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Preface

The aim of this first-ever book entitled Computational Protein Design (CPD) is to bring the
latest know-how on the CPD methods in respect to the process, success, and pitfalls of the
field. The book is organized so as to introduce and present the general methodology and
main challenges followed by a description of specific software and applications. As seen in the
description below, there is more than one way to cluster the different chapters, each high-
lighting a different aspect of the field.

While there has not been a book dedicated to CPD, books on protein design have often
included chapters on CPD. Here, following a chapter on the framework of CPD (Chapter 1)
and a summary of past achievements and future challenges (Chapter 2), a chapter on the
experimental aspects of production of the designed protein is presented (Chapter 3).
Beyond the need to understand the experimental aspects of the computational endeavor,
this is to remind us that the final outcome of the computational process is the production of
a real protein.

It is widely considered that a global minimum energy conformation (GMEC) reflects
the actual native structure of the protein. The protein design process is intrinsically compu-
tationally intensive as sequence and structure space should be rigorously sampled in the
search for the GMEC of the requested target. Deterministic search methods (Chapter 4) of
which dead-end elimination (DEE) is among the first to be used, are guaranteed to find the
GMEC while stochastic methods are not guaranteed to find it. Other methods, e.g., the A*
search algorithm, were optimized to run in parallel taking advantage of the graphic proces-
sing unit (GPU) processor infrastructure (Chapter 13). Complementarily, the CPD effort
should consider the solvating milieu, e.g., via a geometric potential (Chapter 5). In addition,
the residue-level core building block focus of CPD should be analyzed and predicted in
respect to phylogenetic, structural, and energetic properties. These should be treated
according to the immediate and possibly changing microenvironment, e.g., as in protein—
protein complexes (Chapter 6). The GMEC considers a single minimum conformation and
can be applied for the redesign of a given scaffold (Chapter 10), for requested functional
motifs (Chapter 11) or for emphasizing specific types of available data, e.g., evolutionary
information (Chapter 12). Yet, proteins within their native physiological surrounding are
dynamic ensembles intrinsically requiring conformational dynamics. As such, it is important
to a priori design the protein as a multistate entity (Chapter 7), a characteristic that can be
introduced via integrating to the design process methods that analyze dynamics such as
molecular dynamics (Chapter 8) or normal mode analysis (Chapter 9).

The computational design scheme can be tailored to specific types of proteins or
domains, which in turn should be assessed as to their resemblance to the requested domain
or specific designated characteristic. Examples include protein—protein interaction interfaces
(Chapter 14), drug-resistance mutations (Chapter 15), symmetric proteins of identical
sequence repeats (Chapter 16), self-assemblies exploiting synthetic amino acids (-
Chapter 17), oligomerized conformations of the defensins (Chapter 18), ligand-binding
proteins (Chapter 19), proteins with reduced immunogenicity (Chapter 20), antibodies
(Chapter 21), membrane curvature-sensing peptides (Chapter 22), and allosteric drug-
binding sites within proteins (Chapter 23). Taken together, these application focus areas
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Vi Preface

present the breadth of the CPD field along with the intrinsic achievements and challenges
upon examining the “devil” in the details of key examples.

The general field of protein design, let alone the computational aspect of it, is expected
to present an exponential increase in quality and quantity alike. Such change is fostered by
the need to expand protein space for understanding biology, for applying biotechnology,
and for expanding pharmaceuticals from the common small molecules to biologics — specific
and side-effect-free proteins. Importantly, while scientific research of proteins is often
focused towards pharmaceutical applications, CPD presents the possibility to expand the
use of proteins in food-tech and white biotechnology, namely, the use of proteins for
industrial applications. In addition, the field is nurtured by the exponential increase in raw
sequence and structure data, and the increase in cost-effect computational hardware in
general and hardware tailored to protein application, in particular. Not less important is
the careful feedback loop of quantitative parameterization sequence and fold space followed
by software design that will efficiently test our parameterization and produce novel protein
design, which in turn can be materialized and characterized experimentally.

Kavmiel, Isvael Ilan Samish
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Chapter 1

The Framework of Computational Protein Design

llan Samish

Abstract

Computational protein design (CPD) has established itself as a leading field in basic and applied science
with a strong coupling between the two. Proteins are computationally designed from the level of amino
acids to the level of a functional protein complex. Design targets range from increased thermo- (or other)
stability to specific requested reactions such as protein—protein binding, enzymatic reactions, or nanotech-
nology applications. The design scheme may encompass small regions of the proteins or the entire protein.
In either case, the design may aim at the side-chains or at the full backbone conformation. Herein, the main
framework for the process is outlined highlighting key elements in the CPD iterative cycle. These include
the very definition of CPD, the diverse goals of CPD, components of the CPD protocol, methods for
searching sequence and structure space, scoring functions, and augmenting the CPD with other optimiza-
tion tools. Taken together, this chapter aims to introduce the framework of CPD.

Key words Computational protein design, Protein structure prediction, Structural bioinformatics,

Computational biophysics, Synthetic biology, Negative design

“Most people make the mistake of thinking design is what it looks like. People think it’s
this veneer—that the designers ave handed this box and told, ‘Make it look good!’
That’s not what we think design is. It’s not just what it looks like and feels like. Design
is how it works.”

Steve Jobs, Apple’s C.E.O in an interview to the New-York Times. Nov. 30th 2003,
The Guts of a New Machine

http: //www.nytimes.com,/2003 /11 /30 /magazine/the-guts-of-a-new-machine.
html

1

Introduction

The aim of this chapter is to describe the essence of computational
protein design (CPD), which, as Steve Jobs explained (seeexert above)
is “how it works”. Proteins, nature’s main structural building blocks,
workers, and nano-machines, were designed over 3 billion years of
evolution; optimizing the biological need for stable yet dynamic
function under diverse and changing ecological niches. Evolution
follows two approaches—the classical divergent evolution includes a
slow change in the sequence (evolutionary drift) followed by survival

llan Samish (ed.), Computational Protein Design, Methods in Molecular Biology, vol. 1529,
DOI 10.1007/978-1-4939-6637-0_1, © Springer Science+Business Media New York 2017
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of the fittest proteins from the evolving genepool. The fittest are not
necessarily the strongest or the most stable as fitness requires being
sufficiently stable to accommodate function, often under more than
one condition; along with the ability to degrade the protein when it is
notneeded or is damaged. In parallel, there are numerous examples of
convergent evolution where different evolutionary pathways lead to
functionally and structurally similar active sites. CPD follows both of
these evolutionary approaches thus narrowing the overall “survival of
the fittest” criterion from the organism to the protein level. Further-
more, different and complementary approaches are often applied to a
requested design with the methodology following the available tool-
box and scientific approach of the computational designer.

The field of CPD has been reviewed in the frame of the general
methodology [1-8] as well as specific methodological aspects such
as library-scale CPD [9], multistate approaches and backbone flex-
ibility [10-13], electrostatics [14], fragment databases [15], and
energy landscapes [16, 17]. Specific CPD applications and protein
family targets have been reviewed such as protein therapeutics [ 18],
ligand binding and enzyme catalysis [19-22], binding specificity
[23, 24], membrane proteins [25, 26], metalloproteins [27],
collagens [28], conformational switches [29], and protein—protein
interactions [30]. Numerous other aspects are presented as part of
this very book which is the first book with this title. Here I aim to
present the general framework of CPD.

2 CPD and In Vitro (Directed) Evolution

In many ways, CPD is the natural extension of noncomputational
protein design and in vitro evolution which have evolved over the
last half century [31]. Moreover, as complementary approaches,
the methods should not be viewed as “either/or” but rather as
different ways to reach a common goal with the ability to intertwine
several methods. For example, in several cases CPD partially
succeeded and was optimized by directed evolution which was
re-termed in this context as affinity maturation [32].

Rational protein design commonly relies on the biochemical
and biophysical know-how of the scientist who predicts one or
more specific mutation sites as the loci potentially leading to the
requested design. Saturated mutagenesis in which a specific locus is
mutated to several or all amino acids is often applied when the
target site is identified but the local-structure function relationships
of all residues is unknown, e.g. as applied for resolving the photo-
system II mechanism of acclimation to the ambient temperature
[33]. In other cases a full domain or a full protein is the design
target. In vitro evolution circumvents the challenging need to assess
each mutation discretely by applying an assay that can test many
genetic alterations at once with the post-factum analysis of the gene
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or amino acid sequence leading to the one or more sequences that
provide satisfactory results.

In vitro evolution, also termed “directed evolution,” consists of
consecutive rounds of error-prone polymerase chain reaction
(PCR) and DNA shuffling [34, 35]. It makes use of the two basic
principles of Darwinian evolution including an (accelerated) evolu-
tionary drift that diversifies the genepool and a focus on “survival of
the fittest” selection assays. Rational protein design and directed
evolution as well as the many methods which close the continuous
gap between these methodologies, may benefit from computational
methods powered by the relatively cheap in silico power. Moreover,
these methods are constrained by the availability of mass screening,
which is not accessible for many design targets. This chapter aims to
draw a common thread to the different pathways of CPD with an
emphasis on the challenges along the different milestones of the
process. The next chapter, which should be considered as a natural
follow-up to this one, is focused on specific solutions that were
applied to encounter these challenges, thus providing a case-study
approach to the achievements and challenges of the field.

3 Maturity of the CPD Field and the Lack of an Objective Assessment

The stage of the CPD field is still premature and evolving, e.g. this
is the first book with this title. The proof of the CPD success is
simply the growing number of available specific functional designed
proteins. In the related field of protein structure prediction John
Moult sparked an important revolution by establishing the Critical
Assessment of Structure Prediction (CASP) competition two dec-
ades ago [36]. In this competition there is an important separation
of jurisdiction between the software developers, users and the
judges; thus obtaining an objective critical assessment of the state
of different structure prediction subclasses and the strengths and
weaknesses of each method. Unfortunately, there is no such com-
petition in CPD resulting in the lack of fully objective comparisons
of the methods involved. Accordingly, this chapter aims to present
common themes found in different CPD methods in a qualitative
rather than quantitative manner.

While CPD is still evolving, success stories of computationally
designed proteins highlight the current success and future potential
of CPD. Actually, the very table of contents of this book (especially
part IIT of the book) provides a glimpse as to the scope of successtul
CPD attempts. These encompass specific protein families such as
membrane curvature-sensing peptides, ligand-binding proteins, or
antibodies via designed structural motifs, e.g. symmetric proteins
or self-assemblies, and to the design of dynamic characteristics, ¢.g.
allosteric sites.

The success of specific CPD attempts and the lack of overall
uniformity in methodology is not necessarily a disadvantage. The
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plethora of computational available tools and methods highlight
the complexity of the field and the need for designated solutions for
specific subclasses; whether these are structural (e.g. specific folds)
or functional (e.g. stabilization). In essence, any characteristic
parametrization, whether statistical knowledge-based or energy-
based, can be inversely applied for CPD.

4 Definition of CPD

CPD can be defined in more than one way. This very statement is at
the heart of CPD, which defines a field with fuzzy borders that are
intimately connected to numerous other fields. Indeed, computa-
tional protein designs are often found in publications that do not
use this explicit term. When searching online databases for research
papers and reviews that mention this precise term till 2014, the Web
of Science and PubMed databases show 260 and 170 publications,
respectively (Fig. 1). As a multidisciplinary field, some of the CPD
chemical and computational publications are not indexed in
PubMed thus resulting in a higher number of publications when
searching the Web of Science database. In this database, the trend
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Fig. 1 Publications with the term “Computational Protein Design” as datamined
from the Web of Science (blue) and PubMed databases (pink). The graph is
meant to provide a rough estimation of the growth and changes in the field. It
includes only research papers and reviews and does not include CPD publica-
tions which do not mention the explicit searched term
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line exhibits a clear rise in the number of publications, yet with
quite a bit of variation between years, as typical for a yet young and
evolving field. Since 2009 every year there are over 20 publications
with over 30 publications in the last couple of years (2013-2014).

With this background in mind, CPD is defined as the computer-
aided rational (or semi-rational) design of a protein (or part thereof)
to fold to a vequested structure or to facilitate a vequested (possibly
novel) function or biophysical property (e.g. stability).

This definition encompasses a complex and nonlinear protocol
(see Fig. 2) which touches upon several multidimensional aspects of
the CPD field:

1. Resolution of the CPD output—The resolution of the CPD
output is not part of the definition and depends on the

CPD Protocol

Target CPD Energy Search & CPD
objectives components function sampling result
« Structure « 3D (global) » Van der Waals -« Stochastic « Structure
* Function » Fragments « Electrostatics < Deterministic  « Function
« Stability » Sequence « Solvation » Generate « Stability
* Size * Negative » H-bonding GMEC / « Specificity
» Dynamics rules » Conformation ensemble
* Required » Rotamers probability
resolution * Flexibility  Additional
terms
Theoretical and
Optional No ® <—I experimental
semi-rational validation
optimization Yes © &= Success? +—

Fig. 2 A schematic description of the CPD protocol. First, careful characterization
of the target objectives is conducted in the level of structure, function, stability,
size, dynamics, and required resolution for the CPD result. Each CPD case-study
should have different weights on each of these aspects. Second, a decision is
taken as to which components are part of the CPD protocol—ranging from
quantitative description of global features (such as coiled-coils Crick parameters)
via usage of fragment and/or rotamer libraries to specific sequence features and
negative design rules. Third, an energy function is fit to the previous steps. The
energy function most commonly includes bonded- and nonbonded interactions
along with rotamer or other conformation probability and additional terms which
are case-study specific. Fourth, search and sampling methods fit for the CPD
required framework are chosen. These can be stochastic or deterministic,
generating a single design or an ensemble of designs. Fifth, the design output
coordinates and sequence are produced and assessed for structural features
such as stability and for functional features such as specificity. Next, the design
is validated theoretically by comparing it to known structures and quantitative
available parameterization followed by experimental production and characteri-
zation. If the design goal is not achieved, the design can benefit from other semi-
rational optimization methods such as in vitro evolution.
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requested target. In some cases a sub-atomic design scheme is
required, e.g. a combination of quantum-mechanics calcula-
tions, while in others the structure resolution per se is not part
of the goal. Moreover, different parts of the design target may
be designed in different resolutions.

2. The target size of the CPD—CPD may target anything from a
small region to a full protein. How small of a region is still
regarded in the frame of CPD is an open question as a single
residue site-directed mutagenesis is commonly regarded as
protein engineering rather than design. Yet, design of'a binding
site or designing a protein with altered specificity may include
very few amino acids.

3. The target identity of CPD—CPD may target a structure, a
function, or a biophysical property. Each of these end-points
dictate a different approach to the design scheme. The holy
grail of protein design, whether computational or not, is the
“inverse protein folding problem” defined in 1992 by Yue and
Dill [37]. Therein, the goal is to design a protein sequence that
will fold into a requested and defined structure. Nevertheless,
CPD may target aspects which are not a specific structure but
rather a specific characteristic thereof. Once there is a quantita-
tive parameterisation, whether an amino acid scale for e.g.
protein—protein interfaces or a defined deviation between
mesophiles and thermophiles, the targeted trait can be
designed with the aid of computation.

4. The level of “vationality” of CPD—CPD ranges from a sub-
atomic resolution target structure designed via a single
sequence to varying level of random mutations—from simulta-
neous saturation mutagenesis of designed residues and till
random mutagenesis or even DNA shuffling conducted in the
frame of directed evolution. Furthermore, the rational design
can be coupled to a less rational design in a stepwise fashion
with a first version of the requested protein designed ratio-
nally designed and subsequent steps designed with the aid of
high-throughput screening. In the case of protein—protein
interaction design, this process is termed “affinity maturation

[38].”

An interesting example demonstrating all of the points is one of
the first attempts to design an artificial enzyme in which Kemp
elimination catalysts were designed [39]. The first step of this
design protocol included quantum mechanics level transition-
state calculations to create an idealized active site of the requested
catalytic mechanism. The calculations suggested how to position
protein functional groups so as to maximize transition state stabili-
zation. The high-resolution rational approach was only for the
catalytic residues with the potential list of template protein scaffolds
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including about 100 proteins. These were narrowed down to 59
candidate enzymes using modeling and practical considerations. All
the designs were expressed and assayed as to their enzymatic
requested activity. The leading candidate was further optimized
using in vitro evolution. Structurally, only residues involved in the
catalytic mechanism were designed in high-resolution while the
final assay was a functional rather than a structural assay. Hence,
in this one example, the resolution and rationality of the design
protocol exhibited a large variation between the key catalytic resi-
dues and other parts of the enzyme.

5 Objectives of Computationally Designed Proteins

It is important to define the objectives underlying the development
and use of the field, namely, what are the computationally designed
proteins expected to achieve? Such goals include basic and applied
goals alike and can be divided by the type of basic understanding of
the protein and the type of application pursued:

1. Protein folding ov the inverse folding problem—the entropic
hydrophobic effect [40] underlying protein folding is long
known, yet the details of protein folding are still not fully
elucidated. The inverse protein folding problem, namely, the
problem of finding which amino acid sequences fold into a
known three-dimensional (3D) structure [37, 41, 42] is in
essence the holy grail of protein design.

2. Specificity—The design of specific interactions (protein—protein
or protein-ligand) is related to the application of negative
design rules (described below). Here, one can a priori focus
the design efforts on regions that determine specificity, or,
alternatively, add similar templates (decoys or related mole-
cules) to examine the target affinity in respect to a background
of unwanted interactions.

3. Stability and extremophilicity—Our body invests energy in
maintaining a mesophilic mild environment for proteins
including narrow range of temperature, salt concentrations,
pH etc. Yet, designed proteins are often expected to function
in hostile environments whether these are fermenters in the
biotechnology industry where protein yield is a goal or whether
these are synthetic biology applications e.g. bio-detergents.
Concomitantly, the CPD approach provides a unique method
to study the very determinants underlying the requested
extremophile trait.

4. Synthetic biolggy—Natural proteins were optimized according
to the need of organisms and the constraints of the evolution-
ary process, e¢.g. not enabling large leaps at a time and not
focusing on traits that don’t affect organism survivability. In
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vitro evolution attempts to harness turbo-mode rules of evolu-
tion with new survival assays to produce proteins of interest.
Nevertheless, the process is still constrained by the aforemen-
tioned components. Taken together, CPD provides an impor-
tant toolbox for synthetic biology applications [43, 44 ].

5. Negative design rules—While the natural intuitive logic focuses
on the direct objective, often the unwanted objective is not less
important. CPD offers a focused path to study negative design
rules which are often overlooked due to methodological chal-
lenges in studying them. In other words, while the natural
focus of biology is answering the question “how do things
work?” this is often the easy question. The question that is
not less easy is: “how do things not work in the wrong direc-
tion?” The two questions are not two sides of the same coin but
rather two complementary fields that only when combined
answer the question of “how do things work in a living sys-
tem?” A good example of combining positive- and negative-
design rules in a related field encompasses the success of drugs
as given by the therapeutic index (TI). The index combines the
positive effect of manipulating the requested target with the
negative side-effects, generally expressed by the lethal-dose
(LD) which is usually due to lack of specificity and /or is due
to toxicity of the drug or metabolites or degradation products
thereof. (see Note 1)

In summary, while evolution (in vivo or in vitro) examines the
overall fitness of the organism, CPD enables a focused design with
positive and negative rules alike. These rules can be statistical
knowledge-based rules where the underlying physics is not fully
understood or may not be fully parameterized, or, alternatively,
biophysical rules underlying specific enthalphic or entropic contri-
butions, or lack of, to the requested design.

6 Structural Levels of CPD: Design Target and Design Building Block

6.1 Structural Levels
of CPD: Design Target

The structural levels of CPD include two opposing aspects—the
structural level of the target of CPD and the building block to
achieve the CPD.

The CPD procedure can be applied in many different structural
levels. This is not only a description of the final goal but also
strongly affects the CPD procedure as different structural levels
dictate different search and sampling strategies as well as different
scoring functions.

1. De novo CPD—The most classical CPD procedure is the so-
called de novo design where a totally new fold and /or function
are pursued, e.g. as is the case for the betadoublet beta-
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sandwich design of Richardson [45 ], the TOP7 design of Kuhl-
man and Baker [46], the helix-bundle designs of DeGrado and
coworkers (e.g. ref. 47), the transmembrane Zn?" transporter
of DeGrado [48], or the recent enzyme designs of Baker (e.g.
ref. 49).

. Core stabilization—The driving force for folding of soluble
proteins is the entropic hydrophobic effect in which the col-
lapse of the hydrophobic protein core maintains the disorder of
the aqueous solvent around the solvent accessible hydrophilic
amino acids of the protein. However, the hydrophobic effect
results in a molten globule which is later optimized for enthal-
pic contributions of specific interactions and packing. As this
process is often not optimized for stability, the design of better
protein cores is a long-standing approach within CPD
[50-52]. In general, most CPD attempts thus far included a
component of core stabilization. Other approaches to stabili-
zation include targeting the most unstable parts of the protein,
e.g. loops (see Note 2).

. Solubilization of protein—solvent interfiace—One of the most
classic examples of genetic diseases, sickle-cell anemia, includes
a hydrophobic patch on the surface of the hemoglobin p-sub-
unit following a single Glu — Val mutation. As such, main-
taining the solubility of the protein may assist in avoiding
aggregation. Likewise, membrane proteins were solubilized to
allow for the study of the membrane protein within an aqueous
milieu as well as in order to study the basic features of mem-
brane proteins e.g. references [53, 54].

. Symmetry—The complexity of the CPD process can be largely
trimmed by adding symmetry to the structural design. This can
be done for symmetric proteins such as beta-propeller proteins
[55], for coiled coils [56], or crystallographic symmetry [57].

. Binding site—The binding site is literally the heart of the
protein and usually requires special care which is different
from the general approaches to other CPD regions. These
range from quantum-mechanics optimization to grafting an
existing site to a de novo designed template. For example, a
binding site CPD includes many different case-studies such as
changing the bound metal, e.g. as done for ferritin [58], de
novo designed metal-binding [59] or nonbiological cofactor-
binding [60] proteins, and enzymes [19-22].

. Protein—protein interactions (PPI)—While a binding site is
often specifically designed for a non-amino acid moiety, pro-
tein—protein interaction CPD include the stable or transient
interaction between spatial patches of amino acids that are on
the surface-accessible part of the protein [30]. Numerous case-
studies of PPI CPD were applied with altered specificity [61,
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6.2 Structural Levels
of CPD: Design
Building Block

62] and affinity [63]. Likewise, new PPI were designed for
binding a conserved surface of the influenza hemagglutinin
[32]. In this frame, the large field of antibody CPD (e.g.
[64]) is essentially the design of new PPI incorporating unique
features of the antibody such as the hyper-variable loops.

7. Dynamics—DProteins are often regarded as XYZ coordinates of
frozen structures with a global minimum energry conforma-
tion (GMEC) structure represented within PDB files. How-
ever, proteins are four-dimensional machines (space and time
dimensions) with intrinsic local flexibility and global dynamics.
A ligand-controlled conformational switch [65], an minimal
75-residue allosterically-regulated Kemp eliminase catalyst
[66], or a Zn*" transporter [48] provide an example to CPD
focusing on such functional dynamics which must be a major
focus of any CPD involving dynamic function.

8. Membrane proteins and other “unique” protein groups—~As pre-
sented in this book, many protein families have designated
CPD schemes which harness family-specific parameterization.
Perhaps the most important such group is membrane proteins
[25, 26], which constitute over a quarter of all genes, most
communication between cells and organelles and as such also
most drug targets. Thus far, this is the youngest and least
understood field in structural biology. Successful membrane
protein CPD includes a specific transmembrane integrin-
binding helix [67] and the Zn*" transporter [48].

CPD requires designated software or the integration of existing
software in a manner tailored to the requested goal. Many chapters
in this book provide detailed examples to such tools. In this frame,
CPD can be applied in several structural levels—from optimization
of an active site by quantum mechanics to global geometric fea-
tures. Hierarchically, from small to large, the main structural fea-
tures include:

1. Rotamers and conformers—The basic building blocks of amino
acid side-chains and their role in structural bioinformatics are
reviewed elsewhere [68]. Briefly, the Dunbrack rotamer library
[69-71], representing the main side-chain conformations in a
backbone-dependent manner, became the standard lookup
tables scanned within the CPD procedure. As each side-chain
can accept only a discrete number of conformations repre-
sented in the rotamer library, these libraries are at the heart of
CPD. Alternatively, much larger conformer libraries, e.g. refer-
ence [72], can account for side-chain conformations which are
not at a local or global energy minimum. Unlike the average
side-chain conformation of rotamer libraries, here each con-
formation depicts a specific side-chain conformation from a
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high-resolution structure. Taken together, these side-chain
structural libraries are the three-dimensional natural extension
of sequence space to describe the possible structures at each
position.

2. Flexible backbone—Most often, while side-chain conformations
are thoroughly scanned via rotamer- or conformer-libraries, the
backbone conformation is copied from an existing structure.
Consequently, it is important to sample alternative local con-
formations via multistate approaches or the artificial introduc-
tion of backbone flexibility [10-13]. Such flexibility enables
not only the introduction of larger side-chains at each template
position, but also enables to fit the new structure to the newly
introduced local geometrical constraints.

3. Fragments—As the scientific committee still doesn’t know to
address the physics-based complexity of protein GMEC struc-
ture design sufficiently well, it is beneficial to reassemble known
high-resolution structural fragments in a knowledge-based
approach. The most famous such example is the Rosetta soft-
ware of the Baker lab with RosettaDesign [73] tailored for
CPD. Here, a nine-amino acid fragment library is used for
the initial construction of the designed region. Next, rotamer
library optimization and an energy function including local and
global features are applied. These include careful knowledge-
based pseudo-energetics of hydrogen bonds, solvation energy,
and the usual force-field components such as steric clash and
electrostatics.

4. Geometrical global fearures—Last but not least, the design of
domains and full proteins often applies equations addressing
global features. Perhaps the most known of these are the family
of coiled coils [56] comprising 10 % of proteins. Here, equa-
tions correlating sequence and helical bundle geometry are
useful for the de novo design of the protein fold [57, 74].
Other knowledge-based potentials include the Ez potential
for assessing the cross-membrane pseudo-energetics [75],
which was applied to design a transporter [48], or even equa-
tions assessing solvent accessibility.

7 Search and Sampling Procedures

The topic of search and sampling [68] in CPD is the beating heart
of the process. In analogy, all the above description composes the
ingredients of this blood but without proper circulation an insuffi-
cient number of components will be included in CPD; predisposing
the process to failure. Complimentary, efficient search and sampling
methods allow for higher resolution designs as additional layers of
information can be included in the design cycle. The topic requires
a book devoted to it and is introduced elsewhere [68] with specific
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focus areas described as focus areas in this book. Consequently, here
only a very brief description of the topic and related jargon is
presented. Search and sampling methods are grossly classified as
stochastic and deterministic. Deterministic methods have access to
the complete data and if they converge they are bound to find the
GMEC. These include dead-end elimination (DEE) which is often
combined with the A* search algorithm (DEE /A*), self-consistent
field method (SCMF), belief propagation, molecular dynam-
ics (MD), branching methods, graph decomposition, cost function
network (CEN) algorithms, Markov random field solvers (MRF)
and linear programming.

In contrast to deterministic methods, stochastic search meth-
ods have a random component and may give a different answer each
run pending on the specific number produced by the random
number generator which is part of the algorithm. The most
known stochastic method is Monte Carlo (MC) where different
additional measures are applied to drive convergence and decrease
the number of random steps. These include biased MC, MC-
quench or combining sampling power of MC with the speed of
methods such as SCMF. The iterative stochastic elimination (ISE)
aims at producing a manageable high-scoring ensemble rather than
a single GMEC, such that the ensemble can be later searched with
other methods [7]. Alternatively, temperature is introduced to
control the distance between steps, as done in simulated annealing
(SA) or the replica exchange method (REM). Often, to avoid
convergence in the wrong local minima, occasional jumps (jump
walking or j-walking) are introduced. Biological methods such as
genetic algorithms (GA) aim to imitate the evolutionary process by
improving the population of results. Last but not least, often hier-
archical methods are applied for the different parts of the CPD
procedure, each fit for a different search space and resolution.

8 CPD as a Feedback Loop: Negative Design, Quality Assessment,
and Experimental Validation

CPD is not a standalone procedure for optimizing a target structure
or function. Not less important is the unwanted result. Indeed,
many successful CPD case-studies hardwired the so-called
negative-design into the CPD protocol [49, 76-83]. Negative
design may include unwanted conformation or binding partner or
even an unwanted structural characteristic. Next, the theoretical
model of CPD should be assessed with every possible type of
quality assessment (QA) tool, whether general for all proteins or
specific for the target protein family. Last, and most important, the
suggested sequence should be assessed experimentally with the
resulting experimental validation serving in a feedback iterative
loop to improve the CPD. Moreover, often the CPD is successful
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only to a certain limit or lacks the ability to score the best design
within an ensemble. In such cases there are two options—either
conducting experimental validation to many designs or adding an
additional method to optimize the design, e.g. directed evolution.

9 Notes

1. When considering negative design rules, a good practical exam-
ple of a positive vs. negative design metric is the common
pharmaceutical therapeutic index (TT). TT is composed of the
ratio between the lethal (or toxic) dose affecting 50 % of the
population (LDsg or TDs5g) and the effective dose for 50 % of
the population (EDsg) i.e. TI = TD5¢/EDs. In essence, this
is a ratio between the negative and positive eftects. In molecular
terms, the drug can bind with very high affinity to the target
protein or, alternatively, the target protein may be well-
designed for drug binding. Yet, the drug may also bind to
other proteins, or, alternatively, the destruction of the protein’s
function may affect biochemical pathways that are beyond the
pathway that was the focus of the drug design. Interestingly,
while pharmaceutical companies focus energy on the study of
such side-effects, this is still not the common scheme in CPD.

2. Loop design is the most difficult part of the protein target to
design or to predict. Indeed, in protein structure prediction,
the loops usually account for most of the RMSD between the
model and the actual structure. To circumvent the challenge,
some designs, e.g. TOP7 [46] confined the loop regions to the
minimal length possible. The challenge includes several aspects:
First, loops have no periodic structure-confining constraints as
secondary structures exhibit. Second, loops are intrinsically
flexible and, for longer loops, may even be intrinsically disor-
dered. Third, loops are regularly part of soluble regions and do
not have a confining domain they adhere to or a knowledge-
based rule such as a hydrophobic core. Last, even short loops
may be highly dependent on the precise geometry of the sec-
ondary structures from which they stem. Structure prediction
software should give special attention to loops, though not all
do it as a separate entity within the modeling scheme. As with
other structure prediction tools, a consensus tool combining
orthogonal methods may provide better results than the indi-
vidual methods [84]. Designated tools focus efforts on the
unique properties of this region. For example, SuperLooper
[85] offers an online servers datamining a large (half-billion)
loop structures derived from structural data. A known tool
focusing on loop modeling is LoopBuilder [86] which tackles
the challenge by an extensive sampling of backbone conforma-
tions, side-chain addition, the use of a statistical potential to
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select a subset of these conformations, and, finally, an energy
minimization and ranking with an all-atom force field.
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Chapter 2

Achievements and Challenges in Computational
Protein Design

llan Samish

Abstract

Computational protein design (CPD), a yet evolving field, includes computer-aided engineering for partial or
full de novo designs of proteins of interest. Designs are defined by a requested structure, function, or working
environment. This chapter describes the birth and maturation of the field by presenting 101 CPD examples in
a chronological order emphasizing achievements and pending challenges. Integrating these aspects presents
the plethora of CPD approaches with the hope of providing a “CPD 101”. These reflect on the broader
structural bioinformatics and computational biophysics field and include: (1) integration of knowledge-based
and energy-based methods, (2) hierarchical designated approach towards local, regional, and global motifs
and the integration of high- and low-resolution design schemes that fit each such region, (3) systematic
differential approaches towards different protein regions, (4) identification of key hot-spot residues and the
relative effect of remote regions, (5) assessment of shape-complementarity, electrostatics and solvation effects,
(6) integration of thermal plasticity and functional dynamics, (7) negative design, (8) systematic integration of
experimental approaches, (9) objective cross-assessment of methods, and (10) successful ranking of potential
designs. Future challenges also include dissemination of CPD software to the general use of life-sciences
researchers and the emphasis of success within an in vivo milieu. CPD increases our understanding of protein
structure and function and the relationships between the two along with the application of such know-how for
the benefit of mankind. Applied aspects range from biological drugs, via healthier and tastier food products to
nanotechnology and environmentally friendly enzymes replacing toxic chemicals utilized in the industry.

Key words Computational protein design, Inverse folding problem, De novo design, Directed
evolution, Rational design, Synthetic biology, Negative design, Enzyme design, Protein—protein
interaction

“The abundance of substances of which animals and plants ave composed of, the
remarkable processes whereby they are formed and then broken down again claimed
the attention of mankind, and bence from the early days they also persistently capti-
vated the interest of chemists. . .. To determine the structuve of the molecule the chemist
proceeds in a similar way to the anatomist. By chemical actions he breaks the system
down into its components and continues with this division until familiar substances
emerge. Where this decomposition has taken different dirvections, the structure of the
original system can be inferved from the decomposition products. Usually, however, the
structuve will only be finally elucidated by the reverse method, by building up the
molecule from the decomposition products or similar substances, i.e. by what is termed
synthesis. Nevertheless, the chemical enigma of Life will not be solved until organic
chemistry has mastered another, even more difficult subject, the proteins, in the same
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way as it has mastered the carbohydrates. It is hence understandable that the organic
and physiological chemists ave increasingly turning their attention to it. ...”
Emil Fischer, Nobel Lecture, December, 12th 1902

1 Introduction: The Birth of Computational Protein Design

In 1902 Emil Fischer’s Nobel lecture [1] presented the idea of
protein design (see exert). He emphasized that molecules can be
elucidated only by the reverse method, namely, design from decom-
position products, which in the case of proteins are the amino acids.
At the time Fischer stated that proteins are far more difficult than
carbohydrates, for which he received the Nobel. Indeed, it was only
in 1972 that Chris Anfinsen received a Nobel Prize for the “con-
nection between the amino acid sequence and the biologically
active conformation.” Anfinsen’s famous experiment included dena-
turing and renaturing ribonuclease A; thus setting the stage for the
sequence-structure—function relationships underlying protein sci-
ence [2]. In 1981 Drexler speculated that it should be possible to
design novel proteins and that such proteins could provide a general
capability for molecular manipulation [3]. In 1983 Pabo wrote about
designing proteins and peptides concluding that it may be difficult to
design proteins which carry out a particular function but the use of
pre-folded backbone configuration may be useful at this stage [4].
Pabo pointed at the so called inverse folding problem of using a
known backbone conformation on which new sequences can be
applied; thus modifying function. In agreement with Pabo, in 1987
Wodak reviewed the field with the title “computer-aided design in
protein engineering” where the key features of CPD were laid out in
a manner that is accurate till this very day, and not only in e.g. the
Wodak lab’s DESIGNER [5, 6] CPD software.

In 1985 DeGrado conducted what should be regarded as the
first CPD: a design, synthesis, and characterization of a 17-residue
helical peptide that was the tightest calmodulin-binding peptide
produced [7]. This first CPD attempt, described in more detail
below, includes many of the main features of current CPD including
the need to produce and characterize the suggested design, the
crosstalk between human and computer input and the iterative feed-
back process of the CPD scheme to learn and improve the design.

Other early attempts were “computer-aided” by visually inspect-
ing the protein for suggesting specific point mutations. For example,
in 1985 Rutter and coworkers replaced two glycines by alanines in
the binding site of trypsin, thus altering binding specificity [8].

While DeGrado and others used computer-aided protein
design in early days, according to PubMed, the term “protein
design” was introduced only in 1986 by Vonderviszt, Matrai, and
Simon [9]. As in the talk of Fischer, Simon’s paper did not focus on
the protein design per se. Rather, they implied the potential use of
analysis of protein environment trends as parameterization required
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for protein design. It took an additional decade for the term
“computational protein design” to enter the literature. In 1997,
Dahiyat, Sarisky, and Mayo introduced the term as part of a system-
atic design of a o motif (Table 1) in which they designed 20 of the
28 motifresidues [ 18, 19]. Early attempts of CPD often did not use
this term despite describing science that is in the core of the CPD
field till this very day. In parallel, numerous CPD publications refer
to CPD with related terms that relate to protein design but do not
focus on the related computational methodology. These include
protein design, synthetic biology, rational design, and more.

Of special note is the fuzzy division between “protein design”
and CPD as often there is a significant contribution from computa-
tional tools to protein designs that are conducted with an expert
know-how that is formulated by computation. This review will
emphasize attempts of computer-assisted designs but will focus
on protein designs in which the computational part is central to
the design methodology.

Thus, in a century since Fischer’s visionary Nobel lecture,
science has moved from yearning to understanding protein struc-
ture by designing it from building blocks to applying a computa-
tional general design algorithm. Not less important, protein design
is often termed “the inverse folding problem” as the success of
using building blocks to fold a protein into a given structure
and function is the true proof that folding is well-understood.
Consequently, the know-how and success of CPD contribute
directly to that of protein structure prediction in healthy and
diseased proteins. Within these frameworks, the CPD field is
constantly growing into new basic- and applied-scientific research.

Here, rather than providing an overview of methodological
components [121, 122], the idea is to present CPD examples in
chronological order showing the achievements and pending chal-
lenges in a timeline perspective. In other words, rather than
providing a grocery list of available computationally assisted protein
design, this review is aimed towards presenting the state of the field
as it evolves on the chronological milestone road. Taken together,
these case-studies encompass the breadth of the CPD field, the
plethora of distinct flavors of it as well as the common threads of
success and pitfalls computational protein designers are encoun-
tered with (Table 1). The concluding remarks focus on the latter;
providing scientific questions for years to come.

2 The First Decade of Computational Protein Design, 1985-1994

In 1985 DeGrado, a leading pioneer in protein design, designed
with coworkers the tightest-binding peptide inhibitors of calmod-
ulin known till then [7]. Computationally, the 17-residue helical
peptide designs included computer-graphics based modeling of the
calmodulin target as well as computer modeling [123] of the
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calmodulin—peptide interaction focusing on electrostatic potential
surfaces and structural modeling. These included side-chain posi-
tioning using geometries taken from a known homologous struc-
ture of an intestinal calcium-binding protein, interactive computer
graphics, and minimization using the AMBER [124] force-field.
The acquired know-how of the calmodulin-peptide structure and
binding characterization was tested by iterative peptide synthesis
and characterization. Hence, this early attempt of CPD underscores
the need to integrate all available know-how and methods for the
requested target as well as the need to combine theory and experi-
ment in an interactive and iterative feedback loop.

In 1990 Hecht and Ogden and the Jane and David Richardson
lab designed a de novo four-helix bundle, termed Felix [10]. This is
an example in which protein design rather than CPD was the
leading method. Even for designing the hydrophobic core, the
authors write that: “Space-filling models of Felix were constructed
and the sequence was then modified to vemove lumps or fill holes. This is
easier to do with physical models than on the computer.” Computa-
tionally, several structures were modeled followed by application of
molecular dynamics (MD). Positive- and negative-design rules were
conducted manually, including for residues preferring helicity, for
the radial distribution of hydrophobicity along the helices and for
helix capping. Hence, this case-study proves that it is required not
only to focus on the requested design combining existing and
newly found parameterization, but rather attention should be
devoted to the so-called negative design of avoiding unwanted
designs.

In 1991 Hellinga and coworkers used CPD software aimed at
sites with predefined geometry (DEZYMER [125]). They intro-
duced a copper-binding site into thioredoxin by mutating four
amino acids [11]. In the analysis of the design they concluded
that two residues are pivotal for the metal ligation while the two
other are pivotal for removing alternative modes of binding, thus
highlighting the need to focus on negative design.

In 1991 Wilson, Mace and Agard presented a generalized
model for altering substrate specificity [12]. Using a AAG free
energy perturbation approach, the free energy of the free substrate,
free enzyme, and complex were computed separately as to non-
bonded and solvation energetics over the different potential con-
formations suggested by the PROPAK [126] rotamer-library based
CPD software. The approach was tested using a protease in which
the specificity for cleaving leucine was raised by three orders of
magnitude following a single mutation. While this CPD example
entails merely a single mutation, the components of the approach
include many of the later CPD methodology.

In 1992 Hurley and Matthews redesigned the core of bacterio-
phage T4 lysozyme [13]. This case-study, coming from the lab
most known for thoroughly studying the effect of mutation on
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protein structure and function, includes several insights. Only
nine solvent inaccessible amino acids were subjected to redesign.
Moreover, a core valine residue was not part of the redesign as it
binds structural water. The repacking was limited to residues
that are more hydrophobic compared to the wild-type residues. In
addition, as all potential sites occur in a-helical regions, no net
increase in the number of f-branched amino acids (Val and Ile)
was allowed. While each addition of a f-branched amino acid to a
helix has a small energetic cost of less than 0.5 kcal /mol, it was
feared that the accumulation of such residues will destabilize
the structure. For packing calculations, the Ponder and Richards
rotamer library [126] was used truncating rare (<5 %) rotamer
conformations. Hydrogens were omitted and reduced van der
Waals radius was applied to account for local relaxation. The free
energy was calculated with a standard local minimization as well as a
component accounting for the loss of side-chain conformational
entropy. Four amino-acids were mutated showing a similar stability
compared to the template structure (0.5 kcal /mol destabilization).
The destabilization of each single mutation was much larger thus
showing the overall cooperative nature of the overall core repacking
design.

In 1994 Jane and David Richardson, de novo designed beta-
doublet, a p-sandwich protein [14]. It is no surprise that such an
endeavor came from pioneers in visualization (Richardson diagram,
also known as ribbon diagram), parameterization, and quality con-
trol of protein structures. A four-stranded f-sheet dimer designed
from scratch included an intersubunit disulfide bridge. Internal
side chains were chosen for their statistical preference for p-sheet
formation and their ability to tightly pack in a protein core. This
knowledge-based parameterization was corroborated by side-chain
repacking of rotamers. This design scheme focused on negative
design, specifically disfavoring the Greek Key topology. To mini-
mize alternative folding modes, turns were shortened as much as
possible. Binding of 1-anilinonaphthalene-8-sulfonate (ANS) was
higher, compared to binding to well-folded proteins. Along with
low unfolding cooperativity and poor NMR characteristics,
this may indicate a loosely packed hydrophobic core or even a
molten-globule structure; highlighting the challenge of obtaining
thermostable de novo designed proteins, let alone those composed
of B-sheets.

3 The Second Decade of CPD, 1995-2004

Setting the framework for CPD, in 1995 DeGrado and coworkers
reviewed the hierarchic approach to protein design including helix
stabilization, coiled coils, four helix bundles, p-sheets, mixed a-f
structures, DNA-binding proteins, and functional proteins [127].
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The presented approach emphasized the need for quantitative
parameterization of the various levels of structure and function
within the design target. Such parameterization can be either
physics-based or knowledge-based. In either ways, it should be
integrated into quantitative potential (scoring) functions.

In 1995 Desjarlais and Handel presented a novel computational
framework for the de novo design of hydrophobic cores [15]. The
CPD was conducted via the Repacking of Core (ROC) program,
later developed to their Sequence Prediction Algorithm (SPA)
[128]. The approach included two steps—a custom-made rotamer
library for hydrophobic residues (Val, Ile, Leu, Phe, and Trp) and a
genetic algorithm (GA) for optimizing sequence and structure
space of the designed protein. The method was exemplified on
the phage 434 Cro helical protein with five to eight amino acid
changes in the hydrophobic core. Two of the three attempted
designs resulted in a stable protein. This first study into a pivotal
protein region helped to substantiate the notion that the noncore
residues of a protein play a role in determining the uniqueness of
the folded structure [15].

In 1997 Desjarlais and Handel applied their ROC program for
the stabilization of a mainly f-sheet protein, ubiquitin [16]. Nine
designs with three to eight mutations each were experimentally
characterized. Unlike their 434 Cro [15] redesign, all ubiquitin
designs were less stable relative to the wild-type protein. The
authors postulate that this may be due to the fact that in contrast
to the a-helical 434 Cro protein, ubiquitin is mainly composed of
fB-strand secondary structures which may dictate more stringent
packing requirements. One of the designs was structurally eluci-
dated confirming that the core side-chains had less favorable con-
formations and higher flexibility compared to the wild-type [17].

