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Preface

Analog components appear on 75% of all chips, and cause 40% of the design effort
and 50% of the design errors detected after first silicon measurements, reported EDA
Weekly on March 21, 2005. Due to increasing functional complexity of system-on-
chips, the difficulties in analog design and the lack of design automation support
for analog circuits continually increase the bottleneck character of analog compo-
nents in chip design. Design methodology and design automation for analog circuits
therefore is a crucial problem for future system-on-chips.

Eminently critical is the layout synthesis part of the analog design flow. Although
there have been a lot of very good works from universities over the years, some
of which even found their way to commercial EDA tools, industrial application of
analog layout synthesis is still in its infancy when it is compared to its digital coun-
terpart! The industrial point of view even says that practicable EDA tools for analog
layout synthesis did not exist.

But it seems that this situation is about to change. In the face of increasing cir-
cuit complexity and high performance SoC designs, the once-sleepy analog EDA
market is experiencing an increasing shift from single vendor solutions to design
tool integration via alliances between many players. The attempt to create an inter-
platform reference, such as the Interoperable PDK Libraries (IPL) alliance, where
analog layouts made with a tool can be imported error-free to different frameworks,
is an example. Many EDA start-ups as well as major leaders are already announc-
ing key automated layout tools for the analog designer intended to boost his/her
productivity.

In this exciting scenario, academia continues to strive for new, more efficient, and
complementary approaches to this task and to the existing tools, and has recently
produced some very interesting new solutions. The intention of this book has two
parts. On the one hand, it summarizes and presents these latest results. On the other
hand, it is dedicated to give an introduction to advanced analog layout methods on
the graduate level.

The book is structured in three parts. The first part with three chapters covers
recent approaches to topological placement of analog circuits. The second part treats
the problem of routing. The third part with three more chapters deals with layout in
the design flow, namely, with the problem of retargeting an existing layout for a
new technology, with integrating layout in the sizing process, and with constraint
management in the design flow.
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The first chapter starts with an introduction to the different ways of approaching
in CAD tools device-level placement problems for analog layout. It is elaborated
how the structural representation of the layout in the algorithm is crucial for the
efficiency and efficacy of the placement process. Besides the classical way of using
absolute coordinates for the module placement and slicing structures for topologi-
cal representations, which encode the relative positioning between cells, it describes
how the sequence-pair and tree-based topological representation can be applied to
dramatically reduce the search space to the tiny fraction, which satisfies the inherent
symmetry constraints in analog circuits. It further develops sufficient conditions to
ensure the symmetry constraints during the successive moves of a placement algo-
rithm and, based on these ideas, presents several topological algorithms that perform
the exploration process very efficiently.

The second chapter furthers the ideas presented in the first chapter and extends
them to a hierarchical module clustering. The analog devices can be hierarchically
clustered into groups according to models, circuit functionalities, or signal/current
flows. Following the B*-tree, a hierarchical B*-tree (HB*-tree) placement repre-
sentation is developed to model this circuit hierarchy and symmetry and proximity
constraints among modules and across the hierarchy. This hierarchical representa-
tion is fed into a placement algorithm to generate optimum device placements that
meet all device layout constraints. Performing a simulated annealing algorithm, the
placement of the device modules in different device groups belonging to different
clustering hierarchies is simultaneously optimized.

The third chapter first introduces a method to automatically derive the circuit
hierarchy and the resulting symmetry, proximity, and matching constraints from a
netlist. A deterministic algorithm is then presented that computes the shape function
of different aspect ratios of the circuit placement by a recursive bottom-up approach
through the derived circuit hierarchy starting from basic modules such as current
mirrors or differential pairs. For each hierarchy level, the shape function is deter-
mined by combining the placements of the next-lower hierarchy. These are stored as
so-called enhanced shape functions that include the corresponding B*-trees of each
individual shape. Algorithms are proposed to generate the vertical and horizontal
sum of two B*-Trees of placements while provably complying with the constraints.
As the algorithm bounds the enumeration according to the circuit hierarchy and
the constraints, it generates results very fast, while being deterministic without any
tuning parameter.

The second part of the book deals with analog routing. It gives a tutorial on
routing methods and corresponding placement and routing representations, includ-
ing constraints, for instance, for symmetry or crosstalk. A review of different routing
strategies and the corresponding state of the art follows. Early routing approaches in-
spired from digital design, cost-driven approaches, and parasitic-driven approaches
(including, e.g., performance sensitivities), as well as the A* algorithm are covered.
The connection to placement through templates and other integration approaches
is discussed afterward. Then, the partitioning of routing into global and detailed
routing, as in digital design, is described. The chapter concludes with specialized
routing approaches for RF circuits and analog arrays.
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The third part of the book addresses analog layout issues arising from the ambient
design flow.

In Chap.5, the task of retargeting an existing layout, including placement and
routing, is examined. Specific algorithms for layout retargeting may be beneficial
if the involved layout modifications are moderate or to extract and conserve the
knowledge contained in a layout. After a short introduction to the preparatory steps
of layer mapping, constraint generation and device recognition, the main algorith-
mic step of retargeting, i.e., layout compaction, is described in detail. Based on the
linear programming approach to its solution, a graph-based simplex method is pre-
sented with full details. The different types of constraints, the complexity of the
algorithm, and practical issues are discussed as well.

Chapter 6 is dedicated to the problem of integrating layout effects into the cir-
cuit sizing process, to avoid unnecessary iterations between electrical and physical
synthesis as much as possible. This has been called parasitic-aware synthesis. This
chapter reaches from the very basics (what is it, and why and when is it really nec-
essary) to a practical implementation of this type of synthesis process. Different
methods to carry it out as well as their pros, cons, and trade-offs (mainly effi-
ciency vs. completion time) will be explained. A technique will be presented that
uses a combination of simulation-based optimization, procedural layout generation,
exhaustive geometric evaluation algorithms, and several mechanisms for parasitic
estimation, to comprehensively incorporate the layout-induced parasitic into elec-
trical synthesis.

Chapter 7 concludes the book with a discussion of the management of the crucial
factor in analog layout — the constraints. It provides a problem formulation for
the classification, representation, transformation, and verification of constraints in a
top-down design flow, as well as a formulation of a constraint engineering system,
including its impact on the design flow and its algorithms.

This bow from placement to routing to the design flow, drawn by the structure
of the book, invites the reader to start from the beginning and read one chapter after
the other. At the same time, the chapters are self-contained and may be accessed in-
dividually and independently. In any way she or he approaches the book, the reader
will gain a deep insight into the tasks of analog layout and into the actual solution
approaches.

Munich Helmut Graeb
March 2010
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Chapter 1
Device-Level Topological Placement
with Symmetry Constraints

Florin Balasa

Abstract The traditional way of approaching placement problems in computer-
aided design (CAD) tools for analog layout is to explore an extremely large search
space of feasible or unfeasible placement configurations (called flat representations
of the layout), where the cells are moved in the chip plane by a stochastic optimizer
— like simulated annealing or a genetic algorithm.

This chapter discusses the possible use in analog placement problems with sym-
metry constraints of topological representations of the layout, encoding systems that
are not restricted to slicing floorplan topologies. First, the chapter gives an overview
of several data structures that may be used in the evaluation of various topological
representations of the layout — therefore, in building the placement from the lay-
out encoding. Afterwards, the chapter presents a subset of sequence-pairs — called
“symmetric-feasible” — that allows to take into account the presence of an arbi-
trary number of symmetry groups of devices during the exploration of the solution
space. Alternatively, the possible use of tree representations instead of “symmetric-
feasible” sequence-pairs is also discussed.

The computation times exhibited by the topological approaches are significantly
better than those of the placement algorithms using the traditional exploration strat-
egy based on flat representations, while preserving a similar quality of the placement
solutions.

1.1 Introduction

1.1.1 CAD for Analog Layout

In recent years, complete systems that used to occupy one or more boards have
been integrated on a few chips or even on a single chip. Examples of such
systems-on-a-chip (SoC’s) are networking interfaces, wireless designs, or new

F. Balasa (=)
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generations of integrated telecommunication systems — that include analog, digital,
and eventually, radiofrequency (RF) sections on one chip. Although most functions
in such integrated systems are implemented with digital or digital signal processing
circuitry, the analog circuits needed at the interface between the electronic system
and the real world are now being integrated on the same die for reasons of cost and
performance.

In the digital domain, computer-aided design (CAD) tools are fairly well devel-
oped, especially for the lower level of the design flow. Unlike analog circuits, a
digital system can naturally be modeled in terms of Boolean representations and
programming language constraints; its functionality can easier be represented in
algorithmic form. Consequently, many lower-level aspects of the digital design pro-
cess are fully automated. Research interests are now moving in the direction of
system synthesis, where system-level specifications are translated into hardware—
software co-architecture. The level of automation is far from the “push-button”
stage, but the advance of CAD tools is keeping up reasonably well with the progress
of technology.

Unfortunately, the situation is worse on the analog side. Apart from circuit sim-
ulators, layout editing environments, or layout verification tools, real commercial
solutions are only beginning to appear as the result of a valuable research and
development (R&D) effort in the field [ 1-3]. Some of the main reasons for this lack
of automation are that analog design in general is less systematic and more heuris-
tic in nature than digital design, requiring specialized knowledge, design skills, and
years of experience; analog circuits are more sensitive to parasitic disturbances,
crosstalk, substrate noise, supply noise, etc.; in addition, the variety of schematics
and diversity of device sizes and shapes are much larger. These differences from
digital design explain why specific analog solutions need to be developed. Due to
the lack of mature, robust analog CAD tools, analog designs today are still largely
being handcrafted, with limited CAD support available (except simulators, inter-
active layout environments). The design cycle for analog (and mixed-signal) IC’s
remains long and error prone.

The physical implementation step in the analog design flow corresponds to a
variety of tasks that can be grouped into two major areas: (a) analog circuit-level
(or block-level) layout synthesis, which has to transform a sized transistor-level
schematic into a mask layout, and (b) system-level layout assembly, in which the ba-
sic functional blocks are already laid out and the goal is to floorplan, place, and route
them, as well as to distribute the power and ground connections. These two areas
are also interleaved as most design flows require a mix of top-down and bottom-up
approaches. This chapter will address placement issues in the field of block-level
layout synthesis.

The optimization-based place-and-route layout generation approaches consist of
synthesizing the layout solution by optimization techniques according to some cost
functions. They differ from the earlier procedural module generation techniques [4],
in which the layout of the entire circuit is precoded in a software tool that generates
the complete layout for the actual parameter values entered at run time. Also, they
differ from the related set of template-driven methods [5], where a geometric
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template fixing the relative position and interconnection of the devices is stored
for each circuit. The advantages of the optimization-based approaches are their gen-
erality and flexibility in terms of performance and area. The penalty to pay is they
require a more significant computational effort; also, the layout quality is more de-
pendent on the algorithms, on the cost functions employed, on providing a complete
set of design constraints and taking them into account during the optimization.

1.1.2 The Device-Level Analog Placement Problem

The decision whether a given set of fixed-oriented rectangles, having widths and
heights real numbers, could be packed onto a chip of known width and height was
proven to be NP-complete [6], while the problem of finding a minimum area pack-
ing was shown to be NP-hard. Like many other VLSI placement problems — for
instance, chip floorplanning and macro cell digital placement — the analog place-
ment must also cope with optimally packing arbitrarily sized modules.

In addition to that, a placement tool must include specific capabilities to automat-
ically produce analog device-level layouts matching in density and performance the
high-quality manual layouts. Such specific features are, for instance, (1) the ability
to deal with topological constraints for symmetry and device matching; (2) the
ability to arrange devices such that critical structures are shared — design technique
known as device merging or geometry sharing [7], aiming to reduce both layout
density and induced parasitics; (3) the existence of a (built-in) library of predefined
module generators and the ability to exploit their reshaping capabilities during the
placement process [1].

1.1.3 Overview of Analog Placement Methods

Due to the complexity of the basic problem, several heuristic placement techniques
have been attempted first. The constructive approaches consist in evolving gradu-
ally the placement solution by selecting one module at a time and positioning it in
the “best” available location. Several systems for analog placement employed con-
structive methods: Kayal et al. developed an expert knowledge base to guide the
placement [8]; Mehranfar suggested a schematic-driven approach, using a construc-
tive scheme based on connectivity and relative positioning in the input schematic
[9, 10]. The constructive methods are fast, scaling well with the problem size; their
basic drawback is the dependence on the selection order of devices. Lacking a global
view in dealing with a variety of interacting quality measures, this strategy yields
sometimes poor placement solutions. A technique achieving a better global opti-
mization of the device positions — by iteratively combining min-cut partitioning and
force-directed placement — has been employed in an interactive environment for
full-custom designs [11].
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Other class of methods translates an analog placement problem into a constrained
(combinatorial) optimization. Earlier techniques extracted mainly (hard and soft)
nonquantitative constraints for the subsequent optimization phase [12]. In later ap-
proaches, the optimization was performance-driven, doing a quantitative evaluation
(based on estimation models) of the placement solutions, to ensure the performance
of the final layout [13, 14].

As combinatorial optimization engines, the simulated annealing [15] and ge-
netic algorithms [16] were effective choices for solving industrial analog placement
problems. These algorithms use stochastically controlled “hill-climbing” to avoid
being trapped in local minima during the optimization process. In addition, they do
not impose severe constraints on the size of the problems or on the mathematical
properties of the cost function — like most optimization algorithms in mathematical
programming. While efficiently trading-off between a variety of layout factors —
such as area, total net length, aspect ratio, maximum chip width and/or height,
cell orientation, “soft” cell shape, etc. — they support incremental addition of new
functionality (for instance, updates of cost function and/or constraints) and they
are relatively easy to implement (although good tuning needs more time). This is
why simulated annealing, the most mature of the stochastic techniques, provided
the engine for effective software packages both in digital (TimberWolfSC v7.0 [17])
and in analog design: ILAC [18], KOAN/ANAGRAM II [7, 12] — that evolved into
the NeoLinear system, PUPPY-A [13], LAYLA [14]. More recently, a two-phase
approach using both a genetic algorithm and simulated annealing with dynamic ad-
justment of the parameters has been reported [19, 20]. Another recent technique
derives linear inequalities from constraint graphs extracted from sequence-pairs,
and obtains the placement by linear programming within a simulated annealing
framework [21].

While this chapter will focus on optimization techniques for analog placement,
other effective analog layout tools are template-driven [22,23]. These tools are built
on template databases containing analog circuits designed by experienced experts.
Upon the arrival of a new design demand, the system selects a suitable template
from the database, adding information on the target technology, design rules, device
sizes, etc., to re-generate automatically the target layout.

1.1.4 Placement for Layout Symmetry

In high-performance analog circuits, it is often required that groups of devices are
placed symmetrically with respect to one or several axes. Differential circuit tech-
niques are used extensively to improve the accuracy, power supply rejection ratio,
and dynamic range of many analog circuits. The full performance potential of many
of these circuits cannot be achieved unless special care is taken to match the layout
parasitics in the two halves of the differential signal path. Failure to match these par-
asitics in, for instance, differential analog circuits can lead to higher offset voltages
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and degraded power-supply rejection ratio [7]. The main reason of symmetric place-
ment (and routing, as well) is to match the layout-induced parasitics in the two
halves of a group of devices.

Placement symmetry can also be used to reduce the circuit sensitivity to thermal
gradients. Some VLSI devices (the bipolar devices, in particular) exhibit a strong
sensitivity to ambient temperature. If two such devices are placed randomly rela-
tive to the isothermal lines, a temperature-difference mismatch may result. Failure
to adequately balance thermal couplings in a differential circuit can even intro-
duce unwanted oscillations [24]. To combat potentially induced mismatches, the
thermally sensitive device couples should be placed symmetrically relative to the
thermally radiating devices. Since the symmetrically placed sensitive components
are equidistant from the radiating component(s), they see roughly identical ambient
temperatures and no temperature-induced mismatch results.

It is more often the case that a circuit has a mix of symmetric and asymmet-
ric components. For example, the two-stage Miller compensated opamp shown in
Fig. 1.1 has a symmetric differential input stage, but it has an asymmetric single-
ended output stage.

The typical forms of symmetry which should be handled by an analog placement
tool are [7]:

1. Mirror symmetry: Consists in placing a symmetry group of cells about a
common axis such that the cells in every pair have identical geometry and
mirror-symmetric orientation. It is the most standard form of layout sym-
metry. There are two major advantages of this placement arrangement. First,
because sibling devices are forced to adopt identical geometry, device-related
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parasitics are balanced and device matching characteristics are improved.
Second, mirror-symmetric placement aligns device terminals in a way that
makes mirror-symmetric routing' possible.

2. Perfect symmetry: Differs from the previous by the identical (rather than
mirror-symmetric) orientations of the paired devices. This type of symmetry
is sometimes required in order to meet very stringent matching requirements.
When there is a possibility of anisotropic fabrication disturbances (e.g., oblique-
angle ion implantation) [7], the best matching is achieved when paired devices
are placed in identical orientations. Perfectly symmetric placement presents a
difficult layout problem: because the device terminals are no longer mirror-
symmetric, one cannot use mirror-symmetric routing to connect sibling devices
with parasitic matched wires. Instead, one has to route parasitic matched wires,
which are not geometrically symmetric. This can be particularly difficult when
there is a mix of symmetric and asymmetric circuitry.

3. Self-symmetry: Characteristic for devices presenting a geometrical symmetry
and sharing the same axis with other pairs of symmetric devices. Self-symmetric
devices have two uses. First, it is often desirable to place asymmetric devices
(e.g., devices in bias networks) in the middle of a mirror-symmetric layout. This
greatly simplifies wiring in the case that the device is highly connected to de-
vices on both sides of the symmetric signal path. Such an arrangement presents
mirror-symmetric terminals to the left and right halves of the circuit, so that they
can participate in mirror-symmetric routing. Second, self-symmetry is useful in
creating thermally symmetric layouts.

A subset of cells is called a symmetry group if all cells are exhibiting a form of
symmetry and, in addition, they all share a common symmetry axis. The symmetry
constraints for a pair of devices (B;, B;) in the kth symmetry group have the form:
(xi +w)+x; =2 XsymAxis, and y; = y;, where (x;, y;) are the left-bottom
coordinates of device B;, w; denotes its width, and Xsymaxis, s the abscissa of the
symmetry axis of the kth group (assuming the axis is vertical). Similarly, a self-
symmetric device B; must satisfy the constraint: x; + w; /2 = Xgymaxis; - In this
chapter, the symmetry axes will be considered vertical since this is the typical way
most layouts are designed.

1.1.5 The Absolute Representation of the Layout

A combinatorial optimization algorithm for solving placement problems can equally
operate with two distinct spatial representations of the placement configurations.
The earliest is the so-called absolute (or flat) representation introduced by Jepsen
and Gellat [25] in a macro-cell placement tool. In this representation, the cells

! Mirror-symmetric routing assumes that paired nets be implemented using geometrically mirror
identical wire segments.
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are specified in terms of absolute coordinates on a plane. The moves are simple
translations (coordinate shifts) or changes in cell orientation — rotations and mirror
operations. The cells are allowed to overlap even in illegal ways,” as no restriction is
made referring to the relative position of a cell with respect to another cell. A penalty
cost term — typically, quadratic — is associated with the total illegal overlap, and this
penalty must be driven to zero during the minimization of the cost function. The flat
representation is well-suited to handle device matching and symmetry constraints
— typical to analog layout — since they are easy to model and maintain during suc-
cessive moves; it also allows to explore the beneficial device overlaps. For these
reasons and also its inherent simplicity, the absolute representation was the choice
for KOAN/ANAGRAM 11 [12], PUPPY-A [13], and LAYLA [14] systems.

However, this representation has also shortcomings explained, for instance, in
[17]. First, the optimization process is slow: since the exploration space is very
large, many moves can yield a small decrease of the cost function. Second, the total
illegal overlap (representing only one term of the cost function) is not necessarily
equal to zero in the final placement solution: a post-processing step aiming to elimi-
nate the gaps and overlaps must be performed, affecting even more the computation
time and degrading the solution optimality. Moreover, the weight of the overlap term
in the cost function must be carefully chosen: if it is too large, the search ability of
the optimizer for a good placement (in terms of area, total net length, etc.) may be
impeded; if it is too small, the cells may have the tendency to collapse since the
importance of illegal overlaps is small. To combat this effect, an earlier version of
the TimberWolf system [17] used a sophisticated negative control scheme to deter-
mine the optimum values of the cost term weights.

The flat representation approach trades off a larger number of moves for easier
and quicker to build layout configurations — which may not be always physically
realizable though. On the other hand, a second class of placement representations —
named fopological — allows to trade off more complex (but physically correct!) lay-
out constructions per each move of the optimization engine against a smaller number
of moves.

1.1.6 Topological Representations of the Layout

Different from the flat representation where the cell positions are specified in terms
of their coordinates, in a topological representation a placement configuration is
encoded: the cell positions are relatively specified, based on topological relations
between cells. The first popular representations were employing the so-called slic-
ing model, introduced by Otten [26]. In this model, the cells are organized in a set of
slices, which recursively bisect the layout horizontally and vertically. The direction

2 In analog layout, cells can overlap not only in legal but also beneficial ways (“device merging”
or “geometry sharing” [12]).
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and nesting of the slices is recorded in a slicing tree or, equivalently, in a normalized
Polish expression [27]. The annealing algorithm (as a typical optimization engine)
does not move explicitly the cells — as in the flat representation: the moves are modi-
fications of the placement codes (for instance, small reorganizations of a slicing tree,
or small changes in a Polish expression that preserve the properties of the encoding).
These moves alter indirectly the relative positions of the cells. In topological repre-
sentations, cells cannot overlap illegally, which may lead to an improved efficiency
in the placement optimization.

However, the slicing model limits the set of reachable layout topologies. This can
degrade layout density, especially when cells are very different in size, which is of-
ten the case in analog layout. Furthermore, symmetry and matching constraints are
difficult to maintain between successive moves: for instance, a slicing-style place-
ment tool had to implement symmetry constraints in the cost function through the
use of virtual symmetry axes [28] — a less efficient solution. Although the ILAC
system [18] employed slicing trees, it is widely acknowledged today that this model
is not a good choice for high-performance analog layouts.

After 1995, several novel topological representations, not restricted to slicing
floorplan topologies, have been proposed. A remarkably elegant encoding system
was proposed by Murata et al., who suggested to encode the “left-right” and “above-
below” topological relations using two sequences of cell permutations (see Sect. 1.3
for more details), named a sequence-pair [29]. A O(n?) algorithm (n being the num-
ber of cells) based on building a pair of horizontal and vertical constraint graphs was
used to construct a compact placement from its encoding, operation called sequence-
pair evaluation. More recently, a different approach — based on the computation of
the longest common subsequence in a pair of weighted sequences — was proposed
by Tang et al. [30, 31]. The latest evaluation algorithm achieves a O(n loglogn)
complexity [31] using an efficient model of priority queue [32]. Nakatake et al. de-
vised a meta-grid structure without physical dimensions (called bounded-sliceline
grid or BSG) to define the topological relations between blocks. The construction of
the placement configuration from a BSG is of quadratic complexity [33].

Guo et al. proposed the ordered tree (O-tree) data structure to reduce the negative
effect of code redundancies from the two previous representations [34]. Indepen-
dently, Chang et al. [35] and Balasa [36] suggested similar representations based
on binary trees. These encodings are based on the natural correspondence between
forests of rooted trees and binary trees [37]. Due to the one-to-one transformation
mentioned above, all these tree representations can be regarded as equivalent.

The corner block list (CBL) [38] is a representation that is used to encode mosaic
floorplans (that is, floorplans with zero dead-space). The transitive closure graph
(TCG), introduced by Lin and Chang [39], is based on two directed graphs having a
node for each cell; their edges correspond to the horizontal and, respectively, vertical
topological relations between cells. Different from the tree representations [34,35],
the sequence-pair, the bounded-sliceline grid, the corner block list, and the transitive
closure graphs define the topological relations between cells independent of their
dimensions.
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1.1.7 Selecting a Topological Representation
Jor Analog Placement

The nonslicing topological representations were initially used in block placement
and floorplanning tools [40—42]. Could these representations be successfully used in
placement tools for analog layout? Which of the topological representations would
be better-suited? At a first glance, the main selection criteria should be the same as
in block placement: (1) a representation with a low (or even zero) code redundancy
to have an exploration space as reduced in size as possible, and (2) the existence of
an efficient code evaluation algorithm (preferably of linear complexity) building as
fast as possible the placement configuration from the current code in each inner-loop
iteration of the simulated annealing.

Without denying the importance of the above criteria, other features specific to
analog layout must be taken into account as well. As already explained in Sect. 1.1.4,
many analog designs contain an arbitrary number of symmetry groups of devices
(that is, groups of devices having distinct symmetry axes), each group containing an
arbitrary number of pairs of symmetric devices with the same geometry, as well as
self-symmetric devices — presenting a geometrical symmetry and sharing the same
axis with its group. Due to this characteristic, most of the codes of any topological
representation would be infeasible in symmetry point of view.

In preliminary experiments using sequence-pairs for solving analog placement
problems with symmetry constraints [43], a simple exploration scheme was initially
attempted: while searching the set of sequence-pairs in a simulated annealing
framework, the codes that proved to be infeasible in symmetry point of view during
the placement construction were disregarded. Unfortunately, this simple exploration
scheme proved to be extremely ineffective, the quality of the placement solutions
being very poor. The main reason was revealed to be the huge number of infea-
sible codes, which were overwhelming in comparison to the “symmetric-feasible”
ones.

These preliminary tests showed that symmetry is difficult to model within a topo-
logical representation: how to recognize the codes complying with the given set of
symmetry constraints without building the corresponding layout? Moreover, assum-
ing the current code is symmetric-feasible, how to prevent the annealer to move from
it to an infeasible code? Maintaining the “symmetric-feasibility” of the codes dur-
ing the annealer’s moves is, in general, a nontrivial task, specific to the topological
representation employed: how to restrict the exploration only to the subspace of
symmetric-feasible codes?

A topological representation would prove to be a good candidate for solving
analog placement problems with symmetry constraints if it possessed a property
characterizing codes able to generate placements such that symmetry constraints be
satisfied. In the absence of such a property, the fact that a certain representation has
an evaluation algorithm of linear complexity is of a lesser importance since most of
the codes would be symmetric-infeasible anyway. Such a property would allow to
efficiently restrict the exploration to a subspace of “symmetric-feasible” codes.
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Several topological exploration techniques for analog placement investigated
how to handle symmetry constraints more efficiently. Approaches using sequence-
pairs [21,43], trees® [45], and transitive closure graphs [46] have been developed.*
Notice that the complexity of the code evaluation can be affected when symme-
try constraints have to be taken into account. Dealing with an arbitrary number of
symmetry groups of devices during the code evaluation necessitates nontrivial al-
gorithmic modifications, paying also a significant computational toll. For instance,
the complexity of the evaluation algorithm in [44] is quadratic, while the evaluation
algorithm for O-trees in the absence of symmetry constraints is linear [34].

This chapter will present some data structures used in the evaluation of topo-
logical representation, followed by a few topological techniques for device-level
placement with symmetry constraints.

1.2 Data Structures for Rectilinear Border Contours

This section will give an overview of several data structures that may be used in
the evaluation of a given topological representation of the layout. The algorithms
in this section are independent of the choice of the topological representation. To
emphasize this independence, we shall take into account the horizontal/vertical
topological constraints between the cells rather than a certain abstract representation
(since the topological constraints are derived from the layout encoding in specific
ways that characterize the abstract representation).

1.2.1 Segment Trees

The segment tree, originally introduced by Bentley [48], is a data structure mainly
employed in computational geometry, designed to handle operations with inter-
vals whose extremes belong to a given set of coordinates. The coordinates of the
intervals can be normalized by replacing each of them by its rank in their minimum-
to-maximum order. Therefore, without any loss of generality, we may consider these
coordinates as integers in the range [0, n].

The (complete) segment tree is, basically, a rooted binary tree, where each node
v has attached an interval v.I = [c, d] with integer bounds. If d — ¢ > 1, then
node v has a left and a right descendant — denoted below as v.left and v.right — hav-

ing associated the intervals [c, Lchd J] and, respectively, [chd |,.d ] The intervals

attached to the nodes are called standard, while those pertaining to the leaves and
having the length equal to 1 are named elementary.

3 Actually, the algorithm in [44] exploits properties of the ordered tree codes which are infeasible
in symmetry point of view, to efficiently detect and hence discard them.

4 Very recently, a CAD system for analog layout, including a topological placement tool that uses
the corner block list representation [38], has been proposed [47].
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Fig. 1.2 (a) Complete segment tree for the root interval [0, 7], and the nodes visited during the
insertion of the interval [4, 6]; (b) typical tour in the segment tree during the insertion of an interval

A complete segment tree is shown in Fig. 1.2a. This tree is balanced, all the leaves
belonging to at most two contiguous levels. The depth of the complete segment tree
is [log, (r — )], where [/, r] is the interval attached to the root [49].

The segment tree 7'(/, r) is designed to store intervals whose extremes belong to
the set {{,/ + 1,...,r} in a dynamic fashion, that is supporting interval insertions
and deletions. The segmentation of an interval [a, b] is completely specified by the
operation that stores (inserts) [a, b] in the segment tree 7(/, r). To insert an inter-
val, one must visit the nodes in the segment tree along a tour having the following
general structure (see Fig. 1.2b): an (possibly empty) initial path P from the root to
a node called the fork — marked with a star in the figure, from which two (possibly
empty) paths Py and Pp issue. Either the interval being inserted is assigned entirely
to the fork (in which case Py, and Pg are both empty), or all the right sons of nodes
of Py, as well as all the left sons of nodes of P identify the fragmentation of [a, ]
into standard intervals. For instance, Fig. 1.2a shows the nodes visited during the
insertion of the interval [4, 6] in the segment tree 7'(0, 7).

The assignment of an interval to a node v of the segment tree could take differ-
ent forms, depending upon the requirements of the application. Frequently, all we
need to know is the cardinality of the set of intervals assigned to any given node v.
This can be managed by a single nonnegative integer data member v.cnt, initialized
to zero, denoting this cardinality. If this is the case, the assignment of the interval
[a, b] to the node v simply becomes v.cnt = v.cnt + 1. In other applications, there
is need to preserve the identity of the intervals assigned to a node v. Then we may
append to each node v a secondary data structure, for instance, a singly linked list,
whose records are the identifiers of the intervals. Removing an interval from the seg-
ment tree works in a symmetric way. Note that only deletions of previously inserted
intervals guarantee correctness.

The segment tree is a versatile data structure with numerous applications. It is
extremely used especially in the geometric searching algorithms and the geome-
try of rectangles [49]. For instance, if one wishes to know the number of intervals
containing a given point x, a simple binary search in the segment tree (that is, the
traversal of a path from the root to a leaf) readily solves the problem.
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In this section, we are going to use the segment tree data structure to com-
pute the device abscissae x; assuming the device ordinates y; are already known
[50], therefore the extremes of the intervals defining the left and right border con-
tours — the elements of the set S = (J;{yi, »i + h;} — are currently fixed. Also,
it is assumed that a topological sort of the horizontal constraint graph is available:
this order of visiting the nodes ensures that the blocks to the left are visited before
the blocks to the right and, therefore, the horizontal topological constraints would
be satisfied.

During the visit of the topologically sorted nodes, a segment tree data struc-
ture will be gradually built. The creation of the segment tree is done in a top-down
manner, starting with the root and expanding the tree till the nodes associated with
elementary intervals. In our application, each node v of the segment tree has attached
an interval v./ and a value v.x used for the computation of the cell abscissae Xx;.
After each iteration, the segment tree will represent the contour of the right border
of the (partial) placement configuration (see the illustrative example towards the end
of this section).

First, the y-coordinates of the devices are “normalized”: after sorting them
increasingly (and eliminating the duplicate values), the y-coordinates are replaced
by their indexes (ranks) in the ordered sequence. Note that the algorithm operates
with intervals [a;, b;] rather than [y;, y; + h;], where a;, b; are the indices of y;
and, respectively, y; +h; in S — the increasingly-sorted set of the interval endpoints.
In this way, the size of the segment tree will be kept minimal and, without loss of
generality, the y-coordinates can hence be considered integers in the range [0, 1]
(n being the number of devices). Note also that the indices a;, b; can be determined
while sorting the set S without affecting the complexity of the sorting operation.

Algorithm: Computation of the device abscissae (x;) using a segment tree

let x; = 0; //reset all the abscissae of the left-bottom corners of the devices
sort increasingly the set S =\J; {yi. yi +hi};
/I the duplicate elements of the set are eliminated during sorting
let m be the number of elements of set S;
SegmentTreeNode vy = CreateNode ([0,m —1],0);
// create the root vg of the segment tree
for each cell B; (visited in the order of the topological sort)
let a; be the index of y;, and
let b; be the index of y;+h; in set §;
UpdateSegmentTree (vo, [a;, b;));
UpdateRightContour (v, [a;, bi]);
end_for
W = max{v.x}, Vv e SegmentTree;
/I compute the width W of the placement

After the ordinate normalization, the segment tree is recursively built by the pro-
cedure UpdateSegmentTree (see below). The CreateNode procedure constructs and
inserts a new node v in the segment tree — the two parameters being the interval v./
and the value v.x. The roots of the left and right subtrees of v are denoted v.left and,
respectively, v.right; they are initially NULL. The procedure UpdateSegmentTree is
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inserting the normalized interval of [y;, y; + h;] — the spanning of block B; along
the y axis — into the segment tree, decomposing it into standard intervals. At the
same time, the abscissa x; of the left-bottom corner of block B; is computed by
taking the maximum over all the values v.x of the nodes with standard intervals.

procedure UpdateSegmentTree (v,[a;, bi])
if v.I C [ai,bi] then
if v.x > x; then x; = v.x;
else let v./ =[c.d] and mid = |24 ];
if v is currently a leaf of the segment tree then
v.left = CreateNode ([c,mid],0);
v.right = CreateNode ([mid,d],0);
if a; < mid then UpdateSegmentTree (v.left,|a;,bi]);
if mid < b; then UpdateSegmentTree (v.right,[a;,b;]);
end_procedure

The procedure UpdateSegmentTree visits the nodes in the segment tree along
a tour having the general structure shown in Fig. 1.2b. Subsequently, the procedure
UpdateRightContour sets the values of all the nodes corresponding to these standard
intervals to x; + w; — the abscissa of B;’s right border.

procedure UpdateRightContour (v, |a;, b;])
if v.I Cla;,b;] then v.x = x; +w;;
else let v./ =[c.d] and mid = <4 ];
if a; <mid then UpdateRightContour(v.left, [a;,b;i]);
if mid < b; then UpdateRightContour(v.right, [a;, b;]);
end_procedure

The computation of each cell abscissa, based on the decomposition of the nor-
malized interval [y;, y; + h;] into standard intervals, is followed by an update of
the values v.x of the visited nodes. To avoid performing any computation twice, the
decomposition into standard intervals can be done top-down, using two stacks to
store the visited nodes, one for the standard nodes — the “white” nodes in Fig. 1.2b,
the other for the nodes on the paths P, Py, and Pg — the “black” nodes in the same
figure. Then the update of the values v.x can be easily done bottom-up. Hence, the
implementation of the procedure UpdateRightContour can be performed more effi-
ciently than the recursive version given above for reason of clarity.

The decomposition of the root segment into standard intervals is done in O (log n)
time since the height of the segment tree is at most [log, (m — 1)] (the root interval
being [0,m — 1]), hence upper-bounded by [log, n]. This entails the same com-
plexity for the procedures UpdateSegmentTree and UpdateRightContour. Since the
sorting of the set S, together with the computation of the indices a; and b;, take
O(nlogn) time, the overall complexity of the algorithm computing the device ab-
scissae is thus O(n logn).

Example. Consider a layout with nine rectangular blocks having the widths
and heights indicated: A(140 x 30), B(40 x 20), C(50 x 50), D(20 x 60),
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E(20 x 60), F(20 x 30), G(50 x 60), H(20 x 10), and I(40 x 20). Assume the
cell ordinates are known or have been previously determined: [y4 yB...yr] =
[0 40 60 30 30 30 60 30 40]. Let us assume that the order of the nodes in the
topological sort of the horizontal constraint graph is alphabetical: A,B, ..., I. This
example illustrates the computation of the device abscissae using a segment tree.

All the cell abscissae are initially zero. After the sorting and elimination of du-
plicates, the set S = U:?{y, vi + hi} = {0,30,40,60,90,110, 120} hasm = 7
elements. Due to the normalization, the root node v of the segment tree has associ-
ated the interval [0, 6]. (By normalization, the depth of the segment tree is reduced
from [log, 1201 = 7 to [log, 6] = 3.) The interval [y4, y4 + h4] = [0, 30] of the
first node visited in the preorder traversal is normalized to [a, b] = [0, 1] (since the
indices of the elements 0 and 30 in S are 0 and, respectively, 1). As vo.I = [0, 6]
and mid = 3, two new nodes v; and v, are created having attached the intervals
[0, 3] and [3, 6]. UpdateSegmentTree(vy, [0, 1]) is then recursively called and two
new nodes v3 and v4 — having the intervals [0, 1] and [1, 3] — are created (see
Fig. 1.3a). The execution of UpdateSegmentTree(vy, [0, 1]) yields x4 = v3.x = 0
since v3.1 = [0, 1]. Afterward, UpdateRightContour will visit once again the same
nodes in the segment tree to update the values of the nodes. In this case, the only
node is v3 (which is actually the “fork,” the paths Py and Pg being empty): there-
fore, v3.x = x4 + wy = 140.

Figures 1.3a—i display the segment tree after the insertion of each normalized
y-spanning intervals [a;, b;] in the segment tree, the cells being successively placed
in the order given by the topological sort. The nodes corresponding to the standard
segments are represented as double circles, while the “fork” nodes are marked with
a star. The computation of the cell abscissae yields successively: [x4 xp...x7] =
[000 50709090 110 110], and the final value of the root vo.x = 150 is the current
width of the analog block. The placement corresponding to the last segment tree in
Fig. 1.4a is shown in Fig. 1.4b.

Although in this illustrative example the final segment tree is complete, that is,
all the leaves have attached elementary intervals, this is not always the case — which
is quite desirable for the practical running times. O

When this algorithm is embedded into a combinatorial optimization framework,
like simulated annealing, it is not efficient to create a new segment tree for every
inner-loop iteration of the annealer. Actually, the segment tree should be created
only once, at the beginning of the annealing process. A re-initialization of the seg-
ment tree at the beginning of each inner-loop iteration would suffice. The rationale
of this procedure is explained below.

The segment tree is used in our context for the computation of the abscissae of
n devices, the largest interval associated with the root being [0, n]. At each iteration
of the simulated annealing, the root interval will be of the form [0, k], where k < n.
Since all these intervals are included in [0, n], there is no need to build a new segment
tree for every evaluation of the topological representation (although the root interval
[0, k] is typically changing after each iteration of the annealer). In fact, it is suffi-
cient to build only once a segment tree having the root interval [0, n]. Indeed, since
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[0,6] 5 110

4 90

3 60
2 40
30
A
(1L.2]  [2,3] [45]  [56] 0 0 3
x=130 x=150 x=140 x=140 20 4050 70 90 110 140

Cell I: [2, 3]

Fig. 1.4 Illustrative example: (a) the last segment tree (after the insertion of the normalized y-
interval of cell 7, that is [2, 3]), and (b) the final device placement

at each iteration the root interval [0, k] C [0, n], the current segment tree can actu-
ally be embedded in the “larger” one having the root interval [0, n], updating only
the intervals v./ of the nodes. Flags attached to the nodes (denoted v.leaf) are used
to indicate the leaf nodes at any moment. This remark reduces significantly the prac-
tical computational effort since the creation and deletion of the segment tree nodes
actually happen only once — at the beginning and, respectively, at the end of the an-
nealing process, rather than in each inner-loop iteration. Failure to take this remark
into account increases the computation time of the evaluation algorithm by 15-20%.

1.2.2 Red-Black Interval Trees

The interval tree is a binary search tree, with each node having associated a closed
interval whose interior is disjoint from the intervals of the other nodes, but whose
union is a closed interval as well. In our case, the union of the node intervals will
always be [0, H], where H is the chip height. In addition, the intervals of the nodes
in any left subtree are to the left (on the real line) of the node interval, while the in-
tervals in the right subtree are to the right of the node interval. (Thus, an in order tree
traversal of the data structure lists the intervals in sorted order by the low endpoints.)

Moreover, the interval tree is organized as a red—black tree [51] — a binary search
tree with an extra bit of storage per node: its color, which can be either red or black.
(This color convention was introduced by Guibas and Sedgewick [52] who intro-
duced red-black trees.) The reason of this organization is to ensure an amortized
time bound [51] of O(logn) per each update of the data structure. In addition, if
a node is red, its children must be black (the NULL pointers or references, when
there are no children, are also considered black leaves), and every path from a node
to a descendant leaf contains the same number of black nodes. An example of a
red—black interval tree is displayed in Fig. 1.5. By constraining, the way nodes can
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[30,40]

Fig. 1.5 A red-black interval tree (the red nodes are shaded, the black nodes are darkened)

be colored on any path from the root to a leaf, red—black trees ensure that no such
path is more than twice as long as any other [51], so the tree is approximately
balanced.

The general scheme of the algorithm computing the device abscissae is given
below [53]. The assumptions are similar to the ones in Sect. 1.2.1: the device ordi-
nates y; are already known and a topological sort of the horizontal constraint graph
is available. First, the root of the red—black interval tree is created, the node hav-
ing attached the interval [0, H], where H is the height of the layout. Afterward, the
devices are visited in the order of the topological sort, such that the blocks to the
left are visited before the ones to the right, such that the horizontal positioning con-
straints be satisfied. The red—black interval tree is iteratively updated as a result of
the insertion of the new y-spanning interval [y;, y; + h;] of device B; in the tree.

Algorithm: Computation of the device abscissae (x;) using a red—black interval tree

let x; = 0; //resetall the abscissae of the left-bottom corners of the devices
let H =max;{y; + h;} be the total height of the chip;
InsertNode ([0, H], 0, black); // create the root of the red-black tree
for each cell B; (visited in the order of the topological sort)
UpdateRedBlackTree (root,[y;i,yi + hi]);

/I modify the red—black tree to
end_for

// model the new right border of the analog block
W = max{v.x}, Vv e RedBlackTree;

/I compute the width W of the placement

The procedures InsertNode and DeleteNode insert/delete a vertex v from the
red-black interval tree, preserving the properties of this tree, which were stated at
the beginning of this section. The insertion and deletion techniques take O(logn)
time each and are fully discussed in [51]. In addition, the InsertNode procedure calls
the constructor of a “red—black” node v having as parameters an interval denoted v./
(its low and high extremes being denoted min{v./} and max{v./ }), an abscissa v.x
for the computation of the x; values, and the node color (red or black). The values
of v.x represent abscissae of vertical segments on the right border of the chip.
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Fig. 1.6 The interval trichotomy for the two — possibly overlapping — closed intervals v./
and [a, b]

The procedure UpdateRedBlackTree follows the cases of the interval trichotomy
of the two intervals v./ and [a, b], that is, the three cases:

(a) max[a,b] < min{v.l};

(b) max{v./} < minla, b];

(c) the interiors of the closed intervals v.I and [a, b] overlap; in this last case, there
are four situations shown in Fig. 1.6.

procedure UpdateRedBlackTree (v,[a,b]) I/l [a,b] = [yi,yi + hi]
if b < min{v./} then UpdateRedBlackTree(v.left,|a,b]); return;
// case (a)
if max{v./} < a then UpdateRedBlackTree(v.right,[a,b]); return;
// case (b)
if v.x > x; then x; =v.x;
/I the interiors of [a, b] and v.I overlap: cases (c1-c4)
if a <min{v./} && b < max{v.I} then //case (cl)
v.l = [b,max{v.]}]; UpdateRedBlackTree (v.left,|a,b]); return;
if min{v./} <a && max{v.I]} <b then // case (c2)
v.I = [min{v.l},a]; UpdateRedBlackTree (v.right,[a,b]); return;
if min{v./} <a && b <max{v.I} then //case (c3)
if (I; = [min{v.l},a]) # @ then InsertNode(Iy,v.x,red);
if (I, = [b,max{v.l}]) # 0 then InsertNode(l,,v.x,red);
v.I=[a,b],- VX =Xx; +w;;
MergeAdjacentlIntervalsWithSameAbscissae(v); return;
if a <min{v./} && max{v.]} <b then // case (c4)
if (I; = [a,min{v.I}]) # @ then Deletelnterval(v.left, I) ;
if (I, = [max{v.l},b]) # @ then Deletelnterval(v.right, I5) ;
v =[a,b]; vx=xi+w;
MergeAdjacentlIntervalsWithSameAbscissae(v) ;
end_procedure
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In the cases (a) and (b), the procedure UpdateRedBlackTree is recursively called
for the left and, respectively, right subtree. The cases (c1) and (c2) are similarly
handled; the only difference is that the interval v./ is shortened by eliminating the
overlap with [a, b] since the intervals in the tree must be disjoint. The number of
nodes in the interval tree can increase only in the situation (c3) due to the fragmen-
tation of the interval v./ in at most three segments. On the other hand, the number of
nodes in the interval tree can decrease only in the case (c4), when all the nodes (but
one) having intervals completely overlapped by [, b] will be recursively deleted by
the procedure Deletelnterval, shown below.

The procedure MergeAdjacentlntervalsWithSameAbscissae identifies the nodes
v1, v2 having the intervals adjacent to v.I. If v and v; and/or v, have the same ab-
scissae, the interval of the ancestor is enlarged and the descendent node is removed.
For instance, if v is the root in Fig. 1.5 (v.I = [30, 40]), v1 is the node whose interval
is [20, 30] (i.e., left of [30, 40]) and v, is the node whose interval is [40, 50] (i.e.,
right of [30, 40]). If, e.g., vi.x = v.x, then the root would get its interval modified
to [20,40], while v; would be removed, being no longer necessary (since the two
segments of the contour would be collinear). Finding the successor and predecessor
nodes in a binary search tree is easy [51]. Note that a restoration after deletion of
the red-black tree is necessary in this situation; the worst-case complexity of this
procedure is O(logn) [51].

The procedure Deletelnterval eliminates (using DeleteNode) the nodes with in-
tervals entirely overlapped by [a, b]. It is basically working according to the interval
trichotomy (see Fig. 1.6) as well.

procedure Deletelnterval (v, |a,b])
if b < min{v.l} then Deletelnterval (v.left,[a,b]); return; //case (a)
if max{v./} < athen Deletelnterval (v.right,[a,b]); return; //case(b)
if v.x > x; then x; = v.x;
if a <min{v.]} && b < max{v.I} then //case (cl)
if (I; = [a,min{v.I}]) # @ then Deletelnterval(v.left, I) ;
v.l = [b,max{v.]}]; return;
if min{v./} <a && max{v.]} <b then //case (c2)
if (I, = [max{v.l},b]) # O then Deletelnterval(v.right, I,) ;
v.I = [min{v.l},a];
else // case (c4):if v.I C [a,b] (case c3 cannot appear)
if (I; = [a, min{v.I}]) # @ then Deletelnterval(v.left, I) ;
if (I, = [max{v.l},b]) # O then Deletelnterval(v.right, I,) ;
DeleteNode(v) ;
end_procedure

The red—-black tree can have at most n nodes since there are at most # segments on
the border contours determined by the y-spanning intervals [y;, y; + h;], hence the
red-black tree has a maximum height of [2log, n] [S1]. Since the node insertions
and deletions take O(logn), we may be tempted to consider O (log n) the worst-case
time bound per iteration. But this is not always true: when new nodes are inserted in
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the red—black interval tree (in case (c3)), it can gain at most two nodes per iteration,
whereas when the tree decreases in size (in case (c4)), up to O(n) nodes can be
deleted.’

However, using the aggregate method of amortized analysis [51], it can be shown
that the amortized time bound is O (log n) per iteration. Intuitively, the reason is that
each node can be deleted at most once for each time it is created. In an amortized
analysis, the time required to perform a sequence of operations is averaged over
all the operations performed. Amortized bounds are weaker though than the corre-
sponding worst-case bounds because there is no guarantee for any single operation.
If an average is taken over a sequence of operations, the average cost of an operation
may be small, even though a single operation may be expensive.

Using the aggregate method of amortized analysis [51], we consider an en-
tire sequence of m UpdateRedBlackTree operations on the red—black interval tree
having initially only one node. Although the case (c4) can be expensive, the se-
quence of m operations can cost at most O (m log n), since each node can be deleted
at most once for each time it is created. The amortized cost of an operation is
O(mlogn)/m = O(logn). Since in the algorithm computing the device abscissae
there are n iterations, the overall time complexity is O(n logn). The space require-
ment of the algorithm is O(n), since the red-black interval tree can have at most
2n — 1 nodes (the number of vertical segments of the right border contour being at
most 2n — 1).

Example. Consider a layout with ten rectangular blocks, having the widths and
heights indicated between parentheses: A(14 x 3), B(3 x 1), C(4 x 2), D(5 x 2),
E@4 x 3), F2 x 6), G(2 x 6), H2 x 3), I(5 x 6), and J(4 x 2). Assume the
cell ordinates are known or have been previously determined: [y4 yp...ys] =
[034683336 4] Let us assume that the order of the nodes in the topo-
logical sort of the horizontal constraint graph is alphabetical: A,B, ... ,J. This
example illustrates the computation of the device abscissae using a red—black
interval tree.

All the block abscissae are initially zero. The first root node vg of the red—black
interval tree (the first tree in Fig. 1.7) has associated the interval [0, H] = [0, 12]
since the height of the chip is H = max{y; + h;} = 12. The y-spanning interval
[y4,y4 + ha] = [0,3] of the first node visited in the topological sort of the hori-
zontal constraint graph is the argument of UpdateRedBlackTree in the first iteration.
Since in the interval trichotomy the case is as in Fig. 1.6¢3, and I, = [3,12] # 0,
the root will get a new right child having attached the interval I,. The abscissa of
block A is x4 = 0. The root interval is modified to vo./ = [0, 3] and the abscissa
of the root becomes vo.x = x4 + wyq = 14 (the second tree in Fig. 1.7).

The processing of block B will insert a new node as a red right child in the tree
interval (case (b), then case (c3) — Fig. 1.6 — in the recursive call). Since the red node

3 Such a situation could occur if the red-black tree had O(n) nodes and in the next iteration the
block had the height of the whole chip; the red-black tree would be reduced to a single node with
v.I = [0, H].
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x=0

Fig. 1.8 The detailed modification of the red-black interval tree for [yp, yp + hp] = [6, 8]

x=14

J: [4,6] 0 2 4 6 8 10 12 14

Fig. 1.9 Illustrative example: (a) the last red-black interval tree (after the insertion of the y-
interval of cell J), and (b) the final device placement

[3, 4] has a red child [4, 12] (red-black property violation!), a left rotation as well as
a modification of the node coloring are performed to restore the red—black property,
the node having the interval [3, 4] becoming the root (the third tree in Fig. 1.7).
The operations implied by the processing of block D are displayed in Fig. 1.8: first,
a new node in the interval tree is created, followed by a rotation and a change of
colors as described in [51].

The successive modifications of the red—black interval tree are displayed in
Fig. 1.7. After each iteration, the inorder walk of the red—black interval tree de-
scribes exactly the contour of the right border of the chip. The computation of the
abscissae of the blocks yields: [x4 xp...xy] =[0000057 99 11]. Note that
in the “block F”-iteration the case is as in Fig. 1.6¢c4, since [yr, yr + hr] = [3, 9]
covers the intervals [3, 4], [4, 6], and [6, 8] in the red-black tree. The interval of
the first node is modified and the other two corresponding nodes are removed by the
procedure Deletelnterval. The last tree is displayed in Fig. 1.9a; it corresponds to
the placement in Fig. 1.9b. The width of the layoutis W = max{v.x} = 15. O

The evaluation algorithm could also use fully-balanced (AVL) binary search trees
[54] instead of red—black trees to achieve the same time complexity. However, in
AVL trees balance is maintained by as many as &(logn) rotations (for the
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asymptotic notations, see [51] Chap.2) after a node deletion,® whereas at most
two rotations are necessary to maintain the red-black tree after an insertion, and at
most three rotations after a deletion [51]. Red-black trees are only approximately
balanced, but they achieve the same complexity being more efficient in terms of
practical computation effort.

1.2.3 Deterministic Skip Lists

Historically, the probabilistic skip list (PSL) was introduced first by Pugh [55] as
an alternative to balanced search trees [51]. The main idea in the PSL is that each
of its keys (i.e., the information contained in the data structure) is stored in one or
more sorted linked lists. All keys are stored in sorted order in the linked list denoted
as level 1, and each key in the linked list at level k(k = 1,2,...) is included with
probability p(0 < p < 1) in the linked list at level k + 1. A header contains the
references to the first key in each linked list (see the skip list in Fig. 1.10). The height
of the data structure, that is, the number of linked lists, is also stored.

A search for a key begins at the header of the highest numbered linked list. This
linked list is scanned until it is observed that its next key is greater than or equal to
the one sought, or the reference is NULL. At that point, the search continues one
level below until it terminates at level 1. By convention, the equality test is done
only at level 1 as the last comparison; this avoids two tests (or a three-way branch)
at each step.

Insertions and deletions are quite straightforward [55]. A new key is inserted
when a search for it ends at level 1. As it is put in the linked list k(k = 1,2,...),
it is inserted with probability p when its search terminates at level k + 1. This
continues until, with probability 1-p, the choice is not to insert. The counter for the
height of the data structure is increased, if necessary.

Deletions are completely analogous to insertions. A key to be deleted is removed
from the linked lists in which it is found. The height of the data structure is up-
dated by scanning the header’s pointers and decreasing the height until a non-NULL
pointer (or reference) is found.

PSLs maintain an average logarithmic search and update cost, even after a long
sequence of updates. This is in sharp contrast with binary search trees, where it was
shown that usual update algorithms lead to degeneration in behavior [56].

[yl

Header

I

20
: e [F—le[F— [5 » MIERENE

Fig. 1.10 A skip list having the gaps of sizes 1, 2, and 3

© The deletion of the leftmost node in a Fibonacci tree [54] is such an example. Rebalancing after
insertion never needs more than a single or a double rotation though.
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It can be shown that the PSL exhibits an average logarithmic behavior. For in-
stance, consider the search cost for a hypothetical very large key denoted 4oo.
Clearly, all the n keys are at level 1, about pn keys will make it to level 2, about
p?n keys will make it to level 3, and so on. Therefore, the expected height of the
PSL is approximately log L. Since, among all keys that made it to a certain level,

about every %th key will make it to the next higher level, one should expect to make
;7 key comparisons per level. Therefore, one should expect ;7 log1 n in total when
D

searching for 4-co.

Despite the fact that on the average the PSL performs reasonably well (® (logn)
time for a search or an update [55]), in the worst case its ©@(nlogn) space and
®(n) time complexity are considered rather high. In addition, the good average
case performance of the PSL, although independent of the input, does depend on
the random number generator behaving “as expected.” Should this not be the case at
a particular instance (if, for instance, the random number generator creates elements
(nodes) of equal heights’), the PSL may degenerate into a structure worse than a
linear linked list. On the other hand, a class of deterministic skip list (DSL) [57]
achieves logarithmic worst-case costs.

Assuming that a skip list of n keys has a Oth (Header) and a (n + 1)st node
(Tail) of height equal to the height of the skip list, two elements are linked when
there exists at least one pointer going from one to the other. Given two linked
elements, one of the height exactly A(h > 1) and another of height / or higher,
their gap size is the number of nodes of height & — 1 that exist between them. For
instance, in the skip list of Fig. 1.10 the gap size between 20 and 40 is 3, while the
gap between —oco and +oo (Header and Tail)is 1. A deterministic skip list is a
skip list having the gap sizes in a given range.

It can be proven [58] that there is a one-to-one mapping between the set of
B-trees of order m [54], m > 3, and the set of DSLs with gaps of sizes [%] -1,
[%], ... ,m —2,or m — 1. Consequently, this class of DSLs achieves logarith-
mic worst-case complexities for search and update (insert/remove key) [57]. When
m = 2k + 2, this subclass of DSLs having gap sizes between k and 2k + 1, called
k — (2k + 1) DSLs has an additional desirable property: the insertion and deletion
can be implemented using a top-down strategy in a relatively easy way. The simplest
DSL of this subclass (k = 1), the so-called 1-3 (or 1-2-3) DSL having only gaps of
size 1, 2, or 3 (like the one in Fig. 1.10), may be the main data structure used for the
computation of the layout contour in some evaluation algorithm.

1.2.3.1 Insertion and Deletion of a Key in a 1-3 DSL

Adopting a top-down approach, we choose to perform an insertion in a 1-3 DSL by
splitting any gap of size 3 on our way to the bottom level into two gaps of size 1. We
ensure in this way that the data structure retains the gap invariant with or without

7 The height of an element is the number of linked lists to which it belongs. The height of a skip
list is the maximum height of its list nodes.
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Fig. 1.11 (a) A 1-3 skip list. (b) The skip list after the top-down insertion of the key 10. (c) The
skip list after the top-down deletion of the key 30

the inserted key. To be more precise, the search starts at the header, one level higher
than the height of the skip list. If the gap we are going to drop in has the size 1
or 2, then we simply drop. If the gap is of size 3, first we raise the middle element
in the gap, creating thus two gaps of size 1 each, and only then we drop. When the
bottom level is reached, we simply insert a new element (node) of height 1. Since
this algorithm allowed only gaps of sizes 1 and 2 before the proper insertion, the
newly inserted element does not modify the gap invariant and, therefore, leaves a
valid 1-3 DSL.

As an example, consider the case of inserting 10 in the skip list of Fig. 1.11a. We
start at level 3 of the header, we look at level 2 where 25 is raised, then we drop at
level 2. We move to level 2 of node 8, we look at level 1 and we raise the node 16.
Then we drop to level 1 of 8, and finally we insert 10 as a new node of height 1. The
resulting skip list is shown in Fig. 1.11b.

To delete a key from a 1-3 DSL, we work in a top-down manner as well. The
search preceding the actual key removal should have the side effect to leave each
gap legal, but above the minimum size of 1 as we pass through it. This is handled
by either merging with a neighbor, or borrowing from a neighbor. More precisely,
the search is started at the header and at the level equal to the height of the skip
list. If the gap G that we are going to drop in is of size 2 or 3, then we simply
drop. If the gap G is of size 1, we proceed as follows. If G is not the last gap on
the current level, then if the following gap G’ is of size 1, the gaps G and G’ are
“merged” by lowering the element separating the two gaps. If the following gap
G’ is of size 2 or 3, then we “borrow” from it: the node separating G and G’ is
lowered, whereas the first element of G’ is raised. On the other hand, if G is the last
gap on the current level, then we “merge” with or borrow from its preceding gap.
We continue in this way until the bottom level 1 is reached. There, we remove the
key if its node has the height equal to 1. Otherwise, the node is swapped with its
predecessor, followed by the removal. Since this algorithm does not allow any gaps
to be of size 1, what we are left with after the removal of the element of height 1 is
a valid 1-3 DSL.

As an example, consider the deletion of the key 30 in the skip list of Fig. 1.11b.
We start at level 3 of the header, we move to level 3 of node 25. We look at level 2
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and, since the gap has size 1 and it is the last one on the current level, we look at the
preceding gap whose size is 2. Then we “borrow” from the preceding gap, lowering
the node 25 separating the two gaps, while raising node 16 — the nearest element
from 25 in the preceding gap. Then we drop at level 2 and we look at level 1; we
drop at level 1 of 25, and finally remove 30. The resulting skip list is shown in
Fig. 1.11c.

This top-down insertion and deletion approaches are easily generalizable to any
k — (2k + 1) skip list, fork = 1,2,.... When inserting a key in a 2-5, 3-7,4-9, ...
DSL, we split a gap of size 5, 7, 9, ... into two gaps of legal size 2, 3, 4, ... before
we drop down a level. When deleting a key from such a DSL, we merge/borrow if
we are going to drop in a gap of size 2, 3,4, ....

1.2.3.2 Implementation Aspects of 1-3 DSL’s

The 1-3 DSL achieves logarithmic worst-case search and update complexities if its
elements are implemented either as linked lists, or as arrays of exponential heights
(the so-called horizontal array implementation) [58]. Since the memory require-
ments for this placement algorithm do not impose severe constraints,® we adopted
the linked list implementation as it is credited with more clarity, elegance, and
simplicity.

The implementation is somewhat tricky. The nodes do not contain arrays of for-
ward links as it would seem natural: with such a strategy, promoting a height / node
to height 2 + 1, O(h) time is needed only to copy the & links, and the time bound
would result O(log® n) per insertion/deletion. Instead, favoring time versus space,
each Ds1Node in the implementation maintains a link down to descend a level, a
link right to the next node on the same level, and the key that is logically stored in
the next DSL element. The actual implementation of the DSL in Fig. 1.10 is shown
in Fig. 1.12. Notice that some keys appear more than once: if a node has height / in
the DSL, its key will appear in /1 places in the actual implementation. To make the
code faster and simpler (avoiding having special cases in the code), a dummy head
node, and two sentinel nodes bottom and tail are used to replace the NULL
links downward and, respectively, to the right.

An implementation (in C++ style) of the procedure inserting a key [58] is given
below. The data members of a Ds1Node are the key, and two pointers — one down-
ward and one to the right.

void DSL::insert (int KEY)
{ DslNode *p = head, *t, xpdr, *pdrr;
bottom->key = KEY;
while ( p!=bottom )
{ while ( p->key < KEY ) p = p->right;
if ( p->key > (pdrr=(pdr=p->down->right) ->right) ->key )

8 Analog circuits seldom contain more than 100 cells per hierarchical level [2].
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tail bottom

M - an arbitrary large number
tail tail bottom

NULL
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-
@
e

bottom

Fig. 1.12 Linked list implementation of the 1-3 DSL in Fig. 1.10. Note the presence of several
Ds1Node’s having the same key for each element (node) in the abstract representation of the DSL
in Fig. 1.10. The sentinel nodes tail and bottom are also shown

{ p->right = new DslNode (p->key,pdrr,p->right) ;
p->key = pdr-s>key; p->x = pdr->x;
j
else
if ( p->down == bottom ) return; //KEY already in the DSL
p = p->down;

if ( head->right != tail ) head = new DslNode (M, head, tail) ;
Vi

Adopting a top-down approach, the insert procedure ensures that the DSL retains
the gap invariant with or without the inserted key by splitting any gap of size 3 on
the way from the head to the bottom level into two gaps of size 1. To be more
precise, we start the search at the head, and if the gap we are going to drop in is
of size 1 or 2, we simply drop; if the gap is of size 3, first the middle element in
this gap is raised one level, creating thus two gaps of size 1 each, and then we drop.
When the bottom level is reached, a new element of height 1 is inserted, and the new
DSL remains valid (therefore, it is still a 1-3 DSL).

1.2.3.3 Algorithm Computing the Border Contour of the Layout

In this section, we are going to use a 1-3 DSL data structure to compute the device
abscissae x; assuming the device ordinates y; are already known. Similarly as in the
previous sections, it is assumed that a topological sort of the horizontal constraint
graph is available (derived from the topological representation encoding the layout).

The deterministic skip list is used here to register the fragmentation of the right
or left contour of the (partial) placement configuration. The keys of the DSL are the
y-coordinates where the contour of the right border of the analog block is broken.
Therefore, the maximum key is H — the height of the analog block (which is already
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known since the y-coordinates have been already computed) — and the minimum key
is zero. Each element (node) n in the DSL has attached the key n.key and a value n.x,
which is the abscissa of the border segment starting from the ordinate n.key upward.

The devices are visited in the order of the topological sort, such that the blocks to
the left are visited before the ones to the right, such that the horizontal positioning
constraints (induced by the topological representation) be satisfied. When the node
B; is visited, the DSL is updated storing the contour of the right border as a result
of the insertion of the new y-spanning interval [y;, y; + h;].

