
EFFEC
TIVE FU

N
C

TIO
N

AL VER
IFIC

ATIO
N

S
R

IV
A

T
S

A
 V

A
S

U
D

E
V

A
N

EFFECTIVE FUNCTIONAL VERIFICATION

Effective Functional Verification
Principles and Processes

by

SRIVATSA VASUDEVAN

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 0-387-28601-2 (HB)
ISBN-13 978-0-387-28601-3 (HB)
ISBN-10 0-387-32620-0 (e-book)
ISBN-13 978-0-387-32620-7 (e-book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

All Rights Reserved
© 2006 Springer
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

This book is dedicated to:

The Almighty, who gave me a variety of experiences
and the inspiration to write this work.

My family for putting up with me as I wrote this book.

My colleagues who taught me what they knew
and worked with me.

My managers and mentors who encouraged me
on this incredible journey.

Contents

Dedication v

List of Figures

Foreword

Preface

Acknowledgments

Part I Starting the Verification Journey

1. An Introduction to IC Verification 3
Importance of Verification . 3
Overview of a Typical ASIC Design Process 6
Factors in Successful Verification . 11
References. 12

2. Approaches to Verification 13
What is Functional Verification all About? 14
Stimulating the design - A choice of approaches 16

Black Box Approach . 16
White Box Approach . 18
Gray Box Approach . 18

Verification Approaches Based on Integration 19
Block Level Verification . 20
Sub System Verification . 23
Full Chip Verification . 25
System Level Verification . 26

Instruction Driven Verification . 26
Random Testing . 29

xiii

xvii

xix

xxiii

vii

viii

Coverage Driven Verification . 30
Transaction Based Verification . 33
Golden Model Approach . 37

Advantages of a Golden Model 37
Disadvantages of using a Golden Model 38

Pre-Post Processing Approach . 39
Assertion Based Verification . 42

Assertions - Who writes them and when? 44
Types of Assertions . 45
Advantages of an Assertion Based Methodology 45
Challenges with an Assertion Based Methodology 48

Formal Verification . 49
Model Checking . 51
A Comparison of Simulation and Formal approaches 52

Emulation and Acceleration . 54
References. 57

3. Various Workflows Practiced in Verification 59
An Overview of the Entire Verification Process 59
The Planning Process . 62

Some Other Aspects of Verification Planning 63
Verification Resource Planning 64

The Regression Process . 65
Block Regressions . 67
Chip Level Regressions . 68
Coverage in Regressions. 68

Maturing of the Design . 69
The Periodic Review Process . 70

Regression Result Reviews . 71
The Verification Signoff Process . 72

Part II Ingredients of Successful Verification

4. People make all the Difference 77
Team Dynamics and Team Habits for Success 78

Habit 1: Begin With the Big Picture in Mind 78
Habit 2: Do it Right the First Time 80
Habit 3: Be Object Oriented in your Approach 82
Habit 4: Reduce, Reuse and Recycle 82
Habit 5: Innovate . 83
Habit 6: Communicate . 84

The Six Qualities of Successful Verification Engineers 86
Quality 1: The Ability to see the Full Picture 87
Quality 2: Assumes Nothing . 88
Quality 3: Consistent . 88

Contents

Contents ix

Quality 4: Organized . 89
Quality 5: Multi-skilled . 89
Quality 6: Empower Others . 90

References. 91

5. Case Studies from the Real World 93
Block and System Level Tests use Unrelated Environments 94
Not Implementing Monitors and Assertions Early on 94
Review Processes Not Done Timely 95
Pure Random Testing Without Directed Tests 96
Not Running a Smoke Test Before a Regression 97
Lint Policies . 98
Effective Use of a Source Control Strategy 98

6. Tracking Results That Matter 101
Why Do We Ever Need any Verification Metrics? 101
Metrics in a Regression . 102
Commonly used Metrics . 105
Functional Coverage Metrics . 109
Structural Coverage Metrics . 110

Some Caveats on Structural Coverage 111
Assertion Verification Metrics . 111
References. 113

Part III Reducing work in Verification

7. Reducing Work in Verification 117
Considerations in a Verification Environment 118
Tri-State Buses and Dealing with Them 119
Dealing with Internal Signals . 120
Environmental Considerations . 122
Dealing with Register Programming 128

A Hybrid Approach to Register Programming 131
Dealing with Clocks . 136
Driving the Design . 137
Debugging the Design . 138

Making Note of Errors . 141
Debug Levels . 141

Code Profiling to Keep the Inefficiency Out 143
Regression Management . 145

Identify Failures Before You Run Again 149
Don’t Postpone Features to be Tested 149
Compile your Code . 149

QC Processes to run a Clean Run . 150
Using a Data Profile to Speed up Simulations 150
Getting the Machine to Document for You 154

x

Keeping an Eye on the Design – Monitors 158
Checkers in an Environment . 160
Linting Code . 162
The RTL Acceptance Criterion . 163
References. 164

Part IV Ten Steps to Success

8. Ten Steps to Success 167
Step 1: A Specification Review . 173
Step 2: The Identification of Test Objects 176
Step 3: Review of the Test Object List 180
Step 4: Tagging the List of Test Objects 182

Using Tags to Simplify the Regression Process 183
Step 5: Test Case Identification . 185

Structure of a Test Case . 185
Test Case Classifications . 188

Directed Tests . 188
Sweep Test Cases . 190
Negative Testing . 192
Random Test Cases . 193

The Creation of a Possible List of Test Cases 194
Partitioning of Tests between Block and Top Level 197

Step 6: The Definition of a Correctness Strategy 200
Data Checkers . 200
Protocol Checkers . 201
Interface Checkers . 201
Cycle Accurate Checkers . 203
Using Monitors . 203
Using Assertions and Formal Verification in the Methodology . . 203

Step 7: The test strategy . 206
Hierarchical Strategy . 208
Reuse Strategy . 210
Stimulus Strategy . 210
Test Case Strategy . 211
Identifying Test cases for Maximum Yield & Coverage 211

Step 8: Testing the design. 215
Component identification . 215
Getting the Job Done. Execution of the test plan 221
Getting a Helping Hand from External Resources 222
The Case for GATE Simulations 223

Step 9: Figuring out where you Are in the Process 226
Performing Hole Analysis of What got Left Out in the Test Plan . 231
The (bi)Weekly Review Processes 232
The monthly Review Processes 237

Contents

Contents xi

Step 10: Correlations on completion to sign-off 238

Appendices 244

A Using PERL to connect to Microsoft Excel and Access 245

B Using PERL to convert between UNIX text files and Microsoft Word 249

Index 255

253About the Author

Glossary 243

Refer.en.c.es and Additional reading 242

List of Figures

1.1 Overview of the IC Design Process 7

1.2 Factors in Successful Verification 11

2.1 Verification versus Design . 15

2.2 Black Box Verification . 16

2.3 White and Gray Box testing approaches 19

2.4 Block Diagram of a Complex SOC 21

2.5 Block Level Verification . 22

2.6 Sub System for ASIC . 24

2.7 Full Chip Verification . 25

2.8 System Level Verification . 27

2.9 Instruction Driven Verification 28

2.10 Random Testing Principles . 30

2.11 Random Generation for Tests 31

2.12 Coverage Driven Verification 32

2.13 Coverage Driven Verification’s Effectiveness 33

2.14 Transaction Based Verification 34

2.15 Example of Transaction Verification in a Cache 36

2.16 Golden Model Approach . 38

2.17 Pre-Post Processing Approach 40

2.18 Assertion Based Verification 42

2.19 Assertion Methodology Flow 44

2.20 Static Assertions Example . 46

2.21 Temporal Assertions . 46

2.22 Formal Verification Model Checking Approach 51

2.23 Emulation/Acceleration flow 55

3.1 Overall View of the Verification Process 61

3.2 The Regression Process . 66

3.3 Levels of Integration . 70

4.1 Cost of Finding a Bug in an ASIC 81

xiii

xiv List of Figures

6.1 Bug curves typically observed in industry 107

6.2 Delta Change in Bugs found 108

6.3 Line Coverage Pitfalls . 112

6.4 Toggle Coverage Pitfalls . 112

7.1 Register Read Write . 129

7.2 Read and Write . 130

7.3 Alternate read and write example 131

7.4 Bit Example . 133

7.5 Hybrid Register example . 134

7.6 Hybrid Register Programming Example 135

7.7 Debug Levels . 142

7.8 Code Profiling Example . 144

7.9 Test Bench with Multiple Drivers 146

7.10 Use of Labels in a Regression 148

7.11 Data Dumping using a Network Drive 151

7.12 Dumping Data using a Local Disk 152

7.13 Test Documentation . 156

7.14 Process of using Test Documentation Automatically 157

8.1 Components in the Verification Effort for Pre-silicon Verification 170

8.2 Overview of the Verification Process 174

8.3 Features with a Priority Assigned to them 181

8.4 Use of Tags . 183

8.5 Queue Management using a Tag Mechanism 185

8.6 Test Sections Example . 187

8.7 Microprocessor Bus Test Case Example 189

8.8 Sweep Cycle Test Cases . 191

8.9 Sweep Test Cases . 192

8.10 Template for a Verification Plan 196

8.11 Partitioning of Tests at Block and Top Level 199

8.12 Checkers in a Verification Environment 202

8.13 Mapping Assertions to Features 205

8.14 Implementing Assertions in the 10 Step methodology 207

8.15 Relationship between the Tests and the Checkers/Monitors . . . 209

8.16 Finding the Optimal Tests to be Developed 213

8.17 Specification of Checkers and Monitors 216

8.18 Bus Functional Model Specs 217

8.19 Various Aspects of Verification 218

8.20 Execution of the Test Plan . 222

8.21 Using Test Documentation to Correlate 228

8.22 Correlation Algorithm . 229

8.23 Sample Extraction Report . 230

8.24 Correlation Using Tags . 231

List of Figures xv

8.25 Reviews For a Test Object . 234

8.26 Test Case Density . 235

8.27 Complete Correlation Flow . 237

B.1 Sample Code for Automatic documentation 252

Foreword

Verification – both pre-silicon and post-silicon has become the dominant activity

in all new semiconductor designs. There are many parallels to it in the soft-

ware world – it is in the specification and initial development that determines

the level of quality and reliability of software. Software Quality Assurance

and Software Engineering has rigorous standards of continuous improvement

of quality measurements that are used to track and continuously improve the

systematic improvement of verification of software, the controlling of the in-

terfaces, the planning of the unit level and module level tests, the bring up and

maintenance of these modules, and the test and regression and isolation and

workarounds involves with the software.