In 1997 Dahiyat and Mayo opened the field of full-protein fully
automated computational de novo protein design [18, 19]. The
CPD scheme was termed ORBIT [18] for Optimization of Rota-
mers by Iterative Techniques. The so called full sequence design 1
(FSD-1) was not a typical protein of over 200 amino acids, but
rather a small, 28-residue sequence; a length considered a peptide
rather than a protein. Nevertheless, the remarkable achievement
included a complex ppa motif based on the polypeptide structure of
a zinc finger domain in which 20 of the 28 residues were subjected
to design. Moreover, while such a small DNA-binding motif is
folded in nature with the aid of a zinc ion, the zinc-ligating residues
(two cysteines and two histidines) were replaced in the design with
two phenylalanines, an alanine, and a lysine without the need for
the metal ion. As a side-remark, the use of a charged lysine in such a
core position highlights the need to take caution in stigmatizing
amino acids as “hydrophobic” or “hydrophilic” as in this case the
long hydrophobic neck of this charged residue filled the hydropho-
bic requirement within this position. The 1.9 x 10?” possible
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amino acid sequences were searched by application of the Dead End
Elimination (DEE) theorem [129]; highlighting the intertwined
connected between CPD and search and sampling methods [130].
FSD-1 displayed low identity to any other existing sequence, thus
establishing it as a ‘de novo’ design. In this fixed-backbone design,
an existing crystal-structure template was utilized in which eight
residues were left as is and the remaining 20 were subjected to
design. The hierarchical approach of confining key positions was
further confined by considering 7, 10, and 16 optional amino acids
for each core, surface, and boundary position, respectively. The
backbone dihedral angle further confined two positions to glycine,
thus de facto leaving 18 positions for CPD. The combined struc-
ture space defined by the accessible backbone-dependent Dunbrack
rotamer library [131] applied over the accessible fold space,
resultedin 1.1 x 10%? possible rotamer sequences. The experimen-

tal validation included Nucleic Magnetic Resonance (NMR) struc-
tural elucidation exhibiting 1.98 Aand 0.98 A Ca-atom root means
square deviation (RMSD) between the design and the template
structure for the full and the core residues (residues 8 to 26),
respectively. The difference between these two numbers highlights
the intrinsic flexibility and disorder associated with nonsecondary
structure elements, especially when positioned at the edge of the
protein sequence.

In 1998 the Mayo lab applied the ORBIT [18] for the design of
a hyperthermophilic Streptococcal protein G pl domain [20]. The
stability enhancement stemmed from seven mutations which opti-
mized core packing, increased burial of hydrophobic surface area,
more favorable helix dipole interactions, and improvement of sec-
ondary structure propensity. The resulting protein displayed a
melting temperature above 100 °C and a 4.3 kcal /mol thermody-
namic stabilization compared to the wild-type at 50 °C. Structure,
activity, and binding to an antibody were similar to the wild-type
structure thus changing only the thermal stability of the protein.

In 1998 the Kim lab designed right-handed coiled coils apply-
ing backbone flexibility, hydrophobic-polar residue patterning for
the superhelical axis and the hydrophobic core along with modeling
of packing [21]. Backbone coordinates were determined by explor-
ing a parametric family of superhelical backbones described origi-
nally by Francis Crick. Negative design was applied by mimicking a
less-folded state via permutations on the mutation location and
calculating the energy gaps to such permutations. Dimeric, tri-
meric, and tetrameric bundles were designed. The tetramer was
structurally resolved exhibiting a striking 0.2 A RMSD for the core
residues.

In 1998 the DeGrado lab de novo designed an antiparallel
three-helix bundle, a3C, in an iterative process with specific inter-
actions added incrementally [22]. In this design many steps were
designed rationally without the aid of the computer. Two rounds of
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core design were conducted fully by CPD. A previously designed
dimer (CoilSer) that was found to be a trimer was the initial
template for the design. In this structure, some hydrophobic Leu
residues adopt a less likely rotamer suggesting the availability of
better core packing. The trimer was trimmed by one turn. In the
first round, GlyAsn and ProGlyAsn loops were added to turn the
discrete helices into a single subunit. In the second round, helix
capping was introduced and in the third round nonnative charac-
teristics were eliminated by negative design. Specifically, the 17
residues of the hydrophobic core were repacked using 30 runs of
ROC followed by 30 runs of ROC for a subset of six residues.
Further, to avoid both clockwise and counterclockwise turning of
the helices within the trimer, charged residues were designed to
cause electrostatic repulsion and favor only one conformation. This
is a direct negative design step. Thus, the designed helix capping
interactions and electrostatic interactions between partially exposed
residues assisted in achieving a unique, native-like structure. In
1999, three surface exposed residues were changed thus designing
a3Din which the homology between the helices was decreased thus
simplifying structural elucidation [23].

In 1999 the Serrano lab redesigned the two-helix coiled-coil
interleukin-4 using GCN-4 as a template [24]. This is not a classical
CPD case-study but rather a computer-aided sequential rational
design where deep understanding of the binding interface enabled
grafting of the positive electrostatic convex binding site shape from
the four-helix-bundle protein to a new two-helix template. The
side-chains of the mutated positions were structurally predicted
via the rotamer-library-based software SMD [132]. Interestingly,
MD simulations were applied as in silico screening of the mutations
prior to decision on experimental characterization. Depending on
the size of the interleukin-4 binding site (to interleukin-4 receptor
alpha) grafted on the GCN4 template, the binding affinities ranged
from 2 mM to 5 pM.

In 2001 the Baker lab applied CPD to convert the monomeric
protein L to an obligate dimer by just three mutations [25]. The
design relied on a B-hairpin single mutation domain swapped dimer
in which a p-turn straightens and the C-terminal strand inserts into
the p-sheet of the partner. The Rosetta [133] module RosettaDe-
sign [134] focused on an eight-residue region and added just two
mutations to the domain swapping mutation resulting in an obli-
gate dimer.

In 2001 the Serrano lab applied PERLA [135] for the redesign
of their previously designed 20-residue p-sheet protein betanova
[136] aiming to create a set of double- and triple-mutations with
different folding stabilities so as to compare predicted and experi-
mental folding stabilities [26]. Briefly, PERLA includes a custom-
made rotamer library, an all-atom force-field, and a combination of
statistical terms including solvation and entropy. Relaxation of the
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local strains is achieved by sub-rotamer states and most parameters
are balanced with respected to a reference denatured state. DEE is
applied to prune the search space and then side-chain conforma-
tions are weighted using a mean-field approach. Here, two CPD
schemes were applied: First, four positions adjacent to aromatic
residues were discretely redesigned aiming at utilizing the Nuclear
Overhauser effects (NOEs) between the aromatic residues and the
new mutations for evaluating structural effects. Second, multiple-
residue mutations were designed with the most promising designed
experimentally characterized. Increase in core hydrophobicity or
van der Waals contacts stabilized the design. At one site the algo-
rithm did not predict a hairpin destabilization, possibly due to
alternative conformations. Alternatively, the sequence of folding
events should be taken into account along with the balance
between long-range electrostatic interactions and short-range van
der Waals interactions. B-sheet propensities were also shown to
correlate with stabilization. Some of the mutants stabilized the
design by 1 Kcal/mol. Taken together; this early study displays
the usage of CPD algorithms for the study of structure-stability
relationships and parameterization of their underlying causes.

In 2001 Bolon and Mayo applied ORBIT [18] to computation-
ally design protozymes which are enzyme-like proteins exemplified
on a thioredoxin scaffold catalyzing a nucleophilic hydrolysis of p-
nitrophenol acetate [27]. ORBIT applies a force-field and DEE
theorem to compute sequences that are optimal for a given scaffold.
The use of an inert scaffold required the design of a new cleft, which
was relatively open to the surrounding milieu, thus possibly affect-
ing efficiency. The 94 non-glycine positions reflected 10'°! rotamer
sequences that were scanned using the DEE algorithm within
ORBIT [18]. The rate enhancement of ~25-fold (K = 170 + 20

pM, ke = 4.6 £ 0.2 X 107 sfl) is comparable to that of early
catalytic antibodies (Table 2).

In 2001 the Kim lab designed six dimeric coiled coils with a
range of stabilities by combining knowledge-based rules (specifi-
cally the 2 and 4 hydrophobic positions in the heptad repeat),
rotamer selection and sampling followed by minimization [28].
The first two parts address the large accessible search space while
the last one assists in achieving quantitative estimates of interaction
energies. For example, a hydrophobic Val was constrained to the
gauche (—) rotamer, which is known to be favored in this position.
In parallel to choosing a small subset of rotamers, subrotamers were
introduced by including +/110° of the y; and y, rotamer posi-
tions. Interestingly, to address the difficulty of modeling solvent-
exposed charged residues, residues at the ¢ and g positions of the
heptad repeat were truncated beyond the Cg position. Minimiza-
tion was carried out without electrostatics but with an explicit
hydrogen-bonding term and the overall solvent-exposed residue
energetics were later fixed by an empirical solvation correction.
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The propensity of residues to be in helices was also added to the
equation. The designed structures displayed an impressive <0.7 A
for all non-hydrogen atoms.

In 2002 the DeGrado lab computationally designed an A,B,
four-helix bundle protein binding diiron called DueFerro tetramer
or DFtet[29]. The de novo design focused on the gap between the
requested fold and alternative folds thus explicitly incorporating
positive- and negative-design considerations. The design was built
using a template of a previous design which was then elongated to
increase stability by extending the four-helix bundle Crick para-
meters. Residues were chosen to increase helical propensity, stabi-
lize one of the competing topologies via computing contact
energetics. The best four designs following 700,000 iterations of
sequence design were modeled structurally and the best design was
validated experimentally.

In 2002 the Serrano lab de novo designed 13 divergent spectrin
SH3 core sequences to determine their folding properties [30].
The PERLA-based [135] redesign included nine nonconsecutive
positions resulting in a larger buried hydrophobic volume.
The computational design over-packed the core resulting in an
expansion of the p-barrel. This was further validated by conducting
Ile — Val mutations which all resulted in strain removal and stabi-
lization. Eleven of the 13 designs folded well with similar charac-
teristics to the folded wild-type. Two structurally resolved designs
were similar to the wild-type with small changes at a loop region
following discrepancies at the y, side-chain positions relative to the
design.

In 2002 Shifman and Mayo modulated calmodulin binding
specificity by CPD [31]. The calmodulin binding interface was
optimized to improve binding specificity towards one of its natural
targets, smooth muscle myosin light chain kinase (smMLCK).
ORBIT [18] considered 10°? sequences to optimize the calmodu-
lin-smMLCK interface. Thus, without considering negative design
explicitly, a design with eight mutations enabled similar binding
affinity to the target and 1.5- to 86-fold decreased affinity to six
other targets. In 2003 a follow-up included optimization of the
CPD for PPI [32]. First, the pairwise portion of the energy func-
tion was weighted to enhance intermolecular interactions and
attenuate intramolecular ones. Second, the large dielectric constant
(e) routinely used, eftectively underemphasized the long-range
electrostatics term in the energy function relative to more local
terms such as van der Waals and hydrogen bonding interactions.
Consequently, the dielectric constant at the boundary- and surface-
optimization region was lowered from 407 to 47. Third, a romater
library that contained rotamers representing expansion about the
x1 and y, angles was applied. Six designs were tested on eight
targets of which the best showed a specificity change of 0.9- to
155-fold. Hence, by optimizing the protein— protein binding, the
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natural promiscuous binding was decreased. Yet, without direct
incorporation of negative design, this decrease displayed large vari-
ation among the alternative targets.

In 2002 Xencor applied the Protein Design Automation CPD
software (PDA [141]) and demonstrated it by redesigning 19
residues in the vicinity of f-lactamase’s active site to confer resis-
tance against antibiotic cefotexime [33]. The PDA defines a library
of mutant sequences at specific positions. After finding the global
minimum energy conformation (GMEC) an MC/SA search algo-
rithm is applied to find near-optimal sequences which are then
processed to generate a probability table of mutations at each
designed position. The CPD reduced the large sequence space to
a library of ~200,000 sequences which were experimentally
screened obtaining variants exhibiting a 1280-fold increase in cefo-
taxime resistance along with a 40-fold decrease in ampicillin
resistance.

In 2002 Xencor applied CPD to stabilize solubility and improve
thermosstability of the human growth hormone (hGH) [34 ] and to
stabilize the granulocyte-colony stimulation factor (G-CSF) [35].
In both cases, only core residues were redesigned. As the CPD
scheme of the two targets was similar, they are described here
together. In both cases, the DEE-based PDA CPD scheme was
applied. Interestingly, new terms for side-chain and backbone
entropies were added to the scoring function as a combined mea-
surable reflecting the loss of conformational entropy during core
packing of the designed core residues. Other scoring function
components such as polar hydrogen burial, dielectric constant,
and surface-based nonpolar exposure penalty were weighted into
a new scoring function. The 45 core residues were redesigned
resulting in 11 mutations. Three designs were tested experimentally
achieving thermostabilization of 13-16 °C without compromising
biological activity. Similarly, the G-CSF was redesigned to improve
pharmacological properties for the prevention of chemotherapy-
related neutropenia [35]. Here, a homology model based on the
bovine structure was used as a template with 25-34 core residues
redesigned with PDA. Several mutants with 10-14 mutations were
experimentally characterized. Without compromising biological
activity, a thermostabilization of 13 °C and a tenfold improvement
in shelf-life was obtained.

In 2002 the Baker, Monnat and Stoddard labs designed an
artificial endonuclease by fusing the N-terminal domain of homing
endonuclease I-Dmol to an I-Crel monomer, creating a new
1400 A? interface between the domains [36]. The design, termed
E-Drel, for engineered I-Dmol/I-Crel, was initially modeled by
superimposing a single helix from the N-terminal domain of
I-Dmol on the same helix in I-Crel and linking the two domains
using a three-residue linker -NGN- which encourages -turn forma-
tion. All interface positions were redesigned using RosettaDesign
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[134]. The relative contribution of side chains to the interface free
energy were evaluated by computational alanine scanning [142]. The
CPD focused on six residues exhibiting steric clashes in the original
model and extended to eight additional residues predicted to con-
tribute substantially to the interface free energy. One thousand
separate designs were conducted over two backbone models elim-
inating results that may affect the active site and reducing redundant
results. The 16 top-scoring designs, each with 8-12 interface muta-
tions were screened in vivo. The resulting structurally- and function-
ally characterized E-Drel enzyme bound the DNA target site with
nanomolar affinity and cleaves it at precisely the same rate as the wild-
type enzyme.

In 2003 the Wodak lab conducted automatic design of major
histocompatibility complex class I (MHC-I) 9-residue binding
peptides which impair CD8+ T-cell recognition [37]. While this
is a 9-amino acid peptide design rather than a protein design, it is
presented here as an early example of computationally designing
peptide—protein interactions. DESIGNER [5, 6], which combines
a fitness function with an optimization procedure selecting highly
scoring sequences. To select amino acid sequences with lowest free
energies, a DEE procedure was applied as well as a heuristic proce-
dure with 250,000 iterations. In an early ensemble-like approach,
DESIGNER was run on all six representative MHC-peptide com-
plexes available in the PDB. In addition, the top-scoring peptides
were scanned against peptides known to bind the same MHC allele.
The six strongest binders not only bound MHC but also formed
stable complexes and three displayed significant inhibition of
CD8+ T-cell recognition.

In 2003 the Saven and DeGrado labs designed a water-soluble
analog of the pentameric phospholamban membrane protein [38].
Solubilization enables to study the protein, including ligand or
drug interaction, in the much friendlier soluble milieu. Here, 11
solvent-exposed residues were identified in the transmembrane
(TM) helix. Ten residues were redesigned using a pairwise potential
including intrahelical pairwise residue interactions, contribution to
the helix macrodipole, interhelical electrostatic interactions, solu-
bility, and sequence entropy. The water-soluble analog mimicked all
the TM protein characteristics including oligomerization state,
helical structure, and stabilization upon phosphorylation. A
truncated version of the helix bundle was resolved crystallographi-
cally [39] displaying a parallel tetramer, rather than an antiparallel
pentamer; suggesting that buried and interfacial hydrogen bonds
are pivotal for oligomerization.

In 2003 Havernek and Harbury approached molecular recogni-
tion by entwining positive- and negative-design using a multi-state
framework for engineering specificity in GCN4-based coiled-coils
[40]. Their approach selects sequences maximizing the transfer free
energy of a protein from a target conformation to a set of undesired
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competitor conformations. The algorithm identified three specificity
motifs that have not been observed in naturally occurring coiled
coils. Their genetic algorithm (GA) considered four states including
homodimer, heterodimer, aggregated-, and unfolded-state which
focus on homospecificity, solubility, and stability. Unlike previous
CPD approaches, they selected sequences that maximize the transfer
free energy from a target state to an ensemble of competitors, thus
requiring separate structural optimization for each state. Further,
they evaluated prediction by molecular mechanics with continuum
solvent allowing for direct prediction of observed free energies.
Seven of the eight engineered pairs showed AGpecificiy Values
exceeding the largest control value that was obtained fortuitously.

In 2003 the Saven and DeGrado labs designed a de novo
monomeric helical dinuclear metalloprotein [41]. The 114-residue
four-helix-bundle due ferro single-chain (DFsc) was modeled in
the backbone level using previous oligomeric structures and inter-
helical turns. While 26 residues were predetermined including
ligand-binding residues and one of the turns, all other 88 residues
were computationally designed using the Statistical Computation-
ally Assisted Design Strategy (SCADS [143]). The fixed positions
relied on previous designs of due ferro peptide ensembles [47,
144]. The software provides site-specific amino acid probabilities,
which are then used to guide sequence design. This successful
design was the first realization of complete de novo design, where
backbone structure, activity, and sequence are specified in the
design process. Several years later, the structure was solved combin-
ing NMR and unrestrained MD using nonbonded force-field for
the metal shell, followed by quantum mechanical/ molecular
mechanical dynamics used to relax the NMR-apparent local frus-
tration at the metal-binding site [42].

In 2003 Kuhlman, Dantas and coworkers at the Baker lab
presented a milestone in CPD—the first systematic de novo CPD
of a 93-residue a/f novel topology protein, which folded in
atomic-level accuracy (1.2 A RMSD) to the design template [43].
The so called TOP7 protein includes four p-strands flanked by two
a-helices. The loops connecting the secondary structure elements
are very short thus contributing to the atomic-level accuracy of the
design. The starting models for the design were assembled from
three- and nine-residue fragments via the Rosetta package [133].
172 backbone-only models were generated, forming an ensemble
of structures that all fit the requested fold. The sequences were
generated using RosettaDesign [134] via a Monte Carlo (MC)
search protocol focusing on van der Waals and hydrogen-bonding
interactions within an implicit solvent. An additional reduction of
search complexity was attained by restricting the f-strand positions
to polar residues. With the Dunbrack rotamers [145] considered
for each position, the procedure included >10'®¢ rotamer
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combinations. A simultaneous optimization of sequence and struc-
ture was conducted by using the Rosetta approach for backbone
optimization with each starting structure followed by 15 cycles of
sequence design and backbone optimization.

In 2003 the Desjarlais lab de novo designed a WW domain
using fully automated CPD emphasizing backbone flexibility
[44]. Here, the labs’ SPA [128] CPD software was coupled to a
sampling procedure integrating information from an ensemble of
backbone structures, thus setting the stage to multistate CPD. The
new procedure was termed SPANS for sequence prediction algo-
rithm for numerous states. The ensemble was generated by a simple
MC expansion of £5° perturbation of the backbone @ and ¥ angles
till a predetermined (0.3 A) RMSD. Three antiparallel strands fold
into a B-sheet WW domain. The 3440 amino acid WW domain
folds autonomously with two-state kinetics and is utilized as a
module to bind proline-containing regions. Two CPD approaches
were used, each with methods applied in many other applications.
First, SPANS-WW1 applied multiple “sub-rotamer” states which
were sampled stochastically. The Boltzmann weights of these states
were combined into one “super-rotamer” and included in the
partition function. Alternatively, SPANS-WW2 optimized each
canonical rotamter by torsion-space steepest-descent minimization.
Both designs exhibited WW domain biophysical characteristics yet
with decreased stability relative to the template, especially for
SPANS-WWI1 which included a less-dispersed hydrogen-bond
network.

In 2003 the Baker lab applied RosettaDesign for the redesign of
nine different globular folds achieving, on average 65 % deviation
in sequence space with biochemical characteristics comparable with
their natural templates [45]. One of these designs, human procar-
boxypeptidase A2, was structurally resolved in 2007 enabling to
discretely analyze residues contributing to different types of hydro-
phobic packing: interhelical, inter-strand, and helix-strand packing
[46]. While the original redesign had numerous mutations and
10 kcal/mol increased stability, relative to the wild-type, mutating
merely four residues yielded a 5 kcal /mol stability increase.

In 2004 Kaplan and DeGrado designed a phenol-oxidase from
first principles [48] using a computationally designed four-helix-
bundle scaffold made out of four peptides of two kinds (A,B,) that
assemble in a noncovalent manner [29]. Specifically, positions 15
and 19 were mutated to small amino acids thus sculpting the diiron
binding pocket to bind the 4-aminophenol substrate. The resulting
quinone monoamine product was produced with a k../Ky =
1500 M~ min ! with efficiency sensitive to the size of the binding
pocket, thus reporting on design specificity. Herein, although the
three-dimensional structure of the backbone and sequence of the
de novo designed scaffold protein was designed computationally,
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the subsequent introduction of catalytic activity was accomplished
without methods or by screening large number of variants.

In 2004 the Baker lab redesigned specificity of a protein—
protein interaction between a bacterial nonspecific DNase (colicin
E7) and its tightly bound inhibitor protein (immunity protein Im7)
pairs [49]. The structurally resolved binding pairs offer straightfor-
ward activity assays and the computational design focused on
destabilizing interactions with the wzld-type partner while
stabilizing the mutant complex. Interface positions on both
binding partners were mutated and assessed as to their binding
free energies and specificity changes between cognate and noncog-
nate binding partners. Three positions were chosen for redesign in
the DNase and nine in the inhibitor. The designed cognate pairs
displayed low affinity relative to the wild-type pair, presumably due
to a new water network, which was not part of the modeling. This
suggsts focusing on explicit modeling of bound water in interface
design. Nevertheless, the redesigned interface was structurally
resolved displaying 0.62 A RMSD between the model and the
actual structure. Focusing on the hydrogen bond network and
water therein, a 2006 follow-up study sampled alternate rigid
body orientations to optimize the interface interactions and then
utilized the resolved structure to further optimize the hydrogen
bonding network, thus increasing the specificity difference between
cognate to noncognate complexes by 300-fold [50].

In 2004 the DeGrado and Saven labs applied CPD to design a
water-soluble analog of the potassium channel KcsA [51]. Using
SCADS [143] and the previous solubilization application [38],
35 solvent-exposed residues were identified and subjected to muta-
tion. The first round of the water-soluble K-channel (Denoted
WSK-1) displayed high oligomers and thus additional mutations
were applied on two solvent-exposed hydrophobic patches. The
resulting WSK-3 structure mimics the TM structure in secondary
structure, tetrameric quaternary structure, and tight binding of a
toxin and a channel blocker.

4 The Current Decade of CPD, 2005-2014: From Enzymes to Membrane Proteins

In 2005 the Stoddard and Baker labs conducted thermostabiliza-
tion of the homodimeric hydrolase enzyme yeast cytosine deami-
nase (yCD), which converts cytosine to uracil [52]. Only three
mutations enabled an increase of 10 °C in the melting temperature.
All residues that were more than 4 A from the active site and were
not involved in the dimer interface were subjected to CPD. Half of
the 65 residues were left unchanged following the redesign and half
of the remaining suggested mutations were solvent exposed. The
remaining suggested mutations were experimentally characterized
individually suggesting a triple mutant as the most thermostable
one.
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In 2005 Sauer and coworkers compared positive- and negative-
design strategies for reeingineering a homodimer into a
heterodimer [53]. Using the Stringent Starvation Protein B
(SspB) a/P-fold homodimer as a model system, stability-focused
(positive design) using the DEE search algorithm as implemented
in ORBIT [18] and specificity-focused (negative design) were
applied aiming to reengineer the homodimer into a heterodimer.
While the positive design yielded a more stable heterodimer, only
the incorporation of negative design yielded exclusive hetero-
dimerization. Eight interface residues (four from each subunit)
were subjected to design allowing for ten out of the 20 amino
acids in each position. The authors note that the greatest challenge
was modeling the energetic effects of destabilizing mutations in
competing state. This challenge was approached by capping
unfavorable van der Waals energies as an approximation for confor-
mational relaxation that would alleviate atomic overlaps. Notably,
in 2007 the Mayo lab used ORBIT [18] to design 13 and 11
residues on two monomer variants of streptococcal protein G—f1
domain (Gp1) that were designed to heterodimerize [60]. Of the
24 positions, 15 “core” positions were restricted to seven hydro-
phobic residues and the rest to polar and charged residues. Apply-
ing such hydrophobic patches serves as negative designs
destabilizing the monomer state. This specific design was successful
in shifting a monomer to a dimer, albeit with a low binding
constant. Overall, these studies showed the challenges of PPI
design along with the importance of negative design, even at the
expense of stability.

In 2005 the DeGrado, Saven and Dutton lab de novo designed
a 40-residue redox-active minimal rubredoxin mimic [54]. This is
one of the first b-sheet CPD, let alone with the rubredoxin tetra-
hedral metal-binding motif. The last three strands of the Pyrococcus
Sfuriosus rubredoxin were transformed using a twofold symmetric
axis containing the metal ion. A hairpin motif (tryptophan zipper)
was used to fuse the two sides. Other than the hairpin motif, active-
site Cys, two Gly and an Ile residue, all amino acids were designed
using SCADS [143]. The apoprotein and holoproteins were stable
with 16 Fe(II/III) functional cycles under aerobic conditions.

In 2005 the DeGrado lab applied CPD for a de novo four-helix
bundle protein that selectively binds two nonbiological cofactors
termed DPP-Fe for 5, 15-Di[(4-carboxymethylene-oxy)phenyl]
porphinato iron(III)-chloride [55]. Herein, the apoprotein folds
upon binding the cofactors. The four-helix bundle was designed to
maintain 17-19 A between the metals, His-Fe coordinative inter-
actions, second shell hydrogen-bonding, minimal steric clashes and
D, symmetry with sampling via MC/SA. Then, three rounds of
SCADS [143] sequence calculations were applied to 28 residues.

In 2006 Dmochowski, Saven, and coworkers designed ferritin-
like proteins (Dps) with increasingly hydrophobic cavities [56]. The
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resilience of the self-assembling complex to mutation which intui-
tively should denature the protein is striking. As many as 120
hydrophilic residues were mutated to hydrophobic or small
amino-acids. The Dps complex is a 12-subunit iron warehouse in
which each subunit is a four-helix-bundle with two helices facing
the interior large iron-binding cavity. The SCADS [143] software
extended for symmetric homo-oligomeric quaternary structures
[146] was applied forming Dps3, Dps7, and Dpsl0, each with
three, seven, and ten mutations in each of the dozen subunits.
Not only was the mutation per se taken into account but also
how much each residue is prone to an acceptable mutation.
Amino acids participating in salt bridges within the hydrophobic
core were not subjected to mutagenesis. The mutations increased
the percent of hydrophobic surface within the iron-binding cavity
from 52 % to 86 %. The high melting temperature of the complex
as well as iron-mineralization function were largely unchanged for
Dps3 and Dps3 and even DpslO folded and assembled properly.
Taken together, this study questions the importance of the
hydrophilic surface for proper folding of proteins, let alone protein
complexes; thus opening the door for CPD of hydrophobic surface
regions.

In 2006 Quax, Serrano, and coworkers designed tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL) variants
which initiated apoptosis exclusively via the DR5 receptor [57].
The DR5-selective TRAIL variants represent a reduced binding
promiscuity CPD approach which in this case potentially permits
tumor-selective therapies. The CPD scheme was straightforward
including protein modeling via WHATIF followed by refinement
via FOLD-X. Residues binding to nonconserved positions in the
different four potential receptors were mutated via FOLD-X to all
other amino acids obtaining 2720 models for the 34 designed sites.
The binding energy of the models was used to assess selectivity
yielding seven single-site variants for experimental validation.

In 2006 the Baker lab redesigned a cleavage specificity of the
intron-encoded homing endonuclease I-Msol [58]. The CPD
aimed at changing one base pair in each recognition half site.
The CPD approach used as input the wzld-type crystallographic
structure and considered (in turn) all symmetric base pair changes.
New side chains next to these base pairs were attempted listing the
predicted discrimination energy between the previous and new
recognition sites. The modeling of the DNA-protein interface
is challenging not only due to the highly charged electrostatic
environment possibly requiring bound water molecules, but also
as the binding may involve conformational changes in both binding
constituents. The redesigned enzyme cleaves the new recognition
site ~10,000 more effectively compared to the wild-type protein.

In 2006 Xencor Inc. designed antibody Fc variants with
enhanced Fcy-receptor-mediated effector function [59]. A
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combination of “directed” diversity and “quality” diversity strate-
gies were applied within the CPD scheme of optimizing the IgG Fc
region for Fcy-receptor affinity and specificity. Four positions were
mutated in different combinations. Where structural informa-
tion was available, substitutions that provide favorable interactions
were designed, and where such information was incomplete, calcu-
lations provided a quality set of variants enriched for stability and
solubility. At some positions, only residues with high propensity to
the core, surface and boundary of the protein were allowed, thus
focusing the search space sampled. The designed variants displayed
over 2 orders of magnitude enhancement of in vitro effector func-
tion, enabled efficacy against cells with low levels of target antigens
and resulted in increased cytotoxicity iz vivo.

In 2007 the DeGrado lab designed a TM peptide that specifi-
cally targets a membrane protein [61]. The peptide was named
CHAMP tor Computed Helical Anti Membrane-Protein Peptide.
The TM helices of the a3 and o Pz integrins were the subject of
the design by replacing the p3 subunit with a new designed helix.
The two subunits form a parallel GASg;gp, motif [147] which was
structurally modeled with the f3 subunit was redesigned. Five and
15 template backbones were tested for the design of the CHAMP
against the ayy, and o, helices, respectively. In the inner half of the
membrane only eight residues were considered. Repacking of prox-
imal positions was accomplished with a linearly dampened
Lennard-Jones potential with van der Waals radii scaled to 90 %,
as implemented in PROTCAD [29] and a membrane-depth depen-
dent knowledge-based potential. 10,000 iterations of an MC with
simulated annealing (MC/SA) were applied for the sequence and
rotamer space search and sampling, with the rotamers optimized
using DEE followed by exhaustive enumeration. The new designs
were tested in micelles, bacterial membranes, and mammalian cells.

In 2007 the Kuhlman lab focused on high-resolution design of
a protein loop [62]. Within the Rosetta software package a loop
design protocol was developed. The protocol iterates between
optimizing the sequence and conformation of a loop in search of
low-energy sequence—structure pairs. 10-residue loops were
designed for connecting the 2nd and 3rd strand of p-sandwich
protein tenascin-C. Loop templates were datamined from 142
12-residue loops found in the protein databank (PDB) that super-
impose the backbone atoms of the design target. These backbone
templates were redesigned with many undergoing four to five
mutations. Loops were filtered by searching for solvent accessible
surface area to a 0.5 A radii probe and by searching for unsatisfied
hydrogen bonds. Two of three experimentally tested loop designs
were solved showing similar structures compared to the design
while a third design appeared in a significantly different structure;
thus highlighting the potential for loop design along with
the unique challenge in designing loops.
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In 2007 Lai and coworkers de novo designed a protein that
binds the erythropoietin receptor [63]. The CPD was based
on grafting discontinuous interaction epitopes. The erythropoie-
tin (EPO)—EPO-receptor complex structure was studied; iden-
tifying three key residues in EPO which were searched in the
PDB - yielding 1756 potential scatfold proteins onto which the
keystone residues were grafted. These were filtered for RMSD,
shape-complementarity, packing density, and high buried accessi-
ble surface area yielding 15 potential scaffolds for further analysis.
A fourth mutation was designed to eliminate a steric clash. The
novel triple mutant, composed of an unrelated protein, rat
PLC81-PH (pleckstrin homology domain of phospholipase C-6
1) bound the EPO receptor with a Kp of 24 nM in vitro and gave
an ICsg of 5.7 pM in a cell-based assay.

In 2007 the Mayo lab redesigned a 51-residue homeodomain
aiming at thermostability [64]. Different sequence optimization
algorithms were compared of which two were characterized.
Amino acids were divided into buried and solvent-exposed, and
further restricted at helix-capping sites. MC/SA yielded the
best solution. The successful design had a thermal denaturation
midpoint temperature of >99 °C.

In 2007 the DeGrado, Saven and Roder labs applied CPD for
the de novo design of a single-chain asymmetric diphenylporphyrin
four-helix bundle metalloprotein [65]. An MC/SA protocol was
applied given five constraints: (a) a metal-metal distance of
17-19 A, (b) optimal His to Fe bonding interactions, (c) second-
shell His-Thr hydrogen bonding, (d) minimal steric clashes, and
(e) Dy-symmetry. A previous four-chain design [55] was shortened
by four residues at each end and replaced by loops. A new program,
STITCH, identified loops within a nonredundant PDB set that
superimposed well on five amino acids at the helical ends. Iterative
cycles of SCADS [143] CPD chose the sequence for 100 of the 108
amino-acids, with eight keystone His and Thr residues fixed as
part of the cofactor ligation. The experimentally characterized
single-chain design demonstrated higher stability compared to the
four-chain previous design both apo- and holo-forms with the
latter increasing stability significantly.

In 2007 the Tidor computational lab and the Wittrup experi-
mental lab joined forces to apply CPD for the improvement of
antibody affinity [66]. The iterative CPD cycle focused on electro-
static binding contributions and single mutations. By combining
multiple designed mutations, a tenfold and 140-fold affinity
improvement was engineered to an anti-epidermal growth factor
antibody and to an anti-lysozyme antibody, respectively. Interest-
ingly, this study began by a general CPD approach that was in
general not successful and led to the understanding that for anti-
body designs the calculated electrostatic term (using Poisson-
Boltzmann continuum electrostatics calculations) for binding was
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a better predictor for affinity improvement compared to the total
calculated binding free energy. Thus, a full side-chain conforma-
tional search was maintained but only the electrostatic component
was applied for affinity improvement.

In 2008 the Schreiber and Edelman-Sobolev labs redesigned a
protein—protein interface between TEM1 p-lactamase and its inhib-
itor p-lacatamase inhibitor protein (BLIP) for high-affinity and
binding specificity using a novel method [67]. Their novel
PDBmodDesign method included replacing structural interface
modules with fragments taken from nonrelated proteins and rank-
ing the 107 starting templates with an accurate atom—atom contact
surface scoring function. The resulting high affinity and specificity
affirms their modularity approach.

In 2008 the Dmochowski, Saven and Christianson labs joined
forces to design a human H ferritin protein that will bind noble
metal ions Au®" and Ag ™", reduce the ions and form nanoparticles
within the protein’s cavity [68]. The study followed up on the
ferritin-like protein hydrophobic cavity design [56] and applied a
similar CPD methodology. Here, 192 mutations were designed in
the 24-subunit complex including four external- and four internal-
surface mutations for each subunit. Two His and two Cys on the
external surface were mutated to charged, polar, or small residues.
In parallel, three Glu and a Lys on the internal surface were all
mutated to Cys as an ion-binder residue. Combining positive- and
negative-design this was aimed to promote noble metal ion binding
in the cavity while avoiding such binding on the outside surface as
well as minimizing protein aggregation. Following experimental
difficulties of crystallization with gold ions, Hg?" was used to
probe the metal-thiol interactions. Probably due to decrease in
aggregation, the outer-surface mutations stabilized the protein.
Strikingly, the internal-surface mutations kept this high stability
and exhibited Ag® and Au® nanoparticles upon soaking with their
respective ions. Indeed, the crystal structure proved the CPD
structure and requested function.

In 2008 Handel and coworkers redesigned BLIP to increase
affinity to SHV-1 which unlike TEM (presented in the previous
example), displays micromolar affinity, thus providing space for
affinity improvement [69]. The EGAD design software succeeded
to stabilize the interface by 10- to 1000-fold. The experimental
structures generally agreed with the computational designs, except
for salt-bridges. Additionally, the authors claim that the oft-rotamer
conformational sampling could be improved by adding a short
minimization following the DEE rotamer search.

In 2008 the Saven, Therien, Blasie and DeGrado labs from the
University of Pennsylvania designed nanostructured metallopor-
phirin arrays from coiled coils [70]. Following a previous design of
a D,-symmetric a-helical coiled coil (34 residues for each helix) that
binds two nonbiological porphyrin cofactors [55], the four-helical
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coiled-coil was extended by three-heptad repeats, enabling the bind-
ing of four iron porphyrins. Three charge patterning mutations were
introduced to enforce an antiparallel orientation and two additional
mutations were introduced to improve electrostatic interactions with
the cofactor carboxylates. The resulting four-porphyrin complex was
experimentally characterized. The modular addition of heptad
repeats between the helical capping sections demonstrates the
robustness of the coiled-coil structure, as defined by the Crick para-
meters. This design introduces the feasibility of engineering electri-
cally and optically responsive multiporphyrin arrays.

In 2008 the Baker lab presented two computational enzyme
designs—a group of retro-aldolases [71] and a Kemp eliminase
[72], the latter with Tawfik. Both designs applied a similar scheme
for enzyme design without cofactors [148]. These computational
enzyme designs followed an algorithm presented in 2006, which
was successful in targeting ten different enzymes and identifying
the native site in the native scaffold and ranking it within the top
five designs for six of the ten reactions [149].

The retro-aldolase CPD strategy is described over 12 pages in
the supplementary material of the publication highlighting the
many aspects that must be addressed [71]. These range from the
quantum-mechanical (QM) structural description of the catalytic
sites to the computational and experimental ranking and validation
of the designs. Briefly, composite active-site descriptions of transi-
tion states were applied to generate candidate catalytic sites via
RosettaMatch [150] which fills a hash-table with catalytic amino-
acid rotamers for the proposed catalytic site constraints. The
remaining positions are redesigned to optimize the transition-
state binding affinity using RosettaDesign [134]. Following struc-
tural refinement, the potential designs are ranked based on the total
binding energy to the composite transition state as well as satisfac-
tion of specific catalytic geometry. Designs were filtered if the van
de Waals energetics was too high (>—5 kcal/mol), the binding
pocket was too buried or was not sufficiently accessible. This
CPD scheme resulted in 72 designs of which 32 displayed retro-
aldolase activity of up to 4 orders of magnitude kinetic acceleration.

The 2008 Kemp eliminase CPD by the labs of Baker and Tawfik
[72] achieved a 10° rate enhancement. In vitro evolution further
enhanced /k.,./ Ky by >200-fold. The CPD scheme was similar to
the one of for the retro-aldolase. The successful designs showed
high shape-complementarity with several polar or charged catalytic
residues: out of 59 designs, 39 used Asp or Glu as a general base
while 20 used His-Asp or His-Glu as a catalytic dyad. Such variation
highlights the robustness of the CPD strategy which, in this case,
exhibits variability in the functionally accessible set of catalytic
residues. m-stacking interactions contributed towards stabilizing
the transition state. The collaboration between the CPD approach
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provided by the Baker lab and the directed evolution approach
provided by the Tawfik lab continued with subsequent directed
evolution efforts conducted by Khersonsky et al. [138-140].
Cumulatively, the latter efforts showed that CPD designs are highly
evolvable and can be optimized for catalytic efficiency, reduced
thermodynamic stability (which is often too high in computational
designs), optimization of the catalytic site microenvironment for
the required transition state preorganization, and the presentation
of key changes that provide feedback for deciphering mechanism
and further CPD efforts. While directed evolution is not the focus
of this chapter, the collaboration highlights the need to embed
within the CPD approach other fields in a multiple dimension
feedback approach. Fortunately for the CPD field, this Kemp elim-
inase computational design sparked an array of follow-up research
of which some is highlighted below [92,93, 100, 151 | with the key
kinetic parameters summarized in Table 2.

In 2009 the Baker lab focused on loop remodeling to alter
enzyme specificity [73]. Following benchmark tests on eight native
protein-ligand complexes, a critical loop in guanine deaminase was
redesigned such that it became 100-fold more active on ammelide
and 25,000—fold less active on guanine. The two to five residue
loop modeling succeeded in altering specificity. Nevertheless, it
should be noted that the absolute activity towards the new sub-
strate (kea/ Ky = 0.15 st Mfl) is still 7 orders of magnitude
lower than the activity of the wild-type enzyme towards its innate
substrate; highlighting the comprehensive evolution of enzymes
towards their functionality, which is likely to include far more
than one loop.

In 2009 the Shifman lab applied CPD for increasing the binding
specificity of calmodulin 900-folds [74]. Relying on the promiscu-
ous binding of calmodulin to both CaM-dependent protein kinase
IT (CaMKII) and calcineurin (CaN), calmodulin was optimized to
bind the former. The ORBIT-based [18] CPD emphasized inter-
molecular interactions and showed that the specificity increase was
largely due to a decrease in binding to CaN.

In 2009 the Keating lab applied a computational framework for
desigin of protein-interaction specificity allowing for CPD of selec-
tive basic-region leucine zipper (bZIP) binding peptides [75]. The
20 bZIP transcription factor family share high sequence similarity
challenging specificity design. As shown by protein arrays, the CPD
succeeded in designing selectivity by optimizing the affinity and
specificity trade-oft e.g. by sacrificing the stability score and by
introducing negative design to disfavor complexes with undesired
bZIP competitors. The bZIP microarray assay benefits from revers-
ible folding of short coiled coils, and data from previous array
measurements of many bZIP transcription factor pairs were critical
for developing predictive models. Their CPD framework is denoted
CLASSY for cluster expansion and linear programming-based
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analysis of specificity and stability [75]. The CLASSY multi-state
CPD applies integer linear programming followed by cluster expan-
sion in which a structure-based interaction model is converted into
a quick-to-evaluate sequence-based scoring function. Negative
design is integrated by applying CLASSY to the design-target and
to design-off-target states.

In 2009 the Baker lab conducted CPD on the monomeric
homing endonuclease I-Anil which cleaves at the center of a
20-base-pair DNA target site [76]. The pseudo-symmetrical
enzyme’s N- and C-terminal domains bind to the left (—) and
right (+) DNA target sites in very different manners as reflected
by causes of CPD-based altered specificity: specificity on the (—) side
was achieved by modulating single-turnover conditions (Ky;) while
that in the (+) side was achieved by modulating turnover number
(kcar). The Rosetta-based CPD scheme tailored for DNA—protein
interactions relied on their previous study [58]. Loop rebuilding
was used to model backbone shifts. In a feedback loop, the best
designs were reverted position by position to the wild-type sequence
to identify mutations that did not contribute significantly to the
energy or specificity. Multi-state design [40] to assess the specificity
offset between the altered and wild-type DNA target structure.
Further, a genetic algorithm was applied to evolve sequence for
preference of the target state compared to competitor states.

In 2009 the Donald lab conducted computational structure-
based redesign of the phenylalanine adenylation domain of
the nonribosomal peptide synthetase enzyme gramicidin S synthe-
tase A (GrsA-PheA) for a set of noncognate substrates for which the
wild-type enzyme has little or virtually no specificity [77].
Here the aim was increased specificity with the leading design
exhibiting 1/6 of the enzyme /wild-type substrate activity. The K*
algorithm [152] was applied on the active site, a generally consid-
ered optimized region which is not the classical target for most
CPD attempts. The double mutant selected showed a 19-fold
increase of k../K,, for the new Leu substrate and a 27-fold
decrease of this measurable for the wild-type Phe substrate.
On top of two active-site mutations, so called “bolstering” muta-
tions were designed outside the active site aiming to stabilize the -
active-site mutant. Indeed, such mutations gave an additional
twofold increase in k.. /K, for the Leu substrate. Similarly, further
designs for charged substrates were also successful experimentally.

In 2010 the DeGrado, Saven and Therien labs applied CPD for
the design of an A,B; four-helix bundle that selectively binds two
emissive abiological (porphinato)zinc chromophores of DPP-Zn
[78]. The positive and negative ligand-directed CPD is selective
and did not bind related chromophores such as DPP-Fe*™.
To achieve the selective Zn-cofactor binding, a pentacoordinate
environment with one His ligand was designed, yielding C, sym-
metry. One peptide chain included a His ligand while the other
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included a Thr ligand; thus applying a negative design element that
allows only the heterotetramer to bind the chromophore. SCADS
[143] was applied for the recursive design of 62 variable positions.
Cys (potentially making disulfide bridges), His (potentially ligand
binding) and Pro (potential helix-breaker) were excluded at all
positions, Met at interior positions. Three sequential rounds of
sequence CPD were applied and the resulting design was validated
experimentally.

In 2010 the Baker lab altered the cleavage specificity of the
I-Msol homing endonuclease for three contiguous base pair
substitutions [79]. Using a CPD scheme previously applied to the
protein [58, 76], concerted design for all simultaneous
substitutions was more successful than a modular approach against
individual substitutions, highlighting the importance of context-
dependent redesign and optimization of protein-DNA interac-
tions. In a CPD and structure determination feedback loop, a
structure of the CPD effort and its associated unanticipated shifts
in DNA conformation was utilized to create an endonuclease that
specifically cleaves a site with four contiguous base pair
substitutions.