Algorithm: Computation of the device abscissae (x;) using a 1-3 DSL

let x; = 0; //reset all the abscissae of the left-bottom corners of the devices
DSL.insert (0) ; // the key O is inserted as a sentinel in the DSL
for each cell B; (visited in the order of the topological sort)

UpdateDSL ([yi,yi + hi]); // modify the DSL to model the right border
end_for /I of the analog block; x; are updated as well
W =max{n.x}, Vn e DSL; // computethe width W of the placement

The procedure UpdateDSL, shown below, modifies the DSL that stores the lat-
eral contour when a new device B; is added to the partial placement as shown
in Fig. 1.13a. To modify the contour of the right border due to the block B;, the
largest key (y-coordinate) < a (y; in Fig. 1.13a) is detected first. All the larger
keys inside the interval (a, b) (that is, y; 4+ to yx in Fig. 1.13a) must be removed
from the DSL and new keys a and b are inserted. (Special care is taken when a
and/or b coincide with y;, respectively, yx.) x; — the abscissa of the left-bottom
corner of B;, is the maximum of the x-coordinates attached to the DSL nodes hav-
ing the keys y;,y;+1,... , Yk. To keep minimal the number of nodes in the DSL,
the neighbors of the node having the key a are removed if they have attached the
same x-coordinates (since the segment AB in Fig. 1.13a would be collinear with the
neighbor segments of the contour).

a

old contour

new

b contour
el
' New block
: B,
Yiag - -
it --

Py = === A A

o ! X
o
1 0 2 4 6 8 10 12 14

Fig. 1.13 (a) Modification of the border contour in the procedure UpdateDSL ([y;, y; +
h;1) when a new block B; is processed. (b) Final device placement corresponding to the last 1-3
DSL in Fig. 1.14
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procedure UpdateDSL ([a,bl) //[a,b] = [yi,yi + hi]
let g be the DslNode in the DSL whose key
is the largest <a;
// that is, the node with the key y; as in Fig. 1.13a
x; = max{p.x}, V DslNodes p such that p.keyelqg.key,b)
if (b is not a key in the DSL)
{ DSL.insert (b);
// insert new key b in the DSL if this key does not exist
DslNode (b) .x = predecessor (DslNode (b)) .x;
/I ... and set the abscissa of its DsINode the same as its predecessor’s one
} /I (that is, the DsINode with the key y as in Fig. 1.13a)
if (g.key < a) DSL.insert(a);
// insert new key a in the DSL if it does not exist
for all the nodes p such that p.key€(a,b)
DSL.remove (p.key) ; /I remove the keys covered by (a,b):
end _for /l thatis, y ;41 to yg in Fig. 1.13a
DslNode(a) .x = Xx;j +w;;
/I to keep the DSL size minimal, the adjacent collinear contour segments
/I ... are merged by removing the keys with identical abscissae
if ( DslNode(a).x == DslNode(b).x ) DSL.remove (b);
if ( a>0 && predecessor (DslNode (a)) .x == DslNode (a) .x)
DSL.remove (a) ;
end_procedure

Example. Consider a layout with ten rectangular blocks: A(14 x 3), B(3 x 1),
C(4 x2),D(5 x 3), E4 x 3), F2 x 8), G(2 x 8), H2 x 3), I(5 x 5), and J(4 x
2) — where the widths and heights are indicated between parentheses. Assume the
cell ordinates are known or have been previously determined: [y4 yp...ys] =
[034693 336 4]. Let us assume that the order of the nodes in the topological sort
of the horizontal constraint graph is alphabetical.

The computation of the device abscissae is initiated by inserting the key O as a
sentinel into the empty DSL. In this way, the procedure finding the node whose key
is lesser than a certain positive value (see the pseudocode of UpdateDSL) will never
fail since all the keys y; > 0.

The first visited node in the binary tree is A; since the y-spanning interval of
device A is [y4,y4 + ha] = [0, 3], the keys 0 and 3 must be inserted in the DSL
provided they do not exist already, while removing the keys covered by the interval
[0, 3]. Only the key 3 needs to be inserted and no other key is deleted. The pro-
cedure UpdateDSL with the yields x4 = 0 and assigns to the node O the x-value
x4 +wy = 14 (see Fig. 1.14). The visit of the subsequent nodes B, C, D, and E
modifies the DSL in a similar way.

Since the y-spanning interval of the device F is [yr,yr + hr] = [3,11],
the keys 4, 6, and 9 — covered by this interval — are removed, and the key 11 is
inserted into the DSL (see the 7th DSL in Fig. 1.14). The abscissa x ¢ is the maxi-
mum of the x-values of the node 3 and of the removed nodes (4, 6, and 9), that is,
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Fig. 1.14 The 1-3 DSL during the computation of the device abscissae. Each list node has attached
the x-coordinate of a segment of the right contour starting at the y-coordinate equal to the key of
the node. The last skip list corresponds to the layout in Fig. 1.13b

xr = max{3,4,5,4} = 5. The x-value of the node 3 becomes xg +wp = 7, while
the x-value of the node 11 inherits the abscissa of node 9 (the last node removed),
that is, 4.

The last DSL in Fig. 1.14 corresponds to the placement in Fig. 1.13b. Note
that after each iteration, the DSL models the contour of the right border of the
partial placement, the keys being the y-coordinates where the contour changes
direction. O

The 1-3 DSL can have at most n + 1 elements as there are at most n segments
on the border contours determined by the y-spanning intervals [y;, y; + h;]. Since
the key insertions and deletions take @ (logn) [58], we may be tempted to consider
O(logn) the worst-case time bound per iteration. But this is not always true: when
the DSL grows, it can gain at most two new elements per iteration, but when it
decreases in size (see the visit of node F in Fig. 1.14), as many as O(n) keys can be
deleted.” Using the aggregate method of amortized analysis [51], it can be shown
that the amortized time bound is O (log n) per iteration. Intuitively, the reason is that
each key can be deleted at most once for each time it is inserted. In an amortized

° Such a situation could occur if the DSL had O(n) elements and in the next iteration the block had
the height of the whole chip; the DSL would be reduced to only 2 nodes having the keys 0 and H.
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analysis, the time required to perform a sequence of operations is averaged over
all the operations performed. Since there are n iterations — one for each device, the
overall time complexity is O (n logn).

The space requirement of the algorithm is O(n), since on each level k of the DSL
implementation (see Fig. 1.12a) there are at most L;,izlj Ds1Node’s, therefore,
at most 2n + 7 in total, taking also into account the nodes header, tail, and
bottom.

1.2.4 Johnson’s Priority Queue

The keys, integers in the set {1, ..., N}, in Johnson’s priority queue model [32] are
kept in N buckets. The nonempty buckets, together with bucket O (always present
and used as a header) are kept in the bucket list, a doubly-linked list sorted on the key
values. The buckets in the list correspond to the leaves of a binary tree T. The nodes
of T are indexed by defining a complete [51] host binary tree H = {1,...,2" + N},
where i = [log,(N + 1)]. Each node ¢ in H, different from the root, is a child of
the node |g/2].

Example. Figure 1.15 shows a priority queue for keys in the set {1,.. ., 6}, contain-
ing, in addition to bucket 0, only the keys 2 and 4. The list of buckets is shown below
the leaves of the tree T, drawn with bold solid lines. The host tree H is represented
with dashed lines. Because of reason of space, the figures in the rest of the chapter
will show only the bucket lists of the priority queue. O

Ve
Ve
Host tree H
for the set of keys {1, ..., 6}

i "] Bucket list

Fig. 1.15 Johnson’s priority queue [32]
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The driving idea is to conceive a complete binary tree with N + 1 leaves on
the lowest level, but dynamically to leave much of the tree incomplete. Whenever
a new bucket is inserted, its path would be constructed upward, until the new path
intersected the path of some nonempty bucket. Then, the path would be followed
downward toward leaves to find the nonempty bucket adjacent to which the new
bucket must be inserted into the list. Deletion would be a reversal of this process.

Since the height & of the host binary tree is O(log N), and a path in the tree
T of length k is traversed using a mechanism somewhat similar to the binary
search, visiting at most 2[log, k] nodes [32], the key insertions and deletions take
O(loglog N) time.

An algorithm computing the devices’ abscissae will look very similar to the one
described in Sect. 1.2.3, where the deterministic skip list is replaced by a priority
queue with its list of buckets. The advantage is that updating the priority queue
would have an amortized time bound of O(loglogn), yielding an overall time com-
plexity of O(n loglogn), hence better than using a DSL.

1.3 Symmetric-Feasible Sequence-Pairs

Dealing efficiently with symmetry constraints in the framework of topological rep-
resentations implies addressing two problems:

a. How to recognize encodings complying with the given symmetry constraints,
without building the corresponding layout, and

b. How to restrict the exploration of the solution space of the representation only to
“symmetric-feasible” (S-F) codes.

This section will address the questions above assuming sequence-pair [29] as
the topological representation. The basic idea of the sequence-pair encoding, briefly
described below for the sake of consistency, is to represent any rectangle packing
as an ordered pair of cell sequences (c, 8). Denoting by «;, the cell of index i
(occupying the position 7) in sequence «, and by oz;l the position of the cell A in
the sequence,'® the topological relations between two cells A and B are given by
the following rules:

If o' <az! and B! < B3' then cell A is to the left of cell B;
If o' <az' and B3' < B! then cell A4 is above cell B.

For instance, a sequence-pair encoding of the 7-cell placement configuration
in Fig. 1.16ais («,f) = (CDAFBGE, DCBGAFE). With the notations em-
ployed, we have, e.g., @y = C, B4 = G, and also, ozEl =1, ,BEI = 2, etc. As
051_:1 < alpha]_,_;1 and ,3;1 < ,31_,1 (4 < 5and 3 < 6), it follows that cell F is
positioned above cell B.

10 Since o and B are one-to-one mappings, the inverse functions & —! and B! are well defined.
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Fig. 1.16 (a) Placement configuration encoded by the sequence-pair (CDAFBGE,
DCBGAFE). (b) Placement with symmetry group {(C,D), (B,G), A, F} corresponding to
the S-F sequence-pair (EBAFCDG, EBCDFAG)
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Now, let («, B) be the sequence-pair of a placement configuration containing a
number of symmetry groups (each group composed of pairs of symmetric devices
and self-symmetric devices relative to a common vertical axis). Denoting sym(x)
the symmetric pair of cell x, the sequence-pair («, 8) is called symmetric-feasible
(S-F) [43] if for any distinct cells x, y in any of the symmetry groups

-1 -1 -1 -1
o <y = By < Bymex (L.1)

Taking y = sym(x), and noting also that sym(sym(x)) = x, the condition (1.1)
shows that any symmetric pair of cells appears in the same order in both sequences
o and B. In addition, two cells x, y belonging to distinct symmetric pairs appear
in one of the sequences in reversed order as do their symmetric cells in the other
sequence. Note that the condition (1.1) works neatly also when self-symmetric cells
(having x = sym(x)) are involved.

Example. Assuming that a given subset of the placeable cells must constitute a sym-
metry group, not all the sequence-pair codes are feasible any more. For instance,
suppose the pair of cells (C, D) in Fig. 1.16a should be symmetric relative to a ver-
tical axis: the encoding (o, ) = (CDAFBGE, DCBGAFE) is not feasible as it
leads to a placement configuration where cell C lays above D.

Figure 1.16b displays a placement corresponding to the S-F sequence-pair
(EBAFCDG, EBCDFAG). Assuming a symmetry group {(C, D), (B,G),
A, F} composed of two symmetric pairs and two self-symmetric cells A and F,
the sequence-pair above is symmetric-feasible. Indeed, taking the self-symmetric
cell A and comparing its positions oeATI = 3 and ,BATI = 6 in the sequences «
and f to the corresponding positions of the other cells in the group, it follows that
the condition (1.1) is satisfied whenever cell A is involved. Similar comparisons
involving the positions of the other cells in the symmetry group will conclude the
verification. O

Important remark: The property (1.1) is a sufficiency condition: it ensures the build-
ing of a valid placement in symmetry point of view, as it will be shown in Sect. 1.3.1.
Intuitively, the property (1.1) prohibits the situation when two cells from distinct
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symmetric pairs are in an “above-below” topological relation, while their pairs are
in the reverse relation, the two pairs preventing each other to align horizontally. It
also prohibits the situation when two symmetric pairs are intertwined, preventing
each other to align vertically about the same symmetry axis. Since the sequence-
pair typically presents redundancies, one can find sequence-pairs whose evaluation
yields a valid placement in symmetry point of view, but still do not satisfy the prop-
erty (1.1). We called the sequence-pairs having property (1.1) symmetric-feasible
since they can certainly generate symmetrically valid placements (see Sect. 1.3.1).
But it must not be construed that any sequence-pair not satisfying property (1.1) is
automatically symmetric-unfeasible. For instance, [21] shows a placement example
satisfying given symmetry constraints whose unique sequence-pair does not satisfy
the property (1.1). Such examples are rare though and they may be dependent on
the dimensions of the cells. The benefit of the sufficient condition (1.1) is that the
exploration of the solution space of placement problems with symmetry constraints
can be reduced to the exploration of those sequence-pairs, which are symmetric-
feasible, i.e., satisfy property (1.1) relative to every symmetry group of cells. The
positive outcome is a significant reduction in size of the search space. The magni-
tude of this reduction is given by the following

Lemma 1. The number of symmetric-feasible sequence-pairs corresponding to a
placement configuration with n cells and G symmetry groups, each group k con-

taining py pairs of symmetric cells and sy self-symmetric cells (k = 1,...,G), is
(n)?
@p1+s)! - -2pG+s6)!

upper-bounded by

Proof. There are C2P' 1 sets of positions in the sequence « (and the same number

in the sequence B) for the 2p; + s; cells of the first symmetry group. Similarly,
there are an P %;SE s, sets of positions in any of the two sequences occupied by the
2p> + s2 cells of the second group, and so on.

Now, there are (2p; + s1)! possibilities of ordering the cells of the first group
in the sequence «. Note that for each order of these cells in «, their order in the
sequence f is unique due to the condition (1.1) above. The same is true for any of
the G symmetry groups. However, the contribution of the cells that do not belong to
any of the groupsis [(n —2 > px — > & Sk)! |* since their order in the sequence o
is independent of their order in S.

In conclusion, the number of S-F sequence-pairs is upper-bounded by

2
2
[carescprzyoz - @pits)t@patsa)t - [(n —2) " Pk —Zsk)!:|
k k

which yields the result in the Lemma after expansion and simplification. O

For instance, the number of S-F sequence-pairs for the example in Fig. 1.16b,
wheren = 7 and p; = 51 = 2, is (7!)2/6! = 35,280, whereas the total number
of sequence-pairs is (1!)2=25,401,600 (therefore, a reduction of the search space of
99.86%).
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1.3.1 Evaluation of Symmetric-Feasible Sequence-Pairs

Given a sequence-pair (&, f), the maximal (i.e., which cannot be enlarged) sub-
sequences common to « and f represent paths in the horizontal constraint graph
of («, B). For instance, EBCDG, EBAG, and EBFG are common subsequences
of the sequence-pair (EBAFCDG, EBCDFAG) (see Fig. 1.16b). If the cells are
weighted with their widths, the weight of the longest common subsequence (LCS)
EBCDG represents the width of the block placement [31]. Similarly, the maximal
subsequences common to R (sequence o reversed) and S represent paths in the
vertical constraint graph of (o, §) — as, for instance, CFA (see Fig. 1.17b). If the
cells are weighted with their heights, the longest common subsequence represents
the height of the whole placement. Based on these concepts, an evaluation algo-
rithm using the priority queue model described in Sect. 1.2.4 that builds the block
placement from a given sequence-pair in O (n loglogn) time was presented in [31].

This section will present an algorithm using the LCS approach building a place-
ment subject to symmetry constraints (as explained in the introduction section) from
a given symmetric-feasible sequence-pair. The analog devices to be placed on the
chip area are represented by n rectangular blocks By, ..., By, each block B; having
the width w; and the height /;, and having (x;, y;) as coordinates of its left-bottom
corner. The algorithm presented in this section assumes for the time being that all
the devices subject to symmetry constraints belong to a single symmetry group. The
implementation takes into consideration an arbitrary number of symmetry groups,
though. The extension to multiple symmetry groups is addressed in Sect. 1.3.2.

The evaluation algorithm uses a priority queue whose model was presented in
Sect. 1.2.4. However, it must be emphasized that both the computation of the de-
vice ordinates and device abscissae can be slightly modified to work with given
topological sorts of the vertical and, respectively, horizontal constraint graphs of
the placement. Consequently, these computations can be done using either segment
trees (see Sect. 1.2.1), or red—black interval trees (see Sect. 1.2.2), or 1-3 determin-
istic skip lists (see Sect. 1.2.3).

a b
Target
)
A
A F
Source E//_F\ G Target E C D G
C D Source

Fig. 1.17 (a) The horizontal and (b) vertical constraint graphs of the placement from Fig. 1.16b
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Similar to [31], each bucket in the priority queue has associated two keys (index,
length), where the index key is the cell position in sequence 8 and length is the
length of the LCS until that cell in the sequence-pair. Since the number of buckets
is at most n + 1, the insertion and deletion operations take O (loglogn) time [32].

1.3.1.1 The Computation of the Device Ordinates

Step 1y: The device ordinates must be determined first. (The reason will become
apparent when computing the abscissae.) The algorithm deriving the y-coordinates
(initially, zero) of the devices performs the LCS computation with the sequence o
in reverse order. The basic difference from [31] is that the equality of symmetric
devices’ ordinates must be enforced. Also, if a y-coordinate that was previously
computed must be subsequently increased due to symmetry, then Step Iy must be
repeated since, otherwise, some vertical topological constraints may be violated.

insert bucket (0,0) in the priority queue;
// this special bucket acts as a sentinel
for each index i in « (i =n to 1)
let 1 be the index in B of cell B; =uo;;
find bucket pred; whose index is the largest lesser
than [;
/I pred; does always exist due to the sentinel bucket (0,0)
y; = max {y;, length of pred;};
if B; has a symmetric By
then if By has already been visited and yix <y;
then Step 1y is repeated; //restarting with the y’s obtained
Ve =DYji
insert bucket (/,y; +h;) into the queue;
remove buckets with an index
greater than [/ and a length lesser than or equal
to yj+hj;
end_for
remove all buckets from the priority queue;

Example 1. Let (EDCKAFGIHJBL, KACDEFGLHBJI) be a symmetric-feasible
sequence-pair relative to a symmetry group consisting of three pairs of symmet-
ric devices (F,G), (K,L), and (C,J). The successive modifications of the bucket
list during the first four and last three iterations are displayed in Fig. 1.18a—h. The
current height of the placement is 11, the length field in the last bucket (5,11) in
Fig. 1.18h. A second execution of this step is necessary since y, initially set to 3
(see Fig. 1.18d), becomes equal to 4 when yc is computed, increase which creates
a topological violation.'! O

1 Actually, one may resume from cell J’s iteration: instead of (11, 5), the bucket (11, 6) will be
inserted in Fig. 1.18d.
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Fig. 1.18 Example 1: the computation of y-coordinates for the symmetric-feasible sequence-pair
(EDCKAFGIHJBL, KACDEFGLHBJI) with a group of three pairs of symmetric devices (F, G),
(K, L), and (C, J). The widths and heights of the devices are: A2 X 4), B3 X 1), C(4 X 2),
D5 x3), E4x2), F2x10), G2 x 10), H2 x 3), I(5 x 5), J(4 x 2), K(3 X 2), and
L(3 x 2). (a-h) The update of the bucket list of Johnson’s priority queue during the first four and
last three iterations. The cell processed in the current iteration is mentioned, together with its index
in B and its computed ordinate. The positioning along the axis Ox is irrelevant here. (i) Device
placements along the Oy axis: (left) after the first execution of Step Iy (note that cell J overlaps
cell I); (right) after the second execution of Step Iy. (j-k) Example where the computation of
y-coordinates necessitates @ (p) iterations, p being the number of symmetric pairs
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The “symmetric-feasibility” property (1.1) prohibits the situation when two cells
from distinct symmetric pairs are in an “above-below” topological relation, while
their pairs are in the reverse relation, the two pairs preventing each other to align
horizontally; therefore, it ensures that after a finite number of executions of Step
1y, all the vertical topological and symmetry constraints will be satisfied. More-
over, the height of the resulting placement is minimal since the y-coordinates are
computed using the longest common subsequence approach, the weights being the
heights of the cells, and also since the vertical symmetry constraints are fixed in a
bottom-up direction, with a minimum increase of the ordinate of the lowest cell in
the symmetric pair.

The priority queue has at most n 4 1 buckets; the insert and remove operations
in this data structure can be performed in O(loglogn) time [32]. Although in some
iterations O(n) buckets may be discarded, the amortized complexity per iteration is
O(loglogn). Note that Step 1y may need to be executed & (p) times, where p is the
number of symmetric pairs in the group. Fig. 1.18]j, k shows an example where the
p symmetric pairs (A1,42), (B1,B2), etc., are aligned horizontally after [%] +1
executions of Step Iy. For such “pathological” examples, the computation of the
y-coordinates will take O(p - nloglogn) time. However, in most of the practical
cases, no more than three iterations are necessary to fix the vertical symmetry and
topological constraints, hence Step Iy runs typically in O(n loglogn) time.

1.3.1.2 The Computation of the Device Abscissae

Step 1x: The first traversal, called initialization, computes the block abscissae [31]
leaving aside for the time being the symmetry constraints. For consistency sake, the
pseudocode is given below:

insert bucket (0,0) in the priority queue;
// this special bucket acts as a sentinel
for each index i in « (i =1 to n)
let 1 be the index in B of cell B; =a;;
find bucket pred; whose index is the largest lesser
than [;
xj = length of pred;;
insert bucket (/,x; +w;) into the queue;
remove buckets with an index greater than [
and a length lesser than or equal to x; +wj;
end_for
remove all the buckets from the priority queue;

The worst-case complexity of Step Ixis O(nloglogn).

Example 2. Given the symmetry group {(A1, A2), B, (C1, C2), (D1, D3), (E1, E>),
(F1, F>)} consisting of five pairs of symmetric devices and one self-symmetric cell,
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let (F1E1BA1A2XE, YDV ZC1Co Dy Fy , F1 YDV ZC1Co D2 E1A1 A2 BXE, F,) be
a symmetric-feasible sequence-pair. The placement after the execution of Step Ix is
shown in Fig. 1.19a. O

Step 2x: Next, the position of the symmetry axis (Xsymaxis) is chosen. Different
from [43], we employ a scheme for selecting the symmetry axis and initializing
the abscissae of the devices before the next two traversals (steps) in the symmetry
group such that the x-span of the group (and, ultimately, its area) is kept minimal
(relative to the topological constraints) by the end of the evaluation algorithm. This
axis selection scheme is described below.

The general idea of this step is to align the individual axes of the innermost
symmetric pairs and to position the other pairs to leave enough space (but not
more space than necessary) to satisfy the other horizontal topological constraints.
First, a directed acyclic graph (DAG) is built from the S-F sequence-pair, showing
the embedding relation between pairs along the Ox axis: each symmetric pair or
self-symmetric device is a node in this DAG, the node of an inner pair being the
successor of an outer one. E.g., for the example in Fig. 1.16b, a tree having the
root (B,G) with three children (C, D), (A, A), and (F, F) is obtained, as shown
in Fig. 1.20a. The embedding DAG for the placement in Fig. 1.18i is shown in
Fig. 1.20b.

Initially, the DAG contains a node for each symmetric pair or self-symmetric
cell. Since, in this moment, the vertical position of each cell is already known, the
end points of the y-span intervals [ycers, Veeil + heerr] of the cells in the symme-
try group are iteratively inserted as keys in an initially empty priority queue. The
order of insertion is given by sequence «, such that, at each moment, the priority
queue contains the end points of the segments part of the right contour of this partial
placement.

The construction of the embedding DAG will be illustrated using Example 2.
First, the end points of the interval [yr,, yr, + hr,1=[0, 10] are inserted (see
Fig. 1.19b1), followed by the end points of [yg,, yg, + hEg,]1=[6, 12]. Since this
latter interval covers from the right the top margin of the former, key 10 is removed
from the queue (see Fig. 1.19b2) and an arc from (Fi, F>) to (Ey, E») is added to the
DAG. Note that the segments visible from the right are [0, 6] from the F;’s interval
and [6, 12] from the E’s interval. The construction proceeds in this way, removing
from the queue the keys covered by a new interval and adding arcs in the DAG each
time segments from the right contour (belonging to cells in the symmetry group)
are covered by the y-span interval of the new cell (see Fig. 1.19b3-b6). The DAG
obtained for this example is shown in Fig. 1.19b7.

Afterward, the position of the symmetry axis is selected such that Xgymaxis =

x4+ (xx+wi)
2

max{ }, for all nodes without successors (B, By) in the DAG. In our

example, Xsymaxis=14, corresponding to the pair (Cy, C5). Then, each node without

successors (B, By) will receive a value d = Xgymaxis — m > 0 and
the abscissae of B; and By computed at Step Ix will be updated: x; = x; + d,
Xy = Xx +d, therefore shifted to the right. Proceeding bottom-up in the embedding
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Fig. 1.19 (a) Placement after the initialization traversal (Step Ix) for the symmetric-
feasible sequence-pair (F]E]BA1A2XE2YD12C1C2D2F2, F] YD]ZC] C2D2E1A1AzBXE2F2).
The symmetry group is {(A4;, 4>), B, (C1, C3), (D1, D»), (E1, E,), (F{, F»)}. (b) Construction of
the DAG showing the embedding relations in the symmetry group. (¢) Update of the abscissae of
the devices in the symmetry group at the end of Step 2x. The possible overlaps will eventually be

fixed
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a (B, G) b «) (K, L)
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Fig. 1.20 (a) The embedding DAG for the placement in Fig. 1.16a. (b) The embedding DAG for
the placement in Fig. 1.18i (Example 1)

DAG, each node will receive a d value equal to the minimum one among node’s
children (see Fig. 1.19b7); the abscissae of the node’s cell(s) are similarly updated,
as shown in Fig. 1.19c.

This operation is dominated by the building of the embedding DAG. The priority
queue contains keys in the set {0, ..., H}, where H is the height of the placement.
Since the key insertions and deletions take O(loglog H) each'? [32], we may be
tempted to consider O (loglog H ) the worst-case time bound per iteration. However,
this is not always true: when the bucket list of the priority queue grows, it can gain
at most two new keys per iteration; but when it decreases in size, as many as O(n)
keys can be deleted.'? However, the amortized time bound [51] is O(loglog H) per
iteration. Intuitively, the reason is that each key can be deleted at most once for each
time it is inserted. In an amortized analysis, the time required to perform a sequence
of operations is averaged over all the operations performed. Since there are p + s
iterations (where p is the number of pairs and s is the number of self-symmetric
cells), the overall time complexity of this step is O((p + s)loglog H) or, with a
less tighter bound, O (n loglog H).

If, in addition, H = ©(n), the overall complexity is O(nloglogn). Other-
wise, the y-coordinates of the devices can be “normalized” by replacing each of
them by its index in their increasingly-ordered set S = J;{y;, »i + h;}. In this
way, the y-coordinates can be considered, without loss of generality, integers in the
range [0, n] (n being the number of devices). Another important consequence of the
“normalization” is the fact that the size of the priority queue will be kept minimal.
For instance, in our illustrative example (Fig. 1.19a), after the sorting and elimina-
tion of duplicates, the set S = Ui {vi, vi+h;} ={0,4,6,10, 12} has five elements
(for the cells in the symmetry group). Instead of inserting, say, for the cell E; the
keys 6 and 12 (the end points of its y-span interval), we insert instead the keys 2
and 4, that is, their indexes in the set S. Note that the height of the host binary
tree of the priority queue (see Sect. 1.2.4) is reduced from 4 to 3 when normalized

12 Actually, according to [32], the asymptotic upper bound is even tighter: O(loglog(max; &;)),
where h; are the heights of the devices. But in the worst case, i; = O (H).

13 Such a situation could occur if the priority queue contained O(n) keys and in the next iteration
the new cell had the height of the whole analog block; the priority queue would then be reduced to
only two buckets having the keys 0 and H.
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coordinates are used instead. The normalization is not done with a general purpose
sorting algorithm (of worst-case complexity O(n logn)) since then the complexity
would be dominated by the sorting. Instead, the radix sort of complexity O(n + H)
[51] is used.'* When using the radix sort for normalization, the complexity becomes
O(H + nloglogn).

Step 3x: This traversal (sweep-to-the-right) is similar to the initialization step, but
before inserting the bucket (/, x; + w;) into the queue, if (B, B;) is a symmetric
pairand d = 2Xgmaxis—X; — (xx +wg) > 0, then x; is increased with d.. For the
pair (D1, D,), for instance, d = 2x 14 — 16— (7 4 3) = 2, therefore D5’s abscissa
will be further increased with 2, becoming 18 (see Fig. 1.21a); note that (D1, D»)
satisfy now the symmetry constraint.

Step 4x: At the end of the sweep-to-the-right traversal, some of the horizon-
tal symmetry constraints may still be unsatisfied since some rightmost cells in
the pairs were pushed further to the right (see, for instance, the pair (£, E3) in
Fig. 1.21a). Then, a third traversal of o (sweep-to-the-left) will fix all the symmetry
constraints:

insert bucket (n+l1,W) in the priority queue;
// this bucket acts as a sentinel
for each index i in a (i=n to 1)
let 1 be the index in B of cell B; =a;;
find bucket succ; whose index is the smallest greater
than /;
/I succy will always be found due to the sentinel bucket (n+1, W)

x; = (length of succ;) - wj;

if (Bj,Br) is a symmetric pair and d = x; + (xx + wg) —
2xsymAxis > O

then X; =Xj —d;

insert bucket (/,x;) into the queue;
remove buckets with an index lesser than [
and a length greater than or equal to Xx;;
end_for
remove all buckets from priority gqueue;

With a similar reasoning, both Step 3x and Step 4x take O(n loglogn) time.

Note that in the absence of symmetry constraints, the evaluation algorithm re-
duces to Step Iy and Step 1x, therefore identical to [31].

Besides the LCS-based approach, which improves the overall complexity of the
evaluation algorithm in comparison to [43], Step 2x ensures that the x-span of the
symmetry group is kept minimal relative to the horizontal symmetry and topolog-
ical constraints induced by the sequence-pair representation. First, the symmetric
pairs are positioned about the symmetry axis at the minimal distance allowed by

14 Sorting by key insertion in Johnson’s priority queue — of complexity O (n loglog(H/n)) [32] -
can be used, as well.
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Fig. 1.21 Placements of the symmetric-feasible sequence-pair (F}E|BA; A, XE,YDZC,C,
D, F,, ;YD\ ZCC,D,E A1 Ay BXE, F,) after the sweep-to-the-right (Step 3x) and after the
sweep-to-the-left traversal (Step 4x)

the topological constraints (as computed at Step Ix). Second, with the d-values
of the embedding DAG’s nodes, the leftmost cells of the pairs are positioned as
close as possible from the symmetry axis. (From Fig. 1.19¢, one can observe that
no leftmost cell in the symmetric pairs can be brought closer to the symmetry axis
without producing topological violations.) Afterward, the sweep-to-the-right step
will shift the rightmost cells in the pairs just enough to satisfy the topological con-
straints (like E» in Fig. 1.21a), or symmetry constraints (like D»), or both (like F3).
The subsequent sweep-to-the-left step will fix the remaining symmetry violations,
like E; in Fig. 1.21b. Since the sequence-pair satisfies the property (1.1), there are
no situations when two symmetric pairs are intertwined preventing each other to



46 F. Balasa

align vertically about the same symmetry axis, so the algorithm ends after Step 4x.
Moreover, since the abscissae are updated from the innermost pairs to the outer-
most ones, the symmetry group is packed around the symmetry axis as much as the
topological constraints allow.

1.3.2 Handling Multiple Symmetry Groups

In order to handle an arbitrary number of symmetry groups, one must take the
precaution that any two symmetry groups do not prevent each other from being
correctly built. For instance, if two cells x, y belonging to different symmetry
groups satisfy simultaneously the inequalities ! (x) < a~1(y) < a™!(sym(y)) <
o' (sym(x)) and B~ (y) < B! (x) < B™' (sym(x)) < B~" (sym()), then cell x
results above cell y, whereas cell sym(y) results above sym(x), the two pairs pre-
venting each other to align horizontally within the groups. Fortunately, it is possible
to design the move set to avoid such situations. The easiest way is to prevent the
cells from different groups to intermingle with each other in any of the sequences «
and B, solution adopted in [43].

However, if the design requires embedded symmetry groups [59] — this being
revealed by the schematic of the circuit, the move set can be modified to al-
low cells from one group between cells of another group in both sequences
o and B simultaneously. Figure 1.22 shows a placement with three symme-
try groups: Group 1 = {(A1, A2), (B1,Bz), (C1,Cz), D, E}, Group 2 =
{(U1,U,), V}, and Group 3 = {(X1,X32), (Y1,Y2), W, Z}, the second and
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Fig. 1.22 Placement with three symmetry groups, the groups 2 and 3 embedded in group 1
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the third groups being embedded in the first one. An encoding sequence-pair is:
(A1 B1U1VUC1 DEB X1 YAIWZX,Y2Co A2, A1C1U1VUa B1EDCLY1X1ZWY,
X3 B, A,). Note that the cells of the groups 2 and 3 (written with bold characters)
are surrounded by the cells of Group I in both sequences « and g (although it is not
essential to occupy contiguous positions in any of the sequences). This constraint
on the move set is sufficient to guarantee the feasibility of the placement and the
completion of the placement algorithm.

With these remarks, the technique to handle an arbitrary number of symmetry
groups is similar to the single-group case, but more traversals of the (symmetric-
feasible) sequence-pair are necessary. The symmetry groups are processed one by
one, after each iteration the symmetry constraints relative to one symmetry group
being fixed, and the relative positions of the devices in that group being “frozen.” If
G is the number of symmetry groups, the complexity of the evaluation algorithm is
basically O(G - nloglogn). In the case of embedded symmetry groups, the inner
groups must be processed before the outer ones, therefore the order of the group
processing does matter. (An embedding DAG of the symmetry groups is used to
order the group processing.) But if the cells of the groups do not intermingle in the
sequence-pair, then the processing order of the groups is irrelevant. Note also that if
the sequence-pair is not symmetric-feasible relative to all the groups, the algorithm
may loop forever attempting to fix the symmetry constraints.

1.3.3 The Design of the Move Set

The move set of the simulated annealing algorithm was adapted to restrict the ex-
ploration of the sequence-pairs to the subset of those symmetric-feasible. To do
this, it is sufficient to start the exploration with an initial sequence-pair, which is
symmetric-feasible relative to all the symmetry groups [43]. Assuming for simplic-
ity only one symmetry group, such a sequence-pair is, for instance:

(@, B) = (a1-~~ap CreCsbperbyer, ay--apcsec bp"'bl"')

where (a;,b;), i =1,..., p arethe pairs of symmetriccellsand c;, j =1,...,s
are self-symmetric cells. This sequence-pair corresponds to a placement where the
pairs of symmetric cells are disposed in line, like embedded brackets, surrounding
the self-symmetric cells which are disposed one on the top of the other. More gen-
eral, we may pick randomly the order in « of all the devices in the symmetry group,
and arrange in 8 their symmetric pairs in exactly the reverse order.

Afterward, the move set can be customized such that the property of symmetric-
feasibility is preserved after each move. For instance, if two cells from distinct
symmetric pairs are interchanged in the sequence «, then their symmetric coun-
terparts must be interchanged as well in the sequence f; if a cell is moved, changing
its position in the sequence «, its symmetric pair must be moved too in the sequence
B, and the range of possible positions of this latter move depends on the move of
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the former cell. Device rotations and mirroring are also affecting simultaneously
two symmetric cells. Note that the moves of the cells in the asymmetric component
of the circuit (interchanges and changes of position in both sequences, device rota-
tions) are unrestricted (except for the move amplitude due to the cooling temperature
of the annealing), so the tool works also in the absence of symmetry constraints.
More complex moves operating with entire symmetry groups are also performed —
although with a low probability, decreasing with the temperature.

1.4 Topological Placement with Symmetry Constraints
Using Other Layout Representations

1.4.1 A Comparative Overlook on Transitive Closure Graphs

The transitive closure graph (TCG) representation, introduced by Lin and
Chang [39], is based on two directed graphs — the horizontal and vertical tran-
sitive closure graphs, denoted Cy and C, — both having a node for each cell, the
edges corresponding to the topological relations between cells. For instance, the arc
(A, B) in Cj, means that A is to the left of B; the same arc in C, means that A4 is
below B. Each pair of vertices must be connected by exactly one edge either in Cj,
orin C,.

Since Lin and Chang addressed the placement problem with symmetry con-
straints within the TCG representation [46], this section comments on whether
working with the TCG sequence (TCG-S) instead of S-F sequence-pairs could lead
to a better exploration of the solution space in terms of speed and/or quality.

A key remark is that, actually, the TCG and sequence-pair representations are
equivalent. As noticed by Zhang and El-Masry [60] (but also by the authors of
TCG), the B sequence in the sequence-pair is the topological sorting of both graphs
Cj, and C,. Indeed, A precedes B in sequence f if there is an arc A —> B either
in Cp, or in C,. Normally, one can construct different topological sorting sequences
based on the same graph; but both graphs Cj, and C, determine a unique topological
sorting sequence which can be built in O(nlogn) time employing a sorting algo-
rithm, where the comparison rule is whether the source vertex is ahead of the sink
vertex for any directed edge in Cp, or C,. Similarly, the sequence « is the topological
sorting sequence of the graphs Cj, and C,, the latter with the arcs reversed [60].

From the arguments above, it follows that given a TCG for n cells, one can build
the corresponding sequence-pair in O(nlogn) time. Reciprocally, it takes O(n?)
time to transform a given sequence-pair into a TCG. Note that the latter complexity
cannot be improved since the total number of arcs in C, and C, is ©(n?).

In conclusion, the TCG and sequence-pair representations are equivalent, so the
sizes of their solution spaces are the same, that is (n!)2. Obviously, one can intro-
duce a symmetric-feasibility condition within the TCG representation: e.g., TCG is
symmetric-feasible if its corresponding sequence-pair is symmetric-feasible in the
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sense of condition (1.1), or defining direct conditions in the two graphs Cj, and C,."
However, we cannot find any advantage relative to the size of the exploration space,
or to the solution quality — both representations being P-admissible [29]. On the
other hand, the proposed evaluation algorithms for TCG-S (executed in each inner-
loop iteration of the simulated annealing, evaluating the layout cost after each
move) have quadratic complexity [60], whereas Sect. 1.3.1 presented an evalua-
tion algorithm for S-F sequence-pairs of better complexity. Therefore, using S-F
sequence-pairs is more advantageous in terms of computational speed.

1.4.2 A Comparative Overlook on Tree Representations
of the Layout

According to [34], a placement configuration of n rectangular blocks can be
represented by an ordered tree (O-tree), that is a tree with n 4+ 1 nodes, en-
coded by (7, ), where 7 is a 2n-bit string identifying the branching structure
of the tree relative to a traversal order (a “0” corresponds to descending an
edge, while an “1” — to subsequently ascending that edge), and 7 is a permu-
tation of the block names. Figure 1.23a shows an O-tree having the encoding
(7, 7)=(00110100011011, adbcegf).

Let T = (T1,...,Ty) be an O-tree, where T1,...,Ti are its subtrees relative
to the root. The O-tree can be transformed recursively into a binary tree B(T') as
follows:

a b @

hod

Fig. 1.23 (a) O-tree representation; (b) binary tree representation

15 The feasibility of TCG in symmetry point of view is defined differently in [46], but the modifi-
cation of the size of the exploration space is not addressed.
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a. If k =0, B(T) is empty;

b. If k > 0, the root of B(T) is the root of T7; the left subtree of B(T') is B(T1);
the right subtree of B(T') is B(T'), where T’ = (T, ..., T} ) is the initial O-tree
less the subtree 77.

The binary tree derived from the O-tree in Fig. 1.23a is shown in Fig. 1.23b, the
root of the binary tree becoming obsolete. As the inverse transformation is straight-
forward, it follows that there is a one-to-one correspondence between the sets of
O-trees and of binary trees having one node less.

The tree representations of the layout are important in our context since their
number is lesser than the number of sequence-pair encodings, yielding thus a
smaller exploration space for the block placement problems. Indeed, since in a
binary tree representation the nodes are labeled with the names of the cells, the
number of codes is b, - n!, where b, is the number of unlabeled binary trees
with n nodes — known as the nth Catalan number [37]: b, = 1 (Zn"), where

n+1
(oz) _ a(a—1)(x—n+1)
n) . n! ' . .
The relation between the number of tree topological representations and the num-

ber of sequence-pairs is given by the following

Lemma 2. The number of labeled binary trees with n nodes is smaller than the
number of n-block sequence-pairs.

Proof. Assuming n > 3, for any integer p such that 1 < p < n, we have the
inequality % < n — p + 2. Indeed, by trivial computations, the inequality above
is equivalent to 0 < (n — p)(p — 1). Substituting p = 2,3,...,n — 1 in the

; ; i nt2 £3 2n—1 o
inequality, we obtain "3= < n, 3= < n —1, ..., 25 < 3. Multiplying,

3

@%%%ZHJ <m+1)-n-n—1)---3-2.
This is equivalent to (*”) < (n + 1)!, or b, < n!. Multiplying both sides of this
inequality by n!, we obtain the stated result. When n = 1, 2, the numbers of trees

and sequence-pairs are equal (to 1 and, respectively, 4). O

Although the number of tree representations is smaller than the sequence-pair
encodings, the number of symmetric-feasible sequence-pairs may be smaller than
the number of tree representations when the symmetry groups are dominant (in
terms of number of cells). For instance, if all the devices of a circuit form a
symmetry group (n = 2p), from Lemma 1 the number of symmetric-feasible
sequence-pairs is upper-bounded by (2 p)!, whereas the number of trees is b2 - (2 p)!
— therefore, at least twice larger. On the contrary, when the asymmetric part of the
circuit is dominant, the number of tree representations becomes smaller.

A placement approach for analog layout with symmetry constraints, based on the
exploration of O-trees, was proposed in [44]. The main idea was to build horizontal
and vertical constraint graphs from the current O-tree: if the horizontal constraint
graph has cycles or if the vertical constraint graph has positive cycles, the O-tree
is infeasible in symmetry point of view and hence disregarded. The complexity of
these tests is quadratic.



1 Device-Level Topological Placement with Symmetry Constraints 51

However, a better strategy is to limit the exploration to a subset of binary tree
representations yielding layouts automatically satisfying the given symmetry con-
straints, exactly as we did in the case of sequence-pair encodings. The next section
will introduce such a subset of binary tree representations whose size is smaller
than both the number of symmetric-feasible sequence-pairs and the number of tree
representations.

1.4.2.1 Symmetric-Feasible Binary Trees

A binary tree layout representation, whose nodes represent the rectangular cells in
a placement configuration, induces the following vertical (y-) and horizontal (x-)
positioning constraints [36]:

a. Each cell whose node is in the left subtree is above the cell whose node is the
parent;

b. If the y- projections of two cells are overlapping, the cell whose node is visited
first in a preorder traversal of the tree (i.e., visit any node before its left and right
subtrees) is to the left of the cell whose node is visited the second.

The nodes of a binary tree can be visited in preorder, inorder, or postorder. A pre-
order traversal of a binary tree starts from the root, visiting the current node and then
recursively visiting its left subtree, followed by its right subtree. An inorder traversal
visits the current node in between recursively visiting its left and right subtrees. It is
well known that the pair of preorder and inorder traversals uniquely determine the
binary tree. Several algorithms building the tree from its traversals in optimal time
and space were proposed (e.g., [61,62]).

Remark: The pair of sequences (inorder, preorder) traversals should not be
mistakenly confused with the sequence-pair representation (¢, 8) proposed by
Murata et al. [29]. There are sequences o and B that do not correspond to the
inorder and preorder traversals of any binary tree: such a sequence-pair is, for
instance, (CAB, ABC). More general, for any n > 3 one can build a pair of cell
permutations ( ... CAB, ... ABC) that does not correspond to the (inorder,
preorder) traversals of any binary tree. This can be seen as another proof of the
fact that the number of sequence-pairs is larger than the number of binary trees
forn > 3.

A binary tree representation is symmetric-feasible if its pair of (inorder, preorder)
traversal has the following property [45]: for any distinct nodes (cells) A, B in a
symmetry group,

inorder preorder

< B < sym(B) =< sym(A) (1.2)

i.e., the node A precedes node B in the inorder traversal of the binary tree if and
only if the node sym(A) — corresponding to cell A’s symmetric pair — succeeds



52 F. Balasa

node sym(B) in the preorder traversal. In addition, any two nodes A, B belonging
to different symmetry groups cannot satisfy the inequalities'®

inorder inorder

< B < sym(B) moger sym(A)

preorder preorder reorder

< A < sym(A)p< sym(B)

Similar as in Sect. 1.3.1, one can develop evaluation algorithms for this subset of
symmetric-feasible (S-F) binary tree representations using any of the data structures
presented in Sect. 1.2 (see, for instance, [45,53]).

1.4.2.2 The Design of the Move Set

The design of the move set when operating with topological representations based
on trees [34, 35] was a topic insufficiently addressed before. The problem is to
conceive a set of moves such that any code in the topological representation is the-
oretically reachable by applying a finite sequence of moves from any given code.
Besides cell interchanges that affect only the labels of the nodes, a typical move that
modifies the tree structure is to detach a subtree and re-attach it to another available
node [34]. This move cannot be used in our framework since the preservation of
property (1.2) is difficult to accomplish. Two less obvious move sets for the general
binary tree representation will be presented below. Due to the natural correspon-
dence between forests of rooted trees and binary trees [37], the equivalent moves
for O-trees can be easily derived.

(a) Move sets for binary trees with provable reachability

1. To transform a left-parenthesized product (...((apai)az)...a,) into a right-
parenthesized product (ao(ai(...(@n—1an)-..)), one may apply a sequence of
basic transformations ((xy)z) + (x(yz)), involving three subexpressions x,
¥, z [37]. A binary tree whose nodes have two children each can be repre-
sented by parenthesized products.!” The transformation ((xy)z) +— (x(yz))
can then be applied to binary trees replacing the subexpressions with subtrees:
((S152)S3) — (S1(5253)). This operation may be thought of as “sliding” a
right-descendent subtree of a left-descendent node past its parent into a left-
descendent subtree of the corresponding right descendent: " — Y. Since the
parenthesized products can be represented as the vertices of a polyhedron — a
Stasheff polytope [63] — where the neighbor vertices differ from one another by
the above transformation (or its inverse), a similar property is valid for the binary
trees whose nodes have two children each.

16 This second condition eliminates those trees where cell A results above cell B, whereas cell
sym(B) results above sym(A), the two pairs preventing each other to be aligned horizontally within
the groups.

17 See the parenthesized notation of trees in [37].
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A binary tree representation is slightly different in the sense that each node
has at most two children (rather than exactly two children). However, if the
NULL pointers (or references) are viewed as dummy children, the nodes in the
binary tree representation will have two children each, and the basic transfor-
mation described above can be applied, along with its inverse. Moreover, these
transformations ensure the reachability of any unlabeled binary tree since they
represent vertices in the Stasheff polytope [63] — which are edge-connected.

Interchanging the labels of two nodes does not modify the branching structure
of the binary tree representation. This swap move ensures the reachability of any
labeled binary tree having a given branching structure, since a permutation of
node labels can be decomposed into a sequence of interchanges. Therefore, the
structural transformation ((S152)S3) — (S1(S2S3)) and the interchange of
node labels ensure the complete exploration of the binary tree codes.

2. It is well known [64] that there is a one-to-one mapping between the set of
rectangular-grid paths connecting two opposite corners of a square and which do
not cross the diagonal, and the set of unlabeled binary trees with n nodes, where
n is the number of grid units of the square side (see Fig. 1.24). If the horizontal
unit segments of such a path are denoted by E (from East) and the vertical ones
by N (from North), a path as described above can be represented by a sequence
of n Es and n Ns. In order to prevent the diagonal crossing, in any leading subse-
quence the number of N’s must not be larger than the number of Es. Therefore,
the branching structure of the tree can be uniquely described by such a sequence
of Es and Ns. !

A move that modifies the branching structure of the tree is the interchange
of an E segment and an N segment in the corresponding path — called a

swap
> —_—
E-N
N
E
ENEENEENNNEEEENNNNEN ENEENEENNNEEENNENNEN
swap E-N

Fig. 1.24 Correspondence between grid paths in a square and unlabeled binary trees

18 The O-tree encoding in [34] is similar, but this path analogy was not mentioned.
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swap E-N — such that the diagonal crossing is prevented (Fig. 1.24). The 2n-long
path yo: E---EN- - - N can be easily transformed into another path y by a finite se-
quence of E-N interchanges: for instance, if the first N occupies position k(< n)
in y, the kyth and the (n 4+ 1)th segments in yy are swapped; if the second N
occupies position ka(k; < kp < n) the kyth and the (n + 2)th segments are
swapped, and so on. The transformation y; + y, between two arbitrary paths
can be obtained as a combination of the transformations y; — Yo (which is
the inverse of Y9 — 1) and yo — y2. Consequently, the cell interchange to-
gether with the swap E-N ensure the reachability of any labeled binary tree and,
therefore, the complete exploration of the binary tree codes.

Our placement tool employs the second move set described above. In addition,
the move set is adapted to preserve the symmetric-feasibility property (1.2) — as
will be explained below.

(b) The move set in the presence of symmetry constraints

At the beginning of the simulated annealing, the placement tool builds a binary tree
satisfying the property (1.2) for each symmetry group [45]. Afterward, each move is
performed such that the property (1.2) be preserved. In the current implementation,
the moves are of three types. The first two moves are cell interchanges and swaps
E-N. The presence of symmetry constraints impose some restrictions (discussed
below) on the use of these moves to preserve the feasibility of the codes in symmetry
point of view. The third type of move is specific only to placement configurations
containing several symmetry groups.

1. Interchange of two cells

When the cells belong to the same symmetry group but they are not the symmet-
ric pairs of each other, the cell interchange must be accompanied by the swap
of their symmetric pairs to preserve the property (1.2). For the same reason, in-
terchanges between cells belonging to different symmetry groups, or when only
one cell belongs to a symmetry group are allowed only between cells whose
nodes are in a parent—child relation. This move — having a constant complexity —
ensures the reachability of any S-F binary tree having a given branching struc-
ture, since a permutation of node labels can be decomposed in a sequence of such
interchanges.

2. Move of cells

When a cell from the asymmetric part of the circuit is selected, the swap E-N is
performed exactly like in the absence of symmetry. When the randomly selected
cell is part of a symmetry group, two simultaneous swaps E-N of linear complexity
are performed — one for the cell and the other for its symmetric pair — based of
the sequences of traversals (inorder, preorder). The binary tree is locally modified
around the nodes corresponding to the chosen cell and its symmetric pair such that
the property (1.2) be maintained.
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3. Move of symmetry groups

In placement problems with several symmetry groups, more complex moves (of
quadratic complexity) are also performed — albeit with a low probability that de-
creases with the temperature. They modify the position and the structure of an entire
symmetry group: the nodes corresponding to the devices belonging to a symmetry
group are extracted from the current binary tree, and a new symmetric-feasible sub-
tree is built with them. Afterward, this binary subtree is attached in the main tree.

In addition to these three types of moves, changes of cell orientation (rotations
and mirror transformations) are also performed. The changes of orientation take
into account the different forms of pair symmetry — mirror or perfect, the pairs
of symmetric cells having mirrored or identical orientations, as well as the self-
symmetry — when a device presenting geometric symmetry shares the same axis
with the group [7].

1.5 [Experimental Results

A prototype placement tool for analog layout using selectable exploration al-
gorithms has been implemented in C++. The tool uses the simulated annealing
algorithm as the combinatorial optimization engine. In order to ensure a compar-
ative evaluation as correct as possible, the cost function, the simulated annealing
cooling schedule, and the inner-loop criterion were set identical during testing for
all the placement algorithms.

The tool can operate both with different topological representations (sequence-
pairs and trees) and different code evaluation algorithms, using the data structures
from Sect. 1.2. Besides symmetry constraints, the tool handles systematically-
induced device mismatches, alignment constraints, and performs shape optimiza-
tions for parametric cells and for “soft” cells like capacitors, with the aspect ratio
varying continuously between given limits. In addition, for the purpose of a com-
plete comparative assessment, a complementary placement algorithm based on the
traditional absolute representation has been embedded in the tool as well.

Figure 1.25 shows the placement for a telescopic opamp with gain-boost am-
plifiers. Figure 1.26 displays the placement for a frequency divider with selectable
ratio having five groups of symmetry.

Fig. 1.25 Placement for a telescopic opamp with gain-boost amplifiers
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Fig. 1.26 Placement for a frequency divider with selectable ratio (2/4) having five symmetry
groups

Table 1.1 Placement results

Design Constraints Nr. cells Area [um X wm] Time [min]
Gain-boost amplifier Sym.,dev. matching 17 71.2 x 68.0 0.2
Telescopic opamp Sym.,dev. matching, 36 527.2 x 96.0 1.6
with gain-boost amplifiers and four soft cells
Programmable capacitor block 1 Six soft cells 28 1752 x 115.2 0.5
Programmable capacitor block 2 12 soft cells 34 220.8 x 186 1.1
15 MHz buffer - 64 189.5 x 250.5 32
Amplifier with selectable gain ~ — 79 191.5 x 251.0 43
Bias current generator - 85 237 x 186 5.0
Charge pump Sym.,dev. matching 98 220.5 x 333.0 12.6
Limiter Sym.,dev. matching, 111 177.5 x 375.0 16.9
(17 = 500 MHz) and 14 soft cells
Frequency divider Five sym. groups 116 350 x 147 21.0

with selectable ratio

Table 1.1 displays only a part of the experimental results carried out on a SUN
Blade 100 workstation. The test benchmarks are analog blocks, several containing
symmetry groups of devices, components of a spread spectrum transceiver used in
wireless modems. Column 2 shows the type of constraints present in the design and
column 3 displays the number of devices. Values of the placement area and CPU
time are given only for the algorithm presented in Sect. 1.3.1. Evaluation algorithms
employing the other data structures presented in Sect. 1.2 are somewhat slower, but
not very significantly. The slowest appears to be the evaluation using segment trees
(Sect. 1.2.1); however, the evaluations using red-black interval trees and determin-
istic skip lists (Sects. 1.2.2 and 1.2.3) are almost as fast as the one using priority
queues.
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The placement algorithm based on the exploration of symmetric-feasible binary
trees is typically faster than the algorithm based on symmetric-feasible sequence-
pairs (although the layout quality seems to be poorer). The difference in running
times is not unexpected since the solution space of the binary tree representation
is always smaller than the solution space of the sequence-pair representation for
any placement problem, with or without symmetry constraints. The quality of the
layout though depends also on the move set, on how uniformly the solution space
is explored. The evaluation algorithms based on symmetric-feasible sequence-pairs
seem to be better.

The running times are typically higher than those obtained by other topological
placement tools operating on examples without symmetry (e.g., [31]). This is not
unexpected since, when the cells belong to symmetry groups, their moves within
the simulated annealing optimizer are, typically, a few times more computationally
expensive; in addition, there are more traversals of the topological representation
than in the absence of symmetry constraints. Restricting the moves within the subset
of symmetric-feasible codes is costly for sure, but this strategy is significantly better
than the exploration of the entire solution space of the topological representation
employed.

The experiments also led to another conclusion: all the techniques exploring
symmetric-feasible topological representations exhibit a significantly better perfor-
mance, at least in terms of computational effort (but sometimes also in terms of
placement quality), than using the more traditional absolute representation. Also
the tuning of the simulated annealing optimizer was easier when using topological
representations.

1.6 Conclusions

This chapter has given an overview of topological placement techniques handling
symmetry constraints for analog layout synthesis. Different from most of the ex-
istent tools based on a simulated annealing optimization operating on absolute
representations of the layout, this chapter has explored the use of some topologi-
cal representations not restricted to slicing structures, where symmetry constraints —
typical in analog placement — are directly taken into account during the exploration
of the solution space.
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Chapter 2
Hierarchical Placement with Layout Constraints

Mark Po-Hung Lin and Yao-Wen Chang

Abstract In analog layout design, devices are required to be placed with matching,
symmetry, and proximity constraints to reduce parasitic coupling effects and im-
prove circuit performance. In addition to these basic placement constraints, there
exist hierarchical symmetry and hierarchical proximity constraints due to circuit and
layout design hierarchies. This chapter first introduces the hierarchical constraints
induced by circuit and layout design hierarchies, and then presents a hierarchical
placement approach to better consider these hierarchical constraints and effectively
reduce the search space.

2.1 Introduction

According to [8, 11], the basic analog layout constraints include common-centroid,
symmetry, and proximity constraints, illustrated in Fig.2.1. The common-centroid
constraint is usually applied to a subcircuit of a current mirror or a differential pair to
reduce process-induced mismatches among the devices. The symmetry constraint is
always required in the layout design of the whole differential subcircuit. It helps re-
duce the parasitic mismatches between two identical signal flows in the differential
subcircuit. The proximity constraint is widely used in the subcircuit of a common
device model or a certain circuit functionality. It helps form a connected placement
of a subcircuit so that the subcircuit can share a connected substrate/well region or
be surrounded by a common guard ring to reduce the layout area, the interconnecting
wire length, and the substrate coupling effect. In particular, the placement outline
of each subcircuit with the proximity constraint can be irregularly rectilinear for
better area utilization. Figure 2.1c shows an example placement of two subcircuits,
{E1, Es, E3} and {Fy, F», F3}, with the proximity constraint.
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Fig. 2.1 Basic analog layout constraints (a) common-centroid constraint (b) symmetry constraint
(c) proximity constraint

(D Sub-circuit with the symmetry constraint
(O Sub-circuit with the proximity constraint
(O Sub-circuit with the common-centroid constraint

Fig. 2.2 Layout design hierarchy and the corresponding constraint in each subcircuit

Besides the basic layout constraints, there exist hierarchical symmetry and
hierarchical proximity constraints due to layout design hierarchy. The layout design
hierarchy may contain both exact and virtual hierarchies of analog circuit design.
The exact hierarchy is the same as the circuit hierarchy, while the virtual hierarchy
consists of hierarchical clusters [20]. Each cluster contains some devices and subcir-
cuits, which are gathered based on device models, subcircuit functionality [10, 27],
and/or other specific constraints [7]. Figure 2.2 shows an example layout design
hierarchy, where each subcircuit corresponds to a specific constraint.

In Fig.2.2, a subcircuit with the hierarchical symmetry constraint may contain
some devices together with other subcircuits with the common-centroid and (hierar-
chical) symmetry constraints. Figure 2.3 shows an example hierarchical symmetric
placement of several hierarchical subcircuits in Fig. 2.2. Similarly, a subcircuit with
the hierarchical proximity constraint may contain some devices together with other
subcircuits with the common-centroid, (hierarchical) symmetry, and (hierarchical)
proximity constraints.
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Fig. 2.3 An example placement of the subcircuits A, D, E, H, I, J, and K with the hierarchi-
cal symmetry constraint in Fig. 2.2, where the subcircuits H and I are symmetric, J and k are
symmetric, and D and E are also symmetric

Based on the concept of the layout design hierarchy illustrated in Fig.2.2, it is
essential to synthesize analog layout hierarchically for better efficiency and effec-
tiveness. It is also desirable to reduce the large search space by considering layout
design hierarchy. Modern analog placement techniques often simultaneously opti-
mize the placement in different hierarchical subcircuits, e.g., [17,19,20,23, 24, 30],
instead of bottom-up integration, because the optimal placement of a subcircuit
may not lead to the globally optimal placement. Most of them apply simulated
annealing [ 13] based on the topological floorplan representations, such as Sequence-
Pair [28] and B*-tree [6], while the latest one [30] adopts a fully deterministic
approach. Among these works, the one based on the hierarchical B*-tree (HB*-tree)
in [19,20, 23] discussed how to handle the hierarchical symmetry and hierarchical
proximity constraints together with the consideration of layout design hierarchy.

In the following sections, the basic hierarchical framework based on the HB*-tree
and symmetry-island formulation is first introduced to handle symmetry constraints.
The generalized HB*-tree is then presented to consider both hierarchical symmetry
and hierarchical proximity constraints.

2.2 Preliminaries

2.2.1 Symmetry Constraints

To reduce the effect of parasitic mismatches and circuit sensitivity to thermal gra-
dients or process variations for analog circuits, some pairs of modules need to be
placed symmetrically with respect to a common axis, and the symmetric mod-
ules are preferred to be placed at closest proximity for better electrical properties.
The symmetry constraints can be formulated in terms of symmetry types, symme-
try groups, symmetry pairs, and self-symmetric modules. In analog layout design,
a symmetry group may contain some symmetry pairs and self-symmetric modules
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Fig. 2.4 Two symmetry a | b
types (a) symmetric 1
lacement with the vertical sl ’ » ’
Eymmetry axis (b) symmetric b2 b3 1 b2 b" b5
placement with the horizontal - -
symmetry axis ) bs
b, b, b, ¢ bs
1
'.l‘abl.e 2.1 The notations b A module
in this chapter S A symmetry group
(b, ") A symmetry pair
b* A self-symmetric module
b" The representative of a symmetry pair or a
self-symmetric module
n Number of modules
m Number of symmetry groups
(xi, ¥i) The center coordinate of the module b;
w;, h; The width and the height of the module b;
Xi» Vi The coordinate(s) of the symmetry axis (axes)

of the symmetry group S;

with respect to a certain symmetry type. A symmetry type may correspond to a sym-
metry axis in either the horizontal or the vertical direction. Figure 2.4 shows two
different symmetry types with either the vertical or the horizontal symmetry axis.

For the symmetric placement with the vertical (horizontal) symmetry axis shown
in Fig. 2.4a (Fig. 2.4b), a symmetry pair with two modules of the same dimensions
and orientations should be placed symmetrically along the vertical (horizontal) sym-
metry axis. A self-symmetric module whose internal structure is self-symmetric
must have its center placed at the symmetry axis.

The notations listed in Table 2.1 are used throughout this chapter. Let S =
{S1,S2,...,Sm} be a set of m symmetry groups whose coordinate(s) of the sym-
metry axis (axes) is (are) denoted by X; or y; (%; and y;), 1 <i < n. A symmetry
group S; = {(b1,b}), (b2.b5),....(bp. b;,), b3, b3, ..., by} consists of p symme-
try pairs and g self-symmetric modules, where (b, b’ ) denotes a symmetry pair and
by denotes a self-symmetric module. Let (x;, y;) and (x V; ') denote the respective
coordlnates of the centers of two modules b; and b’ 1n a symmetry pair (b;, b’ ),
and (x3, y;) denote the coordinate of the center of the self-symmetric module bs
The symmetric placement of a symmetry group S; with the vertical (horlzontal)
symmetry axis must satisfy (2.1) [(2.2)].

xj+x}=2xfc,~, Vj=12,...,p.
yi =Y Vi=12,...,p.
x5 =%, Vk=1,2,...,q. (2.1)
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xj:x}, Vj=12,...,p.

yi+yi=2x3. VYj=12...p.
Y= Ji, Vk=1,2,....q. (2.2)

2.2.2 Symmetry Island

Before introducing the symmetry island, the effect of the symmetric device layout
on the electrical matching properties of the symmetric devices should be investi-
gated. Pelgrom et al. [29] measured the mismatch between MOS transistors with
various electrical parameters as a function of device areas, distances, and orien-
tations. According to [29], the difference of an electrical parameter P between
two rectangular devices is modeled by the standard deviation as shown in (2.3),
where A p is the area proportionality constant for P, W and L denote the respective
width and length of the device, and Sp denotes the variation of P under the device
spacing Dy.