Digital design complexity is constantly increasing, and yet the thought put into

these architectures with the hundreds of billions and trillions of transistors used

has only recently become focused on predictability and techniques to drive qual-

ity throughout the RTL that is the dominant focus. In fact the most interesting

point of research and activity today in building processors and SOCs.

This book is dedicated to verification exclusively. For something that is becom-

ing the dominant focus of all designs – ie there are many books on architecture,

modeling, designing for performance, for low power, for complex systems, but

few to the real heart of the matter – verifying the digital design itself.

What you will learn here will influence the types of designs and the complexity

of the design and your success in making these a reality. Ignore verification at

your peril, embrace it in every aspect of planning and executing a project and

your chances of succeeding are of course never certain, but much more likely

to complete and complete to plan.

xvii

xviii

Srivatsa has been a driver in these techniques at Texas Instruments, and the many

techniques described here are deployed, about to be deployed, or we will insist

will be deployed here and at other companies. There are both case studies, state

of the art techniques, and possible directions of studies the industry is going to

move to. Verification is not an exact science, there is always the saying in the

industry that it is an infinitely long task gated by a hard and fast milestone that

couldn’t be moved – ie a Tapeout date. Here is hoping that someday we can

chance that.

David Witt

Director, World Wide Wireless Digital Design

Wireless Terminal Business Unit

Texas Instruments Inc.

Preface

Introduction

The world of semiconductor IC design has changed dramatically over the last

few years. In the earlier days, IC designs were confined to a section of a

building. Today IC designs are being created by bringing together diverse

talent in multiple time zones in multiple continents across the world. Some

companies outsource portions of verification as well. Interestingly some of

these outsourcing activities are done in other countries to add to it all! No

doubt, we have all made life interesting in the Silicon Age!

Why did I write this book?

As fortune would have it, I have been involved with ASIC verification for almost

my entire career. I have had the good fortune of working with some of the best

and brightest hardworking minds in Silicon Valley, CA, USA. During the course

of my career, I have had the opportunity to be exposed to a variety of different

verification environments and different types of IC designs. As I started working

with young engineers whom I was mentoring, I realized that I needed a different

set of tools to help the engineers and myself make our jobs easier.

Many engineers would come up to me and ask me for a “brain dump” on how to

do verification. I also needed a platform to share concepts of verification with

some of the junior engineers as well. I wrote this book to share experiences and

a collection of best practices which have served me well over the years.

What is this book all about?

This is a book on the various practical aspects of ASIC functional verification.

As chip designs get more and more complex, new tools are evolving to meet the

xix

xx

challenges of functional verification. At the same time, many new engineers

are joining this challenging field. This book addresses a variety of topics in this

growing field.

Verification is no doubt a vast field, hence, I have chosen to focus a little bit

more on the various principles in functional verification rather than the actual

act of verification and test-benches since there are many excellent books on the

subject. This approach is chosen since I believe verification is methodology

and execution combined.

While discussing verification, I have not chosen to discuss any tool specific

issues or methods since these are covered quite extensively in other texts. The

material presented is tool/language agnostic and attempts to impart concepts

and principles to make verification effective. The reader is encouraged to use

the ideas presented herein in an implementation of the readers choosing.

Methodology and execution are extremely important in modern ASIC designs.

Hence, winning strategies for verification are discussed along with ideas that

improve the odds of first time success are made the focus of this book.

This book is organized into four major parts. There are multiple chapters in each

part dealing with the theme of that part. The title pages in each part contain

details of each of the chapters in that part.

Starting the verification journey: Part 1 discusses verification from an intro-

ductory point of view. Information in this part helps set the baseline for the other

chapters in the book. Engineers and managers new to verification or considering

changing over to verification as a career would find this section informative.

Ingredients of successful verification: Part 2 begins by describing the human

aspects of verification along with case studies from the real world. Metrics that

drive verification are presented here as well. Managers and lead engineers might

find information in this section more useful. It is hoped that the information in

part two also helps to motivate newcomers in the field.

Reducing work in verification: Part 3 discusses various methods to reduce

time, effort, energy and money during the course of verification. Various meth-

ods and ideas are presented that can be adopted by the reader in their own

verification environments. While this section is partly targeted at the advanced

user, it is hoped that the reader finds inspiration and motivations from the chapter

presented in this section. The concepts presented in this section are designed to

help engineers at all experience levels become productive in verification quickly.

Preface

xxi

Bringing it all together: Part 4 presents a process and methodology, which

attempts to bring the entire verification effort. The principles in Part 4 have

been time tested in a variety of organizations. These principles help ensure a

smoother verification “experience” as well as a successful tapeout on silicon.

It goes ahead to describe 10 steps that would be helpful to the engineer to get

from the ’concept’ point to the actual tapeout of the device.

Who should read this book?

I would really like to say everybody who makes a career of ASIC development!

Actually, the book itself is written with a wide audience in mind. My hope is that

this book will inspire many more people to take on the challenge of verification

and finds use in the hands of all engineers as a reference.

How should this book be used?

Simple! Read it from cover to cover. Implement some of the concepts presented

herein if you find them useful. Please do share and discuss the information

with your friends to implement useful ideas and do not let this book rot in your

bookcase! Whatever you do, please do not use it as a doorstop or a paperweight,

or something similar!

Honestly, there really is no best way. The book itself is presented as a two

column format with the essence of the discussion presented on the left hand

column and a discussion of the topic on the right. I invite readers to pick the

chapters of interest to them and dive right in. Section 1 and 2 are for everyone.

I do suggest that you, the reader, look into all chapters so that you get an idea of

the subject matter along with a perspective of the author. The index at the end of

this book along with the table of contents should help anyone find information

in this book quickly.

There is no doubt a lot of literature on hardware verification languages and

methodologies. Hence, it is hoped that this book be used as an advanced text-

book to teach new engineers about ASIC functional verification while supple-

menting presentations in the classroom as a reference. Engineers who have

just begun ASIC verification as a career can use the information in this book to

quickly ramp up their skills.

It is also hoped that the readers find inspiration and use some of the concepts

presented herein. There are certainly many other extremely valid and differing

viewpoints on various aspects of verification presented in this book. I would

be grateful to hear of them so that we may all enrich one another. My contact

information is enclosed below.

Preface

Contacting the Author:

I suppose nothing could be easier than typing up an email to

srivatsa@effective-verification.com. I would appreciate any communication

that would help improve the contents of the book and will gratefully publish it

along with the errata for the book on http://www.effective-verification.com.

Acknowledgments

I thank the Grace of the Almighty ONE without whom none of the experiences

would have ever happened to me. Much inspiration and strength has been de-

rived from HIM. It’s been interesting journey so far.

My parents have been a source of strength. I am especially indebted to my fam-

ily members who were exceedingly patient with me as I worked on this book.

In particular, my wife has been a constant source of inspiration when the work

seemed large and helped me get through many difficult spots all along the way.

Janick Bergeron of Synopsys and Steve Dondershine of Texas Instruments re-

viewed this book and gave me detailed feedback. My deepest gratitude to them

for taking valuable time out of their busy schedules to review this book.

I am also very grateful to all my colleagues who had shared with me their

knowledge as I worked with them throughout my career. Many individuals

helped me with the book. They have been named on the next page.

There are no doubt many other people who have not been mentioned who have

contributed either indirectly or directly to this book. My deepest gratitude is

offerred to all of them who helped me in my time of need.

Srivatsa Vasudevan

December 2005

Bangalore, India

xxiii

xxiv

The specific individuals named below amongst others helped me at various

times to make this book a reality. My gratitude is offered to all of them.

Rakesh Cheerla Extreme Networks

Vipin Verma Texas Instruments Inc

Umesh Srikantiah Infineon

Dr. Vijay Nagasamy NEC Corporation

Mukul Tikotkar Texas Instruments Inc

Ish Dham Texas Instruments Inc

Nagaraj Subhramanyam Texas Instruments Inc

David Witt Texas Instruments Inc

Sanjay Palasamudram Texas Instruments Inc

Bhaskar Karmakar Texas Instruments Inc

Dr. Venu Gopinathan Texas Instruments Inc

Dr. Mahesh Mehendale Texas Instruments Inc

Venkata Rangavajjala Tellabs Inc

Ashok Balivada. Analog Devices Inc

Deborah Doherty Springer Technical Support

Mark DeJongh and Cindy Zitter Editors at Springer

Vidhu E. The cover design for this book

Digvijay Lahe. Fourth Dimension Inc

N. Raghunathan Helping me edit the book

Shrinidhi Rao Proofing the book

G. N Lakshmi Figures in the book

PART I

INTRODUCTION TO VERIFICATION

This part provides a baseline for the rest of the chapters in this book. Informa-

tion in this part is divided into the following three chapters:

Introduction to Verification: This chapter provides an introduction to verifi-

cation. It describes the need for verification in contemporary designs. Various

types of verification activities are discussed here along with an overview of the

ASIC design process.

Approaches to Verification: There are many different ASIC designs in the

marketplace. Each design merits a different approach. This section covers the

various approaches to verification. The pro’s and cons of various approaches

are described in this section. The chapter also describes various levels of inte-

gration verification.

Verification Workflows : Different companies use different processes with

varying degress of formalism to ensure quality of their designs. This chapter

focusses on providing an overview of various workflow processes in verifica-

tion. It offers the reader a perspective view of the verification processes that

occur during the verification activity.

