0
and Qp =0.2.
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Fig. 1.14 Excitation strength for the onset of a specific resonant-separatrix in the stochastic layer
of the twin-well Duffing oscillator: (a) inside separatrix and (b) outside separatrix at o = oy = 1.0.
Solid and dashed curves represent the analytical conditions based on the small (or large) orbit and
the homoclinic orbit, respectively. The circular symbol curves give the numerical prediction of the
resonance from the energy spectrum method.
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Fig. 1.15 Poincaré mapping sections of resonant-separatrix webs in the stochastic layer at Q =4.0.
(a) The outer resonance of the (3:1)- and (5:1)-order for Qp = 0.98 (upper), and (b) the outer
resonance of the (7:1)-order and the inner resonance of the (4:1)-order for Qy = 0.2(lower). The

dashed curve is the homoclinic orbit.



1 Stochastic and Resonant Layers in Nonlinear Hamiltonian Systems 39

strength decreases to Qg = 0.2, the (7:1)-order resonant separatrix appears in the
outer stochastic layer, and the (4:1)-order resonant separatrix in the inner stochastic
layer is observed in Fig. 1.15(b). From the above observations, the appearance of a
new resonant-separatrix in the stochastic Iayer depends on excitation strength, and
the width of the stochastic layer increases with excitation strength.

B. Resonant layers

In the two potential wells, the critical conditions for the onset and disappear-
ance of the resonant layer are different. The onset, developing and destruction
of resonant layers are investigated through the maximum and minimum incre-

mental energy spectrums. For the excitation strength Qp = 0.1, the critical values
Qg?p(Z:l) ~

for the appearance of the (2:1)-resonant layer are quite different (i.e.,

2.600112249 (left) and dep(z U~ 2.641554784 (right)), but for the disappear-
ance of the two (2:1)-resonant layers, the two critical values are very close (i.e.,

Q8 2 550274844 (left) and QY ~ 2547076114 (right)), as shown in
Fig.1.16. However, the resonant layer relative to the large motion is also inves-

tigated through the incremental energy spectrum in Fig.1.17 for Qg = 0.2. The

critical values of excitation frequency are Qapp( Y~ 949933222and QSF“ Y~

2.83580655 for the (3:1)-resonant layer; QP x 4.475239668 and QI ~
3.610528592 for the (5:1)-resonant layer. Through this numerical investigation, the
(1:1)-resonant layer relative to the large motion is very difficult to detect. In sum-
mary, once the resonant layer appears at Q = Q2" the resonant layer grows with
decreasing excitation frequency until destroyed at Q ~ Q% During the growing pe-
riod of the resonant layer, the sub-resonance is developed through the self-similarity
and is embedded in the resonant layer.

The analytical and numerical predictions of the critical conditions for the ap-
pearance and disappearance of resonant layers are also presented in Figs.18 and 19.
The solid and dashed curves represent the analytical predictions of the appearance
and disappearance of resonant layers, respectively. The solid and hollow circular
symbol curves give the numerical predictions of predictions of the appearance and
disappearance of resonant layers, respectively. In Fig.1.18(a), the analytical and nu-
merical predictions of the resonant layer appearance in the left well are in very good
agreement. For weak excitation, the agreement between the two predictions is much
better than for strong excitation. However, for the disappearance conditions, the an-
alytical and numerical estimates do not match very well due to the sub-resonant
self-similarity. With excitation amplitude increase, the curves for numerical predic-
tion are not very smooth since the sub-resonance effects become more important.
In Fig.1.18(b), for relatively week excitations, the two predictions are totally differ-
ent due to the intermittency between two closet resonant layers. Since excitation is
not strong enough to produce the interaction between the two resonant layers. Such
a resonant layer is isolated. With increasing excitation, the two isolated resonant
layers will grow, and finally they merge together. In the right well, higher-order
resonant layers cannot be observed through this incremental energy spectrum ap-
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Fig. 1.16 The maximum and minimum incremental energy spectra relative to the small motion
for the (2:1)-resonant separatrix layer in (a) the left well and (b) the right well (Qy = 0.1). QPP

and QIS are the critical values for the resonant layer appearance and disappearance, respec-

tively. Q,

QI Y x2.547076114 (right).

~ 2.600112249 and QI ~ 2 550274844 (left) Q¥P*V) ~ 2.641554784 and
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Fig. 1.17 The maximum and minimum incremental energy spectra relative to the large motion
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Fig. 1.18 The critical conditions for the appearance and disappearance of (m : 1) resonant layers
relative to the small motion in (a) the left potential well and (b) the right potential well. The solid
and dashed curves represent the analytical predictions of the appearance and disappearance of
resonant layers, respectively. The solid and hollow, circular symbol curves represents the numerical
predictions of predictions of the appearance and disappearance of resonant layers, respectively.
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proach since the stochastic layer appears before the higher-order resonant layers are
formed.

In Fig.1.19, the critical conditions for (2n— 1 : 1) resonant layers relative to the
Iarge motion are shown. No any (1:1)-resonant layer can be detected through this
incremental energy spectrum. For week excitation, the critical conditions for the ap-
pearance and disappearance are plotted in Fig.1.19(a). In Fig.1.19(b), the conditions
for relatively strong excitation are presented. The analytical and numerical predic-
tions provide the similar pattern of the critical conditions. The further analytical
method needs to be developed for a better understanding of the mechanism of the
resonant layers.

From the phase portrait in Fig.1.10, chaotic motions exist in the two wells. To
investigate the dynamics of chaos in resonant layers, the Poincaré mapping sections
for onset and destruction of resonant layers in potential wells are illustrated. For nu-
merical simulations of chaotic motion in the resonant layer, a 2™-order symplectic
scheme (e.g., Feng and Qin, 1991) is used again with time step At = 107 ~ 107 7T,
where T =27/Q, and a precision of 1078, oy = ap = 1.0 is used herein. The (2:1)-
resonant layers in the potential wells are presented in Fig. 1.20 for Qg = 0.1. The
dashed lines depict the homoclinic orbit (i.e., homoclinic) and small motion orbit
in the potential well. The solid and hollow circular symbols represent the center
and hyperbolic points for the resonant layers, respectively. It is obviously observed
that the resonant Iayer is not symmetric in the two-wells. With decreasing the ex-
ternal frequency, such a resonant layer will be developed, and the sub-resonance
will be embedded in the resonant layer. Fig.1.20(a) shows the onset of such two
resonant layers in the potential wells. Since the critical external frequencies for
the onset of resonant layers are quite different in the two wells, the two frequen-
cies are used. In the left well, © = 2.600112249 (QP*! ~ 2.600112249) is used
here and the initial conditions are xg = —0.891618894 and yy = 0.403713106.
In the right well, a different frequency and the corresponding initial conditions

are Q = 2.641554784 < QP (P 2 641554784), xo = 0.665750376
and yp = 0. It is observed that the hyperbolic points of the resonant layers devi-
ate from the unperturbed orbit (i.e., s-orbit). This phenomenon needs to be fur-
ther investigated theoretically. Similarly, with decreasing external frequency, the
(2:1)-resonant layer will grow until it destroys. Consider the external frequency
Q = 2.559774525 > Q& (e, Q™D ~ 2.550274844) with the initial con-
ditions xyp = —0.872307555 and yy = 0.426521382 in the left well, and in the right
well, Q = 2.555042597 > QI (e QI + 2 547076114) plus the initial
conditions xy = 0.588682962 and yy = 0.

In a similar fashion, the (3:1)-resonant layer outside the two potential wells
are illustrated in Fig.1.21. The appearance and disappearance of the (3:1)-resonant
layer are shown through Poincaré mapping sections for Qp = 0.2 with the two

sets of input parameters (Q ~ 2.949933222 ~ QPP 1 — 0.622626565, yo —
1.253204801: appearance) and (Q — 2.839895688 > QG v — 0.603644624,
vo = 1.177284164: disappearance), respectively. dep(3 Y~ 2.949933222 and

QS,I-S<3 U~ 2.83580655. It is observed that the resonant layer starts to be formed
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Fig. 1.19 The critical conditions for the appearance and disappearance of (2n-1:1) resonant layers
relative to the large motion: (a) weak excitation and (b) strong excitation. The solid and dashed
curves represent the analytical predictions of the appearance and disappearance of resonant layers,
respectively. The solid and hollow, circular symbol curves represent the numerical predictions of
predictions of the appearance and disappearance of resonant layers, respectively.
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Fig. 1.20 The (2:1)-resonant layers relative to the small motion orbit (Qg = 0.1): (a) appearance

(left:Q = 2.600112249, xo = —0.891618894, yo — 0.403713106, QP> ~ 2.600112249: right:
Q = 2.641554784, xg = 0.665750376, yo = 0, QEFP(M) ~ 2.641554784), (b) disappearance (left:
Q = 2.559774525, xo = —0.872307555, yo = 0.426521382, Q&) & 2.550274844; right: @ =

2.555042597, xo = 0.588682962, yo = 0, Q3% ~2.547076114). The dashed lines represent the
small motion orbit and homoclinic orbit. The solid and hollow circular symbols depict the center

and hyperbolic points for the resonant layer, respectively. RL: resonant layer. s-orbit: small orbit.

h-orbit: Homoclinic orbit.
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Fig. 1.21 The (3:1)-resonant layer related to the large motion orbit (Qp = 0.2): (a) appearance
(Q =2.949933222, xp = 0.622626565, yo = 1.253204801), (b) disappearance (Q = 2.839895688,
xp = 0.603644624, yy = 1.177284164). The dashed lines represent the large motion orbit and
homoclinic orbit. The solid and hollow circular symbols depict the center and hyperbolic points for
the resonant layer, respectively. Qﬁfpo:l) ~22.949933222 and QSES(“) = 2.83580655. RL: resonant
layer. [-orbit: large orbit. h-orbit: Homoclinic orbit.
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in Fig.1.21(a). The sub-resonance appears on the resonant layer before the resonant
layer is destroyed.

1.5 Discussions

In this chapter, the stochastic and resonant layers in 2-dimensional perturbed non-
linear Hamiltonian systems were presented. This criterion presented in this chapter
is applicable to any periodically forced, 2-dimensional nonlinear Hamiltonian sys-
tem. Since the exact first integral increment (or energy increment) is very difficult
to compute analytically, the approximate expressions of the energy increment is de-
rived for analytical prediction of the stochastic and resonant layers. Based on the
approximate energy increment, several analytical criteria were developed for the
onset of resonance in the stochastic layer. In the energy spectrum method, the mini-
mum and maximum energies are equal to exact computing minimum and maximum
energy increments because the initial energy is given. That is,

(N)

Emax = maxHy ™ (xv, 1) = max {AHo(to, NT) + Ho(xo, )}
= max {AHo(to,kT')} + Ho(xo. 1), (1.110)

Enin = minH" (xy,) = min {AHo (10, NT) + Ho(xo, 1)}

= min{AH, (1, kT) } + Ho(X0, 1) (1.111)
NeN

If Hy(xg,1) = 0, we have

Emax = max {AHy(tp,kT)} and Eyin = min {AHy(t,kT)} . (1.112)
NeN NeN

Based on the maximum and minimum energies, the width of the stochastic Tayer
was computed, which is much better than the estimate of the layer width, given by
(Melnikov, 1963).

As in Luo (2008), the onset of a specified resonance in stochastic layer is ex-
actly predicted through the incremental energy approach if the energy increment is
exactly computed. Therefore, this approach is also applicable for strong excitations
when the energy increments still maintain in good accuracy. The accurate standard
mapping approach gives a very good prediction compared to the numerical predic-
tions for the resonant separatrix with the low order of resonance. The chaotic motion
in the stochastic layer is formed by the primary resonance interaction. The subreso-
nance in the vicinity of the primary resonance is developed through a renormaliza-
tion. Therefore, chaotic motion in the stochastic Tayer is the resonance interaction
structure instead of the Smale’s horseshoe structure. The Smale’s horseshoe struc-
ture is based on the linearization of the hyperbolic point along the separatrix for one
to imagine the topological structure. However, chaotic motion in the stochastic layer
exists in the vicinity of the separatrix rather than the separatrix only. The difference
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between Smale’s horseshoe structure and the resonance interaction structure is sim-
ilar to the one between the resonance and beat phenomena in periodically forced
linear oscillation.
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Chapter 2

A New Approach to the Treatment of Separatrix
Chaos and Its Applications

S.M. Soskin, R. Mannella, O.M. Yevtushenko, I.A. Khovanov, P.V.E. McClintock

Abstract We consider time-periodically perturbed 1D Hamiltonian systems pos-
sessing one or more separatrices. If the perturbation is weak, then the separatrix
chaos is most developed when the perturbation frequency lies in the logarithmically
small or moderate ranges: this corresponds to the involvement of resonance dynami-
cs into the separatrix chaos. We develop a method matching the discrete chaotic dy-
namics of the separatrix map and the continuous regular dynamics of the resonance
Hamiltonian. The method has allowed us to solve the long-standing problem of an
accurate description of the maximum of the separatrix chaotic layer width as a func-
tion of the perturbation frequency. It has also allowed us to predict and describe new
phenomena including, in particular: (i) a drastic facilitation of the onset of global
chaos between neighbouring separatrices, and (ii) a huge increase in the size of the
low-dimensional stochastic web.
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2.1 Introduction

Separatrix chaos is the germ of Hamiltonian chaos (Zaslavsky, 2007). Consider an
integrable Hamiltonian system possessing a saddle, i.e. a hyperbolic point in the
one-dimensional case, or a hyperbolic invariant torus, in higher-dimensional cases.
The stable (incoming) and unstable (outgoing) manifolds of the saddle are called
separatrices (Gelfreich and Lazutkin, 2001): they separate trajectories that have dif-
ferent phase space topologies. If a weak time-periodic perturbation is added, then the
separatrix is destroyed; it is replaced by a separatrix chaotic layer (SCL) (Zaslavsky,
2007; Gelfreich and Lazutkin, 2001; Lichtenberg and Lieberman, 1992; Piftankin
and Treschev, 2007). Even if the unperturbed system does not possess a separatrix,
the resonant part of the perturbation generates a separatrix in the auxiliary resonance
phase space while the non-resonant part of the perturbation destroys this separatrix,
replacing it with a chaotic layer (Zaslavsky, 2007; Gelfreich and Lazutkin, 200T;
Lichtenberg and Lieberman, 1992; Chirikov, 1979). Thus separatrix chaos is of a
fundamental importance for Hamiltonian chaos.

One of the most important characteristics of SCL is its width in energy (or ex-
pressed in related quantities). It can be easily found numerically by integration of
the Hamiltonian equations with a set of initial conditions in the vicinity of the sepa-
ratrix: the space occupied by the chaotic trajectory in the Poincaré section has a
higher dimension than that for a regular trajectory, e.g. in the 3/2D case the regular
trajectories lie on lines i.e. 1D objects while the chaotic trajectory lies within the
SCL i.e. the object outer boundaries of which limit a 2D area.

On the other hand, it is important to be able to describe theoretically both the
outer boundaries of the SCL and its width. There is a long and rich history of such
studies. The results may be classified as follows.

2.1.1 Heuristic results

Consider a 1D Hamiltonian system perturbed by a weak time-periodic perturbation:

H =Ho(p,q) +hV(p,q,t),

V(p,g,t+2n/wp) =V(p,q,t), h<1, 1)

where Hy(p,q) possesses a separatrix and, for the sake of notational compactness,
all relevant parameters of Hy and V, except possibly for @y, are assumed to be ~ 1.

Physicists proposed a number of different heuristic criteria (Zaslavsky and Filo-
nenko, 1968; Chirikov, 1979; Lichtenberg and Lieberman, 1992; Zaslavsky et al.,
1991; Zaslavsky, 2007, 2005) for the SCL width AE in terms of energy E = Hy(p, q)
which gave qualitatively similar results:

AE = AE(wy) ~ @9,
o = hle],
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le] 1 for @f~1,

2.2
|€] o< exp(—awy) < 1 (a~1) for o> 1. 2:2)

The quantity & = hle] is called the separatrix split (Zaslavsky, 2007) (see also Eq.
(2.4) below): it determines the maximum distance between the perturbed incoming
and outgoing separatrices (Zaslavsky and Filonenko, 1968; Chirikov, 1979; Licht-
enberg and Lieberman, 1992; Zaslavsky et al., 1991; Zaslavsky, 2007, 2005; Abdul-
laev, 2006; Gelfreich and Lazutkin, 2001; Piftankin and Treschev, 2007).

It follows from (2.2) that the maximum of AE should lie in the frequency range
@y ~ 1 while the maximum itself should be ~ A:

AEuax = max{AE(ay)} ~ h, o™~ 1. (2.3)
2

2.1.2 Mathematical and accurate physical results

Many papers studied the SCL by mathematical or accurate physical methods.

For the range @y > 1, many works studied the separatrix splitting (see the review
(Gelfreich and Lazutkin, 2001) and references therein) and the SCL width in terms
of normal coordinates (see the review (Piftankin and Treschev, 2007) and refer-
ences therein). Though quantities studied in these works differ from those typically
studied by physicists (Zaslavsky and Filonenko, 1968; Chirikov, 1979; Lichtenberg
and Lieberman, 1992; Zaslavsky et al., 1991; Zaslavsky, 2007, 2005), they implic-
itly confirm the main qualitative conclusion from the heuristic formula (2.2) in the
high frequency range: provided that @y > 1 the SCL width is exponentially small.

There were also several works studying the SCL in the opposite (i.e. adiabatic)
limit @y — O: see e.g. (Neishtadt, 1986; Elskens and Escande, 1991; Neishtadt et al.,
1997; Soskin et al., 2005, 2010a) and references therein. In the context of the SCL
width, it is most important that AE (@y — 0) ~ h for most of the systems (Neishtadt,
1986; Elskens and Escande, 1991; Neishtadt et al., 1997). For a particular class of
systems, namely for ac-driven spatially periodic systems (e.g. the ac-driven pendu-
Tum), the width of the SCL part above the separatrix diverges in the adiabatic Timit
(Soskin et al., 2005, 2010a): the divergence develops for oy < 1/In(1/h).

Finally, there is a qualitative estimation of the SCL width for the range w; ~
1 within the Kolmogorov-Arnold-Moser (KAM) theory (Piftankin and Treschev,
2007). The quantitative estimate within the KAM theory is lacking, apparently being
very difficult for this frequency range (Gelfreich, private communication). It follows
from the results in (Piftankin and Treschev, 2007) that the width in this range is of
the order of the separatrix split, which itself is of the order of A.

Thus it could seem to follow that, for all systems except ac-driven spatially peri-
odic systems, the maximum in the SCL width is ~ 4 and occurs in the range @y ~ 1,
very much in agreement with the heuristic result (2.3). Even for ac-driven spatially
periodic systems, this conclusion could seem to apply to the width of the SCL part
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below the separatrix over the whole frequency range, and to the width of the SCL

part above the separatrix for wy ~ 1/1n(1/h).

2.1.3 Numerical evidence for high peaks in AE(wy) and their
rough estimations

The above conclusion disagrees with several numerical studies carried out during
the last decade (see e.g. (Soskin et al., 2005, 2010a; Shevchenko, 1998; Luo et
al., 1999; Soskin et al., 2001; Luo, 2004; Vecheslavov, 2004; Shevchenko, 2008))
which have revealed the existence of sharp peaks in AE(wy) in the frequency range

1/1n(1/h) ~ 0f < 1 the heights of which greatly exceed & (see also Figs. 2.2, 2.3,
2.5, 2.6 below). Thus, the peaks represent the general dominant feature of the func-
tion AE(wy). They were related by the authors of (Shevchenko, 1998; Luo et al.,

; Soskin et al., ; Luo, ; Vecheslavov, ; Shevchenko, to the
absorption of nonlinear resonances by the SCL. For some partial case, rough heuris-
tic estimates for the position and magnitude of the peaks were made in (Shevchenko,
1998, 2008).

2.1.4 Accurate description of the peaks and of the related
phenomena

Until recently, accurate analytic estimates for the peaks were lacking. It is explicitly
stated in (Luo, 2004) that the search for the mechanism through which resonances
are involved in separatrix chaos, and for an accurate analytic description of the peaks
in the SCL width as function of the perturbation frequency, are being among the
most important and challenging tasks in the study of separatrix chaos. The first step
towards accomplishing them was taken through the proposal (Soskin et al., 2008a,b)
of a new approach to the theoretical treatment of the separatrix chaos in the relevant
frequency range. It was developed and applied to the onset of global chaos between
two close separatrices. The application of the approach (Soskin et al., 2008a,b) to
the commoner single-separatrix case was also discussed. The approach has been
further developed (Soskin and Mannella, 2009a,b), including an explicit theory for
the single-separatrix case (Soskin and Mannella, 2009b).

The present paper reviews the new approach (Soskin et al., 2008a,b; Soskin and
Mannella, 2009a,b) and its applications to the single-separatrix (Soskin and Man-
nella, 2009b) and double-separatrix (Soskin et al., 2008a,b) cases. We also briefly re-
view application to the enlargement of the low-dimensional stochastic web (Soskin
et al., 2010a,b) and discuss other promising applications.
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Though the form of our treatment differs from typical forms of mathematical
theorems in this subject (cf. (Gelfreich and Lazutkin, 2001; Piftankin and Treschev,
2007)), it yields the exact expressions for the leading term in the relevant asymptotic
expansions (the parameter of smallness is o = 1/In(1/h)) and, in some case, even
for the next-order term. Our theory is in excellent agreement with results obtained
by numerical integration of the equations of motion.

Sect. 2.2 describes the basic ideas underlying the approach. Sect. 2.3 is devoted
to the leading-order asymptotic description of the single-separatrix chaotic layers.
Sect. 2.4 presents an asymptotic description of the onset of global chaos in between
two close separatrices. Sect. 2.5 describes the increase in sizes of a stochastic web.
Conclusions are drawn in Sect. 2.6. Sect. 2.7 presents the Appendix, which explic-
itly matches the separatrix map and the resonance Hamiltonian descriptions for the
double-separatrix case.

2.2 Basic ideas of the approach

The new approach (Soskin et al., 2008a,b; Soskin and Mannella, 2009a,b) may be
formulated briefly as a matching between the discrete chaotic dynamics of the sep-
aratrix map in the immediate vicinity of the separatrix and the continuous regular
dynamics of the resonance Hamiltonian beyond that region. The present section de-
scribes the general features of the approach in more detail.

Motion near the separatrix may be approximated by the separatrix map (SM)
(Zaslavsky and Filonenko, 1968; Chirikov, 1979; Lichtenberg and Lieberman,
1992; Zaslavsky et al., 1991; Zaslavsky, 2007, 2005; Abdullaev, 2006; Piftankin
and Treschev, '7; Shevchenko, ; Soskin et a a,b; Rom-Kedar,
1990). This was introduced in (Zaslavsky and Filonenko, 1968) and its various
modifications were subsequently used in many studies. It is sometimes known as
the whisker map. It was re-derived rigorously in (Rom-Kedar, 1990) as the leading-
order approximation of motion near the separatrix in the asymptotic limit z — 0,
and an estimate of the error was also carried out in (Rom-Kedar, 1990) (see also the
review (Piftankin and Treschev, 2007) and references therein).

The main ideas that allow one to introduce the SM (Zaslavsky and Filonenko,
1968; Chirikov, 1979; Lichtenberg and Lieberman, 1992; Zaslavsky et al., 1991;
Zaslavsky, 2007, 2005; Abdullaev, 2006; Piftankin and Treschev, 2007; Soskin et
al., 2008a,b; Rom-Kedar, 1990) are as follows. For the sake of simplicity, let us
consider a perturbation V that does not depend on the momentum: V = V(q,r1).
A system with energy close to the separatrix value spends most of its time in the
vicinity of the saddle(s), where the velocity ¢ is exponentially small. Differentiati-
ng E = Hy(p,q) with respect to time and allowing for the equations of motion of
the system (1), we can show that dE /df = dV /dqq =< ¢. Thus, the perturbation can
significantly change the energy only when the velocity is not small i.e. during the
relatively short intervals while the system is away from the saddle(s): these intervals
correspond to pulses of velocity as a function of time (cf. Fig. 2.20 in the Appendix

(X}
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below). Consequently, it is possible to approximate the continuous Hamiltonian dy-
namics by a discrete dynamics which maps the energy E, the perturbation angle
¢ = wyt, and the velocity sign ¢ = sgn(4), from pulse to pulse.

The actual form of the SM may vary, depending on the system under study, but
its features relevant in the present context are similar for all systems. For the sake of
clarity, consider the explicit case when the separatrix of Hy(p,q) possesses a single
saddle and two symmetric loops while V = gcos(@yt). Then the SM reads (Soskin
et al., 2008a) (cf. Appendix):

Ei—H = E;+ o;he sin((pi),
(3 —sgn(Eip1 — Ey))

Gir1 = Qi+

2(!)(E,‘+1) ’
Cit1 = 0;sgn(Es — Eiy 1), loi| =1, 2.4)

oH, “~ OHy| | '
€ =¢€(wy) =sgn ( 70 > / dr =2 sin(wyt),

o |io) S I |,

JdHy
E; = Ho(p,q)|,—n - 0; = Ort;, i =sgn| == > ,
P,

where Ej is the separatrix energy, ®(E) is the frequency of oscillation with energy
E in the unperturbed case (i.e. for & = 0), ¢; is the instant corresponding to the i-th
turning point in the trajectory ¢(r) (cf. Fig. 2.20 in the Appendix below), and A is
an arbitrary value from the range of time intervals which greatly exceed the chara-
cteristic duration of the velocity pulse while being much smaller than the interval
between the subsequent pulses (Zaslavsky and Filonenko, 1968; Chirikov, 1979;
Lichtenberg and Lieberman, 1992; Zaslavsky et al., 1991; Zaslavsky, 2007, 2005;
Abdullaev, 2006; Piftankin and Treschev, 2007; Rom-Kedar, 1990). Consider the
two most general ideas of our approach.

1. If a trajectory of the SM includes a state with E = E, and an arbitrary ¢ and
o, then this trajectory is chaotic. Indeed, the angle ¢ of such a state is not correlated
with the angle of the state at the previous step of the SM, due to the divergence of
o~ '(E — Ey). Therefore, the angle at the previous step may deviate from a multiple
of 27 by an arbitrary value. Hence the energy of the state at the previous step may
deviate from E; by an arbitrary value within the interval [—A[€], h[€[]. The velocity
sign o is not correlated with that at the previous step either!. Given that a regular
trajectory of the SM cannot include a step where all three variables change random-
like, we conclude that such a trajectory must be chaotic.

Though the above arguments may appear to be obvious, they cannot be conside-
red a mathematically rigorous proof, so that the statement about the chaotic nature
of the SM trajectory which includes any state with £ = E; should be considered as

I Formally, sgn(E — E;) is not defined for E = E; but, if to shift £ from E; for an infinitesemal
value, sgn(E — Ey) acquires a value equal to either +1 or —1, depending on the sign of the shift.
Given that o; is proportional to sgn(Es — E; 1) while the latter is random-like (as it has been
shown above), 0; is not correlated with o; if E;, | = E; +0.
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a conjecture supported by the above arguments and by numerical iteration of the
SM. Possibly, a mathematically rigorous proof should involve an analysis of the
Lyapunov exponents for the SM (cf. Lichtenberg and Lieberman, 1992) but this
appears to be a technically difficult problem. We emphasize however that a rigorous
proof of the conjecture is not crucial for the validity of the main results of the present
paper, namely for the leading terms in the asymptotic expressions describing (i) the
peaks of the SCL width as a function of the perturbation frequency in the single-
separatrix case, and (ii) the related quantities for the double-separatrix case. It will
become obvious from the next item that, to derive the leading term, it is sufficient to
know that the chaotic trajectory does visit areas of the phase space where the energy
deviates from the separatrix by values of the order of the separatrix split § = hle],
which is a widely accepted fact (Zaslavsky and Filonenko, 1968; Chirikov, 1979;
Lichtenberg and Lieberman, 1992; Zaslavsky et al., 1991; Zaslavsky, 2007, 2005;
Abdullaev, 2006; Gelfreich and Lazutkin, 2001; Piftankin and Treschev, 2007).

2. Tt is well known (Zaslavsky and Filonenko, 1968; Chirikov, 1979; Lichtenberg
and Lieberman, 1992; Zaslavsky et al., 1991; Zaslavsky, 2007, 2005; Abdullaev,
2006; Gelfreich and Lazutkin, 2001; Piftankin and Treschev, 2007; Shevchenko,
1998, 2008; Soskin et al., 2008a,b), that, at the leading-order approximation, the
frequency of eigenoscillation as function of the energy near the separatrix is propor-
tional to the reciprocal of the logarithmic factor

bray 3 —sgn(E —E;
o) = — Ty b=,
In <7> 2.5)
|E — E;|

|[E—E| < AH = E, — Ey,

where Ej; is the energy of the stable states.

Given that the argument of the logarithm is large in the relevant range of E,
the function @(E) is nearly constant for a substantial variation of the argument.
Therefore, as the SM maps the state (Ey = E, ¢, 0p) onto the state with E = E| =
Es + ophesin(@y), the value of @(E) for the given sgn(ocpesin(¢y)) is nearly the
same for most of the angles ¢y (except in the vicinity of multiples of ),

(2.6)
ot = W(E;+h), sgn(op€ sin(¢)) = £1.

Moreover, if the deviation of the SM trajectory from the separatrix increases fur-

ther, ®(E) remains close to a)r(i> provided the deviation is not too large, namely if

In(|E — E{|/h) < In(AH /h). If @ S Y, then the evolution of the SM (4) may
be regular-like for a Tong time until the energy returns to the close vicinity of the
separatrix, where the trajectory becomes chaotic. Such behavior is especially pro-
nounced if the perturbation frequency is close to a),(+) or a)(f) or to one of their
multiples of relatively low order: the resonance between the perturbation and the

eigenoscillation gives rise to an accumulation of energy changes for many steps of
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the SM, which results in a deviation of E from E; that greatly exceeds the separatrix
split A|€|. Consider a state at the boundary of the SCL. The deviation of energy of
such a state from E; depends on its position at the boundary. In turn, the maximum

deviation is a function of @. The latter function possesses the absolute maximum at

@y close to a),(+) or @ typically?, for the upper or lower boundary of the SCL re-

spectively. This corresponds to the absorption of the, respectively upper and lower,
1st-order nonlinear resonance by the SCL.

The second of these intuitive ideas has been explicitly confirmed (Soskin et al.,
2008a) (see Appendix): in the relevant range of energies, the separatrix map has
been shown to reduce to two differential equations which are identical to the equa-
tions of motion of the auxiliary resonance Hamiltonian describing the resonance
dynamics in terms of the conventional canonically conjugate slow variables, action
I and slow angle ¥ = ny — @yt where ¥ is the angle variable (Chirikov, 1979;
Lichtenberg and Lieberman, 1992; Zaslavsky et al., 1991; Zaslavsky, 2007, 2005;
Abdullaev, 2006) (see Eq. (2.16) below) and n is the relevant resonance number i.e.
the integer closest to the ratio a)f/a),(i).

Thus the matching between the discrete chaotic dynamics of the SM and the con-
tinuous regular-like dynamics of the resonance Hamiltonian arises in the following
way (Soskin et al., 2008a). After the chaotic trajectory of the SM visits any state on
the separatrix, the system transits in one step of the SM to a given upper or lower
curve in the / — ¥ plane which has been called (Soskin et al., 2008a) the upper or
lower generalized separatrix split (GSS) curve? respectively:

E=ESy(9) = E,+8|sin(§)], 8 =hel, @7

where § is the conventional separatrix split (Zaslavsky, 2007), € is the amplitude of
the Melnikov-like integral defined in Eq. (2.4) above (cf. (Zaslavsky and Filonenko,
1968; Chirikov, 1979; Lichtenberg and Lieberman, 1992; Zaslavsky et al., 1991; Za-
slavsky, 2007, 2005; Abdullaev, 2006; Gelfreich and Lazutkin, 2001; Piftankin and
Treschev, 2007; Shevchenko, 1998; Vecheslavov, 2004; Shevchenko, 2008; Soskin
et al., 2008a,b)), and the angle ¥ may take any value either from the range [0, 7] or
from the range [7,27]%.

After that, because of the closeness of @y to the n-th harmonic of @(E) in the
relevant range of E>, for a relatively long time the system follows the nonlinear

2 For the SM relating to ac-driven spatially periodic systems, the time during which the SM under-
goes a regular-like evolution above the separatrix diverges in the adiabatic limit @; — 0 (Soskin et
al., 2010a), and the width of the part of the SM layer above the separatrix diverges too. However,
we do not consider this case here since it is irrelevant to the main subject of the present paper i.e.
to the involvement of the resonance dynamics into the separatrix chaotic motion.

3 The GSS curve corresponds to the step of the SM which follows the state with £ = Ej, as de-
scribed above.

4 Of these two intervals, the relevant one is that in which the derivative dE /dt in the nonlinear
resonance equations (see Eq. (2.16) below) is positive or negative, for the case of the upper or
lower GSS curve respectively.

3 Le. E determined by Eq. (2.7) for any { except from the vicinity of multiples of 7. As shown
in (Soskin et al., 2008a), Eq. (2.7) is irrelevant to the boundary of the chaotic layer in the range of
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resonance (NR) dynamics (see Eq. (2.16) below), during the first half of which the
deviation of the energy from the separatrix value grows, greatly exceeding & for
most of the trajectory. As time passes, {/ is moving and, at some point, the growth
of the deviation changes for the decrease. This decrease lasts until the system hits the
GSS curve, after which it returns to the separatrix just for one step of the separatrix
map. At the separatrix, the slow angle ¥ changes random-like, so that a new stage
of evolution similar to the one just described occurs, i.e. the nonlinear resonance
dynamics starting from the GSS curve with a new (random) value of .

Of course, the SM cannot describe the variation of the energy during the velocity
pulses (i.e. in between instants relevant to the SM): in some cases this variation can
be comparable to the change within the SM dynamics. This additional variation will
be taken into account below, where relevant.

One might argue that, even for the instants relevant to the SM, the SM describes
the original Hamiltonian dynamics only approximately (Rom-Kedar, 1990) and may
therefore miss some fine details of the motion: for example, the above picture does
not include small windows of stability on the separatrix itself. However these fine
details are irrelevant in the present context, in particular the relative portion of the
windows of stability on the separatrix apparently vanishes in the asymptotic limit
h— 0.

The boundary of the SM chaotic layer is formed by those parts of the SM chaotic
trajectory which deviate from the separatrix more than others. It follows from the
structure of the chaotic trajectory described above that the upper/lower boundary
of the SM chaotic layer is formed in one of the two following ways (Soskin et al.,
2008a,b): (i) if there exists a self-intersecting resonance trajectory (in other words,
the resonance separatrix) the lower/upper part of which (i.e. the part situated be-
low/above the self-intersection) touches or intersects the upper/lower GSS curve
while the upper/lower part does not, then the upper/lower boundary of the Tayer is
formed by the upper/lower part of this self-intersecting trajectory (Figs. 2.1(a) and
(b)); (ii) otherwise the boundary is formed by the resonance trajectory tangent to
the GSS curve (Fig. 2.1(c)). It is shown below that, in both cases, the variation of
the energy along the resonance trajectory is larger than the separatrix split § by

a logarithmically large factor o< In(1/h). Therefore, over the boundary of the SM
()

chaotic layer the largest deviation of the energy from the separatrix value, AEs,ff ,
may be taken, in the leading-order approximation, to be equal to the Targest variation
of the energy along the resonance trajectory forming the boundary, while the latter
trajectory can be entirely described within the resonance Hamiltonian formalism.
Finally, we mention that, as is obvious from the above description of the bounda-
Ty, AES(,?,:) = AES(,f)(a)f) possesses a local maximum AEr(nj;,)Um at @y for which the
resonance separatrix just touches the corresponding GSS curve (see Fig. 2.1(a)).

W close to multiples of & while the boundary in this range of ¥ still lies in the resonance range of
energies, where 0(E) ~ o).
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2.3 Single-separatrix chaotic layer

It is clear from Sect. 2.2 above that AEl(nj;,)(,m, is equal in leading order to the width
AEng of the nonlinear resonance which touches the separatrix. In Sect. 2.3.1 be-

Es—
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energy £
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Fig. 2.1 Schematic figure illustrating the formation of the peak of the function AE.E,; )(a)j-): (a)
@f = Wmax; (b) O < Omax; (C) @ > Omax. The relevant (lower) GSS curve is shown by the dotted
line. The relevant trajectories of the resonance Hamiltonian are shown by solid lines. The lower
boundary of the layer is marked by a thick solid line: in (a) and (b) the lower boundary is formed
by the lower part of the resonance separatrix while, in (c) it is formed by the resonance trajectory
tangent to the GSS curve. The dashed line marks, for a given @y, the maximal deviation of the
lower boundary from the separatrix energy Ej.
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low, we roughly estimate AEyg in order to classify two different types of systems.
Sects. 2.3.2 and 2.3.3 present the accurate leading-order asymptotic theory for the
two types of systems. The next-order correction is estimated in Sect. 2.3.4, while a
discussion is presented in Sect. 2.3.5.

2.3.1 Rough estimates. Classification of systems

Let us roughly estimate AEyg: it will turn out that it is thus possible to classify all
systems into two different types. With this aim, we expand the perturbation V' into
two Fourier series in ¢ and in y respectively:

V= %ZV(”(E, w)e ot .= %Zv,f” (E)elkv—lom) | cc. 2.8)
! 1Lk

As in standard nonlinear resonance theory (Chirikov, 1979; Lichtenberg and
Lieberman, 1992; Zaslavsky et al., 1991; Zaslavsky, 2007, 2005), we single out
the relevant (for a given peak) numbers K and L for the blind indices k and [ respec-

tively, and denote the absolute value of VISL) as Vp:

Vo(E) = [V (E)). 2.9)

To estimate the width of the resonance roughly, we use the pendulum approxi-
mation of resonance dynamics (Chirikov, 1979; Lichtenberg and Lieberman, 1992;
Zaslavsky et al., 1991; Zaslavsky, 2007, 2005; Abdullaev, 2006):

AEyg ~ \/8hVpoy/|dw/dE|. (2.10)

This approximation assumes constancy of dw/dE in the resonance range of
energies, which is not the case here: in reality, @(E) o 1/In(1/]E — Es]) in the
vicinity of the separatrix (Zaslavsky and Filonenko, 1968; Chirikov, 1979; Lichten-
berg and Lieberman, 1992; Zaslavsky et al., 1991; Zaslavsky, 2007, 2005; Abdul-
laev, 2006; Piftankin and Treschev, 2007; Shevchenko, 1998; Vecheslavov, 2004;
Shevchenko, 2008; Soskin et al., 2008a,b), so that the relevant derivative |[d@/dE| ~
(o),u[))2 /(@] E — Es|) varies strongly within the resonance range. However, for our
rough estimate we may use the maximal value of [E — E], which is approximately
equal to AEng. If wy is of the order of o) ~ o/ In(1/h), then Eq. (2.10) reduces
to the following approximate asymptotic equation for A Eng:

AENRNV()(E:ES:I:AENR)hln(l/h), h— 0. (2.11)

The asymptotic solution of Eq. (2.11) depends on Vy(Es = AEng) as a function
of AEng. In this context, all systems can be divided in two types.
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I. The separatrix of the unperturbed system has two or more saddles while the
relevant Fourier coefficient V(&) = v (L) (E, y) possesses different values on adjacent
saddles. Given that, for E — Ej;, the system stays most of time near one of the sad-
dles, the coefficient V() (E — E, ) as a function of y is nearly a “square wave”:
it oscillates between the values at the different saddles. The relevant K is typically
odd and, therefore, Vo (E — E;) approaches a well defined non-zero value. Thus, the
quantity Vo(E = E; + AEng) in Eq. (2.11) may be approximated by this non-zero
limit, and we conclude therefore that

AEyg < hin(1/h),  h—0. (2.12)

II. Either (i) the separatrix of the unperturbed system has a single saddle, or (i)
it has more than one saddle but the perturbation coefficient V) is identical for all
saddles. Then V(L>(E — Eg, ), as a periodic function of v, significantly differs
from its value at the saddle(s) only during a small part of the period in y: this
part is ~ @(E) /@y ~ 1/In(1/]E; — EJ). Hence, Vo(Es £ AENR) o< 1/In(1/AEng).
Substituting this value in Eq. (2.11), we conclude that

AEyg<h,  h—0. (2.13)

Thus, for systems of type I, the maximum width of the SM chaotic layer is pro-
portional to /4 times a logarithmically large factor < In(1/k) while, for systems of
type 11, it is proportional to A times a numerical factor.

As shown below, the variation of energy in between the instants relevant to the
SM is ~ h, i.e. much less than AEng (2.12) for systems of the type I, and of the
same order as AEng (2.13) for systems of type II. Therefore, one may expect that
the maximum width of the layer for the original Hamiltonian system (2.1), AE(i),

is at least roughly approximated by that for the SM, AES(,f,E >, so that the above clas-
sification of systems is relevant to AE(*) too. This is confirmed both by numerical
integration of the equations of motion of the original Hamiltonian system and by the
accurate theory presented in the next two sub-sections.

2.3.2 Asymptotic theory for systems of type I

For the sake of clarity, we consider a particular example of a type I system; its
generalization is straightforward.

We choose an archetypal example: the ac-driven pendulum (sometimes referred
to as a pendulum subject to a dipole time-periodic perturbation) (Zaslavsky et al.,
1991; Soskin et al., 2005, 2010a):

H = HyThv,

[92 2.14)
Hy = 5 (:()s(q)7 V= —qCOS(a)fl), h<1.
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Fig. 2.2 presents the results of numerical simulations for a few values of & and
several values of @;. Tt shows that: (i) the function AE(")(@;) indeed possesses
sharp peaks whose heights greatly exceed the estimates by the heuristic (Zaslavsky
et al., 1991), adiabatic (Elskens and Escande, 1991) and moderate-frequency (Pif-
tankin and Treschev, 2007) theories (see inset); (ii) as predicted by our rough esti-
mates of Sect. 2.3.1, the 1st peak of AE()(wy) shifts to smaller values of ®; while
its magnitude grows, as h decreases. Below, we develop a leading-order asymptotic
theory, in which the parameter of smallness is 1/1n(1/4), and compare it with re-
sults of the simulations.

Before moving on, we note that the SM (approximated in the relevant case by
nonlinear resonance dynamics) considers states of the system only at discrete in-
stants. Apart from the variation of energy within the SM dynamics, a variation of
energy in the Hamiltonian system also occurs in between the instants relevant to the
SM. Given that @y < 1, this latter variation may be considered in adiabatic approxi-
mation and it is of the order of & (Elskens and Escande, 1991; Shevchenko, 2008). It

200 . i : i T I r I r
150f h=10"° .
N
L - -
% 100
<
50— —
R y
0 1 | . | 1 T 1 I '
0.1 0.2 0.3 0.4 0.5

R

Fig. 2.2 Computer simulations for the ac driven pendulum (2.14) (an archetypal example of type
I): the deviation AE(™) of the lower boundary of the chaotic layer from the separatrix, normalized
by the perturbation amplitude 4, is plotted as a function of the perturbation frequency @y, for
various h. The inset presents the same data but with a logarithmic ordinate and with the estimates
by the heuristic (Zaslavsky et al., 1991), adiabatic (Elskens and Escande, 1991) and moderate-
frequency (Piftankin and Treschev, 2007) theories. The heuristic estimate is shown by the dotted
line: as an example of the heuristic estimate, we use the formula from (Zaslavsky et al., 1991):
AES) /h = 27wp/ cosh(way /2). The adiabatic and moderate-frequency estimates are shown by
the dashed line: the adiabatic estimate for AE(") (@) is equal approximately to 27; the estimate
following from the results of the work (Piftankin and Treschev, 2007) for @y ~ 1 is of the same
order, so that it is schematically represented in the inset in Fig. 2.2 by the same line as for the
adiabatic estimate (dashed line). The inset shows explicitly that the simulation results exceed the
estimates of the former theories by 1 or 2 orders of magnitude, over a wide range of frequencies.
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follows from the above rough estimates, and from the more accurate consideration
below, that the variation of energy within the SM dynamics for systems of type I
is logarithmically larger i.e. larger by the factor In(1/4). The variation of energy in
between the instants relevant to the SM may therefore be neglected to leading-order

for systems of type I: AE(") ~ AES(,; ). For the sake of notational compactness, we
shall henceforth omit the subscript “sm’ in this subsection.

For the system (2.14), the separatrix energy is equal to 1, while the asymptotic
(for E — E;) dependence ®(E) is (Zaslavsky et al., 1991):

T

= In(32/|E;— E|)’ (2.15)
Eg=1, |Es—E| < 1.

o(E)

Let us consider the range of energies below E (the range above E; may be conside-
red in an analogous way) and assume that @y is close to an odd multiple of w7
The nonlinear resonance dynamics of the slow variables in the range of approxi-
mately resonant energies may be described as follows (Soskin et al., 2008a, 2003)
(cf. also (Chirikov, 1979; Lichtenberg and Lieberman, 1992; Zaslavsky et al., 1991;
Zaslavsky, 2007, 2005; Abdullaev, 2006)):

o ALY 4y ALY

dt oy )
1
H(l, )= /( dI (n® — ws) — nhqycos()
JI(Ey)
= n(E —E;) — w¢(I —I(E5)) — nhgycos() ,
E  dE
I1=I1E)= = E = H 5 5
( ) Ernin (E) O(p q)
¥ =ny — ort, (2.16)

v =n+sign(p)o(E) [ %

— 1 yom,
Gmin(E) 2(E - U(q))

1 r2«
gn=qn(E) = o dy q(E,y)cos(ny),
0

Inw— of| < o, n=2j—1, j=1,2.73,...,

where I and y are the canonical variables action and angle respectively (Chirikov,
1979; Lichtenberg and Lieberman, 1992; Zaslavsky et al., 1991; Zaslavsky, 2007,
2005; Abdullaev, 2006); Ey;, is the minimal energy over all ¢,p, E = Hy(p,q);
gmin(E) is the minimum coordinate of the conservative motion with a given value
of energy E; [ is the number of right turning points in the trajectory [¢(7T)] of the
conservative motion with energy E and given initial state (g, po).

The resonance Hamiltonian H (1, ) is obtained in the following way. First, the
original Hamiltonian H is transformed to action-angle variables / — y. Then it is
multiplied by n and the term @[ is extracted (the latter two operations correspond
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to the transformation ¥ — ¥ = ny — @yt). Finally, the result is being averaged over
time i.e. only the resonance term in the double Fourier expansion of the perturbation
is kept (it may be done since the effect of the fast-oscillating terms on the dynamics
of slow variables is small: see the estimate of the corrections in Sect. 2.3.4 below).
Let us derive asymptotic expression for I(E), substituting the asymptotic expres-
sion (2.15) for w(E) into the definition of I(E) (2.16) and carrying out the integra-

tion:
I(E):I(ES)—ES;E (m <E32E>+1>. (2.17)

S
As for the asymptotic value g,(E — Ej), it can be seen that g(E — Es, ), as a

function of y, asymptotically approaches a “square wave”, oscillating between —7
and 7, so that, for sufficiently small j,

. 2
@21 (E = E) = (~1)1H 5=,
q2j =0, (2.18)
T
i=1,2.... .
J=h%5 S 50E)

The next issue is the analysis of the phase space of the resonant Hamiltonian
(2.16). Substituting H (2.16) into the equations of motion (2.16), it can be seen that
their stationary points have the following values of the slow angle

gr=7 9 =0, (2.19)
while the corresponding action is determined by the equation
dgn .
n® — @y F nh i =0, n=2j—1, (2.20)

[yt

where the sign “F’corresponds to {4 (2.19).

The term o 4 in (2.20) may be neglected to leading-order (cf. (Chirikov, 1979;
Lichtenberg and Lieberman, 1992; Zaslavsky et al., 1991; Zaslavsky, 2007, 2005;
Abdullaev, 2006; Soskin et al., 2008a, 2003)), and Eq. (2.20) reduces to the reso-
nance condition

2j—DoEY) = oy, 2.21)

the lowest-order solution of which is

: 7i—1
E,—EY ~32exp <— u) . (2.22)
of

Eqgs. (2.19) and (2.22) together with (2.17) explicitly determine the elliptic and
hyperbolic points of the Hamiltonian (2.16). The hyperbolic point is often referred
to as a “‘saddle” and corresponds to ¥ or ¥_ in (2.19) for even or odd j respectively.
The saddle point generates the resonance separatrix. Using the asymptotic relations
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(2.17) and (2.18), we find that the resonance Hamiltonian (2.16) takes the following
asymptotic value in the saddle:

()
5 E,—E
Huqaie = %wf —2h
r 27—1
~ 2 3exp <—M> —2h. (2.23)
T a)f

The second asymptotic equality in (2.23) takes into account the relation (2.22).

As explained in Sect. 2.2 above, AE H(wf) possesses a local maximum at @y
for which the resonance separatrix is tangent to the lower GSS curve (Fig. 2.1(a)).
For the relevant frequency range @y — 0, the separatrix split (which represents the
maximum deviation of the energy along the GSS curve from Ej) approaches the
following value (Zaslavsky et al., 1991) in the asymptotic limit # — 0

S~2mh, o<l (2.24)

As shown below, the variation of energy along the relevant resonance trajectories
is much larger. Therefore, in the leading-order approximation, the GSS curve may
simply be replaced by the separatrix of the unperturbed system i.e. by the horizontal
line E = E; or, equivalently, I = I(E;). Then the tangency occurs at ¥, shifted from
the saddle by 7, so that the condition of tangency is written as

Flsaddle = I:](I = I(Es)7 1/7 = lI~/saddle + 75) =2h. (2.25)
Substituting here Hy,qq7. (2.23), we finally obtain the following transcendental
equation for @yl
8(2j—1 2j—rm
xexp(x) = % x % (2.26)

wmax

Fig. 2.3(b) demonstrates the excellent agreement between Eq. (2.26) and simula-
tions of the Hamiltonian system over a wide range of A.
In the asymptotic limit 2 — 0, the lowest-order explicit solution of Eq. (2.26) is

) 2j-Nr

%axﬁw,

I
j=1.2,...<In <E> (2.27)

As follows from Eq. (2.26), the value of E; — EX) (2.22) for w; = 0 is

4rch
() -

wmax

E,—EY (0 = o)) = (2.28)

Its leading-order expression is:
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; ; 4h 8(2j—1
E,—EY (07 = oif}) ~ ——1n 2j-1) . h—0. (2.29)
2j—1 h
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Fig. 2.3 An archetypal example of a type I system: the ac-driven pendulum (2.14). Comparison
of theory (solid lines) and simulations (circles) for: (a) the deviation AE(*)((D/) of the lower
boundary of the chaotic layer from the separatrix, normalized by the perturbation amplitude #,
as a function of the perturbation frequency @y, for h = 10~%; the theory is from Eqs. (2.26), (2.31),
(2.32), (2.38), (2.39) and (2.41) (note the discontinuous drop by the factor e from the maximum to
the right wing). (b) The frequency of the 1st maximum in AE~) (@) as a function of /; the theory
is from Eq. (2.26). (c) The 1st maximum in AE (*)(a)f) /h as a function of &; the theory is from
Egs. (2.34) and (2.26).
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If oy < wrﬁQx then, in the chaotic layer, the largest deviation of energy from the
separatrix value corresponds to the minimum energy Er(njl)n on the nonlinear reso-
nance separatrix (Fig. 2.1(a,b)), which occurs at { shifted by 7 from the saddle.
The condition of equality of A at the saddle and at the minimum of the resonance

separatrix is written as

Haaqe = H(I (Er(r{i)n)v Vsaddle +T0). (2.30)

Let us seek its asymptotic solution in the form

E,—EY) = AEY = (14)(Es— EY)) = (1+y)32exp (‘%) :
%
eI 2.31)

Substituting (2.31) and (2.23) into Eq. (2.30), we obtain for y the following tran-
scendental equation:

h
14+y)In(l+y)—y= ———xs :
(I+y)In(1+y)—y 8(2j_1)XfeXp(X/),
. (2.32)
_m(2j-1) ()
Xf= 70)f 5 (l)f S Wmax y> 07

where a)é{g,( is given by Eq. (2.26).
Egs. (2.31) and (2.32) describe the left wing of the j-th peak of AE()(wy). Fig.
2.3(a) demonstrates the good agreement between our analytic theory and simula-

tions for the Hamiltonian system.
It follows from Eq. (2.26) that Eq. (2.32) for oy — wéQx reduces to the relation
In(T+y)=1,1i.e.

1+ (@) =e. (2.33)

It follows from Egs. (2.33), (2.31) and (2.28) that the maximum for a given peak
is:
4me
O
Fig. 2.3(c) shows the excellent agreement of this expression with our simulations
of the Hamiltonian system over a wide range of A.

AEI(TIJZX =E,— E(j) (wr(nla)x) =

min

(2.34)

The leading-order expression for AEﬁ,‘QX is:

i 4eh

which confirms the rough estimate (2.12).

In(8(2j—1)/h),  h—0, (2.35)
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As oy decreases, it follows from Eq. (2.32) that y increases exponentially sharply.
()

In order to understand how AElj decreases upon decreasing @y, it is convenient to
rewrite Eq. (2.31) re-expressing the exponent by means of Eq. (2.32):

drh
wr(In(1+y) —y/(14+y))

It follows from Egs. (2.32) and (2.36) that AE l(j ) decreases power-law-like when @y

is decreased. In particular, AE ,(j ) e 1 / (a)é{gx — ) at the far part of the wing.

AE/U)(“’/') =

(2.36)

As for the right wing of the peak, i.e. for @y > wé{gx, over the chaotic layer, the
largest deviation of energy from the separatrix value corresponds to the minimum
of the resonance trajectory tangent to the GSS curve (Fig. 2.1(c)). The value of { at
the minimum coincides with Wy,q45.. In the leading-order approximation, the GSS
curve may be replaced by the horizontal line I = I(E), so that the tangency occurs

at W = Wyaqqie + 7. Then the energy at the minimum Er(njl)n can be found from the
equation

AI(Ey), Wradare + ) = HIED), Wraaare) 2.37)

Let us seek its asymptotic solution in the form

ES—EU) EAE(j) = 7(E; _Er(j)) ~ 32zexp <_ m(2j— ])>

min " oy (2.38)

0<z<1, z~ 1.
Substituting (2.38) into (2.37), we obtain for z the following transcendental equa-
tion: I
1+In(1 = ——
z(1+1In(1/z)) 8(2j_1)xfe><p(xf>

m(2j—1 i
xfi(cjof ), (!.)f>(!)r(ﬁ]a)x, 0<z<1,

(2.39)

where a)éfa)x is given by Eq. (2.26). Eqgs. (2.38) and (2.39) describe the right wing of
the j-th peak of AE =) (@y). Fig. 2.3(a) demonstrates the good agreement between
our analytic theory and simulations.

It follows from Eq. (2.26) that the solution of Eq. (2.39) for @; — o isz — 1,
so the right wing starts from the value given by Eq. (2.28) (or, approximately, by
Eq. (2.29)). Expressing the exponent in (2.38) from (2.39), we obtain the following
equation

41h
o(1+1n(1/z))’

It follows from Eqgs. (2.39) and (40) that AEfj ) decreases power-law-like for increas-

ing @y. In particular, AEr(") o< 1/(0f — a)rE{gX) in the far part of the wing. Further

analysis of the asymptotic shape of the peak is presented in Sect. 2.3.5 below.

AEY (wf) = (2.40)
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Fig. 2.4 Some characteristic Poincaré sections in the 2x-interval of the energy-angle plane for
the system (2.14) with h = 107% and y equal to: (a) 0.236 (maximum), (b) 0.21 (left wing), (c)
0.25 (right wing). Results of the numerical integration of the equations of motion for the original
Hamiltonian (2.14) are shown by (red) dots. The NR separatrix calculated in the leading-order
approximation (i.e. by the integration of the resonant equations of motion (2.16) in which ®(E),
I(E) and g (E) are approximated by the explicit formulz (2.15), (2.17) and (2.18) respectively) is
drawn by the (black) solid line. The NR trajectory (calculated in the leading-order approximation)
tangent to the line £ = E; is drawn by the (blue) dashed line. The outer boundary (marked by a
thicker line) is approximated by: the lower part of the NR separatrix in cases (a) and (b), and by
the tangent NR trajectory in case (c) The boundary of the island of stability in the cases (a) and
(b) is approximated by the tangent NR trajectory (which coincides in the case (a) with the NR
separatrix).
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Beyond the peaks, the function AE(*>(a)f) is logarithmically small in compari-

son with the maxima of the peaks. The functions AE, G )(a)f) and AEV )(a)f) in the
ranges beyond the peaks are also logarithmically small Hence, nearly any function

of AEY )(a)f) and AE(JJr )(a)f) which is close to AE<J)(a)f) in the vicinity of @
and to AE, Y +1)(a)f) in the vicinity of @y, <J D while being sufficiently small beyond
the peaks may be considered as an approximation of the function AE(~ )(a)f) to

logarithmic accuracy with respect to the maxima of the peaks, AE&QX and AE&{;U,

in the whole range [a)éfgx, a)é{‘;])] One of the easiest options is the following:

AE) (wf) = AEM (0 ,-) for @ < O%h,
AE) (@f) = max{AEY (0;),AET D (0p)}  for o) < o < oY,

ji=12,.K 0 (2.41)

20max
We used this function in Fig. 2.3(a), and the analogous one will also be used in the
other cases.