In 2010 the Mayo lab changed the emission wavelength of red
fluorescent protein by CPD [80]. Herein, CPD was combined with
small experimental combinatorial libraries of mCherry mutants.
The library design procedure takes as input a list of scored
sequences, and two sets of constraints: a list of allowed sets of
amino acids, and a range of desired library sizes. The algorithm
generates a list of the combinatorial libraries that satisfy these
constraints, and then ranks the libraries by the degree to which
they reflect the energetic preferences present in the list of scored
sequences. Thus, CPD was used to perform an in silico prescreen to
eliminate sequences incompatible with the protein fold and gener-
ate combinatorial libraries amenable to rapid experimental screen-
ing. The successful 20-26 nm red-shifted mutants found
included targeted stabilization of the excited state via H-bonding
and z-stacking interactions as well as destabilization of the ground
state via hydrophobic packing. Overall, 13 residues were involved in
the design.

In 2010 Warshel suggested that the current computational
enzyme design approaches reflect incomplete understanding of
the details of the enzymatic system and/or inaccurate modeling
by the CPD algorithm [151]. Using his empirical valence bond
(EVB) simulations of the Baker and Tawfik Kemp eliminase [72],
his group showed that the attempt to predict the proper transition
state stabilization and related overall preorganization effect are not
likely to be achieved by gas phase models. Warshel showed that the
transition state design displays a charge distribution that makes it
hard to exploit the active site polarity, even with the ability to
quantify the effect of different mutations. Further, the directed
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evolution led to reduction of the solvation of the reactant state
rather than to the expected transition-state stabilization applied by
naturally evolved enzymes. This study highlights the need to care-
fully design the preorganized environment such that it will exploit
the small changes in charge distribution during the formation of
the transition state.

In 2010 the DeGrado, Therien, Blasie and Walker labs de novo
designed a TM diporphyrin-binding protein complex [81].
The design, termed PRIME (PoRphyrins In MEmbrane), positions
two non-natural iron diphenylporphyrins (Fe** DPP’s) sufficiently
close to provide a multicentered pathway for TM electron transfer.
Unlike previous TM to soluble solubilization efforts, here the
opposite path was applied with a four helix D,-symmetrical bundle
adapted for the membrane milieu. First, keystone cofactor-binding
residues (His and Thr) were designed within an idealized four-
porphyrin binding soluble four-helix bundle backbone template
[70]. Then, an all side-chain DEE followed by MC/Self-consistent
mean field (SCMF) approach was applied to explore the reduced
search space along with the Lazaridis implicit membrane solvation
(IMM1). The 24 positions were divided to four categories (buried,
mostly buried, mostly exposed and completely exposed). These
were given different degrees of side-chain conformational sampling
with conformations selected from a conformer library. Models were
ranked by oligomerization energy, i.e. the difference between the
energy of the complex and that of the monomeric state (a mem-
brane solvated helical state, with relaxed side chain conformations),
and the lowest energy model was extensively experimentally char-
acterized validating the design.

In 2010the Kuhlman lab redesigned the binding of hyperplastic
discs protein to P21-activated kinase 1 kinase (PAK1) domain [82].
The Iterative Rosetta-based DDMI (Dock, Design, Minimize Inter-
face) protocol was used for docking the scatfold on a chosen hotp-
sot. Next, loops of an MC-based sequence optimization and
backbone optimization by minimization were conducted. This
resulted with potential redesigned interfaces that were filtered by
knowledge-based criteria including binding energy density and the
number of unsatisfied polar interface residues. Of six experimentally
characterized designs, two aggregated and the rest had binding
affinities of up to 100 pM.

In 2010the Mayo lab combined CPD with experimental library
screening demonstrating the successful synergism of the two
approaches for thermostabilization of core positions of GfI, the
Bl domain of Streptococcal protein G [83]; a protein previously
designed by the lab to dimerize [60]. The lab’s previous Fast and
Accurate Side-chain Topology and Energy Refinement (FASTER)
CPD software for single-state design was expanded here for the
multistate design case. The combination enables the application of
multistate design methods to large conformational libraries,
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transformation of semi-rational CPD results to combinatorial
mutation libraries, and the experimental stability determination of
the designed libraries. The novel protein library design method
took into account the library size and possible sets of amino-acids
to best reflect the experimental results. The library design proce-
dure was called CLEARSS for Combinatorial Libraries Emphasiz-
ing And Reflecting Scored Sequences. Five experimental
crystallographic and NMR structures were used, each resulting in
a 24-member design library. The results enabled to characterize the
sequence space available for the multistate design.

In 2010 the Anderson and Donald lab applied CPD for the
prediction of drug resistance mutations in methicillin-resistant
Staphylococcus aureans (MRSA) dihydrofolate reductase (DHFR)
[84]. Using ensemble-based CPD algorithm K* which includes
DEE search followed by energy minimization [152], potential
resistance mutations were predicted. The process incorporated
positive design to maintain catalytic function and negative design
to interfere with binding of a lead inhibitor. Interestingly, the wild-
type sequence was ranked low for both the natural ligand and the
inhibitor; suggesting that numerous sequences may have improved
binding to these ligands. Four of the ten top-ranking designs were
experimentally evaluated, of which three were shown to maintain
activity while lowering binding affinity 9- to 18-tfold for the inhibi-
tor. The top-ranked double-mutant was crystallized; validating the
design by showing reduced hydrophobic interactions in one locus
and introducing a steric bulk in another.

In 2011 the DeGrado lab applied CPD to design virus-like
protein assemblies on carbon nanotube surfaces [85]. The surface
properties and symmetry were used to define the sequence and
superstructure of the designed surface-organizing peptides.
Single-walled carbon nanotubes were covered with virus-like coat-
ing converting the smooth surface into a highly textured assembly
with long-scale order, thus capable of e.g. directing the assembly of
gold nanoparticles into helical arrays along the nanotube axis.
Three selection rules were applied for the design, defining the
intrinsic recognition motif'and its packing into higher-order assem-
bly in accord with the long-range order of the underlying surface.
First, a group compatible with the target surface was identified, in
this case avoiding a hydrophobic motif'and using small residues Gly
or Ala. Second, intersubunit packing was defined in accordance
with the surface symmetry. The cylindrical nanotube suggested
rotational-screw symmetry in the form of coiled coils with a radius
of ~9 A defining five to seven subunits. Third, designability of the
coiled coils was assessed by searching existing tertiary motifs. Four
designs were tested, sequences based on an existing protein
(domain swapped dimer) and a de novo coiled coil, each with Gly
or Ala as the nanotube-facing residue. Adding gold particles to the
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outer surface enabled transmission electron microscopy (TEM)
validation.

In 2011 the Baker lab took the challenge of PPI and designed a
protein that binds to the conserved stem surface of influenza
hemagglutinin [86]. The strategy focused on the design of shape-
complementarity with hot-spot-like residue interactions, with the
latter serving as anchors to the former. 865 potential scatfold
proteins were searched to support the disembodied hot-spot resi-
dues and the shape complementarity. The coarse-grain binding
modes were then refined by docking followed by scaffold redesign.
Selected designs included 51 and 37 designs with two and three
hot-spot residues, respectively. Designs that presented binding
were subjected to directed evolution for increased binding; result-
ing in mutations supporting interactions of filling a void in the
binding interface, favorable interactions in the unbound state,
electrostatic complementarity, and desolvation. Two binding pro-
teins displayed nanomolar affinity.

In 2011 the Baker lab applied a motif-based method to
computationally design protein—protein complexes with native-like
interface composition and interaction density as exemplified on the
Prb-Pdar heterodimer [87]. The tight dimer was further optimized
by directed evolution which surprisingly rotated one of the complex
partners by 180°, showing that the specificity of the binding patch
was not sufficient yet the binding hot-spot was sufficient to facilitate
the binding within a noncrowded pure protein environment. The
motif-based approach focused on a key polar aromatic residue (Trp or
Tyr) which facilitate packing and hydrogen bonding followed by
shape-complementarity. Here, the ankryn repeat which naturally
associates with an array of proteins served as one scaffold (redesigned
to Pdar). Each of several ankryn repeat protein structures was paired
with a set of 37 structurally diverse thermostable proteins applying a
surface feature-matching approach, PatchDock [153], followed by
rigid-body docking to generate a set of bound orientations with
shape-complementarity. The interface design started from screening
a well-packed hydrogen-bond containing aromatic pair followed by
expanding it to include a hydrophobic first shell of residues and a
polar secondary shell of residues protecting the hydrophobic patch
from the solvent. RosettaDesign was used to optimize residue iden-
tities at the interface periphery holding the hydrophobic inner
layer fixed. Further, global long-range electrostatic complementarity
was aimed at by biasing one partner to acidic residues and the other to
basic ones. Finally, natural parameterizations of native interfaces, e.g.
size, packing, void volume, and lack of steric clashes were used to filter
the suggested designs. Notably, negative design was not applied in
any step, possibly facilitating the 180° flip of binding orientation in an
experimentally validated pair. Twelve designed pairs were experimen-
tally screened of which five displayed a signal >2-fold over nonspecific
binding. Finally, a combination of phage and yeast display was applied
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to evolve tighter binding of the leading pair. Two mutations intro-
duced in this step improved binding from a K; of 130 nM to 180 pM.

In 2011 the Kuhlman lab designed a symmetric homodimer
using B-strand assembly in which two solvent-exposed strands were
designed to form an antiparallel f-strand pairing [88]. Looking for
solvent exposed f-strands, automatic homodimer docking (similar
to the DDMI protocol) was applied with the p-strand part designed
with five rounds of symmetric sequence optimization and minimi-
zation at the interface; searching for an >850 A? buried interface
and minimizing unsatisfied buried polar atoms. Of the 5500 struc-
tures scanned, 1100 had an exposed B-strand. One structure, y-
adaptin was chosen. Two mainly hydrophobic and two mainly polar
interface homodimers were characterized of which the former were
more successful emphasizing the difficulty in designing hydrogen-
bond networks. One promising structure fdimerl was structurally
resolved showing that the design was successful.

In 2011 William Schief and coworkers applied CPD with flexi-
ble backbone remodeling and resurfacing for designing antigens
[89]. In this intriguing approach, an HIV 4E10 epitope structure
was implanted onto a new scaffold enabling antigen optimization.
The remodeling refers to replacing a backbone segment by a new
design. The resurfacing refers to redesigning the antigen surface
outside the target epitope to obtain variants that maintain only the
epitope. Briefly, their six-stage protocol includes segment selection
(length, secondary structure), de novo backbone CPD of the seg-
ment followed by sequence design and minimization. Next, designs
that did not meet energy, packing, and unsatisfied polar-atoms were
filtered and surface hydrophobic residues were replaced by polar
ones. Three designs of 16—-17 remodeled segment were experimen-
tally characterized showing a viable epitope while maintaining sol-
ubility and binding affinity.

In 2011 Korendovych and DeGrado applied an alternative
minimalist approach to the Kemp eliminase design challenge [92].
Rather than conducting a comprehensive design of a full protein
from the QM-optimized active site to the rest of the enzyme, they
applied a single mutation in a minimal 75-residue allosterically
regulated catalyst, termed AlleyCat (for ALLostEricallY Controlled
cATalsyt), with activity (key/Ky = 5.8 & 0.3 M~! s71) compara-
ble to the original [72] Kemp eliminase design. The rationale was
that protein folding energetics can dehydrate a carboxylate side-
chain rendering it from the weakly basic aqueous state to a strongly
basic dehydrated state. The computational design scheme applied
on calmodulin C-terminal domain included in silico single-site Asp
or Glu mutagenesis scanning of the C-terminal domain cavity,
which naturally binds aromatic side-chains, suggesting that it can
bind the benzisoxazole substrate. Low energy models including the
point mutation which facilitated a cavity were next docked to the
substrate. This determined whether the C-H hydrogen would be
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appropriately positioned in the Michaelis complex. Finally, the Glu
carboxylate was virtually fused to the substrate and the resulting
“superrotamer” was optimized. Alternative mutations were used as
control.

In 2011 the Weiss and Saven labs applied SCADS [143] to
design a thermostable terpene synthase, an enzyme involved in
the synthesis of antibiotics, flavorings, and fragrances [90]. A
dozen mutations were selected for design in the tobacco 5-epi-
arisolochne synthase (TEAS) for the catalysis of carbocation cycli-
zation. All mutations were >12 A from the substrate binding site so
as to minimize an effect on the functional site. Amino acids iden-
tities were prepatterned at the mutated sites based on the number
of CP atoms within 8 A of the amino acids: for residues with 0-6 Cp
atoms were constrained to charged, polar, and small residues. For
those with 7-8 Cp atoms, aliphatic and aromatic residues were
added to the potential mutations enabling mutation to all residues
except Cys, Pro, His, and Thr. Last but not least, buried residues
with 10 or more Cp atoms were allowed to mutate to eight rela-
tively hydrophobic residues. Mutations included both buried and
surface-exposed positions with the latter eliminating surface-
exposed hydrophobic patches and introducing salt bridges. The
design retained activity in 65 °C and denatured in 80 °C, which is
twice the temperature relative to the wild-type.

In 2011 the Nanda lab computationally designed an A:B:C-
type heterotrimer collagen [91]. They applied positive and negative
design constraints. A compositional constraint was used where all
triplets in the design contained Pro or hydroxy-Pro. The energy
score was constrained to allow the melting temperature to be above
26 °C. Specificity was enforced by optimizing the energy gap
between the design and the best competing stoichiometry. The
resulting empirical design displayed two of the nine available stoi-
chiometries (B:2C and 2B:C). The ABC design indicated multiple
species (due to permutations) which were removed upon increasing
the salt concentration to 100 mM.

In 2012 several labs from the University of Pennsylvania and
University of Pittsburgh applied Saven’s SCAD CPD software to
produce a water-soluble TM domain (al subunit) of the nicotinic
acetylcholine receptor [94]. The template used for the CPD was a
4-A low-resolution cryo-electron microscope (EM) structure in
which hydrophobic residues with >40 % exposure to the mem-
brane region were redesigned using a molecular mechanics force
field entwined with an energy function that constrained the average
hydrophobicity of surface-exposed residues to that expected for an
average soluble protein of a similar size. In order to avoid spectral
over-crowding in NMR spectra used to solve the structure, residues
which were not highly favorable in a given site underwent an
additional round of CPD with an additional constraint imposed
so as to increase sequence diversity. In addition, a polyglycine linker
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was designed between the C-terminus of helix-4 and the N-
terminus of helix-1 using the loop builder in MODELLER [154].
The design was structurally resolved by NMR displaying high
resemblance to the TM domain of the bacterial pentameric
ligand-gated ion channel (GLIC); demonstrating the robustness
and general applicability of the CPD scheme. Two conformations
were resolved with overall dynamics that may be due to the dynamic
loops. Moreover, anesthetics were bound to the same residue as in
the bacterial GLIC validating the functionality of the solubilized
protein.

In 2012 Baker and coworkers redesigned a mononuclear zinc
adenosine deaminase metalloenzyme for organophospate hydroly-
sis of the Rp isomer of a coumarinyl analog of the nerve agent,
cyclosarin [95]. First, a set of mononuclear zinc enzyme scaffolds
with at least one open coordinate state was extracted from the PDB.
The open coordinate state was utilized to ensure that structural zinc
is excluded from the set. Previous gas-phase quantum-mechanical
calculations of organophosphate hydrolysis were used to construct
models of the reaction transition state bond lengths and angles.
RosettaMatch [150] was used to search for hydrogen-bonding
interactions to the phosphoryl oxygen, the nucleophilic hydroxyl
moiety, and the leaving group oxygen. Next, RosettaDesign was
used for shape-complementarity interactions to the transition state.
These parameters along with the presence of a docking funnel
timed the results to 12 potential proteins, of which a
redesigned adenosine deaminase hydrolyzed the substrate
7-hydroxycoumarinyl phosphate (DECP). The eight-mutation
design exhibited activity that was sevenfold higher than that of
the buffer background. Directed evolution at eight positions
increased activity kinetics to levels identical to the wild-type
deaminase with over 140 catalytic turnovers per enzyme and high
stereospecificity. The directed evolution improvement of k., was
post factum realized as an increase in the basicity of an active site
Glu residue.

In 2012 the Schief lab followed up on their previous epitope
grafting research [89, 155] and applied CPD with Rosetta to
design a new 2F5 HIV epitope with improved biophysical charac-
teristics followed by transplanting the linear epitope onto different
scaffolds [96]. Here, the epitope design used side-chain grafting
while backbone-grafting was applied to transplant the design onto
the new scaffold. Potential scaffolds were identified by searching
the PDB for the core Asp-Lys-Trp sequence of the epitope. Side-
chain grafting was conducted by binding interface optimization
followed by sequence design for epitope accommodation and
removal of extraneous interfacial interactions. The latter was facili-
tated also by initially changing the identity of all non-interacting
scaffold residues to glycines. During the automated CPD, residues
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within 4 A of the epitope were allowed to change to any non-
cysteine residue while other residues were allowed to change to
small residues Gly, Ala, Ser, or Thr. For the backbone grafting, both
N-terminal to C-terminal and C-terminal to N-terminal were con-
sidered with a 3 A-RMSD threshold of the epitope to the scaffold
set as an initial filter followed by a steric-clash filter. Loop
closure utilized a Rosetta low-resolution scoring function, cyclic
coordinate descent (CCD [156]) and MC sampling. Next, a
high-resolution scoring function was applied to catch problematic
conformations. Finally, a full-atom refinement was applied. For two
of the three cases tested experimentally, binding to the antibody
was increased 9- and 30-fold compared to side-chain grafting alone.

In 2012 Merski and Shoichet applied an alternative minimalist
approach by engineering a Met102 — His mutation to the Leu99
— Ala cavity in T4 lysozyme [93]. Here, CPD was applied to
engineer subsequent mutations that increased activity fourfold to
kea/ Ky = 1.8 M ™! min~!. The absence of ordered water or
hydrogen bonds and the presence of a common catalytic histidine
base in complexes of the enzyme with product analogs facilitated
detailed analysis of the reaction mechanism and its optimization.
Notably, in this design some of the stabilizing mutations followed
previous studies on the T4 lysozyme showing that deep knowledge-
based understanding of the template, whether theoretical or exper-
imental, is key to the design efforts. In this iterative approach the
first designs had low stability of AAG = ~—7 kcal/mol relative to
wild-type T4 lysozyme while subsequent designs increased stability
to AAG = ~—2 kcal/mol with a significant increase in catalytic
activity.

In 2012 the Kortemme lab applied CPD to control protein
signaling by designing a GTPase/guanine nucleotide exchange
factor (GEF) orthogonal (non-cross-reacting) pair [97]. A new
interaction was designed while maintaining correct interface with
existing machinery. Integrating such a new protein pair into exist-
ing cellular circuitry requires consideration of certain design cri-
teria: Not only must the redesigned GTPase be activated by its
redesigned GEF partner, but it must also be protected from inad-
vertent activation by the wild-type GEF and all other endogenous
GEFs. Further, the redesigned GTPase must also preserve interac-
tions with both upstream regulators and downstream effectors.
Here, the known interface between the GTPase Cdc42 and ITSN
(GEF) was used as a template for the new design. Computational
alanine scanning was used followed by backbone design using the
computational second-site suppressor protocol [49]. These simula-
tions identified substitutions in one protein that are significantly
destabilizing to the complex formed with the wzld-type partner but
can be compensated for by complementary changes in the partner.
Flexible backbone CPD used RosettaBackrub [157] and the
robotics-inspired local loop reconstruction method for peptide
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chains, called kinematic closure (KIC) [158]. One hundred result-
ing models were used as a backbone ensemble for interface redesign
using one interaction pair as an anchor followed by backbone
diversification. Then, soft and hard repulsive forces were applied
iteratively aiming at modeling conformational changes that initially
appear unfavorable but may be accommodated by subsequent
refinement. The experimentally validated design was proven struc-
turally and functionally. The interaction is activated exclusively by
the engineered cognate partner while maintaining ability to inter-
face with other GTPase signaling components in vitro. The orthog-
onality was also shown in mammalian cells.

In 2012 the Montelione and Baker labs applied new rules for
designing ideal protein structures applying CPD for the design of
five different folds [98]. Secondary structure connectivity rules were
derived from simulation and from datamining available structures.
For connecting two f-strands, 2- and 3-residue loops prefer L-
hairpins while 5-residue loops give rise to R-hairpins. For connect-
ing a p-strand to a a-helix, a parallel orientation is preferred for 2-
residue loops while an antiparallel one is preferred for 5-residue
loops. For the reverse connectivity (af), the general preference is
for parallel connectivity, especially for short 2-residue loops and
longer loops providing helix-capping. Similar rules were applied
for connecting three secondary structures. Negative design was
applied for local interactions and for the edge of f-strands, the
protein surface and high core packing. Five new folds were
designed, almost all with short 2- and 3-residue loops, 7-residue
B-strands, and 18-residue a-helices. Ab initio simulations of
200,000-400,000 structure predictions were performed to map
the folding energy landscape, selecting 10 % with well-funneled
landscapes. Five folds were experimentally determined displaying
1.1-2.0 A RMSD as compared to their respective designs.

In 2012 Fallas and Hartgerink applied CPD for the design of
self-assembling, register-specific collagen heterotrimers focusing
on sequence-specific axial salt-bridges [99]. A collagen composed
of three distinct chains can trimerize in 27 unique combinations.
Axial rather than later contacts, stabilize the heterotrimeric collagen
target state. The energy score includes a component for the differ-
ence between the number of ionizable residues and the number of
salt-bridges which was searched using a genetic algorithm. An
automated sequence selection algorithm was successtul as it bal-
ances between destabilization induced on triple helical assemblies
by changing conformationally restricted imino acids (Pro) to ioniz-
able residues and the stabilization conferred on the formation of
axial interstrand ionic interactions. For each mutation, the gap
between the target state and competing states was computed for
all 27 states. Experimental validation showed that this minimalist
function is sufficient, though could be optimized with the addition
of components such as electrostatic repulsion and specific local
energetic contributions.
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In 2012 the Mayo lab published an interesting story of applying
an iterative stepwise approach to computational enzyme design of
Kemp eliminases termed HG-1, HG-2, and HG-3[100]. The paper
highlights the evolution of the CPD process with increasing success
following careful analysis of the result in the previous round, an
approach named the protein design cycle [141]. The motivation for
this study followed on the study of Warshel [151] showing that the
Kemp eliminase design of Baker and Tawfik [72] was not an ideal
enzyme and required a “shotgun” approach of selection, not to
mention benefiting from én vitro evolution. Interestingly, for the
case of HG-3, 17 rounds of directed evolution produced an enzyme
which accelerated the reaction by 6 x 10%-fold, thus approaching
natural enzyme rates [101]. The directed evolution optimized
substrate-enzyme shape-complementarity, substrate-catalytic base
(Aspl27) alignment and, above all, stabilization of a negative
charge in the transition state which emerged over the course of
the evolution, reminiscent of the serine-protease oxanion hole.

In 2012 four labs from four countries (Grzyb, Nanda, Lubitz,
and Noy) joined forces to compare computational and empirical
design of iron-sulfur cluster proteins [102]. Both approaches suc-
cessfully yielded a cluster-binding helical bundle. The CPD of a
several coiled coil iron-sulfur clusters (CCIS) aimed at increasing
stability of the reduced state of the [4Fe-4S] cluster by improving
packing, helix propensity, oligomerization prevention (by changing
surface net charge), and charge pairing optimization. Each of these
aims was tested in a different design. Structural modeling was
conducted by multiple-threading alignment within I-Tasser
[159], and CPD was conducted using ProtCad [160] using the
metal-first approach [161]. All CCIS designs were helical. The
design focusing on stabilizing the iron-sulfur cluster increased
helicity upon binding the cluster, showing the success of the design
within a marginally stable protein. In this case, attempts to improve
the CPD by intuitive modifications had limited success as to
improved stability of the [4Fe-4S] stability over redox cycling
suggesting that a different backbone scaffold should be attempted.

In 2012 the Saven and DeGrado labs applied CPD for design-
ing a protein crystal [103]. A three-helix coiled-coil was designed
de novo to form a polar and layered P6-space group crystal. An
ensemble of crystalline structure models consistent with the
required space group was constructed of which designable struc-
tures were datamined. These include minima structures in the
sequence-structure energy landscape. Within the 26-residue pep-
tide forming the Cz-symmetry coiled coil, the eight interior posi-
tions (2 and 4 in the heptad repeat) were hydrophobic Val and Leu
residues. The other 16 amino acids (not including Pro and Cys)
were allowed to be positioned in other places. 19,200 structures
were designed to construct a grid over R and 6, representing the
inter-protein distance and the angle of rotation around the
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superhelical angle, respectively. The final design included a par-
allel GX3G motif interfacing the coiled-coil interhelical contact
and an antiparallel GX3GX3A motif between the coiled coils.
Exploiting the symmetry of the honeycomb-like space group,
the resulting structure had sub-A RMSD relative to the designed
model.

In 2012 the DeGrado lab altered the function of a de novo Due
Ferri four-helix bundle from catalyzing the O,-dependent two-
electron oxidation of hydroquinones to selectively catalyzing
N-hydroxylation of arylamines [104]. This was conducted by
remodeling the substrate access cavity and by introducing an addi-
tional His ligand to the metal-binding cavity. Further second- and
third-shell CPD was applied using the Molecular Software Library
(MSL [162]) to stabilize the catalytic core. The resulting design
had a 10°fold rate enhancement towards the altered function
relative to the previous one.

In 2013 the Hahn and Dokholyan labs applied CPD for the
rational design of a ligand-controlled protein conformational
switch [105]. Their unique topology design of a rapamycin-
regulated switch, denoted #niRapR, was utilized as a src kinase
activator. A high-affinity binding pocket of FK506-binding protein
and FKBP12-rapamycin were used with the two proteins connected
by a double linker. The first 20 residues of FKB12 were removed
making the N- and C-terminii close in space for insertion of the
regulatory domain to the other protein. The conformational
switching was assessed by replica-exchange and equilibrium discrete
molecular dynamics.

In 2013 the Therien, Saven and DeGrado labs joined forces and
computationally de novo designed a protein that selectively binds a
highly hyperpolarizable abiological chromophore [106]. The 109-
residue four-helix-bundle was designated SCRPZ-1 and SCRPZ-2 for
the dimeric and monomeric form, respectively. The protein binds
RuPZn, a hyperpolarizable super-molecular chromophore that
features highly conjugated (porphnato)zinc and (poly-pyridyl)
ruthenium. The antiparallel four helix bundle was designed to
accommodate the size of the chromophore and ligate the metal
ions. Loops for connecting the helices were selected from natural
proteins and spliced to accommodate the structure. The SCADS
[143] software was used in two rounds first placing the keystone
residues and then the other positions. 17 residues were allowed in
the helices. His and Cys were precluded as a negative design
approach to avoid unwanted metal ligations and disulfide bonds,
respectively. Likewise, Pro was precluded from the helices to avoid
unwanted kinks. For SCRPZ-2 the surface was then redesigned to
decrease hydrophobic patches and incorporate interhelical salt
bridges to increase bundle stability. A third design included Cys,
enabling binding onto functionalized silica surfaces. The protein
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structure, stability, and nonlinear optical functional elements were
proven with an array of experimental methods.

In 2013 the Liu and Saven labs applied CPD for the design of a
solubilized G-protein coupled receptor (GPCR)—the p-opioid
receptor [107]. The pain and addiction receptor underwent 53
mutations on the exterior surface solubilizing it completely without
loss of structural characteristics and antagonist (naltrexone) bind-
ing affinity. Interestingly, the CPD was not conducted on a high-
resolution known structure but rather on a comparative model
using the B2 adrenergic receptor as a model with the subsequent
structure of the murine p-opioid receptor validating the model.
Amino acids with >40 % solvent accessible surface area that were
within the TM region were targeted for redesign within the SCADS
framework [ 143] and the previous solubilization protocol [38]. To
account for solvation effects, an environmental effective energy was
employed based on the local density of Cg atoms of each residue
and parameterized using a dataset of soluble proteins having up to
288 residues, the size of the TM domain of the targeted receptor. In
2014 five labs from the USA and South Korea (Johnson, Lieu, Saven,
Park, Xi) joined forces and implemented this solubilized opioid
receptor within a graphene field effect transistor (GRET) biosensor
[108]. The receptor exhibited high sensitivity and selectivity for an
opioid receptor antagonist (naltrexone), with an impressive detec-
tion limit of 10 pg/mL. The approach is general and can be applied
for any GPCR, the family of proteins which form most drug targets
and which suffers from experimental challenges following their
intrinsic dynamics and embedment in the membrane.

In 2013 Baker and colleagues applied CPD for the design of a
de novo lysozyme inhibitor [109]. Unlike the dock and design
approach, e.g. the CPD of a weak affinity binder for PAK1 [82],
here a hot-spot centric CPD approach was applied. This
approach was previously applied to design proteins that bind the
erythropoietin receptor [63] or the influenza hemagglutinin [86].
Here, the challenge included targeting deeply recessed residues
within the charged active site of hen egg lysozyme (HEL). First a
dock-and design approach was pursued: Coarse-docking was con-
ducted on the HEL active site from a library of scaffold followed by
several rounds of refined docking using RosettaDesign. Designed
potentially binding proteins were analyzed as to binding energetics,
shape-complementarity, packing, and size, aiming at measurables
similar to native HEL complexes. The top 24 designs were dis-
played in a yeast library assessing binding affinity and specificity.
Interestingly, the top-binder appeared to bind via a patch that is
different than the one designed computationally, as evident from
error-prone PCR affinity maturation which yielded affinity increas-
ing mutations in other regions. Following these rarely reported
negative results, a hot-spot centric approach was applied: An exist-
ing HEL complex was studied with computational alanine scanning
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finding residues significantly contributing to binding and targeting
active site residues. The two binding residues (Arg and Tyr) were
held fixed and scaffolds were docked on them using PatchDock
[153] followed by RosettaDock refinement. The two binding resi-
dues were transplanted on the scaffold with the aid of rigid-body
minimization and the surrounding residues were designed with
RosettaDesign. The top 21 designs were experimentally tested for
affinity and specificity and the top design was optimized by error-
prone PCR in a yeast display framework. From analysis of the best
binder displaying low nanomolar affinity, it was concluded that
specific interactions across a rather large interface are pivotal. In
addition, it seems that the directed evolution experimental
approach corrected poor hydrogen-bonding and electrostatic
repulsion that was not sufficiently optimized by the CPD, suggest-
ing room for algorithmic improvement.

In 2013 Baker and coworkers applied CPD for the de novo
design of selective binders to the steroid digoxigenin (DIG), an
example of a small molecule to which a protein binder can be
designed [110]. The CPD of small molecule binders is challenging
and indeed only two of 17 designs bound the molecule. Deep
sequencing and library selections optimized the binding to pico-
molar levels. Three characteristics of naturally occurring binding
sites were aimed: shape complementarity, specific energetically
favorable hydrogen-bonds and van der Waals protein-ligand inter-
actions as well as a structural pre-organization in the unbound
protein state, which minimized entropy loss upon ligand binding.
RosettaMatch [150] was used to identify backbone constellations
in 401 protein scaffold structures where a DIG molecule and side
chain conformations interacting with DIG in a predefined geome-
try could be accommodated. Two successive rounds of sequence
design were used. The purpose of the first was to maximize binding
affinity for the ligand. The goal of the second was to minimize
protein destabilization due to aggressive scaffold mutagenesis while
maintaining the binding interface designed during the first round.
During the latter round, ligand—protein interactions were up-
weighted by a factor of 1.5 relative to intra-protein interactions to
ensure that binding energy was preserved. No more than five
residues were allowed to change from residue types observed in a
multiple sequence alignment (MSA) of the scaffold if (a) these
residues were present in the MSA with a frequency greater than
0.6, or (b) if the calculated AAG for mutation of the scaffold
residue to alanine was large. Designs were evaluated as to their
interface energy, ligand solvent exposed surface area, ligand orien-
tation, shape-complementarity, and apo-protein binding site pre-
organization. The latter was enforced by explicitly introducing
second-shell amino acids. The binding affinity of the directed
evolution optimized design is similar to those of anti-digoxin
antibodies. As it is stable for extended periods and can be expressed
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at high levels in bacteria, the design has to potential to provide a
more cost-effective alternative for biotechnological and for thera-
peutic purposes as long as it can be made compatible with the
human immune response.

In 2014 the Baker lab designed a pH-sensitive Fc-domain IgG
binding protein using the hot-spot centric approach [111].
His-433 on the IgG domain was targeted as a pH-sensitive site
that should bind only under a specific pH range. Ensembles of
disembodied interaction residues were based on the IgG complex
with protein A. Scaffolds with high bacterial expression and solu-
bility that can host the keystone residues were then searched. The
rest of the interface was designed with RosettaDesign with ranking
assisted by shape-complementarity and computed binding energy.
Nine of 17 designs exhibited binding signals. At pH 8.2 the design
bound the target 500-fold more tightly compared to pH 5.5.

In 2014 Liu, Chen and coworkers presented a new CPD method
with a comprehensive statistical energy function (SEF) and system-
atic integration of experimental selection for foldability which was
proven experimentally on two de novo structurally resolved designs
[112]. In this important paper they highlight some of the challenges
of existing rule-based or general-CPD methods, the latter minimiz-
ing a general effective energy function. Challenges include low
success-rate on common targets, insufficient reflection of the diver-
sity in natural sequences sharing a common structure and lack of the
rich functional conformational dynamics in CPD results. While SEF
are an integral part of numerous CPD methods, a full-scale SEF for
automated CPD is not available as most general methods focus on
physics-based energy functions. SEFs share the spirit of rule-based
CPD, though the latter can include very few components which are
not well calibrated between them. As such, the rule-based design,
which often necessitates a human expert, receives here a systematic
and coherent formalism. The SEF components including single-
residue and pairwise terms with individual terms were determined
by the probability distributions of rotamer types and pairs of rota-
mer types. Complementary, structure properties considered for
single positions include secondary structure types, solvent accessi-
bility, and backbone Ramachandran angles. Structural properties of
pair terms also include the relative positioning in 3D space. Next, a
general strategy for selecting structure neighbors with adaptive
criteria (SSNAC) addressed the fact that some target properties are
at the boundary of predefined boundary intervals and the need to
treat multi-dimensional properties jointly. Small sample effects were
corrected. Further, the publication aimed to establish the general
applicability of an experimental approach assessing structural stabil-
ity by linking it to antibiotic resistance in bacterial cells expressing an
engineered TEM1-f-lactamase fused to the protein of interest.
Unstable proteins are prone to proteolysis leading to weak antibiotic
resistance. Comparing the SEF to fixed-backbone to
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RosettaDesign, the authors claim that the SEF captures energy
contributions that favor native sequences. The authors note that
the SEF approach cannot treat packing in the same level as physics-
based approaches, but seems to do a better job in capturing
topology-related features, especially for p-strand containing topol-
ogies. Four well-folded de novo proteins for three different targets
were obtained and two were structurally resolved validating the
promising approach.

In 2014 the Baker lab applied CPD for the design of hyper-stable
helical bundles [113]. Specifically, using Rosetta along with
parametric backbone generation an antiparallel, monomeric
untwisted three-helix bundle with 80-residue helices (18-residue
repeat) was designed as well as an antiparallel right-handed mono-
meric four-helix bundle and a parallel left-handed five-helix bundle.
While the classical coiled-coil structure is considered as a side-chain
‘knobs-into-holes’ structure, here the focus was on the less-
appreciated contribution of backbone strain. Within the coiled-coil
Crick parameters, a change of 2° in the helical twist and the coupled
supercoil parameter can dictate the coiled coil twisting or lack of it.
Within RosettaDesign, finer grid searches were undertaken in the
vicinity of these parameters, yielding optimized designs. The resulting
designs denatured only in >95 °C with 0.4-1.1 A RMSD between
the crystallographically resolved structures and the designs.

In 2014 Woolfson applied CPD for designing water-soluble
a-helical barrels [114]. These are coiled-coils with more than four
helices which form a central cavity. Within the abcdefy heptad
repeat of coiled coils positions gade determine the oligomer state.
As such, these positions were the focus of the design with specific
positions relating to the requested coiled coil type. A bZIP scoring
function was used to assess the fitness score of the homo-oligomer.
Sequential rules were applied to reduce the set to be sampled and
then Coiled Coil Builder (CCBuzlder) was applied to construct the
requested full-atom models. This includes the SOCKET knobs-
into-holes packing assessment. Next, a genetic algorithm was
applied to optimize radius, pitch, and inter-helical rotational offset.
The designed pentamer, hexamer, and heptamer coiled coil were
resolved crystallographically with RMSDs of 0.67-1.77 A between
the design and the actual structure.

In 2014 Negron and Keating combined the CLASSY [75]
multi-state CPD and the distance-scaled, finite-gas reference
(DFIRE [163]) state potential for de novo CPD of three coiled
coils consisting three orthogonal antiparallel homodimers [115].
The heptad repeat coiled coil structure enabled the multi-state
design scheme to provide a partition function between the stability
and the specificity gap; allowing for the design of novel and experi-
mentally prove 43-residue peptides folding into specific antiparallel
homodimers. As such, a synthetic coiled-coil toolkit is provided for
modular synthetic biology applications.
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In 2014 the Schief lab collaborated with Baker and others to
apply CPD for the important cause of epitope-focused vaccine
design [116]. Their 27-author study focused on inducing potent
neutralizing antibodies to small and stable CPD scaffolds which
present a respiratory syncytial virus (RSV) epitope. The fold-from-
loops (FFL) CPD Rosetta protocol starts by identifying a functional
motif (epitope), which in this case was a helix-turn-helix motit'in the
RSV Fusion (F) glycoprotein, as identified from an antigen-
antibody crystal structure. The epitope was placed on a target
topology along with distance restraints of the scaffold, a thermally
stable three-helix bundle. Then, ab initio folding was applied to
build diverse backbone conformations consistent with the target
topology. Successful low-resolution designs were subjected to an
all-atom sequence design in which functional motif side chains were
recovered followed by three rounds of sequence design and
full-atom optimization. Last but not least, the 40,000 successful
designs were evaluated by structural metrics and 8 designs were
subjected to human-guided sequence design to correct potential
flaws. These included replacing surface residues outside the epitope
with the original template residues and designing larger hydropho-
bic residues at selected positions. One of the designs also underwent
resurfacing (described above). The successful design induced
neutralizing antibodies and was recognized by an existing antibody
against the epitope.

In 2014 the DeGrado lab joined forces with three other labs,
applying CPD for a de novo TM Zn?'-transporting four-helix
bundle [117]. The protein was named ROCKER. The first shell
of the metal binding was inspired by a previous di-manganese four
helix bundle while the second shell was adapted from that soluble
structure for the TM milieu. A stochastic search over the helix-
bundle Crick parameters was applied for a D2-symmetric anti-
parallel tetrameric coiled-coil. A design alphabet was guided by
the membrane depth (using the Ez potential [164]) and functional
requirements of the different regions. Rotameric self and pair ener-
gies were compuated with a van der Waals radii reduced to 90 % of
their size with the optimal rotameric conformation searched using a
DEE/A* algorithm. 1008 resulting sequences had a preference for
an asymmetric state, excluding the transporter from being filled
with two ions. To confirm an asymmetric rather than symmetric
conformation, each of these sequences was subjected to the two-
state free-energy comparison evaluator algorithm VALOCIDY
(Valuation of Local Configuration Integral with Dynamics [165])
using independent MD trajectories. The protein was extensively
characterized structurally and functionally, confirming the CPD
models.

In 2014 Baker and coworkers applied CPD for reducing immu-
nogenicity by removing T-cell epitopes [118]. As proteins represent
the fastest-growing class of pharmaceuticals, their deimmunization
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is of growing need. MHC-1I-binding short-sequence epitopes have
been characterized. Herein, a sliding window of 15-residues was
searched using a support vector machine (SVM) for T-cell epitopes.
These were searched and potential epitope sites were redesigned
without losing structure, stability, and function. As the deimmuni-
zation scores favor negatively charged residues, a net charge
constraint was added. First, they computationally recapitulated a
previous deimmunization effort. Second, the method was experi-
mentally validated on the superfolder green fluorescent protein
(sfGFP) by redesigning the top four predicted H-2-IAb epitopes.
The deimmunized protein designs failed to isolate T cells in mice
while maintaining function. Third, 5 mutations were aimed at
removing 3 epitopes in the toxin domain of the cancer therapeutic
HA22, a potential drug for refractory cell leukemia. Two of these
mutants lost 80 % of the cytotoxic effect while other mutants
displayed increased effect.

In 2014 Zhang, Tame and coworkers applied CPD for the
design of a self-assembling sixfold perfectly symmetric f-propeller
protein [119]. Visual examination of 174 $-propeller proteins was
applied to choose the most visually symmetric protein for design.
Therein, ancestor reconstruction of one of the six blades was
applied followed by reverse engineering of a 6-blade protein. The
process included docking of the blades and side-chain design in
which essential inter-blade interacting residues were left as is. The
actual design was experimentally proven to have an excellent
0.68 A-backbone RMSD to the designed model.

In 2014 the Andre lab designed a leucine-rich repeat from the
ribonuclease inhibitor family with predefined geometry [120].
Designated software was utilized to determine the length, curva-
ture, and twist geometrical features. The protocol first defined the
desired protein geometry. Second, a library of structures of individ-
ual repeats was compiled from crystal structures of selected repeat
proteins. Third, self-compatible repeats capable of symmetrical
assembly were selected. Fourth, the inter-repeat interface was opti-
mized by cycles of docking and sequence optimization. Fifth, con-
secutive repeats were connected by loops. Last, capping was added
to most N- and C-terminal repeats. A five double-repeat protein
was confirmed to fold into a novel ring for the cap-less design and
to a well-defined repeat protein when the caps were included.

5 CPD Failed Efforts and Retractions

Description of achievements and challenges of CPD cannot be
complete without mentioning cases in which CPD publications
were retracted. Naturally, published science highlights success
stories rather than failures. Nevertheless, in some cases the failed
attempt to repeat a published study results in exposing an
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erroneous or disputed scientific publication. The need to analyze
and understand failed efforts was highlighted by Mayo [100] in his
description of an iterative design cycle: “ Proteins from failed compu-
tational design efforts ave typically discavded without comment or
investigation into the cause of failure. This situation is unfortunate,
because valuable information is lost when successful designs are
reported. Without detailed computational and/or expevimental
analysis of failed designs, flaws in the design procedure cannot be
identified and remedied.”

The field of protein design had suffered from several such
incidents, partly as the proof of the output protein is not always
straightforward. The resulting retracted publications may be due to
innocent mistakes, insufficient validation or potentially even cheat-
ing in reporting the research. This section aims to present key
retractions without getting into the details underlying the retrac-
tions. Rather, such retractions remind us of the caution required in
reporting CPD studies and the need to unequivocally validate the
result of the CPD process.

In 2008 Dwyer, Looger, and Hellinga retracted [166] their
2004 Science [167] publication which attempted to describe the
first computational enzyme design, a triose phosphate isomerase
(TIM) in a computationally redesigned ribose-binding protein.
The retraction states that this is following a report that the provided
clones that were supposed to be clones of the designed enzyme
were actually clones of wild-type TIM impurity. In addition, a JMB
computational enzyme design publication by the same group was
retracted [168]. Following these retractions questions arose [ 169,
170] including over the validity of a 2003 Nature paper describing
computational redesign of ligand-binding specificities [171] and a
2004 PNAS paper describing the CPD of receptors for an organo-
phosphate surrogate of the nerve agent soman [172]. Notably,
these papers were not retracted. Importantly, Hellinga has
acknowledged responsibility for the two retractions and asked his
university to hold an inquiry regarding them [173].

Unfortunately, retractions in the field of protein design are not
limited to CPD. For example, following cross-contamination, in
2002 Fersht and coworkers have retracted [ 174 ] their Nature paper
[175] on the directed evolution of new catalytic activity using the
o/ B-barrel scaffold.

In summary, these retractions following irreproducible results
and the heated debate that followed should remind us of the special
care required in experimentally characterizing and confirming that
the CPD product is indeed the designed protein.
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6 Concluding Remarks: Future Challenges

Many aspects of CPD has been reviewed in the past [121, 122,
176-182], yet a chronological case-study review of the field is
presented here for the first time. The field of CPD has undergone
a tremendous leap forward in the three decades in which it exists.
CPD demonstrates the ability to design functional and extremo-
phile complex proteins with great precision using a wide array of
tailored methods as well as imported methods from other fields.
Taken together, it seems that the achievements and challenges of
the CPD field reflect that of the broader structural bioinformatics
and computational biophysics [183] field.

Some of the pending challenges include:

. Accessibility to the general relevant scientific community. Thus

far, the main efforts in the field of CPD were not distributed
among a large community but rather clustered in a small num-
ber of labs (se¢ Table 3 for list of main labs and software
packages). Often, the CPD software packages are used solely
“4n-house’ and not utilized by the general community, even if
the software is open-source. CPD requires multidisciplinary
know-how in structural biology, biophysics, biochemistry,
software engineering, and a general nontrivial combination of
theory and experiment. As with other fields, it is expected that
with time more and more scientists will apply CPD for their
research and consequently use software developed by others.

. Integration of knowledge-based and energy-based methods:

Ideally, all design algorithms will rely on physics to address
the enthalpic and entropic energetic contributions. Yet, within
the complex protein milieu and within the foreseeable future of
computer power, such a description is not practical in high
resolution. Currently, it seems that each design lab selects a
different method of integrating knowledge-based know-how
into the design—from selection of hydrophobic or helix-
forming amino acids to use of known structural motifs or
structural fragments. A systematic and comparative analysis of
the different design schemes may help determine better guide-
lines on this aspect.

. Systematic differential approach towards different proteins

levels of organization, different protein regions, and the rela-
tionships between such regions. While often the design is split
to solvent-exposed and buried regions, the adaption of the
CPD algorithm to the local milieu of the target site is still not
optimized.

4. Assessment of electrostatics and solvation eftfects: Coupled to

the previous item, the local dielectric milieu and long-range
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electrostatic interactions are still not sufficiently modeled
within CPD software.

. Integration of thermal plasticity and functional dynamics:

While a generalization, the incorporation of dynamics into
the design scheme is still not done, despite the hard-wired
dynamic functional profile of every protein as e.g. depicted by
quick Gaussian network models.

. Negative design: Negative design, defined as a design aimed at

avoiding unwanted conformations or functions, must be an
explicit part of computational design. Since the 1991 thiore-
doxin redesign [ 11] and the betadoublet, a f-sandwich de novo
design [14], the negative design aspect has been in the fore-
front of the field. While the importance of negative design is
well acknowledged since early days of CPD [185], it is still not
explicitly integrated into design algorithms. In this respect, the
positive-design scheme explicitly or implicitly regards a refer-
ence state which can often be considered as a negative design
element. However, too often insufficient emphasis is given to
the definition of the reference state.

. Systematic integration of experimental design approaches: the

theoretical rational design is moving towards integration with
experimental semi-rational design approaches such as directed
evolution. Yet, currently the number of designs benefiting from
the combination of approaches is still small. Moreover, there is
no systematic protocol for combining the two approaches or
even for reporting the stage to which each approach has
advanced the target design.

. Objective cross-assessment of methods: To date, there has not

been an objective cross-assessment of the different available
methods, as done for e.g. structure prediction via the Critical
Assessment of Structure Prediction (CASP) competition [186]
which is running since 1995. Therein, the community is given a
mutual target to be submitted to assessors who are not
part of the competitors thus enabling objective analysis of
achievements and challenges in a method comparative manner.
Without such a community-wide objective assessment the
comparative analysis of CPD methods is often challenging
relying solely on reports by the respective authors for each
tool. Consequently, the identification of advantages and
disadvantages of each method and the cross-dissemination of
knowledge is hampered.

. Definition of the reference state: In many cases the scoring

function consists of scoring the gap between the desired state
and the nondesired, e.g. denatured one. However, the refer-
ence state is still not sufficiently defined, let alone divided
between protein and cellular regions.
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10. In vivo CPD: Many designs are not stable and prone to aggre-
gation [111]. As seen from the case-studies presented, the vast
majority of designs were not characterized within an iz vivo
setting, which is the ultimate natural environment of proteins.

Each of the above items deserves a separate chapter. Yet, after
highlighting some of the pending challenges, it is important to
emphasize that the hierarchical approach to CPD has advanced in
all levels—from large scaffold searches in the growing PDB to
quantum-mechanical optimization of enzymatic catalytic sites. In
parallel the richness in knowledge-based and physics-based meth-
odology sets the stage to comparative analysis of methods and the
dissemination of methods from the method creators to the general
community of protein scientists.
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Chapter 3

Production of Computationally Designed Small
Soluble- and Membrane-Proteins: Cloning, Expression,
and Purification

Barsa Tripathy and Rudresh Acharya

Abstract

This book chapter focuses on expression and purification of computationally designed small soluble proteins
and membrane proteins that are ordinarily difficult to express in good amounts for experiments. Over-
expression of such proteins can be achieved by using the solubility tag such as maltose binding protein (MBP),
Thioredoxin (Trx), and Gultathione-S-transferase (GST) fused to the protein of interest. Here, we describe
and provide the protocols for cloning, expression and purification of such proteins using the solubility tag.

Key words Cloning, Protein expression and purification, Designed proteins, Small proteins,
Solubility tags

1 Introduction

Insights into protein chemistry and advancement in the field of
computational biology have led to evolution of the field of
protein designing. The last decade has witnessed many impressive
designed, in silico proteins: water-soluble proteins [1-4],
water-soluble analogue of membrane protein [5], single pass mem-
brane proteins [6, 7]. These proteins are often small (~24-100
amino acid residues) with directed simple functions. In the future it
is likely that computational design will not only advance the design of
soluble proteins, but also design of membrane proteins, that will
venture into the avenue of multiple span single chain proteins [~100
residues] to perform complex functions. Due to the difficulties in
over expressing such designed proteins, the experimental character-
izations become challenging. Even, naturally occurring small pro-
teins will encounter the same fate when tried to express
heterologously. These proteins either prove toxic to the cells or go
into inclusion bodies due to over expression and aggregation. Such
proteins when purified result in meager yields to be used for
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characterizations. This forms the bottleneck in the transition of in
silico work into in vitro work. To overcome these challenges, one can
screen for suitable host bacterial strain [8, 9], and further, the protein
ofinterest can be over-expressed by fusing with solubility tags such as
Maltose binding protein (MBP), Thioredoxin (TrX), and Glutathi-
one-S-transferase (GST) as well as solubility enhancing tags includ-
ing Small ubiquitin-like modifier (SUMO) protein and Halo Tag.
Several of these tags were successful in producing the protein of
interest at good yields, and the detailed usage of the tags has been
extensively reported in several articles [10-15]. In this chapter, we
will discuss the generalized strategies, and provide protocols that can
be used successfully to obtain good quantities of small sized proteins
by using the solubility tags.

2 Materials

2.1 Cloning

2.1.1 Restriction
Digestion

2.1.2 For DNA
Gel Electrophoresis
and Gel Elution

2.1.3 Ligation

All the solutions were prepared using Autoclaved Milli-Q water. All
necessary precautions were taken to avoid contamination.

1. Insert.

2. Expression Vector (pMALc5X for MBP tag and pET42a for
GST tag).

3. Restriction Enzymes.
4. Calf Intestinal Phosphatase (CIP).
5. Water Bath.

1. Agarose
2. 1X TAE: 40 mM Tris-acetate, 1 mM EDTA pH 8.0.

First make 1000 ml of stock of 50X TAE buffer as follows:
Make a concentrated (50X) stock solution of TAE by weighing
out 242 g Tris base (FW = 121.14) and dissolving in approxi-
mately 750 mL Milli-Q water. Carefully add 57.1 ml glacial
acid and 100 mL of 0.5 M EDTA (pH 8.0) and adjust the
solution to a final volume of 1 L. This stock solution can be
stored at room temperature. The pH of this buffer is not
adjusted and should be about 8.5.

Now to make 1000 ml of 1X TAE from 50X TAE stock
solutions, 20 ml stock of 50X is taken and 980 ml of Milli-Q
water is added to it.

3. 10 % Ethidium Bromide
4. Gel Elution (Commercially available kit)

1. T4 Ligase
2. Thermocycler Machine
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2.2 Competent Cell
Preparation

2.3 Transformation

2.4 Screening

1.

LEMO 21 cell glycerol stock (New England Biolabs) (for alter-
native competent cells see Note 2).

100 ml LB Agar

To make 100 ml of LB Agar, weigh 4 g of LB Agar powder and
dissolve in 60 ml of Milli-Q water. Adjust volume to 100 ml
and then autoclave it. After autoclave is complete, pour 25 ml
into each of the petri plates, and let them solidify. Store plates at
4 °C for further use.

50 ml LB Broth

To make 50 ml of LB Broth, weigh 1.25 g of LB Broth powder
and dissolve it in 35 ml of Milli-Q water. Adjust volume to
50 ml and then autoclave it.

200 ml LB Broth

. 0.1 M CaCl,

First make a stock of 1 M CaCl, by weighing 14.7 g
of CaCl, (FW = 147) and dissolve it in 80 ml of autoclaved
Milli-Q water. Adjust volume to 100 ml.

To make 0.1 M of CaCl,, take 5 ml of 1 M CaCl, add 45 ml
of autoclaved Milli-Q water. Filter sterilize it and save it in a
sterile bottle and store at 4 °C. This solution should be prepared
freshly every time a batch of competent cells has to be prepared.

0.1 M CaCly+ 10 % (v/v) Glycerol

From the stock of 1 M CaCl, take 5 ml and add 5 ml of
Glycerol to it. Adjust volume to 50 ml by adding autoclaved
Milli-Q water. Filter sterilize it and save it in a sterile bottle and
store at 4 °C. This solution should be prepared freshly every
time a batch of competent cells has to be prepared.

Liquid Nitrogen.

. Shaker Incubator.

Selection Plates.

Selection plates contain LB Agar and the required antibiotic.
To make selection plates, prepare and autoclave LB Agar. After
autoclave, when the agar cools down to an extent that the
temperature of the flask is bearable by cheek (cheek test), add
antibiotic to it as per prescribed concentration, mix well and
pour 25 ml into each plate. After it solidifies, store plates at
4 °C for further use.

2. L Shaped Spreader.

w

=

50 ml LB Broth.

Taq Polymerase.
PCR Master Mix.
Insert Specific Forward and Reverse Primers.

Plasmid isolation (commercially available kit).
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2.5 Protein
Expression

2.6 SDS PAGE

2.7 Cell Lysis

AU NS I B

N QN U N

10.

. 200 ml LLB Broth.
. Specific Antibiotics.

0.5 M Rhamnose.

. 1 M Isopropyl B-p-1-thiogalactopyranoside (IPTG).
. UV-Vis Spectrophotometer.

. 30 % Acrylamide /Bis-acrylamide Solution.

. Tris—Cl Buffer, pH 8.8 : 1.5 M Tris—HCI, pH 8.8.

. Tris—Cl Butffer, pH 6.8 : 0.5 M Tris—-HCI, pH 6.8.

. Sodium Dodecyl Sulfate (SDS) : 10 % (w/v) in water.

Ammonium per sulfate (APS) : 10 % (w/v) in water.

. N,N,N’,N'-tetramethyl-ethylenediamine (TEMED).
. SDS PAGE Running Bufter : 0.025 M Tris pH 8.3, 0.192 M

Glycine, 0.1 % SDS.

. Gel Loading Buffer 5X : 0.3 M Tris-HCI pH 6.8, 0.1 % (w/v)

Bromophenol Blue, 10 % (w/v) SDS, 25 % (v/v) p-Mercap-
toethanol, 45 % (v/v) Glycerol.

. Gel Staining Solution: 0.25 % (w/v) Coomassie brilliant blue,

10ml Acetic acid, 40ml water, 50ml methanol.

Gel De-staining solution: 10 ml Acetic acid, 40 ml Metha-
nol, 50 ml Water.

. 5X Native Purification Buffer: 250 mM NaH,PO, pH 8.0,

0.5 M NaCl.

Prepare 1 L of 5X Native Purification Buffer. To 900 ml of
autoclaved Milli-Q water, add 34.5 g of NaH,PO4 and 29.2 g
of NaCl. Adjust pH to 8 and bring final volume to 1 L. Further
to make 100 ml of 1X Native purification buffer, 80 ml of Milli-Q
water is added to 20 ml of 5X Native Purification buftfer.

. EDTA/EGTA free protease Inhibitor Cocktail.
. 100 mM PMSE.

To prepare 100 mM PMSEF, weigh 174.19 mg of PMSF
(FW = 174.19) and dissolve in 10 ml of isopropanol. Keep
inverting and tapping till all the PMSF crystals completely
dissolve.

. Lysis Bufter

The basic composition of the lysis buffers used for different
tags is the same, which is 1X Native Purification Buffer. For
both MBP and GST tag, the same composition is used.

. Tip Sonicator.
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2.8 Protein
Purification

1. 10 ml purification column.

2. Wash Buffer.
The composition of wash buffer varies with the solubility tag
used. For GST tag, 50 mM Tris pH 7.4, 0.25 M NaCl, 1 mM
EDTA is used. For MBP tag, the 1X native purification buffer
can be used as wash buffer.

3. Elution Buffer.

Elution buffer composition also varies along with the solubility
tag. For GST tag, to the wash buffer 33 mM of reduced
glutathione is added. To prepare GST elution buffer, weigh
20.28 mg (FW = 307.32) of reduced glutathione and add to
2 ml of wash bulffer.

For MBP tag, 10 mM Maltose is required in the Elution
bufter. To prepare MBP elution buffer, add 7.2 mg of Maltose
to 2 ml of wash buffer for MBP Tag.

4. Reduced Glutathione solution.
5. Maltose.

3 Methods

3.1 Reverse
Translation

3.2 Construct Design

De novo designed proteins, or proteins for which it is very difficult
to get the full length DNA, reverse translation serves as an
extremely helpful tool. The amino acid sequence of the protein
can be reverse translated to the corresponding DNA sequence by
using the web-based application by Helix Systems called “DNA-
Works” [16]. The DNA sequence can be optimized for codon bias
so as to obtain high expression. DNAWorks also generates oligos
corresponding to the DNA sequence, which when assembled
through the PCR-based method can give rise to the complete
DNA sequence.

The simplest of the construct design would be the insert (obtained
by using DNAWorks by Helix Systems) flanked at its 5" and 3’ ends
by two different restriction enzyme sites, which would assist in
directional cloning. Those restriction enzyme sites should be pres-
ent in the multiple cloning site (MCS) of the vector as well. A few
(~6) bases should be added at both the 5’ and 3’ ends of the
construct to increase the efficiency of cleavage by the restriction
enzymes. Most of the expression vectors carry a protease site that
allows the protein of interest to be cleaved from the solubility tag.
There is a chance that after the cleavage with protease, some of the
amino acid residues of the cleavage site remain attached to the
protein of interest, which might be undesirable. To avoid this
problem, incorporating an additional protease site such as that of
Factor Xa (cleaves at the C terminal of the protease site, and leaves
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no stray residues attached to the protein of interest) at the 5" end of
the insert results in a clean release of only the protein of interest.
Additionally, a hexa-histidine (6xHis) tag can also be inserted in
between the 5’ end restriction site and protease site to assist in
affinity-based protein purification after solubility tag cleavage.

3.3 Cloning The designed construct (herefrom referred to as insert) is doubly
digested using two different enzymes. Similarly, the expression

33.1 Restriction vector of our choice is doubly digested using the same enzymes

Digestion that were used for digesting the insert.
Recipe for vestriction digestion
Insert Expression Vector

Vector 1pg 1 pg

Bufter 1X 1X

Enzyme 1 1 Unit 2-5 Units

Enzyme 2 1 Unit 2-5 Units

Water Volume adjust Volume adjust

Total 30 oL 30 uL

1. The digestion mixes are left at 37 °C in a water bath for
3.5 hours.

2. After completion of 3.5 hours, a 1-2 unit of Calf intestinal
phosphate is added to the expression vector (see Note 1). It is
incubated at 37 °C on a water bath for another 30 min. The
insert digestion mix is left undisturbed.

3. After restriction digestion is complete the digestion mixes are
run on a 1 % agarose gel.

4. The bands corresponding to insert and linearized expression
vector are eluted from the gel.

5. The concentrations are measured using a spectrophotometer.
These concentrations are used in calculations required in the
next step of ligation.

3.3.2 Ligation The following formula is used to calculate the amount of insert

required given the amount of vector (100 ng).

ng of vector x kb size of insert

Amount of Insert = .
kb size of vector

molar ratio insert

Vector
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3.4 Gompetent Cell
Preparation

The following recipe is used for ligation when using T4 ligase.

Insert + vector Vector (—ve control)
Vector 100 ng 100 ng
Insert As per formula -
Ligation Buffer 1X 1X
T4 Ligase 1 Unit 1 Unit
Water Volume adjustment Volume adjustment
Total 10 pL 10 pL

The ligation mix is kept at room temperature (25 °C) for
15 min.

Competent cell preparation is started 4 days prior to cloning
experiment.

DAY1

: Required E. coli strains are streaked on fresh LB Agar plates

and incubated overnight at 37 °C.

DAY2

: Preparation of 0.1 M CaCl, and 0.1 M CaCl, + 10 %

glycerol solutions.

Setting up of 5 ml primary culture (picking up a single colony from
plate and inoculating the broth) and overnight incubation at

37

°C.

DAY3:

1.

Secondary culture is set up (200 mL LB broth in 1 L flask)
by adding 1 % (v/v) of primary culture.

2. Incubation at 37 °C with shaking till OD reaches 0.4.

. Cells are harvested by pouring culture into four 50 mL

falcon tubes and centrifuging at 1500 x 4 at 4 °C for
10 min.

. Supernatant is discarded and pellet is washed with 5 mL of

pre-chilled 0.1 M CaCl, per tube, till the pellet resuspends.
Centrifugation is repeated as above. The supernatant is care-
tully discarded.

. The subsequent steps are done on ice. 5 ml of pre-chilled

0.1 M CaCl, is added to the pellet and the cells are sus-
pended and left to incubate for 40 min. Centrifugation is
repeated as above but for only 5 min.

. Supernatant is discarded and 2 mL of 0.1 M CaCl, + 10 %

glycerol solution is added to each tube. The cells are sus-
pended by swirling the contents of the tubes and are finally
poured into one.

. The tube is allowed to sit on ice or kept in cold room

overnight.
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3.5 Transformation
and Screening

DAY4: 100 (in numbers) of 1.5 mL microcentrifuge tubes are

pre-chilled on ice. The cells in the falcon tube are resuspended and
100 pL is aliquot into each microcentrifuge tube. All the tubes are
flash frozen and stored at —80 °C for future usage.

1.

Two microcentrifuge tubes containing 100 pL. of competent
cells (DH5a) are taken out from —80 °C and kept in ice for
10 min.

. All the 10 pL of the ligation mix — insert+vector and only vector

are added to the separate tubes containing competent cells.

. The cells are then left to equilibrate with the DNA for

20-30 min.

. The cells are then given heat shock at 42 °C for 60 s by putting

the tubes in water bath set at the said temperature.

. The tubes are taken out and kept in ice for 2 min and then 1 ml

of LB broth is added to both tubes.

. The tubes are then kept in shaker incubator at 37 °C for 1 h.
. After 1 h, the cells are centrifuged, 900 pL of the supernatant

is discarded, and the pellet is resuspended in the remaining
supernatant and is plated on appropriate selection plates
(depending upon antibiotic resistant gene carried by the
expression vector) and left overnight at 37 °C.

. Screening

The plates are checked for the appearance of colonies on the

plates.

1.

2.

A small amount of inoculum from each of these colonies (from
the insert + vector plate) is then streaked into another plate.

Colony PCR is performed to verify the ligation of the insert
using primers specific for that insert.
Protocol for colony PCR is as follows:

Small amount of bacterial inoculum from the colonies are

smeared into PCR tubes (depending on number of colonies to be
screened) and to each of the tubes the following recipe is added.

2X PCR Mix 1X

Forward and reverse primer mix [10 pM] 1 pM

Taq polymerase 1-3 Units
Water Adjust volume
Total 10 pL

The colonies that give positive results are further validated by

isolating the plasmids and performing restriction digestion using
the same restriction enzymes used for cloning (following the
restriction digestion protocol 3.3.1).
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3.6 Protein
Expression

3.7 CGell Lysis

DNA sequencing is ultimately done to confirm the insert

sequence.

1.

Transform (see step 4 of section 3.5) the plasmid carrying the
insert into LEMO21 cells (New England Biolabs) (sec Note 2).
The cells are plated and the plate is left for overnight incubation
at 37 °C. A 20ml primary culture is set up the following day.

. A1 L secondary culture is set up the next morning. To the

culture, antibiotics (se¢ Note 2) are added along with 2 mM
Rhamnose (see Note 3). 1% (v/v) primary culture is added to
the secondary culture and it is kept in a shaker incubator till
OD reaches 0.4-0.6.

. At this OD, induction is done with 1 M IPTG such that the

working concentration of IPTG is 0.4 mM.

. Post induction, the culture is kept back in shaker incubator for

4 hours at 37 °C.

. After incubation, the cells are harvested by centrifuging at

1500 x g for 5 min. The cell pellets are stored at —80 °C for
further use.

. 50 pL of EDTA/EGTA free Protease Inhibitor cocktail is

added to the harvested cells after thawing.

. The pellet is resuspended in 10 ml of Lysis Buffer containing

1 mM working PMSE. It is left to incubate at ice for 30 min.

. At 40 % amplitude, and a 5 s ON and 10 s OFF pulse, sonica-

tion is done for approximately 5 min. 5 pL of the lysate is then
stored to run on a SDS-PAGE gel later.

. The remaining lysate is centrifuged at 15000 x g for 1 h to

pellet down cellular debris. The pellet is stored at —20 °C, after
taking out 5 pL of supernatant and a speck of pellet for running
on a SDS-PAGE gel. Ideally, most of the protein should be
present in the supernatant fraction.

. However if the protein is still trapped in the pellet fraction a

different strategy is used to solubilize it. To the pellet, 5 ml of
Lysis buffer as mentioned earlier is added and the pellet is
resuspended. Now sonication is repeated for 5 min. 0.3 % (v/
v) SDS, 3 % (v/v) Triton X-100, and 30 mM CHAPS (v/v) are
added (see Note 4) [17] and left for overnight incubation on a
nutating mixer. The following morning the lysate is centri-
fuged at 15000 x g for 1 h again. 5 pL of supernatant and a
speck of pellet is saved for running on a gel and the remaining is
stored at —20 °C. This step should solubilize most of the
protein trapped in the pellet.

. After confirming the presence of protein in the supernatant

fractions by running the samples on a 12 % acrylamide gel,
protein purification is followed.
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3.8 Protein
Purification

3.8.1 Column
Preparation

3.8.2 Binding, Washing,
and Elution

1. 1.5 ml of resin (50% ethanol slurry) (se¢ Note 5) is pipetted into

a 10 ml purification column [18]. The resin is allowed to settle
down either by gravity or by centrifugation at low RPM
(<1500 x g).

. The supernatant is allowed to flow through the column and to

the resin 6 ml of water is added to wash the resin, by inverting
and tapping the resin few times. The resin is allowed to settle
and the supernatant is allowed to flow through the column.

. 6 ml of lysis buffer is added next to equilibrate the resin. After

the resin settles down the supernatant is allowed to flow
through the column. This step is repeated twice. The column
is now ready for use.

. All 10 ml of Supernatant containing the soluble protein is

added to the resin and left for overnight binding on a nutating
mixer at 4 °C (see Note 6).

. The next day the column is fixed on a stand and the resin is

allowed to settle. The supernatant is allowed to flow through
the column and is collected in a separate tube. This flow
through constitutes the unbound fraction. 5 pL of this
unbound fraction is kept aside to run on a gel and the remain-
ing is stored at —20 °C.

. Next, to the column 8 ml of Wash buffer is added and the resin

is allowed to settle down. The flow through collected is labeled
as Wash fraction 1 and stored at —20 °C. 5 pL of this wash
fraction 1 is kept aside to run on a gel. This process is
repeated thrice.

. Finally to elute the protein, 0.5 ml of Elution butffer is added to

the resin and is allowed to stand for a minute. The eluted
fraction is then collected in a 1.5 ml microcentrifuge tube
separately labeled as Elute Fraction 1. Three more elute frac-
tions are collected by following the same procedure.

. All the collected fractions are run on a 12 % gel to check for

presence of the protein of interest. The fractions containing the
protein of interest are pooled together and concentrated using
appropriate molecular weight cut off spin concentrator. Dialy-
sis against an appropriate storage buffer is followed afterwards
to get rid of the remaining glutathione/maltose. As per the
need, the solubility tag could be cleaved by specific prote-
ase (Factor Xa) action and further protein of interest is purified
using ion exchange chromatography/atfinity chromatography
(in case 6 x His tag is present in the construct see section 3.2
Construct Design).
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. Calf Intestinal Phosphate helps to chew the phosphate over-

hangs thereby inhibiting self ligation of vectors and facilitating

. These cells are best suited to produce proteins that are toxic to

the cell and cannot be expressed in BL21(DE3) cells. After
transformation, these cells have to be plated on an agar plate
containing two antibiotics - chloramphenicol (for pLEMO)
and Ampicillin (for pMALc5X) / Kanamycin (for pET42a).
In parallel, protein over-expression with other competent cells
such as C41, C43, Rosetta could also be tried.

. Rhamnose helps in tuning the protein expression and is specific

. Alternatively 10 % SDS and 10 % Triton X-100 can also be used

to solubilize the protein trapped in the pellet.

. For MBP tag Amylose resin is used and for GST tag, Glutathi-

. When using GST tag, adding 1 mM of Dithiothreitol (DTT) to

the lysate while it is kept for binding, increases specific binding
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Chapter 4

Deterministic Search Methods for Computational Protein
Design

Seydou Traore, David Allouche, Isabelle André, Thomas Schiex,
and Sophie Barbe

Abstract

One main challenge in Computational Protein Design (CPD) lies in the exploration of the amino-acid
sequence space, while considering, to some extent, side chain flexibility. The exorbitant size of the search
space urges for the development of efficient exact deterministic search methods enabling identification of
low-energy sequence-conformation models, corresponding either to the global minimum energy confor-
mation (GMEC) or an ensemble of guaranteed near-optimal solutions. In contrast to stochastic local search
methods that are not guaranteed to find the GMEC, exact deterministic approaches always identify the
GMEC and prove its optimality in finite but exponential worst-case time. After a brief overview on these
two classes of methods, we discuss the grounds and merits of four deterministic methods that have been
applied to solve CPD problems. These approaches are based either on the Dead-End-Elimination theorem
combined with A* algorithm (DEE/A*), on Cost Function Networks algorithms (CFN), on Integer
Linear Programming solvers (ILP) or on Markov Random Fields solvers (MRF). The way two of these
methods (DEE/A* and CFN) can be used in practice to identify low-energy sequence-conformation
models starting from a pairwise decomposed energy matrix is detailed in this review.

Key words Exact combinatorial optimization, Global minimum energy conformation, Near-optimal
solutions, Dead-end-elimination, Cost function network, Integer linear programming, Markov
random field

1 Introduction

Computational Protein Design (CPD) seeks to identify amino-acid
sequences that fold into stable known three-dimensional (3D)
scaffolds and possess desired biophysical and functional properties.
Achieving this goal requires facing several challenges. During the
CPD process, amino-acid residues in the protein sequence are
replaced by other possible amino acid types to find beneficial com-
bined mutations for the targeted properties. Beyond the sequence
identity, one has also to consider the conformational flexibility of
the biomolecular system which follows from degrees of freedom

llan Samish (ed.), Computational Protein Design, Methods in Molecular Biology, vol. 1529,
DOI 10.1007/978-1-4939-6637-0_4, © Springer Science+Business Media New York 2017
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around chemical bonds. The search space defined by both sequence
identity and conformation grows exponentially with the number of
considered mutations and becomes quickly out of reach of compu-
tational approaches. In this regard, the conformational search space
is usually discretized using a set of side-chain conformations
defined by their inner dihedral angles, which are called rotamers
[1]. These low-energy side-chain conformations are derived from
statistical analysis of high-resolution crystal structures in the Pro-
tein Data Bank [2]. Additionally, an assumption of modest protein
backbone conformational flexibility is generally made. Numerous
CPD methods consider a fixed protein backbone or a limited set of
small changes. However, despite these simplifications, the size of
the search space is still excessively large. Hence, efficient mehods are
necessary to both evaluate sequence-conformation candidates
based on their energy and to search through the sequence-
conformation space a model of GMEC. In practice, an ensemble
of near-optimal solutions is also desirable.

The most basic CPD problem defined by a fixed backbone with
a corresponding set of positions and a rotamer library is formulated
as an optimization problem that consists in choosing combinations
of rotamers at designable specified positions such that the energy-
based objective function is minimized. The energetic assessment of
any combination of rotamers requires computationally efficient
energy functions while being sufficiently accurate to discriminate
between multiple sequence-conformation models. Energy func-
tions used in CPD have been reformulated in such a way that the
terms are pairwise decomposable [3]. From this formulation, the
energy of a given protein sequence-conformation model, defined
for each residue by a choice of one specific amino acid with an
associated rotamer, can be written as:

E=Ey+Y E(i,)+ > Y E(i, j,) (1)
i i g>i

where E is the potential energy of the protein, E, is a constant
energy contribution capturing interactions between fixed parts of
the model, E(7,) is the energy contribution of rotamer 7 at position 2
capturing internal interactions or interactions with fixed regions,
and E(7,, j,) is the pairwise interaction energy between rotamer 7 at
position 7 and rotamer s at position 7 [4]. This pairwise decomposi-
tion makes the CPD problem more amenable to computational
optimization procedures. First, all the energy terms can be pre-
computed for each amino acid /rotamer (or E(7,, j,) pair) indepen-
dently of each other and stored in an energy matrix. Hence, once a
specific rotamer has been chosen at each mutable amino-acid resi-
due, the energy of a model can be quickly computed as the above-
defined pairwise sum. Finally, to assess the fitness of the models, an
appropriate objective function has to be appropriately defined with
respect to the design purpose. Typically, to assess protein stability,
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a reference energy term is incorporated into the E(z,) term without
changing the form of the pairwise sum to take into account the
unfolded protein state. The rigid backbone discrete rotamer CPD
problem consists thus in identifying at each position ¢ a pair from a
subset D; of all (amino-acid, rotamer) such that the overall energy E
is minimized. In practice, based on knowledge of the molecular
system and specific design goals, each position can be fixed (D; is a
singleton), flexible (all pairs in D; have the same amino-acid type),
or mutable (the general situation).

The main trend over the last decade is to extend this already
difficult task to incorporate more and more flexibility to alleviate
the inaccuracy resulting from the simplifications introduced in the
modeling of the design problem. As an illustration, recent CPD
approaches allow for consideration of continuous rotamers [5],
flexible backbones or backbone ensembles [6], or both [7].

Despite its apparent simplicity, the rigid backbone discrete
rotamer CPD problem as defined above has been proven to be
NP-hard [8]. Even more, the problem has been shown hard to
approximate [9]. For these reasons, stochastic local search methods
based on Monte Carlo simulated annealing [10, 11], genetic algo-
rithms [12], and many other algorithms [13-15] have been exten-
sively developed to handle practical CPD optimization problems.
These methods have a random component, may give a different
answer for each run, and offer only asymptotic convergence. The
general strategy of Monte Carlo simulated annealing methods
(such as implemented into the well-known Rosetta modeling
suite [16]) is to iteratively propose a random rotamer substitution
(either the same amino acid or a new one) at a randomly picked
residue and then decide whether or not the proposed modification
should be accepted according to the Metropolis criterion [17]. A
rotamer substitution is always accepted if it lowers the energy of the
model while the acceptance or rejection of a modification that
increases the energy is based on Bolzmann’s relationship between
probability and energy differences at a given temperature for the
system. The substitution is accepted with Boltzmann probability or
rejected otherwise. The system is slowly cooled throughout the
run. The high initial temperature allows large jumps between
local energy minima in the energy landscape and its reduction
along the run gradually decreases the probability that move to a
higher energy will be accepted. As a stochastic local search proce-
dure, finding the GMEC is not guaranteed in finite time and the
routine may end up trapped in local minima. To try to circumvent
this, multiple independent runs are performed (each with a pre-
defined number of steps) to cover, as well as possible, a rugged
energy landscape. Genetic algorithms (such as implemented in
EGAD [18]) are related in some aspects to Monte Carlo
approaches. The main differences are that genetic algorithms
work on a population of models throughout the run and mimic
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genetic recombination and mutations to create new models from
parents. The population dynamics of genetic algorithms make
larger changes than Monte Carlo methods and thus, can more
rapidly overcome energy barriers. However, each cycle is computa-
tionally more expensive than in the Monte Carlo method. The
general procedure of genetic algorithm-based methods can be
described as follows: a population of M models is generated before-
hand. It defines the parent models for the next evolutionary pro-
cess. Parent models are mutated with a given probability
distribution associated with rotamers and N best mutants are cho-
sen for recombination. A tournament selection technique (where N
mutated models are picked at random) is applied to generate the
new population of models. The model with the lowest energy is
allowed to continue to the next generation. This selection step is
repeated M times to produce the whole population of the next
generation that will continue to the next round of mutation,
recombination, and selection. The overall procedure is repeated
until population equilibrium is reached. As in a Monte Carlo
simulated annealing method, a “heating and cooling” process can
be simulated by varying the number of models N, thus tailoring the
pressure of selection. Initial low N values allow a broad population
distribution and then, high N values restreint the variability of the
population after each generation. This process is repeated to
enhance the probability of finding lower minima.

These stochastic local search approaches have the advantage of
providing a best known model at any time; however, they neither
guarantee to find the GMEC nor a bounded energetic distance to
the optimal solution. Moreover, the accuracy of stochastic methods
also degrades as problem size increases [11]. In contrast, exact
deterministic methods are able to get rid of these deficiencies.
Since they can provably solve the problem to optimality, they
ensure that when a discrepancy is found between computational
and experimental results, the only possible culprit lies in the CPD
model, and not in the optimization algorithm. This guaranty is
fundamental in design cycles that go through modeling, solving,
protein synthesis, and experimental evaluation. For a long time
available deterministic methods have been extremely time-
consuming, thus preventing their use to handle complex CPD
problems. However, their advantages have motivated the recent
development of more efficient deterministic approaches that are
able to control the exponential explosion on increasingly large
design sizes.

In this chapter, we present four exact search methods for the
rigid backbone discrete rotamer problem, either based on the
Dead-End-Elimination theorem combined with A* algorithm
(DEE/A*), on Cost Function Networks algorithms (CEFN), on
Integer Linear Programming solvers (ILP) or on Markov Random
Fields solvers (MRF). We then provide practical details to solve
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GMEC-based protein design problems as well as to enumerate
near-optimal solutions using two of these methods [3], the
DEE/A*, a well-established method in the CPD field and the
more recent CFN method. Using the size of the sequence-
conformation space as a proxy to the hardness of the problems for
these methods, recent experiments [ 19] on 35 designs of increasing
sizes showed that within 100 h, DEE/A* was able to tackle 18
problems with sizes up to 10®® but choked on some problems with
size 10*”. Instead, CFN algorithms were able to solve 30 problems,
with sizes up to 10°* and started to choke only on problems of size
10%! (see Fig. 1).

Benchmark set : 35 protein design problems

Sequence-Conformation space size : 1026 — 10249 * Number of solved problems out of 35

CFN: 30 DEE/A*: 18

Time x1000 * Number of exceeded time/memory limit
(sec) DEE/A* CFN:5 DEE/A*: 17 (5 DEE & 12 A%)

=7 OSPREY
i * Number of solved problemsin :

- less than 10 min

CFN: 30 DEE/A*:11
- less than 10 sec

CFN: 23 DEEfA*: 1

w
- less than 1 sec
\_ CFN: 11 DEE/A*:0 J

=
& CFN

/ TOULBAR2
o d s—e—o— FEN-S = = A S e ——

T T T
0 5 10 15 20 25 30 as

Design instances

Fig. 1 CPU-time for solving the GMEC using DEE/A* (osprey) and CFN (toulbar2). The graph shows the number
of Computational Protein Design instances solved to optimality by DEE/A* (in blue) and CFN (in green) (X-axis)
as a function of time allowed for solving each problem (Y-axis). The performance of the algorithms was
examined using a benchmark set of 30 CPD instances. This set comprises protein structures derived from the
PDB which were chosen for the high resolution of their 3D structures and their distribution of sizes and types.
Diverse sizes of sequence-conformation combinatorial spaces ranging from 1026 to 102*° were considered,
varying by the number of mutable residues, the number of alternative amino acid types at each position, and
the number of conformations for each amino acid (the Penuiltimate rotamer library was used). All computations
(toulbar2 and osprey) were performed on a single core of an AMD Operon 6176 at 2.3 GHz, 128 GB of RAM,
and a 100 h time-out
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2 Methods

2.1 DEE/A*-Based
Search Method

2.2 CFN-Based
Search Method

DEE/A* is the most widespread exact method in the CPD field.
The two steps involved in this framework can be summarized as
follows: (1) a preprocessing to reduce the search space, until a
fixpoint is reached and (2) the application of a search algorithm to
extract the optimum from the remaining space. The preprocessing
step mainly relies on the so-called Dead-End Elimination (DEE)
theorem [4, 20] and the A* algorithm is the most applied search
strategy by exact CPD solvers [21, 22].

DEE is a dominance analysis technique. The rotamer 7 at
position 7 (denoted by 7,) is removed if there exists another rotamer
u at the same position such that [4] :

E(z,) + min E(z,,7.) > E(i,) + max E(z,,7 2
();S(L) ();5(1:)()
This criterion, referred to as the Desmet criterion, guarantees that
the energy of any given conformation with rotamer # can be low-
ered if we substitute # for 7, when such a rotamer exists. The
Desmet criterion has later been improved by the Goldstein criterion
that compares directly the energies of each rotamer within an
identical conformational context [23].

E(y) = E(iy) + Y min [ E(r.j,) = E(ing) ] >0 (3)

These two properties and various extensions of the DEE theorem
define the polynomial time algorithms that prune dominated values
[24-26].

However, although DEE has become a commonly used
method in CPD, it is an incomplete algorithm: that is, it cannot
solve all CPD instances. Therefore, DEE preprocessing is often
followed by an A* search that expands an energy sorted
sequence-conformation tree. Thence, the first complete sequence-
conformation reached by an A* search is the GMEC and the
following solutions are discovered in an increasing energy order
[22]. But, unfortunately, CPD is NP-hard and the search problem
may become intractable for A* when the DEE preprocessing step
does not reduce the search space sufficiently: the search becomes
cither too slow or memory demanding.

The DEE/A* method is available for example in osprey, a well-
known program in the CPD field [27, 28] (see Note 1).

The CPD optimization problem, in its pairwise-decomposed form,
can be easily formulated as a Cost Function Network optimization
problem (CEN), also known as a Weighted Constraint Satisfaction
Problem (WCSP) (see Fig. 2).
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Fig. 2 Modeling of computational protein design problem (based on rigid
backbone and discrete rotamers) as a Cost Function Network. Each variable
amino acid residue is represented by a variable X (highlighted using different
colors). The set of rotamers available to the residue defines the domain of the
variable X. Each interaction energy term between pair of rotamers is represented
as a cost function

A CEN P is defined by a set of variables that are each involved
in a set of local cost functions [29]. Formally, a CEN Pis a triple
P =(X,D,C) where X ={1,2,..,n} is a set of » variables. Each
variable 7 € X has a discrete domain D; € D that defines the set of
values that it can take. A set of local cost functions C defines a
network over X. Each cost function ¢y € C is defined over a subset
of variables § C X (called its scope), has a domain [] D; and takes
integer values in {0, 1, 2,.., k}. The cost % represénetss a maximum
tolerable cost, and can be infinite or set to a finite upper bound.
Values or pairs of values that are forbidden by a cost function are
simply mapped to k. The global cost of a complete assignment A is
defined as the sum of all cost functions on this assignment (or % if
this sum is larger than k). The WCSP defined by P consists in
finding an assignment of all variables that minimizes this global
cost. Notice that it is usually assumed that C contains one constant
cost function, with an empty scope, denoted as ¢y. Since all cost
functions in a CEN are nonnegative, this constant cost function
¢g € C defines a lower bound on the optimization problem.

It is straightforward to map the CPD problem to the CFN
model. Every nonrigid residue ¢ is represented by a variable 7 and
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the set of (amino acid, rotamer) pairs available to the residue defines
its domain D,. Then, each energy interaction term in E is repre-
sented as a cost function. The constant term E, is captured as the
constant cost function with empty scope (¢y) and terms E(z,) and E
(7, Js) are represented by unary and binary cost functions involving
the variables 7 and j of the corresponding residues. The mapping of
energy terms to positive integers is done by shifting and scaling
according to desired precision. The nonnegativity of cost functions
is enforced by simply subtracting the minimum of every cost func-
tion from its cost table. Such operations preserve the set of optimal
solutions. The joint cost distribution defined by the corresponding
CEN is then equal to the energy, up to a known constant shift. The
optimal solution of the CEN is an assignment that corresponds to a
GMEC for the CPD problem (when stability is the objective func-
tion). When the maximum number of available rotamers over all
residues is 4, the resulting binary CFN takes space in O(z*4%).
The fundamental processing technique in CFN optimization is
the so-called Local Consistency filtering instead of dominance
analysis by DEE. Enforcing Local Consistency can reformulate an
initial CEN into an eguivalent CFN, with the same variables and
scopes but possibly smaller domains (value deletion) and an
increased lower bound ¢; (lower bounding). By equivalent, we
mean that the new CEN will assign the same cost to any complete
assignment. This is obtained by the exclusive and repeated applica-
tion of local transformations of the CFN that shift cost (or energy)
between cost functions of intersecting scopes until a given Jlocal
consistency property is satisfied. Many of these local consistency
properties and associated polynomial time enforcing algorithms
have been defined [30-32]. Depending on the locality of the
property, which may apply to one variable, one cost function or
more, they are called Node, Arc, or higher order consistencies. As
an example, the node consistency of a variable 7 with associated cost
function ¢; requires that 4; contains at least one value » such that
¢;(v) = 0 and no value w such that that ¢y+c¢;(w) > k(the forbidden
cost). Equivalently, this means that there is at least one value that
does not increase cost locally and no value that would lead to
intolerable costs. If a variable does not satisfy these properties,
then by deleting values and shifting costs to ¢y, the variable can be
made node consistent. The amount of pruning therefore increases
with smaller values of the upper bound k. Arc consistencies are
defined similarly but are significantly more involved (see e.g.
[30-32]). Since they preserve equivalence, local consistency algo-
rithms are naturally incremental. This means they are not only
useful as a preprocessing mechanism but can also be very cheap to
maintain during search, usually within an exhaustive Depth First
Branch and Bound (DFBB) algorithm, which ensures that the
solution at the end of the search is the optimum. As search pro-
gresses, local consistency enforcing algorithms increasingly simplify
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the initial problem and strengthen the lower bound that is used to
prune during DFBB. Thence, the enforcing of local consistency
properties may lead to pruning during search and provide heuristics
to dynamically guide the search.

The very good performance of the CFN-based approaches as
available in the toulbar2 software [33, 34] (winner of the UAI
Inference Challenge in 2010 and 2014) on CPD problems has
been shown in recent publications [19, 35, 36] (see Note 2).

The rigid backbone discrete rotamer CPD problem can also be
represented as a zero/one linear program (01LP) problem [19,
35, 36] using the usual translation from CEN to ILP initially
proposed in [37], which has later been proposed for CPD in
[38]. A O1LP is defined by a linear criteria and a set of linear
constraints on Boolean variables. For every value/rotamer i, of
the variable /residue 7, one Boolean variable 4; is introduced. 4;,
indicates whether the rotamer 7, is used (4;, = 1) or not (d;, = 0).
In order to enable the expression of the energy as a linear function
of variables, an extra Boolean variable p; ; is introduced for every
pair of rotamers (,, J;), capturing the fact that this pair of rotamers
is used. The energy can then be expressed directly as the linear
function to be minimized (the constant term can be ignored as it
cannot change the optimal solution):

ZE iy) - di, + Z Zva] “Pij, (4)
575758
Additional constraints enforce that exactly one rotamer is selected
for each variable position and that a pair is used if, and only if, the
corresponding values are used. Then, finding a GMEC reduces to
the following 01LD:

mmZE i) - d; + Z (4r,7,) “Pij, (5)

iIy75]5S

such that:
> i, =1(Vi) (6)
sz,] lr Vi v ]) (7)

The resulting ILP contains O(7?4?) variables and O(#*d) con-
straints. Note that since the objective function is nonlinear, it is
fundamentally impossible to express it in 01LP without introdu-
cing a quadratic number of variables. Hence, this 01LP model
cannot be improved significantly in size.

This type of model can be handled by various ILP solvers such
as IBM ILOG cplex (see Note 3).
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2.4 MRF-Based
Search Method

The CPD problem can also be formulated as a probabilistic
graphical model [19, 39], such as a Markov random field [40]. In
this formalism, a concise description of a joint distribution of
probabilities over a set of variables is obtained through a factoriza-
tion in local terms, involving only few variables. For terms involving
at most two variables, if vertices represent variables and edges
represent terms, a factorization can be represented as a graph,
hence the name of graphical models. The same idea is used for
concisely describing a cost distribution in Cost Function Networks.

A discrete Markov Random Field (MRF) can be defined as a
pair (X, ®) where X = {1,...,n}is aset of » random variables and
® is a set of potential functions. Each variable 7 € X has a finite
domain D, of values that can be assigned to it. A potential function
¢g € © with scope S C X is a function ¢g: Dg — R. A MRF
implicitly defines a nonnormalized probability distribution over
X. The probability of a given tuple ¢is defined as:

exp (=3, c ots(#15)) .
- - ®)
where Zis a normalizing constant (the partition function).

From the sole point of view of optimization, the problem of
finding an assignment of maximum probability, also known as the
maximum a posteriori (MAP) assignment in a MRF or a minimum
cost solution of'a CEN; is equivalent by monotonicity of the exp()
function. Only technical differences remain: CFNs are restricted to
nonnegative and usually integer costs. Being focused on optimiza-
tion, CFNs also emphasize the existence of a possibly finite upper
bound % that can be exploited for pruning.

The CPD problem can therefore directly be modeled as the
MAP problem in a MRF exactly as earlier described for CEN, using
additive potentials to capture energies (see for example [41]).

These models can be solved using MAP-MREF solvers such
as daoopt [33, 34] (winner of the Pascal Inference Challenge in
2011) (see Note 4) or the recent version of the mplp [34] solver
(see Note 5).

3 Practical Procedure

In this section, we describe procedures to solve the GMEC identi-
fication problem with the DEE /A* CPD-dedicated package, osprey
version 2.0 [27, 28] (see Note 1) and the CEN solver, toulbar2
version 0.9.6 (see Note 2) from the energy matrix precomputed for
a protein design problem. In addition to the identification of the
GMEC, both methods can also enumerate an ensemble of subopti-
mal solutions within a given energy interval, which can be of
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interest for the experimental construction of rational protein
mutant libraries. The procedures to generate these suboptimal
sequence ensembles are also explained hereafter. Notice that the
toulbar2 CEN solver has been shown to outperform the DEE/A*
approach by several orders of magnitude for the GMEC identification
and also for producing a set of suboptimal solutions [19, 35, 36] (see
Fig. 1). In practice, this latter step has been found unattainable using
DEE/A* in numerous CPD cases [36]. All computational scripts
mentioned, as well as the CPD instance handled in the following
example, have been made available to the scientific community (in the
archive SpeedUp2 at the following address: http://genoweb.
toulouse.inra.fr/~tschiex/CPD /SpeedUp2.tgz). They assume the
use of a Linux/Unix environment using a sk (bash) shell.

Before using any of these exact deterministic optimization
methods, the pairwise decomposed energy matrix needs to be com-
puted and stored. This can be achieved using the patched and
compiled version of osprey 2.0 [27, 28], available in the Osprey2.0
directory of the Speed Up2 archive, which works under most 64 bits
Linux systems with Java (6 or above) installed. The result is a binary
matrix file that will be later used to generate the input for toulbar2
solver. The command line for computing a pairwise energy matrix is:

java -cp Osprey2.0/src:0sprey2.0/src/mpidava/lib/classes -Xmx2G
KStar -t 5 —c inp/KStar.cfg computeEmats inp/System.cfg inp/DEE.
cfg >out/matrix.out 2>&1 < /dev/null

mv dat/matrixEMmin_COM dat/matrixEMmin_COM.dat

The KStar.cfy file contains parameters to define the force field,
the weights of energy terms, and the path to the rotamers library.
The System.cfy file defines the input pdb model (parameter
pAbName) as well as the variable residues (parameter strandMut(:
list of pdb residue number with szrand0 that indicates the range of
considered residues from the chain izdex 0 and the suffix 0thatis an
index on the molecular chain). The list of amino acids allowed at
each sth variable residue is defined by the resAllowedx_y parameters
from the DEE.cfg file (x is the chain number, and y is the sth
variable residue defined at strandMutO for x = 0). More details
can be found in osprey user manual (available in the SpeedUp2
archive as well as at the following URL http: //www.cs.duke.edu/
donaldlab/osprey.php).

1. The previously generated binary file can be handled internally
by osprey. The GMEC identification can be accomplished by the
following command line that produces a sequence-
conformation file in the conf _info directory:

java -cp Osprey2.0/src:0sprey2.0/src/mpiJava/lib/classes -
Xmx2G KStar -c inp/KStar.cfg doDEE inp/System.cfg inp/DEE.
cfg >doDEE.out 2>&1 < /dev/null


http://genoweb.toulouse.inra.fr/~tschiex/CPD/SpeedUp2.tgz
http://genoweb.toulouse.inra.fr/~tschiex/CPD/SpeedUp2.tgz
http://www.cs.duke.edu/donaldlab/osprey.php
http://www.cs.duke.edu/donaldlab/osprey.php
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3.2 CFN-Based
Optimization Using
toulbar2

2. For the generation of near-optimal solutions, it is necessary to
modity the initEw parameter from file snp/DEE.cfy. This
parameter defines the interval within which near-optimal solu-
tions are enumerated. Simply setting its value to 0.5 for exam-
ple will cause the previous command line to enumerate all
solutions within 0.5 kcal /mol of the GMEC.

Alternatively, the open source CFN solver toulbar2 can be used to
identify the GMEC or generate suboptimal solutions of the CPD
problem. By default, zou/bar2 maintains Existential Directional Arc
Consistency [42] for incremental lower bounding, dynamic value
ordering (based on minimum unary cost), and a variable ordering
heuristics (based on the median energy of terms involving a given
residue following preprocessing) combined with last conflict heur-
istics [43]. To use the toulbar2 solver, it is necessary to generate a
specific text file format defining a WCSP problem beforehand
(.wcsp file).

1. The translation of the energy matrix into a CFN
model can be accomplished by the command line below.
An additional text matrix file is generated, which is used there-
after to translate solutions into the osprey sequence-
conformation file format:

java -cp Osprey2.0/src/:0sprey2.0/src/mpiJava/lib/classes/
KStar -c inp/KStar.cfg writeWcsp inp/System.cfg inp/DEE.cfg
>writeWCSP.out

2. The CEN-based optimization using toulbar2 can be performed
by scripts/run_toulbar2.sh. The first step in this script is to
perform the computation of the GMEC, followed by the
extraction of the solution from the output and its translation
into osprey conformation file by the script scripts/sol2conf.pl).

name=matrixEMmin

./bin/toulbar2 dat/$name.wcsp -1=3 -m -d: -s > out/Sname.
wcsp.opt.out

grep -A 1 "New solution" out/$name.wcsp.opt.out|tail -1 |sed -
re "s/”/ solution:/" > out/$name.wcsp.opt.sol

perl scripts/sol2conf.pl -mat=dat/$name.quick -tbsol=out/

matrixEMmin.wcsp.opt.sol

The file out/$name.wesp.opt.sol contains the solution found by
toulbar2. The corresponding osprey conformation file is generated
at conf._file/Sname.wesp.opt.sol.conf.sorted

The second step in the scripts is the computation of the sub-
optimal ensemble. The cost of the GMEC is used to define the
upper bound below which suboptimal solutions are enumerated.
The threshold from the GMEC energy is controlled by ew
(0.5 kcal /mol in this example).
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ew='bc-1<<<"0.5*10"8" \awk '{printf "%d",$0}’ " #kcal.mol-1
lb=‘egrep ""Optimum:" out/${name}.wcsp.opt.out|awk ’{print
$2} ' # lowerbound

ub='bc -1 <<<" $1b + Sew" " # upperbound

./bin/toulbar2 dat/$name.wcsp -d: -m -a -s -ub=Sub >out/
$name.wcsp.enum 2>&1

perl scripts/sol2conf.pl -mat=dat/S$Sname.quick -tbsol=out/

$name.wcsp.enum -useq

The sol2conf.pl script can be restricted to just produce the best
conformation for each sequence by using the wuseq flag. The asso-
ciated fasta file reporting sequences, energies, and the number of
occurrences for each sequence is also written.

The translation of the generated conformations to pdb struc-
tures files using osprey is performed by the following script. Its
argument is the conformation file. A single pdb file is generated
into the pdbs subdirectory for each line of the conformation file.

bash scripts/genstruct.sh conf_info/$name.wcsp.conf.sorted

4 Conclusion

The development of computational methods to guide the design of
novel proteins has come a long way in the last decade. Considerable
efforts have been accomplished to better account for many essential
aspects of the protein design problem going from a more realistic
physical modeling of the problem, the quantum modeling of the
reaction transition state, the treatment of limited molecular flexi-
bility, the development of more accurate energy functions, and a
more efficient optimization of the combinatorial sequence-
conformation space.

Regarding this latter area, exact deterministic methods have
shown to be very efficient to search the CPD sequence-
conformation space to provably identify the lowest-energy solu-
tion. In particular, we presented here three alternative exact deter-
ministic solvers, based on Cost Function Network algorithms
(CEN), Integer Linear Programming solvers (ILP), and Markov
Random Fields solvers (MRF), which have yet been little applied to
CPD but have demonstrated their ability to handle highly complex
CPD problems, thus offering novel computational solutions. In
particular, the CFN-based methods have led to tremendous
improvements compared to the CPD commonly used DEE/A*
algorithm (see Fig. 1). CFN methods not only enable quickly
identifying the GMEC solution but they are capable of enumerat-
ing all suboptimal solutions within a threshold of the optimum,
which is often out of reach of DEE/A* algorithm. This informa-
tion is of particular use for the rational construction of focused
protein sequence libraries. New CFEN algorithmic developments
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targeted at CPD may even be able to push the computational
barrier to more complex design problems, either in terms of size
or definition (e.g., multistate). While restricted to fixed backbone /
rotamer-based designs, CFN-based methods also have the capacity
to replace DEE/A* in all existing deterministic CPD algorithms
that rely on the optimization on precomputed energy matrices,
including those targeted at continuous rotamers [ 5], flexible back-
bones or backbone ensembles [6], or both [7].

With continued development of methods that address the
points mentioned above, we are optimistic that further improve-
ments will help to increase reliability and accuracy of CPD meth-
ods, which can have an impact on the development of proteins and
catalysts for biotechnologies and nanotechnologies.

5 Notes

1. The osprey open source CPD-dedicated software is available at
http: //www.cs.duke.edu/donaldlab /osprey.php /.

2. toulbar2 is an international collaborative CFN solver develop-
ment. It was the winning solver of the UAI Probabilistic Infer-
ence Challenge in 2010 and 2014 and it finished second in the
2011 PASCAL Probabilistic Inference Challenge (PIC) in the
“MAP” category. All sources are available on the git repository
at http://mulcyber.toulouse.inra.fr/projects /toulbar2. Spe-
cific CPD extensions are available in the “cpd” branch.

3. IBM ILOG cplex is free for academics as described on the
dedicated IBM academic initiative web site at http: /www-
01.ibm.com/software /websphere /products /optimization /
academic-initiative /.

4. dnooptis the winning solver of the 2011 PASCAL Probabilistic
Inference Challenge (PIC) in the “MAP” category. It can be
downloaded at: https: //github.com/lotten/daoopt. The
distributed version of daoopt is not the same as the PIC chal-
lenge version. It lacks the Dual Decomposition bound
strengthening component [33] that relies on private code.
This solver relies on Stochastic Local Search for finding initial
solutions followed by depth-first AND/OR search [44] and
mini-bucket lower bounds [45] for pruning. Mini-bucket
lower bounds require space and time in O(4*) (where is a
user-controlled parameter).

5. The sources for the recent version 2 of the mplp (Message
Passing Linear Programming) implementation can be down-
loaded at http://cs.nyu.edu/~dsontag/. This solver uses a
Message Passing based bound and duality theory to identify
optimal solutions of a MAP-MRF problem through successive


http://www.cs.duke.edu/donaldlab/osprey.php/
http://mulcyber.toulouse.inra.fr/projects/toulbar2
http://www-01.ibm.com/software/websphere/products/optimization/academic-initiative/
http://www-01.ibm.com/software/websphere/products/optimization/academic-initiative/
http://www-01.ibm.com/software/websphere/products/optimization/academic-initiative/
https://github.com/lotten/daoopt
http://cs.nyu.edu/~dsontag/
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tightening of subsets of variables. The message passing used in
mplp defines reparametrizations of the underlying MRF. These
reparametrizations are similar to the reformulations done by
local consistencies in CEN [30, 46]. The solver is unique in all
the solvers considered in that it never uses branching but only
increasingly strong inference by applying reparametrizations to
set of variables that initially contain only pairwise potentials,
reasoning on stars [47], and are incrementally enlarged to
include several potentials and strengthen the corresponding

bound [ 34, 48].
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Chapter 5

Geometric Potentials for Computational Protein
Sequence Design

Jie Li and Patrice Koehl

Abstract

Computational protein sequence design is the rational design based on computer simulation of new protein
molecules to fold to target three-dimensional structures, with the ultimate goal of designing novel func-
tions. It requires a good understanding of the thermodynamic equilibrium properties of the protein of
interest. Here, we consider the contribution of the solvent to the stability of the protein. We describe
implicit solvent models, focusing on approximations of their nonpolar components using geometric
potentials. We consider the surface area (SA) model in which the nonpolar solvation free energy is expressed
as a sum of the contributions of all atoms, assumed to be proportional to their accessible surface areas
(ASAs). We briefly review existing numerical and analytical approaches that compute the ASA. We describe
in more detail the alpha shape theory as it provides a unifying mathematical framework that enables the
analytical calculations of the surface area of a macromolecule represented as a union of balls.

Key words Protein structure, Solvation free energy, Accessible surface area, Delaunay triangulation

1 Introduction

Proteins, the end products of the processing of the information
contained in the genome of any organism, are the biological
molecules whose chemical activities regulate most cellular pro-
cesses. It is fascinating to see how nature has arranged simple
atoms in such a way as to facilitate a myriad of activities. This
fascination has led many scientists to design and create their own
customized proteins to perform prescribed functions, defining a
research field of their own, protein design, also called protein
engineering. In this protocol, we cover the computational efforts
associated with this field, focusing on the implementation of
geometric potentials as a support to the task of identifying protein
sequences that are compatible with a given scaffold. We note that
those potentials have broader impacts in the general field of
molecular simulations.
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DOI 10.1007/978-1-4939-6637-0_5, © Springer Science+Business Media New York 2017

125



126

Jie Li and Patrice Koehl

Protein design requires a good understanding of the relation-
ship between a protein sequence and its structure. Recent progress
in genomics and structural genomics has led to an explosion in the
amount of experimental data available on proteins. There are cur-
rently (as of March 2015) more than 90 million protein sequences
available in the UniProt database [1] and more than 100,000
protein structures in the Protein Data Bank [2]. The large gap
however between those two numbers, and the difficulties encoun-
tered while trying to decipher the relationship between a protein
sequence and its structure from those data, has led to the develop-
ment of many modeling initiatives to shed lights on these connec-
tions [3]. Probably, the most famous is the study of the protein-
folding problem—the “holy grail” for the structural biology com-
munity that focuses on proteins. Its elusive goal is to predict the
detailed three-dimensional structure of a protein from its sequence.
This “holy grail” is still considered out of reach [4-6], although
significant progress has been made recently for the prediction of
small, globular proteins [7-9]. Interestingly, the difficulties
encountered in trying to solve the protein-folding problem have
led to the development of an alternative route in which the quest is
reformulated as searching for protein sequences that fold into a
given stable conformation. This is the inverse folding problem [10,
11], whose successes have paved the way for efficient and successful
computer-based protein sequence design (for a nonexhaustive list
of recent successes in designing small proteins as well as large nano-
assemblies, see refs. 12—-18).

All modeling investigations that consider the structure of a
protein require an understanding of the thermodynamic equilib-
rium properties of the protein, which are usually derived from a
sampling of its free energy surface. The “state” of a protein struc-
ture usually corresponds to a point or patch on this surface, with the
native state usually associated with a large patch, also referred to as
basin. Protein-folding studies are mostly interested in the structure
of this basin, while computational protein design studies focus on
how this basin changes as the sequence of the protein is changed.

The stability of the native state of a protein is measured as the
difference AG(P) in free energy between its native state, N, and a
reference, usually unfolded state, U:

AGy_N(P) = Gx(P) — Gu(P) (1)

Note that “P” here refers to the “solvated” protein, i.e., accounts
for the protein and its surrounding solvent and ionic environment;
G refers to the Gibbs free energy of the system. A typical computa-
tional protein sequence design experiment starts from a known
protein structure template N and tests the “compatibility” of
many sequences for this template, searching for sequences that are
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both stable (positive design) and specific (negative design) to the
structure N. Two putative sequences Py and P for N are compared
based on their stability, as defined by Eq. 1:

AAGu_N(Py — P1) = AGy_x(P1) — AGu_n(Po) (2)

To compute the free energy G of a protein, which is required in
Egs. 1 and 2, we need to compute its internal energy Uand entropy
S. In theory, the laws of quantum mechanics fully define the ener-
getics U of a molecule. In practice, however, only the simplest
system such as the hydrogen atom can be solved exactly, and
modelers of large molecular systems such as proteins must rely on
approximations. While some simulations remain anchored in quan-
tum mechanics [19, 20], most computational protein design stud-
ies rely on a space-filling representation of the molecule, in which
atoms are represented as hard spheres that interact through empiri-
cal or semiempirical “molecular force fields” [21]. In addition,
computational protein design usually relies on implicit solvent
models that reduce the protein-solvent interactions to their mean-
field characteristics, which are expressed as a function of the protein
degrees of freedom alone. These models represent the solvent as a
dielectric continuum that mimics the solvent-solute interactions,
including their nonpolar components (vdW contacts and the entro-
pic effects of creating a cavity in the solvent) and their polar com-
ponents (mostly through screening of electrostatics interactions).
This protocol focuses on approximations of the nonpolar compo-
nent using geometric potentials.

Eisenberg and McLachlan [22] computed the nonpolar part of
the free energy of solvation as the sum of the contributions from all
atoms of a protein P. The contribution of one atom is computed as
the product of its accessible surface area, ASA [23], with a surface
tensor factor referred to as Atomic Solvation Parameter, or ASP:

Wap(P) = ZASP,» x ASA; (3)

ASP is positive for nonpolar atoms and negative for polar atoms.
This model, referred to as SA (for Surface Area), is supported
indirectly by the observed linearity between the Gibbs free energy
and the surface area for transferring small compounds from non-
aqueous liquids to water. Similarly, the free energy of solvation
correlates with the sum of the transfer free energies of the constitu-
ent atomic groups. SA has become the method of choice for com-
puting the hydrophobic effects on proteins. It is interesting to recall
that W,,, accounts for cavity formation in water as well as the vdW
interactions between the protein and the solvent molecules. The
latter occurs within the first hydration shell around the protein, and
therefore is expected to be proportional to the accessible surface
area of the protein. Cavity formation, on the other hand, is
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proportional to the volume of the protein. This apparent contra-
diction between a surface area model and a volume model is part of
the debate on the geometric nature of the nonpolar solvation
energy. Lum, Chandler and Weeks have unified these two models
by showing that W,,, scales with the volume of the solute for small
solutes, and is proportional to the surface area for large solutes
[24]. Their theory of hydrophobicity adds to the validation of the
surface area model for proteins.

The original approach of Lee and Richards computed the
accessible surface area of a protein by first cutting the molecule
with a set of parallel planes [25]. The intersection of a plane with an
atom is a circle that can be partitioned into accessible arcs on the
boundary and occluded arcs in the interior. The accessible surface
area of an atom is then the sum of the contributions of all its
accessible arcs. Shrake and Rupley proposed an alternative approach
based on numerical integration of the surface area using a Monte
Carlo method [26]. Implementations of their method include
applications of lookup tables [27], vectorized algorithms [28],
and parallel algorithms [29]. The surface area computed by numer-
ical integration however lacks accuracy. To improve the accuracy of
numerical methods, analytical approximations to the accessible
surface area were developed by treating multiple overlaps probabi-
listically [30, 31] or ignoring them altogether [32]. Better analyti-
cal methods describe the molecule as a geometric union of spheres,
and analytically compute the surface area [33-36]. Yet another
approach uses the inclusion—exclusion formula [37] and applies a
theorem, which states that overlaps of order five and above can
always be reduced to overlaps of order four or below [38]. Doing
the reduction correctly and efficiently is a difficult task. An exact
solution was later obtained by using the Alpha Shape Theory of
Edelsbrunner [39], which is the basis of the method described
below [40, 41].

2 Materials

2.1 Atomic
Coordinates

To compute the surface-area-based solvation free energy of a pro-
tein (Eq. 3) requires knowledge of the coordinates of all atoms of
the protein, a program to compute accessible surface area, and the
values of the Atomic Solvation Parameters.

The solvation free energy given by Eq. 3 can only be computed if
the 3D structure of the protein is known. If this structure has been
elucidated experimentally, it is made available freely in the Protein
Data Bank, PDB, accessible at www.rcsb.org [2]. In the database, it
is identified with a 4-character tag that can be recovered using their
search engine. The PDB file contains the information needed,
namely the X, 7, and Z coordinates of all atoms that were identified
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2.2 Atomic Radii

2.3 Software
Resources for
Gomputing Accessible
Surface Area
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Table 1
Atomic groups in proteins and their vdW radii and atomic solvation
parameters

Atomic solvation

Atomic group [44] Radii (A) [45] parameters (kcal/A?) [49]
C3HO 1.76 36.0
C3H1 1.76 36.0
C4H1 1.87 36.0
C4H2 1.87 36.0
C4H3 1.87 36.0
N3HO 1.50 8.1
N3HI1 1.65 8.1
N3H2 1.65 8.1
N4H3 1.50 —46.0
O1HO 1.40 —-5.0
O2H1 1.40 8.1
S2HO 1.85 44.0
S2H1 1.85 44.0

experimentally (see Note 1). If the structure has been generated
using a software resource for molecular simulation package, the 3D
coordinates of its atoms will be automatically available.

Each atom in the protein is assigned a radius, usually taken to
correspond to its vdW radius. The vdW radii of individual atoms
have been well documented [42, 43]. Within proteins, however,
the positions of hydrogen atoms are not generally known. This
means that hydrogen atoms are usually subsumed into the
“heavy” atoms to which they are covalently linked, creating atomic
groups. The radius for an atomic group, such as the methyl group
(—~CH3), applies to the group as a whole. Several sets of radii for
atomic groups are available in the literature, but there are apprecia-
ble differences among them (for review, see ref. 44). We list in
Table 1 the different chemical groups and the radii we recommend,

as defined by Chothia [45].

The different programs currently available differ in the methodol-
ogies they use and can be divided into two groups, those that rely
on numerical integration, and those that apply an analytical method
(see the discussion above). Table 2 lists the most common of those
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Table 2

Standard packages for computing accessible surface areas of proteins

Package Availability Comments

ASV petitjeanmichel.free.fr /itoweb. Exact analytical method [58]
petitjean.spheres.html Free for academic use

Msroll biohedron.drupalgardens.com Exact analytical method [33]

Free for academic use

Naccess www.bioinf.manchester.ac.uk /naccess Numerical method

Free for academic use

PDBREMIX boscoh.github.io/pdbremix Includes pdbasa (numerical method)
Opensource
POPS http: //mathbio.nimr.mrc.ac.uk /wiki/ Analytical method based on approximate
Software probabilistic formula [59]

Opensource (GPL)

UnionBall  Contact author: koehl@cs.ucdavis.edu Exact analytical method [40]

Opensonrce (LGPL)

This list is far from exhaustive. Note that many modeling software resources include their own implementation of a
numerical or analytical method for computing the accessible surface area

2.4 Atomic Solvation
Parameters

software resources, providing information on how to access them.
Our own analytical implementation based on the Alpha Shape
theory is listed (UnionBall; [40]).

Atomic solvation parameters (ASPs) are scaling factors that relate
surface areas to solvation energies. Eisenberg and McLachlan [22]
developed the surface-area-based solvation free energy model that
proposed to compute the ASPs from the experimental free energies
of transfer of analogs of amino acids from an hydrophobic environ-
ment (n-octanol) to an hydrophilic environment (water) [46].
They showed that only five classes of atoms are needed to obtain
a good fit between free energies computed from Eq. 1 and the
corresponding experimental free energies of transfer. The
corresponding ASP values, however, were deemed to be incorrect,
as the experimental transfer free energy values need to be corrected
to account for size and contact effects [47, 48]. We advocate the
use of the corresponding corrected values, as derived for example in
ref. 49. Those values are given in Table 1.

3 Methods

UnionBall is our software package that implements the Alpha
Shape theory for computing the accessible surface area and volume
of a union of balls [401]; its origins lic in the Alpha Shape package
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Triangulation of a
Union of Balls
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[50, 51]. UnionBall takes as input a set of balls B; in space, each
specified by the coordinates of its center z and its radius 7. In the
case of a protein, the coordinates of the centers ¢ are extracted from
the corresponding PDB file (see Subheading 2), while the radii 7 are
computed as the sum of the vdW radii corresponding to the atom
types (see Table 1) and the radius R, of a probe, usually set to 1.4 A
to correspond to the radius of a water molecule (see Note 2).

The computation is performed through three successive tasks,
namely (a) Construct the weighted Delaunay triangulation for the
balls, (b) Extract the dual complex, and (¢) Compute the accessible
surface area of each atom using a reduced Inclusion—exclusion
equation that maps to the simplices of the dual complex. This
process is illustrated in 2D in Fig. 1. The three subsections below
provide the details needed to implement this procedure.

Our implementation of the Delaunay triangulation is based on the
randomized incremental algorithm described in ref. 52. Following
the paper’s recommendations, we use a minimalist approach to
store the triangulation in a linear array of tetrahedrons.

For each tetrahedron, we store the indices of its four vertices,
the indices of the four neighboring tetrahedrons, and the position
of the opposite vertex in the vertex list of each neighboring tetra-
hedron. For each vertex, we use four double-precision real numbers
for the coordinates and the radius of the corresponding sphere. The
triangles and edges are implicit in this representation. We start the
procedure with an “infinite” tetrahedron defined by adding four
additional balls with their centers at “infinity” (in practice far
enough so that the centers of all balls fall inside the corresponding
“infinite” tetrahedron). The triangulation is then constructed
incrementally, by adding one ball at a time (se¢ Note 3).

Let N be the number of balls, and let D; be the Delaunay
triangulation of the four balls at infinity together with B;, B,,

.. B
The algorithm proceeds by iterating three steps:
For i from 1 to N do
1. Find tetrabedron t in D;.; that contains the center ¢; of ball B;
2. Add c; to decompose t into four tetrabedvons.
3. Flip locally non-Delaunny triangles attached to c;.
End.

The first step is implemented using the jump-and-walk tech-
nique proposed by Miicke and colleagues [53]. Note that in this
step, the ball may be discarded if it is found to be redundant. A ball
B, is deemed to be redundant if it is fully included inside the union

of other balls. Step 3 follows the algorithm proposed by Edels-
brunner and Shah [52]. A flip in this step replaces two tetrahedrons
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A)

Fig. 1 Voronoi decomposition, Delaunay triangulation, and dual complex of a set of disks in the plane. Given a
finite set of disks (a), the Voronoi diagram decomposes the plane into regions, one per disk, such that any point in
the region V;assigned to disk B;is closer to that disk than to any other disk, where the distance from a point Mto
the disk B; is defined as d(M, B;)? = d(M, z;)* — r?, where z and r; are the center and radius of B;
respectively. (b) The boundaries of those regions are shown as dashed lines. The dual Delaunay triangulation
is obtained by drawing edges between the centers of the circles corresponding to neighboring Voronoi regions. (c)
We restrict the Voronoi diagram to within the portion of the plane covered by the disks and get a decomposition of
the union into convex regions. To draw the dual complex of the disks we limit ourselves to edges and triangles
between centers whose corresponding restricted Voronoi regions have a nonempty common intersection

by three or three tetrahedrons by two. The fact that any arbitrary
ordering of the flips will successtully repair the Delaunay triangula-
tion is nontrivial but has been established by Edelsbrunner and
Shah [52].

Once all the balls have been inserted, we remove all the tetra-
hedrons that have at least one vertex corresponding to one of the
balls placed at infinity.

The final Delaunay complex DT is fully defined by the list of the
tetrahedrons it contains. Each tetrahedron includes four facets, six
edges, and four vertices. The complete list of tetrahedrons, facets,
edges, and vertices defines the simplices of DT. Note that most facets,
edges, and vertices are shared by two or more tetrahedrons. Finally,
the collection of facets that only belong to one tetrahedron in DT
forms the convex hull of the set of centers of the balls.



3.2 Generating the
Dual Complex of a
Union of Balls

3.3 CGomputing the
Individual Accessible
Surface Areas of the
Balls

Geometric Potentials for Computational Protein Sequence Design 133

The Voronoi diagram is the dual of the Delaunay complex DT. It
divides the whole space into convex regions, V;, one per ball B; in
the union. The Voronoi region V; associated with the ball B; con-
sists of all points that are at least as close to the center of B;as to any
other balls in the union, as illustrated in Fig. 1. It is a convex
polyhedron obtained as the common intersection of finitely many
closed half-spaces, one per ball Bj, such that the line segment
joining the centers of B; and B; belongs to DT. It follows that the
Voronoi regions decompose the union of balls B; into convex
regions of the form B; N V; (see Fig. 1). Computing the surface
area of the union of balls can then be reformulated as computing
the surface areas of all convex regions B; N V;, which is a much
simpler problem, as those regions do not overlap. In addition, the
convex region B; N V; is fully defined by the ball B; and its neigh-
boring balls B;such that the Voronoi region V;has a common facet
with V; within the union of balls. Those balls B; are readily identi-
fied as the line segment joining the centers of B; and B; forms an
edge in the dual complex K, a subset of the Delaunay triangulation
DT, defined below.

Given the Delaunay triangulation DT of the centers of the balls
in the union, we identify first all simplices in DT that are critical.
We call § a critical simplex of DT if the balls defining § have a
nonempty common intersection. Detailed expressions for the geo-
metric tests that establish if two, three, or four balls intersect or not
can be found in [50, 54 ]. The dual complex K C DT'is then defined
as the list of all critical simplices in DT. Note that the simplices of
DT that do not belong to K are also interesting, as they define the
cavities and pockets within the union of balls [55-57].

A simplex Sin the dual complex K can be interpreted abstractly as a
collection of balls with a nonempty intersection, one ball if it is a
vertex, two if it is an edge, etc. As such, it makes sense to speak
about A(S), the surface area of the intersection of the balls that
define S. The core result of the Alpha Shape theory of Edelsbrunner
[39] is that the surface area of a union of balls can be expressed
exactly as an inclusion—exclusion formula over all simplices in the
corresponding dual complex K:

A(U Bi) = > (=1)"IA) (4)

SeEK

Here, dim(S) = card(S) — 1,i.c., the number of balls in S minus 1.
This result overcomes past difficulties by implicitly reducing higher-
order to lower-order overlaps. An added advantage of Eq. 4 is that
the balls in each term form a unique geometric configuration so
that the analytic calculation of the surface area can be done without
case analysis.
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Bi

Fig. 2 Intersection of two (/efd), three (center), and four (righf) spheres viewed on the flattened surface of a ball B;

3.4 Computing the
Nonpolar Contribution
to the Solvation Free
Energy

One way to arrive at this formula is to consider a ball B; with
center z; and radius 7;, and to observe that its contribution to the
total area of the union of balls is the area of the entire ball, 47772,
minus the portion covered by caps of the form B; N B, such that
z;z; forms an edge of the dual complex K. The surface area of this
portion is computed as the sum of the surface area of each cap,
minus the portion covered by the intersection of three caps of the
form B; N B; N B, such that zz;z, forms a triangle of the dual
complex K. Finally, the surface area of this portion is the area of
the intersection of three caps, minus the portion covered by the
intersection of four caps of the form B; N B; N B, N B; such that
2%z, forms a tetrahedron of the dual complex K. The key to the
success of the Alpha Shape theory is that no additional higher terms
need to be considered. The whole procedure is illustrated in Fig. 2.

Finally, we note that detailed expressions for the surface areas of
the intersections of two, three, and four balls can be found in
ref. 40.

The nonpolar part of the solvation free energy of the protein is
computed as a weighted sum of the accessible surface areas of all its
representing balls (see Eq. 2), where the weights are the Atomic
Solvation Parameters, defined in Table 1.

4 Notes

1. Unfortunately, PDB files can be difficult to process and it is
expected that you do a significant amount of preprocessing
prior to using the information they contain. As part of this
preprocessing, you should consider at least the following points.
(a) Identify the chain(s) you are intevested in. The PDB file may
contain information about a protein complex, while you may be
only interested in one subunit. Note that each subunit is
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identified with a chain label in the PDB file. Reversely, the PDB
file may contain the information about a protein in a monomeric
form, while you are interested in the biologically relevant multi-
meric form. PDB files usually contain information about the
mathematical operations that need to be performed to generate
the multimer, but it is left to you to perform those operations.
(b) Setting a vule for missing atoms. Experimental structures may
not be complete, as part of the structure may be too flexible to
be observed, such as flexible loops, or the terminal groups of
long amino acids at the surface of the proteins. You may ignore
those missing atoms, or decide to use a modeling program to
generate their possible location. (¢) Dealing with alternate con-
Sfigurations. In addition to missing atoms, the PDB file may
contain multiple conformations for some parts of the molecule.
These multiple conformations, mostly observed for side-chains,
relate to ambiguities in the experimental data. Usually, an occu-
pancy factor is provided for each conformation and it is usually
best to select the conformation with the highest factor. (d)
NMR structures: using the average model? NMR spectroscopy
provides indirect measurements on the protein structure of
interest, usually a set of short-range interatomic distances.
Many modeling techniques generate a collection of models for
the structure that are compatible with those distances, as well as
an average structure based on this collection. Both are usually
provided in the PDB. It is strongly recommended to use one of
the models instead of the average structure, as the latter is a
simple geometric mean of the models that often has poor
stereochemistry.

2. There is no real consensus in computational biology as to which
surface of the union of balls representing a protein best relates to
the physical properties of the molecule. Three models are widely
used, namely, the van der Waals surface, the molecular surface,
and the solvent accessible surface, with the latter usually preferred
for computing solvation free energies. Lee and Richards [25]
defined the solvent accessible surface of a molecule as the loci of
the center of a probe sphere with radius R,, as it rolls over the
van der Waals surface. The value of Ry, is usually set to 1.4 A as it
approximates the size of a water molecule. It can be shown that
the accessible surface is also the boundary of the union of balls
UB,,, where B,, are “hydrated” balls representing the atoms, i.e.,
the balls whose vdW radii have been increased by R,,. Note that
values for R, vary from 1.2 to 1.8 A in the literature.

3. The standard algorithm for building the Delaunay triangulation
of a set of balls proceeds incrementally, by adding one ball at a
time. Before starting the construction, the balls are re-indexed
with a random permutation of the order in which they appear in
the input file. The randomization preprocessing in this



136

Jie Li and Patrice Koehl

algorithm guarantees an expected theoretical running time of O
(Nlog(N) + N?) in the worst case, where N is the number of
balls [52]. In practice, however, a very different behavior is
observed for a very large dataset. Inherent to their nature,
randomized algorithms access the data structures they maintain
randomly, and random access works poorly with memory hier-
archies available on modern computers. Virtual memory
operating systems cache recently used data in memory, under
the assumption that they are more likely to be used again soon.
Randomized algorithms violate this assumption; they conse-
quently perform poorly as the data structure exceeds the cache
size. A simple solution is to insert points in an order that
improves locality. Interestingly, the order in which atoms are
stored in a PDB file is inherently local. In most cases, two
consecutive atoms either belong to the same amino acid or to
two sequential amino acids that are in contact. The construction
of the Delaunay triangulation for a protein is therefore signifi-

cantly faster if the order of the atoms is not randomized [40].
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Chapter 6

Modeling Binding Affinity of Pathological Mutations
for Computational Protein Design

Miguel Romero-Durana*, Chiara Pallara*, Fabian Glaser,
and Juan Fernandez-Recio

Abstract

An important aspect of protein functionality is the formation of specific complexes with other proteins,
which are involved in the majority of biological processes. The functional characterization of such interac-
tions at molecular level is necessary, not only to understand biological and pathological phenomena but also
to design improved, or even new interfaces, or to develop new therapeutic approaches. X-ray crystallogra-
phy and NMR spectroscopy have increased the number of 3D protein complex structures deposited in the
Protein Data Bank (PDB). However, one of the more challenging objectives in biological research is to
functionally characterize protein interactions and thus identify residues that significantly contribute to the
binding. Considering that the experimental characterization of protein interfaces remains expensive, time-
consuming, and labor-intensive, computational approaches represent a significant breakthrough in proteo-
mics, assisting or even replacing experimental efforts. Thanks to the technological advances in computing
and data processing, these techniques now cover a vast range of protocols, from the estimation of the
evolutionary conservation of amino acid positions in a protein, to the energetic contribution of each residue
to the binding affinity. In this chapter, we review several existing computational protocols to model the
phylogenetic, structural, and energetic properties of residues within protein—protein interfaces.

Key words Protein—protein interactions, Hot-spots identification, Interface prediction, Evolutionary
conservation, Protein—protein docking, Biomolecular dynamics simulation, In silico alanine scanning,
pyDock, AMBER package, ConSurf

1 Introduction

One of the current goals of proteomics is to predict and character-
ize protein—protein complex interfaces. Access to such information
is highly valuable as it helps to elucidate large protein interaction
networks, increases the current knowledge on biochemical path-
ways, improves comprehensive description of disease pathogenesis,
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and finally suggests putative new therapeutic targets [1-3].
Moreover, the use of computational approaches offers faster and
more cost-efficient procedures in comparison to experimental
methods such as co-immunoprecipitation, affinity chromatography,
yeast two-hybrid, or mass spectroscopy.

In this chapter, we review several computational methods that
exploit phylogenetic, structural, and energetic properties of inter-
face residues for the computational design of protein complexes or
the characterization of pathological mutations involved in pro-
tein—protein interfaces. First, we describe two methods that do
not need the structure of the protein—protein complex, namely
ConSurf [4-7] and Normalized Interface Propensity (NIP) [8].
ConSurf identifies functionally and structurally important
residues (e.g., involved in enzymatic activity, in ligand binding or
protein-protein interactions) [9] on a protein by estimating the
degree of conservation of each amino acid site among their close
sequence homologues. NIP computes the tendency of a given resi-
due to be located at the interface, from rigid-body docking poses
evaluated by pyDock scoring function [10] (based on accessible
surface area-based desolvation, coulombic electrostatics, and van
der Waals energy). Then, we describe two other protocols which
require previous knowledge of the complex structure: residue con-
tribution to binding energy computed with pyDock, and in silico
Alanine (Ala) scanning, based on molecular dynamics simulations
with AMBER14 package [ 11] and binding energy calculations using
the MM-GBSA method [12]. The use of these methods is illustrated
on one example, the MEK1-BRAF complex (PDB ID 4MNE) [13],
in which several pathological mutations are annotated [14].

2 Materials

2.1 ConSurf Server

2.2 PyDock

2.3 FTDock

1. ConSurf Server is a bioinformatics tool that estimates the
evolutionary conservation of amino acid positions in protein
molecules based on the phylogenetic relations among close
homologous sequences. It can be found at http://consurf.
tau.ac.il.

1. PyDock is docking package freely available to academic users.
Go to pyDock download web page http://life.bsc.es/pid/
pydock/get_pydock.html [15] and fill in the form with the
requested information. pyDock team will quickly send you a
copy of the application and instructions to install it.

1. From the FTDock [16] web page http://www.sbg.bio.ic.ac.
uk/docking/download.html, download file gnu_licen-
sed_3D_Dock.targz to the folder of your choice.

2. From the FFTW web page http://www.tftw.org/download.
html, download file ffiw-2.1.5.targz.


http://consurf.tau.ac.il/
http://consurf.tau.ac.il/
http://life.bsc.es/pid/pydock/get_pydock.html
http://life.bsc.es/pid/pydock/get_pydock.html
http://www.sbg.bio.ic.ac.uk/docking/download.html
http://www.sbg.bio.ic.ac.uk/docking/download.html
http://www.fftw.org/download.html
http://www.fftw.org/download.html
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2.4 UCSF Chimera
Molecular Viewer

2.5 AMBER Package

3. Move to the folder where you have downloaded the file fftw-
2.1.5.targz and unpack the package with the following
commands:

cd folder-where-tftw-2.1.5 tar.gz-has-been-downloaded
gunzip fftw-2.1.5.tar.gz
tar xvf fftw-2.1.5.tar

4. Move into directory fftw-2.1.5 and compile the library:

cd fftw-2.1.5
./configure
make

5. Move to the folder where you have downloaded gnu_licen-
sed_3D_Dock.targz and unpack FTDock package.

6. Move to the unpacked folder 3D_Dock/progs. Edit file Makefile
and set the correct complete path to the ffiw-2.1.5 directory.
This is done by setting the variable FFTW_DIR on line 15. You
should also check the value of the CC_FLAGS variable, and
make it fit to your system (e.g., for a x86_64 Linux system,
CC_FLAGS variable has been modified and set to >-O -m64°.

7. Type the following command:
make

8. You should now have the executable files ftdock, build, and
randomspin available. Optional: Edit your .bashrc file to include
3D_Dock/progs folder in your system path (PATH variable).

UCSEF Chimera [17] is a highly extensible program for interactive
visualization, molecular structure analysis and high-quality images
generation. Here are the instructions to install UCSF Chimera
Molecular viewer:

1. Go to UCSF Chimera Molecular viewer web page at http: //
www.cgl.ucsf.edu/chimera.

2. Go to the download session, by clicking on Download in the
menu on the top-left of the web page, and select the UCSF
Chimera Molecular viewer installer appropriate for you
platform.

3. Install UCSF Chimera Molecular viewer on your computer
following the platform specific installation instructions avail-
able on the same page.

AMBER is a package of programs for molecular dynamics simula-
tions of proteins and nucleic acids. It is distributed in two parts:
AmberTools14 and Amberl4. Here are the instructions to install
AMBER package:

e Go to the AMBER web page at http://ambermd.org/
#Amberl4.


http://www.cgl.ucsf.edu/chimera
http://www.cgl.ucsf.edu/chimera
http://ambermd.org/#Amber14
http://ambermd.org/#Amber14
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After filling the registration form located on its own section at
http: //ambermd.org/AmberTools14-get.html, download
AmberTools14 clicking on the Download button.

Download the Amber 14 License Agreement, print this form, fill
it in, sign and return it to the address given at the bottom of the
license agreement. Once the order is processed, download the
AMBER program package following the download information
you will receive via e-mail.

Install AMBER on your machine and compile the source code
format using Fortran 95, C or C++ compilers following the
instructions in the Amber Reference Manual at http://
ambermd.org/docl2 /Amberl4.pdf.

3 Methods

3.1 Analysis of
Residue Conservation
by ConSurf

10.

11.

. Go to ConSurf web server page at http://consurf.tau.ac.il.

Then, ConSurf web server will ask you several questions
regarding the computation you want to run.

. To the question Analyze Nucleotides or Amino Acids? select

Amino-Acids option.

. To the question Is there a known protein structure? select Yes

option.

. Provide the PDB ID (e.g.,4MNE) of the structure you want to

analyze or upload your own PDB file, browsing to its location.
Press Next button.

. Select the chain identifier of the molecule to be analyzed.

. Indicate whether there is a multiple sequence alignment (MSA)

to upload. If there is not, ConSurf server will generate it. You
may set the parameters ConSurf server will use to generate the
MSA. For this work, ConSurf server has been run with default
parameters.

. At the bottom of the page, fill the Job title field to identify the

job.

. Fill the User E-Muail field, check the Send a link to the results by

e-mail check-box and click the submit button. Thus, ConSurf

server will send you an e-mail with a link to the results when it
has finished.

. Open the e-mail sent by ConSurf and go to the results page

link.

Click on the Download all Consurf outputs in a click! link, save
the ConSurf results file and unzip it.

Open consurf.grades file. From all the columns of the file, focus
on three: 3LATOM, SCORE, and COLOR. The 3LATOM


http://ambermd.org/AmberTools14-get.html
http://ambermd.org/doc12/Amber14.pdf
http://ambermd.org/doc12/Amber14.pdf
http://consurf.tau.ac.il/
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ConSurf

NIP pyDock energy  ALA-scanning

Fig. 1 MEK1-BRAF interface characterization. MEK1 and BRAF interface characterization using different
computational techniques (first and second line, respectively): ConSurf evolutionary conservation, pyDock NIP
calculation, pyDock binding energy decomposition, binding free energy change (A A G) estimated by in silico

alanine scanning

3.2 Prediction of
Binding Hot-Spots by
NIP

12.

column contains an id code of the analyzed residues. The
SCORE column contains the computed normalized conserva-
tion score. Lower scores (more negative) correspond to more
conserved residues, while higher scores (more positive) corre-
spond to less conserved residues. A similar information is
shown in column COLOR where, in order to ease visualization
of the results, the continuous conservation scores have been
partitioned into nine different bins, with bin 9 representing the
most conserved positions and bin 1 the most variable positions.
It is important to remark that neither the SCORE values nor
the COLOR values indicate absolute magnitudes of conserva-
tion, but rather the relative degree of conservation of a given
residue in the specific protein under study (i.e., neither SCORE
nor COLOR values of residues of different proteins are gener-
ally comparable).

ConSurf provides two PDB files where the SCORE and
COLOR values are assigned to the bfactor field. This is quite
useful in order to get a picture of which residues are more
conserved. With your favorite molecular visualization applica-
tion open *.pdb_With_Conservation_Scoves.pdb and *.pdb_A-
TOMS_section_With_Consurf files for displaying SCORE and
COLOR values, respectively (see Fig. 1).

NIP computation can be divided in four different steps: (1) initial
setup, where the receptor and ligand PDB files of the complex are
preprocessed in order to generate the input files that FTDock and
pyDock require, (2) sampling phase, where FTDock generates a set
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[receptor]

pdb = Jeqgi.pdb
mol A

newmol = S
[ligand]

pdb = dmne.pdb
mol = B

newmol B

Fig. 2 Example of pyDock input file. The input file is typically divided into two
sections, [receptor] and [ligand], designed to specify the variables related to the
receptor and ligand, respectively. The pdb line defines the PDB file name. The
mol line specifies the original chain name in each PDB file, whereas the newmol
indicates the new one in the pyDock output files. Please be aware that the
newmol chain names must be different for the receptor and the ligand

of docking poses, (3) scoring phase, where pyDock dockser module
scores and ranks the poses generated by FI'Dock, and (4) NIP
computation, where the first 100 ranked docking poses (those
with lower binding energy) are selected from the whole set of
generated docking poses, and pyDock patch module is used to
compute the NIP values.

Next, we describe each one of these phases in more detail.

1. Initial setup.

(a) Create a project folder and move to it.

(b) From the PDB website, download the receptor and ligand
structures, e.g., download the PDB files of receptor
(3EQI) and ligand (4MNE) into the project_folder (see
Note 1).

(c) Create pyDock ini file: open your favorite text editor and
create the file 4mne.ini as shown in Fig. 2.

(d) Run pyDock sezup module:
pydock3 4mne setup
(e) pyDock setup module should have generated several new
files (see Table 1).
2. FTDock sampling.
(a) Run FTDock:
ftdock -static 4mne_rec.pdb -mobile 4mne_lig.pdb -cal-

culate_grid 0.7 -angle_step 12 -internal -15 -surface 1.3 -
keep 3 -out 4mne.ftdock

(b) When FTDock is finished, you should have a new file
named 4mne.ftdock in the folder.

3. Scoring.

In this phase, the docking poses generated in the sampling
phase are scored and ranked with pyDock dockser module.
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Table 1
pyDock modules input and output files.

Module name Input files Output files

setup docking_name.ini docking_name_rec.pdb
docking_name_lig.pdb
docking_name_rec.pdb.H
docking_name_lig.pdb.H
docking_name_rec.pdb.amber
docking_name_lig.pdb.amber

rotftdock docking name_rec.pdb docking_name.rot
docking_name_lig.pdb

rotzdock docking_name_rec.pdb docking_name.rot
docking_name_lig.pdb

dockser docking_name_rec.pdb docking_name.ene
docking name_lig.pdb
docking_name_rec.pdb.H
docking_name_lig.pdb.H
docking name_rec.pdb.amber
docking_name_lig.pdb.amber
docking_name.rot

patch docking_name_rec.pdb docking_name.recNIP
docking_name_lig.pdb docking_name.rec.pdb.nip
docking_name.rot docking_name. ligNIP
docking_name.ene docking_name.lig.pdb.nip

bindEy docking_name.ini docking_name_rec.pdb

docking_name_lig.pdb
docking_name_rec.pdb.H
docking_name_lig.pdb.H
docking_name_rec.pdb.amber
docking_name_lig.pdb.amber
docking_name.rot
docking_name.ene

resEnergy docking_name_rec.pdb docking_name.receptor.residueEne
docking_name_lig.pdb docking_name ligand.residueEne
docking_name_rec.pdb.H docking_name.receptor.atomEne
docking name_lig.pdb.H docking_name.ligand.atomEne

docking_name_rec.pdb.amber
docking_name_lig.pdb.amber
docking_name.rot

(a) Run pyDock rotftdock module:
pydock3 4mne rotftdock

(b) There should be now a new file 4mne.rot. Each line in this
file represents a rotation and translation matrix. FTDock
4mmne.rot file should have 10,000 different lines.

(c) Score and rank FTDock poses by running pyDock dockser
module:

pydock3 4mne dockser
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3.3 CGomputation of
Binding Energy per
Residue with pyDock

3.4 In-Silico Alanine
Scanning with AMBER

P

(d) Once dockser module has finished, it should have created
file 4mne.ene with 10002 different lines (see Note 2 for a
detailed description of this file).

. NIP computation.

(a) Run pyDock paztch module:
pydock3 4mne patch

(b) 4mmne.recNIP and 4mne.ligNIP files should have been
created. These files show the computed NIP value for
each residue of receptor and ligand, respectively. Those
residues with NIP values greater than 0.2 are predicted to
be hot-spots.

(c) For visualization proposes, patch module output includes
two PDB files, with extension *.pdb.nip, where the NIP
values have been assigned to the bfactor field. With your
favorite molecular visualization application open *_rec.

pab.nip or *_lig.pdb.nip files for displaying the NIP values

of receptor and ligand, respectively (see Fig. 1).

. Create a folder for computing residue binding energy.

. From the PDB website, download the structure of a

protein-protein complex, e.g., BRAF/MEK1 (PDB ID
4MNE).

. Create pyDock ini file: Open your favorite text editor and

create the 4mne.inifile specifying receptor and ligand subunits.

. Compute pyDock binding energy by running the following

command:

pydock3 4mne bindEy

. pyDock should have generated several new files. Please see

Table 1 to confirm.

. Run pyDock residue energy module:

pydock3 4mne resEnergy

. The module should have created for ligand and receptor

*.atomEne and *.7esidueEne files with the contribution to the
binding energy of each individual atom and residue,
respectively.

. You may get a graphical representation of the residue binding

energy (see Fig. 1), by assigning the binding energy values given
in *.7esidueEne files to the bfactor field of the corresponding
PDB file of the target molecules.

The Alanine scanning workflow can be divided into three different
steps: (1) the preparation of the PDB files for both the wild type
and the mutated structures, (2) the molecular dynamics simulation
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of the wild type complex and (3) the binding free energy calculation
on both the wild type and the mutated structures.

1. Wild type and mutated structures PDB files preparation.

(a)

Start a new session of UCSF Chimera Molecular viewer
and open 4MNE PDB file clicking on File — Fetch by ID
entering 4mne as PDB ID in the new window and then
clicking on the Fezch button. Delete all chains but A and B,
and all existing water molecules from the system.

Build missing segments starting the Chimera interface to
MODELLER. Click on Tools — Structure Editing —
Model/Refine Loops. In the new window, select all missing
structure as model /remodel option and oze as both num-
ber of residues adjacent to missing region allowed to move
and number of models to generate. Write the MODEL-
LER license key and start the rebuilding by clicking on
OK. The MODELLER license key is freely available only
for academic use and can be requested at the MODEL-
LER web page https: //salilab.org/modeller /registration.
html, filling up the license agreement and clicking on
agreed and accepted button.

Save the PDB files of the complex and each subunit in the
wild type form. Go to File — SavePDB. In the new win-
dow enter MEKI-BRAF.pdb as file name of the refined
complex structure and finally click on Save. Select each
subunit of the complex by its chain name from Select —
Chain. Go to File — SavePDB, specify the subunit new file
name (i.e., MEK1.pdb for chain A and BRAF.pdb tor chain
B), pick the save selected atom only option and finally click
on Save.

Save the complex and the subunit PDB files for each
mutant. Start a new session of UCSF Chimera Molecular
viewer, open MEK1-BRAF.pdb file, select only one resi-
due to be mutated then go to Tools — Structure Editing —
Rotamers, choose ALA as rotamer type and click on OK.
Save the resulting mutated complex structure going to
File — Save PDB and specitying the mutation in the new
file name (e.g., MEKI-BRAF F468A.pdb). Finally, select
the mutated subunit structure only and save it in a sepa-
rate file (e.g., BRAF_F468A.pdb). Repeat the same proto-
col for each BRAF and MEKI residue to be mutated.

Edit all MEKI-BRAF.pdb and MEKI.pdb files (both wild
type and mutated). Rename MG residue to MG2 and
convert ACP molecule to ATP.

2. Molecular dynamics simulation.
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source leaprc.ff99SB
source leaprc.gaff

#Load ATP parameters

loadamberprep ATP.prep
loadamberparams ATP.frcmod

#Check ATP parameters

check ATP

#Load pdb file

dmne=loadpdb MEK1-BRAF.pdb

#Check pdb structure
check 4mne

#Compute total charge

charge 4mne

#Put an 12A-buffer of TIP3P water around the system
solvateoct 4mne TIP3PBOX 12.0

#Neutralize the system

addions 4mne Na+ 4

#Save topology and coordinate files
saveamberparm 4mne MEK1-BRAF_solv.prmtop MEKI1-BRAF_solv.inpcrd

quit

Fig. 3 Example of AMBER LEaP input file to build topology and coordinates files of wild type solvated system.
The source command tells LEaP AMBER tool to execute the start-up script for ff99SB and GAFF force fields.
First, ATP parameters are loaded and checked, then MEK7-BRAF.pdb file is loaded into a new unit called
4mne, the structure is checked (i.e., close contacts and bond distances, bond and angle parameters) and the
total charge is computed. Then, the system is solvated by adding a truncated octahedral 12 A box of TIP3P
water molecules around the protein, and neutralized by adding four Na+ ions. Finally, the topology and
coordinate files are saved in the prmtop and inpcrd AMBER format, respectively

(a)

Download the ATP molecule parameters from the
AMBER parameter database (see Note 3). Go to the
AMBER parameter database web page at http://www.
pharmacy.manchester.ac.uk/bryce /amber/. Search the
row ATP (vevised phosphate parameters) in the Cofactors
table and save the PREP and FRCMOD files as ATP.prep
and ATP fremod, respectively.

Modify the ATP atom names in your PDB file to match
the atom names in the ATP.prep file so that LEaP AMBER
tool will be able to match them up.

Create the input files for the MD simulation (topology
and coordinate files) using LEaP AMBER tool. Run the
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#Solvent minimization
&cntrl

imin=1,

maxcye=1000,
ncyc=500,

ntb=1,

cut=12,

ntr=1,
restraintmask="'!:WAT,Na+,Cl-'
restraint_wt=50,
drms=0.01

/
/!

Fig. 4 Example of AMBER pmemd input file for solvent minimization. In the input
file, imin = 1 specifies that minimization instead of molecular dynamics will be
performed, the parameter maxcyc specifies the total number of minimization
cycles to be run while ncyc specify the number of steepest descent minimization
followed by maxcyc-ncyc steps of conjugate gradient minimization, drms sets
the convergence criterion for the energy gradient (in A). The parameter nfb = 1
means that a period boundary will be set around the system to maintain a
constant volume while cut sets the cutoff value (in A) applied for non-bonded
interactions. The flag ntr = 7 indicates that the positional restraint method is
applied for the energy minimization, restraintmask specifies the atoms to be
restrained (in this cases all but water and ions molecule) and finally restraint_wt
defines the restraints strength in terms of force constant in kcal mol™ A2
applied on each restrained atom

input script tleap-solv.in (shown in Fig. 3, see Note 4)
using the following command:

SAMBERHOME /bin/tleap -f tleap-solv.in > tleap-solv.
out

Flag -f tells tleap to execute the start-up script after-
specified.

(d) Run a short solvent minimization step using AMBER
pmemd input script min_solv.in (shown in Fig. 4) and
the following input command:

SAMBERHOME /bin/pmemd -i min_solv.in -0 min_-
solv.out -c MEKI-BRAF_solv.inpcrd -p MEKI1-BRAE_-
solvprmtop -r MEKI-BRAF_min.rst -ref MEKI-
BRAF_solv.inpcrd

Flag -7 specifies the input file, -0 the output file, - the
coordinate file, -p the parameter and topology file, -» the
output restart file with coordinates and velocities, and -7ef
the reference coordinates file for positional restraints, if
this option is specified in the input file.

(e) Run a 5-step equilibration by which the system tempera-
ture is raised from 0 to 300 K, and a gradual relaxation is
performed by progressively releasing the initially set posi-
tional restraints. The following protocol should be used:
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#Equilibration (I)

&cntrl
imin=0,
irest=0,
ntx=1,

ntb=1,
cut=12,
ntc=2,

ntf=2,
tempi=0.0,
temp0=300.0,
ntt=3,
gamma_1ln=1.0,
nstlim=20000,
dt=0.002,
ntwx=5000,
ntwr=5000,
ntpr=5000,
ntr=1,
restraintmask='!:WAT,Na+,Cl-"',
restraint_wt=25,
ig=-1,

/

Fig. 5 Example of AMBER pmemd input file for first step equilibration. In the input
file, imin = 0 specifies that molecular dynamics instead of minimization will be
performed, the parameters irest = 0and nix = 7 indicate that only coordinates
but no velocity information will be taken from the previous restart file, the flag
ntc = 2indicates that all bonds involving H-bonds are constrained by the SHAKE
algorithm to eliminate high frequency oscillations in the system while ntf = 2
means that all types of forces in the force filed are being calculated except bond
interaction involving H-atoms. The parameters temp0 and tempi define the initial
and the temperature at which the system is to be kept, respectively; nit = 3
indicates that the temperature Langevin thermostat will be used while
gamma_In=1.0 sets the collision frequency to 1 fs. The flag nstlim defines
the number of simulation steps, dt defines the length of each frame (set at 2 fs,
here) while ntwx, ntwr, nfpr define the frequency of data deposition (coordinates,
energy, and restart, respectively). Finally ijg = — 7 sets the random seed based
on the current date and time and hence will be different for every run. The
meaning of the rest of the parameters listed in the input file was previously
explained

e As a first equilibration step, run a 40-ps simulation in

isovolume condition applying harmonic restraints to all
the protein atoms and heating the system to 300 K.
Run equill.in input script (shown in Fig. 5) using the
following command:
SAMBERHOME /bin/pmemd -i equill.in -0 equill.
out -¢c MEKI-BRAF_min.rst -p MEKI-BRAF_solv.
prmtop -r MEKI1-BRAF_eql.rst -ref MEK1-BRAF_-
min.rst -x MEK1-BRAF_eql.mdcrd
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#Equilibration (II)
&cntrl

imin=0,

irest=1,

ntx=5,

ntb=1,

cut=12,

ntc=2,

ntf=2,
tempi=300.0,
temp0=300.0,
ntt=3,
gamma_1ln=1.0,
nstlim=10000,
dt=0.002,
ntwx=5000,
ntwr=5000
ntpr=5000,
ntr=1,
restraintmask="'!:WAT,Na+,Cl-"
restraint_wt=10,
ig=-1,

ir

Fig. 6 Example of AMBER pmemd input file for the second step equilibration. In
the input file, the flags nix = 5and irest = 7 mean that velocity and coordinate
information will be taken from the previous restart file. The meaning of the rest
of the parameters listed in the input file was previously explained

e Perform an additional 20-ps step in isothermal-
isovolume condition reducing the harmonic restraints
to all the protein atoms from 25 to 10 kcal /(mol A?).
Run equil2.in input script (shown in Fig. 6) using the
following command:
SAMBERHOME /bin/pmemd -i equil2.in -0 equil2.
out -¢ MEKI1-BRAF_eql.rst -p MEKI-BRAF_solv.
prmtop -r MEKI-BRAF_eq2.rst -ref MEKI-BRA-
F_eql.rst -x MEKI1-BRAF_eq2.mdcrd

e Run another 20-ps step applying the harmonic
restraints only to the backbone atoms. Run egquil3.in
input script (shown in Fig. 7) using the following
command:

SAMBERHOME /bin/pmemd -i equil3.in -0 equil3.
out -¢ MEKI1-BRAF_eq2.rst -p MEKI-BRAF_solv.
prmtop -r MEKI-BRAF_eq3.rst -ref MEKI-BRA-
F_eq2.rst -x MEKI1-BRAF_eq3.mdcrd

e Run further 20-ps step decreasing protein backbone
restraints to 5 kcal/(mol A?). Run equil4.in input
script (shown in Fig. 8) using the following command:
SAMBERHOME /bin/pmemd -i equil4.in -o equil4.
out -¢c MEKI-BRAF_eq3.rst -p MEKI-BRAF_solv.



152 Miguel Romero-Durana et al.

#Equilibration (III)

&cntrl
imin=0,
irest=1,
ntx=5,

ntb=2,

ntp=1,
cut=12,
nte=2,

ntf=2,
tempi=300.0,
temp0=300.0,
ntt=3,
gamma_1ln=1.0,
nst1lim=10000,
dt=0.002,
ntwx=5000,
ntwr=5000
ntpr=5000,
ntr=1,
restraintmask='@CA,N,C,0"',
restraint_wt=10,
ig=-1,

/

Fig. 7 Example of AMBER pmemd input file for the third step equilibration. In the
input file the flags ntb = 2and nfp = 1 indicate that constant pressure instead
of constant volume is applied. The meaning of the rest of the parameters listed in
the input file was previously explained

#Equilibration (IV)

&cntrl
imin=0,
irest=1,
ntx=5,

ntb=2,

ntp=1,
cut=12,
nte=2,

ntf=2,

tempi= 300.0,
temp0= 300.0,
ntt=3,
gamma_1ln=1.0,
nst1lim=10000,
dt=0.002,
ntwx=5000,
ntwr=5000
ntpr=5000,
ntr=1,
restraintmask='@CA,N,C,0',
restraint_wt=5,
ig=-1,

i

Fig. 8 Example of AMBER pmemd input file for the fourth step equilibration. The
meaning of all the parameters listed in the input file was previously explained
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#equilibration (V)

&cntrl
imin=0,
irest=1,
ntx=5,

ntb=2,

ntp=1,
cut=12,
ntc=2,

ntf=2,
tempi=300.0,
temp0=300.0,
ntt=3,
gamma_1ln=1.0,
nstlim=50000,
dt=0.002,
ntwx=5000,
ntwr=5000
ntpr=5000,
ntr=0,

ig=-1,

/

Fig. 9 Example of AMBER pmemd input file for the fifth step equilibration. In the
input file, the flag nfr = 0Oindicates that the positional restraint method is turned
off. The meaning of the rest of the parameters listed in the input file was
previously explained

prmtop -r MEKI-BRAF_eq4.rst -ref MEKI-BRA-
F_eq3.rst -x MEKI1-BRAF_eq4.mdcrd

e Run the last step of the equilibration consisting on
100-ps unrestrained MD simulation in isothermal-
isobaric condition. Run eguil5.in input script (shown
in Fig. 9, see Note 5) using the following command:
SAMBERHOME /bin/pmemd -i equil5.in -0 equil5.
out -¢ MEKI1-BRAF_eq4.rst -p MEKI-BRAF_solv.
prmtop -r MEKI-BRAF_eq5.rst -ref MEKI-BRA-
F_eq4.rst -x MEKI1-BRAF_eq5.mderd

(f) Finally, perform 5-ns MD unrestrained simulation
keeping the same system condition as the last equilibra-
tion step. Run prod.in input script (shown in Fig. 10, see
Note 6) using the following command:

SAMBERHOME /bin/pmemd -i prod.in -o prod.out -c
MEKI-BRAF eq5.rst -p MEKI1-BRAF_solv.prmtop -r
MEKI1-BRAF_prod.rst -ref MEKI-BRAF_eq5.rst  -x
MEKI-BRAF_prod.mdcrd

3. Binding free energy calculation.

(a) Build the topology and coordinate files of the unsolvated
wild type (WT) structure for both the complex and its
single subunits using tleap-WT.in input file (shown in
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#5ns-MD simulation

&cntrl
imin=0,
irest=1,
ntx=5,
ntbh=2,
ntp=1,
cut=12,
ntc=2,
ntf=2,
tempi=300.0,
temp0=300.0,
ntt=3,
gamma_1ln=1.0,
nstlim=2500000,
dt=0.002,
ntwx=5000,
ntwr=5000
ntpr=5000,
ntr=0,
ig=-1,

/

Fig. 10 Example of AMBER pmemd input file for unrestrained MD. The meaning
of all the parameters listed in the input file was previously explained

source leaprc.ff99SB
source leaprc.gaff

#Load ATP parameters
locadamberprep ATP.prep
loadamberparams ATP.frcmod

#Load pdb files
4mne=loadpdb MEK1-BRAF.pdb
mekl=loadpdb MEK1l.pdb
braf=loadpdb BRAF.pdb

#Save topology and coordinate files

saveamberparm 4mne MEK1-BRAF.prmtop MEK1l-BRAF.inpcrd
saveamberparm mekl MEKl.prmtop MEKl.inpcrd
saveamberparm braf BRAF.prmtop BRAF.inpcrd

quit

Fig. 11 Example of AMBER LEaP input file to build topology and coordinates files
of wild type dry systems

Fig. 11). Run LEaP AMBER tool using the following
command:

SAMBERHOME /bin/tleap -f tleap-WT.in > tleap-WT.
out

(b) For each mutation studied, build the topology and coor-
dinate files of the mutated structure for both the complex
and mutated subunit using tleap-mut.in input file (shown
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Fig. 12 Example of AMBER LEaP input file to build topology and coordinates files
of mutated dry systems. Here, F468 BRAF residue is taken as example

#Alanine scanning

&general

receptor_mask=":1-346,623,624"
startframe=3000, endframe=5000, interval=10,
verbose=1,

/

&gb

saltcon=0.1

/

&pb

istrng=0.100
/

&alanine_scanning
rd

Fig. 13 Example of MMPBSA.py input file to perform alanine scanning
calculation. The input file is typically divided into four sections (&general, &gb,
&pb, &alanine_scanning). The &general section is designed to specify generic
variables related to the overall calculation. For instance, the flag startframe and
endframe specifies the frame from which to begin and to stop extracting
snapshots, respectively, the parameter interval indicates the offset from which
to choose frames from the trajectory file, verbose = 7 means that complex,
ligand, and receptor energy terms will be printed in the output file. The &gb and
&pb section markers tells the script to perform MM-GBSA and MM-PBSA
calculations with the given values defined within those sections (i.e., the
variables salfcon and istrng that specify the salt concentration and the ionic
strength, respectively). Finally the &alanine_scanning section marker initializes
alanine scanning in the script. Please be aware that given the higher
computational costs of MM-PBSA calculation, only MM-GBSA calculation is
performed in this work

in Fig. 12). Run LEaP AMBER tool using the following
command:

SAMBERHOME /bin/tleap -f tleap-mut.in > tleap-mut.
out
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(¢) Perform alanine scanning calculation on 200 snapshots
extracted from the last 2 ns of each MD trajectory. Run
mmpbsa.in input file ftor MMPBSA.py script in AMBER14
(shown in Fig. 13) using the following command:

SAMBERHOME /bin/MMPBSA.py -i mmpbsa.in -sp
MEKI-BRAF_solv.prmtop -cp MEKI1-BRAF.prmtop -rp
MEKI-BRAF.prmtop -lp MEKI-BRAF.prmtop -y
MEKI1-BRAF_prod.mderd -mc MEKI1-BRAF_F468A.
prmtop -ml BRAF_F468A.prmtop

Flag -1 specifies the input file, -sp the solvated WT
complex topology file, -¢p the unsolvated WT complex
topology file, -7p the unsolvated WT receptor topology
file, -lp the unsolvated WT ligand topology file, -y the
complex trajectory file to analyze, -mc the unsolvent
mutated complex topology file and -m/ the unsolvated
mutated subunit topology file. Please be aware that as
MEKI is the first molecule in the complex, for alanine
scanning calculations the unsolvated mutated subunit
topology file will be specified with the flag -m.

(d) Extract the AAG of binding related to the specific muta-
tions estimated as the difference between the binding AG
of the WT and that of the mutated complex. All these data
are easily available in the final output file, FINAL_RE-
SULTS_MMPBSA.dat, including all the wild type and
mutated system average binding energies (reported as
van der Waals, electrostatic, and nonpolar energy contri-
butions), as shown in Fig. 14.

() You may get a graphical representation of the AAG of
binding (see Fig. 1), by assigning the values given in
FINAL RESULTS MMPBSA.dat file to the bfactor
field of the corresponding PDB file of the complex
structure.

4 Notes

1. As there is no unbound structure for the ligand yet, the ligand
structure contained on the complex PDB file (4MNE) is used
here instead for illustration purposes. However, in a standard
NIP computation, unbound structures should be used.

2. The principal columns of the 4mne.ence file are:

e Conf: Conformation number of the docking pose as in the
last column of the rot file.

e Ele: Electrostatic energy of the pose.

e Desolv: Desolvation energy of the pose.
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|Calculations performed using 201 complex frames.

|
|21l units are reported in kcal/mole.

GENERALIZED BORN:

Differences (Complex - Receptor - Ligand):

Energy Component Average Std. Dew. Std. Err. of Mean
VDWAALS -161.0164 8.5993 0.6065
EEL -1068.5067 36.1059 2.5467
EGB 1172.6667 35.5088 2.5046
ESURF -23.1830 0.9495 0.0670
DELTA G gas -1229.5231 36.2700 2.5583
DELTA G solv 1149.4837 35.4458 2.5002
DELTA TOTAL -80.0394 11.0084 0.7765
F3672A MUTANT:

GENERALIZED BORN:

Differences (Complex - Receptor - Ligand):

Energy Component Average Std. Dev. Std. Err. of Mean
VDWAALS -158.7570 8.4809 0.5982
EEL -1068.8691 36.0357 2.5418
EGB 1172.3985 35.5099 2.5047
ESURF -22.7274 0.9551 0.0674
DELTA G gas -1227.6261 36.3593 2.5646
DELTA G solv 1149.6712 35.4335 2.4993
DELTA TOTAL -77.9549 11.0214 0.7774
RESULT OF ALANINE SCANNING: (F468A) DELTA DELTA G binding = -2.0844+/-0.5545

Fig. 14 Extract from the MMPBSA.py FINAL_RESULTS MMPBSA.dat output file. The file includes all the
average energies, standard deviations, and standard error of the mean for GB followed by PB calculations (if
calculated). After each section, the AG of binding is given along with the error values. After each method, the
AAG of binding is reported, corresponding to the relative effect the mutation has on the A G of binding for the
complex. The specific mutation is also printed at the end of the file. Here, F468 residue alanine scanning is
taken as example
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energy.
always kept.
than 5 ns (i.e., 20 ns).
References
1. Arkin MR, Wells JA (2004) Small-molecule

e VDW: van der Waals energy of the pose.

e Total: Total docking energy of the pose, computed as ele +
Desolv + 0.1 * VDW (note a 0.1 weight for VDW).

¢ RANK: Pose rank according to its computed total binding

. Files from the PDB may contain bound ligands, cofactors or

nonstandard residues whose parameters are not available in the
AMBER parameters database. In this case you should make use
of the Antechamber tools, which ship with AmberTools, to
create PREP and FRCMOD files. For more information, see
the ANTECHAMBER tutorial (http://ambermd.org/
tutorials /basic/tutorial4b /) and the AMBER manual.

. LEaP AMBER tool renumbers PDB residues starting from 1.

Thus, the original numeration of your PDB file may not be

. Since your system may not start from an equilibrium state,

additional time steps may be required during the minimization
and equilibration steps of the MD simulation. One can check
for equilibrium by verifying whether properties, such as poten-
tial energy, temperature, or pressure, no longer change in any
systematic fashion and are just fluctuating around a mean value.

. To guarantee reliable results in the in silico Alanine scanning

calculation, RMSD simulation should be highly equilibrated.
Ideally one should probably run a much longer production run

inhibitors of protein-protein interactions: pro-
gressing towards the dream. Nat Rev Drug
Discov 3:301-317

. DeLano WL (2002) Unraveling hot spots in

binding interfaces: progress and challenges.
Curr Opin Struct Biol 12:14-20

. Toogood PL (2002) Inhibition of protein-

protein association by small molecules:
approaches and progress. J Med Chem
45:1543-1558

. Glaser F, Pupko T, Paz I et al (2003) ConSurf:

identification of functional regions in proteins
by surface-mapping of phylogenetic informa-
tion. Bioinformatics 19:163-164

. Ashkenazy H, Erez E, Martz E et al (2010)

ConSurf 2010: calculating evolutionary conser-
vation in sequence and structure of proteins and
nucleic acids. Nucleic Acids Res 38:W529-533

. Landau M, Mayrose I, Rosenberg Y et al (2005)

ConSurf 2005: the projection of evolutionary

10.

11.

conservation scores of residues on protein struc-
tures. Nucleic Acids Res 33:W299-302

. Celniker G, Nimrod G, Ashkenazy H et al

(2013) ConSurf: using evolutionary data to
raise testable hypotheses about protein func-
tion. Isr ] Chem 53:199-206

. Grosdidier S, Fernandez-Recio J (2008) Iden-

tification of hot-spot residues in protein-
protein interactions by computational docking.
BMC Bioinformatics 9:447

. Branden CI, Tooze ] (1999) Introduction to

protein structure, 2nd edn. Garland Pub,
New York, NY

Cheng TM, Blundell TL, Fernandez-Recio J
(2007) pyDock: electrostatics and desolvation
for effective scoring of rigid-body protein-pro-
tein docking. Proteins 68:503-515

Case DA, Cheatham TE, Darden T et al (2005)
The Amber biomolecular simulation programs.
J Comput Chem 26:1668-1688


http://ambermd.org/tutorials/basic/tutorial4b/
http://ambermd.org/tutorials/basic/tutorial4b/

12.

13

14

Modeling Binding Affinity of Pathological Mutations for Computational Protein Design

Miller BRI, McGee DTJ, Swails JM et al
(2012) MMPBSA.py: an efficient program for
end-state free energy calculations. J Chem
Theor Comput 8:3314-3321

. Haling JR, Sudhamsu J, Yen I et al (2014)

Structure of the BRAF-MEK complex
reveals a kinase activity independent role for
BRAF in MAPK signaling. Cancer Cell
26:402-413

. Kiel C, Serrano L (2014) Structure-energy-

based predictions and network modelling of
RASopathy and cancer missense mutations.
Mol Syst Biol 10:727

15.

16.

17.

159

Jimenez-Garcia B, Pons C, Fernandez-Recio
(2013) pyDockWEB: a web server for rigid-
body protein-protein docking using electrostat-
ics and desolvation scoring. Bioinformatics
29:1698-1699

Gabb HA, Jackson RM, Sternberg MJ (1997)
Modelling protein docking using shape com-
plementarity, electrostatics and biochemical
information. J] Mol Biol 272:106-120
Pettersen EF, Goddard TD, Huang CC et al
(2004) UCSF Chimera—a visualization system
for exploratory research and analysis. ] Comput
Chem 25:1605-1612



Chapter 7

Multistate Computational Protein Design with Backbhone
Ensembles

James A. Davey and Roberto A. Chica

Abstract

The ability of computational protein design (CPD) to identify protein sequences possessing desired
characteristics in vast sequence spaces makes it a highly valuable tool in the protein engineering toolbox.
CPD calculations are typically performed using a single-state design (SSD) approach in which amino-acid
sequences are optimized on a single protein structure. Although SSD has been successfully applied to the
design of numerous protein functions and folds, the approach can lead to the incorrect rejection of desirable
sequences because of the combined use of a fixed protein backbone template and a set of rigid rotamers.
This fixed backbone approximation can be addressed by using multistate design (MSD) with backbone
ensembles. MSD improves the quality of predicted sequences by using ensembles approximating confor-
mational flexibility as input templates instead of a single fixed protein structure. In this chapter, we present a
step-by-step guide to the implementation and analysis of MSD calculations with backbone ensembles.
Specifically, we describe ensemble generation with the PertMin protocol, execution of MSD calculations for
recapitulation of Streptococcal protein G domain Bl mutant stability, and analysis of computational predic-
tions by sequence binning. Furthermore, we provide a comparison between MSD and SSD calculation
results and discuss the benefits of multistate approaches to CPD.

Key words Single-state design, Multistate analysis, Multistate design, PertMin, Protein stability
prediction, Receiver operating characteristic, Protein G

1 Introduction

The continued development of computational protein design
(CPD) methodologies has led to an increasing number of designed
proteins possessing unique structural [1-3] and functional [4-7]
characteristics. CPD is a powerful tool for protein engineering
because it enables the identification of sequences displaying desired
properties in spaces astronomically larger (>10%° sequences) [8]
than those that can be tested experimentally. CPD simulations are
typically performed using a single-state design (SSD) approach in
which amino-acid sequences are optimized on a single protein
structure. Most SSD procedures consist of three steps: (1) a side-
chain placement step where discrete side-chain rotamers are

llan Samish (ed.), Computational Protein Design, Methods in Molecular Biology, vol. 1529,
DOI 10.1007/978-1-4939-6637-0_7, © Springer Science+Business Media New York 2017
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Fig. 1 Single-state and multistate design. In single-state design (a), a single
backbone template (circle) is used to score and rank sequences (1, 2, and 3)
according to their predicted stability (arrow). Application of an arbitrary energy
cutoff (dotted line) results in acceptance of sequence 3 as stable and rejection of
sequences 1 and 2 as unstable. In multistate design (b), an ensemble of four
backbone structures (diamond, circle, pentagon, and triangle) is used to score
and rank sequences. Predicted stability (arrow) is computed as the Boltzmann
weighted average energy across all members of the ensemble for each
sequence. Application of the same energy cutoff as in single-state design
(dotted line) results in sequences 2 and 3 being accepted and sequence 1
being rejected

threaded onto specified positions on a fixed protein backbone
template, (2) an energy calculation where interaction energies
between pairs of rotamers and between each rotamer and the
backbone template are computed using a potential energy function,
and (3) a sequence optimization step where combinations of rota-
mers are optimized using a search algorithm that explores both
rotamer and sequence space to identify optimal sequences. At the
conclusion of this process, a list of sequences is generated (Fig. 1a)
with each sequence being ranked according to a score value that
reflects its stability on the target protein structure.

Although SSD has been successfully applied to the design of
numerous protein functions and folds, the approach is susceptible
to false negative predictions that result from the combined use of a
fixed protein backbone template and a set of rigid rotamers to
model mutant protein structures. This fixed backbone approxima-
tion leads to the incorrect rejection of desirable sequences that
would be accepted if the backbone geometry was allowed to relax
or if a slightly different rotamer configuration was allowed [9].
To address the fixed backbone approximation, several strategies
have been developed including the use of softer repulsive potential
energy terms [10-12], flexible backbone algorithms [13-15],
iterative energy minimization [16, 17], and continuous rotamer
optimization [18]. Recently, multistate design (MSD) with back-
bone ensembles approximating protein conformational flexibility
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has emerged has a useful alternative to these methods [19, 20].
In MSD, sequence optimization is guided by energy contributions
of multiple protein structures simultaneously, enabling the evalua-
tion of sequences in the context of an ensemble of backbone
templates. MSD simulations consist of multiple independent
single-state calculations in which rotamers for a specific amino-
acid sequence are optimized in the context of each backbone
template included in the ensemble. Individual SSD scores obtained
on each template are then combined into a single fitness value for
each amino-acid sequence that represents its predicted stability
across the ensemble. MSD optimization algorithms [21-23]
attempt to improve this fitness value as a function of amino-acid
sequence to identify optimal sequences. Thus, MSD differs from
SSD by its use of an energy combination function to compute
sequence fitness and a modified search algorithm to find optimal
sequences in the context of multiple backbone templates. Because
multiple backbones are used to inform sequence selection in MSD,
combinations of rotamers that would be rejected in SSD because
they cause steric clashes in a single fixed backbone template can be
accepted if they have a stabilizing effect in at least one of the
backbone templates included in the ensemble (Fig. 1b). In this
way, MSD with backbone ensembles leads to fewer false negatives
and improved overall prediction accuracy [20].

An alternate approach to MSD that can be used to evaluate
fitness of amino-acid sequences across multiple backbone templates
is multistate analysis (MSA). MSA involves the combination of
scores obtained from parallel SSD simulations into a single fitness
value for each sequence that is computed post-CPD. The resulting
fitness values are then used to re-rank sequences (Fig. 2). By
employing alternate backbones as input templates to these parallel
SSD calculations, MSA can be used to identify the most favorable
template to score each sequence [24] or to evaluate how well each
sequence stabilizes an ensemble of backbone templates. MSA dif-
fers from MSD by its sequence optimization procedure, which is
not informed by the energetic contributions of multiple backbones.
Instead, sequence optimization in MSA is performed as in SSD and
only the use of an energy combination function to compute
sequence fitness distinguishes it from SSD. Because of this, MSA
has the benefit of being less computationally demanding than MSD
but has the drawback of potentially constraining explored sequence
space since sequence optimization is not guided by multiple states.

In order to implement MSD or MSA, multiple backbone tem-
plates are required. These templates can be obtained from available
x-ray or NMR structures or can be generated in silico from the
atomic coordinates of a single protein. Several computational
methods have been developed to generate backbone ensembles
for use in MSD [19, 25]. In this chapter, we will focus on the
coordinate perturbation followed by energy minimization
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Fig. 2 Multistate approaches to computational protein design. In MSD (a), sequence optimization is guided by
the energetic contributions of multiple protein structures simultaneously. Thus, sequence optimization and
scoring are performed concertedly, resulting in a list of sequences that are ranked according to their predicted
stability across the ensemble of three structures. In MSA (b), multiple independent SSD calculations are
performed in parallel using alternate backbones as input templates. The sequence scores obtained from each
SSD calculation are combined post-CPD into a fitness value for each sequence across the ensemble of three
structures. Sequences are then re-ranked based on their fitness values, generating a new ranked list of scored
sequences

(PertMin) protocol that we recently developed [20]. In this proce-
dure, small coordinate perturbations are introduced into a starting
protein structure to generate a set of randomly perturbed struc-
tures. An energy minimization procedure is then applied to the
perturbed structures, which minimize to different local minima
that become accessible because of diverging trajectories (Fig. 3a).
PertMin thus exploits the initial condition sensitivity of energy
minimization [26]. A benefit of the PertMin protocol is that struc-
tural deviation from the input structure and ensemble diversity (i.e.,
structural deviation between ensemble members) can be controlled
by the number of minimization steps (Fig. 3b). While PertMin does
not allow for a large area of protein conformational space to be
explored, it enables the rapid and tunable generation of ensemble
backbones having high coordinate similarity to their progenitor
structure and low potential energy. Thus, application of PertMin
ensembles in MSD results in improved prediction accuracy com-
pared to SSD by reducing the number of false negatives and
increasing the number of true positives [20].



Multistate Design with Backbone Ensembles 165

A C START

A 4
Input
Structure

L 4

Coordinate
Perturbation

L 4

Modify Energy Energy NO
Minimization Minimization

Does Structure
Meet Criteria?

YES

Ensemble Size
Reached?

YES

NO

® .o .ﬂ
‘. .\

END

Input Structure
i loe O structure O Decision

4 Perturbed Structure
L . : Function
—+—+—+ Minimization Trajectory

Fig. 3 The PertMin protocol. (a) PertMin functions by introducing small random coordinate perturbations into
an input protein structure (white diamond) to yield a set of perturbed structures (black diamonds). This
perturbation step is followed by energy minimization (arrows) of each perturbed structure into different local
minima surrounding the input structure. (b) In PertMin, a higher number of energy minimization steps
(represented by circles) leads to increased root-mean-square coordinate deviation from the input structure
and greater ensemble diversity (represented by the circle arc). (c) The PertMin algorithm

In this chapter, we provide a step-by-step guide to the implemen-
tation and analysis of MSD calculations with backbone ensembles.
To facilitate this explanation, we present an example involving the
recapitulation of a training set of 84 Streptococcal protein G domain
Bl (GPl) mutant sequences of known stability (Table 1) [19].
A specific focus is placed on the generation of backbone ensembles
using the PertMin protocol and on their application in both MSD
and MSA. An analysis of CPD predictions and a comparison between
SSD, MSA, and MSD calculation results are presented.
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Table 1

Gp1 training set sequences

Stabilizing® Destabilizing® Unfolded® Nonnative®
FLIAAFAIWEV® FIIAAFAIWEV FIVAAFAVWEI FAFAAFFIWFA
FLIAAFALWEI FITAAFATWEFI FLIAAFAVWLV FALAAFFIWFA
FLFAAFALWFI FIVAAFAIWEV FLVAAFAVWIV FAFAATFIWFA
FLVAAFATWFV FILAAFAIWEV FLLAAFAVWLV FAFAALFIWFA
FLIAAFAVWEV FIVAAFATWFI FIIAAFAVWEV FALAAIFIWFA
FLFAAFAIWEV FILAAFAVWEV FLIAAFAIWIV FALAALFIWFA
FLFAAFAIWFI FIIAAFAVWEI FLIAAFATWLV FAFAAFFLWFA
FLIAAFAIWFI FIVAAFAVWEV FLIAAFAIWVV FALAAFFLWFA
FLIAAFALWEV FLIAAFAVWIV FLIAAFALWIV FAFAATFLWEFA
FLVAAFATWEI FILAAFATWEFI FLIAAFALWLV FAFAALFLWFA
FLVAAFALWEI FILAAFAVWFI FLIAAFALWVV FALAAIFLWFA
FLLAAFAIWEV FLLAAFAVWVV FLIAAFAVWVV FALAALFLWFA
FLFAAFALWEV FLLAAFAIWIV FAFAAFFIWEV
FLIAAFAVWEI FLLAAFATWLV FALAAFFIWFV
FLLAAFAVWEV FLLAAFAIWVV FAFAAIFTWEV
FLVAAFAVWEV FLLAAFALWIV FAFAALFIWEV
FLVAAFALWEFV FLLAAFALWLV FALAAIFIWEV
FLLAAFALWEFI FLLAAFALWVV FALAALFIWFV
FLVAAFAVWEFI FLLAAFAVWIV FAFAAFFLWEV
FLLAAFAIWEFI FLVAAFAIWIV FALAAFFLWEV
FLLAAFALWFV FLVAAFAIWLV FAFAAIFLWEV
FLFAAFAVWEFV FLVAAFAIWVV FAFAALFLWEV
FLFAAFAVWEFI FLVAAFAVWLV FALAAIFLWEFV
FLLAAFAVWEFI FLVAAFAVWVV FALAALFLWFV

All sequences are from [19]

*Stabilizing sequences consist of 24 GB1 mutants whose stability is approximately equal to or greater than that of the wild
type (WT)

"Destabilizing sequences consist of 12 Gp1 mutants whose stability is lower than that of the WT

“Unfolded sequences consist of 24 GB1 mutants that do not fold

4Nonnative sequences consist of 24 Gf1 mutants postulated to adopt an alternate protein fold

€Amino-acid sequences of GB1 mutants show residue identity at core positions in this order: positions 3, 5, 7, 20, 26, 30,
34,39,43,52, and 54
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2 Materials

Ensemble generation and data analysis were performed by single-
threaded calculations on an AMD Athlon II personal computer. All
CPD simulations were conducted on a Linux cluster consisting of
Intel Xeon and AMD Opteron x86-64 CPUs. The PertMin proto-
col was implemented using the Molecular Operating Environment
(MOE) software package [27] and CPD calculations were run
using PHOENIX [4, 19, 28]. Parsing and analysis of CPD results
were done using Python 2.7 and Microsoft Excel 2007. Input
coordinates for the Gf1l fold were retrieved from the Protein
Data Bank (PDB ID: 1PGA) [29]. GBIl training set sequences
and their stabilities were retrieved from [19].

3 Methods

3.1 Structure
Preparation

for Single-State
Design

3.2 Ensemble
Preparation

1. Retrieve the GB1 crystal structure from the Protein Data Bank
(PDB ID: 1PGA) [29].

2. Remove water molecules included in the crystal structure.

3. Prepare the GBI structure for calculation by adding hydrogens,
counter-ions, and solvent using MOE [27] (see Note 1).

4. Energy minimize the prepared GBI structure with 50 steps of
conjugate gradient energy minimization [30].

The resulting energy minimized structure will be used as the
input backbone template for SSD.

Preparation of a backbone ensemble to be used as input to MSA
and MSD calculations is carried out with the PertMin protocol [20]
(Fig. 3¢).

1. Perturb all atoms of the unminimized Gf1 structure prepared
with added hydrogens, counter-ions, and solvent by introdu-
cing random Cartesian coordinate perturbations of + 0.001 A
along each axis.

2. Energy minimize the perturbed Gp1 structure with 50 itera-
tions of truncated Newton energy minimization [31].

3. Evaluate the resulting minimized structure to ensure that it
meets user-specified criteria. In this case, a protein backbone
atom coordinate root-mean-square (RMS) deviation from
the 1PGA crystal structure of 0.3 A or more is required.
If the structure meets this requirement, add it to the PertMin
ensemble. If not, discard it and modify the energy minimiza-
tion procedure accordingly (see Note 2).

4. Repeat steps 1 through 3 until the PertMin ensemble contains
64 structures.
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The 64-member PertMin ensemble prepared as described
above has an average backbone atom RMS coordinate deviation
from the 1PGA crystal structure of 0.46 & 0.02 A and an ensemble
diversity (backbone atoms) of 0.25 £+ 0.04 A.

3.3 Computational SSD, MSA, and MSD calculations to recapitulate the known stabil-
Protein Design ity of the Gf1 training set sequences (Table 1) were conducted
Calculations using the PHOENIX protein design software [4, 19, 28].

1. Design Gp1 core residues (positions 3, 5,7, 30, 34, 39,52, and
54) with amino-acid types found at these positions in the
training set of 84 mutant Gpl sequences (Fig. 4). For Gpl
core residues A20, A26, and W43, allow conformation to vary
but not amino-acid identity.

2. Thread amino-acid side-chain rotamers onto backbone tem-
plate(s) at these positions using the Dunbrack backbone-
dependent rotamer library with expansions of £+ 1 standard
deviation around yx; and y, [32]. The crystallographic
conformer found at these positions is also included.

3. Evaluate interaction energies between pairs of rotamers and
between each rotamer with the backbone template using a
physics-based four-term potential energy function that
includes (a) a van der Waals term from the Dreiding II force
field with atomic radii scaled by 0.9 [33], (b) a direction-
specific hydrogen-bond term having a well depth of 8.0 kcal /
mol [11], (¢) an electrostatic energy term modeled using Cou-
lomb’s law with a distance-dependent dielectric of 40, and (d) a
surface area-based solvation penalty term [34, 35].

4. Apply a 1000 kcal/mol potential energy penalty against the
crystallographic conformer found at each designed position.
Application of this penalty ensures adequate sampling away
from the wild-type sequence.

F0/0/0000100)
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Fig. 4 Computational design of GB1 core residues. (a) Designed Gf1 core residues. (b) Wild-type (square) and
mutant (diamond) residues included in calculations are shown for each designed position (circle). The total
searched sequence space during calculation consists of 5184 possible sequences
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5. For SSD and MSA, optimize sequences on a single backbone
template at a time using the FASTER (Fast and accurate
side-chain topology and energy refinement)
[36, 37]. For MSD, optimize sequences in the context of the
PertMin ensemble using a modified version of the FASTER

.927

algorithm, MSD-FASTER [21].

. After SSD calculations are completed, compute fitness values

algorithm

for MSA as the Boltzmann weighted average of individual
sequence energies obtained on all backbones included in the
PertMin ensemble (se¢e Note 3). For MSD, the Boltzmann
weighted average fitness is computed during sequence
optimization.

Following CPD, a rank ordered list of scored sequences is
obtained (Fig. 5). In SSD, sequences are ranked according to
their score, which is the potential energy on a single backbone
template. In MSA and MSD, sequences are ranked according to
their fitness value, which is the Boltzmann weighted average energy
across all backbone templates included in the PertMin ensemble.
Because fitness is evaluated concertedly to sequence optimization in
MSD but not in MSA, where fitness is instead computed post-CPD
(Fig. 2), sequence ranking and fitness values obtained by these
multistate approaches are not identical (Fig. 5).

mmwmmhuml—ioﬁ

MSA
YLLAAFAVWFV
F-I----I---
F-I----L---
F-I--------
Fommm-- I---
F-V----I---
F-I----L--I
F-V----L---
oo -——-—
F-I----I--I
Fommmm- L---
F-I------- I
FAI---FI---
F-V-mmmmmm-
__I____I___
F-V----L--T
FAI---F----
N, J—, G——
Fommmmmmmm I
F-I--L-I---
FAI---FI--I
__I ________
R I
F-I----I-L-
FAI--------
F-I----I--A

-76.
-76.
-76.
-76.

491
333
232
188

tODO“\lO‘!W-hWNI—'Dﬁ

MSD
YLLAAFAVWFV
F-I----I---
F-I----L---
F-I--------
Fo-m-m- I---
F-V----I---
F-I----L--I
F __________
F-I----I--I
F-V--==L--=
Fommmm- L---
F-I------- I
FoVemmmmmmm
FAI---FI---
__I____I___
Fommmmmmm- I
FAI---F----
F-V----L--I
__I____L___
Fo-mmm- I--1
FAI---F---I
FAV---FI---
F-I--L-I---
F-V----I--I
FAI--------
FAI---FI--I

-86.
-84.
-83.
-83.
-82.
-81.
-81.
-81.
-80.
-80.
-80.
-80.
-79.
-79.
-79.
-78.
-78.
-77.
-77.
=77.
-77.
-77.
-77.
-77.
=77,

494
455
351
006

Fig. 5 Ranked lists of scored sequences obtained by various computational protein design methods. The wild-
type (WT) and top 25 mutant sequences predicted by SSD, MSA, and MSD are shown. Numbers represent

single-state score or multistate fitness values for each sequence
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butions. Distributions depict the number of sequences predicted by SSD (a), MSA
values grouped in incremental bins of 1 kcal/mol. The average sequence energy

is indicated by a dotted black line. The fraction of the pie charts in black (31, 50, and 63 % for SSD, MSA, and
MSD, respectively) corresponds to the percentage of the 5184 total possible sequences with predicted energy

below 0 kcal/mol

3.4 Energy Analysis
of Predicted
Sequences

Sequence energy distributions (Fig. 6) show that more favor-
able energies are obtained for a larger number of sequences by the
multistate approaches than by SSD, with average sequence energies
of —40, —46, and —50 kcal/mol obtained by SSD, MSA, and
MSD, respectively. The lower energies obtained by multistate
approaches result from their ability to identify better backbone
templates to score each sequence than the single template used in
SSD [20, 24]. This is exemplified by the greater number of
sequences that are scored with an energy lower than 0 kcal /mol
by the multistate approaches (50 and 63 % for MSA and MSD,
respectively) than by SSD (31 %), highlighting how multistate
approaches help to address the fixed backbone approximation.

In this section, the top 100 sequences predicted by the various
CPD methods will be analyzed with the sequence binning proce-
dure [20]. In this procedure, sequences from each rank-ordered list
are binned as either stable or unstable by comparing their energy
value relative to that of the wild-type (WT) sequence. The energy of
the WT is used as the cutoff because the WT is known to be stable
in the context of the GP1 fold and because all CPD methods used
here are expected to rank the WT sequence favorably. Stabilizing
sequences are thus expected to be ranked ahead of the WT while
destabilizing, unfolded, and nonnative sequences (Table 1) are
expected to be ranked below the WT.

1. Compute the energy difference (AE) between each sequence
included in the top 100 and the WT. WT energy values
obtained by SSD, MSA, and MSD are —69.8, —73.6, and
—74.5 kcal /mol, respectively (Table 2).

2. Bin sequences as potential positives or negatives if their AE
value is lower or greater than 0 kcal /mol, respectively.



Table 2
Sequence binning results
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Binning statistics SSD MSA MSD
Success rate (%) 70 85 88
Cutoff (kcal /mol) —69.8 —73.6 —74.5
True positives 12 17 18
False negatives 12 7 6
False positives 13 6 4
True negatives 47 54 56

3. From the set of potential positive sequences, identify true and
false positive sequences. True positives are the 24 stabilizing
sequences of the training set while false positives include the 12
destabilizing, 24 unfolded, and 24 nonnative sequences
(Table 1). Because the experimental stability of the remaining
5099 designed sequences is unknown, they are not considered
in our binning procedure.

4. From the set of potential negative sequences, identify true and
false negative sequences. True negatives include the destabiliz-
ing, unfolded, and nonnative sequences of the training set
while false positives are the stabilizing sequences (Table 1).

5. Compute the success rate of the binning procedure, which is
the percentage of correctly binned sequences (true positives
and true negatives) out of the complete training set. For this
sequence binning analysis, the WT sequence is not included in
the binning statistic.

6. Perform steps 1 through 5 using a series of cutoff values
ranging from —90 to +90 kcal/mol in 1 kcal /mol increments.
Build receiver operating characteristic (ROC) curves by plot-
ting the true positive ratio (fraction of true positives out of the
positives) as a function of the false positive ratio (fraction of
false positives out of the negatives) for every possible cutoff
value.

Sequence binning results shown in Fig. 7 demonstrate that
MSD is the only method that can score all 84 training set sequences
below 0 kcal/mol. In contrast, SSD and MSA score fewer of the
training set sequences below 0 kcal/mol (68 and 82 %, respec-
tively). The multistate methods correctly reject a higher number
of the 60 true negatives (Table 1, destabilizing, unfolded, and
nonnative sequences) and correctly accept a higher number of the
true positives (Table 1, stabilizing sequences), compared to SSD
(Table 2). As a result, fewer false negatives are predicted by MSA
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Fig. 7 Sequence binning analysis. GB1 training set sequences predicted by SSD (a), MSA (b), and MSD (c)
calculations are binned according to their energy difference from the wild-type (WT) sequence. Sequences
with lower energy than the WT (AE < 0 kcal/mol) are potential positive sequences while sequences with
higher energy than the WT (AE > 0 kcal/mol) are potential negative sequences. Sequences are colored
according to their experimental stability, with sequences having stability greater than or approximately equal
to the WT in green (stabilizing), sequences having lower stability than the WT in yellow (destabilizing),
sequences that do not fold in red (unfolded), and sequences postulated to adopt a nonnative fold in blue
(nonnative). Positive AE values are capped at +14 kcal/mol, even if the predicted energy difference is greater
than this value. The fraction of the pie charts in black (68, 82, and 100 % for SSD, MSA, and MSD,
respectively) corresponds to the percentage of the 84 training set sequences with predicted energy below
0 kecal/mol

and MSD than by SSD, an expected result given that they help to
address the fixed backbone approximation. Additionally, the suc-
cess rates of multistate methods are greater than that of SSD, with
the MSD success rate being the highest (88 %). The number of false
negative predictions made by MSD increases if the ensemble does
not cover a sufficient structure space to score training set sequences,
resulting in decreased average binning success rates (see Note 4).

Although the binning profiles described above demonstrate the
utility of using the WT sequence energy as the cutoff, ROC curves
were generated to help determine if there is an ideal cutoff to be
used. An ideal ROC has a true positive ratio approaching 1 and a
false positive ratio approaching 0 across a broad range of cutofts,
resulting in a large area under the curve. Our data demonstrates
that this desirable binning behavior is obtained for multistate meth-
ods but not for SSD (Fig. 8), further demonstrating the improved
accuracy of MSA and MSD calculations relative to SSD.

3.5 Predicted
Sequence Space
Analysis

In this section, diversity of the top 100 sequences predicted by the
various CPD methods will be analyzed. To do so, the frequency of
amino-acid residues found at each designed position as well as the
number of identical sequences in the top 100 sequences predicted
by each method will be compared.

1. Extract the list of top 100 sequences predicted by SSD,; MSA,
and MSD.
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Fig. 8 Receiver operating characteristic (ROC) curves. ROC curves for SSD (a), MSA (b), and MSD (c)
calculations were produced by binning Gp1 training set sequences with respect to an energy cutoff between
—90 and +90 kcal/mol that was increased in 1 kcal/mol increments. ROC curves for SSD and MSA do not
reach true and false positive ratios of 1.0 because the energy of some training set sequences was predicted to
be greater than +90 kcal/mol. The diagonal gray line indicates random sequence binning

2. Use the Weblogo server (http: //weblogo.berkeley.edu/) [38]
to compute the frequency of each amino-acid type found at
each designed position in the top 100 sequences.

3. Compare sequence logos obtained from the top 100 sequences
predicted by each CPD method.

As shown in Fig. 9, amino-acid diversity at each designed
position of GBI is nearly identical in the top 100 sequences pre-
dicted by MSA and MSD. However, sequence diversity obtained by
SSD is significantly different, in particular at positions 5, 30, and
52. For example, many sequences predicted by SSD contain an Ile
at position 5 or 52, or do not include Leu or Ile substitutions at
position 30, in contrast with sequences predicted by the multistate
methods. The highly similar amino-acid diversity at each designed
position obtained by the multistate methods suggests that their top
100 sequences are nearly identical. To verify whether this is true, we
compared the overlap in identical sequences contained in the top
100 sequences predicted by the various CPD methods. We found
that MSA and MSD share 89 of their top 100 ranked sequences,
confirming that these methods predict nearly identical top 100
sequences. In contrast, MSA and MSD share a much lower number
of their top 100 sequences with SSD (54 or 51, respectively).

4 Conclusions

We have described three CPD methods that can be used for the
prediction of mutant sequence stabilities. Of these, the multistate
approaches result in improved prediction accuracy by addressing
the fixed backbone approximation via the incorporation of back-
bone ensembles that simulate protein conformational flexibility.
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Fig. 9 Amino-acid diversity found at Gp1 designed positions in the top 100
ranked sequences predicted by various computational protein design methods.
Sequence logos for SSD (a), MSA (b), and MSD (¢), are shown with amino-acid
substitution frequency proportional to letter height. Designed positions are
indicated by numbers. Sequence logos were prepared using WebLogo 2.8.2 [38]

Superior prediction accuracy is afforded by improved sequence
scoring that results in fewer false negative predictions. We also
described the PertMin ensemble generation method, which is
easy to implement, computationally inexpensive, and generally
applicable for the creation of backbone ensembles to be used in
multistate CPD methods. Because of the benefits highlighted
above, multistate CPD with PertMin backbone ensembles repre-
sents a valuable addition to the protein engineering toolbox.

5 Notes

1. GB1 structure preparation requires the addition of hydrogen
atoms to the 1PGA crystal structure, as well as the inclusion of
counter-ions and solvent water molecules. Hydrogen atoms
were added at pH 7 using the Protonate3D utility [ 39 ] included
in MOE [27], which facilitates the optimal placement of hydro-
gens by considering multiple configurations and protonation
states. Hydrogen configurations were adjusted by Unary Qua-
dratic Optimization using a 12-6 Lennard-Jones potential and a
distance-dependent dielectric of 1. Alternatively, hydrogens can
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Fig. 10 Tuning of PertMin ensemble properties. Various 30-member G1 ensembles were prepared with
variations on the following PertMin protocol: Cartesian coordinate perturbations of 4 0.001 A along each axis
followed by 50 iterations of truncated Newton energy minimization in the absence of water solvent molecules.
Effect of energy minimization algorithm and number of iterations on ensemble root-mean-square (RMS)
coordinate deviation (a) and diversity (b). Effect of type and size of random perturbations on ensemble
deviation (c) and diversity (d). Effect of system size and energy minimization RMS gradient on ensemble
deviation () and diversity (f). To increase system size, protein structures were solvated in a box of water
molecules with a depth of 3 A. In order to compare systems of different sizes, they should occupy regions on
the potential energy surface located at similar distances to the nearest minimum. Therefore, energy
minimizations were terminated at specific RMS gradients (e and f) instead of at specific numbers of
minimization iterations

be added using other tools such as Reduce [40] or MolProbity
[41]. Following hydrogen addition, MOE was used to add
counter-ions (Na® and CI7) to neutralize surface charges and
water molecules to give a box with a depth of'a 6 A around the
protein surface in a periodic boundary.

2. Ensemble properties, such as its RMS backbone coordinate
deviation from the input structure (deviation) or backbone
coordinate similarity between ensemble members (diversity),
can be tuned by altering the PertMin protocol. For example,
when generating a 30-member Gf1 ensemble, the choice of
energy minimization algorithm can influence ensemble proper-
ties. Energy minimization with the truncated Newton algo-
rithm produces an ensemble with higher deviation (Fig. 10a)
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and diversity (Fig. 10b) than the one produced with conjugate
gradient minimization. This is because truncated Newton is a
second-order energy minimization algorithm that is more sen-
sitive to initial conditions [42] than conjugate gradient, which
is first order. In addition, average deviation and diversity
increase with the number of minimization iterations, regardless
of minimization algorithm, to a maximum value that is depen-
dent on the location of energy minima on the protein potential
energy surface.

Different types of perturbations (torsion or Cartesian)
applied to the input structure coordinates will yield ensembles
with similar average deviation (Fig. 10c¢) and diversity
(Fig. 10d). Perturbation magnitude does not significantly
affect deviation or diversity when kept at values below or
equal to 0.1 A or degree. This is because small perturbations
result in similar perturbed structures occupying the same
region of the potential energy surface, making accessible the
same local minima. When the perturbation is sufficiently large
(1 A or degree), another region of the potential energy surface
and a different set of local minima become accessible, resulting
in ensembles with larger deviation and diversity.

System size, i.e., the number of atoms subjected to energy
minimization, will also affect the rate at which ensemble devia-
tion (Fig. 10e) and diversity (Fig. 10f) increase. The more
atoms are included in the energy minimization calculation,
for example by addition of solvent molecules, the fewer num-
ber of iterations are required to produce the same amount of
deviation and diversity. In all cases, whether altering the energy
minimization protocol, perturbation method, or system size, a
maximum deviation and diversity is reached. This is because
PertMin generates structures at local minima, which are fixed
on the potential energy surface specific to the system.

. The Boltzmann weighted average is calculated for an ensemble

containing # members with the following equation:
E= Z:;l Ei'c(ib‘i/”)

S
the temperature (300 K in this case), and E is the energy.
Evaluation of sequence fitness as the Boltzmann weighted
average ensures that sequences that stabilize a majority of
ensemble members are not penalized if they destabilize a few.
Alternatively, the energy of a sequence on its most favorable
scoring state can also be used as its fitness value [24].

where % is the Boltzmann constant, T is

. The number of backbone templates included in an ensemble

(i.e., ensemble size) can affect predictions made by MSD. For
example, MSD performed using a 128-member PertMin
ensemble results in the most favorable WT sequence fitness
(Fig. 11a), the highest success rate (Fig. 11b), and the lowest



Multistate Design with Backbone Ensembles 177

>
o
o

4
’

90% -

85% A

4y
w

80% A

Success Rate
Count (n)
w

4
o

75% A

WT Sequence Fitness (kcal/mol)

]
»

70% -
4 8 16 32 64 128 4 8 16 32
Ensemble Size

64 128 4 8 16 32 64 128
Ensemble Size Ensemble Size

Fig. 11 MSD with ensembles of various sizes. MSD was performed with a single 128-member Gp1 ensemble
or with 30 ensembles containing random combinations of 4, 8, 16, 32, or 64 backbones extracted from the
128-member ensemble. The 128-member ensemble was prepared as described in Subheading 3.2, with the
exception that solvent water molecules were added to a depth of 3 A. (a) The average wild-type (WT) sequence
energy becomes more favorable as ensemble size increases. (b) The average success rate increases with
ensemble size. (¢) The average number of false negatives decreases with ensemble size. Error bars show the
standard deviation of 30 independent MSD calculations

number of false negatives (Fig. 11c¢). As the ensemble size
decreases, fitness of the WT sequence increases in energy, aver-
age success rate decreases, and the number of false negative
sequences increases. Nevertheless, MSD using 64-member
ensembles gives results similar to those obtained with the
128-member ensemble. While we recommend using an ensem-
ble containing at least 64 templates, MSD with a small
4-member ensemble is still preferable to SSD with a single
backbone template because it results in a higher success rate
and fewer false negatives.

References

1. Koga N, Tatsumi-Koga R, Liu G, Xiao R,
Acton TB, Montelione GT, Baker D (2012)
Principles for designing ideal protein struc-
tures. Nature 491(7423):222-227. doi:10.
1038 /nature11600

2. Murphy GS, Sathyamoorthy B, Der BS,
Machius MC, Pulavarti SV, Szyperski T, Kuhl-
man B (2015) Computational de novo design
of a four-helix bundle protein-DND_4HB.
Protein Sci 24(4):434—445. doi:10.1002 /pro.
2577

3. Kuhlman B, Dantas G, Ireton GC, Varani G,
Stoddard BL, Baker D (2003) Design of a
novel globular protein fold with atomic-level
accuracy. Science  302(5649):1364-1368.
doi:10.1126/science.1089427

4. Privett HK, Kiss G, Lee TM, Blomberg R,
Chica RA, Thomas LM, Hilvert D, Houk

KN, Mayo SL (2012) Iterative approach to
computational enzyme design. Proc Natl Acad
See U S A 109(10):3790-3795,
doi: 1118082108 [pii] 10.1073/pnas.
1118082108

. Kapp GT, Liu S, Stein A, Wong DT, Remenyi

A, Yeh BJ, Fraser JS, Taunton J, Lim WA,
Kortemme T (2012) Control of protein signal-
ing using a computationally designed GTPase/
GEF orthogonal pair. Proc Natl Acad Sci U S A
109(14):5277-5282. doi:10.1073 /pnas.
1114487109

. Siegel JB, Zanghellini A, Lovick HM, Kiss G,

Lambert AR, St Clair JL, Gallaher JL, Hilvert
D, Gelb MH, Stoddard BL, Houk KN,
Michael FE, Baker D (2010) Computational
design of an enzyme catalyst for a stereoselec-
tive bimolecular Diels-Alder reaction. Science


http://dx.doi.org/10.1038/nature11600
http://dx.doi.org/10.1038/nature11600
http://dx.doi.org/10.1002/pro.2577
http://dx.doi.org/10.1002/pro.2577
http://dx.doi.org/10.1126/science.1089427
http://dx.doi.org/10.1073/pnas.1118082108
http://dx.doi.org/10.1073/pnas.1118082108
http://dx.doi.org/10.1073/pnas.1114487109
http://dx.doi.org/10.1073/pnas.1114487109

178

10.

11.

12.

13.

14.

15.

16.

17.

18.

James A. Davey and Roberto A. Chica

329(5989):309-313.
1190239

doi:10.1126/science.

. Frey KM, Georgiev I, Donald BR, Anderson

AC (2010) Predicting resistance mutations
using protein design algorithms. Proc Natl
Acad Sci U S A 107(31):13707-13712.
doi:10.1073 /pnas.1002162107

. Dahiyat BI (1999) In silico design for protein

stabilization. Curr Opin Biotechnol 10
(4):387-390. doi:10.1016,/S0958-1669(99)
80070-6

. Kuhlman B, Choi EJ, Guntas G (2009) Future

challenges of computational protein design. In:
Park SJ, Cochran JR (eds) Protein engineering
and design. CRC DPress, Boca Raton, FL.
doi:10.1201,/9781420076592.ch18

Kellogg EH, Leaver-Fay A, Baker D (2011)
Role of conformational sampling in computing
mutation-induced changes in protein structure
and stability. Proteins 79(3):830-838. doi:10.
1002 /prot.22921

Dahiyat BI, Mayo SL (1997) Probing the role
of packing specificity in protein design. Proc
Natl Acad Sci U S A 94(19):10172-10177
Grigoryan G, Ochoa A, Keating AE (2007)
Computing van der Waals energies in the con-
text of the rotamer approximation. Proteins 68
(4):863-878. d0i:10.1002 /prot.21470
Murphy GS, Mills JL, Miley MJ, Machius M,
Szyperski T, Kuhlman B (2012) Increasing
sequence diversity with flexible backbone pro-
tein design: the complete redesign of a protein

hydrophobic core. Structure 20
(6):1086-1096. doi:10.1016/j.5tr.2012.03.
026

Ollikainen N, Smith CA, Fraser ]S, Kortemme
T (2013) Flexible backbone sampling methods
to model and design protein alternative con-
formations. Methods Enzymol 523:61-85.
doi:10.1016,/B978-0-12-394292-0.00004-7
Smith CA, Kortemme T (2011) Predicting the
tolerated sequences for proteins and protein
interfaces using RosettaBackrub flexible back-
bone design. PLoS One 6(7), €20451. doi:10.
1371 /journal.pone.0020451

Wang C, Schueler-Furman O, Baker D (2005)
Improved side-chain modeling for protein-
protein docking. Protein  Sci 14
(5):1328-1339. doi:10.1110,/ps.041222905
Borgo B, Havranek JJ (2012) Automated
selection of stabilizing mutations in designed
and natural proteins. Proc Natl Acad Sci U S A
109(5):1494-1499. doi:10.1073 /pnas.
1115172109

Gainza P, Roberts KE, Donald BR (2012) Pro-
tein design using continuous rotamers. PLoS
Comput Biol 8(1), ¢1002335. doi:10.1371/
journal.pcbi. 1002335

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

. Allen BD, Nisthal A, Mayo SL (2010) Experi-

mental library screening demonstrates the suc-
cessful application of computational protein
design to large structural ensembles. Proc
Natl Acad Sci U S A 107(46):19838-19843.
doi:10.1073/pnas.1012985107

Davey JA, Chica RA (2014) Improving the
accuracy of protein stability predictions with
multistate design using a variety of backbone
ensembles. Proteins 82(5):771-784. doi:10.
1002 /prot.24457

Allen BD, Mayo SL (2010) An efficient algo-
rithm for multistate protein design based on
FASTER. J Comput Chem 31(5):904-916.
doi:10.1002 /jcc.21375

Leaver-Fay A, Jacak R, Stranges PB, Kuhlman
B (2011) A generic program for multistate
protein design. PLoS One 6(7), ¢20937.
doi:10.1371 /journal.pone.0020937

Yanover C, Fromer M, Shifman JM (2007)
Dead-end elimination for multistate protein
design. ] Comput Chem 28(13):2122-2129.
doi:10.1002 /jcc.20661

Howell SC, Inampudi KK, Bean DP, Wilson CJ
(2014) Understanding thermal adaptation of
enzymes through the multistate rational design
and stability prediction of 100 adenylate
kinases. Structure 22(2):218-229. doi:10.
1016/j.5tr.2013.10.019

Babor M, Mandell DJ, Kortemme T (2011)
Assessment of flexible backbone protein design
methods for sequence library prediction in the
therapeutic antibody Herceptin-HER2 inter-
face. Protein Sci 20(6):1082-1089. doi:10.
1002 /pro.632

Williams CI, Feher M (2008) The effect of
numerical error on the reproducibility of
molecular geometry optimizations. ] Comput
Aided Mol Des 22(1):39-51. doi:10.1007/
s10822-007-9154-7

Chemical Computing Group Inc (2012)
Molecular operating environment (MOE)
2012, 14th edn. Chemical Computing Group
Inc, Montreal, QC

Chica RA, Moore MM, Allen BD, Mayo SL
(2010) Generation of longer emission wave-
length red fluorescent proteins using computa-
tionally designed libraries. Proc Natl Acad Sci
U S A 107(47):20257-20262. doi:10.1073/
pnas. 1013910107

Gallagher T, Alexander P, Bryan P, Gilliland
GL (1994) Two crystal structures of the Bl
immunoglobulin-binding domain of strepto-
coccal protein G and comparison with NMR.
Biochemistry 33(15):4721-4729

Leach AR (1998) Molecular modelling: princi-
ples and applications. Longman, Harlow


http://dx.doi.org/10.1126/science.1190239
http://dx.doi.org/10.1126/science.1190239
http://dx.doi.org/10.1073/pnas.1002162107
http://dx.doi.org/10.1016/S0958-1669(99)80070-6
http://dx.doi.org/10.1016/S0958-1669(99)80070-6
http://dx.doi.org/10.1201/9781420076592.ch18
http://dx.doi.org/10.1002/prot.22921
http://dx.doi.org/10.1002/prot.22921
http://dx.doi.org/10.1002/prot.21470
http://dx.doi.org/10.1016/j.str.2012.03.026
http://dx.doi.org/10.1016/j.str.2012.03.026
http://dx.doi.org/10.1016/B978-0-12-394292-0.00004-7
http://dx.doi.org/10.1371/journal.pone.0020451
http://dx.doi.org/10.1371/journal.pone.0020451
http://dx.doi.org/10.1110/ps.041222905
http://dx.doi.org/10.1073/pnas.1115172109
http://dx.doi.org/10.1073/pnas.1115172109
http://dx.doi.org/10.1371/journal.pcbi.1002335
http://dx.doi.org/10.1371/journal.pcbi.1002335
http://dx.doi.org/10.1073/pnas.1012985107
http://dx.doi.org/10.1002/prot.24457
http://dx.doi.org/10.1002/prot.24457
http://dx.doi.org/10.1002/jcc.21375
http://dx.doi.org/10.1371/journal.pone.0020937
http://dx.doi.org/10.1002/jcc.20661
http://dx.doi.org/10.1016/j.str.2013.10.019
http://dx.doi.org/10.1016/j.str.2013.10.019
http://dx.doi.org/10.1002/pro.632
http://dx.doi.org/10.1002/pro.632
http://dx.doi.org/10.1007/s10822-007-9154-7
http://dx.doi.org/10.1007/s10822-007-9154-7
http://dx.doi.org/10.1073/pnas.1013910107
http://dx.doi.org/10.1073/pnas.1013910107

31.

32.

33.

34.

35.

36.

37.

Multistate Design with Backbone Ensembles

Nash SG (2000) A survey of truncated-
Newton methods. ] Comput Appl Math 124
(1-2):45-59. doi:10.1016,/S0377-0427(00)
00426-X

Dunbrack RL, Cohen FE (1997) Bayesian sta-
tistical analysis of protein side-chain rotamer
preferences. Protein Sci 6(8):1661-1681
Mayo SL, Olafson BD, Goddard WA (1990)
Dreiding — a generic force-field for molecular
simulations. J Phys Chem 94(26):8897-8909.
doi:10.1021,/J100389a010

Lazaridis T, Karplus M (1999) Effective energy
function for proteins in solution. Proteins 35
(2):133-152. doi:10.1002 /(Sici)1097-0134(
19990501)35:2<133::Aid-Prot1>3.0.Co;2-N
Street AG, Mayo SL (1998) Pairwise calcula-
tion of protein solvent-accessible surface areas.
Fold Des 3(4):253-258. doi:10.1016,/S1359-
0278(98)00036-4

Desmet J, Spriet J, Lasters I (2002) Fast and
accurate side-chain topology and energy refine-
ment (FASTER) as a new method for protein
structure optimization. Proteins 48(1):31-43.
doi:10.1002 /Prot.10131

Allen BD, Mayo SL (2006) Dramatic perfor-
mance enhancements for the FASTER

38.

39.

40.

41.

42

179

optimization algorithm. J Comput Chem 27
(10):1071-1075. doi:10.1002 /jcc.20420
Crooks GE, Hon G, Chandonia JM, Brenner
SE (2004) WebLogo: a sequence logo genera-
tor. Genome Res 14(6):1188-1190. doi:10.
1101 /Gr.849004

Labute P (2009) Protonate3D: assignment of
ionization states and hydrogen coordinates to
macromolecular  structures. Proteins 75
(1):187-205. doi:10.1002 /Prot.22234

Word JM, Lovell SC, Richardson JS, Richard-
son DC (1999) Asparagine and glutamine:
using hydrogen atom contacts in the choice of
side-chain amide orientation. J Mol Biol 285
(4):1735-1747. doi:10.1006,/jmbi.1998.
2401

Davis IW, Leaver-Fay A, Chen VB, Block JN,
Kapral GJ, Wang X, Murray LW, Arendall WB
111, Snoeyink J, Richardson JS, Richardson DC
(2007) MolProbity: all-atom contacts and
structure validation for proteins and nucleic
acids. Nucleic Acids Res 35((Web Server
issue)):375-383. doi:10.1093 /nar/gkm216

. Davey JA (2011) On the energy minimization

of large molecules, M.Sc. thesis. Carleton
University, Canada, Ottawa, ON


http://dx.doi.org/10.1016/S0377-0427(00)00426-X
http://dx.doi.org/10.1016/S0377-0427(00)00426-X
http://dx.doi.org/10.1021/J100389a010
http://dx.doi.org/10.1002/(Sici)1097-0134(19990501)35:2%3C133::Aid-Prot1%3E3.0.Co;2-N
http://dx.doi.org/10.1002/(Sici)1097-0134(19990501)35:2%3C133::Aid-Prot1%3E3.0.Co;2-N
http://dx.doi.org/10.1002/(Sici)1097-0134(19990501)35:2%3C133::Aid-Prot1%3E3.0.Co;2-N
http://dx.doi.org/10.1002/(Sici)1097-0134(19990501)35:2%3C133::Aid-Prot1%3E3.0.Co;2-N
http://dx.doi.org/10.1016/S1359-0278(98)00036-4
http://dx.doi.org/10.1016/S1359-0278(98)00036-4
http://dx.doi.org/10.1002/Prot.10131
http://dx.doi.org/10.1002/jcc.20420
http://dx.doi.org/10.1101/Gr.849004
http://dx.doi.org/10.1101/Gr.849004
http://dx.doi.org/10.1002/Prot.22234
http://dx.doi.org/10.1006/jmbi.1998.2401
http://dx.doi.org/10.1006/jmbi.1998.2401
http://dx.doi.org/10.1093/nar/gkm216

Chapter 8

Integration of Molecular Dynamics Based Predictions
into the Optimization of De Novo Protein Designs:
Limitations and Benefits

Henrique F. Carvalho, Arménio J.M. Barbosa, Ana C.A. Roque,
Olga Iranzo*, and Ricardo J.F. Branco*

Abstract

Recent advances in de novo protein design have gained considerable insight from the intrinsic dynamics of
proteins, based on the integration of molecular dynamics simulations protocols on the state-of-the-art de
novo protein design protocols used nowadays. With this protocol we illustrate how to set up and run a
molecular dynamics simulation followed by a functional protein dynamics analysis. New users will be
introduced to some useful open-source computational tools, including the GROMACS molecular dynam-
ics simulation software package and ProDy for protein structural dynamics analysis.

Key words Protein essential dynamics, Principal component analysis, Normal mode analysis, Elastic
network models, Internal molecular dynamics

1 Introduction

* Corresponding authors

The design of innovative and versatile biocatalysts that are more
robust and catalytically proficient than the native ones found in
Nature for specific bioconversion in a given reactional media has
long been pursued [3]. The discovery of enzymatic activity dates
back to the end of nineteenth century, with the isolation and charac-
terization of amylase and urease enzymes. Since then, it has been
realized that enzymes are highly efficient nanoscale machines, which
are able to outperform chemical reactions specifically as no other
catalyst-based system developed so far, with rate enhancements
(kcat/knon) up to 10*°-fold relative to the uncatalyzed reaction [2].

Naively, one can think that it would be easy and straightforward
to recapitulate the mode of action, as well as catalytic features of
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1.1 Turning a Protein
Design into an Active
Enzyme

natural enzymes into a given protein scaffold of interest by simply
applying the mechanistic rules and structural constraints theoreti-
cally predicted for efficient biocatalysis. However, reality has proved
to be much more complex and even when all catalytic determinants
are gathered in a perfect theoretical active site model—theozyme,
term coined by the seminal work of Houk’s lab in 1998 [3], the few
successful cases of de novo protein design showed a considerable
gap  between  their catalytic efficiency  (kn./Kym — of
10*-10° M~ ! s7!) and those from the natural occurring enzymes
(kear/ Kng of 10°-10% M~1 s71) [17]. This gap corresponds to more
than four orders of magnitude away from the diffusion rate limit.
Several strategies have been implemented to circumvent this
apparent theoretical design paradox of low activity, namely the inte-
gration of molecular dynamics (MD) based predictions into the
state-of-the-art protein design protocols [18]. The flexibility shown
by protein structures is essential, allowing conformational changes
during catalysis which are required for the substrate binding, product
release, or for many other functional related motions, as in the case
of Candida antarctica Lipase B loop movement that is responsible
for the solvent accessibility to the active site [4]. However, there is a
hierarchy of motions from low-frequency interdomain hinge
motions to high-frequency bond vibrational motions that occur at
considerable different range, in the femtosecond time scale, that
needs to be considered. The preorganized enzyme active site drives
the Michaelis-Menten complex formation toward the most reactive
set of conformations around the transition state to maximize cata-
lytic efficiency. This means that the protein scaffold cannot be treated
as a rigid body and has an intrinsic dynamics that has to be taken into
account during the computationally driven protein design [1].

The de novo protein design strategy, has been applied successfully
to only few biotransformations, like the one applied to the quan-
tum mechanics-based (QM) active site design of a Kemp eliminase,
a biocatalyst that performs a reaction not catalyzed by any other
naturally occurring enzyme [5]. This strategy starts with the defini-
tion of the most suitable catalytic mechanism and plausible transi-
tion state (TS) geometry for a given reaction—theozyme. Then,
the corresponding transition state geometry will be quantum-
mechanically determined either using small gas phase models or
more accurately, using hybrid QM/MM approachs that take also
into account the impact of the protein environment on the active
site’s electronic structure, calculated at lower molecular mechanical
(MM) level. This precisely depicted TS model at atomic level might
then be crafted in the protein scaffold using a MM modeling
software such as RosettaMatch [6]. This step searches for putative
protein scaffold candidates that are able to host the theozyme
model, ensuring the TS conformation to be placed in the correct
geometry and protein neighborhood that maximize its stabiliza-
tion, without substantial steric clashes or electrostatic conflicts.
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Finally, the new competent catalytic pocket needs to be redesigned
to maximize the stability of the entire active-site conformation, the
integrity of the TS geometry, and the affinity for the substrate to
bind efficiently through RosettaEnzDes software module [6].

However, experimental characterization of computationally
designed enzymes has shown some limitations caused essentially
by nonoptimal polar interactions with the substrate, inactive con-
formation of the substrate in the bound state, or simply inadequate
solvent-mediated contacts to promote the stabilization of the
protein-substrate complex [1]. At this stage, knowledge from MD
reveals to be essential to iteratively improve protein designs effi-
ciency. A systematic population analysis of the most stable substrate
binding modes, essential dynamics, and preferential molecular
interactions might reveal structural limitations of a putative scatfold
and shed light on the MD-assisted design refinement, leading to
more active enzymes.

2 Materials

Useful links for accessing open-source software and webservers
undermentioned:

1. GROMACS (http: //www.gromacs.org/ ).

. Propka (http://propka.ki.ku.dk/).

. PDB (http: //www.rcsb.org/pdb/home /home.do).
. ProDy (http: //prody.csb.pitt.edu/).

. Bio3D (http://thegrantlab.org,/bio3d/index.php).
. VMD (http: //www.ks.uiuc.edu/Research/vmd /).
. Pymol (https://www.pymol.org/).

N OV Ul N

3 Methods

3.1 Preparation of
Protein Structure for
a MD Simulation

3.1.1 Check and Clean
Up the Protein Structure
of Interest

Molecular dynamics simulation of a protein in explicit water
solvent.

In order to obtain a reliable result and avoid computational bias,
the protein structure and simulation conditions have to be carefully
inspected and set up. This protocol was developed to work on a
Linux environment with the open-source simulation package
GROMACS 4.6.1 version installed. Due to the continuous devel-
opment of simulation software, some command line might have to
be rephrased in future releases, whenever necessary. The standard
MD protocol used here for a case study example is described as
follows:


http://www.gromacs.org/
http://propka.ki.ku.dk/
http://www.rcsb.org/pdb/home/home.do
http://prody.csb.pitt.edu/
http://thegrantlab.org/bio3d/index.php
http://www.ks.uiuc.edu/Research/vmd/
https://www.pymol.org/
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3.1.2 Setting Up the
Simulation System
and Input Files

1. For the MD protocol description, the crystallographic struc-

ture of a xylanase from B. circulans (PDB code 3LB9) [7] was
selected and downloaded from the RCSB Protein Data Bank
[8] in the corresponding *.pdb file format, which will be
referred thereafter as PROTEIN for convenience.

. The RCSB_PROTEIN.pdb structure has to be first inspected

with a visualization software such as the PyMOL Molecular
Graphics System Version 1.2 Schrodinger, LLC. The remark of
“MISSING” residues or side chain atoms in the PDB file, as
well as any other “HETATM” cocrystalized with the protein
structure, has to be taken into account. For the MD simulation
of an unbounded protein structure, all the crystallographic
water molecules and ligands were discarded and only the
three-dimensional coordinates of the bare protein structure
were saved separately in a new PROTEIN.pdb file.

. Before setting up the simulation box, the corresponding pKa

of chargeable amino acids and terminal groups must be
checked out, as well as the number of structural cysteine sulfur
bridges must be determined. The protonation state of titratable
side chains and N-/C-terminus, including Arg, Lys, His, Glu,
and Asp, might be determined based on the pK, prediction
using, for example, the Propka software, available at the web-
server (http://propka.ki.ku.dk/) [9].

. To convert the PROTEIN.pdb structure into the compatible

file format of GROMACS, the pdb2gmx command was used to
generate the corresponding coordinate file PROTEIN gro, the
topology file PROTEIN.top, and the position constraints file
PROTEIN.itp for the equilibration phase. Additionally, the
solvent water model SPCE and the protonation state of titrable
amino acid and terminals of the protein chain might be called
by using the —water and —inter flags, respectively. The unified-
atom GROMOS force field 53A6 implemented in GROMACS
[10] was used in this protocol workflow.

$ pdb2gmx —f [PROTEIN.pdb] —o [PROTEIN gro] —p [PROTEIN.top] —i [PROTEIN.

itp | —water [spce] —inter

$4 #Gromos96 ff53A06 force field selection

Note: “#” symbol stands for a programming line annotation, which
should not be parsed into the command line at the prompt.

2. In order to resize and center the protein structure in an explicit

solvent box, the coordinates file PROTEIN gro will be rewrit-
ten by the editconf tool of GROMACS software package. The
indication of the box symmetry was added with the =&z flag, as


http://propka.ki.ku.dk/
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well as the minimum offset distance (in nm) between the
protein surface and the box edges was defined by the — flag.
This set up prevents unrealistic interactions of the protein with
surrounding images, due to the periodic boundary conditions.
To efficiently reduce the computational costs of simulation, the
rhombic octahedron box fits better the globular shape of PRO-
TEIN in use, optimizing the number of water molecules to be
simulated together with the protein solute.

$ editconf —f [PROTEIN gro] —o [PROTEIN gro] —bt [octahedron]| —d [1.2]

The PROTEIN gro input file will then be overwritten and new
box dimensions updated accordingly at the end of input file. To
avoid file name conflicts a sequential numbering of input files
might be given. Otherwise, the GROMACS code automatically
renames the old files with the prefix “#”.

3. Then, the new PROTEIN gro coordinate file centered in the
new solvent box size will be filled with a pre-equilibrated box,
containing 216 water molecules, by calling the genbox tool of
GROMACS simulation software package.

$ genbox —cp [PROTEIN gro] —cs [spc216.g70] —p [PROTEIN.top] —0 [PROTEIN gro]

4. For neutralizing the total formal charge of the system, the
addition of counterions is needed. In this case, the GROMACS
preprocessor script grompp is required to generate first the
GROMACS portable binary run input PROTEIN.tpr file. A
set of exemplary input template_*.mdp files specific for each
phase of the simulation run can be accessed from Subheading 4.
These files define explicitly the appropriate set of parameters to
be used, in a sequential order, along the entire simulation
process, including: (a) energy minimization; (b) equilibration;
and (c¢) MD production phases.

S grompp —f [template_*.mdp] —c [PROTEIN gro] —p [PROTEIN.top] —o [PROTEIN.tpr]

5. The genion tool will then replace an equal number of water
molecules in the coordinate file by the corresponding number
of chosen counterions defined interactively by the selection of
the group of atoms for replacement. The —pname (-np) and
—-nname (-nn) flags stand for the nature (and number) of
positive or negative counterions to be added, respectively.
The topology and coordinates files will be automatically
updated accordingly.
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$ genion —s [PROTEIN.tpr] —o [PROTEIN 470/ —p [PROTEIN.top] - [PROTEIN.log]
—pname/-nname [NA]/[CL] —-np/-nn ["x"] # "x" is the total charge of the system.
$ 15 # group of SOL for replacement

3.1.3  Running the MD 1. With the aim to mitigate bad contacts or any atomic clashes due
Simulation for Trajectory to inappropriate side chains configuration, a preliminary energy
Production minimization divided into two sequential cycles and using

different minimization algorithms was required.

5 I Step energy minimization with the Steepest Descend algovithm

S grompp —f [template_eml.mdp] —c [PROTEINgro] —p [PROTEIN.top] —o
[PROTEIN eml.tpr]

$ mdrun —v —s [PROTEIN_em1.tpr| —c [PROTEIN_emlgro] — [PROTEIN eml.edr| —
[PROTEIN eml.log]

5 2" Step energy minimization with the Conjugated Gradient algovithm

$ grompp —f [template_em2.mdp] — [PROTEIN_em1.gro] —p [PROTEIN.top] —o [PRO-
TEIN_em2.tpr]

$ mdrun —v —s [PROTEIN_em2.tpr| —c [PROTEIN_em247r0] — [PROTEIN_em2.edr| —
[PROTEIN em?2.log]

2. After the energy convergence of two preliminary minimization
cycles, the system was then coupled to a thermostat (e.g., the
V-rescale modified Berendsen) and to a barostat, according to
the specifications defined on the input template_*mdp file. The
equilibration phase was carried out in three sequential simula-
tion steps, of 100 ps each, in an isothermal-isobaric NPT
ensemble. A positional restrain was imposed to the protein
backbone heavy atoms, defined by the —DPOSRES flag of the
corresponding  template_eql-3.mdp files. The imposed har-
monic force constants for the positional restrain are written in
the PROTEIN.itp file and changed stepwise from 1000,/100/
10 kJ /mol.

; I'" Equilibvation Step

$ grompp —f [template_eql.mdp] —c [PROTEIN_em24ro] —p [PROTEIN.top] —o
[PROTEIN_eql.tpr]

$ mdrun —v —s [PROTEIN _eql.tpr] —c [PROTEIN eql gro] -¢ [PROTEIN eql.edr] -5
[PROTEIN_eql.log]

$ perl -pi -e ’s/ 1000/ 100/5° PROTEIN.itp

; 2" Equilibvation Step

$ grompp —f [template_eq2.mdp] — [PROTEIN eql.gro/] —p [PROTEIN.top] —o
[PROTEIN _cq2.tpr]

$ mdrun —v —s [PROTEIN_eq2.tpr] —c [PROTEIN_eq2.gvo] -¢ [PROTEIN_eq2.edr] 5
[PROTEIN._¢q2.1og]
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$ perl -pi -¢ *s/ 100/ 10/’ PROTEIN.itp
;5 3vd Equilibvation Step
$ grompp —f [template_eq3.mdp] — [PROTEIN eq2.gv0] —p [PROTEIN.top] —o

[PROTEIN_eq3.tpr]

$ mdrun —v —s [PROTEIN_eq3.tpr] —c [PROTEIN eq3 gro] -¢ [PROTEIN eq3.edr]|

[PROTEIN_¢q3.log]

Equilibration phase is intended to gradually adjust the temper-
ature and pressure of the system preventing any unphysical and
irreversible structural deformation or unfolding event that
could compromise the canonical ensemble of protein confor-
mations sampled during the simulation trajectory.

3. Finally, the system is equilibrated and production phase takes
place freely, without any positional constraint.

$ grompp —f [template mdl.mdp] — [PROTEIN eq3.4r0] —p [PROTEIN.top] —o

[PROTEIN_mdl.tpr]

$ mdrun —v —s [PROTEIN_mdl.tpr] — [PROTEIN_mdl.gro] -¢ [PROTEIN_mdl.cdr]
- [PROTEIN _mdl.log] —cpo state.cpt

3.2 Essential
Dynamics Analysis
of Designed Proteins

3.2.1 Preparation of Files
for Essential Dynamics
Analysis: Concatenation

of Trajectory Files

This type of analysis can be performed for any protein of interest
from which a Molecular Dynamics (MD) simulation trajectory is
available, using software packages such as ProDy or Bio3D [11,
12]. The advantage of using such software packages stands for the
ease of integration, manipulation, and comparison of data obtained
from different models. These tools are usually open-source and
require basic skills and familiarity with programming languages as
Python or R.

The results presented were obtained from a 20 ns MD simulation of
B. circulans xylanase (PDB ID: 3LB9). For other proteins, simply
replace the term PROTEIN for the PDB Identifier code or name
attributed to the protein of interest. If multiple trajectory files (*.zr7
or *.xtc format) are used, it is necessary to first concatenate them
using, for example, the GROMACS suit of tools for analysis, namely
the trjeat script. More information on rjeat can be found here:
ttp: //ftp.gromacs.org,/pub /manual /manual-4.6.7.pdf, Section D.
93. In this example, three consecutive equilibration steps with
100 ps each (PROTEIN_eql-3.trr) are concatenated with a produc-
tion phase trajectory file (PROTEIN_mdl.trr), being specified as
input files with the -fflag. The output file name (PROTEIN_concate-
nated.xtc)is specified with the -oflag. To concatenate the corresponding
* trr or * .xtc files in a sorted order, a new start time for each file is
required. This can be performed interactively by using the -sezzime flag


ftp://ftp.gromacs.org/pub/manual/manual-4.6.7.pdf
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and then specifying the correspondent starting time of each trajectory
fragment in a row.

Commands can be executed either interactively on the prompt

or in a bash or shell script launched by the user as described in the
following boxes:

$trjeat -FPROTEIN_eql.tvy PROTEIN _eq2.trr PROTEIN_eq3.trr PROTEIN_mdl.trr -0
PROTEIN_concatenated.xtc -settime

$0  #start time for eql trajectory fragment

$100 #start time for eq2 trajectory fragment

$200 #start time for eq3 trajectory fragment

$300 #start time for mdl trajectory fragment

3.2.2 Processing
of Trajectory Files

The resulting concatenated *.xtc file now contains the entire

simulation, i.e., all the written frames of the MD simulation trajec-
tory, which can then be used for further analysis.

The trjconv tool is another useful postprocessing tool implemented
in GROMACS that may be used for several purposes, including
extracting specific frames from trajectory or simply correcting
computational artifacts caused by the use of periodic boundary
conditions. More information on it should be found here: ftp://
ftp.gromacs.org,/pub,/manual /manual-4.6.7.pdf, Section D. 94.
In this example, a script was used to obtain a trajectory file of the
protein that will be suitable for further analysis:

1. Obtain a reference frame of the system (0) from the concate-

nated input trajectory file (PROTEIN_concatenated.xtc), by
defining the same starting and final time with -4 and -¢ flags,
respectively. The option -pbec whole is used to correct periodicity
artifacts like broken molecules at the edges of solvent box
replicas:

Strjconv -f PROTEIN_concatenated.xtc -0 PROTEIN concatenated_Opsgro -b 0.0 -¢ 0.0 -
s PROTEIN_mdl.tpr -pbc whole
$0 #group of axoms for output corresponding to the entive system, including solvent and solutes

2. Removal of jumps caused by the periodic boundary conditions

from the trajectory, by using the option -pbc nojump and setting
the correct time step between frames (ps) with the -timestep flag,
corresponding to the continuous integration time in
fentoseconds.
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ftp://ftp.gromacs.org/pub/manual/manual-4.6.7.pdf

Integration of Molecular Dynamics Based Predictions. . . 189

Strjcony  -f PROTEIN concatenated.xtc -s PROTEIN concatenated_Opsgro -0
PROTEIN_nojump.xtc -pbc nojump -timestep 2
$0 #group of aroms for output

3. Solvent molecules can be discarded, since in this example the
analysis is only focused on the protein structure (1):

$trjconv -f PROTEIN_nojump.xtc -0 PROTEIN_nojump.gro -b 0.0 -¢ 0.0 -s PROTEIN_con-
catenated_0psgro
$1 #group of aroms for output corresponding to the protein

4. Centering the protein atoms in the box (1) with the -centerflag:

Strjconv -f PROTEIN_nojump.xtc -s PROTEIN_nojumpgro -o PROTEIN_center.xtc -
center -timestep 2

$1 #group of aroms for centeving

$1 #group of aroms for ontput

A new centered reference frame is also acquired, corresponding
to the first frame of centered trajectory:

Strjcony -f PROTEIN_center.xtc -0 PROTEIN centergro -b 0.0 -¢ 0.0 -s PROTEIN_no-

Jump gro
$1 #group of aroms for output

The resulting reference frame (PROTEIN_centergro) and tra-
jectory file (PROTEIN_center.xtc) may be used for further analysis.

3.2.3 Inspection of Trajectory files can be inspected with molecular visualization soft-
Trajectories ware such as VMD [13] (http://www.ks.uiuc.edu/Research/
vmd/). A full description of the type of analysis typically implemen-
ted is beyond the scope of this protocol. In this case, only the
portion of the trajectory where RMSD converged to a structural
stabilization plateau is considered for further analysis (Fig. 1). This
can be evaluated by the least-squares fitting of the protein backbone
atoms of each frame to a given reference structure, usually the initial
one, to discount the diffusional protein movements in solution,
namely the typical global rotational and translational movements.
VMD is also helpful to generate a trajectory file in *.dcd format
with the corresponding segment of the trajectory. The


http://www.ks.uiuc.edu/Research/vmd/
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Fig. 1 Essential modes analysis for the example of the xylanase structure from B. circulans (PDB code 3LB9)

PROTEIN_trajectory.ded file is required for further analysis since
ProDy exclusively works with this type of trajectory file (see below).
The first frame (PROTEIN_1st_frame.pdb) can be also extracted
from the trajectory and used as a reference structure.

3.3 Essential Starting from a reference structure PROTEIN Ist_frame.pdband a
Dynamics Analysis trajectory file PROTEIN_trajectory.ded, Essential Dynamics Anal-
of MD Trajectories ysis can be carried out with the available tools in ProDy. [11] ProDy
Using ProDy requires installation of other software; instructions for download

' and documentation can be found here: http: //prody.csb.pitt.edu/.
8.3.1 Calcuiation The following example is executed using the IPython interactive
of Essential Modes command shell [14].
1. Import of all related content from ProDy:

Sfrom prody import *
Sfrom pylab import *

2. Defining the reference structure:
$PROTEIN_EDA = parsePDB(PROTEIN_Ist_frame.pdl’)

3. Defining the trajectory file:

Strajectory_ EDA= parseDCD (PPROTEIN_trajectory.dcd’)

4. Restrict the analysis only to the subset of C, atoms of the
reference structure:

Strajectory_EDA.setAtoms(PROTEIN_EDA.calpha)


http://prody.csb.pitt.edu/
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5. Defining the atom reference coordinates:

Strajectory_EDA.setCoords(PROTEIN_EDA)

6. Superposition of all trajectory frames onto the reference
structure:

Strajectory_EDA.superpose()

7. Defining the class for Essential Dynamics Analysis:

$edn=EDA(’PROTEIN_EDA’)

8. Construction of the 3N x 3N covariance matrix of atomic
coordinates over f'trajectory frames, where N in this example
is the number of C, atoms. Each frame corresponds to snap-
shot conformations contained in the *.dcd file, being super-
posed to the reference coordinate set, as in step 7):

Sedn.buildCovariance (trajectory_EDA)

9. Calculation of the # (e.g., n = 3) essential modes by diagona-
lization of the covariance matrix to obtain eigenvectors with
nonzero eigenvalues:

Seda.calcModes(n)

10. Saving the model and an *.nmd file containing » essential
modes for visualization in VMD with the normal mode wiz-
ard plugin (NMWiz):

SsaveModel (edn)
$write NMD (CPROTEIN_EDA.nmd’, eda[:n], PROTEIN_EDA.calpha)

3.3.2 Essential Modes The obtained essential modes can be additionally analyzed with
Analysis available ProDy built-in functions (Fig. 1). The following examples
can be used to quantitatively describe them.

1. Projection of the trajectory frames onto the first #<3 essential
modes. The projection of the trajectory frames onto the first
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essential modes provides a description of the conformational
space explored during simulation time:

Straj_frames=Trajectory"’PROTEIN_trajectory.dcd’)
Straj_frames.link (PROTEIN_EDA)
Straj_frames.setCoords(PROTEIN_EDA)
Straj_frames.setAtoms(PROTEIN_EDA .calpha)
SshowProjection (traj_frames, eda[:n])

2. Fractional variance of the first # modes. Fractional variance
corresponds to the ratio between the variance obtained along
an essential mode to the trace of the covariance matrix:

ScalcFractVariance (eda[:n])

3. Collectivity degree k of essential mode » [15]. The collectivity
degree is used as a measure of the number of atoms affected by a
given essential mode. It ranges from %2 = 1 for global transla-
tions of the protein to £ = N ' if only one C, atom is affected:

ScalcCollectivity(eda[n])

3.4 Comparative
Analysis of Essential
Modes

3.4.1 Comparison
Between Essential Modes
from Two Distinct
Trajectories

The previous section concerns to the single description of essential
modes from a designed protein. However, of particular importance
is to compare them with other sets of modes, as the ones obtained
from a MD trajectory of the native protein or from different
trajectory files of the same MD simulation varying in length or
start time (Subheading 3.4.1). It can also be relevant to check for
the correspondence between the conformational space described by
the first essential modes and the modes describing the structural
fluctuations observed experimentally from an ensemble of native
crystallographic or NMR structures (Subheading 3.4.2). This pro-
vides insights on the ability of the designed protein to effectively
reproduce the dynamical properties observed experimentally. One
can also check if coarse-grained Elastic Network Models, such as
the Anisotropic Network Model (ANM) implemented in ProDy,
are able to capture the conformational space explored by either the
native or designed protein during the simulation trajectory (Sub-
heading 3.4.3, Fig. 2).

This step requires prior calculation of essential modes from a sec-
ond reference structure PROTEIN2_Ist frame.pdb and second
trajectory file PROTEINZ_trajectory.ded, as described in Subhead-
ing 3.3.1. A requirement for the second reference structure PRO-
TEINZ2 is to contain the same number of N atoms as the reference
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structure of PROTEIN. Therefore, the second reference structure
can be the same as PROTEIN_Ist_frame.pdb, if the trajectory to be
analyzed is from the same simulation run and starting frame but
with different lengths. Therefore, steps 1-10 of Subheading 3.3.1
might also be considered here for the calculation of the Essential
Modes of the second trajectory. At the end, two distinct sets of
modes are obtained, eda and edn2, that can be used in comparison
functions built-in on ProDy. The following is not an exhaustive list
of comparison functions:

1. Calculation of the overlap, or correlation cosine, between eda »
mode and eda2 m mode, as given by the dot product of the
respective eigenvectors after normalization. This value is equal
to 1 if modes # and m are identical:

ScalcOverinp (eda[:n], eda2[:m])

A normalized table with overlap between eda modes <7 and
eda2 modes <m can also be obtained:

SshowOverlapTable(eda[n], eda2[:m])

2. Calculation of the subspace overlap between eda modes <z and
edn2 modes <m, as given by the Root Mean Square Inner
Product value [16]:

ScalcSubspaceOverlap (eda[:n], edn2[:-m])

3. Projection of the trajectory (or trajectory2) onto the subspace
defined by eda mode 7 and eda2 mode m. Dispersion of the
frames along the diagonal indicates close correspondence
between mode 7 and m:

SshowCrossProjection (traj_frames, eda[n], eda2[m])

The corresponding correlation coefficient can also be
calculated:

Seda_eda2_corr=calcCrossProjection (traj_frames, eda[n], eda2[m])
Sprint(np.corrcoef(eda_edn2_corr))
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4. Comparison of normalized square fluctuations of eda mode »
and eda2 mode m. C, atoms are sorted by index value:

Sshow NormedSqFlucts(eda[n ], eda2[m])
Slegend ()

The corresponding plot of scaled square fluctuations can also
be obtained. Legend contains the respective scaling factor:

SshowScaledSqFlucts(edan], edn2[m])

Slegend ()
3.4.2  Comparison This step requires an ensemble of protein structures, corresponding
Between Essential Modes to either a set of native 7 crystallographic or NMR-derived struc-
and Principal Components tures. Principal Component Analysis (PCA) is employed to extract
from an Ensemble of the modes of structural variation occurring within the structural
Structures set, which can then be used to compare directly with the essential

modes using the built-in functions implemented in ProDy. It
should be noted that reliable results can only be obtained for a
sufficiently large number of 7 and with significant similarity with the
chosen reference structure.

1. Defining the set of structures to be analyzed. In this example,
each structure is identified by its corresponding PDB Identifier
code (PDB_ID). ProDy can download directly the respective
* pdb files from the PDB database, or read them from a given
working directory, as follows:

$structures=[’PDB_ID1’, °PDB_ID2’, ..., ’PDB_IDz’]
Spdb_structures=ferchPDB( *structures, compressed—False)

2. Defining the class of conformational ensemble:

Sensemble PCA=PDBEnsemble CPROTEIN’)

3. Defining the reference structure and chain:

Sreference=parsePDB (Crefevence. pdb’, subser="calpha’)
Srefevence_chain=refevence getHierView () getChain (°X°)
Sensemble_PCA.setAtoms (vefevence)
Sensemble_PCA.setCoords(reference)
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Note: °X° is the chain identifier of the refevence structuve

4. Tterative superpositioning of the ensemble. All structures are
first superposed to the reference structure and then iteratively
superposed to the mean coordinates until convergence to elim-
inate rigid-body rotational and translational differences:

Sfor pdb_structure in pdb_structures:
Sstructure_pca=parsePDB(pdb_structure, subset="calpha’)
Smappings=mapOntoChain (structure_pca,refevence_chain)
Satommap=mappings[0][0]

Sensemble_ PCA.add Coordset (atommap,weights=atommap getFlags Cmapped’))
Sensemble_PCA.iterpose()

5. Defining the class for Principal Component Analysis:

$pca=PCA("PROTEIN’)

6. Construction of the 3N x 3N covariance matrix of atomic
coordinates over ¢ structures, where N is the number of C,
atoms:

Spea.buildCovariance (ensemble_ PCA)

7. Calculation of the # principal components by diagonalization
of the covariance matrix to obtain eigenvectors with nonzero
eigenvalues:

Spea.calcModes(n)

8. Saving the model and a *.nmd file containing # principal com-
ponents for visualization in VMD with NMWiz:

SsaveModel (pca)
Swrite NMD CPROTEIN_PCA.nmd’, pcaf:n], ensemble PCA)

9. The set of pea modes is ready to be further analyzed as in
Subheading 3.3.2 and compared with eda modes as in Sub-
heading 3.4.1. Both sets of modes can also be visualized in
VMD by loading the respective PROTEIN_EDA.nmd and
PROTEIN_PCA.nmd files with the NMWiz.
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Fig. 2 ANM normal mode analysis for the example of the xylanase structure from B. circulans (PDB code 3LB9)

3.4.3 Comparison In this step, the calculation of ANM of the designed protein is
Between Essential Modes performed for comparison with the essential modes derived from
and Modes Derived from a trajectory of the same protein (Fig. 2), as follows:

the Anisotropic Network

1. Defining the structure for ANM calculation. The model con-

Model .
siders only the C, atoms:

SPROTEIN_anm= parsePDB(PROTEIN.pdl’, subset="calpha’)

2. Defining the class for ANM analysis:

Sanm=ANM(PROTEIN’)

3. Construction of the Hessian matrix of atomic coordinates.

Sanm.buildHessian (PROTEIN_anm)

4. Calculation of # normal modes by diagonalization of the Hes-
sian matrix. Only modes with nonzero eigenvalues are
obtained:

Sanm.calcModes()

5. Saving the model and a *.nmd file containing # normal modes
for visualization in VMD with NMWiz:

SsaveModel(anm)
Swrite NMD PPROTEIN_ANM.nmd’, anm/[:n], PROTEIN_anwm)
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6. In the same routine for pca modes, anm normal modes can be
further analyzed as in Subheading 3.3.2 and compared with
edn modes as in Subheading 3.4.1. Both sets of modes can also
be visualized in VMD by loading the respective PROTEI-
N _EDA.nmd and PROTEIN ANM.nmd files with the
NMWiz.

4 Notes

Input parameter files used for the MD simulations (command lines
starting with “;” are comments):

I"* Minimization Step: input template_em1.mdp file

title = Energy Minimization; Title of run

;s Pavameters descvibing what to do, when to stop and what to save

integrator = steep; Algorithm (steep = steepest descent minimization)

emtol = 1000.0; Stop minimization when the maximum force < 10.0 k] *mol-1*nm-1
emstep = 0.01; Energy step size in nm

nsteps = 2000; Maximum number of (minimization) steps to perform

energygrps = system; Which energy group(s) to write to disk

;s Pavameters descvibing how to find the neighbors of each atom and how to calculate the

interactions

nstlist = 10; Frequency to update the neighbor list and long range forces
ns_type = grid; Method to determine neighbor list (simple, grid)

rlist = 1.0; Cut-off for making neighbor list (short range forces)
conlombrype = PME; Treatment of lonyg range electrostatic interactions
reoulomb = 1.0; lonyg range electrostatic cut-off

vadwtype = cut-off; Treatment of van der Walls interactions

rvaw = 1.4; long range Van der Waals cut-off

pbe = xyz; Periodic Boundary Conditions (yes/no)

fourierspacing = 0.12

fourier_nx = 0
fourier_ny= 0
Sfourier_nz = 0
pme_ovder = 4
ewald_rtol = le-5
optimize_fft = yes
teoupl = no
peoupl = no
gen_vel = no

2" Minimization Step: input template_em2.mdp file

title = Energy Minimization; Title of run
;s Pavameters descvibing what to do, when to stop, and what to save
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integrator = cg; Algorithm (steep = steepest descent minimization)
emtol = 400.0; Stop minimization when the maximum force < 10.0 kj*mol-1*nm-1
emstep = 0.01; Energy step size in nm

nsteps = 1000; Maximum number of (minimization) steps to perform
energyyrps = system; Which energy group(s) to write to disk

;s Pavameters descvibing how to find the neighbors of each atom and how to calculate the
interactions

nstlist = 10; Frequency to update the neighbor list and long range forces
ns_type = grid; Method to determine neighbor list (simple, grid)

rlist = 1.0; Cut-off for making neighbor list (short range forces)
conlombrype = PME; Treatment of lonyg range electrostatic interactions
reoulomb = 1.0; lonyg range electrostatic cut-off

vdwtype = cut-off; Treatment of van der Walls interactions

rvaw = 1.4; long range Van der Waals cut-off

pbe = xyz; Periodic Boundary Conditions (yes/no)

fourierspacing = 0.12

Sfourier_nx = 0

Sfourier_ny = 0

fourier_nz = 0

pme_ovder = 4

ewald_rtol = le-5

optimize_fft = yes

teoupl = no

peoupl = no

gen_vel = no

I — 3" Equilibvation Step: input template_eq*.mdp file

title = Protein-ligand complex NPT equilibration phase
define = -DPOSRES; position vestrain the protein and ligand
;s Run pavameters

integrator = md; leap-frog integrator

nsteps = 50000; 0.002 * 50000 = 100 ps

dt = 0.002; 2 fs

;5 Output control

nstxout = 1000; save coordinates every 2 ps

nstvout = 1000; save velocities every 2 ps

nstenergy = 2000; save eneryies every 4 ps

nstlog = 1000; update log file every 2 ps

energyrps = Protein Non-protein

;s Bond pavameters

continuation = yes; first dynamics run

constraint_algorithm = lincs; holonomic constraints
constraints = all-bonds; all bonds (even heavy atom-H bonds) constrained
lincs_iter = L; accuracy of LINCS

lincs_ovder = 4 also related to accuracy

;5 Neighbovsearching
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ns_type = grid; search neighborving grid cells

nstlist = 10; 20 f5

rlist = 1.0; short-range neighborlist cutoff (in nm)

reoulomb = 1.0; short-range electrostatic cutoff (in nm)

vdwtype = cut-off

rvaw = 1.4; short-range van der Waals cutoff (in nm)

;s Electrostatics

conlombrype = PME; Particle Mesh Ewald for long-range electrostatics
pme_orvder = 4; cubic interpolation

Sfourierspacing = 0.16; grid spacing for FFT

ewald_rtol = le-5

optimize_fft = yes

; Bevendsen tempervature coupling is on

tcoupl = V-rescale; modified Bevendsen thermostat

teyrps = Protein non-protein; two coupling growps - move accurate
tan_t = 0.1 0.1; time constant, in ps

ref_t = 300 300; refevence temperature, one for each group, in K
;s Pressuve coupling is on

peoupl = Berendsen; pressurve coupling is on for NPT

peouplrype = isotropic; uniform scaling of box vectors

tan_p = 0.6; time constant, in ps

ref p = 1.0; refevence pressure, in bay

compressibility = 4.5¢-5; isothermal compressibility of water, bar™-1
;s Peviodic boundary conditions

pbe = xyz; 3-D PBC

;s Dispersion covvection

DispCorr = EnerPres; account for cut-off vd W scheme

5 Velocity genevation

gen_vel = yes; assign velocities from Maxwell distribution
gen_temp = 300; temperature for Maxwell distribution
gen_seed = -1; generate a vandom seed

Production Step: input template_mdl.mdp file

title = Protein-ligand complex NPT nonconstraint explicit solvent ma simulation
;s Run parameters

integrator = md; leap-frog integrator

nsteps = 10000000; 0.002 * 10000000 = 20000 ps (20 ns)
dt= 0.002; 2 fs

;5 Output control

nstcomm = 1

nstxout = 1000; save coordinates in .trr output every 2 ps
nstvout = 1000; save velocities in .trr output every 2 ps
nstenergy = 2000; save eneryies every 4 ps

nstlog = 1000; update log file every 2 ps

nstfout = 0; do not collect forces

energygrps = Protein Non-protein

199



200 Henrique F. Carvalho et al.

; Bond parameters

continuation = yes; first dynamics run

constraint_algorvithm = lincs; holonomic constraints

constraints = hbonds

lincs_iter = 1; accuracy of LINCS

lincs_order = 4 also related to accuracy

;s Neighbovsearching

ns_type = grid; search neighboring grid cells

nstlist = 1.0; 2 fs

rlist = 1.0; short-range neighborlist cutoff (in nm)

reoulomb = 1.0; short-range electrostatic cutoff (in nm)

vadwtype = cut-off

rvaw = 1.4; shovt-range van der Waals cutoff (in nm)

; Electrostatics

conlombrype = PME; Particle Mesh Ewald for long-range electrostatics
pme_ovder = 4; cubic interpolation

Sfourierspacing = 0.12; grid spacing for FFT

Sfourier_nx = 0

fourier_ny= 0

fourier_nz = 0

ewald_rtol = le-5

optimize_fft = yes

;s Bevendsen tempevature coupling is on

tcoupl = V-rescale; modified Bevendsen thermostat

teyrps = Protein non-protein; two coupling growps - more accurate
tan_t = 0.1 0.1; time constant, in ps

ref t = 300 300; refevence temperature, one for each group, in K
;s Pressuve coupling is on

peoupl = Berendsen; pressuve coupling is on for NPT

peoupltype = isotropic; uniform scaling of box vectors

tan_p = 0.6; time constant, in ps

ref p = 1.0; refevence pressure, in bay

compressibility = 4.5¢-5; isothermal compressibility of water, bar™-1
;s Periodic boundary conditions

pbe = xyz; 3-D PBC

;s Dispersion covvection

DispCorr = EnerPres; account for cut-off vd W scheme

; Velocity genevation

gen_vel = no; assign velocities from Maxwell distribution
gen_temp = 300; temperature for Maxwell distribution
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Chapter 9

Applications of Normal Mode Analysis Methods
in Computational Protein Design

Vincent Frappier, Matthieu Chartier, and Rafael Najmanovich

Abstract

Recent advances in coarse-grained normal mode analysis methods make possible the large-scale prediction
of the effect of mutations on protein stability and dynamics as well as the generation of biologically relevant
conformational ensembles. Given the interplay between flexibility and enzymatic activity, the combined
analysis of stability and dynamics using the Elastic Network Contact Model (ENCoM) method has ample
applications in protein engineering in industrial and medical applications such as in computational antibody
design. Here, we present a detailed tutorial on how to perform such calculations using ENCoM.

Key words Normal mode analysis, Protein stability, Protein dynamics, Mutations, Vibrational
entropy, Protein engineering

1 Introduction

Protein engineering aims at modulating the physico-chemical and
biological properties of proteins through chemical modifications
for industrial and medical applications. Such modifications include
derivatizing surface residues and the introduction of mutations.
Industrial applications often require mutations that confer
increased efficiency in conditions drastically different than physio-
logical as well as improved resistance to denaturation [1]. In a
visionary article in 1983, Kevin Ulmer proposed that the integra-
tion of experimental approaches in protein chemistry, X-ray crystal-
lography, and computer modeling held the key to understand and
engineer protein structure and function [2]. Over 30 years later,
much progress has been made but we are far from truly under-
standing protein function and structure to the point where we can
engineer de novo functions. Traditionally, protein engineering
involved structure-guided design through site-directed mutagene-
sis. While this approach is still used [ 3, 4], new methodologies such
as directed evolution are commonly used today. Directed evolution
is an experimental approach mimicking biological evolution where

llan Samish (ed.), Computational Protein Design, Methods in Molecular Biology, vol. 1529,
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a large number of random mutants are produced and evolutionary
pressure is applied in which successive rounds of selection are used
to favor the emergence of desired phenotypes [5]. In that respect
and depending on the goal, promiscuity in terms of binding or
catalysis often simplifies the engineering task [6]. Otherwise,
directed evolution can be sensitive to local minima of the fitness
landscape [7, 8]. The late physicist Richard Feynman stated “what I
cannot create, I do not understand.” Directed evolution shows that
it is possible to create new proteins without full understanding.
However, in the spirit of Ulmer, the true potential of protein
engineering will be achieved once we understand enough of the
principles underlying protein structure and function to perform ab
initio protein design.

Computational approaches have been used to identify muta-
tions that change protein affinity [9], function [10], and stability
[11]. However, most computational methods that focus on the
impact of mutations on protein stability are biased toward predict-
ing destabilizing mutations. This bias comes at times as an artifact
of machine learning, but it can also be caused by the inherent
difficulty of modeling stabilizing mutations. Therefore, most
computational methods currently available fail to correctly predict
stabilizing mutations [12, 13]. Another important point to
consider is that changes in thermodynamic stability may have a
detrimental effect on enzymatic activity [14-19]. A striking
example comes from the comparison of mesophilic enzymes with
their more stable thermophilic counterparts that exhibit lower
enzyme efficiency at room temperatures [20]. This loss of efficiency
is often associated with a rigidification of the structure [21, 22].
More generally, dynamics affects molecular recognition [9, 23-26]
and catalytic rates [27, 28]. It is especially true for antibodies [29]
where a rigidification of the complementarity determining region
(CDR) is observed during the maturation process [30] and crucial
to obtain high affinity specific molecules [31]. Allosteric mutations
that improve binding affinity [32] in therapeutic antibodies high-
light the importance of assessing the impact of mutations on
protein dynamics. Finally, describing a protein as the conforma-
tional ensemble rather than a single structure has been shown to
improve the prediction of the effect of mutations [33, 34] and
improved the outcome of protein design protocols [35].

The evaluation of dynamic properties of proteins in a high-
throughput context is not a trivial task. Experimental procedures
(NMR or crystallographic b-factors) can be time-consuming and
despite tremendous advances in molecular dynamic simulations, the
ability to assess the effect of a mutation on dynamic properties of
proteins is still computationally demanding, particularly for the long
timescales associated with protein function [36]. Thus, evaluating
several hundred mutants would seem unrealistic without specialized
hardware. Normal mode analysis (NMA) provides an alternative.
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It is a computational approach that predicts vibrational frequencies
and movements of a system around an equilibrium state using a
harmonic potential. The fundamentals of NMA have been exten-
sively reviewed [37, 38] and classically is applied on all atoms of the
structure with a molecular dynamics force field after initial minimi-
zation. Pioneering work by Tirion [39 ] showed that it is possible to
reproduce the slow dynamics of proteins with a single-parameter
potential by considering the structure as already in its equilibrium
conformation and building a mass-spring system, removing the
requirement for minimization. Tama et al. [40] showed that it is
possible to replace all atoms of a residue by a single mass generally
centered at the position of the alpha carbon, drastically reducing
computational time. The speed of such coarse-grained NMA
methods made possible their use in many applications to explore
conformational space in small molecule docking [41,42 ], to predict
conformational changes [43] and in structural refinement [44, 45].
However, most coarse-grained methods do not account for the
nature of amino acids by using spring constants that are indepen-
dent of residue type. We recently introduced a coarse-grained NMA
method called ENCoM [46], which uses a potential based on STeM
[47] considering bond stretching, angle bending, dihedral rotation,
and long-range interactions. Crucially, ENCoM adds an additional
factor to the long-range interactions using the surface area in con-
tact and the type of heavy atoms in contact. Thus, unlike other
coarse-grained NMA methods, ENCoM calculations are affected
by the specific amino acid nature of the protein in addition to its
structure. Compared to the Anisotropic Network Model (ANM),
one of the most used coarse-grained NMA methods [48 ], ENCoM
shows an increased predictive power for conformational change
between crystal structures of bound and unbound enzymes with
an average increase in squared overlap of 28 % for 117 coupled
movements and 60 % for 236 cases of coupled loop movements.
With ENCoM, we also introduced a novel application for
coarse-grained NMA methods in the prediction of the effect of
mutations on protein stability and dynamic properties. Predicted
vibrational entropy differences (AS,;,) upon mutation were ana-
lyzed for 303 manually curated mutations [49] and compared to
several existing methods, notably FoldX3.0 (beta 3.0) [50],
Rosetta [51], DMutant [52], and PoPMusic [49]. Although not
the overall best predictive method, ENCoM proved to be the most
self-consistent and least biased. ENCoM and DMutant gave the
best predictive power on the subset of 45 stabilizing mutations
versus other methods that predicted as good or worse than a
random model. Classic coarse-grained NMA models predicted
every mutation as neutral and did not have any predictive power.
The combination of ENCoM with enthalpy-based methods such as
Rosetta and FoldX was synergistically beneficial [53]. As a proof of
concept for the prediction of the effect of mutations on function,
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ENCoM predicted the effect of the G121V mutation on E. cols
DHEFR consistent with $* differences NMR results [54]. Despite
having a modest effect on protein stability (0.77 kcal/mol [55])
and being 15 A away from the binding site, this mutation disrupts
enzyme efficiency by 200-fold through allosteric eftects. More
recently, ENCoM was used to show that thermophile proteins are
on average more rigid than their mesophile counterpart and used
AS,;, to guide the selection of mutations observed between such
proteins with potential uses in protein engineering [22].

In the following sections, we demonstrate how to use ENCoM
to predict the effect of mutations on thermal stability and dynamics
as well as to generate conformational ensembles (Fig. 1). The
ability to perform large-scale combined predictions of the effect
of mutations on stability and dynamics offers great possibilities in
protein engineering. Likewise, the generation of biologically realis-
tic conformational ensembles has ample applications in protein
engineering and beyond.

Fig. 1 Uses of ENCoM in protein engineering. The wild-type nuclease from
Staphylococcus aureus (1EYO0) used in the text is shown in (a). The protein
structure is represented as an elastic network model using ENCoM algorithm
(b), where amino acids are represented by masses (green spheres) and
interactions by springs (yellow sticks). The Eigenvectors representing the
seventh and tenth modes are shown in red and blue respectively. The mutation
T411 (shown as stick in ¢) increases the thermal stability and rigidifies the protein
in the regions identified in blue (¢). A conformational ensemble of 11
conformations of the wild-type nuclease generated using the seventh and tenth
modes are shown in (d)
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2 Materials

For this tutorial it will be necessary to have some basic knowledge
of command line environments and to install software (sez Note 1).
At the moment ENCoM does not work under the Windows
operating system. Thus, for the tutorial below it is necessary to
use a Unix-based operating system (Linux or Mac OS). Please make
sure your system has up-to-date versions of Python and Perl.

The ENCoM Source code can be found at http: //bcb.med.
usherbrooke.ca/encom or through GitHub at https://github.
com/NRGlab/ENCoM. Code can be compiled by the following
instructions in the Readme file (se¢ Note 2). ENCoM is used for the
prediction of the effect of mutations and to generate conforma-
tional ensembles. Precompiled executables of FoldX3 can be found
at: http: //foldx.crg.es (see Note 3). FoldX3 is used exclusively for
the prediction of the effect of mutations. Instructions to download
and install Modeller can be found at https: //salilab.org/modeller /
download_installation.html. PyMOL is used for molecular visuali-
zations. Instructions for installation on different operating systems
can be found at http: //www.pymolwiki.org/index.php /Category:
Installation. Alternatively, the PyMOL source code can be found at:
http: //sourceforge.net/projects/pymol (see Note 4). All scripts
required for the protocols used below can be found at http://
beb.med.usherbrooke.ca/encom.

3 Methods

The evaluation of the effect of mutations on protein thermody-
namic stability is achieved by a linear combination of the predic-
tions of ENCoM and FoldX. The prediction of the effect of
mutations on protein dynamic on the other hand uses ENCoM
exclusively. ENCoM is also used to generate ensembles of realistic
protein conformations. The following protocols can be carried out
in standard computers and do not require any specialized hardware.
Execution times can vary from a few minutes to a few hours
depending on the type of hardware used, the size of the protein,
and the number of mutations to evaluate or conformations to
generate. The entire protocol can also be automatically executed
through the ENCoM Server [53] at http://bcb.med.usherbroke.
ca/encom. The advantage of running oneself the protocols is to
overcome restrictions that are in place in the ENCoM Server such
as the possibility to model and predict the effect of double (or
more) mutants, the manner in which conformations are modeled
using Modeller, and to explore combinations of modes that gener-
ate larger conformational ensembles than allowed in the web-
server. Results obtained through the ENCoM Server interface can
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3.1 Preparing
Working Environment

3.2 FoldX3 Thermal
Stability Predictions

serve to validate results obtained using the protocols below as the
user learns how to use ENCoM.

We will be using the structure of the Staphylococcus anreus
Thermonuclease (PDB ID 1EY0) as an example. However, any
protein structure or model can be used (see Note 5).

During the protocol, we will be using software that can be
installed in different directories depending on the computer. The
FoldX3 installation folder will be referred to as FoldX/, ENCoM
installation folder will be referred to as ENCoM/, and the perl and
python scripts will be referred to as script/. The user should make
sure to recognize what are the appropriate directories in their
installation and replace the names accordingly. Text in italic follow-
ing the > symbols represent command lines that are to be entered
in a terminal.

In order to run ENCoM, is it better to create a work directory
within which we will place the PDB formatted file containing the
coordinates of the protein and prepare it:

1. Create a folder named work in which you will be working and
change the working directory:

> mkdir work
> cd work

2. Download the 1EYO structure from the PDB website using this
address http: //www.rcsb.org/pdb /files/1EY0.pdb and name
it 1ey0_nc.pdb; alternatively, use the command line below:

> curl http://www.rcsb.org/pdb/files/1EY0.pdb >
ley0_nc.pdb

3. Clean the PDB file by removing heteroatoms, water molecules,
alternative conformations, and hydrogen atoms, changing neg-
ative residue numbers or residues with non-numeric characters,
removing multiple models and adding a chain identifier Z if
none is present using this command (se¢ Note 6). The cleaned
structure is now called 1ey0.pdb.

> perl script/clean_pdb.pl ley0_nc.pdb ley0.pdb

Thermal stability predictions involve a linear combination of
FoldX3 predictions and ENCoM. ENCoM. As noted above, users
must download FoldX3 and install it first. Once this is done follow
the steps below:

1. In order to preprocess the protein structure we start with the
tollowing command

> echo ley0.pdb > list. txt


http://www.rcsb.org/pdb/files/1EY0.pdb
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. Copy the rotabase.txt file found within the FoldX3 software

into the working directory:

> cp FoldX/rotabase. txt ./

. Launch FoldX3 repair function. This will generate a file named

RepairPDB_1ey0.pdb.

> FoldX/foldx3b6 -runfile . /script/repalir. txt

. Write this filename in a list using

> echo RepairPDB_ley0.pdb > 1ist. txt

. Open the file named individual list.txt using any plain text

editor (in the following command line we use nano) and write
mutations that are to be evaluated using the following nomen-
clature: One letter code wild-type residue, chain, position in the
structure sequence, and one letter code mutated residues, fol-
lowed by a semicolon. For example, to mutate threonine 41 to an
isoleucine in the 1EYO structure, write TA411;. For this protocol,
please write in the individual_list.txt file on different lines the
two following mutants: TA411; and DA21K; (see Note 7).

> nano individual_list. txt

. Launch the FoldX3 mutation function. The file Dif BuildMo-

del_RepairPDB_ley0.fxout created in the working directory
will have the difference in folding energy between WT and
mutated forms (see Note 8).

> FoldX/foldx3b6 -runfile script/run. txt.

The ENCoM predictions can then be calculated as follows:

1. Generate the structure of the T411 and D21K mutants in chain

A with the following command lines, where ley0 represents the
filename, 41 or 21 the positions to mutate, ILE or LYS the new
residues at these positions in chain A. The resulting modeled
mutant structures will be in files 1ley0ILE41A.pdb and
1eyOLYS21A.pdb. In the command line below, the last two
arguments represent the input PDB file containing the wild-
type coordinates and the filename for the mutant coordinates
respectively.

> python script/mutate_model.py ley0 41 ILE A 1ey0.pdb
leyOILE41A.pdb
> python script/mutate_model.py ley0 21 LYS A ley0.pdb
leyOLYS21A.pdb

. Calculate the normal modes and mode amplitudes for the wild-

type and mutant structures generated in the previous step using
the following command. The .cov files represent the entropy for
each residue and the .eigen files contain the eigenvalues (mode
frequencies) and eigenvectors (normal modes) of the different
vibrational modes. These files will be used to compare dynam-
ics between structures (sec Note 9).
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> ./ENCoM/bin/build_encom -i ley0.pdb -cov wt.cov -o
wt.eligen

> ./ENCoM/bin/build _encom -i 1ley0ILE41A.pdb -cov
TA41I.cov -0 TA41I.eigen

> ./ENCoM/bin/build encom -i 1ley0OLYS21A.pdb -cov
DA21K.cov -o DA21K.eigen

The following command will use the files produced above to
calculate the differences in dynamics between each mutant and
the wild type, as well as the predicted AAG for each mutation.
The predicted AAG is a linear combination of ENCoM and
FoldX calculated earlier (see Note 10). The order of .cov files for
the -mutl argument must be the same that the one in ndivi-
dual_list.txt.

> perl script/compare cov.pl -FoldX Dif BuildModel_ -
RepairPDB ley(0.fxout -wt wt.cov -mutl TA41I.cov DA21K.
cov.

. The command script will generate a PyMOL session script

called Diff.pml that colors every amino acid in function of AS
for residue in each mutant, where blue represents a rigidifica-
tion of the structure and red a gain in flexibility (see Note 11).
It can be viewed using:

> pymol Diff.pml

In addition to the prediction of the effect of mutations on stability

Conformational and dynamics, ENCoM can be used to generate conformational
Ensembles ensembles:
1. The following script generates multiple conformations using

ENCoM. In the case below, we are using the wild type and use
the eigenvectors previously calculated in Subheading 3.3, step
2 (file wt.eigen). The same could be done for a mutant, using
the appropriate mutant structure and calculated eigenvectors.
The file all_conformations.pdb contains all the exhaustively
generated models using the 10th and the 12th slowest vibra-
tional modes (parameter —/) with a maximum RMSD distor-
tion of 2 A (parameter —#4) and a minimum RMSD distortion
of 1 A (parameter —step) per mode. Remember that the first six
modes represent rotations and translations; thus, the smallest
value for any argument passed via —m/ should be 7, represent-
ing the slowest, most global mode of movement.

> ENCoM/bin/build _grid _rmsd-1iley0.pdb-ieigwt.eigen
-md 2 -step 1 -pall _conformations.pdb -ml 10 12

. Each individual mode can be viewed using the motion func-

tion. For example, the mode 10 can be given by

> ENCoM/bin/motion -i ley0O.pdb -m 10 -ieig wt.eigen -
pmotion_10.pdb
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. Cartesian space NMA methods such as ENCoM generated

conformations that are linear combinations of movements
(translations of atomic coordinates) along different modes.
Thus, the structures generated do not respect bond angles
and distances. Conformations represent distorted physically
unrealistic structures. Modeller is used to rebuild physically
realistic structures using each distorted NMA structure as a
template. The rebuilt model will be found in the folder called
models. This is done with the command below.

> perl script/rebuild.pl -i all_conformations.pdb -
script script/rebuild.py

4 Notes

. All software employed in the protocols are free at least for

nonprofit users. ENCoM is free for everyone and distributed
under the GNU General Public License.

. Users need to have the GNU GSL library installed, more

information can be found at http://www.gnu.org/software /

gsl/.

. FoldX is developed and maintained by the research group of

Dr. Luis Serrano at the GRG. Users need to make an account
and accept a yearly-renewable Licence. FoldX needs to be
downloaded anew every year to work with the newly renewed
license.

. Homebrew installation is recommended for Mac OS, particu-

larly for Mac OS 10.10 Yosemite. Binary distributions are
recommended for Linux.

. Experimentally determined protein structures can be found on

the PDB depository (http://www.rcsb.org/). If the desired
structure is not available, servers such as I-Tasser or Robetta
can be used to generate homology models. It is important to
note that PDB X-ray structures represent the asymmetric unit
that may or may not correspond to the biological unit (quater-
nary structure). Users can download experimentally verified or
predicted biological units from any of the PDB depositories.

.