Chapter 1

AN INTRODUCTION TO IC VERIFICATION
The Need for Verification

Verification is the activity that determines the correctness of the

design that is being created. It ensures that the design does meet

the specifications required of the product and operates properly.

The free online dictionary of computing [1] defines verification

as “The process of determining whether or not the products of a

In the IC design world, the process of ensuring that the design

intent is mapped into its implementation correctly is termed as

verification. Such a description is indeed broad. In the sec-

tions that follow, the verification activity is further divided into

several major areas. These are introduced to the reader in this

chapter.

1.1 Importance of Verification

Ensuring that a product operates correctly as per the specifica-Do we need to

verify anything at

all?
tions is crucial to ensuring that the product will be used by its

intended users.

In order to illustrate the importance of verification, consider

a simple example of a digital camera being introduced by a

given phase in the life-cycle fulfill a set of established require-

ments”.

3

4 An Introduction to IC Verification

company. A typical digital camera is made up of many compo-

nents like the lens, the battery, the sensor, an image processor,

software etc. All of these must work correctly before a picture

is taken using the camera.

In this example, it is assumed that the camera design is con-

ceived with an intention of capturing a large market share in

its segment. In order to introduce this product into the market,

the company’s marketing team typically analyzes the products

available in the marketplace and then creates a specification

for a product that they believe will have a good impact on the

market, bringing revenue to the company.

The requirements for the camera are analyzed by a systems

team and a design for the camera which meets the require-

ments of the marketing team is created.

In this example, it is assumed that many of the parts for the

camera are purchased from elsewhere. However, the core com-

ponents of the camera are split into one or more ASIC devices

that need to be created to satisfy the market requirement. The

ASIC devices are then designed by ASIC designers. For a va-

riety of reasons, it may not be possible for the designer to think

of all the various possibilities and scenarios that the device may

be used in when they are in the process of designing the device.

Consider a scenario where the product was actually sent out

to the customer without making sure that the product actually

worked, then there is the possibility that the company design-

ing the product may suffer from significant financial losses, not

to mention damage to the company’s reputation! The author

is confident that the reader would not like to buy a product if

there was no assurance that the product actually worked!

Verification is that activity which ensures that the camera in the

above example does indeed operate correctly as per the spec-

ifications. It ensures that the product that is created does not

suffer from defects and operates satisfactorily.

Looking at a typical project team, one notes that in order toWhy is it so

important? verify a design, one must first understand the specifications as

well as the design and, more importantly, devise an entirely

independent approach to the specification.

Importance of Verification 5

It is not unusual for a reasonably complex chip to go through

multiple tape-outs before mass production in spite of a large

investment of resources in verification. Verification to ensure

correctness is therefore a must.

A design engineer usually constructs the design based on casesThe effort of

verification is

greater than the

actual design effort

representative of the specifications. The role of the design engi-

neer ends with having translated the specification into an imple-

mentation that meets the architectural specifications. However,

a verification engineer must verify the design under all cases,

and there could be an apparently an almost infinite number of

cases. It therefore follows that the amount of work required of

the verification engineer to prove that the design actually works

is much more than the design effort and must be treated as such.

From the makeup of a project team, one can see the importance

of design verification. A typical project team usually has an

equal number of design engineers and verification engineers.

Sometimes design engineers are paired with a couple of veri-

fication engineers and hence even have a ratio of two to one.

If the verification engineer follows the same design style orVerification effort is

different from the

design effort
thought process as the design engineer, both would commit the

same errors and little would be verified. Therefore, it is im-

plied that the verification effort is an independent effort from

the original design effort. The verification activity while being

independent is considered a part of the overall design effort.

There is the danger that a designer verifying his/her own block

may end up verifying their implentation instead of the specifi-

cation.

Verification is unavoidable. It always costs too much and takesVerification is a

costly business too long. However, proper verification techniques can save a

company a significant amount of money [3]. Verification is

now recognized as a very important activity by many compa-

nies.

Statistically, it has been shown that over 70% of an ASIC de-

sign budget is now devoted to verification [2]. Given that the

typical ASIC device costs a few million dollars to develop and

test, it becomes apparent that there is a lot of money spent in

the verification activity. Hence, it is imperative that ASIC ver-

ification must be as effective as possible in order to be able to

provide proper returns on investment.

6 An Introduction to IC Verification

Chip designs in recent years have become increasingly com-History shows us

the cost of a recall plex. In the recent past, because of incomplete verification, sev-

eral companies had to recall their products and replace them

with working ones. For example: Intel Corporation had to

spend over 450 Million Dollars to replace faulty Pentium de-

vices [2]. Another company, Transmeta, had initially several

difficulties with their earlier parts as well [2].

1.2 Overview of a Typical ASIC Design Process

The earlier sections described the need and importance of ver-

ification in a product cycle. This section explores a typical

ASIC design process and various aspects of verification that

occur during this process. The entire process is shown in fig-

ure 1.1.

The ASIC design process begins with the definition of the var-

ious features of the system incorporating the device that will

be designed. During this time, various inputs from market

research, system feasibility, cost, profit margins etc. are deter-

mined.

The next stage in this process is the definition of the overall

system architecture to address the product’s needs. The ar-

chitecture maps the product requirements into software and

hardware components. The hardware component that arises is

termed the hardware architecture of the system. A similar spec-

ification is derived for the software. The hardware component

of the system is partitioned into one or more ASIC devices.

This partitioning of the system functions helps define the var-

ious architectural features of each of the devices in the system.

The architectural specification of each of the devices is then

translated into a functional specification for the device. Dur-

ing this phase the various structural elements of the device

are then identified. The end result of this phase is the micro-

architectural specification and functional specification for the

device.

Overview of a Typical ASIC Design Process 7

Market requirements for the product

Architectural specification of the ASIC devices in the

product

Functional

specifications

Architectural

Verfication

Functional

and Implementation

Verification

Gate

Equivalence

Checking

Performance

verifcation

Layout

verification

Manufacturing

verification

Design implementation using High level

languages and verification

Gate level timing analysis

Layout of the design

Verification

Specifications

Manufacture and test of

The device

Synthesis

Resulting in a GATE netlist

Figure 1.1. Overview of the IC Design Process

and timing

8 An Introduction to IC Verification

The availability of the functional specifications now leads to a

process of planning out the implementation. During this activ-

ity, the schedules for various activities and needed resources

and licenses are identified. The planning for verification is de-

scribed in the next chapter.

Once the micro-architectural and functional specifications are

identified, the design and verification efforts fork into two pro-

cesses that occur in parallel.

The design effort begins by describing the device using a hard-

ware high level language. In most cases, this description is

conducted using RTL. The verification activity begins with the

creation of module and chip level environments.

The design is then verified against the specifications for func-

tionality. When there is a mismatch between the specification

and the design, it is termed as a bug. (It is noted that the ver-

ification effort may have such bugs as well!). These bugs are

tracked to ensure that the problems are fixed. This activity

forms a bulk of the design cycle for the device.

During the process of verification, regressions1 are run using

the design and the tests to ensure that orderly progress is made.

A number of standard metrics are used during this process to

determine the success of the verification effort. These are de-

scribed in the chapter Tracking Results that Matter.

On completion of functional verification of the device, the de-

sign is then synthesized into a gate netlist. The gate net list is

verified as being equivalent to the RTL netlist by means of an

equivalence verification process. Additional simulations are

run on the gate netlist as well to ensure the integrity of the

netlist.

The gate netlist is then run with a variety of delay models.

At this juncture, the design is also subjected to static timing

analysis to ensure that the design will operate as specified.

Various delay parameters are also extracted from the libraries

and the device layout created in the next steps below.

1Regressions are described in the chapter Verification workflow processes

Overview of a Typical ASIC Design Process 9

The gate netlist is also used to generate various patterns that

will be used to verify the device on the test equipment. These

patterns help in generation of Functional Tester tests that are

used to determine if the device that is fabricated is good or bad.

These patterns are then used in the manufacturing verification

process below.

Depending on the technology (standard cell/custom design) the

gate netlist is then translated to a sequence of polygons in multi-

ple layers to create a layout of the device. At this point, another

verification process is deployed to ensure that the translation

happened correctly between the gate netlist and the layout that

has been generated2.

The device is then fabricated. After this process, manufactur-

ing verification usually involves making sure that the device

was manufactured correctly and no flaws were introduced by

the manufacturing process. This is accomplished using the pat-

terns generated from the gate netlists.

From the description, it is apparent that verification occurs in

a number of phases. During each verification phase, various

activities are undertaken to ensure that the device is indeed suc-

cessful in silicon. Some of the verification activities are well

suited to the use of some automated tools which help make the

task significantly easier.

Functional verification is the activity where the design or prod-Functional

verification uct is tested to make sure that all the functions of the device

are indeed working as stated. This activity ensures that the

features functions as specified. It is noted that some of the de-

vice features may or may not be visible to the user and may be

internal to the design itself. However, it is imperative that all

the features are verified to operate correctly as specified. This

verification activity usually consumes the most time in the de-

sign cycle.

Gate Equivalence

verification generated or created is actually a true representation of the de-

sign specified and verified functionally above. At this stage

2This is called as LVS – Layout Vs Schematic

Equivalence verification is the activity to ensure that the schematic

10 An Introduction to IC Verification

not much timing information is considered. Only logical and

sequential relationships are considered.

Timing verification is the activity where the timing of the cir-Timing verification

cuits is actually verified for various operating conditions after

taking into account various parameters like temperature etc.

This activity is usually done after all the functions of the fea-

ture are verified to be operating correctly. This is an important

part of the verification activity.

Performance verification is the activity that could be carried outPerformance

verification after an initial test device has been created as frequently hap-

pens with analog circuits or is carried on as a part of the func-

tional verification activity. In some organizations, this term is

also used for performance characterization of the device archi-

tecture.

Layout verification is an activity to ensure that the layout of theLayout verification

design indeed matches the schematic that was actually verified

in the timing verification above.

Manufacturing verification usually involves making sure thatManufacturing

verification the device was manufactured correctly and no flaws were in-

troduced as a result of the manufacturing process. During this

process, the device that has been fabricated is tested using a

tester which apply patterns to the device that has been fabri-

cated. These patterns are determined using the gate simulations

and ATPG tools.

One important question often asked is the difference betweenThe difference

between testing and

verification
testing and verification. Verification is the activity that is used

to verify that the design does indeed meet its specified intent.

Testing on the other hand is used to ensure that the design is

indeed manufactured properly. Testing is accomplished by the

use of test patterns that are generated using a process termed

as ATPG (Automatic Test Pattern Generation). Verification on

the other hand involves the generation of test vectors which are

used to ensure that the design meets the specification.

Factors in Successful Verification 11

Verification Plan

People

Tools Processes

Methodology

Figure 1.2. Factors in Successful Verification

1.3 Factors in Successful Verification

Various verification activities in the ASIC design flow have

been described above. Each of these activities uses a multitude

of different tools and techniques to achieve the goal of verifi-

cation. They have also been researched extensively all over the

world. Each of these areas merits several books to do justice

to the discussion of the various topics involved!

Successful verification is a result of many ingredients coming

together [4]. These ingredients are all part of a large jigsaw

“puzzle” as can be seen from figure 1.2. Any successful ASIC

design effort can be attributed to the following:

1. People factors which make an enormous impact on the

project.

2. Methodology used to verify the device.

12 An Introduction to IC Verification

3. The tools used during the verification effort.

4. The workflow used during the verification effort.

5. The verification plan which describes the details of the ver-

ification effort, the tests run on the design and the results

thereof.

Conclusions

This chapter presented an introduction to verification. Vari-

ous aspects of verification were considered and it is apparent

that the verification activity is a multi-faceted complex activ-

ity which is crucial to a successful ASIC design. Functional

verification by large is one of the most challenging areas of IC

design verification with significant research and product devel-

opment occurring to address the challenges posed by the ever

increasing complexity of the current generation of designs.

In the chapters that follow, various aspects of functional veri-

fication are discussed along with some examples.

References and Additional reading

[1] Dennis Howe. The free online dictionary of computing. 1993.

[2] Todd Austin. Building buggy chips that work! Presentation from the

Advanced Computer Lab, 2001.

[3] Brian Bailey. The wake the sleeping giant-verification. www.mentor.

com, 2002.

[4] Brian Bailey. Verification strategies - the right strategy for you. www.

mentor.com, 2002.

of

Chapter 2

APPROACHES TO VERIFICATION
Different Ways of Reaching the Goal

The previous chapter described the need for verification along

with an exploration of the ASIC design process. A brief de-

scription of the various factors that affect the verification effort

was also presented. In this chapter, basic verification principles

as well as some common verification approaches are discussed.

The approach to the verification activity is just as important as

the tools that are used to accomplish the job. Verification too

is undergoing a process of rapid evolution. The tools that are

used by the industry are improving at a rapid pace.

Since the early days of the semiconductor industry, the com-Complexity will

only go up plexity of the device under test has been steadily increasing.

Along with the complexity, the risk of a single corner case

bug that may cripple the company is also increasing. Various

processes, tools, and techniques are used to counter this com-

plexity challenge that is present in the industry today.

The cost of failure is rapidly becoming one of the most impor-

tant issues in the semiconductor industry today. It has become

apparent that no single tool, language, or approach can easily

provide all the required features to create and manage a ver-

ification activity. The current verification environment today

typically uses a multitude of scripts and languages to accom-

plish the task of verification. In addition, almost all verifica-

tion environments today use some combination of approaches

13

14 Approaches to Verification

to achieve the goal of a successful tapeout. While there’s no

magic solution to the question of choosing one approach over

another, it is noted that any art form is usually made up of a

few principles and many techniques!

The various types of tools along with their description and oper-

ation can be easily found by the reader in a variety of literature.

Hence, the author has chosen to concentrate on offering an in-

troduction to various approaches to functional verification in

this chapter. The pro’s and con’s of each approach are also pre-

sented in this chapter. In addition, references are provided to

allow the reader to pursue in depth the approach of their choice.

The approaches may also be combined as needed by the reader

to suit the needs of the particular device under verification.

2.1 What is Functional Verification all About?

In the previous chapter it was observed that the design pro-

cess transforms the specification of the device into an imple-

mentation as understood by the designers. On the other hand,

verification is the process of ensuring that the transformation

created by the designers is indeed an accurate representation

of the specification. In Janick’s book [18], he refers to this as a

reconvergence model

cally in the figure below.

During the process of implementation, a human typically reads

and understands the specification and then creates some RTL

code that is then transformed into the design. During this

tion. It is not typically possible to take out the human factor as

there are many things in this process which are not well defined.

The process of verification could be primarily accomplished by

placing the device under test in a testbench and then applying

some vectors to the design to ensure that the design does in-

deed meet the specification. The testbench takes over the task

of applying inputs to the design and setting it up in a known

configuration. Various input vectors are applied to the design

to ensure that the response is as expected by means of tests that

transformation process, there is no doubt the possibility of

misinterpretation or omissions of some aspects of the specifica-

“ ” Such a process is shown diagrammati-

What is Functional Verification all About? 15

Specification

Implementation

Design

Process

Verification

Process

Figure 2.1. Verification versus Design

are run using the testbench. In addition to the device under

test, various other modules which check the output of the de-

vice or observe some signals of the device under test may also

be instantiated in the testbench. The checkers could perform

various functions in the testbench. For instance, some check-

ers may check for a protocol on the inputs and outputs of the

device. Monitors perform an additional function of watching

the I/O or some specific busses in the device under test.

There are a variety of considerations when writing a testbench.

These considerations are very well addressed in [18]. Some

considerations on developing a testbench may also be found in

the chapter Cutting the ties that bind .“ ”

16 Approaches to Verification

Drivers

Bus

Functional

Models

Checkers and

Monitors

Clock and reset

and other

circuitry

Test Bench

Device Under

 test

Figure 2.2. Black Box Verification

2.2 Stimulating the design - A choice of approaches

In the previous section, the basic concept of a testbench was

addressed. The method of generating stimuli for the tests can

be classified into three basic methods. These are:

The black box method

The white box method

The gray box method

2.2.1 Black Box Approach

In this approach, the design to be tested is verified without hav-

ing any knowledge of the details of the design. The verification

activity is carried out using the external interfaces of the design.

No information about the specific internal implementation is

considered during testing from this approach. Stimuli are ap-

plied to the external inputs of the design and the response is

observed on the output of the design. The pass and fail criteria

for the design is determined by looking at the response for a

certain input from the design and determining the correctness

of the response for a certain input.

Black Box Approach 17

An example: In the figure 2.2, a simple SONET overhead pro-

cessor is shown as a device under test in a testbench. The

testbench is designed to drive the inputs of the device. The

outputs of the device are collected by the testbench and pro-

cessed to ensure that the device under test is actually able to

implement the SONET frames correctly. Various error and dis-

turbance conditions are injected into the device from the inputs

and the response of the device is observed at the output of the

device.

The black box approach is hampered by a significant lack ofThis approach

suffers from an

inherent limitation.
visibility and controllability. It is a large challenge to isolate

where the problem is when a test fails since there is not much

known about the design. It is only possible to determine that

a specific test for the design either passed or failed. If there is

a failure, one is hard pressed to determine exactly where the

problem in the device is. It is also very difficult to use this ap-

proach to test some low level features buried deep in the design.

Black box verification techniques are not particularly well suited

for doing block level implementation. The reason for this is

somewhat obvious in that it becomes difficult to reach all of

the interesting corner cases when nothing is known about the

implementation methodology. If this information is known, it

becomes much easier to write very specific tests to target the

corner case behavior.

Many a time, the design that is created may need to conform toConfor-

mance/standards

testing use this

approach.

certain standards. Under these conditions, a specific standard

input is provided to the design and the response is observed.

fication if the design produces the appropriate output for the

specified inputs.

Black box verification finds favor use when the design under

test is created to conform to some specific industry standards

(As indicated, a SONET processor as shown above, an Ether-

net MAC) etc. Larger subsystems comprising of many ASICS

also tend to use the black box approach to ensure that the design

does indeed meet the intent of the specification.

As can be observed, the black box approach does not containTests using a black

box approach lend

themselves to reuse
any design specific information in the tests. As a result, it now

becomes possible to reuse the tests (albeit with some modifi-

The design is deemed to have captured the intent of the speci-

cations or abstractions) over a range of devices.

18 Approaches to Verification

2.2.2 White Box Approach

The white box testing on the other hand implies that there is

detailed knowledge of the design. There is knowledge of the

internal workings, hierarchy, signals etc. As a result, the tests

are written to test very low level details of the design. The

figure 2.3 gives an example of such an approach.

In the figure, the details of the arbitration algorithm, the cache

replacement algorithm and state machine are all exposed to the

verification engineer. The engineer writes tests with full visi-

bility of the design.

Detailed knowledge of the design makes it easier to ensureThe tests developed

make use of design

knowledge
that various low level details of the design are indeed operating

satisfactorily as indicated. In addition it is now possible to en-

sure that each and every component in the design is completely

exercised. As a consequence, the verification engineer could

help the design engineer find bugs more quickly.

Since the tests make use of extensive design knowledge, reuseReuse is now more

challenging with

this approach
of the tests is a little more difficult since another design that

attempts to reuse the same test may not have the same design

features as the original design.

2.2.3 Gray Box Approach

The black box and the white box approaches both have some

inherent advantages and disadvantages. The white box testing

approach can then be combined with the black box approach so

that a combination can be created with the advantages of both

the white and black box approaches.

This middle ground is referred to as gray box verification. In

this style we know about the general architecture of the so-

lution. There is limited access to intermediate points,Which

are usually inter block communication, and protocol compli-

ance. There is ample opportunity to inject communications

Verification Approaches Based on Integration 19

Drivers

Bus

Functional

Models

Checkers Monitors

Clock and reset

and other

circuitry

Test Bench

Device Under

verification

Figure 2.3. White and Gray Box testing approaches

cated monitors for these protocols can be inserted and in some

cases may inject additional traffic in order to help verification

throughput or congestion behaviors.

2.3 Verification Approaches Based on Integration

The earlier sections described various approaches to verify the

design. In this section, various levels of integration are ex-

plored. As the reader will observe, with rising levels of inte-

gration, there is a corresponding rise in the level of abstraction

in the test and the environment. This section is intended to help

the reader visualize the use of various approaches in verifying

a hypothetical device.

In the first chapter of this book, an example device of a cam-

era ASIC was introduced. In the figure 2.4 a camera ASIC1

is indicated. This device has many components including a

camera interface, a MPEG module, a RAM memory interface,

a memory card interface and a battery monitor interface along

1Similarity with the specifics of a company’s product is purely coincidental and unin-

tended!

between smaller blocks, standard protocols predominate. Dedi-

with other signal processing modules as shown in the figure 2.4.

20 Approaches to Verification

(Note: In the sections that follow, the term Device Under Test

is abbreviated to DUT for reasons of brevity.)

It can be observed from the figure 2.4 that it is impossible to

verify the camera ASIC at only the chip level. The device is

very complex and it becomes very difficult to create tests that

may exercise the memory interface or the CPU completely.

There are various kinds of tests that may also be needed to gain

confidence before taping out the device.

Given the nature of the challenge of verifying the above ASIC,

the verification can be split into efforts based on the level of in-

tegration of the RTL modules. This division follows the design

process naturally and is described in the sections below.

2.3.1 Block Level Verification

The block level verification environment may contain a sin-

gle module of RTL or several small modules grouped together.

In the example indicated above, the camera interface, MPEG

module, RAM memory interface, memory card interface, Bat-

tery monitor etc, are treated as a single blocks.

In this environment, the various inputs and outputs of the mod-

ule are connected to bus functional models. These models

mimic the behavior of the modules that would otherwise be

connected to the DUT. Such an arrangement for the memory

interface block indicated in figure 2.5.

In the block level environment, there is usually considerable

flexibility with regards to the inputs and observability of the

inputs/outputs of the DUT. The tests are a mixture of both

black box and white box approaches and this approach is used

to verify the device very thoroughly before integration into the

larger subsystem blocks of the chip.

Different blocks in the above example have differing needs

in verification. They may require different approaches. For

example:

Block Level Verification 21

Internal Signal Processing Bus

Interface Bus

Bus

interchange

module

DSP

processor

Core 1

DSP

processor

Core 2

Control

CPU

External

Memory

Controller

Battery

I/F

Module

Camera

Interface

Keyboard

I/F

MPEG2

Module

Internal

Flash

Controller

LCD

interface
TO LCD

Chip Boundary

Figure 2.4. Block Diagram of a Complex SOC

22 Approaches to Verification

Bus Functional Models

External Memory

Controller

Memory Model

Block

Level

Testbench

Figure 2.5. Block Level Verification

Various memory interfaces instantiated in a block level

could be tested using a transaction based approach with var-

ious timing and data randomizations applied during testing

of the block.

A software golden model of the CPU available is sometimes

made available from the architects of the device, and a mix-

ture of golden model and instruction driven approaches are

typically used to verify the CPU completely. Coverage

driven verification may also be deployed.

A pre-post processing approach could be used to verify the

MPEG encoder/decoder. The stream fed into the encoder

is sometimes a standard video stream obtained from var-

ious sources. The post processing may determine if the

operations were performed correctly.

The functional coverage of the block and the code coverage of

the block are usually set to have a target of 100% in the block

level verification. There are typically no exceptions or waivers

granted for checking functionality in the block level.

One of the nice things about a block level environment is that

there is usually significant control available to the verification

Sub System Verification 23

engineer. Various scenarios can be created with a ease, and the

run time for the tests is usually very short. This allows for fast

debug turnaround times. For the most part, many of the design

bugs are caught in this phase.

2.3.2 Sub System Verification

In this level of integration, various subsystems are grouped to-

gether and verified for interactions between the blocks. Proper

operation of the subsystem is also verified in this approach.

The subsystem model is usually much larger than the block

level environment. The bus functional models used to mimic

the behavior of the RTL at the block level are now replaced

by actual RTL in this level of integration. The run time for

the simulations is typically longer than that of the block level

verification. It is also more challenging to create very specific

scenarios inside a block compared to the block level environ-

ment. Turn around times for bugs are larger in this level of

integration. Many designer assumptions regarding the nature

of the block interfaces (polarity, protocols, bus width etc) are

usually flushed out in this level.

As seen in figure 2.6, the memory controller, the CPU and the

camera subsystem are made a part of one of the subsystems.

Other subsystems or groupings are also possible, but not indi-

cated here. In some cases, some bus functional models (BFM’s)

are instantiated to mimic the behavior of another subsystem on

the same device.

In this particular example, typical tests at this level could ensure

that the CPU is able to program the memory controller and

the camera block correctly and data from the camera block is

indeed being stored in the RAM external to the device. Various

randomizations on the data patterns, control patterns etc could

be performed. The interactions between the various blocks and

the inter-connectivity of the blocks could also be tested in this

subsystem. Performance of the subsystem may also be verified.

24 Approaches to Verification

`

Internal Signal Processing Bus

Interface Bus

DSP

processor

Core 1

DSP

processor

Core 2

Control

CPU

External

Memory

Controller

Battery

I/F

Module

Camera

Interface

Keyboard

I/F

MPEG2

Module

Internal

Flash

Controller

LCF Bus

Functional

Model

Memory

Model KBD

BFM

Sub System #1

Sub System #2

Figure 2.6. Sub System for ASIC

System Level Verification 25

Camera ASIC

Device under test

External

Memory

Bus Functional

Model

Keyboard Bus Functional

Model

Camera

Model

Battery

Model

Flash memory

model

Figure 2.7. Full Chip Verification

2.3.3 Full Chip Verification

The full chip verification environment consists of the entire

ASIC along with bus functional models driving the various

inputs of the ASIC. The RTL is complete and there are no

bus functional models or missing RTL from the device under

test. The full chip environment is considerably slower than the

module level environment. Full chip tests are also harder to

debug given the size of the design and the slower run times.

Sometimes based on the size of the design the design is re-

gressed/verified using an RTL accelerator. Most of the tests

in this level focus on end to end simulations to ensure that the

entire path through the device is clean and free from bugs. In

the figure 2.7 the entire chip is shown in the verification envi-

ronment

26 Approaches to Verification

2.3.4 System Level Verification

In this level of integration, the RTL for the DUT is instantiated

along with RTL for other ASIC’s that are part of the system.

Proper operation of system behaviour and any system level

assumptions are verified in this level. Application level tests

that exercise the entire system are also run at this level. The

interaction of the software and the hardware is also tested at

this level as is the interaction between the ASICS themselves.

For the most part, the design size is very large. The use of

emulation systems or hardware accelerators is common at this

level of verification since software simulators are hard pressed

to deliver reasonable performance for this level of verification.

In some instances, the system level verification is sometimes

performed using some abstraction for each of the ASICS in

the system. This abstraction usually leads to lower simulation

fication of the system as a whole as well.

2.4 Instruction Driven Verification

Functional verification of devices incorporating a microproces-

sor design has long been one of the most challenging areas in

functional verification. The goal of functional verification is to

achieve maximum confidence in the design. The verification

challenge is compounded by the fact that there is a large veri-

fication state space for the microprocessor.

In this approach, test scenarios are coded using C-code or as-

sembly language. The method of generating instructions varies

with many approaches being adopted. The automatic method

typically uses a generator that has knowledge of the instruction

set architecture of the device under test. This generator may

have other inputs as well (see figure 2.11 also). The generator

then produces a test case or stream that is then used to validate

the device under test.

The manual generation on the other hand is done by a human

who manually crafts a set of test cases to address a particular

scenario which may take a great deal of effort to create using

the random environment. These hand-built test cases typically

requirements. This approach may be used in performance veri-

Instruction Driven Verification 27

Camera ASIC

LCD Display ASIC

Lens Controller

ASIC

Vendor

provided

Memory

Models

USB

Connect

 ASIC

Figure 2.8. System Level Verification

augment the stream that is built using automatic generators or

are used early on in the design process. This flow is depicted

in the figure 2.9

Frequently, the output from this stage is also a memory image

which can be loaded into the simulation world.

The simulation model picks up the image via a memory model

or a bus functional model. The RTL is allowed to run through

the test and execute the instructions in the test. A reference

model or other method determines the correctness of the behav-

ior of the design. During the entire verification process, many

monitors are embedded in the design and in the test generators.

These monitors provide various metrics that are usually used

to determine the quality of the instructions generated.

28 Approaches to Verification

Assemby language

Or C/C++ based test

case

Compiler/Assembler

Executable
Memory image

generation

Reference modelDevice under test

Pass/Fail

Figure 2.9. Instruction Driven Verification

This approach is very popular in microprocessor verification.

There are numerous instances in literature where instruction

driven verification has been deployed to create complex proces-

sors. [1],[2],[3],[4],[5] offer excellent insight into applications

of this approach.

Random Testing 29

2.5 Random Testing

Random testing has gained a lot of popularity in recent times.

In this approach, a test generator generates various scenarios

in a test using randomness to quickly generate a variety of sce-

narios of interest. This approach is different from many other

approaches since the approach relies on a collection of con-

straints to tune the random generator to produce test cases with

scenarios of interest.

A typical random generator may run in parallel to the simu-

lator or generate the data which is processed and fed into the

simulation environment. A typical random generator would

probably take as input, various architectural features for the

device. In addition, the format for the output data along with

various kinds of “knobs” is fed into the generator program.

These “knobs” represent various settings to enable the random

generator to produce the desired output for a given test run.The

random generator then uses a variety of algorithms internally

to come up with a collection of seeds that satisfy the parameters

given to it.

The figure 2.11 depicts a typical random generator. (Many

commercial generators would obviously have more inputs than

this one! This is a conceptual description).

One of the main advantages of random testing is that it now

becomes possible to uncover bugs faster than using directed

tests. However, it must be realized that many a time, the ran-

dom generator may not be in a position to generate specific

random sequences without extensive intervention of the veri-

fication engineer. This could be due to several factors: The

quality of the constraints placed on the random generator, the

random generator itself and the nature of the environment and

support for random test debug.

One important thing that must be noted during the use of ran-

dom generators is that the output of the random generator must

be continuously monitored to make sure that a large state space

is indeed being generated by the random generator.

30 Approaches to Verification

Test Pass

Test case with

random

Constraints

Random

Generator

Testbench

With

Device under test

C
o
v

er
ag

e

M
et

ri
csCollect

Coverage

Metrics

Figure 2.10. Random Testing Principles

Random testing has gained a lot of popularity with many HVL

languages supporting the creation of test cases. A study com-

paring multiple approaches is presented in [18].

2.6 Coverage Driven Verification

With the advent of modern random generation environments,

it has now become possible to use a single test to produce mul-

tiple scenarios to test the device. Coverage driven verification

relies on this property of random stimuli to produce multiple

scenarios automatically from a single seed. The inherent ran-

domness of the process allows the test to uncover corner case

bugs that the designer may not have considered.

Coverage Driven Verification 31

Architectural

features

Data structures in

environment

Constraints

On random

generator

Format for the

test cases

Random generator with

some sort of resolution engine

to resolve the various inputs

Feedback from

test cases

previously run

Bias settings for

the generator
Test case or information feed

into the environment to enable

run of random test case

Figure 2.11. Random Generation for Tests

Coverage driven verification works by collecting coverage data.

This coverage data is accumulated at various coverage points

(as they are frequently called) via assertions or other mecha-

nisms, which are exercised during the running of the test. New

tests are created (either automatically or manually) to modify

the constraints in an attempt to target previously uncovered fea-

tures or scenarios.

A simple block diagram of a coverage driven flow is shown in

the figure 2.12. In the figure, a test case with random stimuli

is used to test the design. A large number of seeds is used to

cover various portions of the state space in the design. Various

coverage monitors are placed in the environment. The infor-
mation from the coverage monitors is then used to generate

more targeted stimuli for the next run.

32 Approaches to Verification

Coverage

Results

Coverage

Results

Analysis

of

Results

Analysis

of

Results

Test Case
Test Case

Random

Generation

Engine

Random

Generation

Engine

Coverage

Complete

Coverage

Complete

Test run in

environment

Test run in

environment

No

Figure 2.12. Coverage Driven Verification

Using functional coverage metrics to ascertain whether a par-

ticular test verified a given feature and feeding that informa-

tion back into the process to determine the next step is termed

coverage-driven verification.

is

quite a bit of literature that covers this emerging and important

topic in verification [1],[6],[7],[8],[9] are also good references

on this topic.

Coverage driven verification has one important advantage, it

helps the verification effort reach functional closure more

A
rapidly than the directed test approach as seen in figure 2.13.

comparative graph of the coverage driven verification versus

the directed test approach is shown in the figure 2.13. There

Transaction Based Verification 33

D
ire

ct
ed

 te
st
s

Coverage

Driven

approach

Time

100 %

%
 v

e
r
if

ie
d

Improvement

Functional closure

Figure 2.13. Coverage Driven Verification’s Effectiveness

2.7 Transaction Based Verification

A transaction is an abstract representation of an activity in the

design. Since the representation is abstract, it becomes possi-

ble that the representation will enable verification of the device

with significantly lesser effort. A block diagram of a transac-

tion based verification environment is provided in the figure

2.14.

Transaction level tests are tests that describe at a high level,There is a layer of

abstraction built

right in
the various transactions that should be executed. The veri-

fication environment transforms these transactions into spe-

cific behaviors that correspond to the proper abstraction level

34 Approaches to Verification

Test case

Macros in the test case

Device under test in testbench

U
ser

I.F

Write

operation

Compare

Operations

Read

Operation

Other

operations

Bus functional

Model to interface with

Device Pins

Transactor

Figure 2.14. Transaction Based Verification

of the model being simulated. The transformations are usu-

ally accomplished using transactors, or bus-functional models

(BFM), which perform these transformations. In the example

of the bus indicated above, the actual details of the operations

performed on the pins of the device are hidden from the user.

The user need not worry about generating the correct protocol

since the transactor will take care of such details.

A typical transactor for a microprocessor bus as indicated in

the diagram may indeed consist of several components. These

are also shown in the Figure 2.14. The user interface layer

provides a method for the user to access the bus and perform

various operations like read,write,compare data etc on the
bus. are various sections inside the transactor whichThere

Transaction Based Verification 35

There is a clean division between the tests in a transactionThere is a

partitioning of the

environment and

the test
ponsible for describing the transactions, while the transactors

are responsible for implementing the transactions for example,

toggling the right pins in the right manner etc. Hence, the envi-

ronment and infrastructure can be enabled to support different

levels of abstraction. Such an approach promotes modularity.

Modularity is an important consideration as the complexity of

of the device increases.

One interesting concept that allows transaction driven verifi-Coverage can be

obtained easily in

this approach
cation to become popular is that all of the benefits of coverage

driven verification to be applied to the generation of transac-

tion descriptors. These descriptors tell the transactor what to

do and may contain a lot of information which could be ran-

domized. Coverage may then be collected easily and analyzed.

Since transaction based verification operates by abstraction, the

power of abstraction can be brought into play. Using some well

defined interfaces between the descriptors and the transactors,

it becomes possible to drive a high level model of the design at

one point and reuse the same for driving an RTL model through

a different, but compatible set of transactors. For example:

Consider the cache subsystem presented in figure 2.15. The

L1, L2 and L3 caches along with a PCI controller are encapsu-

lated as the storage subsystem of a hypothetical device. In this

example, the system controller and external memory are mod-

eled by an another transactor providing interface from the PCI

side to the device under test or alternatively be implemented

as a bus functional model. A transactor interfaces with this

subsystem and allows the user to perform various transactions

to load and store the data in the cache. The state of the cache

and the tags is easily determined by the sequence of operations

performed on the cache by using a simple checker/monitor.

The test may only consist of Load, Store, Cancel, and other

operations performed by the test case. the rest is handled by

the transactor. Since the user interface is simple, various oper-

ations including randomization of the address and data fields is

to a bus functional model which then drives the signals on the

bus and receives the data provided by the device under test.

implement the portions of the user interface and provide inputs

based environment and the environment itself. The test is res-

36 Approaches to Verification

System

Controller
Memory

PCI Bus interface module

Level 3 Cache controller
External L3

memory

Level 2 Cache controller and Memory

Level 1 Cache controller and memory

Transactor

Test case

L1, L2 and L3 Cache Subsystem

Figure 2.15. Example of Transaction Verification in a Cache

Advantages of a Golden Model 37

usually performed. Collection of coverage metrics is also very

easy in this approach.

There are some good references on the subject of transaction

based verification[2],[10]. Some commercial tools also deploy

the transaction methodology as part of their offerings[14].

2.8 Golden Model Approach

The golden model approach typically uses a reference model

to determine the pass or failure of a test. A test sequence is

passed through the RTL and the reference model as well. The

results from the golden model and the simulation are compared

with one another at some predetermined points. The pass or

fail of the test is determined by the fact that the results from the

golden model and the design are in complete agreement. The

figure 2.16 indicates a typical flow using a golden model.

One of the nice things about a golden model approach is thatStable specification

is ensured all the details of the specification are completely hashed out as

the golden model is built. Every single detail is exposed to the

model building process and issues are sorted out. This allows

the implementation phase to be a little easier.

Since issues with the specification typically wind up holdingSpecification must

be clarified

immediately
up the golden model development, it becomes imperative that

any questions in the specification must be clarified as soon as

possible.

2.8.1 Advantages of a Golden Model

Since there is now some sort of a checking mechanism thatAutomated

verification is a

possibility
ensures the correctness of the device behavior, it now becomes

possible for some sort of an automated checking mechanism to

be used to determine the correctness of the device under test.

This leads to the concept of running random regressions with

random seeds and only looking at the tests that failed!

38 Approaches to Verification

Test case

Equivalent?

RTL Golden Model

NoYes

Pass Fail

Figure 2.16. Golden Model Approach

Another nice thing about golden models is that it allows the userDefects are

identified

immediately
to identify defects immediately. The failure detection happens

at the point of failure since there is a mismatch.

2.8.2 Disadvantages of using a Golden Model

The biggest concern with a golden model approach is that theReference is to be

modeled model needs to be built. Many a time, this time consuming

process in some organizations may take many months to com-

plete. The model development activity can sometimes be as

large as the RTL development activity.

Pre-Post Processing Approach 39

Creation of the golden model requires some work. Depend-Initial effort is

higher ing on the initial size and complexity, the golden model could

take a lot of time as mentioned earlier. In addition to the golden

model development, the verification environment has to be cre-

ated with the right “hooks” to be able to take advantage of the

golden model.

In some circumstances, the entire device may not be available as

a golden model. Only a portion of the device may be available.

For the other portions, a different approach will be needed.

In addition, golden models come in all shapes, sizes and pack-

ages. Some of the models are transaction accurate, some others

may be cycle accurate, and others accurate for a specific set of

inputs and outputs. It all depends on what is available in the

time frame allotted to the design of the device and what is avail-

able from the golden model.

Another major issue is that the golden model too has the possi-Bugs!

bility of bugs. A failure that is not flagged does not imply that

no error exists. If the specification changes significantly, then

a major rework of the golden model is in order. The golden

model also needs to go through regressions using test cases that

are created to verify the correctness of the golden model before

it is completely usable. The presence of a golden model also

implies that some verification environment needs to be built

around the golden model to make sure that the error evaluation

and reporting happens at the appropriate time.

There has been considerable debate on the pros and cons of a

reference golden model. However, as discussed earlier, there

is a significant advantage in using a golden model for parts of

the design if it were available. It does speed up verification

significantly.

2.9 Pre-Post Processing Approach

Pre-Post processing approaches have found application where

there is some sort of a complicated program or algorithm that

makes it challenging to set up a self checking simulation.

40 Approaches to Verification

Test Case

Device under test and testbench

O
u
tp

u
t

D
at

a

In
p

u
t

D
at

a

Post processing script

Pass/Fail

Pass test Test fail

Pre processing script

Log files and other data

Figure 2.17. Pre-Post Processing Approach

Assertion Based Verification 41

In this approach, a script or a program generates input data

based on some input constraints and saves the data in a file.

This data could be data which is marked using timestamps or

other information as well. The testbench reads the data from

the file and then feeds it to the device under test. The test bench

may also choose to perform some other operations on the de-

sign when the data from the file is being read in. The data from

the device under test which is collected by the test bench is then

saved in another file. A script is then run on the collected data

and a pass or fail is determined by the post processing program.

This approach works well for data driven types of testing. TheThis might be a

good approach in

some cases
other advantage of this approach is that there is the possibility

of the use of a standardized third party program to help with the

data analysis. (Standards compliance etc.) In many circum-

stances, the post processing script is an expensive program in

terms of cost/license. The pre-post processing approach allows

the optimal use of the licenses of such programs since only a

small number of licenses are needed for the verification envi-

ronment.

In some organizations, this approach is called as a “Store-Real time failure

detection is a

challenge in this

approach

replay” approach.The approach seems to work well in situa-

tions where there is Black Box testing approach being adopted.

(Standards compliance or similar situations) One of the main

disadvantages of this approach is that feedback in the test bench

is not real-time. IE: The test or the test bench cannot determine

and terminate the test at the point of failure. This is due to the

inherent limitation that the failure metrics are outside the test

bench. Hence, if a test is a long one, and the failure happens

early on in the test, the entire run is wasted. However, other

monitors and checkers may help alleviate this issue.

The author has successfully used this approach in a couple

of organizations when the device under test had some very

complex frames. The post processing program was a third

party tool that did lend itself to co-simulation. However, we

chose this approach since the licensing requirements for the

analysis tool was kept at a minimum.

42 Approaches to Verification

Microprocessor
MP3

decoder

SDRAM

Controller

System Bus

Digital

Video Unit

Custom

Properties

Arbitration

Proof

Bus

Arbitration

Custom

Assertions

SDRAM

Bus monitor

System Bus

Monitor

Figure 2.18. Assertion Based Verification

2.10 Assertion Based Verification

One of the newer methodologies that has found adoption re-

cently is assertion based verification. This methodology uses

assertions embedded into various portions of the design to help

speed up the verification process.

An assertion is concise description of a complex or expected

behavior. Assertions can be specified using specification lan-

guages like PSL or using OVL modules,SVA or other approaches.

Many vendors have their proprietary formats as well.

Assertion based verification makes use of a library of asser-

tions that are embedded in the design. This library has a few

Assertion Based Verification 43

components that make the library easy to use. Simulation is

then carried out with the assertions which trigger based on their

inputs. Hence, considerable value is rapidly provided with lit-

tle or low effort. Coverage metrics using assertions can also be

realized in this approach. This methodology has an advantage

in that it works all the way from block level through to chip

and system level.

There are many ways to use assertion based verification in

HDL. Many vendors support different flows in assertion based

verification. Some of the common approaches are:

Development of assertion IP in HDL and then plug them into

the HDL design. For example: (CheckerWave library),0-In

Develop language to write assertions, provide interfacing

with design. For example: PSL(sugar)[11], TNI-Valiosys.

Assertion modules are written in in existing HDL and then

instantiated into the design. For example: OVL (Verplex

BlackTie UDC)[12].

Extend existing high level verification language for intro-

Extend language to provide assertion capability in itself.

For example: System Verilog(SVA).

Since the assertions are placed in the RTL, it becomes possible

to deploy the same assertions for formal verification. Overall

benefits of using assertion monitors are outlined below:

Provides higher abstraction for more visibility in dynamic

simulations.

Simplifies the diagnosis and detection of bugs (if placed

closer to ‘potential’ origin of the bug)

Increased coverage of the design.

Assertions can be used in many places. A brief diagram which

indicates where the assertions are possible is shown in the figure

2.18. The list presented below is not an exhaustive list

Protocol checker assertions help ensure that the protocol of

the bus is not violated.

Arbitration assertions make sure that the bus is arbitrated

for properly and any improper decisions are flagged.

ducing lower level assertions. For example: OVA(Synopsys).

44 Approaches to Verification

Block Structure

Assertions
Block Design & Test

Block Intg. & Test
Block Interface

Assertions
Block Requirements

Architectural

Assertions
System Architecture System Intg. & Test

System Design System Acceptance

Test

Plan

Designers

Verification

Engineers

System

Architects

Figure 2.19. Assertion Methodology Flow

Custom assertions deep in the design ensure proper opera-

tion of the module.

Specific properties of the designs to be proved by assertions

Some assertions also act as gates or constraints helping in-

valid inputs from being presented to the design.

2.10.1 Assertions - Who writes them and
when?

Architects can use assertions to describe high level relation-Architects

ships. These relationships could describe events that ensure

system level behavior or ensure system-level consistency. The

architects can use the assertions to ensure that the assumptions

that they made when they designed the system are not violated

when the system is designed.

Design Engineers on the other hand are left with the task ofDesign Engineers

ensuring that the design is implemented. The assertions can

Advantages of an Assertion Based Methodology 45

be used to capture design understanding as well as interface

assumptions that they make when they create the design. Any

specific corner cases can also be captured by the designer. As-

sertions must capture designer’s understanding for any specific

implementation intentions or restrictions.

Verification Engineers are concerned on the correctness of theVerification

Engineers design. The assertions can be used in test benches or as early

warning indicators. Assertions can also serve double duty for

coverage monitors or as checkers. In addition, assertions can

fication.

The various levels at which assertions can be used is presented

in the figure 2.19.

2.10.2 Types of Assertions

Assertions have both a combinatorial flavor as well as a tempo-

ral flavor [13]. This is what makes them extremely attractive

to deployment.

Static assertions must always hold true. They don’t have anyStatic assertions

time related properties and must be true for all time. For ex-

ample: Signals A and B cannot be different at the same time

as shown in 2.20. These assertions usually have some sort of

combinatorial logic associated with them. They are evaluated

all the time.

Temporal assertions on the other hand are valid at specific timeTemporal

assertions instances in the design.They are triggered by the occurrence of

some specific event in the design. Temporal assertions act over

a period of time. For example: After signal A is true, then

signal B must be asserted 1-3 clocks later. This is indicated in

figure 2.21.

2.10.3 Advantages of an Assertion Based
Methodology

Using assertions in the methodology enables formal verifica-Exhaustive

block/module level

testing
tion. It becomes possible to formally verify the block or module

“

”

serve as properties to be proved or as constraints in formal veri-

46 Approaches to Verification

Assertion:

If A is True, B must also be true.

Assertion will fail

here.

A

B

Figure 2.20. Static Assertions Example

`
A

B

Assertion:

If A is True, B must be false within 5 clock cycles.

Time

Figure 2.21. Temporal Assertions

level using available approaches. A formal analysis tool can

use the assertions and determine statically if the design does

indeed meet the constraints and properties specified by the as-

sertions.

Advantages of an Assertion Based Methodology 47

Block/system level integration of designs that use assertionsInterface or

Protocol

compliance check

(integration)

is greatly simplified since the assertions typically help ensure

that the interface is indeed operating correctly and valid inputs

are available to the module that is being integrated.

Assertions when properly placed can give a good indication ofReduced debug time

where the problem is. Properly coded assertions with appropri-

ate messaging can be used by the test environment to terminate

the test as soon as a failure occurs by detecting messages in a

log file.

Another important aspect of verification using assertions is thatIncreased

confidence in the

design
it helps to ensure that the intent of the design is met at multiple

levels. At the architectural level, the assertions ensure that the

high level goals are met. At the design level, assertions help

ensure that the intent of the designer is met. The verification

assertions help to identify problems quickly.

Once the assertions are inserted into the design, they are presentAlways there

in the design for the lifetime of the design. The assertions will

be present even if the design is reused in another project. Hence,

it becomes possible to communicate the designer intent to other

project members who may work on the design later.

One of the biggest advantages of instrumenting a design withSelf documentation

assertions is that the code is now effectively self-documented.

This is particularly important as the code evolves through the

design cycle. The code is now portable to some other project.

The code is explicit and contains all the assumptions and de-

signer’s intentions. It becomes easier to read and understand

well documented code.

Assertion based verification brings together design and veri-Simulation with

assertions fication to improve both the code and the verification process.

By adding assertions during the coding phase, designers get

value throughout the process of design, integration, and full

device simulation.

One major design team reported recently that assertions used

throughout the design cycle could be credited for finding the

majority of bugs not found by other techniques.

48 Approaches to Verification

2.10.4 Challenges with an Assertion Based
Methodology

Many designers may feel that the assertion based methodologyNot all designers

want to use

assertions
may not buy much in terms of advantages. Many of them also

feel an additional workload that is imposed on them in the face

of already tight schedules.

Many a time, the designer is left to debug an assertion that failsDesigners who

experience

assertions believe it

is a waste of time

when a simulation is run. Often the designer may discover that

the failure is due to an incorrect coding of the assertions. Many

designers also feel that the maintenance of assertions is also an

issue. One concern is that defective assertions will repeatedly

fail in the design. The assertions for the feature being verified

could be wrong, or incorrectly written. In either case, signifi-

cant verification time is wasted.

Another challenge is the question of the number of assertionsHow many

assertions are

sufficient in a

design ?

in the design. It is crucial to ensure that every assertion ‘pays

for itself’ in terms of the number of bugs found as a result of

the assertion being present in the design. Adding excessive

assertions quickly becomes a counterproductive effort. Hence

a balance must be struck between the number of assertions and

the quality of the assertions in the design. A method of deriving

the important assertions is presented in the chapter Putting it

all together.

Due care must be exercised when using assertions since theDanger of

simulation vs.

silicon mismatch if

’checker’ code not

between ’synthesis

translate on/off

directives

checks that may contain synthesizable code as part of the as-

sertion itself. This is particularly true of assertions developed

in Verilog, VHDL or the assertion library OVL.Potential for

a problem exists if the code for the assertion is accidentally

rendered on silicon if some additional glue code were to be

developed to help insert the assertion in the design.

Assertions are still a new methodology from recent times. ANeed mature tools

and methodology to

proliferate its use
number of approaches are being developed to use the full power

of assertions. A variety of homegrown tools are required to be

able to mine data from assertions.

“ ”

Formal Verification 49

Assertion based methodologies have gained a lot of importance

in recent times. There is quite a bit of literature now available

on this topic as evidenced in [11], [13], [14], [15], [16], [17].

2.11 Formal Verification

Formal verification is an emerging technology in recent days

that has helps to verify designs rapidly. Formal proving en-

gines have existed for many years; However, their application

to solve functional verification challenges is recent.

The focus of the formal verification methodology is primarily

to ensure that the intent of the design is met using assertions that

are embedded in the design and test environments. It focuses

on proving that the designs architectural and structural intent

are completely proved using a mathematical process rather than

a simulation based approach where test cases are driven on the

design. Formal verification is a complete mathematical proof.

Formal verification in the author’s classification is an exten-

sion of the Assertion Based Methodology presented in the pre-

vious section. Formal verification attempts to prove that the

assertions embedded in the design can never be violated or

alternatively finds a a stimulus sequence that violates the as-

sertion. This violation is termed as a counter-example . If

neither proof or counter-example can be found then assertion

is termed to be indeterminate in the formal approach.

One of the main advantages of a formal tool is that it does

not need an extensive amount of verification knowledge and

provides results rapidly. The tools do not need extensive test

benches and lend themselves well to (block)/module level ver-

ification. The designer can add assertions to the design to

verify design intent and formally prove that his assertions are

true. The tool proves either that the assertions are correct or

provide a counter example stating where the assertions fail.

“ ”

“ ”

50 Approaches to Verification

Formal verification is typically classified into two areas.

Static Checking

Dynamic Checking

Static checking uses mathematical techniques used to proveStatic formal

verification an assertion or property of the design. It is an exhaustive ap-

proach for complete logic analysis and coverage. A formal

verification tool reads in the assertions and the design and at-

tempts to completely prove the assertions. There is however

a capacity problem with the current generation of tools which

must be addressed. This capacity problem is currently posing

some challenges to deployment of these tools.

Dynamic formal verification on the other hand uses static ca-Dynamic formal

verification pabilities as well as simulation. This approach attempts to

supplement simulation results based on bounded model check-

ing (BMC) algorithms that amplify existing simulation tests for

generating counter-examples.

Simulation with assertions exposes bugs that are stimulated by

existing diagnostic tests as the assertions are run in simula-

tion in addition to running in the formal tool. Dynamic formal

verification with partial constraints quickly finds bugs by lever-

aging simulation results.

Deep Dynamic formal simulation is a third method that hasDeep Dynamic

Formal simulation come about recently. It is similar to dynamic formal verifi-

cation and targets finding counter-examples . However, it

is based on ultra-fast BMC or similar algorithms, with much

larger proof radius and is said to be capable of verifying very

large designs.

“ ”

Model Checking 51

Model and

property

checker

Equivalence

decision

Counter

example

Pass

Design

Implementation

Model

representation

Figure 2.22. Formal Verification Model Checking Approach

2.11.1 Model Checking

Inthe model checking approach, The design intent is expressed

in terms of formal properties. A formal check verifies whether

the implementation satisfies these properties. If this indeed

true, the checker reports success, otherwise it produces a counter-

example. Such an approach is shown in the figure 2.22

There are several challenges to using property checking. How-

ever, when compared to the simulation world, the behavior is

exhaustively verified in a formal verification approach. There

is a mathematical representation of the specification created

in a formal approach which is then verified against the con-

straints and properties. However, promising as it may appear,

the formal approach today quickly runs into capacity and other

challenges as defined under the following broad categories.

52 Approaches to Verification

Syntax and semantics of property specification languages.

The ability to express the intent in terms of formal proper-

ties.

The ability to completely specify everything in terms of

formal properties.

The ability to verify whether it is possible to verify every

property that is developed.

and so on. A detailed discussion of how to generate the neces-

sary and complete criterion is addressed in the chapter Putting

it all together.

2.11.2 A Comparison of Simulation and
Formal approaches

Formal verification is a bit of a paradigm shift for verification

engineers. There is no concept of a test bench and the standard

well known metrics like code coverage and functional coverage

do not exist. The capacity of the current crop of tools limits

their deployment to being used at the module level. Neverthe-

less, the ability of being able to verify a state space completely

very quickly offers a significant advantage over conventional

approaches and must be considered appropriately as a part of

the verification arsenal.

Simulation has traditionally been the workhorse of the verifica-

tion effort. The design under test is integrated into an environ-

ment which then passes a variety of vectors through the design.

Over a a period of time, there have been various metrics that

have evolved to help gauge the state of the verification effort.

Nowadays, designs instantiate assertions as part of the design

and use the same in the formal verification approach. There

are many languages today that can be used to describe the as-

sertions based on the readers choice and environment used to

design and verify the device. In recent past, there have been

several developments in the field of formal and advanced hybrid

functional verification. This is well evidenced by the current

state of the art. Formal tool research of date focuses mostly

on a couple of main thrust areas: The capacity of the formal

Emulation and Acceleration 53

engine by means of various algorithms and the concept of in-

tent where the level of abstraction is raised and the intent of

the designer is proven.

Unfortunately, both these approaches described above are plag-

ued by their inability to handle a large design. Varying results

have been reported at various companies which have used a

variety of techniques to enhance the size of the design that can

be handled by the formal tool. It is observed that depending on

the coding style used and the number of gates that are inferred,

the tool rapidly approaches a capacity limit. When this occurs,

the tool typically results in an inconclusive report detailing

the progress and results the tool was able to achieve.

However, inconclusive reports have very little meaning to the

user of the tool. Such results are effectively imply that there

is the need for extensive work on the part of the user to either

prove the assertions somehow or abandon the effort in favor of

a different approach. There is no counter example in this case.

Currently, most research is in enhancing the capacity of the

tool and its usability, Many flavors of formal verification tools

are available in the market nowadays with different capabilities

and approaches.Many companies now use formal verification

at some level to help verify their designs.

On the other hand, simulation based approaches which are well

known today suffer from other issues of their own. Extensive

time is usually invested in simulation, test development and

debug. The environment does allow engineers to think in a

serial fashion and allows progress to be made albeit slowly.

Simulation provides coverage and other metrics which act as

confidence building measures before taping out a design. In

spite of these advantages, it is hard to prove complete verifica-

tion of anything. One relies on metrics to determine closure.

The choice of an approach is therefore determined by a variety

of factors including the size of the design amongst other factors

described elsewhere in this book.

“

”

“ ”

“ ”

54 Approaches to Verification

2.12 Emulation and Acceleration

Given that design complexity is rapidly increasing, there is now

the need to be able to simulate RTL rapidly and ensure that the

hardware-software interface is indeed working as designed in

contemporary designs.

With the rising complexity of contemporary devices, it is now

a challenge to use a software based simulator to provide the

throughput required to run some large applications on the RTL

design.

This section provides a brief description of the various em-

ulation and acceleration related technologies. While emula-

tion/acceleration may not qualify as an approach to verification,

the description below is provided in the hope that the verifica-

tion engineer may use this to speed up simulations by adapting

to the flows presented by these technologies.Emulation and Ac-

celeration are two distinct technologies as described below.

Emulation maps the design into a device that speeds up theEmulation

RTL simulation by running the design on some specialized

hardware. A software-hardware interface is built onto this sys-

tem allowing the user some flexibility as well.

Acceleration On the other hand compiles the design into a ex-Acceleration

ecutable which is run on a specially designed CPU. This ap-

proach offers greater performance over conventional software

simulations run on general purpose microprocessors. Similar

to the previous approach, a software-hardware interface is built

onto this system allowing the user some flexibility as well.

The basic flow for both approaches is shown in the figure 2.23.

The RTL and the testbench for the device are both compiled

into a format that is acceptable to the emulation device. This

compilation happens via software that accompanies the emula-

tor. The compiled netlist is then downloaded into the emulator.

Tests are then run on the emulator which acts as a very fast

simulator.

Emulation and Acceleration 55

RTL design

Compilation of the design into the emulator/accelerator

hardware

Testbench and other probes

needed to debug design

Transfer of design to emulator and

Running of the test cases on emulation platform

Analysis of results of

run from emulation/

acceleration

Figure 2.23. Emulation/Acceleration flow

Hardware accelerators of this kind typically are made up of aFPGA based

emulators collection of FPGA devices that are built into some sort of a

matrix. The compilation software maps the RTL design into

many FPGA’s and partitions the design so that the design will

fit on the FPGA’s in the system. Speeds of a few megahertz are

reported on such systems.

Processor based devices on the other hand have one or moreProcessor based

accelerators processors which are hooked up into a special configuration.

56 Approaches to Verification

Software compiles the RTL and the testbench into a set of spe-

cial instructions that are handled by the processor. