
Studies in Systems, Decision and Control 45

Andrei Karatkevich
Arkadiusz Bukowiec
Michał Doligalski
Jacek Tkacz Editors

Design of
Reconfigurable
Logic
Controllers

Studies in Systems, Decision and Control

Volume 45

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Systems, Decision and Control” (SSDC) covers both new
developments and advances, as well as the state of the art, in the various areas of
broadly perceived systems, decision making and control- quickly, up to date and
with a high quality. The intent is to cover the theory, applications, and perspectives
on the state of the art and future developments relevant to systems, decision
making, control, complex processes and related areas, as embedded in the fields of
engineering, computer science, physics, economics, social and life sciences, as well
as the paradigms and methodologies behind them. The series contains monographs,
textbooks, lecture notes and edited volumes in systems, decision making and
control spanning the areas of Cyber-Physical Systems, Autonomous Systems,
Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Bio-
logical Systems, Vehicular Networking and Connected Vehicles, Aerospace Sys-
tems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power
Systems, Robotics, Social Systems, Economic Systems and other. Of particular
value to both the contributors and the readership are the short publication timeframe
and the world-wide distribution and exposure which enable both a wide and rapid
dissemination of research output.

More information about this series at http://www.springer.com/series/13304

http://www.springer.com/series/13304

Andrei Karatkevich • Arkadiusz Bukowiec
Michał Doligalski • Jacek Tkacz
Editors

Design of Reconfigurable
Logic Controllers

123

Editors
Andrei Karatkevich
Faculty of Computer Science, Electrical
Engineering and Automatics

University of Zielona Góra
Zielona Góra
Poland

Arkadiusz Bukowiec
Faculty of Computer Science, Electrical
Engineering and Automatics

University of Zielona Góra
Zielona Góra
Poland

Michał Doligalski
Faculty of Computer Science, Electrical
Engineering and Automatics

University of Zielona Góra
Zielona Góra
Poland

Jacek Tkacz
Faculty of Computer Science, Electrical
Engineering and Automatics

University of Zielona Góra
Zielona Góra
Poland

ISSN 2198-4182 ISSN 2198-4190 (electronic)
Studies in Systems, Decision and Control
ISBN 978-3-319-26723-4 ISBN 978-3-319-26725-8 (eBook)
DOI 10.1007/978-3-319-26725-8

Library of Congress Control Number: 2015956377

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

Digital design of control circuits is a very important part of computer science and
electronics, and its importance has increased in recent years. Nowadays, digital
systems are widely present in everyone’s life and they are a part of our existence.
The rapid growth of silicon technology is being observed, and it causes the aug-
mentation of the controlled systems such as data paths in digital devices, peripheral
devices of the computers or the industrial electromechanical processes for which the
programmable controllers are used. It causes that need for more complex and faster
control units noticeable, and new design methodologies of such complex systems
are required.

In this book, we present the research activities and achievements in the area of
design of reconfigurable control circuits of several research teams from different
countries (Poland, Belarus and Portugal) as well as the historical perspective of
development of some aspects of logical control technology. The chapters of the
book cover different fields of the topic, from control system specification and design
to synthesis and verification. The important question of cooperation between
control unit and data path is also discussed. The book focuses first of all on the
parallelism in logical control, taking into account complexity of the systems under
control, an unavoidable element of modern logical control algorithms.
Reconfigurability is another important aspect of the approaches presented in the
book; nowadays the control systems often have to be flexible, hence possibility
of their partial reconfiguration during runtime is very essential. As the models of
parallel control algorithms, the interpreted Petri nets and concurrent generalizations
of finite-state machines are used. Various kinds of UML diagrams are used at
different steps of design processes for specification and modelling. The described
methodologies mostly suppose the FPGA realization of the reconfigurable control
devices.

v

The editors of this book hope that it will be a valuable reading for both
researches and students of computer science and electronics, and engineers working
in the area of design of digital control and embedded systems. The reader is
presumed to have a basic knowledge of digital design, automata theory and Petri
nets.

Zielona Góra, Poland Andrei Karatkevich
August 2015 Arkadiusz Bukowiec

vi Preface

Contents

Petri Nets in Design of Control Algorithms . 1
Andrei Karatkevich

Synthesis and Implementation of Parallel Logic Controllers
in All Programmable Systems-on-Chip . 15
Valery Sklyarov, Iouliia Skliarova and João Silva

Circuit Implementation of Parallel Logical Control Algorithms
Represented in PRALU Description . 31
P.N. Bibilo, Yu.V. Pottosin, V.I. Romanov and A.D. Zakrevskij

Effective Partial Reconfiguration of Logic Controllers Implemented
in FPGA Devices . 45
Remigiusz Wiśniewski, Monika Wiśniewska and Marian Adamski

An Application of Logic Controller for the Aerosol Temperature
Stabilization . 57
Michał Doligalski, Marek Ochowiak and Anna Gościniak

Symbolic Coloring of Petri Nets . 67
Jacek Tkacz

Modular Synthesis of Petri Nets. 77
Jacek Tkacz and Marian Adamski

Architectural Synthesis of Petri Nets . 93
Arkadiusz Bukowiec

Decomposition-Based Methods for FSM Implementation 103
Mariusz Rawski, Piotr Szotkowski and Paweł Tomaszewicz

Using UML Behavior Diagrams for Graphical Specification
of Programs for Logic Controllers . 131
Grzegorz Bazydło and Marian Adamski

vii

http://dx.doi.org/10.1007/978-3-319-26725-8_1
http://dx.doi.org/10.1007/978-3-319-26725-8_2
http://dx.doi.org/10.1007/978-3-319-26725-8_2
http://dx.doi.org/10.1007/978-3-319-26725-8_3
http://dx.doi.org/10.1007/978-3-319-26725-8_3
http://dx.doi.org/10.1007/978-3-319-26725-8_4
http://dx.doi.org/10.1007/978-3-319-26725-8_4
http://dx.doi.org/10.1007/978-3-319-26725-8_5
http://dx.doi.org/10.1007/978-3-319-26725-8_5
http://dx.doi.org/10.1007/978-3-319-26725-8_6
http://dx.doi.org/10.1007/978-3-319-26725-8_7
http://dx.doi.org/10.1007/978-3-319-26725-8_8
http://dx.doi.org/10.1007/978-3-319-26725-8_9
http://dx.doi.org/10.1007/978-3-319-26725-8_10
http://dx.doi.org/10.1007/978-3-319-26725-8_10

Various Interpretations of Actions of UML Activity
Diagrams in Logic Controller Design . 143
Michał Grobelny, Iwona Grobelna and Marian Adamski

Model Checking of UML Activity Diagrams Using a Rule-Based
Logical Model . 153
Iwona Grobelna, Michał Grobelny and Marian Adamski

UML Support for Statecharts-Based Digital Logic Controller
Design in FPGA Technology . 165
Grzegorz Łabiak

Index . 181

viii Contents

http://dx.doi.org/10.1007/978-3-319-26725-8_11
http://dx.doi.org/10.1007/978-3-319-26725-8_11
http://dx.doi.org/10.1007/978-3-319-26725-8_12
http://dx.doi.org/10.1007/978-3-319-26725-8_12
http://dx.doi.org/10.1007/978-3-319-26725-8_13
http://dx.doi.org/10.1007/978-3-319-26725-8_13

Petri Nets in Design of Control Algorithms

Andrei Karatkevich

Abstract The chapter presents an overview of applying the Petri nets as a model
and a way of specification of the parallel logical control algorithms. The history of
using the Petri nets for representing the structures of the parallel control algorithms is
presented. The extensions of the Petri net model applied in the area of logical control
are discussed. The Petri net-based programming languages used for programmable
logic controllers, such as SFC, GRAFCET or PRALU, are considered.

Keywords Petri nets · Logic controllers · Specification · FPGA · Parallel control
algorithms

1 Introduction

There are knownvariousways of specification of logical control algorithms in general
and programs for logic controllers in particular. The algorithms of continuous control
can be represented in form of the differential equations [1]; if we limit ourselves to
the logical control algorithms, we can find out that such algorithms can be described
by means of the textual programming languages (usually the dedicated ones, like
Structured Text [2] or SystemC [3]) or graphical languages and diagrams (Harel
statecharts [4], LD, SFC, FBD [2], CFC [5], ASM [6], flowcharts [7], state diagrams
[8] and so on). The mathematical models belhind those languages are first of all
Boolean functions, Finite StateMachines (with their generalizations, enhanced with,
among others, concurrency and hierarchy [9–11]) and also the Petri nets. The most
known (but not the only one) Petri net-based language for specification of logical
control algorithms is Sequential Function Chart (SFC) [2, 12].

The Petri nets and Petri net-based languages are not very popular among the
engineers. However, they have some unique advantages. The Petri nets allow to

A. Karatkevich (B)
Institute of Electrical Engineering,
University of Zielona Góra, ul. Licealna 9, 65-417 Zielona Góra, Poland
e-mail: a.karatkevich@iee.uz.zgora.pl

© Springer International Publishing Switzerland 2016
A. Karatkevich et al. (eds.), Design of Reconfigurable Logic Controllers,
Studies in Systems, Decision and Control 45,
DOI 10.1007/978-3-319-26725-8_1

1

2 A. Karatkevich

Fig. 1 An example of
parallel processes described
by a Petri net

BA

C

D

E

F

C FG

describe directly the parallel threads of an algorithm, and structure of the parallelism
can be more flexible than most of programming languages (especially the languages
for programmable logic controllers) and the FSM-based models (such as HCFSM
or UML state machines) allow. It means that a Petri net allows to specify a parallel
algorithm beyond the traditional fork-join model, in which for each “fork” there
should be just one “join”. Instead, using a Petri net-based language one can describe,
for example, a situation in which, having two parallel threads A and B, thread A
divides into parallel threads C and D, B divides into E and F, and then threads D
and E merge into thread G, which is executed further in parallel with threads C
and F (Fig. 1). On the other hand, there is a wide range of the methods of formal
analysis of Petri nets [13, 14], which can be used for verification of the Petri net
based algorithms.

The chapter is organized as follows. Section2 presents a brief review of the his-
tory of applying Petri nets to specification of logical control algorithms. Section3
describes the main mathematical models of the extended Petri nets used in the
discussed area. Section4 presents the most popular Petri net-based language—
Sequential Function Chart. Section5 describes another language for description of
parallel algorithms of logical control, PRALU [15]. In Sect. 6 some other approaches
to Petri net based specification of control algorithms are discussed. The final section
contains a conclusion.

2 Historical Review

Petri nets in their classical form are autonomous, i.e. they do not communicate with
the external world. However, the C. A. Petri’s dissertation [16], which introduced the
notion, has the title “Communication with Automata”, and according to the vision
presented in it a Petri net is an abstract model of an automata network, which means

Petri Nets in Design of Control Algorithms 3

that the Petri nets from the very beginning were considered as a model of a system
which does communicate with its environment. The Petri nets are understood as
“a general purpose mathematical model for describing relations existing between
conditions and events” [17].

Nevertheless, the Petri net-based models extended in such a way that they could
communicate by means of the binary signals and represent the logical control algo-
rithms, were not described (to the best of our knowledge) before the second half of
1970s. At that time appeared the concept of the Petri nets extended in such a way that
the conditions, depending on the input signals, are associatedwith the transitions, and
the actions, setting the values of the output signals, are associated with the places or,
in some cases, with the transitions. Such a model [18, 19] is referred as theMarking
Diagrams (MDs) [20, 21], interpreted Petri nets [12, 22, 23] or control interpreted
Petri nets [24] (the last two notions are, strictly speaking, wider; numerous Petri net
extensions are mentioned as the “interpreted Petri nets” [17], especially a wide range
of non-autonomous Petri nets [20]).

Approximately at the same time a language for specification of control
algorithms has been developed, which evolved later to an international standard and
one of the most popular Petri net-based programming languages for logic controllers
(onemay say, the only popular language of this kind). The language is GRAFCET (an
abbreviation of “GRAphe Fonctionnel de Commande Etapes/Transitions” or earlier
“GRaphe de l’AFCET”) [21, 25]. It was designed in France by the AFCET com-
mission (Association française pour la cybernétique économique et technique, later
known as Association des sciences et technologies de l’information), and the first
report officially representing the new language was published in 1977 [26]. In a short
time after publishing of the mentioned report, a group in the ADEPA agency (Agence
nationale pour le Développement de la Production Automatisé) was organized for
normalization of the GRAFCET standard to make possible its practical use in pro-
gramming of the controllers. ADEPA’s report [27] was published in 1979 and became
a base ofmost of the standards includingGRAFCET. Since that, GRAFCEThas been
implemented in the engineering practice. It was used and actively supported by the
company Telemecanique, at that time one of the world’s leading manufacturers of
digital controllers (later it was acquired by Schneider Electric).

In 1988 the International Electrotechnical Commission (IEC) has published IEC
848, an international standard defining a GRAFCET-based graphical language. The
current (since 1993) international standard for programmable logic controllers, IEC
61131 (the corresponding European norm established by the European Committee
for Standardization is EN 61131), defines five programming languages for industrial
PLCs. Among them there is the language Sequential Function Chart (SFC), which is
directly based on the function charts described in IEC 848 [2, 12]. SFC can be used
to structure the internal organization of a program consisting of the sub-programs
written in other languages of the standard (usually ST and LD languages) and also
can be used in its “pure” form for specifying the logical control algorithms. The latest
(third) version of the standard was published in 2013 [28], it also includes SFC.

4 A. Karatkevich

SFC is supported by numerous programming and modelling platforms for logic
controllers [12, 49], such as STEP 7 by Siemens [30] and Control Builder by ABB
[31]. It is widely used in SCADA systems.

At the end of 1970s and the beginning of 1980s some other research groups
started developing the Petri net-basedmodels and languages for logical control. Such
attempts were made in the Soviet Union [32]. A research group led by A. Zakrevskij
in the Institute of Engineering Cybernetics of the BelarusianAcademy of Science has
developed the formal models of parallel control algorithms [33, 34] and the language
PRALU (“PRostoy Algoritm Logicheskogo Upravleniya”—“Simple logical control
algorithm”).Adetailed theory of parallel logical control algorithms arose around that,
and the methods of optimized hardware implementation of the PRALU algorithms
have been designed [15, 35–39]. Later the converters from PRALU to VHDL ([40],
see also the chapter “Circuit implementation of parallel logical control algorithms
represented in PRALU description” of this book) and from PRALU to LD [41] were
designed.

In the early 1980s research in the similar field started at the Technical University
of Zielona Góra, Poland, by the team led by M. Adamski [42–44]. An original
model of concurrent state machine was designed. The research concentrated mostly
on the methods of hardware implementation of parallel logical control algorithms
(PLA, later FPGA implementation) [45, 46]. Three versions of Petri net specification
format (PNSF), intended “to describe a Petri net specification of a parallel controller
behaviour in textual form”, were designed [47, 48]. Further researches in the area of
Petri nets in Zielona Góra include also such directions as formal analysis, verification
and validation [24, 49–51], modelling of the interpreted Petri nets in the hardware
description languages [52–55], some theoretical aspects of Petri nets [56], modelling
by Petri nets other models of parallel logic controllers [57] or applying decision
diagrams to analysis of Petri nets [58, 59].

The interesting results in applyingPetri netmodels to logical controlwere obtained
at Universidade Nova de Lisboa, Portugal [60–62]. Some of other publications in
this area which are worth mentioning are as follows: [63–68]. More references can
be found in [13, 21].

3 Interpreted Petri Nets in Logical Control

The basic model of Petri net (PN) [13] is defined as a tuple Σ = (P, T, F, M0),
where P is a finite non-empty set of places, T is a finite non-empty set of transitions,
F is a set of arcs such that F ⊆ (P × T) ∪ (T × P), M0 is an initial marking.

A state of a Petri net, called a marking, is defined as a function M : P → N

(for the safe Petri nets, which are usually used in applications to logical control,
M : P → {0, 1}). It can be considered as a number of tokens situated in the net
places. A place containing a token is called a marked place. Sets of input and output
places of a transition are defined respectively as follows: •t = {p ∈ P : (p, t) ∈ F},
t• = {p ∈ P : (t, p) ∈ F}. A transition t is enabled and can fire (be executed), if

Petri Nets in Design of Control Algorithms 5

∀p ∈ •t : M(p) > 0. Transition firing removes one token from each input place and
adds one token to each output place. A marking can be changed only by a transition
firing. It is worth noting that a typical structure of a parallel logical control algorithm
is a safe extended free choice net [13] with a single-token initial marking, sometimes
referred as an α-net [41, 69].

This model is autonomous and should evidently be enriched by some tools of
communication with outer world to make possible specifying the control algorithms
by means of it. In the case of logical control, such communication is realized by the
logical signals (Boolean variables). The variables can be the input ones (X), meaning
values of the signals coming from a controlled system, and the output ones (Y),
meaning values of the signals sent by a controller to a controlled system. Sometimes
those sets have a non-empty common part Z = X ∩ Y , then the variables belonging
to the set Z are considered to be the internal variables, which can be changed only
by the Petri net itself [15].

An essential feature of the basic Petri nets is that an enabled transition can fire,
but at that level of abstraction it is not defined when and whether it is going to
fire. Of course a model of a logical control algorithm should be deterministic, and
conditions of a transition firing should be concretised. In the control interpreted
Petri nets, virtually in all of their variants, a condition being a Boolean function
(usually an elementary conjunction) of the input variables can be associated with
every transition. An enabled transition fires, when the condition is satisfied. If the
condition is satisfied at the moment when the transition becomes enabled, it fires
immediately. It fires immediately also in the case when no condition is associated
with the transition explicitly (then it is supposed that the condition is always satisfied;
such transitions are typically used for synchronization of the concurrent processes
[64]).

There are two different ways of managing the output variables in the interpreted
Petri nets: “Moore type” and “Mealy type” [12]. In the first case a subset of the
output variables (maybe empty) is associated with every place of the Petri net. Then
a variable obtains value ‘1’, if it is associated with at least one place marked in the
current marking, otherwise its value is ‘0’ [64]. In the second case an action being
described by a conjunction of the output variables or their negations is associated to
every transition [15].

Besides, the interpreted Petri nets can be considered as synchronous [70] or asyn-
chronous [71].

An interpreted Petri net can be understood as a parallel automaton—a general-
ization of a finite state machine, which can be at the same time in one or more local
states (which correspond to the marked places). A global state of such automaton
is a set of the local states which are currently active (it corresponds to a marking)
[12, 15, 34, 37–39, 41, 43].

Other popular extensions of the Petri net models of the logical control algorithms
are the following:

• hierarchy [22, 25, 72–74] (such models includemacroplaces or rarelymacrotran-
sitions),

6 A. Karatkevich

• priorities [25, 76, 77] (a mechanism allowing to decide which of simultaneously
enabled conflicting transitions should be executed),

• history attribute [22, 72, 75] (a possibility for a subnet to remember its marking
when the corresponding macroplace looses token),

• inhibitor and enabling arcs [12, 22, 78] (an inhibitor arc disables a transition when
a place is marked; an enabling arc from a place to a transition should have a token
for the transition to be enabled, but does not loose it when the transition is fired),

• reset arcs [17, 38] (a possibility to empty a place or a subset of places when
transition fires, independently of their previous state),

• delays [17, 79] (time intervals can be associated with places or transitions).

The very detailed interpreted Petri net models applicable for modelling of logical
control algorithms are described in [17, 72, 85].

4 GRAFCET and SFC

Sometimes the terms “GRAFCET” and “Sequential Function Chart” are used as
synonyms, in other cases GRAFCET is considered as a basis of SFC [17]. Usually
GRAFCET is understood as a technology-independent language for functional spec-
ification of sequential control, and it is defined as such by IEC 60848 standard, and
SFC, according to its definition by IEC 61131-3 standard, as its implementation and
concretization as a programming language for logic controllers.

A program in SFC consists of steps and transitions. A step can be active or inactive
(one or more steps are the initial ones and are activated when the program starts). A
transition can have one or more input steps and one or more output steps, connected
to it by the directed links. A condition is associated with every transition. If all
input steps of a transition are active, and the transition condition is satisfied, then the
transition is fired, which means deactivation of all its input steps and activation of all
its output steps. It is easy to see that such model is close to a binary (safe) Petri net.
A difference is, that SFC is considered to describe the synchronous systems, hence
several transitions can be fired simultaneously, which is not the case for the classical
Petri nets.

One or more actions can be associated with a step of SFC. An action can be an
operation on a logical variable (such as set or reset) or a sub-program specified in SFC
(i.e. the SFC programs can be organized hierarchically) or in another language of IEC
61131-3 standard (not all programming environments for PLCs support all of them).
An action associatedwith the step can be executed once or cyclically during thewhole
time when the step remains active, which depends on the action qualifier associated
to the action. Other qualifiers allow to set delays of execution of an action, to set the
time limits of execution of an action or to deactivate an action activated by another
step.

Petri Nets in Design of Control Algorithms 7

Fig. 2 An example of a
control algorithm in SFC
(taken from [12]) START

K2K1

ST*X2

N Z1

T1

K3 N Z2

X1

K4 N Z3

X2

A simple example of SFC is shown in Fig. 2. Detailed descriptions of SFC and
GRAFCET in different versions can be found, among others, in [2, 5, 12, 17, 25–27,
30, 31].

5 ALU and PRALU

Relation between the languages ALU (“Algoritm Logicheskogo Upravleniya”—
“Logical Control Algorithm”) and PRALU is more or less the same as between
GRAFCET and SFC: ALU is a language for specification of a structure of a paral-
lel control algorithm, and PRALU is its concretization for the systems with binary
signals [15].

An algorithm described in PRALU consists of the chains, which can be grouped
into sentences. A chain consists of an initial label, a sequence of operations and
a final label. The initial and final labels are the sets of natural numbers (a final
label may be empty). If the initial labels have a non-empty common part, they must
be equal (the sets of chains with the same initial labels are usually grouped into a
sentence, then the initial label is written only once). The operations belong to one of
two types: operations of action (preceded by symbol ‘-’) and operations of waiting
(preceded by symbol ‘-’), typically both represented by the elementary conjunctions.
A waiting operation means that a chain waits until the conjunction obtains the value

8 A. Karatkevich

1. An action operation assigns to the variables participating in the conjunction the
values which turn the conjunction to 1.

Execution of the chains is controlled by a firing set N . Initially N = {1}. If an
initial label μ of a chain is a subset of current firing set (μ ⊆ N) and the condition
expressed by the first waiting operation of the chain is satisfied (if the first operation
of the chain is not a waiting operation, then the condition is understood as always
satisfied), then the chain is activated. It means that the elements of μ are removed
from N and the operations of the chain are executed sequentially, until the final label
ν is attained. Then the chain is deactivated, and the elements of ν are added to the set
N . So, the structure of a PRALU algorithm corresponds to structure of a binary Petri
net, like an SFC program, but it is restricted to an EFC-net with single-token initial
marking (an α-net). Another difference between SFC and PRALU is that in SFC the
actions are associated with the places of an underlying Petri net, and in PRALU they
are associated with the transitions.

A PRALU description can be hierarchical; then the actions initialising the sub-
programs, also described in PRALU, are used.

More details about PRALU and implementation of the PRALU algorithms can
be found in [15, 36–38, 41] and in the chapter “Circuit Implementation of Parallel
Logical Control AlgorithmsRepresented in PRALUDescription”. A simple example
of a logical control algorithm specified by PRALU (taken from [38]) is shown below.

1 : −u → ab −′ u → 2.3
2 : −′vw →′ bc −′ w → b →′ c → 2

−v →′ ac → 4.5
3 : −uw → d → 6
4 : −′u′v → a − u →′ a → 4

−u → a′b → 7
5 : −′vw → c → 8
6.7.8 : →′ a′d −′ w → .

Here the execution starts from the first chain, and the algorithm waits until u = 1.
Then it assigns value 1 to the variables a and b and waits until the input variable u
obtains value 0 (′x means the negation of x). Then the first chain is deactivated, and
the firing set obtains value {2, 3}, which is a condition of activation of the chains with
the initial labels {2} and {3}. From this point a possibility of parallel execution of the
processes starts. A chain of the sentence with the initial label {2} will be activated
dependently on the values of the input variables v and w: if v = 1 then the second
one is activated, if v = 0 then the first one will be activated when variable w turns
to be 1. The chain with the initial label {3} will be activated when u = w = 1, and
so on.

Petri Nets in Design of Control Algorithms 9

6 Some Other Approaches

Below several other approaches to applying the Petri net models to logical control
are mentioned.

• The control processes are often not purely binary but have to deal with the con-
tinuous signals. For this reason the hybrid Petri nets are used, having binary and
continuous parts. Suchmodels for the control systems are described, among others,
in [17, 80, 81].

• The model named reactive Petri nets is presented in [60–62]. It is intended for
specifying the reactive control systems. The model is a kind of coloured Petri nets,
including inputs, outputs, time dependencies and priorities. The methods of FPGA
implementation through translation to VHDL are designed for such nets.

• A format representing the control interpreted Petri nets in such a form which
can serve both for formal verification using the model checking and for logical
synthesis (in form of rapid prototyping for FPGA structures) is described in [24,
51, 82].

• In [43] a description of a parallel control system using the logical sequents was
proposed. Basing on this approach, thePetri Net Specification Format (PNSF) was
designed [47]. PNSF is a textual format which in its first version was intended for
specification of a behavior described by an interpreted Petri net, with both Mealy
and Moore outputs possible, to be implemented in a parallel controller. Its next
version, PNSF2, was enhanced with hierarchy and possibilities of representing
the coloured Petri nets [83]. The following version, PNSF3, is based on XML and
intended first of all for simulation of the Petri net models of logic controllers [48].

• Real-time colouredPetri nets (RTCP-nets) is amodel based on timed colouredPetri
nets and intended for modelling and analysis of embedded real-time systems [84,
85]. Some ideas from this model were used in Alvis—a language for modelling
and formal verification of concurrent systems [86].

7 Conclusions

There exists a mature theory of Petri nets in general and, in particular, there exists
a deeply developed theory of the interpreted Petri nets, intended for specifying and
modelling the logical control algorithms. The theory includes a wide range of Petri
net-based models, methods of their verification and implementation. There is also
a range of practically oriented Petri net-based languages for description of logical
control algorithms, with Sequential Function Chart as the most popular among them,
included in the international and European standards, and supported by the leading
PLC manufacturers, such as Siemens and Schneider Electric. A lot of software tools
exist, supporting the Petri net models and their analysis and implementation in the
logic controllers.

10 A. Karatkevich

On the other hand, the Petri net-based models and languages definitely do not
belong to the popular ways of design of the control systems used in the engineering
practice. Nevertheless, there are the “success stories” of using the Petri nets in design
and verification of control processes, such as verification of control procedures of
chemical plants in Germany [88], design of traffic control systems in Brasil [87],
control of robots [89] and other industrial applications (some of them are described
in [90–93]). It allows to hope that popularity of the Petri net-based approaches in
logical control will be growing.

Acknowledgments The author is grateful to I. Grobelna and R.Wiśniewski for valuable comments
which helped to improve this chapter.

References

1. Tsypkin, Ya Z. (1971). Adaptation and learning in automatic systems. New York: Academy
Press.

2. Lewis, R. W. (1998). Programming industrial control systems using IEC 1131–3. IEE Control
Engineering Series: IEE.

3. Liao, S., Tjiang, S.,&Gupta,R. (1997).AnEfficient Implementation ofReactivity forModeling
Hardware in the Scenic Design Environment, In Proceedings of the 34th Design Automation
Conference, pp. 70–75.

4. Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3), 231–274.

5. Lepers, H. (2007). SPS-Programmierung nach IEC 61131-3—Mit Beispielen für CoDeSys und
Step7. German: Franzis Verlag.

6. Baranov, S. (1994).Logic synthesis for control automata. Boston:KluwerAcademicPublishers.
7. Sklyarov, V., Skliarova, I., Barkalov, A., & Titarenko, L. (2014). Synthesis and optimization of

FPGA-based systems. Lecture Notes in Electrical Engineering Cham: Springer International
Publishing Switzerland.

8. Borowik, G., Rawski, M., Łabiak, G., Bukowiec, A., & Selvaraj, H. (2010). Efficient logic
controller design, In 5th International Conference on Broadband and Biomedical Communi-
cations, pp. 1–6, Malaga, Spain.

9. Lee, B., & Lee, E. A. (1998). Hierarchical Concurrent Finite State Machines in Ptolemy, In
Proceedings of the International Conference on Application of Concurrency to System Design,
pp. 34–40, Fukushima, Japan.

10. Sklyarov, V. (1983). Finite state machines with stack memory and their automatic design. In
Proceedings of USSR conference on computer-aided design of computers and systems, Part2,
66–67 (in Russian).

11. Sklyarov, V., & Skliarova, I. (2013). Hardware implementations of software programs based
on hierarchical finite state machine models. Computers and electrical engineering, 39, 2145–
2160.

12. Adamski, M., & Chodań, M. (2000). Modelling of Discrete Control Devices Using SFC.
Wydawnictwo Politechniki Zielonogórskiej, Zielona Góra (in Polish).

13. T. Murata (1989) Petri nets: Properties, analysis and applications, Proceedings of the IEEE,
77(4).

14. Girault, C., & Valk, R. (2001). Petri Nets for system engineering: A guide to modeling, verifi-
cation, and applications. New York: Springer.

15. Zakrevskij, A., Pottosin, Yu., & Cheremisinova, L. (2009). Design of logical control devices.
Tallinn: TUT Press.

Petri Nets in Design of Control Algorithms 11

16. Petri, C. A. (1962).Kommunikation mit Automaten, Ph.D thesis, Schriften des IIM nr 3, Institut
für Instrumentelle Mathematik, Bonn, Germany.

17. David, R., & Alla, H. (2010). Discrete, continuous, and hybrid Petri Nets. Berlin: Springer.
18. Daclin, E., & Blanchard, M. (1976). Synthese des Systemes Logiques, Cepadues.
19. Silva, M., & David, R. (1977). On the programming of asynchronous sequential systems by

logic equations, IFAC Int. Symp. on Discrete Systems, pp. 52–62.
20. Silva, M., & Teruel, M. (1998). DEDS along their life-cycle: Interpreted extensions of Petri

Nets, IEEE International Conference on Systems, Man and Cybernetics.
21. Silva, M. (2013). Half a century after Carl Adam Petri’s Ph.D. thesis: A perspective on the

field. Annual Reviews in Control, 37(2), 191–219.
22. Andrzejewski, G. (2003) Program Model of Interpreted Petri Net for Design of Digital

Microsystems, PhD thesis, Prace Naukowe z Automatyki i Informatyki, T. 2, Uniwersytet
Zielonogorski, Zielona Góra (in Polish).

23. Andrzejewski, G., & Karatkevich, A. (2003). Interpreted Petri nets in system design, Sbornik
trudov X mezdunarodnoj naucno-techniceskoj konferencii Masinostroenie i technosfera XXI
veka (Machine-building and technosphere of the XXI century), Donetsk, Ukraine, pp 7–10.

24. Grobelna, I., & Adamski, M. (2011). Model checking of Control Interpreted Petri Nets, Pro-
ceedings of the 18th International Conference on Mixed Design of Integrated Circuits and
Systems (MIXDES), pp. 621–626.

25. David, R.,&Alla, H. (1992).Petri Nets andGrafcet: Tools formodelling discrete event systems.
New York: Prentice Hall.

26. Le Grafcet, ontil de representation du cahier de charges d’un automatisme logique, Rapport
final de la Commission AFCET, Paris (1977).

27. Le Grafcet, diagramme functionnel des automatismes sequentels, Rapprot de la Commission
ADEPA sur la normalisation du GRAFCET, Montrouge (1977).

28. IEC 61131-3, International Standard, Programmable controllers—Part 3: Programming lan-
guages, Edition 3.0, International Electrotechnical Commission (2013).

29. Zajac,W., Kołopien’czyk,M., &Andrzejewski, G. (2014). Modelling and Synthesis of Parallel
Traffic Control Algorithms with Time Dependencies, New trends in digital system design,
Fortschr.-Ber. VDI Reihe 10 Nr. 836, VDI Verlag, Düsseldorf, pp. 94–109.

30. STEP 7 Professional V13.0 System Manual, Siemens AG Industry Sector, Nürnberg, Germany
(2004).

31. ABB Group, Automation Builder 1.1—Complete English Documentation (2015). (available
online at www.abb.com)

32. Yuditski, S. A., Tagayevskaya, A. A., & Yefremova, G. K. (1977). A Language for Algorithmic
Design of Discrete Control Devices, preprint of Institute of Control Sciences, Moscow (in
Russian).

33. Zakrevskij, A. D. (1981). A-net—a functionsl model of a discrete system, Doklady AN BSSR,
vol. 22, Nr. 1, pp. 714–717 (in Russian).

34. Zakrevskij, A. D. (1984). Parallel automaton, Doklady AN BSSR, vol. 28, Nr. 8, pp. 717–719
(in Russian).

35. Zakrevskiy, A. D. (1986). Petri nets modeling of logical control algorithm. Automatic Control
and Computer Sciences, 20(6), 38–45.

36. Zakrevskii, A. D. (1987). The analysis of concurrent logic control algorithms. Fundamentals
in computational theory (pp. 497–500). Lecture Notes in Computer Science Berlin: Springer.

37. Zakrevskij, A. D. (1989). To the theory of parallel algorithms of logical control. Izvestiya AN
SSSR, Tekhnicheskaya Kibernetika, Nr. 5, 179–191 (in Russian).

38. Zakrevskij, A. D. (1999). Parallel logical control algorithms, Institute of Engineering Cyber-
netisc of the National Academy of Science of Belarus (in Russian).

39. Steinbach, B., & Zakrevskij, A. D. (2000). Parallel automaton—basic model, properties and
high-level diagnostics, Proceedings of the 4th International Workshop on Boolean Problems,
Freiberg, pp. 151–158.

40. Bibilo, P. N. (2000). VHDL fundamentals. Moscow: Solon-R (in Russian).

www.abb.com

12 A. Karatkevich

41. Cheremisinova, L. (2002). Realization of Parallel Logical Control Algorithms. Institute of
Engineering Cybernetisc of the National Academy of Science of Belarus (in Russian).

42. Adamski, M. (1981). (1981). Realization of Petri Nets using PLA, Krajowa Konf. Teoria
Obwodow i Uklady Elektroniczne, Drzonkow, pp. 455–459 (in Polish).

43. Adamski, M. (1990). Design of digital devices by systematic structural method. Zielona Góra:
Wyzsza Szkola Inzynierska (in Polish).

44. Adamski, M. (1991). Parallel controller implementation using standard PLD software,FPGAs:
International Workshop on Filed Programmable Logic and Applications, Abingdon EE&SC
Books, pp. 296–304.

45. Adamski, M. (2005). Design of Embedded Control Systems. Formal logic design of repro-
grammable controllers. New York: Springer.

46. Bubacz, P., & Adamski, M. (2006). Heuristic algorithm for an effective state encoding for
reconfigurable matrix-based logic controller design, Programmable Devices and Embedded
Systems—PDeS 2006: proceedings of IFAC workshop, Brno, pp. 236–241.

47. Kozłowski, T., Dagless, E. L., Saul, J. M., Adamski, M., & Szajna, J. (1995). Parallel controller
synthesis using Petri nets. IEE Proceedings, Computers and Digital Techniques, 142(4), 263–
271.

48. Węgrzyn, A., &Węgrzyn, M. (2005). Design of Embedded Control Systems. A new approach
to simulation of concurrent controllers. New York: Springer.

49. Zakrevskij, A., Karatkevich, A., & Adamski, M. (2002). A method of analysis of operational
Petri nets. Advanced computer systems: Eight international conference, ACS 2001 (pp. 449–
460). Boston: Kluwer Academic Publishers.

50. Karatkevich, A. (2007). Dynamic analysis of Petri net-based discrete systems, Lecture Notes
in Control and Information Sciences, Berlin: Springer.

51. Grobelna, I., Wiśniewska, M., Wiśniewski, R., Grobelny, M., & Mróz, P. (2014). Decomposi-
tion, validation and documentation of control process specification in form of a Petri net, 7th
International Conference onHuman System Interactions (HSI), Lisbon, Portugal, pp. 232–237.

52. Węgrzyn, A., (2003). Symbolic Analysis of Binary Control Devices Using Selected Methods
of Analysis of Petri Nets, Ph D thesis, Prace Naukowe z Automatyki i Informatyki, T. 3,
Uniwersytet Zielonogórski, Zielona Góra (in Polish).

53. Węgrzyn, M. (2010). Modelling of Petri nets in VHDL. Electrical Review, Nr., 1, 212–216 (in
Polish).

54. Wiśniewska, M. (2012). Application of hypergraphs in decomposition of discrete systems, PhD
thesis, Lecture Notes in Control and Computer Science, Vol. 23, University of Zielona Góra,
Zielona Góra.

55. Węgrzyn, M., Adamski, M., Karatkevich, A., & Munoz, A. (2014). FPGA-based embedded
logic controllers, 7th International Conference on Human System Interactions (HSI), Lisbon,
Portugal, pp. 249–254.

56. Wiśniewski, R., Stefanowicz, Ł., Bukowiec, A., & Lipiński, J. (2014). Theoretical aspects
of Petri nets decomposition based on invariants and hypergraphs, 8th International Confer-
ence of Multimedia and Ubiquitous Engineering (MUE). Zhangjiajie, China, Lecture Notes in
Electrical Engineering, 308, 371–376.

57. Łabiak, G. (1999). Modelling statechart diagrams by means of Petri nets, Advanced Com-
puter Systems—ACS ’99: Sixth Inernational Conference: Proceedings (pp. 253–259). Poland:
Szczecin.

58. Miczulski, P. (2005). Design of Embedded Control Systems. Calculating state spaces of hier-
archical Petri nets using BDD. New York: Springer.

59. Łabiak, G., & Karatkevich, A. (2014). The use of algebraic decision diagrams for algebraic
analysis of n-bounded Petri Nets, New trends in digital systems design, Fortschritt—Berichte
VDI : Nr. 836, Düsseldorf, pp. 56–67.

60. Yakovlev, A., Gomes, L., & Lavagno, L. (2000). Hardware design and Petri nets. Berlin:
Springer.

61. Gomes, L., Barros, J. P., &Costa, A. (2005). Design of EmbeddedControl Systems. Structuring
mechanisms in Petri net models. New York: Springer.

Petri Nets in Design of Control Algorithms 13

62. Gomes, L., Costa, A., Barros, J. P., & Lima, P. (2007). From Petri net models to VHDL imple-
mentation of digital controllers, 33rd Annual Conference of the IEEE Industrial Electronics
Society IECON 2007, pp. 94–99.

63. Valette, R., Courvoisier, M., Begou, J. M., & Albukerque, J. (1983). Petri net based pro-
grammable logic controllers, Proceedings of 1st IFIP Conference: Computer Application in
Production and Engineering, pp. 103–116.

64. Ferrarini, L. (1992). An incremental approach to logic controller design with Petri nets. IEEE
Transactions on System, Man and Cybernetics, 22(3), 461–474.

65. Biliński, K., Adamski, M., Saul, J. M., & Dagless, E. L. (1994). Parallel Controller Synthesis
from a Petri Net Specification, Proceedings of the conference on European design automation
EURO-DAC ’94, pp. 96–101.

66. K. Biliński, Application of Petri Nets in Parallel Controller Design, Ph.D. Thesis, University
of Bristol, 1996.

67. Park, E., Tilbury, D.M., &Khargonekar, P. P. (2001). Amodeling and analysismethodology for
modular logic controllers of machining systems using Petri net formalism. IEEE Transactions
on System, Man, and Cybernetics - Part C: Applications and Reviews, 31(2), 168–188.

68. Marranghello, N., de Oliviera, W., & Damiani, F. (2004). A Petri net based timing model for
hardware/software co-design of digital systems, IEEE Asia-Pacific Conference on Circuits and
Systems, Tainan, pp. 65–68.

69. Zakrevskij, A. (1986). Elements of the theory of α-nets, Design of logical control systems,
Institute of Engineering Cybernetisc of the Academy of Sci. of BSSR, pp. 4–12 (in Russian).

70. Pottosin, Yu. (2005). Optimal State Assignment of Synchronous Parallel Automata (pp. 111–
124). Springer, New York: Design of Embedded Control Systems.

71. Cheremisinova, L. (2005). Optimal State Assignment of Asynchronous Parallel Automata (pp.
139–149). Springer, New York: Design of Embedded Control Systems.

72. Andrzejewski, G. (2005).Hierarchical Petri Nets for Digital Controller Design. Springer, New
York: Design of Embedded Control Systems.

73. Karatkevich, A., & Andrzejewski, G. (2006). Hierarchical Decomposition of Petri Nets for
Digital Microsystems Design, International Conference on Modern Problems of Radio Engi-
neering, Telecommunications, and Computer Science—TCSET 2006, IEEE, Lviv, pp. 518–521.

74. Karatkevich,A. (2008).Onmacroplaces inPetri nets,2008East-WestDesign&Test Symposium
(EWDTS) , IEEE, Lviv, pp. 418–422.

75. Pais, R., Gomes, L., & Barros, J. P. (2011). From UML state machines to Petri nets: History
attribute translation strategies, IECON 2011—37th Annual Conference on IEEE Industrial
Electronics Society, IEEE, Melbourne, pp. 3776–3781.

76. Best, E., & Coutny, M. (1992). Petri net semantics of priority systems. Theoretical Computer
Science, Nr.96, 175–215.

77. Łabiak, G. (2010). Transition orthogonality in statechart diagrams and inconsistencies in binary
control system. Przeglad Elektrotechniczny, 86(9), 130–133.

78. J. L. Peterson, Petri net theory and the modeling of systems, Prentice-Hall, 1981
79. Popova, L. (1991). On Time Petri Nets. J. Inform. Process. Cybern., 27(4), 227–244.
80. Pais, H., David, R., & Le Bail, J. (1991). Hybrid Petri nets, Proceedings of the European

Control Conference, Grenoble.
81. Hummel, Th, & Fengler, W. (2005). Design of Embedded Control Systems Using Hybrid Petri

Nets (pp. 139–149). Springer, New York: Design of Embedded Control Systems.
82. Grobelna, I. (2011). Formal verification of embedded logic controller specification with com-

puter deduction in temporal logic. Przeglad Elektrotechniczny, 87(12A), 47–50.
83. Węgrzyn, A., & Węgrzyn, M. (2006). Selected Textual Formats of Petri Net Specification

Describing Control Algorithms,Pomiary, Automatyka Kontrola, Nr. 6bis, pp. 29–31 (in Polish).
84. Szpyrka, M. (2006). Analysis of RTCP-nets with Reachability Graphs. Fundamenta Informat-

icae, 74(2–3), 375–390.
85. Szpyrka, M. (2007). Analysis of VME-Bus communication protocol - RTCP-net approach.

Real-Time Systems, 35(1), 91–108.

14 A. Karatkevich

86. Szpyrka, M., Matyasik, P., Mrówka, R., & Kotulski, L. (2014). Formal Description of Alvis
Language with α0 System Layer, Fundamenta Informaticae, Vol. 129 Nr. 1–2, January.

87. Perkusich, A., de Araujo, L. M., de Coelho, R. S., Gorgonio, K. C., & Lemos, A. J. P. (1999).
Design and Animation of Colored Petri Nets Models for Traffic Signals, Proceedings of the
2nd Workshop on Practical Use of Coloured Petri Nets and Design/CPN, Aarhus, pp. 99–118.

88. Genrich, H. J., Hanisch, H.-M., & Wöllhaf, K. (1994). Verification of Recipe-Based Control
Procedures by Means of Predicate/Transition Nets, Proceedings of the 15th International Petri
Net Conference on Application and Theory of Petri Nets, Zaragoza, Lecture Notes in Computer
Science, Vol. 815, Springer-Verlag, pp. 278–297.

89. Caccia, M., Coletta, P., Bruzzone, G., & Veruggio, G. (2005). Execution control of robotic
tasks: a Petri net-based approach. Control Engineering Practice, 13(8), 959–971.

90. DiCesare, F., Harhalakis, G., Proth, J. M., Silva, M., & Vernadat, F. B. (1993). Practice of Petri
Nets in Manufacturing, Chapman and Hall.

91. Giua, A., & DiCesare, F. (1993). GRAFCET and Petri Nets in Manufacturing, Intelligent
Manufacturing: Programming Environments for CIM Advanced Manufacturing Series, (pp.
153–176). London: Springer.

92. Desrochers,A.A.,&Al’Jaar, R.Y. (1995).Applications of Petri nets inManufacturing Systems:
Modelling. Control and Performance Analysis: IEEE Press.

93. Pawlewski, P. (Ed.). (2012). Petri Nets. InTech: Manufacturing and Computer Science.

Synthesis and Implementation of Parallel
Logic Controllers in All Programmable
Systems-on-Chip

Valery Sklyarov, Iouliia Skliarova and João Silva

Abstract Thechapter is dedicated to thedesignof logic controllerswith customizable
behavior in all programmable systems-on-chip in such a way that the desired func-
tionality is defined in software of a processing system and realized in hardware of
reconfigurable logic. The controllers implement algorithms described in form of
parallel hierarchical graph-schemes that are built in software from predefined mod-
ules. Parallel hierarchical circuits of the controllers are mapped to the reconfigurable
logic customized from software through high-performance interfaces. The circuits
generate control signals to determine the desired functionality of external devices.
A number of experiments are done in Xilinx Zynq-7000 microchips and the results
are reported.

Keywords Hardware/software architectures · Parallel logic controllers ·Hierarchi-
cal finite state machines · Hierarchical algorithms · Hardware/software interactions
1 Introduction

Nowadays, the development of software and hardware becomes more and more
interrelated [1]. The emphasis has significantly shifted from general-purpose to
application-specific products in the form of embedded processing modules in vari-
ous areas such as communications, industrial automation, automotive computers, and
home electronics. There is a tendency to integrate components on a chip that not so
long ago were separated and implemented as autonomous devices. For example, the
Zynq-7000 [2] all programmable system-on-chip (APSoC) incorporates a processing

V. Sklyarov (B) · I. Skliarova · J. Silva
Department of Electronics, Telecommunications and Informatics/IEETA,
University of Aveiro, Aveiro, Portugal
e-mail: skl@ua.pt

I. Skliarova
e-mail: iouliia@ua.pt

J. Silva
e-mail: jpss@ua.pt

© Springer International Publishing Switzerland 2016
A. Karatkevich et al. (eds.), Design of Reconfigurable Logic Controllers,
Studies in Systems, Decision and Control 45,
DOI 10.1007/978-3-319-26725-8_2

15

16 V. Sklyarov et al.

system (PS) that combines the industry-standardARMdual-core CortexTM-A9RISC
processor and a number of peripherals such as memory controllers, USB, Gigabit
Ethernet, and UART. The same micro-chip contains a built-in gate array (program-
mable logic—PL) from the Artix-7 or Kintex-7 FPGA families that is linked with
the PS through on-chip interfaces.

APSoCs like Zynq [2] can run software that interacts with parallel processing
elements (PE)mapped to hardware. Themain objective of anyPE is to provide greater
performance than an equivalent software component with similar functionality that
is typically composed of a set of functions in C or methods in Java. A parallel logic
controller can be seen as one of application-specific PEs that gets inputs from the
controlled systems and generates outputs that ensure the desired functionality. Real-
time systems may require high-speed control that can be provided more easily in
hardware rather than in software. Besides, control circuits are often used in such
hardware components that replace software functions [3].

For many practical applications (such as knowledge-based systems in [4]) inter-
action between programmable logic controllers and software in a PC is widely used.
We suggest in this chapter to provide better support for such interactions using
APSoCs that run software in the dual-core processing system and hardware in the
programmable logic. The emphasis is done on the following issues:

1. Support for modularity, hierarchy and parallelism in hardware (in the PL of
APSoC) based on hierarchical (HFSM) and communicating (CFSM) finite state
machines [5] with such functionality that can be customized and modified from
software of APSoC running in the PS.

2. Interactions between a programmable parallel logic controller implemented in
the PL and software in the PS through interrupts, general-purpose and high-
performance ports.

3. Dynamic reconfiguration of the controller from software of the PS based on the
methods [6] and potentially applying the knowledge-based technique from [4].

The remainder of the chapter is organized in five sections. Section2 suggests
architectures of parallel logic controllers implemented in APSoCs and the methods
of interaction between hardware and software components. Section3 describes the
design and implementation of parallel logic controllers with dynamically modifi-
able functionality providing support for modularity and hierarchy. Section4 gives
more details about hardware/software interactions. Section5 discusses the details of
implementations and examples. Section6 concludes the chapter.

2 The Proposed Software/Hardware Architecture

Figure1 shows the proposed hardware/software architecture. A reconfigurable paral-
lel logic controller is implemented in the PL andwewill consider below the following
twomodels for such controllers: parallel hierarchical finite statemachines (PHFSMs)
[3] and communicating finite state machines (CFSMs) [5].

Synthesis and Implementation of Parallel Logic Controllers … 17

Fig. 1 Hardware/software architecture

Software modules in the PS are responsible for the following three functions:

1. Higher-level control that enables lower-level modules of PHFSM/CFSM to be
managed. This means that the modules are not hard linked in the PL and can
be activated/deactivated from software which much like [4] may use knowledge-
based technique.

2. Run-time reconfiguration of lower-level modules allowing different functionali-
ties to be implemented using the same hardware.

3. Test and debug of the lower-level modules.

Interaction between software and hardware modules is provided through the fol-
lowing interfaces:

1. General-purpose ports (GPP) [2] for exchange of control signals.
2. High-performance ports (HPP) to configure (reconfigure) modules of the parallel

logic controller.
3. Interrupts generated in hardware and handled by software to support high-priority

requests from hardware that need immediate reaction, which is important for real-
time systems.

Figure2 shows communication mechanisms between software and hardware with
more details. The PHFSM/CFSM contains modules that can be executed in parallel.
Any module is considered to be either a conventional finite state machine (FSM) or
a hierarchical FSM (HFSM) and has pre-defined signals that are:

a) An input signal start indicating that the module has to be reset to the initial state
and begin execution.

18 V. Sklyarov et al.

Fig. 2 Details of interactions between software and hardware modules

b) An output signal finish designating that the module has completed the associated
operations and is suspended.

c) An input signal reset requiring transition to the initial state of the module. This
signal may also reset the relevant registers in the attached execution unit (data-
path).

d) An output vector named state represents the current state of HFSM/FSMmemory
(state register). This vector can be used efficiently for debugging purposes. Indeed,
software is capable of monitoring this signal and concluding if the desired func-
tionality is properly provided or if there is an unusual situation. Many potential
deadlocks can be found and eliminated.

e) An input signal configure requests customization of the module and points to the
first address in on-chipmemorywith the reconfiguration file.On such a request the
module is reconfigured by a configuration controller and as soon as this operation
is completed the signal finish is generated.

f) Some signals are dedicated to particular module functionality and we will discuss
them later.

Software modules set/check the GPP signals using two ways:

a) Periodically and on internal requests generated according to the implemented
algorithms. For example, as soon as one task is completely solved the hardware
module responsible for the task may be reconfigured to solve the subsequent task.

b) Immediately on interrupts from hardware modules.

Hardware modules may be configured statically or dynamically. Static configu-
ration is done when the relevant bit-stream is uploaded to the PL section. Dynamic
reconfiguration is provided during execution time, i.e. after bit-stream has been
loaded. This is done with the aid of the methods described in [6] (see the next
section). PHFSM/CFSM may be used for the following three types of applications:

Synthesis and Implementation of Parallel Logic Controllers … 19

1. External devices connected to APSoC pins, such as those described in [7].
2. Internal blocks that may be used for different purposes, for example to accelerate

time consuming segments of software modules.
3. A composition of external and internal devices, for example, somemodules of the

HFSM/CFSM may control components of an assembly line [7] and some other
modules may be used for solving optimization problems such as planning the
sequence of operations, etc.

Apart from applications described above, PHFSMs/CFSMs can be used as hard-
ware accelerators of software programs, such as [1].Wewill show below that for such
applications capabilities of parallelism, modularity, hierarchy and dynamic recon-
figuration are also very useful and important.

3 Design and Implementation of the Parallel Logic
Controller

We have already mentioned that the parallel logic controllers considered here are
based on different FSM models. Basically, we can distinguish three types of FSM
models, which are simple sequential, hierarchical, and parallel. In turn, they can
be further divided (for example, we can consider recursive and iterative hierarchical
models).

Methods of synthesis for simple sequential FSMs are very well studied [8, 9] and
they are considered just as a basis for more complicated hierarchical and parallel
FSMs.

Ahierarchical FSMis composedof other hierarchical and simple sequential FSMs
(modules), which can be activated much like procedures in software programs. Thus,
any module can be triggered from either another or the same module (see Fig. 3) [5].

Fig. 3 Execution of hierarchical modules

20 V. Sklyarov et al.

Fig. 4 Execution of parallel modules

A parallel FSM enables different modules to be executed in parallel (see Fig. 4).
Note that generally any electronic device deals with simultaneous processing of
analog/digital signals. Thus, it is parallel by definition. However, circuit level of
parallelism does not give answers to many questions appearing at the algorithmic
level of specification. For example, how can different branches of algorithms be
executed in parallel, how can pipelining technique be applied, etc. In [5] all necessary
answers to such questions are given.

The most interesting approach is a combination of parallel and hierarchical capa-
bilities within the same FSM, which becomes a PHFSM.

Reconfiguration of HFSMs/CFSMs can be done with the aid of the methods
[6] which permit HFSM/CFSM circuits to be built from reloadable memories that
determine the desired functionality. The memories (that are embedded or distrib-
uted PL blocks) can be updated at execution time and thus the operations of the
HFSMs/CFSMs can be changed in accordance with the requirements that might
depend on some factors [3, 4].

Since HFSMs/CFSMs are composed of modules that may be replaced if required,
different control algorithms specifiedby themodules canbe selected during execution
time in order to adjust parameters of the controlled devices. Thus, we can apply the
strategy “try, test and replace if required”. Besides, any module can be updated
with an improved version without modification of surrounding modules [3]. For
example, the PS evaluates the functionality of the controlled devices and verifies if
the established requirements are satisfied. If based on the result of evaluation the
PS makes a conclusion that some modes or algorithms applied to the controlled
devices may be improved then the set of active modules implemented in the PL can
be updated and some of such modules may be reconfigured using the methods [6].

Hierarchy and parallelism can be described using various methods such as [3,
10–12]. We will use parallel hierarchical graph-schemes (PHGSs) [5]. An example
of a PHGS which describes functionality of a self-controlled transport section from
[13] is given in Fig. 5. The algorithm is composed of 7 modules Z0, . . . ,Z6. Some

Synthesis and Implementation of Parallel Logic Controllers … 21

Fig. 5 An example of parallel hierarchical algorithms for a logic controller from [13]

of the modules, namely Z1, . . . ,Z6, are activated hierarchically and some of them,
namely Z1, Z2, are called in parallel. Labels like a01 and a02 represent states [5].
Rhomboidal nodes contain logical conditions that are formed by sensors of the logic
controller and enable the sequence of execution of the algorithm to be properly
selected. For example, if OFF = 0 in the node a03 of the module Z0 the execution
of the rectangular node a03 is repeated. If OFF = 1 in the node a03 the module Z0

is terminated. Microoperations (like y1, y2, move left, etc.) affect actuators of the
controlled device forcing the required operations to be executed.

The modules can be activated from each other in such a way that:

a) the calling module is suspended;
b) the called module is executed;
c) as soon as the called module is terminated, the control has to be returned back to

the calling module, i.e. the calling module continues its execution starting from
a node following the node with the terminated called module. For example, the
node a02 of the calling module Z0 activates the called module Z6. After Z6 is
terminated, the control has to be returned back to Z0 and the node a03 has to be
activated.

If two or more modules are activated in the same rectangular node they have to
be executed in parallel. For example, the modules Z1 and Z2 have to be activated in
parallel from the module Z0. If two or more modules (the called modules) are called

22 V. Sklyarov et al.

in parallel from the calling module, the calling module is allowed to continue its
execution if and only if all the called parallel modules have been completed. In other
words if any of the called parallel modules is still functioning, the calling module
has to be suspended. PHFSMs can formally be synthesized from PHGSs using the
methods [3, 5, 13].

PHFSMs/HFSMs/FSMs may be connected in a network in such a way that they
communicatewith eachother [5]. The communicationsweconsider here aremanaged
by software modules (see Fig. 2) in such a way that:

• Any FSM module can be activated/reset/configured/tested by software modules
through GPPs and HPPs (see Fig. 2). Thus, many communication mechanisms in
CFSMs [5] are provided by software.

• For such FSM states where some operations have to be immediately executed
special interrupts from hardware to software are generated.

• Software modules check states of FSM modules and the interrupts from the FSM
modules and make conclusion about subsequent operations.

4 Hardware/Software Interactions

Hardware/software interactions are supported by two hardware components that
have been developed in the Vivado 2014.2 design suite for Zynq microchips. The
first component GP_control provides support for interactions through GPPs and the
second one, HP_control, enables dynamic reconfiguration to be done. Three Xilinx
libraries proc_common, axi_lite_ipif, and axi_master_burst were used.

Data exchange through GPPs is provided through the PL registers mapped to
an address range defined by the constant of Xilinx type SLV64_ARRAY_TYPE
[14]. Interaction is organized through Xilinx modules in packages axi_lite_ipif and
proc_common. From the side of hardware the constants C_ARD_ADDR_RANGE_
ARRAY of Xilinx type SLV64_ARRAY_TYPE and C_ARD_NUM_CE_ARRAY
of type INTEGER_ARRAY_TYPE have been properly customized selecting the
required chip select and chip enable signals (many examples are given in [15]).
The minimum allowed size of a memory segment is 100016 (it is defined by the
Xilinx constant C_S_AXI_MIN_SIZE) and it is almost always sufficient for all
modules interacting with software in a way shown in Fig. 2. In rare cases when larger
number of signals for GPPs is needed this constant can easily be increased (see
details in [14]). Signals between the PS and the PL are transferred through registers
in the PL addressed by the values in the constants and managed by the PS (the PS
is the master and the PL is the slave). Hardware and software can be developed
independently of each other using the defined transfer area to communicate. All
projects for experiments were implemented as standalone. Other types of projects
(such as running under Linux) can be prepared using the methods described in [15].

Synthesis and Implementation of Parallel Logic Controllers … 23

Reconfiguration of different FSM modules is done through HPPs and this requires
the following customization:

1. The used memory (on-chip memory—OCM, or cache for our projects) was
enabled and the size of transferred data (32 or 64 bits) was indicated.

2. The initial memory address needs to be chosen identically in software and in
hardware. Software modules were developed in C language.

As soon as a request for configuration is set from software, the configuration
controller in the PL copies data (allowing the chosen FSM module to be customized
[6]) to the necessary memory blocks that are either embedded to the PL or distributed
elements built from the PL look-up tables. It is done similarly to [16].

Reconfiguration data are kept in either OCM or cache filled in from a host PC.
Copying data from the host PC to on-chip memories is done with the aid of projects
from [15]. The memories are always considered to be slaves and the PS that copies
data from the PC to the memories and the configuration controller in the PL that
reads data and customizes the chosen FSMmodule are masters operating in different
time slots. Configuration data are transferred from the PS to the PL in a burst mode
as shown in Fig. 6.

The top module instantiates several components, two of which are GP_control
and Configuration module. The remaining components are Xilinx intellectual prop-
erty (IP) cores. The component Burst reader executes burst read (supported by the
Xilinx component axi_master_burst [17]) and generates the signal finished as soon
as reading is completed. After that HFSM/FSM memory blocks are loaded much
like it is done in [16].

Fig. 6 Component diagram for configuration of FSM modules in burst mode

24 V. Sklyarov et al.

The sequence of operations init, read, load, and done is formed by a dedicated
(not reconfigurable) HFSM module with the relevant states, two of which (read and
done) involve hierarchical operations. The first operation is implemented in the burst
reader and it is given in [15]. The second operation enables to load HFSM/FSM
memory blocks that permit the desired customization of HFSM/FSM modules to be
done.

Interrupts can be generated in any FSM module if immediate reaction is needed
from the software modules. Interrupts are initiated by dedicated signals in some
chosen HFSM/FSM states and processed in software by the interrupt handler. Many
examples that demonstrate how interrupts can be processed in Zynq microchips are
given in [15]. A similar technique is used in logic controllers that are considered
here.

5 Implementations and Examples

Figure7 shows the organization of the experiments.We used amulti-level computing
system [18]. Configuration data are prepared in software of the host PC and saved
in files that are copied to APSoC memories using projects from [15]. Modules of
parallel logic controllers are created in the PL and managed from software of the
PS. The latter and software of the host PC may also be responsible for verifying
functionality of different HFSM/FSM modules. Standalone applications have been
created and uploaded to the PS from Xilinx Software Development Kit (SDK) using
methods described in [15]. Interaction is done through the SDK console window.
All experiments were done in two Zynq-based prototyping systems: ZyBo [19] and
ZedBoard [20]. Two examples are discussed in the subsequent sections.

Fig. 7 Experimental setup

Synthesis and Implementation of Parallel Logic Controllers … 25

5.1 An Example of PHFSM-Based Hardware Accelerator

Let us consider a project demonstrating the use of PHFSM to accelerate computation
of the greatest common divisor for N unsigned integers, where N is chosen to be 8.
The intended functionality is demonstrated on an example of the followingC function
gcd with 8 arguments:

unsigned int gcd (unsigned int A, unsigned int B,
unsigned int C, unsigned int D, unsigned int E,
unsigned int F, unsigned int G, unsigned int H)

{
return gcd(gcd(gcd(A,B) , gcd(C,D)) , gcd(gcd(E,F) , gcd

(G,H))) ;
}

This function permits the greatest common divisor of 8 operands A, B, C, D, E,
F, G, and H to be found and calls another function gcd with two operands:

unsigned int gcd (unsigned int A, unsigned int B)
{

unsigned int tmp;
while (B > 0)
{

i f (B > A)
{

tmp = A;
A = B;
B = tmp;

}
else
{

tmp = B;
B = A%B;
A = tmp;

}
}
return A;

}

Clearly, four functions gcd(A, B), gcd(C,D), gcd(E, F), gcd(G,H) can be executed
in parallel at the first step giving the results Result_A_B, Result_C_D, Result_E_F,
and Result_G_H. At the second step, these results will be used as arguments for
the functions: gcd(Result_A_B, Result_C_D), and gcd(Result_E_F, Result_G_H),
which can also be executed in parallel giving the results Result_A_B_C_D, and
Result_E_F_G_H.At the next (last) step the function gcd(Result_A_B_C_D,Result_
E_F_G_H) computes the final greatest common divisor of 8 unsigned integers A, B,
C, D, E, F, G, and H. All the above functions will be implemented in the PHFSM

26 V. Sklyarov et al.

Fig. 8 Parallel hierarchical graph-scheme that permits the greatest common divisor of N = 8
non-negative integers to be found

Fig. 9 Interaction with the
circuit that computes the
greatest common divisor of
eight unsigned integers

described by PHGS in Fig. 8. Possible results of interaction from the SDK console
are demonstrated in Fig. 9.

Synthesis and Implementation of Parallel Logic Controllers … 27

At the beginning, the operands A, B, C, D, E, F, G, and H are examined and if
there is at least one zero operand then the subsequent steps are not executed and
the result is assigned to 0. If all the operands are not equal to zero then 4 modules
Z1 with different arguments are activated at the same time. As soon as all of them
terminate, the results of these modules are used as operands for two new invocations
of Z1 also running in parallel. The final result is produced in the single module
Z1. In [3] there are two complete synthesizable VHDL specifications that describe
the hardware circuit that implements the algorithm in Fig. 8. The first specification
(entity Parallel_HFSM_iterative)) corresponds to the C function discussed above.
The second specification (entity Parallel_HFSM_recursive) is based on a recursive
C function given in [3]. Thus, theremight be recursive calls in all modules Z1 running
in parallel. Themodules Parallel_HFSM_iterative and Parallel_HFSM_recursive are
given in [3] (see Sect. 5.4 in [3]) and can also be downloaded from http://sweet.ua.
pt/skl/Springer2014.html).

Our example uses four address ranges [15] and respectively four chip select sig-
nals with one chip enable signal for each address pair. Let us look at the following
constants:

constant C_ARD_ADDR_RANGE_ARRAY: SLV64_ARRAY_TYPE := (
X"0000_0000_0000_0000" , −− this pair is used for 8

−− 32−bit operands : A, B, C, D, E, F, G, H
X"0000_0000_0000_001F" ,
X"0000_0000_0000_0020" , −− this pair is used for the

−− 32−bit result , i . e . for the greatest common
X"0000_0000_0000_0023" , −− divisor of the operands A,

−− B, C, D, E, F, G, H
X"0000_0000_0000_0024" , −− 32−bit status (for

−− overflow and ready signals)
X"0000_0000_0000_0027" ,
X"0000_0000_0000_0028" , −− 32−bit control (for enable

−− and reset signals)
X"0000_0000_0000_002B") ;

constant C_ARD_NUM_CE_ARRAY : I NTEGER_ARRAY_TYPE := (
0 => 1,
1 => 1,
2 => 1,
3 => 1) ;

The complete project that includes hardware and software modules is available at
http://sweet.ua.pt/skl/TUT2014.html. Additional details may also be found in [15].
Verification of the project demonstrates high performance. Similar experiments have
been done with recursive and iterative algorithms that enable traversing binary trees
from [5] to be implemented partially in software and partially in hardware.

http://sweet.ua.pt/skl/Springer2014.html
http://sweet.ua.pt/skl/Springer2014.html
http://sweet.ua.pt/skl/TUT2014.html

28 V. Sklyarov et al.

5.2 An Example of a Parallel Hierarchical Controller

The second example explains how to execute different operations with PHF-
SMs/CFSMs that implement the algorithm depicted in Fig. 5. Parallel module exe-
cutions are organized with the aid of the methods [3]. The main difference between
HFSMs and CFSMs is in connections between the modules that are FSMs without
hierarchical calls. In HFSM all links are organized through common stack memories
[3] and in CFSM they are organized through semaphores [5]. The following steps
have been done:

1. Incomplete in Fig. 5 PHGSs Z4, Z5, and Z6 have been entirely described.
2. Nodes of the PHGSs have beenmarked with labels: a01, a

0
2, . . . in accordance with

the rules [5] (see also Fig. 5).
3. A combinational circuit for eachPHFSMmoduleZ0, . . . ,Z6 is built frommemory

blocks and has the structure shown in Figs. 8 and 10 of [6]. The configuration
controller for memory blocks is built in a way [16].

4. The PHFSM has been synthesized and implemented in the PL with the aid of the
methods [3, 6].

5. Initial configuration corresponding to the extended PHGS from Fig. 5 is done
statically in the PL. Connections to the controlled devices are provided through
external APSoC pins.

6. Reconfiguration that permits functionality of some modules of the PHFSM to be
changed is done from software running in the PS and verified according to the
methods described in Sect. 2.

We have found that reconfiguration can be done very fast. Thus, formany practical
cases customization of modules may be done even during execution time. The circuit
occupies less than 1% of the PL resources, which permits many additional hardware
components to be built in the same microchip.

6 Conclusion

The chapter suggests the designmethod for parallel logic controllers in Zynq-7000 all
programmable systems-on-chip. It is proposed to model the controller by a parallel
hierarchical finite state machine implemented in hardware (in the programmable
logic) with additional support from software (in the processing system). Themachine
is composed of modules communicating with each other and managed by software,
which also allows verifications and changes in the functionality of the modules
applying the technique of dynamic reconfiguration. Finally, the proposed controllers
provide support for modularity, hierarchy (including recursion), parallelism and run-
time reconfiguration.

Acknowledgments This work was supported by National Funds through FCT—Foundation for
Science and Technology, in the context of the project PEst-OE/EEI/UI0127/2014.

Synthesis and Implementation of Parallel Logic Controllers … 29

References

1. Sklyarov, V., & Skliarova, I. (2013). Hardware implementations of software programs based
on HFSM models. Computers and Electrical Engineering, 39(7), 2145–2160.

2. Zynq-7000 All Programmable SoC Technical Reference Manual (2014). http://www.xilinx.
com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

3. Sklyarov, V., Skliarova, I., Barkalov, A., & Titarenko, L. (2014). Synthesis and Optimization
of FPGA-based Systems. Heidelberg: Springer.

4. Zmaranda,D., Silaghi,H.,Gabor,G.,&Vancea,C. (2013). Issues on applying knowledge-based
techniques in real-time control systems. International Journal of Computers, Communications
and Control, 8(1), 166–175.

5. Sklyarov, V., Skliarova, I., & Sudnitson, A. (2012). Design of FPGA-based Circuits using
Hierarchical Finite State Machines. Tallinn: TUT Press.

6. Sklyarov, V. (2002). Reconfigurable models of finite state machines and their implementation
in FPGAs. Journal of Systems Architecture, 47(14–15), 1043–1064.

7. Sklyarov,V. (2002).Hardware/softwaremodeling of FPGA-based systems.Parallel Algorithms
Application, 17(1), 19–39.

8. Baranov, S. (1994). Logic Synthesis for Control Automata. Boston: Kluwer Academic Publish-
ers.

9. De Micheli, G. (1994). Synthesis and Optimization of Digital Circuits. New York: McGraw-
Hill, Inc.

10. Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8, 231–274.

11. Uchitel, S., Kramer, J., & Magee, J. (2003). Synthesis of behavorial models from scenarios.
IEEE Transactions on Software Engineering, 29(2), 99–115.

12. Zakrevskij, A. (1981): Logical Synthesis of Cascade Networks. Science, Moscow (in Russian).
13. Sklyarov, V., & Skliarova, I. (2008). Design and implementation of parallel hierarchical finite

state machines. In Proceedings of 2nd International Conference on Communications and Elec-
tronics (pp. 33–38). Hoi An, Vietnam.

14. LogiCORE IP AXI4-Lite IPIF v2.0. Product Guide for Vivado Design Suite (2013). http://
www.xilinx.com/support/documentation/ip_documentation/axi_lite_ipif/v2_0/pg155-axi-
lite-ipif.pdf

15. Sklyarov, V., Skliarova, I., Silva, J., Rjabov, A., Sudnitson, A., & Cardoso, C. (2014). Hard-
ware/Software Co-design for Programmable Systems-on-Chip. Tallinn: TUT Press.

16. Sklyarov, V., & Skliarova, I. (2007). Synthesis of reconfigurable hierarchical finite state
machines. Studies in Computational Intelligence, Autonomous Robots and Agents (pp. 259–
265). Berlin: Springer.

17. LogiCORE IP AXI Master Burst v2.0. Product Guide for Vivado Design Suite
(2013). http://japan.xilinx.com/support/documentation/ip_documentation/axi_master_burst/
v2_0/pg162-axi-master-burst.pdf

18. Sklyarov, V., Skliarova, I., Silva, J., & Sudnitson, A. (2014). Design space exploration in multi-
level computing systems. In Proceedings 15th International Conference on Computer Systems
and Technologies (pp. 40–47). Bulgaria.

19. ZyBo ReferenceManual (2014). http://digilentinc.com/Data/Products/ZYBO/ZYBO_RM_B_
V6.pdf

20. ZedBoard (ZynqTMEvaluation and Development) Hardware User’s Guide (2014) Version 2.2.
http://www.zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_v2_2.pdf

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_lite_ipif/v2_0/pg155-axi-lite-ipif.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_lite_ipif/v2_0/pg155-axi-lite-ipif.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_lite_ipif/v2_0/pg155-axi-lite-ipif.pdf
http://japan.xilinx.com/support/documentation/ip_documentation/axi_master_burst/v2_0/pg162-axi-master-burst.pdf
http://japan.xilinx.com/support/documentation/ip_documentation/axi_master_burst/v2_0/pg162-axi-master-burst.pdf
http://digilentinc.com/Data/Products/ZYBO/ZYBO_RM_B_V6.pdf
http://digilentinc.com/Data/Products/ZYBO/ZYBO_RM_B_V6.pdf
http://www.zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_v2_2.pdf

Circuit Implementation of Parallel Logical
Control Algorithms Represented in PRALU
Description

P.N. Bibilo, Yu.V. Pottosin, V.I. Romanov and A.D. Zakrevskij

Abstract Software system for circuit implementation of parallel logical control
algorithmsLOCON-2 is described in this chapter. The systemallowsobtainingproper
descriptions (models) in VHDL at any stage of transforming descriptions of the
control algorithms. Obtaining of VHDL models provides possibility to integrate
LOCON-2 with the synthesizers of logic circuits.

Keywords Digital circuits implementation · Parallel logical control algorithms ·
VHDL · PRALU

1 Introduction

The design of digital systems with concurrency of functioning consists of several
stages. First, the initial formal model of the device behavior is tested for correct-
ness, then it is simulated, and after that, when the model is correct, the design of
appropriate logic circuits is performed in desired technological base. If the model
is described in the high level design languages, such as VHDL or Verilog [1, 2], to
check the compliance of high level models of digital systems with specifications for
their development, the simulation is used [3]. The functional verification based on
simulation demands using appropriate languages (e.g. PSL [4]), methodology [5],
as well as laborious development of special testing programs [6]. So in any case, the
designer must perform checking of important characteristics of the model of parallel
digital system; often analyzing the state reachability graph of the system turns to be
necessary [7]. Another important problem of the designing is an automatic design of
logic circuits using the initial formal model of behavior of the digital system. That
imposes certain restrictions on using the constructions of high level languages—only
the synthesized constructions can be used in the systemmodel [1]. PRALU language

P.N. Bibilo (B) · Yu.V. Pottosin · V.I. Romanov · A.D. Zakrevskij
United Institute of Informatics Problems, Belarussian Academy of Sciences,
ul. Surganova 6, 200012 Minsk, Belarus
e-mail: bibilo@newman.bas-net.by

© Springer International Publishing Switzerland 2016
A. Karatkevich et al. (eds.), Design of Reconfigurable Logic Controllers,
Studies in Systems, Decision and Control 45,
DOI 10.1007/978-3-319-26725-8_3

31

32 P.N. Bibilo et al.

intended for description of parallel algorithms of logical control [8] is a formal lan-
guage that combines successfully abilities of testing formally the initial description
correctness with abilities of automated design of logic circuits. PRALU language
is characterized by logical orderliness, simplicity, compactness of obtained descrip-
tions, using binary (Boolean) input and output variables of a control device whose
algorithm of functioning is specified in PRALU language. The complete description
of PRALU language is in [8].

The important advantages of PRALU language in designing are developed formal
methods for verification of initial PRALU descriptions of control algorithms and
efficient methods for circuit implementation in the form of programmable logic
arrays (PLA) with a memory organized as an RS flip-flop register. The intermediate
models of such circuit implementation are parallel and sequent automata.

In this chapter, LOCON-2 system for circuit implementation of parallel logi-
cal control algorithms has been described. At any stage of transforming, there is a
possibility to obtain the synthesizable VHDL descriptions. The synthesizable VHDL
descriptions are those that can be used for automatic construction of logical circuits in
given technological bases. Obtaining logical circuits in various technological bases
can be performed by various technical synthesizers, e.g. LeonardoSpectrum [9].
LeonardoSpectrum synthesizer allows to obtain hardware implementations both in
programmable logic circuits of FPGA (Field-Programmable Gate Arrays) type and
customVLSI. Converting PRALU descriptions and the intermediate descriptions (in
form of parallel and sequent automata) into VHDL models is of practical interest
because it allows to obtain simpler circuits and to use various technological bases.

2 Representation of Logical Control Algorithms
in PRALU language

A description of a parallel algorithm of logical control in PRALU language consists
of a set of sentences. Each sentence may consist of several chains. In Fig. 1, an
example of PRALU description is given where every sentence, except of the fourth
one, consists of one chain. The fourth sentence consists of two chains. Every chain
consists of an ordered sequence of fragments. Those are initial, internal and final
ones, except of the case of an elementary chain.

According to [8], a chain is called elementary if it is of the following form:

μi : −ki
′ → ki

′′ → νi (1)

where operation−ki
′ or→ k′′

i may be absent. Generally, an elementary chain consists
of four parts:

μi is the set of initial marks of the chain;
−ki

′ is the operation of waiting of event k′
i ;→ k′′

i is the operation of action;
νi is the set of final marks of the chain.

Circuit Implementation of Parallel Logical Control … 33

Fig. 1 PRALU description pott1

We say that an elementary chain is a complete fragment. μi and νi are the sets of
natural numbers.An inner fragment consists of a pair (operation ofwaiting, operation
of action)

− k′
i → k′′

i (2)

An initial fragment

μi : −k′
i → k′′

i (3)

differs from the inner one (2) by having the set μi of initial marks of the chain.
A final fragment

− k′
i → k′′

i → νi (4)

differs from the inner one (2) by having the set νi of final marks of the chain. If a
chain is not an elementary one, it always has only one initial and one final fragment,
and it may have several inner fragments. In any fragment, operation −k′

i or → k′′
i

may be absent. All the chains in the example under consideration, with the exception
of the chain that is in the first sentence, are the elementary ones.

34 P.N. Bibilo et al.

In formulas (1)–(4), the symbols k′
i and k

′′
i are elementary conjunctions of Boolean

variables. The conjunctions k′
i are formed with literals of Boolean variables from

the set X, and k′′
i are formed with literals of Boolean variables from the set Y . If

conjunction k′
i (k

′′
i) is not specified in a fragment, then it is supposed to be identically

equal to 1. The operation −k′
i is the operation of waiting for event k′

i Executing of
this operation means waiting for the event when all the variables in k′

i take values
converting k′

i to 1. The operation of action → k′′
i means assignment of values to

variables of conjunction k′′
i , such that turn k

′′
i to 1. The colon is a spacer, and the arrow

before νi denotes introducing elements into the current firing set of the chains [8].
In Fig. 1, an example of PRALU description pott1 [10] is given where symbol →

is replaced by >, and symbols * and ∧ are used for conjunction and complement,
respectively. This is the form of PRALU description which is used in LOCON-2
system described below.

Input variables x1 and x2 form set X, and variables y1 and y2 set Y . Sentence 1
consists of one chain. There are two fragments in Sentence 1. Those are initial one

1 : −∧x1 ∗ x2 > y1 ∗∧ y2 (5)

and final one

−∧ x2 > 2.3.4; (6)

The initial fragment (5) has input mark 1, operation of waiting waits for variable x1
to take value 0 and x2 value 1. The operation of action is fulfilled by assigning value
1 to output variable y1 and value 0 to y2. If the variables are both in sets X and Y , they
are declared in PRALU description as internal ones. There are no internal variables
in the considered example. So, there are no variables in INTER section (Fig. 1).

The final fragment (6) has no input marks and operations of action. The operation
of waiting means waiting for variable x2 to be equal to 0. The set of final marks of
the fragment (6) consists of marks 2, 3, 4.

First, we will explain what the operations of waiting and action mean, and then
we will explain how the algorithm is executed, i.e. how the chains are fulfilled, how
they interact and what is the role of the firing set in the process.

A chain of PRALU sentence is executed if the set μi is a subset of the current
firing set and the operation of waiting −k′

i is fulfilled. Execution of a chain starts
from immediate removal of μi from the current firing set, then the operation of
action → k′′

i is fulfilled and after that, the elements of νi are added to the current
firing set immediately. At the start of the algorithm, only the mark 1 is introduced
into the current firing set. The algorithm ends its work if the firing set becomes
empty. During executing the algorithm, some chains may be executed at the same
time (concurrently), therefore such formalism allows to describe parallel algorithms
of logical control. It is considered in [8] in detail. The set of chains must satisfy
the certain requirements, e.g. chains i and j with the same set of initial marks must
have orthogonal conjunctions in the operations of waiting. Other requirements for
correctness of initial PRALUdescriptions are presented in [8].We suppose that initial
PRALU description is correct.

Circuit Implementation of Parallel Logical Control … 35

3 The Architecture of LOCON-2 system

The LOCON-2 program system (an abbreviation of LOgical CONtrol) is intended
for designing systems of logical control based on the methodology described in
[10]. LOCON-2 system consists of several subsystems (Fig. 2), each of which is
oriented to working with a model of the designed control algorithm, and every model
corresponds to certain stages of the design. The program system can be used jointly
with the industrial synthesizer of logic circuits LeonardoSpectrum. Attention should
be paid to multiplicity of the forms of description of the model of the developed
control algorithm in VHDL (blocks A1–A4, RTL, OPT). In the framework of one
project, all the descriptions are supposed to be functionally equivalent and differ both
in terms of constructing and using peculiarities of VHDL.

Fig. 2 Transformation of data in LOCON-2 system

36 P.N. Bibilo et al.

4 The Technology of Design in LOCON-2

The technology of circuit implementation of control algorithms in LOCON-2 system
consists of the following sequence of stages.

Stage 1. The required control algorithm is formulated in the form of description in
PRALU language. Such a description is the main used model of PRALU-description
subsystem. In the framework of this subsystem, the possibilities of convenient input
and editing of algorithms in PRALU language, checking their syntax correctness
and simulation are provided [10]. An algorithm being constructed and checked is
converted into VHDL description [11]—the description A1 (Fig. 2) is constructed.
The converting PRALU → VHDL is considered below in a more detailed way. Then
the obtained control algorithm is represented as a parallel automaton.

Stage2. Themodel of a control algorithm in the formof description in the language
of parallel automata is the main data type for the subsystem Parallel automaton. The
model of parallel automaton differs from the traditional model of finite automaton,
because a parallel automaton, unlike a finite automaton, can be at several states at the
same time. The transitions occur between sets of states rather than between states. In
the framework of the subsystem Parallel automaton, the possibility to test important
properties of a parallel automaton is provided. Those properties are self-coordination,
irredundancy, recoverability, consistency and persistency.

A user can correct the initial description in terms of parallel automaton language,
or return to the previous step and transform the initial PRALU description. When the
model satisfying the necessary properties has been established, the corresponding
representation in VHDL is constructed [12]—the description A2 (Fig. 2).

Stage 3. The subsystem Sequent automaton deals with the model of control algo-
rithm as a sequent automaton [13]. The sequent automaton is a dynamic logical
model of a discrete system with many variables that is specified formally as a set S
of sequents si. Each sequent si is of the form fi � ki and determines cause-and-effect
relation between an event represented by Boolean function fi (given in disjunctive
normal form, DNF) and a simple event represented by conjunctive term ki; symbol
� denotes this relation. The formula fi � ki is interpreted as follows: if function fi
takes value 1 at some moment, then ki also takes value 1 immediately. By that, the
values of all the variables in ki are determined unambiguously. Working in Sequent
automaton subsystem, a user solves the problem of state assignment of an automaton
as a main problem. The success in this work provides the best circuit implementation
of a considered control algorithm. It should be noted that available industrial syn-
thesizers of logic circuits including LeonardoSpectrum are based on the compilation
(local) principle of synthesis where each VHDL construction is replaced by its sub-
circuit represented at the level of RTL descriptions (Register Transfer Level). After
that, the optimization is conducted. In state assignment of a parallel automaton that
realizes several concurrent processes, another approach to hardware implementation
is used that can be defined as global and implements jointly concurrent processes
that describe functioning of the automaton as a whole.

Circuit Implementation of Parallel Logical Control … 37

In the conclusion of the stage, the corresponding A3 VHDL description is con-
structed [12]. At the same time, using the obtained sequent automaton, the model
is constructed in the form of SF description that gives the functional description of
PLA with the memory as an RS flip-flop register. This description can be initial for
circuit implementation in various design systems that use SF description as input
data. One of such design system can be, for instance, FLC system [14] that contains
efficient computer programs for logic optimization. The main block of the obtained
SF description is the block of combinational logic that can be optimized in the class
of two-level representations of systems of functions (DNF) and in the class of BDD
(Binary Decision Diagrams)—the multilevel representations constructed on the base
of Shannon expansion.

Stage 4. The subsystem SFLogical Control allows a user to obtainVHDLdescrip-
tion on the base of the obtained SF description.As a result, onemore variant ofVHDL
description appears. It is A4.

Stage 5. After Stage 4 completion, the obtained descriptions A1–A4 are used as
initial data for synthesizing circuits by LeonardoSpectrum synthesizer.

The process of circuit synthesis by LeonardoSpectrum synthesizer is divided into
several stages, the first of which is high-level synthesis (pre-optimization). The result
of this stage is an RTL description, followed by technologically independent opti-
mization, technology mapping and increasing speed [9]. The RTL description can be
obtained by LeonardoSpectrum (this distinguishes it advantageously from other syn-
thesizers) also from the logic circuit that has been synthesized by unmap instruction.
We call this description RTL0. Naturally, RTL0 description is equivalent functionally
to the initial algorithmic VHDL description. Using RTL0 description, either ASIC
or FPGA circuit can be synthesized iteratively. It is noted in design practice that a
newly constructed circuit has better characteristics than a circuit that is constructed
directly from initial VHDL description. So, LeonardoSpectrum synthesizer allows
to decrease the circuit complexity by repeated (iterative) synthesis [14]. Analysing
the obtained results of the synthesis in each of the intermediate descriptions, a user
can choose the best solution and obtain the corresponding RTL description.

Stage 6. Using the RTL subsystem optimization, a user performs the optimization
of RTL (description OPT at Fig. 2). The obtained description is provided again to
LeonardoSpectrum synthesizer either to carry out the final synthesis or to execute
the next stage of iterative synthesis [14].

5 Converting PRALU → VHDL

The way of transition from PRALU description to VHDL model described below
is based on interpretation of PRALU description as a network of component finite
automata that function concurrently and interact [11].Anycomponent automaton cor-
responds one-to-one to a sentence of PRALU description. The component automata
interact via the common memory elements, RS flip-flops. Every RS flip-flop corre-
sponds one-to-one to a mark from setM of all marks of the algorithm. The flip-flop

38 P.N. Bibilo et al.

stores current (for a given cycle of discrete time) values of firing signals. Every mark
i of PRALU description is put in correspondence to Boolean variable zi. The value
1 of zi means that mark i is in the firing set of the current cycle. The network is a
synchronous circuit. The signals clk (clock signal) and rst (setting into initial state)
are introduces into the circuit. These signals are supposed in the model of PRALU
description. The signals clk and rst are common for all the elements of the network
of component automata and memory elements. New values of the input variables
of the PRALU description are supposed to be set (or not to change) in one cycle.
The values of output variables do not change in one cycle. The transition to the next
cycle is performed by leading edge of clk. The network is put into the initial state
(initialized) by the value 1 of rst.

The network of finite automata corresponding to PRALU description pott1 given
in Fig. 1 is shown in Fig. 3. In order not to encumber Fig. 3, the signals clk and rst
are not shown in it. They are the input signals for all elements of the network.

Every sentence of PRALU description corresponds to a finite automaton. So,
there are six component finite automata, pred1, . . . , pred6, in the circuit (Fig. 3) for
six sentences (Fig. 1). Every mark of PRALU description corresponds to a memory.
element—an RS flip-flop. There are nine flip-flops because there are nine marks in
the description. The output signals y1 and y2 of the circuit at Fig. 3 are supposed
to be connected as “wired OR”. The removal of mark zi from the current firing set
for chains corresponds to setting value 1 to Boolean variable at the input R (reset)
of ith RS flip-flop. The insertion of mark zi into the current firing set corresponds
to setting value 1 to Boolean variable at the input S (set) of ith RS flip-flop. Since
removal and insertion of marks can be carry out in various component automata, the
corresponding outputs of the automata are connected as “wired OR”. In the example
of Fig. 3 the outputs n_z9_1 of component automata pred4 and pred5 are connected
as “wired OR” because final mark 9 is both in sentence 4 and sentence 5:

4: −∧x1 >∧ y1 > 7;
−x1 > y2 > 9;

7: −∧x2 > 9;
Note that supplying signal 1 to both inputs R and S is inadmissible. If the sig-

nal 1 is supplied to both inputs, R and S, of RS flip-flop, it means that the circuit
implementation of the parallel algorithm of logical control is incorrect. To obtain
the correct description, the semantic debugging and repeated simulation of initial
PRALU algorithm are needed.

To describe a finite automaton corresponding to a sentence, the set of input vari-
ables, the set of output variables, the set of internal states, the state-transition func-
tion, the output function and the initial state of the automaton must be given. We
use the transition graph (state diagram) of automaton as a form of specifying a finite
automaton. The transition graphs of the component automata for six sentences of
PRALU description pott1 are shown in Fig. 4a–f. Note that the component automata
are Mealy’s automata.

Let us consider the forming of the component automaton pred1 in the example
of sentence 1:

1: −∧x1 ∗ x2∗ > y1 ∗∧ y2 −∧ x2 > 2.3.4;

Circuit Implementation of Parallel Logical Control … 39

Fig. 3 Representation of PRALU description as a network of finite automata

40 P.N. Bibilo et al.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4 Transition graphs of component automata corresponding to PRALU sentences

Circuit Implementation of Parallel Logical Control … 41

The set of input variables of an automaton is formed from the set of Boolean
variables that are in operations of waiting of the considered PRALU sentence, and
Boolean variables corresponding to initialmarks of chains of the sentence.Bydefault,
the variables clk and rst corresponding to clock signal and setting to the initial state
are added to the set of input variables of any component automaton.

The set of input variables of automaton pred1 consists of x1, x2, clk, rst and z1.
The variables x1 and x2 are in the operations ofwaiting, and the variable z1 is the only
mark of sentence 1. The set of output variables of an automaton is formed from the
set of Boolean variables that are in operations of action, and variables corresponding
to setting value 0 for initial marks of the sentence and value 1 for all the final marks
of all the chains of the sentence.

In the example, the set of output variables of automaton pred1 consists of y1, y2,
n_z1_0, n_z2_1, n_z3_1 and n_z4_1. The variables y1 and y2 are in the operations
of action. The variable n_z1_0 corresponds to setting value 0 to mark z1. Remember
that if the first elementary chain of sentence 1 is executed, then in the next cycle
the mark 1 must be excluded from the firing set. That corresponds to setting the
flip-flop to state 0, and this, in turn, demands supplying value 1 to input R of RS
flip-flop. The variables n_z2_1 and n_z3_1 are the variables of setting value 1 for the
final marks of the sentence. Figure3 shows input and output variables of automaton
pred1 (and other automata). The set of states of an automaton corresponding to the
sentence is formed after dividing all the chains of the sentence into fragments. The
beginning of a fragment corresponds conditionally to a state. Since the beginnings of
all the chains coincide, the initial state s1 is single and common for all chains of the
sentence. Then, the beginning of each fragment of a chain is put in correspondence
with a state. Figure4 is the general view of the transition graph. Each chain of a
sentence corresponds to a sub-graph as a circuit. In the example, the transition graph
of the component automaton corresponding to sentence 4 has two circuits, because
sentence 4 of PRALU description pott1 consists of two chains that are elementary.

In the example under consideration, sentence 1 consists of only one chain con-
sisting of two fragments. Consequently, the automaton pred1 has two states, s1 and
s2 (Fig. 4a).

The transition and output functions are given on arcs connecting the vertices of
the transition graph. Every vertex of the transition graph corresponds to a state of the
component automaton. At every arc of the transition graph, the condition of transition
and the value of the output function of the automaton are given that are disjoint with
slash. Each transition between states corresponds to a fragment of a chain. The values
of variables in the operation of waiting form the condition of transition. The values
of the output functions are determined by the operation of action.

For an initial fragment, the values of Boolean variables corresponding to the initial
marks of the fragment are introduced in the condition of transition. The output vari-
ables corresponding to initial marks of the fragment take value 0 after the transition
from the state s1 is executed.

42 P.N. Bibilo et al.

For final fragment, the output variables correspondent to final marks of the
fragment take value 1 during the transition to the state s1. Let us suppose that
the component automaton moves necessarily to the initial state s1 when the final
fragment of the chain is executed.

Our example shows that the transition s1 → s2 is executed (Fig. 4a) if the con-
junction z1x̄1x2 is equal to 1. This transition corresponds to the initial fragment
(5). If z1 = 1, x1 = 0, x2 = 1 in the current cycle, then in the next cycle the output
variables will have the following values: y1 = 1, y2 = 0, n_z1_0 = 1. Farther, the
transition s2 → s1 corresponds to the final fragment (6). The condition of the transi-
tion is x2 = 0, and the output values are n_z2_1 = 1, n_z3_1 = 1, n_z4_1 = 1 (That
means assigning value 1 to the variables z2, z3, z4, corresponding to the marks 2, 3,
4).

So, according to any sentence of PRALU description, the corresponding finite
automaton with abstract state can be constructed. VHDL models of parallel and
sequent automata are obtained quite simply as it is described in [12].

6 Conclusion

The LOCON-2 software system allows to implement parallel logical control algo-
rithms in PLA devices with memory as well as converting descriptions into VHDL.
This provides a possibility to use the synthesis in various technological bases, includ-
ing replacing PLA by a circuit of library elements or a circuit in the basis of FPGA,
using the industrial synthesizer of logical circuits LeonardoSpectrum. The possibility
of extracting the block of combinational logic enables to use efficient computer pro-
grams for logical optimization of systems of Boolean functions represented as DNF
or BDD. The results of experiments on circuit implementation in various technolog-
ical bases have shown that joint application of LOCON-2 and LeonardoSpectrum
allows to obtain better results of circuit implementation of parallel logical control
algorithms than a separate use of LeonardoSpectrum synthesizer.

References

1. Polyakov, A. K. (2003). Languages VHDL and VERILOG in designing digital hardware.
Moscow: SOLON-Press (in Russian).

2. Perry, D. L. (2002). VHDL: Programming by example (4th ed.). New York: McCraw-Hill.
3. Hahanov, V. I., Hahanova, I. V., Litvinova, E. I., & Guz, O. A. (2010). Design and verification

of digital systems in chips Verilog & SystemVerilog. Harkov: HNURE (in Russian).
4. Eisner, C., & Fisman, D. (2006). A practical introduction to PSL. Heidelberg: Springer.
5. Lohov, A. (2010). Contemporary methods for functional verification of digital HDL designs:

methodology ABV, libraries OVL and QVL. Sovremennaya elektronika, no. 1, 56–59 (in
Russian).

6. Spear, C., & Tumbush, G. (2012). SystemVerilog for verification. A guide to learning the
testbench language features. Heidelberg: Springer.

Circuit Implementation of Parallel Logical Control … 43

7. Karatkevich,A. (2007).Dynamic analysis of petrinet-based discrete systems (Vol. 365). Lecture
Notes in Control and Information Sciences Berlin: Springer.

8. Zakrevskij, A. D. (1999). Parallel algorithms of logical control. Minsk: ITK NAS of Belarus.
M: UPCC (2nd ed.), 2003 (in Russian).

9. Bibilo, P. N. (2005).Design systems for integral circuits based onVHDL. StateCAD,ModelSim,
LeonardoSpectrum. Moscow: SOLON-Press(in Russian).

10. Zakrevskij, A.D., Pottosin, Yu.V., Vasilkova, I.V. & Romanov, V.I. (2000). Experimental sys-
tem of automated design of logical control devices (pp. 216–221) Proceedings of the Interna-
tionalWorkshop “Discrete OptimizationMethods in Scheduling and Computer-aidedDesign”.
Minsk: Republic of Belarus

11. Bibilo, P. N. (2006). Representation of PRALU descriptions of parallel logical control algo-
rithms in VHDL. Mikroelektronika, 4(35), 306–320 (in Russian).

12. Bibilo, P. N. (2005). Description of Parallel and Sequent Automata in VHDL. Informatika, no.
1, 68–75 (in Russian).

13. Zakrevskij, A., Pottosin, Yu., & Cheremisinova, L. (2008). In Keevallik, A. (Ed.), Design of
logical control devices (p. 304). Tallinn: TUT Press.

14. Bibilo, P. N., & Romanov, V. I. (2011). Logical design of discrete devices using the production-
frame model of knowledge representation (p. 279). Minsk: Belarus Navuka (in Russian).

Effective Partial Reconfiguration of Logic
Controllers Implemented in FPGA Devices

Remigiusz Wiśniewski, Monika Wiśniewska and Marian Adamski

Abstract A method of partial reconfiguration of logic controllers implemented in
FPGA is presented in the chapter. Only the control memory content is replaced
while the rest of the system is not modified. The logic synthesis and implementation
are performed only once. Therefore, such a realisation highly accelerates the whole
prototyping process. The performed experiments showed that the original bit-stream
that is sent to the FPGA can be reduced even over 500 times.

Keywords Logic controllers ·Microprogrammed controllers · Partial reconfigura-
tion · Memory · Control unit · Implementation · Field Programmable Gate Arrays
(FPGA)

1 Introduction

In the traditional methods of prototyping of logic controllers [6, 7, 10, 11] the
system is usually implemented with logic elements of a Field Programmable Gate
Array (FPGA) [4, 12]. However, the latest FPGAs offer additionally blocks of dedi-
cated memory that are integrated with the device [13]. Therefore, the decomposition
of the controller into addressing module and memory becomes more popular. In
the microprogrammed controller, the first part (addressing module) is in charge of
proper addressing of microinstructions which are stored in the second module of the
controller (control memory).

R. Wiśniewski (B) ·M. Wiśniewska ·M. Adamski
Faculty of Electrical Engineering, Computer Science and Telecommunications,
University of Zielona Góra, ul. Licealna 9, 65-417 Zielona Góra, Poland
e-mail: r.wisniewski@iee.uz.zgora.pl

M. Wiśniewska
e-mail: m.wisniewska@wiea.uz.zgora.pl

M. Adamski
e-mail: m.adamski@imei.uz.zgora.pl

© Springer International Publishing Switzerland 2016
A. Karatkevich et al. (eds.), Design of Reconfigurable Logic Controllers,
Studies in Systems, Decision and Control 45,
DOI 10.1007/978-3-319-26725-8_4

45

46 R. Wiśniewski et al.

In microprogrammed controllers, the control memory can be implemented with
dedicated memories of the FPGA [20]. Furthermore, such a realisation allows rel-
atively easy replacement of the content of the control memory. We show the idea
of partial reconfiguration of the microprogrammed controllers, where the designer
is able to modify only a few microinstructions of the controller. In the case of tra-
ditional implementation, the whole content of the FPGA ought to be replaced. The
proposed idea of partial reconfiguration of the microprogrammed controllers permits
to change only the content of the control memory while the rest of the system is not
modified.

2 State of an Art

2.1 Microprogrammed Controllers

A control unit may be generally decomposed in two ways. The first one is functional
decomposition [7, 16]. Here the decomposed based on the internal functions and
states of the controller [20]. The second method is structural decomposition [1, 5,
20] where the task of decomposition is solved thanks to modification of the structure
of the control unit. Both ideas of the decomposition lead to the microprogrammed
controllers [19].

In the microprogrammed controller, the control unit is decomposed into twomain
parts. The first one is in response of microinstructions addressing. It is a simplified
finite state machine [17]. The second part holds and generates the microinstructions.
Such an implementation allows to minimize the number of logic elements in the
destination programmable device and to apply partial reconfiguration [20].

The structure of a typical microprogrammed controller is presented in Fig. 1.
Based on the input conditions (X), an addressing module (AM) forms the excitation
functions T for the counter (CT), which selects (address A) the proper microinstruc-
tion (Y) from the memory (CM).

The main benefit coming from the realisation of the controller as a micropro-
grammed controller is the possibility of implementing the memory with dedicated

AM CT CM
T A

Y

X

y0

Fig. 1 Structure of a microprogrammed controller

Effective Partial Reconfiguration of Logic … 47

memory blocks of an FPGA [20]. Other blocks of the prototyping system are imple-
mented with logic blocks (flip-flops and LUT elements) of the FPGA [2, 9, 12–14].
Such an idea leads to reduction of the number of logic blocks in comparison with the
realisation of the controller as a traditional finite state machine, and thus the designer
can allocate a wider area of the FPGA for other blocks of the prototyping system. The
effectiveness of the microprogrammed controllers is especially high if the controller
interprets a linear flow-chart [5, 20]. Such a flow-chart contains 75% of operational
vertices or includes long linear chains (segments) of operational vertices.

The second advantage of the microprogrammed controller is the possibility of
selecting the implementation method of control memory. The designer can decide
if the module CM should be realised with logic blocks or with dedicated memory
blocks [13]. It is important especially in the case of designs, which consume a large
area of memory. Then the whole controller is implemented with logic blocks of the
FPGA.

Finally, themicroprogrammed controllers allow to apply the idea of partial recon-
figuration [20]. In this case, only a part of the control memory can be replaced while
the rest of the system remains untouched [3, 23]. The concept of partial reconfigu-
ration is widely described in the next section.

2.2 Partial Reconfiguration of the FPGA devices

Partial reconfiguration of FPGA devices is a relatively new idea. Therefore, not all
programmable devices offer the reconfiguration of part of their resources. Such a
solution refers especially to devices by Xilix, Altera and Atmel [3, 23]. Although
the idea of partial reconfiguration seems to be the same for various vendors, there
could be technological differences. The method presented in the chapter and all
further descriptions refer to partial reconfiguration proposed by Xilinx [21, 23]. In
particular, the device XC2V P30 from the Virtex II Pro family was selected as the
representative one [22]. Such a device was chosen due to its application of partial
reconfiguration in practise (see Sect. 4).

From the viewpoint of the functionality of design, partial reconfiguration can
be divided into two groups: dynamic and static reconfiguration. The fist one—also
known as active partial reconfiguration—permits to change part of the device while
the rest of the FPGA is still running. In the second solution the device is not active
during the reconfiguration process. While the partial data is sent into the FPGA,
the rest of the device is stopped (in the shutdown mode) and brought up after the
configuration is completed [20].

The difference-based partial reconfiguration can be used when a small change is
made in the design [21]. It is especially useful in the case of changing LUT functions
or the dedicated memory blocks (like BRAMs) content. The partial bit-stream con-
tains only information about differences between the current design structure (that
resides in the FPGA) and the new content of the FPGA.

48 R. Wiśniewski et al.

All research results and experiments presented in the chapter are based on sta-
tic difference-based partial reconfiguration. This method was chosen because of the
structure of the microprogrammed controllers. Difference-based partial reconfigu-
ration allows to change the content of control memory at the implementation stage.
Therefore, most steps of the prototyping flow can be omitted. Moreover, the designer
can prepare more than one partial bit-streams with alternative versions of the con-
tent of the control memory. They can be very easily switched in the FPGA (the full
bit-stream is sent only once).

Note that Xilinx recently had changed the reconfiguration ideas, joining them
into the single designing-flow (accessible from the tool called Plan Ahead). All
the researches and experiments described in this chapter had been done with the
ISE Xilinx 10.1 tools and are based on the difference-based partial reconfiguration
concept presented in [21].

2.3 Mechanism of Partial Reconfiguration of Xilinx FPGAs

Figure2 shows the basic structure of a typical FPGA device by Xilinx. The main
elements of the device are configurable logic blocks (CLBs), which create a matrix of
connected blocks. Each CLB contains the logic elements called slices. Furthermore,
each slice is built from look-up tables (LUTs), which perform the logic functions.

...

Columns of BRAMs

...

CLB

CLB

CLB

CLB

CLB

CLB

...
...
...
...

...

...

...

B
R

A
M

B
R

A
M

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

B
R

A
M

B
R

A
M

B
R

A
M

B
R

A
M

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

B
R

A
M

B
R

A
M

CLB

CLB

CLB

Fig. 2 Structure of the FPGA device

Effective Partial Reconfiguration of Logic … 49

Depending of the device family, there could be two or more LUTs inside one logic
slice (i.e. Virtex-II has two LUTs inside one slice while in Virtex-4 there are four
LUTs in a single slice). All logic elements of the microprogrammed controller such
as the addressing module and the counter are implemented using CLBs. Moreover,
the FPGA contains dedicated memory blocks called block-RAMs (or just BRAMs).

Block-RAMs are organized in columns. The number of columns and BRAMs in
each column is different and depends on a particular FPGA. For example, the device
XC2VP30 (Virtex II Pro family) contains 136 dedicatedmemories. They are grouped
into eight columns organized as 2× 20 (two columns containing 20BRAMs), 2× 18,
2× 16 and 2× 14 [22]. Additionally, eachBRAM is divided into lines (called INITs).
Lines are used for the initialization, configuration and partial reconfiguration of the
block. There are 64 lines per each BRAM (counted hexadecimally from INIT_00 to
INIT_3F).

Both full and partial bit-streams that are used for the configuration of the device
consist of frames. Each frame contains a portion of information about the design
ought to be implemented. In the case of partial reconfiguration, only different frames
are sent to theFPGA.What is very important, partial reconfiguration ofXilinx devices
(especially Virtex-II family) operates on the whole column of BRAMs. This means
that the modification of one microoperation (single output of the controller) in one
BRAM causes the reconfiguration of all dedicated memories that belong to the same
column. In the case of the XC2VP30 device, each column of BRAMs is divided into
64 frames. One frame corresponds to one line (INIT) in all BRAMs in the column
(for example, the modification of two frames means the reconfiguration of two lines

BRAM

0
1
2
...
63

...

BRAM

0
1
2
...
63

...

BRAM

0
1
2
...
63

SAME FRAME
(FRAME 1)

SAME FRAME
(FRAME 63)

Fig. 3 Organization of BRAMs

50 R. Wiśniewski et al.

in all blocks that belong to the column). Therefore, each frame contains a portion of
information about all BRAMs that are organized in the column (Fig. 3).

The next section presents the current prototyping flow of microprogrammed con-
trollers. Such a design process does not include the idea of partial reconfiguration.
Therefore, a forthcoming section introduces a modified prototyping flow based on
partial reconfiguration of microprogrammed controllers implemented in the FPGA.

3 Traditional Prototyping Flow of Control Units

In order to show the idea of partial reconfiguration of microprogrammed controllers
implemented in the FPGA, the traditional prototypingflowwill be presented. Figure4
shows the design process of a typical digital system [8, 10, 15], which can be applied
in the case of the microprogrammed controllers prototyping flow.

At the beginning, the specification and structure of the microprogrammed con-
trollers ought to be prepared [5]. Next, the system may be designed according to the
following steps:

1. Description of the microprogrammed controller prepared with HDL languages.
At this stage, all modules (addressing module, counter and control memory) of
the further control system are created. Very often hardware description languages
(HDLs) like Verilog or VHDL are applied [18, 24]. The specification of the
control memory content is not required at this step, although the designer can
specify initial values for the controller.

2. Logical synthesis of the design. The synthesis process converts the design
described with HDLs into the gate level. There are gates, logic blocks and

Fig. 4 Traditional
prototyping flow

Structural decomposition

Synthesis

Implementation

FPGA

Control unit specification

Effective Partial Reconfiguration of Logic … 51

connections between them created as a result of synthesis (known as a “netlist”).
This process is the same as in the traditional prototyping flow.

3. Logical implementation of the design. At this stage, logical implementation of
the microprogrammed controller is performed. As a result of the this process, the
bit-stream is produced. It contains the full description of the design that will be
sent to the device to configure the FPGA.

4. Hardware implementation of the design. The FPGA is configured with the bit-
stream that was produced in the previous step.

Any modification of the content of the control memory (like exchange of a single
microoperation) requires repeating the full prototyping flow. Therefore, if there is a
need to implement another version of the controller, all steps ought to be performed,
even if the designer wants to change only one bit of the control memory.

The next section shows the idea of the prototyping flow of the microprogrammed
controllers. Presented method is based on partial reconfiguration of FPGA devices.

4 Partial Reconfiguration of Microprogrammed
Controllers Implemented in the FPGA

The prototyping flow for themicroprogrammed controller that should be prepared for
further reconfiguration is similar to the traditional prototyping process. Therefore, at
the beginning, the design should be described with hardware description languages.
Then it should be verified to avoid any functional errors. After the verification, the
design is synthesized. The difference between the proposed and traditional prototyp-
ing flows is the implementation process. At this step, the content of further control
memory is prepared. As the result of the implementation process, the configuration
bit-stream is created. It contains full information about the configuration of the tar-
get FPGA. Therefore, the size of the file is respectively large. That also means long
FPGA configuration time [20].

The method of partial reconfiguration of a microprogrammed controller includes
the following steps (Fig. 5):

Fig. 5 Modified prototyping
flow including partial
reconfiguration

Full bit-stream from
1st prototyping process

Partial implementation

FPGA

Modified memory
content

52 R. Wiśniewski et al.

1. Description of the microprogrammed controller prepared with HDL languages.
This step is performed in the same manner as in the traditional prototyping flow.
Next, the controller should be verified in a software simulator. This allows avoid-
ing most functional errors in the design.

2. Logical synthesis of the design. This step is the same as in the traditional proto-
typing flow.

3. Formation of the control memory content. Now the content of the control memory
is created. The designer can prepare as many versions of the control memory
content as it is necessary.

4. Logical implementation of the first version of the design. As the result of the
logical implementation process, the initial bit-stream is produced. It contains the
first description of the design that will be sent to the device to configure the FPGA.

5. Hardware implementation of the design. At this step, the FPGA is configured for
the first time. Therefore, the whole description of the device must be specified in
the bit-stream.

6. Modification of the control memory content. At this stage, the content of control
memory should be replaced with alternative values that were previously prepared
at step 3. The modification is performed during logical implementation. The
content of the memory can be specified in many ways—by an .ucf file or via
Xilinx tools like FPGA Editor, see [21, 23] for details.

7. Preparation of the difference bit-stream. Now the new bit-stream is created. It
contains only the differences between the new version of the design and the
previous one, which is already implemented in the FPGA. In fact, the bit-stream
will contain only information about modified elements of control memory of the
controller [23].
Steps 6 and 7 should be repeated for each version of the control memory content
that was prepared at stage 3.

8. Partial reconfiguration of the device. Using bit-streams produced in step 3, the
device can be partially reconfigured. The functionality of the microprogrammed
controller can be changed very easily and very fast, because only different frames
between the modified and already implemented designs are sent to the FPGA.

5 Experimental Results

To verify the effectiveness and proper functionality of presented ideas, the partial
reconfiguration process of microprogrammed controllers was verified in practise.
The experiments were performed on the XC2VP30 device. Such an FPGA contains
136 dedicated memory blocks organized in eight columns. Each column can be
configured with 64 frames independently (one frame configures one line (INIT) in
all BRAMs that belong to the column).

The analysis of the results of the experiments showed that the way of realis-
ing the control memory as a microprogrammed controller in the FPGA is very
important. Figure6 presents three variants of the implementation of a hypothetical

Effective Partial Reconfiguration of Logic … 53

A

1st variant

B

A

2nd variant

B

A

3rd variant

B

Reduction:
527 times

Reduction:
417 times

Reduction:
333 times

INIT_00

INIT_00 INIT_00

INIT_01

INIT_00 INIT_00

Fig. 6 Three variants of reconfiguration of two microinstructions

microprogrammed controller where two microinstructions A and B are partially
reconfigured. In the first mode, both microinstructions are implemented in sepa-
rate BRAMs that are placed in the same column. Both A and B are located in the line
INIT_00 of its BRAM. Therefore, during partial reconfiguration, only one frame is
sent to the FPGA. Such a frame covers lines of both BRAMs, because they are situ-
ated in one column. In the second mode, both A and B are implemented in the same
BRAM. However, there are two lines required, because A is initialized with INIT_00
while B with INIT_01. It means that two frames are required for reconfiguration. In
the third mode, A and B are implemented in two different BRAMs. Now it is not
important that both microinstructions are configured with the same line (INIT_00),
because they are located in different columns. Therefore, two frames are sent during
reconfiguration.

Table1 shows that the best results were achieved during the implementation of the
first variant of the controller. Despite the fact that two lines are modified, only one
frame is sent to reconfigure the device and the original bit-stream was reduced over
500 times. Very interesting results were achieved during the implementation of the
two remaining variants.Both versions required two frames for partial reconfiguration.

Table 1 Results of three variants of reconfiguration of two microinstructions

Variant Modified Size of
partial bit-
stream (b)

Reduction
(% of
original)

Reduction
(times
smaller)

BRAMs lines columns frames

1 2 2 1 1 2696 0.19 527

2 1 2 1 2 3520 0.24 417

3 2 2 2 2 4360 0.30 333

54 R. Wiśniewski et al.

In the case of the second variant, where both microinstructions were located in the
same BRAM, the bit-streamwas reduced over 400 times. A worse gain was achieved
in the third mode, where A and B were realised with BRAMs located in different
columns.

Detailed analysis of the performed experiments indicates that the reduction of
the size of the original bit-stream strongly depends on the placement of the control
memory, in particular BRAM of an FPGA. The best gain is reached in the case of
implementation of the control memory with BRAMs located in the same column.
Partial reconfiguration of such an organization requires the least amount of configu-
ration frames. The experiments showed that even the replacement of the content of
microprogrammed controller that was implemented with 13 BRAMs (organized in
one column) permits to reduce the original bit-stream by over 50 times. Furthermore,
the worst results were achieved in the case of the implementation of control mem-
ory with BRAMs located in separate columns. Partial reconfiguration of the control
memory that was realised with 13 BRAMs placed in eight different columns reduces
the size of the bit-stream by over eight times.

Concluding, it should be pointed out that partial reconfiguration of micropro-
grammed controllers implemented in FPGA reduces the size of the original bit-
stream even by over 500 times. In the case of controllers, where control memory
ought to be decomposed into more than one BRAM, the best gain is reached during
the realisation of memory with blocks located in the same column. The placement
of each BRAM can be easily modified with the tools delivered from Xilinx, which
additionally check routings and timing paths.

6 Conclusions

A concept of partial reconfiguration of microprogrammed controllers implemented
in FPGA is presented in the chapter. Moreover, a new prototyping flow of control
units is proposed. The modified design method is based on partial reconfiguration
of a controller implemented in FPGA. Only the control memory content is replaced
while the rest of the system is not modified. In the presented prototyping flow, logic
synthesis and implementation are performed only once. Therefore, such a realisa-
tion highly accelerates the whole prototyping process. The performed experiments
showed that the original bit-stream that is sent to the FPGA can be reduced even over
500 times.

References

1. Adamski, M., Wiśniewska, M., Wiśniewski, R., & Stefanowicz, Ł. (2012). Application of
hypergraphs to the reduction of the memory size in the microprogrammed controllers with
address converter. Przeglad Elektrotechniczny, 88(8), 134–136.

2. Altera. (2008.) Altera devices website. California: Altera.

Effective Partial Reconfiguration of Logic … 55

3. Altera. (2010). Increasing design functionality with partial and dynamic reconfiguration in
28-nm FPGAs. Altera.

4. Baranov, S. I. (1994). Logic synthesis for control automata. Boston, MA, USA: Kluwer Aca-
demic Publishers.

5. Barkalov, A., & Titarenko, L. (2009). Logic synthesis for FSM-based control units (Vol. 53).
Lecture Notes in Electrical Engineering Berlin: Springer.

6. Bazydło, G., & Adamski, M. (2011). Specification of UML 2.4 HSM and its computer based
implementation by means of Verilog. Przeglad Elektrotechniczny, 87(11), 145–149.

7. Chair Brayton, R. K. (Ed.). (1993). Sequential circuit synthesis at the gate level, Ph. D thesis.
Berkeley: University of California.

8. DeMicheli, G. (1994). Synthesis and optimization of digital circuits. New York: McGraw-Hill
Higher Education.

9. DoligalskiM. (2012).Behavioral specification diversification for logic controllers implemented
in FPGA devices: Proceedings of the Annual FPGAConference, FPGAworld’12 (pp. 6:1–6:5),
New York, USA: ACM.

10. Gajski, D. (1996). Principles of digital design. Upper Saddle River, NJ: Prentice Hall.
11. Grobelna, I. (2011). Formal verification of embedded logic controller specification with com-

puter deduction in temporal logic. Przeglad Elektrotechniczny, 87(12a), 47–50.
12. Łuba, T. (2005). Synthesis of logic devices.Warszawa:WarsawUniversity of Technology Press.
13. Maxfield, C. (2004). The design warrior’s guide to FPGAs. Orlando, FL, USA: Academic

Press Inc.
14. Milik, A., & Hrynkiewicz, E. (2012). Synthesis and implementation of reconfigurable PLC on

FPGA platform. International Journal of Electronics and Telecommunications, 58(1), 85–94.
15. Parnell, K., & Mehta, N. (2003). Programmable logic design quick start hand book. San Jose,

CA, USA: Xilinx.
16. Rudell, R. L. (1989). Logic synthesis for VLSI design, Ph. D thesis. Berkeley, CA, USA: EECS

Department, University of California.
17. Sentovich, E., Singh, K. J. Moon, C. W. Savoj, H. Brayton, R. K. & Sangiovanni-Vincentelli,

A. L. Sequential circuit design using synthesis and optimization. In ICCD ’92: Proceedings
of the 1991 IEEE International Conference on Computer Design on VLSI in Computer &
Processors (pp. 328–333), Washington, DC, USA, 1992. IEEE Computer Society.

18. Thomas, D., & Moorby, P. (2002). The Verilog hardware description language (5th ed.). Nor-
well, MA: Kluwer Academic Publishers.

19. Wilkes, M. V. (1951). The best way to design an automatic calculating machine: inManchester
University Inaugural Conference (pp. 182–184), Manchester, UK.

20. Wiśniewski, R. (2009). Synthesis of compositional microprogram control units for program-
mable devices. Lecture Notes in Control and Computer Science, vol. 14. Zielona Góra: Uni-
versity of Zielona Góra Press.

21. Xilinx. (2004). Two flows for partial reconfiguration. Xilinx
22. Xilinx. (2007). Virtex-II Pro and Virtex-II Pro X FGPA user guide. Xilinx.
23. Xilinx. (2010). Partial reconfiguration user guide. Xilinx.
24. Zwolinski, M. (2000). Digital system design with VHDL. Inc, Boston, MA, USA: Addison-

Wesley Longman Publishing Co.

An Application of Logic Controller
for the Aerosol Temperature Stabilization

Michał Doligalski, Marek Ochowiak and Anna Gościniak

Abstract The chapter presents a logic control specification and its implementation
by means of a microcontroller. The solution is dedicated to stabilisation of a spray
temperature. The aim of the control is to produce a drug spray with specified tem-
perature. The chapter draws a link between the viscosity of liquids and the droplets
sizes in pneumatic inhalation process. The results indicate that the droplet size of
the spray is influenced by the liquid viscosity. The liquid viscosity can be changed
by temperature. Increasing the aerosol temperature decreases droplet diameters and
hence increases the safety of inhaled therapy. A control system and new construction
of thermostated nebulizer improving the inhalation process has been proposed.

Keywords Logic controllers ·RLC · FPGA ·UML ·Atomization · Spray ·Droplet
size · Temperature stabilisation

1 Introduction

Atomization and inhalation medicines have become the major therapeutic strategy in
therapy of asthma, mucoviscidosis and other diseases of the respiratory system, both
for adults and children [2, 6, 9, 22]. Administration of aerosolized medicines into
organism through inhalation methods is becoming more popular as a technique of
therapy which has a significant advantage over the injection and oral methods [10].

M. Doligalski (B)
Institute of Computer Engineering and Electronics, University of Zielona Góra,
ul. Licealna 9, 65-417 Zielona Góra, Poland
e-mail: M.Doligalski@iie.uz.zgora.pl

M. Ochowiak · A. Gościniak
Faculty of Chemical Technology, Institute of Chemical Technology and Engineering,
Poznań University of Technology, pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
e-mail: Marek.Ochowiak@put.poznan.pl

A. Gościniak
e-mail: Anna.Gosciniak@student.put.poznan.pl

© Springer International Publishing Switzerland 2016
A. Karatkevich et al. (eds.), Design of Reconfigurable Logic Controllers,
Studies in Systems, Decision and Control 45,
DOI 10.1007/978-3-319-26725-8_5

57

58 M. Doligalski et al.

Inhalers are a kind of the devices used to spray medicine and due to their simplic-
ity, small size, and affordable price, they are commonly used devices in medicine
[3, 6, 17–21]. The mechanism of functioning of this type of devices consists in the
use of compressed air energy to form drops during the drug solutions or suspen-
sions atomization. The construction of inhaler significantly affects the atomization
process. The efficiency of aerosol delivery to the respiratory tract depends on the
size distribution of the aerosol particles and their physico-chemical properties, the
inhalation dynamics, the type of inhalation device and correct use of the inhaler
[15–17]. Viscosity of the atomized liquid is very important [3].

The viscosity of a liquid plays a key role in the atomization process and affects
the droplet size and/or the droplet size distribution obtained by atomization of the
liquid. Droplet size is measured by D32 (SMD, Sauter) or D0.5 (MMD) [16]. D32 is
defined as:

D32 = ΣNid3i
ΣNid2i

(1)

where i is the considered size range, Ni is the number of droplets in size range
i, and di is the diameter corresponding to the centre of the range 〈di − �d

2 , di +
�d
2 〉. In addition, the values of the mass median diameter (MMD, D0.5) have been
determined. D0.5 is a droplet diameter such that 50 % of total liquid volume is in
droplets of smaller diameter [14].

Analysing the influence of viscosity on droplet size, Dorman [8] reported that
D32 = f (η0.1). Hasson and Mizrahi [12] found that D32 is proportional to η1/6 for
values of viscosity from 1 × 10−3 to 21 × 10−3 [Pa.s].

The liquid viscosity can be reduced by increasing the temperature of the solution
in the nebulizer. Pneumatic inhalators produce an aerosol with a temperature close
to the ambient temperature. The aerosol is unfavorable for newborns, infants, hyper-
sensitive patients, allergy sufferers and others with bronchial hyperreactivity. The
aerosol at an elevated temperature significantly increases the safety of inhaled ther-
apy. The new construction of thermostated nebulizer improves the inhalation process
for the patients in homes.

The nebulisation process requires temperature stabilisation. Too high temperature
may be harmful for the patient, unstable temperature will cause different droplets
sizes production. Temperature control system should detect temperature changes and
react if the temperature is below the desired value. This requirement is important both
in the case of personal use and of drop size test. Personal use of the nebulizer requires
cheap and compact system that could be used as an extension of the pneumatic
nebulizer head.

The droplet size test requires additional temperature reports. Droplet size depends
on temperature, and that is the reason why the spray temperature should be doc-
umented during test session. Ambient temperature fluctuations and other random
disturbances can cause undesirable changes in temperature. Automatic temperature
registration will improve and document droplet size tests.

Pneumatic nebulizers available on the market produce aerosol, temperature of
which differs from ambient temperature. There are no devices that would increase

An Application of Logic Controller … 59

the safety of the inhalation process, producing spray at a temperature in the range
from 28 to 37 ◦C. Mainly ultrasonic nebulizers feature the function. Pneumatic
devices in order to generate thermoaerozol must be equipped with additional ther-
mostats or the aforementioned thermal snap. The chapter presents the application of
microcontroller-based logic controller to stabilize the temperature of a drug spray.

2 Logic Controller

The nebulizer temperature control system will have to control spray temperature
and store control data. The control system will be implemented as a logic controller
with two-step control where output signal will have only two values. The role of the
unit is a fixed value control to maintain constant temperature. In the case of such
control system there is no possibility to determine the equilibrium where stabilised
temperature constantly has the reference value. The temperature will oscillate around
the reference value. Such control system could be implemented as a reconfigurable
logic controller (RLC) by means of FPGA devices or as a reprogrammable system
by means of a microcontroller [23].

Implementation of the logic controllers bymeans of FPGAdevices is very popular.
Formal modelling and verification techniques [13] increase the system dependabil-
ity. FPGA devices are suitable for complex control systems implementation where
one controller is equipped with a number of inputs and outputs, then logic resources
guarantee that even a large system can be implemented. The implementation of
Ethernet interface and data logging is also possible, but it requires additional soft-
ware implemented in FPGA or a hard processor. It increases system complexity,
so such devices are not suitable for small projects. The configuration of the FPGA
devices can be modified including reconfiguration of the active (working) device
[4, 7, 24]. It increases design functionality and can reduce required FPGA resources.

The control system can be also implemented by means of a microcontroller. Such
device provides serial inputs and outputs (UART, I2C, SPI) but the number of binary
inputs/outputs is limited. The implementation of theEthernet interface or Flash-based
data logging is simpler than in FPGA. Control algorithm can be implemented using
Java, Python or C language. Reconfiguration (reprogramming) of the controller is
also possible, it can be performed by means of using Strategy design pattern. For
spray temperature stabilisation such implementation is not a critical requirement.
The controller should have the possibility of the reference temperature configuration
but it should be unchanged during measurement cycle.

The chapter presents rapid prototyped approach to logic controller implementa-
tion. The design complexity should be low and should take into account the further
commercial product. The implementation time and costs are the key criteria.

The presented logic controller is implemented by means of a microcontroller. The
prototype is based on a single-board computer, the Raspberry Pi credit card-sized
boardwas used. Themain advantages of the device are as follows: low price, Ethernet
interface, COTS expansion modules. Also availability of free operating systems is

60 M. Doligalski et al.

very important. Specified requirements are met by the selected platform, also further
development is not limited. The controller current TRL level is estimated as 5, the
breadboard was validated in a relevant environment.

The system will be built with temperature sensors and a heating coil disposed
in the head nebulizer. The control algorithm was implemented by means of Java
language. The control software is dedicated to Raspberry Pi platform. It can be also
used in another system, but in that case, input/output modules should be redefined.

Nebulizers are popular both in home and hospital therapy. The controller should
guarantee safety for a user, who does not always have appropriate qualifications. Such
therapy is popular and effective in respect of treatment of children but, unfortunately,
head tilt in children is a common problem. Also some drugs cannot be overheated.
Excessive heating of a product contained in the vessel can result in inactivation and
degradation of the drug, resulting in the loss of its therapeutic properties. The head
can be overheated when the liquid was completely sprayed or accidentally spilled
out of the head.

The presented solution implements safety procedures. The logic controller pre-
vents head and liquid overcharging, liquid temperature limit can be also specified.
When liquid temperature is higher than the specified value the heater power supply is
cut-off. The controller also has to be resistant to noise, which may be generated as a
result of the opening of the vessel lid, or a sudden change in the ambient temperature
and supply voltage variations heater.

For the logic controller specification, Petri nets and UML state machine can be
used as well [5]. UML-based formal specifications, such as machine and activity
diagrams can be verified by means of model checking [11]. Figure1 presents a logic
controller statemachine-based specification. The two-step control algorithm controls
the temperature of the spray. Temperature measured by sensor (T1) is compared with
reference value (TRef), if it is below the limit, the Active state is activated and output
signal Y1 is generated. A simple exception handling method is also implemented.
Additional sensor (T2) measures temperature of the liquid (drug) in the nebulization

Fig. 1 State machine for the
initial strategy

An Application of Logic Controller … 61

head. If the temperature rises above specified limit (TC), the power supply to the
heater is shut off.

The third temperature sensor (T3) is not an input of the logic controller, it is used
for ambient temperature monitoring. It is important at the analysis stage because
ambient temperature may affect the test result.

Additionally, timers can be used to control experiments or therapy time. External
rely (not used in the project) can be used to control compressor supply. The spray
can be generated after drug in nebulizer head obtains required internal temperature
(pre-heating). This is a next example of the controller reprogramming strategy.

3 Experimental Set-Up

For the analysis of sprays the method of collecting droplets in a cell containing a
suitable immersion liquid (oil) by digital microphotography usingmicroscope Nikon
Eclipse 50i was used. The setup also includes MultiScanBase (Computer Scanning
Systems II) software for visualization and image processing and Image-Pro Plus 6.0
(Media Cybernetics Inc.) for digital images processing and image analysis.

The scheme of the experimental set-up used in the study is shown in Fig. 2. The
MedelJet Family inhaler with Philips Respironics Jet Pro nebulizer was used. Medel
Jet Family inhaler is a pneumatic inhaler with a compressor that is applied for aerosol
therapy. According to the instructions provided by the manufacturer, the rate of
inhalation for this model is 0.28 ml/min and maximum pressure is 230 kPa. The test
model liquid (distilled water) at different temperatures was atomized at the same
ambient conditions.

Fig. 2 Nebulization process
control system

62 M. Doligalski et al.

The temperature controller implemented by means of microcontroller was
equippedwith three waterproof probes. The following probes are used tomeasure the
temperature of: 1—spray, 2—liquid, 3—ambient. Each probe is based on DS18B20
Programmable Resolution 1-Wire Digital Thermometer. The accuracy is ±0.5 ◦C in
range from −10 to 85 ◦C.

The output of the controller is connected to the relay module. Power relay closes
the heating circuit constructed of a heating coil of PFTE (Teflon) coated resistance
wire. Teflon has high chemical resistance, which means that it does not react or
dissolve in most compounds. Moreover, its high melting point of 327 ◦C allows use
of Teflon in the systems at high temperature. Small surface free energy protects the
material from being buried in dirt, which is onemore advantage, especially important
in the case of drug delivery.

Figure3 presents control data logged by the system.Values from all three tempera-
ture inputs are presented. It shows the abnormal temperature of the liquid in the head,
that was caused by improper head tipping. Exceptions handling mechanism allows to
prevent over-temperature above 60 ◦C. The temperature can be configured remotely.
Results of the measurements and control systems are stored in flash memory.

The test solution was sprayed in order to determine the diameter of the solution
drops, and the droplets were captured in the liquid immersion (20–90 oil, delivered
by The Oil and Gas Institute from Cracow). The microscopic images of atomized
liquidwere photographed bymeans of anOpta-Tech camera. The aerosol obtained by
spraying was captured on the layer of immersion liquid which was evenly distributed
on a glass plate. The spray characteristics were obtained by averaging the values of
minimum 1400 drops for each of experimental fluids. The accuracy of drop diameter
measurements was ±0.3 µm. The accuracy of the average diameter based on the
number of analysed droplets was ±10% [1].

Fig. 3 Logged control data

An Application of Logic Controller … 63

4 Tests Results

The exemplary images of drops obtained by atomization of water are presented
in Fig. 4. Comparison of the images has shown that the number of big droplets is
decreasing with growth temperature of the atomized liquid.

The exemplary droplet size histograms are presented in Figs. 5 and 6. Droplets
of water at 20 ◦C have diameters up to 18 µm and at 50 ◦C up to about 13 µm. The
most of observed droplets have a diameter from 2 to 10 µm at 20 ◦C and from 1 to
4 µm at 50 ◦C. At higher value of temperature the histogram is tall and narrow.

Viscosities of water are respectively 0.001 [Pa.s] at 20 ◦C and 0.0055 [Pa.s] at
50 ◦C. The values of D32 calculated from the experimental data are respectively at
20 ◦CD32 = 8.1µmand at 50 ◦CD32 = 4.05µm. The results indicate that an increase
of the viscosity of the solution leads to a larger droplet size. It has been shown that
the D32 values increase with increasing of viscosity of liquids.

Itmeans that liquids at an elevated temperature (with small viscosity) are atomized
in a similar way but the atomization is easier in comparison with liquids at ambient
temperature (high values of viscosity).

Aerosol spray temperature is approx. 5–10 ◦C lower than the temperature of the
liquid in nebulizer head. The controller allows to control the temperature of the
heating coil in the nebulizer head, so that the desired temperature of the liquid can be
reached as soon as possible. The accuracy of temperature stabilisation is also high, it
does not deviate more than±1.0 ◦C. The constant-value systemmaintains a setpoint,
responds well and quickly to compensate disturbances and their impact. The tests
confirm the controller usability and its high accuracy.

(a) (b)

Fig. 4 Photos of the aerosol: a water at 20 ◦C; b water at 50 ◦C

64 M. Doligalski et al.

Fig. 5 Droplet size histograms based on number of the droplets, water 20 ◦C

Fig. 6 Droplet size histograms based on number of the droplets, water at 50 ◦C

An Application of Logic Controller … 65

5 Conclusions

The control system for the nebulisation head temperature was presented in this
chapter. The chapter also draws a link between the viscosity of liquids and the droplets
size in a pneumatic inhalation process. The results indicate that the droplet size of
the spray is influenced by the liquid viscosity. The liquid viscosity can be changed by
temperature. The aerosol at an elevated temperature significantly decreases droplet
diameters and increases the safety of inhaled therapy. Using the results of the analy-
sis, a new construction of a thermostatted nebulizer improving the inhalation process
has been proposed.

The resulting two-position control system allows to set and change the setpoint,
monitoring, creating a database of measurements, as well as the presentation of
the results. The temperature can be stabilised at a required level, reconfiguration of
the controller also can be performed. A critical exception handling mechanism can
be implemented. Presented research should be continued in order to determine the
effect of temperature and viscosity of the liquid droplet diameter value for other
structures of the nebulizers. The validity of microcontrollers has been confirmed but
the prototype should be redesigned, especially board size should be reduced. Also
the heater should be adapted to meet the requirements of hygiene.

References

1. Azzopardi, B. J. (1979). Measurements of drop sizes. International Journal of Heat and Mass
Transfer, 22, 1245–1279.

2. Bisgaard, H., O’Callaghan, C., & Smaldone, G. C. (Eds.). (2002). Drug delivery to the lung.
New York: Marcel Dekker Inc.

3. Broniarz-Press, L., Ochowiak, M., Markuszewska, M., & Włodarczak, S. (2013). The effect
of viscosity on the atomization process in medical inhaler (in Polish). Chemical Engineering
Equipment, 4(52), 291–292.

4. Bukowiec, A., & Doligalski, M. (2013). Petri net dynamic partial reconfiguration in FPGA. In
A. Quesada-Arenciba, R. Moreno-Diaz, & F. Pichler (Eds.), Computer aided systems theory—
Eurocast 2013 (Vol. 8111, pp. 436–443)., LectureNotes in Computer Science, Berlin: Springer.

5. Bukowiec, A., & Tkacz, J. (2014). Dual simulation of application specific logic controllers
based on petri nets. In Multimedia and ubiquitous engineering (MUE) : 8th international
conference (pp. 399–404)., Lecture Notes in Electrical Engineering Zhangjiajie, Chiny. (ISBN:
978-3-642-54900-7)

6. Devadason, S. G. (2006). Advances in aerosol therapy for children with asthma. Journal of
Aerosol Medicine, 19, 61–66.

7. Doligalski, M., & Bukowiec, A. (2013). Partial reconfiguration in the field of logic controllers
design. International Journal of Electronics and Telecommunications, 59(4), 351–356.

8. Dorman, R. G. (1952). The atomization of liquids in a flat spray. British Journal of Applied
Physics, 3, 189–192.

9. Gradon, L., & Marijnissen, J. C. M. (2003). Optimization of aerosol drug delivery. Dordrecht:
Kluwer Academic Publisher.

10. Gradon, L., & Podgorski, A. (2004). Production of nanostructured particles for medical appli-
cations (in polish). Inżynier Chemical Processing, 25, 1915–1923.

66 M. Doligalski et al.

11. Grobelna, I., Grobelny, M., & Adamski, M. (2014). Model checking of UML activity diagrams
in logic controllers design. In W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, &
J. Kacprzyk (Eds.), Proceedings of the ninth international conference on dependability and
complex systems DepCoS-RELCOMEX. June 30–July 4, 2014, Brunów, Poland (Vol. 286, pp.
233–242)., Advances in Intelligent Systems and Computing Heidelberg: Springer International
Publishing.

12. Hasson, D., & Mizrahi, J. (1961). The drop size of fan spray nozzles. Transactions of the
Institution of Chemical Engineers, 39, 415–422.

13. Karatkevich, A. (2007). Dynamic analysis of Petri net-based discrete systems. Lecture Notes
in Control and Information Sciences Berlin: Springer.

14. Lefebvre, A. H. (1989). Atomization and sprays. New York: Hemisphere Publishing Corpora-
tion.

15. McCallion, O. N. M., & Patel, M. J. (1996). Viscosity effects on nebulisation of aqueous
solutions. International Journal of Pharmaceutics, 130, 245–249.

16. McCallion, O. N. M., Taylor, K. M. G., Bridges, P. A., Thomas, M., & Taylor, A. J. (1995). Jet
nebulisers for pulmonary drug delivery. International Journal of Pharmaceutics, 130, 1–11.

17. Moskal, A., & Sosnowski, T. R. (2009). Dynamics of aerosol pulse in a simplified mouth-
throat geometry and its significance for inhalation drug delivery. Chemical Engineering and
Processing, 30, 545–558.

18. Nagel, M.W., Wiersema, K. J., Bates, L. S., &Mitchell, J. P. (2002). Performance of large- and
small-volume valved holding chambers with a new combination long-term bronchodilator/anti-
inflammatory formulation delivered by pressurized metered dose inhaler. Aerosol Medications,
15, 427–433.

19. Petersen, F.J. (2004). A new approach for pharmaceutical sprays. Effervescent atomization.
Atomizer design and spray characterization. Ph. D thesis. Department of Pharmaceutics: The
Danish University of Pharmaceutical Sciences.

20. Petersen, F. J.,Worts, O., Schaefer, T., & Sojka, P. E. (2004). Design and atomization properties
for an inside-out type effervescent atomizer. Drug Development and Industrial Pharmacy,
30(3), 319–326.

21. Pilcer, G., & Amighi, K. (2010). Formulation strategy and use of excipients in pulmonary drug
delivery. International Journal of Pharmaceutics, 392, 1–19.

22. Sheth, P., Stein, S. W., & Myrdal, P. B. (2013). The influence of initial atomized droplet
size on residual particle size from pressurized metered dose inhalers. International Journal of
Pharmaceutics, 455, 57–65.

23. Tkacz, J., & Adamski, M. (2012). Logic design of structured configurable controllers. In IEEE
3rd international conference on networked embedded systems for every application—NESEA.
(2012) (p. 6). Wielka Brytania, Liverpool.

24. Wiśniewski, R., Barkalov, A., & Titarenko, L. (2008). Partial reconfiguration of compositional
microprogramcontrol units implemented on anFPGA. InProceedings of IEEEeast-west design
& test symposium—EWDTS 08 (pp. 80–83). Lviv, Ukraine: Kharkov National University of
Radioelectronics, Lviv, The Institute of Electrical and Electronics Engineers, Inc.

Symbolic Coloring of Petri Nets

Jacek Tkacz

Abstract In this chapter two methods of automatic coloring of the Petri nets sup-
ported by formal reasoning usingmonotoneGentzen calculus are presented. Coloring
is used to determine the StateMachine subnets. The colors help to validate intuitively
and formally consistency of all sequential processes in the considered discrete state
model. The first of presented methods is based on determination of exact transversals
of the concurrency hypergraph. The second method is based on an examination of
the relationship between the sets of minimum siphons and traps. Use of the Gentzen
calculus allows to obtain additional information (the proof trees) from the reasoning
process. The proof trees represent a formal proof of correctness of the calculation
performed during the determination of the State Machine subnets. The methods pre-
sented in the chapter can be used in design of the reconfigurable logic controllers.

Keywords Petri net · Logic controllers · SM coloring · Decomposition · Formal
reasoning

1 Introduction

Obtaining covering of a Petri net by the State Machine subnets is important both
from the theoretical point of view [10] and in the applications such as design of
parallel logical controllers [14]. We use here the terminology from [13], according
to which such covering is understood as a kind of coloring of a Petri net, where a
color is associated to an SM-subnet of the net.

There aremany different algorithms of coloring of the Petri nets [7, 11], including:

• manual coloring during specification,
• coloring based on topological structure of the net,

J. Tkacz (B)
Institute of Computer Engineering and Electronics,
University of Zielona Góra, ul. Licealna 9, 65-417 Zielona Góra, Poland
e-mail: j.tkacz@iie.uz.zgora.pl

© Springer International Publishing Switzerland 2016
A. Karatkevich et al. (eds.), Design of Reconfigurable Logic Controllers,
Studies in Systems, Decision and Control 45,
DOI 10.1007/978-3-319-26725-8_6

67

68 J. Tkacz

• coloring from the concurrency hypergraph performed with the use of deduction
methods,

• coloring with the use of siphons and traps,
• coloring of discrete space of the net.

Most of them (except the manual coloring) can be fully automated and included into
logic controller design process. In this chapter the methods based on concurrency
hypergraphs and using siphons and traps will be presented.

Assigning of the colors (or symbols corresponding to them) to the places and
transitions of a Petri net helps to validate consistency of the sequential processes
in the Petri net under consideration. Each color corresponds to one state machine
module. The rules for Petri net coloring are as follows [4, 9]:

• each place and transition must have at least one color,
• if a place has a color each of its input and output transitions must have the same
color,

• input places of each transition must hold different colors,
• output places of each transition must hold different colors,
• input and output places of a transition must share the same set of colors,
• initially marked places cannot share the same colors,
• number of different colors which are shared by the places initially marked is equal
to the total number of colors.

A Petri net is safe if each place of it can contain not more than one token in every
reachable marking. A Petri net is live when all transitions are live. A transition t is
live if for any marking M ′, reachable from the initial marking M0, a sequence of
transitions exists friable from M ′ which contains transition t [10]. A Petri net with
the assigned colors, if it is additionally live and safe, is called a colored interpreted
Petri net [13].

The proposed coloring methods of the Petri nets use Gentzen formal symbolic
deduction. Gentzen symbolic reasoning [5] establishes a link between Boolean
expressions, commonly used in a digital system design on RTL level, and the Petri
net model of a Hierarchical Concurrent State Machine [1].

2 Gentzen Deduction System

The sequent is a formalized statement used for deduction and calculi [5]. In the
sequent calculus, sequents are used for specification of judgement that are char-
acteristic for deduction system. The sequent is defined as an ordered pair (Γ,Δ),
where Γ and Δ are the finite sets of formulas, and Γ = {A1, A2, . . . , Am}, Δ =
{B1, B2, . . . , Bn}. Instead of (Γ,Δ) it is a used notation with the use of turnstile
symbol Γ � Δ. Γ is called the antecedent and Δ is the succedent of the sequent.
The sequent Γ � Δ is satisfiable for the valuation v iff for the same valuation v

the formula
∧m

i=1 Ai → ∨n
j=1 Bj is satisfied. In the proposed implementation of

Symbolic Coloring of Petri Nets 69

Gentzen system there are defined ten rules of elimination of logic operators. For each
operator (negation, disjunction, conjunction, implication and equivalency), there are
defined two rules of its elimination. First rule is used when the operator is located
in antecedent and the second one when it is located in a succedent. As an example
the rule of the disjunction operator elimination will be presented. If the main logical
operator in a sequent is a disjunction located in the succedent then two sequents will
be produced. First sequent will contain the first comma separated argument of the
disjunction in the succedent, and second sequent will contain the second argument
of the disjunction also in the succedent. The elimination process is repeated, while
only normalized sequents are obtained.

A normalized sequent is a sequent without any logical operators. A sequent is a
tautology if it has the same formula in its antecedent and succedent. The tautology
sequents could be removed from further normalization. If and only if all normalized
sequents are the tautologies then the analysed root sequent is also a tautology. When
one of the leafs in deduction tree is not a tautology it means that it is a counterexample
for the analysed sequent. The consensus method based on logic resolution is also
included into formal deduction (Gentzen cut rule).

The current version of implementation of Gentzen system “GENTZEN v6.7.2”
accepts many types of logical operators, taken from Palasm (*, +, /, ->, <->, <+>),
VHDL (and, or, nor, xor, and, not, <=), Verilog (&, |, !, ˆ), linear logic (⊕,
⊗, �) and NuSMV (&, |, xor, xnor, !). The implemented system is optimized
by using the elements of the Thelen’s algorithm [8]. This combination significantly
reduces the proof trees and improves overall system performance. In order to obtain
optimal solutions to the algorithm was also added a sequent version of the resolution
algorithm [3]. Results obtained from the system can be automatically transformed
to VHDL, Verilog, NuSMV (a model for model checking system), Espresso, and
classic CNF and DNF forms.

3 Coloring from Concurrency Hypergraph

It is possible to deduce from a colored Petri net (Fig. 1) its equivalent representation
of the controller as a transition system. It can be obtained from the reachability graph
(Fig. 2) of the Petri net. The vertices of a reachability graph describe the global states
of a transition system. If a Petri net is properly colored then the vertices contain
all colors. There are no vertices which contain two different places with the same
color. The number of colors should be minimal and equal to the maximum number
of places which can be concurrently marked. In this way the transition system could
be treated as an interpreted form of reachability graph (Fig. 2). The transition system
can be in ten global states M0 − M9. There are superposition of maximal subsets of
concurrent local states:

70 J. Tkacz

t1

P11

P1 P2 P3

P5 P8

P6

P9

P7

P10

t17

t8 t7

t12

t13 t14

(20,1)

[c2,c3]

[c3] [c4] [c1,c2]

[c3 c4]
[c1]

[c1,c4]

[c2]

[c3] [c4]

[c1,c2,c3,c4]

[c3,c4]

[c1,c4][c2,c3]

[c1,c2,c3,c4]

[c1,c2]

[c3,c4]

P4

Fig. 1 Example of the Petri net

M0 = {P11}; P1 = {P1, P2, P3};
M2 = {P3, P4}; P3 = {P1, P2, P5, P8};
M4 = {P3, P6, P7}; P5 = {P4, P5, P8};
M6 = {P5, P6, P7, P8}; P7 = {P5, P6, P10};
M8 = {P7, P8, P9}; P9 = {P9, P10}

The monotone characteristic sequent of the Petri net discrete space is as follows:

M � (P11), (P1 and P2 and P3), (P3 and P4),
(P1 and P2 and P5 and P8),
(P1 and P2 and P5 and P8),
(P3 and P6 and P7),
(P4 and P5 and P8),
(P5 and P6 and P7 and P8),
(P5 and P6 and P10),
(P7 and P8 and P9), (P9 and P10);

Symbolic Coloring of Petri Nets 71

P1,P2,P5,P8

P11

P1,P2,P3

P3,P4

P4,P5,P8P3,P6,P7

P5,P6,P7,P8

P5,P6,P10 P7,P8,P9

P9,P10

t1

t8 t7

t12 t7 t8

t7
t12

t14

t14

t13

t13

t17

M0

M1

M2 M3

M4

M5

M6

M7 M8

M9

Fig. 2 Reachability graph of the Petri net

Distribution of the Petri net tokens among places describes the current global
state M . New marking M , after firing of any enabled transition, is the next global
state @M . From the current global state M , the modeled controller goes to the next
internal global state @M , generating the registered @y output signals.

In order to determine the SM-subnets covering of the Petri nets, formal reasoning
using propositional Gentzen calculus was used [1, 8, 10–12]. As a result of local
and global state space analysis, state machine subnets are obtained. The subnets are
subsequently marked with different colors. The subnets are accordingly mapped to
tokens, places, transitions and input and output signals.

Hypergraph of concurrency (Fig. 3) represents all the global states of a discrete
system described by the Petri net. Its hyperedges relate concurrent places belonging
to the same global states and correspond to the respective vertices of reachability
graph (Fig. 2).

Hypergraph of non-concurrency, or sequentiality (Fig. 4), is a complement of the
hypergraph of concurrency. Its hyperedges correspond to sets of sequential Petri net
places, where only one place can be marked at the same time, from state machine
subnets. They can be calculated as the exact transversals of concurrency hypergraph
(Fig. 3) [11, 14].

� P11, (P1 or P2 or P3), (P3 or P4),
(P1 or P2 or P5 or P8), . . . , (P9 or P10)

The full hypergraph of sequentiality shown in Fig. 4 contains six hyperedges
{i1 − i6}. There are two net covers with exactly four hyperedges: {i3, i4, i1, i2},

72 J. Tkacz

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

M1={1,2,3}

M2={3,4}

M3={1,2,5,8}

M4={3,6,7}

M5={4,5,8}

M6={5,6,7,8}

M7={5,6,10}

M8={7,8,9}

M9={9,10}

M0={11}

Fig. 3 Hypergraph of concurrency

{i3, i4, i5, i6}. Both covers contain essential hyperedges i3 and i4, which are the only
ones to cover places P5 and P8. The first four sequential subnets i1 − i4 are sufficient
to cover all places of the net (Fig. 5).

It should be noted that the sequentiality graph hyperedges correspond to the invari-
ants which can be obtained using integer linear programming (ILP) methods. Alter-
natively they can be read from the marking reachability graph Fig. 2, as transversals
of subsets of places marked in parallel [5, 6].

� P1, P4,P6,P8, P10, P11;
� P1, P4, P6, P9, P11; (i1)
� P1,P4,P5, P7, P9, P11;
� P1, P4, P7, P10, P11; (i6)
� P2, P4,P6,P8, P10, P11;
� P2, P4, P6, P9, P11; (i5)
� P2,P4,P5, P7, P9, P11;
� P2, P4, P7, P10, P11; (i2)
� P3,P5,P7, P10, P11;
� P3, P5, P9, P11; (i4)
� P3,P6, P8, P9, P11;
� P3, P8, P10, P11; (i3)

Symbolic Coloring of Petri Nets 73

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

i1={1,4,6,9,11}

i6={1,4,7,10,11}

i5={2,4,6,9,11}

i2={2,4,7,10,11}

i4={3,5,9,11}

i3={3,8,10,11}

Fig. 4 Hypergraph of sequentiality

Finally selected cover of Petri net by state machine components could be repre-
sented only by four transversals of the net state space (Fig. 3). It is described as a
reduced hypergraph of sequentiality (Fig. 5):

� P1, P4, P6, P9, P11
� P2, P4, P7, P10, P11
� P3, P8, P10, P11
� P3, P5, P9, P11

4 Coloring with the Use of Siphons and Traps

What differentiates sequent calculus from other methods, e.g. those used in [2, 8,
10], is that the conversion to clausal form is not required. Moreover, by using cut
and consensus a laborious process of results selection is avoided. Siphons and traps
that are not minimal are eliminated beforehand.

74 J. Tkacz

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

i1={1,4,6,9,11}

i2={2,4,7,10,11}

i4={3,5,9,11}

i3={3,8,10,11}

Fig. 5 Cover of the reduced sequentiality hypergraph

Table 1 Group sequents of traps and siphons

Transitions Traps sequent Siphons sequent

t1 (P11 → (P1 + P2 + P3)) ((P1 + P2 + P3) → P11)

t8 ((P1 + P2) → P4) (P4 → (P1 + P2))

t7 (P3 → (P5 + P8)) ((P5 + P8) → P3)

t12 (P4 → (P6 + P7)) ((P6 + P7) → P4)

t13 ((P5 + P6) → P9) (P9 → (P5 + P6))

t14 ((P7 + P8) → P10) (P10 → (P7 + P8))

t17 ((P9 + P10) → P11) � (P11 → (P9 + P10)) �

The Petri net will be analysed in the next steps. Gentzen sequents, showing in a
symbolic way all the relations of direct transition between input and output places
of all transitions, are determined on the basis of the topological structure of an
uninterpreted Petri net. Using the method presented in [8, 10] separated sequents of
siphons and traps were created (Table1).

Symbolic Coloring of Petri Nets 75

Table 2 Traps and siphons

Traps Siphons Color

i1 P1, P4, P6, P9, P11 P1, P4, P6, P9, P11 C3

i6 P1, P4, P7, P10, P11 P1, P4, P7, P10, P11 C5

i5 P2, P4, P6, P9, P11 P2, P4, P6, P9, P11 C6

i2 P2, P4, P7, P10, P11 P2, P4, P7, P10, P11 C4

i4 P3, P5, P9, P11 P3, P5, P9, P11 C2

i3 P3, P8, P10, P11 P3, P8, P10, P11 C1

In order to check whether the Petri net is live, traps equal to siphons (deadlocks)
are calculated [1, 2, 9, 11, 12]. Sets of marked traps contained in siphons determine
potential state machine subnet, present in the Petri net. Each of the subnets is marked
with a different color, flagging also its places and transitions. Traps not equal to
siphons indicate potential net defects. The net is not live, if not all the siphons
contain traps. We suggest the following method of Petri net state space analysis. We
use the net depicted in Fig. 1 as an example:

1. Using the rule-based symbolic descriptionof thePetri net, create the group sequent
of traps (Table1).

2. Reduce the group sequent of traps to single normalized elementary sequents and
remove their right sides (Table2).

3. Remove the sequents of traps not containing a marked place symbol.
4. Using the rule-based symbolic descriptionof thePetri net, create the group sequent

of siphons (deadlocks) (Table1).
5. Reduce the group sequent of siphons to elementary sequents and remove their

right sides. Apply the consensus rule to the previously selected sequents of traps
in every chosen siphon. If the considered sequent becomes dominated, go to step
8 (all sequents are dominated).

6. The traps which are equal to siphons determine covering of sequentiality hyper-
graph by the hyperegdes corresponding to potential state machine subnets (in the
considered example colors C1−C6 are assigned to the hyperedges—Table2).

7. Find theminimal covers of the sequentiality hypergraph (for the considered exam-
ple these are {C1,C2,C3,C4} or {C1,C2,C5,C6}); go to step 9.

8. The Petri net is not live (not the case of Petri net in Fig. 1).
9. End.

After removing the right sides of the reduced sequents and after leaving only the
siphons dominated by marked traps, we obtained six potential automata subnets.
These sets correspond to the hyperedges of the sequentiality hypergraph {i1, . . . , i6}
(Fig. 2). Following step 5 in the above algorithm, we conclude that the Petri net is
live, since each edge of the hypergraph contains a marked trap. Subsets determining
traps and siphons are pairwise identical. The cover (i3, i4, i1, i2)was chosen for Petri
net encoding. Subnets were assigned colors according to Table2. These colors were
placed on the net shown in Fig. 1.

76 J. Tkacz

5 Conclusion

One of the major advantages of the proposed method is the localization of a potential
defects. When some siphons are not equal to traps then net is not live. These siphons
directly indicate the location of the defects.

Proposed methods discover all possible colorings and for most cases the com-
plexity and time of execution is not acceptable for application in design tools. These
methods are typically used for the purpose of verification of heuristic methods.

In addition, the proposed methods are suitable also for hierarchical specifications
of logic controllers. In this case hierarchical specification of the logic controller
should be prepared in the form of a Petri macronet.

References

1. Adamski, M., & Tkacz, J. (2012). Formal reasoning in logic design of reconfigurable con-
trollers. In Proceedings of 11th IFAC/IEEE International Conference on Programmable
Devices and Embedded Systems PDeS’12 (pp. 1–6). Brno, Czech Republic.

2. Adamski, M., Karatkevich, A., & Węgrzyn, M. (eds.) (2005). Design of embeded control
systems. New York: Springer Science+Business Media Inc.

3. Ben-Ari, M. (2012). Mathematical logic for computer science (3rd ed.). London: Springer.
4. Biliński, K., Adamski, M., Saul, J., & Dagless, E. (1994). Petri-net-based algorithms for

parallel-controller synthesis. IEE Proceedings – Computers and Digital Techniques, 141(6),
405–412.

5. Gallier, J. H. (1985). Logic for computer science: Foundations of automatic theorem proving.
New York: Harper & Row Publishers.

6. Girault, C., & Valk, R. (2003). Petri nets for system engineering: A guide to modeling, verifi-
cation, and applications. Berlin: Springer.

7. Jensen, K., Kristensen, K., &Wells, L. (2007). Coloured Petri nets and CPN tools for modelling
and validation of concurrent systems. International Journal on Software Tools for Technology
Transfer (STTT), 9(3), 213–254.

8. Karatkevich, A. (2007). Dynamic analysis of Petri net-based discrete systems (Vol. 356). Lec-
ture notes in control and information sciences. Berlin: Springer.

9. Kozłowski, T., Dagless, E., Saul, J., Adamski, M., & Szajna, J. (1995). Parallel controller
synthesis using Petri nets. IEE Proceedings – Computers and Digital Techniques, 142(4), 263–
271.

10. Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4), 541–580.

11. Tkacz, J. (2007). State machine type colouring of Petri net by means of using a symbolic
deduction method. Measurement Automation and Monitoring, 53(5), 120–122.

12. Tkacz, J., & Adamski, M. (2011). Calculation of state machine cover of safe Petri net by means
of computer based reasoning.Measurement Automation and Monitoring, 57(11), 1397–1400.

13. Węgrzyn, M., Wolański, P., Adamski, M., & Monteiro, J. (1997). Coloured Petri net model of
application specific logic controller programs. In Proceedings of IEEE International Sympo-
sium on Industrial Electronics ISIE’97 (Vol. 1, pp. 158–163). Guimarães, Portugal. Piscataway.

14. Wiśniewska, M., Wiśniewski, R., & Adamski, M. (2007). Usage of hypergraph theory in
decomposition of concurrent automata.Measurement Automation and Monitoring, 53(7), 66–
68.

Modular Synthesis of Petri Nets

Jacek Tkacz and Marian Adamski

Abstract The chapter is concentrated on behavioral and structural specification of
reconfigurable logic controllers (RLC). The initial description is given as a hierarchi-
cal modular control interpreted Petri net. On the abstract level of the logic synthesis
a specification is written in formal propositional Gentzen sequent language. Rapid
modeling in FPGA can be done directly from rule-based expressions, written in a
hardware description language, for example in VHDL.

Keywords Sequents ·Gentzen logic · Petri net ·Logic synthesis ·Logic controllers

1 Introduction

The chapter covers logic design techniques,which can be used for rigorous computer-
based synthesis of Reconfigurable Logic Controllers (RLC) [1, 2, 7, 8]. Initially, the
behavior of the controller is specified as hierarchical colored control interpreted
Petri net. The decision rules, written in Propositional Sequent Logic, describe both
structure of the net as well as the intended behavior of the logic controller, given
in a professional hardware description language. Gentzen symbolic reasoning [10]
establishes a link between Boolean expressions, commonly used in a digital system
design on RTL level and the Petri net model of a Hierarchical Concurrent State
Machine [3].

J. Tkacz (B) · M. Adamski
Institute of Computer Engineering and Electronics,
University of Zielona Góra, ul. Licealna 9, 65-417 Zielona Góra, Poland
e-mail: j.tkacz@iie.uz.zgora.pl

M. Adamski
e-mail: m.adamski@iie.uz.zgora.pl

© Springer International Publishing Switzerland 2016
A. Karatkevich et al. (eds.), Design of Reconfigurable Logic Controllers,
Studies in Systems, Decision and Control 45,
DOI 10.1007/978-3-319-26725-8_7

77

78 J. Tkacz and M. Adamski

The strategy developed and promoted in this chapter is based on the hierarchi-
cal decomposition of Petri nets into nested, self-contained and structurally ordered
subnets, which are suitable for distributed state encoding as well as flexible recon-
figuration. All structured modules are easily recognized by their symbolic names of
the configuration (coordination) places, which are only marked if selected modules
are active.

The proposed design methodology is based on a formal mapping of specification
in propositional Gentzen logic into very close equivalent description of the imple-
mentation, which is accepted directly by VHDL [5].

The main goal of the proposed rapid design style is to preserve the self-evident
correspondence amongmodular interpreted Petri net, the related symbolic rule-based
specification, and final logic design expressions, which are directly mapped into
configurable logic arrays FPGA [2, 16, 17].

2 Example of Control System

The controlled plant (Fig. 1) consists of three feeders, scales and content mixer. The
example first introduced by P. Misiurewicz has been used as benchmark in several
papers, among others in [5, 12].

The logic controller has six inputs {XN1,XN2,XF1,XF2,XF3,XF4} and six out-
puts {YT1,YT2,YV1,YN2,YV3,YM}. The example of control interpreted Petri net,
which describes the behavior of control system is presented in Fig. 2. The Petri net
places {P1,P2, . . . ,P11} stand for the local states of concurrent state machine. The
transitions t1 . . . t9 describe events in terms of local changes inside the Petri net state
space. Boolean expressions XN1 . . .XF4 called guards give the external conditions
for transitions to be enabled and fired. The colored coordination places P12 and P13

in Fig. 2 are optional.
The guarded events are strongly related with transitions of the net (Table1).

The Moore type outputs YT1 . . . YM are attached to places (Table2). The basic,

Fig. 1 Mechanical part of
discrete control system

Logic
controller

XN1

XN2

XF1

XF2

XF3

XF4

YT1

YT2

YV1

YV2

YV3

YM

YT1 YT2

YV1 YV2

Aggregate
feeder

Cement
feeder

Water
feeder

Scales

Content
mixer

YV3

YM

Mixer
arm

XN1
XN2

XF1

XF3

XF2

Timer
XF4

Modular Synthesis of Petri Nets 79

Fig. 2 Petri net model
P1

P2 P3

P4

P5

P6

P7

P9

P8

P10

P11

t1

t2

t3

t4

t5

t6

t7

t8

t9

XN1

XF1

XN2

XF1 XF2

XF4

XF3

YT1

YV1

YT2

YV1 YV2

YV3

YM

P12

P13

[1]

[1]

[1]

[1]

[1]

[2]

[2]

[2]

[2]

[2]

[3]

[3]

[3]

one-level net could be colored by a designer during the initial specification process
to demonstrate its preferable State Machines subnets (Fig. 2). These colors help to
validate intuitively and formally the consistency of all sequential processes in the
considered discrete state model. The control Petri net is covered by three separated
State-Machine components SM1, SM2, SM3, recognized by colors {[1], [2], [3]}:

SM1[1] = {P1,P2,P4,P5,P6};
SM2[2] = {P3,P12,P7,P10,P11};
SM3[3] = {P9,P8,P13};

80 J. Tkacz and M. Adamski

Table 1 List of transitions and guards

Transition Guard Interpretation of guard

t1 XN1 Required value of aggregate is reached

t2 1 Always true

t3 XF1 The scale is empty

t4 XN2 Required value of cement is reached

t5 XF1 The scale is empty

t6 1 Always true

t7 XF4 Ingredients are intermixed

t8 XF3 Cement mixer is empty

t9 XF2 Required value of cement is reached

Table 2 List of places and outputs

Place Output Interpretation of place

P1 YT1 First dozing of cement

P2 – Waiting

P3 – Waiting

P4 YV1 First emptying the scale

P5 YT1 Second dozing of cement

P6 YV1 Second emptying the scale

P7 – Waiting

P8 – Waiting

P9 YV2 Dosing of water

P10 YM Mixing of compounds

P11 YV3 Emptying the mixer

3 Place Centered Specification of Petri Net in Gentzen
Logic

In formal description of the Petri net, letters stand for the symbols from Gentzen
propositional logic [10, 11]. Symbol and denotes conjunction symbol or denotes
disjunction, symbol not—negation, symbol← backward implication, symbol xor—
exclusive or, symbol ↔ equivalence.

The specification of Petri net is concentrated around places with their input and
output transitions. Such strategy makes possible to represent Petri net places as a
separated elementary parts of Petri net.

The logic description describes the changes of Petri net markings, separately for
any place. The autonomous placePn is considered togetherwith its input {ti . . . tj} and
output transitions {tk . . . tl} as a basic component of the net (Fig. 3). The precondition
for firing transition ti is: ti ⇐ pm and pl and guardti. The place safely gets its token

Modular Synthesis of Petri Nets 81

Pn

ti tj

tk tl

(a) (b) (c)

Pm Pi

tiguardti

Pi

Pm

MPn tj

tlguardtl

Fig. 3 Symbolic representation of Petri net parts

if one of its input transition fires. The next marking for a place Pn (Fig. 3a) is defined
as follows:

@Pn ⇐ Pn xor ((ti xor tj) xor (tk xor tl)) (1)

If net is safe xor operator in expression (ti xor tj) can be replaced by or. If the
place deterministically loses its token the expression (tk xor tl) is simplified to (tk or
tl) [4]. The precondition of local transitions ti (Fig. 3b) is defined as follows:

ti ⇐ Pm and Pi and guardti (2)

Macroplace MPn from the example (Fig. 3c) contains sequential places Pi and
Pm. The common, boundary transition tl presented on Fig. 3c can be described as
follows:

tl ⇐ MPn and Pm and guardtl (3)

To make the specification close with VHDL syntax and semantics, the sequents
with empty left side are used: “� Φ;” where Φ is formula in propositional logic.
Symbol @ defines next operator from propositional temporal logic and it is usually
also omitted.

The first part of state-event-state (place-transition-place) description of one level
Petri net is given in the Table3.

Each line of description represents a single event in Petri net as a transition with
its preconditions.

The Moore type combinational outputs are related with places, which con-
tain token when that output is active:

� YT1 ⇐ P1;
� YV1 ⇐ P4 or P6;
. . .

� YV3 ⇐ P11;

82 J. Tkacz and M. Adamski

Table 3 Precondition and
outputs

Precondition of transitions Moore type outputs

� t1 ⇐ P1 and XN1 � YT1 ⇐ P1

� t2 ⇐ P2 and P3 � YV1 ⇐ P4

� t3 ⇐ P4 and XF1 � YT2 ⇐ P5

� t4 ⇐ P5 and XN2 � YV1 ⇐ P6

� t5 ⇐ P6 and XF1 � YV2 ⇐ P9

� t6 ⇐ P7 and P8 � YV3 ⇐ P11

� t7 ⇐ P10 and XF4 � YVM ⇐ P10

� t8 ⇐ P11 and XF3

� t9 ⇐ P9 and XF2

Different forms of rule-based specification can be found in papers [1, 4, 14]. Petri
net specification format (PNSF) serves as convenient textual form for an automatic
translation of transition rules into VHDL or Verilog code [5].

After concurrent one-hot encoding symbols P1 . . .P11 are treated as names of
flip-flops contained in distributed local state register. The outputs can be tradition-
ally generated in combinational circuit: YT1 ⇐ P1 . . . YM ⇐ P10 (Table3). Finally,
changes of place markings:

� @P1 ⇐ P1 xor (t5 xor t1);
� @P2 ⇐ P2 xor (t1 xor t2);
� @P3 ⇐ P3 xor (t8 xor t2);
� @P4 ⇐ P4 xor (t2 xor t3);
� @P5 ⇐ P5 xor (t3 xor t4);
� @P6 ⇐ P6 xor (t4 xor t5);
� @P7 ⇐ P7 xor (t5 xor t6);
� @P8 ⇐ P8 xor (t9 xor t6);
� @P9 ⇐ P9 xor (t8 xor t9);
� @P10 ⇐ P10 xor (t6 xor t7);
� @P11 ⇐ P11 xor (t7 xor t8);

Some of registered outputs can serve also as local one-hot state codes, except YV1,
which is generated twice in local states P4 and P6: YV1 ⇐ P4 or P6:

� @YT1 ⇐ YT1 xor (t5 xor t1);
� @YT2 ⇐ YT2 xor (t3 xor t4);
� @YV2 ⇐ YV2 xor (t8 xor t9);
� @YVM ⇐ YVM xor (t6 xor t7);
� @YV3 ⇐ YV3 xor (t7 xor t8);

The full list of preconditions of local transitions and descriptions of Moore type
outputs is given in Table3.

Modular Synthesis of Petri Nets 83

Table 4 Example of encoding

SM1[1] {Q1,Q2,Q3} SM2[2] {Q4,Q5,Q6} SM3[3] {Q7,Q8}
P1 = 000 P3 = 000 P9 = 00

P2 = 001 P12 = 001 P8 = 01

P4 = 011 P7 = 011 P13 = 11

P5 = 010 P10 = 010

P6 = 110 P11 = 110

4 Encoding Inside State Machine Modules

Encoding from Table4 can be used for more compact dense state space. The number
of logic variables is reduced to eight by commercial tools [16]. Every state machine
subnet is encoded separately. The changes ofmarking are now represented by changes
of local state variables. The current value of a registered signal is presented asQ, but
its next value is written as @Q [1].

− − SM1 − −
� @Q1 ⇐ Q1 xor (t4 xor t5);
� @Q2 ⇐ Q2 xor (t2 xor t5);
� @Q3 ⇐ Q3 xor (t1 xor t3);
− − SM2 − −
� @Q4 ⇐ Q4 xor (t7 xor t8);
� @Q5 ⇐ Q5 xor (t5 xor t8);
� @Q6 ⇐ Q6 xor (t2 xor t6);
− − SM3 − −
� @Q7 ⇐ Q7 xor (t6 xor t8);
� @Q8 ⇐ Q8 xor (t9 xor t8);

In this case combinational outputs should be generated as follows:

� YT1 ⇐ not Q1 and not Q2 and not Q3;
. . .

� YV3 ⇐ Q4 and Q5 and not Q6;

5 Implementation of Colored Hierarchical Macronet

5.1 Modular Specification of Logic Controller

Together with coloring a Petri net can be converted into suitable hierarchical descrip-
tion. As an example, the initial, basic net from Fig. 2 was reduced to the macronet
with macroplaces MP1 . . .MP6 (Fig. 4). Transitions with more than one input place

84 J. Tkacz and M. Adamski

Fig. 4 Hierarchical
macronet

P1

P2 P3

P4

P5

P6

P7

P9

P8

P10

P11

t1

t2

t3

t4

t5

t6

t7

t8

t9

MP3

MP5

MP4

MP1 MP2

MP6

[1]

[1, 2]

[1]

[1, 2]

[1, 2]

[2, 3]

[2, 3]

[2]

[3]

[3]

[2]

[1 2]

[2][1]

[2, 3]

[2]

[3]

YT1

YT2

YV1

YV1

YV2

YV3

YM

XN1

XF1

XN2

XF1 XF2

XF4

XF3

or more than one output place, such as t2, t5, t6, t8 are called boundary transitions.
Transfer transitions with one input and one output places are hidden inside first order
macroplaces. Fusion of Series Places (FSP) and fusion of Parallel Places (FPP) [11,
14] are used recursively during coloring [6, 15], until the macronet becomes irre-
ducible.

It should be noted, that the macroplaces which are painted with disjoint set of
colors are evidently concurrent to each other. The macroplaces sharing the same
color are sequentially related to each other. The special implicit configuration (coor-
dination) places MP1 . . .MP6 detect all the Petri net subnets, which they dominate.
During the hierarchical state encoding only a proper subset of them is necessary to
detect the groups of places [3].

Modular Synthesis of Petri Nets 85

5.2 General Template for Modular Logic Design

SymbolsMP1 . . .MP6 are the names of macroplaces as well as names of their coor-
dination places (subnet flags) from Fig. 4. Petri net places p1 . . . p11 are related to
capital letters denoting single bit memory elements—flip-flops: P1 . . .P11.

The main part of a novel template of formal description of Petri net in Gentzen
sequent logic language is as follows:

Preconditions of boundary transitions:

� t2 ⇐ MP1 and MP2 and P2;
� t5 ⇐ MP3 and P6;
� t6 ⇐ MP4 and MP5 and P7 and P8;
� t8 ⇐ MP6 and P11;

Precondition of local transitions:

� t1 ⇐ MP1 and P1 and XN1;
� t3 ⇐ MP3 and P4 and XF1;
� t4 ⇐ MP3 and P5 and XN2;
� t7 ⇐ MP6 and P10 and XF4;
� t9 ⇐ MP5 and P9 and XF2;

Flags of macrostates (macroplaces):

� @MP1 ⇐ MP1 xor (t5 xor t2);
� @MP2 ⇐ MP2 xor (t8 xor t2);
� @MP3 ⇐ MP3 xor (t2 xor t5);
� @MP4 ⇐ MP4 xor (t5 xor t6);
� @MP5 ⇐ MP5 xor (t8 xor t6);
� @MP6 ⇐ MP6 xor (t6 xor t8);

Places are encoded inside macroplaces. Changes of local places are as follows:

� @P1 ⇐ (P1 and MP1) xor (t5 xor t1);
� @P2 ⇐ (P2 and MP1) xor (t1 xor t2);
. . .

� @P10 ⇐ (P10 and MP6) xor (t6 xor t7);
� @P11 ⇐ (P11 and MP6) xor (t7 xor t8);

5.3 One-Hot Encoding of Macroplaces

For a rapid prototyping, macroplaces are coded by means of registered outputs
Q1 . . .Q6 as shown in Fig. 5:

86 J. Tkacz and M. Adamski

Fig. 5 Sample VHDL code

Modular Synthesis of Petri Nets 87

MP1 ⇔ Q1; MP2 ⇔ Q2; MP3 ⇔ Q3;
MP4 ⇔ Q4; MP5 ⇔ Q5; MP6 ⇔ Q6;

It is easy, but not recommended, to find codes for local places P1 and P11, using
only additional variables Q7 . . .Q17.

5.4 Local Encoding Inside Macroplaces with Registered
Outputs

The local places can be encoded using registered outputs. The codes of local places
are as follows:

P1 ⇔ YT1; P2 ⇔ not YT1; P3 ⇔ not YV3;
P4 ⇔ YV1a; P5 ⇔ YT2; P6 ⇔ YV1b;
P7 ⇔ not YV1; P8 ⇔ not YV2; P9 ⇔ YV2;
P10 ⇔ YM; P11 ⇔ YV3;

After that kind of encoding of places {P1,P4,P5,P9,P10} the preconditions of
local transitions are as:

� t1 ⇐ MP1 and YT1 and XN1;
� t3 ⇐ MP3 and YV1a and XF1;
� t4 ⇐ MP3 and YT2 and XN2;
� t7 ⇐ MP6 and YM and XF4;
� t9 ⇐ MP5 and YV2 and XF2;

As a result of replacing the names of places by related output names, the changes
of local places are described as follows:

� @YT1 ⇐ (YT1 and MP1) xor (t5 xor t1); /* @P1 */
� @YV1a ⇐ (YV1a and MP3) xor (t2 xor t3); /* @P4 */
� @YT2 ⇐ (YT2 and MP3) xor (t3 xor t4); /* @P5 */
� @YV1b ⇐ (YV1b and MP3) xor (t4 xor t5); /* @P6 */
� @YV2 ⇐ (YV2 and MP5) xor (t8 xor t9); /* @P9 */
� @YM ⇐ (YM and MP6) xor (t6 xor t7); /* @P10 */
� @YV3 ⇐ (YV3 and MP6) xor (t7 xor t8); /* @P11 */

5.5 State Machine Style for Macroplace Encoding

As a next optimization the macroplaces can be encoded in state machine style.
The first subnet corresponding to color [1], which contains macroplaces MP1

and MP3 can be encoded by one logic variable (Q1). The second subnet, which

88 J. Tkacz and M. Adamski

contains macroplaces MP5 and MP6 can be encoded also by one logic variable
(Q3). The last subnet corresponding to color [3], which contains macroplaces
{MP2,MP3,MP4,MP6} need two logic variable Q2 and Q4. Macroplaces MP2 and
MP4 get one-hot codes:

MP1 ⇔ Q1; MP3 ⇔ not Q1; MP5 ⇔ Q3;
MP6 ⇔ not Q3; MP2 ⇔ Q2; MP4 ⇔ Q4; (4)

The symbol ⇔ used above denotes logic equivalence. The number of flip flops is
reduced from six to four. The number of expressions describing flags is now equal
only four:

� @Q1 ⇐ Q1 xor (t5 xor t2);
� @Q2 ⇐ Q2 xor (t8 xor t2);
� @Q4 ⇐ Q4 xor (t5 xor t6);
� @Q3 ⇐ Q3 xor (t8 xor t6);

In this case the preconditions of boundary transitions and precondition of local
transitions should be also changed by replacing macroplaces by codes presented in
expressions (4).

6 VHDL-Style of the Modular Petri Net Description

The preferable way of controller rapid prototyping is hierarchical design from a
formal assertion-based [9] behavioral description, using professional HDL syntax.
One of the possible version of general template [5] is presented in Fig. 5.

For pragmatic reasons the controller is realized as a synchronous digital system
with distributed state registerMP1 . . .MP6 anddistributed output registerYT1 . . . YM.

Fig. 6 Simulation results from AHDL tool

Modular Synthesis of Petri Nets 89

The state register and the output register can be merged. All concurrently enable
transitions can fire independently, in any order. It is considered that after animation
and classical analysis, the implemented interpreted Petri net is checked as safe, live,
reversible and without conflicts, which are not solved [13, 14]. Anyway, if some
transitions of the net would be in conflicts or the net is not safe, the detected partial
state of the net is frozen (state changes stop). Registered outputs can be used both for
precondition and local states coding. The simulation results obtained from Active-
HDL tool is shown in Fig. 6.

7 Results of Experiments

The macroplace-centered and place-centered decomposition and encoding of
SM-colored Petri net is preferable from FPGA resources utilization point of view
[7, 16]. Additionally, it enables flexible reusing of previously tested, encoded
Petri net components. Synthesis after classic hierarchical one-hot state encoding
of macroplaces and places needs 17 flip-flops. In case of economical rapid concur-
rent one-hot local encoding of merged places and registered outputs (Fig. 5) it is
necessary to use only 13 shared additional encoding variables. Synthesis result using
Xilinx Vertex 2 Pro is: 12 slices, 13 flip-flops and 23 LUTs. After dense encoding of
macroplaces the number of flip-flops is reduced to 11.

Hierarchical encoding using macroplaces and registered outputs gives balanced
economical synthesis results as well flexibility during redesign of the controller. The
coordination places serve also as flags during partial reconfiguration of the net. After
modification of the water feeder from mechanical part (Fig. 1) it is easy to find local
places P8 and P9, which are encapsulated inMP5 and replace them by another subset
without destroying the other parts of previous design.

The minimum number of coding variables for classic implementation with sepa-
rated linked State Machine Components of the net is equal to eight. It is necessary
to use complicated logic expressions for register excitation and decoding the seven
outputs.

8 Summary

The rigorous digital design process starts from hierarchical concurrent state machine
model (HCSM), which has been formally derived from modular, colored control
interpreted Petri net. The colored tokens, arcs, places and transitions separate hierar-
chically and concurrently related State Machine components. The rule-based textual
logic description of Petri net inVHDL syntax is accepted by professional design tools
like Active-HDL (Aldec, USA) and Xlinx ISE. The flexible, readable template for
Petri net description is directly recognized by VHDL compiler and simulator as well
as by formal reasoning system. The logic specification is one-to-one mapped into

90 J. Tkacz and M. Adamski

Field Programmable Gate Array macrocells. Combinatorial procedures in formal
design of logic controller are supported by Gentzen sequent calculus.

The experimental design system can be used as a shell for existing proprietary
tools, developed at Zielona Góra, as well with standard professional environment
for digital synthesis and verification. It can also support the assertion-based design
methodology of application specific logic controllers with checking techniques
embedded in configurable hardware. The advantages are structured and modular
state space of logic controllers, suitable for model checking. The self-evident VHDL
template is suitable for rapid modifications also by hand.

References

1. Adamski, M. (2001). Specification and synthesis of Petri net based reprogrammable logic
controller. In Proceedings of 5th IFAC international conference on programmable devices and
embedded systems PDeS’01 (pp. 95–100). Czech Republic: Brno.

2. Adamski, M. (2005). Formal logic design of reprogrammable controllers. In M. Adamski, A.
Karatkevich, & M. Węgrzyn (Eds.), Design of embedded control systems (pp. 15–26). New
York: Springer.

3. Adamski, M., & Tkacz, J. (2012). Formal reasoning in logic design of reconfigurable con-
trollers. In Proceedings of 11th IFAC/IEEE international conference on programmable devices
and embedded systems PDeS’12 (pp. 1–6). Czech Republic: Brno.

4. Adamski, M., & Węgrzyn, M. (2009). Design of reconfigurable logic controllers from Petri
net-based specifications. 4th IFACworkshop on discrete-event system design—DESDes’09 (pp.
233–238). Gandia Beach, Spain.

5. Adamski, M., &Węgrzyn, M. (2009). Petri nets mapping into reconfigurable logic controllers.
Electronics and Telecommunications Quarterly, 55(2), 157–182.

6. Biliński, K., Adamski, M., Saul, J., & Dagless, E. (1994). Petri-net-based algorithms for
parallel-controller synthesis. IEE Proceedings—Computers and Digital Techniques, 141(6),
405–412.

7. Bukowiec, A. (2012). Synthesis of FSMs based on architectural decomposition with joined
multiple encoding. International Journal of Electronics and Telecommunications, 58(1), 35–
41.

8. Doligalski, M. (2012). Behavioral specification diversification of reconfigurable logic con-
trollers (Vol. 20)., Lecture notes in control and computer science Zielona Góra: University of
Zielona Góra Press.

9. Foster, H., Krolnik, A., & Lacey, D. (2004).Assertion-based design (2nd ed.). Norwell: Kluwer
Academic Publishers.

10. Gallier, J. H. (1985). Logic for computer science: foundations of automatic theorem proving.
New York: Harper & Row Publishers.

11. Girault, C., & Valk, R. (2003). Petri nets for system engineering: a guide to modeling, verifi-
cation, and applications. Berlin: Springer.

12. Gniewek, L., & Kluska, J. (2004). Hardware implementation of fuzzy Petri net as a controller.
IEEETransactions on Systems,Man, andCybernetics—Part B:Cybernetics,34(3), 1315–1324.

13. Jensen, K., Kristensen, K., &Wells, L. (2007). Coloured Petri nets and CPN tools for modelling
and validation of concurrent systems. International Journal on Software Tools for Technology
Transfer (STTT), 9(3), 213–254.

14. Karatkevich, A. (2007). Dynamic analysis of Petri net-based discrete systems (Vol. 356). Lec-
ture notes in control and information sciences Berlin: Springer.

Modular Synthesis of Petri Nets 91

15. Kozłowski, T., Dagless, E., Saul, J., Adamski, M., & Szajna, J. (1995). Parallel controller
synthesis using Petri nets. IEE Proceedings—Computers and Digital Techniques, 142(4), 263–
271.

16. Łabiak, G., Adamski, M., Doligalski, M., Tkacz, J., & Bukowiec, A. (2012). UML modelling
in rigorous design methodology for discrete controllers. International Journal of Electronics
and Telecommunications, 58(1), 27–34.

17. Tkacz, J., & Adamski, M. (2012). Logic design of structured configurable controllers. In
Proceedings of IEEE 3rd international conference on networked embedded systems for every
application NESEA’12 (p. 6). Liverpool, United Kingdom

Architectural Synthesis of Petri Nets

Arkadiusz Bukowiec

Abstract New methods of Petri net array-based architectural synthesis are pre-
sented. Methods are based on the parallel decomposition of control algorithm into
concurrently working state machine subnets and structural decomposition of a digital
system. Structural decomposition leads to realization of a logic circuit as a two-level
structure, where the combinational circuit of the first level is responsible for firing of
transitions, and the second level is a memory used for generation of micro-operations.
The memory organization depends on selected architecture. State machine subnets
are determined by colors. Places are encoded using minimal numbers of bits. Micro-
operations assigned to places are written in memory. Such an approach allows mod-
ular organization of logic circuit where each block has strictly determined function
and balanced usage of different kinds of resources available in modern FPGAs.

Keywords Digital circuits synthesis · FPGAs · Logic controllers · Petri nets

1 Introduction

Petri nets (PNs) [16, 23] are one of the popular design entries used in formal synthesis
and logic synthesis of the application specific logic controllers [4, 12, 13, 15, 19].
Field programmable gate arrays (FPGAs) are very often used for implementation of
such control systems. Typically, the Petri net diagrams are translated into behavioral
HDL descriptions [2, 14, 25] and then implemented into FPGA devices using one-hot
place encoding where each single place is represented by one flip-flop [1]. Such an
approach requires hardware implementation of a large number of logic functions and
flip-flops included in logic blocks. Furthermore, this approach causes a flat realization
of logic circuit with one large block responsible for generation of all functions.

A. Bukowiec (B)
Institute of Computer Engineering and Electronics, University of Zielona Góra,
ul. Licealna 9, 65-417 Zielona Góra, Poland
e-mail: a.bukowiec@iie.uz.zgora.pl

© Springer International Publishing Switzerland 2016
A. Karatkevich et al. (eds.), Design of Reconfigurable Logic Controllers,
Studies in Systems, Decision and Control 45,
DOI 10.1007/978-3-319-26725-8_8

93

94 A. Bukowiec

Together, it leads to a functional decomposition during the synthesis process and
consumes a large number of look-up tables (LUTs).

One of the methods of obtaining the well structured logic circuits is application of
architectural decomposition [3, 7, 18, 21]. It leads to a multi-level structure, where
each single block is responsible for a specific function. Additionally, it allows usage
of logic elements together with embedded memory blocks [6, 24] and in this way it
forces balanced utilization of FPGA resources.

This chapter presents the methods of Petri net synthesis. The Petri net is initially
colored [15, 27]. Places that are colored by the same color create one state machine
(SM) subnet and they are encoded by a minimal-length binary code. It leads to parallel
decomposition of a control algorithm, and it also causes parallel decomposition of a
logic circuit. The logic functions describing the behavior of the Petri net are grouped
into two sets. The first set contains functions responsible for firing of transitions and
the second one contains functions responsible for generation of microoperations.
Such classification allows application of architectural decomposition where the first
set is going to be synthesized in LUTs and implemented as a combinational circuit of
the first level, and the second set is going to be realized with the use of the embedded
memory blocks as a decoder of the second level.

2 Synthesis Methods

2.1 Main Idea

The idea of the presented synthesis methods is based on parallel decomposition of
a Petri net into concurrent SM subnets and architectural decomposition of a logic
circuit. Two approaches to the parallel decomposition are described:

• with doublers of macroplaces [9],
• with one common wait place [8].

The architectural decomposition leads to realization of a logic circuit in a two-level
structure, where the combinational circuit of the first level is responsible for transition
firing, and the second level is implemented as a memory with decoder and is used
for generation of the microoperations. Two variants of organization of the decoder
are as follows:

• with one shared operational memory for all SM-subnets [8],
• with many flexible distributed memories, one for each SM-subnet [10].

Variants of Petri net parallel decomposition and organization of the decoder can be
combined together without any restrictions, which leads to four possible methods of
architectural synthesis.

Architectural Synthesis of Petri Nets 95

2.2 Architecture

Logic circuit implementing a Petri net (Fig. 1) is build of i two-level parallel chains,
where each chain is responsible for one SM-subnet. The chains are obtained as a
result of parallel decomposition. i = 1, 2, . . . , I , where I is a number of colors in the
Petri net (each color corresponds to one SM-subnet). Places are encoded separately in
each SM-subnet, and architectural decomposition is applied to each chain. Operations
assigned to the places are placed in memory. The combinational circuits (CCi) of the
first level are responsible for generation of the excitation functions:

Di = Di(X,Q), (1)

where Q = Q1 ∪ Q2 ∪ · · · ∪ QI is the set of variables used to store the codes of
marked places. The memory of the circuit is build from I D-type registers RGi

which hold a code of current place of each SM subnet. The second level decoder
Y is responsible for generation of operations and it is implemented using memory
blocks. Its functionality can be described by the function

Y = Y(Q) (2)

Fig. 1 Logic circuits of a
Petri net. a With shared
operational memory. b With
flexible distributed memories

CC1 RG1

Y

QD1X

Y
CC2 RG2

CCI RGI

D2

DI

Q1

Q2

QI

CC1 RG1

Y

Q

D1X
Y1

CC2 RG2

CCI RGI

D2

DI

Q1

Q2

QI

Y2

YI

Q1

Q2

QI

Y1

Y2

YI

(a)

(b)

96 A. Bukowiec

in case of one shared operational memory for all SM subnets (Fig. 1a), or by the
function

Yi = Yi(Qi). (3)

in case of many flexible distributed memories (Fig. 1b).

2.3 Synthesis Steps

The entry point to the synthesis method is a colored interpreted Petri net with outputs
of Moore type. There are many algorithms of coloring of Petri nets, for example,
such as described in [27, 28] or in chapter “Symbolic Coloring of Petri Nets” of this
book. The whole synthesis process includes following steps:

1. Formation of subnets. The purpose of this step is to extract SM-subnets from the
Petri net by application of parallel decomposition. Let us assume that the Petri
net is colored with I different colors. Let us start the decomposition from the first
color (i = 1). All places colored by this color create the first SM-subnet. This
SM-subnet does not contain a wait place or any doublers. So, it is the same for
both approaches of decomposition. Next subnets are created in a similar way. But,
places which have been previously selected by already created SM-subnets have
to be replaced by doublers of macropalces or a wait place, depending on parallel
decomposition approach. First, in both approaches, all sequences of such places
are replaced by macroplaces. Then, in the first approach, the doublers of these
macroplaces appear in a new SM-subnet and they do not have any output signals
assigned. There can be several doublers of macroplaces in one subnet but if some
of them occur in a sequence then they can be replaced by one doubler. In the
second approach, the macroplaces are removed and replaced by one wait place.
It creates a more complicated net but with less number of places. It could be a
benefit during the encoding process. The examples of application of both parallel
decompositions are shown in Fig. 2. Figure 2a shows an initially colored Petri net.
It is colored by two colors:C1 andC2. The first SM-subnet (Fig. 2b) is the same for
both approaches of parallel decomposition and consists of all places colored by
color C1. The second SM-subnet includes two doublers of macroplaces DP1 and
DP2 (Fig. 2c) if the first approach is applied, or one wait place WP0 (Fig. 2d) if
the second one is applied. The doublers or wait place are treated as normal places
in the next steps. It should be also mentioned that there are other algorithms for
SM-subnets extraction, like described in [17, 26, 29], but they have to be adapted
to this synthesis method in case of usage at this step.

2. Encoding of places. The purpose of this step is to assign a binary code to each
place. The encoding is done using minimal number of required bits. One-hot
encoding [22] is not acceptable in this method because the place code is also an
address of operation memory. Places are encoded separately in each SM-subnet,
obtained in previous step. It is required to use

Architectural Synthesis of Petri Nets 97

P1

P2 P3

P4

P5

P7

P8

P9

t1

t2

t3

t4

t6

t7

X1

X2

X2

X4

X5

Y1

Y2

Y1

Y2

Y1

[C1]

[C1] [C2]

[C1 C2]

[C1 C2]

[C2]

[C1 C2]

[C1 C2]

P6[C1]

t5

Y2 Y3

X3

P1

P2

P4

P5

P10

P11

t1

t2

t3

t4

t6

t7

X1

X2

X2

X4

X5

Y1

Y2

Y1

Y2

Y1

P6

t5

Y2

X3

P3

P7

t4

t5

t7

X2

X5

t2

DP1

Y3

DP2

P3

P7

t4

t6

t7X2

X5

t2

WP0

Y3

(a) (b)

(d)

(c)

Fig. 2 Application of parallel decompositions

Ri = �log2 |Pi|� (4)

bits to encode them, where Pi ⊆ P ∪ MPi is a set of places in a subnet that was
created based on the color Ci. The set MPi consists of doublers of macroplaces or
wait place added to this subnet. The variables from set Qi ⊂ Q are used to store
this code, where Q = {q0, . . . , qR−1},

R =
I∑

i=1

Ri (5)

and Qi = {qρ−Ri , . . . , qρ−1}, where ρ = ∑i
ı=1 Rı . Places that belong to the initial

marking set M0 get code equal to 0. If the subnet does not include any place from
the initial marking set M0 the code equal to 0 should be assigned to the wait place
or to the doubler of macroplace that has replaced such place.

3. Formation of conjunctions. Conjunctions describe places, transitions and the place
conditions. They are needed for easier creation of equations that describe the
systems (1). A conjunction describing place p consists of affirmation or negation
of variables qr that are used to store the code of this place. If the code has 0
in the rth bit then negation is used, and if it has 1 then affirmation is used. A
conjunction describing transition t consists of place conjunctions of input places

98 A. Bukowiec

to this transition and a condition ϕ assigned to this transition. The hold of place
p condition conjunction consists of negation of sum of transition conjunctions of
all its output transitions and its place conjunction.

4. Formation of logic equations. Logic equations describe functions (1) of combi-
national circuits CCi. They are created according to D flip-flop equation and they
are build of transition conjunctions and hold of place condition conjunctions. If
the variable qr is set to 1 in the code of place p then the sum of corresponding
variables Dr consists of transition conjunctions of all input transitions of p and
the hold of the place condition conjunctions.

5. Formation of memory content. The memory content can be described as the equa-
tions or as a table. It is required to form one table in case of one shared operational
memory or I tables in case of flexible distributed memories, respectively, accord-
ing to the systems (2) or (3). Tables always consist of two columns. First column
is an address and it is described by variables qr ∈ Q or qr ∈ Qi. In case of one
shared operational memory these variables represent superposition of codes of
all states from all subnets, not only allowed markings. The second column is an
operation. The operation is represented by output variables form the set Y or form
the set Yi ⊆ Y , where the set Yi consists only of variables yn that are under con-
trol of the SM-subnet formed by the color Ci. There should be only the variables
that are in the elementary conjunctions ψ associated to the places described by
current address. In case of one shared operational memory this table very often is
very long because it has 2R lines. The other way to describe the memory content
is to create a set of logic equations to describe output variables. They describe
output variable as a sum of place conjunctions of places corresponding to the
elementary conjunctions ψ that consist of corresponding output variables. Such
equations can be formed in both cases of organization of memory. However, it is
recommended to form equations for one shared operational memory and to form
tables for flexible distributed memories.

6. Formation of logic circuit and implementation. This step describes the rules of
creation of an HDL description of Petri net model and its implementation in an
FPGA device. A bottom-up approach is applied. First, there should be created
separate modules/entities for each CCI , RGI , and YI or Y block. Places and
transitions conjunctions can be described using standard bit-wise operators. Then
logic equations can be described with use of these conjunctions also using bit-wise
operators. The module/entity for each CCi block should have X and Q inputs and
Di outputs. The register RGi should be described as Ri-bits D-type register with
asynchronous reset. The typical synthesis template can be used [20]. The memory
Y can be described as the logic equations. Memories YI can be described as the
processes with the case statement. To synthesize memories with utilization of
embedded memory blocks it is required to add special synthesis directive. The
syntax of this directive depends on FPGA vendor. As far as typically the embedded
memory blocks are synchronous, it is also required to create a clock input and
a synchronous reset. The top-level module should describe connections of all
modules according to the logic schematics presented in Fig. 1. Additionally the
global reset signal should be connected to reset inputs of registers and to the reset

Architectural Synthesis of Petri Nets 99

of memory. The global clock signal should be connected to the registers and the
memory. The memory should be trigged by an opposite edge than the registers.
It allows operations to be generated in one clock cycle [6]. Such model of logic
circuit can be passed to the third-party synthesis and implementation tools.

3 Implementation of Synthesis Method

The presented algorithms were implemented in C# in Microsoft .NET environment
as a standalone library called Decompone And VHDL Code Gen [11]. The whole
process of synthesis is fully automated and does not require any interaction with
user. The user is only obligated to choose the method of parallel decomposition
into SM-components with doublers of macroplaces or with one wait place and to
choose the organization of decoder with one shared operational memory or flexible
distributed memories in the beginning of the synthesis process. The whole algorithm
was implemented with use of three classes (Fig. 3). The main class is GenerateHDL.
It includes public method void VHDLCODEGenerate() to run the whole process and
to generate the VHDL code. The entry point is an object-oriented model of colored
Petri net [11] passed to the constructor GenerateHDL(PetriNet net, Sting netName,
String options) of this class. The other two parameters of String type are the name
of the Petri net and options that describe the methods of parallel decomposition and

+GenerateHDL()
+GetCCList()
+GetRGList()
+GetYList()
+GetFinalFile()
+GetSubnets()
+VHDLCODEGenerate()

-gen
-dec
-petriNet
-subnets

GenerateHDL

+GenHDLCODE()
+GenerateCode()
+GetCCList()
+GetRGList()
+GetYList()
+GetFinalFile()
-generetePlaceCode()
-genereteTranistionCode()
-genereitHoldingPlaceCode()
-GenereitDForAllSubnets()
-GenereitVHDLCCCodForAllSubnet()
-GenereitVHDLRGCodForAllSubnet()
-GenereitVHDLYCodForAllSubnet()
-GenereitFinalVHDLFile()

-petriNet
-subnets
-globalPlaceCode
-globalHoldingPlaceCode
-globalTranistionCode
-DList
-CCList
-RGList
-YList

GenHDLCODE

+Decompone()
+Decomponing()

-petriNet
-subnets

Decompone

gen

dec

+PlaceCode()

+place
+code
+codeString

PlaceCode

+TransitionCode()

+transition
+codeString

TransitionCode

Fig. 3 Class diagram of Decompone And VHDL Code Gen library

100 A. Bukowiec

of organization of the decoder. The generated VHDL entities are obtained by the
execution of the String GetFinalFile() method. There are also other public methods
List〈String〉 GetCCList(), List〈String〉 GetRGList(), and List〈String〉 GetYList() to
obtain separate files for each entity, and List〈PetriNet〉 GetSubnets() to obtain the
SM-subnets as the object-oriented models. The last method can be used for further
processing of the SM-subnets without the synthesis. Other methods, which perform
particular steps of the synthesis algorithm, are internal and not available for an end-
user. They are invoked automatically by the main method.

This synthesis process is divided into two parts: parallel decomposition of Petri
net (1st step)—implemented in the Decompone class, and creation of VHDL descrip-
tion (6th step)—implemented in the GenHDLCODE class. The second part includes
encoding of places (2nd step) and formation of conjunctions (3rd step), logic equa-
tions (4th step), and memory contents steps (5th step).

The main synthesis process starts from the parallel decomposition of Petri net
into SM-subnets. It is done by the List〈PetriNet〉 Decomponing() method from the
Decompone class invoked on Decompone dec property. The Petri net has to be passed
into constructor Decompone(PetriNet net) of this property.

The other steps of the synthesis algorithm are performed by the methods from
the GenHDLCODE class. All equations are generated directly into VHDL syntax.
It allows an easy and fast generation of description of the model of logic circuit in
VHDL. To start these steps the Boolean GenerateCode() method on the GenHDL-
CODE gen property has to be invoked. The Petri net and SM-subnets are passed into
constructor GenHDLCODE(PetriNet net, List〈PetriNet〉 subnets) of this property.
The GenerateCode method runs all steps in sequence: void generetePlaceCode(),
void genereteTranistionCode(), void genereitHoldingPlaceCode(), void GenereitD-
ForAllSubnets(), void GenereitVHDLCCCodForAllSubnet(), void Genereit-
VHDLRGCodForAllSubnet(), void GenereitVHDLYCodForAllSubnet(), void
GenereitFinalVHDLFile(). These methods run the following steps of synthesis algo-
rithm and store the results in the private lists. Codes, conjunctions and equations are
generated by first four methods. VHDL files are build up from these expressions. The
GenereitVHDLCCCodForAllSubnet method generates the files describing combi-
national circuits and creates one VHDL file for each subnet. The GenereitVHDL-
RGCodForAllSubnet method creates one register for each subnet. The registers only
differ in the length of vector and they are generated based on the synthesis tem-
plate [5]. The GenereitVHDLYCodForAllSubnet method generates all decoders in
VHDL. Finally, the GenereitFinalVHDLFile method creates the top-level module
based on structure of logic circuit (Fig. 1). Such created model of logic circuit can
be passed to the third-party synthesis and implementation tools.

4 Conclusion

A method of architectural synthesis and implementation of application specific logic
controllers into FPGAs was presented in this chapter. A logic circuit of ASCL is
obtained by application of parallel and structural decompositions. Two variants of

Architectural Synthesis of Petri Nets 101

each decomposition have been presented. Next, a special method of logic synthesis
is proposed. The digital design is based on minimal encoding of places in each
SM-subnet. Additionally, output functions are extracted to autonomic blocks and they
can be implemented with the use of embedded memory blocks. It leads to reasonable
usage of different kinds of logic resources of FPGA devices. This method of synthesis
is dedicated to highly concurrent Petri nets with a large number of inputs and outputs.
It provides special benefits when output equations are complicated comparing with
application of the standard method of synthesis.

The presented method was implemented and compiled into the standalone library
that can be used in other CAD systems. Now, the colored Petri net as a graphic
representation of algorithm is used as an entry point to the synthesis method. The
usage of designed library is fully automated, so it could be easily integrated with
design tools in any CAD system. As the output a set of the VHDL files is generated.
These files describe a logic circuit of ASCL and can be used in any commercial CAD
system or synthesis and implementation tools.

References

1. Adamski, M., & Węgrzyn, M. (2009). Petri nets mapping into reconfigurable logic controllers.
Electronics and Telecommunications Quarterly, 55(2), 157–182.

2. Adamski, M., Węgrzyn, M., & Wolański, P. (1998). A VHDL based Approach to Logic Con-
trollers Design. In Proceedings of International Conference Programmable Devices and Sys-
tems PDS’98 (pp. 9–16). Gliwice, Poland.

3. Barkalov, A., Titarenko, L., Malcheva, R., & Soldatov, K. (2013). Hardware reduction in
FPGA-based Moore FSM. Journal of Circuits, Systems and Computers, 22(3), 1350006.

4. Biliński, K., Adamski, M., Saul, J., & Dagless, E. (1994). Petri-net-based algorithms for
parallel-controller synthesis. IEE Proceedings – Computers and Digital Techniques, 141(6),
405–412.

5. Brown, S., & Vernesic, Z. (2005). Fundamentals of digital logic with VHDL design (2nd ed.).
New York: McGraw-Hill.

6. Bukowiec, A. (2009). Synthesis of finite state machines for FPGA devices based on architec-
tural decomposition (Vol. 13). Lecture notes in control and computer science. Zielona Góra:
University of Zielona Góra Press.

7. Bukowiec, A. (2012). Synthesis of FSMs based on architectural decomposition with joined
multiple encoding. International Journal of Electronics and Telecommunications, 58(1), 35–
41.

8. Bukowiec, A., & Adamski, M. (2012). Logic synthesis for FPGAs of interpreted Petri net with
common operation memory. In Z. Bradáč, F. Bradáč, & F. Zezulka (Eds.), 11th IFAC/IEEE
International Conference on Programmable Devices and Embedded Systems PDeS 2012 (pp.
57–62). IFAC-PapersOnLine. Brno, Czech Republic.

9. Bukowiec, A., & Adamski, M. (2012). Synthesis of macro Petri nets into FPGA with distributed
memories. International Journal of Electronics and Telecommunications, 58(4), 403–410.

10. Bukowiec, A., & Adamski, M. (2012). Synthesis of Petri nets into FPGA with operation
flexible memories. In Proceedings of the IEEE 15th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems DDECS’12 (pp. 16–21). Tallinn, Estonia.

11. Bukowiec, A., Tkacz, J., Gratkowski, T., & Gidlewicz, T. (2013). Implementation of algo-
rithm of Petri nets distributed synthesis into FPGA. International Journal of Electronics and
Telecommunications, 59(4), 317–324.

102 A. Bukowiec

12. Cortés, L. A., Eles, P., & Peng, Z. (2003). Modeling and formal verification of embedded
systems based on a Petri net representation. Journal of Systems Architecture, 49(12–15), 571–
598.

13. Gniewek, L., & Kluska, J. (2004). Hardware implementation of fuzzy Petri net as a controller.
IEEETransactions on Systems,Man, andCybernetics –Part B:Cybernetics, 34(3), 1315–1324.

14. Gomes, L., Costa, A., Barros, J., & Lima, P. (2007). From Petri net models to VHDL imple-
mentation of digital controllers. In 33rd Annual Conference of the IEEE Industrial Electronics
Society IECON’07 (pp. 94–99). Taipei, Taiwan: IEEE.

15. Jensen, K., Kristensen, K., & Wells, L. (2007). Coloured Petri nets and CPN tools for modelling
and validation of concurrent systems. International Journal on Software Tools for Technology
Transfer (STTT), 9(3), 213–254.

16. Karatkevich, A. (2007). Dynamic analysis of petri net-based discrete systems (Vol. 356). Lec-
ture notes in control and information sciences. Berlin: Springer.

17. Karatkevich, A., & Wiśniewski, R. (2012). Computation of Petri nets covering by SM-
components based on the graph theory. Przeglad Elektrotechniczny, 88(8), 141–144.

18. Khamis, A., Zydek, D., Borowik, G., & Naidu, D. S. (2013). Control system design based on
modern embedded systems. In R. Moreno-Díaz, F. R. Pichler, & A. Quesada-Arencibia (Eds.),
Computer aided systems theory - EUROCAST 2013 (Vol. 8112, pp. 491–498). Lecture notes
in computer science. Berlin: Springer.

19. Latorre-Biel, J.-I., Jiménez-Macías, E., Pérez de la Parte, M., Blanco-Fernández, J., & Martínez-
Cámara, E. (2014). Control of discrete event systems by means of discrete optimization and
disjunctive colored PNs: Application to manufacturing facilities.Abstract andAppliedAnalysis,
2014, 821707.

20. Lee, J. M. (1999). Verilog QuickStart: A practical guide to simulation and synthesis in Verilog.
Norwell: Kluwer Academic Publishers.

21. Łuba, T., Borowik, G., & Kraśniewski, A. (2009). Synthesis of finite state machines for
implementation with programmable structures. Electronics and Telecommunications Quar-
terly, 55(2), 183–200.

22. Marranghello, N., Mirkowski, J., & Bilinski, K. (2000). Synthesis of synchronous digital sys-
tems specified by Petri nets. In A. Yakovlev, L. Gomes, & L. Lavagno (Eds.), Hardware design
and Petri nets (pp. 129–150). Boston: Kluwer Academic Publishers.

23. Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4), 541–580.

24. Rawski, M., Borowik, G., Łuba, T., Tomaszewski, P., & Falkowski, B. (2010). Logic synthesis
strategy for FPGAs with embedded memory blocks. Przeglad Elektrotechniczny, 86(11a), 94–
101.

25. Soto, E., & Pereira, M. (2005). Implementing a Petri net specification in a FPGA using VHDL.
In M. Adamski, A. Karatkevich, & M. Węgrzyn (Eds.), Design of embedded control systems
(pp. 167–174). New York: Springer.

26. Stefanowicz, Ł., Adamski, M., & Wiśniewski, R. (2013). Application of an exact transversal
hypergraph in selection of SM-components. In L. Camarinha-Matos, S. Tomic, & P. Graça
(Eds.), Technological innovation for the internet of things (Vol. 394, pp. 250–257). IFIP
advances in information and communication technology. Berlin: Springer.

27. Tkacz, J. (2007). State machine type colouring of Petri net by means of using a symbolic
deduction method. Measurement Automation and Monitoring, 53(5), 120–122.

28. Węgrzyn, A. (2006). On decomposition of Petri net by means of coloring. In Proceedings of
IEEE East-West Design & Test Workshop EWDTW’06 (pp. 407–413). Sochi, Russia.

29. Wiśniewski, R., Stefanowicz, Ł., Bukowiec, A., & Lipiński, J. (2014). Theoretical aspects of
Petri nets decomposition based on invariants and hypergraphs. In J. J. Park, S.-C. Chen, J.-M.
Gil, & N. Y. Yen (Eds.), Multimedia and ubiquitous engineering (Vol. 308, pp. 371–376).
Lecture notes in electrical engineering. Berlin: Springer.

Decomposition-Based Methods
for FSM Implementation

Mariusz Rawski, Piotr Szotkowski and Paweł Tomaszewicz

Abstract Designing a complex digital system requires an effective method for mod-
eling the sequential part of the system. One of the methods is the Finite State Machine
based modeling. The implementation efficiency of the sequential part of the designed
system has usually a great impact on the processing performance of the whole dig-
ital system. Petri nets, which are another method of modeling the sequential part
of systems, can also be transformed into FSM-based models. Thus, development
of effective synthesis methods for FSM implementation is very important. Digital
systems are often implemented in FPGA architectures. Because of their specific
structure, the most efficient synthesis methods are based on functional decomposi-
tion. This chapter discusses decomposition-based methods for FSM implementation
targeting programmable structures.

Keywords FSM · Symbolic function decomposition · Logic synthesis

1 Introduction

Finite state machines (FSM) are an important element used in digital system design
[1, 6, 15, 24]. A typical process of FSM implementation includes restructuring
methods, such as minimization of internal states, which are independent of the target
architecture type in which the FSM is to be implemented. Following that, there is
the state encoding stage, which enables the generation of a logic description of the
state machine. The state machine can then be realized, as efficiently as possible,

M. Rawski (B) · P. Szotkowski · P. Tomaszewicz
Institute of Telecommunications, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland
e-mail: rawski@tele.pw.edu.pl

P. Szotkowski
e-mail: p.szotkowski@tele.pw.edu.pl

P. Tomaszewicz
e-mail: p.tomaszewicz@tele.pw.edu.pl

© Springer International Publishing Switzerland 2016
A. Karatkevich et al. (eds.), Design of Reconfigurable Logic Controllers,
Studies in Systems, Decision and Control 45,
DOI 10.1007/978-3-319-26725-8_9

103

104 M. Rawski et al.

in the resources of the target architecture using various methods of logic synthesis.
The quality of the synthesis method used at this stage affects, to a large extent, the
quality of the FSM’s hardware implementation. This effect is especially noticeable
in the case of implementations targeting Field-Programmable Gate Array (FPGA)
devices. The reason for this is the imperfection of currently used technology mapping
methods. Many of them are algorithms adapted from the synthesis of logic circuits,
designed for standard cell technology—such as logic minimization or factorization
of Boolean functions. Such methods transform Boolean expressions represented as a
sum of products (SOP) into a multi-level, highly factorized structure, which is, then,
mapped into logic cells of an FPGA architecture. Such an approach is incompatible
with the nature of the look-up table (LUT) based logic elements of FPGAs, which—
from the point of view of logic synthesis—are able to realize any function of a
limited number of input variables. Therefore, for programmable structures functional
decomposition is a much more efficient method of logic synthesis. The effectiveness
of this method for the synthesis of combinational circuits for programmable devices
has been repeatedly confirmed in many papers [8, 9, 26, 27].

The application of the concept of decomposition for the synthesis of FSMs was
discussed in the literature as early as in the middle of last century. In [15] an Algebraic
Structure Theory of Sequential Machines has been proposed to solve problems of
encoding and decomposition of the FSM. The decomposition was based on division
of the original machine into smaller state machines connected in serial or parallel and
cooperating with each other to obtain the behavior of the original FSM. This type of
decomposition can be called structural decomposition. The computational complex-
ity of this method is so large, that it makes it impossible to apply it to automata
with higher number of states. Structural decomposition concept was studied in
[3–5, 14].

In the synthesis of finite sate machines, the most important decision to make is the
binary encoding of the symbolic states of the FSM. After this stage, the automaton is
modeled as a combinational next-state and output function and a state register. Bad
state code assignment leads to formation of an FSM that cannot be efficiently imple-
mented by using advanced logic synthesis methods, which usually means that the
hardware implementation would require too much logic resources, will be too slow
and often will have both of these drawbacks. Most research and publications devoted
to the search for optimal state machine encoding methods assume the use of the min-
imum number of internal states, and sometimes the minimum number of encoding
bits—which leads to the minimum number of flip-flops in the hardware implementa-
tion. Sometimes a better solution turns out to be to sacrifice some additional internal
states or flip-flops in order to get a faster operating hardware implementation. Unfor-
tunately, the only way to obtain an optimal state encoding of the finite state machine
is to check all possible solutions [5], and since it is a NP-complete problem, this type
of approach requires computation time unacceptable even for small FSMs.

Most state encoding methods are not adapted to modern programmable structures,
such as FPGAs. Traditional methods for constructing the next-state and output func-
tion of the FSM introduce an assignment of code words to FSM’s states referred to
in literature as highly-encoded states. Finite state machines with such an encoding

Decomposition-Based Methods for FSM Implementation 105

usually require a minimum number of flip-flops to implement the state register and
the next state functions; the computation of each state encoding bit depends on most
of the bits of the current state and input variables—such functions are called wide
combinational functions. Such features of an encoded state machine are acceptable in
implementations in standard cells technology or Programmable Logic Array (PLA)
structures. However—because the FPGA structures are usually composed of a large
number of flip-flops and their logic cells can realize functions of a small number of
variables (narrow combinational functions)—the application of this type of encoding
can lead to a very inefficient implementation, both in terms of required resources and
operating speed. The only method leading to highly-encoded states, which has been
developed in detail and could be used for FPGA structures, is the method proposed
in [15]. However, because of very high computational complexity, it has never been
implemented.

First attempts to develop state assignment algorithms feasible for an implemen-
tation in the form of computer applications date back to 1960. They imitated the
methods used by designers, formulated by Humphrey in [16] in the form of rules
of state code adjacency. Applying these principles in [2, 12] yielded algorithms that
are designed to minimize the number of products of SOP expressions describing
the combinational next-state and output function of the FSM. Although technolo-
gies of digital circuit implementation have changed over the years, the rules formu-
lated by Humphrey became the basis for many generations of state code assignment
algorithms.

A novel approach based on symbolic minimization has been used in Kiss [10] and
its successor Nova [36], both designed for two-level implementations, suitable e.g.,
for PLA technology. The main idea applied in these algorithms was to perform logic
minimization before the states encoding phase. At the stage of logic minimization
authors of the method benefit from the fact that for two-level implementations the
function of the implementation cost can be easily defined. It can be estimated based
on the number of inputs, outputs and the number of products in a minimized form
of the Boolean function.

Unfortunately, for a multi-level implementation it is impossible to propose such a
simple estimation of the implementation cost. In the case of multi-level realiza-
tions a whole group of new challenges appears. The greatest potential of these
implementations—i.e., the ability to apply different trade-offs between the amount of
resources required for implementation, operation speed, power consumption, etc.—
introduces completely new, very complex criteria for automatic synthesis algorithms.
This greatly complicates the process of hardware implementation of FSMs and makes
it very difficult to define a function that assesses the quality (cost) of implementation.

Most encoding methods proposed for multi-level implementations are designed
to generate internal states encoding yielding next-state and output function easy
for mapping by the tool performing the multi-level combinational logic synthesis.
Mustang is one of the earliest methods of this kind [11]. It has been designed to
work with the logic synthesis system MIS [7]. The following two other methods
are examples of this approach: Jedi [21] and Muse [13]. Another method—one-hot
encoding—creates a state machine with one flip-flop for each state, which reduces

106 M. Rawski et al.

the width of the next-state and output functions (at the cost of the number of bits used
for encoding). Such representation makes the FSM possible to implement effectively
in FPGAs, thus this method is usually preferred for the realization of complex finite
state machines in programmable architectures.

All these methods assume a strong correlation between the size of SOP expres-
sions (or their factorized forms) describing the Boolean function and the quality of
the hardware implementation of the function. However, the heuristics used in con-
ventional synthetic tools are not effective in the case of modern technologies, such as
programmable FPGA structures. This is due to the structure of the logic cell, which
is the basic building block in this technology.

As has been already mentioned, the functional decomposition is considered to
be the most effective method of logic synthesis for FPGA structures. However—for
this type of multi-level synthesis—it is extremely difficult to specify what an easy to
implement function means. Therefore, there is a high probability that the proposed
states encoding will not be compatible with the later stage of the next-state and output
function synthesis based on the functional decomposition.

In [19] there has been proposed a method of states coding Secod, which uses
optimization criteria based on the concept of information measures. This method
is intended to work with the logic synthesis algorithm based on functional decom-
position, which also uses the information measures. Therefore, both methods are
consistent mechanisms for implementation of sequential circuits in an FPGA.

All the previously discussed methods of hardware implementations of FSMs have
a common feature; their implementation process is divided into two stages: states
encoding and synthesis of the encoded next-state and output function (to map it in
the resources of the target technology). In [25] a novel approach to FSM synthesis
for FPGA structures has been proposed—a symbolic functional decomposition.
This concept eliminates the two-stage division of finite state machine synthesis.
The proposed method operates on a symbolic next-state and output function of the
FSM, introducing partial encoding of the state variable for the subsequent stages of
the multi-level synthesis, so as to obtain the best decomposition at a given stage.
With this approach the state encoding is introduced gradually at every consecutive
decomposition iteration of mapping of the FSM into FPGA logic cells.

2 Basic Information

2.1 Blanket Calculus in FSM Modeling

Definition 1 (Finite State Machine) A finite state machine A is an algebraic system
defined by A = 〈I, O, S, δ, λ〉, where I is the set of input symbols, O is the set of
output symbols, S is the set of internal states, δ : S × I → S describes the next-state
function and λ : S × I → O describes the output function.

Decomposition-Based Methods for FSM Implementation 107

Usually input and output symbols are encoded by binary input variables X =
{x1, . . . , xn} and binary output variables Y = {y1, . . . , ym}, while the internal states
are encoded by a symbolic variable, which acts as the input (current state) Q and the
output (next state) Q′. Typically, an FSM is represented as a state transition table,
where each row consists of an input cube (representing the value of the input variables
x1, . . . , xn), a current state, a next state and an output cube (representing the value
of the output variables y1, . . . , yn). Table 1a presents the state transition table of an
example FSM.

Blanket algebra can be used to describe logic dependencies in such an FSM. The
below reviews only some information concerning blanket algebra; a more detailed
description of blanket calculus can be found in [8].

Definition 2 (Blanket) A blanket on a set S is a collection β = {B1, . . . , Bk} of
nonempty and distinct subsets of S, called blocks, whose union is S.

Define nonempty operator ne so that for any collection Si of subsets of S, ne{Si }
is Si with empty blocks removed (if any were present in Si) and with only one copy
of each block, if the set contained many copies of the same block.

Table 1 (a) State transition table of an example FSM, (b) binary encoding of the Q state variable,
(c) symbolic encoding of the Q state variable

(a) (b) (c)

x1 x2 x3 x4 Q Q′ y1 q1 q2 q3 QU QV

1 1 0 0 0 s1 s1 0 0 0 0 u1 v1

2 0 1 0 0 s1 s1 0 0 0 0 u1 v1

3 0 0 1 0 s1 s2 0 0 0 0 u1 v1

4 0 0 0 1 s1 s2 0 0 0 0 u1 v1

5 1 0 0 0 s2 s2 1 0 0 1 u2 v2

6 0 1 0 0 s2 s3 1 0 0 1 u2 v2

7 0 0 1 0 s2 s2 1 0 0 1 u2 v2

8 0 0 0 1 s2 s1 1 0 0 1 u2 v2

9 1 0 0 0 s3 s3 1 0 1 0 u2 v1

10 0 1 0 0 s3 s5 1 0 1 0 u2 v1

11 0 0 1 0 s3 s3 1 0 1 0 u2 v1

12 0 0 0 1 s3 s5 1 0 1 0 u2 v1

13 1 0 0 0 s4 s4 0 0 1 1 u1 v3

14 0 1 0 0 s4 s2 0 0 1 1 u1 v3

15 0 0 1 0 s4 s3 0 0 1 1 u1 v3

16 0 0 0 1 s4 s3 0 0 1 1 u1 v3

17 1 0 0 0 s5 s5 1 1 0 0 u2 v4

18 0 1 0 0 s5 s5 1 1 0 0 u2 v4

19 0 0 1 0 s5 s1 1 1 0 0 u2 v4

20 0 0 0 1 s5 s4 1 1 0 0 u2 v4

108 M. Rawski et al.

Definition 3 (Product of blankets) The product β1 · β2 of two blankets is:

β1 · β2 = ne{Bi ∩ B j |Bi ∈ β1i B j ∈ β2}. (1)

For two blankets we write β1 ≤ β2 (β1 is smaller than or equal to β2) if and only
if for every block Bi of β1 there exists a block B j of β2 such that Bi ⊆ B j . The ≤
relation is reflexive and transitive.

Let βx1 , . . . , βxn be two-block blankets induced by input variables x1, . . . , xn , and
βy1 , . . . , βym be two-block blankets induced by output variables y1, . . . , ym ; let βQ be
a multi-block blanket induced by the current state variable, and βQ′ be a multi-block
blanket induced by the next state variable. The relationship that must hold for the
FSM is as follows:

βX · βQ ≤ βQ · βY (2)

where: βX = βx1 · βx2 · · · · · βxn and βY = βy1 · βy2 · · · · · βym .

Example 1 Application of blanket calculus for description of logic dependencies in
the FSM from Table 1a.

βX = βx1 · βx2 · βx3 · βx4 (3)

= {1, 5, 9, 13, 17; 2, 6, 10, 14, 18; 3, 7, 11, 15, 19; 4, 8, 12, 16, 20},
βY = βy1 (4)

= {1, 2, 3, 4, 13, 14, 15, 16; 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19, 20},
βQ = {1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12; 13, 14, 15, 16; 17, 18, 19, 20}, (5)

βQ′ = {1, 2, 8, 19; 3, 4, 5, 7, 14; 6, 9, 11, 15, 16; 13, 20; 10, 12, 17, 18}, (6)

βX · βQ = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20}, (7)

βQ′ · βY = {1, 2; 8, 19; 3, 4, 14; 5, 7; 6, 9, 11; 15, 16; 13; 20; 10, 12, 17, 18}. (8)

It can be easily shown that (7) and (8) satisfy condition (2).

2.2 FSM State Encoding

Hardware implementations use binary logic, so in order to implement an FSM in a
digital system the Q symbolic variable must be encoded. Encoding of the symbolic
variable means replacing it by a set of binary variables in a way that reproduces the
symbolic description in the physical system. Hence the state encoding is the process
of assigning a unique combination of binary variables to each value s from the set S
of the Q symbolic variable. To generate a sufficient number of codes, k ≥ �log2 |Q|�
binary variables have to be used, where |Q| is the cardinality of the Q set. Thus, the
state encoding is a mapping of values S of the Q symbolic variable onto values of the
set of encoding binary variables q1, . . . , qk . Since the Q and Q′ variables are defined

Decomposition-Based Methods for FSM Implementation 109

on the same set of values S, the mapping introduced for the Q variable defines also
the mapping of the Q′ variable, which is replaced by a set of variables q ′

1, . . . , q ′
k .

Let βq1 , . . . , βqk be two-block blankets induced by variables q1, . . . , qk , and
βq ′

1
, . . . , βq ′

k
be two-block blankets induced by variables q ′

1, . . . , q ′
k . The FSM state

encoding is valid if (9) is satisfied.

βq1 · βq2 · · · · · βqk = βQ . (9)

If (9) is satisfied (10) is also satisfied.

βq ′
1
· βq ′

2
· · · · · βq ′

k
= βQ′ . (10)

In other words, the encoding of internal states can be described as the introduction
of such two-block blankets βq1 , . . . , βqk , that satisfy the condition (9). Each βqi

blanket can be obtained by merging the appropriate blocks of the βQ blanket, so as
to obtain two blocks. An example of an encoding of the Q state variable for the finite
state machine described in Table 1a using three binary variables q1, q2, q3 is shown
in Table 1b.

To encode the Q symbolic variable other symbolic variables Q1, . . . , QV can also
be used (symbolic coding). In this case, the βQ1 , . . . , βQV blankets induced by the
symbolic coding variables are multi-block blankets. Their number of blocks depends
on the number of symbolic values held by the coding variables. The βQ1 , . . . , βQV

blankets must also satisfy the condition (9) to make the encoding valid.

Example 2 Symbolic encoding of the Q variable for the FSM from Table 1a.
Let QU and QV be two symbolic variables holding respectively {u1, u2} and

{v1, v2, v3, v4} values (Table 1c). These variables induce the following βQU and βQV

blankets:

βQU = {
u1

1, 2, 3, 4, 13, 14, 15, 16;
u2

5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19, 20}, (11)

βQV = {
v1

1, 2, 3, 4, 9, 10, 11, 12;
v2

5, 6, 7, 8;
v3

13, 14, 15, 16;
v4

17, 18, 19, 20}. (12)

3 Symbolic Functional Decomposition

As it has been already mentioned, the typical method of FSM synthesis consists
of two stages: the internal state encoding to obtain a Boolean next-state and output
function, and the logic synthesis stage responsible for implementing this function
in the most efficient way in the resources of the target architecture. All encoding
methods for the multi-level implementation are designed to make the next-state and
output function easy to implement for the chosen synthesis method. Unfortunately,
for functional decomposition based synthesis methods there is no reasonable estimate
of the ease feature of the encoded next-state and output function.

110 M. Rawski et al.

Symbolic functional decomposition eliminates the division of the FSM synthesis
process into the separate stages of state encoding and logic synthesis. The proposed
method accepts an FSM description with symbolic states and performs symbolic
decomposition maintaining the multi-value representation of the state and next-state
variables, effectively encoding them partially on every decomposition step, but only
to the extent that is required—and optimal—for the given step.

A symbolic functional decomposition of a finite state machine can be described
in a manner similar to that used for modeling serial functional decomposition of
combinational functions [8].

Let X be the set of primary input variables, Y be the set of primary output variables
of a certain FSM specified by a state transition table. Let Q and Q′ be the multi-
valued variables representing current and next state of this FSM. Let U and V be two
subsets of X such that U ∪ V = X . Let QV and QU be the multi-valued variables
encoding the Q variable. Let βV and βU be blankets induced, respectively, by the
primary input subsets V and U , and βQV , βQU be blankets induced by the multi-
valued variables QV and QU . Let βY and βQ′ be blankets induced by the primary
outputs set and by the next state multi-valued variable Q′.

Theorem 1 (Existence of the symbolic functional decomposition) The FSM has a
symbolic functional decomposition with respect to (U, QU , QV , V) iff there exists a
blanket βG such that βV · βQV ≤ βG, and βU · βQU · βG ≤ βF , where βF = βY · βQ′ .

A symbolic functional decomposition has been schematically shown in Fig. 1. To
create binary functions G and H it is necessary to encode the QV and QU symbolic
variables using binary variables. The binary encoding of the QV and QU variables
defines the final encoding of the internal states of the FSM.

Example 3 A symbolic functional decomposition of the FSM from Table 2a. For the
example FSM from Table 2a the βxi , βQ , βQ′ , βY and βF blankets are as follows:

βx1 = {1, 2, 3, 5, 6, 7, 9, 11, 13, 14, 15, 18, 19, 20;
1, 3, 4, 5, 6, 8, 10, 12, 13, 16, 17}, (13)

βx2 = {1, 3, 4, 6, 7, 8, 13, 14, 17, 18, 19;

Fig. 1 Schematic
representation of symbolic
functional decomposition

Decomposition-Based Methods for FSM Implementation 111

Table 2 (a) state transition table of the FSM, (b) symbolic encoding of the Q variable

(a) (b)

x1 x2 x3 x4 Q Q′ y1 y2 QU QV

1 – – 0 0 init0 init1 0 0 u1 v1

2 0 1 0 0 init1 init1 0 0 u2 v1

3 – – 1 – init1 init2 1 0 u2 v1

4 1 – 1 0 init2 init4 1 0 u2 v2

5 – 1 1 1 init4 init4 1 0 u3 v4

6 – – 0 1 init4 IOWait 0 1 u3 v4

7 0 0 0 – IOWait IOWait 0 1 u4 v3

8 1 0 0 – IOWait init1 0 1 u4 v3

9 0 1 1 0 IOWait read0 0 0 u4 v3

10 1 1 0 0 IOWait write0 1 1 u4 v3

11 0 1 1 1 IOWait RMACK 1 1 u4 v3

12 1 1 0 1 IOWait WMACK 0 0 u4 v3

13 – 0 1 – IOWait init2 0 1 u4 v3

14 0 0 1 0 RMACK RMACK 1 1 u1 v4

15 0 1 1 1 RMACK read0 0 0 u1 v4

16 1 1 0 0 WMACK WMACK 0 0 u1 v2

17 1 0 0 1 WMACK write0 0 1 u1 v2

18 0 0 0 1 read0 read1 1 1 u2 v4

19 0 0 1 0 read1 IOWait 0 1 u3 v2

20 0 1 0 0 write0 IOWait 0 1 u3 v1

1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 15, 16, 20}, (14)

βx3 = {1, 2, 6, 7, 8, 10, 12, 16, 17, 18, 20; 3, 4, 5, 9, 11, 13, 14, 15, 19}, (15)

βx4 = {1, 2, 3, 4, 7, 8, 9, 10, 13, 14, 16, 19, 20;
3, 5, 6, 7, 8, 11, 12, 13, 15, 17, 18}, (16)

βQ = {1; 2, 3; 4; 5, 6; 7, 8, 9, 10, 11, 12, 13; 14, 15; 16, 17; 18; 19; 20}, (17)

βQ′ = {1, 2, 8; 3, 13; 4, 5; 6, 7, 19, 20; 9, 15; 10, 17; 11, 14; 12, 16; 18}, (18)

βY = {1, 2, 9, 12, 15, 16; 6, 7, 8, 13, 17, 19, 20; 3, 4, 5; 10, 11, 14, 18}, (19)

βF = βY · βQ′ = {1, 2; 3; 4, 5; 6, 7, 19, 20; 8; 9, 15; 10; 11, 14; 12, 16; 13;
17; 18}. (20)

Let U = {x1, x2} and V = {x3, x4} be subsets of the input variable of the FSM. This
means that the βU and βV blankets are βU = βx1 · βx2 and βV = βx3 · βx4 :

112 M. Rawski et al.

βU = {1, 2, 3, 5, 6, 9, 11, 15, 20; 1, 3, 4, 5, 6, 10, 12, 16; 1, 3, 4, 6, 8, 13, 17;
1, 3, 6, 7, 13, 14, 18, 19}, (21)

βV = {1, 2, 7, 8, 10, 16, 20; 3, 4, 9, 13, 14, 19; 3, 5, 11, 13, 15;
6, 7, 8, 12, 17, 18}. (22)

After the βV and βU blankets are computed it is possible to construct the βQU blanket,
which introduces the QU symbolic variable and partially encodes the state variable
of the FSM. The QU variable is one of the inputs of the H block (Fig. 1).

The βQU blanket constructed at this stage must satisfy the βQ ≤ βQU condition
(βQU cannot introduce separations between symbols not separated by βQ). Addition-
ally, according to Theorem 1, the βU · βQU · βG ≤ βF condition must be met. This
means that the βQU blanket (along with βU) determines how many separations not
introduced by βU · βQU , but required by βF , will have to be provided by βG .

The βQU blanket can be constructed by merging blocks of the βQ blanket, which
guarantees the fulfillment of the βQ ≤ βQU condition. For example, merging the
first, sixth and seventh blocks of the βQ blanket, then the second, third and eighth,
and finally merging the fourth, ninth and tenth block yields the following four-block
βQU blanket:

βQU = {1, 14, 15, 16, 17; 2, 3, 4, 18; 5, 6, 19, 20; 7, 8, 9, 10, 11, 12, 13}. (23)

The QU multi-valued variable corresponding to that blanket will have four values:
u1, u2, u3 and u4 (Table 2b).

The next step is the construction of the blanket induced by the output of the G block
(the βG blanket). It must satisfy the βU ·βQU ·βG ≤ βF condition, so that together with
the blankets induced by the U variable and the QU symbolic variable all separations
between symbols required by the F function are supplied. The construction of the
βG blanket can be performed using a method known from functional decomposition
of combinational functions, based on incompatibility graph coloring. The vertices
of this graph are the blocks of the βV · βQ blanket—representing inputs of the G
block. The edges of the graph connect the vertices that cannot be merged, because
they provide the separations which must be generated by the outputs of the G block
(so that the decomposed system can properly implement the F function) and are not
supplied by the βU ·βQU blanket. The coloring specifies which blocks of the βV ·βQ
blanket can be merged to form blocks of the βG blanket.

βU · βQU = {1, 14; 1, 15; 1, 16; 1, 17; 2, 3; 3, 4; 3, 18; 5, 6, 20; 6, 19; 7, 13; 8, 13;
9, 11; 10, 12}, (24)

βV · βQ = {1; 2; 3; 4; 5; 6; 7, 8, 10; 7, 8, 12; 9, 13; 11, 13; 14; 15; 16; 17; 18;
19; 20}. (25)

Decomposition-Based Methods for FSM Implementation 113

For the βU · βQU and βV · βQ blankets calculated for the example FSM (formulas
(24) and (25)) this process yields the following βG blanket:

βG = {1, 2, 4, 7, 8, 10, 19, 20; 3, 7, 8, 12, 16, 17; 6, 9, 13, 18; 5, 11, 13, 14, 15}.
(26)

This βG blanket corresponds to the multi-valued variable with four values, so
can be encoded with two binary variables g1 and g2. The last stage of the symbolic
functional decomposition is the construction of the βQV blanket, what is equivalent
to the introduction of the QV symbolic variable which partially encodes the Q state
variable of the FSM. This blanket must satisfy the βQ ≤ βQV and βQV · βV ≤ βG

conditions.
The construction of the βQV blanket is based on merging the blocks of the βQ

blanket in such a way that the resulting blanket delivers all separations required by the
βG blanket which are not delivered by the βV blanket. This process can also be based
on incompatibility graph coloring. The vertices of the graph are the blocks of the βQ

blanket and the edges connect the vertices which cannot be merged without losing
separations important for the G function (separations that have to be delivered at the
output of this function and are not delivered by the βV blanket). For the βG blanket
from (26) and βQ and βV blankets respectively from (17) and (22) this process yields
the following βQV blanket:

βQV = {1, 2, 3, 20; 4, 16, 17, 19; 7, 8, 9, 10, 11, 12, 13; 5, 6, 14, 15, 18}. (27)

Thus, the QV multi-valued variable corresponding to this blanket will have four
values: v1, v2, v3 and v4 (Table 2b).

It can be easily verified that the blankets (21)–(23), (26) and (27) satisfy the
conditions of the Theorem 1. Thus the example FSM from Table 2a has the symbolic
functional decomposition with respect to U, V, QU , and QV .

The truth table describing the G block was shown in Table 3b. After encoding
the βQV blanket (of the QV symbolic variable) with the q1 and q2 binary variables
a truth table can be obtained that describes the G Boolean function with four inputs
and two outputs (Table 3c). This function can be directly implemented in the logic
elements of a typical FPGA architecture. The H function (Table 3a) can be subjected
to further symbolic functional decomposition process, until the blocks obtained in
the process can be directly implemented in FPGA logic cells.

4 Algorithms

As it was explained previously, the symbolic functional decomposition method com-
prises a few subsequent stages: the partitioning of the binary inputs into the U and
V sets, the construction of the βQU blanket, the construction of the βG blanket and
the construction of the βQV blanket. After completing these stages the symbolic
function F describing the state transition table of the finite state machine can be

114 M. Rawski et al.

Ta
bl

e
3

B
lo

ck
s

of
sy

m
bo

lic
fu

nc
tio

na
ld

ec
om

po
si

tio
n

of
FS

M
fr

om
Ta

bl
e

2:
(a

)
H

bl
oc

k,
(b

)
G

bl
oc

k,
(c

)
G

bl
oc

k
w

ith
bi

na
ry

en
co

de
d

sy
m

bo
lic

va
ri

ab
le

Q
V

(a
)

(b
)

(c
)

x 1
x 2

g 1
g 2

Q
U

Q
′ U

Q
′ V

y 1
y 2

x 3
x 4

Q
V

g 1
g 2

x 3
x 4

q 1
q 2

g 1
g 2

1
–

–
0

0
u

1
u

2
v

1
0

0
0

0
v

1
0

0
0

0
0

0
0

0

2
0

1
0

0
u

2
u

2
v

1
0

0
1

–
v

1
0

1
1

–
0

0
0

1

3
–

–
0

1
u

2
u

2
v

2
1

0
0

–
v

2
0

1
0

–
0

1
0

1

4
1

–
0

0
u

2
u

3
v

4
1

0
1

0
v

2
0

0
1

0
0

1
0

0

5
–

1
1

1
u

3
u

3
v

4
1

0
0

0
v

3
0

0
0

0
1

0
0

0

6
–

–
1

0
u

3
u

4
v

3
0

1
0

1
v

3
0

1
0

1
1

0
0

1

7
0

0
0

–
u

4
u

4
v

3
0

1
1

0
v

3
1

0
1

0
1

0
1

0

8
1

0
0

–
u

4
u

2
v

1
0

1
1

1
v

3
1

1
1

1
1

0
1

1

9
0

1
1

0
u

4
u

2
v

4
0

0
0

1
v

4
1

0
0

1
1

1
1

0

10
1

1
0

0
u

4
u

3
v

1
1

1
1

–
v

4
1

1
1

–
1

1
1

1

11
0

1
1

1
u

4
u

1
v

4
1

1

12
1

1
0

1
u

4
u

1
v

2
0

0

13
–

0
1

–
u

4
u

2
v

2
0

1

14
0

0
1

1
u

1
u

1
v

4
1

1

15
0

1
1

1
u

1
u

2
v

4
0

0

16
1

1
0

1
u

1
u

1
v

2
0

0

17
1

0
0

1
u

1
u

3
v

1
0

1

18
0

0
1

0
u

2
u

3
v

2
1

1

19
0

0
0

0
u

3
u

4
v

3
0

1

20
0

1
0

0
u

3
u

4
v

3
0

1

Decomposition-Based Methods for FSM Implementation 115

represented as two functions, G and H , ready to undergo subsequent decomposition
processes if needed, up to a point when they can be easily implemented (e.g., they fit
into an FPGA device LUT cells directly). For each of the stages various algorithms
were proposed in [30–35].

4.1 Selection of the U and V Input Sets

The first stage of the symbolic functional decomposition method is the partitioning of
X , the set of binary inputs, into the U and V (free and bound) sets—the direct inputs
to, respectively, the H and G decomposed functions. In most cases U ∪ V = X ; in
rare cases some of the inputs might have no bearing on the outputs of the F function
and can be discarded altogether, in which case U ∪ V ⊂ X .

If U ∩ V = ∅ (i.e., the G and H functions have no common binary inputs) then
the decomposition is disjoint. If U ∩ V �= ∅ then the decomposition is non-disjoint
and some of the binary inputs are shared between the G and H functions.

Various algorithms for generating the U and V sets have been proposed. The sim-
plest one generates all possible U and V combinations. An example implementation
could generate all integers between 0 and 2|X | − 1 (so all |X |-bit integers), and for
every such integer i generate a pair of U and V sets where the x j input goes to the
U set if the j th bit of i is 0 and to the V set if it’s 1. The U and V pairs where
the V set is too large (e.g., where V has more than four elements when targeting
FPGA devices with four-input LUT cells) can then be discarded to limit the number
of considered decompositions. Such generation of the U and V sets is relatively fast,
but the number of U and V pairs grows exponentially with the number of inputs and
the order in which the pairs are generated is not related to the relative significance
of the inputs.

As the blankets constructed in the process of decomposition must satisfy the
βV · βQV ≤ βG and βU · βQU · βG ≤ βF conditions, the selection of U and V
sets—which defines the βU and βV blankets—has crucial impact. If the βU blanket
provides most of the separations required by the βF blanket, the βG blanket does not
have to provide many separations and can be implemented on very few binary inputs
to the H function. Similarly, if βV provides most of the separations required by βG ,
the βQV blanket can have only a few blocks and can be implemented on a very small
number of binary inputs to the G function.

In most cases different FSM inputs provide different amount of information rel-
evant for the functionality of the FSM (some inputs bear a lot of significant infor-
mation, while others almost—or exactly—none); the relative relevance of the inputs
can be represented by the number of separations provided by the given input from
all of the separations required by the βF blanket.

As the existing research concludes, the number of separations required by the
βF blanket and provided by a given input varies greatly from input to input. Inputs
with many relevant separations should be selected for the U set (so that the most
relevant information passes directly to the H function in as few inputs as possible),

116 M. Rawski et al.

while inputs with few relevant separations should be selected for the V set (so the
G function can compress the relevant information from these inputs into as few
blocks of the βG blanket as necessary, yielding fewer physical lines implementing
βG).

This selection can be performed by creating a sequence s of the inputs ordered by
the number of relevant separations they provide (including the state input, represented
in s by �log2(|Q|)� elements—i.e., the minimal number of bits required to implement
the Q state variable), and subsequently generating all numbers from 0 to 2|s| −1. The
binary representation of each number can then be used again as a bit mask: elements
of the s sequence matching 0 bits are selected for the U set, while elements matching
1 bits are selected for the V set. This yields subsequent U and V input sets that favor
selecting inputs providing many relevant separations for the U set before yielding U
and V combinations that would put these inputs in the V set.

Example 4 U and V set generation based on number of separations for the bench-
mark s27 FSM.

The standard benchmark s27 FSM has four inputs (x3, x2, x1 and x0) and six states;
its βF blanket requires 463 separations. β0 (blanket induced by the x0 input) provides
270 separations, of which 267 are required by βF (i.e., relevant). Similarly, β1 pro-
vides 104 separations (88 relevant), β2 provides 182 separations (180 relevant) and
β3 provides 20 separations (16 relevant). βQ (blanket induced by the state variable)
provides 471 separations, of which 384 are relevant. As the FSM has six states, the
minimal number of physical inputs required to implement the state variable equals
3—so it can be said that the state variable provides 128 relevant separations per
input required. This leads to the following sequence of inputs sorted by general rel-
evance counts: x0, x2, q, q, q, x1, x3 (where the q elements are the state variable
placeholders).

Once this sequence is generated, the U and V sets are constructed similarly to
the simple algorithm described above—with the exception that the only numbers
considered for input selection are these with the count of 1s in their binary represen-
tation equal to the desired number of inputs to the G function; also, the q placeholder
inputs are dropped from the final U and V sets and any repeating (U, V) pairs are
ignored.

For the example benchmark s27 FSM the input generation sequence is shown in
Table 4—this example shows that in successive (U, V) pairs the inputs going into
the V set are the least relevant ones (and their combinations); this means that the
decomposition process which uses this algorithm will give priority to the U and
V sets in which the most relevant inputs are passed into the H function, while the
G function is used to compress information from the least relevant inputs into fewer
physical lines.

A variation of this algorithm can order the inputs by the number of unique relevant
separations (out of the separations required by βF) provided by each of the input—
such algorithm would favour connecting inputs that provide unique information to
the H function (as they would get selected for the U set).

Decomposition-Based Methods for FSM Implementation 117

Table 4 General relevance U and V sets for s27 and a device with three-input LUT cells

Number Sequence: x0, x2, q, q, q, x1, x3 Discard q Notes

U set (bit = 0) V set (bit = 1) U set V set

0000111b x0, x2, q, q q, x1, x3 x0, x2 x1, x3

0001011b x0, x2, q, q q, x1, x3 x0, x2 x1, x3 Discarded as
repeating

0001101b x0, x2, q, x1 q, q, x3 x0, x2, x1 x3

0001110b x0, x2, q, x3 q, q, x1 x0, x2, x3 x1

0010011b x0, x2, q, q q, x1, x3 x0, x2 x1, x3 Discarded as
repeating

0010101b x0, x2, q, x1 q, q, x3 x0, x2, x1 x3 Discarded as
repeating

0010110b x0, x2, q, x3 q, q, x1 x0, x2, x3 x1 Discarded as
repeating

0011001b x0, x2, q, x1 q, q, x3 x0, x2, x1 x3 Discarded as
repeating

0011010b x0, x2, q, x3 q, q, x1 x0, x2, x3 x1 Discarded as
repeating

0011100b x0, x2, x1, x3 q, q, q x0, x2, x1, x3 ∅
0100011b x0, q, q, q x2, x1, x3 x0 x2, x1, x3

0100101b x0, q, q, x1 x2, q, x3 x0, x1 x2, x3

0100110b x0, q, q, x3 x2, q, x3 x0, x3 x2, x1

· · · · · · · · · · · · · · ·

4.2 Construction of the βQU Blanket

The second stage of the decomposition process is the construction of the βQU blanket.
This blanket has to satisfy the βQ ≤ βQU and βU · βQU · βG ≤ βF conditions; i.e.,
the blocks of the βQU blanket must be constructed from the blocks of the βQ blanket
in such a way that each is a—not necessarily proper—superset of one of the blocks
of the βQ blanket; also, βQU should provide as many separations required by βF and
not provided by βU as possible.

The number of blocks in the βQU blanket is important for the decomposition’s
quality; the fewer blocks it has, the fewer physical lines will be required in the final
implementation of the FSM (the number of physical lines required to implement
this blanket is equal to the base-two logarithm of the number of the blanket’s blocks,
rounded up). At the same time, the fewer blocks this blanket has, the fewer separations
it can provide. All of the separations required by the βF blanket and not provided by
the βU blanket have to be provided by either βQU or βG ; the fewer of them come from
βQU , the more will have to come from βG , and the more physical lines will be required
to implement βG (thus reducing the advantage of a ‘small’ βQU blanket)—also note
that the physical lines implementing βG are both the outputs of the G function and

118 M. Rawski et al.

inputs of the H function, so their number impacts the complexity of both G and H
functions significantly.

To satisfy the βQ ≤ βQU condition, algorithms for constructing the βQU blanket
must start with blocks of the βQ blanket and merge them in a way that provides as
many separations relevant for the βF blanket (and not provided by βU) as possible.
As all of the separations not provided by βU · βQU and required by βF need to be
provided by βG , targeting a small βG (one with relatively few blocks) can also be
the basis of the algorithm.

One of the algorithms described in [32] creates the βQU blanket by merging the
blocks of the βQ blanket in a way that yields βG blanket with the given, small number
of blocks, while also striving for as few blocks of the βQU blanket as possible; in
particular, a result where log2(|βQU |) < log2(|βQ |) means that the βQU blanket is
implementable on fewer physical lines than required by βQ .

Another βQU construction algorithm creates an incompatibility graph where the
vertices represent the blocks of the βQ blanket, and the edges connect those of the
vertices that would lose relevant (required by βF and not provided by βU) separations
if merged; the edges are labeled with the number of relevant separations lost on the
given merge. If the vertices of the graph are then subsequently merged in order
of increasing edge labels (starting with vertices not connected by any edge), each
merging yields a smaller βQU blanket—at the increasing cost in the size of the βG

blanket.

Example 5 βQU construction for the edge-labeling algorithm.

For the example finite state machine from Table 2 and U = {x1, x2}, the initial
βQU graph is constructed as on Fig. 2. The vertices of the graph represent the blocks
of the βQ blanket, while the edges connect those of the vertices/blocks which, at best,
shouldn’t be merged—if they are, some of the separations are lost and have to be
provided by the βG blanket (the weight of the edge equals the number of separations
lost in a given merge).

The algorithm first tries to find a pair of vertices that is not connected (so the
represented blocks can be merged at no cost); in the example case, the 19 and 20
blocks form such a pair. Once the graph is complete, the algorithm finds the cheapest
pair to merge and merges it.

The number of binary inputs required for implementation of any given blanket
is equal to the base-two logarithm from the number of states (rounded up); thus,
the initial number of binary inputs for encoding the ten-block βQU blanket would be
four. The algorithm merges the blocks until the number of the binary inputs is smaller
(so, in this case, until there are at most eight blocks, and, thus, three binary inputs
suffice) and then yields the resulting βQU blanket so that the corresponding βG and
βQV blankets can be constructed. The algorithm then makes the βQU blanket smaller
again (in this example, merges it down to four blocks). This process is repeated until
the blanket is merged down to a single block (which creates a βQU blanket that does
not provide any separations—but also does not require any physical lines; in this
case, all of the separations that must be provided by the state variable are passed
through the βQV blanket).

Decomposition-Based Methods for FSM Implementation 119

1

2, 3

 1

4

 1

5, 6

 2

7, 8, 9, 10, 11, 12, 13

 7

14, 15

 2

16, 17

 2

18

 1

19

 1

20

 1

 1

 4

 9

 3 2

 1

 1

 2

 1

 4

 2 10

 3 3

 1 1 3 3

 2

 1

 2

 1

 1

 1

 1

Fig. 2 Incompatibility graph for the βQU blanket, unmerged

1, 2, 3 4, 5, 6, 18, 19, 20
157, 8, 9, 10, 11, 12, 13 16

19

14, 15, 16, 17

6 9
11

Fig. 3 Incompatibility graph for the βQU blanket, merged

In the case of the example incompatibility graph from Fig. 2, the best decompo-
sition was later obtained when the βQU blanket was merged down to four blocks, as
seen on Fig. 3. In this case the final βQU blanket equals

βQU = {1,2,3; 4,5,6,18,19,20; 7,8,9,10,11,12,13; 14,15,16,17}.

120 M. Rawski et al.

4.3 Construction of the βG and βQV Blankets

The last stages of the decomposition process is the construction of the βG and βQV

blankets. The βG blanket has to satisfy the βU · βQU · βG ≤ βF and βV · βQ ≤ βG

conditions—i.e., it has to provide all of the separations required by βF and not
provided by βU nor βQU , while at the same time its blocks can’t be smaller than the
blocks of the βV · βQ blanket (this means that the blocks of βG must be supersets—
although not neccessarily proper—of βV · βQ blocks).

The βQV blanket has to satisfy the βQ ≤ βQV and βV · βQV ≤ βG conditions: its
blocks have to be constructed from the blocks of the βQ blanket, but in a way that
provides the βG blanket with all the required separations not provided by βV .

These two blankets can be constructed either separately (first βG , then βQV) or in
parallel. When constructed separately, the same algorithms can be used to construct
βG and βQV .

One such algorithm, described in [32], is based on graph colouring of an incom-
patibility graph. An incompatibility graph for βG construction is one where vertices
represent the blocks of the βV · βQ blanket and edges connect those of the blocks
that cannot be merged (because doing so would remove separations required by βF

and not provided by βQ · βQU). Giving this graph a proper graph colouring and then
creating a blanket by combining blocks represented by same-colour vertices yields
βG that satisfies both conditions.

Similarly, constructing and colouring an incompatibility graph where vertices
represent the βQ blocks and edges connect blocks that must be kept apart to provide
separations required by βG and not provided by βV yields βQV blanket that satisfies
both βQ ≤ βQV and βV · βQV ≤ βG conditions.

Another algorithm for creating βG and βQV relies on graph merging; the graphs—
created similarly to the ones in the graph colouring algorithm above—have their
vertices merged (starting with vertices of the smallest degree). This algorithm is
similar to graph colouring in that it yields βG and βQV blankets that efficiently
provide required separations, but where graph colouring strives to use as few colours
as possible (and so 7-coloured graph is considered better than 8-coloured graph as
much as 8-coloured graph is considered better than 9-coloured graph), graph merging
recognises that certain merges are more significant than others: a 9-block blanket
requires four physical lines to be implemented, while both 8- and 7-block blankets
require three physical lines. Being able to merge a 9-vertice graph to 8 vertices is
much more important than being able to merge an 8-vertice graph to 7 vertices.

Example 6 βG and βQV construction for the graph merging algorithm.

In the case of the example finite state machine from Table 2 and assuming the
example U = {x1, x2}, V = {x3, x4} once again

βQ · βV = {1; 2; 3; 4; 5; 6; 7,8,10; 7,8,12; 9,13; 11,13; 14; 15; 16; 17; 18; 19; 20}.

Decomposition-Based Methods for FSM Implementation 121

1

3

2 4

6

5 18

20 19

7, 8, 10

7, 8, 12

9, 13

11, 13

14 15 16 17

Fig. 4 Incompatibility graph for the βG blanket, unmerged

Assuming the previously constructed βQU blanket

βQU = {1,2,3; 4,5,6,18,19,20; 7,8,9,10,11,12,13; 14,15,16,17},

the initial graph for the βG blanket is presented in Fig. 4. As can be seen, its ver-
tices represent the blocks of the βV · βQ blanket, while edges connect these of the
blocks/vertices which have to be separated.

The number of blocks of this graph governs the number of binary outputs from the
G block, and the algorithm merges them until the number of the outputs is smaller
than the number of outputs yielded by the initial graph (or until the graph becomes
complete, as in this case no more blocks can be merged).

In the case of the above example, the graph is merged down to the four-vertex
graph presented in Fig. 5. Thus, the resulting βG blanket equals

Fig. 5 Incompatibility graph
for the βG blanket, merged

2, 4, 5, 11, 13, 18

1, 7, 8, 10

3, 6, 9, 13, 14, 15, 16, 17, 19, 20

7, 8, 12

122 M. Rawski et al.

Fig. 6 Incompatibility
graph for the βQV blanket,
unmerged

1

2, 3

16, 17 20

45, 6

7, 8, 9, 10, 11, 12, 13

18

14, 15

19

βG = {1,7,8,10; 2,4,5,11,13,18; 3,6,9,13,14,15,16,17,19,20; 7,8,12}.

In the case of the example βG blanket computed above, the initial graph for the
βQV blanket is presented in Fig. 6.

Again, this graph is merged down until it’s implementable with the minimum
number of binary inputs; in the case of the example graph from Fig. 6, the resulting
graph has three vertices and is presented in Fig. 7. Thus, the resulting βQV blanket
equals

βQV = {1,7,8,9,10,11,12,13,19; 2,3,14,15,18; 4,5,6,16,17,20}.

Fig. 7 Incompatibility graph
for the βQV blanket, merged

1, 7, 8, 9, 10, 11, 12, 13, 19

2, 3, 14, 15, 18

4, 5, 6, 16, 17, 20

Decomposition-Based Methods for FSM Implementation 123

The last algorithm described in [32] constructs βG and βQV in parallel by creating
an incompatibility graph from the blocks of the βQ · βV blanket, and then colouring
it with two kinds of colours (one for βG , one for βQV) in a way that tries to make
both βG and βQV as small as possible in lockstep.

5 Experimental Results

The approach and algorithms described in this chapter were implemented and tested
in prototypical software for decomposition of finite state machines.

Table 5 shows decomposition results of standard benchmark finite state machines
into four-input, one-output logic blocks obtained using the art décomp program and
compares them to the synthesis of the same FSMs done with logic design CAD tools A
and B. The FSMs were described in Hardware Description Language (HDL) [23],
with the states encoded using four different methods—the JEDI method described
in [22], the NOVA method described in [36], the one-hot method (where the number

Table 5 Results of comparison with CAD tools A and B for a device with 4/1 LUT cells

FSM art
décomp

CAD tool A CAD tool B

JEDI NOVA Random One-hot JEDI NOVA Random One-hot

bbtas 8 9 9 9 9 6 6 6 8

beecount 10 24 24 24 23 23 24 25 51

dk27 5 8 8 8 8 5 5 5 10

donfile 0 54 54 54 54 0 0 0 0

ex3 9 16 16 16 16 17 20 25 42

ex7 10 13 13 13 13 23 23 18 38

lion 3 7 7 7 7 3 3 3 5

lion9 3 16 17 16 17 11 12 20 15

mc 9 10 10 10 10 6 7 7 10

modulo12 0 0 0 0 0 0 0 0 0

opus 24 28 28 28 28 40 49 53 56

s27 7 22 22 22 22 6 15 15 31

s8 0 17 17 17 17 0 0 0 0

shiftreg 4 9 9 9 9 4 3 4 9

train4 3 5 5 5 5 3 3 3 4

train11 5 17 17 17 17 17 18 22 39
∑

100 255 256 255 255 164 188 206 318

124 M. Rawski et al.

of bits used for state encoding equals the number of states, and state number n is
encoded with the value 2n—thus the binary value has always exactly one bit set
to 1, and hence the one-hot name) and with a random minimal-length encoding. For
almost all FSMs the art décomp program yields the best results (and they are always
better than the ones obtained using the one-hot encoding, which CAD tool B uses
by default), and is the best overall solution.

Table 6 presents the same FSMs synthesised from their description in Hardware
Description Language (HDL) files and encoded with the same encodings as previ-
ously plus all the encodings provided by the CAD tool: sequential encoding, minimal-
length encoding and encodings using the Gray and Johnson codes (two approaches
where subsequent states are encoded using codes that differ on a single bit). Using
a more symbolic HDL representation of a finite state machine yields worse results
(except for the one-hot encoding, which yields better overall results when the FSMs
are described in HDL). Once again, the art décomp program yields by far the best
overall results.

Table 7 presents results for example FSMs decomposed into 5/1 and 4/2 blocks
and compared with a counterpart implementation using logic design CAD tool A. As
with the previous results for this CAD tool, the donfile and s8 static-output FSMs are
not recognised properly (albeit implemented in many fewer blocks than in the case
of the architecture with 4/1 LUT cells), and again the encoding has only minimal
impact on the results. Once again the art décomp program yields the best results for
every FSM.

Table 8 presents the results of decomposition into 5/1 and 4/2 blocks from the
art décomp program and compares them with the results published in [18]. Those
results were obtained by encoding the states using the Secode method (described
therein), the MINISUP method described in [20] and the previously mentioned JEDI,
NOVA (with two different strategies of obtaining the state encoding), one-hot and
random encodings; the encoded FSMs were subsequently synthesised using the SIS
tool described in [28]. Once again, the art décomp program yields the best overall
results.

Table 9 present the results of decomposition into 5/1 blocks from the art décomp
program and compares them with the results published in [29]. Those results were
obtained by encoding the states using the Secode, JEDI and one-hot methods, as
well as using the Gray code and simple sequential encoding; the encoded FSMs
were subsequently synthesised using the IRMA2FPGA tool described in [17]. Here
also the art décomp program yields the best overall results.

Decomposition-Based Methods for FSM Implementation 125

Ta
bl

e
6

R
es

ul
ts

of
co

m
pa

ri
so

n
w

ith
C

A
D

to
ol

B
fo

r
a

de
vi

ce
w

ith
4/

1
L

U
T

ce
lls

FS
M

ar
td

éc
om

p
M

in
im

al
Se

qu
en

tia
l

G
ra

y
JE

D
I

N
O

V
A

R
an

do
m

O
ne

-h
ot

Jo
hn

so
n

bb
ta

s
8

6
6

6
6

6
6

9
6

be
ec

ou
nt

10
18

18
18

16
18

19
29

33

dk
27

5
5

5
5

5
5

5
8

10

do
nfi

le
0

0
0

0
0

0
0

47
10

2

ex
3

9
22

28
25

23
31

32
16

31

ex
7

10
8

22
14

20
31

29
12

34

lio
n

3
3

3
3

3
3

3
8

3

lio
n9

3
16

4
13

15
20

31
20

4

m
c

9
6

6
6

6
7

8
10

6

m
od

ul
o1

2
0

0
0

0
0

0
0

0
0

op
us

24
33

38
31

29
30

38
34

34

s2
7

7
7

5
10

5
15

14
21

15

s8
0

1
1

1
1

1
1

21
1

sh
if

tr
eg

4
4

3
4

4
3

4
9

8

tr
ai

n4
3

3
3

3
3

3
3

6
3

tr
ai

n1
1

5
17

17
25

19
20

29
19

42
∑

10
0

14
9

15
9

16
4

15
5

19
3

22
2

26
9

33
2

126 M. Rawski et al.

Table 7 Results of comparison with CAD tool A for a device with both 5/1 and 4/2 LUT cells

FSM art décomp JEDI Random NOVA One-hot

bbara 10 14 14 13 13

bbtas 5 5 5 5 5

beecount 7 13 12 12 12

dk15 7 18 17 18 18

dk17 6 8 9 10 11

dk27 3 5 4 5 5

dk512 7 10 11 11 10

donfile 0 27 27 27 27

ex3 7 9 9 9 9

ex5 5 7 8 7 8

ex6 16 20 20 20 20

ex7 7 7 7 7 7

lion 2 4 4 4 4

lion9 2 10 10 11 11

modulo12 0 0 0 0 0

opus 12 16 16 16 17

s27 4 11 11 11 11

s8 0 9 9 9 9

shiftreg 2 6 6 6 5

train4 2 3 3 3 3

train11 4 9 9 9 9
∑

108 211 211 213 214

Table 8 Results of comparison with SIS for a device with both 5/1 and 4/2 LUT cells

FSM art
décomp

Secode JEDI NOVA-i NOVA-io MINISUP One-hot

bbara 10 7 11 13 14 16 15

bbtas 5 4 5 3 4 6 6

beecount 7 6 9 8 9 8 12

dk15 7 12 11 13 13 13 17

dk17 6 10 11 9 11 13 17

dk27 3 3 3 4 3 4 6

lion 2 2 2 3 2 2 3

s8 0 1 1 1 1 1 9
∑

40 45 53 54 57 63 85

Decomposition-Based Methods for FSM Implementation 127

Table 9 Results of comparison with IRMA2FPGA for a device with 5/1 LUT cells

FSM art décomp Secode Gray JEDI Sequential One-hot

bbara 11 12 11 15 15 20

bbtas 5 5 5 5 5 8

beecount 8 6 8 9 10 13

dk15 7 7 7 7 7 12

dk17 6 6 6 6 6 16

dk27 5 5 5 5 5 8

dk512 7 7 7 7 7 19

ex5 5 7 8 11 10 15

ex6 17 21 29 24 29 25

lion 3 3 3 3 3 5

lion9 3 3 4 5 4 10

mc 7 7 7 7 7 7

s27 6 4 5 4 7 15

s8 0 1 6 5 5 8

shiftreg 4 4 4 4 4 9

train11 4 3 7 6 7 13
∑

98 101 122 123 131 203

6 Conclusions

As mentioned in the introduction, the currently widespread two-step approach to
implementation of finite state machines in FPGA devices does not yield optimal
results due to the definitive character of assigning final binary encodings to the
FSM’s states prior to the mapping step; because of the complexity of the (often,
multi-level) logic synthesis process, creating a universal algorithm for pre-encoding
the state variable is very hard. The symbolic functional decomposition method, which
side-steps the issue by retaining the relevant information about the states of the FSM
through the mapping process, yields better results than the two-step approaches; at
the same time, the algorithms currently implementing this method still leaves room
for improvement.

References

1. Adamski, M., Karatkevich, A., & Węgrzyn, M. (eds.) (2005). Design of Embedded Control
Systems. New York: Springer.

2. Armstrong, D. B. (1962). On the efficient assignment of internal codes to sequential machines.
IRE Transactions on Electronic Computers, EC, 11(5), 611–622.

128 M. Rawski et al.

3. Ashar, P., Devadas, S., & Newton, A. R. (1989). Optimum and heuristic algorithms for finite
state machine decomposition and partitioning. In 1989 IEEE International Conference on
Computer-Aided Design. ICCAD-89. Digest of Technical Papers (pp. 216–219).

4. Ashar, P., Devadas, S., & Newton, A. R. (1990). A unified approach to the decomposition
and re-decomposition of sequential machines. In Proceedings of the 27th ACM/IEEE Design
Automation Conference (pp. 601–606).

5. Ashar, P., Devadas, S., & Newton, A. R. (1992). Sequential logic synthesis. VLSI, computer
architecture, and digital signal processing., Kluwer international series in engineering and
computer science Boston: Kluwer Academic Publishers.

6. Astola, J. T., & Stanković, R. S. (2006). Fundamentals of switching theory and logic design:
A hands on approach. London: Springer.

7. Brayton, R. K., Rudell, R., Sangiovanni-Vincentelli, A., & Wang, A. R. (1987). MIS: a multiple-
level logic optimization system. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 6(6), 1062–1081.

8. Brzozowski, J. A., & Łuba, T. (2003). Decomposition of boolean functions specified by cubes.
Journal of Multiple-Valued Logic and Soft Computing, 9, 377–417.

9. Chang, S.-C., Marek-Sadowska, M., & Hwang, T. T. (1996). Technology mapping for
TLU FPGAs based on decomposition of binary decision diagrams. IEEE Transactions
onComputer-Aided Design of Integrated Circuits and Systems, 15(10), 1226–1236.

10. De Micheli, G., Brayton, R. K., & Sangiovanni-Vincentelli, A. (1985). Optimal state assignment
for finite state machines. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 4(3), 269–285.

11. Devadas, S., Hi-Keung, Ma., Newton, A. R., & Sangiovanni-Vincentelli, A. (1988). MUS-
TANG: state assignment of finite state machines targeting multilevel logic implementations.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 7(12),
1290–1300.

12. Dolotta, T. A., & McCluskey, E. J. (1964). The coding of internal states of sequential circuits.
IEEE Transactions on Electronic Computers EC, 13(5), 549–562.

13. Du, X., Hachtel, G., Lin, B., & Newton, A. R. (1991). MUSE: a multilevel symbolic encoding
algorithm for state assignment. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 10(1), 28–38.

14. Geiger, M., & Muller-Wipperfurth, T. (1991). FSM decomposition revisited: algebraic structure
theory applied to MCNC benchmark FSMs. In 28th ACM/IEEE Design Automation Conference
(pp. 182–185).

15. Hartmanis, J., & Stearns, R. E. (1966). Algebraic structure theory of sequential machines.,
Prentice-Hall international series in applied mathematics Englewood Cliffs: Prentice-Hall.

16. Humphrey, W. S. (1958). Switching circuits with computer applications. New York: McGraw-
Hill.

17. Jóźwiak, L., & Chojnacki, A. (2003). Effective and efficient FPGA synthesis through general
functional decomposition. Journal of Systems Architecture, 49(4–6), 247–265.

18. Jóźwiak, L., & Ślusarczyk, A. (2000). A new state assignment method targeting FPGA imple-
mentations. In Proceedings of the 26th Euromicro Conference (Vol. 1, pp. 50–59).

19. Jóźwiak, L., Ślusarczyk, A., & Chojnacki, A. (2003). Fast and compact sequential circuits for
the FPGA-based reconfigurable systems. Journal of Systems Architecture, 49(4–6), 227–246.

20. Lemberski, I. (1998). Modified approach to automata state encoding for LUT FPGA imple-
mentation. In Proceedings of the 24th Euromicro Conference (Vol. 1, pp. 196–199).

21. Lin, B., & Newton, A. R. (1989). Synthesis of multiple level logic from symbolic high-level
description languages. In Proceedings of the IFIP International Conference on VLSI (pp. 187–
196).

22. Lin, B., & Newton, A. R. (1989). Synthesis of multiple level logic from symbolic high-level
description languages. In Proceedings of the IFIP TC 10/WG 10.5 International Conference
on Very Large Scale Integration (pp. 187–196).

23. Lipsett, R., Ussery, C., & Schaefer, C. (1989). VHDL: Hardware description and design.
Boston: Kluwer Academic Publishers.

Decomposition-Based Methods for FSM Implementation 129

24. Łuba, T., Rawski, M., Tomaszewicz, P., & Zbierzchowski, B. (2008). Programowalne układy
przetwarzania sygnałów i informacji. Wydawnictwa Komunikacji i Łączności.

25. Rawski, M. (2004). The novel approach to FSM synthesis targeted FPGA architectures. In
Proceedings of IFAC Workshop on Programmable Devices and Systems, PDS, IFAC (pp. 169–
174).

26. Rawski, M., Jóźwiak, L., & Łuba, T. (2001). Functional decomposition with an efficient input
support selection for sub-functions based on information relationship measures. Journal of
Systems Architecture, 47, 137–155. Elsevier Science B.V.

27. Scholl, C. (2001). Functional decomposition with application to FPGA synthesis. Boston:
Kluwer Academic Publisher.

28. Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., et al. (1992). SIS:
A system for sequential circuit synthesis. Berkeley: University of California.

29. Ślusarczyk, A. (2004). Decomposition and encoding of finite state machines for FPGA imple-
mentation. Eindhoven: Technische Universiteit Eindhoven.

30. Szotkowski, P. (2008). A comparison of symbolic functional decomposition algorithms for
finite state machine implementation in FPGA devices. III Konferencja naukowo-techniczna
doktorantów i młodych naukowców (pp. 381–385).

31. Szotkowski, P. (2009). Input selection methods for symbolic functional decomposition of finite
state machines. In Proceedings of the 4th International PhD Students and Young Scientists
Conference (pp. 362–367).

32. Szotkowski, P. (2010). Symbolic functional decomposition method for implementation of finite
state machines in FPGA Devices. PhD thesis. Politechnika Warszawska.

33. Szotkowski, P. & Rawski, M. (2007). Symbolic functional decomposition algorithm for FSM
implementation. In The International Conference on “Computer as a Tool” EUROCON (pp.
484–488).

34. Szotkowski, P. & Rawski, M. (2008). A graph-based symbolic functional decomposition algo-
rithm for FSM implementation. In 2008 Conference on Human System Interactions (pp. 34–39).

35. Szotkowski, P., Rawski, M., & Selvaraj, H. (2009). A graph-based approach to symbolic func-
tional decomposition of finite state machines. Systems Science, 35(2), 41–47.

36. Villa, T., & Sangiovanni-Vincentelli, A. (1990). NOVA: State assignment of finite state
machines for optimal two-level logic implementation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 9(9), 905–924.

Using UML Behavior Diagrams
for Graphical Specification of Programs
for Logic Controllers

Grzegorz Bazydło and Marian Adamski

Abstract The Unified Modeling Language (UML) is one of the most popular
software engineering standards. The UML was designed for specifying, visualiz-
ing, constructing and documenting artifacts of software systems. But it could be also
very useful for business modeling and can be used successfully for modeling digital
systems, including logic controllers. The current version of UML contains fourteen
types of diagrams. These diagrams help designer to model large and complex sys-
tems, but not all of the diagrams can be suitable for use in the area of hardware
design. In the chapter each type of behavior diagrams is analysed and illustrated as
an appropriate example. The results show which types of diagrams can be useful in
the digital system design process.

Keywords UML · Behavior diagram · State machine · Logic controller

1 Introduction

Nowadays the design process of the digital system can be long and complicated.
Before a digital circuit goes into production, the designer must go through all the
phases of digital system design [1]:

• specification,
• verification of the specification,
• synthesis,
• verification of the implementation,

G. Bazydło (B)
Institute of Electrical Engineering, University of Zielona Góra, ul. prof. Z. Szafrana 2,
65-516 Zielona Góra, Poland
e-mail: g.bazydlo@iee.uz.zgora.pl

M. Adamski
Institute of Metrology, Electronics and Computer Science,
University of Zielona Góra, ul. prof. Z. Szafrana 2, 65-516 Zielona Góra, Poland
e-mail: m.adamski@imei.uz.zgora.pl

© Springer International Publishing Switzerland 2016
A. Karatkevich et al. (eds.), Design of Reconfigurable Logic Controllers,
Studies in Systems, Decision and Control 45,
DOI 10.1007/978-3-319-26725-8_10

131

132 G. Bazydło and M. Adamski

• documenting the project,
• preparation of test.

The most important phase of the design process is the specification stage, because
it has the greatest influence on the quality of the results.Wrong specification generates
always an erroneous system. The user requirements are the basis for the development
of system specification, and are given very often informally in natural language.
Therefore the main aim of this phase is to precisely express the external effects of
the designed system. An additional advantage of the formal specification is ensuring
that the system behaves in a way acceptable by the future user.

Because nowadays the modelled systems are large and complex, the designer
has to use special software for specification, simulation, synthesis and implemen-
tation. The main goal is to produce more efficient and faultless systems, because
the correction of hardware errors can be very expensive and is often associated with
replacement of the device. Therefore the goal of using advanced languages (e.g.
UML), methods and tools is to eliminate as many errors at the specification phase as
it is possible.

2 Unified Modeling Language

The Unified Modeling Language (UML) is one of the better known modeling lan-
guages of software systems, especially object-oriented. The creators of UML are
three methodologists: Grady Booch, Ivar Jacobson and James Rumbaugh [4]. The
first version (0.8) of UMLwas published in 1995, and the current version is 2.5 [11].
The main aim of the UML is to support the specification, visualization, construc-
tion, and documentation of software systems [4]. It is possible, thanks to 14 types of
diagrams, to allow the designer to look at the modelled system from different per-
spectives, with the emphasis on certain aspects. UML diagrams can be used not only
for communication between project teammembers, but also in conversation with the
end user or customer. The UML supports concurrent, hierarchical and distributed
systems, and can be used to present system details to meet the requirements or make
analysis [6].

Diagrams—the main tool offered by the UML—can be divided into two groups:
structure and behavior diagrams. Seven types of the diagrams (class, object, package,
component, composite structure, profile and deployment) are used mainly in the
presentation of the physical organization of the elements in the system. Behavior
diagrams, in contrast to the structure diagrams, focus on describing the behavior of
the system components. They are very helpful in describing requirements, operations
and internal state changes. Members of this group are as follows: use case, activity,
state machine, sequence, communication, interaction overview and timing diagrams.

UML may be advantageous at some stages of the digital systems design process,
although it was created primarily to support engineers in the software design process.
In the following sections,with the use of an exemplary control system,wewill analyse
each UML behavior diagram to show at which stage and how it can be used. The
possibility and advantages of using UML structure diagrams was discussed in detail
in [3].

Using UML Behavior Diagrams for Graphical Specification of Programs … 133

3 Logic Controller Example

Figure1 presents a mixer machine for beverage production and distribution (Mixer).
The example is taken from [12] and supplemented with support for system failure
[2]. The detailed description of the behavior of theMixer control system can be found
in [3]. To better understand the rest of the chapter, we decided to cite it.

The controller works in the following way: the operator pressing the start button
(x1) initiates the processes in which tanks 1 and 2 are being filled and the containers
for the beverages are delivered (signal y3). Active signal x4 means, that containers
have been placed correctly on the trolley. Then valves y10 and y11 are opened until
the tanks are filled, and this information is indicated respectively by sensors x5 and x7.
In turn, the delivery of the containers is connected with the movement of the trolley
with containers (active signal y12) and finishes when the trolley reaches the sensor
x13. After filling of the tanks, the ingredients are being prepared, which is initiated
with signals y1 and y2. An indication of the sensors: x2 for the first container and x3
for the second container means that the ingredients in tanks 1 and 2 were prepared.
Ready components are poured into the third tank by opening valves y5 and y6 and
mixed (active signal y4 until deactivation x9). The valves are closed after emptying
the tanks 1 and 2. The situation is signaled by sensors x6, x8 and x9 respectively.
When one of the containers is ready, it is independently filled and closed (signals x10
and x11). After the completion of both processes, the trolley with containers moves

OPERATOR’S
CONSOLE

Start

x12x13
Trolley

y12 y9

Tank 1

y7 Tank 3

x6

x5

Mixer
y4

y8

y10

Tank 2

x8

x7

y11

y5 y6

x10 x11

x4x1

Container
1

Container
2

Ingredient 1 Ingredient 2x2 x3
y1 y2

y3

Breakdown

au

y4

x9

Timer

Fig. 1 Industrial Mixer process diagram

134 G. Bazydło and M. Adamski

CONTROLLERx1
au

 x2 x3 x4 x5 x6 x7 x8 x10 x11 x12 x13 x9

y4

OPERATOR’S
CONSOLE

Start

Breakdown y1 y2 y3 y5 y6 y7 y8 y9 y10 y11 y12

Fig. 2 A controller’s block diagram for Mixer control system

back to its initial position, which is signaled by y9. Sensor x12 is active when the
system is ready for the further operation [3].

Formally, the presented controller consists of fourteen input sensors and twelve
output signals. Controller’s block diagram is shown in Fig. 2.

3.1 Use Case Diagram

Thefirst step in the design systemprocess is the analysis of the user requirements [15].
Use case diagrams can be very helpful here, because they represent the functional
requirements of the system and provide implementation-independent view of what
is expected of the system [10]. Use case diagram show the features of the designed
system in a way seen by the future users. A user symbol used on the diagrams, called
“an actor”, represents the master system that will be used. In this particular case it
is a person—namely the system operator. Ovals with names in the middle represent
the “use cases”. Between use cases several types of associations can occur. The two
most common are: include and extend [4].

In the digital system design, especially logic controllers design, use cases play a
different role than in the object-oriented systems design. There use cases represent
not features of the design system, but rather functions of the controlled object [8].
Figure3 shows the use case diagram for the Mixer control system example.

Use case diagrams can be very useful at the specification phase of logic controllers
design, because they allow to model the interface of the system [7]. The use cases
presented in Fig. 3 overlap with the operation modes of the controller, which is also
reflected in the operator’s console (two buttons for the two main use cases). In addi-
tion, this diagram does not require the user to possess subject-specific engineering
knowledge and is therefore very helpful in discussing with the customer about the
requirements [2].

Using UML Behavior Diagrams for Graphical Specification of Programs … 135

Movement of trolley

Preparation of
ingredients

Beverage production

Support system
breakdown

«include»

«include»

Operator

Mixing and
filling of containers

«include»

Fig. 3 A use case diagram for the Mixer control system

3.2 Activity Diagram

An activity diagram can be seen as one of the type of a block diagram. It shows a
control flow from one activity to another. Activity is a kind of behavior consisting of
at least one indivisible action. When an activity ends it means, that the system state
has changed, and control is immediately passed to the next activity. To describe the
control flow, it is convenient to use a “token” as a term, an idea taken from the Petri
nets [13].

Activity diagrams can also be used to model the control flow inside the use case
[4, 6]. In Fig. 4 an activity diagram is shown realizing the control flow from Beverage
production use case (Fig. 3) for the Mixer control system.

Activity diagrams can be very helpful in the design of test programs (so-called
“testbenches”)—used at the stage of behavioral simulation—because they show the
selected control scenarios.

3.3 State Machine Diagram

State machine diagrams are used to show the control flow between the object states.
A prototype for the state machine diagrams were statecharts [5]. The state models a
situation during which some invariant condition holds. The invariant may represent
a static situation such as an object waiting for some external event to occur or it can
model dynamic conditions such as the process of performing some behavior [11].
The state machine is the sequence of object’s states reached in response to input
events and reactions to these events. Hence, the diagram shows the state machine
of one object or the whole system treated as single entity [4]. By the use of the
composite states it is possible to model the system at the given level of abstraction.

136 G. Bazydło and M. Adamski

Filling the tank 1
y10

Preparation of
ingredient 1

y1

x5

1

0

x2

1

0

Filling the tank 2
y11

Preparation of
ingredient 2

y2

x7

1

0

Waiting for
Start button

x3

1

0

Movement of trolley
to the right

y9

x1

1

0

x12

1

0

Filling the tank 3
and mixing
y4, y5, y6

x6

0

1

x8

0

1

x9

0

1

Filling the
container 1

y7

x10

1

0

Filling the
container 2

y8

x11

1

0

Loading of
containers

y3

Movement of trolley
to the left

y12

x4

1

0

x13

1

0

Fig. 4 An activity diagram for the Beverage production use case (from Fig. 3)

Figure5 presents the state machine diagram for the Mixer control system example
at the highest level of hierarchy. Note that the states Beverage preparation and
movement of trolley to the left and Filling of containers are composite states with
hidden details (marked with two connected circles at the bottom right corner).

Using UML Behavior Diagrams for Graphical Specification of Programs … 137

Fig. 5 A state machine
diagram for the Mixer
control system

Start

[x1*!x4]

do / y9

Movement of trolley to the right
[x12]

Beverage preparation and movement
of trolley to the left

Filling of containers

S
ys

te
m

br
ea

kd
ow

n

[au]

[!au]

[au]

[au]

[!x6*!x8*!x9*x13]

Undoubtedly the state machine diagrams are the most important and the most
effective tool for the graphic specification of programs for logic controllers. With the
support of concurrency and hierarchy of the design system and the precise semantics,
state machine diagram allows one to develop a complete and unambiguous descrip-
tion of the logic controller behavior [8, 9, 14]. The diagram represents all states in
which the controller object can be, and therefore it can be also helpful in the devel-
opment of test scenarios. A detailed description of the state machine diagrams for
specification of logic controllers’ programs can be found in [2].

3.4 Sequence Diagram

The other four types of diagrams (sequence, communication, interaction overview
and timing diagrams) belong to the “interaction diagrams” subgroup. Most com-
monly used diagrams here are the sequence diagrams. They are very helpful in
highlight the sequence of messages transmitted between system elements (usually
objects) during system’s work. Usually, the sequence diagram shows the behavior
of the system for only one use case [10]. Sequence diagram has two dimensions:
objects (horizontal) and time (vertical). The arrows indicate the messages sent or the
induced operations. An example sequence diagram that realizesMovement of trolley
use case (from Fig. 3) is presented in Fig. 6.

In Fig. 6 the object controller is the only element of the system related to the
logic controller program (as it was mentioned above, such programs are not usually
object-oriented). Other objects represent real nodes, and positioning them on the
diagram is rather unnatural, although it may help in understanding the behavior of
the controller. Therefore sequence diagrams are in our opinion not very useful in the
specification of programs for logic controllers. However, some authors indicate that
the diagrams can be used to develop test scenarios for designed system [8].

138 G. Bazydło and M. Adamski

trolley:
Trolley

controller:
LogicController

x13:
LocationSensor

x12:
LocationSensor

y12

x13

y9

x12

!y12

!y9

Fig. 6 A sequence diagram for the Movement of trolley use case (from Fig. 3)

3.5 Communication Diagram

Communication diagrams are very similar to sequence diagrams, the difference lies
in the way of presenting the communication between system elements. The commu-
nication diagrams place greater emphasis on the objects rather than on the sequence
of the exchanged messages. Figure7 shows the communication diagram that realizes
Movement of trolley use case from Fig. 3.

Communication diagrams similarly to sequence diagrams, due to their strong
object-oriented nature, are in our opinion not very useful in designing programs for
logic controllers.

Fig. 7 A communication
diagram for the Movement of
trolley use case (from Fig. 3)

controller:
LogicController

x13:
LocationSensor

x12:
LocationSensor

trolley: Trolley

2: x13

1:
y1

2

3:
!y

12

4:
y9

6:
! y

9

5: x1
2

Using UML Behavior Diagrams for Graphical Specification of Programs … 139

3.6 Interaction Overview Diagram

Interaction overview diagrams are not commonly used in software or non-software
systemdesign. The interaction overviewdiagram is a combination of activity diagram
and sequence diagrams, in which activities are replaced with sequence diagrams. An
exemplary interaction overview diagram for the Mixer control system that realizes
Movement of trolley use case from Fig. 3 is shown in Fig. 8.

Fig. 8 An interaction
overview diagram for the
Movement of trolley use case
(from Fig. 3)

x13

1

0

sd 1

trolley:
Trolley

controller:
LogicController

x13:
LocationSensor

y12

x13

!y12

sd 2

trolley:
Trolley

controller:
LogicController

x12:
LocationSensor

y9

x12

!y9

x12

1

0

140 G. Bazydło and M. Adamski

Due to object-oriented nature of sequence diagrams, which are the main compo-
nents of interaction overview diagrams, the use of such diagrams in the specification
programs of logic controllers is rather doubtful.

3.7 Timing Diagram

These diagrams emphasize the time constraints of a single element or an entire group
of objects. It is worth mentioning that this type of a diagram was added to UML only
in version 2.0 and above, and therefore their use in the design of digital systems is
not yet thoroughly investigated. The timing diagrams are very similar to the graphs
generated during the system simulation, at the “verification of the specification”
stage (see Sect. 1). This similarity can be a rationale for further research into the
automatic comparison of the expected results with the results obtained during the
system simulation or test programs (testbenches) generation. An exemplary timing
diagram for the Mixer control system is shown in Fig. 9.

Operator noted breakdown
of the system and pushed the
Breakdown button

Breakdown has been
removed and operator
released Breakdown button

:Operator

:LogicController

x13:LocationSensor

au
!au

y12
!y12

x13
!x13

y9
!y9

System Movement
to the left Breakdown Movement

to the left

x12:LocationSensor x12
!x12

Movement to the rightFilling of containers

Fig. 9 A timing overview diagram for the Mixer control system

Using UML Behavior Diagrams for Graphical Specification of Programs … 141

4 Conclusions

Unified Modeling Language is a set of graphical notations used to illustrate, specify,
construct and document the modeled systems, especially the object-oriented. Appro-
priate diagrams support system analysis for the structure or behavior at a given level
of abstraction. However, not all types of diagrams are suitable for use in the design
of digital systems (this is especially true in the case of structure diagrams [3]), since
it was not the main rationale for their development. The main tools for modeling
programs for logic controllers are rather behavior diagrams. The most important and
popular diagrams for modeling the behavior of logic controllers are the state machine
diagrams and mainstream researchers focus on creating a complete and unambigu-
ous specification of a complex digital system using this kind of diagram (or one of
its variants) [2, 5, 8, 9, 14].

We also see the possibility of using activity and use cases diagrams. Activity
diagrams show the flow of the system control in a probable scenario and can be very
useful in generating the test programs. Use case diagrams are used to analyse the
needs of the modeled system and allow one to specify, for example, the controller
modes and can support the development of a system interface. Both types of diagrams
complement the system behavior description expressed with state machine diagrams.
It is worth mentioning that the timing diagrams can be very interesting in terms of
their use for verification the results obtained during the system simulation. Other
behavior diagrams play a minor, supporting role, enabling a fuller analysis of the
system, a more accurate verification or are used just to document the project. In some

Table 1 The role of the UML behavior diagrams in logic controllers design process

Design process steps UML

Specification State machine diagram

Verification of the specification State machine diagram
Use case diagram
Activity diagram
Timing diagram

Synthesis –

Verification of the implementation –

Documenting the project Use case diagram
Activity diagram
State machine diagram
Sequence diagram
Communication diagram
Interaction overview diagram
Timing diagram

Test preparation Use case diagram
Activity diagram
State machine diagram
Sequence diagram
Timing diagram

142 G. Bazydło and M. Adamski

cases the use of object-oriented diagrams to present the real system elements (nodes)
seems an unnatural solution. However, without objects unrelated to the controller
program, the diagram (e.g. sequence, communication diagram) would simplify to a
single element. It follows from the fundamental difference between software design
and control algorithm design. In the former, the aim is to create a design based on
the analysis of an object-oriented data model, while in the latter the aim is to develop
a behavior model. There is no need to perform object analysis, since objects are
already directly defined [8].

Table1 summarizes the UML behavior diagrams in terms of their support of the
digital controllers design process (see Sect. 1).

References

1. Adamski, M. (1990).Design of digital circuits with the use of the systematic structural method.
Zielona Góra: Wydawnictwo Wyższej Szkoły Inżynierskiej. (in Polish).

2. Bazydło, G. (2011). Graphic specification of programs for reconfigurable logic controllers
using unified modeling language (Vol. 19)., Lecture notes in control and computer science
Zielona Góra: University of Zielona Góra Press.

3. Bazydło, G. (2014). Using UML structure diagrams for graphical specification of programs for
logic controllers. In A. Bukowiec, G. Borowik, & M. Doligalski (Eds.), New trends in digital
systems design (Vol. 836, pp. 68–80)., Fortschritt-BerichteVDIDusseldorf:VDIVerlagGmbH.

4. Booch, G., Rumbaugh, J., & Jacobson, I. (2005). The unified modeling language user guide
(2nd ed.). Reading: Addison-Wesley Professional.

5. Drusinsky, D., & Harel, D. (1989). Using statecharts for hardware description and synthesis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 8(7), 798–
807.

6. Fowler, M. (2005). UML 2.0 Distilled. Warsaw: Oficyna Wydawnicza LTP. (in Polish).
7. Gomes, L., & Costa, A. (2003). From use cases to system implementation: statechart based co-

design. In Proceedings of the first ACM and IEEE international conference on formal methods
and models for co-design, MEMOCODE’03 (pp. 24–33). IEEE.

8. Łabiak, G., & Adamski, M. (2006). Using UML for modeling discrete control. Pomiary,
Automatyka, Kontrola, 16(6), 50–52. (in Polish).

9. McUmber,W.,&Cheng,B. (1999).UML-based analysis of embedded systemsusing amapping
to VHDL. In Proceedings of the 4th IEEE international symposium on high-assurance systems
engineering (pp. 56–63).

10. Pilone, D., Piwko, Ł., & Pitman, N. (2007). UML 2.0: Almanac. Gliwice: Helion. (in Polish).
11. Unified Modeling Language. Superstructure. v2.5. Object Management Group (2015). www.

omg.org/spec/UML/2.5.
12. Valette, R. (1978). Etude comparative de deux outils de representation: Grafcet et reseau de

Petri. Le Nouvel Automatisme, 1978(3), 377–382. (in French).
13. Wiśniewski, R., Stefanowicz, Ł., Bukowiec, A., & Lipiński, J. (2014). Theoretical aspects of

Petri nets decomposition based on invariants and hypergraphs. In Lecture notes in electrical
engineering, proceedings of the 8th international conference of multimedia and ubiquitous
engineering (MUE), Zhangjiajie, China (Vol. 308, pp. 371–376).

14. Wood, S., Akehurst, D., Uzenkov, O., Howells, W., & McDonald-Maier, K. (2008). A model-
driven development approach to mapping UML state diagrams to synthesizable VHDL. IEEE
Transactions on Computers, 57(10), 1357–1371.

15. Wrycza, S., Marcinkowski, B., & Wyrzykowski, K. (2005). UML 2.0 in modeling software
systems. Gliwice: Helion. (in Polish).

www.omg.org/spec/UML/2.5
www.omg.org/spec/UML/2.5

Various Interpretations of Actions
of UML Activity Diagrams in Logic
Controller Design

Michał Grobelny, Iwona Grobelna and Marian Adamski

Abstract UML activity diagrams in version 2.x can be used as a semi-formal speci-
fication technique for logic controller design. The chapter provides various interpre-
tations of activity diagram actions. An action is an elementary indivisible operation
in the system which cannot be decomposed. However, it can be treated in different
ways—it can be dynamic, state-oriented and with starting and stopping conditions.
Each interpretation has its own characteristics and represents another point of view
on the designed system.

Keywords Activity diagrams · Design · Logic controllers · UML

1 Introduction

UnifiedModelling Language (UML) [8–10] can be used in various application fields,
starting from software engineering and ending with hardware specification focusing
especially on logic controllers. The most useful in this area are the activity diagrams
(especially in UML version 2.x, discussed in this chapter and considered e.g. in [6,
7]) or the state machine diagrams (considered in e.g. [1]).

UML language is easy understandable for a wide range of people, even for non-
engineers. It is simple to draw the diagrams and to present them. However, UML

M. Grobelny (B)
Department of Media and Information Technologies, University of Zielona Góra,
ul. Licealna 9, 65-417 Zielona Góra, Poland
e-mail: m.grobelny@kmti.uz.zgora.pl

I. Grobelna
Institute of Electrical Engineering, University of Zielona Góra,
ul. Licealna 9, 65-417 Zielona Góra, Poland
e-mail: i.grobelna@iee.uz.zgora.pl

M. Adamski
Institute of Metrology, Electronics and Computer Science, University of Zielona Góra,
ul. Licealna 9, 65-417 Zielona Góra, Poland
e-mail: m.adamski@imei.uz.zgora.pl

© Springer International Publishing Switzerland 2016
A. Karatkevich et al. (eds.), Design of Reconfigurable Logic Controllers,
Studies in Systems, Decision and Control 45,
DOI 10.1007/978-3-319-26725-8_11

143

144 M. Grobelny et al.

diagrams are not well supported by formal mechanisms, especially by the formal
analysis and verification methods. To avoid this inconvenience and to benefit from
a user-friendly specification technique, a UML activity diagram describing logic
controller behavior can be transformed into a control Petri net [6, 7], where much
more formal methods are available. Bidirectional transformation allows efficient
usage of both specification techniques at the same time and can be used to translate
existing projects only in a predetermined direction.

Activity diagrams are used to describe the behavior of a designed logic controller.
Their basic elements include actions, activities and flows between them, extended
by additional nodes, such as fork and join nodes. An activity diagram starts with an
initial node and ends with a final node. The elements are combined together to show
what a logic controller is supposed to do.

An action of a UML activity diagram is an elementary indivisible operation in the
system which cannot be decomposed. It can be treated in different ways depending
on how detailed the specification is. The fact that an action cannot be divided into
smaller elements is also very important as it affects essentially, together with action
interpretation, the way in which the transformation is performed.

The chapter is structured as follows. Section2 describes the indivisibility of UML
activity diagram actions. Section3 shows possible different interpretations of an
action in order to establish a view perspective on designed system and to enable
the transformation into control Petri nets as another specification technique. Finally,
Sect. 4 summarizes the chapter.

2 Indivisibility of Actions

An important aspect that should be taken into account, especially during transfor-
mation into another specification technique, is the indivisibility of UML activity
diagram actions. According to the UML specification [8], actions are indivisible in
the context of a particular diagram. They are the smallest logical elements. However,
while considering control systems, a single action can be viewed from different levels
of abstraction.

If the analysis is performed with the client and the main actions of the system are
determined (without going into details), then a sample action (that cannot be divided
from the point of view of the diagram) can be a general descriptive action Close the
door (Fig. 1a), without looking into its structure and action mode.

The process of closing the door itself, even though it is a simple task, may invlove
changes of input and output signals. Then, after the prior action has been detailed
(see Fig. 1), it can be broken down into three actions relating to signals of the logic
controller. Verbal specification for the device will then include actions Enable door
closing, Wait for door closing and Disable door closing (Fig. 1b). At this stage, the
system designer knows how (roughly speaking) the logic controller is supposed to
work.

Various Interpretations of Actions of UML Activity Diagrams … 145

Fig. 1 Two possible
representations of one
process—using one action
(a) and three actions (b)

(a) (b)

On a deeper stage of abstraction, descriptions will be directly converted to signals
of a logic controller and will operate on them. For example, the action Enable door
closing will be interpreted as an assignment of logical truth value to the appropriate
output signal y1 := 1, so in this case—turning on the actuator responsible for clos-
ing the door. Action Wait for the door closing will maintain active output signal
y1 and will continue until the sensors detect the fact that the door has been closed.
Next, simple action Disable door closing will be interpreted as deactivation of the
corresponding output signal, which can be described at the level of signals as the
expression y1 := 0, which in this case will result in turning off the actuator respon-
sible for closing the door and thus a simple process of closing the door is completed.

It should be noted that in the case of a descriptive diagram at the lowest level of the
hierarchy and a signal diagram, the indivisibility becomes a real indivisibility, because
it is impossible to divide the input signal setting into “finer” actions. Assigning values
to signals of a logic controller is a simple operation realized in one clock cycle. In
other (previous) cases indivisibility is only from the point of view of the diagram
and results from the UML specification. Hence, it can be concluded that the action

Fig. 2 Indivisibility of
action depending on how
detailed the specification is

146 M. Grobelny et al.

is dependent on the perspective of the problem under consideration, the person who
will create the diagram and its context (see Fig. 2).

The above considerations apply to building specifications from the general to the
particular (called top-down) [2]. However, the described feature of action is also
important in case of aggregating actions or building a diagram from the particular
to the general (called bottom-up) [2]. Then higher-level actions are built from small,
logically indivisible ones. They are indivisible only in the context of the diagram
(indivisible by definition). Some complex activities can also appear at a higher level
diagram in place of an action. They can be used in order to obtain the full hierarchy
and the opportunity to develop the activity diagrams using a lower level diagram,
which specifies only a particular element.

3 Possible Different Interpretations of an Action

A logic controller is an example of a reactive system, which communicates with the
environment through a set of input and output signals and responds to some events.
Therefore, the characteristics of actions (performed by the designed device) and their
possible interpretation should be considered. It is important to answer the question
whether the action is only a short event representing a dynamic change between two
states, or maybe it is a lengthy state that is a kind of reaction to the dynamics of the
object and required changes or whether it should be considered in a more complex
way as the dynamics of a system with a longer duration.

An action of UML activity diagram from the assumptions (by definition) rep-
resents the dynamics of the system. It represents a change of transition from one
system state into another. The action may, however, also be a representation of the
system state. Seemingly contradictory combination of words action and state may
have its logical justification. This is due to the perception of the system and ongoing
processes. Action interpretation (and so activity interpretation) is very important in
the transformation of UML activity diagrams into control Petri nets. It influences the
way and target elements of control Petri nets to which the action will be translated.

There are several aspects that affect the perception of the action and its dynamic
or state-oriented characteristics. A consequence of this multiplicity of interpretation
is more than one way of mapping the actions and activities of UML language into
control Petri nets.

A particularly important aspect when considering the action characteristics is
its duration. Simple, elementary and infinitely short system tasks will be perceived
only as its dynamics characterizing quick changes between states. Examples of such
elementary actions can be changes of signal values, simple arithmetic operations or
execution of tasks such as light the LED. Considering the context of control systems,
simple operations are usually those that are performed in a single clock cycle or
within one performing of the main loop. Actions with longer duration are interpreted
differently. Such long-term processes are more clearly identified with the system
state, as it is easier to imagine this process functionality.

Various Interpretations of Actions of UML Activity Diagrams … 147

Fig. 3 Schema of system
controlling door closing

Another aspect is the perception of the system and its processes. The perspective
from which the system is modeled by a designer or analyst is very important. The
possibility to view the system from different perspectives is particularly evident in
the case of control systems, because then two sides of the system can be considered.
The control system consists of two main elements, namely a logic controller and a
controlled object (Fig. 3). The analyst or system designer can describe the system
from both sides. Depending on the perspective, the interpretation of a particular
process and its dynamic or state-oriented character changes.

Differences in interpretation are shown on the seemingly simple and obvious
example of the door closing process. This process can be visualized using UML in
the form of action Close the door. It is assumed that the process is automated and
implemented by a logic controller based on the signals from the sensors (e.g. limit
switch) using actuators (e.g. servomotor). The logic controller closes the door after
the receipt of a signal by appropriately manipulating the servomotor (an example is
shown in Fig. 3).

This process can be interpreted both as a state and as an action of the system.
In this seemingly contrary definition, the emphasis is put on its interpretation. The
dynamic interpretation is oriented only on the change that occurs in the system in
relation to the action realization. The state interpretation, beyond mapping changes
in the system, refers indirectly to the duration of an action and to the state, in which
the designed logic controller is executing an action.

Now, consider the dynamic nature of the action Close the door. The door closes
and a change, i.e. transition from state Door open into state Door closed, occurs in
the system. Schematic notation of the dynamic nature involving the simple change
between two states is shown in Fig. 4a. It is a rapid change causing changes in
the controlled object, without paying much attention to the aspect of time. This
interpretation brings to mind a transition, which is a component that connects two
places corresponding to the successive states of the system. In this case, the transition
joins two places corresponding to state Door open and Door closed.

The second possible interpretation of an action is its identifying with the state
of the system. Closing the door in the real world is not the process of infinitely
short duration. Thus, looking at it from the point of view of a logic controller, it
can be interpreted as the state of the system. This state will probably be associated
with an active output signal responsible for a specific working mode of an actuator
(servomotor closes the door). This interpretation of a process also involves the change

148 M. Grobelny et al.

(a) (b) (c)

Fig. 4 Possible interpretations of door closing process—dynamic (a), state-oriented (b) and with
condition for starting and stopping (c)

from state Door open into state Door closed. However, between the two listed states
in the diagram there will be a state Closing the door (Fig. 4b), which corresponds to
the action Close the door.

After the analysis of the diagram showing subsequent possible states and transi-
tions of the system (Fig. 4b), it can be concluded that there is at least one additional
opportunity to transform actions of a UML activity diagram. Figure 4 shows that
between successive states there exist transitions Start closing and End closing. This
is the beginning and end of the execution of an isolated process. It can be assumed
that these transitions are also part of a particular action.

In addition, it is possible to extend the method by taking into account the specific
conditions and situations where the action begins and ends. Considering the arith-
metic operations performed by the software, such as adding, the action corresponding
to the addition of two numbers starts if these numbers are available, and the end of
the action is the receipt of the result (Fig. 5a).

In control systems, however, the start and the endof an action are usually controlled
by the input signals to the controller received from the environment or from the
controlled object (Fig. 5b). Hence, it must be assumed that the appropriate signal
starts the action execution and is a prerequisite for entrance into the action. Start
signal can also be considered as a system event triggering the action execution,
which is in this case a reaction to the event. In case of automatic door closing it may
be Button pressed, which appears as an active input signal of a logic controller.

Various Interpretations of Actions of UML Activity Diagrams … 149

(a) (b)

Fig. 5 Actions with starting and ending conditions for software (a) and hardware (b) systems

Completion of action Close the door also depends on the input signal. In the con-
sidered example, it can be an active input connected to the limit switch, signaling the
complete closure of the door (condition Door closed). It is then necessary to deacti-
vate the output signal responsible for door closing, which means the termination of
the action (in behavioral specification). Hence, the condition Door closed is consid-
ered as the output condition of the action, which should be identified with expected
response of the controlled object (status) for an operation (action) performed by the
logic controller. The above example is illustrated in Fig. 4c in the form of appropriate
conditions assigned to transitions.

In a dynamic interpretation of an action, it is possible to assign the TRUE value
to the logic controller output signal in one action, and then in another part of the
diagram to assign the FALSE value to it, as it is shown in Fig. 6a. The solution has
a big advantage since the particular output signal appears only in two actions. In all
elements between these two actions, the output signals hold their values. However, a
special attention should be paid to ensure that the output signal, when switched on,
will eventually be switched off and that the action responsible for it is reachable.

In contrast to the dynamic interpretation, when considering the state-oriented
approach, the particular output signal has to appear in all action and activity nodes
when it is supposed tomaintain theTRUE value, as it is shown in Fig. 6b. In particular,
the output signal activity has to be taken into account also by complex activities and
one should remember to include the signal in all internal actions of activities.

4 Summary

Logic controller specification can be prepared by means of various techniques [3]
and then implemented e.g. in the structures of FPGA type [11, 12]. The chapter is
focused on the activity diagrams of UML language (version 2.x) and presents various
interpretations of actions in logic controller design.

150 M. Grobelny et al.

(a) (b)

Fig. 6 Logic controller output signals in dynamic (a) and state oriented (b) approaches

UML has many advantages in comparison to other specification techniques. Most
important are here the user-friendly, simple and clear diagrams showing technical
aspects in an easy way. The interpretation of activity diagram actions depends on the
view on the system and influences the details of behavioral specification.

UML activity diagrams can be transformed into another formal specification
model, namely the control Petri nets, basing on the described interpretations, as
shown in [6, 7]. The transformation is bidirectional and can be used for a simultane-
ous work with both techniques or in order to change the specification technique used
in the project. It is also possible to formally verify the UML activity diagrams using
the model checking technique, analogously to formal verification of other specifi-
cation techniques using a rule-based logical model [4, 5], as it is shown in another
chapter of this book.

References

1. Doligalski, M. (2012). Behavioral specification diversification of reconfigurable logic con-
trollers (Vol. 20). Lecture Notes in Control and Computer Science, Zielona Góra: University
of Zielona Góra Press.

2. Gajski, D. D., Abdi, S., Gerstlauer, A., & Schirner, G. (2009). Embedded system design:
modeling, synthesis, verification. Berlin: Springer.

3. Gomes, L., Barros, J. P., & Costa, A. (2006). Modeling formalisms for embedded system
design. In R. Zurawski (Ed.), Embedded systems handbook. New York: Taylor and Francis
Group.

Various Interpretations of Actions of UML Activity Diagrams … 151

4. Grobelna, I. (2011). Formal verification of embedded logic controller specification with com-
puter deduction in temporal logic. Przeglad Elektrotechniczny, 87(12a), 47–50.

5. Grobelna, I. (2013). Formal verification of logic controller specification by means of model
checking (Vol. 24). Lecture Notes in Control and Computer Science, Zielona Góra: University
of Zielona Góra Press.

6. Grobelny, M., Grobelna, I., & Adamski, M. (2012). Hardware behavioural modelling, ver-
ification and synthesis with UML 2.x activity diagrams. In Proceedings of 11th IFAC/IEEE
International Conference on Programmable Devices and Embedded Systems—PDeS 2012 (pp.
109–114). Brno.

7. Grobelny,M., & Pieczynski, A. (2013). Exception handling in logic controller design bymeans
of UML activity diagrams and control interpreted Petri nets.Przeglad Elektrotechniczny, 89(5),
314–317.

8. OMG. OMG Unified Modeling LanguageTM (OMG UML) Superstructure ver. 2.4.1. Object
Management Group (2011)

9. Pender, T. (2003). UML Bible. Indianapolis: Wiley Publishing Inc.
10. Schattkowsky, T. (2005). UML 2.0—Overview and perspectives in SoC design. InProceedings

of the conference on design, automation and test in Europe (Vol. 2, pp. 832–833). Washington:
IEEE Computer Society.

11. Tkacz, J., & Adamski, M. (2013). Structured mapping of petri net states and events for FPGA
implementations. International Journal of Electronics and Telecommunications, 59(4), 331–
339.

12. Wisniewski, R., Barkalov, A., Titarenko, L., & Halang, W. A. (2011). Design of micropro-
grammed controllers to be implemented in FPGAs. International Journal of Applied Mathe-
matics and Computer Science, 21, 401–412.

Model Checking of UML Activity Diagrams
Using a Rule-Based Logical Model

Iwona Grobelna, Michał Grobelny and Marian Adamski

Abstract UML activity diagrams can be used as semi-formal specification of logic
controller behavior. On the other hand, formalmethods applied at any stage of system
development allow increasing in the quality of final products. In the chapter use of
the model checking technique to validate the specification against some specified
requirements is described. The specification is initially expressed by means of UML
activity diagrams and then is transformed to a rule-based logical model suitable both
for verification purposes and for logical synthesis for FPGA devices.

Keywords Activity diagrams · Formal methods · Logic controller · Model check-
ing · Specification · Verification · UML

1 Introduction

A logic controller specification can be formally described using various techniques,
as for example control interpreted Petri nets [4] or diagrams of the UnifiedModeling
Language (UML) [14], especially UML activity diagrams or state machines. Each
technique demonstrates both some advantages and disadvantages. In the chapter, the
UML activity diagrams (in version 2.x) are used to describe formally the behavior of
a designed logic controller. The UML itself is a user-friendly, established technique

I. Grobelna (B)
Institute of Electrical Engineering,
University of Zielona Góra, ul. Licealna 9, 65-417 Zielona Góra, Poland
e-mail: i.grobelna@iee.uz.zgora.pl

M. Grobelny
Department of Media and Information Technologies,
University of Zielona Góra, ul. Licealna 9, 65-417 Zielona Góra, Poland
e-mail: m.grobelny@kmti.uz.zgora.pl

M. Adamski
Institute of Metrology, Electronics and Computer Science,
University of Zielona Góra, ul. Licealna 9, 65-417 Zielona Góra, Poland
e-mail: m.adamski@imei.uz.zgora.pl

© Springer International Publishing Switzerland 2016
A. Karatkevich et al. (eds.), Design of Reconfigurable Logic Controllers,
Studies in Systems, Decision and Control 45,
DOI 10.1007/978-3-319-26725-8_12

153

154 I. Grobelna et al.

Fig. 1 Usage of a rule-based logical model for model checking of UML activity diagrams

for modelling of software. Commonly, it is also used in a logic controller design
process [5, 9, 10, 13].

Former researches have shown that it is possible to specify behavior of the embed-
ded systems using the UML activity diagrams [9, 10]. Unfortunately, the UML dia-
grams are still not well supported by formal techniques of analysis and verification.
On the other hand, control interpreted Petri nets [4], as a mathematical apparatus,
have a wide-range support of techniques and mechanisms which can improve the
quality of specifications. It is possible to transform a UML activity diagram into a
control Petri net [9] and then use the benefits of the second specification technique.

In the proposed approach a rule-based logical model [7, 8] is used as an inter-
mediate format which is suitable both for formal verification [12] using the model
checking technique [3, 6] and for logical synthesis (see Fig. 1). It includes rules
describing the behavior of a logic controller, and has been primarily based on the

Model Checking of UML Activity Diagrams Using a Rule-Based Logical Model 155

control interpreted Petri nets. The properties of the designed system to be verified
are expressed with the temporal logic formulas [11]. Model checking is performed
using the NuSMV model checker. The rule-based logical model is also a basis for
VHDL code, which can be easily implemented in the reconfigurable structures of
FPGA type [1]. In this way also a UML activity diagram describing a logic controller
can be transformed into a rule-based logical model. It is then possible to verify it
using a model checking technique, and next to synthesize it. A big advantage of the
proposed solution is that the logic controller can be easily specified in a user-friendly
form and at the same time the so-prepared specification can be formally verified
and synthesized. So, after formal verification the quality of the final product rises
significantly and the implemented device is consistent with its primary specification.

The chapter is structured as follows. Section2 introduces a rule-based logical
model suitable both for formal verification using model checking technique and for
logical synthesis. Section3 shows how a UML activity diagram can be transformed
into a rule-based logical model. Section4 focuses on the model checking of a rule-
based logical model, and so of a UML activity diagram. Finally, Sect. 5 summarizes
the chapter.

2 A Rule-Based Logical Model

Amethod for formal verification of logic controller specification expressed as a rule-
based logical model has been established [7, 8]. It allows to verify the specification
against behavioral properties defined with temporal logic formulas. The rule-based
logical model has to be prepared basing either on informal or formal specification
of the control process, e.g. control interpreted Petri nets or UML activity diagrams.
The proposed rule-based logical model is suitable for model checking as well as for
logical synthesis. So, as the result, the implemented solution is fully consistent with
the already verified specification.

2.1 Elements of a Rule-Based Logical Model

A rule-based logical model consists of five different sections corresponding to partic-
ular elements of specification and presenting its various aspects, described in detail
as follows.

Variables definition Variables occurring in the specification of a logic controller:
input and output signals as well as places (local states) of the control process. The
presence of places is connected with the primary usage of a logical model, namely
control interpreted Petri nets. However, this section is also well suited to define basic
state elements of other specification techniques, in particular actions of UML activity
diagrams. It starts with the keyword VARIABLES.

156 I. Grobelna et al.

Example in Listing 1 shows variables definition for a logic controller specification
involving six places, three input and three output signals.

Listing 1 Variables definition in a rule-based logical model

1 VARIABLES
2 places: p1, p2, p3, p4, p5, p6
3 inputs: i1, i2, i3
4 outputs: o1, o2, o3

Initial values of variables A predefined initial value is assigned to each variable.
Then, the value can change according to the rules defined in the next section. It starts
with the keyword INITIALLY. The exclamation mark is used to express the FALSE
value, otherwise the variable takes the TRUE value.

Example inListing 2 shows the assignment of initial values to the variables defined
in the previous section.

Listing 2 Initial values of variables in a rule-based logical model

1 INITIALLY
2 p1; !p2; !p3; !p4; !p5; !p6
3 !i1; !i2; !i3
4 !o1; !o2; !o3

Transitions definition In this section, the rules which change the values of variables
are defined. The rules correspond to transitions in control interpreted Petri nets or to
flows in UML activity diagrams. The section starts with the keyword TRANSITIONS.
Each rule is given an etiquette to simplify the definition process for the user. A rule
itself consists of two parts. The one before the arrow is a precondition, the one after
the arrow is a postcondition preceded by the temporal logic operator X stating that
the change will happen in the next state of the system. Here also the exclamation
mark is used to express the negation of a variable.

Example in Listing 3 shows some rules, e.g. the first rule is executed when both
variables p1 and i1 are TRUE and then p1 changes its value into FALSE and at the
same time two other variables p2 and p3 become TRUE.

Listing 3 Transitions in a rule-based logical model

1 TRANSITIONS
2 t1: p1 & i1 -> X (!p1 & p2 & p3);
3 t2: p2 & i2 -> X (!p2 & p4);
4 ...

Input signal changesThe section defines expected changes of the input signal values.
It is used only for verification purposes in order to eliminate the so-called state
explosion problem [3]. In the real world, input signal changes are caused by the
environment. Here values changes are expected to happen in correspondence to
particular places (left side of the arrow). Then (right side of the arrow), the appropriate
listed input signal may become either active (TRUE value) or inactive (FALSE value
indicated by the exclamation mark). The section starts with the keyword INPUTS.

Model Checking of UML Activity Diagrams Using a Rule-Based Logical Model 157

Example in Listing 4 shows some expected changes of input signals, e.g. if the
first place (p1) is active, then we expect the i1 input signal to change its value.

Listing 4 Input signal changes in a rule-based logical model

1 INPUTS
2 p1 -> !i1 | i1;
3 p2 -> !i2 | i2;
4 ...

Output signal changesThe section defines expected changes of output signal values.
It is used for verification purposes as well as for logic synthesis. Analogously to input
signal changes in the rule-based logical model, changes are expected to happen in
correspondence to particular places (left side of an arrow). Then (right side of an
arrow), the appropriate listed output signal(s) are active. It starts with the keyword
OUTPUTS.

Example in Listing 5 shows some expected changes of output signals, e.g. if the
first place (p1) is active, then the o1 output signal is active.

Listing 5 Output signal changes in a rule-based logical model

1 OUTPUTS
2 p1 -> o1;
3 p3 -> o2;
4 ...

2.2 Verifiable Model Basing on a Rule-Based Logical Model

A rule-based logical model can be automatically transformed into a verifiable model
using the implemented m2vs tool according to the following rules.

Rule 1
Each place is a variable of Boolean type.
Rule 2
Each input signal is a variable of Boolean type.
Rule 3
Each output signal is a variable of Boolean type.
Rule 4
Defined variables take some initial values. Each variable takes any of two values
TRUE or FALSE.

158 I. Grobelna et al.

Rule 5
Each place changes according to the rules defined in the transitions; conditions of
changes between places occur in pairs (groups), in the previous place(s) and in the
next place(s).
Rule 6
Each input signal changes randomly, but can take the expected values (connected
in this case with actions of a UML activity diagram) or change adequately to the
situation.
Rule 7
Output signals changes are defined in corresponding places (in this case actions
of activity diagram).

After applying these rules, the m2vs software transforms the rule-based logical
model into a verifiable model in the NuSMV model checker format. Analogously to
the rule-based logical model, it starts with variables definition and their initial values.
Then, each variable is assigned a value in the next state. Additionally, by input signals
value changes one of possible values FALSE or TRUE is randomly chosen for the
next state if a particular place or action is active. Otherwise it maintains the FALSE
value (in order to eliminate the state explosion). Next, the NuSMV tool is used to
verify formally the specification using the model checking technique. The process
of formal verification itself is described in Sect. 4.

2.3 Synthesizable Model Basing on a Rule-Based
Logical Model

A rule-based logical model can be also transformed into a synthesizable model in
VHDL language and then simulated and synthesized. It should be noted, that both ver-
ifiable and synthesizable models are consistent with each other. Hence, the obtained
physical implementation is consistent with the primary, already verified, specifi-
cation. The transformation into VHDL code is performed automatically using the
implementedm2vs tool. The prepared model can be then easily simulated (using e.g.
Active-HDL environment) and synthesized (using e.g. XILINX Plan Ahead environ-
ment). Synthesis is performed in a form of rapid prototyping [1, 2] where optimiza-
tion aspects are out of scope. Its main goal is to check whether the designed system
operates at all and some redundant hardware elements may be used.

3 UML Activity Diagram as a Rule-Based Logical Model

AsimplifiedUMLactivity diagramcanbedefinedas a seven-tupleAD = {A,T ,G,F,
S,E,Z} with:

Model Checking of UML Activity Diagrams Using a Rule-Based Logical Model 159

• A being a set of actions/activities;
• T being a set of transitions (e.g. fork and merge nodes);
• G being a set of guard conditions corresponding to transitions (input signals);
• F being a set of flow relation between the activities and transitions;
• S being a set containing an initial node;
• E being a set containing a final node;
• Z being a set of output signals.

An activity diagram describing logic controller behavior can be represented as a
rule-based logical model in two steps described as follows.

3.1 Step One—Labelling

Each action a ∈ A is labelled with an etiquette aX, where X stands for the number
of action. Moreover, the initial node S is labelled as aStart and the final node E as
aEnd. Each transition t ∈ T is labelled with an etiquette tX, where X stands for the
number of transition. The labelling is illustrated in Fig. 2.

3.2 Step Two—Notation

Basing on a labelled UML activity diagram, a rule-based logical model is built
according to four rules defined as follows. Despite the labelling itself, output signals
listed inside actions and input signals occurring at transitions or flows are taken into
account.

Rule 1 for actions (A) together with initial (S) and final (E) node
The set of actions, with the initial and final node, are mapped in a section for vari-
ables (as places, keyword VARIABLES). The initial state of the system is reflected
in a section for initial values (keyword INITIALLY). Usually, only the initial node
is active. Then, actions, initial and final nodes appear also in other sections of the
logical model.

Fig. 2 A sample UML
activity diagram with
labelling

160 I. Grobelna et al.

Rule 2 for transitions (T) and flow relations (F)
The set of transitions and the set of flow relations between the actions and transi-
tions are used for rules definition. Flows between actions are treated as transitions,
the same as fork and join nodes. Transitions are mapped in section TRANSITIONS,
each one in a separate row. The rules take into account actions, the initial and final
node, as well as logic controller’s input signals which are treated as conditions.
Rule 3 for input signals (G)
The set of input signals is mapped in a section for input definition (as INPUTS,
keyword VARIABLES). Then, input signals obtain certain predefined values, usu-
ally none of them is active. Input signals appear also in rules definition. A special
section for inputs (keyword INPUTS) indicates expected value changes in corre-
spondence to particular actions.
Rule 4 for output signals (Z)
The set of output signals is mapped in a section for outputs definition (as OUT-
PUTS, keyword VARIABLES). Then, output signals take some predefined values,
usually none of them is active. Output signals do not appear in rule definition.
A special section for outputs (keyword OUTPUTS) indicates when the defined
output signals are active.

The usage of the rules is illustrated in Listing 6 where a part of the rule-based
logical model is shown for a sample part of UML activity diagram from Fig. 2. And
so:

• basic keywords include lines 1, 5, 9, 13 and 17;
• adapting rule 1 results in lines 2, 6, 10–12, 14–16 and 18–20;
• adapting rule 2 results in lines 10–12;
• adapting rule 3 results in lines 3, 7, 10–12 and 14–16;
• adapting rule 4 results in lines 4, 8 and 18–20.

Listing 6 Rule-based logical model of a sample UML activity diagram

1 VARIABLES
2 places: aStart, a1, a2, a3, ...
3 inputs: x1, x2, x3, x4, x5, x6, x7, ...
4 outputs: y1, y2, y3, ..., y10, y11, ...
5 INITIALLY
6 aStart; !a1; !a2; !a3; ...
7 !x1; !x2; !x3; !x4; !x5; !x6; !x7; ...
8 !y1; !y2; !y3; ...; !y10; !y11; ...
9 TRANSITIONS
10 t1: aStart & x1 & !x4 -> X (!aStart & a1 & a2 & a3);
11 t2: a1 & x5 -> X (!a1 & ...)
12 ...
13 INPUTS
14 aStart -> (!x1 | x1) & (!x4 | x4);
15 a1 -> !x5 | x5;
16 ...

Model Checking of UML Activity Diagrams Using a Rule-Based Logical Model 161

17 OUTPUTS
18 a1 -> y10;
19 a2 -> y11;
20 ...

4 Model Checking of a Rule-Based Logical Model

Model checking process gives an answer whether the defined system model satis-
fies the list of requirements specified as temporal logic formulas. The defined system
model (a verifiablemodel) is already generated. To verify formally themodel descrip-
tion, requirements list is also needed (Fig. 3). The list includes properties which are
supposed to be fulfilled in the designed embedded system, they include structural as
well as behavioral properties. Requirements are defined using either Linear Temporal
Logic (LTL) or Computation Tree Logic (CTL) formulas, as e.g. the CTL formulas:

AG(x5 → EFy2 ∧ y8) (1)

AG¬(y9 ∧ y10) (2)

EFaEnd (3)

The definition of formulas is usually based on an informal specification of control
process, and it is most desired if they are delivered either by a customer or by any
other team in the company. The most frequently verified properties regard safety
(something bad will never happen), e.g. formula (2), and liveness (something good
will eventually happen), e.g. formula (3). In the verification processmostly behavioral
requirements are taken into account which include activities of input and output

Fig. 3 Model checking of a rule-based logical model

162 I. Grobelna et al.

signals. And so, formula (1) states that always when input signal x5 is active, then
finally both output signals y2 and y8 can become active. Formula (2) states that it
should never be the case that both output signals y9 and y10 are active at the same
time. Formula (3) checks whether the final node is reachable at all.

When both parts needed for formal verification are prepared (Fig. 3), the NuSMV
model checker compares the model description with the delivered requirements list
and gives an answerwhether the properties are satisfied in the designed system. If this
is not the case, appropriate counterexamples are generated which allow finding the
error source in the model description. Then either the specification or the particular
unsatisfied requirement has been incorrectly formulated.

5 Summary

The chapter presents a novel approach to formal verification of UML activity dia-
grams (in version 2.x) describing a logic controller behavior. An original rule-based
logical model is used to ensure the consistency between a verifiable model and a
synthesizable model. Formal verification is performed using the model checking
technique and the NuSMV tool. Requirements to be verified are expressed as the
temporal logic formulas. The transformation of a rule-based logical model into a
verifiable model and a synthesizable model is done automatically using the imple-
mented m2vs tool.

The results of the research show that it is possible to use the commonly-known
and user-friendly UML language in logic controller design, focusing in particular
on activity diagrams [10]. Using the proposed rule-based logical model [7, 8] it is
possible to verify the specification formally using the model checking technique
as well as to synthesize it in the reconfigurable structures of FPGA-type. Finally,
the implemented solution is consistent with the previously formally verified logic
controller specification expressed by means of UML activity diagrams.

References

1. Ahrends, S. (2008). Neue Ansätze für effizientes Rapid Prototyping von Embedded Systemen.
Embedded Computing Conference

2. Andreu, D., Souquet, G., & Gil, T. (2008). Petri net based rapid prototyping of digital complex
system. In Proceedings of the 2008 IEEE Computer Society Annual Symposium on VLSI (pp.
405–410). Washington: IEEE Computer Society.

3. Clarke, E. M., Grumberg, O., & Peled, D. A. (1999). Model checking. Cambridge: The MIT
Press.

4. David, R., & Alla, H. (2010). Discrete, continuous, and hybrid Petri nets (2nd ed.). Berlin:
Springer.

5. Doligalski, M., & Adamski, M (2013). UML state machine implementation in FPGA devices
by means of dual model and Verilog. In 11th IEEE International Conference on Industrial
Informatics - INDIN (pp. 177–184). Bochum, Germany. ISBN: 978-1-4799-0751-9

Model Checking of UML Activity Diagrams Using a Rule-Based Logical Model 163

6. Emerson, E. A. (2008). The beginning of model checking: A personal perspective. In O.
Grumberg & H. Veith (Eds.), 25 years of model checking (Vol. 5000, pp. 27–45). Lecture
notes in computer science. Berlin: Springer.

7. Grobelna, I. (2011). Formal verification of embedded logic controller specification with com-
puter deduction in temporal logic. Przeglad Elektrotechniczny, 87(12a), 47–50.

8. Grobelna, I. (2013). Formal verification of logic controller specification by means of model
checking (Vol. 24). Lecture notes in control and computer science. Zielona Góra: University
of Zielona Góra Press.

9. Grobelna, I., Grobelny, M., & Adamski, M. (2010). Petri nets and activity diagrams in logic
controller specification - transformation and verification. In A. Napieralski (Ed.), 17th Inter-
national Conference on Mixed Design of Integrated Circuits and Systems - MIXDES (pp.
607–612). Wroclaw.

10. Grobelny,M., Grobelna, I., Adamski,M. (2012). Hardware behavioural modelling, verification
and synthesiswithUML2.x activity diagrams. InProceedings of 11th IFAC/IEEE International
Conference on Programmable Devices and Embedded Systems - PDeS 2012 (pp. 109–114).
Brno.

11. Huth, M., & Ryan, M. (2004). Logic in computer science: Modelling and reasoning about
systems. New York: Cambridge University Press.

12. Kropf, T. (1999). Introduction to formal hardware verification:Methods and tools for designing
correct circuits and systems (1st ed.). New York: Springer.

13. Łabiak, G., Adamski, M., Tkacz, J., Doligalski, M., & Bukowiec, A. (2011). Role of UML
modelling in discrete controller design. In D. Zydek & H. Selvaraj (Eds.), Proceedings of 21st
International Conference on Systems Engineering ICSEng 2011 (pp. 480–481). Las Vegas,
USA. University of Nevada, IEEE Computer Society. ISBN: 978-0-7695-4495-3.

14. OMG (2011). OMG Unified Modeling LanguageTM (OMG UML) Superstructure ver. 2.4.1.
Object Management Group.

UML Support for Statecharts-Based
Digital Logic Controller Design
in FPGA Technology

Grzegorz Łabiak

Abstract The paper describes usage of UML methodology in digital logic control
modeling, which is one of few stages of digital logic controller development life
cycle. The digital logic control modeling process is compared with traditional and
well known software development methodology. In the comparison the differences
are particularly emphasized. Themain differences are connected to analyzing process
andmodeling aims. In case of software development crucial role plays object analysis
which is meant to bring creation of data model. In case of digital logic controller
design main activity in modeling is behavior analysis which is aimed to specify
formally and precisely controller behavior.

Keywords UML ·Digital logic controller ·Methodology ·Conceptual modelling ·
Behavior analysis · State machine

1 Introduction

Digital logic controller design is a process which traditionally can be performed as
a Finite State Machine design. The main drawback of this methodology is that in
case of complex behavior number of states of the automaton can grows exponen-
tially, and the complexity of the project grows also. An option for the designer is
to use the concurrency and/or hierarchy paradigms, which efficiently reduces com-
plexity of the design. Computational complexity is not the only problem in logic
controller design. Even more complicated is preliminary modeling, which has to be
performed before a design is formalised. This stage, called conceptual modeling, is
an activity where an ordering client formulates his wishes and functions of the system
under design and the engineer must give them a material form. The language which
supports this conversation, which is both general and detailed, is Unified Modeling

G. Łabiak (B)
Institute of Electrical Engineering, University of Zielona Góra,
ul. Licealna 9, 65-417 Zielona Góra, Poland
e-mail: G.Labiak@iee.uz.zgora.pl

© Springer International Publishing Switzerland 2016
A. Karatkevich et al. (eds.), Design of Reconfigurable Logic Controllers,
Studies in Systems, Decision and Control 45,
DOI 10.1007/978-3-319-26725-8_13

165

166 G. Łabiak

Language (UML) [4, 20]. From an ordering client point of view UML diagrams are
very general and easy to understand, but from engineering point of view they offer
enough syntax features to describe the systems in details.

UML diagrams, originated in software engineers environment [4], turn out to be
perfectly fitted into phases of discrete system development life cycle. In proposed
methodology main paradigm shift is a new role of object-oriented analysis and a new
role of state machine diagrams. The main goal of object-oriented analysis in digital
logic controller design is to identify the real word objects of the system (elements
of the controlled object) and then to express in terms of these objects functional-
ity of the system. The state machine diagrams role is a kind of transition between
an imprecise UML model and a formal unambiguous description of the controller
behaviour. This transition through author’s semantic interpretation, extends UML
and provides that the state machine diagrams can be synthesized and implemented
in Field Programmable Gate Arrays (FPGA).

2 Digital Design for FPGA

Technology development in the seventies and eighties of the last century has allowed
for new approach inmanufacture of the digital circuits. Until then digital circuitswere
produced in technologies which required substantial participation of the device man-
ufacturer, without which obtaining final functionality of the circuit was impossible.
Electronic devices were produced and programmed solely in factories. In the mid-
80s appeared new technologies which allowed for programming electronic devices
outside the factory. Among them, in 1985 Xilinx corporation introduced first device
in new technology called Field Programmable Gate Arrays (FPGA).

Architecture of FPGAs consists of an array of programmable logic blocks (Fig. 1)
interconnected through special programmable matrices. Every logic block can be
configured as a combinational logic with a flip-flop. Contemporary FPGA devices
have logic blocks which allow to programm logic function up to 6 variables imple-
mented as Lookup Table. Logic blocks through interconnections can be freely con-
nected. This technology gives designers a new potential, because volume of available
resources in one device is of the order of tens of thousands of logic blocks.

The new technology created new possibilities for designers [8]. They had at their
disposal huge amount of hardware resources, which were accessible from the shelf.
With time, according Moore’s law the number of transistors in a integrated circuit
doubles approximately every two years, the technology gap has arisen between acces-
sible hardware resources and the methods of digital circuit design. Designer were
not able to use all accessible hardware resources offered by producers in a single
programmable device. This situation provoked scientists to developed new design
methods which would be able to manage more complicated and functional projects
demanding more gates and flip-flops.

UML Support for Statecharts-Based Digital Logic Controller Design … 167

I/O blocks
connect

block

logic block

vertical
interconnection

horizontal
interconnection

Fig. 1 Architecture of FPGA

One of the most important result of the research in the filed of digital design
methodology is a development of Hardware Description Languages (HDLs). HDLs
allow designers to describe a digital electronic circuit formally at high level inde-
pendently of final technology [22]. Nowadays HDLs are not only formal description
of the design, but also serve as a standardized vehicle of the information exchange
between Computer Aided Design software (CADs) [7]. The most prominent lan-
guages are VHDL and Verilog.

Much of the recent scientific effort in digital design methodology is put into a
conceptual modeling. The conceptual modeling is a first material activity done by a
designer after conceptualization which takes place in human mind. The objective of
conceptual modeling is to express human intensions and to give them material form
eg. diagrams. In case of a design of a digital circuits the most often are modelled
functionality to the device, its behavior or its structure. The technology applied in
this field is Unified Modeling Language (UML) with their dedicated special profiles
[9, 13] like MARTE profile [19] or UML Profile for System on Chip (SoC) [6, 18].

Figure2 presents design flow for the controllers implemented in FPGA technol-
ogy. Every design typically starts with vague ideas about design functionality and
its structure. At this beginning stage project manager and an ordering client are
talking in general terms, using very imprecise vocabulary describing their concepts
and ideas. Moreover, technical details can not be known at this stage and must be
gradually specified. Usually the client is not an engineer and can not be precise,
hence some technology and financially depended technical details must be defined
by engineers and submitted to the client for acceptance. This feasibility studymust be
documented in the language which is on the one hand very easy for comprehension
for non-engineers, on the other hand is precise and detailed enough for engineers
to realize what was ordered by the client. The langue which has both two paradoxi-
cally opposing features is Unified Modelling Language (UML) [17, 21]. UML is a

168 G. Łabiak

Conceptual Modelling
(eg. UML)

FSM
Petri
Net

State Machine
(statecharts)

Activity
Diagram

VHDL Verilog

First formal form

Hardware Description Languages

Synthesis
(netlist)

Implementation
(hardware mapping)

.bit file

iMPACT program

Xilinx ISE

FPGA

eg. diagrams

HDLs files

HDLs files

Fig. 2 Design flow of a controller in FPGA technology

technology developed by software engineers and a class diagram is a link between
informally specified project (in terms of UML called a model) and programmers. In
case of hardware design and particularly in digital logic controller case, this link can
be made by state machine diagram (statecharts) or activity diagram. Dedicated Com-
puter Aided Design (CAD) software transforms description of a controller behavior
intoHDL (eg. VHDL [15, 16] or Verilog [1, 2]) and the project in this form is an entry
to commercial CAD system supported by the producer of FPGA devices. In case of
Xilinx devices the software is Xilinx ISE (Integrated Synthesis Environment). Xilinx
ISE after compilation acts by stages of a synthesis and an implementation which are
heavily technology dependant ones. The synthesis process maps design logic struc-
tures to devices primitives (eg. CLBs or flip-flops) and the implementation process

UML Support for Statecharts-Based Digital Logic Controller Design … 169

places the netlist generated at the synthesis stage onto the target device. Finally,
iMPACT program transfers a .bit file (generated at the implementation stage) into
the devices installed on a printed circuit board.

3 Digital Logic Controllers

Digital logic controllers belongs to the broader class of systems called computer
reactive system. A computer reactive system is a system that changes its behavior
(actions, outputs, transitions) in response to stimuli coming from outside world or
from internal events. Reactive systems are event driven systems continuously having
to react to external/internal stimuli. Their response to the stimuli is immediate for
an observer, unlike transformational systems which wait for readiness of data on its
inputs, and than after some time spent on processing data, the systemsignals readiness
of data on its outputs. FPGA devices are very efficient technology to implement
computer reactive systems executing logic control. The most often these systems are
designed according to two popular models: controller with an object and control unit
with datapath [10].

A control system is the system of linked controlled object and control unit called
controller (Fig. 3). The controller has programmed functionality and affects on work-
ing of controlled object. The controlled object is a kind of dynamic system whose
desired behavior can be stimulated by the controller by means of control signals. An
example of control object is an industrial process (eg. assembly line) or chemical
reactor (eg. producing penicillin). The controller is a device, which receives infor-
mation (state signals) about a state of the controlled object. These signals tell the
controller about changes in the object, and on this information are based decisions
taken by the controller which affects desired course of the controlled process. Addi-
tionally, a control process can run with a participation of a man (an operator), who
by means of operator’s signals can also affect controlled process (eg. in the event of
a breakdown) as well as is informed about the course of the process.

The control in above mentioned system is as a closed loop control, because by
means of state signals the control object affects the controller. The controller initiates
process in the system (is a cause) and the behavior of the controlled object is a result
(an effect) of the controller’s interaction. The state signals of the object serve as a
feedback and provide classical affecting of an effect on its cause.

Next model of a control system (Fig. 4) is called control unit with datapath. In this
scheme input data processing takes place in the datapath, which is made of functional
blocks such as arithmetic logic unit, multiplexers or registers interconnected with
buses. Subsequent stages of data processing are governed by control unit, which
based on status signal from datapath takes the decision about further processing and
by means of control signals transmit this information to the datapath. This control
model is well suited to the systems which process huge amount of data such as video
or sound streams. Then, the algorithm processing data is implemented in the control
unit and the processing it is contained in the datapath. The algorithm appears to the

170 G. Łabiak

Binary
controller

Controlled
object

Control
signals

Operator’s
signals

Signalling
output

Object
state

signals

Fig. 3 Discrete control system

Control Unit Data Path

Control

Status

Input Data

Output Data

Fig. 4 Control unit with datapath

designer as a traditional control problem and can be designed according classical
paradigms like FSM, interpreted Petri nets or statechart diagrams. General purpose
processors are designed according to this model.

4 UML in Discrete System Development Process

4.1 Controller Design

Digital logic controller design, traditionally, can be carry out in PLC technology or
as a digital circuit [5]. The former, as its first formal description of behavior, mostly
uses Ladder Diagram (LD) or Sequential Function Chart (SFC). The latter uses very

UML Support for Statecharts-Based Digital Logic Controller Design … 171

often following paradigms: Finite State Machine (FSM) [22], Petri nets [3] and state
machine (statechart) [12, 16]. The mentioned paradigms result from the division of
modeling methodologies taking into account sequentiality, concurrency and hierar-
chy. In practice, engineers use more specialized and more refined methodologies
based on the state oriented FSM, mainly, Concurrent FSM (realized by interpreted
Petri nets), Hierarchical Concurrent FSM (HCFSM, realized by statecharts or UML
state machines) [10] and special application of UML activity diagrams combining
concurrency and hierarchy [11]. Having project done in the first formal form, fur-
ther designing processes can be fully automated using at most small assistance of a
man. Common feature of these notations is that their first formal form of a controller
behavior is preceded by conceptual modeling phase.

4.2 Conceptual Modeling

Regardless of applied technology or formal modeling paradigm, at conceptual mod-
eling stage there is a need to talk on the behavior of the controller under design in
informal way. Not every member of the group of people involved in the project is
a specialist. The group is rather diverse, beginning with a client ordering project
end ending with engineers implementing the device. Each of them represents differ-
ent skills and culture. What is the most important to them to use a language equally
understood by them all. Main goal of this stage is to capture main functionality of the
system and its basic architecture. Moreover, as systems have become increasingly
complex, the role of conceptual modeling has dramatically expanded. A notation
which meets these requirements for conceptual modeling is graphical Unified Mod-
eling Language which offers common vocabulary to talk about the design [21].

4.3 UML in Controller Design

The UML is a notation which was created and in the beginning developed by Grady
Booch, Ivar Jacobson and James Rumbaugh in the field of software engineering.
Its apparent success in the field has provoked wide interested among scientists and
led to the development new methodologies applied in the new areas of technology.
Since 1997 UML was adopted by the Object Modeling Group (OMG) and OMG is
responsible for its standardization.

Current version of UML defines its objectives as “to provide system architects,
software engineers, and software developers with tools for analysis, design, and
implementation of software-based systems as well as for modeling business and
similar processes” [20]. These UML objectives coincide with objectives of digital
logic controller design and the application of UML in the design process is also
similar. Figure5, from methodology design perspective, presents four main stages

172 G. Łabiak

Analysis
•
•

•
•

•

•
•

•

requirements definition
feasibility study

Design
formal models
formal verification

Implementation
Boolean equations
hardware mapping

Maintenance
corrections
improvements

Object-oriented analysis
Class diagrams
Object diagrams

Behavioral analysis
Activities diagrams
Sequential diagrams
Collaboration diagrams
State machine diamgrams

Synthesis and implementation
HiCoS CAD system semantics
XilinX ISE software
FPGA devices

Functional analysis
Use case diagrams

Methodology design
activities

Phases of discrete system
development life cycle

•
•

•

•
•
•
•

•
•
•

Fig. 5 System development life cycle and design activities

of discrete system development life cycle. The stages presented on shaded area are
where UML (in general) and design flow in FPGA (Fig. 2) apply.

Digital logic controller design begins with analysis of a control system. Designer
must grasp a general idea of workings of a controlled object and a control process
which occurs in the object. The goal of the analysis process, called object-oriented
analysis, is an identification of material object of the real world (i.e. control system),
eg. a controller, an operator, a scale, a valve. This preliminary activity is very similar
to object-oriented analysis in software engineering, with the difference that designer
does not identify abstract relations between the objects like, for example, inheritance.
The UML diagrams used at this stage are class diagrams and object diagrams. Next,
having identifiedmain objects in the system, the designer defines the roles the objects
play in the system. The fundamental goal of such functional analysis is to describe
what the system performs. The UML diagrams mainly applied at this stage are use
case diagrams, which additionally can present relationships between functionalities.
The analysis is a right moment to define system’s non-functional requirements and
to perform feasibility study.

UML Support for Statecharts-Based Digital Logic Controller Design … 173

After object and functional analysis stage the designer goes to design process
and focuses on the details of the system and especially on the process or processes
which occur in the system. This stage from the methodology design point of view
is called behavioral analysis and its purpose is to describe how earlier defined func-
tionalities are executed and which objects take part in them. The UML diagrams
useful for behavioral analysis are activity, sequence, collaboration and state machine
(statechart) diagrams. The model created in these analyses by definition is not formal
and is a framework for the subsequent formalised design process. The main goal of
the design process is to produce formal description which is to be an entry form
(eg. HDL) to automated CAD system (eg. Xilinx ISE).

The transformation of informal UML model into formal description is a part of
an implementation process and is out of UML specification. This transformation is
an author’s proposition of specialized extension of UML for digital controller design
[14]. The extension is technology related and is aimed at FPGA devices [5, 16].
In this process author proposes to use state machine (statechart) diagrams as main
modeling vehicle. On the one hand UML offers comprehensible graphical notations,
on the other the model is informal and must be specific enough to be an entry form
for synthesis process. The process of formal specification is conducted according
to author’s semantics interpretation of state machine diagram and is realized by
dedicated academic HiCoS CAD system [15]. Because implementation process of
digital logic controller design is not directly supported by the UML and is only
author’s extension, this process on the Fig. 5 is presented on the separated greyed area.
It is noteworthy, that the role played by the state machine diagrams is to link informal
UMLmodelwith formal requirements of synthesis process. The statemachine role of
author’s methodology is very similar to class diagrams role in software engineering
modeling.

5 Example

Let as an example serves simple chemical plant (reactor) whose schematic diagram
is presented in Fig. 6. The general objective of the plant is to create new mixture
from two components through controlled chemical process. For the designer this
plant appears to be discrete control system composed of a controller and controlled
object (Fig. 3) with a participation of an operator.

5.1 Object-Oriented Analysis

The first step in the design is a talk of the designer with ordering client. During this,
both sides of the talk create own vocabulary and decide what the system is and what
the system does. This preliminary talks are informal yet and the goals of these talks
are three: (1) identification of the component objects of the system, (2) to set the

174 G. Łabiak

AU

AUT

REP

Control desk

- break down

- initiating

- cycle startup

Ingredient
A

V2

Ingredient
B

V4

V3

Scale1
B1 V5

Scale2
B2

Waste
Mixer V6

Product

NLIM
Nmax

Nmin

Engine
M

V1 P
Discard

C1 AC1

Discard
C2 AC2

EV

Fig. 6 Schematic diagram of the chemical plant

functions of the objects and (3) to create a verbal description of the process in the
controlled object. These three goals in course of the design are successively refined
with the use of UML notations.

As far as reactor is concerned (Fig. 6) basic objects of the system are two scales,
two conveyor belts, a pump, a mixer and a main container. For complete modeling
reasons it is good to set apart the operator object and the controller object as actors.

Useful UML diagrams at this stage of modeling are object diagrams and class
diagrams. This analysis is a bit different than object-oriented analysis in software
engineering. The main goal of the analysis is to identify and name real objects in the
system without creation relationships between them. The names of the object create
a vocabulary of the UML model.

5.2 Functional Analysis

Having named component objects in the systems, the designer can formulate basic
functions of the controlled object and describe them in verbal form. In case of the
reactor its working is as follows. Technological cycle consists of three stages: (1)
Initiating, (2) Filling and (3) the Process. At the Initiating stage the remains of the
previous technological process are removed from the conveyor belts (signals AC1
and AC2) and main container is emptied (EV). On the stage Filling scales 1 and 2
measure out substrates of the chemical process (V2, V4, B1, B2). Parallel to weighing
the pump (V1, P) pours water to the main container. After water and substrates are
prepared (Nmax, B1, B2) main chemical process (Process) starts. For given period
of time (FT1) the substrates are introduced into the water and blended (M), then
main container is emptied (V6) for time FT2 and the process is terminated. When
the operator presses the button AUT the technological process starts again. In case
of break-down the operator presses the button AU.

UML Support for Statecharts-Based Digital Logic Controller Design … 175

Initiating

Filling

Operator

Process

MContainer
Emptying

Conveyors
Emptying

Break-down

MContainer
Filling

Controller

Scale 2
Filling

 Scale 1
Filling

Fig. 7 Use-case-diagram of the chemical plant

The UML diagrams applied at this stage are mainly use case diagrams. Figure7
presents well developed use case diagram, but for the beginning stage of the design
only operator’s perspective is essential. It is noteworthy, that the use cases in ovals
are not use cases of the system but are use cases of the controlled object.

5.3 Design and Behavioral Analysis

The behavioral analysis is a next design stage supported by UML. In discrete system
development life cycle (Fig. 5) this analysis corresponds to a design stage. One of
the main goal of a modeling (and also a designing) is to create formal description of
the controller behavior, precise enough to be an entry form to CAD systems (eg. ISE
Xilinx). In digital logic controller design this goal is different than modeling in soft-
ware engineering. The software engineer models to build model of data in class dia-
gram (eg. class hierarchy), which is starting point for coders. The controller designer
models to create model of behavior, formal enough for synthesis and implementation
processes. It seems that UML state machine diagrams are the best diagrams for this
purpose. State machines are state oriented, support concurrency and hierarchy and
are perfect solution for modeling of behavior of complex control systems.

The behavior analysis can be supported by the following UML diagrams: activ-
ities, sequence, collaboration and state machine. These diagrams are assumed to
be informal, imprecise, they give general views of the behaviour from different

176 G. Łabiak

/ Operator

: COperator

/ Controller:

CControlle

r

/ Scale1

: CScale

/ Scale2

: CScale

/ Pump

: CPump

1.1: Emptying 1.2: Emptying 1.3: Open1: BeginningCycle

1.1.1:

1.2.1:

1.3.1: 1.1:1.1:

Fig. 8 Sequence diagram for Filling use case

perspectives. One of their main goal is to validate client requirements and to give
solid basis for formal description. Here, author’s proposition is to use UML state
machine for this purpose.

After having use case diagram prepared the designer can separately model every
use case in details. This can be done by means of sequence diagrams (eg. Fig. 8).
Sequence diagramhas two dimensions.Horizontally—there are placed objectswhich
take part in modelled functionality (eg. Filling) and vertically—there is an axis
of time. Arrows represent communications (or procedure callings) among objects.
These diagrams present execution a functionality or a task from objects perspective.
Figure8 presents sequence diagram for the use case Filling. The object which starts
sequence activities is an Operator, who by pressing button AUT initiates sequence
of preparing substrates and water. Other application of the sequence diagrams is in a
validation of the controller, namely, the sequence diagrams are ready testing scenario
for particular use case.

Next to the sequence diagrams, the activity diagrams alsomodel behavior in details
but from different perspective. They concentrate on a system as a whole and show
how different elements of the system actively take part in modelled functionality
or particular behavior. For example, Fig. 9 presents activity diagram for failure-free
work of the reactor from the operator perspective. In this working mode for the
operator three objects are most essential: aMain container and two Scales (1 and 2).
The three objects in the diagram have assigned its own activity field called swimline.
Activities (rectangles with rounded sides) located in the swimline refer to the activity
of the object assigned to the swimline. The operator initiates working by pressing
REP button, then the system executes initiating procedure (activity Initializing), next
the operator presses AUT button. This starts the main technological process—in the
diagram compound of two main activities Filling and Process. The activity Filling
is presented in details, by its subactivities referring to the objects MainContainer,
Scale 1 and Scale 2, and the details of Process activity are skipped in this diagram.

UML Support for Statecharts-Based Digital Logic Controller Design … 177

MCFilling

Start

Filling

Scale 1 Filling

Process

AUT

AUT

AUT

[Nmax,B1,B2]

MainContainer Scale 1 Scale 2

Initializing
REP

Scale 1 Filling

Fig. 9 Activity diagram for failure-free work

5.4 Implementation

The implementation phase of a live cycle of a digital logic controller is mainly
technology-dependant with little influence of the designer on functionality of the
system, if at all. Two main technological processes of this phase are logic synthesis
and hardware implementation. Logic synthesis transforms an abstract form of the
controller into logic gates (netlist) at Register-transfer level (RTL). Next, hardware
implementation makes that netlist obtained in the synthesis process is fitted into tar-
get FPGA device. This development phase is not directly supported by UML, but
UML provides some language features to extend its applicability. Author’s idea of
applying UML in digital controller design consists in formulating semantic interpre-
tation of state machine diagrams aimed at implementation in FPGA devices. This
UML extension has been implemented is academic CAD system called HiCoS [15].
Figure10 presents state machine diagram of the controller which precisely and for-
mally defines behavior of the controller. This diagram is unambiguously mapped
into textual form .SSF (Statechart Specification Format) file, which is an input file
for HiCoS system. HiCoS system automatically transforms it into VHDL file which,
in turn, is synthesised and implemented by commercial ISE Xilinx software.

178 G. Łabiak

MCFill8
do / V1, P

Excess
of Foam9

StopM10

t7: Nlim
t9: !Nlim

SC1Fill11

do / V2

Stop112

H H

SC2Fill13

do / V4

Stop214

H

Filling3

t5: AU

t15: REP*!AU

Pouring17

do / C1, C2, V3, V5

t19: FT1 / {TM2}

Emptying18

do / V6

Reaction15

do / M

ProcessTermination16

do / V6

Process5

t18: FT2

MCEmpt6
do / EV

t3: Nmin

IngEmptying7

do / AC1,AC2

t4: FT1

Initiating2

Start1

t2: AUT*!AUt16: AUT*Nmin
t6: Nmax*B1*B2 /

{TM1}

t1: REP*!AU / {TM1}

t17: AU

t8: Nmax
t10: !Nmax

t11: B1
t12: !B1

t13: B2
t14: !B2 R

es
ta

rt
4

MainContainer Scale1 Scale2

Fig. 10 Statechart diagram for chemical reactor controller

6 Conclusion

UML is a languagewhich can be applied at conceptual modeling stage of digital logic
controller design. Designing of logic controller proceeds according to the phases of
discrete system development life cycle. Three stages of this cycle are heavily sup-
ported by the UML notations. The analysis stage can be supported by class, object
and use case diagrams. The design stage is an extended application of standard UML
diagrams made by specialized semantic interpretation. Author’s semantic interpre-
tation are formulated with the view of synthesis and implementation in the FPGA
devices. The diagrams used at this stage are activity, sequence, collaboration and
state machine diagrams. The last one is a transition between imprecise UML model
and formal description behavior of controller for synthesis and implementation in
the FPGA structures.

UML Support for Statecharts-Based Digital Logic Controller Design … 179

References

1. Bazydło, G., & Adamski, M. (2011). Specification of UML 2.4 hierarchical state machine and
its computer based implementation by means of Verilog. Przeglad Elektrotechniczny, 87(11),
145–149.

2. Bazydło, G., Adamski, M., & Stefanowicz, Ł. (2014). Translation UML diagrams into Verilog.
In 7th International Conference on Human System Interactions (HSI) (pp. 267–271). Lisbon,
Portugal.

3. Biliński, K. (1996). Application of Petri Nets in parallel controllers design. Ph.D thesis, Uni-
versity of Bristol, Electrical and Electronic Engineering Department, Bristol.

4. Booch, G., Rumbaugh, J., & Jacobson, I. (2005).UnifiedModeling Language User Guide (2nd
ed.), Addison-Wesley Object Technology Series. Boston: Addison-Wesley Professional.

5. Borowik, G., Łabiak, G., & Bukowiec, A. (2015). Fsm-based logic controller synthesis in
programmable devices with embedded memory blocks. In J. Nikodem & R.Klempous (Eds.),
Innovative technologies in management and science, Topics in intelligent engineering and
informatics (Vol. 10, pp. 123–151). Heidelberg: Springer International Publishing Switzerland,
Cham (ISBN: 978-3-319-12651-7).

6. Boutekkouk, F., Benmohammed, M., Bilavarn, S., & Auguin, M. (2009). UML2.0 profiles
for embedded systems and systems on a chip (SOCs). Journal of Object Technology, 8(1),
135–157.

7. de Micheli, G. (1994). Synthesis and optimization of digital circuits, McGraw-Hill series in
electronical and computer engineering. New York: McGraw-Hill Inc.

8. Erjavec, T. (2009). Introducing theXilinx targeted design platform:Fulfilling the programmable
imperative.White Paper: Virtex-6 and Spartan-6 FPGA, (306), 6.

9. Fuentes-Fernández, L., & Vallecillo-Moreno, A. (2004). An introduction to UML profiles.
UPGRADE, European Journal for the Informatics Professional, 5(2), 5–13.

10. Gajski, D. D., Vahid, F., Narayan, S., & Gong, J. (1994). Specification and design of embedded
systems. Englewood Cliffs: Prentice Hall.

11. Grobelny, M., Grobelna, I., & Adamski, M. (2012). Hardware behavioural modelling, ver-
ification and synthesis with UML 2.x activity diagrams. In Proceedings of 11th IFAC/IEEE
International Conference on Programmable Devices and Embedded Systems—PDeS 2012 (pp.
109–114). Brno, Czechy.

12. Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8, 231–274.

13. Kuschnerusy,D., Brunsy, F., Bilgic,A.,&Musch, T. (2012).AUMLprofile for the development
of IEC 61508 compliant embedded software. In Proceedings of the 6th International Congress
and Exhibition—Embedded Real Time Software and Systems, ERTS2 2012. Toulouse, France

14. Łabiak, G. (2003). The use of hierarchical model of concurrent automaton in digital controller
design. Ph.D thesis,WarsawUniversity Of Technology, Faculty of Electronics and Information
Technology, Warsaw, May (in polish).

15. Łabiak, G. (2015). HiCoS Homepage. http://www.uz.zgora.pl/~glabiak.
16. Łabiak, G., & Borowik, G. (2010). Statechart-based controllers synthesis in FPGA structures

with embedded array blocks. International Journal of Electronics and Telecommunications,
56(1), 13–24.

17. Łabiak, G., Adamski, M., Doligalski, M., Tkacz, J., & Bukowiec, A. (2012). UML modelling
in rigorous design methodology for discrete controllers. International Journal of Electronics
and Telecommunications, 58(1), 27–34.

18. OMG, (2006). 250 First Avenue, Needham, MA 02494. UML profile for system on a chip
(SoC), U.S.A. August.

19. Object Management Group: OMG, (2011). 250 First Avenue, Needham,MA 02494. Modeling
and analysis of real-time embedded systems, June, U.S.A. UML Profile for MARTE.

http://www.uz.zgora.pl/~glabiak

180 G. Łabiak

20. OMG, 250 First Avenue, Needham, MA 02494, U.S.A., April. This version (2.4.1) has been
formally published by ISO as the 2012 edition standard: ISO/IEC 19505-1 and 19505-2.

21. Wood, S. K., Akehurst, D. H., Uzenkov, O., Howells, W. G. J., & McDonald-Maier, K. D.
(2008). A model-driven development approach to mapping UML state diagrams to synthesiz-
able VHDL. IEEE Transactions on Computers, 57(10), 1357–1371.

22. Zwoliński,M. (2004).Digital systemdesignwithVHDL (2nd ed.).Upper SaddleRiver: Prentice
Hall.

Index

A
Action (of interpreted Petri net), 3, 5
Action (of UML activity diagram), 135,

143–150, 155, 158–160
dynamic, 143, 146–150
indivisibility of, 135, 143–145
state oriented, 143, 146–150

Action (PRALU), see operation of action
Action (SFC), 6, 8
Active-HDL, 89, 158
Activity diagram, see diagram
All programmable system-on-chip (AP-

SoC), 15, 16, 19, 24, 28
ALU (language), 7
Analysis

behavioral, 173, 175
functional, 172, 174
object-oriented, 172, 173

Atomization, 63
Automaton

finite, see Finite State Machine
parallel, 5, 32, 36, 42
sequent, 32, 36, 37, 42

B
BDD, see decision diagram
Behavioral analysis, see analysis
Blanket algebra, 107
Boolean function, 1, 5, 42, 104–106, 113

C
C (language), 16, 23, 25, 27, 59
C#, 99

CAD, 101, 123–126, 168, 173, 175, 177
Chain (PRALU), 7, 8, 32–34, 38, 41, 42
Chemical plant, 10, 173
Class diagram, see diagram
Closed loop control, 169
Collaboration diagram, see diagram
Coloring

of graphs, 112, 113, 120
of Petri net, 67–69, 73, 76, 83, 84, 96

Communicating FSM, see finite state ma-
chine

Communication diagram, see diagram
Computation tree logic (CTL), see logic
Conceptual modeling, 165, 171
Concurrency, 1, 31, 132, 137, 171, 175
Concurrent FSM, see finite state machine
Consensus, 69, 73, 75
Control flow, 135
Controlled object, 134, 147–149, 169
Controller, see logic controller
Control memory, see memory
Control system, see system
Control unit, v, 45, 46, 50, 54

with datapath, 169
Counterexample, 69, 162

D
Deadlock, 18, 75
Decision diagram, 4, 37, 42
Decomposition, 45, 46, 78, 89, 96, 101, 103,

104, 106, 110, 115–117, 119, 120,
123, 124

architectural, 94, 95
functional, 46, 94, 103, 104, 106, 109,
110, 112

© Springer International Publishing Switzerland 2016
A. Karatkevich et al. (eds.), Design of Reconfigurable Logic Controllers,
Studies in Systems, Decision and Control 45,
DOI 10.1007/978-3-319-26725-8

181

182 Index

symbolic, 106, 109, 110, 113–115,
127

parallel, 93–97, 99, 100
structural, 46, 93, 100, 104

Deduction, 68, 69
Diagram (UML), v

activity, 60, 132, 135, 136, 139, 141, 143,
144, 146, 149, 150, 153–156, 158–160,
162, 168, 171, 173

behavior, 132
class, 99, 172
collaboration, 173
communication, 138, 142
object, 132, 172
sequence, 137, 138, 173
state machine, 2, 60, 135–137, 141, 143,
153, 166, 170, 171, 173

structure, 132
timing, 132, 137, 140, 141
use case, 132, 134, 135, 141, 172

Digital system, see system
Digital system design, 31, 50, 68, 77, 89,

101, 103, 131, 166, 167
Droplet size, 57, 58, 63–65

E
Embedded memory block, see memory

block
Encoding, 75, 78, 83, 84, 87, 89, 96, 100,

101, 103–111, 113, 118, 124, 127
binary, 104, 107, 108, 110, 114, 124, 127
one-hot, 82, 85, 89, 93, 96, 105, 124
partial, 106

F
Finite state machine (FSM), v, 1, 5, 17–20,

22–24, 28, 39, 46, 47, 87, 103–118,
120, 123–127, 131, 135, 165, 170,
171

communicating (CFSM), 16–20, 22, 28
concurrent, 4, 78, 171
hierarchical concurrent (HCSM,
HCFSM), 2, 68, 77, 89, 171

hierarchical (HFSM), 16–20, 22–24, 28
parallel hierarchical (PHFSM), 16–20,
22, 25, 27, 28

parallel (PFSM), 19, 20
Firing set, 8, 34, 38, 41
Flip-flop, 32, 37, 38, 41, 82, 85, 88, 89, 93,

98, 104, 105
Formal method, 32, 144, 153
Formal reasoning, 67, 71, 89

Formal synthesis, see synthesis
Formal verification, 154, 155, 158, 162, 172
FPGA, v, 1, 4, 9, 16, 32, 37, 42, 45–54, 57,

59, 77, 78, 89, 93, 94, 98, 100, 101,
103–106, 113, 115, 124, 127, 149,
153, 155, 162, 166

Functional analysis, see analysis
Fusion of parallel places, 84
Fusion of series places, 84

G
Gentzen logic, see logic
GRAFCET, 1, 3, 6, 7
Graph

incompatibility, 112, 113, 118–123
reachability, 31, 69, 71, 72
transition, 38, 40, 41

Graph coloring, see coloring

H
Hardware accelerator, 19, 25
Hardware description language (HDL), 4,

50–52, 77, 88, 93, 98, 123, 124, 167
Hardware implementation, see implementa-

tion
HiCoS, 173, 177
Hierarchical FSM, see finite state machine
Hierarchy, 1, 5, 9, 16, 19, 20, 28, 136, 145,

146, 171, 175
Hyperedge, 71, 72, 75
Hypergraph

concurrency, 67–69, 71, 72
sequentiality, 71–75

I
Implementation, 8, 16, 19, 24, 45–48, 51–54,

59, 99–101, 103, 109, 115, 117, 118,
124, 177

circuit (hardware), 4, 8, 9, 31, 32, 36–38,
42, 51, 52, 54, 93, 98, 104–106, 108,
127, 177

logical, 51, 52
Integer linear programming (ILP), 72
Interrupt, 16–18, 22, 24

J
Java, 16, 59, 60

L
Label (PRALU), 7, 8

Index 183

Ladder diagram (LD), 1, 3, 4, 170
LeonardoSpectrum, 32, 35–37, 42
Life cycle, 172
Linear temporal logic (LTL), see logic
Liveness, 68, 75, 76, 89, 161
LOCON-2, 31, 32, 34–36, 42
Logic

computation tree (CTL), 161
Gentzen, 77, 78, 80
linear temporal (LTL), 161

Logical control algorithm, v, 1–9, 32
parallel, 1, 4, 5, 31, 32, 38, 42

Logic controller, v, 1–4, 6, 9, 15, 16, 28, 45–
47, 50–54, 57, 59–63, 67, 69, 71, 76–
78, 83, 88–90, 93, 100, 131, 133, 134,
137, 138, 140–150, 153–156, 159,
160, 162, 165, 169, 170

design of, 67, 68, 90, 134, 141–144, 149,
153, 154, 162, 170

microprogrammed, 45–54
reconfigurable (RLC), 15–18, 28, 45, 54,
57, 59, 65, 67, 77

with object, 169
Logic equation, 98, 100
Logic minimization, 104, 105
Logic synthesis, 45, 54, 77, 93, 101, 103–

106, 109, 110, 127, 157, 177
Look-up table (LUT), 23, 47–49, 89, 94, 104,

115, 117, 123–127

M
M2vs, 157, 158, 162
Macronet, 76, 83, 84
Macroplace, 5, 6, 81, 83–85, 87–89, 94, 96,

97, 99
Marking, 3–6, 68, 71, 72, 80–83, 98

initial, 4, 5, 8, 68, 97
Memory, 16, 18, 22, 23, 32, 45–47, 52, 62,

85
control, 45–48, 50–52, 54

Memory block, 23, 24, 28, 45, 47, 52, 54, 95
embedded, 94, 98, 101
RAM (BRAM), 47, 49, 50, 52–54

Model checking, 9, 60, 69, 90, 150, 153–155,
158, 161, 162

Modularity, 16, 19, 28
Multi-level computing system, see system

N
Non-functional requirements, see require-

ments
NuSMV, 69, 155, 158, 162

O
Object diagram, see diagram
Object-oriented analysis, see analysis
Operation (PRALU)

of action, 7, 8, 32–34, 41
of waiting, 7, 8, 32–34, 41

Optimization, 19, 36, 37, 42, 87, 106, 158

P
Paradigm shift, 166
Paradigms, 165, 171

concurrency, 165
hierarchy, 165

Parallel FSM, see finite state machine
Parallel hierarchical graph-scheme (PHGS),

15, 20, 22, 26, 28
Parallelism, v, 2, 16, 19, 20, 28
Petri net, v, 1–6, 8–10, 60, 67–85, 88, 89,

93–96, 98–101, 103, 135, 171
α-, 5, 8
control, 3, 5, 9, 77–79, 89, 144, 146, 150,
153–156

hybrid, 9
interpreted, v, 3–6, 9, 68, 77, 78, 89, 153–
156, 170
asynchronous, 5
Mealy type, 5
Moore type, 5, 96
synchronous, 5

live, 68, 75
reactive, 9
real time colored (RTCP), 9
safe, 4–6, 8, 68, 81

PLA, 4, 32, 37, 42, 105
Place (of Petri net), 3–6, 8, 68, 69, 71, 72, 74,

75, 78, 80–85, 87, 89, 93–101, 155–
158

marked, 4–6, 68, 71, 72, 75, 95
PLC, see logic controller
PNSF, 4, 9, 82
Port

general-purpose (GPP), 16–18, 22
high-performance (HPP), 16, 17, 22, 23

PRALU, 1, 2, 4, 7, 8, 31–34, 36–42
Process

design, 50, 68, 89, 131, 132, 141, 142,
154, 173, 175

implementation, 51, 52, 106, 173
Processing system, see system
Profile, 167

184 Index

R
Rapid prototyping, 9, 85, 88, 158
Reactive system, 146, 169
Reconfiguration, 17, 18, 20, 23, 28, 48, 49,

51, 59, 65, 78, 89
dynamic, 16, 18, 19, 22, 28
partial, v, 45–54
static, 47, 48

Register, 18, 22, 32, 37, 82, 88, 89, 95, 98–
100, 104, 105, 169

Requirements, 20, 34, 60, 65, 132, 134, 153,
161, 162, 171, 173, 176

non-functional, 172
RTL, 35–37, 68, 77, 177
Rule-based logical model, 150, 153–155,

157–162

S
Safety, 57–60, 65, 161
Separation, 112, 113, 115–118, 120
Sequence diagram, see diagram
Sequent, 68–70, 74, 75, 77, 81, 85
Sequent calculus, 68, 73, 90
Sequential function chart (SFC), 1, 3, 4, 6–8,

170
Signal, 3, 5, 7, 9, 17, 18, 20, 22–24, 27, 38,

41, 83, 98, 99, 133, 144–149, 169,
174

control, 15, 17, 169
input, 17, 18, 38, 145, 148, 149, 156–160,
162

output, 3, 18, 38, 59, 60, 71, 96, 134, 144–
147, 149, 150, 155–160, 162

Siphon, 67, 68, 73–76
Software/hardware architecture, 15–17
Specification, v, 1–3, 6, 7, 9, 20, 27, 31, 50,

57, 60, 67, 68, 79–83, 131, 132, 137,
140, 141, 144, 146, 149, 150, 153–
156, 158, 162, 177

behavioral, 77, 149, 150
formal, 60, 132, 150, 155, 161, 173
hierarchical, 76
Petri net based, 2, 4, 9, 144
rule-based, 77, 78, 80, 82, 89, 150, 155,
162

semi-formal, 143, 153
UML-based, 60, 132, 134, 137, 140,
143–145, 173

Spray, 57–63, 65
SSF file, 177
State, 4, 6, 17, 18, 21, 22, 24, 31, 36, 38,

41, 42, 46, 60, 67, 68, 78, 79, 82–84,

88, 89, 98, 103–110, 113, 116, 118,
123, 124, 127, 132, 135–137, 146–
148, 155, 156, 158, 159, 162, 165,
169

global, 5, 69, 71
local, 5, 69, 71, 78, 82, 155

State machine diagram, see diagram
State machine subnet (SM-subnet), 67, 71,

75, 79, 83, 93–96, 98, 100, 101
State minimization, 103
State space, 73, 75, 78, 83, 90
State transition table, 107, 110, 111
State variable, 106–110, 112, 113, 116, 127
Statechart diagram, see diagram (state ma-

chine)
Step (of SFC), 6
Structure diagram, see diagram
Symbolic reasoning, 68, 77
Synthesis

logic, 9, 50, 52
Synthesis , see logic synthesis
System

control, v, 9, 10, 50, 57–59, 61, 62, 65,
78, 93, 132, 144, 146–148, 169
mixer, 133

digital, v, 31, 88, 93, 103, 108, 131, 141
multi-level computing, 24
processing (PS), 15–17, 20, 22–24, 28

T
Tautology, 69
Timing diagram, see diagram
Token (of Petri net), 4–6, 8, 68, 71, 80, 81,

89, 135
Transition (of Petri net), 3–6, 68, 71, 74, 75,

78, 80–85, 87–89, 97, 98, 146–149,
156, 158–160

enabled, 4–6, 71
firing, 4–6, 80, 81, 89, 93, 94

U
Unified Modeling Language (UML), v, 57,

131, 132, 140–143, 147, 150, 153,
162, 165–168, 171–178

Use case diagram, see diagram

V
Verilog, 31, 50, 69, 82, 167, 168
VHDL, 4, 9, 27, 31, 32, 35–37, 42, 50, 69,

77, 78, 81, 82, 89, 90, 99–101, 155,
158, 167, 168, 177

Index 185

Virtex, 47, 49

X
Xilinx, 166

iMPACT, 169
ISE, 168

XML, 9

	Preface
	Contents
	Petri Nets in Design of Control Algorithms
	1 Introduction
	2 Historical Review
	3 Interpreted Petri Nets in Logical Control
	4 GRAFCET and SFC
	5 ALU and PRALU
	6 Some Other Approaches
	7 Conclusions
	References

	Synthesis and Implementation of Parallel Logic Controllers in All Programmable Systems-on-Chip
	1 Introduction
	2 The Proposed Software/Hardware Architecture
	3 Design and Implementation of the Parallel Logic Controller
	4 Hardware/Software Interactions
	5 Implementations and Examples
	5.1 An Example of PHFSM-Based Hardware Accelerator
	5.2 An Example of a Parallel Hierarchical Controller

	6 Conclusion
	References

	Circuit Implementation of Parallel Logical Control Algorithms Represented in PRALU Description
	1 Introduction
	2 Representation of Logical Control Algorithms in PRALU language
	3 The Architecture of LOCON-2 system
	4 The Technology of Design in LOCON-2
	5 Converting PRALU rightarrowVHDL
	6 Conclusion
	References

	Effective Partial Reconfiguration of Logic Controllers Implemented in FPGA Devices
	1 Introduction
	2 State of an Art
	2.1 Microprogrammed Controllers
	2.2 Partial Reconfiguration of the FPGA devices
	2.3 Mechanism of Partial Reconfiguration of Xilinx FPGAs

	3 Traditional Prototyping Flow of Control Units
	4 Partial Reconfiguration of Microprogrammed Controllers Implemented in the FPGA
	5 Experimental Results
	6 Conclusions
	References

	An Application of Logic Controller for the Aerosol Temperature Stabilization
	1 Introduction
	2 Logic Controller
	3 Experimental Set-Up
	4 Tests Results
	5 Conclusions
	References

	Symbolic Coloring of Petri Nets
	1 Introduction
	2 Gentzen Deduction System
	3 Coloring from Concurrency Hypergraph
	4 Coloring with the Use of Siphons and Traps
	5 Conclusion
	References

	Modular Synthesis of Petri Nets
	1 Introduction
	2 Example of Control System
	3 Place Centered Specification of Petri Net in Gentzen Logic
	4 Encoding Inside State Machine Modules
	5 Implementation of Colored Hierarchical Macronet
	5.1 Modular Specification of Logic Controller
	5.2 General Template for Modular Logic Design
	5.3 One-Hot Encoding of Macroplaces
	5.4 Local Encoding Inside Macroplaces with Registered Outputs
	5.5 State Machine Style for Macroplace Encoding

	6 VHDL-Style of the Modular Petri Net Description
	7 Results of Experiments
	8 Summary
	References

	Architectural Synthesis of Petri Nets
	1 Introduction
	2 Synthesis Methods
	2.1 Main Idea
	2.2 Architecture
	2.3 Synthesis Steps

	3 Implementation of Synthesis Method
	4 Conclusion
	References

	Decomposition-Based Methods for FSM Implementation
	1 Introduction
	2 Basic Information
	2.1 Blanket Calculus in FSM Modeling
	2.2 FSM State Encoding

	3 Symbolic Functional Decomposition
	4 Algorithms
	4.1 Selection of the U and V Input Sets
	4.2 Construction of the βQU Blanket
	4.3 Construction of the βG and βQV Blankets

	5 Experimental Results
	6 Conclusions
	References

	Using UML Behavior Diagrams for Graphical Specification of Programs for Logic Controllers
	1 Introduction
	2 Unified Modeling Language
	3 Logic Controller Example
	3.1 Use Case Diagram
	3.2 Activity Diagram
	3.3 State Machine Diagram
	3.4 Sequence Diagram
	3.5 Communication Diagram
	3.6 Interaction Overview Diagram
	3.7 Timing Diagram

	4 Conclusions
	References

	Various Interpretations of Actions of UML Activity Diagrams in Logic Controller Design
	1 Introduction
	2 Indivisibility of Actions
	3 Possible Different Interpretations of an Action
	4 Summary
	References

	Model Checking of UML Activity Diagrams Using a Rule-Based Logical Model
	1 Introduction
	2 A Rule-Based Logical Model
	2.1 Elements of a Rule-Based Logical Model
	2.2 Verifiable Model Basing on a Rule-Based Logical Model
	2.3 Synthesizable Model Basing on a Rule-Based Logical Model

	3 UML Activity Diagram as a Rule-Based Logical Model
	3.1 Step One---Labelling
	3.2 Step Two---Notation

	4 Model Checking of a Rule-Based Logical Model
	5 Summary
	References

	UML Support for Statecharts-Based Digital Logic Controller Design in FPGA Technology
	1 Introduction
	2 Digital Design for FPGA
	3 Digital Logic Controllers
	4 UML in Discrete System Development Process
	4.1 Controller Design
	4.2 Conceptual Modeling
	4.3 UML in Controller Design

	5 Example
	5.1 Object-Oriented Analysis
	5.2 Functional Analysis
	5.3 Design and Behavioral Analysis
	5.4 Implementation

	6 Conclusion
	References

	Index