In fact, the theory may be generalized in such a way that Eq. (2.41) would ap-
proximate AE =) (@¢) well in the ranges far beyond the peaks with logarithmic ac-
curacy, even with respect to AE =) ( a)f) itself rather than to AEr(rQx only (cf. the next
section). However, we do not do this in the present case, being interested primarily
in the leading-order description of the peaks.

Finally, we demonstrate in Fig. 2.4 that the lowest-order theory describes the
boundary of the layers quite well, even in the Poincaré section rather than only in

energy/action.

2.3.3 Asymptotic theory for systems of type Il

We consider two characteristic examples of type II systems, corresponding to the
classification given in Sect. 2.3.1. As an example of a system where the separatrix of
the unperturbed system possesses a single saddle, we consider an ac-driven Duffing
oscillator (Abdullaev, 2006; Gelfreich and Lazutkin, 2001; Piftankin and Trescheyv,
2007; Soskin et al., 2001). As an example of the system where the separatrix pos-
sesses more than one saddle, while the perturbation takes equal values at the saddles,
we consider a pendulum with an oscillating suspension point (Abdullaev, 2006; Gel-
freich and Lazutkin, 2001; Piftankin and Treschev, 2007; Shevchenko, 1998, 2008).
The treatment of these cases is similar in many respects to that presented in Sec.
2.3.2 above. So, we present it in less detail, emphasizing the differences.
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2.3.3.1 AC-driven Duffing oscillator

Consider the following archetypal Hamiltonian (Abdullaev, 2006; Gelfreich and
Lazutkin, 2001, Piftankin and Treschev, 2007; Soskin et al., 2001):

H=Hy+hV,
s 2 4 (2.42)
Ho:p?_%-i-%, V = —gcos(wyt), h< 1.

The asymptotic dependence of @(E) on E for E below the separatrix energy
E; = 0 is the following (Abdullaev, 2006; Dykman et al., 1985)

2r
o)~ {16/ (5~ B)) (2.43)

E;,=0, O0<E,—E<x1.

Correspondingly, the resonance values of energies (determined by the condition
analogous to (2.21)) are

ES—E,(I)zlsexp<—ﬂ>, i=1,23,.. (2.44)
of
The asymptotic dependence of I(E) is
E,—FE 16
I(E) ~I(Es) — — 1 1]). 2.4
@ =16 -2 (0 ) +1) .45)

The nonlinear resonance dynamics is described by the resonance Hamiltonian A
which is identical in form to Eq. (2.16). Obviously, the actual dependences ®(E) and
I(E) are given by Eq. (2.43) and (2.45) respectively. The most important difference
is in g;(E): instead of a non-zero value (see (2.18)), it approaches 0 as E — Ej.
Namely, it is o< @(E) (Abdullaev, 2006; Dykman et al., 1985):

1 T
qj(E) ~ \/za)(E), j=12,..K o(E)’ (2.46)
i.e. g; is much smaller than in systems of type I (cf. (2.18)). Due to this, the
resonance is “weaker”. At the same time, the separatrix split 0 is also smaller,
namely ~ h@y (Soskin et al., 2008a) rather than ~ h as for the systems of type
I. That is why the separatrix chaotic layer is still dominated by resonance dynamics
while the matching of the separatrix map and nonlinear resonance dynamics is still
valid in the asymptotic limit 2z — 0 (Soskin et al., 2008a).
Similarly to the previous section, we find the value of H in the saddle in the
leading-order approximation®:

6 The only essential difference is that g, at the saddle is described by Eq. (2.46) rather than by Eq.
(2.18).
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()
i E—EY  h
Hyadaie >~ Of <ST - ﬁ> ) (2.47)

where E; — E,(]) is given in (2.44).

As before, the maximum width of the layer corresponds to @y, for which the reso-
nance separatrix is tangent to the GSS curve (Fig. 2.1(a)). It can be shown (Soskin
et al., 2008a) that the angle of tangency asymptotically approaches ¥y g4 + T =7
while the energy still lies in the resonance range. Here 0(E) ~ 0.),(7) ~ wy/j. Using
the expressions for H(E, ) (cf. (2.16)), I(E) (2.45), ¢;(E) (2.46), and taking into
account that in the tangency E < & ~ hwy < h, to leading-order the value of H at
the tangency reads

- h
Hlangency = wfﬁ (248)

Allowing for Eqs. (2.47) and (2.48), the condition for the maximum, Hy 44, =
Hiungency, reduces to

E,— EY (i) ~ 27v/2h. (2.49)

Thus these values Ey — E,U ) are logarithmically smaller than the corresponding
values (2.28) for systems of type L.

The values of @; corresponding to the maxima of the peaks in AE <*)(a)f) are
readily obtained from (2.49) and (2.44):

) - 2mwj
O = In(4v/2/(xh))’

The derivation to leading order of the shape of the peaks for the chaotic layer
of the separatrix map, i.e. within the nonlinear resonance (NR) approximation, is
similar to that for type 1. So, we present only the results, marking them with the
subscript “NR”.

The left wing of the jth peak of AE](() (wy) is described by the function

21 _ 27m\/2h
~In(

() 2
AE —16(1 -
1R (@) (+y>exp< o 1+y)—y/(1+y)  (@51)

j=1,2,..<n(1/h). (2.50)

wf < wr(njgxy

where y is the positive solution of the transcendental equation

Th 2nj
1+y)In(14+y)—y=——=exp| — |, > 0. 2.52
(y)(y)y4\/§p<wf> y (2.52)
In common with the type I case, 1 + y(a)éljzx) =g, so that

AE ("gx,me — o(Es — EY (@) ~ 2meV/2h, (2.53)

m:
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Eq. (2.53) confirms the rough estimate (2.13). The right wing of the peak is de-
scribed by the function

0) 27rj> _ 2mV2h
AE wr)=16zexp| —— | = —————,
r(©r) p< wf 1+1n(1/z) (2.54)
wf > wrg{:zx7
where z < 1 is the solution of the transcendental equation

h 2nj
Vo ( o
As in the type I case, z(@w; — wé{azx) — 1.

It follows from Eqgs. (2.49) and (2.53) that the typical variation of energy within
the nonlinear resonance dynamics which approximates the separatrix map dynamics
is o< h. For the Hamiltonian system, the variation of energy in between the discrete
instants corresponding to the separatrix map (Zaslavsky et al., 1991; Zaslavsky,
2007, 2005; Abdullaev, 2006; Soskin et al., 2008a; Rom-Kedar, 1990) is also o«
h. Therefore, unlike the type I case, one needs to take it into account even at the
leading-order approximation. Let us consider the right well of the Duffing potential
(the results for the left well are identical), and denote by #; the instant at which the
energy E at a given k-th step of the separatrix map is taken: it corresponds to the
beginning of the k-th pulse of velocity (Zaslavsky et al., 1991, Soskin et al., 2008a)
i.e. the corresponding ¢ is close to a left turning point ¢y, in the trajectory [¢(7)]. Let
us also take into account that the relevant frequencies are small so that the adiabatic
approximation may be used. Thus, the change of energy from #; up to a given instant
t during the following pulse of velocity (f — t; ~ 1) may be calculated as

2(1+1n(1/2)) = ) 0<z<1. (2.55)

T T
AE = | dtghcos(wyT) ~ hcos(a)ftk)/ dtq
1 I

= hcos(@st)(q(t) — qup) (2.56)

For the motion near the separatrix, the velocity pulse corresponds approximately
to ¥ = 0 (see the definition of v in Eq. (2.16)). Thus, the corresponding slow angle
is ¥ = jy — @ty ~ —orty.

For the left wing of the peak of AE <’)(a)f) (including also the maximum of
the peak), the boundary of the chaotic layer of the separatrix map is formed by the
lower part of the NR separatrix. The minimum energy along this separatrix occurs at
= . Taking this into account, and also noting that § ~ —myt, we conclude that
cos(wyty) ~ —1. So, AE <0, i.e. it does lower the minimum energy of the layer of
the Hamiltonian system. The maximum reduction occurs at the right turning point

qrip:

max(|AE|) =~ h(qup — qup) = V2h. (2.57)
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We conclude that the left wing of the j-th peak is described as follows:

AE () = AES (@) +V2h, @ < o, (2.58)

where AEI%R(a)f) is given by Eqgs. (2.51)and (2.52). In particular, the maximum of
the peak is:

AEY) ~ (2me +1)v/2h ~ 25.6h. (2.59)

For the right wing of the peak, the minimum energy of the layer of the separatrix
map occurs when ¥ coincides with [y,q45. (Fig. 2.1(c)) i.e. is equal to 0. As a result,
cos(a)ftk) ~ 1 and, hence, AE > 0. So, this variation cannot lower the minimum
energy of the layer for the main part of the wing, i.e. for @y < a)lgizl , Where a)lgizl 418
defined by the condition AES&R = max(|AE|) = v/2h. For o > a)b(gld, the minimal
energy in the layer occurs at y = 7, and it is determined exclusively by the variation
of energy during the velocity pulse (the NR contribution is close to zero at such ).

Thus, we conclude that there is a bending of the wing at @y = a)lgil)m:

AE;I)((Df) - AE(QR(wf)y wrﬁQx < @y < (Dl(,g,)ld;

AED (07) = V/2h, o> ol (2.60)
o) — 2nj
berd 1n(8v/2/h) +1—27

where AE (o) is given by Egs. (2.54) and (2.55).

Analogously to the previous case, AE <’)(a)f) may be approximated over the
whole frequency range by Eq. (2.41) with AE;J) and AEY) given by Egs. (2.58) and
(2.60) respectively. Moreover, unlike the previous case, the theory also describes
accurately the range far beyond the peaks: AE (=) is dominated in this range by the
velocity pulse contribution AE, which is accurately taken into account both by Egs.
(2.58) and (2.60).

Fig. 2.5 shows very reasonable agreement between the theory and simulations,
especially for the 1st peak’.

7 The disagreement between theory and simulations for the magnitude of the 2nd peak is about
three times larger than that for the 1st peak, so that the height of the 2nd peak is about 30%
smaller than that calculated from the asymptotic theory. This occurs because, for the energies
relevant to the 2nd peak, the deviation from the separatrix is much higher than that for the 1st peak.
Due to the latter, the Fourier coefficient ¢;(E) for the relevant E is significantly smaller than that
obtained from the asymptotic formula (2.42). In addition, the velocity pulse contribution AE also
significantly decreases while the separatrix split increases as @y becomes ~ 1.
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Fig. 2.5 An archetypal example of a type II system: the ac driven Duffing oscillator (2.42). Com-
parison of theory (solid lines) and simulations (circles): (a) the deviation AED) () of the lower
boundary of the chaotic layer from the separatrix, normalized by the perturbation amplitude /4, as
a function of the perturbation frequency @y, for h = 107°; the theory is from Egs. (2.41), (2.50),
(2.51), (2.52), (2.54), (2.55), (2.58) and (2.60) (note the discontinuous drop from the maximum to
the right wing); (b) the frequency of the 1st maximum in AE() (@,) as a function of &; the theory
is from Eq. (2.50); (c) the Lst maximum in AE() (@¢)/h as a function of &; the theory is from Eq.
(2.59).
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2.3.3.2 Pendulum with an oscillating suspension point

Consider the archetypal Hamiltonian (Abdullaev, 2006; Gelfreich and Lazutkin,

; Piftankin and Treschev, 7; Shevchenko,
H = Hy+hV,
5 (2.61)
Hy = % +cos(q), V = —cos(q) cos(wyt), h<1.

Though the treatment is similar to that used in the previous case, there are also
characteristic differences. One of them is the following: although the resonance
Hamiltonian is similar to the Hamiltonian (2.16), instead of the Fourier component
of the coordinate, g,, there should be the Fourier component of cos(g), V,, which
can be shown as:

14
V2j:(_1)j+]Ew(E>v E,—EL1,
Voj1= 0, (2.62)
2r 1 /2«

j=12,.. & > Vi = 27 Jo dycos(g) cos(ny).

The description of the chaotic layer of the separatrix map at the lowest order, i.e.
within the NR approximation, is similar to that for the ac-driven Duffing oscillator.
So we present only the results, marking them with the subscript “NR”.

The frequency of the maximum of a given j-th peak is:

U) o~ 27

Oprax ,
T In(4/h)

This expression agrees well with simulations for the Hamiltonian system as shown

in Fig. 2.6(b). To logarithmic accuracy, Eq. (2.63) coincides with the formula fol-

lowing from Eq. (2.8) of (Shevchenko, 1998) reproduced in (Shevchenko, 2008) as

Eq. (2.21) taken in the asymptotic limit 2z — O (or, equivalently, a)éljgx — 0). How-

ever, the numerical factor in the argument of the logarithm in the asymptotic formula
following from the result of (Shevchenko, 1998, 2008) is half our value: this is be-
cause the nonlinear resonance is approximated in (Shevchenko, 1998, 2008) by the
conventional pendulum model which is not valid near the separatrix (cf. our Sect.
2.3.1 above).

The left wing of the jth peak of AE](() (wy) is described by the function

i=12,...<In(4/h). (2.63)

D) (o) — _2m 8h
AE”NR(wf)_32(l+y)eXp< wf) In(1+y)—y/(1+y)"  (2.64)
()

(073 < Dnax s
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where y is the positive solution of the transcendental equation
h
(1+y)In(1+y)—y=sexp| — |, y>0. (2.65)
4 oy
()

Similarly to the previous cases, 1+ y(®nax) = e. Hence,

AEY) v = e(Es— EV) (o)) = 8eh. (2.66)

Eq. (2.66) confirms the rough estimate (2.13). The right wing of the peak is de-
scribed by the function

() 27\ 8h

AE ) =32 Tor ) T 1+m(1/2)

Nr(@F) 3zexp< a,f> 1+1In(1/z)’ (2.67)
()

@f > Wmax,

where z < 1 is the solution of the transcendental equation

z(l—i—ln(l/z)):gexp <w—f), 0<z<1 (2.68)

Similarly to the previous cases, z(w; — a)é{g,() — 1.

Now consider the variation of energy during a velocity pulse. Though the final
result looks quite similar to the case with a single saddle, its derivation has some
characteristic differences, and we present it in detail. Unlike the case with a single
saddle, the pulse may start close to either the left or the right turning point, and
the sign of the velocity in such pulses is opposite (Zaslavsky et al., 1991; Soskin et
al., 2008a). The angle y in the pulse is close to —m/2 or 7 /2 respectively. So, let
us calculate the change of energy from the beginning of the pulse, #, until a given
instant ¢ within the pulse:

AE = — ./t)t dtghdV /dq = h./: dtg(—sin(g)cos(wyT))
~ hcos(wyty) /lt dtg(—sin(g)) ~ hcos(wrty)(cos(g(t)) —1). (2.69)

Here, the third equality assumes adiabaticity while the last equality takes into ac-
count that the turning points are close to the maxima of the potential i.e. close to a
multiple of 27, where the cosine is equal to 1.

The quantity AE (2.69) takes its maximal absolute value at ¢ = . So, we shall
further consider

AEmay = —2hcos(@ty) = —2hcos(2jy; — W) = (—1)7 1 2hcos(f).  (2.70)

The last equality takes into account that, as mentioned above, the relevant y; is
either —m/2 or m/2. For the left wing, the value of {r at which the chaotic layer of
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the separatrix map possesses a minimal energy corresponds to the minimum of the
resonance separatrix. It is equal to 7 or 0 if the Fourier coefficient V,; is positive or
negative, i.e. for odd or even j, respectively: see Eq. (2.63). Thus AEpx = —2h for
any j and, therefore, it does lower the minimal energy of the boundary. We conclude
that

AED (@) = AE D () +2h,  of < ol @.71)

where AEI(QR(a)f) is given by Eqgs. (2.64) and(2.65). In particular, the maximum of
the peak is:

AEY), ~ (4e +1)2h ~ 23.7h. (2.72)

The expression (2.72) confirms the rough estimate (2.13) and agrees well with
simulations shown in Fig. 2.6(c). At the same time, it differs from the formula which
can be obtained from Eq. (2.10) of (Shevchenko, 1998) (using also Eqgs. (1), (3), (8),
(9) of (Shevchenko, 1998)) in the asymptotic limit 4 — 0: the latter gives for AE&QX
the asymptotic value 32A. Though this result (Shevchenko, 1998) (referred to also
in (Shevchenko, 2008)) provides for the correct functional dependence on #, it is
quantitatively incorrect because (i) it is based on the pendulum approximation of
the nonlinear resonance while this approximation is invalid in the vicinity of the
separatrix (see the discussion of this issue in Sect. 2.3.1 above), and (ii) it does not
take into account the variation of energy during the velocity pulse.

The right wing, by analogy to the case of the Duffing oscillator, possesses a

bend at @y = a)lggl 4 Where AEr(j\),R = |AEmax| = 2h, corresponding to the shift of the
relevant ¥ for . We conclude that:

AEﬁJ)(a)f) = AEr(xR(a)f), wéfgx <y < wlgél)’uﬁ

AEﬁj)((Df) =2h, Op > wb@zd’ 2.73)
. 2w

s = o/

nd ~ 1n(16/h) — 3’

where AE (@) is given by Egs. (2.66) and (2.67).
Similarly to the previous case, both the peaks and the frequency ranges far be-

yond the peaks are well approximated by Eq. (2.41), with AE ,(j ) and AE,U ) given by
Eqgs. (2.71) and (2.73) respectively (Fig. 2.6(a)).

2.3.4 Estimate of the next-order corrections

We have calculated explicitly only the leading term AE in the asymptotic expansion
of the chaotic layer width. Explicit calculation of the next-order term AE (next) jg
possible, but it is rather complicated and cumbersome: cf. the closely related case
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Fig. 2.6 An archetypal example of a type II system: the pendulum with an oscillating suspen-
sion point (2.61). Comparison of theory (solid lines) and simulations (circles): (a) The deviation
AEC) (@) of the lower boundary of the chaotic layer from the separatrix, normalized by the per-
turbation amplitude £, as a function of the perturbation frequency @y, for h = 10~%; the theory is
by Egs. (2.41), (2.63), (2.64), (2.65), (2.67), (2.68), (2.71) and (2.73) (note the discontinuous drop
from the maximum to the right wing). (b) The frequency of the 1st maximum in AE(’)((D/) asa
function of /; the theory is from Eq. (2.63). (¢) The 1st maximum in AE¢) (@f)/h as a function
of h; the theory is from Eq. (2.72).
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with two separatrices (Soskin et al., 2008a) (see also Sect. 2.4 below). In the present
section, where the perturbation amplitude /4 in the numerical examples is 4 orders
of magnitude smaller than that in (Soskin et al., 2008a), there is no particular need
to calculate the next-order correction quantitatively. Let us estimate it, however, in
order to demonstrate that its ratio to the leading term does vanish in the asymptotic
limit & — 0.

We shall consider separately the contribution AE) stemming from the various
Et(next)

corrections within the resonance approximation (2.16) and the contribution A
stemming from the corrections fo the resonance approximation.

The former contribution may be estimated in a similar way to the case consid-
ered in (Soskin et al., 2008a): it stems, in particular, from the deviation of the GSS
curve from the separatrix (this deviation reaches § at certain angles: see Eq. (2.7))
and from the difference between the exact resonance condition (2.20) and the ap-
proximate one (2.21). It can be shown that the absolute value of the ratio between

AE and the leading term is logarithmically small (cf. (Soskin et al., 2008a)):

(next)

AE,, 1

AEy | ~ . (2.74)
AE " In(1/h)

Let us turn to the analysis of the contribution AE"*"), i.e. the contribution stem-

ming from the corrections to the resonance Hamiltonian (2.16). It is convenient to
consider separately the cases of the left and right wings of the peak.

As described in Sects. 2.3.2 and 2.3.3 above, the left wing corresponds in the
leading-order approximation to formation of the boundary of the lTayer by the sepa-
ratrix of the resonance Hamiltonian (2.16). The resonance approximation (2.16) ne-
glects time-periodic terms while the frequencies of oscillation of these terms greatly
exceed the frequency of eigenoscillation of the resonance Hamiltonian (2.16) around
its relevant elliptic point i.e. the elliptic point inside the area limited by the reso-
nance separatrix. As is well known (Gelfreich and Lazutkin, 200T; Lichtenberg and
Lieberman, 1992; Piftankin and Treschev, 2007; Zaslavsky, 2007, 2005; Zaslavsky
et al., 1991), fast-oscillating terms acting on a system with a separatrix give rise
to the onset of an exponentially narrow chaotic layer in place of the separatrix. In

the present context, this means that the correction to the minimal action T stemming
E(next)
t

, 18 ex-
1)
Ey(vnex

from fast-oscillating corrections to the resonance Hamiltonian, i.e. A

ponentially small, thus being negligible in comparison with the correction A
(see (2.74)).

The right wing, described in Sects. 2.3.2 and 2.3.3 above, corresponds in leading-
order approximation to the formation of the boundary of the layer by the resonance
trajectory fangent to the GSS curve. For the part of the right wing exponentially
close in frequency to the frequency of the maximum, the tangent trajectory is close
to the resonance separatrix, so that the correction stemming from fast-oscillating
terms is exponentially small, similarly to the case of the left wing. As the frequency
further deviates from the frequency of the maximum, the tangent trajectory further

deviates from the resonance separatrix and the correction AEt("m) differs from the
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exponentially small correction estimated above. It may be estimated in the following
way.

It follows from the second-order approximation of the averaging method (Bo-
golyubov and Mitropolsky, 1961) that the fast-oscillating terms lead, in the second-
order approximation, to the onset of additional terms h*Tj(1, ¥) and h*Ty (I, ) in
the dynamic equations for slow variables I and { respectively, where Tj(7, ) and
Ty (I, ) are of the order of the power-law-like function of 1/1n(1/h) in the relevant
range of I. The corresponding correction to the width of the chaotic layer in energy
may be expressed as

Imax -
AE") — / dt B Tro(7), 2.75)

Imin

where f,i, and fmax are instants corresponding to the minimum and maximum de-
viation of the tangent trajectory from the separatrix of the unperturbed system (cf.
Figs. 2.1(c) and 2.4(c)). The interval t;yax — tmin May be estimated as follows:

T

— (2.76)
| <y >

Imax — Imin ™~

where < > is the value of {/ averaged over the tangent trajectory. It follows from
(2.16) that

o5, -5) @
In(1/h)  In*(1/h)’
Taking together Eqs. (2.75)—(2.77) and allowing for the fact that 77 is of the order
of a power-law-like function of 1/1In(1/4), we conclude that

| <> |~or—o(E—8)~ .77

AE" ~ i2P(In(1/h)), (2.78)

where P(x) is some power-law-like function.

The value AE"") is still asymptotically smaller than the absolute value of the
correction within the resonance approximation, |AE‘(J’M) |, which is of the order of
hor h/In(1/h) for systems of type I or type II respectively.

Thus, we conclude that, both for the left and right wings of the peak, (i) the cor-

rection AE,(MX[) is determined by the correction within the resonance approximation

AE&MXI), and (ii) in the asymptotic limit 2z — 0, the overall next-order correction is
negligible in comparison with the leading term:

|AE ()| _ |AE§V”EX’> +AE,('W[)| < |AEV(JWI)| o =04 (2.79)
AE AE AE In(1/h) . ‘

This estimate well agrees with results in Figs. 2.3-2.6.
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2.3.5 Discussion

In this section, we briefly discuss the following issues: (i) the scaled asymptotic
shape of the peaks; (ii) peaks in the range of moderate frequencies; (iii) jumps in the
amplitude dependence of the layer width; (iv) chaotic transport; (v) smaller peaks
at rational frequencies; (vi) other separatrix maps; and (vii) an application to the
onset of global chaos.

1. Let us analyse the scaled asymptotic shape of the peaks. We consider first
systems of type 1. The peaks are then described in the leading-order approximation
exclusively within separatrix map dynamics (approximated, in turn, by the NR dy-
namics). It follows from Egs. (2.32), (2.34), (2.36), (2.39) and (2.40) that most of
the peak for given j can be written in the universal scaled form:

AED () = AEYLS (%(wf - w&Qx)) : (2.80)
COl’l’laX

where the universal function S(a) is strongly asymmetric:

o) — Si(a) for o <0,
(o) = {S,(Oz) for a >0,

1
~e(n(1+y)—y/(1+y))

$.(0) = gy S0 n01/2) = exp(—e0.

Si(a)

(I+y)In(1+y) —y=-exp(—a), (2.81)

It is not difficult to show that

Si(e=0)=1, Sy (a0 — +0)=e ",
dS(a=0) _,  dS. (o — +0)
—da =1—-ec, —da — —o0, (2.82)
1
S(a — too0) < —.
lal

Thus, the function S(a) is discontinuous at the maximum. To the left of the max-
imum, it approaches the far part of the wing (which decreases in a power-law-like
way) relatively slowly while, to the right of the maximum, the function first drops
Jjump-wise by a factor e and then sharply approaches the far part of the wing (which
again decreases in a power-law-like way).

It follows from Egs. (2.80), (2.81), (2.82) and (2.27) that the peaks are loga-
rithmically narrow, i.e. the ratio of the half-width of the peak, Aa)(/>, to wﬁ,{gx is
logarithmically small:

ol n@2j—1)/h)’

(2.83)
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We emphasize that the shape (2.81) is not restricted to the example (2.14): it is
valid for any system of type 1.

For systems of type II, contributions from the NR and from the variation of en-
ergy during the pulse of velocity, in relation to their 4 dependence, are formally
of the same order but, numerically, the latter contribution is usually much smaller
than the former. Thus, typically, the function (2.81) approximates well the properly
scaled shape of the major part of the peak for systems of type II too.

2. The quantitative theory presented in the paper relates only to the peaks of
small order n i.e. in the range of logarithmically small frequencies. At the same
time, the magnitude of the peaks is still significant up to frequencies of order of
one. This occurs because, for motion close to the separatrix, the order of magnitude
of the Fourier coefficients remains the same up to logarithmically large numbers 7.
The shape of the peaks remains the same but their magnitude typically decreases
(though in some cases, e.g. in case of the wave-like perturbation (Lichtenberg and
Lieberman, 1992; Zaslavsky, 2007, 2005; Zaslavsky et al., 1991) it may even in-
crease in some range of frequencies). The quantitative description of this decrease,
together with analyses of more sophisticated cases, requires a generalization of our
theory.

3. Apart from the frequency dependence of the layer width, our theory is also
relevant to amplitude dependence: it describes the jumps (Soskin et al., 200T) in the

dependence of the width on 7 and the transition between the jumps and the Tinear
()

Jump>

dependence. The values of 4 at which the jumps occur, &

(J)

the same condition that determines o)mdx in the frequency dependence of the width.

The formulae relevant to the left wings of the peaks in the frequency dependence
()

Jump

are determined by

describe the ranges h > h while the formulae relevant to the right wings describe

the ranges h < h(/i)mp

4. Apart from the description of the boundaries, the approach allows us to de-
scribe chaotic transport within the layer. In particular, it allows us to describe quan-
titatively the effect of the stickiness of the chaotic trajectory to boundaries between
the chaotic and regular areas of the phase space (Zaslavsky, 2007, 2005). Moreover,
the presence of additional (resonance) saddles should give rise to an additional slow-
ing down of the transport, despite a widening of the area of the phase space involved
in the chaotic transport.

5. Our approach can be generalized in order to describe smaller peaks at non-
integer rational frequencies i.e. @y ~ n/ ma),(i) where n and m are integer numbers.

6. Apart from Hamiltonian systems of the one and a half degrees of freedom
and corresponding Zaslavsky separatrix maps, our approach may be useful in the
treatment of other chaotic systems and separatrix maps (see (Piftankin and Trescheyv,
2007) for the most recent major review on various types of separatrix maps and
related continuous chaotic systems).

7. Finally we note that, apart from systems with a separatrix, our work may be
relevant to nonlinear resonances in any system. If the system is perturbed by a
weak time-periodic perturbation, then nonlinear resonances arise and their dynam-
ics is described by the model of the auxiliary time-periodically perturbed pendu-
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lum (Chirikov, 1979; Lichtenberg and Lieberman, 1992; Zaslavsky et al., 1991; Za-
slavsky, 2007, 2005; Abdullaev, 2006; Gelfreich and Lazutkin, 2001). If the original
perturbation has a single harmonic, then the effective perturbation of the auxiliary
pendulum is necessarily a high-frequency one, and chaotic layers associated with the
resonances are exponentially narrow (Chirikov, 1979; Lichtenberg and Lieberman,
1992; Zaslavsky et al., 1991; Zaslavsky, 2007, 2005; Abdullaev, 2006; Gelfreich
and Lazutkin, 2001) while our results are irrelevant. But, if either the amplitude or
the angle of the original perturbation is slowly modulated, or if there is an addi-
tional harmonic of a slightly shifted frequency, then the effective perturbation of the
auxiliary pendulum is a Tow-frequency one (Soskin et al., 2008a) and the Tayers be-
come much wider® while our theoretical approach becomes relevant. It may allow to
find optimal parameters of the perturbation for the facilitation of the onset of global
chaos associated with the overlap in energy between different-order nonlinear res-
onances (Chirikov, 1979): the overlap may be expected to occur at a much smaller
amplitude of perturbation in comparison with that one required for the overlap in
case of a single-harmonic perturbation.

2.4 Double-separatrix chaos

There are many problems in physics where an unperturbed Hamiltonian model pos-
sesses two or more separatrices. A weak perturbation of the system typically de-
stroys the separatrices, replacing them by thin chaotic layers. As the magnitude of
the perturbation grows, the lTayers become wider and, at some critical value, they
merge with each other: this may be described as the onset of global chaos between
the separatrices. Such a connection of regions of different separatrices is important
for transport in the system.

In the present section, following the paper (Soskin et al., 2008a), we consider the
characteristic problem of the onset of global chaos between two close separatrices
of a 1D Hamiltonian system perturbed by a time-periodic perturbation. As a char-
acteristic example of a Hamiltonian system with two or more separatrices, we use
a spatially periodic potential system with two different-height barriers per period
shown in Fig. 72.(a):

: (@ —sin(q))*

Ho(p.a) =5 +U(),  Ulg) = ——5—,

5 d =const< 1. (2.84)

This model may relate e.g. to a pendulum spinning about its vertical axis (An-
dronov et al., 1966) or to a classical 2D electron gas in a magnetic field spatially
periodic in one of the in-plane dimensions (Yevtushenko and Richter, 1998, 1999).

8 This should not be confused with the widening occuring with the separatrix chaotic layer in the
original pendulum if an originally single-harmonic perturbation of a high frequency is completed
by one more harmonic of a slightly shifted frequency: see (Vecheslavov, 2004) and references
therein.
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Interest in the latter system arose in the 1990s due to technological advances allow-
ing to manufacture magnetic superlattices of high-quality (Carmona et al., 1995; Ye
et al., 1995), and thus leading to a variety of interesting behaviours of the charge
carriers in semiconductors (Yevtushenko and Richter, 1998, 1999; Carmona et al.,
1995; Ye et al., 1995; Schmidt, 1993; Schmelcher and Shepelyansky, 1994).

Figs. 2.7(b) and 2.7(c) show respectively the separatrices of the Hamiltonian sys-
tem (2.1) in the p — g plane and the dependence of the frequency  of its oscillation,
often called its eigenfrequency, on its energy E = Hy(p,q). The separatrices corre-

spond to energies equal to the value of the potential barrier tops E,EI) =(1-9)?)2
and E,EZ) = (14 @)?/2 as in Fig. 2.7(a). The function @(E) possesses a local maxi-

mum o, = ®(E,,). Moreover, ®(E) is close to @,, for most of the range [E,EI),E,SZ)]
while sharply decreasing to zero as E approaches either E,Sl) or E,Sz).

We now consider the addition of a time-periodic perturbation: as an example, we
use an AC drive, which corresponds to a dipole (Zaslavsky et al., 1991; Landau and

Lifshitz, 1976) perturbation of the Hamiltonian:

0.8
~0.6r

=

Potential {
o o
= w ¥

Momentum p
< =3
h S oo

|
[=]

3 0.2-‘/Emin:o £D
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o 02 0.4 0.6 0.8
Energy E

Fig. 2.7 The potential U(g), the separatrices in the phase space, and the eigenfrequency @(E) for
the unperturbed system (2.84) with @ = 0.2, in (a), (b) and (c) respectively.
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q=0JdH/dp, p=—dH/dq,
H(p,q) = Ho(p,q) — hgcos(wyt).

(2.85)

The conventional scenario for the onset of global chaos between the separatri-
ces of the system (2.84)—(2.85) is illustrated by Fig. 2.8. The figure presents the
evolution of the stroboscopic Poincaré section as h grows while oy is fixed at an
arbitrarily chosen value away from ®,, and its harmonics. At small A, there are
two thin chaotic layers around the inner and outer separatrices of the unperturbed
system. Unbounded chaotic transport takes place only in the outer chaotic layer
i.e. in a narrow energy range. As h grows, so also do the layers. At some criti-
cal value hge = hgc(@y), the layers merge. This may be considered as the onset of
global chaos: the whole range of energies between the barrier levels is involved,
with unbounded chaotic transport. The states {I{)} = {p = 0,q = /2 + 2xl} and
{0} = {p=0,g = —r/2+2xl} (where [ is any integer) in the Poincaré section
are associated respectively with the inner and outer saddles of the unperturbed sys-
tem, and necessarily belong to the inner and outer chaotic layers, respectively. Thus,
the necessary and sufficient condition for global chaos onset may be formulated as
the possibility for the system placed initially in the state {/ (0)} to pass beyond the
neighbourhood of the “outer” states, {0} or {0}, i.e. for the coordinate ¢ to
become < —7m/2 or > 371/2 at sufficiently large times 1 > 27/ .
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Fig. 2.8 The evolution of the stroboscopic (at r = n27/wy withn=0,1,2,...) Poincaré section of
the system (2.84)—(2.85) with @ = 0.2 as h grows while @, = 0.3. The number of points in each
trajectory is 2000. In (a) and (b), three characteristic trajectories are shown: the inner trajectory
starts from the state {I'} = {p = 0,¢g = 7/2} and is chaotic but bounded in space; the outer
trajectory starts from {0} = {p = 0,g = —/2} and is chaotic and unbounded in coordinate;
the third trajectory is an example of a regular trajectory separating the two chaotic ones. In (c), the
chaotic trajectories mix.




88 S.M. Soskin, R. Mannella, O.M. Yevtushenko, I.A. Khovanov, P.V.E. McClintock

A diagram in the 2 — @y plane, based on the above criterion, is shown in Fig.
2.9. The lower boundary of the shaded area represents the function A, (@y). It has
deep spikes i.e. cusp-like local minima. The most pronounced spikes are situated at
(/)

frequencies @y = ;" that are slightly less than the odd multiples of @,

o mon2j-1), j=12,.. (2.86)

The deepest minimum occurs at a)g D~ @y,: the value of hg at the minimum, hks-])

hg(,(wﬁl)), is approximately 40 times smaller than the value in the neighbouring
pronounced local maximum of /i,.(w¢) at @y ~ 1. As n increases, the nth minimum
becomes shallower. The function h,.(wy) is very sensitive to @y in the vicinity of
the minima: for example, a reduction of @y from a)s(])
increase in Ay of ~ 30%.

The origin of the spikes is related to the involvement of the resonance dynamics
in separatrix chaos, similar to that considered in Sect. 2.3. In particular, the min-
ima of the spikes correspond to the situation when the resonances almost touch, or
slightly overlap with, the separatrices of the unperturbed system while overlapping

each other. This is illustrated by the evolution of the Poincaré section as & grows

~ 0.4 of only 1% causes an

while @y ~ a)s(l) (Fig. 2.10) and by its comparison with the corresponding evolution
of resonance separatrices calculated in the resonance approximation (Fig. 2.11).

Sect. 2.4.1 below presents the self-consistent asymptotic theory of the minima
of the spikes, based on an accurate analysis of the overlap of resonances with each
other and on the matching between the separatrix map and the resonance Hamil-
toinian (details of the matching are developed in Appendix). Sect. 2.4.2 presents the
theory of the wings of the spikes. Generalizations and applications are discussed in
Sect. 2.4.3.
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Fig. 2.9 Diagram indicating the range of perturbation parameters (shaded) for which global chaos
exists. The integration time for each point of the grid is 120007.
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2.4.1 Asymptotic theory for the minima of the spikes

The eigenfrequency w(E) stays close to its local maximum @, for most of the rele-
vant range [E,Sl),EIEZ)] in Fig. 2.7(c). As shown below, ®(E) approaches a rectangu-
lar form in the asymptotic limit @ — 0. Hence, if the perturbation frequency @y is
close to @, or its odd multiples, [@f — (27 — 1)@, | < O, then the energy widths of
nonlinear resonances become comparable to the width of the whole range between
the barriers (i.e. E ,52) —E ,El) ~ 2P) at a rather small perturbation magnitude & < P.
Note that @ determines the characteristic magnitude of the perturbation required
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Fig. 2.10 The evolution of the stroboscopic Poincaré section of the system (84)-(85) with @ =0.2,
as the amplitude £ of the perturbation grows, while the frequency remains fixed at @ = 0.401. The
number of points in each trajectory is 2000. The chaotic trajectories starting from the states {I (0)}
and {0} are drawn in green and blue respectively. The stable stationary points of Eq. (2.98)
for n =1 (i.e. for the lst-order nonlinear resonances) are indicated by the red and cyan crosses.
The chaotic layers associated with the resonances are indicated in red and cyan respectively, unless
they merge with those associated with the green/blue chaotic trajectories. Examples of regular
trajectories embracing the state {1(0)} while separating various chaotic trajectories are shown in
brown. (Color version may be found in the online version of (Soskin et al., 2008a) as Fig. 5).
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for the conventional overlap of the separatrix chaotic layers, when @y is not close to

any odd multiple of @,, (Fig. 2.8 (c)). Thus, if @y ~ a)s(j ), the nonlinear resonances
should play a crucial role in the onset of global chaos (cf. Fig. 2.10).

We note that it is not entirely obvious a priori whether it is indeed possible to cal-
culate hEJ ) = hg(,(a)bgj )) within the resonance approximation: in fact, it is essential for
the separatrices of the nonlinear resonances to nearly touch the barrier Ievels, but the

resonance approximation is invalid in the close vicinity of the barriers; furthermore,

Fig. 2.11 The evolution of the separatrices of the 1st-order resonances within the resonance ap-
proximation (described by (2.16) with n = 1) in the plane of action / and slow angle {, for the
same parameters as in Fig. 2.10 (boxes (a), (b), (c), (d) correspond to those in Fig. 2.10). Horizon-
tal levels mark the values of I corresponding to the barriers. (Color version may be found in the
online version of (Soskin et al., 2008a) as Fig. 6).
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numerical calculations of resonances show that, if @y ~ a)s<j ), the perturbation am-
plitude A at which the resonance separatrix touches a given energy level in the close
vicinity of the barriers is very sensitive to @y, apparently making the calculation of
hgj)

within the resonance approximation even more difficult.

Nevertheless, we show below in a self-consistent manner that, in the asymptotic
limit @ — 0, the relevant boundaries of the chaotic layers lie in the range of energies
E where o(E) ~ @,,. Therefore, the resonant approximation is valid and it allows

us to obtain explicit asymptotic expressions both for a)s<j )

of the spikes in the vicinities of a)s<J ).

The asymptotic limit @ — 0 is the most interesting one from a theoretical point
of view because it leads to the strongest facilitation of the onset of global chaos,
and it is most accurately described by the self-contained theory. Most of the theory
presented below assumes this limit and concentrates therefore on the results to the
lowest (i.e. leading) order in the small parameter.

On the applications side, the range of moderately small ® is more interesting,
since the chaos facilitation is still pronounced (and still described by the asymptotic
theory) while the area of chaos between the separatrices is not too small (compara-
ble with the area inside the inner separatrix): cf. Figs. 2.7, 2.8 and 2.10. To increase
the accuracy of the theoretical description in this range, we estimate the next-order
corrections and develop an efficient numerical procedure allowing for further cor-
rections.

and hg”, and for the wings

2.4.1.1 Resonant Hamiltonian and related quantities

Let @y be close to the nth 0dd® harmonic of @, n = (2j —1). Over most of the

range [E,EI),E,?)], except in the close vicinities of E,EI) and E,Ez), the nth harmonic of

the eigenoscillation is nearly resonant with the perturbation. Due to this, the (slow)
dynamics of the action I = I(E) = (2)~! § dgp and the angle y (Chirikov, 1979;
Lichtenberg and Lieberman, 1992; Zaslavsky et al., 1991; Zaslavsky, 2007, 2005;
Soskin et al., 2003; Landau and Lifshitz, 1976) can be described by means of a
resonance Hamiltonian similar in form to (2.16). The lower integration limit in the
expression for H may be chosen arbitrarily, and it will be convenient for us to use
presently I(E,,) (instead of I(E;) in (2.16)) where E,, is the energy of the local
maximum of @(E) shown in Fig. 2.7(c). To avoid confusion, we write the resonance
Hamiltonian explicitly below after making this change:

AL, w) = /1 " AT (h0— @p) — nigucos(¥)

* (Em)
= n(E —En) — (I —I(Ey)) — nhg,cos(y) ,
E dE
I=I1FE)= = E =H,
( ) '/Emin w(E)7 ()(paq)a

9 Even harmonics are absent in the eigenoscillation due to the symmetry of the potential.
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¥ =ny — ort, (2.87)

Y =7 +sign(p)o(E) / ! 4

S S—T
Ymin(E) 2(E - U(q))

2 rm/2
m=gn(E)=_ | dy q(E,y)cos(ny),
Inw— 0| < o, n=2j—1, j=1,2,3,...
Let us derive explicit expressions for various quantities in (2.87). In the unper-

turbed case (h = 0), the equations of motion (2.85) with Hj, (2.84) can be integrated
(Yevtushenko and Richter, 1999), see also Eq. (2.144) below, so that we can find

o(E):

(2.88)

_ m(2E)'/4 1 [(V2E+1)2— @2
ETIO k_i\/T’

whnere

Y d¢
w= /0 /1 —kzsinz(d))7

is the complete elliptic integral of first order (Abramovitz and Stegun, 1970). Using
its asymptotic expression,

1 16

we derive @(E) in the asymptotic limit @ — 0:

T
ol = - E——
(@ AE)(® 1 AE) (2.89)
AEEE—%, AE|< ®, & 0.

As mentioned above, the function @(E) (2.89) remains close to its maximum

T

w(E)} ~ TEP) (2.90)

o, = max {
£ D)

for most of the interbarrier range of energies [1/2 — ®,1/2 + &] (note that E,EI’Q) ~
1/2F & to first order in @.); on the other hand, in the close vicinity of the barri-
ers, where either [In(1/(1 — AE/®))] or [In(1/(1 + AE/®P))] become comparable
with, or larger than, In(8/®), @(F) decreases rapidly to zero as [AE] — &. The
range where this takes place is ~ @2, and its ratio to the whole interbarrier range,
2@, is ~ @ i.e. it goes to zero in the asymptotic limit @ — 0: in other words, @(E)
approaches a rectangular form. As it will be clear from the following, it is this al-
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most rectangular form of ®(E) which determines many of the characteristic features
of the global chaos onset in systems with two or more separatrices.

One more quantity which strongly affects (s, 4y) is the Fourier harmonic g, =
qn(E). The system stays most of the time very close to one of the barriers. Consider
the motion within one of the periods of the potential U(g), between neighboring

upper barriers [‘Iil;)quﬁ)] where ‘11(3;) = ‘127) +2x. If the energy E = 1/2 + AE lies

in the relevant range [E,El) 7E,Ez)], then the system will stay close to the lower barrier

qi = ‘IE{L) + 7 for a time'”
Ty ~2In ! (2.91)
N @ +AE '
during each period of eigenoscillation, while it will stay close to one of the upper
barriers qiz’z) = qjp £ 7 for most of the remainder of the eigenoscillation,
T, ~2In ! (2.92)
‘T ®-AE) '

Hence, the function ¢(E, y) — ¢;, may be approximated by the following piecewise
even periodic function:

T oat WEPE L J {—5 L y
2 2T+
9(E,¥)—q = . T
b Tu _Z 2.93
0 at ‘1’6[2 Tu,n 5T + ] (2.93)
Q(E,_'V)_ClleQ(E,‘l/)_CIIb, (E ‘l’izm) (E l//) i2172737"'

Substituting the above approximation for g(E, ) into the definition of g, in Eq.
(2.87), one can obtain:

[ \
2 2j—1)n/2
612/—15612/‘—1(E)=2._]sm ( 1 )1/ ;
J " (z74z)
1+ i
In(3-4z)
®—0, ;=0 j=123,... (2.94)

At barrier energies, g»;1 takes the values

B 1(EM) =0, gy (EY))=—(~1) (2.95)

10"We omit corrections ~ (In(1/®))~ ! here and in Eq. (2.92) since they vanish in the asymptotic
limit @ — 0.
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As E varies in between its values at the barriers, g,;_1 varies monotonically if j =
1 and non-monotonically otherwise (cf. Fig. 2.16). But in any case, the significant

variations occur mostly in the close vicinity of the barrier energies E,EI) and E,Ez)

while, for most of the range [E,EI)7E,EZ)], the argument of the sine in Eq. (2.94) is

close to 7/4 and q2j—1 is then almost constant:

2j
q2j—1%(71)[ ﬁa i=123,.., (2.96)

1+AE/® 1
’m(l—AE/45>’<<21n<d>>’
where [-] means the integer part.

In the asymptotic limit @ — 0, the range of AE for which the approximate equal-
ity (2.96) for g»;_1 is valid approaches the whole range | — @, P|.

We emphasize that |g,| determines the “strength” of the nonlinear resonances:
therefore, apart from the nearly rectangular form of @(E), the non-smallness of |g,,|
is an important additional factor strongly facilitating the onset of global chaos.

We shall need also an asymptotic expression for the action . Substituting @(E)

(2.89) into the definition of I(E) in Eq. (2.87) and carrying out the integration, we
obtain

AE1In 72452 5 —i—df'ln(cb*AE)
HE)=1(1/2) + G (AE)Z PHEL o0, (297

2.4.1.2 Reconnection of resonance separatrices

We now turn to analysis of the phase space of the resonance Hamiltonian (2.87). The
evolution of the Poincaré section (Fig. 2.10) suggests that we need to find a sepa-
ratrix of (2.87) that undergoes the following evolution as & grows: for sufficiently
small A, the separatrix does not overlap chaotic layers associated with the barriers
while, for i > hg.(@y), it does overlap them. The relevance of such a condition will
be further justified.

Consider @7 ~ na,, with a given odd n. For the sake of convenience, let us write
down the equations of motion (2.87) explicitly:

. oH L . O0H dgy N
I= —W = —nhg,sin(), v 57 = nw— a)f—nhﬁ cos(P). (2.98)

Any separatrix necessarily includes one or more unstable stationary points. The sys-
tem of dynamic equations (2.98) may have several stationary points per 27 interval
of . Let us first exclude those points which are irrelevant to a separatrix undergoing
the evolution described above.
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Given that qn(E,Sl)) = 0, there are two unstable stationary points with I corre-

sponding to E = E,EI) and ¥ = +£7/2. They are irrelevant because, even for an
infinitely small &, each of them necessarily lies inside the corresponding barrier
chaotic layer.

IfE # E(l), then g, #0, so I = 0 only if ¥ is equal either to 0 or to 7. Substituting
these values into the second equation of (2.98) and putting ¥ = 0, we obtain the
equations for the corresponding actions:

X+(I) = nw — o; F nhdg,/dI =0, (2.99)

@ 9

where the signs “-” and “+” correspond to ¥y = 0 and {f = 7 respectively. A typical
example of the graphical solution of equations (2.99) for n =1 is shown in Fig.
2.12. Two of the roots corresponding to {y = & are very close to the barrier values
of I (recall that the relevant values of /& are small). These roots arise due to the
divergence of dg/dI as I approaches any of the barrier values. The lower/upper
root corresponds to a stable/unstable point, respectively. However, for any n, both
these points and the separatrix generated by the unstable point necessarily lie in the
ranges covered by the barrier chaotic layers. Therefore, they are also irrelevant!!.
For n > 1, the number of roots of (2.99) in the vicinity of the barriers may be larger
(due to oscillations of the modulus and sign of dg,/dI in the vicinity of the barriers)
but they all are irrelevant for the same reason, at Ieast to leading-order terms in the
expressions for the spikes” minima.

red
I J/I\S“ — green
A e e e
~ I sl I Y
o
= | |
>
< |1 |
S
o I |
-~
H |
S |
s |
] ——— 1= = = 7
KEQ) . KEpm) KED)

Fig. 2.12 A schematic example illustrating the graphical solutions of Egs. (2.99) for n = 1, as
intersections of the curve @(/) (thick solid red line) with the curves @, & hdg, (7)/dI (thin solid
green lines). The solutions corresponding to the lower and upper relevant saddles (defined by Eq.
(2.100)) are marked by dots and by the labels s/ and su respectively (we do not mark other solutions
because they are irrelevant). (Color version may be found in the online version of Soskin et al.,
(2008a) as Fig. 7).

1 Eor sufficiently small @ and , the separatrix generated by the unstable point forms the boundary
of the upper chaotic layer, but this affects only the higher-order terms in the expressions for the
spikes minima (see below).
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Consider the stationary points corresponding to the remaining four roots of equa-
tions (2.99). Just these points are conventionally associated with nonlinear reso-
nances (Chirikov, 1979; Lichtenberg and Lieberman, 1992; Zaslavsky et al., 1991;
Zaslavsky, 2007, 2005; Soskin et al., 2003). It follows from the analysis of equa-
tions (2.98) linearized near the stationary points (cf. (Chirikov, 1979; Lichtenberg
and Lieberman, 1992; Zaslavsky et al., 1991; Zaslavsky, 2007, 2005; Soskin et al.,
2003)), two of them are stable (elliptic) points'Z, while two others are unstable (hy-
perbolic) points, often called saddles. These saddles are of central interest in the
context of our work. They belong to the separatrices dividing the I — § plane for
regions with topologically different trajectories.

We shall identify the relevant saddles as those with the lower action/energy (using
the subscript “sl”’) and upper action/energy (using the subscript “su”). The positions
of the saddles in the I — ¥ plane are defined by the following equations (cf. Figs.
2.1T and 2.12):

8 = 5g0(qn (L)) = sgn ((_1)[%]) :

Vo =7n(1+g)/2, Vo =m(1-g)/2, (2.100)
— _ ng (IS/) dX—g (Isu)
Xg(lsl) = X—g(]su) =0, dl, >0, diy, <9,

where [-] means an integer part, X1 (1) are defined in Eq. (2.99) while [; and I,
are closer to I(E,,) than any other solution of (2.100) (if any) from below and from
above, respectively.

Given that the values of & relevant to the minima of the spikes asymptotically
approach 0 in the asymptotic limit @ — 0, one may neglect the last term in the defi-
nition of X5 in Eq. (2.99) in the lowest-order approximation'?, so that the equations
X+ = 0reduce to the simplified resonance condition

na)(lm,sl) = Q. (2.101)

Substituting here Eq. (2.89) for @, we obtain explicit expressions for the energies in
the saddles:

1
Egug ~ EiAE(I), (2.102)

AEW = \/Cbz — 64exp (—g) ©f < Ny,

The corresponding actions Iy, o are expressed via E, 3 by means of Eq. (2.97).

12 In the Poincaré sections shown in Fig. 2.10, the points which correspond to such stable points
of Egs. (2.98) are indicated by the crosses.

13 As will become clear in what follows, the remaining terms are much larger in the asymptotic
limit than the neglected term: cf. the standard theory of the nonlinear resonance (Chirikov, 1979;
Lichtenberg and Lieberman, 1992; Zaslavsky, 2007, 2005; Zaslavsky et al., 1991).
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For @y ~ n®y,, the values of £,  in Eq. (2.102) lie in the range where the expres-
sion (2.96) for g, holds true. This will be confirmed by the results of calculations
based on this assumption.

Using (2.100) for the angles and (2.102) for the energies, and the asymptotic
expressions (2.89), (2.96) and (2.97) for @(E), g,(E) and I(E) respectively, and
allowing for the resonance condition (2.101), we obtain explicit expressions for the
values of the Hamiltonian (2.87) at the saddles:

. ~ (O
Hy=-Hy,=— hv'2. 2.103
w=—Hu=~ o Ap0 )| T2 (2.103)

(1)
'AED — pln (ﬂ)

As the analysis of simulations suggests and as it is self-consistently shown fur-
ther, one of the main conditions which should be satisfied in the spikes is the overlap
in phase space between the separatrices of the nonlinear resonances, which is known
as separatrix reconnection (Soskin et al., 2003; Howard and Hohs, 1984; Howard
and Humpherys, 1995; del-Castillo-Negrete et al., 1996; Dullin et al., 2000; Mo-
rozov, 2002). Given that the Hamiltonian H is constant along any trajectory of the
system (2.87), the values of H in the lower and upper saddles of the reconnected
separatrices are equal to each other:

Hy=Hy,. (2.104)

This may be considered as the necessary and sufficient™ condition for the recon-

nection. Taking into account that Hy = —Hy, in Eq. (2.103), it follows from (2.104)
that

Ay = Hy, = 0. (2.105)

Explicitly, the relations in (2.105) reduce to

_ oy &+ AEW )

nimw
oy

),0 < 0 — @ /n < meZIH (2.106)

AEW) = \/¢264exp _r
( 5/%)

n=1,3,5,...

The function (@) in Eq (2.106) decreases monotonically to zero as @y grows
from O to n®,,, where the line abruptly stops. Fig. 2.15 shows the portions of the
lines (2.106) relevant to the left wings of the 1st and 2nd spikes (for @ = 0.2).

14 Eq. (2.104) is the sufficient (rather than just necessary) condition for separatrix reconnection
since there is no any other separatrix which would lie in between the separatrices generated by the
saddles “s/”” and “su”.
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2.4.1.3 Barrier chaotic layers

The next step is to find the minimum value of 4 for which the resonance separatrix
overlaps the chaotic layer related to a potential barrier. With this aim, we study
how the relevant outer boundary of the chaotic layer behaves as 4 and @y vary.
Assume that the relevant @y is close to n®,, while the relevant 4 is sufficiently
large for w(E) to be close to @, at all points of the outer boundary of the layer (the
results will confirm these assumptions). Then the motion along the regular trajectory
infinitesimally close to the layer boundary may be described within the resonance
approximation (2.87). Hence the boundary may also be described as a trajectory of
the resonant Hamiltonian (2.87). This is explicitly proved in the Appendix, using a
separatrix map analysis allowing for the validity of the relation ®(E) ~ @, for all E
relevant to the boundary of the chaotic layer. The main results are presented below.
For the sake of clarity, we present them for each layer separately, although they are
similar in practice.

1. Lower layer

Let wy be close to any of the spikes” minima.

One of the key roles in the formation of the upper boundary of the layer is played
by the angle-dependent quantity &|sin({)| which we call the generalized separa-
trix split (GSS) for the lower layer, alluding to the conventional separatrix split
(Zaslavsky, 2007) for the lower layer & = |e(°")(w;)|h with €°¥) given by Eq.
(2.172)15 (cf. also (2.4)). Accordingly, we use the term “lower GSS curve” for the
following curve in the I — ¥ plane:

1=1s(9) = 1(E}) + 8| sin(9)]). (2.107)

(1) Relatively small values of h

If h < 1Y) (@), where the critical value h¥ (@) is determined by Eq. (2.125) (its
origin will be explained further), then there are differences in the boundary for-
mation for the frequency ranges of odd and even spikes. We describe these ranges
separately.

1) Odd spikes

In this case, the boundary is formed by the trajectory of the Hamiltonian (2.87)
tangent to the GSS curve, see Fig. 2.22(a); cf. also Figs. 2.1(c), 2.13(a), (b) and
(¢). There are two tangencies in the angular range | — 7, 7[: they occur at the angles

+" where " is determined by Eq. (2.182).

15 The quantity & may also be interpreted as the magnitude of the corresponding Melnikov integral
(Chirikov, 1979; Lichtenberg and Lieberman, 1992; Zaslavsky et al., 1991; Zaslavsky, 2007, 2005),
sometimes called as the Poincaré-Melnikov integral (Piftankin and Treschev, 2007).
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In the ranges of /& and ®y relevant to the spike minimum, the asymptotic expres-

sions for §; and lf/t(l) are:

& = V2mh, (2.108)
B S e L

8In(1/®) 2 (2.109)

Hence, the asymptotic value for the deviation of the tangency energy E,(l) from the
lower barrier reduces to:

3/2 h
EV—EV = gsin(p) = F -2 (2.110)

2 /In(1/®)/n
")

The minimum energy on the boundary, E,..; , corresponds to § = 0 or & for even
or odd values of [n/4] respectively. Thus, it can be found from the equality

A (1E), o == - (-0lh2) =7 (17 =1ED),9"). @1

At @ — 0, Eq. (2.111) yields the following expression for the minimal deviation
of energy on the boundary from the barrier:

2 h
" 2ye \/In(1/®) /n’

In the context of the onset of global chaos, the most important property of the

s =g _ gV — (" —EM)/ /e (2.112)

boundary is that the maximum deviation of its energy from the barrier, 5mlax, greatly
exceeds both Séfi)n

the saddle “s/”.
2) Even spikes

In this case, the Hamiltonian (2.87) possesses saddles “s” in the close vicinity to
the lower barrier (see Fig. 2.22(b)). Their angles differ by 7 from those of “sl”:

and ;. As h — hé’), the maximum of the boundary approaches

1)l4
— 1 2mm, m=0,+1,42,..., (2.113)

while the deviation of their energies from the barrier still lies in the relevant (reso-
nant) range and reads, in the lowest-order approximation,

T h
2v2 In(In(1/®))"
The lower whiskers of the separatrix generated by these saddles intersect the
GSS curve while the upper whiskers in the asymptotic limit do not intersect it Fig.

5, (2.114)
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2.22(b). Thus, it is the upper whiskers of the separatrix which form the boundary
of the chaotic layer in the asymptotic limit. The energy on the boundary takes the
minimal value right on the saddle “s”, so that

B (b) -
0.6 - -

Fig. 2.13 (a) Chaotic layers (shaded in green and blue, for the upper and lower layers respec-
tively) in the plane of action I and slow angle {7, as described by our theory. Parameters are the
same as in Figs. 2.10(b) and 2.11(b). The lower and upper boundaries of the figure box coincide
with [ (E,EU) and ] (E,52>) respectively. The resonance separatrices are drawn by the cyan and red
solid lines (for the lower and upper resonances respectively). Dashed green and blue lines mark
the curves I = I () = I(E = E\") + & |sin()]) and I = I8 () = I(E = E\? — &,|sin(¥)])
respectively, where §; and J, are the values of the separatrix split related to the lower and up-
per barrier respectively. The upper boundary of the lower layer is formed by the trajectory of the
resonant Hamiltonian system (2.87) tangent to the curve / = Ig%s(‘f’)- The lower boundary of the
upper layer is formed by the lower part of the upper (red) resonance separatrix. The periodic closed
loops (solid blue lines) are the trajectories of the system (2.87) tangent to the curve Ié'gs(l/?): they
form the boundaries of the major stability islands inside the upper chaotic layer. (b) Comparison
of the chaotic layers obtained from computer simulations (dots) with the theoretically calculated
boundaries (solid lines) shown in the box (a). (Color version may be found in the online version of
(Soskin et al., 2008a) as Fig. 8).
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h
S0 g T b
min 2+/2 In(In(1/®))

Similar to the case of the odd spikes, the maximal deviation of the energy from

(2.115)

the barrier (measured along the boundary) greatly exceeds both 6r511i)n and §;. As

h— hﬁl), the maximum of the boundary approaches the saddle “si”.

(2) relatively large values of h

Ifh> hglr)(a)f), the previously described trajectory (either the tangent one or the
separatrix, for the odd or even spike ranges respectively) is encompassed by the
separatrix of the lower nonlinear resonance and typically forms the boundary of a
major stability island inside the lower layer (reproduced periodically in { with the
period 271). The upper outer boundary of the layer is formed by the upper part of
the resonance separatrix. This may be interpreted as the absorption of the lower
resonance by the lower chaotic layer.

2. Upper layer

Let @y be close to any of the spikes’ minima.

One of the key roles in the formation of the lower boundary of the layer is played
by the angle-dependent quantity J,[sin({)| which we call the generalized separa-
trix split (GSS) for the upper layer; 0, is the separatrix split for the upper layer:
O, = |£<“P)(a)f)|h with £P) given by Eq. (2.204). Accordingly, we use the term
“uapper GSS curve” for the following curve in the I — { plane:

1=1305(9) = I(E}”) = 8, sin()]). (2.116)

(1) Relatively small values of h

If h < hg)(a)f), where the critical value hglﬁ)(a)_,r) is determined by Eq. (2.126) (its
origin will be explained further), then there are some differences in the boundary
formation in the frequency ranges of odd and even spikes: for odd spikes, the for-
mation is similar to the one for even spikes in the lower-layer case and vice versa.

1) Odd spikes

In the case of odd spikes, the Hamiltonian (2.87) possesses saddles in the
close vicinity of the upper barrier, analogous to the saddles “s” near the lower barrier

in the case of even spikes. Their angles are shifted by & from those of “s”:

)
N

1+ (-1l

S t2m, m=0,£1,42,... 2.117)

Vs=VYs+n=m
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The deviation of their energies from the upper barrier coincides, in the lowest-order
approximation, with J:

5= 5. — T h
7 2y2In(In(1/®))’
The upper whiskers of the separatrix generated by these saddles intersect the
upper GSS curve while the Tower whiskers in the asymptotic limit do not intersect
it. Thus, it is the Tower whiskers of the separatrix which form the boundary of the
chaotic layer in the asymptotic limit. The deviation of the energy from the upper
barrier takes its minimal value (measured along the boundary) right on the saddle

W

s,

(2.118)

§W =T I

m 22 In(In(1/®))

The maximal deviation of the energy from the barrier (along the boundary)
greatly exceeds both 5;”:1)1

proaches the saddle “su”.

(2.119)

and 0,. As h — hgﬁ), the maximum of the boundary ap-

2) Even spikes

The boundary is formed by the trajectory of the Hamiltonian (2.87) tangent to
the GSS curve. There are two tangencies in the angle range | — 7, z[: they occur at

the angles + ") where ¥ is determined by Eq. (2.202).

In the ranges of & and oy relevant to the spike minimum, the expressions for g,

and lf/t(") in the asymptotic limit @ — 0 are similar to the analogous quantities in the

lower—layer case:

8, = V2rmh, (2.120)

nm 1+ (=1)ld]
T e R (2.121)

9 = —(-nlil

Hence, the asymptotic value for the deviation of the tangency energy E[(") from the
upper barrier reduces to:

1+ (-l

TV

E(z) _ Et(u)au

' = (2.122)

2 /In(1/®)/n

The maximal energy on the boundary, Eﬁ,ﬁa)x, corresponds to ¥ = 1t(1+(—1)/4) /2.,
Thus, it can be found from the equality

(1= I(ES). ¥ = (1 + (- 1)) 2) = A = 15),9").  2.123)

At @ — 0, Eq. (2.123) yields the following expression for the minimal deviation
of energy from the barrier (measured along the boundary):
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n3/? h

T 212 /in(1/®) /n’

8o =By — En = (B —E) /e (2.124)

min —

(2) Relatively large values of h

If h > hgﬁ)(a)f) (cf. Fig. 2.13(a)), the previously described trajectory (either the tan-
gent one or the separatrix, for the even and odd spikes ranges respectively) is en-
compassed by the separatrix of the upper nonlinear resonance and typically forms
the boundary of a major stability island inside the upper layer (reproduced periodi-
cally in § with the period 27x). The lower outer boundary of the layer is formed in
this case by the lower part of the resonance separatrix. This may be interpreted as
the absorption of the upper resonance by the upper chaotic layer.

The self-consistent description of chaotic layers given above, and in more detail
in the Appendix, is the first main result of this section. It provides a rigorous basis
for our intuitive assumption that the minimal value of 4 at which the layers overlap
corresponds to the reconnection of the nonlinear resonances with each other while
the reconnected resonances touch one of the layers and also touch/overlap another
layer. Tt is gratifying that we have obtained a quantitative theoretical description of
the chaotic layer boundaries in the phase space, including even the major stability
islands, that agrees well with the results of simulations as shown in Fig. 2.13(b).
To the best of our knowledge it was the first ever (Soskin et al., 2008a) quantitative
description of the layer boundaries in the phase space.

2.4.1.4 Onset of global chaos: the spikes’ minima

The condition for the merger of the lower resonance and the lower chaotic layer may
be written as

AI=1E=E"+8"),9=n(1-(-1))/2)=A,. (2.125)

The condition for the merger of the upper resonance and the upper chaotic layer
may be written as

A(I=I1E=E” 8" ¢ =n(1+(-1)"")/2) = A,. (2.126)

For the onset of global chaos related to the spike minimum, either of Egs. (2.125)
and (2.126) should be combined with the condition of the separatrix reconnection
(2.104). Let us seek first only the leading terms of i3 = hy(P) and @ = @s(P). Then
(2.104) may be replaced by its lowest-order approximation (2.105) or, equivalently,
(2.106). Using also the lowest-order approximation for the barriers (E,El’z) ~1/2F
&), we reduce Eqgs. (2.125), (2.126) respectively to

AI=IE=1/2—®+8) ¢ =n(1—(—1)"*)/2) =0, (2.127)
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F(T — _ Wy = _ 4 _
AI=IE=1/2+®- 8" o=n(1+(-1)4))2)=0, (2.128)

where 6rE11i)n

while 5

To the leading order, the solution (hg”,a)s(l)) of the system of Eqgs. (2.106),
(2.127) and the solution (4", @) of the system of Egs. (2.106),(2.128) turn out
identical. For the sake of brevity, we derive below just (hﬁl) , a)sm
ter, in short, as (s, wy)'®.

The system of algebraic equations (2.106) and (2.127) is still too complicated
for us to find its exact solution. However, we need only the lowest-order solution
— and this simplifies the problem. Still, even this simplified problem is not trivial,
both because the function h;(®) turns out to be non-analytic and because AE () in
(2.106) is very sensitive to @y in the relevant range. Despite these difficulties, we
have found the solution in a self-consistent way, as briefly described below.

Assume that the asymptotic dependence h;(P) is:

is given by (2.112) or (2.115) for the odd or even spikes respectively,
is given by (2.119) or (2.124) for the odd or even spikes respectively.

), denoting the lat-

hs:a@, (2.129)

where the constant a may be found from the asymptotic solution of (2.106), (2.127)
and (2.129).

Substituting the energies E = 1/2 — ®+ 3;1]»)" and E=1/24+d— 54 in (2.89)

and taking account of (2.112), (2.115), (2.119), (2.124) and (2.129), we find that,
both for the odd and even spikes, the inequality

Oy — O(E) < @y (2.130)

holds over the whole relevant range of energies, i.e. for

AE€[-D+58") & s

min’? min] .

(2.131)
Thus, the resonant approximation is valid over the whole range (2.131). Eq. (2.96)
for g, (E) is valid over the whole relevant range of energies too.

Consider Eq. (2.127) in an explicit form. Namely, we express @y from (2.127),
using Eqgs. (2.87), (2.96), and (2.97), using also (2.112) or (2.115) for odd or even
spikes and (2.129):

16 With account taken of the next-order corrections, the spike minimum (fq, @) coincides with
(hgl) , a)s(l)) in case of an odd spike, or with (hg") , a)s(“)) in case of an even spike. This occurs because,
in case of odd spikes, |g,(E)| increases/decreases as E approaches the relevant vicinity of the
upper/lower barrier, while it is vice versa in the case of even spikes. And the larger |g,| the further
the resonance separatrix extends: in other words, the reconnection of the barrier chaotic layer with
the resonance separatrix requires a smaller value of & at the barrier where |g,|, in the relevant
vicinity of the barrier, is larger.
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nw h2 1
Wy = 1+ +0 . 2.132
T 2 (%) { nd <1n2(4e/¢')>} (2152
We emphasize that the value of 6rE11i)n enters explicitly only the term O(...) while, as
is clear from the consideration below, this term does not affect the leading terms in

(hs, @). Thus, § () does not affect the leading term of @ at all, while it affects the

> Ymin

leading term of kg only implicitly: Srgi)n lies in the range of energies where ng,(E) ~

/2. This latter quantity is present in the second term in the curly brackets in (2.132)

and, as becomes clear from further consideration, &y is proportional to it.
Substituting (2.132) into the expression for AEW in (2.106), using (2.129) and

keeping only the Ieading terms, we obtain

AEW = /1 —4ec2, czﬂa. (2.133)
n

Substituting AE) from (2.133) into Eq. (2.106) for h(wy) and allowing for (2.129)
once again, we arrive at a transcendental equation for c:

ln<1+x(6)> _ogle)=c,  le)=\1—de2. (2.134)

1=2x(c)
An approximate numerical solution of Eq. (2.134) is

¢ ~0.179. (2.135)

Thus, the final leading-order asymptotic formule for @y and 4 in the minima of
the spikes are the following:

(n—é—l) 4 (11-5]) c (p
W0 = O, =n , ho=h =n——-= , (2.136
0 =50 21n (%) 0="0 2v/21n (%) ( )
n=1,3,5,..., d — 0,

where the constant ¢ ~ 0.179 is the solution of Eq. (2.134).

The self-consistent derivation of the explicit asymptotic formulee for the minima
of hge(@y) constitutes the second main result of this section. These formulae allow
one to predict immediately the parameters for the weakest perturbation that may
lead to global chaos.

2.4.1.5 Numerical example and next-order corrections

For & = 0.2, the numerical simulations give the following values for the frequencies
at the minima of the first two spikes (see Fig. 2.9):

ol 20.40054+0.0005, @ ~1.24+0.005. (2.137)
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By the lowest-order formula (2.136), the values are:

o) ~0393, o ~1.18, (2.138)

in rather good agreement with the simulations.
The next-order correction for @ can immediately be found from Eq. (2.132) for
oy and from Eq. (2.136) for Ay, so that

() e )
W =m0 1+ 7 ~ 7} s n=1,3,5,.... (2.139)
2in (%) 2in (%)

The formula (2.139) agrees with the simulations even better than the lowest-order
approximation:

ws(]l) ~0.402, wﬁf) ~1.21. (2.140)

For A in the spikes minima, the simulations give the following values (see Fig.
2.9):

nY ~0.0049, A ~0.03. (2.141)

The values according to the lowest-order formula (2.52) are:

W) ~00032, 1P ~0.01. (2.142)
The theoretical value hg(l)) gives reasonable agreement with the simulation value h§1).

The theoretical value hg? gives the correct order of magnitude for the simulation

value h§2>. Thus, the accuracy of the lowest-order formula (2.136) for 4y is much

lower than that for @j: this is due to the steepness of A,.(y) in the ranges of the
spikes (the steepness, in turn, is due to the flatness of the function w(E) near its
maximum). Moreover, as the number of the spike j increases, the accuracy of the

()

lowest-order value &,

significantly decreases. The latter can be explained as fol-
lows. For the next-order correction to hg'(’)), the dependence on & reads as:

) ) |
nl) In(4e/P)’

(2.143)

At least some of the terms in this correction are positive and proportional to hg(? (e.g.

due to the difference between the exact equation (2.99) and its approximate version
(2.101)), while hg(? is proportional to n = 2j — 1. Thus, for @ = 0.2, the relative
correction for the 1st spike is ~ 0.25 while the correction for the 2nd spike is a few
times larger i.e. ~ 1. But the latter means that, for @ = 0.2, the asymptotic theory
for the 2nd spike cannot pretend to be a quantitative description of h§2>, but only
provides the correct order of magnitude. Besides, if n > 1 while & exceeds some
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critical value, then the search of the minimum involves Eq. (2.150) rather than Eq.
(2.104), as explained below in Sect. 2.4.2 (cf. Figs. 2.15(b) and 2.16). Altogether,
this explains why hgl) is larger than h‘g(? only by 50% while h§2> is larger than hg(z))

by 200%.

To provide a consistent explicit derivation of the correction to h.g'(])) is complicated.
A reasonable alternative may be a proper numerical solution of the algebraic system
of Egs. (2.104)!7 and (2.125) for the odd spikes, or (2.126) for the even spikes!®. To
this end, in Egs. (2.104)!7 and (2.125) or (2.126) we use: (i) the exact values of the
saddle energies obtained from the exact relations (2.100) instead of the approximate
relations (2.101); (ii) the exact formula (2.88) for w(E) instead of the asymptotic
expression (2.89); (iii) the exact functions g, (E) instead of the asymptotic formula
(2.86); (iv) the relation (111) and the calculation of the “tangent” state ( ~,(1),It(1))
by Eqgs. (2.172), (2.183) for the odd spikes, or relation (2.123) and the calculation
of the “tangent” state ( ~,(”>,I,<”)) by Egs. (2.202)—(2.204) for the even spikes. Note
that, to find the exact function g, (E), we substitute into the definition of ¢,(E) in
(2.87) the explicit'® solution for ¢(E, w):

o [M=V2E+D b3
q(E7w)—arcsm<7l_n ) for we[o72],
T
q(E,w)=n—q(E,m— V) for we[i,n], (2.144)
q(E,y) =q(E,2m — y) for y€|[r,2x],
775%(\/2 —¢+1)sn2(2§w>,

where sn(x) is the elliptic sine (Abramovitz and Stegun, 1970) with the same modu-
lus k as the full elliptic integral K defined in (2.88). The numerical solution described
above gives:

(a)ﬁ‘))num ~0.401 , (hﬁ”)num ~0.005 ,
(2.145)

(“"‘(2))% ~1.24 (hﬁ,z))num ~0.052 .

The agreement with the simulation results is: (i) excellent for @, for the both
spikes and for A for the Tst spike, (ii) reasonable for A, for the 2nd spike. Thus,
if @ is moderately small, a much more accurate prediction for % than that by the
lowest-order formula is provided by the numerical procedure described above.

T For n > 1, it is also necessary to check if the solution lies above the line (2.150). If it does not,
then (2.104) should be replaced here by (2.150).

'8 In the general case of an arbitrary potential U (q), when the explicit expression for g(E, y) and
@(E) cannot be obtained, these functions can be calculated numerically.
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2.4.2 Theory of the spikes’ wings

The goal of this section is to find the mechanisms responsible for the formation of
the spikes’ wings (i.e. the function hg(®¢) in the ranges of wy slightly deviating
from a)s(J )), and to provide for their theoretical description.

Before developing the theory, we briefly analyze the simulation data (Fig. 2.9),
concentrating on the Tst spike. The left wing of the spike is smooth and nearly
straight. The initial part of the right wing is also nearly straight'®, though less steep.
But at some small distance from a)s<1> its slope changes jump-wise by a few times:
compare the derivative dhg./dwys ~ 0.1 at wr = 0.4+ 0.41 (see the left inset in Fig.
2.9) and dhg./d@s ~ 0.4 at @; = 0.45 - 0.55 (see the main part of Fig. 2.9). Thus,
even prior to the theoretical analysis, one may assume that there are a number of
different mechanisms responsible for formation of the wings.

Consider the arbitrary jth spike. We have shown in the previous section that, in
the asymptotic limit @ — 0, the minimum of the spike corresponds to the intersec-
tion between the line (2.104) with (2.125) or (2.126) for odd or even spikes respec-
tively. We recall that: (i) Eq. (2.104) corresponds to the overlap in phase space be-
tween nonlinear resonances of the same order n = 2j — 1; (ii) Eq. (2.125) or (2.126)
corresponds to the onset of the overlap between the resonance separatrix associated
respectively with the Tower or upper saddle and the chaotic layer associated with the

lower or upper potential barrier; (iii) for @y = a)gj), the condition (2.125) or (2.126)
also guarantees the overlap between the upper or lower resonance separatrix, re-

spectively, and the chaotic layer associated with the upper or lower barrier!.

If @y becomes slightly smaller than a)s<j ), the resonances shift closer to the bar-
riers while moving apart from each other. Hence, as & increases, the overlap of the

resonances with the chaotic layers associated with the barriers occurs earlier than
W _ @ < Oy, the function hg.(ws) should

with each other. Therefore, at 0 < @y
correspond approximately to the reconnection of resonances of the ordern =2j — 1
as shown in Fig. 2.14(a). Fig. 2.15(a) demonstrates that even the asymptotic formula
(2.1006) for the separatrix reconnection line fits the left wing of the 1st spike quite
well, and that the numerically calculated Tine (2.104) agrees with the simulations
perfectly.

If w; becomes slightly larger than 0.)3(1 ) then, on the contrary, the resonances shift
closer to each other and further from the barriers. Therefore, the mutual overlap
of the resonances occurs at smaller & than the overlap between any of them and
the chaotic layer associated with the lower/upper barrier as shown in Figs. 2.10(c)
and 2.10(d) as well as 2.11(c) and 2.11(d). Hence, it is the latter overlap which
determines the function /i, (@¢) in the relevant range of o (Fig. 2.14(b)). Fig. 2.15
shows that /,.(wy) is indeed well-approximated in the close vicinity to the right
from o)s<" ) by the numerical solution of Eq. (2.125) or (2.126), for an odd or even
spike respectively and, for the 1st spike and the given @, even by its asymptotic
form,

19 Provided Ay (@) is smoothed over small fluctuations.
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Fig. 2.14 Illustrations of the mechanisms of the formation of the 1st spike wings and of the corre-
sponding theoretical lines in Fig. 2.15(a). Boxes (a), (b) and (c) illustrate the lines of Egs. (2.104),
(2.125) and (2.148) respectively: the corresponding perturbation parameters are (@; = 0.39,h =
0.0077), (wy = 0.41,h = 0.00598) and (@ = 0.43,h = 0.01009) respectively. Resonance separa-

trices are drawn in red and cyan. The dashed lines show the functions Iggs(lfl) and Ig's)s(ﬁ/). The

black line in (c) is the trajectory of the resonant Hamiltonian system (2.87) which is tangent to both
dashed lines. (Color version may be found in the online version of (Soskin et al., 2008a) as Fig. 9).




110 S.M. Soskin, R. Mannella, O.M. Yevtushenko, I.A. Khovanov, P.V.E. McClintock

wr 4 o4+AEW 1
— 0+ 2 [0 {20 (%) +1n (L)} —24E()]

2v/2 ’
AE<1>\/¢264exp(’;—”),n2j1, o — ol < @,.  (2.146)
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Fig. 2.15 The lst (a) and 2nd (b) spike in /. (@y): comparison between the results of the numerical
simulations (the lower boundary of the shaded area) and the theoretical estimates. The estimates
are indicated by the corresponding equation numbers and are drawn by different types of lines,
in particular the dashed lines represent the explicit asymptote for the solid line of the same color.
(Color version may be found in the online version of (Soskin et al., 2008a) as Fig. 10).
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The mechanism described above determines A, (®¢) only in the close vicinity
of a)s(j ). If wf /n becomes too close to @y, or exceeds it, then the resonances are not
of immediate relevance: they may even disappear or, if they still exist, their closed
lToops shrink, so that they can no Tonger provide for connection of the chaotic layers
in the relevant range of /. At the same time, the closeness of the frequency to ,,
may still give rise to a large variation of action along the trajectory of the Hamil-
tonian system (2.87). For the odd/even spikes, the boundaries of the chaotic layers
in the asymptotic limit @ — 0 are formed in this case by the trajectory of (2.87)
which is tangent to the lower/upper GSS curves (for the lower/upper layer) or by the
lower/upper part of the separatrix of (2.87) generated by the saddle “s”/*s™ (for the
upper/lower layer). The overlap of the layers occurs when these trajectories coincide
with each other, which may be formulated as the equality of A in the corresponding
tangency and saddle:

) = Al @) for j=1,3,5,...,
I, ~s):]—~](1t(bt),~t(”)) for j=2,46,..., (2.147)
L=1EY &), L=IE"+3§).

Note however that, for moderately small &, the tangencies may be relevant both to
the lower layer and to the upper one (see the Appendix). Indeed, such a case occurs
for our example with @ = 0.2: see Fig. 2.14(c). Therefore, the overlap of the layers
corresponds to the equality of A in the tangencies:

A0, g =™, g™y. (2.148)
To the lowest order, Egs. (2.147), (2.148) read as:
V2®1n (4—6) nm
h=hlw) = CAY 7y . 2.149
() 7 T (%) @19

Both the line (2.148) and the asymptotic line (2.149) well agree with the part of
the right wing of the 1st spike situated to the right from the fold at @y ~ 0.42 (Fig.
2.15(a)). The fold corresponds to the change of the mechanisms of the chaotic layers
overlap.

If @ is moderately small while n > 1, the description of the far wings by the
numerical lines (2.104) and (2.148) may be still quite good but the asymptotic lines
(2.106) and (2.149) cannot pretend to describe the wings quantitatively any more
(Fig. 2.15(b)). As for the minimum of the spike and the wings in its close vicinity,
one more mechanism may become relevant for their formation as shown in Figs.
2.15(b) and 2.16. It may be explained as follows. If n > 1, then ¢,(E) becomes zero
in the close vicinity (~ @?) of the relevant barrier (the upper or lower barrier, in the
case of even or odd spikes respectively: cf. Fig. 2.16). It follows from the equations
of motion (2.98) that no trajectory can cross the line / = I;,_¢. In the asymptotic
limit @ — 0, provided % is from the range relevant for the spike minimum, almost
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the whole GSS curve is further from the barrier than the line / = I,,_, and the
latter becomes irrelevant. But, for a moderately small @, the line may separate the
whole GSS curve from the rest of the phase space. Then the resonance separatrix
cannot connect to the GSS curve even if there is a state on the latter curve with the
same value of H as on the resonance separatrix. For a given @y, the connection then
requires a higher value of A: for such a value, the GSS curve itself crosses the line
I = I,,—¢. In the relevant range of A, the resonance separatrix passes very close to
this line, so that the connection is well approximated by the condition that the GSS
curve touches this line (see the inset in Fig. 2.16):

5“:Eb —qul._]:() for j=2,4,6,...,
8 =Egy, —o—E))  for j=3,57,... (2.150)

This mechanism is relevant to the formation of the minimum of the 2nd spike at
& = 0.2, and in the close vicinity of the spike on the left (Fig. 2.15(b)).

Finally, let us find explicitly the universal asymptotic shape of the spike in the
vicinity of its minimum. First, we note that the lowest-order expression (2.146) for
the spike between the minimum and the fold can be written as the half-sum of the
expressions (2.106) and (2.149) (which represent the lowest-order approximations
for the spike to the left of the minimum, and to the right of the fold respectively).
Thus, all three lines (2.106), (2.146) and (2.149) intersect at a single point. This
means that, in the asymptotic limit @ — 0, the fold merges with the minimum: @y
and & in the fold asymptotically approach @, and %, respectively. Thus, though the
fold is a generic feature of the spikes, it is not of major significance: the spike is
formed basically from two straight lines. The ratio between their slopes is universal.

-0.6 - 0 @ n .

0.4 0.6 0.8 1 1.2

Fig.2.16 Amplitude of the 3rd Fourier harmonic as a function of action (solid red line). The dashed
black line shows the zero level. Its intersection with the solid red line is marked by the circle. The
green line indicates the value of action where g3 = 0. The inset illustrates the line (2.150) in Fig.
2.15(b): the GSS curve touches the horizontal line 7 = I,,—o. (Color version may be found in the
online version of (Soskin et al., 2008a) as Fig. 11).
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So, introducing a proper scaling, we reduce the spike shape to the universal function
(Fig. 2.17):

h(A@s) =" (Ad) =11 —4ec2A0; ~
~1-0.593Ad; for Adr <O,
h(A@p) =h™ (A@;) =14+ A8, for Ady >0,

(2.151)
R A gy = ) (A@p) + 7™ (Ady)
/ 2
1 -1 —4ec2

=1 Al ~ 1+0.203A0y,
- h - — W
h=-1,  Awp=AT% g,

hso T W1 — @0

where @y and hy are the lowest-order expressions (2.136) respectively for the fre-
quency and amplitude in the spike minimum, @y; is the expression (2.139) for the
frequency in the spike minimum, including the first-order correction, and c is a con-
stant (2.135).

In addition to the Ieft and right wings of the universal shape (the solid Tines in
Fig. 2.17), we include in (2.151) the function 2/*)(A@;) (the dashed line in Fig.
2.17): its purpose is to show, on one hand, that the fold merges asymptotically with
the minimum but, on the other hand, that the fold is generic and the slope of the
spike between the minimum and the fold has a universal ratio to any of the slopes
of the major wings.

Even for a moderately small &, as in our example, the ratios between the three
slopes related to the 1st spike in the simulations are reasonably well reproduced

Fig. 2.17 The universal shape of the spike minimum (2.151) (solid lines). The dashed line indicates
the universal slope of the spike in between the minimum and the fold, which have merged in the
universal (asymptotic) function (15T). (Color version may be found in the online version of (Soskin
et al., 2008a) as Fig. 12).
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by those in Eq. (2.151): cf. Figs. 2.15(a) and 2.17. It follows from (2.151) that the
asymptotic scaled shape is universal i.e. independent of @ (but still assuming the
asymptotic limit @ — 0), n or any other parameter.

The description of the wings of the spikes near their minima, in particular the
derivation of the spike universal shape, constitutes the third main result of this sec-
tion.

2.4.3 Generalizations and applications

The facilitation of the onset of global chaos between adjacent separatrices has a
number of possible generalizations and applications. We discuss one of the applica-
tions in Sect. 2.5, but first list some of generalizations below.

1. The spikes in Ay (0f) may occur for an arbitrary Hamiltonian system with
two or more separatrices. The asymptotic theory can be generalized accordingly.

2. The absence of pronounced spikes at even harmonics 2j@, is explained by
the symmetry of the potential (2.84): the even Fourier harmonics of the coordinate,
¢, are equal to zero. For time-periodic perturbation of the dipole type, as in Eq.
(2.85), there are no resonances of even order on account of this symmetry (Chirikov,
1979; Lichtenberg and Lieberman, 1992; Zaslavsky et al., 1991; Zaslavsky, 2007,
2005; Soskin et al., 2003). If either the potential is non-symmetric, or the additive
perturbation of the Hamiltonian is not an odd function of the coordinate, then even-
order resonances do exist, resulting in the presence of the spikes in &g (@) at @f ~
2jwy,.

3. There may also be an additional facilitation of the onset of global chaos that
could reasonably be described as a “secondary” facilitation. Let the frequency @y
be close to the frequency @; of the spike minimum, while the amplitude & be ~ h;
but still lower than hg.(@y). Then there are two resonance separatrices in the 7 —
plane that are not connected by chaotic transport as shown in Fig. 2.11(b). This sys-
tem possesses the zero-dispersion property. The trajectories of the resonant Hamil-
tonian (2.87) which start in between the separatrices oscillate in I (as well as in
dyr/dr). The frequency @ of such oscillations along a given trajectory depends on
the corresponding value of A analogously to the way in which @ depends on E for
the original Hamiltonian Hy: @(H) is equal to zero for the values of H correspond-
ing to the separatrices (being equal in turn to Hy and Hy,: see Eq. (2.103)) while
possessing a nearly rectangular shape in between, provided the quantity |Hy — Hy,|
is much smaller than the variation of H within each of the resonances,

|I:I51 *I:Isu| < Hvar ~ |Hsl *Hel| ~ |Hsu *I:Ieu|a (2-152)

where H,; and H,, are the values of H at the elliptic point of the lower and upper
resonance respectively. The maximum of @(H) in between H; and Hy, is described
by the asymptotic formula:
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~ T
Wy ~ = = = .
" In (Hvar/|Hsl - Hsu|)

(2.153)

If we additionally perturb the system in such a way that an additional time-
periodic term of frequency @y ~ @, arises in the resonance Hamiltonian, then
the chaotic layers associated with the resonance separatrices may be connected by
chaotic transport even for a rather small amplitude of the additional perturbation,
due to a scenario similar to the one described in this paper.

There may be various types of such additional perturbation (Soskin, unpub-
lished). For example, one may add to H in Eq. (2.85) one more dipole time-periodic
perturbation of mixed frequency (i.e. =~ w,, + @,,). Alternatively, one may directly
perturb the angle of the original perturbation by a low-frequency perturbation, i.e.
the time-periodic term in H of Eq. (2.85) is replaced by the term

—hgcos(wst +Acos(@rt)), Of X O, Of ~ Q. (2.154)

Recently discussed physical problems where a similar situation is relevant are:
chaotic mixing and transport in a meandering jet flow (Prants et al., 2006) and re-
flection of light rays in a corrugated waveguide (Leonel, 2007).

4. If the time-periodic perturbation is multiplicative rather than additive, the reso-
nances become parametric (cf. (Landau and Lifshitz, 1976)). Parametric resonance
is more complicated and much less studied than nonlinear resonance. Nevertheless,
the main mechanism for the onset of global chaos remains the same, namely the
combination of the reconnection between resonances of the same order and of their
overlap in energy with the chaotic layers associated with the barriers. At the same
time, the frequencies of the main spikes in &,.(@y) may change (though still being
related to @,,). We consider below an example when the periodically driven param-
eter is?® @ in (2.84). The Hamiltonian is

H = p*/2+ (P —sin(q))*/2,

(2.155)
D = Py + hcos(wyt), Py =const < 1.

The term (P —sin(g))?/2 in H (2.155) may be rewritten as (P — sin(g))?/2 +
(®y —sin(g))hcos(wyt) +h* cos? (wst) /2. The last term in the latter expression does
not affect the equations of motion. Thus, we end up with an additive perturbation
(Dp —sin(g))hcos(wyt). In the asymptotic limit @y — 0, the nth-order Fourier com-
ponent of the function (Py — sin(g)) can be shown to differ from zero only for the
orders n = 2,6, 10,... Therefore one may expect the main spikes in /g (®y) to be at
frequencies twice larger than those for the dipole perturbation (2.85):

ol 2200 22025 - on,  j=123,.... (2.156)

This agrees well with the results of simulations (Fig. 2.18).

20 In the case of a 2D electron gas in a magnetic superlattice, this may correspond e.g. to the
time-periodic electric force applied perpendicular to the direction of the periodic magnetic field
(Yevtushenko and Richter, 1998, 1999).
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Moreover, the asymptotic theory for the dipole perturbation may immediately be
generalized to the present case: it is necessary only to replace the Fourier component
of the coordinate g by the Fourier component of the function (®y — sing):

_ A oatn=20j-1),
(P —sin(q))n = 4 7n i=1,23,.... ®Hy—0 (2157
0 atn#2(2j-1),

(cf. Eq. (2.96) for g,,). We obtain:

=) T 52 ct D
@;poEwA(po4 )=”—, hS[IOEhEpg )="§—Oa (2.158)
21n () In (%)
0 0
n=2,6,10,..., &y — 0,

where ¢ is given in Eqgs. (2.134) and (2.135).

0.3

Amplitude

0.1}

1.5
Frequency oy

0.060
0.82 0.84 2.49

2.51 2.53
Fig. 2.18 Diagram analogous to that in Fig. 2.9, but for the system (2.155) (with &y = 0.2).

0.78 0.8
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For &y = 0.2, Eq. (2.158) gives, for the 1st spike, values differing from the sim-
ulation data by about 3% in frequency and by about 10% in amplitude. Thus, the
lowest-order formulae accurately describe the 1st spike even for a moderately small
D.

5. One more generalization relates to multi-dimensional Hamiltonian systems
with two or more saddles with different energies: the perturbation may not neces-
sarily be time-periodic, in this case. The detailed analysis has not yet been done.

The paper (Soskin et al., 2008a) presents a rather detailed discussion of possible
applications to the electron gas in a magnetic superlattice, a spinning pendulum,
cold atoms in an optical lattice as well as to problems of noise-induced escape and
the stochastic web formation. We review briefly in the next section the further de-
velopment of the latter application.

2.5 Enlargement of a low-dimensional stochastic web

The stochastic web concept dates back to the 1960s when Arnold showed (Arnold,
1964) that, in non-degenerate Hamiltonian systems of dimension exceeding 2, reso-
nance lines necessarily intersect, forming an infinite-sized web in the Poincaré sec-
tion. It provides in turn for a slow chaotic (sometimes called “stochastic”) diffusion
for infinite distances in relevant dynamical variables.

It was discovered towards the end of 1980s (Zaslavsky et al., 1986; Chernikov
et al., 1987a,b, 1988) that, in degenerate or nearly-degenerate systems, a stochas-
tic web may arise even if the dimension is 3/2. One of the archetypal examples of
such a Tow-dimensional stochastic web arises in the 1D harmonic oscillator per-
turbed by a weak traveling wave the frequency of which coincides with a multiple
of the natural frequency of the oscillator (Zaslavsky, 2007; Chernikov et al., 1987b;
Zaslavsky et al., 1991). Perturbation plays a dual role: on the one hand, it gives
rise to a slow dynamics characterized by an auxiliary Hamiltonian that possesses an
infinite web-like separatrix; on the other hand, the perturbation destroys this self-
generated separatrix, replacing it by a thin chaotic Tayer. Such a Tow-dimensional
stochastic web may be relevant to a variety of physical systems and plays an impor-
tant role in corresponding transport phenomena: see (Zaslavsky, 2007; Chernikov
et al., 1987b; Zaslavsky et al., 1991) for reviews on relevant classical systems. In
addition, there are quantum systems in which the dynamics of transport reduces to
that in the classical model described above. The latter concerns e.g. nanometre-scale
semiconductor superlattices with an applied voltage and magnetic field (Fromhold
etal., 2001, 2004).

One might assume that, like the Arnold web, the low-dimensional stochastic web
described above should be infinite, so that it can provide for transport between the
centre of the web and states situated arbitrarily far away in coordinate and momen-
tum. However the numerical integration of the equations of motion shows that this is
not so: even for a rather non-weak perturbation, the real web is limited to the region
within a few inner loops of the infinite web-like resonant separatrix (Fig. 2.19(a))
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while chaotic layers associated with outer loops are distinctly separated from each
other and from the web-like chaotic layer formed by the few inner loops. The rea-
son is apparently as follows. The single infinite web-like separatrix is possessed
by the resonant Hamiltonian only in the first-order approximation of the averaging
method (Bogolyubov and Mitropolsky, 1961) whereas, with the account taken of
the next-order approximations, the separatrix apparently splits into many separate
complex loops successively embedded into each other. Non-resonant terms of the
perturbation dress the separatrices by exponentially narrow chaotic layers. If the
perturbation is not small, the chaotic layers manage to connect neighbouring sep-
aratrix loops situated close to the centre. However, the width of the chaotic lTayer
decreases exponentially sharply as the distance from the centre grows (Zaslavsky,
2007; Chernikov et al., 1987b; Zaslavsky et al., 1991). As a result, the merger be-
tween chaotic layers associated with neighbouring loops takes place only within the
few Toops closest to the centre, provided that the perturbation is not exponentially
strong.

If the resonance between the perturbation and the oscillator is inexact, or if the os-
cillator is nonlinear, the splitting between the neighbouring loops is typically much
larger: it appears even in the first-order approximation of the averaging method (Za-
slavsky, 2007; Chernikov et al., 1988; Zaslavsky et al., 1991). So the number of
loops connected to the centre by chaotic transport is even smaller (Zaslavsky, 2007;
Chernikov et al., 1988; Zaslavsky et al., 1991) than in the case of the exact reso-
nance.

A natural question arises: how can the perturbation be modified in order for the
transport to be unlimited or, at least, significantly extended? One of the answers was
obtained in the very beginning of studies of the low-dimensional webs (Zaslavsky
et al., 1986; Chernikov et al., 1987a): if the perturbation consists of repeated in time
short kicks that are also periodic in space, and if the frequency of the kicks is equal
to a multiple of the natural frequency, then a so-called uniform web covering the
whole of phase space is formed. However such a perturbation is absent in many
cases and, even where present, the chaotic transport is still exponentially slow if the
perturbation is weak (Zaslavsky, 2007; Zaslavsky et al., 1991).

It is reasonable then to pose the following question: is it possible to obtain a web
of form similar to the original one (Chernikov et al., 1987b) but substantially ex-
tended in phase space? A positive answer was suggested in (Soskin et al., 2008a)
and explicitly realized recently (Soskin et al., 2009) using the following simple idea.
The chaotic Iayer in the webs is exponentially narrow since the frequency of the non-
resonant perturbation of the resonant Hamiltonian is necessarily much higher than
the frequency of small eigenoscillation in the cell of the web-like separatrix (Za-
slavsky, 2007; Zaslavsky et al., 1986; Chernikov et al., 1987a,b, 1988; Zaslavsky et
al., 1991). So we need to modify the perturbation in such a way that the resonant
Hamiltonian does not change while its perturbation contains, in addition to the con-
ventional terms, a low-frequency one. One may do this modulating the wave angle
with a Tow frequency or adding one more wave with the frequency slightly shifted
from the original one. The latter option, together with a generalization for the uni-
form web leading to a huge enhancement of the chaotic transport through it, have
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not yet been considered in detail while the work (Soskin et al., 2009, 2010b) and the
present section concentrate on the former option since it may have immediate ap-
plications to nanometre-scale semiconductor superlattices in electric and magnetic

fields (Fromhold et al., 2001, 2004).

2.5.1 Slow modulation of the wave angle

Fig. 2.19 demonstrates the validity of our idea. We integrate the equation
G+ q=0.1sin[15g — 4t — hsin(0.021)], (2.159)

first for h = 0 (i.e. for the conventional case with parameters as in (Zaslavsky, 2007;
Chernikov et al., 1987b; Zaslavsky et al., 1991)), and secondly for 2z =0.1. Although
the modulation in the latter case is weak (its amplitude is about 63 times smaller than
the 27 period of the wave angle which is a characteristic scale in this problem), the
resultant increase in the size of the web in coordinate and momentum is lTarge: by a
factor of ~6.

An analytic theory can be developed to account for these results. It can be gener-
alized for the off-resonant case (Zaslavsky, 2007; Chernikov et al., 1988; Zaslavsky
et al., T991) too, using the general method developed in (Soskin et al., 2008a,b;
Soskin and Mannella, 2009a,b) and described above in the previous sections.

It is anticipated that the method can also be generalized for uniform webs (Za-
slavsky, 2007; Zaslavsky et al., 1986, 1991) too, leading to an exponentially strong
enhancement of chaotic transport through them.

-0.1 -0 0.1 -1 -0.5 0
q/2n ql2m

Fig. 2.19 The Poincaré section for a trajectory of the system (2.159) with initial state ¢ =0.1, ¢ =0
(at instants t, = nT where T = 27/0.02 is the period of the modulation and n = 1,2, 3, ...600000)
for h = 0 (left panel) and 4 = 0.1 (right panel). A sympletic integration scheme of the fourth order
is used, with an integration step t;,; = % ~ 1.57 x 107, so that the inaccuracy at each step is
of the order of tfm ~ %1071, The left panel corresponds to the example of the conventional case
considered in (Zaslavsky, 2007; Chernikov et al., 1987b; Zaslavsky et al., 1991). The right panel

demonstrates that the modulation, although weak, greatly enlarges the web sizes.
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2.5.2 Application to semiconductor superlattices

The works (Fromhold et al., 2001, 2004) consider quantum electron transport in
1D semiconductor superlattices (SLs) on the nanometre scale, subject to a constant
electric field along the SL axis and to a constant magnetic field. The spatial peri-
odicity with a period of the nanometre scale gives rise to the onset of minibands
for electrons. In the tight-binding approximation, the electron motion in the Towest
mini-band is described by the following dispersion relation for the electron energy
E versus momentum p:

A[l —cos(pcd/R)] P>+ p?
Ep) =4l 2(” /], = (2.160)

where x is the direction along the SL axis, A is the miniband width, d is the SL
period, m* is the electron effective mass for the motion in the transverse (i.e. y — z)
plane.

Thus, the quasi-classical motion of electron in an electric field F and a magnetic
field B is described by the following equation:

% — _e{F+[VoE(p) x B]}. (2.161)

where e is the electron charge

It was shown in (Fromhold et al., 2001) that, with a constant electric field along
the SL axis F = (—Fp,0,0) and a constant magnetic field with a given angle 0 to
the axis B = (Bcos(0),0,Bsin(0)), the dynamics of the z-component of momen-
tum p, reduces to the equation of motion of an auxiliary harmonic oscillator in a
plane wave. At certain values of the parameters, the ratio of the wave and oscillator
frequencies takes integer values (like in Eq. (2.159) with & = 0) which gives rise to
the onset of the stochastic web, leading in turn to a delocalization of the electron in
the x-direction and, as a result, to an increase of the dc-conductivity along the SL
axis. The experiment (Fromhold et al., 2004) appears to provide evidence in favor
of this exciting hypothethis.

At the same time, the finite size of the web and, yet more so, the exponentially
fast decrease in the transport rate as the distance from the centre of the web in-
creases, seems to put strong limitations on the use of the effect. We suggest a simple
and efficient way to overcome these limitations. Indeed, one can show that, if we
add to the original (constant) electric field Fy a small time-periodic (ac) component
Fyc sin(£2,ct), then the wave angle in the equation of motion of p, is modulated by
the term (cf. Eq. (2.159)):

Fye © Q Fod
hsin(Qr) =~ 2V gin (22¢) @y = L
Fy Q4 Q n
This allows us to increase drastically the size of the web and the rate of chaotic
transport through it. For example, for the case shown in Fig. 2.19, where we have an

increase of the web size by a factor of 6 %, it is sufficient to add an AC component of

(2.162)




2 A New Approach to the Treatment of Separatrix Chaos and Its Applications 121

the electric field with the frequency 0.02 - y and an amplitude F,c = 0.1-0.02 - Fy
i.e. an amplitude smaller than that of the original constant field Fy by a factor of
500x%.

2.5.3 Discussion

We have presented above just initial results on the subject (Soskin et al., 2009,
2010b). There are still many unsolved interesting problems:

1. Tt can be shown that, in the off-resonance case, there may be a facilitation
of the onset of global chaos similar to that described in Sect. 2.4 above, i.e. the
critical value of the modulation amplitude % required for the onset of global chaos
between neighbouring separatrix loops possesses deep spikes (minima) as a function
of the modulation frequency .. The detailed theory of this facilitation has yet to
be developed.

2. Our conjecture that, in the resonant case, taking account of the next-order ap-
proximations of the averaging method could explain the split between different sep-
aratrix loops, should be proved rigorously. If the corresponding theory is developed,
it will provide the possibility of calculating both the optimal modulation frequency,
i.e. that at which the web sizes are maximal, for a given amplitude of modulation,
and the maximum sizes themselves.

3. It would be interesting to study the case with an additive perturbation (rather
than an angular modulation) in detail, both numerically and theoretically.

2.6 Conclusions

We have reviewed the recently developed method for the theoretical treatment of
separatrix chaos in regimes when it involves resonance dynamics. It has been ap-
plied both to single-separatrix chaotic layers and to the onset of global chaos be-
tween two close separatrices. The method is based on a matching between the dis-
crete chaotic dynamics of the separatrix map and the continuous regular dynamics
of the resonance Hamiltonian. For single-separatrix chaos, the method has allowed:

1. Development of the first asymptotic (i.e. for 2 — 0) description of the high
peaks in the width of the separatrix chaotic layer as a function of the perturbation
frequency, thus describing its dominant feature and, in particular, its maxima.

2. Classification of all systems into two types, based on the asymptotic depen-
dence of the maximum width on the perturbation amplitude /4: the maximum width
is proportional to ~1In(1/h) or h for systems of type I or type II respectively.

For systems with two or more separatrices, the method has allowed us to develop
an accurate asymptotic theory of the facilitation of the onset of global chaos between
neighbouring separatrices which occurs at frequencies close to multiples of a local
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maximum in the eigenoscillation frequency as a function of the energy: the local
maximum necessarily exists in the range between the separatrices.

Finally, for an oscillator perturbed by a plane wave of frequency equal to or
close to the frequency of a small eigenoscillation, the method has allowed us to
suggest how to enlarge substantially the size of the stochastic web using a rather
weak perturbation, and it promises to provide an accurate theoretical description of
the enlargement.
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2.7 Appendix

This appendix follows the appendix of the paper (Soskin et al., 2008a). The chaotic
layers of the system (2.85) associated with the separatrices of the unperturbed sys-
tem (2.84) are described here by means of the separatrix map. To derive the map,
we follow the method described in (Zaslavsky et al., 1991), but the analysis of the
map significantly differs from formerly existing ones (Lichtenberg and Lieberman,
1992; Zaslavsky et al., 1991; Zaslavsky, 2007, 2005; Piftankin and Treschev, 2007)
(cf. also the recently published paper (Shevchenko, 2008) where the analysis of the
map has some similarity to ours but still differs significantly). Using our approach,
we are able to calculate the chaotic layer boundaries in the phase space (rather than
only in energy), throughout the resonance frequency ranges, and we can quantita-
tively describe the transport within the layer in a manner different from existing
ones (cf. (Piftankin and Treschev, 2007; Rom-Kedar, 1994) and references therein).

2.7.1 Lower chaotic layer

We now present a detailed consideration of the lower chaotic layer. The upper layer
may be considered in a very similar way.
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2.7.1.1 Separatrix map

A typical form of trajectory §(t) close to the inner separatrix (that corresponding to
the lower potential barrier) is shown in Fig. 2.20. One can resolve pulses in (7).
Each of them consists of two approximately antisymmetric spikes2'. The pulses are
separated by intervals during which |§| is relatively small. In general, successive
intervals differ between each other. Let us introduce the pair of variables E and ¢:

E=Hy, ¢=a+q,, (2.163)

where the constant ¢, may be chosen arbitrarily.

The energy E changes only during the pulses of ¢(¢) and remains nearly un-
changed during the intervals between the pulses, when [¢(z)] is small (Zaslavsky
et al., 1991). We assign numbers i to the pulses and introduce the sequences of
(E;, @;) corresponding to the initial instants #; of the pulses. In such a way, we obtain
the following map (cf. (Zaslavsky et al., 1991)):

velocity, dg/dt

ti-1t-1 R t tir1 t
time, ¢

Fig. 2.20 Schematic example of the time dependence of the velocity of the perturbed system (thick
solid line) in the case when the energy of motion varies in the close vicinity of the top of the lower
potential barrier. The dashed line marks the zero level of the velocity. Pulses of the velocity are
schematically singled out by the parallelograms (drawn by a thin solid line). The two sequences of
time instants (...,f;_1,%,%1,...) and (...,#/_,,%,t/,,,...) correspond to beginnings and centers
of the pulses, respectively.

2I'Spikes correspond to motion over any of the minima of the potential, first in one and then (after
the reflection from one of the upper barriers) in the opposite direction. If @ is small, then the spikes
within the pulse are separated by long intervals since the reflection point is situated close to the top
of the upper barrier, where the motion is slow.
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3 —sign(Ej — EWV
0rm(3 —sign(Eiy )
2(1)(Ei+1) ’

AE; = h/ dr () cos(yt), (2.164)
th pulse

Eiy1 = Ei+ AE;, Qi1 =@+

where [; i pulse means integration over the ith pulse. Before deriving a more explicit
expression for AE;, we make two remarks.

1. Let us denote with ¢/ the instant within the ith pulse when ¢ is equal to zero
(Fig. 2.20). The function ¢(¢ —]) is an odd function within the ith pulse and it is
convenient to transform the cosine in the integrand in AE; (2.164) as

cos(wyt) = cos(wy(t —1;) + wyt;)
= cos(y(t —1])) cos(wyt]) — sin(w/(t — 1)) sin(wt]),

and to put @, = @ (t/ — 1), so that ¢; = st/
2. Each pulse of ¢ contains one positive and one negative spike. The first spike
can be either positive or negative. If E changes during the given nth pulse so that

its value at the end of the pulse is smaller than E (1), then the first spikes of the ith
and (i + 1)st pulses have the same signs. On the contrary, if E at the end of the ith

pulse is larger than E(l), then the first spikes of the ith and (i + 1)st pulses have
opposite signs. Note that Fig. 2.20 corresponds to the case when the energy remains
above E,EI) during the whole interval shown in the figure. This obviously affects the
sign of AE;, and it may be explicitly accounted for in the map if we introduce a new
discrete variable 0; = £1 which characterizes the sign of ¢ at the beginning of a

given ith pulse,

o; =sign(¢(#)) , (2.165)
and changes from pulse to pulse as
i1 = oysign(E\") — Eiy1) . (2.166)

With account taken of the above remarks, we can rewrite the map (164) as fol-
lows:

Ei 1 =E+ G,'/’l&‘(low) sin((p,-),
om(3 —sign(E — ESV))
20(Eit1) ’

Oi1 = osign(Ey") — Eip), (2.167)

Gir1 = @i+

gliow) = gllow) () = g / dr 4(t — 1)) sin(@y(t — 1)
th pulse

tit1
~20; [ dr gt — o) sin(ay(t — ).

i

Q
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A map similar to (2.167) was introduced in (Zaslavsky and Filonenko, 1968),
and it is often called the Zaslavsky separatrix map. It was re-derived mathemat-
ically rigorously in (Rom-Kedar, 1990); see also the recent mathematical review
(Piftankin and Treschev, 2007). The latter review also describes generalizations of
the Zaslavsky map as well as other types of separatrix map. The analysis presented
below relates immediately to the Zaslavsky map but it is hoped that it will prove
possible to generalize it for other types of separatrix maps too.

The variable £°*) introduced in (2.167) will be convenient for the further calcu-
lations since it does not depend on i in the Towest-order approximation. A quantity
like 6, = h|8(1"w)| is sometimes called the separatrix split (Zaslavsky, 2007) since it
is conventionally assumed that the maximal deviation of energy on the chaotic tra-
jectory from the separatrix energy is of the order of d; (Lichtenberg and Lieberman,
1992; Zaslavsky et al., 1991; Zaslavsky, 2007, 2005). As in the main text, we shall
use this term, but we emphasize that the maximal deviation may be much larger.

In the adiabatic limit @y — 0, the excess of the upper boundary E(EII) of the lower

layer over the lower barrier E,EI) does not depend on angle and is equal to 27k (cf.
(Elskens and Escande, 1991)). But @y relevant for the spike of A (@) cannot be
considered as an adiabatic frequency, despite its smallness, because it is close to
Wy, or to its multiple while all energies at the boundary Tie in the range where the
eigenfrequency is also close to w,:

o~ Q2j—Nox~ (2j-Do(EY),  j=1,23,.... (2.168)

The validity of (2.168) (confirmed by the results) is crucial for the description of
the layer boundary in the relevant case.

2.7.1.2 Separatrix split

Let us evaluate £(‘o%) explicitly. Given that the energy is close to E (1)
G(t—1l)in glow) (2.167) may be replaced by the corresponding velocity along the
separatrix associated with the lower barrier, q§’”W> (t —1t!), while the upper limit of
the integral may be replaced by infinity. In the asymptotic limit & — 0, the interval
between spikes within the pulse becomes infinitely Tong so that only the short (~
a)()*l) intervals corresponding to the spikes contribute to the integral in glow) (2.167).

In the scale @/ !, they may be considered just as the two instants:

, the velocity

(1,2)

i) —t{%i£7 @ — 0. (2.169)

In the definition of (%) (2.167), we substitute the argument of the sine by the
corresponding constants for the positive and negative spikes respectively:
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gllow) ~ 2sin (—f> / dr g{'") (t —t]) ~ 2msin (—f> ,
4y ) . positive spike 4, (2.170)
b — 0.

In the derivation of the first equality in (2.170), we have also taken into account that
the function quow) (x) is odd. In the derivation of the second equality in (2.170), we
have taken into account that the right turning point of the relevant separatrix is the
top of the lower barrier and the distance between this point and the Ieft turning point
of the separatrix approaches 7 in the limit @ — 0.

For the frequencies relevant to the minima of the spikes of A, (®¢), i.e. for vy =

o) ~ (2j — 1)@y, we obtain:

2,‘71}

el (@) ~ 2msin ((2/-1)F) = Var(-n*,

(2.171)
j=1,2,3,..., & —0.
For moderately small @, it is better to use the more accurate formula:
el (w;) =2 / dt ¢ (t)sin(wyt), (2.172)
0

where the instant + = 0 corresponds to the turning point of the separatrix to the
left of the lower barrier, i.c. ¢\'")(r = 0) = 0 while ¢{'”") > 0 for all 1 > 0. The
dependence ’.s(lmﬂ(wf)‘ by Eq. (2.172) is shown for & = 0.2 in Fig. 2.21(a). For
small frequencies, the asymptotic formula (2.170) fits well the formula (2.172).

2.7.1.3 Dynamics of the map

Consider the dynamics of the map (2.167) when @y is close to the spike’s minima:
@ = noy, where n =2j—1 while j =1,2,3,.... Let the energy at the step i = —1

be equal to E,E”. The trajectory passing through the state with this energy is chaotic

(1)

since (@(E))~! diverges as E — Eh1 and, therefore, the angle ¢_; is not correlated
with the angle on the previous step ¢_,. The quantity 6_; is not correlated with
0_, either. Thus, sin(¢_;) may take any value in the range [—1,1] and 0_; may
equally take the values 1 or -1. Therefore, the energy may change on the next step

by an arbitrary value in the interval [—#|e("*¥)| h|e(**)|]. Thus, Eg — E,Sl) may have
a positive value?? ~ h|g(°)|. Then, the approximate equality n®(Ey) ~ @, holds,
provided that the value of % is from the relevant range. Allowing for this and recall-
ing that we are interested only in those realizations of the map such that Ey > E (1),
the relevant realization of the map i = —1 — i = 0 may be written as:

22 The latter is valid for any @_; except in the close vicinity of multiples of & while the state Eg, ¢
(2.167) in the latter range of ¢_; turns out irrelevant to the boundary, as shown further down.
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Eo = Ey" + o_1hesin(p_;) = E" + hle sin(p_ )],
Qo ~ Q_| +n, (2.173)
oy =-0-1.

One may expect that further evolution of the map will, for some time, approxi-
mately follow the trajectory of the system (2.87) with the initial energy Eq (2.173)
and an arbitrary ¢_; and initial slow angle { somehow related to @y =~ ¢_; +nrx.
Let us prove this explicitly.

Consider two subsequent iterations of the map (2.167): 2i — 2i+ 1 and 2i+ 1 —
2i+ 2 with an arbitrary i > 0. While doing this, we shall assume the validity of
(2.168) (it will be clarified below when this is true) from which it follows that: (i)
O(Erq1) = 0(Ey), (1) Qi1 — @ =~ nm = (2j — 1)7. It will follow from the results
that the neglected corrections are small in comparison with the characteristic scales
of the variation of E and ¢ (cf. the conventional treatment of the nonlinear reso-
nance dynamics (Chirikov, 1979; Lichtenberg and Lieberman, 1992; Zaslavsky et
al., 1991; Zaslavsky, 2007, 2005; Soskin et al., 2003)). Furthermore it follows from
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Fig. 2.21 Theoretical estimates for the normalized separatrix split (for @ = 0.2) as a function of
the perturbation frequency, for the lower and upper layers in (a) and (b) respectively. The solid
lines are calculated from Egs. (2.172) and (2.204) for (a) and (b) respectively, while the dashed
lines represent the asymptotic expressions (2.170) and (2.205) respectively.
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(2.167) that, while the energy remains above the barrier energy, oy oscillates, so that
0y = 0y and 0711 = —0y. Then,

Esip1 = Epi+ ophe') sin(¢y;),

pusr = gt — g OB T
i+ i (l)(E25+1) i a)(Ezl_) 7

Esiva = Eniy1 — 0phe™) sin(@pi41)

=FEyiy1+ G()/’ZS(IOW) Sin((pz,‘_H — nﬂ') ~ FEy)+ GthS(low) sin((pZi), (2.175)
a)f a)f — na)(Ez,')
2 = @it TR Q@ +2An+ 22—
Pai2 = Pai o(Eii2) & o(Ey;)

(the second equality in the map for Ej;;o takes into account that n is odd so that
sin(@ —nr) = —sin(@).)
The quantity ;4> — @; — 27n is small, so the map 2i — 2i+ 2 (2.175) may be
approximated by differential equations for Ey; and ¢p; = ¢; — 27tni:
Ey; N d@y; b
(;1(221) — o-ohg(low) Sln((PZi); d((gzll) = (B> ((Df — na)(Ez,-)),
Ori = @ — 27ni.

(2.176)

Let us (i) use for £/®") the asymptotic formula (2.171), (ii) take into account

that the increase of i by 1 corresponds to an increase of time by 7/ ®(E), and (iii)
transform from the variables (E,®) to the variables (I, = nx(1 — 0p)/2 — @).
Equations (2.176) reduce then to

; dy
&g, ¥ =no-ay,

t s t (2.177)
WV =nxm > Of(ﬁ, n=2j—1.

Equations (2.177) are identical to the equations of motion of the system (2.87)
in their lowest-order approximation, i.e. to equations (2.98) where g, is replaced by
its asymptotic value (2.96) and the last term in the right-hand part of the second
equation is neglected, being of higher order in comparison with the term n® — ®y.

Apart from the formal identity of Eqgs. (2.177) and (2.98), ¥ in (2.177) and
in (2.98) are identical to each other. Necessarily #/ corresponds to a turning point
(see Fig. 2.20) while the corresponding y is equal to 27i or & + 2xi for the right
and left turning points respectively (see (2.87)) i.e. ¥ = 27wi+ n(1 — 6;)/2, so that
Vioog) =ny — st =nn(1—0)/2— 9= Yo177).

The relevant initial conditions for (2.177) follow from (2.173) and from the rela-
tionship between ¥ and @:
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1(0) = I(E = E\") + hv/2|sin((0))), (2.178)

while §(0) = nn(1 — 0p)/2 — @y may be an arbitrary angle from the ranges where

(=) sin(§(0)) < 0. (2.179)

For moderately small @, it is better to use the more accurate dynamic equations
(2.98) instead of (2.177) and the more accurate initial value of action instead of
(2.178):

10) = I(E = E\"V + §|sin(y(0))]), & = hle™)], (2.180)

with £%) calculated by (2.172).
We name the quantity &|sin({J)| the generalized separatrix split (GSS) for the
lower layer. Unlike the conventional separatrix split §; (Zaslavsky, 2007), it is angle-

dependent. The curve () = I(E = E\") + & |sin(¥)|) may be called then the GSS

curve for the lower barrier and denoted as Ig%s(l]/)

Finally, Tet us investigate an important issue: whether the transformation from
the discrete separatrix map (i.e. (2.174) and (2.175)) to the differential equations
(2.176) is valid for the very first step and, if it is so, for how long it is valid after
that. The transformation is valid as long as ®(Ey) ~ nwy i.e. as long as Ej is not

too close to the barrier energy E,El). At the step k = 0, the system stays at the GSS
curve, with a given (random) angle {(0) from the range (2.179). Thus, at this stage,
the relation (2.168) is certainly valid (for the relevant range of / and for any angle
except for the close vicinity of the multiples of ). The change of energy at the next
step is positive t0o:

EI—Ey = O'()/’l&‘(low) sin((f)()) ~ 70',1}18(10”})

= o_hellow) sin(Q_1) =Ey—E_; > 0.

sin(@_ —nmw)

This may also be interpreted as a consequence of the first equation in (2.177) and of
the inequality (2.179).

Hence, (2.168) is valid at the step k = 1 too. Similarly, one can show that
E, — E; > 0, etc. Thus, the transformation (2.174, 2.175)—(2.176) is valid at this
initial stage indeed, and the evolution of (E, @) does reduce to the resonant trajec-
tory (2.14) with an initial angle from the range (2.179) and the initial action (2.180).
This Tasts until the resonant trajectory meets the GSS curve in the adjacent 7 range
of ¥ i.e. at ¢ such that the state (I(r), {/(¢)) satisfies the conditions:

1(0) = I (1)), [9(0)/m] — [9(0)/m] = 1. (2.181)

At this instant, the absolute value of the change of energy E; in the separatrix map

(2.174) is equal to Ey — E,El) (just because the state belongs to the GSS curve) but
the sign of this change is negative because the sign of sin(¢y) is opposite to that of
sin(¢@yp). Therefore, at the step k + 1, the system gets to the separatrix itself, and the
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regular-like evolution stops: at the next step of the map, the system may either again
get to the GSS curve but with a new (random) angle from the range (2.179), and start
a new regular-like evolution as described above; or it may get to the similar GSS
curve below the barrier and start an analogous regular-like evolution in the energy
range below the barrier, until it stops in the same manner as described above, etc.

This approach makes it possible to describe all features of the transport within
the chaotic layer. In the present context, it is most important to describe the upper
outer boundary of the layer.

2.7.1.4 Boundary of the layer

We may now analyze the evolution of the boundary of the layer as & grows. Some
of the stages of the evolution are illustrated by Figs. 2.13, 2.14 and 2.22.

It follows from the analysis carried out in the previous subsection that any state
(in the I — ¥ plane) lying beyond the GSS curve but belonging to any trajectory fol-
lowing Egs. (2.98) which possesses common points with the GSS curve belongs
to the chaotic layer: the system starting from such a state will, sooner or later,
reach the separatrix where the chaotization will necessarily occur. Therefore, the
upper boundary of the chaotic layer coincides with the trajectory following equa-
tions (2.98) with the initial action (2.180) and an initial angle ¥(0) from the range
(2.179) such that the trajectory deviates from the barrier energy by more than does
a trajectory (2.98)-(2.179)-(2.180) with any other initial angle. There may be only
two topologically different options for such a trajectory: either it is tangent to the
GSS curve, or it is the separatrix trajectory which infersects the GSS curve (some
schematic examples are shown in Figs. 2.22(a) and (b) respectively; some real cal-
culations are shown in Figs. 2.13 and 2.14).

1. Relatively small &

Consider first values of 4 which are large enough for the condition (2.168) to be
satisfied (the explicit criterion will be given in (2.192)) but which are smaller than
the value hé’) = hé’) (@¢) determined by Eq. (2.125) (its meaning is explained below).
The further analysis within this range of 4 differs for the ranges of ®y relevant to
odd and even spikes, and so we consider them separately.

1) Odd spikes

The relevant frequencies are:

Of = nw,,  n=2j—1,  j=13,5,... (2.182)

Let us seek the state {It<1), l/?,<1)} (with l/?,<1) within the range |0, [) where the res-
onant trajectory is fangent to the GSS curve. With this aim, we equalise both the ac-
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Fig. 2.22 A schematic figure illustrating the formation of the boundary of the lower chaotic layer
for h < hgl,)((of) in the ranges of @y relevant to (a) odd, and (b) even spikes. The dashed line
shows the GSS curve in the energy-angle plane: E({) = Eg%s(lj/) = Eb(l) + &|sin(y)|. Thicker
solid lines show examples of those trajectories (2.98) which have points in common with the GSS
curve. One of them (shown by the black line) relates to the formation of the upper boundary of
the lower chaotic layer: in (a), the boundary is the trajectory fangent to the GSS curve; in (b), the
boundary is the upper part of the separatrix generated by the saddle “s”. Relevant common points
of the GSS curve and the thick black line have angles ﬁ:!f/m and energy E,m in the case (a), and

1
angles il]/[w and energy El.(” in the case (b). The minimum and maximum deviation of energy
on the boundary from the barrier energy are denoted as 515111)11 and S,SQX respectively. The maximum

deviation on the GSS curve is equal to §;. (Color version may be found in the online version of
(Soskin et al., 2008a) as Fig. 16).
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tions and the derivatives of both curves. The equality of actions immediately yields
I,(l) via l/?,(l): It(l) =I(E = Et(l)) = gég( ~t(l)). The derivative along the GSS curve

is obtained by differentiation of Ig;s(lfl). The derivative along a resonant trajectory
can be found by dividing the first dynamic equation in (2.14) by the second one.

Substituting the expression of It(l) via lf/t(l) into the equality of the derivatives, we

obtain a closed equation for lf/,(l), and its solution immediately gives us the relevant

¥ (0):

dgn(E _ o
[|e("’w)|cos(u7,(l)) (1 L A ( )cos(lll,(l))> +qn(E)Sln('Vz(l))

no(E) dE E=£D
—0, (2.183)
EV =B +ne™|sin(g”), 9" €0,7),
n=2j—1, j=13,5..., w0)=py".

A careful analysis of the phase space structure shows that, in the present case
(i.e. when h < hE’,’ (@f) while j is odd), there is no separatrix of the resonant Hamil-
tonian (2.87) which would both intersect the GSS curve and possess points above
the tangent trajectory?>. Thus, for this range of &, the outer boundary of the chaotic
layer is formed by the trajectory following the dynamical equations (2.98) with the
initial angle given by (2.183) and the initial action by (2.180) (Fig. 2.22(a)).

Let us find the Towest-order solution of Eq. (2.183). We neglect the term T —
¢/ (nw(E)) (the result will justify this) and use the lowest-order expression for the
relevant quantities: namely, Egs. (2.171) and (2.96) for gllow) and gn respectively,
and the lowest-order expression for dg, /dE which can be derived from Eq. (2.95):

dgn(E) = (-] d
dE 42 (E-E") (@)
n=2j—1, E-E'<®-0. (2.184)

Then Eq. (2.183) reduces to the following equation

. niw
tan2(§") = TCEIE (2.185)

The lowest-order solution of (2.185) in the range |0, 7] is

o [ — (-)ld]
7 = (1)) /81n(1n/¢>)+”1 (21) . (2.186)

23 For odd numbers j > 3, there are separatrices which lie in the range of E where 0(E) < oy i.e.
much closer to the barrier than the tangent trajectory: these separatrices are therefore irrelevant.
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It follows from the definition £\’ (2.183) and from (2.186) that the lowest-order
expression for E,(l) — E,EI) is
3/2 h
EV BV = gsin(py =1L (2.187)
n(1/®) /n

The next step is to find the minimum value of the energy on the boundary of the
layer, Eﬁf])n It follows from the analysis of the dynamical equations (2.98) that the
corresponding angle Yy 1s equal to 0 if sign(gz2;—1) > 0(.e. j=1,5,9,...)orto®
if sign(g2j-1) <0 (i.e. j =3,7,11,...): cf. Fig. 2.8(a). Given that the Hamiltonian
(2.87) is constant along any trajectory (2.98) while the boundary coincides with

one such trajectory, the values of the Hamiltonian (2.87) in the states {/ (Er(rf?n), U=

Wrnin } and {I,(l), l/?,(l)} should be equal to each other. In explicit form, this equality
may be written as

£0 ©
' f Dy o< g0 1 e _
/E(l) dE <1_W> 1 (gn(ED) cos() — (- D)Hgu(EY,) ) =0. @2.188)

Let us find the lowest-order solution of Eq. (2.188). Assume that Eg])n still be-
longs to the range of E where ®(E) ~ @), (the result will confirm this assump-
tion). Then the integrand in (2.188) goes to zero in the asymptotic limit @ — 0.
Hence the integral may be neglected (again, to be justified by the result). The re-
maining terms in Eq. (2.188) should be treated very carefully. In particular, it is
insufficient to use the lowest-order value (2.96) for g, since it is the difference

between q,,(E,(l)) and q,,(Er(rfi)n) that matters. Moreover, the approximate equality
‘In(Et(l)) —dqn (Efnl,)n) ~ dqn(Et(l) )/ dE,(l) (E,(l) — Er(nl‘)n) does not apply here either since,

as follows from Eq. (2.184), the derivative dg,(E)/dE may vary strongly in the
range [E " E,(l)] if (Et(l) —EY )/(E 0 E,EI)) > 1 (again, to be justified by the

min’ - A min min ’
result). That is why it is necessary to use the more accurate expression (2.95) for g,,.
Allowing for the asymptotic expression (186) of li/,(l) and keeping only the lowest-
order terms, one can finally reduce Eq. (2.188) to the relation

0 _ o)
E" —Ef 1
Inf =t "6} — (2.189)
(Ew E,§”> 2

min

Substituting here the asymptotic value of E,(l) (2.187), we obtain the final lowest-
order expression for the minimum deviation (along the boundary) of the energy from
the barrier:

n3/2 h
2¢'/2\/In(1/®) /n

s =) — gV = ("~ E) /v = (2.190)
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It is necessary and sufficient that the condition @(E) = ®,, is satisfied at the minimal
and maximal energies of the boundary to ensure that the second equality in (2.168)
holds true, i.e. that ®(E) is close to @y, for all points of the boundary.

At the minimal energy, this condition is

o — oE" +8")) < 0. (2.191)

min

Eq. (2.191) determines the lower limit of the relevant range of 4. The asymptotic

form of (2.191) is:
In <4> 11;(1/@)

In(1/P)

We emphasize that any & of the order of hyy (2.136) satisfies this condition. In the
asymptotic limit @ — 0, the left-hand part of Eq. (2.192) goes to zero.

As for the maximal energy, it may take values up to the energy of the lower saddle
“sl”,i.e. Eg (2.102). Obviously, (2.168) is valid at this saddle, too.

< 1. (2.192)

(2) Even spikes

The relevant frequencies are:

Of X n@,,  n=2j—1, j=2,46,.... (2.193)

In this case, ¢,(E) and dg,(E)/dE have different signs for all E within the rele-
vant range (i.e. where ®(E) = @y, gu(E) = gu(En)): cf. (2.96) and (2.184). Then,

in the asymptotic limit @ — 0, Eq. (2.183) for the tangency does not have any so-

lution for li/,(l) in the relevant range®*. There may only be solutions very close to

some of 7 integers, and the corresponding energies E,(l) are then very close to E,EI)

ie. w(Et(l)) < Wy: therefore they are irrelevant.
At the same time, unlike for the odd spikes, there exists a saddle with an angle

1- (=1l

2 )
while the energy (which may be found as the appropriate solution of Eq. (2.99))
lies in the relevant vicinity of the lower barrier (Fig. 2.22(b)). In the lowest-order
approximation, this saddle energy is:

v =n (2.194)

5 — b4 h

* 22 In(In(de/P))
This saddle (denoted in Fig. 2.22(b) as “s”) generates a separatrix. Its upper

whiskers go to the similar adjacent saddles (shifted in { by 27x). In the asymp-

EY

(1)
E," + &, (2.195)

2 In case of a moderately small @, tangency may exist in the relevant range of energies. The
boundary of the layer is then formed by the tangent trajectory.
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totic limit @ — 0, the upper whiskers are much steeper than the GSS curve and
hence they do not intersect it?>. The lower whiskers do intersect the GSS curve and,
moreover, two intersections lie in the relevant energy range (Fig. 2.22(b)). Let us
show this explicitly. We write the expression for the Hamiltonian (2.87) in the rel-
evant vicinity of the barrier energy (i.e. where @, — ®(E) < ®,,), keeping in the
expression both the lowest-order terms and the terms of next order (in particular, we
use Eq. (2.95) for ¢,(E) and take into account that 0 < v/2 — ng,(E) < /2 for the
relevant range of E):

o ) - __n51n(%) _ nmw @ E _
HI=IE=E, +6),§)=———F>"+| o TH(%) ﬂln 3

—(=lElnv2 (1 + %) cos(1), (2.196)
[e3)

The Hamiltonian A should possess equal values at the saddle “s” and at the in-

tersections of the separatrix and the GSS curve. Let us denote the angle of the inter-

section in the range |0, 7| as li/i(l), and let us denote the deviation of its energy Ei(l)

from E,El) as Si(l) =0 sin(q”/.(l)),

1

Assuming that |l/7,-(l) - lils(l)| < 1 (the result will confirm this) so that

cos(f) = (=101~ (1"~ 0" /2)
~ (=)= (8182 /2) m (= 1)1 = (8 )2 /4),

the equality of the values of H is:

m(%) 2
— <5sln <£> ~ 6" (g)) SN LIS AV (6 )
21n (%) S s 8 In(E) 2v2h
(2.197)
Let us assume that, in the asymptotic limit @ — 0, 55(1) < & (the result will
confirm this). Then the Ieft-hand part is asymptotically smaller than the first term in
the right-hand part. So, Eq. (2.197) implies, in the asymptotic limit, that the right-
hand side equals zero. Expressing h via & from Eq. (2.195), we finally obtain a

closed transcendental equation for &/ 5,-(1):

25 In case of a moderately small &, they may intersect the GSS curve. Then, the tangent trajectory
lying above the separatrix necessarily exists, so the boundary of the layer is formed by this tangent
trajectory.



136 S.M. Soskin, R. Mannella, O.M. Yevtushenko, I.A. Khovanov, P.V.E. McClintock

s\ (s win (%)
<_*l> In <_‘l> =——% =4 (2.198)
55() 51'() ”(1‘1(1“(%)»

In the asymptotic limit @ — 0, the quantity A diverges and, hence, the lowest-
order asymptotic solution of Eq. (2.198) reads as

Os | 24

Substituting here the expression (2.195) for §; and the expression (2.198) for A, we
obtain:

50 —h] nrln (1n(4§))

ST

(2.200)

Thus, we have proved the following asymptotic properties of the separatrix gen-
erated by the saddle ““s: (i) the lower whiskers of the separatrix do intersect the GSS
curve in the relevant range of E (i.e. where the resonant approximation is valid); and
(i1) the upper whiskers of the separatrix do not intersect the GSS curve (there is no

solution of Eq. (2.197) in the range 55(1) > &;). The former property confirms the
self-consistency of the asymptotic theory for even spikes; the latter property means
that the upper outer boundary of the lower chaotic layer is formed by the upper
whiskers of the separatrix generated by the saddle “s”.

Finally, we note explicitly that the minimal (along the boundary) deviation of
energy from the barrier energy occurs exactly at the saddle “s”, i.e.

5(1)

min

=5, (2.201)

2. Relatively large h

As h grows, the boundary of the lTayer rises while the lTower part of the resonance
(1)

separatrix, on the contrary, falls. They reconnect at the critical value of A, hef =
hﬁ’) (@y), determined by Eq. (2.125), which may be considered as the absorption of
the resonance by the chaotic Tayer. If 4 grows further, then the GSS curve and the
resonance separatrix intersect. As a result, the trajectory starting from the state of
angle (2.183) and action (2.180), for odd spikes, or from the saddle “s”, for even
spikes, is encompassed by the resonance separatrix. So, it no longer forms the outer
boundary of the lTayer. Rather it forms the inner boundary i.e. the boundary of the
main island of stability inside the layer, repeated periodically in { with a period 27
(cf. analogous islands in the upper layer in Fig. 2.13). Unless the lower chaotic layer
reconnects with the upper one, the outer boundary of the lower layer is formed by
the upper part of the resonance separatrix. The relevant initial angle ¥(0) on the
GSS curve corresponds to the intersection of the GSS curve with the resonance
separatrix (cf. the analogous situation for the upper layer in Fig. 2.13).
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2.7.2 Upper chaotic layer

The upper chaotic layer may be treated analogously®® to the lower layer. We present
here only the results.
Similarly to the lower-layer case, one may consider the ranges of relatively small

h (namely, smaller than h) = hg)(a)f) determined by Eq. (2.126)) and relatively

large h (i.e. h > hg’ﬁ)). In the former range, the formation of the boundary occurs in
a manner which is, in a sense, opposite to that for the lower-layer case. For even
spikes, the Tower outer boundary is formed by tangency while, for odd spikes, it is

¥l

formed by the lower part of the separatrix generated by the saddle “5”, analogous to

the saddle “s”in the lower-layer case?’.

So, for even spikes, the angle of tangency 117,(") is determined by:

..u ) d n E _(u .~ (u
|:|8(”p)|COS(Wt( )) (1 _ f —h q ( >COS(1//t( ))> _Qn(E)Sm(Wt( )>

no(E) dE E=EW
=0,
EY = EP — he@)|sin(g) @ eo,q], (2.202)
}’152‘]*1, ]:2343633 "T](O):lpt(u)a
and 117,(") determines the tangency energy:
E" =E? — h|e)|sin(g"), (2.203)
where the quantity ) is described by the formula
e’ (wf) =2 /0 dr g7 (r) cos(wyt), (2.204)

where c]ﬁ"p ) (¢) is the time dependence of the velocity along the separatrix associated

with the upper barrier and the instant £ = 0 is chosen so that qﬁ”p ) (t = 0) is equal
to the coordinate of the lower barrier while qg“p ) > 0fort e [0,0[. The dependence
’ew(wf)‘ in Eq. (2.204) is shown for @ = 0.2 in Fig. 2.21(b).

The asymptotic form of Eq. (2.204) is

26 For any AC-driven spatially periodic Hamiltonian system, the upper energy boundary of the
layer associated with the unbounded separatrix diverges in the adiabatic limit @; — 0 (Soskin et al.,
2005). However, this divergence is not relevant for the present problem for the following reasons.
The lower chaotic layer relates to the bounded separatrix while, for the upper (unbounded) layer,
it is the lower boundary of the layer which is relevant for the onset of global chaos in between the
separatrices. Moreover, even for the upper boundary of the upper layer, the divergence is not yet
manifested for the driving parameters (h, @) in the vicinity of the spikes minima (cf. (Soskin et
al., 2005)).

27 This tangency may exist for a moderately small ®. The boundary is then formed by the tangent
trajectory rather than by the separatrix: see an example in Fig. 2.14(c).
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g(up) = g(up)(wf) = 27T cos <%> . (2.205)

For oy = a)s(j) ~ (2j— 1), Eq. (2.204) reduces to

2j+1

) (@) ~ 21 cos ((2j— 1)%) =V2r(-1) Bl
j=1,273,.., ®—0. (2.206)

The lowest-order solution of (2.202) is given in Eq. (2.121), so that E,(") is approxi-
mated by Eq. (2.122). The maximal energy on the lower boundary of the Tayer cor-
responds to ¥(¢) = if j =2,6,10,...or 0if j =4,8,12,... and is determined by
Eq. (2.123). The asymptotic value of the minimal deviation from the upper barrier
of the energy at the boundary, 5151"11 is given in Eq. (2.124).

For odd spikes, the boundary is formed by the lower part of the separatrix gen-
erated by the saddle “§ ”. The angle of the saddle is given in Eq. (2.117) while
the deviation of its energy from the barrier is approximated in lowest-order by Eq.
(2.118).

As h grows, the boundary of the layer falls while the upper part of the upper
resonance separatrix rises. They reconnect at 1 = hg‘,') = E‘r')(a)f), as determined
by Eq. (2.126), which may be considered as the absorption of the resonance by the
Tayer.

For larger h, the boundary of the layer is formed by the lower part of the upper
resonance separatrix (Fig. 2.13), unless the latter intersects the lower GSS curve (in

which case, hf”f) marks the onset of global chaos).

References

Abdullaev S.S., 2006, Construction of Mappings for Hamiltonian Systems and Their
Applications, Springer, Berlin, Heidelberg.

Abramovitz M. and Stegun 1., 1970, Handbook of Mathematical Functions, Dover,
New York.

Andronov A.A., Vitt A.A. and Khaikin S.E., 1966, Theory of Oscillators, Pergamon,
Oxford.

Arnold V.I., 1964, Instability of dynamical systems with several degrees of freedom,
Sov. Math. Dokl., 5, 581-585.

Bogolyubov N.N. and Mitropolsky Yu.A., 1961, Asymptotic Methods in the Theory
of Nonlinear Oscillators, Gordon and Breach, New York.

Carmona H.A. et al., 1995, Two dimensional electrons in a lateral magnetic super-
lattice, Phys. Rev. Lett., 74, 3009-3012.




2 A New Approach to the Treatment of Separatrix Chaos and Its Applications 139

Chernikov A.A. et al., 1987a, Minimal chaos and stochastic webs, Nature, 326,
559-563.

Chernikov A.A. et al., 1987b, Some peculiarities of stochastic layer and stochastic
web formation, Phys. Lett. A ,122, 39-46.

Chernikov A.A. et al., 1988, Strong changing of adiabatic invariants, KAM-tori and
web-tori, Phys. Lett. A , 129, 377-380.

Chirikov B.V., 1979, A universal instability of many-dimensional oscillator systems,
Phys. Rep., 52, 263-379.

del-Castillo-Negrete D., Greene J.M. and Morrison P.J., 1996, Area-preserving non-
twist maps: periodic orbits and transition to chaos, Physica D , 61, 1-23.

Dullin H.R., Meiss I.D. and Sterling D., 2000, Generic twistless bifurcations, Non-
linearity, 13, 203-224.

Dykman M.I., Soskin S.M. and Krivoglaz M.A., 1985, Spectral distribution of
a nonlinear oscillator performing Brownian motion in a double-well potential,
Physica A , 133, 53-73.

Elskens Y. and Escande D.F.,, 1991, Slowly pulsating separatrices sweep homoclinic
tangles where islands must be small: an extension of classical adiabatic theory,
Nonlinearity, 4, 615-667.

Fromhold T.M. et al., 2001, Effects of stochastic webs on chaotic electron transport
in semiconductor superlattices, Phys. Rev. Lett., 87, 046803-1-046803-4.

Fromhold T.M. et al., 2004, Chaotic electron diffusion through stochastic webs en-
hances current flow in superlattices, Nature, 428, 726-730.

Gelfreich V., private communication.

Gelfreich V.G. and Lazutkin V.F., 2001, Splitting of separatrices: perturbation theory
and exponential smallness, Russian Math. Surveys, 56, 499-558.

Howard J.E. and Hohs S.M., 1984, Stochasticity and reconnection in Hamiltonian
systems, Phys. Rev. A, 29, 418-421.

Howard J.E. and Humpherys J., 1995, Non-monotonic twist maps, Physica, D 80,
256-276.

Landau L.D. and Lifshitz E.M., 1976, Mechanics, Pergamon, London.

Leonel E.D., 2007, Corrugated Waveguide under Scaling Investigation, Phys. Rev.
Lett., 98, 114102-1-114102-4.

Lichtenberg A.J. and Lieberman M.A., 1992, Regular and Stochastic Motion,
Springer, New York.

Luo A.C.J., 2004, Nonlinear dynamics theory of stochastic layers in Hamiltonian
systems, Appl. Mech. Rev., 57, 161-172.

Luo A.CJ.,, Gu K. and Han R.P.S., 1999, Resonant-separatrix webs in stochastic
layers of the Twin-Well duffing oscillator, Nonlinear Dyn., 19, 37-48.

Morozov A.D., 2002, Degenerate resonances in Hamiltonian systems with 3/2 de-
grees of freedom, Chaos, 12, 539-548.

Neishtadt A.I., 1986, Change in adiabatic invariant at a separatrix, Sov. J. Plasma
Phys., 12, 568-573.

Neishtadt A.I., Sidorenko V.V. and Treschev D.V., 1997, Stable periodic motions in
the problem on passage trough a separatrix, Chaos , 7, 2—11.




140 S.M. Soskin, R. Mannella, O.M. Yevtushenko, I.A. Khovanov, P.V.E. McClintock

Piftankin G.N. and Treschev D.V., 2007, Separatrix maps in Hamiltonian systems,
Russian Math. Surveys, 62, 219-322.

Prants S.V., Budyansky M.V., Uleysky M.Yu. and Zaslavsky G.M., 2006, Chaotic
mixing and transport in a meandering jet flow, Chaos, 16, 033117-1-033117-8.
Rom-Kedar V.,1990, Transport rates of a class of two-dimensional maps and flows,

Physica D, 43, 229-268.

Rom-Kedar V., 1994, Homoclinic tangles—classification and applications, Nonlin-
earity, 7, 441-473.

Schmelcher P. and Shepelyansky D.L., 1994, Chaotic and ballistic dynamics for
two—dimensional electrons in periodic magnetic fields, Phys. Rev. B, 49, 7418—
7423.

Shevchenko L.I., 1998, Marginal resonances and intermittent Behavious in the mo-
tion in the vicinity of a separatrix, Phys. Scr., 57, 185-191.

Shevchenko I.1., 2008, The width of a chaotic layer, Phys. Lett. A, 372, 808-816.

Schmidt G.J.O., 1993, Deterministic diffusion and magnetotransport in periodically
modulated magnetic fields, Phys. Rev. B, 47, 13007-13010.

Soskin S.M., Unpublished.

Soskin S.M. and Mannella R., 2009a, New approach to the treatment of separa-
trix chaos, In Macucci C. and Basso G. (eds.) Noise and Fluctuations: 20 th In-
ternational Conference on Noise and Fluctuations (ICNF- , AIP NFER-
ENCE PROCEEDINGS 1129, 25-28, American Institute of Physics, Melville,
New York.

Soskin S.M. and Mannella R., 2009b, Maximal width of the separatrix chaotic layer,
Phys. Rev. E., 80, 066212-1-006212-1F.

Soskin S.M., Mannella R., Arrayas M. and Silchenko A.N., 2001, Strong enhance-
ment of noise-induced escape by transient chaos, Phys. Rev. E, 63, 051111-1-
051111-6.

Soskin S.M., Mannella R. and McClintock P.V.E., 2003, Zero-Dispersion Phenom-
ena in oscillatory systems, Phys. Rep., 373, 247-409.

Soskin S.M., Yevtushenko O.M. and Mannella R., 2005, Divergence of the chaotic
Tayer width and strong acceleration of the spatial chaotic transport in periodic
systems driven by an adiabatic ac force, Phys. Rev. Lett., 95,224101-1-224101-4.

Soskin S.M., Mannella R. and Yevtushenko O.M., 2008a, Matching of separatrix
map and resonant dynamics, with application to global chaos onset between sep-
aratrices, Phys. Rev. E, 77, 036221-1-036221-29.

Soskin S.M., Mannella R. and Yevtushenko O.M., 2008b, Separatrix chaos: new ap-
proach to the theoretical treatment. In: Chandre C., Leoncini X., and Zaslavsky G.
(eds.) Chaos, Complexity and Transport: Theory and Applications (Proceedings
of the CCT-07), 119-128, World Scientific, Singapore.

Soskin S.M., Khovanov I.A., Mannella R. and McClintock P.V.E., 2009, Enlarge-
ment of a low-dimensional stochastic web, Macucci C. and Basso G. (eds.)
Noise and Fluctuations: 20 th International Conference on Noise and Fluctuations
(ICNF-2009), AIP CONFERENCE PROCEEDINGS 1129, 17-20, American In-
stitute of Physics, Melville, New York.




2 A New Approach to the Treatment of Separatrix Chaos and Its Applications 141

Soskin S.M., Yevtushenko O.M. and Mannella R., 2010a, Adiabatic divergence of
the chaotic layer width and acceleration of chaotic and noise-induced transport,
Commun. Nonlinear Sci. Numer. Simulat, 15, 16-23.

oskin S.M., McClintock P.V.E., Fromhold T.M., Khovamov [.A. and Mannella R.,
2010b, Stochastic webs and quantium transport in superlattices: an introductory
review, Contemportary Physics, 51, 233-248.

Vecheslavov V.V., 2004, Chaotic layer of a pendulum under low-and medium-

frequency perturbations, Tech. Phys., 49, 521-525.

Ye P.D. etal., 1995, Electrons in a periodic magnetic field induced by a regular array
of micromagnets, Phys. Rev. Lett., 74, 3013-3016.

Yevtushenko O.M. and Richter K., 1998, Effect of an ac electric field on chaotic
electronic transport in a magnetic superlattice, Phys. Rev. B, 57, 14839-14842.
Yevtushenko O.M. and Richter K., 1999, AC-driven anomalous stochastic diffusion

and chaotic transport in magnetic superlattices, Physica, E 4, 256-276.

Zaslavsky G.M., 2005, Hamiltonian Chaos and Fractional Dynamics, Oxford Uni-
versity Press, Oxford.

Zaslavsky G.M., 2007, Physics of Chaos in Hamiltonian Systems, 2nd ed., Imperial
Colledge Press, London.

Zaslavsky G.M. and Filonenko N.N., 1968, Stochastic instability of trapped parti-
cles and conditions of application of the quasi-linear approximation, Sov. Phys.
JETP, 27, 851-857.

Zaslavsky G.M. et al., 1986, Stochastic web and diffusion of particles in a magnetic
field, Sov. Phys. JETP, 64, 294-303.

Zaslavsky G.M., Sagdeev R.D., Usikov D.A. and Chernikov A.A., 1991, Weak
Chaos and Quasi-Regular Patterns, Cambridge University Press, Cambridge.




Chapter 3

Hamiltonian Chaos and Anomalous Transport
in Two Dimensional Flows

Xavier Leoncini

Abstract In this chapter we discuss the dynamics of particles advected in regular
and chaotic flows. We first address the dynamics of point vortices and show the
great variety of the dynamics of three point vortices near the singularity giving rise
to vortex collapse. We discuss the strong influence of the existence of a finite time
singularity on the dynamics, especially on how the period of the motion evolves
as we get closer to the singular conditions. We then analyze transport properties
of passive tracers in various flows. We start with integrable flows governed by three
vortices, then switch to chaotic flows generated by four and sixteen vortices, and end
up with a turbulent flow governed by the Charney-Hasegawa-Mima. For all cases,
anomalous superdiffusive transport with a characteristic exponent t ~ 1.5 — 1.8 is
observed. The origin of the anomaly is explained by the phenomenon of stickiness
around coherent structures in regular flows, and by the presence of regular chaotic
jets for the chaotic and turbulent ones. Finally we illustrate how the Hamiltonian
nature of chaos can be used to localize 3-dimensional coherent structures or how to
improve mixing properties in cellular flows while keeping the cellular structure of
the flow.

3.1 Introduction

It was long believed that the deterministic character of Newton equations was the
key to understanding the universe. In some sense, one would just have to understand
and describe well enough a system to be able to solve the equations of motion and
predict the future. However it has been clear now for more than a century that most
dynamical systems do not lead to simple and regular solutions. Indeed one observe
most of the time a strong sensitivity to initial conditions for solutions of a deter-
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ministic system, and unless having access to an exact and perfect description of our
surrounding world, we cannot predict evolutions for large times. This fact may have
generated some deceptions, but on the other hand the complexity arising from this
sensitivity to initial conditions, chaos, allows to reconcile classical mechanics with
thermodynamics. The discovery of the second principle of thermodynamics in the
middle of the 19th century clearly defined the problem of the link between micro-
scopic equation deriving from Hamiltonian dynamics which are time reversible and
thermodynamics which evolves irreversibly towards a state which maximizes the
entropy (disorder). To summarize, irreversibility is essentially observed for global
ensembles variables. These are linked to the microscopic ones by statistical means,
in this sense irreversibility gets a probabilistic nature, and can be expected to find
its origin in the law of large numbers, which naturally applies to macroscopic sys-
tems. The switch from elementary particles governed by conservative Hamiltonian
dynamics and statistics on phase space finds naturally its origin in the hypothesis of
molecular chaos and sensitivity to initial conditions. Indeed the equations of motion
are reversible but we need an exact knowledge of the system to invert time and any
mistake made by some ideal non invading measurement will lead to disorder. These
properties of the dynamics are intrinsic and are essentially due to the nonlinear form
of the motion equations.

We observe actually the same phenomenon when we are interested in transport
properties of an ensemble of particles. Chaos implies the impossible necessity of
knowing exactly the initial conditions, hence using a statistical description of the
ensemble is necessary and the evolution of the statistical distribution is studied to
characterize transport. Most of the time, the transport law is linked to a diffusive phe-
nomenon. If we consider transport of pollutants in a fluid, one must then also take
into account the flow within the fluid as well as the molecular diffusion that takes
place. Since molecular diffusion is related to microscopic chaos, we can imagine
that a fluid particle (at the mesoscopic level) which is transported (advected) by the
fluid can also have a chaotic dynamics, notably when the flow is turbulent. Hence an
ensemble of fluid particles may also diffuse. We end up with some kind of Russian
doll (matroshka) structure, with a diffusion at the microscopic scale with another
one on top at the mesoscopic one.

In this chapter, we shall consider the dynamics of particles advected by different
types of flow, with the perspective to understand transport properties for an ensem-
ble of particles and eventually the control of transport. Indeed, the arguments which
lead to diffusion phenomena can be mathematically well described if the motion
of particles is sufficiently erratic and stochastic. However the presence of chaos, as
we shall see, may not be sufficient to achieve diffusive transport. With this in mind,
we will consider only the mesoscopic scale and ignore molecular diffusion. This
choice can be justified in two ways, first depending on the advected quantity and the
characteristics of the flow, one can assume that molecular characteristic time scales
are negligible. Second, as we shall see, the advection of passive tracers in incom-
pressible 2-dimensional flows belong to the class of Tow dimensional Hamiltonian
systems, so we may be able to somewhat generalize the obtained results to other
types of systems with equivalent Hamiltonian descriptions.
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The chapter is organized as follows. First, we illustrate the phenomenon of
chaotic advection, then we discuss the dynamics of point vortices and especially
focus on the dynamics which can lead to three-vortex finite time singularity (col-
Iapse). Then we consider transport properties of passive tracers (fluid particles) in
regular and chaotic flows. Finally we show possible ways to use chaotic advection
phenomena to our advantage.

3.2 Point vortices and passive tracers advection

First, we will give some definitions.

3.2.1 Definitions

Let us consider a flow v of an incompressible fluid (V -v = 0). A particle that is
put in this flow will be considered a passive particle, if its presence in the fluid has
no impact on the flow itself (or at first glance a negligible one). In these regards,
one will be able to identify a passive particle with the so-called “fluid-particles”. In
this setting the motion of the passive scalar (passive particle) can be inferred from a
Lagrangian perspective. Indeed the speed of the passive particle has to be the speed
of the flow itself, thus the trajectories are solutions of the following differential
equation:

r=v(r,z), 3.1

where r = (x,y,z) corresponds to the passive particle position. When we restrict our-
selves to 2-dimensional flows one can easily rewrite Eqs. (3.1) using an Hamiltonian
formalism. Since V- v = 0, we can define up to some gradient a stream function H
such that v=V A H, and if we have a 2-dimensional system, H = H e, resumes to a
scalar function H where e, defines the normal of the two dimensional plane. In this
setting Eqs. (3.1) become

OH _ OH
_a_y’ Y——W- (3.2)

X

We shall notice that the couple (x,y) corresponds either to the canonical conjugate
variables of the Hamiltonian and describe phase space, or the physical Cartesian
coordinates of the particle. One notices here, one of the compelling properties of
passive particle dynamics in 2-dimensional flows: a direct visualization of a Hamil-
tonian phase space by looking at the particles in the flow itself. This properties
make these systems one of the ideal ones to confront low-dimensional Hamiltonian
dynamics with real experiments.
In what follows we shall use the more usual notation ¥ for the stream function.
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3.2.2 Chaotic advection

This phenomenon translates the fact that despite a laminar structure of the flow, pas-
sive particles or tracers have chaotic trajectories(Aref, 1984, 1990; Ottino, 1990).
As a consequence mixing is considerably enhanced in chaotic regions of the flow, in
the sense that chaotic motions mixes much faster than molecular diffusion (Ottino,
1989; Zaslavsky et al., 199T; Crisanti et al., 1991). For 2-dimensional incompress-
ible flows, since chaos is generic for one degree of freedom time dependent Hamil-
tonian systems (usually know as systems with 1 — % degree of freedom) one can
expect to observe chaotic advection as soon as we have a time dependent flow. Such
situations are quite generic and one observes in a multitude of physical systems
and applications, for instance in geophysical flows or magnetized fusion plasmas
(Brown and Smith, 1991; Behringer et al., 1991; Chernikov et al., 1990; Dupont
et al., 1998; Crisanti et al., 1992; Carreras et al., 2003; Annibaldi et al., 2000; del
Castillo-Negrete et al., 2004; Leoncini et al., 2005) or in chemical engineering (to
enhance mixing of reactant)(Balasuriya, 2005; Stroock et al., 2002). In this sense
chaotic advection reveals that the link between Eulerian and Lagrangian perspective
are not as simple as one would like. And unfortunately from a mixing or transport
point of view a Lagrangian approach is mandatory. We shall now start with a brief
example describing chaotic advection.

3.2.2.1 Example 1: advection in an array of vortices

Let us consider the following stream function

¥ (x,y) = asinxsiny, (3.3)

w

2.5
2
~1.5
1

0.5

0

0 1 2 3 4 5 6
x

Fig. 3.1 Trajectories of test particles and field lines of the flow (3.3). They do not depend on the
value of a.



3 Hamiltonian Chaos and Anomalous Transport in Two Dimensional Flows 147

which describes an array of alternating vortices emerging for instance from a con-
vective instability such as Rayleigh-Bénard (Solomon and Gollub, 1988; Willaime
et al., 1993; Solomon et al., 2003). Field lines of the velocity are represented for
this flow in Fig. 3.1. Passive particles dynamics result from Hamiltonian dynamics
governed by ¥, thus from a system with one degree of freedom. In this setting

e Particle motion is integrable
e Particles trajectories are identical to velocity field lines (see Fig. 3.1)

3.2.2.2 Example 2: advection in an array of vortices

Now let us consider the stream function

Fe(x,y 1) =W+ f,y), (34

with f = €sinwyt (Solomon and Gollub, 1988). We actually are perturbing the
stream function (3.3), by making the array of vortices oscillate in the x-direction.
With this perturbation, the flow is still regular but becomes time-dependent. Field
lines are unchanged and are thus those represented in Fig. 3.1, but they oscillate
in one direction with an amplitude € and a pulsation wy. However if we consider
the dynamics of passive particles, we still have an Hamiltonian system, but a time-
dependent one, and we havea 1 — % degree of freedom which is generically chaotic.
To summarize we have

e Field lines are just oscillating, the flow is laminar and and simple (see Fig. 3.1)
e Instead the motion of tracers is chaotic (see Fig. 3.2).

We thus observe Hamiltonian chaos from a Lagrangian perspective even though the
flow is extremely simple from the Eulerian one. And, since transport properties are

Fig. 3.2 Poincaré section of particles trajectories advected by the flow governed by (3.4). Param-
eters used to compute trajectories and the figure are ¢ =0.6 et € =0.63 et ap = 1.




148 Xavier Leoncini

more natural from the Lagrangian point of view, we have to take into account the
chaotic dynamics of tracers to characterize transport in these type of systems.
3.3 A system of point vortices

In order to study chaotic advection and transport we will consider flows generated
by point vortices. But first we will give some definitions.

3.3.1 Definitions

Let us consider the Euler equation for the vorticity in a 2-dimensional incompress-
ible flow

20
7+[Q,1//]:0,Q:—V21//, (3.5)
where y is the stream function, [-, -] and denotes the usual Poisson brackets. And let

us consider a vorticity field given by a superposition of Dirac functions:

=

Q(x,t) =) kid(x—x;(t)) . (3.6)

i=1

Here, k; designate the vorticity of the point vortex localized at point x;(z). The vor-
ticity is in fact directly associated with the circulation of the velocity field around the
vortex. One shall notice that vorticity is zero everywhere but at the point where the
point vortices are located (thus their name). This point vortex distribution is an exact
solution of the Euler equation (in the weak sense) at the condition that the N posi-
tions of the vortices x;(¢) follow a prescribed dynamics (Machioro and Pulvirenti,
1994). In fact one shows that

1. The system can be mapped to an N-body Hamiltonian dynamics

2. When we are considering the whole plane, the Hamiltonian writes

1

H=
2

Zkikj1n|z,-fzj-|, 3.7

i>j

where k;z; and Z; are the canonically conjugate variables of the Hamiltonian (3.7)
and locate the position x;(7) in the complex plane.

The Hamiltonian equations obtained from Hamiltonian (3.7) translate the fact
that each vortex is advected by the velocity field generated by all other vortices. In
the same spirit if we want the velocity field in any point of the plane we can get it
using the stream function ¥ which writes
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1 N
W(Z,Z,I):_Eijlnk_Zj(t”, (3.8)

i=1

and by computing its curl.

regarding the dynamics of point vortices, we can notice that the Hamiltonian
(3.7) is invariant by translation and by rotation in the plane. The invariance by these
continuous symmetry groups implies the existence of three extra integral of motions
which are conserved quantities. The energy associated to the Hamiltonian being the
fourth integral of motion. Translational and rotational invariance imply respectively
the conservation of “momentum”

N
P= Z kix;(t) = const, 3.9
i=1

and angular momentum of the vortices given by

N
L’ = Z’k,‘xl2 (t) = const. (3.10)
=t

In fact only three of these four integrals are in involution (meaning that they
reflect conditions which are truly independent). Given this, the system is integrable
if the number of point vortices N is such that N < 3, on the other hand vortex motion
is not integrable and consequently chaotic if N > 3 (Novikov and Sedov, 1978; Aref
and Pomphrey, 1980).

3.3.1.1 Scale invariance

Due to the specificity of the logarithmic interaction between vortices, it is possible
to get another transformation which preserve the Hamiltonian (3.7). This last invari-
ance however imposes a condition on the vorticities of the point vortices. Indeed if
the condition

Y kik;j=0, (3.11)
i#]
is satisfied, then the Hamiltonian becomes scale invariant. In order to get the condi-
tion (3.11) one can simply rescale all length by a constant global factor in Hamil-
tonian (3.7) to obtain the result. This last scale invariance property is important. As
we shall see soon, it can imply the existence of singular solutions with finite time
singularities.

3.3.1.2 Remarks 1

We shall notice that Hamiltonian (3.7) has not the classical form of a kinetic energy
term to which one adds an interaction potential depending on positions. The canon-
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ically conjugated variables are the space variables (k;z;,Z;) in the complex plane or
(kixi,y;) if one prefers Cartesian coordinates. The Hamiltonian is said to be non-
separable. It is important also to notice that due to the logarithmic interaction, point
vortex systems are counted among systems with long-range interactions. From this
point of view the statistical physics approach to these type of problem is not trivial,
and one is confronted to similar problem as for instance in gravitational systems.

3.3.1.3 Remarks 2

Vortices appear naturally in 2-dimensional turbulence (McWilliams, 1984). Tt is
therefore important to have access to an exact solution of the Euler equation which
can be used to model their behavior and dynamics. We shall however insist on the
fact that more realistic fluid equations such as the Navier-Stokes one, include a dissi-
pative term. Numerical simulations of such equation show that vortices do exist but
have a spatial extension and are thus not localized on a point. Moreover it was ob-
served numerically that when two vortices with same sign vorticity are sufficiently
close to each other, a merging process occurs leaving only one larger vortex and
that during this merging process dissipative effects are important. However point
vortices model quite well the motion of vortices once these are quite localized and
not too close to each other. It has also been observed that models of 2-dimensional
turbulence using point vortices were giving the correct scaling laws, at the condition
that the merging between vortices was taken into account in the model (Carnevale
et al., 1991; Benzi et al., 1992).

3.4 Dynamics of systems with two or three point vortices

We shall here briefly describe the dynamics of two and three point vortices. In order
to settle some points, we fist recall the velocity field lines created by one point
vortex are forming an ensemble of circles centered on the vortex itself. The norm of
the speed decreases as 1/r where r is the distance from the considered point vortex.

3.4.1 Dynamics of two vortices

The dynamics of a system composed of two point vortices summarizes as follows:

o If the center of vorticity defined by x. = Y k;x;(¢)/ Y k; exists (k; + kp # 0),
the vortices have a uniform circular motion around the center of vorticity (see
Fig. 3.3).

e If we have a dipole (k| + k, = 0), the dipole has a straight and uniform motion

(see Fig. 3.4).

e For all situations the inter-vortex distance is constant.
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This two vortex dynamics allows one to describe and understand what is the mutual
influence of two vortices, which becomes important when the two vortices are more
or less close to each other. However since inter-vortex distance is a constant of the
motion, this dynamics does not allow vortices to come closer to each other to even-
tually merge. For this purpose we have to take into account three-body interactions:
a three point vortex system which is also integrable.

3.4.2 Dynamics of three vortices

The motion of three point vortices even though integrable is quite complex to de-
scribe. For a global description of all available motions one can for instance have a
look at (Aref, 1979; Tavantzis and Ting, 1988). To summarize in simpler way one
has:

e The motion is generically either quasi-periodic or aperiodic.
e [t is possible to observe finite-time singularities.
e Inter-vortex distance change: two vortices can get closer to each other.

In general aperiodic motion are not relevant if one is concerned with transport prob-
lems. Indeed they correspond to some kind of transient regime during which the
vortices interact after which one or more vortices escape to infinity. We end up lo-
cally with a trivial system fully integrable from the transport point of view.

For quasi-periodic motion of the vortices, one can define a characteristic period
of the motion. Indeed when Tooking at the triangle formed by the vortices one can
define a period T after which the triangle has exactly the same shape (with the same
vortices on top of the corners). The triangle has however been rotated by an angle ¢
generically incommensurate with 7 around the center of vorticity. In what follows
we shall often speak about the periodic motion of three point vortices keeping in
mind that a rotation of angle ¢ has been performed.

-
=

sl PR
A ¥
k2
Fig. 3.3 Dynamics of two point vortices, Fig. 3.4 Dynamics of a dipole formed by
each vortex rotates around the center of vor- two point vortices. Le motion is straight and

ticity. uniform.
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3.5 Vortex collapse and near collapse dynamics of point vortices

We shall now focus on a singular solution of three point vortex dynamics, namely
the solution giving rise to finite time singularity and the collapse of the three vortices
(Synge, 1949; Novikov and Sedov, 1979). Motivation for this study are quite varied.
From one point of view, this singularity offers a pedagogical example of the limits of
the Hamiltonian descriptions of classical motion. Indeed one switches from a three-
body system with a phase space of six dimensions to a system with only one body
and a phase space with two dimensions, and this in a finite time. And by analyzing
the motion for conditions close to the collapse ones, we shall be able to describe the
influence of the singularity on its neighboring solutions. Moreover, there is another
interest in studying this solution. Indeed it has been shown for “real” systems (with
extended vortices), that when the vortices are far from each other, vortex can come
close to each other using a three body interaction following trajectories which are
close to the collapse course (Dritschel and Zabusky, 1996). This phenomenon occur
if the vortex concentration (number and spatial extension) is sufficiently small as it
can occur in decaying 2-dimensional turbulence (see Fig. 3.5).

0.8 1

0.6 J

Fig. 3.5 Collapse of three point vortices. An example of finite time singularity.
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3.5.1 Vortex collapse

The conditions to observe the collapse of three point vortices can be written simply.
First we need scale invariant dynamics. For three vortices, the scale free condition
(3.11) takes the following form

Ly (3.12)

l

Mw

1

Il
-

One can notice that this condition implies the existence of a center of vorticity
(where the vortices will collapse). The conservation of angular momentum implies
another condition. It is convenient to rewrite this condition in order to get rid of the
choice of a frame of reference, and thus to rewrite it using only inter-vortex dis-
tances which of course must be compatible with the vanishing of these if we want
collapse

K:

(Zk,) L2—P2| =Y kikjr;; =0. (3.13)
i i#j

When these conditions are met, it is easy to show that the dynamics lead to a linear
(in time) decrease of the area of the triangle formed by the vortices, and we end
up with a finite time singularity where the three vortices merge (collapse) into the
center of vorticity. To be more specific, due to the scale invariance the dynamics is
self similar, meaning that as the area of the triangle is contracting, the shape of the
triangle is unchanged. One also shall notice that since Hamiltonian dynamics are
reversible one can also end up with an infinite dilatation of the triangle.

To summarize vortex collapse we shall insist on the fact that

We observe a finite time singularity with a typical decrease of lengths as /fp — 1.
This singularity shows some Iimit of a full Hamiltonian description of three point
vortices.

e We expect that close to collapse conditions will allow to bring vortices as close
to each other as one desires.

3.5.2 Vortex dynamics in the vicinity of the singularity

Due to the specific singular nature of the collapse of vortices and its role played in
bringing vortices close to each other we shall consider the dynamics in configura-
tions which shall be close to the one giving rise to the singularity(Leoncini et al.,
2000). For this purpose it is first useful to rewrite the Hamiltonian motion equation
in a non-canonical form using the three inter-vortex distances R, R, R3, and the
area of the triangle A
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ki 'Rk =A/m(Ry> — R %),
ky'RoRy = A/m(Ry*— R %), (3.14)
ky'R3R; =A/m(R;>—R,?).

We shall as well, mainly to simplify the analysis, consider that two vortices are
identical (have equal strength). Then after a small change of time scale which corre-
sponds to choosing a reference in the intensity of vortex strengths k, we can choose

ky=k3=1. (3.15)

The collapse condition (3.12) imposes then a critical vorticity for the vortex 1, k. =
—1/2. We shall therefore consider conditions for which the strength of vortex 1 is
negative and close to the critical value. We use the notations

k= k] (3.16)

We perform then the following change of variables: X = R Y = R%R%, and Z =
R% + R%. With these variables the constants of the motions rewrite

(3.17)

A= =yk/x,
K=X—-kZ.

where the parameter A has been introduced to replace energy and simplify notations.
The dynamical equation for X is obtained by squaring the first of the motion

equations (3.14):

. 4 R3+R3)?>—4RR? 4 7> —4y
X2:—2A2k2( 2t 31 = AT ——. (3.18)
T R3R; T Y
Then one uses the geometrical formulae for the triangle area A
A =+/Y|sin0]/2, (3.19)
X=Z-2VYcosH,
which leads us to
16A% =4Y — (X — 7). (3.20)
We can then use the constant of the motion (3.17) to get
. 1 [4k%Y —(K—(1—k)X)A[(K —X)>—4k*Y
o LB (K- (XK X4

4m? k2y?

where Y = (AX )1/ k_One can recognize a first integral of motion of a particle with
mass 1 moving in a scalar potential V(X; A, K, k), defined by

[(K—(1—k)X)?—4k*Y][(X — K)? — 4k*Y]
8m2k2Y?2

V(X;A,K k) = . (3.22)
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The equations of motion (3.21) can therefore be rewritten using an effective Hamil-
tonian
Horr(PX;AK k) =P*/2+V(X;AK,k) =0, (3.23)

and Hamilton’s equations
X =0H.5;/0P=P, P=—0H.;/0X . (3.24)

The Hamiltonian (3.23) is separable and corresponds to a one degree of freedom
system. Its study is therefore quite simple all the complexity being left out in the
potential and how initial conditions of the vortices, the constants of motion, and
vortex strengths are influencing it. A detailed study of all the type of motions can be
found in Ref. (Leoncini et al., 2000).

To summarize, dynamics of point vortices in the vicinity of collapse conditions
is like in the general case either aperiodic or periodic. One of the interesting point
of the study developed in (Leoncini et al., 2000) is the rich variety of the asymptotic
behavior of the period as the critical conditions are approached. Indeed depending
on how these conditions are approached one finds

o A logarithmic growth of the period, which is reminiscent of the classical case of
the conditions getting near an unstable equilibrium point.

e An algebraic growth of the period.

e An exponential growth of the period (see(Leoncini et al., 200T1)).

This richness in the behavior characterizes the non-trivial influence of the final-
time singularity. From this point on, event if one could argue that collapse condition
are so precise that they correspond to a zero measure ensemble among all possibil-
ities and that collapse course are very unlikely, one notices that the presence of the
singularity has a strong impact on the dynamics in its neighborhood, and we shall
for instance notice that its influence is much more complex than Iet us say being in
the vicinity of a separatrix.

3.6 Chaotic advection and anomalous transport

In the previous section we have exhibited the phenomenon of chaotic advection and
have briefly described the dynamics of system of point vortices. In this section we
shall consider the transport properties of passive particles in order to get clues on the
origin of so-called anomalous transport. We shall of course define what we mean by
anomalous transport in what follows, but first we shall make an non-exhaustive and
brief review of the problematic of transport problems in flows.
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3.6.1 A brief history

As it always sometime necessary to put some kind of arbitrary beginning to a story
we shall start by the problem of heat transport.

3.6.1.1 Empirical laws of the 19th century

We are therefore on December 21st 1807 and after numerous recordings and ex-
periments, Joseph Fourier gives his first results on heat transport also known as the
Fourier law, written today as

jo=—-AVT, (3.25)

where jg denotes the heat current, A is called the thermal conductivity and T is the
temperature.

A little later in 1855 a German physiologist Adolf Fick finds a law, named the
first Fick’s law, which is formally identical to Fourier’s law and which characterizes
the transport of some constituents

j=—DVn, (3.26)

here j denotes matter current, D is the diffusion coefficient and n the concentration.
He has the good idea to make a local balance using the principle that nothing is
created and lost to arrive the same year at the second Fick’s law, universally knows
as the heat equation or diffusion equation

aT
5, =DAT. (3.27)

All these results are empirical. We shall notice that the heat equation (3.27) is not
reversible under time reversal. This irreversible evolution fits well the second princi-
ple of thermodynamics written by Carnot in 1824 and Clausius inequalities(1855).
We shall now make a little jump in time and skip a period which saw the defi-
nition of the Entropy function, and in which statistical physics started after through
the works of Boltzmann and Maxwell to arrive at the beginning of the 20th century.

3.6.1.2 Random walks and probabilities

Transport equation of heat or concentration are dealing with macroscopic (statis-
tical) quantities, the link between microscopic and macroscopic will be done by
Albert Einstein in one of his three seminal papers of 1905, the one dealing with
Brownian motion. In fact and to be somewhat accurate, the first time a link was
made between these transport equations and randomness goes back a few years ear-
lier in 1900 when in his PhD dissertation entitled “Théorie de la Spéculation” Louis
Bachelier linked the heat equation to a Wiener process.
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These findings allowed in a certain way to reconcile microscopic and macro-
scopic physics. In a some sense one can grossly say that the microscopic and macro-
scopic worlds are linked by rolling some dice or in other words diffusion phenomena
correspond to the macroscopic realization of an ensemble of microscopic random

runk) walkers.

3.6.1.3 Classical deterministic dynamical systems

One problem still remains though. The microscopic world is supposed to be gov-
erned by conservative and time-reversible laws. For instance in the classical world
one would assume the Newton equation to be valid in the microscopic realm. hence
we know that:

1. Quantities are deterministic;

2. Motion is either uniform or accelerated.

One can then reasonable question the origin of the randomness of the micro-
scopic walkers. It is then that sensibility to initial conditions exhibited by Poincaré
for the N-body system reveals that the apparent deterministic character is an utopia.
It is this phenomenon of impredictability for large times due to the extreme sen-
sitivity to initial conditions which are nowadays referred as chaotic phenomena or
simply Chaos.

3.6.2 Definitions

We shall now move on by recalling briefly some results in order to introduce notions
which will prove useful in what follows. The presented results will deliberately be
shortly described and sometimes grossly. The aim is more to acquire quickly the
notions in a simpler way even if this means some lack of rigor or mathematical
detail.

3.6.2.1 The central limit theorem

We shall here present a version which shall be sufficient for the understanding of the
problematic of this chapter. We consider a random process v and denote v(¢) one of
its realization. We introduce then another variable

t
x(1)=68t) v(t'), (3.28)
t'=0

where 6t is some (useless) constant which we choose to be positive. Then :

o If the temporal correlations of v decrease sufficiently fast then x(z) is a random
process (in the sense of looses memory),
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e and if the standard deviation of v(¢) is finite,

the central limit theorem holds and x is a random process whose distribution tends
towards a Gaussian one as f — oo.

This presentation of the theorem with &1 reflects a Langevin perspective, with the
transport problems discussed later on in mind. Let us consider a one dimensional
trajectory x(¢) where x corresponds to the position and let us call v(z) the speed. If
we assume that we chosen the origin such that x(r = 0) = 0, we can write

x(t) = /Ot v(t')dt' ~ 5ttgov(t/),

if Ot is small enough.

Remarks

1. The conditions necessary for the central limit theorem to hold are quite broad
and often apply for many physical systems. In this point of view one refers to the
Gaussian distribution as a general attractor of random processes.

2. We may as well notice that if initially v(z) is a Gaussian random variable then
x(t) is also Gaussian. The Gaussian is therefore stable from the point of view of the
addition. This property is not restricted to Gaussian variables but is in fact shared
by all so-called Lévy a—stable laws(0 < o < 2).

3.6.2.2 Lévy distributions

As just mentioned, there exists an ensemble of distributions of random variables
which are said to be stable in regards to the addition operation. Stable means that
the sum of random variables picked according to a given distribution results in a
random variable whose distribution is of the same kind as the original one (like for
the Gaussian). Paul Lévy has characterized all distribution stables by the addition
(as for instance x is a sum of v in Eq. (3.28)). The ensemble of distributions said
Lévy o-stables are parameterized by a real number o €]0,2]. We list here below
some of their properties.

The tails of Lévy distribution are of algebraic type and decay as x (o), (except
for o0 = 2, value for which the distribution is in fact the Gaussian one)

a. This implies that the mean is not defined for 1 > a > 0.

b. As well for 2 > o > 1 the standard deviation of v(z) is infinite. This implies that
events with large values of v(¢) are statistically not negligible. From a physical
standpoint, such events should not arise except if we can have large scale separa-
tion in the speeds of the problem dealt with. When we are dealing with transport
properties one deals with this infinite problem by rescaling time by for instance
introducing the notion of continuous time walker.
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3.6.2.3 Classification of transport properties

Given the conditions to validate the central limit theorem previously mentioned we
shall only obtain physically an anomalous behavior of transport properties (in the
sense of non-Gaussian) only if time-correlations do not decay fast enough. One will
then be able to talk about strong memory effects. Let us now specify what is meant
by anomalous transport and what typical indicators are computed to characterize
transport.

Traditionally transport properties of a system are characterized by monitoring the
evolution of the second moment (variance) of the characteristic distribution. Even
though from a practical point of view the first moment (the average) can have a
prime importance (for instance for the transport of goods), from a classical mechan-
ics perspective we try to define properties which have the same Galilean invariance
as the motion equations have. Given a quantity X (¢) with a given distribution (for
instance X can be the position of one particle among a large number of them at time
t) we will focus on

My (1) = (IX (1) — (X (1)[*), (3.29)

where (-) corresponds to an average over different realizations or constituents.

In these condition:

1. Transport is said to be diffusive if M, ~ ¢. Tt is for instance the case for an
ensemble of random walkers moving with speeds distributed on a finite interval on a
line (see the diffusion equation (3.27)). We remind the reader that the computation of
only one moment is not sufficient to characterize the distribution, hence the diffusive
character in the Gaussian sense is not granted even if the second moment evolves
linearly with time, we however follow the habits and abusively will rely only on the
second moment to name transport diffusive.

2. transport is said to be ballistic if M, ~ ¢>. This type of behavior is typically
expected for an integrable system. One can for instance think of an ensemble of
regular walkers, each moving with its own constant speed, with again a distribution
of speeds within a given interval, if all walkers have the same speed one finds of
course M, = 0.

Given these two extremes we could expect in nature to observe:

M, ~tF o<u<2.

We could even get higher values of 1 due to acceleration, but we shall expect some
saturation after a while in order to keep the range of velocity finite. When the expo-
nent U is not equal to one, we are getting out of the context of the heat equation and
transport is said to be anomalous.

3.6.2.4 Anomalous transport

We just have discussed the fact that transport in a complex system can be anomalous.
To be more precise in the nomenclature, there exist a more fine classification of the



160 Xavier Leoncini

type of transport based on the value of the characteristic exponent of the evolution
of the second moment. As already mentioned:

Transport is said to be anomalous if it is not diffusive in the sense (X2) ~ 4,
n#1

1. Tf u < T transport is anomalous and one refers to it as sub-diffusion;

2. If u = 1 transport is Gaussian and one refers to it as diffusion;

3. If u > 1 transport is anomalous and one refers to it as super-diffusion.

3.6.3 Anomalous transport in incompressible flows

We are now going to address the problem of transport in various physical systems
for which transport phenomena are essentially governed by advection phenomenon
and for which anomalous transport has been observed either numerically or exper-
imentally (Annibaldi et al., 2000; Chernikov et al., 1990; Zaslavsky et al., 1993;
Schlesinger et al., 1993; Solomon et al., 1994; Leoncini et al., 2001; Leoncini and
Zaslavsky, 2002; Leoncini et al., 2005; del Castillo-Negrete, 1998; Dickman, 2004).
More precisely, we shall consider a model of 2-dimensional turbulence relevant for
magnetically confined fusion plasmas or geophysical flows.

Both of these system present a strong anisotropy and some models can be done
be built that reduce the problem to a 2-dimensional system. For the tokamaks, this
reduction from 3 to 2 dimension is linked to the presence of a strong magnetic
field, which confines particle along magnetic field lines. Since the magnetic field
has no influence along the direction which is parallel to it (Laplace force), we are
interested in transverse motion in the plane perpendicular to the field lines, and can
in some case reduce the study to a 2-dimensional one. For geophysical flows, either
the oceans or the atmosphere have a thickness of the order of a few tens of kilometers
whiles their extension covers a few thousand ones, this fact allows approximation of
the “shallow water” type and brings us back to two dimensions. In order to be more
clear, the aspect ratio of the atmosphere or oceans are of the same order as those of
a few pages of this book.

In these two types of system, transport is a key issue. For fusion machines, trans-
port properties are intimately linked to confinement properties of the plasma and
thus to the feasibility of a fusion reactor. Regarding geophysical flows, it can con-
cern the level of concentration of salt in the ocean, traces of radio-active materials,
temperature transport and of course transport of pollutants in the atmosphere and
oceans.

To start the study of transport in these systems we shall start by a remark: in
two dimensional turbulence one observes quasi-generically a self-organization due
to the inverse cascade (McWilliams, 1984). This self-organization is characterized
by the emergence of Tong lived coherent structures most notably vortices.

We are thus naturally inclined to ask what is the influence of these coherent
structures on transport properties.
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3.6.3.1 Modelling

The way we shall approach this problem is gradual. We shall start from first princi-
ples, meaning that we will consider the global evolution of an ensemble of particles
with individual dynamics. It is important to mention that contrary to the more tra-
ditional approach of monitoring the evolution of a density or a concentration, our
tackling of the problem takes into account the individual character of particle, hence
we are not influenced by coarse graining effects or particle indifferenciation. These
last two effects may indeed have a strong effect on anonymous transport proper-
ties, however we believe that by presupposing them we will also not be able to
gain a finer and deeper understanding of some mechanisms which may govern the
transport properties and thus the interpretation of the results. Of course this last
statement would be pointless if our aim was just to get a model which reproduced
well observed phenomena, but the ambition here is in the end to be able to control
transport, hence a descriptive and not explicative modelling becomes inadequate.

In this same spirit of a deep understanding, we shall consider very simple mod-
elling of the considered flows and take great care of understanding the transport
properties in these flows. We shall then progressively move to more and more com-
plex modelling of the flows and get closer to more realistic models.

Now before moving on we want to insist on the formal analogy which exists be-
tween geophysical flows and tokamak plasmas. Indeed the influences of the effects
listed below are quasi-identical.

Geophysical flows <> Tokamak plasma turbulence
Coriolis Force — Lorentz Force
Rossby waves —= Drift waves

Charney-Obukhov Equation <= Hasegawa-Mima Equation

And an equation describing plasma turbulence in a tokamak the so-called Hasegawa-
Mima equation and one describing geophysical flows so-called the Charney equa-
tion are formally identical:

Q+[Q,8] =0, (3.30)
Q=& AAD+gx, (3.31)

only the scales and parameters have different physical meanings: @ is either the
stream function or the electrostatic potential, £ is a generalized vorticity, A 1/2isa
characteristic screening length (Debye Iength or Rossby length), and g corresponds
to either the presence of a density gradient or the Tocal variation of the Coriolis force
due to curvature.

To start our study we consider a very simple system, namely a system of point
vortices. The motivation are based on the following already mentioned grounds,
point vortices:
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e are a good approximation of geophysical flows in some regimes,
e are an exact solution of the Euler equation,
e allow us to reduce the problem of the flow to a N-body Hamiltonian one.

Moreover to study transport in these system we are considering passive particles
whose trajectories are computed using Eq.(3.1). Since the considered flows are time
dependent we expect to observe chaotic advection phenomena. We then use numer-
ics to compute the trajectories of particles and vortices.

Regarding this Tast point, it is mandatory to be more specific. Indeed as we have
seen earlier on, the dynamics of passive tracers or point vortices is Hamiltonian for
2-dimensional flows. Hamiltonian dynamics are peculiar in the sense that they are
preserving phase space volume and time-reversible, and there are conserved quanti-
ties. Since we are interested in transport properties, we have to compute trajectories
over long times. It is then very important to carefully chose the algorithm which
will be used for time integration of trajectories. Indeed most algorithms do not re-
produce well the underlying simplectic structure of Hamilton’s equations. For in-
stance, it is now well know that typical Runge-Kutta scheme do not preserve phase
space volume. For short time integrations, this is usually not a problem, but as soon
as we consider asymptotic behaviors, these effects may actually totally bias the dy-
namics and by consequence transport properties. There exists however simplectic
algorithms which have a simplectic structure. Of course, since we are dealing with
discrete time and are facing Hamiltonian chaos we can not expect to reproduce “ex-
actly” the continuous time dynamics, however we are using an iteration which will
preserve well the original invariants of the dynamics, hence it is reasonable to ex-
pect that similar transport properties as the ones coming from the continuous time
system will be numerically exhibited.

For the considered Hamiltonian, we have chosen to compute the trajectories us-
ing a sixth order symplectic scheme, namely the so-called Gauss-Legendre one
(McLachlan and Atela, 1992). Since the Hamiltonians (3.2) and (3.7) are non-
separable, we have no choice but to use this type of implicit algorithm.

3.6.4 Tracers (passive particles) dynamics

3.6.4.1 Regular flows: particle’s advection in a three point vortex system

We first start with the simplest case of a regular flow with vortices. In order to
get some time dependence to avoid trivial results we are left with systems of three
point vortices (if we had more the system would be chaotic). Also since we are
interested in asymptotic transport properties we have considered a periodic motion
of the vortices. Work related to transport for the case of three identical vortices can
be found in (Kuznetsov and Zaslavsky, 1998, 2000). Here we want to have vortices
of different signs and check the influence on transport of the finite time singularity
(Leoncini et al., 2001), which also corresponds to real vortex trajectories when these
are getting loser to each other (Dritschel and Zabusky, 1996). In order to check the
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impact of the singularity we have considered configurations giving rise to periodic
motion and which are getting closer and closer to the conditions (3.12 et 3.13).

Vortex motion being periodic, the stream function is time dependent, we are thus
expecting Hamiltonian chaos for the passive tracers. To study this phenomenon it is
useful to visualize phase space using a Poincaré section. With this in mind we define
the following Poincaré map by

i1 = P(z0) = e (T, ),

where time is discrete and is now measured in number of periods (#, = nT). One
notices also that since the vortex motion is in fact quasi-periodic, after each period a
global rotation of angle @ is performed in order to make the triangle formed by the
vortices invariant by the map. We have denoted z(7, z,) the position in the complex
plane at time ¢t = T of a tracers which has an initial condition z,, at time ¢ = 0, where
T corresponds to one period of the triangle formed by the vortices.

For the case of identical vortices we have first considered conditions “far from
collapse” k = —0.2 (k. = —1/2 corresponds to the collapse). The Poincaré sections
is displayed in Fig. 3.6. One can notice effectively the phenomenon of chaotic ad-
vection, in a large region usually referred to as the chaotic sea. We also observe
regions where trajectories appear as regular (at least at first glance), which are re-
ferred as islands of stability in the literature, as most of the time an elliptic point cor-
responding to a stable periodic orbit lies at the center of the island. In the Fig. 3.6
the two identical vortices are marked with the + sign and the negative one with
the o sign. Hence we notice the presence of islands of stability around the differ-
ent vortices, in what follows we shall call these special islands vortex cores. Each
core corresponds indeed to a quantity of fluid which is trapped around the vortex
and stays in its vicinity with a more or less regular dynamics. We can also notice
that the region surrounding the island localized in the Tower-Ieft part of the plot is
darker than the stochastic sea. This translate a non homogeneous distribution of the
trajectories in the chaotic sea and is a consequence of stickiness a phenomenon as
we shall see at the origin of anomalous transport.

For comparison we have represented on Fig. 3.7, a Poincaré section resulting
from a configuration close to collapse. We can notice that actually the phase space
structure has not changed much, we find again, a stochastic sea and islands of stabil-
ity. We however notice that the size of the cores if much smaller. In fact, a simple ar-
guments can explain that the size of the cores is related to the minimum inter-vortex
distance reached (Leoncini et al., 2001). We shall consider transport properties in
these flows afterwards, but first we shall discuss chaotic flows.
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Fig. 3.6 Poincaré section of a system of three point vortices with parameters far from the singular-
ity. The constants of the motion of the three vortices are K =0, A = 0.9. Vorticities are (—0.2, 1, 1).
The resulting observed period is 7 = 10.73.
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Fig. 3.7 Poincaré section of a system of three point vortices with parameters far from the sin-
gularity. The constants of the motion of the three vortices are K = 0, A = 0.9. Vorticities are
(—0.41, 1, 1). The resulting observed period is T = 36.86.
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3.6.4.2 Chaotic flows

Point vortex systems

As mentioned when we have four vortices (Novikov and Sedov, 1978; Aref and
Pomphrey, 1980; Laforgia et al., 2001), or more (Leoncini and Zaslavsky, 2002),
the vortex motion itself becomes chaotic. The loss of quasi-periodicity does not al-
low to define a Poincaré map, and the global rotation invariance is likely to blur
any attempt to have simple Poincaré sections. Visualization of tracers is thus limited
and we are reduced to make snapshots of the system to visualize the positions of all
tracers at a given time. For instance in Fig. 3.8 we have plotted snapshot obtained
from a four point vortex system as well as one of sixteen vortices. Passive particles
having been initially placed in a small region. We notice that the mixing appears as
relatively homogeneous. We also notice the persistence of the “impenetrable” vortex
core around the vortices, but do no see a priori any region of regular motion like in
the three vortex system. We although can see some stickiness phenomenon around
the vortex cores for four identical vortices in Fig. 3.8 The sticking mechanisms is
related to some kind of peripheral trapping in the cores and has been identified in
(Laforgia et al., 2001), it is intimately linked to the Hamiltonian dynamics of the
vortices them selves. A form of stickiness exists indeed for the vortex dynamics, it
took the form of two vortices getting close to each other and forming a pair (see
Fig. 3.9). In this setting the vortices being close to each other and due to the log-
arithmic interaction between the two, we can portray the system as an integrable
system of two vortices perturbed by the others. We are then in a close to integrable
system, thus the notion of stickiness for this type of behavior. For the four vortex
system stickiness is “degenerate”, indeed as the pair is formed, at ITarge scales the
pair Tooks Tike one vortex and we end up with a system of three vortices which is
also integrable. This degeneracy gives rise to a special behavior of trapping times
distribution with respect to systems with more vortices (Laforgia et al., 2001). For
the system of 16 vortices, this stickiness phenomenon and pair formation is also
observed, but we observe as well another form of stickiness with the formation of
“triplets” which are also integrable subsystems.
We shall now discuss flows generated by Charney-Hasegawa-Mima.

The Charney-Hasegawa-Mima (CHM) equation

As already mentioned tokamak plasmas turbulence and geophysical flows can in
some circumstances share in common a same dynamical equation as Egs. (3.30)
and (3.31), where @ is the stream function of the electric potential and £ is a gen-
eralized vorticity. One shall notice that when A = g = 0, we end up with the Euler
equation which admits point vortices as solutions. In fact only when g = 0, point
vortex solutions still are valid. The existence of the AA @ term corresponds to some
screening effect and vortex interaction is modified log(r) — Ko(r/A'/%) where Ky is
the zeroth order modified Bessel function, which becomes a logarithm for r < NG
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0

Fig. 3.8 Snapshot of a system of point vortices and passive tracers. Top: system of four point
vortices. Bottom: Local zoom of a snapshot of the system of sixteen point vortices. One can notice
the presence of vortex cores surrounding the vortices. Also in the four point vortex system one
observes stickiness around the cores. One can also guess the quasi-regular motion in the region far
from where the vortices evolve (see (Boatto and Pierrehumbert, 1999)).
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and exhibit exponential decay for r > /A. The presence of a non zero g modifies
drastically the solutions, indeed the gx is non-local and from this fact Eq. (3.30) has
then exact planar wave solutions with a given dispersion relation, but on the other
hand Tocalized point vortices are no more accepted. Moreover, the presence of this
term introduces some anisotropy in the system.

To study transport in this system we have also had to simulate numerically the
equation. Unfortunately the presence of a cascade towards small scales introduces
some numerical instabilities. Hence to stabilize the code we have to introduce a
dissipation term in the form of a viscous term A which can cancel out the small
scales problem. Moreover since we want to consider the flow for large times we
also counterbalance the dissipation with some kind of source. Hence we rewrite the
dynamical equation (3.30) as

0 Q +[Q,P] =0+ Source + Dissipation . (3.32)

To perform numerical simulation of this type of equation and study afterwards
transport properties it is easier to consider periodic boundary conditions and use a
pseudo-spectral scheme. We are then computing the non-linear evolution of a finite
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Fig. 3.9 Visualization of four consecutive snapshots for a system of four point vortices with 1000
passive tracers, corresponding to four successive pair formations. Passive tracers where initially
placed in the periphery of the core of one vortex. One can see that as the pairings occurs, the cores
exchange particles, it is also during this pairing that some particle manage to escape. After four
consecutive pairing all cores are “contaminated” and about 10% of the particles have escaped.
Initial vortex positions are [(1.747,1.203) (—v/2/2,0) (v/2/2,0) (0,—1)]. Particle are initially
uniformly distributed on a circle of radius r = 0.27 around the forth vortex.
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number of modes. Hence when considering transport properties, it will be the trans-
port of passive tracers in the flow generated by this finite number of modes which
evolutions will be governed by Eq. (3.32). In order to characterize transport in these
system, we can of course not cover all range of parameters and situations. So we
have selected three different regimes with different parameters, as well as different
dissipations and forcing terms, for which and for the time length of the simulation,
the dynamical invariants of the dynamics, such as the energy or the enstrophy can be
considered constant. The visualization of the scalar field A® has been reproduced
on Figs. 3.10, 3.11, 3.12. We have a case with a very small dissipation (Fig. 3.10)
and a few vortices, one with two strongly forced vortices (Fig. 3.11), and one case
which is strongly anisotropic with intermediate forcing (Fig. 3.12).

From the point of view of the particle motion, we shall still remain with the
Gauss-Legendre simplectic scheme, the Hamiltonian of the system being given by
&. Also, since we have concluded that eventual anomalous properties of trans-
port are directly linked to memory effects and long lasting time-correlations, it is
extremely important to be careful when computing the speed. Indeed the pseudo-
spectral code gives access to the time evolution of a finite number of Fourier modes,
or in real space it gives the values of the speed on specific grid points. In order to
avoid any loss of memory resulting from a passive tracers moving from one small
cell to another, we have to take into account all the Fourier modes (which is numer-
ically costly), and not to interpolate from a finite number of point on the grid.

20 40 60 80 100 120
x

Fig. 3.10 Scalar field A®, for a configuration with small dissipation and anisotropy.
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3.6.5 Transport properties

We now focus on transport properties. First we define which quantities we shall
consider in order to measure transport, and also which regions we are interested in.

20 40 60 80 100 120

Fig. 3.11 Scalar field A, for a configuration with two large vortices and strong noisy forcing.
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Fig. 3.12 Scalar field A, for a configuration with strong anisotropy.
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3.6.5.1 Definitions and observations

When considering system of three point vortices, as those depicted in Figs 3.6 and
3.7, one can notice that the chaotic sea is finite. Moreover, transport properties are
quite obvious when we are within an island of stability, thus we are interested in
transport properties resulting from trajectories living in the chaotic sea which results
from chaotic advection. Since the sea is bounded, it is of course not very useful to
consider transport for long times based on particle positions (the sea being filled
quite fast). We are thus considering transport properties based on the Iength of tra-
jectories and measure the curvilinear arc-length, and the transport and dispersion
associated to this quantity

si0) = [ e, (3.33)

where v;(7) is the speed of particle i at time 7. Then to characterize and study trans-
port we compute the moments

My (t) = (Is(@) = ()], (3.34)

where (...) corresponds to ensemble averaging over different trajectories. And from
the time evolution of these moments we “extract” a characteristic exponent

M, (1) ~t*9) (3.35)

In what follows and to be consistent across the different systems we consider
everywhere transport properties related to the length of finite time trajectories.

3.6.5.2 Lévy flights

Before measuring the different moments, it is good to have an idea on how the
lengths of trajectories evolve with time. We have drawn in Fig. 3.13 the relative
evolution of the length with respect to the mean of an ensemble of 30 different
particles in a flow generated by three point vortices. One can see in the figure that
the time evolution is reminiscent of some random walks by parts. Indeed there are
some parts where the evolution Tooks regular and ballistic before falling back to
erratic again, and these regular parts can last relatively Tong times. This type of
regular part behavior is usually referred to as Levy flights. Indeed when we observe
such large events, it usually means that they are not as unprobable as a Gaussian
would let us think, hence we may model it with random steps, but with step sizes
taken from a Levy distribution with infinite second moment. In fact to model this
behavior gigantic steps are not compatible with finite speeds, thus we consider a
Levy walker, and put the constraint on time. For instance, one can think of two
possible values for the speed of a walker +v and randomly pick according to a
Levy distribution how long the walker travel with that speed, before making another
random pick. One talks then about continuous time random walks.
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3.6.5.3 Transport characterization and moments

We shall now finally measure transport properties. As mentioned we shall consider
system with increasing complexity, meaning first a system of three point vortices
near collapse dynamics (Leoncini et al., 2001), then systems of four and sixteen
identical vortices (Leoncini and Zaslavsky, 2002), and finally three different config-
uration of the Charney-Hasegawa-Mima (CHM)(Leoncini et al., 2005).

Evolution of moments

For the different considered cases we numerically compute the different moments
(3.34). For this computation we typically consider an ensemble of about 500 trajec-
tories, which have been computed for time scales of about 10* or more. The time
step of the numerical integrator is 102, and characteristic Eulerian time scales (for
instance the turn over vortex time) are about unity. Since we have only few trajecto-
ries, we have considered regimes which we may consider somewhat stationary from
the transport perspective, in the sense that we considered that transport properties
are invariant by time translation. This allows us to to cut trajectories in pieces and
thus to gain in the statistics up to relatively large times. It is important to mention
that having few long trajectories is usually more relevant than a large number of
them but for shorter times. Indeed assuming some ergodicity of the system, we are
not sure that the ergodic measure is Lebesgue, however we know that long time tra-
jectories should sample adequately the ergodic component, we may then expect that

x10%
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t x103

Fig. 3.13 Deviation from average arc-length (s(t) — V#) versus time for an ensemble of 30 particles.
We notice the presence of Lévy flights. The considered system for the flow is a three vortex one
characterized by K =0, A = 0.9. The run is performed over 20000 periods. The average speed is
V 7 0.87. The vortex strength are (—0.2, 1, 1) and the quasi-period of the motion is 7 = 10.73.



172 Xavier Leoncini

large time transport properties will be better reproduced by using many portions of
long trajectories rather than a large number of shorter ones.

In order to have an idea of the time behavior of the moments, we have reproduced
on Fig. 3.14, the moments obtained from passive particle dynamics in the flow gen-
erated by CHM with Tow dissipation (Fig. 3.10). One can notice that the power-law
behavior (3.35) is accurate except at very large times and for high moments. This
problem can be understood by the fact that for large times we have only little statis-
tics, and also by the fact that transport is anomalous, which can make a few events
dominate transport properties, if the statistics is poor.

Characterizing transport

To characterize transport we extract the exponent {t(g) from the moment evolution
and study how this function behaves in g (Castiglione et al., 1999; Ferrari et al.,
20071). In fact in anomalous transport there are some nuances, indeed we may have
self-similar anomalous transport properties or not, if not, one uses the term multi-
fractal transport or strongly anomalous transport. The discrimination comes from
the behavior of the function pt(g).

e If transport is Gaussian we have: it(g) = 1gq, A = %
e Transport is weakly anomalous or self-similar when: i(g) = Aq, 1 # %
e And if the behavior of 11(g) is non-linear we have then strongly anomalous or

equivalently multi-fractal transport: [t(g) # Aq.
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Fig. 3.14 Time evolution of the moments M,(t) for particles driven by the flow generated by
Charney-Hasegawa-Mima with weak dissipation. We find the expected behavior: M (r) ~ rhia)
The moments for ¢ =0.5,1,- -+, 8 are represented.
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We have reproduced in Fig. 3.15, the exponents observed in a system of three point
vortices. One concludes that transport is super-diffusive (1£(2) > 1) and since 1 (q)
is non-linear we have multi-fractal transport.

Summary of transport properties
We can summarize the different results obtained for transport properties in the dif-

ferent systems (see (Leoncini et al., 2001; Leoncini and Zaslavsky, 2002; Leoncini
et al., 2004, 2005)) in the following table:

u(2)

3 vortices 1.5+£0.2
4 vortices 1.82
16 vortices 1.77
CHM small dissipation 1.84
CHM noisy 1.70
CHM anisotropic 1.78

For all case we observe super-diffusive transport, and except maybe for the three
point vortex systems, we may hypothesize that there is a probable universal value for
the characteristic exponent of transport in these 2-dimensional flows. Moreover, for
the 3 point vortex system, we had considered a different observable (see (Kuznetsov

7_
Z4
3
/
l.
0 7 8
q

Fig. 3.15 Behavior of the function p(g) versus moment order ¢ , obtained for a system of three
point vortices. The moments corresponding to order ¢ = 1/2,...,8 are represented. We observe
a non-linear behavior of p(g). Transport is super-diffusive and multi-fractal. The slope for small
moments is about 1.4 while it becomes 1 for high moments.
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and Zaslavsky, 2000; Leoncini et al., 2001)) namely the number of turns around
the center of vorticity, which may somewhat affect the value of the exponent when
compared to arc-length. Also if we consider the nature of anomalous transport, we
find that for point vortex flows the transport is multi-fractal (strong anomalous)
(Leoncini and Zaslavsky, 2002; Leoncini et al., 2004), while for the flows result-
ing from CHM, we can not be as conclusive, but an analysis based on varying the
total number of trajectories and the total computed time shows a trend that transport
may be as well multi-fractal(Leoncini et al., 2005).

3.6.6 Origin of anomalous transport

We have just noticed in the considered two-dimensional flows some universality in
the anomalous super-diffusive behavior of transport properties. It is then natural to
question which phenomenon may be at the root of this observation.

3.6.6.1 Regular flows

As shown in Fig. 3.13, the presence of Lévy flights seems to be intimately linked to
the anomalous properties of transport. When the flows is regular and we can visual-
ize phase space with a Poincaré section; the origin of the flights can be explained.
Indeed, let us define an average speed over a time T with

W) = l/ttﬂv(t’)dt’,

T

and Iet us consider the distribution of these averaged speeds for an ensemble of
trajectories. We can reasonably expect that due to ergodicity in the chaotic sea, this
distribution shall be sharper and sharper as T increases to become so delta function
in the T — oo limit (see for instance (Leoncini et al., 2008) for details). We may
however expect different peaks to arise, which would characterize the Lévy walkers,
which we actually see in Fig. 3.16). We then localize with different colors in the
phase space the regions visited by the portion of trajectories which contribute to a
given peak (see right pictures in Fig. 3.16). It is then clear that the observed Lévy
flights in Fig. 3.13 are a consequence of the phenomenon of stickiness. Stickiness
is related to the fact that once a trajectory is in the vicinity of an island of stability
it may (or may not if the island is not sticky) want to mimic trajectories which are
inside the islands and become more or less regular for very large times. One can
also notice on Fig. 3.16 that each peak corresponds to a specific sticking region
in phase space, which actually explains the multi-fractal nature of transport in this
three vortex system (Leoncini et al., 2007).
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3.6.6.2 Notion of chaotic jet

When the flow is chaotic, we can not have access to phase space as easily as when
we can define a Poincaré map, hence it becomes difficult to identify sticky regions.
It is then useful to introduce the notion of chaotic jet (Leoncini and Zaslavsky, 2002,

Fig. 3.16 Top, distribution of speeds averaged over 20 periods. Bottom, localization of the regions
contributing to the different peaks of the averaged speed distribution.
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2003; Afraimovich and Zaslavsky, 2003)(See Fig. 3.17): We consider one special
passive particle and place in its immediate neighborhood a few test (ghost) particles.
We then measure the time/arc-length that the ghosts remain in the neighborhood of
the chosen particle. We are then de facto interested in the relative dispersion of
particles. From one point of view we can see this action as some kind of finite size
Lyapunov exponent measurement, or take an other point of view and say that we
are interested in the stability of a coarse grained trajectory. The implementation of
this measurements stems from the fact that we expect long time trapping within
jet when stickiness is observed, it however can be generalized to systems when we
do not have access to an easy visualization of phase space. Note that computing
chaotic jets properties can be included in a more general setting of measuring the
€—complexity (Afraimovich and Zaslavsky, 2003). When measured, we notice that
the trapping time distribution within jets (see Fig. 3.18) displays a power-law decay
with a characteristic exponent y. For the system with sixteen vortices we have

o p(T)~ 17
e Y~2382

o y=1+4+u(2).

In fact the Y = 1+ u law can be explained under certain conditions (see for instance
(Leoncini et al., 2001; Leoncini and Zaslavsky, 2002)), when we reconcile the y
exponent to one related to the one observed in recurrence time distribution. The
agreement with this Taw, indicate nevertheless that it is trapping times within jets
which are at the origin of anomalous transport. And we can easily imagine that we
indeed shall not observe a regular diffusion behavior if the dispersion of particles
is not strong enough. We find again this behavior in CHM, except maybe for the
strongly anisotropic situation (Leoncini et al., 2005).

Detection of jet using the method discussed earlier allows also to localize the ori-
gin of anomalous transport Indeed since particles when ghost particles are trapped
for relatively large times in a jet (resulting in a contribution in the power-law tail),
one can then start to localize the reference trajectory. Hence we are able to localize
a non-dispersive jet for the system of sixteen vortices in Fig 3.19. For this jet, the
influence of vortex cores is predominant, and one recovers the sticking phenomenon
around coherent structures at the origin of anomalous transport. However for a jet
identified in CHM the result is more surprising (see Fig 3.19). Indeed, one notices

Fig. 3.17 Schematic representation of a chaotic jet.
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that even though coherent structures play definitively an important role, we notice
that their influence is not restricted to their immediate individual periphery. Hence
understanding transport properties is not limited to the presence of coherent struc-
tures but also to their eventual interactions or exchange of regular jets.

The notion of a jet is a priori not well defined, indeed it is subject to the introduc-
tion of two arbitrary quantities. For one part the radial extension of the jet € around
the reference trajectory and for the other part the initial distance & at which the
ghost particles are placed. In order to see if these have an influence we can study the
jet “structures”, meaning the evolution of ghosts relative to the reference tracers in a
Tong Tived jet. This “structure” is represented for the two mentioned jets in Fig. 3.20.
In order to analyze the influence of delta, it appears clear that the during the Tife of
the jets, ghosts may come much closer to the reference trajectory (at least an order
of magnitude closer). Also, and it is more visible for the jet in the vortex system
(Ieft in Fig. 3.20), that some kind of hierarchical structures appear. This underlines
the fact that actually particles are trapped in different successive (€—jets) scales. It
is then reasonable to assess that the asymptotic properties of the tails of trapping
time distributions are independent of € and 8. Of course we have to have considered
these scales beyond any characteristic one of the system, i.e the size of the cores
for instance. To conclude on the jet’s structure, it is important to mention that the
relative dynamics of ghost tracers does not seem regular, and appears as chaotic, but
that for relatively Targe times, chaos is confined on small scales, making thus the
coarse grained g-trajectory “regular”. This last statement is important as it shows
that the computation of a Lyapunov exponent may lead to some misunderstandings
such as extended chaos for instance.
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Fig. 3.18 Tail of the distribution of trapping times within jets for the system of sixteen vortices.
We observed a power law decay.
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Fig. 3.19 Localization of a non-dispersive (long-lived) jet in the system with sixteen vortices (top)
and in the CHM noisy case (bottom). For the left figure, the distance between the passive tracer
and three point vortices is presented on this first three plots on the top. We can see that the jet
sticks around vortex cores. In the fourth plot we plotted the distance between two vortices which
exchange the jet during the formation of a pair. For the CHM case, the jet is not trapped around one
of the two vortices (see Fig. 3.11), but bounces back and forth between the two structures (recall

the periodic boundary conditions of the flow).
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Fig. 3.20 Structure of jets. Top for a jet in the system with 16 vortices and bottom for a jet in CHM
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3.6.7 General remarks

When we consider transport related problems in physics, we realize pretty soon
that the range of applicability of the central limit theorem are quite broad and gen-
eral. From this perspective, anomalous transport may be seen as some singular and
exceptional behavior without any real consequences. One can though also asks our-
selves if nature is really as simple as we want to represent it, or if it not our eyes
and measuring instruments that give such a broad spectrum of applicability to this
theorem, and in this perspective, we may want to sharpen our sight and tools to try
to switch from description to explanation.

3.7 Beyond characterizing transport

We have up to now discussed transport problems in 2-dimensional flows and found
out that the observed anomalous transport could be explained by chaotic advec-
tion and the emergence of coherent structures associated with the phenomenon of
stickiness or chaotic jets. In this section we want to use the phenomenon of chaotic
advection with two possible applications. In the first situation we shall consider sta-
tionary divergent free three dimensional field, and perform a transformation to fall
back on a one and a half degree of freedom Hamiltonian, which we shall use to
detect coherent Lagrangian structure in the flow. Then in a second part we shall see
how we can use chaotic advection to achieve targeted mixing, meaning we want to
achieve good mixing in a region of phase space confined by “virtual” (dynamical)
barriers.

3.7.1 Chaos of field lines

In this first part we shall concentrate on the chaotic nature of field (stream) lines for
a three dimensional incompressible and stationary flow which we note v (Leoncini
et al., 2006). Since the flow is considered stationary the fluid particles or tracer will
follow the stream lines. The equation giving us the field lines equation is generically
obtained by writing

vAAM =0. (3.36)

3.7.2 Local Hamiltonian dynamics

We now briefly resume how to get the Hamiltonian chaotic character of field lines
(Zaslavsky et al., 1991). Equations (3.36) can be rewritten as
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de _dy _dz_ds (3.37)

Vx vy Vg 14

then we assume that locally v, # 0 and we get rid of one equation

{ dx/dz = ve/ve (3.38)

dy/dz=vy /v, ’

to get a dynamical system in two dimension.
Since the flow is incompressible (flux preserving) we have

V.-v=0, (3.39)

which implies the existence of a stream vector & such that
VAE=v, (3.40)

& being defined up to some gradient, which we shall refer as a gauge condition.
Let us consider the vector £ et rename its coordinates &, = —p, & = H, and let
us reduce the gauge condition by choosing &, = 0. Given Eq. (3.40), we end up with

v=(°H _JH _dp op
~\dy’ dIx dz’ady)’

(3.41)

Now let us recall Egs. (3.38), but with a change of variables, namely instead of
considering the triplet (x,y,z), we use ¢ = x and T = z to get to the triplet (g, p, 7).
We shall use the notation H(p,q,7) = H(x,y,z). This change of variables implies

9. .
axf= aqf+ xapf 7

ayf = Vzapf

and now by using the expression of the speed (3.41) we end up with Hamilton’s
equations

(3.42)

s o
= E’
,__a_H (3.43)

Consequences

e Field lines are generically chaotic for three dimensional divergence free fields.

Beyond this remark, we can also use this transformation to compute field lines nu-
merically using a simplectic integrator. This algorithm insures us of a good preser-
vation of the invariants of the systems and thus gives the assurance of having stream
lines with the condition of having a divergence free field. Moreover we can think
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of using the transformation to perform afterwards a Poincaré map and use them to
localize 3-dimensional structures. It is important to insist that the change of variable
is only locally valid, indeed the arrow of the effective time is not always defined.
However we can use the fact that the choice of the direction z and the coordinate
system is somewhat arbitrary, and we can for instance change labels or rotate it if
we encounter such problems (Leoncini et al., 2006). We insist also on the fact that
of course we have checked that such algorithmic procedure was giving better results
than a direct integration of Egs. (3.38) by a Runge-Kutta scheme. We now illustrate
in what follows the obtained results for a simple example.

3.7.3 An ABC type flow

To illustrate the interest in performing the transformation to a Hamiltonian system
we here consider an ABC (Arnold-Beltrami-Childress) type flow characterized by
the following equations

= cos(y) — €sin(z),
sin (x) + €cos (z), (3.44)
v, = cos (x) —sin(y) + vy,

=
|

5
I

where v is a constant which allows to eventually get rid of the problem resulting
from v, being zero. The properties of this flow are known:

e If £ =0, field lines are integrable (quasi-2D flow),
o If £ £0, the flow is tri-dimensional and field lines are chaotic.

For the case € = 0, we can see field lines in Fig. 3.21. We notice that in this case
that when vy = 0 all field lines are periodic and closed. We then consider a flow for
which vg = 0 and € = 0.15. The Poincaré section is represented in Fig. 3.22.

We find then again the structure of phase space already observed in chaotic ad-
vection phenomena with a chaotic sea and islands of stability, which are a signature
of Hamiltonian chaos in systems with one and a half degree of freedom. We note
though some difference, indeed we have here vy = 0, we can then expect that v, will
change its sign and our fictious time z is not anymore a regular growing monotonous
function, hence the structure which gives rise to the regular tori on the Poincar sec-
tion may not have the expected cylindrical tubular form. We have therefore repre-
sented in Fig. 3.23, the regular field lines whose initial conditions are taken in the
regular zone. One can see a delocalized structure which repeats itself periodically
with time, but also a non-conventional localized structure, which reflect the local
nature of the Hamiltonian formalism in this case. About these structure, we want
to insist on their Lagrangian character and that from the Eulerian perspective, the
velocity field is extremely simple.

We shall now move on to another potential application of chaotic advection.
Namely, we shall use it to improve mixing properties of a given flow.
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Fig. 3.21 Left: Poincaré section of the ABC flow for the integrable case € = 0 for different values
of vg ranging from 3 to 0.01 (vp — 0), all trajectories are superposing themselves exactly. The *
signs correspond to the points obtained when vy = 0, field lines are periodic. Right: display of four
different field lines for the case € = 0 and vy = 0. The lines are periodic and closed.

Fig. 3.22 Poincaré section of the ABC flow for € = 0.15 and vy = 0. We observe Hamiltonian
chaos and a mixed phase space with a stochastic sea and regular regions.
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105,

Fig. 3.23 Top: Regular delocalized field line for the case € = 0.15 and vy = 0. Bottom: Regular
localized field line for the case € = 0.15 and vy = 0, which is reminiscent of the observed behavior

with € =0.
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3.8 Targeted mixing in an array of alternating vortices

In order to improve mixing in fluids in non turbulent conditions (Iow Reynolds num-
ber), one possibility is to use chaotic advection (Aref, 1984). In this section we shall
revisit the problem which we use to illustrate the phenomenon in the beginning of
this chapter. We are thus considering the following integrable stream function which
models an array of alternating vortices with slip boundary conditions

¥ (x,y) = arsinxsiny, (3.45)

where x is the horizontal direction along the channel and y is the vertical one. The
constant ¢ is the maximal value of the speed whose field lines have been represented
in Fig. 3.1.

As already mentioned, passive particles are following stream lines given by ¥,
because the dynamics resulting from Eq. (3.45) is integrable (we have a one degree
of freedom Hamiltonian system). There is thus no mixing. The fluid is limited by
two invariant surfaces y = 7 and y = 0 corresponding at the top and bottom of the
channel separating the vortices. The flow has periodic hyperbolic orbits on these
two surfaces located in x = mzm with m € Z. The phase space is then characterized
by a chain of vortices with separatrices localized in x = mm with m € Z. From an
experimental point of view, we can try to study the phenomenon of chaotic advection
by introducing a time dependent perturbation of the flow f(x,y,z) in the stream
function, in order to obtain a Hamiltonian system with one and a half degree of
freedom. For instance the following stream function has been proposed to model a
experimental situation

¥ (x,y,t) = asin(x+ €sin wyt) siny, (3.46)

where the perturbation is f = €sin wyf and describes lateral oscillations of the vor-
tices (Willaime et al., 1993; Solomon and Gollub, 1988). The parameters € and @y
are respectively the amplitude and pulsation of these lateral oscillations. Without
loss of generality we set wy = 1 (by a change of time scale). The field Tines are iden-
tical as the one represented in Fig. 3.1 but oscillate periodically along the x direction
along the channel. Passive tracers have now a non-integrable dynamics. As shown
in Fig. 3.2, due to the presence of the perturbation the vertical heteroclinic connec-
tions (separatrices) between vortices have been destroyed. The stable and unstable
manifolds intersect each other transversally and chaotic advection along the chan-
nel is triggered. Mixing has thus been enhanced. However we can see that islands
of stability remain around the center of vortices. Mixing inside the rolls is thus only
obtained through molecular diffusion, while tracers in the chaotic sea are advected
along the channel without bounds. These conclusion are true for a large range of
parameters, with of course some variations on the size and number of islands and
size of the stochastic sea.

We can ask ourselves if by a more careful choice of the perturbation f, we could
improve on mixing properties while avoiding the spreading along the channel (Toun-
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sia Benzekri et al., 2006; Bachelard et al., 2007). In other words, the unperturbed
flow has separatrices in x = mm, which were confining the flow in a cell, we are
looking for a perturbation f which preserve the cellular structure of the flow while
having a time dependency which maximizes mixing within the cell.

With this in mind, we shall start with a quite general approach and become more
precise on the perturbation as we go along. We shall make a first simplification by
considering f = f(y,t) and construct dynamical barriers. We consider therefore a
generic integrable situation ¥(x,y) which is periodic with period L = 27 in x, and
such that d,%%(x,0) = ;¥ (x,H) = 0 for all x € R where H = 7 is the channel
height. The perturbed stream function is given by Eq. (3.4) where f(y,t) is such
that:

e Barriers whose equations are x = x;(y,#) (for k € Z) block chaotic advection
along the x direction.

The equations of the barriers are x = x;(y,t) = kL + ¢(y,t) for k € Z where ¢ is
function which we have to define. For this purpose we use Hamilton’s equations

0. 0¥ d

x:_ay (90( f7>__‘§—( +f’)7
I

y= 5 (@ f),

and we impose that x; is an invariant curve, which gives us the following dynamics
for particles on the barrier

._Jde  do
X = o +y8_y .
We then obtain: 5 5
St 5y o+ £ =0. (3.47)

We can for instance look for a solution for which the sum f + ¢ is only depending
on time. We note @(¢) the sum, and the condition on ¢ is given by

do ¥
ST —a—y(d’(f)w-

The above equation has as a solution

o(y,1) = =L (P(1),y) +g(y),

where g is an arbitrary function and the linear operator I is a pseudo-inverse oper-

ator of d;, meaning it acts on a function v(y,z) = Y vie as
k ikt
I'v= e
&

The perturbation f is then given by
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ft) = @(t) + LI (D(t),y) — 8(y), (3.48)

where @ is an arbitrary function of time and g function of y.

We now return to the array of alternating vortices (3.45) and trying to remain as
close as possible to the already performed experimental setting, we choose @ (1) =
esinr and g(y) =0.

The stream function modified by the perturbation (3.48) is then given by

Y. (x,y,t) = asin[x+ €sint + o.cosyCe (¢)] siny, (3.49)
where
Cet) = ¥~ Frui(e)cos(2n+ 1)1, (3.50)
120 2n+1

and _¢Z, (pour n € N) are Bessel functions of the first kind.

We notice that y = 0 and y = & are still defining borders of the stream function
(3.49). This comes from the fact that we only modified the term with x in the original
stream function. The stream lines are slightly modified (non-uniformly in y) as can
be seen on Figs. 3.24 (a) and (b) which represent the stream lines at two different
times, respectively ¢ = 0 and ¢ = 37/4. Moreover the motion of the rolls remain
horizontal, as is the case for the function ¥} given by Eq. (3.46). The fact that stream
lines from the stream function (3.46) and those of the stream function (3.49) are
alike, comes from the fact that the stream function ¥, is only a slight modification
of ¥ (for small & ) as we have [ (x,y,1) — ¥ (x,,1)| < o®¢/2.

We can also notice that the dynamics of tracers is totally different and show a high
degree of mixing. Using the same values of € and o displayed in Fig. 3.2, Poincaré
section of the dynamics governed by the stream function ¥ given by Eq. (3.49)
is represented on Fig. 3.25. We notice that as expected there are invariant surfaces
around x = 0 (mod 27) (bold curves ) and that mixing within those barriers is con-
siderably enhanced. The equation of these barriers in the x direction are known and
given by

x =x;(y,t) = 2kmw — atcosyCe (). (3.51)

To be more precise, the barriers (3.51) are degenerate invariant tori as each of then is
a heteroclinic connection between two periodic orbits (of period 27), one located at
y=0etx(t) = —aCe(t), and the other at y =  and x(¢) = aC¢(t), both oscillating
in opposite direction along the channel. Regarding the mixing inside the cell ob-
served in Fig. 3.25, we also notice that regular trajectories observed with the stream
function ¥| have been destroyed by the perturbation (see Fig. 3.2 to compare) for
€ = 0.63. This means that the perturbation given by Eq. (3.48) creates two invariant
surfaces around x = 0 and x = 27, and destabilizes the stable trajectories within the
cell, most notably the regular motion near the former elliptic points close to x = /2
and x = 37 /2. A detail study on the parameters, and how optimal mixing within the
cell can be obtained is given with great details in (Bachelard et al., 2007).

In order to simplify the perturbation and get a stream function which still mixes
but may be more realizable experimentally, we can think of truncating the se-
ries (3.50) which gives the temporal behavior of the perturbation. For instance, we
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consider a simplified perturbation by retaining only the first term in the series C¢(?)
which gives a stream function

Y (x,y,t) = oesin (x + €sint — 20 _Z;(€) cosycost)siny. (3.52)

The temporal dependence is much simplified as we are now Ileft with only one co-
sine mode (to be compared with an infinite series). In order to check if this is still
efficient, we computed the Poincaré section for the simplified stream function ¥
given by Eq. (3.52) for & = 0.6 and € = 0.63, and for the naked eye, the section
is identical as the one displayed in Fig. 3.25. Effective barriers are still there, and
mixing are equivalent. In fact we may mention that if we consider very large times,
some trajectories are escaping the cell, through holes which are present near the
unstable periodic point (at the top and bottom of the barriers), the simplified per-
turbation remains however very efficient, especially since in any case molecular
diffusion allows barrier crossing.

Fig. 3.24 Stream lines of the stream function (3.49) for (a) t = 0 and (b) t = 37 /4. Parameters
are ¢ =0.6 et € = 0.63.

Fig. 3.25 Poincaré section corresponding to a flow governed by the stream function (3.49). Pa-
rameters are o = 0.6, € = 0.63.
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To summarize, we have shown how in an array of alternating vortices correspond-
ing to a cellular integrable system, we can use chaotic advection to trigger efficient
mixing, while preserving the cellular structure of the flow (Tounsia Benzekri et al.,
2006; Bachelard et al., 2007).

3.9 Conclusion

In this chapter we have discussed the dynamics of particles advected in regular and
chaotic flows. We first have addressed the dynamics of point vortices and shown
the great variety of the dynamics of three point vortices near the singularity giving
rise to collapse. We have shown the strong influence of the existence of a finite time
singularity on the dynamics, especially on how the period of the motion evolves as
we get closer to the singular conditions. We have then studied transport properties
of passive tracers in various flows. We have started with integrable flows governed
by three vortices, then moved on to chaotic flows generated by four and sixteen vor-
tices, to end up with a turbulent flow governed by the CHM equation. For all cases,
we have observed anomalous superdiffusive transport with a characteristic exponent
u ~ 1.5 —1.8. We have explained the origin of the anomaly by the phenomenon of
stickiness around coherent structures in regular flows, and by the presence of regu-
lar chaotic jets for the chaotic and turbulent ones. Finally we have illustrated how
the Hamiltonian nature of chaos could be used to localize 3-dimensional coherent
structures or how to improve mixing properties in cellular flows while keeping the
cellular structure of the flow.
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Chapter 4

Hamiltonian Chaos with a Cold Atom in an
Optical Lattice

S.V. Prants

Abstract We consider a basic model of the lossless interaction between a moving
2-level atom and a standing-wave single-mode laser field. Classical treatment of the
translational atomic motion provides the semiclassical Hamilton-Schrédinger equa-
tions of motion which are a 5-dimensional nonlinear dynamical system with two
integrals of motion. The atomic dynamics can be regular or chaotic (in the sense
of exponential sensitivity to small variations in initial conditions and/or the sys-
tem’s control parameters) in dependence on values of the control parameters, the
atom-field detuning and recoil frequency. We develop a semiclassical theory of the
chaotic atomic transport in terms of a random walk of the atomic electric dipole
moment # which is one of the components of a Bloch vector. Based on a jump-like
behavior of this variable for atoms crossing nodes of the standing laser wave, we
construct a stochastic map that specifies the center-of-mass motion. We find the re-
lations between the detuning, recoil frequency and the atomic energy, under which
atoms may move in a rigid optical lattice in a chaotic way. We obtain the analyti-
cal conditions under which deterministic atomic transport has fractal properties and
explain a hierarchical structure of the dynamical fractals. Quantum treatment of the
atomic motion in a standing wave is studied in the dressed state picture where the
atom moves in two optical potentials simultaneously. If the values of the detuning
and a characteristic atomic frequency are of the same order, than there is a proba-
bility of nonadiabatic transitions of the atom upon crossing nodes of the standing
wave. At the same condition exactly, we observe sudden changes (jumps) in the
atomic dipole moment u when the atom crosses the nodes. Those jumps are accom-
panied by splitting of atomic wave packets at the nodes. Such a proliferation of wave
packets at the nodes of a standing wave is a manifestation of classical atomic chaotic
transport. In particular, the effect of simultaneous trapping of an atom in a well of
one of the optical potential and its flight in the other potential is a quantum analogue

S.V. Prants

Laboratory of Nonlinear Dynamical Systems, Pacific Oceanological Institute of the Russian
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of a chaotic classical walking of an atom. At large values of the detuning, the quan-
tum evolution is shown to be adiabatic in accordance with a regular character of the
classical atomic motion.

4.1 Short historical background

The fundamental model for the interaction of a radiation with matter, comprising a
collection of 2-level quantum systems coupled with a single-mode electromagnetic
field, provides the basis for laser physics and describes a rich variety of nonlinear dy-
namical effects. The discovery that a single-mode laser, a symbol of coherence and
stability, may exhibit deterministic instabilities and chaos is especially important
since lasers provide nearly ideal systems to test general ideas in statistical physics.
From the stand point of nonlinear dynamics, laser is an open dissipative system
which transforms an external excitation into a coherent output in the presence of
loss. In 1975 Haken (Haken, 1975) has shown that a single-mode, homogeneously
broadened laser, operating on resonance with the gain center can be described in
the rotating-wave approximation by three real semiclassical Maxwell-Bloch equa-
tions which are isomorphic to the famous Lorenz equations. Some manifestations
of a Lorenz-type strange attractor and dissipative chaos have been observed with
different types of lasers.

In the same time George Zaslavsky with co-workers (Belobrov et al., 1976) have
studied interaction of an ensemble of 2-level atoms with their own radiation field
in a perfect single-mode cavity without any losses and external excitations, which
is known as the Dicke model (Dicke, 1954). They were able to demonstrate analyt-
ically and numerically dynamical instabilities and chaos of Hamiltonian type in a
semiclassical version of the Dicke model without rotating-wave approximation. It
was the first paper that opened the door to study Hamiltonian atomic chaos in the
rapidly growing fields of cavity quantum electrodynamics, quantum and atomic op-
tics. Semiclassical equations of motion for this system may be reduced to Maxwell-
Bloch equations for three real independent variables which, in difference from the
laser theory, do not include losses and pump. Those equations are, in general, nonin-
tegrable, but they become integrable immediately after adopting the rotating-wave
approximation (Jaynes and Cummings, 1963) that implies the existence of an ad-
ditional integral of motion, conservation of the so-called number of excitations.
Numerical experiments have shown that prominent chaos arises when the density
of atoms is very large (approximately 10%° cm? in the optical range (Belobrov et
al., 1976)). The following progress in this field has been motivated, mainly, by a
desire to find manifestations of Hamiltonian atomic chaos in the models more suit-
able for experimental implementations. Twenty years after that pioneer paper, man-
ifestations of Hamiltonian chaos have been found in experiments with kicked cold
atoms in a modulated Taser field. Nowdays, a few groups in the USA, Australia,
New Zealand, Germany, France, England, Italy and in other countries can perform
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routine experiments on Hamiltonian chaos with cold atoms in optical lattices and
traps (for a review see (Hensinger et al., 2003)).

In this paper we review some results on theory of Hamiltonian chaos with a single
2-level atom in a standing-wave laser field that have been obtained in our group in
Vladivostok. In spite of we published with George only one paper on this subject
(Prants et al., 2002), our work in this field has been mainly inspired by his paper
(Belobrov et al., 1976) written in 1975 in Krasnoyarsk, Siberia.

4.2 Introduction

An atom placed in a laser standing wave is acted upon by two radiation forces,
deterministic dipole and stochastic dissipative ones (Kazantsev et al., 1990). The
mechanical action of light upon neutral atoms is at the heart of Taser cooling, trap-
ping, and Bose-Einstein condensation. Numerous applications of the mechanical
action of light include isotope separation, atomic lithography and epitaxy, atomic-
beam deflection and splitting, manipulating translational and internal atomic states,
measurement of atomic positions, and many others. Atoms and ions in an optical
lattice, formed by a laser standing wave, are perspective objects for implementation
of quantum information processing and quantum computing. Advances in cooling
and trapping of atoms, tailoring optical potentials of a desired form and dimension
(including 1-dimensional optical lattices), controlling the level of dissipation and
noise are now enabling the direct experiments with single atoms to study funda-
mental principles of quantum physics, quantum chaos, decoherence, and quantum-
classical correspondence (for recent reviews on cold atoms in optical lattices see
Ref. (Grynberg and Robilliard, 2001; Morsch and Oberthaler, 2006)).

Experimental study of quantum chaos has been carried out with ultracold atoms
in 8-kicked optical lattices (Moore et al., 1994; Robinson et al., 1995; Hensinger
et al., 2003). To suppress spontaneous emission and provide a coherent quantum
dynamics atoms in those experiments were detuned far from the optical resonance.
Adiabatic elimination of the excited state amplitude Ieads to an effective Hamil-
tonian for the center-of-mass motion (Graham et al., 1992), whose 3/2 degree-of-
freedom classical analogue has a mixed phase space with regular islands embedded
in a chaotic sea. De Brogile waves of 8-kicked ultracold atoms have been shown
to demonstrate under appropriate conditions the effect of dynamical Tocalization in
momentum distributions which means the quantum suppression of chaotic diffusion
(Moore et al., 1994; Robinson et al., 1995; Hensinger et al., 2003). Decoherence due
to spontaneous emission or noise tend to suppress this quantum effect and restore
classical-like dynamics. Another important quantum chaotic phenomenon with cold
atoms in far-detuned optical lattices is a chaos-assisted tunneling. In experiments
(Steck et al., 2001; Hensinger, 2001) ultracold atoms have been demonstrated to
oscillate coherently between two regular regions in mixed phase space even though
the classical transport between these regions is forbidden by a constant of motion
(other than energy).




196 S.V. Prants

The transport of cold atoms in optical lattices has been observed to take the form
of ballistic motion, oscillations in wells of the optical potential, Brownian motion
(Chu et al., 1985), anomalous diffusion and Lévy flights (Bardou et al., 2002; Mark-
steiner et al., 1996). The Lévy flights have been found in the context of subrecoil
laser cooling (Bardou et al., 2002) in the distributions of escape times for ultracold
atoms trapped in the potential wells with momentum states close to the dark state.
In those experiments the variance and the mean time for atoms to leave the trap have
been shown to be infinite.

A new arena of quantum nonlinear dynamics with atoms in optical Tattices is
opened if we work near the optical resonance and take the dynamics of internal
atomic states into account. A single atom in a standing-wave laser field may be
semiclassically treated as a nonlinear dynamical system with coupled internal (elec-
tronic) and external (mechanical) degrees of freedom (Prants and Sirotkin, 2001;
Prants and Kon’kov, 2001; Prants, 2002). In the semiclassical and Hamiltonian lim-
its (when one treats atoms as point-like particles and neglects spontaneous emission
and other Tosses of energy), a number of nonlinear dynamical effects have been an-
alytically and numerically demonstrated with this system: chaotic Rabi oscillations
(Prants and Sirotkin, 2001; Prants and Kon’kov, 2001; Prants, 2002), Hamiltonian
chaotic atomic transport and dynamical fractals (Argonov and Prants, 2003; Prants
and Uleysky, 2003; Argonov and Prants, 2007; Prants et al., 2006), Lévy flights and
anomalous diffusion (Prants et al., 2002; Prants, 2002; Argonov and Prants, 2006).
These effects are caused by local instability of the CM motion in a laser field. A
set of atomic trajectories under certain conditions becomes exponentially sensitive
to small variations in initial quantum internal and classical external states or/and
in the control parameters, mainly, the atom-laser detuning. Hamiltonian evolution
is a smooth process that is well described in a semiclassical approximation by the
coupled Hamilton-Schrédinger equations. A detailed theory of Hamiltonian chaotic
transport of atoms in a laser standing wave has been developed in our recent paper
(Argonov and Prants, 2007).

4.3 Semiclassical dynamics

4.3.1 Hamilton-Schrodinger equations of motion

We consider a 2-level atom with mass m, and transition frequency @, in a 1-
dimensional classical standing laser wave with the frequency @y and the wave vector
k¢. In the frame rotating with the frequency @y, the Hamiltonian is the following:

+ =h(w, — 07)6, — hQ (6- + 6. ) cosksX. 4.1)

Here 6 , are the Pauli operators which describe the transitions between lower, |1),
and upper, |2), atomic states,  is a maximal value of the Rabi frequency. The laser
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wave is assumed to be strong enough, so we can treat the field classically. Position
X and momentum P operators will be considered in section “Semiclassical dynam-
ics” as c-numbers, X and P. The simple wavefunction for the electronic degree of
freedom is

(¥ (1)) = a(0)2) +b(0)[1), 4.2

where a and b are the complex-valued probability amplitudes to find the atom in the
states |2) and |1), respectively. Using the Hamiltonian (4.1), we get the Schrodinger
equation
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Let us introduce instead of the complex-valued probability amplitudes a and b the
following real-valued variables:

u=2Re(ab"), v=-2Im(ab*), z=|a|*—|b]*, 4.4

where u and v are a synchronized (with the Taser field) and a quadrature components
of the atomic electric dipole moment, respectively, and z is the atomic population
inversion.

In the process of emitting and absorbing photons, atoms not only change their
internal electronic states but their external translational states change as well due to
the photon recoil. In this section we will describe the translational atomic motion
classically. The position and momentum of a point-like atom satisfy classical Hamil-
ton equations of motion. Full dynamics in the absence of any losses is now governed
by the Hamilton-Schrodinger equations for the real-valued atomic variables

'x: w:p, p=-—u sin.x, u=Av, @.5)
v=—Au+2zcosx, 7= —2vCOSX,

where x = kyX and p = P/hky are normalized atomic center-of-mass position and
momentum, respectively. Dot denotes differentiation with respect to the dimension-
less time T = Q¢. The normalized recoil frequency, o, = hk} /ma < 1, and the
atom-field detuning, A = (@y — ®,)/ €, are the control parameters. The system has
two integrals of motion, namely the total energy

2

A
H=—p°“—ucosx— 7% (4.6)

SE

and the Bloch vector u? +v? + 72 = 1. The conservation of the Bloch vector length
follows immediately from Eqgs. (4.4).

Equations (4.5) constitute a nonlinear Hamiltonian autonomous system with two
and half degrees of freedom which, owing to two integrals of motion, move on a
3-dimensional hypersurface with a given energy value H. In general, motion in a
3-dimensional phase space in characterized by a positive Lyapunov exponent 4, a
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negative exponent equal in magnitude to the positive one, and zero exponent. The
maximum Lyapunov exponent characterizes the mean rate of the exponential diver-
gence of initially close trajectories and serves as a quantitative measure of dynamical
chaos in the system. The result of computation of the maximum Lyapunov exponent
in dependence on the detuning A and the initial atomic momentum py is shown in
Fig. 4.1. Color in the plot codes the value of the maximum Lyapunov exponent A.
In white regions the values of A are almost zero, and the atomic motion is regular
in the corresponding ranges of A and pg. In shadowed regions positive values of A
imply unstable motion.

Figure 4.1 demonstrates that the center-of-mass motion becomes unstable if the
dimensionless momentum exceeds the value pg ~ 300 that corresponds (with our
normalization) to the atomic velocity v, ~ 3 m/s for an atom with m, ~ 10722 g in
the field with the wavelength close to the transition wavelength A, ~ 800 nm. With
these estimates for the atomic and lattice parameters and Q /27 = 10° HZ, one gets
the normalized value of the recoil frequency equal to @, = 107> The detuning A
will be varied in a wide range, and the Bloch variables are restricted by the Iength
of the Bloch vector.

4.3.2 Regimes of motion

The case of exact resonance, A = 0, was considered in detail in Ref. (Prants and
Sirotkin, 2001; Argonov and Prants, 2006). Now we briefly repeat the simple results
for the sake of self-consistency. At zero detuning, the variable u becomes a constant,
u = ug, and the fast (u, v, z) and slow (x, p) variables are separated allowing one to
integrate exactly the reduced equations of motion. The total energy (4.6) is equal to
Hy = H(u = up,A = 0), and the atom moves in a simple cosine potential uycosx

0.0005 0.002 0.004 0.006 0.008

Fig. 4.1 Maximum Lyapunov exponent A vs atom-field detuning A and initial atomic momentum
po: @ = 1075, uy = z9 = 0.7071, vo = 0.
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with three possible types of trajectories: oscillator-like motion in a potential well if
Hy < ug (atoms are trapped by the standing-wave field), motion along the separatrix
if Hy = ug, and ballistic-like motion if Hy > uq. The exact solution for the center-of-
mass motion is easily found in terms of elliptic functions (see (Prants and Sirotkin,
2001; Argonov and Prants, 2006)).

As to internal atomic evolution, it depends on the translational degree of freedom
since the strength of the atom-field coupling depends on the position of atom in a
periodic standing wave. At A = 0, it is easy to find the exact solutions of Egs. (4.5)

T

v(T) = +v1—u? cos (2/ cosxd‘c’—H(o) ,
o (4.7)

2(7) =FV 1 —u? sin (2/ cosxd’c’—i—xo) )
0

where u = ug, and cos[x(7)] is a given function of the translational variables only
which can be found with the help of the exact solution for x (Prants and Sirotkin,
2001; Argonov and Prants, 2006). The sign of v is equal to that for the initial value zg
and )y is an integration constant. The internal energy of the atom, z, and its quadra-
ture dipole-moment component v could be considered as frequency-modulated sig-
nals with the instant frequency 2 cos|x(7)] and the modulation frequency @, p(7),
but it is correct only if the maximum value of the first frequency is much greater
than the value of the second one, 1. e., for [@,po| < 2.

The maximum Lyapunov exponent A depends both on the parameters @, and A,
and on initial conditions of the system (4.5). It is naturally to expect that off the
resonance atoms with comparatively small values of the initial momentum pq will
be at once trapped in the first well of the optical potential, whereas those with large
values of pg will fly through. The question is what will happen with atoms, if their
initial kinetic energy will be close to the maximum of the optical potential. Nu-
merical experiments demonstrate that such atoms will wander in the optical lattice
with alternating trappings in the wells of the optical potential and flights over its
hills. The direction of the center-of-mass motion of wandering atoms may change
in a chaotic way (in the sense of exponential sensitivity to small variations in initial
conditions). A typical chaotically wandering atomic trajectory is shown in Fig. 4.2.

It follows from (4.5) that the translational motion of the atom at A # 0 is de-
scribed by the equation of a nonlinear physical pendulum with the frequency mod-
ulation

i+ @u(t)sinx =0, 4.8)

where u is a function of all the other dynamical variables.
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4.3.3 Stochastic map for chaotic atomic transport

Chaotic atomic transport occurs even if the normalized detuning is very small,
|A| < 1 (Fig. 4.1). Under this condition, we will derive in this section approximate
equations for the center-of-mass motion. The atomic energy at |A| < 1 is given with
a good accuracy by its resonant value Hy. Returning to the basic set of the equations
of motion (4.5), we may neglect the first right-hand term in the fourth equation since
it is very small as compared with the second one there. However, we cannot now
exclude the third equation from the consideration. Using the solution (4.7) for v, we
can transform this equation as

T
n=2AvV1—-u?cosy, % 52/ cosxdt’ + ¥o. 4.9)
Jo

Far from the nodes of the standing wave, Eq. (4.9) can be approximately integrated
under the additional condition, |@,p| < 1, which is valid for the ranges of the pa-
rameters and the initial atomic momentum where chaotic transport occurs. Assum-
ing cosx to be a slowly-varying function in comparison with the function cosy,
we obtain far from the nodes the approximate solution for the u-component of the
atomic dipole moment

A
u =~ sin <i
2cosx

sinx+C>, 4.10)

where C is an integration constant. Therefore, the amplitude of oscillations of the
quantity u for comparatively slow atoms (|@,p| < 1) is small and of the order of |A|
far from the nodes.

At [A] = 0, the synchronized component of the atomic dipole moment u is a
constant whereas the other Bloch variables z and v oscillate in accordance with the
solution (4.7). At [A| # 0 and far from the nodes, the variable u performs shallow os-
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Fig. 4.2 Typical atomic trajectory in the regime of chaotic transport: xo = 0, po = 300, zo = —1,

up=vo=0, =107, A = —0.05.
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cillations for the natural frequency |A| is small as compared with the Rabi frequency.
However, the behavior of u is expected to be very special when an atom approaches
to any node of the standing wave since near the node the oscillations of the atomic
population inversion z slow down and the corresponding driving frequency becomes
close to the resonance with the natural frequency. As a result, sudden “jumps” of the
variable u are expected to occur near the nodes. This conjecture is supported by the
numerical simulation. In Fig. 4.3 we show a typical behavior of the variable u for a
comparatively slow and slightly detuned atom. The plot clearly demonstrates sud-
den “jumps” of u near the nodes of the standing wave and small oscillations between
the nodes.

Approximating the variable u between the nodes by constant values, we can con-
struct a discrete mapping (Argonov and Prants, 2007)

Uy = sin(O sin @y, + arcsinuy, 1), .11

where © = |A|\/ 7T/ ©rpnode Will be called an angular amplitude of the jump, u,, is
a value of u just after the m-th node crossing, ¢,, are random phases to be chosen
in the range [0,27], and ppode = \/2H /@, is the value of the atomic momentum
at the instant when the atom crosses a node (which is the same with a given value
of the energy H for all the nodes). With given values of A, @,, and ppode, the map
(4.11) has been shown numerically to give a satisfactory probabilistic distribution of
magnitudes of changes in the variable u just after crossing the nodes. The stochastic
map (4.11) is valid under the assumptions of small detunings (JA] < 1) and com-
paratively slow atoms (|@,p| < 1). Furthermore, it is valid only for those ranges of
the control parameters and initial conditions where the motion of the basic system
(4.5) is unstable. For example, in those ranges where all the Lyapunov exponents
are zero, u becomes a quasi-periodic function and cannot be approximated by the
map.

08 T T T

04

0 1000 2000 3000 4000
T

Fig. 4.3 Typical evolution of the atomic dipole-moment component u for a comparatively slow
and slightly detuned atom: xp =0, pg = 550, vo = 0, ug = z0 = 0.7071, @, = 1075, A = —0.01.
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4.3.4 Statistical properties of chaoftic transport

With given values of the control parameters and the energy H, the center-of-mass
motion is determined by the values of u,, (see Eq. (4.8)). One can obtain from the
expression for the energy (4.6) the conditions under which atoms continue to move
in the same direction after crossing a node or change the direction of motion not
reaching the nearest antinode. Moreover, as in the resonance case, there exist atomic
trajectories along which atoms move to antinodes with the velocity going asymptot-
ically to zero. It is a kind of separatrix-like motion with an infinite time of reaching
the stationary points.

The conditions for different regimes of motion depend on whether the crossing
number m is even or odd. Motion in the same direction occurs at (—1)"*!u,, < H,
separatrix-like motion — at (—1)"*!y,, = H, and turns — at (—1)"*'y,, > H. It
is so because even values of m correspond to cosx > 0, whereas odd values — to
cosx < 0. The quantity u during the motion changes its values in a random-like
manner (see Fig. 4.3) taking the values which provide the atom either to prolong the
motion in the same direction or to turn. Therefore, atoms may move chaotically in
the optical Iattice. The chaotic transport occurs if the atomic energy is in the range
0 <H <1. At H <0, atoms cannot reach even the nearest node and oscillate in
the first potential well in a regular manner (see Fig. 4.1). At H > 1, the values of
u are always satisfy to the flight condition. Since the atomic energy is positive in
the regime of chaotic transport, the corresponding conditions can be summarized as
follows: at [u] < H, atom always moves in the same direction, whereas at [u] > H,
atom either moves in the same direction, or turns depending on the sign of cosx in
a given interval of motion. In particular, if the modulus of u is Targer for a long time
then the energy value, then the atom oscillates in a potential well crossing two times
each of two neighbor nodes in the cycle.

The conditions stated above allow to find a direct correspondence between
chaotic atomic transport in the optical lattice and stochastic dynamics of the Bloch
variable u. It follows from Eq. (4.11) that the jump magnitude u,, — u,, 1 just after
crossing the m-th node depends nonlinearly on the previous value u,, ;. For ana-
lyzing statistical properties of the chaotic atomic transport, it is more convenient to
introduce the map for arcsinu,, (Argonov and Prants, 2007)

6,, = arcsinu,, = @ sin ¢, + arcsinu,,_1, “4.12)

where the jump magnitude does not depend on a current value of the variable. The
map (4.12) visually looks as a random motion of the point along a circle of unit
radius (Fig. 4.4). The vertical projection of this point is u,,. The value of the energy
H specifies four regions, two of which correspond to atomic oscillations in a well,
and two other ones — to ballistic motion in the optical lattice.

We will call “a flight” such an event when atom passes, at least, two succes-
sive antinodes (and three nodes). The continuous flight length L > 27 is a distance
between two successive turning points at which the atom changes the sign of its ve-
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locity, and the discrete flight length is a number of nodes / the atom crossed. They
are related in a simple way, L ~ 7/, for sufficiently long flight.

Center-of-mass oscillations in a well of the optical potential will be called “a
trapping”. At extremely small values of the detuning, the jump magnitudes are small
and the trapping occurs, largely, in the 27-wide wells, i. e., in the space interval of
the length 2. At intermediate values of the detuning, it occurs, largely, in the 7-
wide wells, i. e. in the space interval of the length 7. Far from the resonance, |A| > 1,
trapping occurs only in the m-wide wells. Just like to the case of flights, the number
of nodes /, atom crossed being trapped in a well, is a discrete measure of trapping.

The PDFs for the flight Py () and trapping Py (I) events were analytically derived
to be exponential in a case of large jumps (Argonov and Prants, 2007). In a case of
small jumps, the kind of the statistics depends on additional conditions imposed on
the atomic and lattice parameters, and the distributions Py () and Py (I) were analyt-
ically shown to be either practically exponential or functions with Tong power-law
segments with the slope —1.5 but exponential “tails”. The comparison of the PDFs
computed with analytical formulas, the stochastic map, and the basic equations of
motion has shown a good agreement in different ranges of the atomic and lattice
parameters (Argonov and Prants, 2007). We will use the results obtained to find the
analytical conditions, under which the fractal properties of the chaotic atomic trans-
port can be observed, and to explain the structure of the corresponding dynamical
fractals.

Since the period and amplitude of the optical potential and the atom-field de-
tuning can be modified in a controlled way, the transport exponents of the flight
and trapping distributions are not fixed but can be varied continuously, allowing to
explore different regimes of the atomic transport. Our analytical and numerical re-
sults with the idealized system have shown that deterministic atomic transport in
an optical lattice cannot be just classified as normal and anomalous one. We have
found that the flight and trapping PDFs may have long algebraically decaying seg-

7y |
trapping )
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Fig. 4.4 Graphic representation for the maps of u,, and 6,, = arcsinu,,. H is a given value of the
atomic energy. Atoms either oscillate in optical potential wells (trapping) or fly through the optical
lattice (flight).
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ments and a short exponential “tail”. It means that in some ranges of the atomic
and lattice parameters numerical experiments reveal anomalous transport with Lévy
flights. The transport exponent equal to —1.5 means that the first, second, and the
other statistical moments are infinite for a reasonably long time. The corresponding
atomic trajectories computed for this time are self-similar and fractal. The total dis-
tance, that the atom travels for the time when the flight PDF decays algebraically,
is dominated by a single flight. However, the asymptotic behavior is close to nor-
mal transport. In other ranges of the atomic and lattice parameters, the transport is
practically normal both for short and Tong times.

4.3.5 Dynamical fractals

Various fractal-like structures may arise in chaotic Hamiltonian systems (Gaspard et
al., 1998; Zaslavsky et al., 2005). In Ref. (Prants and Uleysky, 2003; Argonov and
Prants, 2003, 2006; Prants et al., 2006) we have found numerically fractal properties
of chaotic atomic transport in cavities and optical lattices. In this section we apply
the analytical results of the theory of chaotic transport, developed in the preceding
sections, to find the conditions under which the dynamical fractals may arise.

We place atoms one by one at the point xo = 0 with a fixed positive value of
the momentum po and compute the time 7 when they cross one of the nodes at
x=—m/2orx=37/2. In these numerical experiments we change the value of the
atom-field detuning A only. All the initial conditions pg =200,z9 = —1,uy =vog=0
and the recoil frequency ®, = 1073 are fixed. The exit time function T'(A) in Fig. 4.5
demonstrates an intermittency of smooth curves and complicated structures that
cannot be resolved in principle, no matter how large the magnification factor. The
second and third panels in Fig. 4.5 demonstrate successive magnifications of the
detuning intervals shown in the upper panel. Further magnifications reveal a self-
similar fractal-like structure that is typical for Hamiltonian systems with chaotic
scattering (Gaspard et al., 1998; Budyansky et al., 2004). The exit time 7', corre-
sponding to both the smooth and unresolved A intervals, increases with increasing
the magnification factor. Theoretically, there exist atoms never crossing the border
nodes at x = —7/2 or x = 37 /2 in spite of the fact that they have no obvious energy
restrictions to do that. Tiny interplay between chaotic external and internal atomic
dynamics prevents those atoms from leaving the small space region.

Various kinds of atomic trajectories can be characterized by the number of times
m atom crosses the central node at x = /2 between the border nodes. There are
also special separatrix-like trajectories along which atoms asymptotically reach the
points with the maximum of the potential energy, having no more kinetic energy to
overcome it. In difference from the separatrix motion in the resonant system (A = 0),
a detuned atom can asymptotically reach one of the stationary points even if it was
trapped for a while in a well. Such an asymptotic motion takes an infinite time, so
the atom will never reach the border nodes.
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The smooth A intervals in the first-order structure (Fig. 4.5, upper panel) corre-
spond to atoms which never change the direction of motion (m = 1) and reach the
border node at x = 37 /2. The singular points in the first-order structure with 7' = oo,
which are located at the border between the smooth and unresolved A intervals, are
generated by the asymptotic trajectories. Analogously, the smooth A intervals in
the second-order structure (second panel in Fig. 4.5) correspond to the 2-nd order
(m = 2) trajectories, and so on.

The set of all the values of the detunings, generating the separatrix-like trajecto-
ries, was shown to be a countable fractal in Refs. (Argonov and Prants, 2003, 2006),
whereas the set of the values generating dynamically trapped atoms with m = oo
seems to be uncountable. The exit time 7 depends in a complicated way not only on
the values of the control parameters but on initial conditions as well.
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Fig. 4.5 Fractal-like dependence of the time of exit of atoms 7 from a small region in the optical
lattice on the detuning A: pg = 200, zo = —1, ug = vo = 0. Magnifications of the detuning intervals
are shown.
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In Fig. 4.6 (Argonov and Prants, 2006) we presented a 2-dimensional image of
the time of exit T in the space of the initial atomic momentum pq and the atom-field
detuning A. A self-similarity of this function is evident.

The length of all smooth segments in the m-th order structure in Fig. 4.5 is pro-
portional to the number of atoms N(m) leaving the space [—7/2,3m /2] after cross-
ing the central node m times. An exponential scaling N(m) ~ exp(—7ym) has been
found numerically with y ~ 1. The trapping PDFs, computed with the basic and re-
duced equations of motion at the detunings in the range shown in Fig. 4.5, have been
found to have exponential tails. Tt is well known (Gaspard et al., 1998) that Hamil-
tonian systems with fully developed chaos demonstrate, as a rule, exponential decay
Taws, whereas the systems with a mixed phase space (containing islands of regular
motion) usually have more slow algebraic decays due to the effect of stickiness of
trajectories to the boundaries of such islands (Zaslavsky et al., 2005). We have not
found visible regular islands in our system at the values of the control parameters
used to compute the fractal in Fig. 4.5 and we may conclude that the exponential
scaling is a result of completely chaotic wandering of atoms in the space interval
[—7 /2,37 /2] resembling chaotic motion in hyperbolic systems.

The fractal-like structure with smooth and unresolved components may appear if
atoms have an alternative either to turn back or to prolong the motion in the same
direction just after crossing the node at x = 7 /2. For the first-order structure in the
upper panel in Fig. 4.5, it means that the internal variable u of an atom, just af-
ter crossing the node for the first time (cosx < 0), satisfies either to the condition
u1 < H (atom moves in the same direction), or to the condition ©; > H (atom turns
back). If u; = H, then the exit time 7 is infinite. The jumps of the variable u after
crossing the node are deterministic but sensitively dependent on the values of the
control parameters and initial conditions. We have used this fact when introducing
the stochastic map. Small variations in these values Iead to oscillations of the quan-
tity arcsinu around the initial value arcsin ug with the angular amplitude @. If this
amplitude is large enough, then the sign of the quantity u; — H alternates and we
obtain alternating smooth (atoms reach the border x = 37r/2 without changing their
direction of motion) and unresolved (atoms turns a number of times before exit)
components of the fractal-like structure.

If the values of the parameters admit large jump magnitudes of the variable u,
then the dynamical fractal arises in the energy range 0 < H < 1, i. e., at the same
condition under which atoms move in the optical lattice in a chaotic way. In a case of
small jump magnitudes, fractals may arise if the initial value of an atom ug is close
enough to the value of the energy H, i. e., the atom has a possibility to overcome the
value u = H in a single jump. Therefore, the condition for appearing in the fractal
T(A) the first-order structure with singularities is the following:

[arcsinug — arcsinH| < ©. (4.13)

The generation of the second-order structure is explained analogously. If an atom
made a turn after crossing the node for the first time, then it will cross the node for
the second time. After that, the atom either will turn or cross the border node at
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x = —m/2. What will happen depend on the value of u,. However, in difference
from the case with m = 1, the condition for appearing an infinite exit time with
m = 2 is up = —H. Furthermore, the previous value u; is not fixed (in difference

from ug) but depends on the value of the detuning A. In any case we have u; > H
since the second-order structure consists of the trajectories of those atoms which
turned after the first node crossing. In order for an atom would be able to turn after
the second node crossing, the magnitude of its variable u should change sufficiently
to be in the range u; < —H. The atoms, whose variables u could not “jump” so far,
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Fig. 4.6 The scattering function in the regime of chaotic wandering. The time of exit 7 vs the
detuning A and the initial momentum pg. The function is shown in a shaded relief regime.
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leave the space [—m/2,37/2]. The singularities are absent in the middle segment
of the second-order structure shown in the second panel in Fig. 4.5 because all the
corresponding atoms left the space after the second node crossing. The variable u,
oscillates with varying A generating oscillations of the exit time. The condition for
appearing singularities in the second-order structure is the following:

2arcsinH < 0. 4.14)

With the values of the parameters taken in the simulation, we get the energy H =
0.2+ A/2. 1t is easy to obtain from the inequality (4.14) the approximate value of
the detuning [A] ~ 0.0107 for which the second-order singularities may appear. In
the lower panel in Fig. 4.5 one can see this effect. No additional conditions are
required for generating the structures of the third and the next orders.

Inequality (4.14) is opposite to the inequality that determines the condition for
appearing power law decays in the flight PDF. Therefore, dynamical fractal may ap-
pear in those ranges of the control parameters where the Lévy flights are impossible
and vice versa. However, the trapping PDF may have a power law decay. Inequality
(4.14) in difference from (4.13) is strongly related with the chosen concrete scheme
for computing exit times. It is not required with other schemes, say, with three antin-
odes between the border nodes.

4.4 Quantum dynamics

In this section we will treat atomic translational motion quantum mechanically, i. e.,
atom is supposed to be not a point particle but a wave packet. The corresponding
Hamiltonian A has the form (4.1) with X and P being the position and momentum
operators. We will work in the momentum space with the state vector

20) = [ a0l +b(Pa)|1)] P (415)

which satisfies to the Schrodinger equation

ih% =H|¥). (4.16)

The normalized equations for the probability amplitudes have the form

1

id(p) = 5 (@rp ~ A)a(p) 3 b(p+ 1) +b(p— )],

ib(p) = 5 (@ "+ A)b(p) ~ 3la(p+1) +alp— 1)

4.17)

with the same normalization and the control parameters as in the semiclassical the-
ory. When deriving (4.17), we used the following property of the momentum oper-
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ator IS :

R |, 1
coskpX|P) = 2 (e’kfx e kX ) P) =3 (|P+nhks) +|P—Tks)) . (4.18)

Equations (4.17) are an infinite-dimensional set of ordinary differential complex-
valued equations of the first order with coupled amplitudes a(p £ n) and b(p £ m).
To characterize the internal atomic state, let us introduce the following variables;

u(t) = 2Re/dx[a(x, b (x, 7)),
W(1) = —21m / dxfa(x, T)b" (x, 7)), (4.19)
(%) = [ dllatn7) P~ b, 1P,

which are quantum versions of the Bloch components (4.4), and we denote them by
the same letters.

4.5 Dressed states picture and nonadiabatic transitions

Interpretation of the atomic wave-packet motion in a standing-wave field is greatly
facilitated in the basis of atomic dressed states which are eigenstates of a 2-level
atom in a laser field. The adiabatic dressed states

[+)4 =sin@[2) +cosO[1), [—), =cosO2) —sinO]T),

A A 2 (4.20)
- +1
2cosx 2cosx

are eigenstates at a nonzero detuning. The corresponding values of the quasienergy

are
A 2
ES) =44/ 7 toosx. 4.21)

Figure 4.7 shows a spatial variation of the quasienergies along the standing-wave
axis. It follows from Eqs.(4.20) and (4.21) that, in general case, atom moves in the
two potentials Egi) simultaneously.

At exact resonance, A = 0, the dressed states have the simple form

tan@® =

_ 1
V2

1

|+) N

(N +12), 1) (1) —=12)) (4.22)

and are called diabatic states. The resonant potentials, E(()i) = +cosx, cross each
other at the nodes of the standing wave, x = 7/2+ wm, (m = 0,+1,...). What will
happen if we place the centroid of an atomic wave packet exactly at the node, xg =
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7/2, in the ground state |1) and suppose its initial mean momentum to be zero,
po = 0? The initial ground state is the superposition of the diabatic states: |1) =
(|4) +|—))/v2. One part of the initial wave packet at the top of the potential
ESV
—dE(()H/dx = sinx, and another one — to the left to be forced by F(~) = —sinx
(see Fig. 4.7). Tt is the well-known optical Stern-Gerlach effect (Kazantsev et al.,
1974, 1990; Sleator et al., 1992). If the maximal expected value of the atomic kinetic
energy does not exceed the potential one, the atom will be trapped in the potential
well. Two splitted components of the initial wave packet will oscillate in the well

with the period of oscillations
S (4.23)
w,

The wave packet, with pg = 0, placed at the antinode, say, at xyo = 0, is simulta-

will start to move to the right under the action of the gradient force F ) =

neously at the top of the potential E(()+) and at the bottom of E(gf). Therefore, its

| + )-component will slide down the both sides of the potential curve E(()+), and the
| — )-component will oscillate around x = 0 (see Fig. 4.7).
Out off resonance, A # 0, the atomic wave packet moves in the bipotential
+) (4.21). The distance between the quasienergy curves is minimal at the nodes
of the standing wave and equal to A (see Fig. 4.7). The spatial period and the mod-
ulation depth of the resonant potentials E(()i) are twice as much as those for the

(+)

nonresonant potentials £,
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Fig. 4.7 Resonant E(() ) and nonresonant E; ) potentials for an atom in a standing wave. The

optical Stern-Gerlach effect in the resonant potential is shown: splitting of an atomic wave packet
launched at the node of the wave (xo = /2, pg = 0). The wave packet, placed initially at the

~

Y
-

antinode (xo = 0, pgp = 0), appears to be simultaneously at the top of E(()Jr> and the bottom of

E((f) potentials. Its |+ )-component slides down both the sides of E(()Jr> and the | — )-component
(=)

oscillates at the bottom of E;
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The probability of nonadiabatic transitions between the dressed states | + ), and
| =), can be estimated in a simple way. The time of flight over a short distance
Ox in neighbourhood of a node is 6x/ @, pyoge. If the time of transition between the
quasienergy levels, 2/A, is of the order of the flight time, the transition probability
is close to 1. It is easy to get the characteristic frequency of atomic motion from that
condition (Kazantsev et al., 1990)

Ay = /@ Prode; (4.24)

where ppode 18 @ value of the momentum in the vicinity of a node.
Depending on the relation between A and A, there are three typical cases.

1. IfJA] < Ao, the nonadiabatic transition probability between the states [+ ), and
| — ), upon crossing any node is close to 1. However, the diabatic states | +) and
| — ) are not mixed, and atom moves in one of optical resonant potentials.

2. If |A| = Ay, the probabilities to change or not to change a given adiabatic state
upon crossing any node are of the same order.

3. If JA] > Ay, the nonadiabatic transition probability is exponentially small, and
atom moves in one of the nonresonant potentials.

4.5.1 Wave packet motion in the momentum space

The atom at T = 0 is supposed to be prepared as a Gaussian wave packet in the
momentum space

0 .
exp | — —i(p—po)xo|, (4.25)
N, ATV (P = po)

with the momentum width Ap = 10 corresponding to the spatial width AX =
A¢/40m that is much smaller than the optical wavelength As. We compute the prob-
ability to find a 2-level atom at the moment of time 7 with the momentum p

W(p,7) = la(p,7)* + b(p,7)|%, (4.26)

by integrating Eqs.(4.17) with the initial condition (4.25). The recoil frequency,
o, = 1073, is fixed and the centroid of the wave packet is placed at the antinode
xo = 0, in all the numerical experiments.

4.5.1.1 Adiabatic evolution at exact resonance

At exact resonance, A = 0, the wave functions of the diabatic states [+ ) and [ —)

evolve independently, each one evolves in its own potential E(()+) and E(()_), respec-

tively. The atom, prepared initially in the ground state |1) = (| +) + | —))/v/2 with
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the mean initial momentum py = 800, will start to move from the top of E(()+) and the

bottom of E(()_> potentials (see Fig.4.7). Thus, the initial wave packet will split into

two components | + ) and | — ). Time evolution of the probability function (4.26) for
each of the components is shown in Fig.4.8. Pay, please, attention that the values of
p on this and similar plots increase downwards. Color in this figure codes the values
of W(p, 7). The [+ )-component (the lower trajectory in the figure) slides down the
curve E(()+) and, therefore, moves with an increasing velocity up to the next antinode
at x = &, and then it slows down approaching the antinode at x = 2x. The atom
moves in the positive direction of the axis x and the process repeats periodically
with the period Téﬂ =2n/ a),ﬁézr ~ 690, where ﬁéz)n is a mean momentum of the
| 4 )-component upon the atomic motion between 0 and 27.

The | — )-component (the upper trajectory in Fig.4.8) moves upward the potential

curve E(()_) and slows down up to reaching the top of E(()_> at x = 7. Then it moves
with an increasing momentum up to x = 27. Since the mean momentum of the | — )-
component is smaller than that of the [+ ) one, the corresponding period is longer,

87 ~980.

4.5.1.2 Proliferation of wave packets at the nodes of the standing wave

New features in propagation of atomic wave packets through the standing wave
appear under the condition A ~ A(. Using the semiclassical expression for the total
atomic energy (4.6), let us estimate the value of the atomic momentum at the nodes

400

1200 T T r T
0 200 400 600 800 T 1000

Fig. 4.8 Time dependence of the momentum probability function W (p, t) for a ballistic atom at
resonance prepared initially in the ground state (A = 0, @, = 107>, xg = 0, py = 800).
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of the standing wave if the detuning is not large, |A| < 1. If the atom is prepared
initially in the state |+ ), i.e., ug = 1, 70 = 0, and xo = 0 then we have H = Hy =2.2
at po = 800. Since the total energy is a constant, we get immediately from Eq. (4.6)

Prode = \/2H [ 0y ~ 665. 4.27)

Using the same formula (4.6), we get the values of the minimal and maximal
momenta if the atom starts to move with the initial mean momentum pg = 800:
Pmin = /2(Ho— 1)/, ~ 490 and pmax =~ +/2(Ho+ 1)/ @, ~ 800.

The formula (4.24) gives us the value of the characteristic frequency under the
chosen conditions, Ag ~ 0.08. We fix A = 0.05 in this section, so A ~ Ag. The initial
state [+ ) is the following superposition of the adiabatic states:

|+) = %[(cos@+sin@)| +), +(cos® —sin®)| — ) ,]. (4.28)

With the help of (4.21) we can estimate the mixing angle at A = 0.05 to be equal
to 0 ~ —m /4. Then it follows from (4.28) that |+) ~ | —),, i. e., practically all

the wave packet is initially at the bottom of the potential Eg_) (Fig. 4.7). Figure 4.9
demonstrates that the wave packet really slows down, and its centroid intersects the
node x =1/2 at 1'1(7) ~ 215. Under the condition A ~ Ay, the atom has a probability
to change the potential for another one upon crossing a node and a probability to stay
in its present potential. This is exactly what we see in Fig. 4.9: the wave packet splits
at the node x = 7/2 with the | — )-component moving down in the potential ng)

(see the Tower trajectory in this figure) and the |+ )-component moves up the curve

Ey) with a decreasing momentum (see the upper trajectory). Just after crossing the

node, the most part of the probability density moves in the potential ng) because
the corresponding probability is larger. The | — )-component increases its velocity

upon approaching the antinode at x = 7 and then slows down up to the second node

at x = 37/2 where it splits into two components at i) ~ 640. After that, one of

the components will move in the potential Ey) decreasing the velocity up to the

next antinode at x = 27, and the other one will move in ng) increasing its velocity
in the same space interval. The probability density of this | — )-component is only
a few percents, and we draw a solid curve along this trajectory in order to visualize
the motion.

The [+ )-component of the packet, splitted after crossing the first node at x =
7/2, has a smaller mean momentum than the | —)-one. Therefore, it reaches the

second node later, at TZ(H ~ 800, where it splits into two parts: the upper |+ )-

component will move in the potential E£+> and the lower | — )-one — in E£_>. Such

a proliferation of atomic wave packets takes places upon crossing all the next nodes
of the standing wave.

The moment of time r,ii), when the centroids of the | £ )-components cross the

n-th node, can be estimated by the simple formula (we suppose that the centroid of
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the atomic wave packet was at x =0 at T = 0):

/s
o) o) = (2n-1)7, n=23,.., (4.29)
where ﬁfi)l , is a mean momentum of the |+ )-components upon their movement
between (n — 1)-th and n-th nodes. This quantity for the | — )-component, moving
between x =0 and x = /2, is ﬁ(()? = (Po + Pnode)/2 = 732.5. So, the centroid of

this wave packet crosses the first node at T1<7> ~ 214. The lower | — )-component
crosses the second node at x = 37/2 at i) ~ 642. For the upper |+ }-component

we get ﬁE? = (Pnode + Pmin)/2 ~ 577.5 and 72<+) ~ 815. All the other moments of

time, r,ﬁi), can be estimated in the same way. The estimates obtained fit well the

numerical data (see Fig. 4.9). The interference fringes on the upper trajectory at
7 ~ 1000 and p ~ 500 and on the lower one at T ~ 900 and p ~ 800 reflect the
fine-scale splitting of the corresponding wave packets.

Let us now compute the probability map for the atom prepared initially in the
ground state [1) which has the following form in the adiabatic state basis:

[1) =cosOf+), —sin®O] —) 4. (4.30)

440

540 4
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740 1

0 200 400 600 800 T 1000

Fig. 4.9 Proliferation of atomic wave packets at the nodes of the standing wave at the detuning
A =0.05. The atom is prepared initially in the dressed state | 4 ). Other conditions are the same as
in Fig. 4.8.
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It follows from (4.21) that (4.30) is almost a 50%-50% superposition of the | +) ,
and | —), states. All the other conditions are assumed to be the same as before.
The atomic wave packet splits from the beginning into two components with the
|+ )-one sliding down the curve Ey) (the lower trajectory in Fig. 4.10) and the
| — )-one climbing over the potential ng) (the upper trajectory). Each of the com-
ponents splits at the first node with a small time difference between the events. The
subsequent proliferation of the wave packets occurs for the upper and lower parts
of the probability density independently on each other in accordance with the same
scenario as described above. In difference from the preceding case, the atom, pre-
pared initially in the ground state, acquired the values of the momentum that are
larger then the initial momentum po = 800.

The nonadiabatic transitions are accompanied by drastic changes in the internal
state of the atom which is characterized by the values of the synphased component
of the electric dipole moment u# and the population inversion z. In Fig. 4.11 we
demonstrate their behavior for the atom prepared initially in the state |+ ). Both
the variables change their values abruptly in the time intervals with the centers at
T~215,640 and 815, i. e., when the centroids of the atomic wave packets cross the
first two nodes.
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1200

400 800 1200 1600 . 2000

Fig. 4.10 The same as in Fig. 4.9 but for the atom prepared initially in the ground state.
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4.5.1.3 Adiabatic motion at Iarge detunings

For comparison with the results of the preceding section, we demonstrate in Fig. 4.12
the evolution of the momentum distribution function W(p, ) with the ground ini-

04 .

02+ /

-02

0 200 400 600 800 1000
T

Fig. 4.11 Time dependence of the dipole moment « and the population inversion z at the same
conditions as in Fig. 4.9.
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Fig. 4.12 Adiabatic evolution of the momentum probability function W (p, ) for a ballistic atom
at the large detuning A = 2.
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tial state at A = 2 and the other same conditions as in the preceding section. The
detuning A = 2 is large as compared to the characteristic frequency Ay ~ 0.09 that
is estimated from (4.24) at pg = 800. It follows from (4.20) and (4.21) thatat A =2
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Fig. 4.13 The same as in Fig.4.11 but at the large detuning A = 2.
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the initial state |1) is a superposition of approximately 70% of the state |+ ), and
~ 30% of the state | — ) ,. So the main part of the initial packet begins to move in the

potential Ey) increasing the momentum upon approaching the node at x = /2, and
the other part moves in ng) decreasing the momentum in the same space interval
(see Fig. 4.12). Upon crossing the nodes, the probability of transition between the
states | £) , is small if JA] > Ay, and each of the component will continue to move
in its own potential. The process is repeated and we see the periodic variations of
the mean momentum of each of the components. The same picture is observed if
we take the state |+ ) = (|1) +12))/+/2 as the initial one. At A = 2, the state | + )

is a mix of 70% of [—), and 30% of [+),, so the main part of the initial [+)

wave packet will move in the potential ng). The evolution of the internal atomic
variables z and u is shown in Fig. 4.13. There are no jumps of z and u when the atom
crosses nodes. Instead of that, we see fast oscillations of those variables when the
atom crosses the first antinodes.

Thus, at |A| > Ay, there are no nonadiabatic transitions due to the corresponding
small probability and, therefore, no proliferation of wave packets at the nodes. The
evolution of the atomic wave packet is adiabatic.

4.5.1.4 An atom can fly and be trapped simultaneously

An intriguing effect of simultaneous trapping of an atom in a well of the optical po-
tential and its ballistic flight through the optical lattice is observed at comparatively
small values of the detuning. Let us prepare an atom in the ground state |1) with
such a mean initial value of the momentum pyg that its | — )-component would not

be able to overcome the barrier of the potential EX) but its | + )-component would

have a sufficient kinetic energy to overcome the barrier of the Ey) potential. Now

one could expect periodic oscillations in the first well of the potential E') and a si-

multaneous ballistic flight in the Ey) potential with a proliferation of wave packets

of the |+ )-component at the nodes of the standing wave.

Figure 4.14 demonstrates this effect at pg = 300, A = —0.05 and the same other
conditions as before. We see that the momentum of the | — )-component (the upper
trajectory in this figure) oscillates in the range (300, —300), and this component is
trapped in the first well (—7/2 < x < m/2). Whereas the [+ )-component moves in
the positive direction splitting at each node. Estimates of the period of oscillations
of the | — )-component, T ~ 2240, with the help of (4.23) and of the time when the

centroid of the | + )-component crosses the first node, ”L']<+) ~ 380 (formula (4.29)),
fit well the data in Fig. 4.14.
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Fig. 4.14 Effect of simultaneous trapping of an atom in a well of the optical potential and its flight
through the wave. The ground initial state, A = —0.05, py = 300.

4.6 Quantum-classical correspondence and manifestations of
dynamical chaos in wave-packet atomic motion

Dynamical chaos in classical systems is characterized by exponentially fast diver-
gence of initially close trajectories in a bounded phase space. Such a behavior is
possible because of the continuity of the classical phase space whose points (there-
fore, classical system’s states) can be arbitrary close to each other. The trajectory
concept is absent in quantum mechanics whose phase space is not continuous due
to the Heisenberg uncertainty relation. The evolution of an isolated quantum sys-
tem is unitary, and there can be no chaos in the sense of exponential sensitivity of
its states to small variations in initial conditions. What is usually understand under
“quantum chaos” is special features of the unitary evolution of a quantum system
in the range of its parameter values and initial conditions at which its classical ana-
logue is chaotic.

The question “what happens to classical motion in the quantum world” is a core
of the problem of quantum-classical correspondence. In spite of years of discus-
sions from the beginning of the quantum era, it is still unclear how classical features
appear from the underlying quantum equations. It is especially difficult to specify
what happens to classical dynamical chaos in the quantum world (Berman and Za-
slavsky, 1978; Casati et al., 1979; Zaslavsky, 198T; Gutzwiller, 1990; Reichl, 1992;
Haake, 1991; Stockmann, 1999). The interest to the problem of “quantum chaos™ is
motivated by our desire to understand the quantum origin of the observed classical
chaos.
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In this section we establish a correspondence between the quantized motion of
a 2-level atom in a standing laser wave and its semiclassical analogue considered
in the third section. Semiclassical equations (4.5) represent a nonlinear dynamical
system with positive values of the maximal Lyapunov exponent in a wide range of
the initial conditions and control parameters @, and A. In other words, trajectories
in the 5-dimensional phase space are exponentially sensitive to small variations in
initial conditions and/or parameters in those ranges. That local dynamical instabil-
ity is a reason for chaotic Rabi oscillations and chaotic motion of the atomic center
of mass discussed in the third section. In particular, it has been found that an atom
is able to walk chaotically in a strictly periodic optical lattice without any noise or
other random processes (see Fig. 4.2). The chaotic behavior is caused by jumps of
the electric-dipole moment u at the nodes of the standing wave (Fig. 4.3). It follows
from Eqs. (4.5) that this quantity governs the atomic momentum. A stochastic map
for the quantity u (4.11) allowed to derive analytic expressions for probability den-
sity functions of the atomic trapping and flight events that have been shown to fit
well numerical simulation (Argonov and Prants, 2007).

It has been shown that sudden changes in the behavior of u take place when
we quantized the atomic motion (see Fig. 4.11) under the condition A ~ A. Those
changes are more smooth than the jumps of u in the semiclassical case because a de-
localized wave packet crosses a node for a finite time interval. The quantum analysis
provides a clear reason for those jumps at A ~ Ag, namely, it is nonadiabatic tran-
sitions between the quasienergy states |+ ), and | — ), which occur when an atom
crosses any node of the standing wave. Those jumps are accompanied by splitting of
wave packets at the nodes. We may conclude that the proliferation of wave packets
at the nodes of the standing wave is a manifestation of classical chaotic transport
of an atom in an optical lattice that has been shown in Refs. (Argonov and Prants,
2003, 2006, 2007) to take place in exactly the same ranges of initial conditions and
control parameters. In particular, the effect of simultaneous trapping of an atom in
a well of the optical potential and its flight in the same potential (Fig. 4.14) is a
quantum analogue of a chaotic walking of an atom shown in Fig. 4.2.

In conclusion we would Tike to discuss briefly the role of dissipation. We did not
take into account any losses in our treatment. Coherent evolution of the atomic state
in a near-resonant standing-wave laser field is interrupted by spontaneous emission
events at random moments of times. The semiclassical Hamiltonian evolution be-
tween these events has been shown to be regular or chaotic depending on the values
of the detuning A and the initial momentum py. We stress that dynamical chaos
may happen without any noise and any modulation of the lattice parameters. It is
a specific kind of dynamical instability in the fundamental interaction between the
matter and radiation.

Dissipative transport of spontaneously emitting atoms in a 1D standing-wave
laser field has been studied in detail in Ref. (Argonov and Prants, 2008) in the
regimes where the underlying semiclassical Hamiltonian dynamics is regular and
chaotic. A Monte Carlo stochastic wavefunction method was applied to simulate
semiclassically the atomic dynamics with coupled internal and translational degrees
of freedom. It has been shown in numerical experiments and confirmed analytically
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that chaotic atomic transport can take the form either of ballistic motion or a random
walking with specific statistical properties. The character of spatial and momentum
diffusion in the ballistic atomic transport was shown to change abruptly in the atom-
laser detuning regime where the Hamiltonian dynamics is irregular in the sense of
dynamical chaos. A clear correlation between the behavior of the momentum diffu-
sion coefficient and Hamiltonian chaos probability has been found.

What one could expect if spontaneous emission would be taken into considera-
tion with our fully quantum equations of motion? Any act of spontaneous emission
interrupts a coherent evolution of an atom at a random time moment and is accom-
panied by a momentum recoil and a sudden transition of the atom into the ground
state which is a superposition of the dressed states. The coherent evolution starts
again after that. A collapse of the atomic wave function and a splitting of atomic
wave packets are expected just after any spontaneous emission event. That addi-
tional splitting of wave packets at random time moments, besides of their prolifera-
tion at the nodes of a standing wave at A ~ Ay, can improve the quantum-classical
correspondence in the regime of Hamiltonian chaos.
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Chapter 5

Using Stochastic Webs to Control the Quantum
Transport of Electrons in Semiconductor
Superlattices

T.M. Fromhold!, A.A. Krokhin?, S. Bujkiewiczm, P.B. Wilkinson'#, D. Fowler,
A. Patand!, L. Eaves!, D.P.A. Hardwick!, A.G. Balanov®, M.T. Greenawayl,
A. Henning'

Abstract We show that electrons in a semiconductor superlattice can be used to re-
alize and exploit the unique dynamics of the driven harmonic oscillator that were
discovered and explored by George Zaslavsky and colleagues. Under the action of
an electric and tilted magnetic field, the semiclassical dynamics of electrons in an
energy band of the superlattice exhibit non-KAM chaos, which strongly affects the
electrical conductivity. At certain critical field parameters, the electron trajectories
change abruptly from fully localized to completely unbounded, and map out intri-
cate stochastic webs in phase space, which act as conduction channels for the elec-
trons. Delocalization of the electron paths produces a series of strong resonant peaks
in the electron drift velocity versus electric field curves. We use these drift veloc-
ity characteristics to make self-consistent drift-diffusion calculations of the current-
voltage and differential conductance-voltage curves of the superlattices, which agree
well with our experimental data and reveal strong resonant features originating from
the sudden delocalization of the stochastic single-electron paths. We show that this
delocalization has a pronounced effect on the distribution of space charge and elec-
tric field domains within the superlattices. Inter-miniband tunneling greatly reduces
the amount of space-charge buildup, thus enhancing the domain structure and both
the strength and number of the current resonances.
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5.1 Introduction

In this chapter, we show how the intricate phase space structure of the driven har-
monic oscillator (Sagdeev et al., 1998; Vasiliev et al., 1989; Beloshapkin et al., 1989;
Zaslavsky et al., 1991; Shlesinger et al., 1993; Zaslavsky et al., 2004; Luo, 2004;
Kamenev and Berman, 2000; Karney and Bers, 1977; Chia et al., 1996; Gardiner et
al., 1997; Demikhovskii et al., 1999, 2002; Robnik and Romanovski, 2008; Soskin
et al., 2009b), which was identified and extensively studied by George Zaslavsky
and co-workers (Sagdeev et al., 1998; Vasiliev et al., 1989; Beloshapkin et al., 1989;
Zaslavsky et al., 1991; Shlesinger et al., 1993; Zaslavsky et al., 2004; Luo, 2004;
Kamenev and Berman, 2000), can greatly enhance electron transport in semicon-
ductor superlattices (SLs) (Wacker, 2002; Esaki and Tsu, 1970; Shik, 1975; Ignatov
et al., 1991; Kastrup, 1994; Canali et al., 1996; Zhang et al., 1996; Alekseev et al.,
1996; Luo et al., 1998; Schomburg et al., 1998; Scholl, 2001; Amann et al., 2002;
Alekseev and Kusmartsev, 2002; Patane et al., 2002; Shimada et al., 2003; Savvidis
et al., 2004; Raspopin et al., 2005; Bonilla and Grahn, 2005; Fromhold et al., 2001;
Kuraguchi et al., 2002; Fromhold et al., 2004; Stapleton et al., 2004; Hardwick et
al., 2006; Kosevich et al., 2006; Fowler et al., 2007; Balanov et al., 2008; Soskin et
al., 2009a; Greenaway et al., 2009; Hyart et al., 2009; Hardwick, 2007). In particu-
lar, we show that the electrical current through the SL can be modulated by using an
applied bias voltage and a tilted magnetic field to switch on and off stochastic web
patterns, which thread the electron phase space and act as a network of conduction
channels through which the electrons can propagate in real space. When the web is
switched on, the electrons can undergo chaotic diffusive motion along its filaments,
thereby producing a sharp increase in the measured and calculated current flow.
Consequently, non-KAM chaos provides a new and, in principle, extremely sensi-
tive mechanism for controlling SL conductivity (Fromhold et al., 2001; Kuraguchi
et al., 2002; Fromhold et al., 2004; Stapleton et al., 2004; Hardwick et al., 2006;
Kosevich et al., 2006; Fowler et al., 2007; Balanov et al., 2008; Soskin et al., 2009a;
Greenaway et al., 2009; Hyart et al., 2009; Hardwick, 2007).

In semiconductor physics, chaotic electron transport has been explored using
a variety of 2-dimensional billiard structures (Stockmann, 1999; Nakamura and
Harayama, 2003; Marcus et al., 1992; Chang et al., 1994; Folk et al., 1996; Ketzmer-
ick, 1996; Sachrajda et al., 1998; Bird et al., 1999; Micolich et al., 2001; Marlow et
al., 2006), antidot arrays (Stockmann, 1999; Nakamura and Harayama, 2003; Weiss
etal., 1991; Fleischmann et al., 1992; Weiss et al., 1993), SLs (Kastrup, 1994; Zhang
et al., 1996; Alekseev et al., 1996; Luo et al., 1998) and resonant tunneling diodes
containing a wide quantum well enclosed by two tunnel barriers (Stockmann, 1999;
Frombhold et al., 1994, 1995a,b; Shepelyansky and Stone, 1995; Miiller et al., 1995;
Wilkinson et al., 1996; Monteiro and Dando, 1996; Fromhold et al., 1997a,b; Mon-
teiro et al., 1997a,b; Narimanov et al., 1998; Narimanov and Stone, 1998a,b; Saraga
and Monteiro, 1998a; Saraga et al., 1998; Saraga and Monteiro, 1998b; Bogomolny
and Rouben, 1998, 1999; Fromhold et al., 2002). Figure 5.1 shows a schematic dia-
gram of a quantum well formed by molecular beam epitaxy (MBE) in which layers
of undoped GaAs (salmon) and (AlGa)As or AlAs (blue) are alternatively deposited
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on a heavily-doped GaAs substrate (yellow). Each layer of (AlGa)As acts as a po-
tential barrier to electron motion perpendicular to the plane of the layers. Between
the barriers there is a GaAs quantum well, whose interfaces are flat to the precision
of a single atomic layer.

Despite the diversity of experimental studies of quantum chaos in semiconductor
nanostructures, they all involve systems in which the transition to chaos occurs by
the gradual and progressive destruction of stable orbits in response to an increasing
perturbation. To illustrate this, Fig. 5.2 shows Poincaré sections calculated for elec-
trons in the 30 nm wide quantum well of a resonant tunneling diode with a magnetic
field B tilted at an angle 6 to the normal to the well walls, i.e. to the x-axis (Fromhold
et al., 2002). The scattered points indicate the momentum components p, and p, in
the plane of the well for each bounce of the electron off the left-hand barrier. When

GaAs (AlGa) As
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Fig. 5.1 Schematic diagram of a semiconductor quantum well structure fabricated by molecular
beam epitaxy. Upper part of figure: schematic illustration of the deposition of atoms onto a semi-
conductor substrate (yellow) to form layers of GaAs (salmon) and (AlGa)As (blue). Lower part of
figure: the GaAs layers form a square quantum well enclosed by two (AlGa)As tunnel barriers.
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Fig. 5.2 Black dots: Poincaré sections calculated by plotting the momentum components (py, p;)
each time an electron collides with the left-hand barrrier of a 30 nm wide quantum well (barriers,
shown by shaded shapes in lower part of figure, lie in the y — z plane) with a magnetic field B=12
T applied at an angle 8 = (a) 0°, (b) 15° and (c) 40° to the x—axis (Fromhold et al., 2002).
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6 = 0° (see Fig. 5.2(a)), the points lie on a series of concentric circles because the
electrons undergo cyclotron motion in the plane of the well (Fromhold et al., 2002).
As 6 increases from 0°, the regular parts of the phase space slowly shrink. When
6 = 15° (see Fig. 5.2(b)), there is a mixed stable-chaotic phase space in which the
islands of stability are surrounded by a chaotic sea. But when 6 reaches 40° (see
Fig. 5.2(c)), all stable islands have disappeared, leaving only a chaotic sea, which
corresponds to strongly chaotic classical trajectories (Fromhold et al., 2002). This
gradual onset of chaos occurs for all systems used in previous quantum chaos ex-
periments, which obey the KAM theorem (Fromhold et al., 2001, 2004; Stockmann,
1999).

However, by connecting a series of quantum wells together to form a superlattice,
it is possible to create a much rarer type of “weak’ chaos—studied by Zaslavsky and
co-workers (Sagdeev et al., 1998; Vasiliev et al., 1989; Beloshapkin et al., 1989;
Zaslavsky et al., 1991; Shlesinger et al., 1993; Zaslavsky et al., 2004; Luo, 2004,
Kamenev and Berman, 2000) for driven harmonic oscillator systems that do not
obey the KAM theorem—which is characterized by abrupt delocalization of the
classsical paths. The theory of such “non-KAM” chaos is of great interest due to
diverse applications in, for example, plasma physics, tokamak fusion, turbulent fluid
dynamics, ion traps, quasicrystals and ultra-cold atoms in optical lattices (Sagdeev
et al., 1998; Vasiliev et al., 1989; Beloshapkin et al., 1989; Zaslavsky et al., 1991,
Shlesinger et al., 1993; Zaslavsky et al., 2004; Luo, 2004; Kamenev and Berman,
2000; Karney and Bers, 1977; Chia et al., 1996; Gardiner et al., 1997; Demikhovskii
et al., 1999, 2002; Robnik and Romanovski, 2008; Soskin et al., 2009b; Hensinger
et al., 2001; Steck et al., 2001; Scott et al., 2002). However, it has proven difficult
to realize and explore the rich phase space structure of a driven harmonic oscillator
in experiment.

In the next section, we describe the growth and structure of semiconductor SLs
and describe their unique energy band structure, which enables the creation of non-
KAM chaos for semiclassical trajectories generated by the bands. The physics of
non-KAM chaos in this experimentally-realizable system may have wider relevance
by providing new insights into more exotic areas of research, for example the quan-
tum dynamics of ultracold atoms in a lTaser field.

5.2 Superlattice structures

SLs comprise alternating layers of two or more different semiconductor materials,
which produce a sandwich-like structure containing a series of quantum wells, as
shown schematically in Fig. 5.3(a) for a GaAs/(AlGa)As SL (Wacker, 2002). The
layer structure produces a periodic square potential (see Fig. 5.3(b)) for conduction
electrons moving along the x-direction perpendicular to the layers, which are typi-
cally between 1 and 10 nm thick. Usually, a SL contains a chain of between 10 and
100 quantum wells, though in Fig. 5.3 we only shown 3 wells for clarity. Tunneling
through the barriers couples the wells and thereby broadens their quantized energy
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levels into bands, known as “minibands” (Wacker, 2002). The blue rectangles in
Fig. 5.3(b) show schematically the energy range of the two lowest minibands.

To observe non-KAM chaos, we used two different SL structures. In this section,
we focus on the first type of structure, henceforth known as SL1, whose composition
is described in detail elsewhere (Patané et al., 2002; Fromhold et al., 2004). We
describe the second SL structure (SL2) in Sect. 5.7. SL1 has a spatial period a
= 8 nm and contains 14 QWs. The density of n-type doping in the SL layers is
N =3 x 10'6 cm~3. The solid black curve in Fig. 5.4 shows the potential energy of
an electron at the conduction band edge versus position x through the SL. For clarity,
only 3 of the 14 quantum wells are shown. The unusual feature of this SL is that at

(@) (AlGa) As barriers

(b

Fig. 5.3 (a) Schematic diagram of a semiconductor SL formed by epitaxial growth of a series of
quantum wells (only three shown for simplicity). (b) Electron potential energy versus position, x,
through the SL. Blue areas represent the two lowest minibands for electron motion along x.
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Fig. 5.4 Schematic variation of the electronic potential energy with position x through
GaAs/AlAs/InAs SL1. The AlAs layers act as potential barriers and the InAs monolayer produces
a square potential notch at the center of the GaAs quantum well. Blue areas represent the two
Iowest minibands, which are separated by a large energy gap of 250 meV. Green areas represent
electron gases in the emitter and collector contacts. Electrons are injected from the emitter (left-
hand) contact into the lowest miniband. Further details of SL1 are given in (Patane et al., 2002;
Frombhold et al., 2004).
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the center of each GaAs quantum well, there is an InAs monolayer, which produces
a notch in the conduction band edge. Since this notch coincides with the antinode in
the ground state wavefunction of the quantum well, its effect is to lower the energy
of the first miniband (lower blue rectangle in Fig. 5.4) down to the bottom of the
quantum well (Patan¢ et al., 2002). This ensures that the edge of the miniband Ties
close to the chemical potential in the emitter contact (left-hand green region in Fig.
5.4), which facilitates electron injection.

By contrast, the InAs layer has almost no effect on the energy of the second
miniband (upper blue rectangle in Fig. 5.4) because it is located at the node in the
first excited state of the quantum well.

We now consider more quantitatively the effect of the InAs layer on the miniband
energies. To do this, Fig. 5.5 shows energy versus crystal momentum, p,, dispersion
relations calculated for the first and second minibands of SL1 containing the InAs
layer (red curves) and for a SL that is identical except that the InAs layer is replaced
by GaAs (black curves) (Patan¢ et al., 2002; Fromhold et al., 2004). The disper-
sion relations are shown within the first Brillouin zone of the SL, whose width is
inversely proportional to the SL period, a. Since a greatly exceeds the lattice con-
stant of bulk GaAs, the SL Brillouin zone is much smaller than for bulk GaAs and
is therefore known as a minizone. Comparison of the red and black curves in Fig.
5.5 reveals that including the InAs layer lowers the first miniband by approximately
70 meV, but has almost no effect on the second miniband. Consequently, the InAs
layer has two key effects. Firstly it lowers the first miniband, which facilitates elec-
tron injection into the miniband from the emitter contact. Secondly, it increases the
miniband gap energy (separation between the first and second minibands) to 250
meV, which reduces inter-miniband tunneling when a bias voltage is applied to the
SL, thus ensuring that a single band transport picture is appropriate.
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Fig. 5.5 Red curves: energy versus crystal momentum, p,, dispersion relations calculated for the
two Iowest minibands of the GaAs/AIAs/InAs SLI shown in Fig. 5.4. Black curves: energy versus
Py curves calculated for the two lowest minibands of a SL that is identical to SL1 except that the
InAs monolayer is replaced by GaAs.
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5.3 Semiclassical electron dynamics

In this section we consider the semiclassical dynamics of an electron confined to the
lowest miniband of SL.1. The miniband states are delocalized Bloch functions spec-
ified by the crystal momentum p = (py, py, p,). Within the tight-binding approxi-
mation, the energy-crystal momentum dispersion relation for the lowest miniband
is E(p) = Al — cos(pxa/h)]/2+ (p? + p?)/2m*, where A = 19 meV is the mini-
band width and m*™ (equal to 0.067 times the free electron mass) is the electronic
effective mass for motion in the y — z plane. The crystal momentum component, py,
lies within the first SL. minizone.

The electron moves under the action of an electric field F = (—F,0,0), applied
anti-parallel to the x axis, created by a voltage, V, applied between the emitter and
collector contacts, and a tilted magnetic field B = (Bcos 8,0, Bsin 0) (Fig. 5.6 inset).
In a semiclassical picture, the force produced by F and B changes the electron’s
crystal momentum at a rate

dp _

D elF ot (VoE(p) <)) 5.1)

where e is the electronic charge. In component form, Equation (5.1) can be written
as

Dx = eF — @:pytan 0, (5.2)
Am* @

Py = %hwcsin (p;fla)tane—d)cpZ7 (5.3)

D: = (Dch, (5.4)

where the left-hand terms are time derivatives of the crystal momentum components
and @.=eBcos 0 /m* is the cyclotron frequency corresponding to the magnetic field
component along the x-axis. It follows from Eqgs. (5.2)—(5.4) that

P+ @;p. = Csin(Kp. — opt — 9), (5.5

where C = (—m*®2aAtan 0)/2h, K = atan 8 /h, and wp = eFa/h is the Bloch fre-
quency. The phase, ¢ = a(p,(t =0)+ p,(r =0)tan 8) /h, depends on the initial con-
ditions and equals zero for electrons starting from rest (Fromhold et al., 2001, 2004).
In the absence of scattering, Equation (5.5) fully describes the electron motion be-
cause its solution, p,(¢), uniquely determines all of the other dynamical variables,
in particular the electron orbits in real space (Fromhold et al., 2004). Consequently,
the dynamics of a miniband electron in a tilted B-field are exactly equivalent to
a 1-dimensional driven harmonic oscillator: a text book system that exhibits non-
KAM chaos and is characterized by intricate phase space patterning, as we dis-
cuss below (Sagdeev et al., 1998; Vasiliev et al., 1989; Beloshapkin et al., 1989;
Zaslavsky et al., 1991; Shlesinger et al., 1993; Zaslavsky et al., 2004; Luo, 2004,
Kamenev and Berman, 2000; Karney and Bers, 1977; Chia et al., 1996; Gardiner et
al., 1997; Demikhovskii et al., 1999, 2002; Robnik and Romanovski, 2008; Soskin
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et al., 2009b). The system does not obey the KAM theorem because the harmonic
oscillator is degenerate as, physically, its oscillation frequency is independent of
energy.

Equation (5.5) reveals that even though the applied electric and magnetic fields
are stationary, they act like a time-dependent monochromatic wave. In Eq. (5.5),
the amplitude of the plane wave can be increased by increasing B and/or the mini-
band width, A, and is maximal when 8 = 45°. The wavenumber and THz-range
angular frequency of the plane wave can be controlled independently by changing
0 and F respectively. This is a crucial difference from cyclotron motion driven by
an electromagnetic wave whose wavenumber and frequency cannot, of course, be
independently tuned.

In our analysis, we first solve Eq. (5.5) numerically to obtain p,(¢), which we
then use to determine the other crystal momentum components (see (Balanov et al.,

2008; Hardwick, 2007) for details)

px = p«(t =0)+eFt — (p;— p-(t =0))tan 6,

‘ (5.6)
Py = Z,—fa
and the electron velocity components
. al . Dz . Dz
x=—sin(Kp,— wpt +¢), y = —=. (5.7)

- =
2h @.m*’ m*

We now consider electron orbits in the x — z plane, in which the magnetic field
lies (Fig. 5.6 inset), calculated for field values F = 3.6 x 10 Vm ! and B = 11
T taken from experiment (Fromhold et al., 2004). Qualitatively similar trajectories
occur for a wide range of other field parameters. When 6 = 0°, the plane wave
on the right-hand side of Eq. (5.5) has zero amplitude, which means that the x — z
motion is separable. Consequently, the electrons execute cyclotron motion about the
magnetic field (x—) axis, and Bloch oscillations along the x—direction with a peak-
to-peak amplitude equal to A/eF. The Bloch and cyclotron orbits add to produce
a regular bounded trajectory in the x — z plane, which resembles a Lissajous figure
(see Fig. 5.6(a)). When 0 is increased to 30°, the harmonic oscillator on the left-
hand side of Eq. (5.5) is only weakly perturbed by the plane wave driving term
on the right-hand side. The electron orbits therefore remain stable and regular (see
Fig. 5.6(b)) and are qualitatively similar to the cyclotron-Bloch oscillations shown
in Fig. 5.6(a). For 8 = 45°, the plane wave in Eq. (5.5) has maximal amplitude.
As a consequence, it strongly perturbs the harmonic oscillator and thus drives some
of the electron orbits chaotic (see Fig. 5.6(c)). Although these chaotic trajectories
extend across approximately 10 periods, they remain localized within a finite range
of the SL axis. But if 0 is increased to = 60° so that wg = 3@®,, the chaotic orbits
are no longer bounded and extend arbitrarily far through the SL (see Fig. 5.6(d)).

Figure 5.7 shows a 3-dimensional representation of the unbounded chaotic orbit
followed by an electron starting from rest when @wp = 3@,. The tube lies along the
electron trajectory and changes color from green to red as time increases. Initially,
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the orbit weaves a basket-like pattern (predominantly colored green) towards the
left-hand side of the figure. But eventually, the electron breaks away from this tra-
jectory and follows the more open cyclotron-like path (red) towards the right-hand
side of the figure.

More generally, the chaotic orbits are unbounded whenever wg = r@., where r is
an integer. When this resonance condition is satisfied, the electron trajectories map
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Fig. 5.6 Electron orbits in the x — z plane (axes inset) calculated for SL1 with F = 3.6 x 10° Vm ™!
B=11T and 6 = (a) 0° showing peak-to-peak amplitude (A /eF) of Bloch oscillations, (b) 30°,
(c) 45°, (d) 60° (corresponding to r = 3 resonance). Inset: schematic diagram showing orientation
of co-ordinate axes, F, and B relative to SL layers (shaded).

Fig. 5.7 3-dimensional representation (axes and orientation of B shown inset) of an unbounded
chaotic trajectory, which lies at the center of the colored tube, calculated for SL1 when wp = 3@®,.
As time increases, the color of the orbit changes from green to red. (color plot in the book end)
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out intricate stochastic web patterns (Sagdeev et al., 1998; Vasiliev et al., 1989; Be-
loshapkin et al., 1989; Zaslavsky et al., 1991; Shlesinger et al., 1993; Zaslavsky et
al., 2004; Luo, 2004; Kamenev and Berman, 2000; Karney and Bers, 1977; Chia et
al., 1996; Gardiner et al., 1997; Demikhovskii et al., 1999, 2002; Robnik and Ro-
manovski, 2008; Soskin et al., 2009b) in the phase space of the underlying driven
harmonic oscillator (see Eq. (5.5)). The stochastic web shown in Fig. 5.8(a) corre-
sponds to the » = 3 resonance and is constructed by plotting the momentum compo-
nents py < p, and p, at discrete equally-spaced times (Fromhold et al., 2001, 2004;
Hardwick, 2007). Since the width of the filaments decreases exponentially with dis-
tance from the web center (Zaslavsky et al., 1991), we have used orbits with several
different initial conditions to construct the filaments. The filaments of the stochastic
web are extensions of the chaotic sea visible at the center of the Poincaré section,
where the electrons have low energy and momentum and are therefore strongly per-
turbed by the plane wave in Eq. (5.5).

Of crucial importance for understanding the significance of this phase space
structure is that the distance of each point from the center of the web is propor-
tional to y/x (Fromhold et al., 2004). So as the electron travels further through the
SL, it produces points further from the center of the section (Fromhold et al., 2004).
The electrons are driven out along the radial filaments of the web by the resonant ab-
sorption of energy from the plane wave in Eq. (5.5), and so progress rapidly through
the SL. Physically, as the electron moves through the SL down the potential en-
ergy gradient created by F, the kinetic energy that it gains from F is transferred into
the y — z plane by the tilted B-field. Consequently, the electron’s y — z momentum
increases and, as it does so, the electron moves away from the central part of the
stochastic web along one of the six radial filaments. Since the web extends to in-
finity, the chaotic electron orbits are unbounded on resonance and should therefore
produce a large direct current. But moving F' slightly off resonance destroys the
stochastic web by breaking the radial filaments (see Fig. 5.8(b)). This localizes the
electron orbits spatially (see Fig. 5.6(c)) and should therefore suppress the current
flow.

Consequently, non-KAM chaos provides a new and, in principle, extremely sen-
sitive mechanism for modulating the electrical conductivity of a SL. Indeed, in the
absence of scattering, stochastic web formation would change the SL from an in-
sulator to a conductor at discrete field values for which the resonance condition
wp =rd, (r=1,2,3,...) is satisfied.

5.4 Electron drift velocity

In a real semiconductor device, the electrons are scattered by phonons, charged
impurities, and roughness of the interfaces between the barriers and quantum wells.
However, at Tow temperatures and high electric fields, conduction electrons have
mean free paths [ > a and, for short period SLs, comparable to the entire width of
the SL layer region. This regime is called the quasi-ballistic domain.
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In polar semiconductors such as GaAs and AlAs, an important electron scatter-
ing mechanism is scattering by longitudinal optic (LO) phonons of energy 7@;. By
carrying out experiments at low temperatures, we eliminate the LO phonon “absorp-
tion” transitions. By designing our SL with A < A, we can also greatly reduce the
effect of LO phonon emission (except by a small number of hot electrons in the up-
per miniband, which could relax into the lower miniband by LO phonon emission).
Therefore, in any realistic model of the electrical properties of a SL in the non-KAM
chaos regime, we need to include the effects of scattering. We do this by using the
velocity integral method (Esaki and Tsu, 1970).

Specifically, to quantify the effect of stochastic-web-assisted transport on the

electrical characteristics of real SL structures, we used the semiclassical trajectories
to calculate the electron drift velocity

p,(arb.units)
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Fig. 5.8 Poincaré sections showing electron momentum components (p,, p;) plotted at time in-
tervals of 27t/ @, (a) on resonance (r = 3) showing stochastic web, (b) off resonance (r irrational)

showing sea of chaos bounded by islands of stability (Fromhold et al., 2001).
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Fig. 5.9 v, (F) curves calculated for SL1 with B =11 T, and 8 = 0° (bottom trace) to 90° (top
trace) at 5° intervals. Curves for @ = 60° to 70° are omitted. Arrows mark » = 1 and r = 2 resonant
peaks created by chaos-assisted transport through stochastic webs.
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= /=
va= /0 exp <T> ve()dt, (5.8)

where the electron scattering time, 7, determined from experiment, includes contri-
butions from both elastic and inelastic scattering processes (Fromhold et al., 2004)
and v,(¢) = x is determined from Egs. (5.5) and (5.7). Figure 5.9 shows v, (F) curves
calculated using Eq. (5.8) for 8 = 0° (bottom trace) to 90° (top trace) at 5° intervals.

When 8 = 0° (Iower curve in Fig. 5.9), the v;(F) curve is identical to that pre-
dicted by the famous Esaki-Tsu model (Esaki and Tsu, 1970). The peak drift veloc-
ity occurs when wp T = 1 because, then, the electron scatters approximately half-way
up the miniband where the electron velocity is maximal. As F increases beyond the
Esaki-Tsu peak, more and more electrons complete Bloch oscillations before scat-
tering, which increasingly localizes their trajectories, thus reducing v,.

When 6 = 90° (upper curve in Fig. 5.9) the electron orbits remain regular but
the peak v, value occurs at higher F than for 8 = 0°. This shift of the peak position
occurs because the magnetic field bends the electron trajectory, thereby reducing
the average electron velocity along the SL axis. As a result, /' must be increased in
order for v, to attain its maximal value (Fromhold et al., 200T1).

As 0 increases from 0° to 55°, additional peaks emerge in the v4(F) curves at
F values (marked by arrows in Fig. 5.9) for which wg = r@,, where r =1 or 2.
When this resonance condition is satisfied, the electron phase space is threaded by a
stochastic web, which delocalizes the electron trajectories spatially (see Fig. 5.6(d)),
and therefore enhances v,. The positions of the resonant peaks in the v, (F) curves
can be altered by simply changing 6.

5.5 Current-voltage characteristics: theory and experiment

In this section, we consider how the resonances in v4(F) that result from the for-
mation of stochastic webs in the electron phase space manifest themselves in the
current-voltage, I(V), characteristics of the SL measured in experiment and simu-
lated theoretically. In our theoretical analysis, we used the v, (F) curves as a basis
for making drift-diffusion calculations of the I(V) characteristics of SL1. These
calculations involve obtaining self-consistent solutions of the Poisson and current
continuity equations throughout the SL (Fromhold et al., 2004; Greenaway et al.,
2009).

Figure 5.10(a) shows I(V) curves calculated for 8 = 0° (bottom trace) to 90° (top
trace). The curves are offset vertically and shown at 5° intervals When 6 = 0° and
90°, the calculated I(V') curves are knee shaped: approximately linear at low V and
then flattening when V becomes high enough for F to reach the Esaki-Tsu peak in
vq(F) (lower trace in Fig. 5.9). In each case, at high V, I is almost constant because
the decrease in vy(F) that occurs at high F is compensated by an increase in the
number of conduction electrons in the miniband, as we explain further in Sects. 5.6
and 5.7.
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For 0° < 6 < 55°, the slope of each I(V) curve increases when V reaches ~ 250
mV both in our calculations (see Fig. 5.10(a)) and in the corresponding experimen-
tal data (see Fig. 5.10(b)) measured at a lattice temperature 7 = 4.2 K. When V
increases above ~ 250 mV, there is a region of enhanced current, which gives rise to
a strong resonant peak (red in Fig. 5.11) in the differential conductance G = dI/dV
versus V curves that are calculated (see Fig. 5.11(a)) and measured experimentally
(see Fig. 5.11(b)). The amplitude of the resonant peak decreases as 8 approaches
0°, where the small remnant feature shown at V'~ 325 mV in the lower trace of Fig.
5.11(b) is a Stark-cyclotron resonance, originating from weak elastic scattering be-
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Fig. 5.10 I(V) curves (a) calculated and (b) measured at T = 4.2 K for SL1 with B =11 T, and
6 = 0° (bottom trace) to 90° (top trace) at 5° intervals.
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Fig. 5.11 G(V) curves (a) calculated and (b) measured at 7 = 4.2 K for SL1 with B =11 T, and
6 = 0° (bottom trace) to 90° (top trace) at 5° intervals. Curves for 8 = 0°,45°, and 90° are shown
black, green, and brown, respectively. The G(V) curves reveal strong resonant peaks (red). Arrow
in (a) indicates region of decreasing conductance associated with the onset of Bloch oscillations
(color plot in the book end).
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tween the quantized states produced by B || F (Canali et al., 1996). The electric field
quantizes the energy associated with motion along the SL axis into a Wannier-Stark
ladder. Neighboring levels are equally spaced by Z@wg. Motion in the y — z plane is
quantized by the magnetic field into Landau Ievels, separated by %d,. At the ap-
plied voltage for which the Wannier-Stark and Landau Ievels are equally spaced,
the electrons can undergo elastic scattering between the lowest Wannier-Stark states
in adjacent quantum wells and, during each scattering event, the Landau level in-
dex increases by 1 to ensure energy conservation. This process is related to inter-
Landau-Ievel transitions in a single quantum well with a tilted magnetic field applied
(Leadbeater et al., 1989, 1991).

The Stark-cyclotron resonance observed when 8 = 0° has a purely quantum me-
chanical origin because it requires energy level quantization. By contrast, the much
stronger resonant peak observed in G(V) when 6 # 0° can be explained within a
semiclassical miniband transport model and originates from non-KAM chaos. In
both the theory and experiment, this peak occurs near the bias voltage for which
wp = @, which means that the phase space is threaded by a stochastic web. The
electrons undergo rapid diffusive motion through the web and through the SL itself,
thereby generating the resonant peak in both the calculated and measured G(V)
curves. This result demonstrates that chaos-assisted transport through stochastic-
webs, which has been of great theoretical interest since the pioneering work of Za-
slavsky and co-workers in the mid 1980s (Sagdeev et al., 1998; Vasiliev et al., 1989;
Beloshapkin et al., 1989; Zaslavsky et al., 1991), can strongly affect and control the
electrical behavior of a real semiconductor device.

Despite the good quantitative agreement between theory and experiment, the
form of the I(V) curves in Fig. 5.10 is, at first sight, surprising for the following
reason. If F is uniform throughout the SL and proportional to V, I(V) = ANev,(F),
where A is the cross-sectional area of the SL. This means that the I(V) curves should
have exactly the same shape as the v;(F) curves shown in Fig. 5.9 and therefore con-
tain two strong resonant peaks when 0 ~ 45°. But, as is clear from Fig. 5.10, the
I(V) curves do not have the same form v, (F). Indeed, we have to differentiate the
I(V) curves in order to observe clear resonant peaks and, even then, we only see a
single peak in the G(V) curves when g = @.

The reason for this difference is that F is not uniform throughout the SL, as we
explain in the next section.

5.6 Electrostatics and charge domain structure

To illustrate the highly non-uniform electric field profile through SL1, the surface
plotin Fig. 5.12(a) shows r = wp/ @, o< F calculated as a function of V and position
(x) through the SL from the emitter contact (Position 0 nm) to the collector contact
(Position 120 nm) when 8 = 45°. The most striking feature of this surface plot is the
dramatic increase of F, which occurs towards the collector contact at high V. This
increase occurs because v; decreases monotonically at high F (5.9). As electrons
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start to build up in the SL layers, they make F increase with position through the
SL. When F becomes high enough, this reduces the local electron drift velocity, and
so the density of electrons, n,, must increase in order to maintain current continuity
through the SL. This accumulation of electrons, which appears as the large spike in
the surface plot of n; versus V and position shown in Fig. 5.12(b), further increases
F, making it highly non-uniform for V > 0.3 V.

The sharply-peaked electric field profile shown in Fig. 5.12(a) is similar to that
found when 8 = 0° (Wacker, 2002). In addition, there is a broad plateau region in
the surface plot, in which Fis pinned near the value required to satisfy the r =1
resonance condition (» = 1 along the lowest white contour in Fig. 5.12(a)) so that
wp = @.. Within this plateau region, r = 1 throughout most of the SL., which ensures
that we see a strong r = 1 resonant peak in the corresponding G(V) curve (shown
green in Fig. 5.11(a)). By contrast, near the r = 2 resonance (white contour marked
by arrow in Fig. 5.12(a)), F' varies rapidly with position, meaning that the resonance
condition is not satisfied across an extended region of the SL. Consequently, we see
no r = 2 peak in the corresponding G(V) curve for SL1.

To see more conductance resonances, we therefore need to suppress the accumu-
lation of electrons near the collector contact and thus ensure that F' is more uniform
through the SL. We achieved this in a real SL structure through miniband engineer-
ing, as described in the next section.
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Fig. 5.12 Surface plots showing (a) r =< F, (b) electron density, n,, calculated versus V and position
(x) through SL1 for B =11 T and 6 = 0°. Contours in (a) show integer values of r, with r =2
contour arrowed.



240 T.M. Fromhold et al.

5.7 Tailoring the SL structure to increase the number of
conductance resonances

To reduce the accumulation of electrons in the SL Tayers, we fabricated a GaAs/
(AlGa)As SL, henceforth known as SL2 and shown schematically in Fig. 5.13, in
which the energy gap between the first and second minibands is only 60 meV: ap-
proximately four times smaller than in SL1 (Hardwick et al., 2006). This narrow
gap allows electrons to tunnel from the first miniband (of width A = 11 meV) into
the second miniband and thus flow through the SL rather than accumulating towards
the collector contact. In SL2, there is no InAs layer to lower the first miniband. In-
stead, to facilitate electron injection into the miniband, the emitter contact has a 3%
Al content, which raises the conduction band edge just enough to bring the Fermi
energy in the emitter contact (left-hand green region in Fig. 5.13) into alignment
with the miniband.

Figure 5.14 shows surface plots of electron density, n;, calculated versus V and
position, x, through (a) SL1, (b) SL2 when 8 = 45°. For SL2 (see Fig. 5.14(b)), there
is very little electron accumulation towards the collector contact. Instead, the surface
plot reveals small ridges (red) of electron accumulation, which separate regions of
constant electron density. Within these regions, the corresponding surface plot of
r = wp/®; o« F versus V and position through the SL (see Fig. 5.15) reveals two
well defined plateaux in which F is pinned at the » = 1 and » = 2 resonances.

The narrow miniband gap of SL2 enables electrons to tunnel from the first to
the second miniband at high F, which causes v;(F) to increase at high F, thus
ensuring that there is far less electron accumulation in SL2 than in SLI1. Due to
the interminiband tunneling, we cannot use a single band picture to describe the
transport and electrostatic properties of SL2. Instead, we used wavepacket dynam-
ics, constructing an initial state from (along the x direction) a superposition of

blue area

~— green area

e
X 18'miniband

Fig. 5.13 Schematic variation of the electronic potential energy with position x through
GaAs/(AlGa)As SL2 (Hardwick et al., 2006). For simplicity, band bending and electric field varia-
tions produced by the accumulation of electrons is not shown. The (AlGa)As layers act as potential
barriers, which separate adjacent GaAs quantum wells. Blue areas represent the two lowest mini-
bands, whose separation is small enough (60 meV) to enable inter-miniband tunneling. Green areas
represent electron gases in the emitter and collector contacts.
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Wannier-functions near the bottom of the lowest miniband and (along the z di-
rection) the lowest Landau state. Motion along the y direction, which separates
from that in the x — z plane (Fromhold et al., 2004; Hardwick, 2007) (see also
Section 5.8), was described by a plane wave. The Wannier function basis spanned
enough p, states to ensure that the initial state extends across several (approximately
8) SL periods. We then determined the time evolution of the wavepacket in the
x — z plane, by solving the time-dependent Schrodinger equation, and calculated the
mean position of the wavepacket, (R(z)) = ({x(¢)),{z(¢))) and its time derivative
d(R()) /dr = (v(1)) = ((vx(1)), (vz(1))) = (d {x(r)) /dz,d (z(r)) /dt). By replacing
the semiclassical velocity, v,(z), in Eq. (5.8), by the quantum-mechanical expecta-
tion value, (v,(7)), we were able to calculate v,(F) curves, and hence determine

Electron Density (b)

(m™)

x102 ()

x10%2.

ST 80 M) 40
40 3 .
V) 00 Position (nm) 00 Position(nm)

Fig. 5.14 Surface plots showing electron density calculated versus V and position (x) through (a)
SL1 with B=11T, (b) SL2 with B= 14 T. 6 = 45°.
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Fig. 5.15 Surface plot showing r o< F calculated versus V and position (x) through SL2 for B = 14
T and 6 = 45°. Contours show integer values of r, with » = 1 and 2 contours arrowed. Plateaux are
electric field domains. At the boundary between adjacent domains, there is a large accumulation of
electrons (ridges in Fig. 5.14(b)).
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both I(V) and the electrostatic properties of the SL (for example, the surface plots
shown in Fig. 5.14(b) and in Fig. 5.15), via a formalism that explicitly includes
interminiband tunneling.

Figure 5.16 shows v,(F) curves (offset vertically for clarity) determined from
the wavepacket dynamics for 8 = 0° (lower curve) to 8 = 55° (upper curve). At low
F, interminiband tunneling is negligible and so the quantum-mechanical expectation
value (R(r)) coincides with the semiclassical trajectory (x(¢),z(¢)) obtained by solv-
ing Egs. (5.5) and (5.7). Consequently, the wavepacket dynamics reveals precisely
the same stochastic web-induced v, resonant peaks obtained from the semiclassical
transport equations. In Fig. 5.16, the r = 1 and r = 2 peaks are marked by the left and
right arrows respectively. At high F', the wavepacket dynamics exhibit strong inter-
miniband tunneling, which causes v, to increase with increasing F. This contrasts
with the monotonic decrease obtained from the semiclassical dynamics, shown for
6 = 0° by the red dotted curve in Fig. 5.16, which do not incorporate inter-miniband
tunneling. As discussed above, the increase of v, at high F~ due to interminiband tun-
neling suppresses accumulation of electrons (Fig. 5.14(b)), thus ensuring that F' pins
to the values required to satisfy the » = 1 and r = 2 resonance condition throughout
much of the SL (plateaux in Fig. 5.15). As a consequence, the I(V) and G(V) curves
measured for SL2 reveal stronger resonances, and more of them, than for SL1.

To illustrate this, Fig. 5.17(a) shows (V') curves measured for SL2 for B = 14
T and 6 = 0° (bottom trace) to 90° (top trace) at 5° intervals for T = 4.2 K. The
r = 1 resonant feature, clearly visible for V =~ 0.2 — 0.4 V, is far stronger than ob-
served for SL.1 (Fig. 5.10(b)) and actually triples the current flow even at room tem-
perature. The (V) curves calculated from the wavepacket dynamics (Fig. 5.17(b))
are in broad agreement with the experimental data and, in particular, reveal strong
resonant enhancement of the current due to stochastic-web-assisted transport when
r = 1. Whereas the derivative plots, G(V), measured experimentally for SL1 reveal
only the r = 1 resonant peak (red in Figs. 5.11(b) and 5.18(a), which show the same

1.2

v;(10Pms™1)

e — ~——Tf.=0°__ red
F(105Vm™)

0 4

Fig. 5.16 v, (F) curves (solid) calculated for SL2 with B = 14 T, and 6 = 0° (bottom trace) to 55°
(top trace) at 5° intervals. Curve for 6 = 45° is shown green. Arrows mark » = 1 and r = 2 resonant
peaks created by chaos-assisted transport through stochastic webs. Red dotted curve shows vy (F)
calculated for 8 = 0° in the absence of inter-miniband tunneling.
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data), for SL2 there are two distinct conductance peaks, shown red and purple in
Fig. 5.18(b), which correspond to the » = 1 and r = 2 resonances, respectively.

5.8 Energy eigenstates and Wigner functions

We now consider how the onset of non-KAM chaos in the semiclassical electron
trajectories manifests itself in the quantized energy eigenstates of the system. To do
this, we represent the tilted magnetic field by the vector potential A = [0, B(xsin 6 —
zcos 0),0]. In this gauge, the Hamiltonian operator

H = (p+eA)?/2m" + Vg (x) — eFrx, (5.9)

® ' 90°
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Fig. 5.17 I(V) curves for SL2 (a) measured at 7 = 4.2 K (b) calculated for B=14 T and 6 = 0°
(bottom trace) to 90° (top trace) at 5° intervals. Inset in (a): orientation of B in x — z plane.
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Fig. 5.18 G(V) curves measured at T =4.2 K for (a) SL1 with B=11T, (b) SL2 withB=14 T
and 6 = 0° (bottom trace) to 90° (top trace) at 5° intervals.
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is invariant under translation along y. In Eq. (5.9), p is the canonical momentum
operator and Vs; (x) is the periodic SL potential. Since H does not depend on y, the
energy eigenfunctions of the system can be written in the form ¥ (x,z)exp(ikyy),
where P(x,z) is an eigenfunction of the Hamiltonian obtained by replacing p, by
hky, = 01in Eq. (5.9), i.e. taking the constant canonical momentum component, ky to
equal 0. To calculate the eigenfunctions, ¥(x,z), we diagonalized the Hamiltonian
taking a basis of Wannier functions along x and simple harmonic oscillator states
along z (Fromhold et al., 2004).

When 6 = 0°, the eigenfunctions comprise Wannier-Stark states along x and Lan-
dau states along z. Figure 5.19(a) shows the probability density of one of these
eigenstates, which is Tocalized within the turning points of the corresponding semi-
classical orbit shown overlaid in the x — z plane. To relate the probability distri-
bution directly to the underlying semiclassical phase space, we calculated Wigner
functions, W(py, p;), of the quantized eigenstates (Fromhold et al., 2004, 2002).

Wigner functions are often used in quantum chaos theory, as well as in semicon-
ductor device modelling, because they are quantum-mechanical analogues of clas-
sical Poincaré sections (Reichl, 1998). To demonstrate this analogy, Fig. 5.19(b)
shows W (py, p,) calculated for the eigenstate shown in Fig. 5.19(b). Its ring pattern
coincides exactly with the circular island in the corresponding Poincaré section (see
Fig. 5.19(c)), which is produced by the orbit shown overlaid in Fig. 5.19(a), whose
cyclotron energy equals the energy of the Tateral Landau state.

When 6 # 0°, the link between the semiclassical electron trajectories and corre-
sponding quantum wavefunctions becomes more subtle and interesting. For exam-
ple, at the r = 1 resonance (i.e. wp = @.) for B=8 T and 8 = 15°, the probability
density distribution of the eigenstate shown in Fig. 5.20(a) extends across many
SL periods just like the unbounded semiclassical orbit shown overlaid. By contrast,

Fig. 5.19 (a) Yellow curve: classical electron trajectories for SL1 in the x-z plane (axes inset)
overlaid on a corresponding plot of |[¥(x,z)|* (blue zero, red high) at B = 8 T and 6 = 0°. (b)
Wigner function values (red large positive, light green = 0, blue large negative) in (py, p;) plane
(axes inset) corresponding to the energy eigenfunction shown in (a) and to the Poincaré section
shown in (c) (color plot in the book end).
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moving off resonance strongly localizes both the semiclassical orbits and the corre-
sponding quantized eigenstates, as shown in Fig. 5.20(b), for example.

The highly extended wavefunction shown in Fig. 5.20(a) is, to good approxima-
tion, a superposition of the lowest Wannier-Stark states in each quantum well plus
a series of lateral Landau states. Moving Ieft to right from one well to the next, the
Landau level index increases from O to 1,2,3,...,15. The wavefunction has such a
simple form for the following reason. Since 6 is only 15°, the z—component of B is
also small. Consequently, it acts only as a perturbation to the Wannier-Stark ladder
and the Landau levels produced by the B-field component along the x direction. But
on resonance, when the Wannier-Stark and Landau levels are equally spaced, the
perturbation has a dramatic effect because it couples Landau states in adjacent wells
whose quantum numbers differ by one and thus forms extended eigenstates like
that shown in Fig. 5.20(a). However, even though the extended wavefunction seems
to be shaped by purely quantum-mechanical coupling of adjacent Landau states,
there is a great deal of classical information embedded within it, which can be ex-
tracted by calculating its Wigner function. The saddle-shaped pattern in the Wigner
function shown in Fig. 5.21(a) closely resembles the central part of the stochastic
web shown in Fig. 5.21(b), which forms in the corresponding classical phase space.

red

Fig. 5.20 Yellow curves: classical electron trajectories for SL1 in the x-z plane (axes inset) overlaid
on corresponding plots of |¥(x,z)|* (blue zero, red high) (a) on resonance (r = 1), (b) off resonance
(r irrational). B=8 T, 8 = 15° (color plot in the book end).

Fig. 5.21 (a) Wigner function plot for the energy eigenstate of SL1 shown in Fig. 5.20(a) (red large
positive, light green = 0, blue large negative). The Wigner function is shown in the (py, p;) plane
(axes inset) and corresponds to the Poincaré section shown in (b) (color plot in the book end).
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Consequently, electron transport through stochastic webs provides a classical inter-
pretation of the inter-Landau level transitions that occur at small tilt angles, thereby
producing highly delocalized eigenfunctions.

At higher 0, the z-component of B couples the motion along the x-and z-
directions so strongly that it produces chaotic semiclassical paths and highly irreg-
ular energy eigenfunctions, like that shown in Fig. 5.22(a) at the » = 1 resonance.
The probability density distribution in Fig. 5.22(a) reflects the shape of the unstable

Fig. 5.22 (a) Yellow curve: semiclassical electron trajectory for SL1 in the x-z plane (axes inset)
overlaid on a corresponding plot of |¥(x,z)|? (blue zero, red high) at the r = 1 resonance for B = 8
T and 0 = 45°. Red arrows mark regions of high probability density, where, in addition, the orbital
loops are closely packed. (b) Wigner function values (red large positive, light green = 0, blue large
negative) in (py, p;) plane (axes inset) corresponding to the energy eigenfunction shown in (a)
and to the Poincaré section shown in (c). Solid black lines in (b) [marked by red arrows] and (c)
highlight ring-shaped stochastic web filaments (color plot in the book end).

Fig. 5.23 (a) Yellow curve: classical electron trajectories for SL1 in the x-z plane (axes inset)
overlaid on a corresponding plot of |¥(x,z)|* (blue zero, red high) at the r = 2 resonance for
B=28T and 6 = 60°. (b) Wigner function values (red large positive, light green = 0, blue large
negative) in (py, p;) plane (axes inset) corresponding to the energy eigenfunction shown in (a) and
to the Poincaré section shown in (c) and also overlaid in (b). Solid black lines in (c) highlight
ring-shaped stochastic web filaments (color plot in the book end).
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semiclassical orbit shown overlaid and cannot be interpreted as a simple superpo-
sition of Landau and Wannier-Stark states. In this high 0 regime, the similarity
between the semiclassical paths and quantum wavefunctions is striking. In partic-
ular, in Fig. 5.22(a) (6 = 45°), the probability density is high (red) in two distinct
regions, where the overlaid orbital loops are more densely packed. The correspond-
ing Wigner function shown in Fig. 5.22(b) clearly reveals filaments of the stochastic
web shown in Fig. 5.22(c), in particular the two ring-shaped filaments highlighted
by the black circles, plus the islands of stability enmeshed by the stochastic web.
When the electron trajectory lies on one of the two ring-shaped web filaments, the
electron’s x co-ordinate (proportional to the square of the distance from the center
of the web) is confined to a narrrow range of values, which correspond to the two
regions of densely-packed orbital loops marked by the red arrows in Fig. 5.22(a).
The left-hand (right-hand) arrows in Fig. 5.22(a) mark parts of the trajectory where
the electron is pinned within the first (second) rings in the stochastic web (marked
by red arrows in Fig. 5.22(b)).

Similar localized regions of high probability density and of compressed orbital
lToops can be seen in Fig. 5.23(a) for the r = 2 resonance at 8 = 60°. These con-
centrations occur when the electron is trapped on two of the ring-shaped filaments
of the stochastic web shown in Fig. 5.23(b) and (c) (ring positions marked by black
circles), and is therefore unable to progress through the SL. But when the electron
eventually transfers onto the radial filaments, it shifts rapidly along the x—direction,
following the widely-spaced orbital loops in Fig. 5.23(a), which correspond to low
probability density. The Wigner function in Fig. 5.23(b) is concentrated along the
filaments of the stochastic web and also reveals fine details of the stable islands en-
closed by those filaments, in particular the island chains formed towards the bottom
of the Poincaré section in Fig. 5.23(c) and also overlaid in Fig. 5.23(b).

5.9 Summary and outlook

We have shown that electrons in a biased SL with an applied tilted magnetic field
provide an experimentally-accessible non-KAM chaotic system in which, unusually,
the chaotic trajectories have an intrinsically quantum-mechanical origin: miniband
dispersion. Despite involving only stationary electric and magnetic fields, this 3-
dimensional system is dynamically equivalent to a 1-dimensional simple harmonic
oscillator driven by a time-dependent plane wave. In effect, the applied fields act
on the electrons like a THz wave whose wavelength and frequency can be tuned
independently by changing, respectively, the orientation of the magnetic field or
the strength of the electric field. Consequently, non-KAM chaos for miniband elec-
trons in a multi-well SL is fundamentally different from the quantum effects, such
as wavefucntion scarring, associated with classical Hamiltonian chaos in a single
quantum well (Stockmann, 1999; Fromhold et al., 1994, 1995a,b; Shepelyansky
and Stone, 1995; Miiller et al., 1995; Wilkinson et al., 1996; Monteiro and Dando,
1996; Fromhold et al., 1997a,b; Monteiro et al., 1997a,b; Narimanov et al., 1998;
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Narimanov and Stone, 1998a,b; Saraga and Monteiro, 1998a; Saraga et al., 1998;
Saraga and Monteiro, 1998b; Bogomolny and Rouben, 1998, 1999; Fromhold et al.,
2002).

When the cyclotron and Bloch frequencies are commensurate, the electron phase
space is threaded by a stochastic web, which spatially delocalizes the electrons.
This unique feature of non-KAM chaos produces strong resonant peaks in the ex-
perimental and theoretical (V) and G(V) curves, with the most striking resonant
features being observed for a SL. with a narrow energy gap between the first and
second minibands, which promotes inter-miniband tunneling and therefore reduces
charge accumulation. In such structures, stochastic web formation strongly affects
the collective behavior of the electrons, creating a series of electric field domains
(plateaux in Fig. 5.15), whose structure can be controlled by changing B and/or 6
(Hardwick et al., 2006). Although the parameters of the SLs considered in this pa-
per are designed to suppress LO phonon emission, the residual impurity and inter-
face roughness scattering can mask some of the subtle features of non-KAM chaos.
Nevertheless, its effects remain clearly discernable in the I(V) curves measured for
our SL devices. Analogous experiments on ultracold atoms in optical lattices with
oblique magnetic confinement may be able to detect far richer quantum manifesta-
tions of non-KAM chaos because the atoms can undergo almost no scattering (Scott
et al., 2002).

Recent work (Greenaway et al., 2009) has shown that the modulation of the
vq(F) curves that accompanies resonant stochastic web formation can induce multi-
ple propagating electric field domains in the SL, which increase both the amplitude
and frequency (into the THz regime) of the associated temporal current oscillations:
effects that should be experimentally observable in existing SLs. Stochastic-web-
assisted transport thus opens routes to controlling the form and collective dynamics
of charge domains in SLs, and hence enhancing the GHz-THz performance of the
devices, by using single-electron miniband transport to tailor vy (F).

Similar dynamics can occur in other spatially periodic systems in which wave in-
terference gives rise to band transport phenomena, for example ultracold atoms in an
optical lattice (Scott et al., 2002) and light propagating through spatially-modulated
photonic crystals (Wilkinson and Fromhold, 2003). The beautiful stochastic web
patterns that George Zaslavsky discovered in the phase space of the driven harmonic
oscillator could therefore provide a generic and, in principle, extremely sensitive
mechanism for controlling the transmission of quantum or electromagnetic waves
through engineered lattice structures.
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Chapter 6
Chaos in Ocean Acoustic Waveguide

A.L. Virovlyansky

Abstract At the end of 1980s it was realized that the phenomenon of ray chaos to
a significant extent determines the long range sound propagation in the ocean. In
this Chapter we consider the chaotic ray motion and its manifestations in the modal
structure of the wave field in a deep water acoustic waveguide. It is assumed that the
ray and wave chaos is caused by the sound speed fluctuations induced by random
internal waves.

6.1 Introduction

Long-range sound propagation in the ocean is possible due to the existence of a natur-
al refractive waveguide called the underwater sound channel (USC) (Brekhovskikh
and Lysanov, 1991; Jensen et al., 1994; Flatte et al., 1979). The point is that the ver-
tical sound speed profile in a deep ocean usually has a minimum at a depth of about
1 km. Therefore, part of the sound energy is captured within the water bulk which
prevents it from the interaction with the lossy bottom. Since the dissipation in sea
water at frequencies O(100 Hz) is rather small, low frequency sound waves cap-
tured in the USC can propagate with comparatively low attenuation over distances
of order thousands of kilometers (Munk et al., 1994). In the ocean acoustics such
distances are termed the megameter ranges.

Wave fields in the USCs are governed by the linear wave equation. There-
fore, they can be described using standard methods traditionally employed in other
waveguide media. Extensive theoretical and experimental studies of long range
sound propagation in the ocean have been carried out for sixty years. Already in
the middle 1980s this topic was considered well understood. However, in the Tast

A.L.Virovlyansky

Institute of Applied Physics, Russian Academy of Science,
46 UT'yanov Street, 603950 Nizhny Novgorod, Russia,
e-mail: viro@hydro.appl.scinnov.ru




256 A.L. Virovlyansky

two decades it turned out that there exists a factor, earlier not taken into considera-
tion, which to a significant extent determines the structure of the wave field at long
ranges. This is the phenomenon of ray chaos whose significance was realized at the
end of the 1980s (Palmer et al., 1988; Abdullaev and Zaslavsky, 1991; Palmer et al.,
1991; Smith et al., 1992; Tappert and Tang, 1996).

The phenomenon of ray chaos and its manifestations at a finite wavelength—the
so-called wave chaos—have well-known prototypes in mechanics: the dynamical
chaos and the quantum chaos (Reichl, 1992). The point is that the same Hamilton
equations describe a ray trajectory in an inhomogeneous waveguide and a nonlinear
oscillator under the action of a nonstationary (deterministic) external force. The
situation where the oscillator behaves in a quasi-random way is typical (Zaslavsky,
1985; Lichtenberg and Lieberman, 1992). Investigation of the phase space of such
an oscillator is a classical problem of the theory of dynamic chaos. The objects
studied by the theory of quantum chaos are the systems whose classical analogs
exhibit a chaotic behavior.

A significant contribution to understanding the role of ray and wave chaos in the
waveguide propagation was given in works of G. Zaslavsky. In a series of papers
written by S. Abdullaev and G. Zaslavsky in the 1980s it was shown how the meth-
ods derived in the theory of dynamical and quantum chaos can be applied for the
description of wave fields in range-dependent waveguides. Their results are summa-
rized in review (Abdullaev and Zaslavsky, 1991) and monograph (Abdullaev, 1993).
In the 1990s G. Zaslavsky turned his attention to problems related to manifestations
of the chaotic ray motions in the ocean acoustics. This topic became an important
direction of his research activity (Abdullaev and Zaslavsky, 1991; Smirnov et al.,
2001, 2002; Brown et al., 2003; Smirnov et al., 2004, 2005a,b; Virovlyanskii and
Zaslavsky, 2007).

First works on studying the ray chaos in ocean acoustic waveguides were based
on highly idealized environmental models with range-periodic perturbation (Palmer
et al., 1988; Abdullaev and Zaslavsky, 1991; Smith et al., 1992). The point is that
the chaotic ray dynamics in range-periodic waveguides can be examined by direct
application of methods borrowed from the theory of dynamical chaos, such, for
example, as the method of Poincaré map.

Later on, more realistic waveguide models with a random perturbation of the
sound speed field were explored (Brown and Viechnicki, 1998; Beron-Vera et al.,
2003). In a deep ocean, it is generally believed that the sound speed inhomogeneities
induced by internal waves are the dominant cause of the acoustic fluctuations at long
ranges (Flatte et al., 1979). In the presence of random internal waves the ray paths
become extremely sensitive to variations of the initial conditions: vertical separation
between the paths with close starting parameters, on the average, grows with range
r as exp(vr), where Vv is the Lyapunov exponent. For realistic models of deep water
waveguides the values of v are on the order of 1/100 km~! (Simmen et al., 1997;
Beron-Vera et al., 2003). At ranges O(1000 km) the ray chaos is well developed and
it cannot be ignored when describing the lTong range sound propagation in the ocean.

In recent years it has been demonstrated that the ray-based description of the
sound field in a deep water acoustic waveguide can properly predict many important
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features of the arrival pattern at megameter ranges. Numerical results obtained in the
scope of the geometrical optics approximation are consistent with both parabolic-
equation-based simulations and field experiments (Worcester et al., 1999; Colosi et
al., 1999; Beron-Vera et al., 2003). Simulations show that even at distances O(1000
km) effects of ray scattering may dominate diffractive effects (Simmen et al., 1997).
These results stimulate the developing of ray-based approaches for the analysis of
long range sound propagation.

In this paper we review a statistical approach derived in Refs. (Virovlyansky,
2005b; Virovlyansky et al., 2007) for description of the chaotic ray dynamics in a
waveguide with a perturbation of the sound speed field caused by random internal
waves. Following Ref. (Virovlyansky et al., 2009; Virovlyansky, 2006), we also
consider the manifestations of ray chaos in the modal structure of the sound field.
A more detailed discussion of these issues is given in monograph (Makarov et al.,
2010).

Traditional approaches for describing stochastic ray dynamics in a waveguide
with random inhomogeneities are associated with ideas of the study of wave propa-
gation in random media (WPRM) (Flatte et al., 1979; Rytov et al., 1978). It should
be emphasized that the theory of WPRM and the theory of ray chaos investigate
the ray structure from different and complementary viewpoints. Let us formulate
the difference in statements of problems in these two approaches (Virovlyanskii and
Zaslavsky, 2007, Virovlyansky et al., 2007).

(i) The description of WPRM is based on the notion of statistical ensemble. The
latter consists of infinitely many realizations of the waveguide specified by different
dc(r,z). Statistical characteristics of a ray with given starting parameters zg and o—
initial depth and grazing angle, respectively, — are determined by averaging over
rays with the same initial parameters in all realizations.

(i1) The theory of ray chaos deals with a deterministic medium. In our case the
latter is specified by a single realization of random perturbation. At ranges r >> v !
initially close ray paths become practically independent and the averaging over their
starting parameters can be considered as the statistical averaging.

An approximate analytical description of chaotic ray structure in a deep water en-
vironment was derived in Refs. (Virovlyansky, 2005b,a; Virovlyansky et al., 2007).
This was done using the Hamiltonian formalism expressed in terms of the action-
angle variables (1, 0). These variables are a convenient tool for studying oscillations
of particles (in mechanics) and rays (in wave theory) (Abdullaev and Zaslavsky,
1991; Landau and Lifshitz, 1976). The action variable I determines both ray ampli-
tude and cycle length while the angle variable 6 (it should not be confused with the
ray grazing angle) determines the position of a current ray point within the cycle.
The angle variable 8 may be interpreted as a phase of an oscillating ray path. The
use of the action-angle variables has the following three important advantages.

First, the statistical description of rays in a waveguide with a perturbation caused
by random internal waves is greatly simplified due to the fact that 8 rapidly random-
izes and already at comparatively short ranges (hundreds of kilometers) for most
rays it becomes more or less uniformly distributed on (0,27). Then the problem re-
duces to investigation of a slow diffusion of action / described by the Fokker-Planck
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equation. A similar approach is commonly applied in the studies of dynamical chaos
(Lichtenberg and Lieberman, 1992). In Refs. (Virovlyansky, 2005b,a; Virovlyansky
et al., 2007) it was shown that irregular range variations of action in a realistic en-
vironmental model may be approximated by a random Wiener process representing
the simplest model of diffusion (Gardiner, 1985). This yields a simple stochastic ray
theory which allows one to derive analytical estimates characterizing the chaotic ray
dynamics.

Second, the action-angle variables are a convenient tool for studying the ray
travel times, that is arrival times of sound pulses coming through individual ray
paths. In the methods of ocean acoustic tomography and thermometry these quan-
tities are used as input parameters in reconstructing the variations of temperature
fields (Munk and Wunsch, 1979; Worcester et al., 1999). In Refs. (Virovlyansky,
2003; Virovlyansky et al., 2007) it is demonstrated that the variations of ray travel
times caused by weak fluctuations of sound speed are expressed through variations
of the action and angle variables. This allows one to apply to stochastic ray theory
to studying fluctuations of the ray travel times.

Third, the use of the action-angle variables allows one to establish a simple link
between the ray and mode representaitons of the wave field. The normal mode is
formed by contribution from rays whose action variables at the observation range
satisfy the quantization rule (Virovlyansky et al., 2005, 2009). It turns out that the
mode amplitudes can be expressed through parameters of the ray paths. This ray-
based approach for the description of the modal structure allows one to apply the
stochastic ray theory for description of normal modes under conditions of wave
chaos.

The paper is organized as follows. Section 6.2 includes a background material.
We present the basic equations for the description of the wave field; introduce the
the Hamiltonian formalism in terms of the momentum-position and action-angle
variables; discuss the ray-based approach for the evaluation of mode amplitudes.
Statistical approach for the description of chaotic rays is formulated in Sect. 6.3.
It is applied to the evaluation of the probability density functions of different ray
parameters and evaluation of the coarse-grained distribution of the sound energy.
Section 6.4 is concerned with statistics of ray travel times. Our attention is focused
on the distribution of ray arrivals in the time-depth plane. In Sect. 6.5 it is shown that
an approximate analytical description of the modal structure at megameter ranges
can be obtained by combining relations expressing mode amplitudes through param-
eters of ray paths, and stochastic ray theory. We present analytical estimates for the
coarse-grained distribution of the sound energy over normal mode. We also estimate
the spread and bias of sound pulses carried by individual modes due to scattering at
random inhomogeneities. In Sect. 6.6 the results of this work are summarized.

6.2 Basic equations

In this section the main equations governing the sound wave field are presented.
Our analysis is based on the standard parabolic equation obtained from the linear
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wave equation in the small-angle approximation. The ray and modal representations
of the wave field are introduced. In describing the ray representation we use the
Hamiltonian formalism expressed in terms of the momentum-position and action-
angle canonical variables. It is shown that even in a range-dependent waveguide the
amplitudes of normal modes can be (approximately) expressed through parameters
of ray paths, that is, through solutions of the Hamilton (ray) equations.

6.2.1 Parabolic equation approximation

In what follows we shall study the ray structure of acoustic field in a simple but re-
alistic 2-dimensional environmental model. The sound speed field ¢(r,z) (r is range
and z is depth) in this model is presented in the form

c(r,z) = é(z) + 6¢(r,2), 6.1)

where ¢(z) is a smooth (unperturbed) background profile and d¢(r,z) is a weak
range-dependent perturbation caused by random internal waves (Flatte et al., 1979).
The z-axis is directed upward and the sea surface is located at z = 0.

Sound wave field v as a function of r, z, and time ¢ can be represented as

v(rz,t) = /dQ ﬁ(r,z,Q)e_iQ’, (6.2)

with ¥ governed by the Helmholtz equation (Brekhovskikh and Lysanov, 19971;
Jensen et al., 1994)

0% d* Q?

—+=——+—57V=0. 6.3

8r2+822+02v 6.3)
At distances on the order of hundreds kilometers the sound field is formed by waves
propagating at small grazing angles. Only such waves survive at so long ranges.
In the small angle approximation Eq. (6.3) can be replaced by the parabolic equa-
tion (Brekhovskikh and Lysanov, 1991; Jensen et al., 1994; Simmen et al., 1997).
Represent 7 as

v(rz,Q) = r71/2u(r,z,Q)eik’, (6.4)

where k = /cp is a wave number in a reference medium with the sound speed
co, and u(r,z, Q) is an envelope function. On neglecting the second derivative of u
with respect to r, we arrive at the standard parabolic equation (Brekhovskikh and
Lysanov, 1991; Tappert, 1977)

Ju  d%u
dikmot 5 - 2% [U(2) +V(r,2)] u=0, (6.5)

where

2
U(z) = % <1 ~ EZC(OZ)> V() ~ &EZ’Z). (6.6)



260 A.L. Virovlyansky

Transient wave field excited by a pulse source can be synthesized out of solutions
of Eq. (6.5) at different carrier frequencies as

v(rz,t) = pl/2 /dQ' u(r,z,Q')s(Q')e’lg/(’/q’*’), 6.7)

where s(Q) is the spectrum of an initially radiated pulse.

Note that Eq. (6.5) formally coincides with the time-dependent Schrodinger
equation. In this analogy r plays a role of time and k~! associates with the Planck
constant. However, it is difficult to generalize this analogy between the quantum
mechanics and wave theory to the case of a transient wave field. The integration
over  in Eq. (6.7) formally corresponds to integration over the Plank constant.

6.2.2 Geometrical optics. Hamiltonian formalism

In the geometrical optics approximation the solution to Eq. (6.5) is expressed
through parameters of ray trajectories (Abdullaev and Zaslavsky, 1991; Brown and
Viechnicki, 1998; Simmen et al., 1997; Beron-Vera et al., 2003). In the unperturbed
waveguide (V = 0) the ray path obeys the Hamilton equations dz/dr = d H/dp and
dp/dr= —0dH/dz, where H = p*/2 + U (z) is an unperturbed Hamiltonian and p is
the momentum. The Iatter is related to the ray grazing angle ¥ through p =tany. In
the presence of perturbation A should be replaced by H + V.

In deep water acoustic waveguides the sound speed profile at any cross-section
(r = const) usually has a minimum at a depth of about 1 km (Brekhovskikh and
Lysanov, 1991). Then U represents a “potential well” whose parameters may vary
with range r. Since r is a time-like variable, our Hamiltonian system formally co-
incides with that describing a mechanical particle oscillating in a time-dependent
potential well.

The contribution from a single ray to the total wave field is

u(r,z,Q) = A(r,z) exp[ikS(1,2)] (6.8)

where A and S are the ray amplitude and eikonal, respectively. The eikonal S is an
analog to Hamilton’s principal function in classical mechanics and it is given by an
integral

5= [ Ipde—(@+v) 6.9)

running over the ray path (Landau and Lifshitz, 1976; Simmen et al., 1997).

The amplitude A also can be expressed through solutions of the Hamilton (ray)
equations (Brekhovskikh and Lysanov, 1991). In the case of a point source whose
wave field satisfies parabolic equation (6.5) with an initial condition

u(0,z,2) = 8(z—zs), (6.10)
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all rays escape the same point (0,z;) with different starting momenta py. Then

k
A=, —. 6.11
\| 2zilaz/ap0) 6.1

Rays arriving at a given observation point are called the eigenrays. Equations
(6.8) and (6.11) determine the contribution to the total wave field from an individual
eigenray.

Action-angle variables. Consider an unperturbed waveguide and for simplicity
assume that the function U(z) has a single minimum. In this (range-independent)
waveguide each ray is periodic and the Hamiltonian H remains constant along the
trajectory. The action variable 7 is defined as an integral over a cycle of the ray path
(Abdullaev and Zaslavsky, 1991; Landau and Lifshitz, 1976)

1 1 Zmax
1:5,7{”‘11:;/ dzy/2[H = U(3)], (6.12)

Zmin

where zZnin and zmax are the lower and upper turning depths, respectively, satisfy-
ing the condition U(z) = H. Equation (6.12) defines function H(I) expressing the
Hamiltonian as a function of action. The canonical transformation

p=p(1,0),z=2(1,0) (6.13)

connecting the position-momentum and action-angle variables is defined by equa-
tions p = dG/dz and 8 = dG/JI, where G(I,7) is a generating function. For p >0

G2 = [ &PU2), PU)=VIHD-URL (614

 Zmin

If p < 0, G(1,z) should be replaced by 21 — G(I,z). The angle variable 6 can be
interpreted as a phase of the ray path. The so-defined 6 will be called the wrapped
angle variable. It belongs to an interval from 0 to 2. To make 6 continuous, its value
should be increased by 27 at the beginning of each new cycle. This is a standard
procedure (Landau and Lifshitz, 1976). It makes the angle variable 8 unwrapped.

According to the Liouville theorem the Jacobian of any canonical transformation
is equal to unity (Landau and Lifshitz, 1976). Thus, we have

d((p,2),0(p,z)) _d(p(,0),z(1,0))

dps) owme) " (©.15)

The canonical transformation determined for the unperturbed waveguide, for-
mally, can be used in the perturbed waveguide (with V £ 0), as well. In the presence
of perturbation the ray equations take the form

a av
=" 39" (6.16)
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and

de IV

P o+ ST (6.17)
where 0 (I) = dH(I)/dI is the spatial angular frequency of the ray path oscillation
in the unperturbed waveguide. The cycle length of the unperturbed path is D(I) =
2n/o(I).

In what follows we will use functions I(r,ly, 6y) and 8(r,1Iy,6y) to denote the
action and angle of the ray path at range r. Arguments Iy and 6 are initial values
of these variables at r = 0. Sometimes it will be more convenient to use similar
functions I(r, po,zo) and 0(r, pg,z9) Where po and zg are initial momentum and co-
ordinate of the ray path, respectively.

Ray travel times. A signal arriving at the observation point through a particular
ray path—we call it the ray pulse—can be evaluated by substituting Eq. (6.8) into
Eq. (6.7). Since both A and S do not depend on £ it is easy to see that the travel
time of a ray pulse is

t=(r+S)/co. (6.18)

In the unperturted waveguide, from Egs. (6.9) and (6.12) it follows that at one cycle
of oscillations the eikonal of a ray with action I increases by 2x[I —H(I)/@(I)].
Therefore at a long range r the travel time is approximately equal to

7, =1+ To{) —H{I)]r/cr 6.19)

6.2.3 Modal representation of the wave field

The wave field at any range point can be presented in the form of decomposition

u(r,z,Q) = Zam(r,ﬂ)(pm(z,ﬂ), (6.20)

where ¢,,(z, Q) are eigenfunctions of the Sturm—Liouville problem in the unper-
turbed waveguide (Brekhovskikh and Lysanov, 1991; Brekhovskikh and Godin,
1999). Each term in this sum describes a normal mode. For simplicity, we restrict
our attention to modes with turning points within the water bulk. In the WKB ap-
proximation the m-th eigenfunction is determined by parameters of an unperturbed
ray path whose action variable—we denote it by I,,o—satisfies the quantization
rule (Brekhovskikh and Lysanov, 1991; Brekhovskikh and Godin, 1999; Landau
and Lifshitz, 1977)

m—1/2 m—1/2
kK Q0

Im_Q: C(),m:],z,.... (621)

The eigenfunction of the m-th mode between its turning points can be presented
as (Brekhovskikh and Lysanov, 1991; Brekhovskikh and Godin, 1999; Landau and
Lifshitz, 1977
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on(2,2) =0, (2,2)+ 9, (2,2), (6.22)

where

O (2,2) = [D(Lno)PIna ,2)] " exp{£ikG(lug,z) — w/4]}.  (6.23)

6.2.4 Ray-based description of normal modes

The ray-based description of mode amplitudes a,,(r,£2) can be derived by project-
ing the ray representation of the wave field onto normal modes and evaluating the
corresponding integrals using the stationary phase technique. A detailed discussion
of this issue is given in Refs. (Berman and Zaslavsky, 1979; Virovlyansky and Za-
slavsky, 1999; Virovlyansky, 2000; Virovlyansky et al., 2005; Virovlyansky, 2006).
It turns out that each modes is formed by contributions from rays—we will call them
the mode rays—whose actions at the observation range r satisfy the condition

I(r7[0790) =1ImQ- (6.24)

It should be emphasized, that at different frequencies this condition singles out dif-
ferent rays. In this sense, the mode rays are frequency dependent.

If the action of the ray path is expressed by function I(r, pg,z9) Eq. (6.24) trans-
lates to

1(7,p0,20) = In- (6.25)

We will consider two types of sources.

Point source. In this case the wave field is a solution of Eq. (6.5) with initial
condition (6.10) and all the rays start from a depth z;. Then according to Eq. (6.25)
we get the condition

1(r,po,zs) = I (6.26)

defining the starting momenta of mode rays. Take one of these rays and denote its
coordinate at the range of observation by Z,,,. Its contribution to the mode ampli-
tude is (Virovlyansky and Zaslavsky, 1999; Virovlyansky, 2000; Virovlyansky et al.,
2005; Virovlyansky, 2006)

am(r,Q):Qexp[i(<15+B)], (6.27)
where
D =k[S(r,Zno)+0G(Lw0,Zno)], (6.28)
o = —sgnp, p is the momentum of the mode ray,
1
Q (6.29)

 V/27[91(r, po,25)/pol
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B is a constant that does not depend on frequency. An explicit expression for  is
given in Refs. (Virovlyansky and Zaslavsky, 1999; Virovlyansky, 2000; Virovlyan-
sky et al., 2005; Virovlyansky, 2006).

Single-mode source. In this case

u(0,2,2) = Py (z,2). (6.30)

Rays escape from depths zg between turning points of the mp-th mode. There are
two rays escaping each zo with starting momenta py = £P(,,,q,20). All rays have
the same initial action /,,,. The condition that singles out the mode rays follows
from Eq. (6.24) as

(1,12, 600) = Ing- 6.31)

It determines 6y (an hence z) corresponding to mode rays. A contribution from an
individual mode ray to a,, has the form of Eq. (6.27) with the same expression for
the phase & and

1
\/27rk |01(r, g2, 60) /960

The mode amplitude is evaluated by summing up contributions from all the mode
rays.

exp [£ikG (Lny2,20)] - (6.32)

6.3 Ray chaos

In this section we construct a statistical description of the chaotic ray dynamics in a
realistic model of the underwater acoustic waveguide with a sound speed fluctuation
induced by random internal waves. The use of the action-angle variables greatly
simplifies the analysis. It turns out that the range dependence of the action variable
can be modeled by a random Wiener process. Then the angle variable is modeled
by an integral of this process. In this approximation, surprisingly simple analytical
estimates for statistical characteristics of ray parameters are derived. It is shown how
this result can be applied for estimating the sound intensity smoothed over the depth
with a sufficiently large smoothing scale.

6.3.1 Statistical description of chaotic rays

Statistical description of chaotic rays is based on a property of the chaotic ray dy-
namics called mixing (Lichtenberg and Lieberman, 1992; Sagdeev et al., 1988). Take
a bundle of rays starting from a small area of the phase space % centered at a point
(po,20). The square of # denote by Sz. At ranges r >> v~ points depicting the
ray paths in the phase plane are scattered over much larger area %Z’. Consider a
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small portion of this area A%’ centered at an observation point (p,z). A fraction of
trajectories arriving at A%’ may be treated as an expectancy of hitting this area. In
order to quantify this statement, introduce a function

1
PPZl[’OZ()(p7zyr|p(),Z()) = g

X / /; dpodzg 8(z— z(r, P> 20,0)8 (p — p(r, po, 20,0), (6.33)

which may be interpreted as a conditional probability density function (PDF) of ray
coordinates in the phase plane. Then an integral over the area A%’

Prgp = /A‘JZ’/ dpdz Py oz (22,7 — 10| Pos20) (6.34)

determines the probability that a ray path starting from (pg,zo) arrives at AZ’. The
mixing phenomenon manifests itself in the fact that at long ranges P44 weakly
depends on the size and shape of Z. When r tends to infinity and sizes of Z tend to
zero the dependence of P, 4 on the shape of &% vanishes. But at finite ranges r we
cannot take too small #’s and consider probabilities of hitting too small AZ”’s.

In a similar way we define a conditional PDF Pyg|;, g, (1, 0, 7[lo, 8o) for the action-
angle variables. The connection between PDFs Py, .. and Pyg)1, 6,18 readily estab-
lished using standard formulas of the probability theory. Equation (6.13) formally
determines a nonlinear change of variables. The Liouville theorem (6.15) simplifies
the application of standard relations and we arrive at

Pl pozo (P:2:71P0520) = Projige, (1(P,2), 0(p,2), 7I(po,20),0(po,20)).-  (6.35)

The PDF introduced by Eq. (6.33) can be used for any environmental model in
which rays exhibit chaotic behavior. But the application of this approach in a waveg-
uide representing a realization of a random medium may have the following specific
feature (Virovlyansky, 2006; Virovlyanskii and Zaslavsky, 2007; Virovlyansky et
al., 2007,2009). At long ranges initially close ray paths diverge so significantly that
they are spaced apart from each other by intervals exceeding correlation scales of
the medium. Then the rays travel through practically independent inhomogeneities
and behave as if they propagate in different realizations of the medium. Therefore it
is natural to expect that the averaging over initial conditions may give results close
to those obtained by the ensemble averaging. It means that the PDF defined by Eq.
(6.33) may comparatively weakly depend on a particular realization of the waveg-
uide. Numerical simulations show that this is the case for our environmental model
(see below).
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6.3.2 Environmental model

In numerical simulations presented below we use an environmental model with an
unperturbed profile ¢(z) (borrowed from Ref. (Colosi and Flatté, 1996)) shown in
the left panel of Fig. 6.1. It represents the Munk profile (Brekhovskikh and Lysanov,
1991, Flatte et al., 1979)

co(z) =co[l+e(e=n—1)], 1=2(z—2)/0 (6.36)

with parameters c¢o = 1.5 km/s, € = 0.00238, Q = 0.485 km, and z, = —0.7 km.

It is assumed that the weak perturbation 8¢(r,z) is caused by random internal
waves with statistics determined by the empirical Garrett-Munk spectrum (Flatte et
al., 1979). To generate realizations of a random field 8¢(r,z) we apply a numerical
technique developed by J. Colosi and M. Brown (Colosi and Brown, 1998). Realiza-
tions of d¢(r,z) have been computed using Eq. (19) from (Colosi and Brown, 1998).
Components of wave number vectors in the horizontal plane belong to the interval
from 27/100 km~! to 27t/4 km~T. An rms amplitude of the perturbation scales in
depth like exp(3z/2L), where L = 1 km, and its surface-extrapolated value is about
0.5 m/s. Depth dependencies of dc at three different ranges are shown in the right
panel of Fig. 6.1.

sl .\ 3L— .
148 15 152 154 -0.5 0 0.5
¢, km/s §c, km/s

Fig. 6.1 Unperturbed sound speed profile ¢(z) (left panel) and perturbation §c in vertical sections
of the waveguide at three different ranges (right panel).
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6.3.3 Wiener process approximation

In (Virovlyansky, 2005b, 2006; Virovlyansky et al., 2007; Virovlyanskii and Za-
slavsky, 2007) it is shown that an analytical estimate of the above PDF can be
obtained by replacing the Hamilton (ray) equations (6.16) and (6.17) with simple
stochastic Langevin equations. The point is that due to the smallness of perturbation
dc, the action variable I weakly varies at the longitudinal correlation scales [, of
the sound speed fluctuations. Therefore, the right-hand side of Eq. (6.16) may be
approximated by a delta-correlated random function & (r) with statistical moments

<&>=0,<&MNEWF) >=Bs(r—7). (6.37)

The values of B were estimated numerically for a few typical deep water waveguides
(Virovlyansky, 2005b, 2006; Virovlyansky et al., 2007; Virovlyanskii and Zaslavsky,
2007; Udovidchenkov and Brown, 2008). They turned out to be of order 10~7 km.
In the environmental model described in Sect. 6.3.2, B is about 1.4 x 10~/ km for
practically all the ray paths.

Represent the action and angle variables of a ray path in the form

I(r,Iy,00) = Iy +x(r), 6(r,Ip,600) = 60+ w(lp)r + y(r), (6.38)

where x(r) and y(r) are random functions describing the deviation of the ray path
from its unperturbed position. They are determined by stochastic Langevin equa-
tions

—=¢, (6.39)

~ = o/ (Ip)x (6.40)

which approximate Egs. (6.16) and (6.17), respectively. Here and in what follows
we use the notaion @'(I) = dw(I)/dI. Equation (6.40) is derived by neglecting the
derivative dV /9T in the right hand-side of Eq. (6.17) and replacing (/) by w(ly) +
o (Ip)x.

At short ranges where the ray action is still close to its starting value, the de-
viation of the ray path from its unperturbed position is determined by the random
increment of the angle variable y. According to Eq. (6.40) the rms value of y is pro-
portional to the derivative @'(ly) which is defined by the unperturbed sound speed
profile &(z). This means that the parameter @(y) to a significant extent determines
the sensitivity of a ray path to the sound speed fluctuations. This conclusion is con-
sistent with results obtained in Refs. (Beron-Vera and Brown, 2003, 2004; Brown
et al., 2005; Rypina and Brown, 2007; Udovidchenkov and Brown, 2008), where
the authors argue that the sensitivity of the ray path is controlled by the stability
parameter of the background sound speed profile

_Ta'(D)
a=T0 (6.41)
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Numerical results presented in the above papers, show that ray instability increases
with increasing magnitude of a.

Since B in our environmental model can be approximated by the constant, both
Langevin equations are readily solved. The deviation of action x(r) is expressed
by a random Wiener process (Gardiner, 1985). It is a zero mean Gaussian process
whose statistical characteristics are defined by the correlation function {x(7)x(#')) =
Bmin (r,7). The deviation of the angle variable is given by relations

() = ot (r), m(r) = [ (), (642

that is, y(r) is described by an integral of the Wiener process. The approach based
on Egs. (6.37)-(6.40) we call the Wiener process approximation.

Using the standard relations of the probability theory, it is easy to show that the
conditional PDF of action I at range r, i.e., the PDF of I given that at » = 0 this
variable equals Iy, is

1 (- 10)2}
NoTTT exp { 2Br . (6.43)

In the scope of our approach statistical characteristics of the action variable does not
depend on the starting angle 6.

There is a subtlety to this result. According to Eq. (6.43), action I may take
on both positive and negative values. But the action is nonnegative by definition.
According to Eq. (6.43) this condition is met for most rays if Iy exceeds /Br. At
megameter ranges this occurs for rays with grazing angles x, at the sound channel
axis z = z, satisfying the condition

Py, (L, r|lo) =

[xal > 5°. (6.44)

For treating flat rays our approach should be modified as it is discussed in Refs. (Vi-
rovlyansky, 2005b, 2006; Virovlyansky et al., 2007; Virovlyanskii and Zaslavsky,
2007).

The standard deviations of the action and angle variables for steep rays satisfying
condition (6.44) are

o1 =< (I— 1) >"?=(Br)'/?. (6.45)

and
0o =< >'2= |0 (Iy)| (B/3)* P12, (6.46)

In the Wiener process approximation Eq. (6.35) translates to

1
sz|pozo(pazar|p()7Z0) = EP[U() (I(PaZ)er(POaZO))- (6.47)
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6.3.4 Distribution of ray parameters

Function Pyipozo (p,z,r|po,z0) describes statistics of rays starting from a small area
of the phase plane centered at point (pg,zg). In the case of a point source set at a
depth z; we have a family of rays whose starting points in the phase plane p — z
form a segment of straight line determined by the relations zg = z; and —ppax <
Po < Pmax- In order to describe the statistical characteristics of these rays, let us
assume that the quantity 1(pg)dpo defines a fraction of rays with starting momenta
from an interval (pg, po +dpg). The function 1(pg) is determined by the radiation
pattern of a particular source. Formally considering 11(pg) as a PDF of the initial
momentum pg and exploiting Eqgs. (6.33), (6.45), and (6.47) we can find PDFs of I,
p, and z at ranges r >> v~ ! (Virovlyansky, 2005b; Virovlyansky et al., 2007). PDF
of action is

P(I,r) = /dpo n(po) Py, (1,r1(po, zs))- (6.48)

Exploiting standard formulas of the probability theory and the Liouville theorem
(6.15), we obtain a joint PDF of p and z:

1
sz(P,Z,r) = EPI(I(pvz)vr) (649)

Equations (6.48) and (6.49) yield a PDF of momentum

1
Polpr) = 5= [ dpodzn(po)Pry (1(p.2).rllpo.2)). (650)

and dept
1
Pz,r) = o /dpodl’ n(po) Py, (I(p;2), 71 (Po, zs))- (6.51)

To check the above relations we have traced 50000 rays escaping a source
set at depth zg = z, with initial momenta uniformly distributed in an interval
(— Pmax;s Pmax ) With pmax = 0.22 corresponding to a maximum launch angle Ymax =
12.5°. In this case 7(po) = (2Pmax) ' Smooth lines in Fig. 6.2 show PDFs of I (a),
6 (b), p (¢), and z (d) at a range of 3000 km obtained in the Wiener process approx-
imation, that is evaluated by formulas (6.48), (6.50), and (6.51). For the wrapped
angle variable 6 the uniform distribution is expected. The smooth curves are com-
pared to stairstep graphs representing distributions (normalized histograms) of the
same quantities obtained by direct numerical ray tracing for two different realiza-
tions of d¢(r,z). It is clear that predictions made in the Wiener process approxima-
tion are in good agreement with the results of ray tracing. In these figures we see
that, consistent with our expectation, distributions of ray parameters weakly depend
on particular realizations of perturbation.
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6.3.5 Smoothed intensity of the wave field

At ranges O(1000 km), where the ray chaos is well developed, the wave field at
any observation point is formed by a huge number of chaotic eigenrays. A coarse-
grained distribution of the sound field intensity determined as

o 1 " |2 (Z_Z/)z
J(rz)= mAz/dz |u(r,2')|” exp [ e

where A, is a smoothing scale, may be estimated by an incoherent summation of
contributions from these eigenrays. According to Eq. (6.11), a sum of their intensi-
ties can be presented in the form

, (6.52)

u(r,2)l> =Y. e
) - 2m|dz/ 9 po| Po=P0,j
k
T / dpo 8(z—z(r, po,zs)), (653)

where the index j in the middle expression numbers the eigenrays. Let us show that
under conditions of a well developed ray chaos the integral in Eq. (6.53) can be
presented in the form of a statistical average.

As above, we assume that the initial momenta pg of rays leaving the source lie
within an interval (— pmax, Pmax ). Let us divide this interval into a set of small subin-
tervals with end points p;, j = 1,...,N. Then the last expression in Eq. (6.53) can

0.2
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Fig. 6.2 Distributions of ray parameters at » = 3000 km. Smooth curves show PDFs of I (a), 8
(b), p (c), and z (d) evaluated analytically in the Wiener process approximation for rays escaping a
point source set at a depth z; = —0.7 km. Stairstep graphs present normalized histograms obtained
by numerical ray tracing in waveguides with two different realizations of perturbation 8c(r, z).
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be presented as a sum of integrals over these subinterval

k N 1
|u(r,2)|* = / dpo 6(z—z(r,po,zs))- (6.54)
Pj—
Making use of Eqgs. (6.33) and (6.47) yields

Pj+1
/ dpo 8(z—2z(r,po,zs)) = (Pj+1—pj /dp Ppzipoze (P>2|P ) 2s)
pPj

= P23 [ ap By (1(p,2), 11 (p13)). - (659)

Substituting Eq. (6.55) into Eq. (6.54) and replacing p;+1 — p; by dpg we find

Ju(r,2)|* = (

(I(paz)er(pjazs))' (656)

This relation can be rewritten in the form

k
u(r,z)* = pm;* P.(z,7), (6.57)

where P, (z,r) is determined by Eq. (6.51) with (pg) = (2pmax) " Insertion of Eq.
(6.57) into Eq. (6.52) yields (Virovlyansky, 2005b)

0 2 4 6 8 10 12
J

Fig. 6.3 Smoothed intensity J at 3000 km versus depth z. The carrier frequency is f = 75 Hz.
Dashed line: prediction of Eq. (6.58). Thin solid lines: results of numerical solving the parabolic
equation for 4 realizations of the random perturbation.
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J(rz) = 2kl;max /d e TAzz_P (Z,r). (6.58)
(2m) /2

Figure 6.3 compares the prediction of Eq. (6.58) (dashed line) with results obtained

by numerical solving the parabolic equation at a carrier frequency of 75 Hz for four

realizations of the random perturbation. The wave field is excited by a point source

set at the sound channel axis z,. The smoothing scale A, = 0.4 km. It is seen that

Eq. (6.58) gives a rough estimate of the smoothed intensity.

6.4 Ray travel times

In this section we study how the chaotic ray motion manifests itself in the distri-
bution of ray arrivals in the time-depth plane. It turns out that chaotic rays whose
trajectories have equal number of turning points has close travel times. This phe-
nomenon sheds new light on the surprising stability of the early portion of the arrival
pattern observed in both numerical simulations and field experiments. It is shown
how the stochastic ray theory described in Sect. 6.3 can be used for obtaining ana-
Iytical estimates characterizing the statistics of ray travel times.

6.4.1 Timefront

Now we turn our attention to the ray travel times, that is, arrival times of sound
pulses coming through individual ray paths. In the ocean acoustics, a distribution
of ray travel times at a given observation range most frequently is characterized
by the so-called timefront representing ray arrivals in the time—depth plane. Figure
6.4 presents timefronts in the unperturbed (upper panel) and perturbed (lower panel)
waveguides at the range 3000 km constructed by tracing numerically a fan of 120000
rays escaping a point source set at depth z;z = —0.7 km. Starting momenta of the
fan rays uniformly fill an interval corresponding to launch angles £12.5°. Time is
reckoned from r/cy, which is the arrival time of an axial ray.

The timefront in a range-independent waveguide has the well-known accordion-
like shape consisting of smooth segments (branches) (Simmen et al., 1997; Brekhov-
skikh and Lysanov, 1991). Each segment is formed by points corresponding to ar-
rivals of rays with the same identifier £M, where M is the number of ray turning
points and symbols + and — correspond to rays starting upward and downward, re-
spectively. So, we can associate each segment with a particular identifier. Identifiers
for some segments in the unperturbed waveguide are indicated in the upper panels
of Fig. 6.3. It is seen that the travel time grows with M. This is a typical situation
for a deep water waveguide (Brekhovskikh and Lysanov, 1991): steep rays usually
have greater cycle lengths (smaller M) and arrive earlier than flat ones.




6 Chaos in Ocean Acoustic Waveguide 273

In the lower panel of Fig. 6.3 we see that in the presence of weak range-dependent
inhomogeneities the structure of the timefront becomes more complicated: instead
of infinitely thin segments of smooth curves, we have some areas filled with ran-
domly scattered points. Although we observe the scattered points only because our
fan is far too sparse to resolve what should be unbroken curves, the appearance of
such regions indicates the presence of chaotic rays.

Even in the presence of perturbation giving rise to ray chaos, segments of the
timefront formed by early arriving steep rays reveal a remarkable stability. The early
portion of the timefront still “remembers”™ its structure in the unperturbed waveg-
uide. This property is well-known and it has been observed in both numerical sim-
ulations and field experiments (Simmen et al., 1997; Worcester et al., 1999; Colosi
et al., 1999; Brown and Viechnicki, 1998).

Points depicting arrivals of rays with the given identifier are scattered in the
vicinity of the corresponding unperturbed segment. A group of arrivals formed by
rays with the same identifier produces a fuzzy versions of an unperturbed segment
(Beron-Vera et al., 2003). We shall call such groups of points in the time-depth
plane, the fuzzy segments. In the lower panel of Fig. 6.3 an example of the fuzzy
segment is shown by thick points. This segment is associated with identifier +140.
Its unperturbed counterpart in the upper panel is marked by a thick solid line.

Travel times of eigenrays arriving at a point receiver set at a depth z, are de-
termined by intersections of the timefront and horizontal line z = z,. Intersection

-10 -8 -6
1(s)

Fig. 6.4 Timefronts in the unperturbed (upper panel) and perturbed (lower panel) waveguide: depth
versus ray travel time at 3000 km for a point source set at z; = 0.7 km. Identifiers of rays forming
some particular segments are indicated next to the corresponding segments. In the lower panel,
arrivals with identifier +140 are marked by thick points. In the upper panel, arrivals with this
identifier are depicted by a thick solid line.
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with each fuzzy segment gives a compact cluster of travel times representing ar-
rivals of eigenrays with an identifier associated with the segment. The effect of the
internal-wave-induced perturbation on eigenrays may be interpreted in the follow-
ing way (Beron-Vera et al., 2003). In the presence of perturbation, the unperturbed
eigenray splits into a bundle of new eigenrays with the same identifier as the origi-
nal one. Travel times of the new eigenarys form a cluster. Correspondingly, the ray
pulse coming to the observation point through an unperturbed eigenray turns into
what we will call the fuzzy ray pulse representing a superposition of pulses coming
through the eigenrays belonging to the bundle. The observation that the travel times
of chaotic ray paths may cluster and be relatively stable was first made in (Palmer
et al., 1991; Tappert and Tang, 1996).

6.4.2 Statistics of ray travel times

Statistical description of ray travel times under conditions of ray chaos can be ob-
tained by combining the stochastic ray theory discussed in Sect. 6.3 and approx-
imate analytical estimates for the difference between travel times of chaotic and
regular rays derived in (Virovlyansky, 2003, 2005a). This approach gives a quanti-
tative explanation for the effect of clustering (Virovlyansky, 2006; Virovlyansky et
al., 2007).

Consider perturbed and unperturbed rays escaping a point source at equal launch
angles. Initial action and angle variables of these two rays denoted I and 6, respec-
tively. In (Virovlyansky, 2003, 2005a) it was shown that even at ranges O(1000 km)
the difference in travel times of these rays, At, can be approximately estimated as

At=1+ T+ T+ TV, (6.59)

where
76 = [G(z,10) — G(Z,10)] / co, (6.60)

z and 7 are coordinates of perturbed and unperturbed rays, respectively, at the ob-
servation range;

N = 27TANI()/C(), (6.61)

AN is the difference between numbers of minima (numbers of cycles) of perturbed
and unperturbed ray paths;

(L)’(Io) /‘r / 2 1
T = I(r')—1Iop|" dr, 6.62
" 20 o (1) ~Jo] (6:62)
and |
v =—— [ V(lo,0(),r)dr. (6.63)
co Jo

Functions I(r) and 6(r) in Egs. (6.62) and (6.63) present the range-dependencies of
action and angle variables, respectively, along the perturbed ray path.
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At comparatively short ranges O(100 km) both rays follow practically the same
path. Then AN =0, z ~ Z, I(¥') ~ Iy and terms 7g, Ty and 7; on the right of Eq.
(6.59) are negligible. Equation (6.59) reduces to a well known relation (Flatte et al.,
1979)

At ~ Ty ~ _lz Oc(r,zo(r))dr, (6.64)
c5 Jo
where the integration goes along the unperturbed path zo(r). In this case the travel
time variations are caused by sound speed fluctuations crossed by the unperturbed
ray. A detailed analysis of statistical characteristics of 7y have been done in Ref.
(Flatte et al., 1979). The rms variations of Ty grows with range as rl/2,

At ranges O(1000 km) perturbed and unperturbed paths with equal starting pa-
rameters are no longer close and usually have different numbers of cycles (AN # 0)
(Beron-Veraet al., 2003; Virovlyansky, 2003, 2005a). For steep rays with large start-
ing actions /y the main contribution to Az at long ranges comes from the term 7y (Vi-
rovlyansky, 2003, 2005a). From Egs. (6.12) and (6.14) it follows that 27ly > G(Iy, z)
and, hence, 7 < ty. Therefore the term Ty may be used as a rough estimates of At
for steep rays. For flat rays (small ), both Ty and 7 become negligible as com-
pared to 7;. Since the latter typically exceeds Ty, the relation

At=1v+ 17 (6.65)

gives a rough estimate of Az at ranges O(1000 km) for rays with arbitrary launch
angles.

To apply the Wiener process approximation for description of A we approximate
AN by y/(27). This yields

v = y(r)l/co. (6.66)
According to (6.38) and (6.62)
/ r
g = &) [ 2w (6.67)
2¢co Jo

An analytical estimate for the rms value of Az can be easily derived for steep
rays. In this case At ~ Ty and < At >= 0. Combining Eqs.(6.46) and (6.66) yiclds
a standard deviation of At

32 g\ /2
GA”""(I(’)VCT(?) . (6.68)

According to Eq. (6.68) the rms spread of travel times grows with range like P2,

The same range dependence was found by other authors (Beron-Vera and Brown,

2004). It should be emphasized that 6,4, estimates the spread of travel times for a

bundle of rays escaping a point source with starting actions close to Ip. At a long

observation range these (initially close) rays diverge and can have different identi-
ers.
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The above formulas for the ray travel times can be apllied for estimating the width
of a timefront segment. Figure 6.5 shows an expanded view of the unperturbed and
perturbed segments with identifier 4140 marked in Fig. 6.4 by thick line (upper
panel) and thick points (lower panel). The quantity 7; (see Fig. 6.5) represents a
time delay between the arrival of i-th ray contributing to the given fuzzy segment
and the unperturbed segment corresponding to the same identifier. In fact, 7; is a
difference in travel times of perturbed and unperturbed rays escaping a point source
and arriving at the same observation point (z = 7) with equal identifiers. Setting
76 = v = 0 and neglecting 1y, from Egs. (6.59)-(6.63) we find (Virovlyansky, 2003,
2005a)

wl(iM ) 4 / 712 4.1
T = 2e /0 [1(r') —Iy]"dr, (6.69)
where I(r) is an action of the i-th perturbed ray as a function of range, and Iy is the
mean action of rays forming the unperturbed segment. According to Eq. (6.69) the
sign of 7; is determined by the sign of @' (Iy/). For typical deep water waveguides
the cycle length grows with launch angle |x| and therefore @’() is negative. Then
T; < 0 and the perturbed segment is biased toward early times (Virovlyansky, 2003,
2005a). Let us emphasize that this statement is valid only at long enough ranges
where |7/ for most rays exceeds |Ty|. At short ranges, where 7y dominates, there
exists a different mechanism of bias. It is discussed in Ref. (Codona et al., 1985).

Since all (or almost all) 7; have the same sign, both width and bias of a fuzzy
segment are characterized by the quantity

N
8Tmean =N Y 7. (6.70)
=1
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Fig. 6.5 Arrivals of rays with the identifier 4140 at the range 3000 km are shown in the time-depth
plane. Points and solid line depict arrivals with and without internal waves present, respectively.
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Summation is taken over rays belonging to the selected fuzzy segment and arriving
at depths in an interval zjow < z < Zyp, Where zjow and zyp are depths of lower and
upper ends of the unperturbed segment, respectively. A thin solid line in Fig. 6
Shows 8 Tinean for segments with identifiers +M for M = 110,111, ..., 185 obtained
by direct ray tracing. Values of 8 Tiean for segments with identifiers +M and —M
are close for most M (not shown).

The value of 7; can be estimated in the Wiener process approximation. The action
I(r) in Eq. (6.69) should be represented as Iy +x(r), where Iy is the stating value and
x(r) is a realization of a Wiener process subject to a constraint which accounts for
the fact that the ray trajectory has a given identifier. In Ref. (Virovlyansky, 2005a)
it is shown how this constraint can be taken into account and & Tean for steep rays
is estimated as

L
@) g2 6.71)
1260

In Fig. 6.6 this dependence for segments with M < 160 is displayed by a thick solid
line. Segments with larger M are formed by flat rays. Figure 6.6 demonstrates that
predictions (numerical and analytical) obtained in the Wiener process approxima-
tion agree fairly well with results of direct ray tracing. Equation (6.71) also estimates
the width of a cluster of ray travel times formed by eigenrays with a given identifier.
Note that at the range 3000 km the spread predicted by Eq. (6.68) for a bundle of
ray paths with close launch angles, but without restrictions on their final depths and
idnetifiers, is on the order of 1 s. According to results presented in Fig. 6.6, this is
much more than the width of a fuzzy timefront segment.

O Tmean =

0
5 \N
£-0.05}

[

w

-0.1

120 130 140 150 160 170

M
Fig. 6.6 Mean bias of the fuzzy segment at the sound channel axis as a function of number of
ray turning points, M. The plot is constructed for rays starting upward. Thin solid line: direct ray
tracing. Thick solid Iine: analytical estimate (6.7T).
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6.5 Modal structure of the wave field under conditions of ray
chaos

In this section we explore the influence of the random perturbation on the modal
structure of the wave field. This problem is solved by combining two results: (i)
relations from Sec. 6.2.4 expressing mode amplitudes through parameters of ray
paths and (ii) stochastic ray theory from Sec. 6.3.1. For a monochromatic wave field,
a simple analytical estimate is obtained for a coarse-grained distribution of acoustic
energy between normal modes. Significant attention is paid to a study of the mode
pulses, that is, sound pulses carried by individual modes. Analytical estimates for
the spread of a mode pulse and the bias of its mean travel time in the presence of
internal waves are derived.

6.5.1 Coarse-grained energy distribution between normal modes

First, consider the modal structure of a monochromatic wave field. Squared mode
amplitudes |a,(r, 2)|* we will call the mode intensities. Our task will be to derive
an analytical expression for a smoothed mode intensity

(m—m")* (mfm,)2

Q) =Y law(rQ)Pe " Ze W 6.72)

where [ is a smoothing scale. Under conditions of ray chaos, the number of mode
rays contributing to a given mode at a long range becomes very large. Then it is
natural to expect that a rough estimate of J,,,(r,2) may be obtained by incoherent
summation of these rays. Numerical results presented in Refs. (Virovlyansky and
Zaslavsky, 2000; Virovlyansky, 2000) support this expectation. Analytical evalua-
tion of an incoherent sum of mode rays expressing Jy,,(r, ) may be performed on
the basis of the stochastic ray theory derived in Sect. 6.3.1. This approach allows
one to replace the summation of rays by statistical averaging.

For a single mode source determined by Eq. (6.30) an incoherent sum of mode
rays representing the mode intensity, according to Egs. (6.27) and (6.32), can be
presented in the form

1
27[/(2 |8I rlmog,eo /(990

1

=s5aih d905(mQ 1(r,1ny0,60)) (6.73)

jam(r, Q) =

’e =60,

where the index j in the middle expression numbers the contributing mode rays. The
integral in the Tast expression can be treated in the same manner as the integral on
the right of Eq. (6.53). Dividing the interval of integration into small subintervals,
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we note that the integral over each subinterval once again has the form similar to
that of Eq. (6.33). For a subinterval (6y, 0y + 60) we have

1 Gp+506

56 /o d6o & (Ine — 1 (rdmee,60)) = Pi(lnas rllmye)- (6.74)
<00

Since the right hand side does not depend on 6y we get

1
2
|am(r,Q2)|" = EPI(’”,Im.Q o) (6.75)
According to Eq. (6.21) the summation over m in Eq. (6.72) may be approximately
replaced by an integration over the action variable. Assuming m >> 1 we can for-
mally extend the integration over »7’ to the infinite limits. Then

_ (mfm/)2

e
ml

/)2

oo _ (m—m
= / dm'e %2
J —o0

0O _k2 ImQ_II)Z
—k / dre” W =2z (6.76)

Substituting this in Eq. (6.72) and replacing the summation over m by integration
over I, as in Eq. (6.76), we get

1
In(r,Q) = m/dl’ (I |ln,0)

K2 (Ing — 1)’
X exp [— ";T . (6.77)
Substituting Eq. (6.43) yields
In(r, Q) = exp | M= mo)’ (6.78)
m 27 (U +k*Br) Pl 2w+ | :

This result is valid only for high modes. At a carrier frequency of 75 Hz the condi-
tion (6.44) in our environmental model is met only for mode rays corresponding to
m > 7. For treating low modes one should use Eq. (6.77) with a generalized version
of formula for P;(r,I[ly) that describes both steep and flat rays (Virovlyansky, 2006;
Virovlyansky et al., 2007). Note that according to Eq. (6.78) at very long ranges the
number of effectively excited modes grows like /2. In (Morozov and Colosi, 2007)
a similar range dependence was observed in numerical simulations.

To check the validity of Eq. (6.78) we have solved (numerically) the parabolic
equation (6.3) at a carrier frequency of 75 Hz with an initial condition u(0,z) =
¢24(z). Mode intensities at range » = 3000 km are shown in the upper panel of Fig.
6.7 for two realizations of random perturbation. The lower panel presents results for
the smoothed mode intensities evaluated with a smoothing scale i = 4. Thin solid
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lines graph J,, for four realizations of perturbation (values of |am|2 for two of them
are presented in the upper panel). The heavy dashed line shows the prediction of Eq.
(6.78). It is seen that the smoothed mode intensity weakly depends on a particular
realization of perturbation and our analytical estimate is in a reasonable agreement
with simulations.

In (Virovlyansky, 2006) it is shown that the wave field excited by a point source
can be treated in a similar way.

6.5.2 Transient wave field

We now turn our attention to studying the modal structure of a narrow-band pulse
signal radiated by a point source. Our task is to derive a ray-based description of
what we call the mode pulses, that is pulses carried by individual modes. The mode
pulse is defined as

Y1, Q) = / Q' am(r,2')s(Q — Q') /e01), (6.79)

where a,,(r, Q") are mode amplitudes of the wave field satisfying the parabolic equa-
tion (6.5) with an initial condition (6.10), and
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Fig. 6.7 Mode intensities at range 3000 km for a single mode source exciting the 24-th mode
((0,2) = 924(2)) at a carrier frequency of 75 Hz. Upper panel. Open and solid circles show mode
intensities for two realizations of perturbation (6.5). Lower panel. Smoothed mode intensities com-
puted for four realizations of the perturbation (thin solid lines) and prediction of Eq. (6.78) (heavy
dashed Tine). The smoothing scale is Ay, = 4.
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s(Q)—;ex <—Q—2> (6.80)
= Vamag P 242 '

is a weighting function. This definition implies that the point source emits sound
pulse §(t) = exp (—iQt — A}41%/2), whose bandwidth and duration we estimate as
8Q =\2mAg and T, = 211/8Q = 27/ Ag, respectively. It is assumed that the
radiated wave field is recorded on a long vertical array and at each frequency is de-
composed into a sum of normal modes (Wage et al., 2003). Then the mode pulses
are synthesized in accord with Eq. (6.79). The argument £ of function y, indi-
cates the central frequency of an emitted signal. Each mode pulse is a wave packet
spreading with range.

Arrival time of an instantaneous frequency

As in the case of monochromatic source we will proceed from the ray-based rep-
resentation of the mode amplitude described in Sect. 6.2.4. Take a mode ray con-
tributing to the m-th mode at a central frequency of emitted pulse Q. Its starting
momentum—denote it by pj—satisfies condition (6.26), i.e., I(r, p§,zs) = Img. It is
natural to assume that there exists a bundle of rays with starting momenta from a
small interval centered at pj; which are mode rays for the m-th mode at frequencies
close to Q: for a ray escaping the source with momentum pjj + 8 p there exists fre-
quency Q' such that I(r, p§+ 8p,zs) = I,,q'. The contribution from this bundle to
the mode pulse is given by an integral

SYn(r,1) = _/dg’ s(Q— Q') Qexplid—iQ't +iB} (6.81)

obtained by insertion of Eq. (6.27) into Eq. (6.79). At long ranges the phase &
rapidly varies with Q" and the spreading of the wave packet 8 y,,(r,) can be investi-
gated using the stationary phase technique. The stationary phase point is determined
by the condition

t=0d/9Q. (6.82)

Frequency Q' satisfying this equation is interpreted as an instantaneous frequency
of the wave packet at time ¢. For a given Q' Eq. (6.82) predicts the arrival time of a
constituent of the mode pulse with this instantaneous frequency.

Since B does not depend on frequency, from Eqgs. (6.28) and (6.21) we find

0P 1
m = a[r'i‘S(V,Zm_Q/)]"F[]—I—[z, (6.83)
where . as( ) aG( ) 5
—_ 5z Zvl Zm.Q’
e I E A EYeR (6.84)

=2, o1 I=1,00

and
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] . (6.85)
I=1,01

Term ¢ vanishes because, as it is shown in (Virovlyansky et al., 2005; Virovlyansky,
2006), the quantity in square brackets in Eq. (6.84) is identically zero. According to
Eqgs. (6.12), (6.14), and (6.21) G(z,1) is a monotonic function of I and G(Z,,01,L,01)
is always less than mT'cq/2, where T' =27/ Q’. Therefore, typically, the magnitude
of , is a few time less than mT’ /2. We will see that this is significantly less than
the mode pulse Iength. Therefore, the arrival time of a fragment of the wave packet
S, (r,t) with an instantaneous frequency 2’ can be estimated as

(o) 8G(ngl,])
th=—1\GZ,0 ) — Lo ————
2 co ( mS2 Q) Q ol

(Y m) — Clo[r+s<r,zm9/>]. (6.86)

We will call this quantity the arrival time of an instantaneous frequency Q’. It is

the travel time of a sound pulse through the mode ray corresponding to given r, m,

and Q

Two comments concerning this result are noteworthy. First, a geometrical ray
may be the mode ray for more than one mode. This occurs if its action I at the ob-
servation range satisfies the condition I = I, o, = Iy, Where m; # my and both
Q; and £, belong to the frequency band of a radiated signal. Second, generally at
the observation range there are several rays with equal travel times and different ac-
tions. It means that, typically, the instantaneous frequency of the mode pulse cannot
be defined: at any moment ¢ the pulse is a superposition of signals with different
instantaneous frequencies.

Mode pulse in a range-independent waveguide

In the unperturbed (range-independent) waveguide the action variable remains con-
stant along the ray path, so that function I(r, pg,zs) does not depend on r. Since I is
a monotonically increasing function of |py|, the condition (6.25) with zy = z, at any
range is met for pg = £+/2[Ho(I,.q') — U(zs)]. This means that for any mode m at
each frequency Q' there are two mode rays. Their travel times are close and can be
estimated using the approximate formula (6.19). Using Eq. (6.87), the arrival time
of an instantaneous frequency Q' may be estimated as

f(lm!)/7r) = [1 + w(lm!)/)lm!)/ - H(ImQ’)] F/C(). (6.87)

This expression immediately gives the known WKB formula for the group slowness
W,or = t(L,or,7)/r (Munk and Wunsch, 1983; Brown et al., 1996).
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Mode pulses in the presence of internal waves

At long ranges where the chaos is well developed, the mode pulse is formed by
many mode rays. We will sum up their contributions incoherently. Our task will be
to derive an approximate analytical description of a smoothed mode pulse defined
as

1 ) (t—1')?
Yo(r, 2,1) = /dz’ (2.1 Pexp | — , 6.88
(r,2,1) A | Wi )|“exp 2A2 (6.88)
where A; is a smoothing scale. Substituting Eqgs. (6.79) and (6.80) into (6.88) we get
1
Yu(n Q) = —— / 4012 an(r, Q1 + 25/2)d (1,21 — ©5)2)
2mA,
. (Q-0)° 1/ 1 2\ o2
—iQ,t — —= A ) Q5. (6.89
xexp[ i A2 2\2a2 +A | & (6.89)

Once again present the mode amplitude a,,(r, Q) as a sum of contributions from
mode rays expressed by Eq. (6.27). An interval of integration over €2, is of order
max(Ag, A, 1). Assuming that this interval is sufficiently small, we will use an ap-
proximation

1 .
Q Q> /D a* (r.Q — 0y /2) = i£,0P(Q))/082
(1, 0+ 2/ 2)a (1, 0 = D /2) 27|01(r, 20,25)/ D0l py— pogy ¢ ’

(6.90)
where the symbol poq, denotes the starting momentum of a mode ray contributing
to the m-th mode at frequency ;. The action variable of this ray at the range of
observation, according to Eq. (6.21), is

I=me,/ Q. 6.91)

Equation (6.90) is our main approximation. It implies that (i) the mode pulse is a
superposition of (practically independent) pulses associated with bundles of mode
rays described above, and (ii) contributions from these pulses are summed up inco-
herently.

Substituting Eq. (6.90) in (6.89) and integrating over €2, yields

1 / de,
(217 Aq \/m 197/9P0l o,

[(—t(nQ,m]* (-
XexXp | — 5 ) — 5
207+ A A}

Ym(rag7[) =

(6.92)

From Eq. (6.91) it follows that d©Q; = —mc,I~2dI. Using this relation we can change
the variable of integration in Eq. (6.92) from £, to py. Then
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crm / dpo
2
2r) gy /1/2+ 43427 T(rPois)

2 2
- Q —me,/I(r, po,
X exp _ [t t(r7p07352)] _ [ mc /2(1" Po ZS)] . (693)
2407+ A A

Yu(r,Q,t) =

Equation (6.93) presents the smoothed mode pulse as an integral over all ray
paths escaping the point source. From Sect. 6.3 we know that under conditions of ray
chaos the integration over the ray starting momenta can be interpreted as the statis-
tical averaging. Smoothed mode pulse Y,,(r, Q,¢) can be evaluated in the same man-
ner as the smoothed intensity of the wave field J(r,z) (Sect. 6.3.5) and the smoothed
mode intensity J,,(r, Q) (Sect. 6.5.1). This was done in Ref. (Virovlyansky et al.,
2009). Omitting details of a somewhat cumbersome calculation, we present the fi-
nal result obtained for a narrow band pulse (Ag << 02):

1 i dpo
Yu(r,Q.1) = /
(27)"2 40 VBr ) a2 £ A, + By (1) /6
_ 2 2
X expl — [t - t(IO) - }:(zlﬂ)r(lmﬂ - IO) /2] _ (Imﬂ - IO) 7 (694)
242 +Ag" + V2 (I0)Br /6 2Br
whnere 7 d (1)
0]
v) = a1 (6.95)

Like Eq. (6.78), this expression is valid only for modes formed by steep rays satisfy-
ing condition (6.44). At frequencies of about 75 Hz this condition is met for modes
withm > 7.

Thus, we have two approximate formulas for the smoothed mode pulse given by
Egs. (6.93) and (6.94). Equation (6.93) expresses Y,,(r, 2,¢) through solutions of the
ray equations (ray paths) and it depends on a particular realization of perturbation.
In contrast, Eq. (6.94) is an analytical estimate independent of a particular realiza-
tion of dc. In Fig. 6.8 predictions of Eqs. (6.93) and (6.94) are compared to results
of simulations performed by solving (numerically) the parabolic equation (6.5). A
point source has been set at the sound channel axis z = z,. The simulations have
a center frequency of 75 Hz, and a smoothing scale A; = 0.1 s. The envelope of
an emitted signal is determined by Eq. (6.80) with A /(27) = 2 Hz. The effective
bandwidth of the emitted pulse is about 5 Hz. Smoothed mode pulses for m = 11,
21, 31, and 41 at the observation range 3000 km are shown by thin solid lines. In
order to apply Eq. (6.93) we have traced numerically 50000 rays leaving the point
source with initial momenta pg uniformly filling an interval corresponding to launch
angles +14°. Replacing the integral over pg in Eq. (6.93) with a sum over the com-
puted ray paths yields pulses shown in Fig. 6.8 by dashed lines. Predictions of Eq.
(6.94) in Fig. 6.8 are presented by thick solid lines. It is seen that both our approxi-
mate formulas are too rough and cannot give a detailed description of the smoothed
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mode pulse. Nevertheless, they are able to predict the spread of the pulse and its
bias caused by the random perturbation.
Let us determine the bias, 8¢,,0, and spread, 7,0, of the mode pulse as

Otmo = (t — l—(lm_Q)>m_Q (6.96)

and

ta = (=1 (o)) (6.97)

where the symbol (...}, , denotes the averaging over the smoothed mode pulse so
that

mQ’

(Ona = / dt q(t)Y(r,Q,1) / / d Yu(r, 2,1). (6.98)

The quantities 6¢,,0 and 7,0 can be evaluated in two ways: using Eq. (6.93) or
(6.94). In (Virovlyansky et al., 2009) it is shown that the expressions for bias and
spread following from Eq. (6.94) in the case of high modes reduce to simple (albeit
rough) analytical estimates

Sty = g(IM)Y(Im)Brz

, 6.99
24(1n) (699

where g(I) = d?po(I)/dI* (function po(I) expresses starting momentum py in the
inperturbed waveguide as a function of action /), and

m=11
55005}
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Fig. 6.8 The smoothed mode pulses at 3000 km for m = 11, 21, 31, and 41. Parabolic equation
based simulations (thin solid lines) are compared to predictions of Egs. (6.93) (dashed lines) and
(6.94) (heavy solid lines).
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Equation (6.100) has a simple physical meaning. It represents the spread of travel
times of mode rays contributing to the m-th modes. In our environmental model at
the frequency 75 Hz estimates (6.99) and (6.100) can be used only for modes with
m > 14. Equation (6.100) can be obtained as an estimate for the spread of travel
times of mode rays contributing to the m-th mode pulse. In (Virovlyansky et al.,
2006; Virovlyansky, 2006) this was done proceeding from the ray-mode relations
and Eq. (6.68). An alternative derivation was given in Ref. (Udovidchenkov and
Brown, 2008).

Numerical example. To check the applicability of the above results we have
performed the parabolic equation simulation of 100 sound pulses with equal enve-
lope functions s(€Q) but different central frequencies uniformly filling an interval
of 66 to 84 Hz. The bandwidth of each pulse is determined by the same constant
Ag/(2m) =2 Hz as in Fig. 6.8. This simulation has been performed for four real-
izations of perturbation dc. Then we have evaluated the biases, 6t,,, and spreads,
Tna, at the range 3000 km form = 1,...,50, and for 100 values of 2 corresponding
to the above central frequencies. Values of 6t,, o and 7, o averaged over the 100

(6.100)

0.2

STm™S
(=)
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0.8
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0.4 0.4
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0 10 20 30 40 50 0 16 20 30 40 50
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Fig. 6.9 Biases (upper row of plots) and spreads (lower row) of mode pulses at 3000 km. Heavy
solid lines present analytical predictions for the bias ((a) and (b)) and spread ((c) and (d)) at 75 Hz.
Heavy dashed line show simplified analytical estimates for the same quantities. Thin solid lines
graph frequency averaged biases, 61, and spreads, 7,,, obtained by parabolic equation simulation
((a) and (c)) and predicted on the basis of a numerical ray tracing ((b) and (d)) for four realizations
of the perturbation.
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frequencies we will call the frequency averaged bias and spread and denote by 6,
and 1, respectively.

The estimates of 0t,o and T,o for the same m and  have been obtained on
the basis of ray tracing. In each of the four realizations of our random waveguide
50000 rays with the same starting parameters as indicated in Sec. 6.4 have been
traced numerically. Then estimates of 0t,,, T, Otm, and T, have been calculated
on the basis of Egs. (6.93) and (6.96). Thin solid lines in Fig. 6.9a and 6.9b show the
frequency averaged bias 8t,, obtained using the parabolic equation simulation and
numerical ray tracing, respectively, for four realizations of dc. A heavy solid line,
the same in both plots, depicts an analytical estimates of &t,,o at a frequency of 75
Hz predicted by Egs. (6.94) and (6.96). The simplified analytical estimate (6.100)
at 75 Hz is shown by a heavy dashed line. Fig. 6.9c and 6.9d present similar results
for the spread. A heavy solid line is an analytical estimate of 7, at 75 Hz given by
Eqgs. (6.94) and (6.97). A heavy dashed line is a simplified analytical estimate given
by Eq. (6.100).

The agreement between simulations and theory based estimates is seen to be
good for the spread. It is somewhat surprising that in spite of the restriction indicated
after Eq. (6.94) the analytical estimate based on Egs. (6.94) and (6.97) are valid not
only for the high modes. The predictions of bias are less accurate. They can be
considered only as order-of-magnitude estimates.

6.6 Conclusion

We considered the chaotic ray motion in a realistic model of the ocean acoustic
waveguide and manifestations of this phenomenon in a modal structure of the wave
field. It is shown that the chaotic ray dynamics in a single realization of the random
medium can be described using a statistical approach introduced in Sect. 6.3. In the
scope of this approach, any statistical characteristic of a ray path starting from the
given point (pg,zp) is determined by averaging over a bundle of rays starting from a
small area centered at this point. The bundle plays the role of a statistical ensemble.
The Hamilton (ray) equations are approximated by stochastic Langevin equations
(6.39) and (6.40) whose solutions are readily expressed through a random Wiener
process representing the simplest model of diffusion. In the Wiener process approx-
imation, the PDFs of ray parameters may be obtained analytically. At megameter
ranges, where the ray chaos is well developed, the wave field at any observation
point is formed by contributions from a large number of chaotic rays. Incoherent
summation of their intensities gives a coarse-grained distribution of the wave field
intensity. The sum over chaotic rays can be expressed through integration over their
starting parameters. In our approach, this integration is interpreted as the statistical
averaging. This yields an analytical estimate for the smoothed intensity of the sound
field.

In Sect. 6.4 we studied the properties of ray travel times. The most important
of them is a close connection between the travel time and the identifier of the ray
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path. This property manifests itself in the effect of clustering. A weak perturbation
causes an eigenray to split into a cluster of eigenrays whose travel time spread is
small and whose centroid has a travel time that is close to that of the eigenray in
the background environment. All the eigenrays belonging to the cluster have the
same identifier as the original unperturbed one. Due to the effect of clustering, the
timefront remains relatively stable even at megameter ranges. The presence of sound
speed fluctuations causes only the diffusion of the timefront segments and their bias
toward early times. Segments formed by the early arriving steep rays remain almost
unaffected. Quantitative explanation of the clustering effect is based on Egs. (6.59)—
(6.63) connecting the differences between travel times of perturbed and unperturbed
rays and variations the ray paths. This formulas combined with the stochastic ray
theory derived in Sect. 6.3 yield estimates for the spread and bias of the timefront
segment.

Manifestations of the chaotic ray dynamics in the modal structure of the wave
field is studied using the ray-based formalism for description of mode amplitudes
presented in Sect. 6.2.4. In the scope of this approach the amplitude of the m-th mode
is formed by contributions from rays—we call them the mode rays—whose action
variables at the observation range up to a (frequency dependent) multiplicative con-
stant are approximately equal to m. Under conditions of ray chaos, the number of
mode rays contributing to the given mode exponentially grows with range. At long
ranges the coarse-grained distribution of mode intensities can be evaluated by in-
coherent ray summation. Analytical estimate for the coarse-grained distribution of
acoustic energy between normal modes is obtained by combining the ray-based for-
malism and the stochastic ray theory based on the Wiener process approximation.
The ray-based formalism derived for the monochromatic wave field can be applied
for studying the transient wave field, as well. It turned out that the arrival time of
a fragment of the m-th mode pulse with an instantaneous frequency 2 is approxi-
mately equal to the travel time of a mode ray contributing to the m-th mode at this
frequency. Our analysis of the transient wave field is based on this fact. It allows one
to apply the stochastic ray theory for the description of mode pulses. This approach
yields estimates for the spread and bias of the mode pulse caused by random internal
waves.

A major limitation of our approach is an insufficient understanding of its ap-
plicability conditions. This is a common problem for practically all ray-based ap-
proaches. But in our case an additional difficulty arises due to the conjecture that the
averaging over ray starting parameters may be replaced by the statistical averaging.
Obviously, this may be done only when evaluating smoothed characteristics of the
wave field. However the question of selecting proper smoothing scales remains open
and requires a further investigation. The smoothing scales used in our calculations
were selected empirically.
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