AZ
02(AP) = W—IZ + S2D2, (2.3)
The device dimensions of modules in a symmetry pair are assumed to be the
same. According to the above equation, the larger the distance between the sym-
metry pair, the greater differences between their electrical properties. Therefore, it
is of significant importance for the symmetric devices of a symmetry group to be
placed in close proximity. Figure 2.5a shows an analog circuit of a two-stage CMOS
operational amplifier containing the differential input sub-circuit. The devices M1,
M2, M3, M4, and M5 in the differential input sub-circuit form a symmetry group
S = {(M1,M2),(M3, M4), M5}. Figures 2.5b, ¢ show two corresponding lay-
outs with different placement styles for the symmetry group S. The layout style in
Fig.2.5c is generally considered much better than that in Fig. 2.5b because the sym-
metric modules of the same symmetry group are placed at closer proximity (or even
adjacent) to each other. Consequently, the sensitivities due to process variations can
be minimized, and the circuit performance can be improved.
Based on the placement with the closest proximity for a symmetry group as
shown in Fig. 2.5¢, the concept of symmetry islands is then introduced with its def-
inition given as follows:

Definition 2.1. A symmetry island is a placement of a symmetry group in which
each module in the group abuts at least one of the other modules in the same group,
and all modules in the symmetry group form a connected placement.

In the example of Fig. 2.6, the symmetry group S in Fig. 2.6a forms a symmetry
island, but that in Fig. 2.6b does not since it results in two disconnected components.
The placement style in Fig. 2.6a is preferred in analog layout design due to its better
electrical properties.
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M3 M4 M6

Fig. 2.5 An example analog circuit and two different layout styles for the circuit. (a) The
schematic of a two-stage CMOS operational amplifier, where the differential input sub-circuit
forms a symmetry group. (b) A layout design of the circuit in (a), where the devices of a sym-
metry group are not placed close to each other. (¢) Another layout design of the circuit in (a),
where the devices of a symmetry group are placed close to each other

a b
by | by’ | bs b by | bs

bs | by

by | by | by | by by | by | by | By

Fig. 2.6 Two symmetric-placement examples of a symmetry group S; = {(b;, b)), (b2, b})}.
(a) S| forms a symmetry island. (b) S; cannot form a symmetry island

2.2.3 Review of B*-Trees

A B*-tree is an ordered binary tree representing a compacted placement, in which
every module cannot move left and bottom anymore. As shown in Fig.2.7, every
node of a B*-tree corresponds to a module of a compacted placement. The root
of a B*-tree corresponds to the module on the bottom-left corner. For each node
n corresponding to a module b, the left child of n represents the lowest, adjacent
module on the right side of b, while the right child of n represents the first module
above b with the same horizontal coordinate.



2 Hierarchical Placement with Layout Constraints 67

Fig. 2.7 (a) A compacted a b
placement (same as @
Fig.2.6a). (b) The B*-tree b*bs | by —— b, @ @
representing the compacted [y r\ @ @
placement in (a) |

by—>b—— }, —> b @ @

Given a B*-tree, we can calculate the coordinate of each module by a pre-
order tree traversal. Suppose the module b;, represented by the node n;, has the
bottom-left coordinate (x;, y;), the width w;, and the height 4;. Then for the left
child, nj, of n;, x; = x; + w;; for the right child, ng, of n;, xx = x;. In addi-
tion, we maintain a contour structure to calculate the y-coordinates. Thus, starting
from the root node, whose bottom-left coordinate is (0, 0), then visiting the root’s
left subtree, and then its right subtree, this preorder tree traversal procedure, a.k.a.
B*-tree packing, calculates all coordinates of the modules in the placement. Using a
doubly-linked list to implement the contour structure, the total packing time is linear
to the number of modules.

2.3 Placement of a Symmetry Group

2.3.1 Automatically Symmetric-Feasible B*-tree

To consider the symmetric placement of a symmetry group and the packing of
the symmetry modules to make a symmetry island, the automatically symmetric-
feasible B*-tree (ASF-B*-tree for short) is proposed. Like B*-trees, the ASF-B*-
tree can represent only compacted symmetric placement; in particular, there exists a
unique correspondence between a compacted symmetric placement of a symmetry
group and its induced ASF-B*-tree which results in a symmetry island.

Before introducing the ASF-B*-tree, the representative of a symmetry pair, the
representative of a self-symmetric module, and the representative B*-tree are de-
fined as follows:

Definition 2.2. The representative b’ of a symmetry pair (b, b;-) is b}.

Definition 2.3. The representative b; of a self-symmetric module b} is the
right (top) half of b7 in a symmetric placement with respect to a (horizontal)
symmetry axis.

For the example of Fig. 2.8, the representative b] of the symmetry pair {b;, b}
is b}, while the representative b{j of the self-symmetric module b; is the right half
of by.

It should be noted that each symmetry pair or self-symmetric module must have
its own representative module. Therefore, the number of the representatives in a
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Fig. 2.8 (a) A placement example of a symmetry group have a vertical symmetry axis.
(b) Selecting a representative for each symmetry pair and self-symmetric module. (¢) The ASF-
B*-tree (also a representative B*-tree) representing the placement of the symmetry group, where
the dash circled nodes represent the left-boundary modules

symmetry group should be the same as the number of symmetry pairs and self-
symmetric modules. The representative B*-tree is then defined as follows:

Definition 2.4. A representative B*-tree is a B*-tree containing only the represen-
tative nodes that correspond to representative modules.

Before explaining how to obtain an ASF-B*-tree by making a representative
B*-tree symmetric-feasible for symmetric placements with vertical and horizontal
symmetry axes, the mirrored placement of the representative modules for a symme-
try group is introduced and defined as follows:

Definition 2.5. The mirrored placement of the representative modules for a sym-
metry group S; is to place the nonrepresentative modules on the mirrored positions
of the representative ones for each symmetry pair or each self-symmetric module in
S; with respect to its symmetry axis (axes). Furthermore, the representative and the
nonrepresentative modules of each self-symmetric module are not disjointed.

Based on the definition of the mirrored placement of the representative mod-
ules, the symmetric-feasible condition of a representative B*-tree for the symmetric
placements can be further defined as follows:

Definition 2.6. A representative B*-tree is symmetric-feasible if the mirrored
placement of the representative modules can be obtained after packing the repre-
sentative B*-tree.

In Fig.2.8a, the modules in the symmetry group S = {(bl,b/l),bs, b3, b5} are
placed symmetrically with respect to the vertical axis. To construct the correspond-
ing representative B*-tree, the representative module of each symmetry pair and
self-symmetric module should be selected with the consideration of the place-
ment on the right-half plane. Figure 2.8b highlights the representative modules,
and Fig.2.8c shows the corresponding representative B*-tree of the symmetric
placement. Each node in the representative B*-tree corresponds to a representative
module.
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To make the representative B*-tree symmetric-feasible, the following lemmas
are derived, which formulate the symmetry conditions for self-symmetric modules
and symmetry pairs.

Lemma 2.1. The representative of a self-symmetric module must abut the symmetry
axis.

Proof. Let S be a symmetry group with a vertical symmetry axis, and b* be a self-
symmetric module in S. The symmetry axis of S is denoted by X, and the center of
b® is denoted by (x*, y*).

Based on (2.1), the symmetry axis X always passes through the center (x*, y*)
of the self-symmetric module 5%, i.e., ¥ = x*. According to Definition 2.3, the rep-
resentative b” of b® is the right half of »°. Therefore, the center (x°, y*) of b* must
be on the left boundary of »”. To keep the symmetric-feasible condition x = x*, b”
must abut the symmetry axis X. The case for a symmetry group with a horizontal
symmetry axis can be proved similarly.

Lemma 2.2. The representative of a symmetry pair not on a symmetry axis is
always symmetric-feasible.

Proof. Let S be a symmetry group with a vertical symmetry axis, and (b,5’) be a
symmetry pair in S. The symmetry axis of S is denoted by x. The respective centers
of b and b’ are (x, y) and (x’, y’), and the respective widths/heights of b and b’ are
w/hand w'/h', where w = w' and h = }’. The representative of the symmetry pair
(b,b')is b’

Given the coordinate of the representative b’ and the vertical symmetry axis X,
the coordinate of the symmetric module b can be calculated by (2.1). We have x =
2 x ¥ —x’ and y = y’. After transposing X to the left side and having the absolute
value on both sides, we have |x — X| = |X — x/|. Since the representative is not on
the symmetry axis, we have [x — X| = |X¥ — x'| > J. It means that the distances
from the symmetry axis to the centers of b and b’ are greater than or equal to half
of the width of b or »’. Since b and b’ are on different sides of the symmetry axis,
b and b’ will not overlap each other. Therefore, the symmetric-feasible condition is
always satisfied. The case for a symmetry group with a horizontal symmetry axis

can be proved similarly.

According to Lemma 2.1 and the boundary constraints [21] in the B*-trees, the
symmetric-feasible representative B*-trees have the following property:

Property 2.1. The left-boundary (right-boundary) constraint for the symmetric
placement with respect to a vertical (horizontal) symmetry axis: the representative
node of a self-symmetric module should always be on the right (left) most branch
of the representative B*-tree.

Based on the above property, the nodes representing the modules on the left
boundary should be on the rightmost branch as shown in Fig. 2.8c.

Similarly, the symmetric-feasible representative B*-tree of the symmetric place-
ment when the symmetry axis is in the horizontal direction can be derived. In this
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Fig. 2.9 (a) A placement example of a symmetry group with a horizontal symmetry axis.
(b) Selecting a representative module for each symmetry pair and self-symmetric module. (¢) The
ASF-B*-tree (also a representative B*-tree) representing the placement of the symmetry group,
where the dash circled nodes represent the bottom-boundary modules

case, we only consider the top-half plane during the placement of the representa-
tive modules. Figure 2.9c shows the representative B*-tree of the symmetry group
S = {(bo, by), b;. b5, b3} having the symmetric placement with respect to the hor-
izontal symmetry axis in Fig. 2.9a. Again, the representatives of the self-symmetric
modules should abut the horizontal symmetry axis, which is on the bottom boundary
of the top-half plane. Therefore, the nodes representing the modules on the bottom
boundary should be on the leftmost branch, as illustrated in Fig. 2.9c.

Based on Definition 2.4 and Property 2.1, an ASF-B*-tree is defined as follows:

Definition 2.7. An ASF-B*-tree is a representative B*-tree, which satisfies
Property 2.1.

Once an ASF-B*-tree is packed, the coordinates of these representatives are
obtained, and the coordinates of their symmetric modules can be further calculated
based on (2.1) and (2.2) with the given coordinates of the symmetry axes, X; and ;.
The symmetric placement of a symmetry group automatically forms a symmetry
island.

Based on Lemmas 2.1 and 2.2, the following theorems are derived:

Theorem 2.1. An ASF-B*-tree is symmetric-feasible in a symmetric placement of a
symmetry group with respect to either a vertical or a horizontal symmetry axis.

Proof. An ASF-B*-tree is symmetric-feasible if all the representatives in the ASF-
B*-tree are symmetric-feasible. There are four kinds of representatives, and the
symmetric-feasible condition for each is defined and proved in Lemmas 2.1 and 2.2.
Therefore, an ASF-B*-tree is symmetric-feasible in a symmetric placement of a
symmetry group with respect to either a vertical or a horizontal symmetry axis.

Theorem 2.2. The packing of an ASF-B*-tree results in a symmetry island of the
corresponding symmetry group.

Proof. Tt is obvious that all the representative modules will form a connected
placement after packing. We set the coordinate(s) of the symmetry axis (axes) to
the left or (and) the bottom boundary (boundaries) of the connected placement
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of the representative modules. The coordinates of the symmetric modules can be
calculated by (2.1) and (2.2). The symmetric modules also form a connected place-
ment, and the boundary of the connected placement also abut the symmetry axis
(axes). Therefore, the whole symmetry group form a connected placement, and each
module in the group abuts at least one of the other modules in the same group. The
packing of an ASF-B*-tree thus results in a symmetry island of the corresponding
symmetry group.

Theorem 2.3. There exists a unique correspondence between a compacted symmet-
ric placement of a symmetry group and its induced ASF-B*-tree.

Proof. According to [6], there is a unique correspondence between an admissible
placement and its induced B*-tree. After obtaining the placement of the representa-
tive modules, the mirrored placement of the symmetric ones is also obtained. The
mirrored placement is also unique. Therefore, there exists a unique correspondence
between a compacted symmetric placement of a symmetry group and its induced
ASF-B*-tree.

Based on the above theorems, a corresponding symmetric placement for an ASF-
B*-tree can correctly and efficiently be found by avoiding searching in redundant
solution spaces. It will be clear later in Sect.2.6 that these advantageous proper-
ties of ASF-B*-trees lead to superior solution quality and efficiency for analog
placement.

2.3.2 ASF-B*-Tree Packing

The packing of the ASF-B*-tree is similar to that of the B*-tree [6], which follows
the preorder tree traversal procedure to calculate the coordinates of the modules.
During the packing, two double linked lists are implemented to keep both horizon-
tal and vertical contour structures. Figure 2.10 shows the packing procedure of the
example ASF-B*-tree in Fig. 2.13a. The bold (red) lines denote the horizontal con-
tour, while the dotted (green) lines represent the vertical contour.

After obtaining the coordinates of all representative modules in the symmetry
group, the coordinates of the symmetric modules and the extended contours can be

@ @ ) @

by by by

(1) (/) (n)
(1) by () by (1) by

Fig. 2.10 The packing procedure including the contour updates of the ASF-B*-tree in Fig. 2.13a
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Fig. 2.11 The generation of the bottom contour of the symmetry island based on the dual vertical
contours. (a) The convex points obtained by traversing the dual vertical contours from bottom to
top. (b) The bottom horizontal contour connected by the convex points

calculated based on either (2.1) or (2.2). Figure 2.13b shows the resulting placement
of the symmetry group and the contours of the symmetry island for the ASF-B*-tree
shown in Fig. 2.13a. As shown in Fig. 2.13b, the symmetry island contains one top
horizontal and dual vertical contours. To further calculate the bottom horizontal con-
tour of the symmetry island, both vertical contours from bottom need to be traversed
to top and keep the convex points as shown in Fig. 2.11a. By connecting the convex
points horizontally, the bottom horizontal contour of the symmetry island can be
obtained as shown in Fig. 2.11b.

2.4 The Hierarchical Framework

2.4.1 Hierarchical HB*-Tree

The hierarchical framework, called hierarchical B*-tree (HB *-tree for short), is pro-
posed to handle the simultaneous placement of modules in symmetry islands and
nonsymmetric modules. In an HB*-tree, the symmetry island of each symmetry
group can be in any rectilinear shapes, and symmetry and nonsymmetric modules
are simultaneously placed to optimize the placement.

Figure 2.12 shows an HB*-tree for the placement in Fig.2.6a. Two symmetry
groups, S1 and S, are represented by two hierarchy nodes, ns, and ns,, and each
hierarchy node contains an ASF-B*-tree that corresponds to a symmetry island in
the symmetric placement.

2.4.2 HB#*-Tree with Rectilinear Symmetry Islands

The symmetry islands are often not rectangular, but are of rectilinear shapes. For
example, in Fig.2.13c, the symmetry island of the symmetry group Sy is of the
rectilinear shape. Therefore, the HB*-tree in Fig. 2.12 should be augmented to han-
dle rectilinear symmetry islands. Wu et al. [33] proposed a method to deal with
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Fig. 2.12 An HB*-tree for the placement in Fig. 2.6a
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Fig.2.13 (a) An ASF-B*-tree of a symmetry group Sy. (b) The horizontal and vertical contours of
the corresponding placement. (¢) The symmetry island and its effective contours. (d) The HB*-tree
for the rectilinear symmetry island

rectilinear modules by slicing a rectilinear module into several rectangular sub-
modules along each vertical boundary. However, it is complicated to maintain the
relationship between the submodules during B*-tree perturbations.

Instead of slicing a rectilinear symmetry island, several contour nodes are in-
troduced to represent top horizontal contour segments of the symmetry island. In
Fig.2.13c, there are three horizontal contour segments, cog, Co1, and coz. The HB*-
tree is augmented by introducing the three contour nodes, n¢g, 7101, 102, as shown in
Fig.2.13d. Each contour node keeps the coordinates of the corresponding horizontal
contour segment. The relationship of a hierarchy node, its contour nodes, and other
regular module nodes is described as follows:

Property 2.2. Properties for an HB*-tree.

1. The left child of a hierarchy node, if any, must be a noncontour node.
2. The right child of a hierarchy node must be the contour node representing the
leftmost top horizontal contour segment of the symmetry island.
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3. The left child of a contour node, if any, must be the contour node representing
the next contour segment on the right side.

4. The children of a regular module node must be a noncontour node.

5. The right child of a contour node, if any, must be a noncontour node.

6. The parent of a contour node cannot be a regular module node.

Proof. Given a symmetry group So, bs, denotes the symmetry island of Sy, ns,
denotes the corresponding hierarchy node, and ng; represents the ith top contour
segment of bg,, from left to right.

1. Since the contour node n¢; represents the ith top contour segment of bg,, it is
impossible for ng; to be the left child of ng, that corresponds to the lowest,
adjacent module on the right side of bg,, based on the B*-tree definition. The
property thus follows.

2. According to the definition of the B*-tree, the right child of ng, represents the
first module above bs,,. Since the top horizontal contour segments of bs,, always
abut bg,, other modules cannot be placed between b, and its top contour seg-
ments. Therefore, the right child of 5, must be a contour node representing the
leftmost top horizontal contour segment of bg,, .

3. By the contour node definition, the contour node n¢ ; represents the ith top con-
tour segment of b, from left to right, and the left child of n¢, if any, is 19 1
representing the next ((i + 1)th) contour segments. If ¢ ; represents the last (the
rightmost) top contour segment, the left child of ng; is empty.

4. Based on the second and the third properties of the HB*-tree, the contour node
no; cannot be the left or right child of a regular module node. The property thus
follows.

5. The right child of the contour node ng; represents the first module above the
ith top contour segment of bg,. If there exists another contour node n¢; that is
the right child of n¢;, both contour segments will overlap each other with n¢;’s
contour segment on top of that of ng;, implying that ng; is not a contour node.
This is a contradiction.

6. Based on the construction of the HB*-tree, the parent of a contour node is either
a contour node or a hierarchy node.

Figure 2.13a shows the ASF-B*-tree of the symmetry group So = {(bo, by),
(b1, b)), (b2, b})}. In Fig. 2.13b, the horizontal and vertical contours are obtained
from the rectilinear outline after packing the ASF-B*-tree. Figure 2.13c shows the
symmetry island and the effective horizontal and vertical contours. The horizontal
contour segments are denoted as cog, co1, and cop from left to right. Therefore, we
have a hierarchy node n 5, representing the symmetry island of the symmetry group
So, and three contour nodes n¢g, 191, and 1, representing the contour segments.
The relationship between the hierarchy node and its contour nodes is shown in the
HB*-tree in Fig. 2.13d.



2 Hierarchical Placement with Layout Constraints 75

2.4.3 HB*-Tree Packing

The HB*-tree packing also adopts the preorder tree traversal procedure. When
a hierarchy node is traversed, the ASF-B*-tree in the hierarchy node should be
packed first to obtain the contours of the symmetry island described previously.
The contours are then stored in the corresponding hierarchy node. During packing a
hierarchy node representing a symmetry island, the best packing coordinate for the
bottom boundary of the symmetry island should be calculated based on the bottom
contour shown in Fig. 2.11b. The left child of the hierarchy node is then proceeded
to be packed. After the left child and all its descendants are packed, the first contour
node of the symmetry island is packed, followed by the second one, and so on. When
packing the contour nodes, their corresponding coordinates should be updated and
the hierarchy node should be replaced in the contour data structure of the HB*-tree.

Figure 2.14a shows an HB*-tree representing 20 modules with two symmetry
groups Sp and . For the packing, the two ASF-B*-trees in ns, and ns, are packed
first, and the rectilinear outlines of the two symmetry islands are obtained. Then, the
nodes, ns, ng, n7, ng, Ny, are packed in the DFS order. The temporal contour list

by b
by 12 bys buy hierarchy node
by by ‘ contour node

b2 b] b[’ bz’ b4 b3

symmetry

by by by module node
bs by
b non-symmetry
bs 8 module node

Fig. 2.14 (a) An HB*-tree representing 20 modules with two symmetry groups Sy and S;. (b) The
resulting placement after packing the HB*-tree
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is < ns, ne, n7, ng >. By calculating the rectilinear outlines between the temporal
contour list and the bottom boundary of the symmetry island Sy, the dead space be-
tween the previously packed modules and the symmetry island can be minimized.
The updated temporal contour list becomes < ng,, n7, ng >. Continuing the pack-
ing procedure, the resulting placement of the HB*-tree is obtained as shown in
Fig.2.14b finally. Although the purpose of the packing is to obtain a compacted
placement, sufficient white space might need to be allocated for the surrounding
wells or guard rings based on the device types, such as NMOS or PMOS transis-
tors. When packing a node, the device type of the corresponding module should be
compared with those of the previously packed modules in the current contour list.
If the device types are different, the currently packed module should be snapped to
a position to reserve sufficient white space for the surrounding wells or guard rings.
The following theorem shows the packing complexity.

Theorem 2.4. The packing for an ASF-B*-tree or an HB*-tree takes linear time.

Proof. Given a design with n modules (including symmetry and nonsymmetry ones)
and m symmetry groups, let 7 be the number of nonsymmetric modules and 1(S;)
be the number of modules in each symmetry group S;, where n(S;) > 1. We have
n=n-+ er_n:1 n(S;).

For the HB*-tree representing the symmetric placement of the given design, there
are m hierarchy nodes, O(}_/~, n(S;)) contour nodes, and /i module nodes. For
the ASF-B*-tree of the symmetry group S; in a hierarchy node, there are O (n(S;))
representative nodes.

First, the packing for the ASF-B*-tree of the symmetry group S; in a hierarchy
node is considered. It consists of two steps. The first step is the packing for all
representative modules. The second step is the calculation of the coordinate of each
symmetric module.

According to [6], the packing for a B*-trees takes linear time, so the time com-
plexity of the first step is O(n(S;)). Since it takes constant time to calculate the
coordinate of a symmetric module, it also takes O(n(S;)) time to compute the co-
ordinates of all the symmetric modules in ;. Combining both steps, we have the
O(n(S;)) time complexity for the packing of an ASF-B*-tree of S;.

Second, the packing for the HB*-tree is considered. If all the symmetry islands
of m symmetry groups are in a rectangular shape, we can ignore the contour nodes
in the HB*-tree, and it takes O(m + i) time to pack the HB*-tree. However, if any
symmetry island is in a rectilinear shape, we need to consider the packing of the
hierarchy node representing this symmetry island, especially the additional contour
nodes.

The bottom contour of the symmetry island of S; is obtained when the corre-
sponding ASF-B*-tree of the symmetry group is packed, and the number of the
bottom contour segments is O(n(S;)). By comparing the current packing contour
segments and the bottom contour segments of the symmetry island from left to right,
it also takes O(n(S;)) time to get the coordinates of the modules in the symmetry
island S;.
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To sum up, it takes O(m + Y -, n(S;) + /i) time to pack the HB*-tree. Since
n =1, n(S;)+n, the packing time can be reduced to O(m + n) time. Since the
number of symmetry group 7 is upper bounded by the number of total modules 7,
the packing time is O(n).

2.5 The Algorithm

The placement algorithm is based on simulated annealing [13]. Given a set of mod-
ules and symmetry constraints as the inputs, an initial solution represented by an
HB*-tree is constructed and then perturbed to search for a desired configuration un-
til a predefined termination condition is satisfied. The cost function, @(P), of the
placement is defined in (2.4), where o and B are user-specified parameters, Ap is
the area of the bounding rectangle for the placement, and Wp is the half-perimeter
wire length (HPWL).

O(P)=axAp + B x Wp. (2.4)

2.5.1 HB*-Tree Perturbation

The following operations are applied to perturb an HB*-tree.

e Opl: Rotate a module.
e Op2: Move a node to another place.
e Op3: Swap two nodes.

In the perturbation, the nonhierarchy nodes have higher probabilities to be se-
lected because rotating, moving, or swapping the hierarchy nodes might incur a big
jump in finding the next solution. It is well known that such a big jump might dete-
riorate the solution quality during the SA process. It should be noted that, due to the
special structure of the HB*-tree, a non-hierarchy node cannot be moved to the right
child of a hierarchy node or the left child of a contour node. The contour nodes are
always moved along with its hierarchy node which cannot be moved individually.

2.5.2 ASF-B*-Tree Perturbation

In addition to the aforementioned Op1, Op2, and Op3 for HB*-tree perturbation, the
operations, Op4 and Op5, are introduced to perturb the ASF-B*-trees. It should be
noted that Property 2.1 should always be satisfied when perturbing an ASF-B*-tree
according to the definition of the ASF-B*-trees in Definition 2.7.

e Op4: Change a representative.
e Op5: Convert a symmetry type.
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Fig. 2.15 Rotating the

i
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2.5.2.1 Module Rotation

When rotating modules in a symmetry group, the corresponding ASF-B*-tree is
unchanged. Two cases of symmetry-module rotation should be considered.

e Casel: Rotate a symmetry pair.
e Case2: Rotate a self-symmetric module.

In Case 1, both modules of a symmetry pair should be rotated at the same time
so that they can still be symmetrically placed with respect to a symmetry axis. In
Case 2, after rotating a self-symmetric module, the shape of its representative should
be updated accordingly as shown in Fig. 2.15.

2.5.2.2 Node Movement

When moving a node to another place in an ASF-B*-tree, the following two cases
should be considered.

e Case l: Move a node representing the representative of a symmetry pair.
e Case2: Move anode representing the representative of a self-symmetric module.

In Case 1, the representative node of a symmetry pair can be moved to anywhere
in an ASF-B*-tree. In Case 2, however, the representative node of a self-symmetric
module can only be moved along the rightmost (leftmost) branch of the ASF-B*-
tree for vertical (horizontal) symmetric placement so that Property 2.1 is satisfied.

2.5.2.3 Node Swapping

When swapping two nodes in an ASF-B*-tree, the following two cases should be
considered.

e Casel: Both nodes represent the representatives of two different symmetry
pairs.

o Case2: At least one node represents the representative of a self-symmetric
module.

In Case 1, two nodes representing the representatives of two different symmetry
pairs can be arbitrarily swapped. However, for Case 2, if at least one of the swapped
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nodes represents the representative of a self-symmetric module, the other node must
be located on the same branch (i.e., the leftmost or the rightmost branch) of the
ASF-B*-tree. Therefore, Property 2.1 is still satisfied after node swapping.

2.5.2.4 Representative Change

The purpose of changing a representative for a symmetry pair or a self-symmetric
module is to optimize the wire length, while the area is kept unchanged after
changing the representative. The representative of either a symmetry pair or a self-
symmetric module can be changed.

e Case l: Change the representative of a symmetry pair.
e Case2: Change the representative of a self-symmetric module.

In Case 1, for a symmetry pair (b;, b’/.), the representative can be changed from
bjto b} or from b} to b;. Figure 2.16 illustrates that changing the representative of
the symmetry pair (by, b}) from b} to by may result in shorter wire length between
b1 and b3. Similarly, in Case 2, for a self-symmetric module b;, we can change
its representative by flipping it horizontally or vertically according to its symmetry
axis. As illustrated in Fig. 2.17, changing the representative of the self-symmetric
module b} by flipping it horizontally may result in shorter wire length between b}
and b3. Obviously, each operation takes constant time.

2.5.2.5 Symmetry-Type Conversion

For symmetry-type conversion of a symmetry group, both conversions between the
vertical symmetry and the horizontal one should be considered.

e Casel: Convert the symmetry type from vertical symmetry to horizontal one.
e Case2: Convert the symmetry type from horizontal symmetry to vertical one.

by | by by | by
Fig. 2.16 Changing the
representative of the b | bs
symmetry pair (b, b}) from b b/ by | b,
b} to by may result in shorter
wire length between b, and b3 ' j
1 1
Fig. 2.17 Changing the b by by | by
representative of the by by
self-symmetric module b} L o
. . 1 b S b S 1
may result in shorter wire 1 0y YA

length between b} and b3 : :
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Fig. 2.19 Converting the symmetry type from (a) horizontal symmetry to (b) vertical symmetry

To convert the symmetry type of a symmetry group from vertical symmetry
to horizontal one or vice versa, we first rotate every module including the repre-
sentative, and then swap the left and the right children of each node in the given
ASF-B*-tree. Figures 2.18 and 2.19 show the respective examples for the conver-
sions of Cases 1 and 2.

It should be noted that the symmetry type is usually predefined based on the
power/ground lines or signal flows in the layout by the analog designers. Therefore,
Op5 is seldom applied in real applications.

2.5.3 Contour Node Related Updates

Once an ASF-B*-tree is perturbed, the number of the corresponding contour nodes
in the HB*-tree might be changed. The tree structure might have to be updated
accordingly. If the number of contour nodes representing the horizontal contour
segments of the symmetry island is increased, the structure of the HB*-tree can
be kept unchanged. However, if that of the contour nodes is decreased, some other
nodes in the HB*-tree might not have parents. Such nodes, called dangling nodes
should be reassigned to new parents. To keep the relative placement topology before
and after perturbing an ASF-B*-tree, the nearest contour node is searched for each
dangling node. If the nearest contour node has no right child, it is the parent of the
dangling node, and the dangling node will be its right child. If the nearest contour
node has a right child, the leftmost-skewed child of the right child is traversed.
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Fig. 2.20 An example of updating contour-related nodes. (a) An HB*-tree and its corresponding
placement containing the symmetry group Sy = {(bo. ;). (b1.b})}. (b) The intermediate HB*-
tree after perturbing the ASF-B*-tree in the hierarchy node 7, and the corresponding symmetry
island of Sy. The contour-related nodes, n3 and 75, become dangling. (¢) The HB*-tree after up-
dating the contour-related nodes and its corresponding placement

The leftmost-skewed child will be the parent of the dangling node, and the dangling
node is assigned to its left child. It takes amortized constant time to update the
contour related nodes.

Figure 2.20 shows an example of updating contour-related nodes. In Fig. 2.20a,
there are initially three contour nodes representing the three top contour segments
of the symmetry island of the symmetry group Sy. After performing Op2 to perturb
the ASF-B*-tree in ng,, the representative node n} is moved from the left child
to the right child of the other representative node ng. The placement of Sy forms
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a new symmetry island as shown in Fig.2.20b, which has only one top contour
segment. Therefore, the contour nodes 791 and ng, disappear, and the nodes n3 and
ns become dangling nodes. We first find the nearest contour node of n3, which is
ngo. Since ngg already has the right child n,, the leftmost skewed child of n, should
be searched. In this case, we directly assign 73 to be the left child of 1, because n;
has no left child. After n3 is assigned to a proper tree location, the nearest contour
node of n5 is then searched, which is also n¢g. Since n¢g already has the right child
n,, the leftmost skewed child is searched, which is n3. Finally, n3 is assigned to be
the parent of n5, and ns is assigned as the left child of n3.

2.6 Comparisons with Other Approaches

In this section, we compare existing topological analog placement methods con-
sidering symmetry constraints, based on theoretical and empirical studies. The first
subsection explores the time complexities of the perturbation and packing oper-
ations adopted by the existing topological methods, and the second subsection
conducts experiments based on the simulated annealing algorithm and two sets of
commonly used benchmarks.

2.6.1 Comparisons of Time Complexities

The problem of analog placement considering symmetry constraints has been ex-
tensively studied in the literature. Most of these works used the simulated annealing
(SA) algorithm [13] in combination with floorplan representations to handle sym-
metry constraints. These representations can be classified into two major categories:
(1) the absolute representation and (2) the topological representation.

For the absolute representation first proposed by Jepsen and Gellat [12], each
module is associated with an absolute coordinate on a gridless plane. It operates
on a module by changing its coordinate directly. The KOAN/ANAGRAM 1I [9],
PUPPY-A [25], and LAYLA [16] systems all adopted the absolute representation to
handle the placement of analog modules. The main weakness of the absolute method
lies in the fact that it may generate an infeasible placement with overlapped mod-
ules. Therefore, a postprocessing step must be performed to eliminate this condition,
which implies a longer computation time.

Recently, most previous works apply topological floorplan representations due to
its flexibility and effectiveness. The most popular floorplan representations include
the B*-tree [6], Sequence Pair (SP) [28], and TCG [18].

For the B*-tree representation, Balasa et al. derived its symmetric-feasible condi-
tion [1]. To explore the solution space in the symmetric-feasible B*-trees, they aug-
mented the B*-tree [6] using various data structures, including segment trees [3, 5],
red-black trees [4], and deterministic skip lists [26], to reduce the packing time.
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Table 2.2 Comparisons of popular analog placement approaches considering
symmetry constraints based on topological floorplan representations. n: the
number of modules; m: the number of symmetry pairs

Analog placement approach Perturbation Packing
considering symmetry constraints time time
Bi#-tree [1] O(lgn) 0n?)
B*-tree + Seg. tree [3] O(lgn) O(nlgn)
BT + RB-tree [4] O(lgn) O(nlgn)
BT + Skip list [26] O(lgn) O(nlgn)
Sequence-pair (SP) [2] o(l) 0(n?)
SP + LP [14] o(l) 2(n?)
SP w. dummy [31] o(1) 0o(n?)
SP w. priority queue [15] o(1) O(m-nlglgn)
TCG-S [22] 0(n?) on?)
TCG [34] O(n) o(n?)
B*-tree w. ESF + LP [30] N/A 2(n?)
ASF-B*-tree + HB*-tree O(lgn) O(n)

More recently, Strasser et al. [30] proposed a deterministic approach based on the
B*-tree representation [6] with enhanced shape functions (ESF) and linear program-
ming (LP).

For the SP representation, Balasa et al. also derived its symmetric-feasible con-
dition [2]. By taking advantage of the symmetry-feasible condition, Koda et al. [14]
proposed a linear programming based method. Tam et al. [31] introduced a dummy
node and additional constraint edges for each symmetry group after obtaining a
symmetric-feasible sequence pair. Krishamoorthy et al. [15] proposed an O(m -
nlglgn) packing-time algorithm by employing the priority queue, where m is the
number of symmetry groups and # is the number of modules.

For the TCG representation, Lin et al. presented its symmetric-feasible con-
ditions [22]. However, it requires O(n?) time to perturb and pack TCGs. Zhang
et al. [34] further improved the perturbation time of the TCG representation from
O(n?) to O(n).

Table 2.2 compares aforementioned analog placement approaches considering
symmetry constraints based on topological floorplan representations. It should be
noted that “ASF-B*-tree + HB*-tree” is the fastest algorithm among all these pop-
ular approaches, while “SP + LP [14]” and “B*-tree w. ESF + LP [30]” take at
least £2(n?) packing time due to LP. Since the approach [30] explores all placement
configurations for a small set of device modules and groups in each hierarchy, the
perturbation of the B*-tree is not required.

2.6.2 Comparisons of Experimental Results

The placement algorithms were implemented in the C++ programming language
on a 3.2GHz Intel Pentium4 PC under the Linux operation system. Two sets of
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Table 2.3 MCNC benchmark circuits

Circuit # of mod. # of sym. mod. Mod. area (mm?)
apte 9 8 46.56
hp 11 8 8.83
ami33 33 6 1.16
ami49 49 4 35.45

Table 2.4 Industry benchmark circuits

Circuit # of mod. # of sym. mod. Mod. area (10° um?)
biasynth_2p4g 65 8+ 1245 4.70
Inamixbias_2p4g 110 16+6+6+12+4 46.00

experiments were performed: one is based on the four MCNC benchmarks (apte,
hp, ami33, and ami49) used in [22], and the other consists of two real industry ana-
log designs (biasynth 2p4g and Inamixbias_2p4g) used in [5] and [14]. (Note that
they both were extracted by Koda et al. [14] from Figs.9 and 10 in [5].) Table 2.3
lists the names of the MCNC benchmark circuits (“Circuit”), the numbers of mod-
ules (“# of Mod.”), the numbers of symmetry modules (“# of Sym. Mod.”), and the
total module areas (“Mod. Area”). Table 2.4 lists the names of the industry bench-
mark circuits (“Circuit”), the numbers of modules (“# of Mod.”), the numbers of
symmetry modules (“# of Sym. Mod.”), and the total module areas (“Mod. Area”).

Based on simulated annealing, a left-skewed HB*-tree was constructed as the
initial solution. The initial temperature Ty was calculated by (2.5), where A,y is
the average uphill cost and P is the initial probability to accept uphill solutions.
During the simulated annealing process, the temperature was reduced at the rate of
0.9 for each subsequent pass, and 20,000 iterations were performed at each temper-
ature/pass.

To = —Aug/In P. 2.5)

In the first set of experiments, the HB*-tree is compared with the following
works: sequence pairs [2], segment trees [3], TCG-S [22], and sequence pairs with
dummy nodes [31]. Table 2.5 lists the names of the MCNC benchmark circuits
(“Circuit”), the total areas (“Area”), and the runtimes (‘“Time”) for the aforemen-
tioned works and the HB*-tree with area optimization alone, same as the other
works, and with simultaneous area and wirelength optimization. The results of the
works [2, 3,22] are taken from the paper [22], and those of [31] are based on the
package provided by the authors. The results show that the HB*-tree achieves aver-
age area reductions of 3%, 2%, 1%, and 2% over [2], [3], [22], and [31], respectively.
Noted that the improvements should not be considered marginal since the other
works have pushed the solution quality close to their limits. The main reason for the
area improvement over the other works is that the HB*-tree benefits from both the
symmetry-island formulation and the short packing time of the proposed floorplan
representations. Based on the symmetry-island formulation, the undesired solutions
are pruned, and thus the time is saved to search inferior solutions during simulated
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annealing. With the short packing time, it is possible to search for more solutions
within the same time limit. Consequently, the HB*-tree has greater possibility to
find better solutions in shorter running time. For the running time, the HB*-tree
is approximately 4.09x faster than [31]. Since all the other works ran on different
platforms, it is not easy to report the speedups of our algorithm. Nevertheless, it is
obvious from the table that the HB*-tree runs much faster than the other works.

In the second set of experiments, the HB*-tree is compared with sequence pairs
in [2], segment trees in [5], sequence pairs with linear programming in [14], and
sequence pairs with dummy nodes in [31]. Table 2.6 lists the names of the indus-
try benchmark circuits, the total areas and the runtime for sequence-pairs, segment
trees, sequence-pairs with linear programming, sequence-pairs with dummy nodes,
and HB*-tree. The results show that the HB*-tree achieved average area reductions
of 7.1%, 6.6%, 1.6%, and 10.3% over [2], [5], [14], and [31], respectively. In some
applications, the orientations of analog device modules may not be allowed to be
changed. To make fair comparisons with the other works, the HB*-tree was also
performed without module rotation. The results show only 2.4% and 4% area over-
heads without the rotation, compared to the results of sequence pairs with linear
programming [14] and the HB*-tree, respectively. For the running time, the HB*-
tree achieves significant speedups over the other works, which is approximately
39.88x and 5.68x faster than those in [14] and [31], respectively. Again, the other
works [2, 5] ran on different platforms, and thus the corresponding speedups are
not reported, yet it is obvious that the HB*-tree runs much faster than the previ-
ous works. It is clear from the two experiments that the HB*-tree achieves the best
quality and efficiency than all the other works.

Figure 2.21 shows the resulting placement of ami49 with simultaneous area and
wirelength optimization, which contains the symmetry group S = {(b19, b21),
b3y, bsg ). Figure 2.22 shows the resulting placements of biasynth 2p4g without
module rotation, while Fig.2.23 shows the resulting placements of biasynth_2p4g
with module rotation.

2.7 Advanced Symmetry Constraints

For some analog layout applications, the symmetry constraints could be even more
complex than what we have considered. The handling of two kinds of such symme-
try constraints is summarized in the following:

2.7.1 Multiple Symmetry-Group Alignment

In some analog layouts, the symmetry axes of different symmetry groups are re-
quired to be aligned to share a common symmetry axis. To align multiple symmetry
groups with respect to a common vertical (horizontal) symmetry axis, a zero-height
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Fig. 2.21 The resulting
placement of ami49 with
simultaneous area and | A !

wirelength optimization, D\l
which contains the N 4V ( ‘
symmetry group, e N 7NN
S = {(br9, bn1), b3y, big} =NV Al /

(zero-width) dummy block can be inserted right at the left (bottom) of each to-be-
aligned symmetry island. A dummy node is then introduced as the parent of the
hierarchy node representing the corresponding symmetry island in the HB*-tree,
where the hierarchy node is the left (right) child of the dummy node. By adjusting
the width (height) of each dummy block, the symmetry islands of different symme-
try groups can be aligned with respect to a common vertical (horizontal) symmetry
axis. Such an alignment technique is an extension of the work [32].

2.7.2 Consideration of NonSymmetry-Island Placements

In addition to the preferred symmetry-island placements in analog layouts, the
proposed ASF-B*-trees and HB*-trees can also generate a nonsymmetry-island
placement by integrating nonsymmetric modules as a self-symmetric module clus-
ter or a symmetry pair consisting of two module clusters in a symmetry group
represented by an ASF-B*-tree. Figure 2.24 shows two examples, including the
symmetric placements and the corresponding ASF-B*-trees, which integrate non-
symmetric module clusters into symmetry groups. In Fig. 2.24a, the nonsymmetric
modules, b3 and b4, form the self-symmetric module cluster C; in the symmetry
group S. After packing the B*-tree representing the placement of the nonsymmetric
modaules, the representative node n'c1 is introduced in the ASF-B*-tree representing
a symmetric placement of S;. Similarly, in Fig.2.24b, the nonsymmetric modules,
b7, bg, and by form two clusters, C» and Cj, as a symmetry pair in the symmetry
group S». In the corresponding ASF-B*-tree, the representative node n’c2 is intro-
duced to denote the larger dimensions of the placements of C, and C;.
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Fig. 2.22 The resulting placement of biasynth_2p4g without module rotation
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Fig. 2.24 Integrating nonsymmetric modules into symmetry groups. (a) The nonsymmetric
modules form the self-symmetric module cluster C; = {b3, b;} in the symmetry group S| =
{(b1,b)), (b2, b}), C;'}. (b) The nonsymmetric modules form two clusters, C; = {b7, bg} and
Cj = {bo}, as a symmetry pair in the symmetry group S, = {b%, (bs, by), (C2, C)}
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2.8 Hierarchical Constraints

2.8.1 Hierarchical Symmetry

In some fully symmetric analog designs, such as the example in Fig. 2.3, the de-
vice layouts should be hierarchically symmetric. A symmetry group S; may also
contain a self-symmetry group S]S. and/or a symmetry-group pair (Sk, S} ). Conse-
quently, the top-level symmetry group St1,, contains all device modules and other
symmetry groups hierarchically. Based on the proposed symmetry-island and tree
formulation, a hierarchical tree structure [20] that mixes both the ASF-B*-trees
and the HB*-trees can be constructed. The optimized fully symmetric placement
with the hierarchical symmetry constraint can then be obtained by searching a de-
sired configuration of the tree structure and packing the trees to form the symmetry
islands hierarchically.

2.8.2 Hierarchical Clustering/Proximity

Besides handling the symmetry constraints based on the symmetry-island formula-
tion, the proposed hierarchical framework, HB*-trees, can also effectively manage
the hierarchical clustering constraint in analog placement or mixed-signal floorplan-
ning based on the intrinsic hierarchical tree structure.

Let C = {C1,C3,...,C;} be a set of device module clusters. Each cluster con-
tains at least two modules, or one module and one of the other clusters, or two of
the other clusters. If the cluster C; contains the cluster C;, C; is called a super-
cluster, and C; is called a subcluster. The hierarchical clustering constraint limits
all the device modules and/or subclusters of the same super-cluster to a connected
placement.

Top HB*-tree

HB*-tree B

ASF-B*-tree A

Proximity hierarchy node

O Symmetry hierarchy node

™\
() Contour node

HB*-tree C

Fig. 2.25 Example HB*-trees modeling the hierarchical floorplan of the design in Fig. 2.2
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To formulate the hierarchical clustering constraint using the HB*-trees, each of
the hierarchy nodes nc,, nc,, ..., nc, denotes a cluster. Each hierarchy node nc;
further contains another HB*-tree to represent the topological relation of the device
modules and/or the subclusters in the supercluster denoted by n¢; . After hierarchi-
cally constructing the HB*-trees, the placement can be optimized by searching a
desired configuration of the HB*-trees while the inner placement of each cluster is
connected.

Figure 2.25 shows example HB*-trees modeling the hierarchical placement of
the design in Fig.2.2. Consequently, the number of the HB*-trees will be equal to
that of the subcircuits plus one for modeling the top design. When perturbing the
HB*-trees, one of the HB*-trees should be selected first, and then any perturbation
operation for the B*-tree can be applied to the selected HB*-tree. When converting
the HB*-trees to a hierarchical placement, the packing procedure is also similar to
that for the B*-tree, which adopts a preorder tree traversal. Once a hierarchy node is
traversed, the nodes in the HB*-tree linked by the hierarchy node will be traversed
before traversing the next node in the HB*-tree to which the hierarchy node belongs.
During the HB*-tree packing, the properties of the proximity constraint should also
be considered [20].

The hierarchical framework based on the HB*-tree can easily integrate
other placement approaches for different subcircuits with different placement
requirements. Besides integrating the ASF-B*-tree, the HB*-tree can also integrate
both the corner block list (CBL) and the grid-based approach in [24] for a common-
centroid placement, the signal-flow driven approach [17] for the placement of a
specific subcircuit with clear signal flows, and other placement approaches.

2.9 Conclusion

This chapter has introduced hierarchical analog placement framework, HB*-tree,
with the consideration of layout design hierarchy and hierarchical placement
constraints. Different from the existent approaches with at least log-linear-time
algorithms, a linear-time packing algorithm has been presented based on the
symmetry-island formulation that prunes the solution subspace formed with
nonsymmetry-island placements. Experimental results have shown that such ap-
proach achieves high quality and runtime efficiency for analog placement.
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Chapter 3
Deterministic Analog Placement by Enhanced
Shape Functions

Martin Strasser, Michael Eick, Helmut Graeb, and Ulf Schlichtmann

Abstract For analog integrated circuits, generating a layout represents the
bottleneck in the design flow. To automate the layout step, it is necessary to create
placements with respect to various constraints automatically. Since the constraints
can be numerous, an automatic generation of the layout constraints is crucial as
well. In this chapter, a comprehensive and deterministic methodology for analog
layout design automation is presented. An approach to automatically generate con-
straints for analog circuits is described. It recognizes building blocks, e.g., current
mirrors, and symmetry conditions in the circuit and, with prioritized rules, generates
constraints and hierarchy information. Then, a placement algorithm, called “Plan-
tage”, is presented, which is capable to handle all relevant constraints. It uses the
hierarchy information of the previous step to guide an enumeration process. Plan-
tage calculates a Pareto front of placements with respect to different aspect ratios.
The results show high quality in terms of area and postlayout circuit performance.

3.1 Introduction

Modern integrated circuits often contain digital as well as analog parts. The design
of the analog part is usually a time consuming step. While digital circuits can be
designed using a variety of layout approaches, analog circuits are still manual and
error-prone tasks for the designers in many cases.

The placement and the routing of an analog circuit have a severe impact on the
function and performance. Thus, layout constraints are defined to make sure that
the circuit fulfills the performance specifications. As an example, unbalanced para-
sitics, being a result of asymmetrical layout, may be detrimental to the power supply
rejection ratio or the offset voltage of an analog amplifier.

The number and diversity of constraints imposed on an analog circuit prevent
approaches used in the digital domain from being used for analog design.
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3.1.1 Definitions

In this section, the terms used throughout this chapter are defined.

Definition 3.1 (Device). A device d is an elementary part of the circuit, e.g., a
transistor. The set of all devices is referred to as D in this chapter.

Definition 3.2 (Module). A module m is the smallest item the placer has to deal
with. It is represented by a rectangle on the placement plane. Modules will be re-
ferred to by Latin lowercase letters in the following.

A device consists of one to several modules. For example, several physical tran-
sistors (represented by different modules) may be interconnected to form one logical
transistor (represented by a single device). M is the set of modules. For every mod-
ule m € M, the lower left corner coordinates are described by x,, and y,,, and the
width and height are referred to as wy, and h,,, respectively.

Definition 3.3 (Center of gravity of a module). The coordinates of the center of
gravity (COG) of a module are defined as

w
XcoG(m) = Xm + =+, 3.1

as well as P
ycoc(m) = ym + 7’" (3.2)

Using vectors, the center of gravity can be formulated as xcog(m):

X m

Xcog(m) = ( coa )) : (3.3)
yeog(m)

Definition 3.4 (Distance between modules). The distance of module /2 from mod-
ule n is denoted by d(m,n), defined as the minimum of the vertical and the
horizontal distance between m and n:

d(m,n) = min(dho(m, n), dyer(m, n)), (3.4)
Wm + wp

dhor(m, n) = max (|xcoc(m) — Xcog(n)| — — O) , 3.5)
hy + hy,

dyert(m, n) = max (lyCOG(m) — Ycog(n)| — +, O) . (3.6)

Definition 3.5 (Group). A group G is defined as a set of modules or as a set of
groups, which are intended to be placed in close proximity.

A group G consisting only of modules, which means G® C M, is called a basic
group. The set of all basic groups is called G°, which is the power set of M without
the empty set:

G € G = P(M)\{D}. (3.7)
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A group G', i > 1, only contains other groups G, G;~". It is called a hierar-

chical group of hierarchy level i . The set of all possible groups for hierarchy level i
is called G, which is the power set of G'~! without the empty set:

G e =PGMH\{2}. (3.8)

A function modulesOf(G) € M is defined, which returns the set of all modules
of group G. It is defined recursively:

, ifGeg®
modulesOf(G) = () modulesOf(C) else. (3.9)
CeG
Each module is allowed to be part of only one group:
.‘;’kmodulesof(Gj. ) N modulesOf(G}) = @. (3.10)
J
The set of all possible groups G can be defined as:
g=|Jg" (3.11)
i

All groups are referred to by Latin capital letters in this chapter.

Definition 3.6 (Center of gravity of groups). Similar to Definition 3.3 of the cen-
ter of gravity of modules, a center of gravity of a group can be defined:

ZmEmodulesOf(G) Wi+ hom - XCOG(m)

xcoG(G) = (3.12)

ZmEmodulesOf(G) Win * hm

Definition 3.7 (Module variants). For any module m € M, there may be several
different alternative layouts. The bounding rectangle of an alternative layout of a
module is called a module variant. The set of all module variants for m is referred
to as Vi, a single module variant is denoted by v,,.

Examples for module variants are different numbers of gate fingers of transistors.

3.1.2 Analog Circuit Placement Requirements

In common layout approaches, the placement is generated before routing the circuit.
The placement is subject to various constraints. These constraints are formulated
to improve the matching of devices, which are intended to be identical by design.
Matching can be considered to be an umbrella term of different means to reduce the
influence of variations of the process and operating conditions, as well as parasitics.
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Variant constraints restrict the combination of possible realizations (variants)
of circuit modules to ensure matching of devices. When a module has a set of
possible variants, the placement algorithm faces a higher degree of freedom and
better placements can be achieved. In practice, however, the combination of the
different variants is not completely free. For example, a variant constraint is for-
mulated to make sure that both transistors of a differential pair are realized with
the same number of gate fingers.

Device-proximity constraints are used to make sure that a group of modules is
placed in close proximity. Due to local variations during the fabrication process,
the parameters of the devices show unwanted deviations from each other (also
referred to as “mismatch”), which can result in performance degradation. Vari-
ations in the operating conditions, such as supply voltage or temperature, may
have the same effect. Placing matched devices in close proximity can limit the
impact of these variations [1].

Symmetry constraints are used for geometric and electrical reasons. They allow
for symmetric routing and reduce the sensitivity to on-die thermal gradients. In
addition, parasitic resistors and capacitors can be balanced on both halves of a
differential circuit [2, 3].

The module i’ denotes a module that is to be placed symmetrically to some
module ;. For self-symmetrical modules, i is equal to i’. Figure 3.1a shows an
example of symmetry constraints, where all modules are arranged with respect
to a vertical symmetry axis. For a vertical symmetry, linear equations can be
formulated as follows:

1 wi Wi
V,- (5 (x,' + 71 + xir + 71) = xsym) s (313)
hi hie

The equations for a horizontal symmetry axis can be defined analogously.
Common centroid constraints are formulated to arrange the centers of gravity for
groups of modules. It is a widely used constraint, which improves the beneficial

a xs‘ym b
S — e
w1 w2 w3 = wy/ wy Wy
ft 1 \ 1 ta—s]
f
W &= 3
<<= ;
I [l 1 2 3=3 2/ 1
<= -L<s i
|
i

g.3.1 Placement with symmetry (a) and common centroid (b) constraint
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effects of the symmetry constraint [2]. For example, a differential pair can be
formed by 16 transistors and arranged as shown in Fig. 3.1b. The transistors al-
a8 (b1-b8) are connected in parallel. All transistors have the same size and the
two groups of transistors share the same center of gravity. For these two groups
of modules, 4 and B, a common centroid constraint can be defined as follows:

xcoG(A4) = xcog(B). (3.15)

Beyond those constraints, it is necessary to consider additional constraints for
minimum distances for technological reasons:

o Minimum distance constraints are formulated if modules must not abut on each
other directly, but need a minimum distance. These constraints can be defined
for technological reasons. There are two different types of minimum distance
constraints, linear minimum distance constraints, and piecewise-linear minimum
distance constraints. As an example, some transistors within the same well may
abut directly, but a minimum distance is required from transistors outside of the
well. Formally, this constraint can be defined as a linear inequality. Piecewise-
linear minimum distance constraints are required for special devices.

— Linear minimum distance constraints: To manufacture a CMOS circuit,
p-channel transistors usually need to be located in wells. Furthermore, a set
of modules can be surrounded by a guard ring to prohibit latch-up effects.
For both wells and guard rings, area needs to be reserved in the direct sur-
rounding. Figure 3.2 depicts a set of modules A with a guard ring. For the
example of Fig.3.2, the guard ring has a width of d,. Thus, a minimum
distance constraint is formulated to make sure that all modules m within the
set of modules A keep a distance d(m,n) > dyin(m,n) = d, from all other
modules (n ¢ A):

A d(m,n) > dpin(m,n), dupn(m,n) > 0. (3.16)
meA,n¢A

The constant minimum distance between m and n is denoted by dp, (m, n).
The maximum distance required from module m to any other module is de-
noted by dpax(m):
V dax(m) = dmin(m, ). (3.17)
m##n

Since this minimum distance constraint is defined by a linear inequality, we
refer to this constraint as a linear minimum distance constraint.

Jm

Fig. 3.2 Group A
surrounded by a guard ring dg i
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Fig. 3.3 DTI transistors at
different distances:

(a) directly abutting, (b) with
stretched DTIs, (¢) with
extended minimum distance
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O Module

O DTI

{"t Unstretched
i1 Stretched

— Piecewise-linear minimum distance constraints are formulated for special

devices which require more complex minimum distance constraints. A good
example for such constraints are transistors with deep trench isolation (DTT).
DTI transistors can be used for switching high voltages on a chip [4]. Each
such transistor is directly surrounded by a DTI. Since the manufacturing
process of DTIs is complex, different layout restrictions apply. Figure 3.3
illustrates restrictions for distances between DTI transistors, which must be
considered during the placement step.

Neighboring transistors can share DTIs if they are placed in close proximity.
Figure 3.3a shows two modules being placed side by side, with a distance
d(n,m) = 0. The vertical DTI in the middle is shared by both modules.
Since the distance from the DTI to the transistor influences its electrical
parameters, it is not allowed to arbitrarily modify the position, sizing, or shape
of the DTIs. In common processes, the DTIs surrounding transistors have to
be rectangular. It is allowable to stretch their width and height by a few per-
cent. In case the distance between the transistors needs to be increased (for
example, due to a symmetry constraint), the transistors can still share a DTI
between them within certain boundaries. Figure 3.3b shows two transistors
sharing the vertical DTT in the middle, with both DTIs stretched to the limit
on the right (s,,,) and left (s ;,) side of n and m, respectively. In this case, the
total stretching of both DTIs is d(n, m) = Srn + S1,m = Smax-

In case the required distance between the two transistors exceeds the stretch-
ing limit of sp,y, the DTI between them can no longer be shared. Due to
manufacturing considerations, there is a minimum distance defined between
two parallel trenches. For this reason, the transistors must keep an extended
minimum distance of dpry in that case, as shown in Fig. 3.3c.

Summing up, there are three ranges of the distance between two DTI transis-
tors. The first range starts from directly abutting transistors, with a distance
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Fig. 3.4 Allowable distance
ranges between two DTI 0 Allowed
transistors it

Range | 1 2 3

£
st allowed

1T Smax
+ dpri

> d

of 0, sharing a DTI. It ends when the DTIs of both transistors are stretched
to the limit sy.x. There, the second range starts and ends at the minimum dis-
tance between two DTIs, i.e., dprr. The second range can be considered as a
forbidden zone for the distance between two DTI transistors. The third range
is defined from the positive end of the second range to infinity. The ranges of
a distance d are depicted in Fig. 3.4, and defined by (3.18):

d <Smax V d>dpmr. (3.18)
——— ——
Range 1 Range 3

These minimum distance constraints can no longer be formulated by single
inequalities. There are at least two inequalities for disjoint ranges. Thus, we
refer to these constraints as piecewise-linear minimum distance constraints.

The placement constraints are also crucial for the routability of the design. For
example, in differential circuits, the devices often need to be connected by sym-
metric wires to balance parasitic resistances and capacitances. A prerequisite for
symmetric routing is a symmetric placement.

In general, the layout of a circuit needs to be compact for economic reasons. As a
conclusion, successful analog layout automation algorithms must produce compact
results, considering various constraints.

3.1.3 Context of This Work

A number of methods for automatic placement constraint generation have been
published.

The methods proposed in [5—7] evaluate sensitivity analyses to identify para-
sitics, matching and symmetry constraints of a circuit. The authors of [8] proposed
a method that classifies the nets of a circuit according to their susceptibility. This
classification is then used to identify analog building blocks (e.g., current mirrors)
and their matching constraints. The algorithms presented in [9—12] use a structural
analysis of the circuit to find symmetry in the circuit. The underlying subgraph iso-
morphism problem is solved by graph labeling [9, 12] and recursive detection of
symmetric pairs [10, 11].

The generation of sizing constraints is a related problem, because both have to
consider matching requirements. The authors of [13] present a method to find basic
building blocks defined by a library from the netlist of a circuit. The building blocks
are used to assign sizing constraints.
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Since the beginning of the 1980s, different approaches for integrated analog
circuit placement have been published. The approaches can be classified by the rep-
resentation they use to store the location of the modules.

The approaches of [14—17] use absolute coordinates of the modules. All
constraints are directly formulated using the coordinates. These approaches gen-
erate placements using simulated annealing [18]. Minimum distance constraints
can be considered by a special term in the cost function, being O if the constraints
are met, and greater than 0, if the constraints are violated. Because of the high
dimensionality of the search space of R?" for N modules, the computation times
based on this representation are high.

In contrast, topological representations have a much smaller search space [19],
while still being able to store all admissible [20] placements. These represen-
tations do not allow overlaps. Prominent topological representations include the
O-Tree [20], B*-tree [21, 22], H/ASF-B*-Tree [23] (see Chap. 2), sequence pair
[24], bounded sliceline grid [25], corner block list [26,27], and TCG-S [28]. The
placer Plantage, presented in this chapter, is based on B*-trees.

An example of a B*-tree and the corresponding placement is shown in Fig. 3.5.
Each node in a B*-tree represents a module. B*-trees use topological relations to
encode a placement [21]. The rules to generate a placement without constraints can
be summarized as follows: Any node in a B*-tree may have up to two child nodes:
One left and one right node. Each node represents a module. The module of a left
child is placed above the module of the parent node. The module of the right child
is placed right of the module of the parent node. In case the y projections of two
modules overlap, the module which comes first in a preorder traversal of the B*-tree
is placed left of the other module. The preorder traversal of the tree in the example
of Fig. 3.5 is ABCD. A and B are placed to the left of C, B is placed to the left of D.
The resulting placement is compacted to the lower left corner.

As described in Chap. 1 of this book, constraints can be used efficiently to restrict
the solution space [22, 29-32]. The authors of these papers propose Simulated
Annealing algorithms that consider symmetry constraints with a restricted solu-
tion space using O-trees [29], B*-trees [22], sequence pairs [30,31], and sequence
pairs with Johnson’s priority queue [32]. In [23], a different approach is presented,
based on two modifications of the B*-tree: the first is to handle symmetry con-
straints with so-called symmetry islands and the second to combine these symmetry
islands with the rest of the modules. The authors of [33] presented a placement
algorithm with symmetry and other placement constraints. The concept of dummy
nodes in constraint graphs is introduced to fulfill symmetry constraints. All previous
works mentioned here use simulated annealing to optimize placement. In contrast,
Plantage is deterministic.

“below of” D

Fig. 3.5 B*-Tree and its “below of”
corresponding placement

“left of” A
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3.1.4 Contributions

Analog integrated circuits are hierarchically built [1, 34]. For example, an
operational amplifier can be decomposed into a differential input stage and a
output stage. The input stage in turn can be divided into a differential pair and
several current mirrors. This hierarchy can be described as a hierarchy tree, whose
leaf nodes are the devices of the circuit. The root node of this tree represents the
whole circuit. All inner nodes of this hierarchy tree including the root node are
denoted as groups.

In this chapter, we first introduce a new method that automatically determines
the hierarchy tree of an analog circuit. This process is controlled by the required
matching, symmetry, and proximity constraints. These constraints are determined
automatically and are modeled in a placement requirement graph. Furthermore, we
show how the hierarchy tree can be efficiently used together with the constraints to
formulate so-called hierarchical placement rules.

Since B*-trees can generate all admissible placements, a complete enumeration
would yield the optimal solution. However, this is not practicable due to complexity
problems, because the number of B*-trees increases more than exponentially with
the number of modules. Plantage uses the hierarchy to bound the enumeration. For
small subparts of the circuit, all possibilities are enumerated. These partial solutions
are then combined, guided by the hierarchy, to generate placements for the complete
circuit. If the partial solutions were joined together using their bounding boxes,
the area usage would deteriorate. Thus, a new concept is used, which calculates a
new placement as a sum of the B*-trees of the partial placements. This concept is
designed to avoid white space while the two B*-trees are assembled to one. The
result of Plantage is a set of area-optimal placements (shapes) with different aspect
ratios.

The placement algorithm starts with basic groups. For the basic groups, the com-
plete solution space is enumerated. Since B*-trees are used for enumeration, the
process can be accelerated using feasibility checks, as described in Chap. 1. An
algorithm is proposed in Sect. 3.3 to generate a placement for a given B*-tree con-
sidering all constraints for analog circuits. To store all Pareto optimal placements
for the basic groups, enhanced shape functions are used and described in Sect. 3.4.

After all possible placements for the basic groups have been calculated, the
algorithm steps up to next level in the hierarchy. The results of the previously calcu-
lated placements for the basic groups are then combined. For the current hierarchy
level, the Pareto optimal results are stored in an enhanced shape function. Subopti-
mal combinations are removed in every hierarchy level to limit the computational
effort in subsequent steps. This methodology is repeated until the highest hierarchy
level is reached, covering the whole circuit. Finally, the enhanced shape function of
the whole circuit represents the Pareto front of optimal layouts with different aspect
ratios, in contrast to other state-of-the-art approaches, producing a single layout.
This enables the designer to choose among different valid designs having different
aspect ratios.
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The approach presented in this chapter has the following key features:

e Generation of placement rules based on automatically detected symmetry condi-
tions and basic building blocks

e First approach, known to the authors, introducing a hierarchy concept for place-
ment rules of analog integrated circuits, which provides:

— A prioritization of placement rules by importance,
— A hierarchical clustering of the circuit,
— Cluster-specific constraint information.

e Automatic placement considering all beforehand generated constraints.
Computation of a set of possible placements with different aspect ratios instead
of a single solution.

Based upon a nonslicing topological placement structure, the B*-tree.

Full enumeration of basic groups, guided by the hierarchy of the circuit.
Deterministic algorithm, suitable for parallelization.

Variant selection is integrated seamlessly in the enumeration.

This chapter is organized as follows: Section 3.2 describes an approach to au-
tomatically generate the hierarchy tree as well as constraints, based on a detection
of basic building blocks in the circuit. Section 3.3 describes the algorithm to gen-
erate a placement for a given B*-tree. In Sect. 3.4, enhanced shape functions are
defined. Section 3.5 describes the comprehensive hierarchical placement approach.
Section 3.6 shows experimental results. A conclusion is given in Sect. 3.7.

3.2 Placement Constraint Generation

Our constraint generation method is based on a set of five different placement re-
quirements concerning symmetry, matching, and proximity. At the beginning of this
section, this set and an associated order, describing the importance of each require-
ment, are introduced. After that, the generation method itself is described. Figure 3.6
gives an overview. It uses a set of recognized building blocks, like, current mir-
rors, and symmetry conditions to generate a graph of placement requirements with
respect to symmetry, matching, and proximity (SMP graph). Based on the SMP
graph, a tree of hierarchical symmetry, matching, and proximity groups is generated
(HSMPG tree).

3.2.1 Placement Requirements

3.2.1.1 Types of Placement Requirements

In the following, five different types of placement requirements are distinguished.



3 Deterministic Analog Placement by Enhanced Shape Functions 105

Symmetry ) Building Block
Analysis Netlist Recognition
’//: :\
SMP graph generation
symmetry/matching/
SMP graph proximity requirements
HSMPG tree generation
—\/— . .
HSMPG tree hierarchical symmetry/

matching/proximity groups
Constraint Preparation
e ——
Placement Constraints for Plantage

Fig. 3.6 Overview of the placement constraint generation method

Table 3.1 Symbols and definitions of placement requirement types

Symbol Definition

—— Mg Device matching requirement between devices of a symmetric device pair
—— My Device matching requirement between devices of a building block

= Py Proximity requirement of a building block

-=-8 Symmetry requirement

--------- Pn Proximity requirement from the netlist

Definition 3.8 (Placement requirement type). The type ¢ of a placement require-
ment must be an element of

T = {Mg, Ms, S, Ps, Px}.

Table 3.1 defines the different types € T'.

Types Mp and Mg describe matching requirements between devices of a circuit.
All devices subject to the same matching requirement must have equal electrical
properties. Matching requirements can originate from either building blocks (Mp),
e.g., current mirrors, or concern devices that are symmetric to each other (Ms).
Symmetry requirements (type S) represent conditions to the device coordinates, i.e.,
(3.13) and (3.14). Types Pg and Py define a requirement for close spatial proxim-
ity. These requirements can originate either from building blocks (Pg) or from the
connections in the netlist (Py).

3.2.1.2 Importance Order

Different placement requirements exist for every device in the circuit. These multi-
ple requirements may impose conflicts on the placement. In the following, a priority
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Fig. 3.7 Detail of example Symmetry, implying Matching (M)
circuit (Fig. 3.10) with

constraint requirements )
| > ‘PIT’ % Ma‘tchmg (Mp)
‘ N1 N,

| Ny

N3
Matching (Mp) Matching (Mp)

Symmetry, implying Matching (Ms)

order for the five types of matching, proximity, and symmetry requirements is for-
mulated. This priority order is used by our HSMPG tree generation algorithm to
avoid conflicts.

In general, matching requirements, which are created from symmetric device
pairs (Ms) and building blocks (Mp), are most important. Symmetric device pairs
represent the matching between the two parts of a differential circuit, which is more
important than the matching inside each part.

This is illustrated by the following example. Figure 3.7 shows a detail of the cir-
cuit from Fig. 3.10. Transistors P; and P, form a differential pair and are therefore
subject to a matching requirement. N; and N3, as well as N, and N4, respectively,
form current mirrors, which require matching of their respective devices. The part of
the circuit shown in Fig. 3.7 is fully differential, which demands symmetry between
Py and P,, between N; and N,, and between N3 and Ny4. This implies a pairwise
matching of these devices in addition, resulting in four matching requirements be-
tween the transistors N; to N4. Not all of these matching constraints are equally
important, as illustrated in the following: In case the matching from symmetry be-
tween Nj and N, as well as between N3 and N4 is disregarded, performances such
as offset error are degraded. These performances are considered as critical for most
applications. If these transistors are matched, then a mismatch between N; and N3
equals a mismatch between N, and Ng4. This means the mismatch inside the building
blocks is equal. Consequently, the operating points in both parts of the differential
circuit are affected equally, leading to a degradation of, e.g., the gain, which is con-
sidered as less critical for most applications. Overall, the matching requirements
among the internal transistors of the current mirrors (N,N3) and (N2,N4), are less
critical than the matching requirements emerging from symmetry between N; and
N,, as well as between N3 and Ny4.

Symmetry requirements always affect whole building blocks. Therefore, they are
not harmed by proximity requirements of type Pg, which exist only inside building
blocks. Therefore, a higher priority is assigned to proximity requirements Pg than
to symmetry requirements S. The remaining proximity requirements of the netlist
Py are least important.

Definition 3.9 (Importance order and importance ordered type set 77). The im-
portance order < is a strict order of the set of constraint types 7. It holds:

MS < MB < PB < S =< PN. (319)
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The corresponding importance ordered type set 77 is defined as:

Ty := (T, <). (3.20)

3.2.2 SMP Graph and Its Generation

Definition 3.10 (SMP graph). The SMP graph gSMp(./V'SMp, SSMP’ tSMP) is an
undirected graph of placement requirements with respect to symmetry, matching,
and proximity. The nodes Nsyp are formed by the devices of the circuit. Two nodes
e.a € Nsyp and e.b € Nsyvp with e.a # e.b are connected by an edge ¢ € Esmp
iff they are subject to the same requirement. The function tspvp : Esmp — T defines
the type of requirement of each edge. An SMP graph is a multigraph [35] allowing
multiple edges between two nodes.

The SMP graph is initialized with proximity requirements from the netlist.

For the routing of analog circuits, it is beneficial that nets are as short as possible.
To obtain this, a proximity requirement is defined between each pair of devices
connected to the same net n, leading to a complete subgraph n (Fig. 3.8).

Figure 3.9 shows the initial SMP graph for the example circuit from Fig. 3.10.
The SMP graph is then successively filled with further matching, symmetry, and
proximity requirements. These requirements are determined through building block
recognition and symmetry analysis.

Arbitrary
Device 1

Netn ——»

Fig. 3.9 Initial SMP graph for the circuit from Fig. 3.10. It contains only proximity requirements
originating from the netlist
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Fig. 3.10 A simple amplifier with recognized building blocks

3.2.2.1 Building Block Recognition

In the second step, the inherent building blocks of a circuit are identified.

The building block recognition is based on the algorithm published by the authors
of [13]. It recognizes the building blocks from a given library by finding subgraph
isomorphism.

For each element of the library, that has an independent function, placement re-
quirements for matching and proximity are defined in addition. Figure 3.11 shows
the corresponding assignments of the library elements.

For the two transistor building blocks, differential pair, level-shifter and simple
current mirror a matching of their two transistors is required. The complex cur-
rent mirrors, Cascode current mirror, four transistor current mirror, and wide-swing
current mirror, require a matching of the lower transistors 77, 7> and of the upper
transistors 73,7T4. The routing requires the elements of the building block to be in
close spatial proximity in the final layout. Therefore, a building block proximity
requirement is defined between 7,73 and 75,7y, respectively.

For the example from Fig. 3.10, the algorithm recognizes five simple current mir-
rors cml to cm5 and one differential pair dpl. Figure 3.12 shows the additional
edges, generated in the SMP graph for building blocks, which represent matching
and proximity placement requirements.

3.2.2.2 Symmetry Analysis

The symmetry analysis step determines symmetry conditions within the devices of a
circuit. All symmetric device pairs having the same symmetry axis form a symmetry
compound. The set of all symmetry compounds of a circuit is denoted by S. The
analysis algorithm is similar to the one presented in [10].

Two types of requirements are generated for each symmetry compound C
(Fig. 3.13). A matching requirement of type Ms is generated for each symmetric de-
vice pair of a symmetry compound. A symmetry requirement of type S is generated
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Building Block —>  Placement Requirements
—| T1 T |— —> THh —— 1T,
Differential Pair (dp)
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Level-Shifter (Is)

s e

Simple Current Mirror (scm)
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4 Transistor Current Mirror (4cm)
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Wide-Swing Current Mirror (wem)

Fig. 3.11 Assignment of building blocks to placement requirements

/_O\
Ps ———PF¢ P,
P; Py
P —o— P, Ce
N3—<>—N1 N2_<>_N4 NS

Fig. 3.12 Matching and proximity placement requirements from building blocks generated in the
SMP graph for the circuit from Fig. 3.10

for the whole compound to reflect (3.13) and (3.14), which define the device location
with respect to the axis coordinate c¢. By eliminating the coordinate ¢, a complete
subgraph regarding the symmetry requirements is created.
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Fig. 3.13 Assignment of a symmetry compound C to matching and symmetry requirements

Ps Pg Py

Cc

Ns

Fig. 3.14 Matching and symmetry requirements generated in the SMP graph for the circuit from
Fig.3.10

For the example circuit, the symmetry analysis algorithm determines four sym-
metric device pairs,

p1=(P1,P2), pr=({N1,N2), p3=(N3,Ng), ps=(P3, Py),

and one symmetry compound

Ci ={p1. p2, p3, P4},

which forms the set
S ={Ci}.
Figure 3.14 shows the additional edges generated in the SMP graph for matching

and symmetry requirements. The final SMP graph containing all symmetry, match-
ing and proximity requirements is depicted in Fig. 3.15.
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AN

Fig. 3.15 SMP graph for the circuit from Fig. 3.10
3.2.3 HSMPG Tree and Its Generation

Definition 3.11 (HSMPG tree). An HSMPG tree is a hierarchical tree of
symmetry, matching, and proximity groups. It describes the hierarchy of an analog
circuit and placement requirements across the hierarchy. The leaf nodes of this tree
are formed by the devices of the circuit and the inner nodes are called groups (see
Definition 3.5). For every group, a type is defined that determines the placement
requirements applying for its children. There are three different types of groups:
A proximity group (PG) determines proximity requirements, a matching group
(MG) determines matching requirements, and a symmetry group (SG) determines
symmetry requirements.

3.2.3.1 Generation Algorithm

The SMP graph Ggyp together with the importance order relation 77 (3.19) are
the basis to generate the HSMPG tree. The corresponding algorithm is de-
noted as Algorithm 3.1. Our method is similar to agglomerative methods known

Algorithm 3.1: Algorithm for HSMPG tree generation

Input: SMP graph Gsyp, importance ordered type set 7
Output: HSMPG tree

forall r € T; from max(7;) to min(7;) do
Gsmp, < filter(Gsmp,7);
Gsmpc < connectedComponents(Gsmp ;);
I" <—createGroups(Gsmp c,7);
Gsmp <—buildSuperNodes(Gsmp,!");
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from hierarchical cluster analysis [36]. Every group corresponds to a cluster and
the similarity measure is given by the SMP graph Gsyp and importance order
relation 77.

For each requirement type t € 77 in the importance order, first the subgraph
Gsmpr (Nsmpr, Esmp, ) Tor this type is determined:

Esmpr = {e € Esmp | tsmp(e) = T}, (3.21)
Nsmpy = {n € Nomp |3 (e € Esmpy) @ (n =e.a) vV (n = e.b)}. (3.22)

It includes only edges Esmp, of type t and the nodes they connect. Next, all con-
nected components Gsmpc,; € Gsmpc Of this graph are determined. A connected
component is the largest subgraph Gsmpc ; (NSMPC,,-, Esmpc,i ), where every node
x € Nsmpc,; can be reached from any other node y € Nswpc; [35].

For every connected component Gsvpc,; (Nsmpc,i- Esmpc,;) that has more than
one node, i.e., |./\/'5Mpc’l~| > 1, anew group y € I is created: The nodes NSMPC,i
form the children of the new group. The type of the group is determined by . If
7 € {Mg, Ms}, then a matching group is created. If T = S, then a symmetry group
is created. Otherwise, the new group will be a proximity group.

Finally, a super node S in G is formed for every group y € I'. Edges e € Esmp
which would connect nodes inside and outside the super node are replaced by edges
that refer to the super node.

3.2.3.2 Example

Figure 3.16 shows how the SMP graph (Fig. 3.15) of the example circuit (Fig. 3.10)
is processed. The resulting HSMPG tree is shown in Fig. 3.16h. In the first iteration
of the algorithm, the matching requirements Mg are evaluated (Fig.3.16a) and the
matching groups MGg,; to MGg 4 are created (Fig. 3.16b). For each group, a super
node is formed and the requirement edges are transformed to refer to the new super
nodes (Fig. 3.16¢). Next, requirements of type Mp are handled. In Fig. 3.16¢, there
are three such requirements between the groups MGg » and MGy, 3, between the
devices Ps and Pg and between the devices Ps and P7. MGg > and MGg 3 form the
new group MGp ;. The devices Ps, P, and P; are all part of the same connected
component and form the group MGp > (Fig.3.16d). The further processing leads
to the creation of symmetry group SG; (Fig.3.16e, f), representing the symmetry
compound. Proximity group PGy, is created because of the proximity requirements
from the netlist and represents the complete circuit (Fig. 3.16g, h).

3.2.3.3 Discussion

Our approach of a static importance order of the requirement types has led to correct
results for all our experiments. Nevertheless, a dynamic approach is also possi-
ble. For example, the influence of a constraint violation to the circuit performances
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v o
EEzu/

Fig. 3.16 Iteration steps for the circuit from Fig.3.10 and the SMP graph from Fig. 3.15. SMP
graphs and HSMPG trees for iteration M (a, b), iteration Mp (c, d), iteration S (e, f), and iteration
Py (). The final HSMPG tree is shown in (h)

could be determined by simulation. The result could be used to determine a priority
function @ : Esvp — N. This function can then be used to determine the order in
which the constraint requirements are processed.
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3.2.4 Constraint Generation

Besides information about the hierarchy of a circuit, the generated HSMPG tree
contains information about the constraints that have to be applied within each hier-
archical group and among hierarchical groups. This information has to be formatted
in the placer-specific constraint input format, including a constraint generation ac-
cording to Sect. 3.1.2.

Same layout variants and alignment constraints are generated for matching
groups. In addition, an inherent proximity constraint is valid because all devices
to match are in the same group. If the devices in the circuit consist of a number
of subdevices instead of a large single part (e.g., a transistor realized as parallel
subtransistors), then the alignment constraint is replaced by a common centroid con-
straint.

For symmetry groups, the computed hierarchy is exploited to generate constraints
implementing (3.13) and (3.14). Inside each Mg-matching group, the centers of the
devices are aligned in the direction of the symmetry axis. For all groups belonging
to the same axis, a group alignment constraint is generated to align their centers
perpendicular to the symmetry axis. For example, four module-related constraints
would be created for the four symmetry pairs of the example circuit and a vertical
axis:

YP1 = YpP2 YN1 = YN2 YN3 = YNa YP3 = YPa. (3.23)

This constraint is denoted as symmetry (pair). For each of the matching groups
MGg,1 to MGg 4 the centers in x-direction xyg ; are calculated by

1
XMGs,; = E(xml + Xms)» (3.24)

where m and m, are the modules of each group. These groups are then aligned in
horizontal direction:

xMGS,l = xMGS,Z = -xMGS'3 = -xMGs'4 (325)

This constraint is denoted as symmetry (groups). Overall, (3.13) and (3.14) are im-
plemented by (3.23)—(3.25) for this circuit.

The placement algorithm presented in the following constructs the layout bottom
up using the hierarchy given by the HSMPG tree. It inherently keeps the elements of
each group in close spatial proximity. Therefore, no explicit proximity constraints
have to be formulated for proximity groups.
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3.3 B*-Tree Placement Considering Linear
and Piecewise-Linear Constraints

The deterministic placer Plantage generates placements using a hierarchically
bounded enumeration. During the enumeration process, many different B*-trees
have to be evaluated for parts of the circuit as well as for the whole circuit.
The B*-trees are evaluated based on the corresponding placements. The proposed
methodology is used to generate placements with respect to arbitrary linear as
well as piecewise-linear constraints from a feasible B*-tree. Linear constraints are
needed for symmetry and common centroid constraints, as well as for linear min-
imum distance constraints. Piecewise-linear constraints are needed for minimum
distance constraints of special devices, such as DTI transistors (see Sect. 3.1.2).

Horizontal and vertical relationships between modules are modeled by two di-
rected constraint graphs, HCG = (N, &), and VCG = (N, &€,). HCG and VCG
both consist of a set of nodes N, and N,, and a set of directed edges &, and
&,. Any directed edge is an ordered pair of nodes. In this approach, each module
has a corresponding node in HCG as well as in VCG. A directed edge e € &,
e = (n;,nj), denotes that module i has to be placed left of j. A directed edge
e €&, e = (n;,n;),denotes that module i has to be placed below ;.

In Fig. 3.17, an overview of the methodology is shown. Algorithm 3.2 generates
the VCG for the given B*-tree. An edge (n;,n ;) in VCG requires module j to be
placed above i. Thus, an inequality y; + h#; < y; is formulated. For the example
in Fig. 3.5, the VCG is shown in Fig.3.18. According to this VCG, the following
inequalities are formulated: y, > ys, yp = Vg + ha, Yo = Vs, YVa = Ve + he,
Ye = Yo+ hp, ye = ya + ha.

First, the methodology is explained in the next section for linear constraints only.
It can be solved by a linear program (LP), minimizing the height of the placement

Symmetry, common centroid,
alignment, minimum distances

vertlcal CG d
B* tree b

a

0%0) Placement
3. m x coords

030
horizontal CG

Symmetry, common centroid,
alignment, minimum distances

Fig. 3.17 Placement generation from a B*-tree considering constraints
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Algorithm 3.2: buildVCG(VCGNode thisNode, predecessor)
(© IEEE 2008, [37])
begin

if B*-tree node of thisNode has a left child then
\\ leftNode <— new VCG node for left child;

add edge from thisNode to leftNode;
buildVCG(leftNode, thisNode);

else

| add edge from thisNode to the end node;

if B*-tree node of thisNode has a right child then
rightNode <— new VCG node for right child;
add edge from predecessor to rightNode;
buildVCG(rightNode, predecessor);

end

subject to symmetry, common centroid, and minimum distance constraints. The
results of the LP are the y coordinates of the modules. An approach to handle
piecewise-linear constraints is described later in Sect. 3.3.2.

3.3.1 Linear Constraint Handling

The vertical constraint graph is built as described in Algorithm 3.2: if module i is
a left child of module j in the B*-tree, then n; is the direct successor of 7 in the
CG. If module i is a right child of module j in the B*-tree, then n; and ; share the
same predecessor. At the beginning of Algorithm 3.2, a start node is created. Also,
a node corresponding to the root node of the B*-tree is added with the start node
being its predecessor. Both nodes are passed to the algorithm.

A linear program is formulated using VCG:

Yopt = argminy ye, (3.26)
s.t. M,-y>d, . (3.27)
~————
Minimum distance constraints
N————’

Symmetry & common centroid constraints

The vectory is the vector of y coordinates for all modules and y, is the y coordinate
of the virtual end node. The matrix M,, together with d,, defines the minimum
vertical distances between the modules. The matrix C,, together with the vector
k,, defines the symmetry and common centroid constraints for the vertical axis.
Minimizing y. is equivalent to minimizing the total height of the placement. The
vector Yop: represents the optimal y coordinates for the given B*-tree.
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Fig. 3.18 Example: B*-tree
and its corresponding VCG e (end node)

o (start node)

Fig. 3.19 Expected
placement for the B*-tree

of Fig. 3.18 with additional b
minimum distance constraints d
p 7
,35 y Reserved area
hA c
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min

An example placement for the B*-tree of Fig. 3.18 with the minimum distance
constraints
VY d(a.n) = duin (3:29)
n#a

is shown in Fig.3.19. After the computation of the y coordinates, the minimum
distance constraints are fulfilled for the y-axis for those modules, which have a
connecting edge in VCG. To ensure that all constraints are fulfilled, two cases need
to be considered for pairs of modules having a minimum distance constraint during
the generation of HCG:

1. If the y projections of the two modules are overlapping, an edge is created in
HCG between these two modules. The weight of that edge must be greater than
or equal to the minimum distance between the two modules.

2. If the y projections of the two modules are not overlapping, it must be checked
if their distance in vertical direction is sufficient to fulfill the minimum distance
constraint. If not, an extra edge has to be created to ensure the minimum distance.

To handle both cases efficiently, a shadowing algorithm is proposed to generate
HCG. During the generation of HCG, a module can cast a core shadow as well as a
partial shadow.

Definition 3.12 (Core shadow). The region on the y-axis, which is covered by
module m is called its core shadow:

TCS,m = [Ym: Ym + hml. (3.30)

The lower y-coordinate and height of module m are denoted by y, and A,
respectively.
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Definition 3.13 (Partial shadow). The partial shadow 7ps ;; that module m casts
on the y-axis is defined as:

Tes,m = [Vm — dmax(m); ym]U, (3.31)
m + hms Ym + hm + dmax(m)]. (3.32)

The region of the y-axis, where modules may be influenced by the placement of
module m, is covered by the partial shadow of m. The shadows of a module can be
illustrated as shown in Fig. 3.20.

To efficiently build HCG, y-regions are defined. Therefore, all lower and upper
y-coordinates y,, and y,, + hy, of all modules m are stored in a list, sorted, and
unified. Any region between two entries of that list is called a y-region. A tree data
structure is used to store the sets of modules being associated with the y-regions.
This allows for more than one module to be registered with a single region. Using
these definitions, the shadowing algorithm can be formulated as in Algorithm 3.3.
The algorithm only creates edges, which are required to keep the minimum dis-
tances.

For the example in Fig. 3.19, the algorithm is demonstrated in Fig. 3.21. The re-
gions are initialized in Fig.3.21a. Then, module a is registered in Fig.3.21b. The
core shadow of a overlaps the lowest region, the partial shadow overlaps the two
regions above. Thus, a is registered with all of these three regions. A HCG edge is
created from the virtual start node to node of module a. Module b is registered with
the regions of its core shadow in Fig. 3.21c. The partial shadow of b is overlapping
regions, where a is already registered. Thus, b is appended to the list of registered
modules in those regions, and an edge from the start node to the HCG node of mod-
ule b is created. In Fig. 3.21d, module ¢ overwrites the lower two regions. Since a
has been overwritten, a HCG edge is created. There is no edge created from b to c,
although b has been overwritten as well. This is because there is no minimum dis-
tance constraint defined between these two modules. Finally, in Fig. 3.21e, module
d overwrites regions, where a, b, and ¢ have been registered. An edge from b to d is
created, and, due to the minimum distance constraints, an extra edge is created from
a to d. Figure 3.21f shows the complete HCG along with the corresponding valid
placement.

Using HCG, the optimization problem can be formulated as a minimization of
the x-coordinate of the virtual end node, x., with respect to all constraints:

Tps,m (3.32)

Tes,m (3.30)

Fig. 3.20 Core shadow Tps,m (3.31)
TYcs.m and partial shadow
Tps,» of module m
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Algorithm 3.3: buildHCG()

begin

startNode <— new HCG node as start;
endNode <— new HCG node as end;
create tree of y-regions;

initialize all y-regions with startNode;

forall modules m in preorder do
modNode <— new HCG node for m;

forall regions r in Y¢s,, do
forall modules n registered in r do
\\ if dvm't(ms I’l) < dmin(mv I’l) then

| add edge to modNode from HCG node of ;
remove all entries in r;
register module in r;

forall regions r in Yps,, do
| register module in r;

remove multiple edges;
add edges from all nodes in region list to endNode;

end

S S
| |
S S
| .
1O 1'o
I [}
S a
| |
S a

Fig. 3.21 New approach for building HCG with minimum distance constraints (a)—(e), and the
complete HCG in (f)
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Xopt = arg miny X (3.33)
s.t. M; -x >d, , (3.34)
| ——
Minimum distance constraints
Ch-x =Ky, (3.35)
| S —

Symmetry & common-centroid constraints

This optimization problem can be solved by a Simplex solver. The vector X,
then contains the optimal x coordinates of all modules.

3.3.2 Piecewise-Linear Constraint Handling

As an example for piecewise-linear constraints, the allowable ranges for the dis-
tance between DTI transistors are shown in Fig. 3.4. Since there is a forbidden zone
between two allowable ranges, the solution space is concave. Due to this fact, the
problem can no longer be formulated as a linear programming problem.

To generate placements subject to piecewise-linear minimum distance con-
straints, a formulation of the problem is proposed, which can be solved by a
linear mixed integer programming (MIP) solver. W.l.o.g., the proposed approach
is described for HCGs and for the piecewise-linear constraints for DTI transistors,
as defined in Sect.3.1.2. The same methodology is applied when solving for the
vertical coordinates.

In a constraint graph, a module is represented by a node. In general, there is at
least one edge ending at the node, and at least one edge starting from the node. The
weight of an edge represents the distance between the modules of the nodes being
connected. An example is depicted by Fig. 3.22.

The distance between two modules subject to the piecewise-linear minimum dis-
tance constraint (3.18) can be described by the two allowable ranges. For every edge,
a binary range variable is defined to indicate in which range the distance is located.
For an edge ¢;, the range variable is r;.

Fei € {0, 1} (3.36)

An equation r,; = 0 indicates that the weight of ¢; is in Range 1, r.; = 1 indicates
that the weight of e; is in Range 3.

()=o)

Sr,n Slm Sr,m Sl,0

Fig. 3.22 Example with three modules and a corresponding HCG. The stretch variables s, ,, 57,
Sr.m»> and s;, are only valid in case the trenches are shared
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The following equations and inequalities are formulated for e; in Fig. 3.22. For
e,, similar constraints need to be defined. Together with the range variables, two
inequalities are formulated to fulfill (3.18) with § being a sufficiently large number:

e1—re1- B < Smax,el — Sr,m> (3.37)
e1+ (1 —re) B = dom, (3.38)
€1 = Srn + Si,m- (3.39)

Equations (3.37) and (3.38) include two cases:

1. For re1 = 0: Here (3.37) reduces to €1 < Smax,e1 — Sr,m, and (3.38) reduces to
e1 + B > dprr. Since ey is positive, and with 8 being greater than dpry, inequal-
ity (3.38) is always fulfilled. Thus, (3.37) makes sure that e; cannot exceed its
maximum stretching value Smax 1 minus the stretching of module m to the right,
Srom-

2. For re; = 1: Here (3.37) reduces to €1 — B < Smax,e1 — Sr,m, and (3.38) reduces
to e; > dpri. With B being a sufficiently large number (3.37) is always fulfilled.
In this case, the distance between n and m must be at least dpry.

To make sure that the distance between the modules n and m is always sufficient
to generate the DTI, (3.39) is formulated. It can be shown that it is sufficient to set 3
to a value greater than the sum of all module widths plus their worst-case minimum
distances (times the number of symmetry constraints +1). An edge weight cannot
exceed this limit.

For the case of DTI transistors, an additional constraint needs to be considered:
As described in Sect. 3.1.2, the trenches surrounding a module m can be stretched
to the left (s7 ) and to the right (s, ), up to a certain limit of

St,m + Sr,m = Smax,m- (3.40)

The stretching variables s; ,, and s, ,, can be calculated from e; and e;, respec-
tively:

€1 —Sim —Srn—Te1" B <0. (3.41)
€ —Srm —Slo —Te2* B < 0. (3.42)
In case e; is in range 1 (r.; = 0), the trenches are stretched. Hence, e;

must be equal to s;,, + Sr,. This is made sure by (3.41) if the stretching vari-
ables are secondarily minimized due to a term in the cost function. For range
3, (3.41) is always fulfilled because of the 8 term. Equation (3.42) can be explained
similarly.

To solve for the x-coordinates, the optimization problem (3.33)—(3.35) needs
to be extended as follows: For every edge i, an additional range variable r.; €
{0, 1} and constraints similar to (3.37)—(3.39), (3.41), and (3.42) need to be defined.
For every module m, a constraint similar to (3.40) needs to be added. Furthermore,
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the cost function (3.33) is extended by a A term, secondarily minimizing the total
stretchings of all modules:

Xe + A~ Z(Sl,m + Srm)- (3.43)
m

This formulation allows for the use of a linear MIP solver. The factor A must be
sufficiently small to make sure that x, is the main minimization objective. For DTI
transistors, it is sufficient to set A to a positive value of less than N‘fg}‘;ﬂ, with Win
being the width of the smallest module, and N being the total number of modules.

3.4 Enhanced Shape Functions

To handle the combination of different partial placements in an efficient, area-saving
way, enhanced shape functions are introduced in this section. First, a brief review of
standard shape functions is given. Then, enhanced shape functions and the enhanced
combination of shapes are described in the following.

3.4.1 Review of Shape Functions

Shape functions [38] can be used to calculate compact placements for a set of rectan-
gular modules. A shape function is defined as an ordered set of shapes. Each shape
represents a placement with a different aspect ratio. Therefore, a shape describes
one possible placement of a module set by its bounding rectangle size, which is for-
mulated as a tuple (w, i), where w and & denote the width and height, respectively.

In order to generate placements, a recursive algorithm is defined to calculate the
shape function of the module set: First, the set of modules is partitioned into two
subsets. For each subset, a shape function is calculated, and the shape functions are
then combined to generate a shape function for the complete module set. If a sub-
set consists of only a single module, the shape function only consists of a single
shape, representing the width and the height of this module. To combine two shape
functions, all possible combinations of the shapes of both shape functions are eval-
uated. This can be done using a fast operation. Since shapes represent the bounding
rectangles of their corresponding placements, combining two shapes means cal-
culating a common bounding rectangle for the two corresponding placements.
Two placements can be combined either horizontally or vertically. For shapes,
this is called horizontal and vertical addition. The result of a horizontal addition
of two shapes (wi,h1) and (w2, hy) is (w1 + wa, max(hy, hz)). An example of
horizontal addition is shown in Fig.3.23. A vertical addition results in a shape
(max(wy,wsz),h1 + h2). An example of a shape function is shown in Fig.3.24.
There, all combinations have been evaluated. In this diagram, there are suboptimal
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Fig. 3.23 Standard shape ==
addition ([37], ]

© IEEE 2008) b

!_b

(w1, h1) (w2, h2) (w1 + wa,max(hy, hy))

h
O
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Fig. 3.24 All shapes of a resulting shape function (SF)

shapes which have a bigger height than other shapes having the same or even a
lower width. These suboptimal shapes are removed before further calculations are
performed. Removing suboptimal shapes significantly reduces the time needed in
subsequent steps, while the quality of the solution remains unchanged. This can be
considered to be a key feature of shape functions. Based on the remaining shapes,
a continuous shape function can be drawn, as shown in Fig. 3.24. This continuous
shape function can be considered the Pareto front of possible placements.

When the recursive algorithm has terminated, there is a shape function for the
entire circuit. This shape function represents different placements, having different
aspect ratios. This is a second key feature of shape functions.

3.4.2 Definition of Enhanced Shape Functions

The corresponding placement of a shape can be described as a slicing tree, since
it is built by horizontal and vertical additions of other placements [39]. Nonslicing
placements cannot be handled by a slicing tree. Since the solution space is limited
by this fact, the solution quality may be degraded.

In this section, enhanced shape functions [37] are described, which preserve the
key features of shape functions while at the same time being able to handle non-
slicing placements. An enhanced shape is defined as (w, &, «). The corresponding
B*-tree « of a placement is stored in addition to the placement’s bounding box
(w, h). In this chapter, B*-trees are denoted by Greek lowercase letters. Storing the
B*-tree allows for efficient combination of the enhanced shape functions and their
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underlying modules, as described in the subsequent section. The widths and heights
of the enhanced shapes are used to calculate the Pareto front, and to identify the
suboptimal enhanced shapes to be removed. An enhanced shape is considered to be
suboptimal in two cases:

e The enhanced shape has a bigger height than other enhanced shapes having the
same or even lower width.

e The enhanced shape has a higher netlength than other enhanced shapes, having
the same width and height.

3.4.3 Combination of Enhanced Shape Functions

To combine two enhanced shape functions, all of their enhanced shapes are com-
bined in pairs. In contrast to standard shapes, the combination of two enhanced
shapes (w;,h;,a) and (w;,h;, ) is calculated using the B*-trees. The widths
w;i, w; and the heights /;, h; can be used to estimate the resulting enhanced
shape. For a horizontal addition, an upper bound for the size of the resulting place-
ment can be defined as (w; + w;, max(h;, /;)). For a vertical addition, the upper
bound can be defined as (max(w;,w;), h; + h;). Using the B*-trees o and f3, the
size of the resulting placement can be smaller than (w; + w;, max(h;,h;)) and
(max(w;,w;), h; + h;), respectively.

Figures 3.23 and 3.25 show the differences between the horizontal addition of
conventional and enhanced shapes for a simple example. It is obvious that wy + w»
is greater than wg,,. Generally speaking, more compact placements can be reached
if the enhanced shape function combination is used.

Two methods are proposed to add the B*-trees of enhanced shapes horizontally
and vertically. They are described in the following paragraphs. For both methods, it
is shown that the outcome of adding two feasible B*-trees is also a feasible B*-tree.
This is an important property of the addition operations. Due to that property, the
algorithm avoids calculations for many infeasible B*-trees.

Jio |[Fde | X
| o | = BOMNO
. («) () -
L °
(lehlva) (W27h27ﬁ) (WSMM7hSIHn7O-)

Fig. 3.25 Horizontal enhanced shape addition ([37], © IEEE 2008)
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Fig. 3.26 An arbitrary S PN P
B*-tree to define the in- and \ ’ \ ’
preorder traversal ° °

Horizontal Addition

For two given B*-trees « and $, a horizontal addition is performed by attaching the
root node of § to the lowest, rightmost node of «. The lowest, rightmost node of a
B*-tree is defined as the node with no right child, while this node itself and all its
predecessors are either right children or the root node.

Due to the characteristics of the placement algorithm for B*-trees, the resulting
placement is compact to the lower left corner. Horizontal addition has a notable
property. Any constraint, which was satisfied by « and 8 before the addition is also
satisfied by the resulting B*-tree. This holds true for as long as no additional con-
straints apply for the superset of the modules of the two B*-trees. This property can
be derived from the in- and preorder traversals of the B*-trees, because they can be
used to determine the feasibility of constraints (see Chap. 1). As shown in Fig. 3.26,
the in- and preorder traversals of an arbitrary B*-tree, are defined as ordered lists
recursively by the following equations:

in(a) := in(b), a,in(c) (3.44)
pre(a) := a, pre(b), pre(c). (3.45)

Two order relations can be defined on the traversals:

IN . . .

e a < b means “a is a predecessor of b in the inorder traversal.”
PRE . .

e a < b means “a is a predecessor of b in the preorder traversal.”

The topologies of the B*-trees @ and 8 are not changed by the horizontal ad-
dition. There is only one edge added to connect the two B*-trees to generate
B*-trees o. The feasibility of the constraints can be checked using the relative
positions of the modules in the in- and preorder traversals [22]. Without loss of
generality, the node ¢ can be considered the root node of 8, and a the lowest, right-
most node of «. Considering this fact together with (3.44) and (3.45), the relative
positions of the modules in « and B in the in- and preorder traversals do not change.
Thus, any constraint, which was satisfied before, is also satisfied after the addition
of the two B*-trees. The example given by Fig. 3.25 illustrates a horizontal addition.

Vertical Addition

A vertical addition is intended to arrange two partial placements vertically, gener-
ating compact results. In Fig. 3.27, a compact result of a vertical addition is shown
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Fig. 3.27 Vertical enhanced shape addition ([37], © IEEE 2008)

3 Baseline modules

Segments
1 st

Fig. 3.28 Baseline modules and segments of a B*-tree 8 ([37], © IEEE 2008)

together with its corresponding B*-tree ¢. In contrast to the horizontal addition,
the resulting B*-tree ¢ cannot be generated easily by adding an edge from « to 8.
For this reason, an algorithm is proposed, which iteratively forms a new B*-tree
as the result of the addition of o and B. The topology is changed to achieve better
placements.

In a B*-tree, all modules, which can be reached starting from the root node
traversing right edges only are placed close to the baseline. These modules are
denoted as baseline modules in this chapter. The B*-tree § is segmented in the
proposed approach, with the root node of each segment being a baseline module. In
Fig. 3.28, the baseline modules and the segments of a B*-tree are depicted. Further-
more, adequate nodes of « are then determined, which serve as the new parents of
the segment root nodes. This is done using a contour-based algorithm, which assigns
one segment after the other, from “left to right,” in the order given in Fig. 3.28.

Figure 3.29 illustrates how the B*-tree o of Fig. 3.27 was built by the algorithm.
First, no segment of § is added to «, as shown in Fig. 3.29a. A contour is drawn as a
thick line above the placement for «w. After that, the first segment of 8, representing
the node d, is added in Fig. 3.29b. The projection of d on the x-axis shadows b and
parts of a. Thus, a and b are both potential parent nodes for d. Node d is added
as a left child of module b, because b limits the y-coordinate of d when shifting it
downward. According to the same rules, c is appended as a left child of a, shown in
Fig.3.29c.
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a

Fig. 3.29 Iteratively changing the B*-tree topology for a vertical addition ([37], © IEEE 2008),
the initial B*-tree « (a), adding the segments of 8 in (b) and (c)

If the vertical addition is performed in this way, the constraints remain satisfied:
The ith and (i + 1)th segments of B are denoted as B; and B;1, and root(8;)
denotes the root node of B;. The segments of the B*-tree 8 are added in ascending
order, as defined in Fig. 3.28. Before the addition, the in- and preorder positions of
the segments fulfill the following conditions:

in(root(8;)) =< in(root(Bi +1)), (3.46)
and
pre(root(B;)) < pre(root(Bi+1)). (3.47)

The root node of §; is then added to a node of «, denoted as parent(S;), being its
left child. The segments are added “from left to right”. Therefore, the parents fulfill
the condition

parent(8;) 2 parent(8;+1). (3.48)
and
parent(8;) < parent(B;+1). (3.49)

Thus, the relative positions of the modules in the in- and preorder traversals of «,
Bi and B;+1 do not change. Consequently, the feasibility of the constraints remains
unchanged. Similar to the horizontal addition, this holds true for as long as no addi-
tional constraints apply for the superset of the modules of the two B*-trees.

Using this approach, the key advantages of standard shape functions are main-
tained. All suboptimal enhanced shapes are stripped after the addition of two
enhanced shape functions. This reduces the computational effort in subsequent steps
efficiently. Furthermore, a set of possible placements is stored, instead of a single
solution.



128 M. Strasser et al.

3.5 Hierarchically Guided Enumeration

It is obvious that the enumeration of the complete solution space yields the opti-
mal result. However, this cannot be performed for most circuits because of long run
times. This becomes clear when considering the number of different B*-trees for
n modules [22]. There are 336 different B*-trees for four modules, while for eight
modules, there are 57, 657, 600 different B*-trees. Thus, a complete enumeration
is impossible in practical cases. As a consequence, the presented enumeration ap-
proach is guided by the HSMPG tree, as described in Sect. 3.2, to limit the number
of elements, which are considered in an enumeration run. The hierarchy can be il-
lustrated as a hierarchy tree (see Sect.3.2.3), where the root represents the whole
circuit. The leaf nodes represent the modules, their parents represent analog struc-
tures, such as differential pairs (DP) or current mirrors (CM). Figure 3.30 shows a
typical schematic of a Miller operational amplifier, together with its HSMPG tree,
which was automatically generated from the netlist.

Ps 1;] P7
cM2
| o | [
[T |

Fig. 3.30 Miller op amp schematic (a) and HSMPG tree (b) ([37], © IEEE 2008)
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The HSMPG tree is used to perform a bottom-up enumeration. First, all possible
placements for the basic groups are evaluated. These basic groups are formed by the
modules of leaf nodes having the same parent node in the hierarchy tree. In the given
example of Fig. 3.30, these sets are {P1, P2}, {N3, N4}, {P5, P6, P7}, and {C, N8}.

The enumeration of all possible placements of a basic group is done by
evaluating all possible B*-trees for the modules of this set. Considering the variant
matching constraints, the allowed combinations of variants are enumerated. This
procedure is called basic enumeration in this chapter and is depicted in Fig.3.31.
For all feasible B*-trees, the basic enumeration evaluates all possible variants of the
modules. That means, e.g., it evaluates different numbers of fingers for a transistor,
or different aspect ratios for a capacitor. During the enumeration, variant constraints
are considered. The result of the basic enumeration is an enhanced shape function
for the basic group. The enhanced shape function only stores the placements,
which potentially contribute to a good result for the whole circuit. The basic
enumerations can be parallelized easily, since they are independent of each other.

J Basic group G° L

For all B*-trees for G°

For all allowed variant combinations

SO

B*-tree Placement

See Section 3.3.

-t

Store in enhanced shape function if
optimal, drop suboptimals

Enhanced shape
function for G°

Fig. 3.31 The basic enumeration
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After Plantage has determined the enhanced shape functions of all basic
groups, the algorithm steps up to the next level of hierarchy (defined by the
HSMPG tree). At this level, the enhanced shape functions of the basic groups
are combined in every possible sequence (see Sect.3.4.3). The algorithm ter-
minates as soon as the enhanced shape function for the complete circuit has
been calculated. This is the key algorithm in this approach, which is depicted
in Fig.3.32 and described in Algorithm 3.4. In the example given by Fig.3.30,
the algorithm combines the enhanced shape functions of the differential pair DP
and the two current mirrors CM1 and CM2 in every possible sequence.! These
sequences are DP+CM1+CM2, DP+CM2+CM1, CM1+DP+CM?2, CM1+CM2+DP,

i—1 i—1
Gk Gl

o]

a B2

a3 ﬂ?
W7 54

For all combinations of ¢;, B
ai +Bj. i B

i -

3P L)

B*-tree Placement

See Section 3.3.

Fig. 3.32 The enhanced shape function addition

"It can be shown that enhanced shape function additions are not commutative.
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Algorithm 3.4: enumerateOnHierarchyLevelOf(element) ([37], (© IEEE 2008)
begin
resultESF <— empty enhanced shape function;
if element is basic group G? then
basicEnumeration(basic group G);
| store resulting enhanced shape function in resultESF;

else
ESFList <— empty list of enhanced shape functions;
// Generate enhanced shape functions for the children
forall children of element do
childESF <— enumerateOnHierarchyLevel Of(child);
L store childESF in ESFList;

// Try all combinations of the enhanced shape functions
forall combination sequences of the enhanced shape functions in ESFList do
forall enhanced shapes in two enhanced shape functions to be added do
combine B*-trees of the enhanced shapes (Sect. 3.4.3);
\\ generate placements for B*-trees for evaluation (Sect. 3.3);
append resulting enhanced shapes to resultESF;

| drop suboptimals from resultESF;
return resultESF;

end

p
< Enhanced shape
% function addition
| Gt =161 {64}
( 5
m | Enhanced shape &) Basic
% function addition| | .s|enumeration

Z
|6l ={626,6Y GY = {N8, C}
Basic « Basic - Basic
g enumeration S' | enumeration = | enumeration
@) @)
G? = {P1, P2} GI={P5, P6, P7} GY ={N3, N4}

Fig. 3.33 The basic enumerations and enhanced shape function additions for the miller operational
amplifier of Fig. 3.30

CM2+DP+CM1, CM2+CM1+DP. Finally, the resulting enhanced shape function
is combined in every possible sequence again with the enhanced shape function of
the basic group {C, N8} (see Fig. 3.33).

The HSMPG tree determines the order in which the enhanced shape functions
are combined. Thus, proximity constraints are fulfilled, because modules will be
placed in close proximity, which are close to each other in hierarchy.

Finally, the result of this approach is a set of possible placements for the circuit,
having different aspect ratios.
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3.6 Experimental Results

The approach proposed in this paper was implemented in C++. All results were com-
puted on a Pentium 4, running at 3.2 GHz with 1,024 MB RAM on Fedora Linux.
To demonstrate the approach, placements for different circuits are shown and dis-
cussed in Sect.3.6.1. Publicly available benchmark circuits for analog placement
do not yet exist. To compare Plantage with other placement methods, two circuits
extracted from [30] are used. First, placements for these circuits are shown and
compared to the results of other placement approaches. Then, to demonstrate the ef-
fective handling of minimum distance constraints in Plantage, these two circuits are
modified by adding wells around symmetry groups. The comparison is discussed
in Sect. 3.6.2. Finally, an experiment with piecewise-linear minimum distance con-
straints is discussed in Sect. 3.6.4.

3.6.1 Discussion of the Presented Approach

To demonstrate the effectiveness of the proposed approach, placements for five dif-
ferent circuits have been generated. The results of the conducted experiments are
summarized in Table 3.2. The Examples 3-5 are discussed in more detail describing
their constraints and where they can be seen in the placements. The sizings of the
modules originate from a large semiconductor manufacturer and are taken from an
up-to-date process library. Thus, they can be considered representative for current
analog circuits.

Example 1 is a miller amplifier [40], Example 2 is the comparator shown in
Fig.3.10, Example 3 is a folded cascode amplifier [40], Example 4 is a fully dif-
ferential amplifier similar to the circuit published in [41], and Example 5 is similar
to the buffer amplifier published in [42]. The number of devices which form these
circuits are shown in Table 3.2. For Example 1, 4, and 5, some devices have been
split into subdevices to enable common centroid placement, resulting in additional
modules. Furthermore, up to seven different variants are defined for the modules.

First, the HSMPG trees of the circuits have been generated. The number of
created groups and the minimum, average and maximum group size is listed in
Table 3.2. The HSMPG trees are used by the placement method to split the place-
ment problems into subproblems (see Sect. 3.5). Smaller groups lead to smaller
subproblems, which can be solved faster and are therefore preferable. It can be ob-
served that most generated groups are very small, which is advantageous. The SMP
graph for circuit 5 contains 14 super nodes after handling the constraint require-
ments of type Ms to S. The root group, which is created due to proximity constraints
from the netlist, is very big and has been further divided by hand for placement.

Placement constraints of the circuit have been generated out of the HSMPG tree.
They are listed in Table 3.2. The types cover alignment constraints, which equal-
ize the x- or y-coordinates of two modules, same variant constraints which force
two modules to the same variant including same orientation, symmetry constraints
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Table 3.2 Summary of example circuits and results generated by the proposed approach

Example 1 2 3 4 5

Name Miller Comparator Folded cascode  Fully differential ~ Buffer

# of devices 9 10 22 30 42

# of modules 13 10 22 32 46

# of variants per module ~ 3-6 2 24 2-3 2-17

Generated HSMPG tree

# of Groups 5 8 17 19 21

Group size: Min-Max 2-4 2-4 2-3 2-5 2-14
Average 2.6 2.5 2.5 22 29

Generated constraints

# Alignment 1 2 8 6 10
# Device proximity 3 5 8 12 14
# Symmetry (Pairs) 2 4 8 10 6

# Common centroid 1 0 0 1 2

# Variant 3 6 11 16 16
# Hierarchical proximity 2 3 9 7 7
Technology constraints

# Minimum distance 2 1 1 1 1
Computed placements

# of placements 35 4 12 12 114
Best area usage 115%  110% 121% 129% 111%
Runtimes in seconds

Constraint generation 0.3 0.3 0.5 0.9 1.2
Plantage 14 1 44 691 134

for pairs of modules, which are given by (3.13), and (3.14) as well as proximity
constraints, which make modules stay in close proximity or to form a block in the
layout. In addition, minimum distance constraints have been defined between the
nMOS and pMOS transistors to reserve space for the n-well.

Finally, placements have been generated using the new methodology. Table 3.2
lists the number of generated Pareto-optimal placements and the achieved area us-
age. The area usage is the ratio between the area of the bounding rectangle and the
area used by modules and wells. Ideally, this value would be 100%. But this is not
possible in general due to constraints and device shapes. For the examples, the best
achieved result is 111%. The runtimes consumed by the constraint generation and
Plantage are shown in the last rows of Table 3.2. It can be seen that the runtime of
the constraint generation is small compared to the placer. But even for the largest
circuit, having many different module variants and constraints, the placer did not
need more than 12 min.

Example 3: Folded Cascode Op Amp

Example 3 is a folded cascode op amp. The schematic and hierarchical placement
rules of this circuit and its constraints, together with the HSMPG tree are shown
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Fig. 3.34 Example 3 ([37], © IEEE 2008): Schematic (a) and HSMPG tree (b) of the folded
Cascode op amp

in Fig.3.34. The differential pair and the output part (P7-P10 and N7-N12) must
be built symmetrically. In the HSMPG tree, this is reflected by MGg,; to MGg 5,
resulting in a symmetry constraint with five symmetrical pairs of transistors as well
as variant constraints to achieve matching. For the differential pair, a common cen-
troid constraint is used. Additional variant, alignment, and proximity constraints are
defined by the other current mirrors. The generation of the constraints took 0.5s.
Between the nMOS and pMOS transistors, a minimum distance constraint is de-
fined to preserve space for the n well. Plantage generates 12 different placements
with different aspect ratios in 44 s. Figure 3.35 shows the shape function and three
placements. The symmetry group is colored light gray. The placement is dominated
by four big modules P7-P10, causing a corner in the shape function, marked with
an “x”. An example of the close proximity constraints is that NI-N6 must always
be placed close to each other. The area usages of the placements are always above
121%, because of empty areas caused by the minimum distance constraints between
nMOS and pMOS transistors.

Example 4: Fully Differential Amplifier

Example 4 (Fig.3.36a) is a fully differential amplifier similar to the one published
in [41]. It is characterized by a high degree of symmetry [43]. In the generated
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Fig. 3.35 Example 3 ([37], © IEEE 2008): placements (b)—(d) and the corresponding shape
function (a)

Fig. 3.36 Example 4: Schematic (a) and HSMPG tree (b) of the fully differential Opamp
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Fig. 3.37 Example 4: Shape function (a) and placement (b)

HSMPG tree (Fig.3.36b), this is reflected by the symmetry group SG; and the
matching groups (symmetry) MGg 1 to MGg,10. The building blocks of the circuit,
mainly simple current mirrors and level shifters, determine matching groups MGpg, 1
to MGp,6. In addition to the generated constraints, a minimum distance constraint
between nMOS and pMOS transistors was defined. Figure 3.37 shows some place-
ments of the amplifier together with the shape function. All placements are quite
high and narrow because of the symmetry groupSG;.

Example 5: Buffer Amplifier

Example 5 is a CMOS buffer amplifier similar to [42], shown in Fig.3.38.
Figure 3.38b shows the generated hierarchical placement rules. Before starting the
automatic placement, the top proximity group PGy,; has been manually divided
into smaller groups. The two differential pairs DP1 (N1, N2) and DP2 (P3, P4) are
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Fig. 3.38 Example 5 ([37], © IEEE 2008): Schematic (a) and hierarchical placement rules (b) of
the buffer amplifier similar to [42]

realized by two common centroid arrays (N1a, N1b, N2a, N2b) and (P3a, P3b, P4a,
P4b), respectively. Three placements are shown in Fig. 3.39b—d. As demonstrated
by the figures, a minimum distance constraint is kept between nMOS and pMOS
transistors to reserve area for the wells. The differential pairs DP1 and DP2 are col-
ored light gray in the placements. DP1 and DP2 are placed in close proximity, since
they are close to each other in hierarchy. The same applies to the modules P22 and
N24, as well as P25, N26, P27, N28, marked in dark gray. For several transistors,
different variants with different sizings are given representing different numbers of
fingers of the transistor gate. For example, P39 has three different aspect ratios in
the shown placements. Figure 3.39a shows the shape function for this circuit. It rep-
resents 114 different placements, having different aspect ratios. Plantage calculates
these placements in 134 s. The HSMPG tree was builtin 1.2 s.



138 M. Strasser et al.

a b P39: variant 1
h ; c
2h _P3a
7 dps b
(b) & 7 1&
¢)
(d) a4 dH A
Jel 2181 ol
wjcq cg
e alal o
1 N
5 Hod g
alal ol
P39: variant 3

Fig. 3.39 Example 5 ([37], © IEEE 2008): placements (b)~(d) and the corresponding shape
function (a)

3.6.2 Comparison with Other Approaches

This approach is compared with other approaches in the following. For that reason,
placements were generated using Plantage for the circuits named “biasynth_2p4g”
and “Inamixbias 2p4g” used in [22,23,30,32,33,44-46]. The module sizings were
extracted from [22]. Plantage generates ten placements in 337 s for “biasynth 2p4g”.
For “Inamixbias_2p4g”, 32 placements are generated in 387 seconds. Since no
netlist information is given, no HSMPG tree can be calculated. Thus, balanced trees
with four to six children per node are used as hierarchy trees. The placements with
the lowest area usages are shown in Figs. 3.40 and 3.41, respectively. The symmetry
groups within these circuits are colored in different shades of gray. The runtimes
and area usages of other approaches are taken from [45] and [32]. For the given
examples, the total module area is constant. In this case, the area usage is inversely
proportional to the total area, and is taken as a quality metric.

The results are summarized in Tables 3.3 and 3.4. It can be seen from the numbers
that the area usages of this approach are approximately equal to the area usages of
the best recently published placers. The area usage of Plantage is 1% and 2% higher
than the best for the two examples, respectively, but approximately 10% lower than
area usage of other approaches. It should be noted that Plantage is the only deter-
ministic approach among the approaches used for comparison.

It is difficult to compare the runtimes of this approach with the runtimes of other
approaches, because they were measured on different computers. Since other ap-
proaches use simulated annealing, their runtimes may vary from run to run for
different seeds, but no mean values and standard deviations are known for the run-
times of other approaches. In contrast, the runtimes of Plantage are constant for
each example. On all accounts, the runtimes of Plantage, even for the big circuit
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Fig. 3.40 Result of “biasynth-2p4g” obtained by Plantage ([37], © IEEE 2008) (time: 5.6 min,
area usage: 104.96%)
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Fig. 3.41 Result of “Inamixbias_2p4g” obtained by Plantage ([37], © IEEE 2008) (rotated by
90° clockwise) (time: 6.4 min, area usage: 107.68%)

“Inamixbias 2p4g” (110 modules), allow interactive use. In addition, the time to
set up a new design is short because the constraints and the HSMPG tree are gen-
erated automatically based on the netlist. Therefore, Plantage is fit for industrial
application.
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Table 3.3 Description of the two example circuits [37].

Circuit description

Name No. of modules  No. of sym. mods. ~ Mod. area (103 um?)
biasynth_2pdg 65 §+12+5 4.702100%
Inamixbias_2p4g 110 16+6+6+12+4  46.00=100%

Table 3.4 Comparison of area usage and runtimes for different approaches, based on two indus-
trial circuits ([37], © IEEE 2008)

Results of different approaches

biasynth_2p4g Inamixbias_2p4g

Approach Area Time Area Time
Sequence pair [30] 114.89 780 110.43 2,824*
Segment tree with segment tree [22] 114.89 246* 109.35 726*
Sequence pair and linear programming [44] 106.38 403" 108.59 3,252"
Sequence pair with dummy nodes [33] 118.51 134F 113.50 227F
Symmetry islands [45] 104.68 22f 105.72 437
Sequence pair with Johnson’s priority queue [32] N/A N/A* 109 480*
Plantage 104.96 337° 107.68 387F

In [32], only the placement of “Inamixbias_2p4g” is shown. No area usage is given in that paper.
For comparison, the area usage in Table 3.4 was calculated based on Fig. 3 of [32]. All times
are measured in seconds (times which are marked with star were measured on a Sun Blade 100,
500 MHz, and times which are marked with dagger were measured on a Pentium 4, 3.2 GHz) and
all area usages in % of the total module area.

3.6.3 Experiment with Linear Minimum Distance Constraints

To demonstrate the effective handling of minimum distance constraints in Plantage,
“biasynth_2p4g” and “Inamixbias_2p4g” are modified: In the modified circuits, each
symmetry group is located in a separate well. Thus, various minimum distance con-
straints need to be considered between the modules. The resulting placements are
shown in Figs.3.42 and 3.43. For example, Module m1 in Fig.3.43 must keep a
distance of dyen to all modules outside of its own well, and a distance of 2 - dy.ey to
all modules being located in other wells.

Considering the minimum distances for these wells results in higher computa-
tional effort. Thus, the generation of placements takes 76% more CPU time (593s)
for “biasynth 2p4g”, and 72% more CPU time (664 s) for “Inamixbias 2p4g”. From
a practical point of view, the resulting placements are still compact. With the CPU
times still being in the range of minutes even for these large circuits, industrial
application is possible. Since other approaches do not address minimum distance
constraints in detail, no comparisons can be given.
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Fig. 3.44 DTI transistor example similar to [42]

3.6.4 Experiment with PWL Minimum Distance Constraints

An example consisting of DTI transistors is shown in Fig. 3.44. The modules are
shown as gray rectangles. White areas are caused by the stretching of the DTIs.
The circuit placement shows an unused area in the lower left part of the layout. The
circuit is similar to the input stage of the buffer amplifier of [42], consisting of 30
modules. The placement was generated in approximately 15 min, because the linear
MIP solver is significantly slower than the Simplex solver. The area usage of this
circuit is 110%. Although the runtime increases within reasonable bounds when
considering PWL minimum distance constraints, this methodology still produces
compact placements.

3.7 Conclusion

In this chapter, Plantage, a new deterministic approach for analog circuit place-
ment including a new method to generate placement constraints was introduced.
A HSMPG tree is presented, which represents a circuit as hierarchical groups and
the placement constraints inside each group. The generation process starts by iden-
tifying basic building blocks and generating symmetry conditions. These results are
used to model the constraints of the circuit in a graph of requirements with respect to
symmetry, matching, and proximity (SMP graph). This graph is used together with
an importance order of the constraints to generate a hierarchical tree of symmetry,
matching, and proximity groups (HSMPG tree).

The hierarchy is used to guide a bottom-up enumeration efficiently. All place-
ments are enumerated for small parts of the circuit. New concepts, the enhanced
shape functions, and the enhanced shape additions are used to combine these
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placements efficiently with a recursive algorithm based on the hierarchy. In contrast
to other approaches, the final result of Plantage is a set of placements with different
aspect ratios instead of a single solution. An algorithm is presented in this chapter,
which generates a placement for a B*-tree considering linear as well as piecewise-
linear constraints.

Plantage considers device-proximity, symmetry, common centroid, minimum
distance, and variant constraints. This approach is the first to handle all these con-
straints deterministically. The results of this approach show an area usage, which is
comparable to the best-published results of other placers. Plantage generates results
in reasonable time allowing industrial application.
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Chapter 4
Routing Analog Circuits

Giinhan Diindar and Ahmet Unutulmaz

Abstract This chapter presents a review of routers for analog circuits, some
practical issues for analog routing, and a template-based routing strategy. Basic
algorithms and methods used for routing are discussed first, starting from the maze
router and continuing towards more sophisticated routing algorithms. Then, data
representations commonly used for routing are described in some detail.

Analog design specific routing issues and methods are then discussed. Various
routing strategies from the literature and developed by the authors are presented in
some detail. Specialized routers for two analog applications, namely RF design and
analog arrays, are also presented. Manufacturing and yield issues for routing are
discussed briefly before conclusions and a discussion of various open problems in
routing of analog integrated circuits.

4.1 Introduction

Routing is one of the final steps in analog layout synthesis. Its main objective is to
electrically connect terminals of the layout modules—transistors, capacitors, differ-
ential pairs, etc.—and input/output ports. Due to the fact that the performances of an
analog circuit are critically dependent on layout parasitics, the routing of an analog
circuit requires more attention than that of a digital circuit. On the other hand, since
routing is one of the final steps, the quality of the routing and the final performance
of a routed layout is strongly affected by all the preceding synthesis steps.

Layout of the differential input stage of an OPAMP is shown in Fig.4.1a, a
router is supposed to add the wires filled with black for this layout. Device merg-
ing reduces the required connections and also the parasitics. If the transistors are
merged, number of the required wires decreases as displayed in Fig. 4.1b. Even for
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Fig. 4.1 Quality of synthesized layout strictly depends on the synthesis steps before routing, such
as: folding, merging, placement, and shaping of the devices. Routing overhead depicted as black
rectangles in (a) decreased considerably in (b) after merging some of the transistors

this simple analog circuit, it is evident that the quality of the routing highly depends
on folding, merging, placement, and shapes of the devices. Thus, routing must be in-
tegrated with device generation and placement steps as much as possible. Although
one may use a very sophisticated routing algorithm for the layout in Fig. 4.1a, its
performance is bound to be worse than that of Fig.4.1b. In addition to a review of
analog routers, some practical issues for analog routing will be presented in this
chapter. Basic algorithms and methods used for routing are discussed in Sect.4.2,
and Sect. 4.3 describes some representations required for routing. Routing issues
and methods for analog circuits are mentioned in Sect. 4.4, and Sect. 4.5 contains
a review of the routing strategies. Specialized routers—for Analog Arrays and RF
circuits—are briefly mentioned in Sect. 4.6. Manufacturing and yield issues for rout-
ing are discussed in Sect. 4.7. Finally, Sect. 4.8 concludes this chapter.

4.2 Basic Routing Algorithms

The routing problem in layout design involves the process of formally defining the
precise conductor path necessary to properly interconnect the associated nets of
the system. This section concerns itself with basic routing algorithms utilized in
various applications. The routing algorithms used in analog integrated circuits are
in essence the same as those in digital integrated circuits, or even printed circuit



4 Routing Analog Circuits 151

boards. However, analog integrated circuits typically contain fewer paths, but more
constraints on each path. Thus, these basic algorithms are tailored accordingly to
obtain routes for analog integrated circuits.

4.2.1 Maze Router

One of the earliest and most well-known algorithms for wire routing is Lee’s maze
routing algorithm [1]. Actually, this algorithm is an extension of the earlier work by
Moore [2] to uniform grids. The maze router starts by numbering every grid point
starting from the source. The wave consisting of increasing numbers is propagated
until the wavefront reaches the target. Then, the route is obtained by backtracing
the numbers. In Fig. 4.2, a wave starting from source S is propagated to the target
T and by backtracking the path filled with gray is found. In this figure, the assigned
numbers and letters (X) denote the wave numbers and the obstacles, respectively.

Lee’s algorithm is guaranteed to find a solution to the routing between two nets if
such a solution exists. In addition, this solution will be the shortest path. However,
its application to large grids requires extremely large memory structures as well
as having a time complexity of O(nm), where n and m are the dimensions of the
grid. Here, each grid point must have a location in memory representing the layer(s)
assigned to that location. In spite of these drawbacks, Lee’s algorithm has been the
dominant solution in wiring, both at the PCB level and at the IC level for a long time.
In the meanwhile, researchers have suggested techniques to increase the efficiency
of the algorithm, in terms of both speed and memory usage over the years [3-7].
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Fig. 4.2 A wave starting from source S is propagated to the target T. X and the assigned numbers
denote the obstacles and the wave numbers, respectively. By backtracking, the path filled with gray
is found
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4.2.2 Line Expansion Routers

One major improvement over the basic idea was to represent the search space in
terms of line segments rather than grid points. By this method, generally called line-
search, both run time and memory space requirements can be reduced drastically
since a memory location is not allocated to each grid point any more. Furthermore,
line searching algorithms tend to reduce the number of unnecessary bends in the
routes; however, they do not guarantee the shortest paths. The first algorithms were
suggested independently by [8] and [9]. Unfortunately, line searching algorithms
become more and more cumbersome as the routing becomes more complicated and
the memory and computation time requirements may even surpass those of the maze
router. Furthermore, [9] does not guarantee to find a solution even if one exists. In
Fig.4.3, the general methodology of line searching algorithms is described. Here,
horizontal and vertical line segments are added around the source (S) and target (T)
ports and the obstacles. Then, these line segments are combined to construct a path
from S to T. An excellent discussion of maze routing as well as a review of the above
algorithms can be found in [10].

4.2.3 Channel Routing

A channel router is a specific router for integrated circuits and it is commonly used
in digital routing. Although it does not directly consider the layout parasitics, early
analog routers have applied this approach. As the name implies, the routing is done
in channels, where a channel is a horizontal area with fixed pins on the top and
bottom. The channel height is not specified, but calculated by the router. Numbers

Fig. 4.3 Horizontal and
vertical line segments are
added around the obstacles
and the ports. These line
segments are combined to T T
construct a path
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are assigned to the pins and these numbers indicate the nets corresponding to these
pins. Thus, those pins with different numbers must be electrically isolated to prevent
short circuits between different nets.

Given the positions and nets of the pins, two constraint graphs can be extracted,
namely: vertical constraint graph (VCG) and horizontal constraint graph (HCG).
VCG handles the vertical positioning of nets in a channel and it has a vertex v, for
each net x. A directed edge e = (v, vy) is added between two vertices, if two pins
in net x and net y overlap horizontally and the pin in net x is above the pin in net y.
On the other hand, HCG handles the horizontal spans of the nets and unlike VCG,
it is an undirected graph. Vertices in HCG correspond to the nets, the edges are
undirected. An edge e = (v, v,) is added between vertices vy and v,, if horizontal
span of net x overlaps with that of net y. The VCG and HCG may be used to
completely represent an instance of the channel routing problem. Horizontal span of
the nets for the channel routing problem in Fig. 4.4a is shown in Fig. 4.4b, also VCG
and HCG are shown in Fig. 4.4c and 4.4d, respectively. If VCG does not contain any
edges, the routing may be fully done by the Left-Edge Algorithm [11]. One of the
solutions to the channel routing problem in Fig. 4.4a is depicted in 4.4e; this solution
is obtained by applying the Constrained Left-Edge Algorithm, a modified version
of the Left-Edge Algorithm. This algorithm can only handle noncyclic constraints
in the VCG. If there are cyclic constraints, the problem becomes more complex and
there are several approaches to solve it, such as [12—14]. Although these approaches
are used for routing of digital circuits, they are not commonly preferred in analog
tools, due to poor estimation of parasitic effects.

a b
Channel o "y 3
H i 5 |
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Problem Horizontal Span of Nets

HCG VCG Solution

Fig. 4.4 Channel routing: (a) an instance of channel routing problem (b) horizontal span of the
nets (c¢) horizontal constrint graph (HCG) (d) vertical constraint graph (VCG) (e) A solution to the
problem in (a)
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4.2.4 Steiner Routing

The maze and line expansion routing algorithms are developed to connect two nets
to each other in the presence of obstacles. Thus, to complete the routing of a case
with many nets to be connected in pairs, the algorithm should be applied sequen-
tially. However, the quality, or even existence of a solution depends on the order on
which the pairs are selected. This problem is called net ordering and is discussed
in the ensuing sections. Furthermore, routing nets with more than two terminals
optimally is an NP-complete problem, usually called the Steiner Problem, named
after the Swiss mathematician Jacob Steiner (1796-1863), who solved the prob-
lem of joining three villages by a system of roads having minimum total length
[15]. Although Jacob Steiner’s solution was an independent work, the same prob-
lem had already been attacked and solved by several earlier mathematicians. The
corresponding solution called the Steiner-minimal-tree (SMT) is the tree connect-
ing the nets with minimum wirelength. Steiner-minimal-tree problem is simplified
to minimum-rectilinear-Steiner-tree problem (MRST), when only horizontal and
vertical paths are allowed. Compared to SMT, MRST is more efficient in terms
of computational costs. The MRST solution should not be confused with a rectilin-
ear minimum spanning tree (MST), where all wires are from terminal to terminal,
with no intermediate junctions. SMT, MRST, and the rectilinear-MST are depicted
in Fig.4.5. It is shown in [16] that in the worst case rectilinear-MST solution is
1.5 times longer than the MRST solution. The SMT problem has many applica-
tions, thus it is a well-studied problem about which hundreds of papers and several
books have been written. Hence, many heuristics to this NP-complete problem ex-
ist. One would be to find an approximate Steiner point between these nets and
to apply maze routing between the terminals and the Steiner point. Another ap-
proach would be initially applying a maze router between a pair of points. Once
a path is found between these points, this path can be used as a new source for
the wavefront. Finally, all the above discussion has assumed that a single layer was
available for routing and that only horizontal and vertical wires are allowed. One of
the first extensions to this routing strategy was diagonal routing proposed in [17].
Over the years, multiple routing layers were introduced, performance criteria started
to be taken into account, and algorithms tailored specifically to integrated circuits
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Fig. 4.5 Comparison of trees: (a) SMT, (b) Rectilinear MST, (¢) RST
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with special emphasis on various technology issues were developed. The interest in
routing has not disappeared and there is still much room for improvement as seen
by a recent global routing competition in [18].

4.3 Representations

The layout of an integrated circuit is quite a complex entity, and much attention
must be paid to the data representations utilized for any operation. It is well known
that the performance and/or complexity of an algorithm depend on how the data are
represented. This section initially discusses techniques for representing the layout it-
self and compares these techniques. Then, the issue of representing the connectivity
information is treated. Finally, the representation of layout rules is briefly discussed.

4.3.1 Layout Representations

There are traditionally three representations of layout for the routing problem, which
are grid-based, tile-based, or topological representations. These representations are
described in the following paragraphs.

4.3.1.1 Grid-Based Representations

Grid-Based layout representation is very simple and suitable for the area routing
problem; thus, it is very common in the literature. This representation is mainly
classified into two subgroups, namely, uniform and nonuniform grid representations.
The uniform representation has been used since the first routers — based on Lee’s
Maze Algorithm — and the nonuniform representation has been used since 1980s.

Uniform Grid Representation

The simplest grid-based representation is on a uniform grid. However, routing on a
uniform grid typically makes the wiring unnecessarily area hungry as well as using
too much memory. Using a fine grid will result in dense layouts, but requires ex-
cessive amount of memory, whereas using a coarse grid will result in larger layouts,
but the memory requirements are less. As shown in Fig. 4.6, the coarse grid is not
sufficient to represent the layouts of some wires, having horizontal and vertical di-
mensions comparable to the size of the grid, precisely. On the other hand, the fine
grid consumes huge amount of memory.

Moreover, variable width routing and layout constraint observance are nec-
essary for ensuring circuit performance. This is not the case for digital layouts,
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Fig. 4.6 Uniform grids may be (a) coarse or (b) fine

where block sizes, wiring widths, and terminal locations can be fixed without
considerable performance loss. Several improvements on the fixed-width grid have
been suggested among which are routing on a uniform grid and compaction to ob-
tain a grid-free layout. However, these small improvements cannot yield satisfactory
layouts.

Nonuniform Grid Representation

A major class of grid-based representations are nonuniformly sized grids. The vari-
able size grid is more efficient than the uniform one in terms of memory usage. In
addition to its efficiency, the size of the grid may be much finer than a uniform grid
in the congested areas. Moreover, compared to the tile-based structures, it yields
faster evaluation of the parasitic effects. This is due to the fact that the neighbor-
hood information is embedded in the regular structure.

The variable size grid is constructed by extending the boundaries of the layout
components to the left, right, bottom, and top boundaries of the layout as shown in
Fig.4.7a. The number of the grid cells may be reduced if the component boundaries
are used as blocks for the boundary extension process, such as done in [19] and
depicted in Fig. 4.7b.

Graph Theory is one of the basic concepts in computational science; thus, there
are a variety of algorithms in this subject. Due to this fact, graphs are commonly
used in Electronic Design Automation (EDA). Making use of these graph theory-
based algorithms, for the routing problem, is only possible if the constructed grid
is converted to a graph. Grid Graph G(V, E) is consctucted (Fig.4.7¢c), where V
is the set of empty cells and E is the set of edges connecting neigboring cells.
Any partition of a grid that cannot be further partitioned is called a cell. An empty
cell is defined as any cell in the grid that does not contain any layout component.
All the blank cells in Fig.4.7b are empty cells. Moreover, two cells are neigbours
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Fig. 4.7 Nonuniform grid is constructed by extending the boundaries of the layout components to
the left, right, bottom, and top (a) number of grids may be reduced as in (b) A grid graph extracted
from the grid in (a) is depicted in (c). In (d) some space around the components is left empty to
prevent design rule violations

Fig. 4.8 Channel intersection O—I

graph is based on the ®
channels around the layout
components and it is suitable
for line expansion-based
routing. Vertices are the
intersection point of these
channels, and the edges are
the channel segments
between the vertices
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when they have overlapping boundaries. When the graph G(V, E) is constructed
it is used to find a path between the cells in V' that correspounds to a route in the
layout. A variant of the Grid Graph is the Channel Intersection Graph (Fig. 4.8).
In this graph, vertices are the intersection point of the channels around the layout
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components, and the edges are the channel segments between these vertices. This
type of graph represents only the channels between layout components and it is used
with line expansion-based routing algorithms.

The described grid generation process ignores the design rules, where design rule
considerations are left to the path-finding algorithm. However, a simple extension on
the grid may be used to add the minimum space constraints into the Grid Graph. As
shown in Fig. 4.7d, dimensions of the layout components are updated by adding the
minimum space requirements for the layer of the component. Note that the dimen-
sions of the source and target terminals, being routed, are not updated. Otherwise
the space, added around these terminals, will not allow the router to connect them.

4.3.1.2 Tile Based Representations

Tile-based representations extend the concept of a grid by allowing different gran-
ularities for the blocks. This representation is based on the corner stiching data
structure [20], which ties the layout components by adding pointers at their corners.
Similar to the grid-based representation, this representation stores empty spaces as
well as layout components. The tile-based representation suits line expansion algo-
rithms better, such as in ANAGRAM II [21].

The main advantage of this representation is that it helps in expediting layout
synthesis as blocks can have very different dimensions; for example, capacitors are
much larger than other blocks. In such a case, a grid model will be inefficient, and
the memory ocupation will be much higher. Similar to the grid graph of the grid rep-
resentation, a tile graph G(V, E) is extracted to be used with the graph algorithms.
Figures 4.9a, b depict a sample representation and the corresponding tile graph,
respectively. Although this representation is memory efficient, it is more compli-
cated. Also, it may be required to add escape points' during the process of path
searching, which slightly enlarges the tile graph of the representation [22]. Effects
of the escape points to the path length is shown in Fig.4.9. A path before adding
the escape points is shown in Fig.4.9c and a path after adding the escape points is
shown Fig. 4.9d.

4.3.1.3 Topological Representations

In the previous sections, it was suggested that grid-based and tile-based nota-
tions have difficulties in expressing constraints on the relative positions of blocks.
Topological representations, including slicing trees [23], the sequence-pair (SP)
descriptions [24], and O-trees [25], present the relative positioning of blocks. Thus,
they are very efficient in modeling constraints on block placements including sym-
metries. Although these representations are used in placement, some of them are
also proposed for simultaneous placement and routing, such as, SP, multi-layer
sequence-pair (Multi-SP) [26], channeled-bounded sliceline grid (Channeled-BSG)

'If a point is not a corner of a tile, it is called an escape point.
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Fig. 4.9 Tiles for a layout are depicted in (a) the corresponding tile graph is in (b) Effects of
escape points are indicated in (c¢) and (d)

[27]. However, these representations are poor in extracting layout parasitics because
block and wire vicinities are only partially expressed in these notations. Thus, topo-
logical representations seem to be more suited to placement than routing.

4.3.2 Connectivity Representation

Routers often remove previous routes and add new ones — rip-up and re-route— to
improve the quality of the routing, which changes the connectivity information’ fre-
quently. Moreover, in every iteration of the router, checking the connectivity through
layout extraction will not be efficient in terms of time complexity. Thus, it is required
to handle the connectivity information in a special data structure.

2 Connectivity information refers to the physical connectivity information. Being in the same net
does not imply connectivity.
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The basic requirements for such a data structure may be listed as follows:

e Net-splitting will allow routing the high current paths seperately, which prevents
voltage drops on critical wires.
Servicing of connectivity information should be fast.
The nearest connectable layout component to a given component must be found
efficiently.

The netlist for a circuit is represented with set C = {Ngug, Nvaa, Ni, ...},
where the N;’s denote the nets. Every net (#;) in C is a set of subnets? Sij as
N; = {Si1, Si2, Sij,...}. Sij are composed of groups (G’s). Formulation of the Sj;
is Si; = {Gij1, Gij2, Gjjk, - . .}. The groups G;jx contains the layout components
(e;’s). A schematic diagram for the nets of a circuit, C, is shown in Fig.4.10. The G
sets are used in handling the connectivity information, such that being in the same
group means physical connection has been done. However, being in the same sub-
net but in different groups indicates an expectation for a physical connection. The
layout components e; and e, shown in Fig. 4.10b are in the same group Gq;;. This
indicates a physical connection between them. However, the components e; and e3
in the same figure are not in the same group but they are in the same subnet Sy;.

Sll SZl

S S

N, N,

Subnets in Nets

[eX+] [e) <)

G G

11

Groups in Subnet

Fig. 4.10 Schematic diagram of the structure: (a) netlist is composed of nets, and nets are com-
posed of subnets, (b) each subnet contains groups. If two layout components are in the same group,
they are physically connected

3 A subnet is defined to achieve net-splitting and it covers the wires of a net on which the current
densities are similar.
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This condition indicates these components are going to be connected, but they are
not connected yet. Using the defined structure, checking the connectivity informa-
tion is very efficient, whereby it is done by controlling whether the components are
in the same group. Similarly, the nearest unconnected component is found through
a search in a given subnet.

4.3.3 Rule Representations

Most analog routers consider parasitic effects, such as wire resistances and crosstalk
capacitances. In the extraction of these parasitics, the electrical characteristics of the
layout components are frequently checked. Also during the construction of the lay-
out representation and path finding, design rules are frequently needed. Thus, the
time complexity of the router is directly related to the service time of the design
rules and electrical rules. For the data structure shown in Fig.4.11, the layer iden-
tifiers are used as keys, this data structure returns the requested rule in constant
time. This structure is a hierarchy of Hash Tables,* where the Hash Table in the

Layerl Layer2
(Key) (Key)
A
Hash
Function
Y
y Hash
° Function
Y
> Property Value
Buckets Capacitance | 50fF/um’
@
Hash Table
Buckets
Hash Table

Fig. 4.11 Data structure for rules

4 A Hash Table is a data structure, which uses a hash function to efficiently map keys to associated
values. The hash function is used to transform the key into the index of an array element.
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first level stores the addresses of the Hash Tables of the second level that store
the rules. The structure shown in Fig.4.11 is equivalent to the pseudo code of
get_capacitance between (layerl, layer2), which returns the capac-
itance between layerl and layer2.

4.4 Routing Issues and Techniques for Analog Circuits

Performances of analog circuits are extremely sensitive to layout parasitics, which
are undesired effects due to physical properties of elements. Some of the parasitic
effects introduced due to routing and techniques for reducing these effects are dis-
cussed in [19,21,28-31]. Although it is impossible to eliminate the existence of
routing parasitics, it is possible to reduce their effects with the proposed techniques.
Splitting paths that are carrying high currents from the ones carrying low currents
or routing nets symmetrically are such techniques. In this sub-section, well-known
routing techniques and technology limitations are going to be described.

4.4.1 Net Splitting

Current densities in different portions of analog circuits may vary excessively. Thus,
there may be an order of magnitude difference between the current densities of two
paths in the same net. The resistance of a wire may be modeled as

Al % Rsh

< 4.1)

Rwire =

where Al is the length and Aw is the width of the wire and Ry, is the sheet re-
sistance. If this model is used for the grounded wires in Fig.4.12a, there will be a
voltage drop of Vyop = Ryire * I on the wire between the dashed lines. Because
of the voltage on the wire, the potential at the top end of the wire will be different
from the ground potential. This potential difference may vary with time and affect
the operation of the analog circuit. Therefore, it must be minimized. One approach
[28] is to separate the paths as in Fig.4.12b and a different approach is to use wider
wires for the high current paths as in Fig. 4.12c.

4.4.2 Symmetric Routing

Analog circuit designers frequently introduce topological symmetries in differen-
tial circuits to optimize offset, differential gain, and noise. As the analog lay-
out tools have progressed, routers with the capability of symmetric routing were
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Fig. 4.12 Current densities of wires in a net (a) branching wire is effected due to potential drop in
the wire segment between the dashed lines (b) branching wire is separated from the line on which
high currents flow (¢) wire widths are increased to reduce the potential drop on the wire

Symmetry axis Mirrored obstacles

Fig. 4.13 Symmetry axis and nonsymmetric obstacles (a) the terminals are symmetric with respect
to the dashed symmetry axis (b) nonsymmetric obstacles are mirrored

developed [30]. These initial tools were followed by tools, such as ANAGRAM 11
[21] and ROAD [19], having the capability of routing symmetrically in the presence
of nonsymmetric obstacles.

Symmetric routing may be considered if only the terminals of the paths being
routed are symmetric with respect to a symmetry axis. Figure 4.13a shows a sym-
metric layout, where the terminals are in gray, and the symmetry axis is the dashed
line. This axis splits the layout into two halves.

Initially, presence of nonsymmetric (with respect to symmetry axis) obstacles
were not considered [30]. In the absence of nonsymmetric obstacles, the tools route
one half of the layout and then mirror the new paths to the other half of the layout.

Later approaches [19, 21] considered nonsymmetric obstacles as well. The ap-
proach of ANAGRAM 1I [21] is to evolve both halves of a symmetric path simul-
taneously. With this extension, the line-expansion algorithm used by ANAGRAM
IT became slightly more complex. Line expansion algorithm requires checking
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Fig. 4.14 Matching parasitics of crossing-symmetric wires (a) matching is poor between symmet-
ric nets (b) matching is much better if a “connector” is used

whether both halves of the symmetric path can be legally placed on each side. In this
approach, a blockage that exists only on one side of the symmetry line effectively
becomes a blockage for the other side as well. Another approach used in ROAD
[19] is mirroring the obstacles (Fig. 4.13b) and then routing only for one side. Then,
the constructed path is mirrored to the other half.

An acceptable symmetric routing will not be possible with the mentioned ap-
proaches if the terminals are on different sides of the symmetry axis and the
paths cross. In Fig.4.14a, such a case is demonstrated. Fortunately, good parasitic
matching can be obtained between the nets with the technique described in [31].
A connector (Fig.4.14b) allows two symmetric segments to cross over the axis.
Although resistances and capacitances of the two nets are matched, there may be
some difference between the parasitics of the symmetric nets due to capacitive and
inductive coupling with the other nets. However, this structure is much better than
the one depicted in Fig. 4.14a.

4.4.3 Crosstalk and Shielding

Crosstalk between the nets may severely degrade the performance of an analog cir-
cuit; thus, it is required to extract these effects during the routing. There are 1-D,
2-D, 2.5-D, and 3-D extraction methods for parasitic capacitances [32]. The 1-D
extraction simply uses the equation

ClDZA*Ca-i-S*C/g, 4.2)

where A is the area of the overlapping region between two wires, S is the perimeter
of this region, C, is the capacitance per unit area, and Cg is the fringing capaci-
tance per unit length. The overlapping area is the dashed rectangle in Fig. 4.15. The
2-D extraction also includes capacitances due to nonoverlapping wires. If the 2-D
model is used for extraction, total capacitance for the first vertical wire in Fig.4.15
is given as

—_— (4.3)
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Fig. 4.16 Shielding reduce crosstalk (a) shielding on the same layer (b) shielding between differ-
ent layers (c) shielding to avoid crosstalk through bulk. Squares are contacts to bulk

where C, is the crosstalk capacitance per unit length, A/ is the length of overlap in
the vertical axis, and d is the separation between the wires. This model is commonly
used in routing, due to it is simplicity.

In 2.5-D extraction, fringing effects are considered in advance through the
cross-sections of the real 3-D structure. On the other hand, a library—including
parameterized 3-D geometric structures—is constructed in 3-D extraction and
extracted geometries from the layout are matched with the ones in the library.
Although 3-D extraction is more accurate than the mentioned extraction methods,
it may be cumbersome for path searching in routing due to its time complexity.

In RF circuits, inductive coupling may also be critical for the performance and
RLC models for interconnects, such as in [33] are used to observe these inductive
effects. Even EM simulations may be carried out to observe the parasitic effects
more accurately.

As discussed in the preceding paragraphs, long wires running in parallel affect
the performance of the analog circuits. One way to reduce the crosstalk between
these wires is to add space between them. If it is impossible to reduce the coupling
through adding space, the router may introduce a shield between the critically cou-
pled nets. The router ROAD [19] has the capability to add a shield line between
wires (Fig.4.16a). In Fig.4.16, three different shielding methods are displayed.
These methods may be used to reduce the crosstalk via the bulk or routing lay-
ers. Note that, not to worsen the effects of crosstalk, the shielding wire must be
connected to a dc potential or it must be grounded.
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4.5 Routing Strategies for Analog Circuits

This section covers various strategies for routing analog circuits. The discussion
starts from digital-like routers and proceeds to more complex optimization-based
strategies, roughly following a historical flow.

4.5.1 Digitally Inspired Early Routing Strategies

Advances in computer performance and algorithm theory as well as the need to
design complex circuits in a short time led to the appearance of the first design
automation tools for analog circuits in the late 1980s. Most of these tools also in-
cluded automated layout tools as a part of the tool suite. Automated routing tools
were also incorporated into the layout tools. The available experience at that time
led designers to develop digitally inspired routing strategies. The main character-
istics of these routers are a two-step routing approach and heuristic cost functions
used in a mostly feedforward manner.

Routing in digital circuits is typically performed in a two-step strategy; global
routing and detailed routing. A single step maze routing approach was generally not
preferred in the early analog routers because it is computationally less efficient than
channel routing. Moreover, since there is no global routing phase, nets are consid-
ered individually, and there is no global view of the interconnection problem. Since
a channel router routes all the nets at the same time, one achieves routing of higher
quality, compared to other routing strategies that route one net at a time. While using
channel routing for complete layouts, the problem is broken into smaller problems
of routing individual channels, resulting in much faster routing compared to the gen-
eral area-routing algorithms. Channel routing also allows for changes in placement
of blocks with relative ease during detailed routing.

This early two-step approach is evident in the ROSA router of the LADIES
automatic layout system [34], where routing areas are extracted and decomposed
into rectangles, initially. An adjacency graph is then formed from these rectangles.
Global routing is achieved by finding the shortest path on the adjacency graph.
Finally, the detailed routing is performed using the river routing algorithm. Here,
analog constraints are not seriously taken into account during the routing.

The constraints imposed on acceptable solutions generally involve one or more of
the following: (i) total area of interconnection, (ii) amount of crosstalk, (iii) number
of crossovers and vias, and (iv) density of wiring. In these early studies, the driving
factor of routing, as in placement, was the minimization of crosstalk. To achieve this
end, the tools tried to route the sensitive and noisy nets separately as well as trying to
minimize the crossover. Also, designer knowledge was somehow incorporated into
most routing tools, whereby the designer had to identify various nodes or interact
with the tool in the actual placement of the paths. In summary, the approach taken
was to augment digital routing methods with some additional constraints, which take
signal-coupling reduction into account. Nevertheless, the evaluation of the routing
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parasitics and alternatives in this class of tools do not go far beyond a qualitative
evaluation of the nets. In addition to the rather sketchy estimation of the costs, they
were used in a feedforward approach, (See Fig.4.17) or in some cases in a weak
feedback loop. The feedback loop is called weak because it addresses intermediate
variables, such as overlap areas, which interact heuristically with the final perfor-
mance rather than the actual performance parameters. Thus, the performance of the
layout within a certain specification region was not guaranteed.

On the other hand, a priori estimation of the costs, however they may be prim-
itive, has a major advantage in that the net ordering problem can be addressed.
As mentioned in previous sections, the order in which nets are routed has a ma-
jor impact on the overall routing solution. Furthermore, routing more critical nets
initially allows them to occupy more privileged locations in the layout, thus mini-
mizing their length and possible crosstalk. These routes then act as obstacles to later
and less critical nets to be routed, whose routing inevitably becomes less efficient.

Such a net ordering approach was presented in MIGHTY [35], which is a part of
the OPASYN [36] tool. The order that the nets are routed is determined a priori by
classifying the nets into several categories according to their functions, such as input
nets, output nets, etc. MIGHTY uses a rip-up and reroute strategy for routing; that
is, when a particular net pair meets congestion, previously routed nets are ripped up
and rerouted to make space. The authors see this approach to be feasible due to the
relatively few nets in analog design.

A contemporary of OPASYN is IDAC, which has its companion layout tool
called ILAC [37,38]. In ILAC, nets are classified into four categories; namely, sen-
sitive nets, noisy nets, noncritical signal nets, and power supply nets. A net ordering
strategy is also employed in ILAC. Power nets are routed first, followed by sensi-
tive nets, and then noncritical nets. Noisy nets are routed last, while the power nets
and noncritical nets provide shielding between the critical and the noisy nets. The
global router in ILAC is a maze router. However, it handles net couplings, undesired
crossings, planarity (for power nets), and congestion. After global routing is com-
pleted, channel sizes are estimated depending on the number of nets to be routed
inside the channel. The detailed router is a scan line based incremental channel
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router. The spacing between the prerouted wires is left as stretchable. When a new
net is routed, the exact location is determined to minimize some penalties, such as
distance, switching between layers, increasing channel size, and running adjacent
to noisy or sensitive layers. Once the optimal path is found, routing that net pair is
completed and the router proceeds to the next net pair.

The channels in SALIM [39, 40] are obtained automatically from the slicing
tree description of the floorplan. Thus, global routing is a simplified form of maze
routing which only tries to find the best sequence of crossed channels to minimize
the length of each interconnection. Detailed routing, on the other hand, completes
the routing in each channel under geometrical and electrical constraints. Among
the electrical constraints are low resistance paths for power supplies, minimum
number of crossings for signal paths, assigning routing priority for sensitive nets,
and abiding by symmetry requirements. Most of these constraints cannot be deter-
mined by the tool and are thus provided as rules by the user. An alternative router
for SALIM [41] is gridless and uses electrical constraints before the design rules.
The routing strategy is again a two-step router, where symbolic routing is carried
out to obtain zero-width tracks, whereby electrical parameters can be extracted and
constraints can be met as much as possible. Once crosstalk, resistivity, capacitance
to ground and electrical symmetry constraints are satisfied, detailed routing is car-
ried out to fulfill design rules. In performing the placement, SALIM uses expert
information to place critical blocks. This information is also utilized for ordering
the connections such that wiring is done in exactly the same order as the placement.
Electrical symmetry is again achieved by the use of expert knowledge. Detailed
routing follows the symbolic routing to complete the routing design.

SLAM [29, 42, 43] uses a routing approach similar to MIGHTY. However, it
performs a critical net analysis to determine various node types, such as noisy or
sensitive nodes. A distance constraint is assigned for each circuit node with differ-
ent priorities during this analysis. The circuit node with the highest-priority distance
constraint should require the shortest wire connections. In addition, a prioritized
spacing constraint for each pair of circuit nodes is also provided. The spacing
constraint between the sensitive and the noisy nodes will get very high priority.
Therefore, large spacing is reserved for those nodes to minimize the wire crossover
or adjacent wire crosstalk.

The proposed global router in [44] works in a hierarchical fashion, initially creat-
ing a slicing tree deep enough such that each module is left alone in its appropriate
box. The “hierarchical channel graph” thus constructed is utilized to determine the
routing areas, which are essentially the spaces between the modules. An approxi-
mate rectilinear-Steiner-tree (RST) algorithm is applied iteratively up the hierarchy
to obtain the routing. One should also note that the pins for combinations of mod-
ules in the hierarchy are not real pins, but pseudo pins, which should be assigned and
extracted hierarchically. Nets are classified into several categories, such as sensitive
or noisy nets. Special care is taken to obtain net-crossing-free routing for noisy nets.
This is achieved through traffic light routing algorithm and terminal grouping. Net
ordering based on the categorization of the nets is also carried out.
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A plan-based layout algorithm was proposed in [45,46]. A design plan was ex-
tracted from a circuit by using Al techniques and hierarchy information for layout
generation. Initially, placement and orientation of the modules was achieved. Then,
the problem of routing was tackled. The possible routes were classified into two
terminal routes and multiterminal routes. These routes were ordered in a list based
on their sensitivity, on their distance, on the existence of constraints coming from
the knowledge base, or on whether they were straight or formed intersections with
other nets. The nets were fetched from these ordered lists in sequence and candidate
paths were identified. Thus, a list of option paths was produced and ordered, so that
if needed the system could suggest alternative paths without having to repeat the
whole process. It should be noted that the paths evaluated were treated by the sys-
tem as only a set of suggestions, as the solution could not be guaranteed until all the
conflicts were removed. One interesting feature of this layout generation algorithm
was the layout representation used. The data were anchored to a virtual grid. The
final layout was thus easily converted to a stick-diagram-like representation, which
could further be converted to an ordinary layout. This strategy was suggestive of
more recent template-based routing approaches.

4.5.2 Routing Based on Cost Minimization

The limitations of the digitally inspired routing methodologies, due to heuristic
estimation of costs were soon obvious. The late 1980s and early 1990s witnessed
the development of more “analog” routing approaches. The common themes in these
routers are area routing and the minimization of some cost function. ANAGRAM
[47], ANAGRAM II [21], and the area router in [30] are examples to these routers.
Area routing is used with any class of circuits and geometric complexity as opposed
to channel routing inherited from digital design automation. Since its cost function
can be built as a target function for a multiple objective optimization problem, it
is very flexible. The major drawback of area routing, which is its time complexity,
can be drastically reduced by means of heuristic techniques. The cost function is
typically composed of capacitance to ground for a certain node or inter-node capac-
itances or wire resistances. Thus, there is no explicit link between the performance
constraints of the layout and the cost that the router is trying to minimize. It was
assumed that individual minimization of these costs would result in a satisfactory
layout solution at the end.

In ANAGRAM, the routing engine utilizes a line expansion style router, which
models crosstalk directly. A uniform grid-based routing graph is defined over the
entire routing space, where a vertex defines a partition on the wiring space and an
edge defines a wire segment. A cost function is defined on each edge of this graph
and is associated with the represented wire. The cost associated with a route can be
given as:

Cost = Cost(P) + MaterialCost(C) + ParasiticCost(C)
~+ RoutabilityCost(C) + CostToTarget(C, T) 4.4)
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Cost(P) is the cost to reach this cell from the source, MaterialCost(C') accounts
for the incremental length added by cell C and the cost of routing on C’s layer
or via, ParasiticCost(C) accounts for the incremental parasitic to each interacting
nearby net, RoutabilityCost(C) estimates how difficult it may be to embed this cell
in this region of the layout (wire crowding), and CostToTarget(C,T) is a lower
bound on the cost of the remainder of the path (to be estimated). The cost of a path
on the graph is defined as the sum of the costs of the edges in the path. In this way,
the routing problem is reduced to the search of a minimum cost path. The complexity
of this search grows as a quadratic function of the circuit size. Each net is composed
of a set of partial paths, which have a cost associated with them and are stored in a
cost ordered structure. The next partial path to be extended (by a segment) is the one
with the lowest cost. The line-expansion router thus operates by repetitively popping
the most promising partial path from a heap,’ expanding lines from the front of this
partial path to the next interesting feature in the layout, and adding these new paths
to the heap. A partial path here is simply a collection of connected wire segments.
The CostToTarget(C, T) ensures that the search is biased toward the target. This
routing style is especially effective when routing from distributed terminals, which
occur frequently in analog layouts, such as the perimeter of a capacitor plate or the
terminal of a module consisting of several transistors. Multiterminal nets can also be
routed in this manner. Evolving routes are penalized according to their coupling with
the previously routed wires. In addition, ANAGRAM uses this router in a rip-up-
reroute phase to eliminate crosstalk violations resulting from net ordering. Another
difference of this router from the previous ones is the direct inclusion of crosstalk
into the routing. Wires are classified into three categories; neutral, noisy, and sensi-
tive. Neutral wires are typically power supply and bias lines, whereas noisy wires are
those exhibiting high swings, such as wires of clock or output nets. Using some sim-
ple equations to model the interactions between noisy and sensitive wires, costs can
be calculated. Despite including the crosstalk into the initial routing, iterative rip-
up and reroute can also improve the routing considerably. The main problem with
ANAGRAM is that a cost function in terms of routing parasitics is used, but with no
explicit reference to performance specifications of the circuit. With this approach,
no provision is made for a constraint-driven synthesis approach. Net scheduling is
not fully addressed, and the solution of congestion problems relies on an aggressive
rip-up and reroute scheme.

A more advanced version of ANAGRAM; namely, ANAGRAM II was devel-
oped later [21]. Algorithmically, ANAGRAM II still employs a line-expansion
strategy. However, the original ANAGRAM router used a coarse-gridded represen-
tation that limited its ability to handle over-the-device wiring and arbitrary-width
wiring. Moreover, it had no support for guaranteed symmetric wiring of differential
paths. ANAGRAM II was designed to address these particular limitations. In addi-
tion, ANAGRAM II can support a more interactive style of routing as desired by the

3 A heap is a specialized tree-based data structure such that the smallest element is always in the
root node [48].
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user. The major difference between ANAGRAM II and the original ANAGRAM
router is that the path-segments explored during line expansion in ANAGRAM II
are actual rectangles of arbitrary shape rather than the line segments on an abstract
grid. In ANAGRAM 11, the RoutabilityCost(C) term measures the cost associated
with ripping up nets in the neighborhood necessary to advance a path; ANAGRAM
II thus makes an explicit tradeoff between detouring around an obstacle, and simply
removing it (if its cost was sufficiently low) to reschedule it for later rerouting.

In [30], a modified version of Lee’s algorithm is proposed for routing. A cost
function is formed for each net based on the weighted distance between nodes, a
layer resistivity parameter, a layer-to-bulk capacity parameter, proximity parameter
dependent on the distance of the node from the already existing wires, and a con-
gestion parameter, based on the real wire crowding of the surrounding area and on
an estimate of its final crowding based on a fast first-attempt path-search for each
of the remaining wires. The weights corresponding to each component of the cost
function is set by the user on a net basis. Backtracing on the wires is also performed
to clean up extra corners. The approach also accommodates preconnected pins, such
as those in a stacked transistor structure. Symmetry is considered as an issue in [30]
as well. The routing system also proposes a scheduler, which determines the routing
order of the nets. The scheduler utilizes symmetry information, user information,
and congestion information to arrive at a priority list. Obviously, the scheduler does
not solve the ordering problem completely and provisions for rip-up and reroute are
also present.

4.5.3 Routing Based on Parasitic Bounds

The routers above including ANAGRAM II minimize crosstalk, but without any
specific, quantitative performance targets. On the other hand, the routers ROAD [19]
and ANAGRAM 1III [49] use improved cost-based schemes that route instead to min-
imize the deviation from acceptable parasitic supplied by the designers or derived
from sensitivity analysis. In Fig. 4.18, routing flow for these routers is depicted.

4.5.3.1 Constraint Generation and Sensitivity Calculation

As discussed above, the link between the performance of a circuit and the parasitic
bounds on a node can be determined either by the designer or by the sensitivity
analysis, which acts as a constraint generator. The process of constraint generation
is not trivial and is discussed in detail in [50, 51], and [52]. For meeting the per-
formance specifications of a circuit, finite degradation can always be allowed in the
performance functions during routing, as long as they are below certain thresholds.
The constraint generator is used to map a set of high-level performance specifi-
cations onto a set of bounds, which are then used during the layout synthesis to
control parasitics. The performance constraints during routing are the maximum
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Fig. 4.18 Sensitivity based Routing

changes allowed in performance functions because of routing parasitics. All pos-
sible combinations of interconnect parasitics, which meet performance constraints
define a feasible region in the space described by the parasitics, which in fact can be
treated as the design parameters for routing. Hence, analog routing can be treated
as a constraint-driven optimization problem. The objective function is the chip area,
and the constraints are the performance constraints of the circuit. The parasitics
considered can be line resistances, capacitances, inductances or line-to-line capac-
itances and inductances. The parasitic constraints imposed on the router are of two
types: bounding constraints and matching constraints. Based on the performance
sensitivities, performance constraints, and a-priori estimates of maximum values of
parasitics, the set of parasitics, which can collectively cause negligible performance
degradation, are ignored for generation of bounding constraints. The rest of the par-
asitics on which bounding constraints are imposed are called the critical parasitics.
Please note that in general there will be many possible combinations of bounding
constraints, which meet performance constraints. These constraints can not only be
utilized for area routing, but also in modifying vertical constraint graphs in chan-
nel routing for mixed signal circuits [53, 54]. The sensitivity Sj; of a performance
function W; with respect to a parasitic p; at the nominal value of W; is defined as;

Sij = [aﬁ} 4.5)

One way to compute sensitivity is by using the perturbation method. In this
method, a parameter is perturbed and the performance is reevaluated using circuit
simulation. However, this method is very time consuming since a re-simulation of



4 Routing Analog Circuits 173

the circuit is required for each parameter of interest. This method can also be very
error-prone, particularly for transient simulations, since the circuit simulator output
has some inherent error, and while taking difference between two close numbers, the
percentage error gets larger. Sensitivities can be computed much more efficiently
and accurately, compared to the perturbation method, by using direct or adjoint
techniques of sensitivity computation. A similar approach can be used for match-
ing constraints as well. Once all the sensitivities are calculated, approximations to
performance constraints can be modeled by the following inequalities:

Np
Z Si;fp/ = AWin:x’VI’V" ew” (4.6)
Jj=1
Np
> Sipi < AW YW e W 4.7)
j=1

where N, is the number of parasitics and
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Terms AI/VI-;:‘x and AW, are the maximum allowed change in W; in the positive

and negative direction due to parasitics, respectively. Similarly, terms W+ and W~
are the set of performance functions having constraint in the positive and negative
direction from nominal, respectively.

Please note that the above inequalities have infinitely many solutions and it is
quite difficult to select the “best” solution among these. That is, one can obtain
many different sets of bounds on parasitics p; starting from the bounds on W;. Fur-
thermore, for any practical circuit, the number of parasitics and thus sensitivities are
quite large. A simple thresholding technique or Independent Component Analysis
can be applied to the sensitivities to simplify the problem since many parasitics have
very little effect or no effect at all on some of the performance metrics. Thus, the
dimensionality of the problem gets much smaller. Finding the actual solution is still
quite difficult thus requiring heuristics such as sensitivity graphs [55], which can be
simplified and later used by the router or flexibility values for parasitics [31].

The parasitic generator PARCAR defines a flexibility value for each parasitic in
addition to the above. This value is calculated from the minimum and maximum
values for the parasitics [31]. The maxima and minima for each parasitic are gen-
erally not known before the layout is drawn, but can be initially estimated. As the
layout evolves, the flexibility values get more accurate. The flexibilities can be used
inside a quadratic programming package. To ease the solution, the parasitics that
are not very effective are ignored. As a result, less flexible parasitics are tried to be
satisfied with more effort, whereas the layouts for more flexible ones can be more
easily drawn.
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4.5.3.2 Routers Based on Parasitic Bounding

The router in [56] runs in conjunction with a constraint generator, which computes
the sensitivities of performance functions to all possible parasitics in the circuit and
detects the critical parasitics. It also generates a set of bounds on critical parasitics to
satisfy performance constraints. In differential circuits, a set of matching constraints
on parasitics based on matched-node-pair information is evaluated, and worst-case
sensitivities are computed taking mismatch into account. Sensitivities are used to
generate the weights for the cost function driving the router. The router itself is a
maze router using the A* algorithm (A* algorithm is discussed at the end of this
section). The cost of a path is calculated not as a direct parasitic cost, such as the
total capacitance of the path, but as the cost it has on the performance of the circuit
by using the weights obtained from the sensitivity analyzer. Thus, the quality of the
routing is dictated by the accuracy of the weights. Linear approximations for sensi-
tivities are acceptable, because the goal is to keep each performance within a small
tolerance specified by the user. The way parasitic bounding constraints are gener-
ated is such that if the value of each critical parasitic remains within its bound, then
all the performance variations remain within their respective bounds too. Therefore,
if a performance constraint is violated, at least one parasitic must have exceeded its
bound as well. Hence, one possible approach to modify the weights automatically
is to increase the ones associated with the parasitics whose values resulted larger
than the bounding constraints and to decrease the ones associated with the para-
sitics whose values were smaller. But with such an approach weights could oscillate
indefinitely through iterations. The authors also present a heuristic method to adjust
the weights as well during the routing.

A router for analog design (ROAD) is a maze router based on the A* algorithm,
using a nonuniform grid with dynamic allocation. It allows over-the-device routing,
although routing over sensitive modules can be prevented. Two operating modes are
available. In interactive mode, the user can either accept the routing order suggested
by a scheduler, or define a different order and modify the circuit configuration with
rip-up and reroute operations. In batch mode, a routing session can be programmed
for execution without requiring the user’s attention. Automatic routing scheduling
or a predefined or partially defined order can be used. At the end, a comparison
between parasitic values and upper-bound specifications is performed and decou-
pling shields are built where necessary. At the same time, interactive mode provides
expert analog designers with high flexibility not contrasting with full automatic fea-
tures. The routing graph used by ROAD is a three-dimensional nonuniform grid; the
grid is further refined to reduce the maximum size and aspect ratio of rectangular
area portions. Every new wire determines a local grid refinement and the dynamic
allocation of new nodes. On the grid edges, wire segments are generated and the
cost function is computed. However, the grid does not constrain the wire size, pitch,
or position as fixed, or virtual grids do. In fact, local congestion and in general all
the parameters of the cost function are computed with respect to the whole space
locally available. As a result, the router achieves a complete control over all the
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details of routing geometry. Terminals and blockages can be arbitrary collections
of geometries. Over-the-device routing and crosstalk sensitivity analysis to pieces
of placed devices are possible without additional overhead, as required by sophisti-
cated data structures. The router ROAD can be used in conjunction with PARCAR
to complete the routing. In ROAD, the cost function is a weighted sum of several
nonhomogeneous items. These are local area crowding, resistance, capacitance to
bulk, and cross capacitance. Performance sensitivities to parasitics are used to gen-
erate the weights for the cost function driving the area router. The contribution of a
parasitic to performance degradation is proportional to the sensitivity and inversely
proportional to the maximum variation range allowed for that performance. The
routing schedule is determined with a set of heuristic rules set up and tuned with
experimental tests. The higher the number of constraints on a net, the higher is its
priority. The number of properties that a net can have, for instance symmetry, mem-
bership to supply or clock nets, etc. has already been defined. After performing the
weight-driven routing, parasitics are extracted and performance degradation is esti-
mated and compared with its specifications. If constraints are not met, the weights of
the most sensitive parasitics are raised and routing is repeated. When the weights of
all sensitive parasitics hit their maximum value, iterations stop. This means that even
considering maximum criticality for the sensitive parasitics, routing is not possible
on the given placement, without constraint violations. In this case, the circuit place-
ment needs to be generated again, using a wider range of variation for the detected
sensitive parasitics. In ROAD, nets are split according to a heuristic that estimates
the parts of a net carrying low current. The routing schedule is determined on the
ground of the priority assigned to each net according to its presumable difficulty
due to electrical and architectural requirements. Here, symmetric nets are given a
very high priority so that they can be routed first. ROAD provides provisions for
including shields. Shields are implemented into the layout as a “last resort” if no
other routing solution can be found to keep away sensitive nets from each other,
and are built after all the wires have been routed. Many parameters can be used
to modify the behavior of ROAD. Hence, it is important to provide the designer
with a user interface that allows full exploitation of its flexibility. A high-level com-
mand language, called net descriptor language (NDL), provides a user interface to
ROAD. The purposes of NDL commands are to assign weights for cost function and
scheduler (weight values can be directly specified by the user or automatically com-
puted), specify symmetry requirements, or declare the nets to which the net-splitter
is applicable.

As discussed above, Crosstalk-sensitive analog routers (ANAGRAM II, ROAD)
must rely on some variant of maze-routing with a cost-function comprised of four
terms: a material term (to minimize length, vias, bends), a crosstalk penalty (to min-
imize proximity to deleterious signals), a routability term to estimate how easily this
net fits into the layout, and a cost-to-target predictor (to accelerate search in algo-
rithms like A* routing). Crosstalk optimization substantially degrades the efficiency
of any area router because of the overhead of checking proximity effects at the head
of each evolving partial path (which is unavoidable), and because crosstalk obstacles
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are very hard to predict and frequently require deep path search to avoid. ANA-
GRAM III alleviates this problem by pruning parasitically nonviable paths as the
search progresses. The virtue of this scheme is that it does not make artificial trade-
offs between wirelength and crosstalk; instead, it can efficiently find the cheapest
path that does not violate hard parasitic bounds supplied by the user.

A* Algorithm

A* algorithm [57] is a general methodology for the shortest path calculations in
graph theory. In [58, 59], it is adapted to the area routing problem and used to
improve the average run time of the Lee—Moore algorithm. The upper-bound for its
run-time is O(n2), as for the Lee—Moore algorithm, but its average performance
may be much better. This algorithm operates by making estimates for the cost of
connections before committing them and runs on a routing graph G (V, E), extracted
from the layout. In A* algorithm, path searching continues till a path from source to
target is found or all vertices in V' are visited. During this search, costs are assigned
to vertices and these costs and the corresponding vertices are stored in an ordered
list. This path search is performed in a loop and the vertex having the minimum
cost is chosen to continue with. The cost of vertex x is f(x) and it is formulated as
follows:

f(x) = g(x) + h(x) (4.8)

where g(x) is the cost calculated from s — source wire — to x — an intermediate wire
—and h(x) is the estimate of the minimum cost from x to ¢ — target wire —. Note that
h(x) in f(x) must not overestimate the distance to the goal. If only the wire lengths
are considered, a preferable heuristic for /2(x) is the Manhattan distance from x to 7.
In Fig. 4.19, these costs are simply depicted, where the total length of the solid lines
represents g(x) and the length of the dashed line represents /(). In analog routing,
h(x) may be defined as the resistive cost of the Manhattan path from x to ¢ and
g(x) as the weighted sum of the additional parasitics cost due to the new path from
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s to x. If only resistive and capacitive parasitic cost are considered, g(x) may be
calculated as:

g(x) = A-(Gx_1 + AGy) (4.9)

g1 (ZV]’ cij1 ACij) + (r1AR)
g(x) =lar---an] || : + :
8nly_y (ZV}' CijnACij) + (rnAR)

where A is a vector including the weights for different performance metrics, Gx—1
is the sum of the performance metrics from s upto x and AGy is the change in
the performance metrics due to adding x. AC;; is the additional capacitance value
between net i — net of x — and net j — net of a neighboring wire or bulk — and
AR is the additional resistance value. Changing the coefficients ¢;j, and ry, it is
possible to define different metrics, such that if r, = 0, only capacitive parasitics
are considered and if ¢;j, = 0 only the resistive parasitics are considered.

As previously mentioned, the f(x) costs are needed to be stored in a sorted
manner, such that the algorithm chooses the wire with minimum f(x) cost and
continues path search. Thus, a sorted list of { f(x), x} pairs is needed, where the
sorting must be according to the f(x) values. A red-black tree® implementation may
be used to keep the { f(x), x} pairs ordered. However, different vertices x; and x;
may exist such that f(x;) = f(x,); in such a case, the tree representation will
not be capable of storing { f(x;), x; } and { f(x;), x; } pairs. Storing { f(x), L f(x)}
pairs instead of { f(x), x} pairs solves the problem of duplicated f(x) costs, where
L #(x) is a linked list of the nodes having the same f'(x) value. This data structure is
depicted in Fig. 4.20 where the nodes of the red—black tree point to the linked lists,
associated with them.

Fig. 4.20 Data structure to store { f(x), x} pairs

6 A red-black tree [60] is a binary search tree, it inserts and removes nodes intelligently to ensure
that it is balanced.
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Fig. 4.21 Pseudo Code function findPath(sources, targets)
of A* Algorithm // initialize sources
For every source in sources
source.G = zeros(n) // a vector of n zeros
source.previous = null
h_source = calculate hCost(source)
// calculate A dot G
g source = calculate gCost(source.G)
f source =h_source + g_source
add {f source, source} into openSet
// search for a path
while(openSet not empty)
x = the first node in openSet
if targets contains x
return construct_path(x)
// get neighboring space(empty cells)
for every y in getNeighbors(x)
if closedSet contains y
continue
add y into closedSet // visit ones
vectorG = calculate_deltaG(x, y) + x.G
if openSet not contains y
y.G = vectorG
y.previous = X
h_y = calculate_hCost(y)
g_y = calculate_gCost(y.G)
fy=hy+gy
add {f y, y} into openSet
else if calculate_gCost(vectorG)
< calculate_gCost(y.G)
y.G = vectorG
y.previous = x
h_y = calculate_hCost(y)
g y = calculate gCost(y.G)
f y=h_source + g_source

update f_y of y in openSet

function construct_path(x)
if x.previous == null
return path
else
add new wire from x to x.previous into path
construct_path(x.previous)

The pseudo code for the A* algorithm is given in Fig.4.21. In the code, two sets
are used, namely, the closed-set and the open-set. The closed-set, a hash set, contains
the visited vertices and the open-set, an ordered set with the structure in Fig. 4.20,
contains the { f(x), x} pairs. In the pseudo code, calculate_hCost (y) esti-
mates the resistive cost from y to target and calculate_gCost (y.G) takes the
product of the input vector with the weighting vector A.

4.5.4 Integrated Placement and Routing

Conventionally, the execution of placement and routing has been sequential. If the
routing is a two-step procedure, the execution of the global routing and detailed
routing is also sequential. Thus, the global routing can be beneficial only for the
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detailed routing and it is of little use to the placement procedure. Normally, only a
rough wire-length estimator is employed during the placement. So the output place-
ment solution is likely not an optimum as viewed by the global routing. Although
the simultaneous performance optimization of the placement and the global rout-
ing can lead to a more accurate search, the computation time is impractically high
when applied to large digital circuits due to huge number of nets to be consid-
ered. However, compared to digital circuits, the number of nets in analog integrated
circuits is relatively small. This allows the global routing to be considered along
with the placement procedure. On the other hand, the performance of the analog
layout is very sensitive to the actual wire paths. Bringing the global routing into
the placement will ease the implementation of those parasitic constraints. The in-
tegration of placement and routing can be done at several levels of granularity. On
the one extreme, routing can be implemented between the iterations of placement.
This approach does not require much change in the existing placement and rout-
ing algorithms. On the other extreme, routing can be viewed as a placement of the
connecting wires. Thus, placement and routing are merged into a single enhanced
placement step.

A novel idea incorporated into the KOAN/ANAGRAM II system is to extend
the annealing-based KOAN placer so that it can manipulate both devices and wires
[61]. This is a very early example of simultaneous placement and routing and can
alleviate the need for separate complex routing algorithms. A simple routing solu-
tion can be improved over time together with the placement. The central problem
is how to represent fully detailed wire geometry in a manner that allows the same
freedom of incremental movement as the devices themselves. The simulated anneal-
ing algorithm of KOAN can place wires just like placing modules except for three
properties; the representation, the moves, and the cost function. The nets should be
represented such that they are always electrically connected correctly to their corre-
sponding devices. The feasibility or quality of connections is not important initially
as they will improve over time. It is enough for the router to find just a connection
between the devices. Also note that as the devices are moving, the wires are being
constantly reshaped. Not much thought is given into the allowable moves, but the
effort has been transferred into careful design of the cost function that coerces nets
to evolve into high-quality physical routes. The cost function includes design rule
violations, crosstalk, and total net area for one connection.

RACHANA [62] also describes an integrated placement and routing approach.
Initially, a graph of the circuit is created based on the schematic. This relies on the
widespread assumption that the best distribution of the elements is already present
in the schematic if the schematic is drawn properly. Then, constraint-driven module
generation is carried out. Some modules have been coded into RACHANA such that
it can recognize these simple subcircuits and create many layout variants for them. In
the third phase, which is the floorplanning phase, the best configuration among the
variants is selected. In the unified placement and routing algorithm, the placement
and routing steps are simply intertwined. In other words, a module is placed, then
the connections to that module are completed before the next one is placed. The
router itself is gridless and multilayer.
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The developers of GELSA [63, 64] claim that the integration of placement and
routing can be achieved by doing routing at every step of the placement process.
This in turn results in the solution of the routing problem, which is NP complete, at
every iteration of placement, thus resulting in extremely complex layout generation.
To avoid excessively long run times, the routing is not completed for every solution
at every step, but approximate routing is carried out. Slicing structures are used for
problem representation, whereas the optimization algorithm is simulated annealing.
The slicing structures are simply shown by a tree or a string. The optimizer also
takes symmetry into account. The approach for symmetry is quite interesting in that
two levels of symmetry are simultaneously considered in the cost function: global
symmetry with respect to virtual axes, and local symmetry affecting groups of cells.

In [65], the possibility of simultaneous placement and routing is also explored.
The sequence pair algorithm is utilized for the placement of blocks as well as wires.
Each wire is divided into a set of rectangles, and the following two extensions are
introduced to maintain the connection: one is to impose a condition of orders of
rectangles on a sequence-pair called wire-connectivity, and the other is to generate
horizontal and vertical constraint graphs for compaction.

The potential problems of the conventionally separate placement and global rout-
ing in analog integrated circuits, which often involve complex constraints, were also
addressed in [66]. This work presents a two-stage placement technique to solve the
analog macro-cell placement problem. The entire placement procedure is divided
into global placement and detailed placement stages. During the global placement,
a hybrid genetic placement approach using a half-perimeter wire-length estimator is
employed. It performs a rough but quick search to locate the region of the optimum.
In the detailed placement, a very fast simulated reannealing placement approach
and a minimum-Steiner-tree-based global routing are executed simultaneously. In
this manner, the optimum can be found by searching a relatively small region. For
each intermediate placement solution, the global routing elaborates the routing plan,
taking into account the net sensitivity and channel congestion. Moreover, the cost
obtained by the global routing is used to evaluate the quality of a placement solu-
tion. Thus, the placement solution with the lowest cost (i.e., the optimum in terms
of the global routing) will be sought when the optimization process progresses.

Simultaneous placement and routing was extended even further to integrate con-
straint transformation into the integrated place and route as well [67]. The circuit
was represented geometrically as tiles. The tiles could be moved, swapped, routed,
and resized. A tabu-search optimization algorithm was utilized with these available
steps. The end results were shown to be superior to conventional sequential con-
straint transformation-place-route methodology.

4.5.5 Global/Detailed Routing

In ALADIN [68, 69] two routing phases, namely, global routing and detailed rout-
ing are employed. The global routing is integrated into the placement procedure
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to improve the accuracy of routing estimation. The compaction-based constructive
detailed routing generates the final layout based on the output of the placement
procedure. Because nets play a critical role in analog circuits due to parasitic ef-
fects, crosstalk, etc., minimum-Steiner-tree-based global routing is developed. The
estimation of net-length is critical for the placement and the global routing. The
choice of a suitable net-length estimator is actually a tradeoff between the accuracy
and the computation efficiency. In ALADIN, several typical net-length estimators,
including the half-perimeter, the center-of-mass, the complete graph, and the mini-
mum spanning tree have been developed. All these methods are based on Manhattan
distance, which inevitably degrades the reliability of the estimation. Since nets
play a critical role in analog circuits due to parasitic effects, crosstalk, etc., this
problem is addressed by developing a method based on the minimum-Steiner-tree.
Not only is the minimum-Steiner-tree method used for net-length estimation, but
it also elaborates the routing plan, taking net sensitivity and channel congestion
into account. A weighted graph is used to model the routing regions. A rectilin-
ear channel graph is formed by passing channels (or edges) through critical regions
and forming vertices at their intersections (Fig. 4.8). Finding a global route becomes
equivalent to finding an optimal subtree (the minimum-Steiner-tree) in the routing
pin graph that spans the terminal vertices. A Dijksta shortest path algorithm [70] is
applied to solve this minimum-Steiner- tree problem.

A technique of simultaneous execution between the placement and global rout-
ing has been developed in ALADIN, where the global routing is executed for each
intermediate placement solutions. It makes better search results without losing the
solvability of the problem. This global-routing-driven placement strategy is espe-
cially effective for the analog layout designs, where the number of nets is relatively
small but with complex constraints. A potential problem in the traditional placement
and global routing procedures is whether the estimated channel width is accurate.
So a postprocessing procedure, such as compaction, is required. However, a dif-
ferent strategy is used in ALADIN, where the placement phase is followed by
a compaction-based constructive detailed routing phase that automatically mini-
mizes the channel space. The width of channels need not be considered during
the placement except for the channel congestion to avoid overburdened channels.
The congestion degree of a channel is represented by the number of the passed
nets in this channel. It is taken as a weight in the weighted graph of the global
routing model, apart from the channel length. The Dijksta shortest path algorithm
optimizes the routing paths and finds the one that is balanced and the shortest. In this
way, the conventional problems of routability and postprocessing are avoided. The
global routing is integrated into the placement procedure to improve the accuracy
of the routing path estimation . The compaction-based constructive detailed routing
completes the final layout based on the output from the placement procedure. In the
detailed routing phase, an initial preprocessing step is applied to determine the order
of the wiring. This preprocessing is heuristic and starts from symmetric modules
and more central modules. After ordering, for each module, the interconnections
within the module are first wired densely around the module boundary using a ring
router [71]. Then, this dense module is compacted toward others according to the
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position relationship extracted from the placement solution. The interconnections
between the compacting module and the reference module are routed within a rela-
tively small scope using a modified maze router [71]. In this way, the whole layout
area remains as small as possible because the compaction can assure high density.
Moreover, no estimation of routing area is needed and the problem of routability
can be solved during each compaction step.

The concept of symmetric routing was applied to net bundles, which may occur
both in digital and in analog designs in [72]. Previous discussions on differential
capacitance in net bundles was limited to digital design and consisted of simple
Miller effect-based approximations. In [72], the net length difference due to corners
in the routing of bundles is discussed. Furthermore, the slightly different effect of
the aggressor on each individual net in the bundle is investigated. The methodology
presented tries to minimize these effects by proper choice of the routing area. If this
is still not enough to balance the nets, extra routing paths and adjustment sections
are added.

In [73] and [74], a two-step routing strategy is suggested. A channel intersection
graph model is employed to represent the global routing structure such as in Fig. 4.8;
thus, a routable layout region is confined to intersection regions of the modules. The
routing model employed is also coherent with the slicing floorplanning model used
for placement.

Routing connections of the modules are projected on the enclosing routing chan-
nel as the first step of routing. The problem of global routing then reduces to
connecting the points on the intersection grid of the same node. An iterative maze
routing algorithm is employed for global routing. The implemented algorithm is
sequential; one connection is routed in a single iteration. Exploration of the maze
router is based on backtracking algorithm, so that all possible routing solutions are
explored. Although backtracking is very time-consuming, most of the branches that
exceed performance bounds are eliminated during routing. Physical routing is not
finished at this point but, it is possible to predict node-to-node and node-to-ground
capacitances using global routing information. Thus, it is possible to calculate the
effect of each routing option on the performance using predicted capacitances and
sensitivity information. Minimum performance degradation is allowed for all itera-
tions of the maze router.

The next step of routing is local routing, where the global routing information
is used to generate the actual physical routing. Routing information registered on
the intersection graph is mapped onto channels that are located between or beside
the modules. The results of mapping the intersection graph to the channel indicate
directions in which routing should be performed. The channel devoted for routing is
generated through four basic operations. These operations produce a channel route
plan clearly identifying the structure of detailed routing. A connection is inserted
into the channel via a “push” operation, while it is propagated to the next connec-
tion point by “propagate,” redirected by “peak,” and directed out permanently by
“pop.” Routing ends when all of the connections of the same label are connected.
A refinement step is run over the resulting plan to reduce transitions between routing
levels, producing a smoother routing.
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One more step is necessary to produce final routing. The final routing step used
to complete routing employs switchbox routing scheme to physically produce rout-
ing. Switchboxes are inserted at each position of the channel where a level transition
occurs. Given the node route depths and route directions, switchboxes generate the
detailed routing of the channel. Space between the switchboxes is simply filled
with connecting wires. Combining all switchboxes and interconnections between
the switchboxes, results in complete layout of the channel. Similar to the optimiza-
tion method utilized in global routing, local routing also uses a backtracking-based
exhaustive algorithm. Possible switchbox configurations are enumerated to achieve
coupling information. Note that a typical switchbox does not exceed a size of
3-by-3; thus, computation time is not a critical criterion for this step.

4.5.6 Template Based Approaches

Many layout tools do not generate the layout by themselves, but they use the
information provided by the user. This information may be in terms of a sample
layout or may be coded in a specific layout language. Although this approach may
seem to be much easier and much more primitive compared to the previously dis-
cussed routers, it has many applications. The general reluctance of analog designers
toward using automatic layout generation tools is because they are skeptical about
their success/reliability and they would like to have full control over the layout gen-
eration process. They would prefer the layout tool to be an assistant to them rather
than producing the layout itself. Thus, generating a template for the layout is quite
a good solution for them. Furthermore, in many cases, a designer may desire to
port a layout created in one technology to another similar technology. The designer
may also want to make an incremental change in the design after the layout, while
remaining in the same technology. Automatically generating the layout from scratch
for these problems is not only costly, but may also create inferior results. Since most
layout generators contain probabilistic components, the generated layouts from the
same circuit will not be the same for every run of the generator. Thus, when the de-
signer has a successful layout with all the parasitics estimated, he/she will not want
the tool to create a new layout from scratch, but will want an update of an exist-
ing design. In these cases, generation of a layout from a template with preextracted
parasitics will be much more desirable.

One of the earliest proposals for such a layout generation approach was in [75].
This approach uses a sample layout, the template, to graphically capture an expert’s
knowledge of analog device placement and routing for a given module type. To gen-
erate a module, one supplies the required electrical parameters for each device and
a geometrical constraint on the module’s shape e.g., a desired aspect ratio. Using
exhaustive floorplan area optimization techniques, the tool then determines the opti-
mum shape of each device to satisfy the user’s geometrical constraint. Subsequently,
the layout is generated by transforming (via compaction) the template into a mod-
ule, substituting the devices in the template by newly generated devices with the
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user-supplied electrical parameters and the determined geometrical shapes. This
technique produces good quality layout in a reasonable amount of time, by utilizing
the expert designer knowledge embedded in the template and by taking analog spe-
cific features such as device matching and merging into account during the layout
transformation phase. The routing in the template remains intact while the modules
are interchanged with the desired ones. The only job of the router, if one may call
it so, is to stretch or compact the interconnections according to the new module
sizes.

The template may also be described with a layout language, such as BALLISTIC
[76]. Layouts represented with this language can be transported across technolo-
gies easily as well as fitting into various aspect ratios. Interconnections are also
represented by a wiring command, which is relative just like the placement com-
mands. The interconnection is described via the layers utilized and the breakpoints
in the wire. A few hundred lines of code are enough for a medium complexity ana-
log cell. This code is then translated into the native layout code of a commercial
design tool.

Another language proposed in this manner (CAIRO) is composed of a doc-
umented superset of C functions [77, 78] rather than a specific language. Then,
this code can be compiled to generate the layout. The routing functions allow
relative routing description using predefined reference points. This results in a
shape-independent description of the routing.

The authors of [79, 80] propose a template-based approach for retargeting. The
proposed retargeting methodology relies on the previous existence of a block netlist,
layout templates for the block at hand, and, optionally, some tuning strategies in the
form of design constraints for such blocks. When parameterizing complex layout
cells, factors such as regularity, density, and symmetries are kept during the retar-
geting process. This is achieved by relying on a deep hierarchical decomposition
and a careful cell planning. Parameterized layout templates are first built for sin-
gle devices and small numbers of them (i.e., a set of matching transistors). These
basic structures are used to build more complex parameterized subcells, proceed-
ing up the hierarchy until the layout template for the objective block is obtained.
During this constructive process, much attention is paid to the complete parame-
terization of cells, relative positions and interconnections, so that, big changes in
device sizes can easily be accommodated. Parameterization of the interconnections
does not only consider the design rules but also the current densities that must be
carried. The parameterized layout templates have been built using a commercial tool
for easier acceptance by analog designers.

In LAYGEN [81, 82], the router uses the placement solution and the template’s
nets to produce the desired routing. The algorithm uses a two-stage generation pro-
cess; first, it adjusts the template routing to the newly created placement, then the
optimizer attempts to adapt the routing to the particular layout representation. The
new placement yields new pin positions so the template routing paths must be ad-
justed to the new pin locations. Each net is divided in a set of wires, each one
connecting two and only two pins. The adjustment procedure consists of the fol-
lowing: First, the template paths are scaled, then moved to set the wire start point
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on the new start-pin position and, finally the wire stop position is set to the new
stop-pin position to ensure connectivity. The adapted routing is then used as a start
point for the evolutionary optimizer. The optimizer uses the information in the new
placement and the adapted nets to minimize the cost function that incorporates de-
sign rule violations, connectivity requirements, wire length to increase area usage
and to decrease parasitic capacitances, and minimum distance between nets to sep-
arate nets as far as possible reducing the crosstalk. The genetic optimizer encodes
the routing information by assigning one gene to each adapted net. In this way,
crossover generates children that present a combination of their parents’ nets, and
mutation is performed in each net. The advantage of such a complex genetic encod-
ing is that the mutation operators can be designed to be more “intelligent” as they
use more information. It is also interesting to note that the validations required in
routing makes it more complex and computationally more expensive than placement
for LAYGEN.

4.5.6.1 A Simple Template Script

Simplicity and reusability are the main aims of a template. A simple template script,
called layout description script (LDS), will be described in this subsection. The
simplicity of this script comes from its representation, where absolute or relative
positions of layout elements are defined as simple equations. These layout elements
may be modules (transistors, capacitors, etc.), wires, or even wells. Top, bottom,
right, and left boundaries of these elements are used in the description. For instance,
the LDS code for symbolic layout in Figs. 4.22a and 4.22¢ are defined in Figs. 4.22b
and 4.22d, respectively. Note that the description does not include any redundant
information and a code line includes only horizontal or vertical information and
not both.

LDS is needed to be extracted from a placement before the script and the di-
mensions of the layout elements are used to synthesize new layout instances. Using
vertical and horizontal constraint graphs, LDS code may be easily extracted. For
the horizontal placement in Fig. 4.23a, the horizontal constraint graph in Fig.4.23d
may be used to automatically extract the code. This graph has an edge if the right
boundary of an element sees the left boundary of another element. Similarly, edges
of the vertical constraint graph are between the top and the bottom boundaries of the
layout elements. The LDS code corresponding to Fig. 4.23d is given in Fig. 4.23f.
However, adding this code into the template will not suffice to synthesize over-
lap free layouts, due to the fact that the horizontal and the vertical information are
coded separately. In Fig. 4.23b, a layout synthesized from the code of Fig. 4.23f is
shown. Here, the width of b and the height of e are enlarged and the resulting layout
has overlapping elements. A way to prevent this overlap is to combine some verti-
cal information with the horizontal information. The constraint graph in Fig. 4.23e
guarantees nonoverlapping layouts for any size of elements. Such a graph is con-
structed by adding edges from the right boundary of an element to the left boundary
of the elements that have higher x positions and have no other elements in between.
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bottom(a) = bottom(b)

a right(a) <= left(b)

b right(a) — left(a) = width_a
top(a) — bottom(a) = height _a
right(b) — left(b) = width_b

a > top(b) — bottom(b) = height b

b is after a and a is aligned with b LDS code for (a)

(o

bottom(d) >= top(c)

right(c) - left(c) = width_c
top(c) - bottom(c) = height ¢
right(d) - left(d) = width_d

C top(d) - bottom(d) = height d

d is above ¢ LDS code for (c)

Fig. 4.22 LDS descriptions for the layouts in (a) and (c) are listed in (b) and (d), respectively

Corresponding LDS code and placement are given in Figs. 4.23g and 4.23c, respec-
tively; note that the overhead due to the extra edges is not much because of the fact
that edges are only added between the elements that may overlap. The extra space
after the sizing is removed by applying a compaction. This way, the template does
not need to contain any absolute position and the sizes of the modules may be freely
updated. Although such a template handles overlaps, it does not handle design rules.
For instance, there must be a spacing between wires of different nets if they are in
the same layer (constraints for each layer are extracted separately); this space de-
pends on the manufacturing technology. However, it should not be added between
the wires in the same net. Thus, during the extraction of constraints only some of
the elements are considered, such that these elements are in the same layer but they
belong to different nets.

In Fig.4.24a, three wires are shown in the first metal layer and they are con-
nected. Extracted LDS code for the W2 is in Fig.4.24e. This code takes care of
changes on the width of W2, and the wire W3 must be after wire W1. Due to the
fact that W3 must be after W1, the flexibility of the template is limited, where as
the structure in Fig. 4.24b is dynamic and does not restrict the wires horizontally as
shown in Figs. 4.24c, d. The structure in Fig. 4.24b uses four wires. LDS codes for
W2 and W4 are in Fig.4.24f. The constraints in these LDS codes may be solved
with an LP solver.



4 Routing Analog Circuits 187

a b c
d

a a d

a

b d b )
€
e
C e C C
Initial Overlap No overlap

(©) (© ) (©

Simple Graph Extended Graph

left(d) >= right(a)
f left(d) >= right(b)
left(d) >= right(c)
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left(d) >= right(a)
left(d) >= right(b)

left(d) >= right(c) left(e) >= right(a)
left(e) >= right(c) left(e) >= right(b)
LDS for (d) LDS for (e)

Fig. 4.23 Resizing affects horizontal and vertical constraints: After resizing, placement in (a) may
result in an overlapping layout as in (b) if the horizontal graph in (d) and the corresponding LDS
in (f) are used. Overlap in the layout is prevented in (¢) when the horizontal graph in (e) and the
corresponding LDS in (g) are used

Through LDS, a template is coded for the OPAMP in Fig. 4.25a. Using this tem-
plate, the sample layout in Fig. 4.25b is synthesized. The same template is also used
to synthesize the layout in Fig. 4.25c, however, the dimension of the M3-M4 tran-
sistor pair is enlarged. Note that the path between the M3—M4 pair and the M1-M2
pair is coded as the path in Fig. 4.24b and it is dynamic. Similarly, the same template
is used to synthesize the layout in Fig. 4.25d. In this sample, the dimensions of the
transistors, M6 and M7, are narrowed. For all these cases, the resulting layouts are
free of overlaps and they do not violate the specified design rules such as minimum
width, spacing, etc.
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top(W3) = bottom(W4)

right(W2) - left(W2) >= minWidth(MET1)
right(W3) - left(W3) >= minWidth(MET1)
top(W2) - bottom(W2) = minWidth(MET1)
top(W3) - bottom(W3) = minWidth(MET1)

LDS of (a)

LDS of (b)

Fig. 4.24 Coding paths in LDS: path in (a) and the dynamic path in (b) are described in LDS in
(e) and (f), respectively; orientation of a dynamic path may change as depicted in (c¢) and (d)
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4.5.7 Other Routing Strategies

One method utilized in digital routing to overcome the wire congestion problems
and address the net ordering effects has been probabilistic routing. Although the
number of connections in analog routing is much fewer, this approach can be gen-
eralized to include analog routing constraints as well. [83] proposes the assignment
of global routes to routing areas between modules. Then, a resistor array is cre-
ated where each resistor represents a possible routing area for a net. The value
of the resistor is assigned according to the probability of routing in that channel
which depends not only on geometrical information, but also on some constraint
information. The resistor array is then simulated and resistors corresponding to low
probabilities are removed iteratively from the network, updating the probability val-
ues at each iteration, thus completing the assignment. [84] does not use a resistor
array, but a heuristic, where the probabilities are converted to priorities for routing.
Furthermore, a probability is assigned to each grid point rather than to a routing area.
However, the probability formulation is quite detailed and calculates analog con-
straints including symmetry.

The analog router described in [85] implements x—y routing that utilizes an
efficient scheme for generating candidate routes for each net. A single-layer routing
option may also be used. These candidate routes are then simultaneously consid-
ered for compatibility, and finally a set of compatible routes is chosen. This routing
method has been used before for multichip modules and was also extended to dig-
ital routing. In x—y routing, two adjacent metal layers are routed simultaneously.
All horizontal segments are routed on one layer, with all vertical ones on the other.
Adjacent segments on different layers are connected through stacked vias. Routing
in each layer pair is done in phases, each phase generating candidate routes with
different numbers of vias. The number of phases is at the designer’s discretion, as
are the types of candidate routes the designer wishes to generate. The algorithm dis-
cussed in [85] assumes all nets are two-terminal nets. But multiterminal nets may
also be successfully routed. For any #-terminal net, a minimal spanning tree is deter-
mined consisting of 7 —1 edges. Each edge is considered as a two-terminal net during
routing. Most of the candidate routes are generated within the bounding box of the
net. The bounding box is the smallest rectilinear region containing all terminals of
the net. Once the candidate routes are generated in a particular phase, a compatibil-
ity graph G(V, E) is constructed. Each vertex in the graph represents a candidate
route, and an edge placed between two candidate routes signifies that the two routes
are incompatible and cannot be selected together in the final routing solution. Once
the graph is constructed, it is reduced such that no edges remain in the graph. The
resulting graph called the reduced compatibility graph (RCG) represents the set of
vertices (or candidate routes) that are compatible with each other. A candidate may
be chosen from the RCG for each net under consideration. The constraints on the
parasitics and on the layout geometry and symmetry are a part of user specifications
and apply to the nets specified. Various other constraints such as specifying wire
widths, confining certain nets to specific layers, defining keep- out areas, specifying
parallel distances, and coupled lengths between two segments as a function of their
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widths, etc., can also be included by the designer. These are accounted for during the
routing process to obtain optimized routing solutions respecting given constraints.
This routing methodology based on candidate generation has an inherent global ap-
proach and tries to satisfy all the constraints simultaneously for all nets considered
together instead of using an incremental net-by-net approach, which may be unable
to route all nets respecting all the constraints as routing congestion increases. It was
also shown that x—y routing can be extended to 45° routing as well [86].

4.6 Specialized Analog Routers

There are many applications in analog design, which may require entirely different
or enhanced routers compared to those discussed above. Two such applications,
namely, RF circuits and analog arrays are briefly illustrated below.

4.6.1 Routing for RF Circuits

The design of RF circuits has also been addressed recently in many design au-
tomation systems for analog integrated circuits. However, specific layout generation
technologies in this respect have been rather few. CYCLONE [87,88] is a tool for the
automatic design of VCO circuits. It proposes special module generation techniques,
but the placement and routing are done by LAYLA. It is thus implicitly assumed that
no special routing approaches are necessary for routing RF circuits.

On the other hand, CORAL [89] is a routing tool implicitly for RF circuits, and
it adopts area routing because of the importance of routing parasitics. The A* algo-
rithm is used for maze routing. Parasitic effects such as inductive and capacitive
crosstalk are modeled in terms of the degradation induced on the characteristic
impedance Zy and loss. Alternatively, at low frequencies discrete (R,C,L) parasitics
can be used. Analytical models of all considered parasitics are obtained by fitting ap-
propriate mathematical expressions to data obtained from 2-D or 3-D field solvers.
The routing is performed in two phases. The first phase is constraint-based routing
as described earlier. Layout synthesis of RF and microwave circuits almost always
requires that the dimensions of some interconnect lines be fixed. However, length
constraints on interconnect cannot be effectively enforced during this phase. Hence,
the routing or constructive phase is followed by a refinement phase. The refinement
consists of progressive expansion of all nets simultaneously thus allowing enforce-
ment of all net constraints, while no new violations are created on the remaining
parasitic constraints.
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4.6.2 Routing for Analog Arrays

An important class of layout generation tasks has not been discussed yet. Frequently,
in analog blocks a highly regular architecture of basic cells is used. Examples of this
are flash type A/D converters, Cellular Neural Networks, or current-steering D/A
converters. Typically, the regular layout structures used in analog blocks contain an
array of unit cells (potentially with slightly different versions), which process one or
more input signals in a parallel way and steer one or more output signals. Although
routing automation for analog arrays was first mentioned in [90], this approach does
not go far beyond maze routing with genetic optimization.

A real router for array style analog design is Mondriaan [91, 92]. In Mondriaan,
the connections in and out of the array or internal to the array are realized through
routing channels across or between the cells. The connectivity for ground, biasing or
power supply connections is easily realized through abutment. Cells can be flipped
upside down or sideways to share lines by abutment. Thus, the offered placement
and routing functionality is much more powerful than the stretch and tile approach
and covers the requirements of a large variety of analog circuits. Note that the place-
ment and routing of field programmable gate arrays (FPGA) somewhat resembles
this approach. An essential difference is that in FPGA routing, the majority of the
connections are internal to the logic array, while in analog applications the majority
of the connections are to pins at the edge of the matrix. Furthermore, the placement
and routing of FPGAs are faced with a fixed number of wires and blocks and the
critical delay (caused by routing) is to be minimized. This is not the case in ana-
log applications: the number of wires is variable, but should be minimized, and
the performance depends on equal capacitance, resistance or matching rather than
the critical delay. Mondriaan generates a symbolic placement and routing from the
floorplan, netlist, and symbolic basic cell. To accomplish this, a search algorithm
is used to propagate the placement and connectivity information across the array.
First, the number of vertical wires for every column is determined (if not specified
by the user). Next, for all fixed IO pins free vertical wires are selected and the net
of the wire is updated. If the cell connected to this net is not placed, it is placed in a
free array slot. When all fixed 1O pins have been connected, and all cells have been
placed, the cells can be scanned columnwise, to propagate their connectivity. As a
last step, the number of horizontal wires is determined (if it is not given by the user).
This is done by counting the number of vertical wires, which have to be connected.
Then the wires are scanned and free horizontal wires are selected to connect the ver-
tical wires. Of course if no vertical wires need to be connected, no horizontal wires
are created. The tool also contains special bus and tree generators.

The routing problem for field programmable analog arrays (FPAA) was men-
tioned as early as 1999 in [93]. The router FAAR makes connections between cells
on a local and global level. The routing scenario is different from Mondriaan in
that the number of switches is limited, thereby limiting the possible number of con-
nections. The main properties of FPAA routers are as follows: The analog routers
discussed so far are specifically targeted for full-custom designs. FPAA routing is
more combinatorial in nature, and hence work needs to be done to extend ASIC



4 Routing Analog Circuits 193

routing heuristics for FPAAs. More routing constraints will have to be incorporated
since routing resources are fixed in number and preplaced, and there are constraints
on permissible connections. Classical analog channel routing algorithms are not
very suitable for array-based FPAAs because of the difficult nature of subdivid-
ing the routing problem into independent channels. FPGA routers cannot be used
in their current form since they are targeted for routing on typical FPGA architec-
tures. The FPAA routing considerations are different from the typical FPGA routing
considerations. Graph-based FPGA routers use minimum-rectilinear-Steiner-tree
(MRST) heuristics; this is not quite necessary in most FPAA cases because of the
inability to have bends in a route owing to the single-segment architecture. Some
FPGA routers can handle nonsegmented FPGA architectures or FPGA architec-
tures with various types of segmentation distributions, and different switch box
architectures. However, they do not describe completely the target FPAA routing
architecture. Several modifications need to be made to handle a typical connection
within switchbox architectures, as well as single-segment routing architecture. The
issue of performance degradation, which is critical in FPAA routing is not addressed
by any FPGA router. FAAR accepts as input a netlist of placed CABs (Computa-
tional Analog Block) and IO cells, and the parasitic bound for each net that limits
the number of switches used. This bound keeps the performance degradation within
acceptable limits. By modifying the architectural parameters including size of the
CAB array, number of tracks per horizontal channel and vertical channel, FAAR
may be used to route for array-based architectures. The following four subproblems
can be identified to simplify the explanation of the routing problem in FPAAs:

1. Routing between two terminals of a net: The problem is to find the shortest path
between two terminals of a net where the distance is defined by the number of
routing resources required. There are typically four possible alternative routes
for a source and destination terminal pair using the allowed connections:

a. Using the local interconnect to make a connection between the terminals with-
out utilizing any global wires.

b. Using one global wire if it is an allowed connection for both terminals.

c. Using two global wires (one horizontal and one vertical) if the terminals can-
not share the same wire.

d. Using three global wires, two horizontal and one vertical (or vice versa) if
neither terminal can make a connection to its allowed horizontal (or vertical)
wire because it was already used by another net.

2. Routing multiterminal nets: The problem is to find a minimum-length route be-
tween all terminals of a given net. Each net has one source terminal (output
terminal of a CAB or IO cell) and multiple destination terminals (input terminals
of CABs or IO cells). A multiterminal net can be viewed as a set of two-terminal
nets, one two-terminal net between the source terminal and each of the destina-
tion terminals, and these two-terminal nets can be routed sequentially. All local
connections are completed first and then the unconnected terminals are routed
using global wires. Given a partial multiterminal net-route, sharing should be
maximized and as few additional routing resources as possible should be used.
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3. Routing multiple nets: The problem here is to find satisfactory routes for several
nets simultaneously. This is the compatibility problem, and it is NP-complete.
However, FAAR uses sequential routing and this problem is not addressed.

4. Performance constrained FPAA routing: The main performance degrading para-
sitics are identified as the number of switches (which bring additional resistance
and capacitance to the corresponding net) and the number of net crossings (which
bring crosstalk). After each net is routed, its parasitic is checked for violation of
the bound. If the net’s parasitic bound is violated, the net fails to keep its per-
formance degradation within acceptable limits, and the net is ripped-up and the
routing is re-tried.

When routing a net, FAAR initially makes all possible connections using local
interconnect. FAAR then sequentially routes each unrouted destination terminal to
the source terminal using global interconnect. Each two-terminal route is added to
the existing partial net-route. As it builds the net-route, FAAR tries to maximize
reuse of the routing resources in the partial net-route. Every routing resource used
by a net is then blocked from future use.

To achieve high-performance, channel segmentation and buffer insertion are pro-
posed in [94]. These are actually ideas borrowed from FPGA design. Also, the
combined application of buffer insertion and segmentation will yield more optimal
results in terms of delay matching. Another interesting suggestion for better area
usage, and thus more optimal routing is hexagonal structures and reconfigurable
CABs [95]. The CABs in this example are all digitally configurable gm-C filters.
Thus, every CAB can be configured on location such that the necessary intercon-
nections are minimized.

A more recent approach [96], on the other hand, uses a simulator in the loop
approach, where the effects of the interconnect are included in the CAB simulation
and the CAB is configured accordingly. In the extreme case, the parasitics of the
interconnect can even be useful as they can form part of a filter.

4.7 Manufacturability and Yield Issues in Routing

The goal of a performance-driven routing tool is to route an analog circuit such that
the performance degradation caused by layout parasitics remains within the speci-
fication margins imposed by the designer. For a given set of circuit specifications,
several valid routing solutions can be found. Among these, the choice should be
toward those solutions with higher yield and easier manufacturability and testabil-
ity. Several algorithms have been proposed to increase yield in routing. However,
these have been only for digital channels. One of the first studies oriented toward
yield maximization in analog routing is [97]. Sensitivity analysis and line expansion
routing are at the core of the performance-driven router. If the performance-driven
routing phase is successful and there is enough performance margin left, a yield
and testability optimization loop is entered. During this loop, nets are removed
and rerouted until the available performance margin is consumed or no further
yield/testability improvement is found. During rerouting of a net, the geometry of all
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other nets is known. Therefore, the additional performance degradation introduced
by a partial path can be computed exactly, and if it exceeds the available perfor-
mance margin, the partial path can be removed from the search heap. During the
search, the expected number of bridging faults is calculated and these are added to
the cost, thus ensuring that these will be minimized while searching for the best
route. The bridging faults modeled are of two categories; dielectric pinholes and
photolithographic defects. Dielectric pinholes are defects, which often occur in chip
insulators. Their occurrence can result in a short between wires at different routing
levels. The critical area associated with these defects is the overlap region between
two wires. Photolithographic defects can cause shorts between wires on the same
routing level. The expected number of faults for two parallel conductors, separated
by a narrow slit can be calculated by combining the critical area in function of de-
fect size and a defect size distribution. This approach will result in higher yield, but
this measure is incapable of distinguishing between testable designs. Power supply
current monitoring technique was assumed to be the testing methodology for [97].
To this end, the distribution currents of the ‘good’ circuit were obtained via Monte
Carlo simulation. All faulty circuits were also simulated and their currents were ob-
tained for all cases and the configuration with the highest separation was selected.

The problem of electromigration was addressed by developing a current-driven
router in [98, 99] and further extended in [100] and [101]. The current in each
path was determined by simulation, either based on input patterns provided by the
user, or based on Monte Carlo type simulation. The wire widths were determined
accordingly. Connection of multiterminal nets is done in a Steiner-tree fashion.
However, a basic Steiner tree approach is not enough since the wire widths may
be different for each section of the wire. A greedy method was utilized in which a
Steiner point is constructed from three terminals. The currents from two terminals
are also summed at this Steiner point and the width of the wire segment is calculated.
A new Steiner point and a new current is found by combining the previous point with
the next two terminals to be routed. The algorithm continues in this fashion until the
whole tree is constructed. Finally, a current density simulator was developed to ver-
ify the layout. A complementary approach would be based on a terminal tree, which
defines a detailed terminal-to-terminal routing sequence with known terminal cur-
rents. A current-driven detailed router must solve the problem of altering current
strengths in a prior routed subnet whenever a new terminal is linked to it. To allow
for a current calculation based on Kirchhoff’s current laws prior to detailed rout-
ing, at least the sequence of all terminals to be connected must be known. Added
detailed routing connections which directly link a new (not yet connected) terminal
with its respective target terminal will then have no influence on current strengths
calculated in the prior routed subnet (with the calculation based on all terminals).
Hence, the most coarse grain approach possible for current-driven routing without
postrouting layout modification is based on a predefined terminal-to-terminal rout-
ing sequence. The integration of this methodology within a commercial layout tool
was also demonstrated.

The above algorithms calculate the wire widths after constructing a terminal
tree that obtains a minimum total length, and later minimize the total area of the
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routing net. Another approach would be to construct the terminal tree considering
area minimization first [102]. Then, simulated annealing can be applied, using the
terminal tree obtained above as the initial solution. The terminal tree will be con-
structed in a bottom-up manner from the leaf nodes to the root node. At each stage,
the terminal with minimum current value is selected, and its nearest neighbor is
found. Then, the pair of terminals is added into the terminal tree. While generating
a terminal pair, the width of the wire between the two terminals is determined. The
last terminal added into the terminal tree will be the root node.

4.8 Conclusions

This chapter has given an overview of routing techniques for analog layout syn-
thesis. Routers for full-custom analog circuits have been discussed based on the
cost functions they are trying to minimize. Furthermore, various data represen-
tation strategies have been presented, and their suitability for routing has been
explored. As a second routing problem, template-based routing has been dealt with.
A new approach for this routing problem has been presented. Finally, routers for
RF circuits and analog arrays have been discussed in addition to manufacturing and
yield issues.

In our opinion, the problem of routing analog circuits is still an open problem.
As mentioned in the very beginning of this chapter, the performance of routing
is directly affected by previous layout steps, such as placement, partitioning, and
module generation. One research direction would be to put more effort into one-
step layout generation rather than the conventional sequential approach. Another
open problem is the routing of RF circuits, where every interconnect is actually a
device. These interconnects must be carefully designed and modeled in the final
layout. As the technology moves to deeper submicron dimensions, design rules get
more complicated. Furthermore, manufacturability and yield of a circuit become
very important issues. Simple improvements over well-known routing approaches
will not be enough to perform analog routing in such advanced technologies. New
algorithms will have to be developed. Finally, template-based layout generation,
however primitive it may seem as an idea, has many applications and will probably
become a commonly used layout generation approach in the near future. The same
problems, namely, routing at RF frequencies, or yield aware routing will still be
valid for template-based approaches as well.
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Chapter 5
Analog Layout Retargeting

Hazem Said, Mohamed Dessouky, Reem El-Adawi, Hazem Abbas,
and Hussein Shahein

Abstract This chapter focuses on analog layout process retargeting. Unlike
automatic placement and routing tools, retargeting starts with an input layout in
a given process. The main target is to conserve most of the layout physical intelli-
gence while migrating it to another given technology. This is usually achieved by
adapting existing layout compaction techniques borrowed from the digital world.
Historically, layout compaction used to rely on fast constraint-graph operations.
More recently, linear programming has been introduced to support hierarchy in ad-
dition to complex analog constraints. This chapter introduces a novel graph-based
simplex algorithm that combines the efficiency of graph-based methods together
with the generality of linear programming ones. It also allows symmetry, hierar-
chy, and cell replacement support to be integrated seamlessly without any artificial
modification of the algorithm. For simple layout constraints, the algorithm com-
plexity tends to be as linear as graph-based techniques, while for the most complex
constraints and objective function it tends to that of the simplex method.

5.1 Introduction

Driven by market needs, semiconductor fabrication houses continue to enhance
technologies toward smaller transistor feature sizes. This puts pressure on mixed-
signal design teams. From one side, they have to come up with new circuit architec-
tures that make use of such powerful technologies by pushing device characteristics
to their limits. From the other side, they have to migrate their legacy in-house
intellectual property blocks (IPs) to such new processes. Apart from the few state-of-
the-art blocks that benefit from the enhanced transistor performance, a lot of designs
are just retargeted to the new process without any major performance changes.
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On the digital side, most of the migration effort is a setup one spent in migrat-
ing the digital cell library. Digital designers are not involved during such phase.
Migrating most of digital designs is just a matter of re-running the fully-automated
design flow scripts already verified on the original design. This is not the case on
the analog side. Analog design reuse is still a mostly manual process. Due to device
characteristics change, the circuit is redesigned each time a chip is migrated to a
new technology, even to achieve the same performance of the original design. This
is a very time-consuming and resource intensive task. In fact, a lot of effort is wasted
in just retargeting these blocks to the new process without any major performance
changes. In some cases, specially on the IC component level, design migration is
driven by the sole fact that a process becomes obsolete, where all designs on such
process must be migrated to a newer one. As a result, there is an increasing demand
in redesigning functional mixed-signal designs for new processes.

New designs are mostly done manually by expert designers. Sometimes, the elec-
trical and/or physical design of those modified architectures are performed using
automatic optimization tools. However, the need for automation is even stronger in
the process migration case, where blocks are required to retain source design speci-
fications together with the corresponding layout placement and routing. While some
analog designers still argue on the use of automatic layout tools, when it comes to
design migration, where there is not much that creativity associated with a new de-
sign, designers seem to accept a large degree of automation.

This chapter focuses on automatic analog layout migration. It is shown that
layout compaction retains most of the source layout characteristics and heuristics
common in the analog world. Most of the chapter is devoted to different com-
paction algorithms, while introducing a newly presented generic graph-based one.
Section 5.2 presents previous work done in this direction. Section 5.3 introduces a
typical tool flow and shows where does the compaction engine fits. Section 5.4 dis-
cusses different compaction approaches while providing the necessary background
for the generic algorithm introduced in Sect. 5.5. Section 5.6 stresses the importance
of defining the right set of compaction constraints for layout migration. Section 5.7
rapidly goes through different practical issues that face any industrial tool for layout
retargeting. Some migration examples are then given in Sect. 5.8. They vary from
simple design cases to more complex industrial-level layouts. Finally, conclusions
are drawn in Sect. 5.9.

5.2 Previous Work

The need to migrate hard IPs was first investigated for digital cells [1]. Later, more
focus was reinforced on the special needs of digital library IPs, such as port match-
ing, power/ground size, etc. [2]. Analog IPs impose additional constraints to the
retargeting process, such as matching and symmetry [3]. In fact, the behavior of
many analog circuits is closely related to the corresponding physical design [4].
Therefore, source layout contains valuable design knowledge, which is usually
already verified through chip fabrication and testing.
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Most designers have been reluctant to use optimization-based tools for retarget-
ing. Such tools tend to reinvent the wheel and produce newly optimized designs [5].
Despite the fact that resulting layouts might even look better than source ones,
designers prefer not to take the risk of a new design and prefer the original lay-
out, which has already gone through the whole fabrication cycle. In most cases,
designers want to keep all design choices and knowledge of the source design.

One of the first serious trials to migrate analog cells based on an original design
was presented in [6]. The information reused from the original layout was the rel-
ative positions of the building blocks and their aspect ratios. All blocks part of the
floorplan are then generated automatically. Nothing guarantees that the devices in
the building blocks will resemble their counterparts in the source layout.

Later, inspired by the work initiated in the digital domain for compaction-based
layout migration, analog-specific tools extended this work in [7, 8]. Layout migra-
tion by compaction keeps the same physical knowledge, i.e., floorplan, placement
and routing, so precious to analog designers. This approach is most appealing since
the target layout looks very close to the source one. A recent migration framework
aiming to achieve this has been presented in [8]. It comprises both device resizing
and layout migration. Both engines are based on a design extraction methodology,
during which all relevant design data are extracted. The layout part of this frame-
work is discussed in more detail in Sects. 5.3 and 5.5.

5.3 Analog Layout Retargeting Flow

A typical compaction-based layout migration flow is illustrated in Fig.5.1. The
dashed box contains the different modules of the retargeting tool. The input to the
tool includes:

User Target Source Source Target
Constraints Process Layout Netlist Netlist
£ TS——— s

Calibre
DRV ®

Layer
Mapping

]

I

: v v

Calibre |4, | Constraint Device [ calibre
nmDRC ® : Generation Recognition | 1| nmLVS ®

i [ I :

I I

I I

. Compaction ;

Fig. 5.1 Analog layout retargeting flow
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Source design netlist and layout.

Target netlist with new device dimensions.

Target process technology parameters and design rules.
Optional user-defined constraints.

The flow includes three design extraction modules, namely: Layer Mapping,
Constraint Generation, and Device Recognition, followed by the layout migra-
tion Compaction step. Each of these modules is briefly described in the following
subsections. An important aspect of the flow is the multiple use of the industry-
standard physical verification tool Calibre®) [9]. This has the following advantages:

e Handling all process information files. This saves a lot of development time.

e New process file updates are already available and updated in the proper format.

e Taking advantage of the tool high performance and multitude of functionalities
as will be shown below.

These makes the migration tool tightly coupled with the industrial one.

5.3.1 Layer Mapping

The layer mapping module copies all layout layers of the source process layout
to the corresponding layers in the target process. This is done using the Calibre
DESIGNrev™ [9] tool using a mapping file. This might involve mapping one layer
to several ones or vice versa, depending on the source and target layer definitions.
In addition, adjacent contacts and vias are merged to facilitate compaction, refer
to Sect.5.6. In some cases, the entire device needs to be completely replaced by
another device in the target process due to the unavailability of a one-to-one cor-
respondence, refer to Sect.5.7.4. The mapping rule file is prepared once for each
couple of source and target technologies. The output of this module is a layout that
is similar to the source layout but in the target process layers.

5.3.2 Device Recognition

The target netlist input is generated by a separate netlist migration engine [10],
where design performance is tuned in the target process to achieve the same source
design performance. During such stage, most device sizes are often changed. In
order that the migration tool applies such new device dimensions to the target layout,
it should be able to recognize each device in the source layout and link it to the
corresponding element in the netlist. A special device recognition module is thus
needed. It involves the same operations as in a conventional layout-versus-schematic
check tool usually used in a typical design flow. This is easily achieved using the
Calibre nmLVS™ [9] tool using a special rule file. The tool is capable of identifying
complex device structures such as finger and matched transistors and link them to a
single device.
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5.3.3 Constraint Generation

The source layout complies with the source process design rules. These must be
translated to the corresponding target process rules and formulated in layout con-
straints that should be imposed on the target layout. This is not a one-to-one
translation, since design rules change considerably from one process to the other.
The Calibre nmDRC™ [9] tool is also employed in this module. The tool’s main
functionality is to check for design-rule errors in a given layout based on a rule file
supplied by the foundry for each process. In a special internal mode of operation, it
can also transform such rules to layout constraints by a modification of the rule file.
This masks any kind of constraint complexity and employs the latest industrial rule
check technology to generate them.

Constraint generation is critical to the compaction-based migration engine. The
number of constraints has a huge impact on the efficiency and accuracy of com-
paction. It is important to reduce the constraints to the minimum possible set and
remove any redundancy, refer to Sect. 5.6.

In addition to design-rule constraints, the updated geometrical device parameters
generated by the netlist migration engine, e.g., transistor new length and width, are
also converted to layout constraints on the physical device dimensions.

Layout migration is achieved by imposing both design-rule constraints and up-
dated device dimension constraints on the layer-mapped layout using a layout
compaction module. Details of the compaction engine are presented in Sect. 5.5.

5.4 Layout Compaction Methodologies: Background

The aim of compaction is to minimize the total layout area while satisfying all
design-rule constraints of a specific process. Most compaction implementations
in literature are based on various forms of constraint-graphs and linear program-
ming [11, 12]. In this section, an introduction to these two approaches is elaborated
showing strengths and weaknesses of each. This foundation is necessary to under-
stand the compaction algorithm introduced in Sect. 5.5.

5.4.1 The Constraint-Graph Approach

The constraint-graph is a one-dimensional compaction technique, which uses a di-
rected graph to capture design-rule constraints [13]. It remains one of the most
popular approaches, thanks to its flexibility and efficiency [11].

During horizontal compaction, each element is represented by the x-coordinates
of its edges. If the x-coordinates of all layout edges are indicated by the set:
X1, X2, ..., Xk, a minimum-distance design-rule between two elements can now be
expressed by an inequality of the form:
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Final
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Fig. 5.2 (a) Sample layout with design-rule constraints and (b) the corresponding constraint-graph

X; —x; >dj wherei, j € (1...k), 5.1

where d;; is the minimum distance spacing between elements located at x;
and X;.

Consider the sample layout shown in Fig.5.2a composed of a single transistor
to the right of a single layout rectangle. Design rules are indicated by arrows. If all
shown design rules are represented by inequalities of the form of (5.1), it is now
possible to represent such inequalities in a so-called constraint-graph, G(V, E), as
follows:

e The vertex set, V, is constructed by associating a vertex v; with each variable x;
that occurs in an inequality.

o The edge set, E, is composed of directed edges e;. An edge is drawn for each
individual inequality of the form of (5.1), starting from x; and ending at x ;. The
edge weight, w, is equal to the constraint value such that w(v;, v;) = d;;.

e There is a source vertex, vg, located at x = 0. An edge is drawn between the
source vertex, Vg, and all vertices that do not have any other vertices constraining
them from their left side.
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e There is an end vertex, vy, located after the last edge in the layout. An edge is
drawn between all vertices that do not have any other vertices constraining them
from their right side and the end source vertex, v,.

o All layout elements are assumed to have positive x-coordinates.

Following the above rules, the constraint-graph for the layout of Fig. 5.2a is shown
in Fig.5.2b. A constraint-graph composed only of minimum-distance constraints
has no cycles [11]. It is usually called a directed acyclic graph (DAG).

Starting from the source vertex vy, there might exist several paths to reach a spe-
cific vertex v;. By taking the longest path from vy to v;, summing all path weights
and assigning the result to x;, one makes sure that all inequalities in which x; par-
ticipates are satisfied. Therefore, the length of the longest path from vy to v; gives
the minimal possible x-coordinate value, x;, of the vertex v;. This is the main idea
of the longest-path algorithm used in solving the constraint-graph [14], i.e., finding
the optimum x position of all elements for minimal area.

The main advantage of using the constraint-graph and the associated longest-
path algorithm is the computational simplicity and efficiency. However, it suffers
from two main drawbacks: First, all elements are pushed as close as possible to
the left boundary. Figure 5.3 shows the final compaction result after applying the
longest-path algorithm on the layout of Fig.5.2a. It is clear that the gate contact
together with the enclosing metal have moved to the leftmost edge of the layout,
causing a well-known problem of the longest-path algorithm referred to as long
wires . Besides damaging layout shape and increasing the associated parasitics, long
wires also affect subsequent compaction in the other direction. This problem was
addressed in [15, 16].

The second main drawback is a fundamental one related to the graph itself.
By construction, the graph can support constraints with only two variables. Two-
variable constraints, as given by (5.1), represent the majority of layout constraints.
However, other types of constraints with more than two variables are essential while
describing matching and symmetry [12]. They have the general form of

Xp — Xg = Xg — X¢ where a,b,c,d € (1...k). (5.2)
Final
Initial - Fdge
Edge —
Fig. 5.3 Long wire problem
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In addition, while dealing with hierarchical layouts, the number of variables
increases with the number of hierarchy depth involved [17]. To support more
general constraints with any number of variables, a more general approach has been
introduced. This is discussed in the following section.

5.4.2 Linear Programming: The Simplex Method

One-dimensional layout compaction can be formulated in two separate linear pro-
gramming (LP) optimization problems [17], one in the x and the other in the
y-dimension. As in the previous section, the decision variables are the x-coordinates
of all layout elements: x1, X3, ..., x;. The goal function to be minimized (or max-
imized) is a linear objective function, f, in the above decision variables. This
function is subjected to a set of linear constraints in the general form of

IA

f,-(xo,xl,...,xk) = d,’j. (5.3)

>

The majority of such constraints are minimum-distance separation constraints in the
form of (5.1). If constraints include more than two variables, they will be referred
to as multivariable or nondistance constraints. It is preferable to formulate all such
constraints as less-than by using some equation manipulations [18]. Then, for m
constraints, the linear programming problem can be defined as follows:

Minimize  f(x1,x2,...,Xk)

Subject to: Ji(x1,x2,...,x,) < djgy

Sa(x1,x2,...,x) < dga (54
Jm(X1,x2,...,xk) <dfm
X1,X2,...,X =20

This kind of problems is often solved using the simplex method [18], which is briefly
explained in the rest of this section.

Starting from (5.4), all constraints are transformed to equal constraints by adding
slack variables. If there are k decision variables and m constraints, by adding a slack
variable in each constraint, the constraint equations become:

Xevi =dpi — filx1,x2,...,Xk) where 1 <i <m (5.5)

where m slack variables (xg41, Xg+2, ..., Xk4+m) are introduced by extending the
location variable set. This is a common practice, since during the simplex method,
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all variables are subject to the same kind of operations. The problem can then be put
in the matrix form to become:
Minimize  f = clx
Subjectto: Ax=d
x>0 (5.6)

The vector x is an (n x 1) vector containing all variables (both location and slack
variables), where n = k + m is the total number of variables. The vector ¢y is an
(n x 1) vector containing all variable coefficients in the objective function, f. The
matrix A is an (m X n) matrix containing all variable coefficients in each constraint
equation. The vector d is an (2 x 1) vector containing all constant terms in the
constraint equations.

Definition 5.1 (Basic feasible solution). A basic feasible solution (BFS) is a solu-
tion with m constraints and » variables that

o Satisfies all m constraints,
e Includes m basic variables with values greater than or equal to zero, and
e Includes k (= n — m) nonbasic variables with zero value.

The simplex algorithm starts from a BFS and iterates to other better feasible solu-
tions, in the sense that they have smaller objective function values, until an optimal
solution is reached. To show how to proceed from one iteration to the following one,
some mathematical manipulations are performed on the simplex problem definition
given by (5.6) to separate basic variables from nonbasic ones:

e The m basic variables are stored in the vector xg while the k nonbasic variables
are stored in the vector Xy .

e Similarly, the vector ¢y is split into the vectors ¢p and ¢y, where ¢ contains the
coefficients of the basic variables in xg, while ¢y contains the coefficients of the
nonbasic variables in Xy .

e In the same way, the A matrix is split into two matrices: matrix B, containing
all columns in A associated with the basic variables, and matrix N containing all
columns in A associated with the nonbasic variables.

Using this separation, the simplex problem defined by (5.6) becomes:

Minimize  f = chxp + chxy
Subjectto:  Bxp + Nxy =d 5.7
xp, Xy =0

Both the basic variables vector, X, and the objective function, f, are expressed in
terms of the nonbasic variables vector, Xy, giving:

xg = B!d =B !Nxy (5.8)
f =12Txy + kB4, (5.9)
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where z is defined as the cost rate vector of nonbasic variables. It represents the
rate of change or relative cost of f with respect to each nonbasic variable in xy,
given by:

z=cy— B 'N)Tcp (5.10)

in a given BFS, since the value of all nonbasic variables are equal to zero, the basic
variables can be calculated using (5.8) to give:

xy =B7'd (5.11)

Therefore, as indicated by Definition 5.1, in a given BFS:

e All m constraints are satisfied,
e The basic variables are given by (5.11), and
e All nonbasic variables are equal to zero.

The simplex method starts with an initial BFS, all following iterations and eventu-
ally the final optimum solution must also lead to a BFS. Looking back at (5.9), the
only way to decrease f is to select a nonbasic variable from xx such that it has a
negative coefficient in z, then to increase it from zero to any positive value. Since
this variable is now nonzero, it becomes a basic one. However, according to the BFS
definition, the number of both basic and nonbasic variables are fixed. Therefore, one
of the basic variables must drop to zero and replaces this newly changed variable in
the nonbasic variable set. In summary, to move to the next BES iteration in the sim-
plex method, exactly one nonbasic variable becomes a basic one, called the entering
variable. In the same time, exactly one basic variable drops to zero and becomes a
nonbasic one, called the leaving variable. The steps of the simplex method can be
summarized as follows, refer to Fig. 5.4:

| ObtainaBFs |

{

Construct the
Simplex Problem

)

Calculate the (_I Update B and N I
A

Basic Variables

{

| Calculate z I | Determine x; I

1' A

egative
elements in z 2

No

Determine x, I

Fig. 5.4 Flow diagram
of the simplex method
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Obtain an initial BFS, refer to Sect. 5.5.2.3.

Construct the simplex problem in the form of (5.7).

Calculate the basic variable values using (5.11).

Calculate the cost rate vector, z, for the nonbasic variables in the objective func-
tion, f, using (5.10).

Using z, determine the entering variable, x., as follows: From the set of nonbasic
variables, if all the corresponding coefficients in z are positive then f cannot be
minimized anymore. Otherwise, the nonbasic variable with the most negative
relative cost is selected to be the entering variable.

Determine the leaving variable, x;, from the set of basic variables as follows:
According to (5.8) and (5.11), the basic variables, x5, can be expressed in terms
of their values at the previous BFS, X*B, as follows:

xp = xj — B 'Nxy (5.12)

The vector x will have all values set to zero except at the entering variable
position. The entering variable value will increase from zero to a certain positive
value, ¢, such that

xy =1[0,...,0,2,0,...0]T = ra,, (5.13)

where a, is a unit vector with all elements are zero except at the location of x,.
The ¢ value should be as large as possible to minimize f', but at the same time
it should maintain the nonnegativity condition of the basic variables as given by
(5.12). Therefore,

XB = Xp — B !Na,s
=xp — Axpt >0, (5.14)
where the step vector Axp expresses the rate of change of each basic variable
when moving from a given BFS toward the next one in the solution space, and is
given by:
Axp = B"'Na,. (5.15)

The leaving variable is the first variable that will become zero while increasing 7.
Therefore, from (5.14), the following condition should be satisfied

x'—Axit >0 Vx; € Xp, (5.16)

from which, the positive variable ¢ should be selected as large as possible satis-
fying the condition:

1< Vx; € Xp (5.17)
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This ratio is calculated for all basic variables, with ¢ acquiring the minimum value
of the whole set. The corresponding basic variable that has this minimum ratio
will reach zero after increasing the entering variable to ¢. It is then assigned to be
the leaving variable. In other words, the leaving variable is the one satisfying the
condition:

* *

il in | i Ax;>0.1<i< (5.18)
= min X , i<m )
AXxg AXx; ! -

7. Update the matrices B and N to reflect the new basic variable, x., and the new
nonbasic variable, x;.
8. Go to step 3. Repeat until an optimal solution is reached in step 5.

It is noted that the simplex method is efficient as long as the number of variables
and constraints remain limited. The main resources and time intensive operation is
that of finding the inverse of the B matrix as required in (5.8), (5.9), and (5.10). The
inverse matrix, B~1(i), at iteration i can be used to calculate the inverse of B at
iteration i + 1. Some techniques such as LU factorization [18] can render the in-
verse matrix calculations more efficient in sparse matrices, where most of the matrix
elements are zeros. This is somewhat true when the number of minimum-distance
constraints of the form of (5.1) is large compared to multivariable constraints of the
general form of (5.3). However, given the complexity of nowadays industrial lay-
outs and the associated design rules, applying the pure simplex method turns out to
be very time inefficient compared to graph-based techniques.

5.4.3 Graph-Based Simplex Methods

As a compromise of the aforementioned techniques, several methodologies were
introduced to solve the LP problem of layout compaction using graph techniques,
which are normally much faster [16, 19-21]. Such methodologies utilize the fact
that most constraints are in the form of minimum-distance separation constraints,
refer to (5.1). The number of other multivariable constraints, if they exist, is much
smaller than the number of minimum-distance constraints. Also, these methods limit
the shape of the objective function to be able to solve the problem using graph
operations.

Marple et al. [16] introduced a graph-based simplex method, which only sup-
ported minimum-distance constraints, in addition to a special optimization function
that minimizes long wiring lengths. Based on that, Onozawa [19] proposed an ef-
ficient graph-based algorithm that supports not only distance constraints but also
multivariable constraints with a limited number of three variables.

A more general graph-based method that supports multivariable constraints was
introduced by Wang and Lai [20]. It uses graph operations to speed up the calcula-
tions of the inverse of the basis matrix, B. The same constraint-graph is used, while
applying graph operations to calculate the elements of a reduced core matrix. Matrix
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operations are performed on the core matrix instead of the large basis matrix. As the
size of the core matrix is proportional to the number of multivariable constraints,
this method outperforms the simplex method as long as the number of multivariable
constraints is lower than the number of minimum-distance constraints. However, a
problem exists in getting an initial feasible solution. The initial solution is calcu-
lated using an algorithm described in [21] for only a set of multivariable constraints
representing path delays in the layout. It lacks a procedure for getting a general ini-
tial solution for generic multivariable constraints. At the same time, the optimization
function is restricted to contain only one variable. More complex objective functions
are handled by adding more multivariable constraints.

As a conclusion, graph-based methods still remain limited either in the form
of objective function or in the form of the constraints that are supported by graph
operations. The multivariable constraint-graph based simplex method presented in
the next section alleviates both of these limitations.

5.5 Multivariable Constraint-Graph Based Simplex Method

This section includes the core of this chapter, namely a graph-based simplex method
that supports all forms of linear objective functions and linear constraints. This
graph-based method combines both the efficiency of graph-based techniques and
the generality of the simplex method. First, the graph definition is presented fol-
lowed by details of the algorithm.

5.5.1 Basic Coefficient Constraint-Graph

A new graph representation, referred to as coefficient Constraint-graph, is intro-
duced to model layout locations and multivariable constraints. The main idea behind
this graph is to represent both constraints and variables as a signal flow graph that
maintains the relation between them, while being general enough to handle any type
of constraint.

Definition 5.2. Coefficient constraint-graph: the coefficient constraint-graph is
constructed based on the following rules:

Each variable, x;, including slack variables, is represented as a graph node.
All constraints, ¢, are also represented by separate nodes.
e For a constraint ¢; composed of p variables

cj: f(x1,x2,....x,...,xp) =0 (5.19)

a weighted directed arc from a variable node, x;, to the constraint node, c;, rep-
resents the coefficient of the variable in such constraint.
e A directed arc can exist only from a variable node to a constraint node.
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e Since constraints usually have a constant term, an additional variable node, Xp;,s,
is added to account for this term. Xy, is referred to as the bias node. By defi-
nition, it has the value of unity. A weighted arc connecting Xpi,s to a constraint
represents the bias or the constant term of the corresponding equation. The gen-
eral form of a constraint becomes:

Cj: f(xl,xz,...,xi,...,xp,xbias) =0 (5.20)

e Another type of nodes is the supernode . It consists of a constraint node as-
sociated with a variable node, (c;, xx). The connection coefficient between the
variable node and the constraint node inside a supernode should always be equal
to —1. The (c;, xx) supernode represents an equation in the form

;i xXkp = f(X1,X2,..., Xi ..., Xp, Xbias) kE€L1...p (5.21)

e From (5.21), it is clear that the weight of the coefficient arc between a variable
x; and a supernode (c;, xi ) represents dxg /0x;.

e An arc starting from a supernode [c;, x;] to a second supernode [ck, x;] repre-
sents the coefficient of the variable of the first supernode, x;, in the constraint of
the second supernode, ci . This means that the supernode acts as a variable node
of its variable to successive nodes in the graph.

For example, the coefficient graph of the constraint
Co: X1—X0—3S0=0

is shown in Fig. 5.5a. Note that all variables are moved to the left-hand side of the
constraint. Another example with a bias node can be shown using the constraint

[ X2—X1—S1=5
To represent the constant term in the above equation, the constraint can be

expressed as
C1: OSXpas—X2+Xx1+851=0

a b Bias node

Fig. 5.5 Coefficient constraint-graph
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The corresponding coefficient graph is depicted in Fig.5.5b. Note that when the
constant term is zero, as in ¢y, no connection arc exists between the bias node and
the constraint cg. Consider now the symmetry constraint

C3 . X2 — X1 = X4 — X3

It can be rewritten as

3. Xo—X1—X4+x3=0

such that it can be represented by the coefficient constraint-graph shown in Fig. 5.5c¢.
As an example of a supernode, the constraint cg, can be represented as

co: x1 =0+ x0+ 5o

This representation is actually the signal flow graph of this constraint. In this case,
the variable x; is associated with the constraint node to form one supernode as
shown in Fig.5.6. The weight of the coefficient connecting the node s¢ to the su-
pernode (cg, x1) is actually equal to the derivative dx;/dsg = 1. The same for xg.
In conclusion, the coefficient constraint-graph can represent any type of linear con-
straint with unlimited number of variables.

Going back to the simplex problem definition in terms of basic and nonbasic
variables as given by (5.7), some modifications are needed to include the bias vari-
able, Xp;as, to account for the constant term in each constraint. Since the value of this
variable is always set to unity, it can be added to the constraint equation as follows:

Bxz + Nxy = dxXpias (5.22)

Then, (5.9) and (5.14) for the objective function and basic variable vector become,
respectively:

f =12"xy + LB Tdxpias (5.23)
XB = XjXpias — B"'Nxy
= szbias — Axpt. (5.24)

The simplex problem definition can now be represented using a basic coefficient
constraint-graph.

Definition 5.3 (Basic coefficient constraint-graph). It is a coefficient constraint-
graph as described by Definition 5.2, where each constraint node is associated with

a
(=N ON
Og ()

Fig. 5.6 Supernode [cy, x]
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Fig. 5.7 Sample layout X, X
with sample design-rule X,
constraints
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a basic variable forming a supernode. An additional supernode is added, which con-
tains both the objective function, f, and a constraint representing the corresponding
equation.

For example, consider the layout shown in Fig.5.7, the following inequalities
represent the shown minimum-distance constraints:

co:X1—Xx9 >0 c5:X5—Xx9 >0
Cl1:X2—Xx1>5 Ce:Xe— X5 >5
Ccy i x3—Xx2 > 10 c7:X7—X¢ >4 (5.25)
C3:X4—X3>5 cg:X3—X7>5
Cq X4 —x1 >10 Cog:xg—Xx4 >0

where all ¢;’s represent distance constraints containing the x; location variables. As
in the simplex method, all constraints should be equal constraints by introducing
slack variables, refer to (5.5). Also, all constant terms are multiplied by the bias
variable, Xpi,s. Assume that the initial BFS contains the following basic variable set:
X1, X2, X3, X4, X5, X6, X7, X3, S4, Sg. Note that the number of basic variables is equal
to the number of constraints given in (5.25). Also, assume that the objective function
is given by the following equation:

f =x8—X5—Xo (5.26)
then, the simplex problem can be formulated as follows:

Minimize : f = xg — x5 — Xo

Subjectto: co:x1 =04+ xo + S0 c5:x5 =04 x9 + 55
Cc1:Xy =5xp+Xx1+ 51 C6 i X6 = Sxp +Xx5+5¢ (5.27)
cr i x3 = 10xp + X2 + 52 c7:x7 =4xp + x¢ + 57
Cc3 . X4 = 5xp + X3 + 53 cg . 8§ = —5xp + x3 — X7

cq 1854 = —10xp + X4 — X1 cog:xg =0+ x4 + 59
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Optimization
Function Node

Fig. 5.8 Basic coefficient constraint-graph

The resulting basic coefficient constraint-graph of the above problem is shown in
Fig. 5.8. The number of supernodes is equal to the number of constraints in addition
to an optimization function supernode. The next section shows how to use such
graph to solve the optimization problem.

5.5.2 Multivariable Graph-Based Simplex Algorithm

The main idea of the Multivariable Constraint-Graph algorithm is to employ the
graph, described in Sect. 5.5.1, to replace complex matrix operations of the simplex
method, described in Sect. 5.4.2. The basic coefficient constraint-graph is the signal
flow graph representing algebraic equations of constraints and a given objective
function. The rules of the basic coefficient constraint-graph are those of a signal
flow graph [22]:

Gain Equation

For any two nodes x; and x;, the derivative dx;/dx; can be found by Mason’s
equation [22]. In case there are no loops, it reduces to

8x<,-/8x,- = Z Gi s (5.28)
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where G;s are the gains of all paths from x; to x;. Equation (5.28) also defines the
connection value between any two nodes x; and x ;. As will be shown, the connec-
tion value between graph nodes can be used to replace the corresponding matrix
operations.

Graph Mathematics

In what follows, a set of rules are introduced to obtain the required simplex method
vectors in terms of graph connection values. All rules assume that there are no loops
in the basic coefficient graph:

Rule 1

Rule 2

Rule 3

From (5.24), it is clear that in a given BFS, the basic variables matrix, XE,
can be deduced from the general basic variable equation as follows:

Xp = 0XB/0Xbias (5.29)
Hence, the individual basic variables in a given BFS can be calculated using
xl:(asic (i) = 9xbasic (1) / Oxbias, (5.30)

Therefore, in a given BFS, the basic variable value, x;; ;. (i), is the connec-
tion value between the xpj,s variable node and the xpuic (i) basic variable
supernode in the basic coefficient graph.

From (5.23), the relative cost rate vector z can be expressed as

z = df/oxy, (5.31)

Therefore, the value of the cost rate vector element, z(i), is the connection
value between the Xponpasic () variable node and the f optimization function
supernode in the basic coefficient graph.

The step vector Axp can be calculated from (5.24). Since ¢ is the value of
the entering variable x., then

AXp = —— = — , (5.32)

Therefore, the value of the step vector element, AXp,sic(i), is equal to —1
multiplied by the connection value between the entering variable node and
the Xasic (i) variable supernode in the basic coefficient graph.

The steps of the multivariable graph-based simplex algorithm are the same as
those of the simplex method presented in Sect.5.4.2, refer to Fig. 5.4. However,
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each step is performed using simple graph operations instead of complex matrix
ones. The proposed algorithm would go through the following steps:

1. Obtain an initial BFS, refer to Sect.5.5.2.3.

2. Construct the corresponding basic coefficient constraint-graph.

3. Calculate the basic variables values, x;,;.(i). This is done using Rule 1, (5.30),
by calculating the connection value from the bias node, Xy, to all supernodes,
which contain the basic variables.

4. Calculate the relative cost value, z(i ), of each nonbasic variable in the objective
function, f. This is done using Rule 2, (5.31), by calculating the connection
value from all nonbasic variable nodes to the objective function supernode, f.

5. Using z(7), determine the entering variable, x., as follows: From the set of non-
basic variables, if all the corresponding values in z(i) are positive then f cannot
be minimized anymore. Otherwise, a nonbasic variable with the most negative
relative cost is selected to be the entering variable.

6. Determine the leaving variable, x;, from the set of basic variables using (5.18).
To calculate the step vector elements A Xpasic (i), (5.32) of Rule 3 is applied. The
rate of change of each basic variable with respect to the entering variable, x.,
is calculated by determining the connection value from x,. to all basic variable
supernodes, then multiplying it by —1.

7. Update the graph so that the entering variable, x,, is associated with a constraint
node forming a supernode, while the leaving variable, x;j, is deattached from its
supernode to become a nonbasic variable in the new basic constraint-graph, refer
to Sect. 5.5.2.1.

8. Go to step 3. Repeat until an optimal solution is reached in step 5.

5.5.2.1 Updating the Basic Coefficient Constraint-Graph

During a given iteration, after selecting both entering and leaving variables, the
graph should be updated to prepare for the next iteration. The leaving variable will
become a nonbasic variable, so it should be dissociated from any supernode. On the
other hand, the entering variable should be associated with a constraint to form a
supernode. For example, in the first iteration of the graph shown in Fig. 5.8, assume
that ss is the entering variable while sg is the leaving one. The graph should be
changed such that s5 becomes associated with a constraint and sg should be detached
from its current supernode.

To update the graph, a path from the entering variable to the leaving one should be
established. In the layout example, this path is shown in Fig. 5.9a. After finding the
connecting path, all variables inside a supernode belonging to this path are detached
from their supernode. Then, each variable in the new path is associated with its
successive constraint in the path to form a new supernode. The new supernodes are
shown in Fig. 5.9b. During the construction of new supernodes, the basic variable
coefficients should be adjusted so that the coefficient connecting the constraint and
the basic variable inside the supernode should always be equal to —1.
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Fig. 5.9 The path between entering and leaving variables: (a) before the graph update, and (b)
after the graph update

Optimization
Function Node
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Fig. 5.10 Basic coefficient constraint-graph after the first iteration

The new basic coefficient constraint-graph of the second iteration is shown in
Fig.5.10. The updated nodes are marked with a dashed polygon. Only the coeffi-
cients connected to updated nodes are changed in the graph. This means that any
coefficient arc connecting two nodes outside the updated area will stay intact during
such update.
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5.5.2.2 Dealing with Loops

The main assumption that allowed the simple application of Mason’s formula, (5.28)
is that there are no loops in the graph. However, sometimes loops can not be avoided.
In this section, a method is presented to eliminate loops by successive substitutions
of constraint equations. For example, if there exists a simple loop of three con-
straints: ¢y, ¢y, and c;, such that

Cx 1 X¢ =5+ 4xg + s¢
CyZX7=4+x6+S7

c;:xg =04 x7 4+ 53

These equations are represented in the graph shown in Fig. 5.11a. It should be noted
that nonbasic variable nodes can never be inside a loop since they always have arcs
going outward to a constraint supernode. Also, each basic variable (supernode) in
a loop should appear in at least two constraints, its constraint supernode and the
successive constraint supernode in the loop. Substituting by equations ¢, and ¢y in
equation ¢, to remove x7 and xg basic variables from such constraint will produce

. 4 1
Cx X6 =—T++ —§S7 - §ss - §s6
as shown in Fig.5.11b. It shows that the new coefficient graph representation has
no loops. By the employment of the above strategy, any loop can be eliminated by
successive substitution steps. However, this operation may result in an increasing
number of coefficient links in the graph.

Fig.5.11 Loop c,, ¢, and c; (a) before and (b) after the elimination
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Theorem 5.1. Each loop in the basic coefficient constraint-graph contains at least
one nondistance constraint.

Proof. Slack variables of minimum-distance constraints, s;, cannot appear in a loop
since each slack variable appears only in one constraint. Assuming that there is a
loop of k distance constraints containing the basic variables x1, x», ..., Xk, the loop
constraints can be expressed as:

X2 = X1 — p151 + p1d1
X3 = X2 — 252 + p2d> (5.33)

Xk = Xg—1 — PrSk—1 + Pr—1dk—1
X1 = Xp — PrSk + prdi

where p; can be either 1 or —1. By summing all the equations, this results in:

P181+p282 4+ + pr—15k—1+ Pk Sk = p1d1+p2d2+ -+ + pr—1dk—1+ prdk.
(5.34)

Since all variables in the above equation are nonbasic ones, this row summing
operation has canceled all basic variables. This means that in the corresponding
basis matrix B, this summing can produce a row that contains only zeros in B, i.e.,
it is a singular matrix. This clearly contradicts the fact that B is a nonsingular ma-
trix [18], i.e., it contains no linearly dependent rows. Therefore, the loop assumption
of only minimum-distance constraints is not valid. So, no loops can contain only dis-
tance constraints. O

5.5.2.3 Initial Basic Feasible Solution

The initial point greatly affects the performance of the algorithm. If the initial so-
lution is near the optimal point, only few iterations are needed to reach the optimal
solution. One way to get an initial solution is to use the dual simplex method [18].
However, this may increase the number of iterations resulting in an effective reduc-
tion in performance.

A good initial solution can be obtained by applying the longest path algorithm,
refer to Sect.5.4.1. However, this algorithm only guarantees that all minimum-
distance constraints with two variables are satisfied, but not the general multivariable
ones. Hence, it does not produce a valid BFS. A solution to this problem was intro-
duced in [21] based on the special form of signal delay constraints. However, in the
general case, like in symmetry constraints, there is no guarantee to obtain a BFS
by this method. Based on the same idea, a more general method to obtain an initial
BFS is elaborated as follows:
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1. The longest path algorithm is first applied. The obtained locations are used as
the initial solution. All other variables that are not involved in any distance con-
straints are initialized to zero.

2. Each general multivariable constraint is checked. If the constraint is satisfied,
then its constraint node is associated with its slack variable and no additional
operation is needed.

3. If the general constraint is not satisfied or the constraint does not contain slack
variables, e.g., symmetry constraint, an artificial variable is added. The value of
this variable is chosen such that the new constraint is satisfied. These artificial
variables should be zero in the final optimal solution. At the same time, a new
term is added to the objective function, f, to penalize the added variables. Such
new terms would be equal to the artificial variable itself multiplied by a huge
positive constant, M.

As an example, suppose that there exists the following symmetry constraint:
X4 — X3 = X3 — X1 (5.35)
If the x-values obtained by the longest path algorithm are:
x1 =10, xp, =30, x3=10, x4=50

applying these values, the symmetry constraint is not satisfied. Now an artificial
variable a; is added so that the constraint becomes:

X4 —X3 = X2 — X1 +4a; (5.36)

the value of a; is chosen to be 20 so that the new constraint is satisfied. At the same
time, the term M a; is added to the objective function, with a huge value of M . This
ensures that the variable a; is reduced to zero in the final optimal solution such that
the original constraint (5.35) is satisfied.

Another important type of constraints is equal-constraints of the form

Xj—Xi = K. (537)

Such kind of constraints are essential to guarantee device dimensions are accurately
sized in the layout. Other layout shapes, e.g., contacts and vias need to resize for
well-defined dimensions to avoid design-rule violations. These constraints are han-
dled similar to the symmetry constraints by adding an artificial variable both in the
constraint and in the objective function and requiring that it drops to zero in the final
solution.

It is worth mentioning that the addition of new terms in the new graph-based
method is straightforward, which is not the case either in the constraint-graph
method [11] or in the graph-based simplex method [20].
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5.5.3 Complexity Analysis

In this section, the complexity of the multivariable graph-based method is compared
to that of the original simplex one. It should be noted that a single iteration of the
graph-based algorithm results in the same output produced by a corresponding it-
eration of the matrix-based simplex method. Hence, if started from the same BFS,
both would have the same number of iterations. The complexity analysis is carried
out for only a single iteration.

The complexity of a single simplex iteration is dominated by the inversion of the
coefficient matrix, B, which is

Csimplex = 0(R3)5 (5.38)

where R is the number of rows (or columns) of the basis matrix [20]. Some sparse
matrix techniques such as LU factorization can help to reduce this complexity.

For constraint-graph techniques, the complexity of the whole longest path
algorithm is

Clongesl path = O(N + E), (5.39)

where N is the number of graph nodes, and E is the number of links [23]. Practi-
cally, the longest path algorithm is O(N ).

Comparing (5.38) and (5.39) explains the huge performance difference between
graph-based longest-path and simplex methods.

Multivariable Graph-Based Algorithm Complexity:

The complexity depends heavily on the kind of constraints present in the layout
and the corresponding equations. Both have a direct effect on the graph shape, and
whether there are existing loops or not.

Basically, there are two main operations in the multivariable graph-based
method:

1. The step of finding the connection value between a node and all other nodes in
the graph, i.e., steps 3, 4, and 6 in Sect. 5.5.2. This step has a similar complexity
of the longest path algorithm given by (5.39) [24].

2. Dealing with loops that might appear due to multivariable constraints, refer to
Sect.5.5.2.2.

To estimate the complexity of each operation, let us assume the following:

e The number of location variables is k.
e The number of distance constraints is u.
e The number of multivariable nondistance constraints is v.
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e The maximum number of variables in a nondistance constraint is p. This value
may vary from five for a simple symmetry constraint of the form of (5.2), to tens
of variables in case of multiple-level hierarchical layouts.

e The total number of constraints is m = u + v.

e After adding slack variables, the total number of variables willbe N = k +m =
k + u + v, refer to (5.5). Hence, the graph size (or the total number of nodes in
the graph) is N.

The number of supernodes (or the number of basic variables) and the number
of separate nonbasic variable nodes will be m = u + v and k, respectively. For
each distance constraint of the form x; — x; — s = d, there will be at most three
coefficients, one for each variable besides the bias node minus the basic variable,
refer to Fig.5.8. Similarly, the number of links of nondistance constraints will be
(p —1) xv. Therefore, the total number of links in the graph willbe £ = vx (p-1)+
3 x u + ks, where k y is the number of links associated with the objective function
supernode. So, from (5.39), the complexity of finding connection values between a
given node and all other nodes of the graph-based method would be

Cgraph-connection value = O(N +E )
=0(k4+u+v)+(p—-1D)xv+3xu+ky)
=0k+ksr+u+pxv) (5.40)

However, depending on the constraint complexity, each nondistance constraint
may be part of many loops. To eliminate all of these loops, the substitution technique
mentioned in Sect.5.5.2.2 should be used. The maximum number of substitution
steps for each variable included in any nondistance constraint is equal to the to-
tal number of supernodes in the graph, O(u + v). Since the maximum number of

variables in a single nondistance constraint is p, then the worst-case complexity to
eliminate all loops associated with one nondistance constraint would be

Cgraph»single non-distance constraint loop elimination = O(P X (M + V)) . (5 41)

In the worst case, such process is needed for each nondistance constraint to elimi-
nate associated loops. Therefore, the complexity of all loop elimination would be

Cgraph»loop elimination = O(V X P X (M =+ V)) (542)

Now consider the following special cases:

e There are only distance constraints, i.e.,v = p = 0 and m = u:
Equation (5.40) becomes

Cgraph»V:O = O(k + kf + M) (543)



230 H. Said et al.

which is a linear complexity with time. In this case, there are no loops in the
graph as proved in Sect. 5.5.2.2. Therefore, the whole graph-based simplex single
iteration has the same linear complexity as the longest-path algorithm.

e The number of distance constraints is much larger than the number of nondis-
tance constraints, i.e., u >> v:
This is the most common case since most of the constraints are of the minimum
distance design rule of the form of (5.1). Equation (5.40) becomes

Cgraph—connection value-u >>v = O(k + kf + M)» (544)

which is still a linear complexity with time. In this case, loops may appear, there-
fore (5.42) reduces to

Cgraph»loop elimination-u >> v — O(V X p X u), (545)

which is still a manageable complexity, specially if the number of variables in
nondistance constraints, p, is limited.

e A hypothetical limiting case for the algorithm in which the number of nondis-
tance constraints is much larger than that of the distance constraints, i.e., u << v.
In addition, the maximum number of variables in a nondistance constraint is
equal to the total number of variables, ie., p = N =k +u+v ~ k 4+ v.
Therefore, (5.40) and (5.42) become, respectively

Cgraph-connection value-u <<y = O(k + kf +vx (k + V))

= 0(?) (5.46)
Cgraph—loop elimination-u <<v = O(V X (k + V) 2 V)
= 0(?). (5.47)

Comparing the last complexity with (5.38), this is the same complexity of matrix
inversion in the simplex method iteration.

If the matrix is a sparse matrix, the matrix inversion can be more efficient by us-
ing LU factorization. Similarly, the graph-based simplex algorithm becomes more
efficient because the number of links in the graph decreases in a matrix with many
zeros. Practically, the number of nondistance constraints, such as symmetry con-
straints, is small (# >> v) and the number of variables appearing in this constraints
is very small compared to the total number of variables (p << N). Consequently,
the complexity of the graph-based algorithm is very well below the hypothetical
limiting case complexity. In other words, the algorithm benefits from the sparsity
of matrices to reduce the computation time. This is an inherent property of the al-
gorithm without the need for any special sparse handling. The graph size increases
to be maximum when the connections are only between nonbasic variable source
nodes and basic variable supernodes. The number of coefficients of a supernode is
equal to the number of nonzero elements in the matrix row of the corresponding con-
straint. Hence, the size complexity of the graph is at most the same size complexity
of the simplex method.
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To enhance the efficiency of the multivariable graph-based algorithm, only a
subset of nodes are processed. Those nodes are the updated nodes affected by the
entering variable, as shown in Fig. 5.10, in addition to any node that has a path in-
volving the objective supernode, f, and passing through any of the updated nodes.
All remaining nodes will maintain the same values as the previous iteration.

5.6 Layout Constraints Revisited

As shown in Sect.5.5.3, the compaction problem complexity is closely related to
the number and kind of constraints in the corresponding layout. Both are closely
related to the total number of elements and the detailed manner in which the layout
of each is designed. Layout retargeting must keep all such details while going from
one process to another. In this section, different aspects related to layout constraints
are discussed: First, a method to reduce their number is introduced. Then, some
issues related to the one-dimensional nature of constraints are presented.

Constraint Number Reduction

Layout simplification can be attained by merging some structures before com-
paction, then re-expanding them in the target process after compaction during a
postprocessing step. Among the layout layers that add a lot of edges, and hence
many constraints are the contact and via layers. Structures in such layers are charac-
terized by their small size and large number. An example is the contact array found
at each transistor source and drain areas. Another example are the via/contact ar-
rays designed to handle high current densities as shown in Fig. 5.12a. In the figure,
arrows indicate design-rule constraints related to the shown array composed of six-
teen contacts. After migration, the space occupied by such arrays is susceptible to

Merged
contact

O

Single
contact

Fig. 5.12 Contact array (a) before merging and (b) after merging
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change according to the target device sizes and current densities. This problem can
be handled using the following three steps:

1. During layer mapping, see Sect.5.3.1, each contact/via array is merged into
one single large contact/via occupying the whole area of the array as shown in
Fig.5.12b. It is clear from the figure that the number of constraints is reduced
considerably.

2. The internal design-rule constraints that determine the size of the single large
contact in Fig.5.12b is set to keep at least the same number of vias as in the
source layout, unless otherwise specified.

3. After compaction, a postprocessing step reconstructs the minimum-sized con-
tacts and vias from the corresponding large contact.

Complex Design-Rules

Traditionally, layout design-rules used to belong to either minimum width, min-
imum spacing, or minimum extension rules. Recently, design-rule complexity is
increasing by moving from standard edge-based rules to shape or polygon-based
ones. Moreover, some rules need to be specified by multivariable equations rather
than a fixed value constraint. This makes well-known constraint generation meth-
ods, e.g., the scan line method [25], more challenging to apply. In fact, the one-
dimensional nature of compaction puts some limitations on the kind of layout
design-rules that can be handled. For example, dealing with conditional rules rep-
resents a real challenge [26]. Conditional design-rules are ordinary intralayer or
interlayer design-rules in which the constraint parameter is conditional on some
outside factor. For example, the metal separation rule has a larger value if one of the
metals becomes a wide metal. Conjunctive or context-based design-rules represent a
specific class of conditional design-rules in which the constraint parameter depends
on the presence or absence of an otherwise unrelated layer. Attempts to deal with
such rules have been made in [27, 28]. The use of the Calibre nmDRC™ [9] tool
as mentioned in Sect. 5.3.3 easily captures such constraints, which are then trans-
formed to edge-based format.

Edge Order

Reformulating design-rule constraints in edge-to-edge-based ones triggers addi-
tional challenges. For example, if two edges overlap in the source layout, i.e., they
have a zero separation distance, while the target design-rules impose a minimum-
distance constraint between them, the constraint generator will have much difficulty
to assign an order for these edges. By default, minimum-distance constraints pre-
dictate a specific order that must be conserved. This might result in nonoptimal area
in the target process. For example, the following constraint:

Xj—Xi = dl'j (5~48)



5 Analog Layout Retargeting 233
a b

A A 1 B

C L2, C‘,;,,g D

Fig. 5.13 Compaction edge order: (a) source layout and (b) after migration

means that, after compaction, the value of x; will always be greater than that of x;.
In other words, the order of these edges cannot be reversed. In some cases, device
sizes and aspect ratio can considerably change from one process to the other. An ex-
ample is shown in Fig. 5.13a, which shows the placement of four devices: 4, B, C,
and D, with three horizontal distance constraints, namely: x, y, and z. After device
size recalculations in the new process, device shapes are shown in Fig.5.13b. The
obtained device sizes would allow device D to move to the left up to the minimum
of the z-constraint as shown by the dotted rectangle. However, due to the existence
of constraint x between devices A and D, which now has no meaning, device D can
not be moved to the left and the x-constraint is maintained. In fact, the compactor
has no information on device relationships in the vertical direction during horizontal
compaction and vice versa. Possible solution to such problem is to iterate with sub-
sequent horizontal—vertical compaction trials till no more area reduction is achieved.
Each time, new constraints have to be generated. Two-dimensional compaction tech-
niques can also solve such problems [11]. However, such techniques are proved to
be nondeterministic polynomial (NP)-complete, which means that the computation
time increases exponentially with the problem size. Several heuristic techniques
are used to reach a solution in an acceptable time [29]. However, for practical
cases, this is still not feasible and most compaction tools opt for one-dimensional
techniques.

Nanometer Process Effects

With the advent of new process technologies, more constraints need to be added than
just design-rule ones to keep the same layout electrical performance. Some second-
order layout effects become so important to be neglected. Most of these effects are
still not accounted for in most analog design automation tools. For example, re-
cent publications on shallow trench isolation (STI) stress and well proximity (WP)
effects have demonstrated the profound impact of layout variations on transistor per-
formance [4]. The fact that the layout migration methodology does keep the layout
floorplanning, placement, and routing helps to mitigate such effects, if and only if
they were already accounted for in the source layout. In some cases, well dimen-
sions are increased to control the WP effect in the source layout. However, during
migration, the target of the compaction module is to minimize the dimensions of all
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polygons to the specified constraints. This calls for special handling of well struc-
tures. Wells not adjusted to minimum sizes can be detected in the source layout
so that further manipulations become possible. Compaction objective functions that
privilege closeness to the source layout [2] can also help reduce such effects.

5.7 Practical Retargeting

Figure 5.1 shows the basic modules of a compaction-based layout retargeting tool.
This section discusses other complementary modules that are needed to be able
to handle industrial-level layout complexities. However, implementation details of
such modules are out of the scope of this chapter. The main target of this section
is to show that the multivariable graph-based simplex method presented in Sect. 5.5
allows the seamless integration of such modules in the automatic retargeting tool.

5.7.1 Symmetry Enforcement

Since the absolute value of integrated circuit components has large tolerances due
to process and temperature variations, successful analog design is usually based on
relative component accuracy rather than absolute one. Relative accuracy is strongly
related to layout matching and symmetry techniques. During retargeting, such lay-
out strategies must be detected in the source layout and replicated in the target one.

Symmetry constraints can be identified manually by the user for small layouts.
For large hierarchical layouts, multilevel symmetry detection has been handled
in [3] by utilizing the inherent circuit structure and hierarchy information from an
extracted netlist.

The enforcement of such constraints has been problematic to compaction algo-
rithms. As stated in Sect. 5.4.1, efficient graph techniques do not support symmetry
constraints of the form of (5.2). This is one of the main reasons that recent
implementations moved to LP techniques in spite of their excessively high com-
putational cost, refer to Sect.5.4.2. As a compromise, in [12] Okuda et al. relied
on graph-based techniques to solve the main problem, while for symmetry con-
straints, another equivalent reduced LP problem that contains lower number of
constraints is constructed. The reduced problem is then solved using the revised
simplex method [30]. Revised simplex is a way of ordering the computations of the
simplex method to avoid unnecessary calculations. Once symmetry constraints are
satisfied, they are converted to more simple distance constraints and reflected back
on the main large graph. However, still more general constraints with many vari-
ables cannot be handled. Moreover, The optimization function is restricted to a very
simple form.

The presented multivariable graph-based algorithm would overcome all such
problems since it supports any kind of layout constraints. In addition, it allows com-
plex objective functions to be used in the same time.
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5.7.2 Device Aspect Ratio

During analog circuit migration, device dimensions are subject to large variations
with respect to their original sizes. Even if the same electrical performance is con-
served, device characteristics change across different process technologies can lead
to large device area variations. The described methodology aims to keep the same
device placement and routing, in addition to all device related physical parameters,
such as the number of fingers for each transistor, the number of unit resistors, and
capacitors, etc. The initial relative device placement and orientation is normally op-
timized for the source layout. After the calculation of new device sizes, this might
not be the optimum placement, which might lead to some waste of area after migra-
tion. A device outline example is shown in Fig. 5.14a. After migration, both device
area and aspect ratio change to yield the result shown in Fig.5.14b for the same
relative placement. It is clear that a considerable area loss exists at the top-right and
bottom-left corners. Using the same devices, area optimization is possible by just
moving device A to the top-left corner as shown in Fig. 5.14c. This result is possible
only using a two-dimensional compactor. However, as mentioned in Sect. 5.6, these
techniques prove to be difficult to apply.

b
a
A
A
C
C
B B
Cc
A d
A
C
C
B
B

Fig. 5.14 Layout shape optimization: (a) source layout, (b) migrated layout, (¢) migration using
2-D compaction, and (d) using device aspect ratio control
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In [31], device aspect ratio is changed while keeping the same device relative
placement. This can be done by investigating different realizations for each device,
e.g., varying the number of transistor fingers. Devices are then replaced by their
new realizations, refer to Sect. 5.7.4. Using this approach, the result of Fig. 5.14d is
obtained. The overall area utilization is far better than that of Fig. 5.14b.

5.7.3 Layout Hierarchy

It is important to preserve the hierarchy of the layout during migration. Hierarchi-
cal compaction has been first treated in [17] by formulating the problem as an LP
one. The key is to represent all constraints contained in each cell (intracell con-
straints) only once in the constraint set even if it is instantiated multiple times. This
is achieved by expressing edge locations inside hierarchical cells by their relative
position with respect to their cell origin location rather than their absolute flattened
position. For example, if an edge is located at a distance xzsgj ; from the cell ori-
gin, which in turn is placed at the absolute distance of x..;; %, the edge location
is expressed as X, x £ xzsgf ; in all constraints. The cell location variable, X«
would then disappear from all intracell constraints, since it will be common to all
edges. Therefore, intracell constraints reduce to the same set of constraints even if
the cell is instantiated multiple times. This not only retains the layout hierarchy, but
also reduces variable count in the simplex problem. However, if there exists multi-
ple levels of hierarchy, the cell location variable, x..; x, would be in turn referenced
to the origin of its parent cell. Therefore, an edge in a n-hierarchical structure is

generally represented by

Xl L X £ Kedged (5.49)
Apparently, the expense of using this method is the increase in the number of vari-
ables in the linear constraint equations. In [32], the algorithm is further modified to
trim down both the number of variables and the number of equations. Again, the
presented multivariable graph-based algorithm would be a natural fit since it does
not have any limitations on the number of variables in each constraint. While it is
general enough so that no artificial techniques are needed to limit this number.

5.7.4 Device Replacement

During retargeting, some devices might have different structures and/or layers from
one process to the other. For example, if the number of fingers of a given tran-
sistor needs to be changed, or if POLY resistors are not supported in the target
process, simple layer mapping is not applicable. The only solution is to replace



5 Analog Layout Retargeting 237

the entire device with a new one from the target technology design kit. This pro-
cess is facilitated by the adoption of parameterized cells or Pcells [33], where the
new device is regenerated using a special Pcell script. A methodology for device
replacement during migration has been presented in [34]. It is based on the ability
to describe the entire hierarchical layout using multivariable linear programming
constraints as described in Sect. 5.7.3.

5.7.5 Layout Parasitics

Layout parasitics have a significant impact on analog circuit performance, specially
when it comes to matched nets. This effect is expected to be magnified in modern
process technologies as parasitics control are getting worse. A recent publication
has employed nonlinear optimization to constrain layout parasitics within predeter-
mined bounds during retargeting [35]. This can be most useful for high-frequency
and RF designs. It should be noted that if the source layout has been carefully de-
signed with minimized and matched parasitics on sensitive nets, there is a quite large
probability that the target layout also satisfy such constraints, specially if device di-
mensions do not change significantly due to migration. In this case, compaction
objective functions that privilege closeness to the source layout [2] can greatly help
keeping parasitics under control.

5.8 Examples

In this section, several compaction examples are given. First, results of the mi-
gration of two opamps: a two-stage Miller opamp and a folded-cascode one, are
presented. Both have been migrated from a 0.35 pum process to a 0.18 wm one. New
device sizes were calculated using the netlist migration tool reported in [10]. During
layout migration, symmetry constraints were also considered. Using the multivari-
able graph-based method presented in Sect. 5.5, the CPU time of each test case was
compared to that of the same migration using one of the well-known packages for
the revised simplex method [36], both running on a 3.0-GHz, 512-MB RAM ma-
chine. Results are shown in Table 5.1. The table shows for each case, the number of
location variables, the total number of constraints, the average single iteration time,
and the total migration time for each algorithm. Since in the graph-based method,
the graph is updated after each iteration to reflect new entering and leaving vari-
ables, the single iteration execution time changes from one iteration to the other
depending on the new graph structure and the total number of loops in the graph.
In this case, the average execution time of a single iteration is reported in the table.
The table shows that the graph-based method is from two to four times faster than
the simplex method in executing a single iteration.
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Table 5.1 Comparison between graph-based and revised simplex methods

Avg. iteration

time (ms) Total time (sec)
Graph- Revised Graph- Revised
Case Direction # variables # constraints based simplex based simplex
Miller opamp X 521 1,831 2.517 4.555 0375 3.594
Y 521 2,067 1.164 5175  0.234 4.265
Folded-cascode X 2,431 8,599 9.270 21.492  8.232 91.345
Y 2,443 11,495 7.260 28.297 7.391 118.141

It should be noted that in both examples, the iteration CPU time of the graph-
based method in the X -direction is higher than that of the ¥ -direction in spite of the
fact that it has less number of constraints. This is due to the fact that the CPU time
of one iteration depends not only on the problem size but also on the complexity of
the coefficient constraint-graph, i.e., the number of loops that should be removed.

The total CPU time of the graph-based method is smaller than that reported for
the revised simplex method by a factor of ten or more. This is due to two reasons:
The first one is the much less CPU time needed for each iteration. The second reason
is that starting from a good initial solution, as discussed in Sect. 5.5.2.3, has resulted
in fewer number of iterations before a final optimal solution is reached.

For the Miller opamp, the source and target layouts are shown in Fig.5.15a.
The source layout area is 6,060 umz, while the target layout is 2,800 umz. For the
folded-cascode, the source and target layouts are shown in Fig.5.15b. The source
layout area is 10,270 um?, while the target layout is 4,445 wm?. Although LP has
reached an optimal solution, there is still an empty area in the middle right part of
the layout. This area appeared because of nonrelevant edge-constraints discussed in
Sect. 5.6.

Another example of constraint problems is shown in Fig. 5.16. The source layout
is shown in Fig. 5.16a. Migration is performed from a 130nm process to a 65nm
one. After the first run, the obtained layout is shown in Fig. 5.16b. The relative size
of the MOS capacitor device on the left side was greatly reduced with respect to
devices at the top-right corner such that an empty space appeared on the top-left
corner. However, due to the maintaining of edge-order, these devices could not be
moved to the empty space. Similar problems can also be detected in the rest of the
layout. After manual deletion of such constraints, the resulting layout of Fig.5.16¢
has been obtained. A similar layout can also be obtained if another run of com-
paction is used in both directions. But in this case, a new set of constraints must be
regenerated starting from the layout of Fig. 5.16b.

A final more complex example is the astable oscillator shown in Fig.5.17. It
contains several blocks, such as a bandgap reference, biasing cells, a digital de-
coder used for trimming, an amplifier, and a couple of comparators. The total
number of devices is approximately 500. The migration was done from a 0.6 um
process to a 0.25 wm one. Table 5.2 shows the number of edges, the number of
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Fig. 5.15 Examples: (a) Miller opamp (b) folded-

layouts

minimum-distance constraints, the number of symmetry and equal constraints, and

the total number of iterations in both directions. As mentioned before

the number of

)

minimum-distance constraints is by far greater than any other kind of constraints.In
this example, some capacitors and resistors needed to be completely replaced by

another device kinds as can be easily recognized from the layouts.



240 H. Said et al.

Fig. 5.16 VCO example: (a) source layout (b) migration with edge-order problems, and
(c) migration after edge-order constraints deleted

Fig. 5.17 Migration results for the oscillator migration

Table 5.2 Graph-based method compaction data of the example shown in Fig. 5.17

Direction  #edges  # min. constraints  # symmetry/equal constraints # iterations
X 14,495 71,197 2,857 6,750
Y 14,469 75,494 2,676 6,540

5.9 Conclusion

In this chapter, it is shown that one of the most appropriate techniques for ana-
log layout process migration is that based on layout compaction. With an ap-
propriate objective function, compaction allows to preserve all physical design
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knowledge embedded in the original layout. A novel multivariable graph-based
simplex algorithm to be used in layout compaction was presented. It combines the
efficiency of graph-based methods and the generality of linear programming ones.
The algorithm is general enough to support any kind of complex multivariable con-
straint and any shape of linear optimization functions. Therefore, it is a natural fit
for recently introduced symmetry, hierarchy and cell-swapping techniques based on
linear programming. It is shown that the complexity of the proposed algorithm de-
pends heavily on the source layout constraints and optimization function. In the limit
case of simple minimum-distance constraints and a simple optimization function, it
tends to the graph-based technique of linear complexity. In the opposite limit case
of complex multi-variable constraints and complex optimization functions it tends
to the complexity of the matrix-based simplex method.
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Chapter 6
Closing the Gap Between Electrical and Physical
Design: The Layout-Aware Solution

Rafael Castro-Lopez, Elisenda Roca, and Francisco V. Fernandez

Abstract Iterations between separate phases in any procedural design process,
usually a by-product of unexpected (or, simply, very complex to consider) adverse
effects, clearly play against any time-to-market requirements. In analog integrated
circuit (IC) design, going back and forth between electrical and physical synthe-
sis to counterbalance layout-induced performance degradations needs to be thus
avoided as much as possible. One possible solution involves the integration of the
traditionally separated electrical and physical synthesis phases, by including layout-
induced effects, in the form of layout parasitics, right into the electrical synthesis
phase, in what has been called parasitic-aware synthesis. This solution, as such, is
not yet complete since there are geometric requirements (minimization of the occu-
pied area or fulfillment of certain layout aspect ratio, among others), whose effects
on the resulting parasitics are not usually considered during electrical synthesis. In
this chapter, a layout-aware solution that tackles both geometric and parasitic-aware
electrical synthesis is proposed. This technique uses a combination of simulation-
based optimization, procedural layout generation, exhaustive geometric evaluation
algorithms, and several mechanisms for parasitic estimation. Thanks to the nature
of this combination, the solution benefits from, and also fosters, reuse of analog
intellectual property (IP) blocks. Several detailed design examples are provided.

6.1 Introduction

The CMOS semiconductor industry has continuously evolved and prospered since
the early 1970s. The ever-shrinking minimum feature size triggered arevolution in the
electronic industry, from ASICs (application-specific ICs), to SoCs (Systems-on-
a-Chip), SiPs (Systems-in-a-Package), and NoCs (Networks-on-a-Chip). A critical
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design productivity lag, however, has been reported [1]: with a 58% yearly growth
in IC complexity considerably surpassing the 21% yearly increase in productivity,
design cost is increasing rapidly. Taking into account the ever-demanding time-to-
market pressures, this picture is clearly worrisome. For analog and mixed-signal
(AMS) design, the situation is even worse, one of the most significant causes being
the scarcity of commercial CAD tools and methodologies to support the analog
design efficiently. In this scenario, productivity should be boosted to double every
year to bridge the gap. To achieve this goal, several research directions have been
suggested [1], among others: (1) increasing the fraction of the design coming from
reuse-based design practices, (2) improving hierarchical synthesis methods so that
subtle analog design knowledge is more efficiently managed, and (3) avoiding
iterations between separate design stages. However, the design of analog integrated
circuits is, in many ways, a very intricate process that demands to be systematized
as long as it is both possible and productive. Here, systematic means that the design
process is organized in such a way that it is efficient with respect to the available
resources (like CPU time); many, if not all, parts of the process could be, if wanted,
properly automated; and it provides equal, if not better, results when compared to
a traditional, nonsystematic, handcrafted design process.

The research and results described in this chapter focus on the three directions
mentioned above, with special emphasis on the third one, which will be undertaken
by minimizing the iterations between electrical synthesis (also known as sizing and
here understood as the process of mapping performance specifications into device-
level characteristics, such as transistor sizes and biasing conditions) and physical
synthesis (or layout generation). At the same time, this chapter also deals with the
systematization of both these electrical and physical parts of the design process,
by mixing them up and, in this way, getting to a design process that avoids time-
consuming iterations. In doing so, it is possible to completely implement those three
meanings of systematization.

To comprehend the goals to be achieved, it is necessary to understand that the
quality requirements in analog and mixed-signal (AMS) design, as well as produc-
tivity levels in the semiconductor industry involve many aspects [1]. Quality means
that the performance of the fabricated circuit is guaranteed even in the presence
of layout-induced parasitics. This goal is usually achieved through time-consuming
and unsystematic iterations between the electrical and physical design phases. Fail-
ing to attain the goal may eventually lead to product-to-market failure, but the
iterations are clearly a pitfall in designer’s productivity. In this sense, it is impor-
tant to note that the origin of this iterations is the disconnection in the design flow
that exists between electrical and physical design. Actually, an important aspect of
this issue is how to evaluate layout-induced parasitics early in the flow: in traditional
design, overestimation results in wasted power and area, while underestimation may
lead to fatal performance degradation. Another very important aspect of quality is
the effective use of silicon area because this is paramount to the final production
cost. This goal can be assured by carefully optimizing the design from the point of
view of geometry by, for instance, improving layout regularity and floorplanning or
attaining certain aspect ratios for the layout components.
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These two quality aspects, area and parasitics, are nonetheless intimately related:
to optimize the design from point of view of the geometric unavoidably affects the
robustness of the design against parasitic-induced effects, and vice versa [2].

Beyond traditional analog circuit design techniques, the majority of the reported
solutions to implement more systematic and automated techniques cover only one
of the both problems, and just a few contributions have tried to address both of them
simultaneously. Another important aspect concerns the phase of the design cycle
where the solutions are applied: either after circuit sizing or concurrently with it.

The synthesis methodology presented in this chapter, so-called layout-aware siz-
ing, aims at concurrently solving the geometrical and parasitic problems by bringing
layout-related data into the very sizing process. Circuit sizing can then be carried out
with enough information on layout-induced degradations (parasitics) as well as with
a detailed description of the geometry of the eventually implemented layout. In this
way, circuit sizing ensures a solution that is robust enough against layout-induced
degradation effects and that fulfills a number of user-defined geometric goals, with
area minimization being the most important. The salient features of the proposed
solution are:

1. Thanks to the simulation-based approach, the methodology is very flexible and
general since many different types of circuits can be synthesized. Also, the use
of an electrical simulator provides a high level of accuracy in the simulation of
the circuit performances.

2. The global optimization techniques ensures that high-performance solutions (that
meet very demanding specifications) are attained.

3. Because accurate parasitics estimates are incorporated right into the electrical
synthesis phase, the performance of the design solutions is guaranteed.

4. The execution times are kept within reasonable limits thanks to the efficient
optimization-based and template-based layout generation techniques.

5. Minimization of area during electrical synthesis is done in a much more realistic
manner because, as opposed to traditional electrical design, every detail on the
layout implementation (e.g., routing, guard-rings, block separation, etc.) is taken
into account.

To the best of the authors knowledge, previously mentioned reported approaches
only meet some of the previous features. It is also worth noting that the methodol-
ogy presented here fosters reuse-based design practices for analog and mixed-signal
IP blocks, another featured direction toward new IC design methodologies. AMS
design expertise regarding electrical and physical IC design can be stored by using
techniques explained next. Thus, this expertise can be swiftly and efficiently reused
for many different design scenarios.

The layout-aware synthesis methodology here described is composed of two siz-
ing techniques, namely the parasitic-aware and geometrically constrained sizing
techniques. The latter technique concerns the inclusion of layout knowledge in the
sizing process to obtain a solution for which the area and shape of the eventually
implemented layout are optimized. Such a goal is accomplished by finding, dur-
ing the sizing process, the values of geometric parameters (e.g., number of folds
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of MOS transistors) that yield optimal geometric features. This optimization can
be defined either as a restriction on some geometric aspects of the layout (e.g., a
predefined aspect ratio, or a maximum width or height of the whole circuit layout)
or as a design objective (i.e., area minimization). Two aspects should be here care-
fully considered. First, adding new variables to the sizing process (i.e., geometric
variables in this case) must not simply consist in extending the design space be-
cause it would make the exploration of such a space exponentially more complex.
Second, to be able to include layout details into the sizing process, layout gener-
ation must be rapid enough so that retrieving these details does not overly slow
down the sizing process. In parasitic-aware sizing, the values of layout parasitics
are computed interactively during sizing, by using specific layout information (e.g.,
the possible implementation style of a group of MOS transistors) and actual de-
vice sizes. The eventually obtained sizing yields a performance that is also robust
when considering these layout-induced parasitic effects. As previously noted, these
two techniques have been carefully linked as different geometric variables may give
rise to various, different layout-induced effects (e.g., different foldings change the
junction capacitances of an MOS transistor).

The structure of this chapter is as follows. Following the review of previ-
ous work in Sect. 6.2, Sect. 6.3 describes the circuit sizing and layout generation
techniques used as foundations to develop the layout-aware synthesis of AMS cir-
cuits. Section 6.4 explains the geometrically constrained sizing technique, while
Sect. 6.5 completes the layout-aware sizing methodology with the parasitic-aware
technique. Several design examples are provided in both sections. Conclusions are
drawn in Sect. 6.6.

6.2 Previous Work

6.2.1 Circuit Sizing and Layout Generation

Synthesis can be carried out by following two different approaches, the first based
on knowledge, the second founded on optimization.

The basic idea behind knowledge-based synthesis is to use a predefined design
plan (in the form of design equations, design heuristic strategies, or both) to find
and combine the elements such that the set of requirements (for sizing or layout)
are met. The underlying principle is to capture the expertise of a designer so that an
optimum solution can be reached.

In knowledge-based sizing, design equations and heuristics are formulated in
such a way that, given the required performance characteristics, the component’s
characteristics can be calculated (e.g., [3]). Although it reaches solutions quickly,
this approach suffers from several drawbacks: limited accuracy due to the use of
simple equations, large preparatory time/effort and difficult migration to different
technologies.
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Used for layout synthesis the intended captured knowledge refers to the wide
variety of techniques (from placement strategies, intended to improve device match-
ing and minimize the layout area, to routing techniques, used to minimize the
loading effects) that expert layout designers use to improve the quality of the lay-
out. There are two types of knowledge-based layout synthesis approaches, namely
rule-based and template-based approaches. Rule-based approaches store the lay-
out knowledge in a customizable rule set (defining what a “good” analog layout),
which are to be obeyed by whatever layout placement and routing algorithms are
to be used. However, most common knowledge-based approaches are template-
based tools [4-9]. The underlying idea with template-based tools is to capture
the layout designer’s expertise in a pattern that specifies all necessary component-
to-component and component-to-wiring spatial relationships, as well as analog-
specific constraints such as symmetry, device matching, and parasitic minimization.

In optimization-based synthesis, on the other hand, the problem is translated into
function optimization problems that can be solved through iterative numerical meth-
ods [10-21]. Although the optimization may be single or multi-objective (i.e., using
one or multiple functions that are minimized and/or maximized simultaneously),
the main idea is that the quality of the circuit performances are iteratively quantified
and compared with the performance specifications. This quantification requires an
evaluation that can be done by using equations (derived either manually or using
symbolic analyzers [11-16]), or by using a simulation tool [17-21]. Whereas the
simplicity of the equations may compromise the accuracy of the solution, using a
simulation tool improves the accuracy but the running time is typically much larger
than when using equations. However, the simulation-based optimization is concep-
tually more general since it can be used with many different type of circuits.

Regarding the optimization technique, two approximations are considered: sta-
tistical [16, 20, 21] and deterministic [17]. The main advantage of the statistical
techniques over the deterministic ones is their capability to escape from local min-
ima, thanks to a nonzero probability of accepting movements that may increase the
cost function. The price to pay is, however, a larger computational cost.

In optimization-based layout generation [22-24], the cost function typically con-
siders some design aspects such as area and net length, while penalizing violation of
analog design constraints, such as device mismatch, or crosstalk. The main benefit
is their generality since they can be applied to any AMS circuit. The drawbacks are
the complexity of the optimization problem, the relatively low quality of solutions,
the difficulty of the cost function setup, and the long turnaround times.

6.2.2 Previous Approaches to Layout-Aware Sizing

In this section, we analyze different reported approaches to layout-aware circuit
sizing. This analysis attends to several aspects, such as the engine used for sizing
(knowledge or optimization-based), the kind of evaluation of the circuits perfor-
mances (equations or simulation), the estimation method for parasitics (i.e., the type
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Table 6.1 Reported approaches for layout-aware sizing

R. Castro-Lépez et al.

Sizing Performance Estimation Layout Geometric
Ref. engine evaluation method generation constraints
[16] Performance  Fitted 2.5-D Yes Equations
models & functions analytical-
genetic geometrical
algorithms
[25] Design plans  Equations Analytical- No Linear
geometrical programming
[26] Simulation- Numerical Analytical- Yes No
based non- simulation geometrical
linear opt. (SPICE)
[27] Simulation- Numerical Analytical & No No
based opt. simulation look-up tables
(NG-SPICE)
[28] Simulation- Symbolic Off-the-shelf Yes No
based opt. analysis extractor
[29] Equation- Matrix nodal Analytical No No
based opt. analysis models
This work  Simulation- Numerical Analytical & No Slicing tree
(1) [30] based opt. simulation layout-
(HSPICE) sampling
This work ~ Simulation- Numerical Geometric & Yes Slicing tree
(2) [30] based opt. simulation 3-D analytical
(HSPICE) and geometric

and accuracy of the extraction process), the inclusion of geometry-aware informa-
tion, and the need for layout generation in the approach. The analysis is summarized
in Table 6.1, which includes also the solution described in this chapter.

In [16], the sizing engine uses simple performance models and evolutionary
algorithms, analytical-geometrical models for parasitics, and procedural layout gen-
eration. Geometrical concerns are addressed by using coarse equations describing
the geometries of the layout components that are required for each solution. The
information on extracted parasitics is, however, very limited.

A knowledge-based sizing approach that uses design plans is described in [25].
Parasitics are evaluated only for a relatively low number of iterations within the siz-
ing process. The estimation method for parasitics is based on analytical-geometrical
models. Geometrical concerns are considered by means of a linear programming
technique: the layout is optimized at the slice level and a simplex algorithm is ap-
plied to a vertically (or, correspondingly, horizontally) stacked set of horizontally
(vertically) arranged devices (a building block), called groups. Since this approach
uses design plans, the accuracy of evaluated solutions is compromised. Moreover,
even with the most accurate models for parasitic estimation, the resulting perfor-
mances may wrong when added to the approximate models used in the design plans.
Another drawback of this approach is that geometric aspects are not really consid-
ered as a part of the design space exploration during the sizing process. This means
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that area is not an objective that is actually and comprehensively minimized during
sizing (it is only taken into account when near the optimum, i.e., during local opti-
mization). Besides, initial heuristic estimates are used to solve the problem, which
makes the solution highly dependent on starting guesses.

The solution in [26] consists in a first global sizing phase with no information on
layout followed by a detailed sizing phase, which generates a procedural layout at
each iteration. Therefore, parasitics are only considered for fine-tuning. Geometric
concerns are limited to the minimization of area through the number of folds in
MOS transistors.

The layout-aware technique presented in [27] uses simulation and optimization
combined with a parasitic estimation method based on analytical models and look-
up tables (the latter used for routing wires). The main drawback of this solution is
that no geometry-aware information is taken into account during the sizing process.

The solution in [28] uses layout with templates and commercial extractors.
Parasitics are incorporated into performance models by using symbolic analysis.
Although gain in sizing time is reported to be approximately 20% when compared
with traditional simulation-based techniques, the solution is limited to small-signal
performances. Besides, no geometric concerns are included.

The work in [29] uses equation-based models to evaluate circuit performances
and analytical models to estimate parasitics. Again, the use of equations limits the
accuracy of evaluated performances (added to the relative imprecision of parasitic
estimates). Also, geometry-related aspects are not considered.

6.3 Selected Approach to Layout-Aware Sizing

6.3.1 Sizing

Although knowledge-based sizing does reach solutions quickly, provided that de-
sign plans have been already derived, this approach suffers from several drawbacks.
The most important one is that the quality of the solutions in terms of both accu-
racy and robustness is not acceptable since the very concept of knowledge-based
sizing forces the design equations to be simple, thereby resulting in large deviations
of the real performance from the predicted one (several hundred percent in worst-
case scenarios). Other drawbacks are the large preparatory time/effort required to
develop design plans or design equations, the difficulty in using them in a different
technology, and the ad hoc nature of the approach itself. Optimization-based sizing
circumvents the need for a detailed design plan. Even though there is a clear gain
in running times when using equations, this type of performance evaluation method
may, however, compromise the accuracy of the solution. With optimization-based
sizing using simulation, better accuracy can be attained as long as accurate simula-
tion models are used, but the running times are typically much longer than sizing
with equations. However, optimization-based sizing is conceptually more general,
the simulator (i.e., the performance evaluator) being the component that determines
the applicability to different types of circuits and topologies.
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For these reasons, a simulator-in-the-loop, optimization-based engine has been
chosen to perform circuit sizing [20]. This engine features some characteristics in
the generation and acceptance of movements through the design parameter space
that allow to drastically reduce the computational cost, such as: preliminary explo-
ration of the design space using a coarse multidimensional grid to determine the
best regions for further exploration, adaptive control of the temperature in the sim-
ulated annealing statistical techniques, synchronization of movement amplitude in
parameter space with the temperature, among others. An outstanding feature is the
capability to incorporate design knowledge to the sizing procedures, which can be
done by making use of powerful tools like embeddable C-based programs. This is
very important because (as it is shown below) this capability makes it possible to
introduce layout-related aspects directly into the sizing process.

Then, the optimization problem is mathematically stated as:

Minimize y,;(x), 1<i<P, (6.1)
Subjectto  y,;(x) > Y,; and/or y,;(x) <Y}, 1<j <R, (62

where y,; (x) stands for the value of the i-th design objective (e.g., minimize power
consumption); y,; (x) is the value of the j-th design constraint (e.g., phase margin
larger than 45°); Y,; is the targeted value of such a design specification; and x is the
vector of design variables (e.g., transistor sizes, capacitor values, bias currents, etc.).

In the context of circuit design, there is an important difference between a design
objective and a constraint. While the former are meant to improve the design, the
latter are set to defined what is a valid or feasible design. An example of design
objective is power consumption to be minimized; an example of constraint is to
have a phase margin above 45°. It is also important to note that it is the choice of
the designer to state both constraints and objectives (sometimes, what is defined as
constraint can be used as objective, and vice versa).

In the work presented here, a single-objective optimization engine is used, so a
cost function is used. This cost function is defined according to the feasibility of the
point of the design space that is being evaluated during the optimization. If the point
does not satisfy any of the design constraints, the cost function is to be defined as:

¥ (x) = max[—w; log(yr; / Yrj)], (6.3)

where w; is the weight associated to the jth constraint.
For those points of the feasible design space, the cost function is defined as

follows:
Y(x) = D(yor) = — Y —wi log(|yoi). (6.4)
i

where w; is the weight associated with the 7 th design objective used to prioritize the

fulfillment of one or more design objectives over others.
The optimization engine explores the design spaces in two phases [20]. In the
first one, the best regions for further exploration are determined through a simulated
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annealing technique combined with an adaptive temperature control. In the second
phase, a deterministic technique Powell’s method [31] performs the local optimiza-
tion of the design.

As evaluator of the circuit performances, any transistor-level simulator (e.g.,
HSPICE) can be used. In this way, the layout-aware sizing methodology described
here can be applied to any analog circuit that can be efficiently simulated at the
device level.

6.3.2 Layout Generation and Parasitic Extraction

The traditional design flow in AMS circuit design regarding layout-induced par-
asitics presents several drawbacks. The trial-and-error approach to counteract the
adverse impact of parasitics involves an unsystematic method to correct the circuit
sizing, its layout, or both. Oftentimes, the resulting degradation of the circuit per-
formance may be due not to a single parasitic but to the combined effect of several
parasitics. Moreover, the number of extracted parasitics (which depend on the com-
plexity of the circuit and the accuracy of the extraction tool) makes this correction
method even more time-consuming and error-prone. All in all, the number of re-
quired iterations to ease the impact of parasitics can be quite significative for typical
analog circuits.

On the other hand, accurate extraction of parasitics requires knowing the circuit
layout in detail. If parasitics are to be estimated during the sizing process, this layout
knowledge must be generated at each iteration of the sizing process. Therefore,
any method used to obtain this information must be fast enough to prevent circuit
sizing from taking prohibitively long. A feasible way to attain such information is
to generate the layout at each iteration. In this regard, optimization-based layout
generation is currently too slow to be called in the loop of an automated parasitic-
aware sizing process.

In this sense, template-based layout generation is a more suitable solution for
several reasons': (1) the time required for layout generation (a few seconds [5])
is considerably smaller than those required by optimization-based approaches;
(2) layout templates are parameterized structures that contain all information on
the final circuit layout implementation, which is essential to accurately estimate
parasitics and, therefore, minimize the number of iterations between sizing and lay-
out [8,9,32]; (3) layout templates are very efficient at encapsulating design expertise,
both for placement and for routing.”

! Layout templates, which are to be devised by following expert guidelines for analog layout, are,
however, relatively costly to generate. Providing that a library of basic building blocks (such as
transistors, resistors, and capacitors) is available, developing a layout template takes X 1.5— X2 the
time it takes to manually create the layout for the same block.

2 For instance, device symmetries can be coded right into the building block so that any instance
of the template ensures that pertinent symmetries are always kept.
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Despite these advantages, layout templates may not result the best solution in
terms of generality, since they lack flexibility (in terms of placement and routing
adaptation) for certain sizes of the circuit devices. Nevertheless, the geometrically
constrained sizing technique described below together with a careful design of lay-
out templates contribute to palliate their flexibility problems to a large extent. Our
template-based approach has been implemented [5] using the Cadence’s PCELLS
technology [33] and SKILL programming [34].

6.3.3 Putting It All Together

Figure 6.1 shows the flow diagram of the layout-aware sizing methodology. Its core,
the optimization engine based on simulation explained above, features the means
to add relevant designers’ expertise to such iterative optimization process. As, in
general, the design space of any circuit is a multidimensional space defined by all
the design parameters (e.g., physical parameters of transistors, resistors, and ca-
pacitors), adding such expertise is necessary to bind the exploration of the circuit
design space to only those regions yielding more suitable solutions, thereby im-
proving the efficiency of the procedure. By making use of powerful tools such as
embeddable C-based executables, it is possible to incorporate valuable design exper-
tise in the form of constraint-satisfaction equations. This capability enables carrying
out the floorplan-sizing task at each iteration of the optimization process. The C++
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Fig. 6.1 Block diagram of the layout-aware sizing methodology ([30], ©IEEE 2008)
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program labeled geometric constraints module (hereafter referred as the GC mod-
ule) in Fig. 6.1 has been created to perform the floorplan-sizing task following the
technique explained above.

The data and information required in this flow are:

1. The circuit description (netlist) and the electrical performance to be posed as
goals of the optimization process.

2. Circuit template description: binary slicing tree representation of the layout tem-
plate the GC module works with.

3. Geometric goals: user-specified objectives concerning the geometric characteris-
tics of the eventually generated circuit layout

4. Fabrication process data, mainly layout design rules and process parameters.

The flow of optimization at any given iteration proceeds as follows:

1. A new vector for the design variables (within a prespecified range) is selected.
At the beginning of the optimization, this selection is done randomly. Otherwise,
the selection is done according to the optimization algorithm that is in place (e.g.,
following the simulated annealing optimization algorithm).

2. The vector of design variables is passed on to the GC module, which calculates
all possible combination of geometric parameters rendering all possible layout
styles for all of the circuit components. According to the required geometric
objectives (e.g., aspect ratio, maximum width, etc.), the GC module outputs the
combination of geometric parameters that attain those objectives while both area
and area loss are minimal.

3. With all necessary information to generate the layout, an instance® of it is
extracted and the resulting parasitics are added to the circuit.

4. The circuit performances are evaluated in the presence of the extracted parasitics.

5. Electrical performances and geometric features are used in the cost function that
controls the optimization procedure.

6.4 Geometrically Constrained Sizing

The goal of geometrically constrained sizing is to help the designer in finding the
best use of the available silicon area. This is done by retrieving and using correctly
and accurately geometry-related information during the electrical design process.
Beyond the obvious benefits that this has in the physical implementation from the
geometry perspective (attaining a layout aspect ratio and improving the layout qual-
ity and area usage efficiency), an important benefit is that parasitic estimates can be
obtained and used right in the very sizing process.

3 An instance is the result generating an actual layout from a template, with a particular set of
values for the template parameters.
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6.4.1 Floorplan Sizing

The geometry optimization problem for integrated circuits is known as floorplan-
sizing problem. Given a collection of device sizes (e.g., width and length of MOS
transistors) for a given analog circuit and, since each device can be laid out in
multiple ways, the floorplan-sizing problem consists in finding out two things: the
placement (i.e., how the devices are place in relation to each other) and the geomet-
ric parameter (GP) values (e.g., the number of fingers of a MOS transistor) of all
components, such that some function ¥ (W, H) of the whole circuit layout width,
W, and height, H, is minimized. Note that the placement is already established by
the layout template that is being used, so the only problem is finding out the appro-
priate values of the geometric parameters.

In solving this problem, we thus seek to find the width and height of the layout of
each circuit component and, correspondingly, the values of its GPs that minimize ¥.
An example of such a function is the total occupied area Y(W,H) = W - H.
Another interesting function is the relative amount of area loss with respect to the
total occupied area. This loss results from the fixed, prestored placement, and rout-
ing of components in template-based layouts [5]. The area loss figure gives an idea
of how further could the layout be compacted if other device placement is used in-
stead. This figure is computed as the ratio between the total area and the area that
is not used by any block and routing wire, and that is not used with the design rules
(e.g., n-well spacing). The minimization of the area loss figure in the optimization
process provides an additional way to improve the efficiency (in terms of area usage)
and the flexibility of template-based layout solutions.

In our approach, the slicing style has been used to specify the layout floor-
plan [35]. A slicing floorplan is obtained when the layout components are arranged
such that the layout area is recursively divided into horizontal and/or vertical slices.
In a slicing floorplan, a slice is a combination of two or more components, either
building blocks or further slices. Although nonslicing floorplans are a more gen-
eral representation that can describe all kinds of tile packing, slicing floorplans have
important advantages over nonslicing, namely:

e Placement can be more easily specified by the relative positions of the layout
tiles, since the hierarchy of slicing structures is better defined.

o It yields more compact layout instances.

e Italso allows evaluating other characteristics of the circuit layout, such as routing
more easily.

e [t eases geometrically constrained sizing.

In our work, we have used rooted binary trees to represent the hierarchical struc-
ture of the slices in a slicing floorplan. These trees, also known as slicing trees, have
nodes that can be classified as leaf nodes and nonleaf nodes. In the tree, there are
m nonleaf nodes and n = m + 1 leaf nodes. Each node corresponds to a block
component (each of one implementing one or more circuit devices) of the layout.
For instance, the slicing tree for the fully differential amplifier in Fig. 6.3 is shown
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Fig. 6.2 (a) Representation of the floorplan and (b) slicing tree for the circuit in Fig. 6.3 ([30],
(©IEEE 2008)

Table 6.2 Slicing tree and devices of the circuit in Fig. 6.3

Slice  Tile  Devices Geometric parameter (GP) Building block

1 A R, Rz_m (no. of fingers) Folded resistor
B M5, My, My, and My, m3 and m4 (no. of fingers) Cascode structure
C R, Rz_m (no. of fingers) Folded resistor

2 D Cq Xcc (horizontal dim.) Unit capacitor
E M, m14 (no. of fingers) Folded transistor
F M, M, m1 (no. of fingers) Differential pair
G M;s m14 (no. of fingers) Folded transistor
H Ce Xcc (horizontal dim.) Unit capacitor

3 I MM,y m6 (no. of fingers) Cascode structure

4 J Ms m5 (no. of fingers) Current mirror

My, M3 m12 (no. of fingers)

5 K Reun Rem_m (no. of fingers) Folded resistor
L Rewo Rem_m (no. of fingers) Folded resistor

6 M Ms, m5c (no. of fingers) Folded transistor
N M, m3c (no. of fingers) Folded transistor
0 M., M5, mlc (no. of fingers) Differential pair
P My, m3c (no. of fingers) Folded transistor

in Fig. 6.2. The floorplan in Fig. 6.2a has six slices with one to five horizontally
distributed components. The corresponding slicing tree (which in this case has min-
imal depth) is shown in Fig. 6.2b.

The correspondence between the leaf cells and the devices of the opamp is ex-
plained in Table 6.2. Note that each leaf node has several possible shapes and,
therefore, several possible values of the pair {width, height}. These pairs come from
varying one or more GP of the devices in the leaf node (see, for example, Table 6.2).



256 R. Castro-Lépez et al.

The collection of Pareto-optimal® pairs {width, height} for a leaf node forms its
shape function; from the shape function it is possible to retrieve the height value
that corresponds to a certain with value, and vice versa.

6.4.2 Proposed Approach

For AMS circuits, there are two different approaches to solve the floorplan-sizing
problem. Both of them start from a predefined floorplan, and, therefore, the relative
block placement is fixed. The first approach is based on the Stockmeyer’s algo-
rithm [36], widely cited in the digital arena. The second approach is based on the
formulation of the floorplan sizing as a linear programming problem and the appli-
cation of the simplex method to solve it. An implementation of this second approach
is reported in [25], already discussed in Sect. 6.2.

Reported applications of the Stockmeyer’s algorithm on analog or mixed-signal
design tackle floorplan sizing only after circuit sizing [4, 37]. Therefore, neither
layout optimization nor layout-induced parasitics are concurrently considered with
sizing, in contrast with the solutions presented in this chapter.

To solve the issues that previous approaches have, such as separate electrical and
floorplan sizing, the solution we present in this chapter pursues the following three
goals to be undertaken during the sizing process:

1. Minimize both the occupied area and the ratio of unused silicon area (i.e., the
area loss).

2. Attain a complete and detailed description of the layout geometry (with the
values of all geometric parameters) to evaluate correctly all layout-induced par-
asitics and to have an accurate measure of the area that the layout occupies.

3. Provide solutions featuring user-specified constraints on the geometry, such as
the aspect ratio or the maximum width and/or height of the layout.

A key component is the GC module, which performs the floorplan-sizing task
based on a modified Stockmeyer’s algorithm. This algorithm considers for each
component two pair of width—height values that comes from taking only two pos-
sible shapes of the component (the second one being the 90°-rotated version of
the first one). That is, the shape function of the component is formed by the pair
of values {(h,w), (w, h)}, with h and w being the height and width of the compo-
nent, respectively. Applying this algorithm to the floorplan sizing problem in analog
circuits means that each building block has a list of heights and widths coming
from different styles of implementation (e.g., common-centroid, interdigitized, etc.)
and/or the different values of its GPs (e.g., different number of fingers or strips).

4 A Pareto-optimal element is an element that has lower width and/or height than the rest of ele-
ments. That is, it is not possible to find any other element that has a lower value of both width and
height than the Pareto-optimal element.
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The GC module in Fig. 6.1 works in two phases. In the first phase, the bottom-up
phase, the slicing tree (see, for instance, Fig. 6.2b) is processed bottom-up, begin-
ning by associating a list with each leaf node of the tree (sorted according to the
rules h; > h;jyq and w; < w;41) that represents the building block shape function.
To do this, there is a database of generators that provide the shape function given
the type of leaf node (e.g., a folded transistor, an MOS differential pair, an MOS
cascode group, a current mirror group, a capacitor array, or a folded resistor), the
size(s) of the device(s) and the fabrication process. Note that the pcells and tem-
plates that are used to implement each type of leaf node were made such that they
reflect several choices from the electrical and geometrical point of view, with pa-
rameters that make them flexible enough to ensure device matching, shielding, and
reliability” [5].

Once every leaf node has been processed, the GC module combines them into
vertical, v, and horizontal, %, nonleaf nodes, according to the slicing tree that
has been defined for the circuit layout. For each nonleaf node, a list of s pairs,
{(h1,w1), ..., (hs,ws)}, is generated. This combination follows the rules of Stock-
meyer’s algorithm. The list of pairs is built with the following properties:

1.s < ]_[,L=(Vl) l;, where L(v) is the number of leaf nodes of the subtree rooted at v
and /; is the cardinality of the shape function of leaf node i.

2. Pair (h;,w;) is kept in the list unless there is another (h;,w;) that is strictly
better (lower) in the /& or w dimension (or both) and is not worse than (4;,w;) in
either dimension (remember that this is the definition of Pareto optimality).

3. Pairs are sorted according to the rules h; > h;+1 and wi < wiyq.

Additional information from the layout template (such as the physical separation
between slices) is provided to help composing the top-most shape function accu-
rately. By recursively applying the algorithm from bottom-up the slicing tree, the
first phase ends with the associated list or global shape function of the overall slic-
ing tree. As a side note, it is worth mentioning that the complexity of this shape
function algorithm is O(dir) with d being the depth of the slicing tree and /7 the
sum of the cardinalities of the shape functions of the leaf nodes in the slicing tree.

Once the global shape function is attained, any function ¥ (W, H) can be cal-
culated. Actually, the GC module’s main output is a matrix, called floorplan-sizing
matrix. The first two columns of this matrix are the width, W, and height, H, of
every point in the global shape function. The next columns account for several
W (W, H)-functions, such as the area and the aspect ratio. The area loss is calculated
as the difference between W x H (the occupied area) and the sum of all W; x H;
products (with i representing every leaf-node) plus the area required by the routing
wires. For the sake of illustration, Fig. 6.4a shows the shape function and the aspect
ratio of the opamp in Figs. 6.2 and 6.3, which in this case contains 3,000 points.

3 To prevent electromigration effects from taking place, wire width (for wires both within the block
and between blocks) is also a parameter here, which self-adapts to the current through the wire,
according to the layer’s maximum current density specified by the technology.
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Fig. 6.3 Opamp used to illustrate the concept of slicing floorplan ([30], ©IEEE 2008)

In the second phase (top-down shape propagation), all the points (i.e., rows in the
floorplan-sizing matrix) that do not meet the geometric goals defined by the user are
removed. The following geometric goals are considered:

1. Aspect ratio, AR= W/H, with an acceptable deviation Ag, such that the final
layout aspect ratio remains bounded (AR—Ax g < W/H < AR + Apg).
2. Maximum and/or minimum width and/or height values.

For instance, if the user-specified geometric goal is to attain an aspect ratio be-
tween 0.9 and 1.1, the solution with minimal area can be found from the shape
function in Fig. 6.4a and the zoomed-in view in Fig. 6.4b, which also shows the
area occupation for these solutions. The optimum solution corresponds to the point
in the shape function with lower area occupation, as indicated in Fig. 6.4b. In this
way, the row with minimal area is selected from the floorplan-sizing matrix. Next,
the slicing tree is traversed top-down to obtain the corresponding shape (width and
height) of each leaf node. From these, the values of their GPs® can be retrieved.

The description provided above is to show how the GC works for every circuit
that the optimization engine proposes to be evaluated by the simulator. Once a new
circuit is proposed by the optimization engine, and before simulation, the GC mod-
ule analyzes the sizing and returns the values of the geometric parameters that ensure
minimal layout area (that is, the evaluated design has minimal area when consider-
ing all layout realizations coming from the different values that each block’s GPs
can take), minimal area loss, and the specified geometric goals.

Area occupation is minimized at the template level by the GC module. But,
since a precise calculation of the area of the template instance is available right
after the application of the GC module at each iteration, area is also minimized by

® Note that other layout features such as device symmetries are not targeted by the GC module;
rather, these other layout aspects are embedded in the layout template itself.
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Fig. 6.4 (a) Example of global shape function for the analog cell in Fig. 6.3, and (b) area values
for each point of its shape function ([30], ©IEEE 2008)

including it in the formulation of the cost function, as defined in (6.3). In this way,
the evolution of the optimization algorithm will tend to minimize area, pretty much
in the same way that other design objectives, e.g., power consumption, are mini-
mized. The inclusion of area loss as an optional, complementary design objective
serves the purpose of getting layout realizations that are very compact. Area loss
can be also included as a general design objective in the electrical optimization-
based sizing process.

6.4.3 Experimental Results

Four different experiments, with different geometric goals but the same set of elec-
trical performance specifications and design objectives, have been carried out to
validate the proposed solution. The demonstration circuit used is the opamp of
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Fig. 6.3. The geometric parameters considered are the number of folds of transis-
tors and resistors, and the side length of the unit rectangular capacitor implementing
C¢1 and C,,. From a close inspection of Table 6.2 and the schematic of the opamp
in Figs. 6.2 and 6.3, the reader can notice that analog layout quality aspects, such
as symmetries in the signal path, were taken into account in the placement of the
layout template. The design variables for the set of experiments are the widths and
lengths of transistors My, M3, M5, Mg, Myo, Mi,, and M., the nominal value
and strip width of resistors R, and R;;, the nominal value of capacitor C,1, and
the value of the biasing current. The variation ranges of these optimization variables
define the design space to be explored. Constraints are also added in the optimiza-
tion process. These constraints are circuit-specific design knowledge that is used to
guide the search in the complex design space. An example of such a constraint is
the one imposed on the aspects of M3, and M4, for current sources M3 and My
to provide enough current for common-mode stabilization. The first two columns in
Table 6.3 show the electrical design specifications (constraints, as defined in (6.2))
for the four experiments. Table 6.4 shows the geometric constraints. In all four ex-
periments, the amplifier drives a resistive load of 50k€2 and a capacitive load of
5SpF. The design objectives that are defined for the set of experiments are the min-
imization of area, the minimization of power consumption, and the minimization
of area loss. The simulator used (see Fig. 6.1) is HSPICE™. The optimization re-
sults are shown in Tables 6.3—6.5. In all four experiments, all electrical performance
specifications are met, as shown in Table 6.3. Table 6.4 also shows the obtained val-
ues for the geometric goals of the resulting opamp layouts, and Table 6.5 lists the
attained design objectives. All geometric goals have been successfully addressed,
whereas minimization of layout area and power consumption have been carried out.

Table 6.3 Specified and obtained electrical performances in the GA-only experiments

Specification Goal Exp. #1 Exp. #2 Exp. #3 Exp. #4
DC gain (dB) >85 110.37 89.85 105.65 100.82
Unity-gain frequency (MHz) >50 65.79 50.64 75.95 50.37
Phase margin (deg) >50 57.26 71.78 52.93 68.94
CMEFB loop DC gain >85 114.0 92.39 108.79 111.04
CMEB loop UGF (MHz) >25 27.64 25.15 29.28 27.52
CMFB loop phase margin (deg)  >50 50.13 50.06 50.46 52.25
Output swing (V) >5.5 5.86 5.85 5.87 5.76
Slew-rate (V/s) >55 59.15 57.25 71.72 59.96

Table 6.4 Specified and obtained values of the geometric goals in the GA-only experiments

Aspect ratio Width (m) Height (pum)
Experiment  Constraint ~ Obtained Constraint  Obtained Constraint ~ Obtained
Exp. #1 [0.91,1.1] 1.00 - 165.7 - 165.85
Exp. #2 [1.95,2.05] 1.96 - 229.0 - 116.7
Exp. #3 - - <150 143.2 - 171.1

Exp. #4 - - <300 186.9 <150 138.1
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Table 6.5 Attained design objectives and achieved area loss in the GA-only experiments

Feature Goal Exp. #1 Exp. #2 Exp. #3 Exp. #4
Power (mW) Minimize 3.18 3.21 4.93 2.98
Area (umz) Minimize 27,481 26,724 24,502 25,811
Area loss (% of area) Minimize 1.94 3.06 0.93 0.57

165.85 um

Fig. 6.5 Resulting layouts from geometrically constrained sizing experiments ([30], ©IEEE
2008)

Table 6.6 Number of iterations and elapsed CPU time in the GA-only

experiments

Figure Exp. #1 Exp.#2  Exp. #3 Exp. #4
Number of iterations 1,708 5,778 6,462 4,824
CPU time (s) 409.92 1380.9 1563.8 1157.76

The physical implementation for each experiment is shown in Fig. 6.5. Finally,
Table 6.6 displays the elapsed CPU time’ and the number of iterations of each

experiment.

7 The experiments were performed on a Pentium IV at 1.3 GHz.
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6.5 Layout-Aware Sizing of AMS Circuits

6.5.1 Completing the Layout-Aware Sizing Methodology
with Parasitic Extraction

One important fact in analog design is that accurate estimates of layout-induced par-
asitics can be only obtained with all the information on the eventually implement
circuit layout, with complete information on the values of each and every one of the
geometric parameters. The GC module in Fig. 6.1 determines the value of geomet-
ric parameters prior to parasitic extraction. Such information is then processed to
estimate layout-induced parasitics. Afterward, the electrical description of the cir-
cuit is completed with the parasitic estimates and the overall performance is checked
against intended performance specifications, which requires evaluation of the circuit
performance.

Another important fact about parasitics is that many different extraction tech-
niques exist [24]. The tradeoffs that these techniques expose relate accuracy and
computation time. For MOS transistors, extraction can be done by using geometric
methods and analytical methods. Geometric methods directly measure diffusion ar-
eas and perimeters. Analytical methods require having drain and source areas and
perimeters as functions of the number of fingers, the exact implementation style,
and fabrication process data. For interconnects,® parasitics can be extracted by us-
ing numerical, A-G (analytical-geometrical), or table lookup methods. Numerical
methods try to solve the Laplace equation over the system of stratified layers. A-G
methods use analytical parameterized models’ for a number of commonly encoun-
tered interconnect configurations. Geometric methods are then used to obtain the
layout parameters directly from the layout geometries to evaluate each analytical
function and, thus, extract the capacitive parasitics. Lookup tables store the data
generated by numerical simulations or experimental measurements.

Regarding the accuracy-time tradeoff, numerical methods are slower (due to the
high computational resources demanded), but are accurate. Table lookup methods
can be reasonably accurate estimates with relatively low computation times, but the
data storage requirements grow very rapidly with the number and range of param-
eters describing a given interconnect configuration (that is, the higher the accuracy
required, the larger the data set required). On the other hand, A—G methods are
relatively fast and accurate.

Two approaches for parasitic estimation have been implemented in this layout-
aware approach. In the first one (approach A), parasitic extraction is done by using
geometric methods for transistors and 3-D A—G methods for interconnects and other

8 Resistive and capacitive devices, such as poly-silicon or well resistors and PIP or MIM capacitors,
can be treated as interconnect layers when extracting their related parasitics.

° The complexity of these models (and, thus, the accuracy of the parasitic extraction) usually refers
to the dimensionality of the spatial configuration of stratified layers, such as the 2-D model, 2.5-D
model, or the more complex 3-D model.
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devices, which are pretty much the same methods used by most commercial parasitic
extractors. The main objections with these extraction techniques is that, although the
parasitics obtained are very accurate, these techniques have usually been considered
to be slow to be included within an optimization loop [24,27], and that they may
yield long simulation times due to the presence of the large number of parasitics that
are extracted.

The second approach (approach B) to parasitic estimation relies on analytical
methods for the calculation of the MOS transistor diffusion areas and perimeters.
For every layout style implementation for single, stacked, or interdigitized tran-
sistors, a set of equations were developed following the approach in [38]. These
equations relate the diffusion area and perimeter of a transistor to its width, length,
number of fingers, layout style, and fabrication process. With the equations, it is
then possible to accurately compute diffusion capacitances for every transistor size.
Estimates for the routing parasitics in this second approach are obtained by follow-
ing a layout template sampling technique. Layout sampling has been reported in
the literature with different approaches and purposes [5,27,28]. In our approach, a
number of different instances of the circuit layout template are generated prior to
any circuit sizing. This generation is done by sampling each of the n layout param-
eters (i.e., circuit design variables and geometric parameters) with m data points.
The interconnect parasitics of each instance are extracted with a 3-D A-G extrac-
tion technique (with a commercial parasitic extractor), and stored in a lookup table.
This table, relating the sizing and geometric parameters to the values of the routing
parasitics,'” can then be used in the sizing process to retrieve the values of these par-
asitics. The main issue of this approach is that, while it allows a very fast evaluation
of critical parasitics, the number of design variables, being relatively large, makes
it very time-consuming to generate and store the m” possible instances and, also,
the for the lookup table may be exceedingly large. To ease this issue, two sampling
steps are applied. In the first one, a reduced number of instances (e.g., 100) is gen-
erated. Electrical simulation of these instances allows identifying and eliminating
noncritical parasitics (those with negligible impact on the electrical performances
of importance). For instance, the application of this technique to the fully differen-
tial operational amplifier in Fig. 6.6 provides the relevant parasitics shown in gray
in the same figure.

The second step performs a denser sampling of only the relevant layout pa-
rameters, i.e., those parameters that are associated with the parasitics with a more
significant impact on performance (this knowledge is obtained from the layout tem-
plate). For those layout parameters with a nonsignificant impact on the critical
parasitics identified in the previous step, a single sample is used. As a result of
these two steps, only N instances (with N « m™) are generated and extracted, and
for those N instances, only the critical parasitics are stored.

10Note that the generation of the lookup table must be performed only once for the circuit’s
template; the table remains valid for any sizing process applied to that circuit.
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Fig. 6.6 Case study for the validation of the layout-aware sizing technique ([30], ©IEEE 2008)

Table 6.7 Specified and obtained electrical performances in the parasitic-aware experiments

Specification Goal Exp. I Exp. II Exp. 11T

DC gain (dB) >110 110.0 (111.0)  113.0(113.0) 111.7
Unity-gain frequency (MHz) >90 91.8 (89.8) 105.7 (105.4) 106.6

Phase margin (deg) >65 67.6 (63.4) 65.4 (65.0) 66.2

Output swing (V) >5.25 5.3(5.3) 5.3(5.3) 5.4

Slew-rate (V/s) >40 46.9 (46.8) 57.2 (57.0) 56.7

Power (mW) Minimize 7.3 (7.3) 8.0 (8.0) 8.3

Area (um X jLm) Minimize 195.8 x 358.8 173.8 x 191.25 189.6 x 193.05
Aspect ratio ~ 1 0.55 0.91 0.98

6.5.2 Experimental Results of Layout-Aware Sizing

To illustrate the layout-aware sizing technique proposed, three sizing experiments
have been carried on the operational amplifier shown in Fig. 6.6, with performance
specifications listed in Table 6.7. These experiments are:

Experiment I. In this experiment, no geometry or parasitic-related information is

used. Global area minimization is pursued by minimizing the sum of the sizes
of all devices (e.g., the width-length product of a transistor). Since no geometry-
related aspect is used, no geometry goals (such as layout aspect ratio) can be

enforced.

asitic extraction following approach B explained above.

parasitic extraction following approach A explained above.

Experiment I1. This experiment considers both geometry and parasitics, with par-

Experiment I1I. This experiment considers both geometry and parasitics, with
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In all three experiments, the amplifier drives a 100-k€2 resistive load and an 8—pF
capacitive load. Table 6.7 shows the results of each experiment. For experiments I
and II, the performance characteristics obtained from electrical simulation of the
extracted layout using a commercial extractor are shown between parentheses. For
experiment III, the performances match since the extraction methods are the same.
Note that, although nominal performances (without including the impact of lay-
out parasitics) are all within specifications as shown in Table 6.7, some violations
of specifications may arise when actually including parasitics (see the nonfulfilled
phase margin and unity-gain frequency of experiment I). In these cases, additional
redesign iterations are certainly required.

The final layout instances of the three experiments are shown in Fig. 6.7.
Remarkably, when no geometry information is included, the layout implementa-
tions may end up with large empty areas and poor compaction, as it can be seen in
the layout solution of Experiment I (GPs in this experiment were set to their default
values).

Finally, Table 6.8 shows the number of iterations and the CPU times in the three
experiments. Note that the use of approach A for parasitic extraction (Experiment
IIT) requires approximately 15% more CPU time than when using the B approach
(layout instancing and extraction takes 17% of the total sizing time). The bene-
fit is that despite this increase in the CPU time all performance characteristics are

173.8 um 189.6 um

Experiment | Experiment Il Experiment lll

358.8 um

193.05 um

Fig. 6.7 Layout instances of experiments in Table VII ([30], ©IEEE 2008)

Table 6.8 Number of iterations and elapsed CPU
time for the parasitic-aware experiments

Figure Exp.1 Exp.II  Exp.III

Number of iterations 2116 2437 3044
CPU time (s) 507.8 612.31 880.3
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guaranteed to be within specifications. Therefore, these results demonstrate that, at
least for analog cells with a few tens of devices, the first approach for parasitic ex-
traction is also reasonably fast to be included within an iterative optimization loop.

6.6 Conclusions

A layout-aware sizing methodology for analog circuits has been described in this
chapter. This methodology minimizes the iterations between electrical and physical
design phases in traditional design methodologies.

This is a flexible solution because it uses simulation-based optimization ap-
proach, which can be applied to many different types of analog circuits. Moreover,
accurate evaluation of the circuit performance characteristics is guaranteed because
of the electrical simulator used in the optimization loop. The inclusion of parasitics
in the electrical sizing process ensures that the design solutions that are attained
will meet the required specifications. Also, area is realistically minimized, both at
the template level and at the global level, during circuit sizing because all layout-
related geometrical information is included in the optimization. Thanks to the use of
a floorplan-sizing algorithm, geometric goals (such as a certain layout aspect ratio)
can be used as well as design objectives in the optimization process.

Future work on this topic includes the extension of the layout-aware sizing
methodology to larger circuits by introducing hierarchical decomposition and
specification transmission. Also, the use of multiobjective optimization instead of
single-objective optimization (used in this chapter) can provide a way to relate
the trade-offs between electrical performance and the use and efficiency of the
layout template for the complete design space, which can help introducing layout
template selection depending on the region of the design space the exploration is
taking place.
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Chapter 7
Constraint-Driven Design Methodology:
A Path to Analog Design Automation

Goran Jerke, Jens Lienig, and Jan B. Freuer

Abstract Physical design for analog ICs has not been automated to the same degree
as digital IC design, but such automation can significantly improve the productivity
of circuit engineers. Analog design remains difficult to formalize due to a large
amount of expert knowledge involved, such as sophisticated constraints that are
specified manually and satisfied through manual layout. We therefore propose a
constraint-driven design methodology — a suite of algorithms and methodologies
to capture key rules governing analog layouts and to produce layouts that satisfy
these rules. In this chapter, we identify major challenges in analog physical design,
and relate them to constraints. We introduce techniques for constraint representation
and highlight the essential components of a constraint-driven design methodology.
Finally, we explain how constraint-driven design impacts a typical analog design
flow, layout algorithms, and the overall physical design methodology.

7.1 Introduction

While physical design automation of analog IC design has seen significant im-
provement in the past decade, it has not advanced at nearly the rate of its digital
counterpart. This shortfall is primarily rooted in the analog IC design problem it-
self, which is very complex even for small problem sizes [7, 16,23, 29].

The quality of a design result is generally determined by the degree to which
compliance constraints have been met and predefined design objectives achieved.
Due to the lack of uniform representation and interpretation of design constraints
in the analog design flow context, most of the constraints in today’s analog designs
are still specified and considered manually by expert designers (expert knowledge).
Furthermore, analog constraints are often used implicitly (i.e., based on a designer’s
experience) rather than being explicitly defined, which prevents their effective use
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Fig. 7.1 The evolution of analog physical design methodologies, such as schematic-driven layout
and constraint-driven design, towards the goal of a fully automated analog design flow

in design automation. However, progress in physical design automation for analog
ICs is urgently needed as design sizes increase, along with significant challenges,
such as increasingly stringent reliability and robustness requirements, and a rapidly
widening verification gap.

Analog circuits are currently designed interactively, in terms of schemat-
ics, which are subsequently verified. Most researchers agree that this so-called
schematic-driven layout (SDL) methodology will be replaced by analog design
automation in the future, more in line with current practices for digital circuits.
As we will show, constraint-driven IC design is both a necessary step toward full
automation and also a precondition for it (Fig.7.1).

The ultimate goal of fully automated analog design (analog design automa-
tion) can only be achieved if the schematic-driven design paradigm evolves into
a constraint-driven design paradigm. This is based on the belief that we first need
a methodology that allows for automatic inclusion of expert knowledge in the form
of constraints, which also must be verified automatically. Only then one is able to
tackle the task of analog layout synthesis in a comprehensive and consistent manner.
In other words, the abilities of “analyzing” and “verifying” are a precondition for
“synthesizing” [30].

This chapter provides an introduction to the concept of a constraint-driven
physical design approach for arbitrary ICs in general, and for analog ICs in par-
ticular. First, we identify key similarities and differences between the physical
design of analog and digital circuits, and the corresponding challenges, which
we show are primarily constraint-related (Sect.7.2). We discuss the constraint
representation and classification in Sect. 7.3 and give an overview of the constraint-
driven design flow and its essential components in Sect. 7.4. Here, we introduce
fundamental components required in this flow, such as constraint representation,
management, transformation, and verification. The application and resolution of
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constraints, through constraint engineering, is discussed in Sect.7.5. In Sect. 7.6,
we then present the impact this methodology has on the overall IC design flow,
the core design of design automation algorithms, and the required paradigm adjust-
ments needed for analog physical design approaches. The chapter concludes with
an anticipatory look at open problems (Sect. 7.7).

7.2 Problem Description

7.2.1 The Design Problem

In general, any (IC) design problem represents a complex and constrained optimiza-
tion problem. The degrees of design freedom linked to the optimization problem
span a multidimensional solution space, which is at least partially constrained by
the given global design constraints. A feasible solution for a specific design problem
is obtained by sequentially removing all degrees of design freedom while traversing
and reducing the solution space and considering all context-relevant constraints and
application profiles.

This reduction is done by sequentially transforming functional representations
with many degrees of design freedom into equivalent ones with fewer degrees of
design freedom. For example, using suitable methods one may transform a given
functional specification into a netlist!, which is subsequently transformed into a
floorplan, a placement order, a wired layout and finally into a physical mask layout?,
which contains no further degree of design freedom.

Several functional transformations (design steps) can be active at the same time
during analog IC design (Fig. 7.2). The strategy of how and when to remove a degree
of design freedom during the design phase depends on several specific factors in

100% A - 0%
g
33 =8
g & 93
o = Z N
Fig. 7.2 Simplified design & 5 £
flow for analog IC design 4] ~
where design steps are A
typically overlapping.
Multiple design steps are 0% - - 100%
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! Functional representation of the given specification.
2 Functional representation of the given netlist.
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the design context. Among others, these factors may include the type of IC applica-
tion, its usage profiles, reliability and robustness requirements as well as the current
problem situation in a design phase with its linked constraints (design context).

In general, design constraints must be fulfilled, whereas design objectives may
be fulfilled. A design objective that must be fulfilled hence represents a constraint,
and must be treated as such. Similarly, any given design constraint that may be
fulfilled should be considered as a design objective. The design goal is to achieve
design results that fulfill all given constraints and which offer the highest level of
achievement toward predefined design objectives.

7.2.2 Analog Vs. Digital Design Automation

Analog IC designs often contain only a small number of devices as compared to dig-
ital IC designs. Nevertheless, the effort required to design analog function modules
often matches or even exceeds the effort for digital modules. This is mainly due to
a much richer set of constraints that must be considered simultaneously (Sect. 7.3).

On average, each design object (instance, net, path, etc.) in an analog IC design
must comply with a larger and more extensive set of constraints to fulfill its intended
function (compared to digital design). The primary reason for this observation is the
higher level of functional abstraction offered in digital designs. This allows digital
designs to use fewer top-level constraints to guarantee a robust function.

Furthermore, the majority of constraints may yet be unknown when the analog
design process begins. This renders automatic top-level design planning for analog
IC designs nearly impossible. It is one of the reasons that highly skilled design
engineers are still required to perform top-level design planning manually.

This constraint-related problem also makes algorithm and tool development
for analog IC design much more difficult because the number of specific design
algorithms may increase with each new type of constraint. Considering today’s
conventional design-algorithm development approach (one type of constraint and
one algorithm to handle it), this approach falls short when it comes to linked con-
straints (Sect. 7.3). This represents one of the primary reasons why analog design
automation is lagging behind its digital counterpart and why this gap is currently
still growing.

Another important reason for the design gap is rooted in the level of com-
pleteness and consistency that can be applied to the consideration of constraints
during IC design. Today’s digital design tools already offer consistent and seam-
less design solutions. This is mainly due to their focus on a small set of various
types of constraints, such as delay and clock skew. A unified description of con-
straints is not used in today’s analog design tools and algorithms.> A common

31f not stated otherwise, the term “design algorithm” is subsequently used for both, design tools
and their built-in algorithms due to their close relationship.
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understanding of design implications due to constraints is not guaranteed with
existing approaches. Hence, many analog constraints must still be considered manu-
ally or semi-automatically leading to their often inconsistent and noncomprehensive
consideration.

Any inconsistent or noncomprehensive consideration of constraints widens the
existing constraint verification gap. This gap exists because the design rule check
(DRC) and the layout versus schematic check (LVS) do not include the verification
of all constraints. A tremendous amount of research effort has already been ex-
pended for the tailored consideration and verification of special types of constraints,
such as signal delay, device matching, and IR-drop. Nevertheless, a unified approach
capable of dealing with all constraints during the entire design and verification phase
is still missing.

Another difference between analog and digital IC designs is found in the way the
functional transformations, i.e., the design steps, are linked and carried out. While
most steps in digital IC design are separated from each other, the design steps of
analog ICs are typically overlapping, and hence, tightly linked due to the impact
of analog constraints (Fig. 7.2). For example, device generation, preplacement, and
global routing usually occur simultaneously during the floorplanning phase of ana-
log ICs. Analog design algorithms must thus consider various types of constraints
simultaneously. This greatly reduces the impact of specialized design algorithms
that handle only a small set of types of constraints.

To address the current shortcomings discussed in this section, a constraint-driven
design approach is required that considers constraints in a comprehensive and con-
sistent manner. Its cornerstones will be introduced in Sects. 7.4-7.6.

7.3 Constraint Classification and Representation

Constraints for IC design (hereafter, constraints) are classified by their complexity,
category, form, and type. The classification criteria are discussed in this section.

From a formal point of view, constraints define relations between values of design
variables (hereafter, variables). A relation between independent variables represents
a simple constraint. Relations between dependent variables are denoted as com-
plex constraints (Fig.7.3). Constraints for IC design are linked to design objects,
which represent data objects in the database of a design tool, such as cell, cellview,
instance, net, terminal.

In general, constraints belong to one of the following four categories:

e Technology constraints enable manufacturing for a specific technology node
(e.g., wire width, spacing, layer thickness).

e Functional (electrical) constraints ensure the intended IC functionality (e.g.,
maximum IR-drop between two net terminals, minimum gain, maximum offset
voltage).

o Design methodology (geometry) constraints reduce the overall complexity of
the design process. They also guide transformations, enforce a specific design
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Fig. 7.3 Four simple constraints (starShaped(N), netPin(N, P;), netPin(N, Py),
irDrop(Py, Py, V), and V <0.1V) form a complex constraint C, through a conjunction defined
in constraint logic programming (CLP) notation. The complex constraint C is satisfied if all four
simple constraints are satisfied. The simple constraints are tightly coupled through the design pa-
rameters N, P, P,, and V' that must be substituted (unified) to resolve C.

pattern, or describe a context to which other constraints are associated with (e.g.,
maximum design hierarchy depth, maximum number of devices in a cluster, pre-
defined layer for power-routing, bus width).

e Commercial constraints (e.g., maximum die area, number of layers).

A constraint is given in either an implicit or an explicit form. An implicit con-
straint is not clearly expressed and may be given as plain textual note or may
arise from assumptions intrinsically built into circuit descriptions or design algo-
rithms. Implicit constraints represent nonformalized design knowledge. Contrary
to implicit constraints, explicit constraints are clearly expressed and represent
formalized design knowledge. Examples of implicitly defined constraints are the
placement requirements of differential pair transistors — they must be placed sym-
metrically to maximize device matching. While this is obvious to any layout
designer, the inclusion of such complex rules into both layout and verification tools
is often not possible for applications that contain additional requirements, such
as parasitic interconnect matching. Hence, due to its nonformal nature, implicit
constraints cannot be utilized for any type of controlled and automated constraint-
driven design. On the other hand, explicitly defined constraints are accessible
to design algorithms and thus are a primary requirement for any constraint-driven
design flow.

Each constraint belongs to a specific constraint type that represents a classifi-
cation property for the same class of constraints. The type of a constraint always
corresponds to the type of the corresponding design variables. Constraint types have
a clearly defined physical, electrical, mechanical, mathematical, or geometrical unit
(e.g., the constraint type “IR-drop” has the unit Volt, the type “signal delay” the
unit Seconds). The relevance and impact of a constraint type strongly depend on the
specific design context.
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To formalize design constraints, all constraints and all related design variables
must be uniformly represented in an abstract form. The conversion of constraints
into a uniform representation must be complete and unambiguous. A uniform rep-
resentation enforces a common understanding of constraints among all involved
design algorithms. Hence, it is a primary requirement for addressing the analog
(constraint) design problem [11, 26]. Constraint logic programming (CLP) [8, 19]
embodies a feasible approach for uniform constraint representations. In CLP, con-
straints are defined in the body of conditions (clauses) (Fig.7.3). All constraint
examples discussed in this chapter are based on the CLP notation.

Assume an IR-drop constraint Vg (P;, P2) < 0.1V stating that the IR-drop be-
tween two layout pins P; and P, must be less than 0.1 V. This functional constraint
is simple since it is completely independent from any other constraint. If this ex-
ample is transferred to a more formal representation, such as CLP, the IR-drop
constraint must be written as a relation between design parameters. A possible
representation is the relation irDropLessThan(P;, P»,0.1). However, this ap-
proach is very restrictive. For example, neither equality nor any other inequality
can be expressed. To obtain a more general representation, it is advisable to split
this constraint into a conjunction of a functional and an arithmetic constraint
irDrop(Py, P2, V) AV < 0.1 with V representing the actual IR-drop between
pins P; and P5.

The IR-drop between two net pins P; and P, is usually considered within a
specific design context, in our case the net N, which owns both pins. This introduces
two structural constraints netPin(N, P;) and netPin(N, P,). In addition, if the
IR-drop needs to be considered only for nets with, for instance, a star-shaped layout
topology, another structural constraint starShaped(N ) must be added. Figure 7.3
depicts the conjunction of these constraints that form the complex constraint C..
The coupling of the simple constraints is obtained via substitution (unification) of
the design variables N, P, P, and V (Sect.7.5.1).

7.4 Components of a Constraint-Driven Design Flow

A design flow that considers all relevant constraints in a consistent and compre-
hensive manner is subsequently denoted as constraint-driven design flow. This flow
requires several complementary design flow components that are shown in Fig. 7.4.

Constraint management provides the management of constraint data and the
assignment of constraints to design objects (Sect.7.4.1). To obtain design results
meeting their specification, constraints are derived from design objectives (con-
straint derivation, Sect.7.4.2). Constraints are transformed between the physical,
electrical, or geometrical domain to be suitable for design algorithms in a particu-
lar design context (constraint transformation, Sect. 7.4.3). The constraint sensitivity
analysis (CSA) determines the sensitivity of a design parameter with respect to re-
lated constraints. The CSA finds the most constraint-sensitive design parameters
in a particular design context. Constraint sensitivity information can then be used
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Fig. 7.4 Essential components of a constraint-driven design flow

to guide the design generation (Sect. 7.4.4). Finally, despite the use of a constraint-
driven layout generation, the compliance of a design result with its given constraints
must be verified using constraint verification (Sect. 7.4.5).

7.4.1 Constraint Management

The task of constraint management is to administer the storage of constraint data
while synchronizing the link between constraints and design objects. The manage-
ment system must also guarantee the semantic integrity of the constraints across
different levels of abstraction, and support hierarchical relations between design ob-
jects and dependencies [6,22]. In addition, it is responsible for keeping constraints
consistent and valid, which requires close interaction with design databases as well
as with constraint and design data manipulating design algorithms. Furthermore,
constraint-driven design algorithms require fast access to constraint information
through (standardized) application programming interfaces.

The detection of over-constraints is an important subcomponent of a constraint
management system. It is made available by the constraint verification (Sect. 7.4.5).
Over-constraints represent a condition in which not all given constraints can be
fulfilled simultaneously. The related formal mathematical problem is denoted
as constraint satisfaction problem (CSP). Over-constraints must be resolved by
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Fig. 7.5 Assignment of constraints to design objects in a design hierarchy tree. In this example,
T represents a top cell incorporating several cellview instances /1—1513

constraint satisfaction methods, such as constraint propagation, constraint relaxation
or backtracking, to obtain feasible design results [20]. The use of constraint weights
as a decision criterion to resolve over-constraint conflicts is a common approach.
However, this method is likely to become unsuitable if the number of constraints
increases since many constraints may have equal or similar weights, thus making
them unusable as decision criteria.

Constraint management also incorporates the assignment of constraints to design
objects (a) in the existing design hierarchy, (b) across the extent of design objects
and design steps, as well as (c) within a design hierarchy that is defined by design ob-
jects and linked constraints (virtual design hierarchy). The use of these assignment
options strongly depends on the specific constraint. Furthermore, constraint assign-
ment is either permanent or temporary depending on the particular design context.

The assignment of constraints within a hierarchical design can be either per-
formed top-down, bottom-up, or combined top-down-bottom-up (Fig.7.5). For
instance, a net shielding constraint may be assigned from the I/O pad in the top cell
down to a specific instance terminal in a subcell (top-down assignment). The shield-
ing constraint is then assigned to all connected net objects in the design hierarchy.

The assignment can also be performed across the extent of design objects, such
as instances. Using the previous example, cellview instances (e.g., metal resistors)
must be skipped if the net shielding constraint is to be assigned to all nets that are
physically connected on the chip mask. The net shielding constraint is then also
hierarchically assigned to all subnets that would connect to the main net if the metal
resistors were shorted.

In case the I/O pad is located in a subcell, then the shielding constraint must be
assigned to all connected lower level nets as well as to all higher level nets that
are connected to the I/O pad cell’s instances (top-down and bottom-up assignment).
Here, net shielding constraints are assigned within a virtual design hierarchy that is
defined by the I/O pads’ location in the design hierarchy tree and the hierarchical
connectivity of the nets to be shielded.

During top-down assignment of a single constraint, only one constraint is as-
signed to each related design object in the cellviews that are traversed in the design
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hierarchy tree. In contrast, the bottom-up assignment allocates as many constraints
in the design hierarchy tree as instances of that cellview exist in the flattened design
hierarchy, making it computationally more expensive.

7.4.2 Constraint Derivation

The process of deriving constraints from design objectives is denoted as constraint
derivation or constraint generation. Design objectives are given as specification
goals or requirements that must be met, but they can also arise from a local design
context.

Design objectives are translated into constraints using (a) derivation rules, (b) de-
duction processes based on logic calculus, or (c) the designer’s expert knowledge.
The first two derivation methods can be applied with a high degree of automation
in case the IC specification is given in a computer-processable form, such as an
executable specification. The derivation process creates constraints belonging to
the technology, functional, design methodology, or commercial constraint category
(Sect.7.3).

The rule-based derivation of constraints utilizes a fixed rule to transform a design
objective into a set of constraints while considering the particular design context.
The constraint transformation discussed in Sect. 7.4.3 is a form of indirect constraint
derivation since it creates lower level constraints that depend on higher level con-
straints.

Deduction-based constraint derivation can be seen as a high-level extension of
rule-based derivation methods. Here, a logic reasoning system draws conclusions
from design and constraint data and then applies a set of constraint derivation rules
to relevant design objects. For example, based on a logical conclusion that MOS
and bipolar transistors both belong to the same category of devices “transistor”, a
specific constraint rule may be applied to both MOS and bipolar transistors, even
in the case where the derivation rule was only defined for one transistor type. This
functionality permits the development of high-level constraint derivation methods
and offers an important level of abstraction required for the reuse of analog blocks.

Expert knowledge is still often required to translate critical design objectives into
constraints. This is especially the case for global design objectives that would result
in various sets of complex constraints and cannot be easily resolved by automatic
rule-based approaches. Unfortunately, the expert knowledge only exists in an un-
structured and nonformalized form. Nevertheless, making expert knowledge more
accessible represents a good starting point for further analog design automation.

7.4.3 Constraint Transformation

Constraint transformation translates higher level constraints into a set of equiva-
lent lower level constraints and vice versa (inverse constraint transformation) using
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transformation rules [21]. Multiple transformation rules may apply for a specific
higher level constraint resulting in different sets of lower level constraints. The
choice of an appropriate transformation rule inherently constrains the solution
space, thus reducing the number of global degrees of design freedom.

The choice of a transformation rule depends on the particular design problem and
design context. Any transformation process must ensure a complete and unambigu-
ous transformation result. The same applies to the inverse constraint transformation,
which must be defined for constraint verification purposes (Sect. 7.4.5).

The transformation of constraints is based on a particular transformation model,
which is translated into a set of transformation rules. Transformation rules for sim-
ple constraints are represented by independent equations. They contain the involved
design variables in the higher transformation level and the variables in the lower
level. Transformation rules for complex constraints are represented by a set of cou-
pled equations containing all coupled design variables.

The relation of subconstraints specific to each complex constraint type is not
affected by the transformation since the transformation of simple constraints only
focuses on their specific context. This statement is made here since it is assumed
that any transformation will only produce lower level constraints that do not affect
higher level constraints. In the case where lower level constraints affect higher level
constraints, design iterations are very likely to occur (i.e., the design steps must be
reversed and redone with another design strategy).

In general, more than one transformation rule may exist for a particular type of
constraint. The decision which transformation rule to use is specific to the design
context, the design algorithm, and the applied design strategy. For example, sup-
pose the functional specification of a circuit results in a specific maximum IR-drop
between an I/O pad and a specific instance terminal in a subcell. Assuming that
the current flow in the interconnect is known, the transformation of the IR-drop
constraint may result in constraints for I/O pad and subcell placement and a corre-
sponding set of routing constraints. A constraint-driven design algorithm can then
decide whether the placement in this context is more critical to deal with than the
routing and act accordingly (see also Sect.7.4.4). For instance, in case the place-
ment is fixed, the final transformation of the given IR-drop constraint would then
yield a set of routing constraints and local degrees of design freedom (i.e., routing
design parameters, such as wire length, layer, wire width). These can then be used
by a routing algorithm to find a suitable interconnect layout.

7.4.4 Constraint Sensitivity Analysis

Constraint sensitivity analysis (CSA) determines the context-specific sensitivity of
numerical design parameters with respect to related constraints. The CSA consists
of two modules: a module that determines sensitivity of design parameters with
respect to output parameters and a module that determines the relative distance of
a design parameter value to its related constraints. Both modules provide valuable
information that can be utilized by designers and by design algorithms.
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The sensitivity analysis is based on a mathematical model, which describes the
physical, electrical, or geometrical nature of a particular design subproblem. The
model represents an equation system that contains all relevant design parameters
and output parameters. Several approaches are reported to determine the sensitivity
of design parameters. Among these approaches, local methods based on the partial
derivatives of the model output parameter and statistical methods based on sam-
pling, Bayesian and Monte Carlo methods are the most important ones [4, 18].

Considering a set of constraints x; < x < x, the relative distance d of design pa-
rameter value x to a lower constraint boundary x; and an upper constraint boundary
Xy 1s determined as follows:

di(x) =exp(xy—x) —1 and dy(x) =exp(x — xy) — 1. (7.1)

The parameter value x matches with the lower bound constraint value if the relative
distance d; = 0. A constraint violation is detected in (7.1) if d; > 0 while no
violation occurs if di < 0. The same applies to d,, while considering the upper
bound constraint value.

Design decisions can be made by design algorithms based on the sensitivity infor-
mation of parameters, the relative distance of parameter values to related constraints
and a given design strategy. Design algorithms may use that information in several
ways. Depending on the design strategy, a design algorithm may point its focus to
the fixation of design parameters with a high sensitivity toward an important output
parameter or it may focus on low sensitivity parameters. The information about the
parameter distance lets the design algorithm recognize the severity of constraint vi-
olations. For example, design parameters violating related constraints may then be
considered with a higher priority.

It is also of interest for a design algorithm to know which design subproblems
are independent from each other. A low sensitivity of design parameters toward a
common output parameter means that they are weakly coupled with respect to that
output parameter. The sensitivity analysis can be used as a method to identify local
design task parallelism by searching for groups of design parameters and constraints
that are either not or only weakly coupled. They can be dynamically partitioned into
independent groups for which the next design step can then be performed indepen-
dently from each other.

An example of a CSA application is given in Fig.7.6. Here, a constraint sen-
sitivity analysis is applied while routing a wire closely located to a heat source
(e.g., a power transistor). Given an IR-drop constraint Vig < ViR—max, a design de-
cision has to be made whether to move the wire away from the heat source, thus
varying the interconnect temperature 7', or to fix the wire width w. The design
parameters and the constraint in Fig.7.6 are denoted as follows: wire width w,
length [, thickness d, reference temperature Tif, IR-drop constraint Vig < Vir—max»
VR =1 —pﬁ -(1 + TKy - (T — Tet)), DC current i. A constraint violation is likely
in case T is varied while w &~ wy, whereas it becomes less likely in case w > wj.
To avoid an IR-drop constraint violation, the modification of the design parameter
w is the primary choice if w &~ w; due to its high local sensitivity related to the
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Fig. 7.6 A constraint sensitivity analysis is applied to parameters of a wire segment that is closely
located to an on-chip heat source. A constraint violation is likely in case the interconnect temper-
ature 7 is varied (by moving the wire’s location) and a wire width w with w &~ w), whereas it
becomes less likely in case w > w;. To avoid an IR-drop constraint violation, the modification of
w is the primary choice if w & w due to its high sensitivity toward Vig while w loses its sensitivity
for w 3> wy. (See text for parameter denominations and further explanation.)

output parameter Vg while w loses its impact for w >> w;. If CSA is used as a filter
to find all sensitive design parameters, then w is only required to be considered if
w <L wa.

The CSA allows designers to study the impact of local design decisions and to
trace root causes in case compliance requirements cannot be met by the given set
of constraints. Sensitivity analysis is the key to the power of decision analysis in
situations where the influence of design parameters is not known precisely, since
it considers the design context in which constraints apply. As is obvious from this
explanation, the availability and application of the CSA allows new approaches for
algorithm development and analog design automation.

7.4.5 Constraint Verification

Constraint verification comprises the verification (a) whether a set of constraints is
fulfilled for a particular design result and (b) whether a given set of constraints raises
mutual conflicts (over-constraint, Fig. 7.7). Constraint verification represents a key
component of the constraint-driven design flow. This is due to its formidable contri-
bution to reduce the verification gap discussed in Sect. 7.2.2. Constraint verification
ensures correct application functionality, and it is essential to improve design
quality, reliability, and robustness. Commercially available constraint verification
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Fig. 7.7 Constraints illustrated in a two-net topology. A DC current i is present in both wires
leading to a static IR-drop voltage Vig. While the set of constraints in (a) is feasible, the two
constraints in (b) are mutual conflicting (over-constraint). Here, a smaller IR-drop within one of
two wires cannot be achieved if this wire is not allowed to be wider than the other one

tools with yet limited verification capabilities currently comprise Mentor Graphics
Calibre® PERC [24] and the constraint verification engine integrated into Cadence
Virtuoso®) IC 6.1 [5].

As mentioned earlier, a rich set of constraints must be considered during the
design of analog ICs. A significant fraction of these constraints are complex con-
straints, whose fulfillment cannot be verified with conventional verification ap-
proaches. This is due to the fact that all of today’s verification approaches require
one specific verification algorithm for each type of constraint. Clearly, conventional
constraint one-to-one verification approaches (one verification algorithm for one
type of constraint) are not feasible for the complete verification of analog IC designs.
Making matters worse, many constraints (and constraint types) are still unknown at
the beginning of the design process.

An approach to address the verification problem for complex constraints, the
“meta-verification approach”, was introduced in [11] and is discussed in more detail
in Sect.7.5.2. The core idea of meta-verification is that each complex verification
problem can be subsequently resolved into smaller and usually independent ver-
ification subproblems. These subproblems can then be addressed using existing
verification algorithms. The meta-verification references functionality accessible
from external tools (e.g., design data access or specialized verification functions
offered by a particular tool) to perform verification tasks. The meta-verification
framework creates an abstraction layer around multiple design and verification tools,
and it manages correct execution of the defined meta-verification tasks.

The CLP-based verification approach in [11] is capable to address independent as
well as coupled, i.e., dependent verification problems. It also allows the detection of
mutual constraint conflicts (over-constraints) by drawing logical conclusions from
the given constraint and design data information. The approach is described in more
detail in Sect. 7.5.
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The definition of verification tasks for a meta-verification system to check
constraint compliance is generally done as follows. First, the constraint verifica-
tion task is defined and formalized. The formal description of a verification problem
is then translated into a set of constraint verification rules. Finally, the verification
rules are used by circuit and layout designers to perform constraint verification tasks.
The application of these rules may depend on the design context of the particular
constraint verification problem.

Significant effort must be taken by PDK developers and designers to develop,
optimize, and verify the set of rules for constraint derivation, transformation, and
verification. The sequence in which subverification tasks are processed has a signif-
icant impact on the required overall time for constraint verification. For example,
suppose there are short-running and long-running subverification tasks defined in
a specific CLP-based meta-verification rule. If feasible for a particular verification
task, it is beneficial to shift all long-running subverification tasks to the end of that
rule in order to execute them later than the short-running subverification tasks. Sub-
verification tasks are not executed if a previous subverification task of a rule already
revealed constraint violations. This approach will effectively prevent unnecessary
and potentially long-running subverification tasks from being executed. As obvi-
ous, verification rule development and optimization requires a deep understanding
of the underlying verification task.

Practical application of the meta-verification approach has revealed that the re-
quired initial effort is comparable to the effort needed for the development of DRC
and LVS rule sets [11]. The reuse of rules for constraint derivation and meta-
verification is simple and efficient since, in general, data and rule abstraction can
be used for technology, design, and constraint data (Sect. 7.5).

Constraint verification is divided into static and dynamic constraint verification,
based on the constancy of the constraint and design data. The corresponding con-
straint satisfaction problems (CSP) which are to be solved are denoted as static CSP
and dynamic CSP [15]. For example, any sign-off verification of an IC design must
be based on constant design and constraint data, hence, static constraint verification
is applied in this case. Nevertheless, constraint-driven design algorithms can also
use constraint verification for specific “what—if” analyses. Since these algorithms
can change design and constraint data during their analyses and during the design
step, the related constraint verification is based on dynamic data. Hence, the latter
case represents dynamic constraint verification. Both, static and dynamic constraint
verification can be applied either to the full set of constraint and design data, or to a
design-context specific subset.

The required overhead for static constraint verification is typically significantly
smaller compared to dynamic constraint verification. The additional overhead in
the latter case is primarily caused by a cumulative data latency effect that occurs
if design and constraint data are frequently accessed by design algorithms and/or
the verification framework. Hence, low-latency access to design and constraint data
will significantly speed up dynamic constraint verification. For static constraint ver-
ification, design and constraint databases are usually accessed only once during
initialization, thus mostly avoiding data access latency issues.
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7.5 Constraint Engineering

The application and handling of constraints during the IC design process is denoted
as constraint engineering. In this section, we first provide a brief overview of
computational approaches to address the constraint resolution problem (constraint
programming). We then introduce the constraint engineering system (CES), which
represents a framework that combines several constraint programming approaches
in a single software framework. This framework integrates the previously discussed
design flow components into a unified design environment, which facilitates the
inter-operability between these components. It also increases the ability to perform
design tasks on a higher level of abstraction, thus enabling new possibilities for
analog design automation.

7.5.1 Constraint Programming

Constraint programming represents a programming paradigm where relations be-
tween (design) variables are stated in the form of constraints. These relations form
a constraint satisfaction problem, which is resolved by constraint solvers.

The resolution of constraints usually occurs when multiple constraints are sim-
plified or when the existence of one or more constraints leads to new (lower level)
constraints. The constraint engineering uses specialized constraint solvers to handle
all aspects of the constraint handling. The specialization is required since the han-
dling strongly depends on the domain (or type) of the constraints. For example, a
boolean constraint must be handled differently than a constraint that is defined over
real numbers. The solving of arithmetic constraints, for instance, highly depends on
the constraint complexity, such as linear or polynomial. Different constraint-solving
approaches exist that are tailored to address various constraint satisfaction problems
[3,31].

As mentioned before, the formal constraint representation is a key requirement
for a constraint-driven design flow. A formalism is required to describe the inter-
action of constraints, which are mainly the constraint derivation (Sect. 7.4.2) and
constraint transformation (Sect. 7.4.3).

There are many approaches where constraints have been integrated into tra-
ditional programming languages [1, 10, 17,27]. Due to the stateless character of
constraints, the family of constraint logic programming (CLP) languages [8,9,32] is
the natural choice for the formalization of constraints. The declarative logic calculus
approach in CLP has also the advantage that only the problem has to be formalized
but not its solution. Compared to other constraint programming approaches, the ap-
plication of CLP significantly reduces the effort needed to provide the required rules
for constraint derivation, transformation, and verification. Therefore, the core of the
constraint engineering system discussed in the next section is based on a logic cal-
culus engine (Fig. 7.8).
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Fig. 7.8 Architecture and data flow of the constraint engineering system (CES). The tool integra-
tion kits (TIK) transform tool-specific data into the CLP language and vice versa

With the introduction of constraint handling rules (CHR) in 1991 [12], it became
very easy to define new constraint solvers that are perfectly tailored to a specific
constraint problem. Via CHR, new constraint solvers can be defined through two dif-
ferent kinds of handling rules. The propagation rule creates one or more constraints
from a given set of constraints. Assume for instance the less-equal constraint “<”.
If there already exist two constraints A < B and B < C, a suitable propagation
rule would derive the constraint A < C. The second rule represents a simplification
rule that removes one or more constraints from a given constraint set. Regarding the
previous example, assume that there are two constraints A < 5and A < 7. The sim-
plification would remove A < 7 since it is overridden by A < 5. Due to efficiency
reasons, there is usually also a third rule in CHR, the “simpagation”. It combines
simplification and propagation within a single rule.
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7.5.2 The Constraint Engineering System

The application of constraint engineering is an important step toward a constraint-
driven design flow. A flexible software architecture is required to integrate the new
design flow components introduced in Sect. 7.4. Our approach of such an architec-
ture will be subsequently denoted as constraint engineering system (CES), whose
structure is depicted in Fig. 7.8 [11].

The CES is designed to act as a middleware between various design tools that
offer an accessible application programming interface. The CES core engine is ca-
pable of making logical decisions based on multiple knowledge bases, which are
provided from various external sources.

As shown in Fig. 7.8, the CES is based on a plug-in architecture that allows the
flexible extension of its functionality. An extension point of the CES regards the
access to all design tools that are accessible within the existing design flow. A trans-
lation layer, denoted as Tool Integration Kit (TIK), transforms the tool-specific data
into logic calculus knowledge using CLP language so that it can be accessed by
meta-verification. Vice versa, the TIK also provides the functionality of transferring
data from the meta-layer back to the connected design tool. This allows the back-
annotation of constraints that were processed in the CES to an external design tool.
A TIK also enables a high-level access to the functionality of a design tool, which
can then be utilized by particular design algorithms or the constraint verification.
For example, a schematic entry editor provides access to netlist (design) data, and
a DRC tool provides the functionalities to merge polygons and to measure the dis-
tance between the edges of two layout polygons. Since every external tool is very
unique in its functionality and the design data it processes, a specific TIK is required
for each connected design tool.

Another extension point of the CES regards its internal handling of constraints.
The CES enables the integration of arbitrary constraint solvers that are directly
connected to its CLP core. The standard solver currently considers linear arith-
metic constraints and nonlinear constraints that can be subsequently reduced to
linear constraints. This solver is very efficient due to the use of the simplex
algorithm.

In addition, the meta-verification rule developer can define new constraint solvers
via CHR. The flexibility of CHR allows the definition of reusable solvers that are
highly tailored to a specific constraint satisfaction problem. If neither the extended
linear constraint solver nor the definition of new solvers via CHR leads to a suitable
solution, new constraint solvers can be added via this extension point to the CES
core. It is, for instance, expected that the resolution of polynomial and statistical
constraints within CHR would not lead to constraint solvers that are efficient enough
to handle complex constraint problems of that domains. Hence, specific solver could
be added that resolve these constraint problems more efficiently.

Constraint compliance is the main matter of interest in a CES application. As
previously mentioned, meta-verification ensures that all complex constraints are
fulfilled by the design result. The definition of meta-verification rules within the
CES is simple. Figure 7.3, where several simple constraints form a complex con-
straint, can be used as an example.
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It is advisable for the demonstration to slightly modify the complex constraint
C. in Fig.7.3, so that all star-shaped nets within an IC design can be reported
whose IR-drop between two pins is greater than a maximal allowed IR-drop Vir-max-
The following CES meta-verification rule depicts the definition of such a deduction
using CLP:

starShapedIRDrop (P1, P2, V, Virmax) :-
starShaped(N), netPin(N, P1l), netPin(N, P2),
irDrop (P1l, P2, V), V > Virmax.

The predicate starShapedIRDrop (P1,P2,V,Virmax) encapsulates C,
so that it can be reused for other verification purposes. To obtain all pins of star-
shaped nets that do not meet the criterion Vg < 0.1V, the following query is to be
submitted to the CES:

starShapedIRDrop (P1, P2, V, 0.1).

With that query, the CLP core tries to find suitable bindings for the unbound
variables P1, P2, and V. If a solution is found, the CES reports a tuple consisting
of two pins and the actual IR-drop between these pins. The search can be contin-
ued until all solutions, i.e., star-shaped nets violating the IR-drop constraint, are
found.

The example of the complex constraint C. in Fig.7.3 demonstrates the appli-
cation of constraints that originate from different external sources. The simple
constraint C4 instruments an external tool that is capable of computing the IR-drop
between two given pins in a net layout. From the verification point of view, Cy4 is a
standard relation like the other constraints of this example. The CES then forwards
the calculation of the IR-drop to an external IR-drop calculation tool. The transfor-
mation of parameters and the evaluation are performed by the TIK of this tool. The
same applies to all other constraints with the difference that Cy, C,, and C3 origi-
nate from a layout editor tool. Finally, the constraint Cs is evaluated by the build-in
arithmetic constraint solver.

Regarding the constraint sensitivity analysis example illustrated in Fig. 7.6, the
sensitivity of the wire width w and the temperature 7' can be determined with the
CLP example below. To enable the CSA, the sensitivity variables need to be limited.
The temperature 7" in this example should range from 218 to 448K and the wire
width w from 0.18 to 2.0 wm. These ranges are added as additional constraints to
the temporary constraint list.

{T>=218, T<=448, W>=0.18e-6, W<=2e-6}
@ csa(v, [W,T], [SW,ST]) .

The csa predicate performs the actual sensitivity analysis. The first argument
denotes the target function represented by the variable V (= Vjr), the second a list
of variables for which the sensitivity has to be determined (W =wand T = T), and
the last argument the resulting list of normalized sensitivity coefficients.

The CES provides a graphical user interface that simplifies the practical work
with meta-verifications. The graphical user interface provides a uniform access to
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Fig. 7.9 The tabular result of the IR-drop constraint verification applied to an IC design. The
shown star-shaped nets contain pin-to-pin connections having an IR-drop Vg > 0.1V

all meta-verification runsets that are associated with an IC design. Queries can be
task-centric chosen and executed by a designer from the user interface. This releases
the designer from the burden to manually specify verification queries. Figure 7.9
depicts the result of the previously described starShapedIRDrop query that has
been applied to an IC design.

Constraint transformation, assignment, and derivation can be directly obtained
by providing assignment and transformation rules using CLP and CHR. The CES
regards the reuse aspect such that these rules can be applied to multiple IC designs.
The CES also supports multiple process technologies by providing specific technol-
ogy properties as well as an abstraction of technology properties.

7.6 Impact Analysis

In this section, we discuss the impact of an automated constraint-driven approach on
the overall IC design flow, the core design of algorithms used for design automation
and the required paradigm adjustments for analog physical design.
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7.6.1 Impact on Design Flow

A holistic approach to analog design automation requires several new design flow
components to enable an automated constraint-driven IC design. The components of
the constraint-driven design flow, such as constraint management, derivation, trans-
formation, constraint sensitivity analysis and verification have been introduced in
Sect. 7.4. Hereafter, they will be denoted as “new design flow components” whose
impact on the analog IC design flow will be discussed in this section.

The new design flow components complement the existing analog IC design
flow. They must be perpetually available during all design stages to allow a compre-
hensive derivation, application and verification of constraints throughout the entire
design process (Fig. 7.4). Any breach of the constraint application can lead to incon-
sistent design and constraint data, and hence, to a reduction of constraint verification
coverage and an inconclusive verification result. The persistent use of automatic
constraint verification offers greater verification coverage and reproducibility than
manual verification.

All utilized design tools must fully understand the syntax and semantics of the
used constraint representation. If different constraint representations exist within
the design flow, then constraints must be converted between design tools that are
mutually linked by a particular design task (e.g., conversion of device placement
constraints within a layout editor to be used by a connected external third-party
layout compaction tool). Furthermore, linked tools must support all constraint types
that are relevant within a particular design context.

Constraint verification complements existing verification methods (e.g., DRC
and LVS) required for sign-off in order to guarantee the intended circuit function-
ality. The achievable verification coverage depends on the traits and capabilities
of the constraint verification framework as well as on the set of verification rules
(Sect.7.4.1). The chance of design iterations may increase if constraint verification
is applied consistently due to better verification coverage. A back-annotation of con-
straints and verification results is required in order to minimize these iterations by
addressing only relevant violations.

The constraint management system must guarantee low-level constraint data con-
sistency by keeping each constraint and its referencing design object synchronized.
Additionally, the high-level constraint data consistency, i.e., the maintenance of de-
sign data and constraint data as single data entity on file and cellview level, must be
guaranteed by design guidelines and design data management systems.

7.6.2 Impact on Design Methods

Several challenges have to be addressed for a successful practical application of
constraint-driven design. Among others, these challenges comprise new responsi-
bilities for designers and the way how designers communicate with each other. The
impact of these challenges is strongly dependent on the structure of the design team
and the IC applications to be designed.
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Several challenges arise from the change of design responsibilities since design-
ers must now provide all necessary constraint information in a formalized fashion.
This may lead to additional and possibly error-prone design work, whose effort must
be considered in the project schedule.

As demonstrated in Fig. 7.2, the analog IC design flow exhibits overlapping de-
sign steps to account for concurrent design problems. This is partially addressed
by assigning constraints and using them in subsequent design steps. Here, the key
question is to clarify which constraints are to be defined at which design step. This
question can be answered with good confidence for constraints having an immedi-
ate impact in the next design step. Unfortunately, it cannot be easily answered for
constraints either having a continuous impact or only having an impact on remote
design steps. Here, designers must currently rely on their expert knowledge while
future research should address this problem.

The assignment of constraints also has an impact on the partitioning of now sepa-
rated design tasks with many positive but also negative effects. While the availability
of complete constraint information may now allow the use of fully constraint-
driven design tools, there is also an increasing chance of over-constraining. An
over-constraining done in a previous design step may aggravate or even prevent an
optimization in a later design step. After performing a root cause analysis to iden-
tify that cause over-constraints designers may consider two options: (a) return to a
previous design step while avoiding the causing over-constraints (design iteration),
(b) override or elimination of the causing over-constraints and continuation. If root
causes cannot be found then unwanted design iterations are very likely. The elegant
consideration of over-constraints is a critical issue which strongly influences the
acceptance and practical success of a constraint-driven design flow. This considera-
tion is also subject to further research.

Simultaneous semi-automatic and manual design styles must complement each
other as long as the relevant constraint types cannot be considered at all or in case
their consideration is limited to a specific design context only. For example, in the
latter case a constraint would only be considered by a design algorithm within a
cellview instead of considering it within the design hierarchy (e.g., hierarchical
IR-drop constraint).

To address the tight interaction between these design steps and to consider the
concurrent nature of the analog design problem, all artificially introduced bound-
aries between existing design steps should be gradually dissolved in the future. The
removal of degrees of design freedom should occur gradually rather than abruptly
to keep them available for design optimization as long as possible. While the au-
tomatic approach to achieve this goal is still subject to further research, this issue
is also of relevance for semi-automatic and manual design. In current analog de-
sign approaches, the strategy by which the degrees of design freedom are removed
strongly depends on the designer’s expert knowledge and the design task partition-
ing in a design team.

The reuse of analog IP often fails because small differences may prevent a direct
IP reuse. A direct reuse is often not feasible if all degrees of design freedom were
already removed from an IP block. However, the consistent definition of constraints
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between design objects allows design reuse of structural information based on IP
templates such as circuit and layout templates that already include constraints. The
structural information represents the most valuable part of the design knowledge,
and hence, it enables a more flexible reuse since relevant degrees of design freedom
are not fixed yet. In that respect, analog design automation should address low-level
layout generation and high-level design planning as discussed in the next subsection.

7.6.3 Impact on Design Algorithms

In this section, we discuss the impact constraint-driven design has on design
algorithms and design planning. Furthermore, we briefly discuss new concepts and
ideas for constraint-driven IC design. While some of these design approaches are
new, others, such as the application of the constraint sensitivity analysis or the
introduction of standardized algorithm interfaces, have already matured and thus
have led to new insights into the analog design problem [14,23,25].

Present design algorithms are special-built for a particular purpose (e.g., focusing
on placement, global or detailed routing). While this provides several benefits, such
as an optimized execution time and memory footprint, it also introduces several
significant limitations to “conventional design algorithms”, such as incompatible
interfaces for design and constraint data and a lack of functional abstraction. These
limitations aggravate further advances in analog design automation.

A primary limitation in conventional algorithm design is the narrow focus on
fast, but low-level execution without an implementation of standardized data inter-
faces. A standardized data interface creates a layer around a core algorithm to enable
a common understanding of the syntax and semantic of the design and constraint
data representation. This layer connects a design algorithm to the design and con-
straint databases as well as to other concurrently executed design algorithms. Thus,
all design algorithms share a common understanding of the syntax and semantic of
the design and constraint data representation.

Standardized algorithm interfaces enable the modularization and abstraction of
design algorithms. The abstraction of their algorithmic work greatly improves algo-
rithm reuse and flexibility because a single algorithm can be used to solve similar
design tasks (this concept is similar to algorithm abstraction available in various pro-
gramming languages). In turn, this flexibility enables the construction of high-level
design algorithms that utilize modularized low-level design algorithms to perform
specific design tasks on a higher level of abstraction.

The strategy in which the degrees of design freedom are removed must be care-
fully chosen as mentioned earlier. A removal strategy can be applied to actuate
high-level design algorithms. The actuation greatly benefits from the constraint sen-
sitivity analysis (CSA, see Sect. 7.4.4).

First, CSA can be used to identify design task parallelism by searching for tem-
porary groups of design variables and constraints that are either not or only weakly
coupled (dynamic design task partitioning). For these groups, the next design step
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can then be performed independently of each other. Note that the independency of
design variables and constraints in these groups may only be temporary, and hence,
may not exist anymore after the design step is completed.

Second, CSA can also be used to determine the most sensitive design parameters
in a particular design context that will more likely violate a constraint than non-
sensitive parameters. Sensitive design parameters could then be considered with a
higher priority within the specific design context.

A dynamic hierarchy of concurrent design tasks can be established in which de-
sign algorithms perform functional transformations (instead of conventional distinct
design tasks) (Sect.7.2.1). These transformations could be governed by either a
fixed execution regime or more flexible approaches, such as high-level design plan-
ning algorithms that are guided by a design strategy.

Another major advantage for the development of high-level design algorithms
is the possible dynamic consideration of new constraint types without the need to
introduce major low-level algorithm changes. High-level design strategies can be
used to solve low-level design problems by eliminating degrees of design freedom
in a top-down methodology. This approach typically leads to better design results
because low-level constraints are now less likely to break high-level constraints
(Sects. 7.4.2 and 7.4.3).

Most of these introduced approaches promise great potential, namely the dy-
namic design task partitioning, the actuation of high-level design algorithms and
the replacement of conventional algorithms by a sequence of continuous functional
transformations. Nevertheless, all of them are still subject to further research.

7.7 Outlook

Despite the recent advances in constraint-driven design for analog IC design, there
are several problems that need to be addressed in the near future to further broaden
the applicability of analog design automation approaches. Methods to check the
completeness of a set of constraints and constraint (meta-)verification rules, as well
as the achieved verification coverage, must be developed to guarantee IC functional-
ity, reliability, robustness, etc. The set of meta-verification rules must be optimized
to allow time-efficient constraint verification. Today, such optimization is done man-
ually but automatic rule-optimization methods should be developed to reduce this
burden.

As mentioned earlier, constraint sensitivity analysis is a powerful tool to drive
and support high- and low-level design decisions, and to develop high-level design
algorithms that allow more gradual IC design. The scalability of existing constraint-
sensitivity analysis approaches is still limited to a few thousand design variables.
This is sufficient for mid-sized analog blocks with typically several hundreds of
analog devices. Application to top-level design problems requires the development
of new complexity reduction methods, as well as fast constraint sensitivity calcula-
tion methods to improve scalability.
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Key factors for next generation analog design automation are design techniques
that reduce the degree of design freedom gradually rather than abruptly while per-
forming several conventional design steps concurrently. This will require that the
current artificial boundaries between conventional design steps be (gradually) dis-
solved. While breaking with conventional design approaches, this paradigm change
could lead to a new class of (higher level) design algorithms that brings us one step
nearer to the goal of full-scale analog design automation.
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Glossary

Constraint Constraints define relations between values of design variables.
Constraints defining a single relation are denoted as simple constraints. Constraints
defining a set of interdependent relations are denoted as complex constraints.

Constraint Assignment Process of linking constraints to design objects. In case
the corresponding design objects are located in different design hierarchy levels,
the linking is done by traversing the hierarchy tree either strictly top-down, strictly
bottom-up or in a mixed top-down and bottom-up manner. The link can be perma-
nent or temporary.

Constraint Derivation Process of deriving constraints from design objectives.
Constraint derivation is also known as constraint generation.

Constraint-Driven Design Design paradigm that considers all constraints in a con-
sistent and comprehensive manner.

Constraint Engineering Design paradigm that comprises the use of several design
flow components, such as constraint assignment, derivation, propagation, transfor-
mation, and verification.

Constraint Engineering System (CES) Software architecture that implements the
constraint engineering concept so that all components of the constraint-driven de-
sign flow are available during the design process [11].

Constraint Handling Rules (CHR) Programming language that, among others,
allows the definition of problem-specific constraint solvers [12].

Constraint Logic Programming (CLP) Form of constraint programming, in
which logic programming is extended to include concepts from constraint satis-
faction. The unification process in CLP is extended by constraint handling in the
boolean, real or integer constraint domain [13]. CLP is often implemented as an
enhancement of Prolog-like computer languages with additional constraint solving
mechanisms.
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Constraint Management Software architecture to enable the storage, manage-
ment, access, and synchronization of constraint data. Features of the constraint
management are used by all components of the constraint-driven design flow.

Constraint Programming Programming paradigm where relations between vari-
ables are stated in the form of constraints.

Constraint Satisfaction Problem (CSP) Mathematical problem defined as a set
of objects whose state must satisfy a number of constraints. These problems repre-
sent the entities in a problem as a homogeneous collection of finite constraints over
variables.

Constraint Sensitivity Analysis (CSA) Method to determine the sensitivity of a
design parameter in relation to an objective function and related constraints.

Constraint Solver Mechanism to solve a given constraint satisfaction problem.

Constraint Transformation Process of transforming a higher level constraint into
a set of lower level constraints of the same or a different domain and vice versa
(inverse constraint transformation).

Constraint Type Type of a constraint that corresponds to the type of design vari-
ables which share a relation defined by that constraint.

Constraint Verification Verification process to ensure that no over-constraints ex-
ist and that all constraints are fulfilled by the design result [11].

Design Context Local context in which a particular design task is performed.

Design Object Data object represented in the database of a design tool, such as
cell, cellview, instance, net, terminal, etc.

Design Objective Design goal to be achieved or specification requirement to be
met by either a final or a partial design result.

Design Rule Check (DRC) Verification process to ensure that all manufacturing-
related constraints are fulfilled by the design result.

Design Tool Software tool for IC design generation and verification.

Expert Knowledge Entity of a designer’s problem-specific design knowledge in
formalized and nonformalized form.

Layout Versus Schematic (LVS) Verification process to ensure that a given device
netlist matches a netlist extracted from the layout representation.

Logic Programming (LP) Software language paradigm based on logic, more
specifically on resolution theorem proving in the predicate calculus [28].

Meta-Verification Verification process to ensure that all complex constraints are
fulfilled by the design result [11].
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Over-Constraint Condition in which not all given constraints can be fulfilled si-
multaneously.

Predicate (— LP, CLP) Mathematical sentence that describes a common property
by which a subset of objects can be identified within a global set of objects.

Propagation (— CHR) The propagation within CHR is the derivation of one or
more new constraints from a given set of constraints. It is triggered by the exis-
tence of one or more constraints that are already part of the constraint set. After the
propagation took place, the new constraints are part of the constraint set [12].

Root Cause Analysis Class of problem solving methods aimed at identifying the
root causes of problems or events. One approach of solving an existing design prob-
lem is to eliminate its root causes. Root cause analysis is often used iteratively
(continuous improvement).

Schematic-Driven Layout (SDL) Design paradigm in which the layout generation
is driven by the schematic representation of the circuit.

Simpagation (— CHR) The simpagation is a combined application of propaga-
tion and simplification. While it can be expressed by solely using propagation and
simplification rules, it can be handled more efficiently [12].

Simplification (— CHR) The simplification within CHR removes one or more
constraints from a given set of constraints. It is triggered by the existence of one or
more constraints that are already part of the constraint set [12].

Tool Integration Kit (TIK) Data interface of the constraint engineering system
that translates tool-specific data into the CLP language and vice versa.

Unification (— CLP) Process that tries to match symbolic expressions by assign-
ing subexpressions to variables that are part of two expressions [2]. Unification is a
core concept of logic programming.
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uniform representation, 269, 275
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CSA, see Constraint Sensitivity Analysis
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Design
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context, 272,278,289, 294
freedom, 271, 279, 290, 292
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problem, 271, 275,292
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replacement, 236
Device merging, 5
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Electrical rules, 161
Electrical synthesis, 244
Electromigration, 195
EM simulations, 165
Enhanced shape functions, 122
combination, 124, 130
Enhanced shapes
horizontal addition, 125
vertical addition, 125
Estimation, 153, 167, 169, 181, 182
Expert Knowledge, 269, 278, 290, 294
Extraction, 159, 161, 164

F

Flat representation, 8

Floorplan sizing, 254, 256
Floorplan-sizing matrix, 257

Functional Transformation, 271, 273, 292

G
Genetic algorithms, 6
Geometric Constraints Module, 253
Geometric constraints module, 256, 262
Geometric parasitic extraction, 262
Geometrically constrained sizing, 245, 253
Geometry sharing, 5
Global routing, 155, 166, 167, 168, 178, 180,
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of modules, 96
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H M
HB*-tree, see Hierarchical B*-tree Manufacturability, 194
HCG, see constraint graph, horizontal Matching constraints, see Constraints matching
Hierarchical B*-tree, 63, 72, 75-77, 80, 81, Matching requirement, 108

83-88,91,92 Maze router, 151, 154, 167, 174, 182
Hierarchical proximity, 62, 63 Meta-Verification, see Constraint Meta-
Hierarchical symmetry, 62, 63,91 Verification
Hierarchy, 161, 168, 184 Mirror symmetry, 7
Hierarchy node, 72-77, 81, 88, 92 Module, 96

HSMPG tree, 111, 128

N
I Net ordering, 154, 167, 168, 170, 190
Integrated placement and routing, 178, 179 Net splitting, 160, 162

Non-slicing placement, 10
Numerical parasitic extraction, 262

J
Johnson’s priority queue, 33
(0]
O-trees, see Ordered trees
K Optimization-based layout synthesis, 247
Knowledge-based layout synthesis, 247 Optimization-based synthesis, 247
Knowledge-based sizing, 246 Ordered trees, 10
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Layout Parasitic extraction techniques, 262
compaction, 209, 212,216 Parasitic-aware sizing, 245
description script, 185 Parasitics estimates, 245
design-rule, 208, 209, 232, 233 Path search, 158, 165, 176
hierarchy, 236 Perfect symmetry, 8
language, 183, 184 Performance-driven analog placement, 6
layer mapping, 208 Perturbation method, 172
migration, 207 Physical synthesis, 244
parasitics, 237 Powell’s method, 251
retargeting, 207, 234 Predicate, 287,295
symmetry, 234 Probabilistic routing, 190
Layout aware’s geometric goals, 259 Probabilistic skip list, 25
Layout design hierarchy, 62, 63,92 Proximity constraint, 61
Layout geometric parameters, 254, 262 Proximity requirement, 107
Layout parasitics, 244, 262 PSL, see probabilistic skip list

Layout sampling, 263
Layout slicing style, 254
Layout Versus Schematic, 273, 283, 289, 294 R

Layout-aware sizing, 245 Red-black interval tree, 18
Layout-aware’s geometric goals, 258 Red-black tree, 18
Line expansion, 152, 154, 158, 163, 169, 171, Representative B*-tree, 67-70
194 Retargeting, 184
Linear Programming, 212 Reuse-based design, 245
Logic Programming, 294 RF circuits, 165, 191
Longest common subsequence (LCS), 37 Rip-up and re-route, 159, 167,170, 171, 174
LP, see Logic Programming Root Cause Analysis, 290, 295

LVS, see Layout Versus Schematic Rooted binary trees, 254
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Routing Symmetric-feasible (S-F) binary tree, 51
analog circuits, 149, 151, 153, 155, 157, Symmetric-feasible (S-F) sequence-pair, 35
159, 161, 163, 165, 167, 169, 171, Symmetry constraint, see Constraints
173, 175,177,179, 181, 183, 185, symmetry
187,189, 191, 193, 195, 197, 199, Symmetry group, 8
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parasitics, 162, 167, 170, 172, 191 84,88,91,92
Rule-based layout synthesis, 247 Symmetry requirement, 108
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S
Schematic-Driven Layout, 270, 295
SDL, see Schematic-Driven Layout T
Segment tree, 12 Table lookup parasitic extraction, 262
Self-symmetry, 8 Template-based approaches, 183
Sensitivity, 169, 171, 173-175, 180-182 Template-based layout synthesis, 247, 251
Sequence Pair, 63, 82-87 Template-driven layout generation, 6
Sequence-pair, 10 TIK, see Tool Integration Kit
Shape function, 256 Tile, 156, 158, 180
Shape functions, 122 Tool Integration Kit, 285, 286, 295
Sheet resistance, 162 Topological, 158, 162
Shield, 164, 167, 174, 175 Topological representation, 9
Simpagation, 285, 295 Transitive closure graph (TCG), 10
Simplex, 212 Traversal of a binary tree
basic feasible solution, 213, 214, 226 inorder, 51, 125, 127
entering variable, 215 postorder, 51
graph-based, 216, 217,221, 237 preorder, 51, 125, 127
leaving variable, 215 Two-step routing, 166, 168, 178, 182
revised, 234, 237
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Simplification, 285, 295

Simulated annealing, 6, 63

Simulated annealing optimization, 250
Simultaneous placement and routing, 158, 179,

U
Unification, 275, 295

180
Slicing floorplan, 254 A\
Slicing placement, 9 Variants, 97
Slicing tree, 10 VCG, see constraint graph, vertical

Stasheff polytope, 52
Statistical optimization techniques, 247
Steiner tree, /54, 168, 180, 181, 193, 195
Stockmeyer’s algorithm, 256
Subnet, 160
Symmetric

net, 175

routing, 162, 182 Y

wiring, 170 Yield, 194
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X-y routing, 190
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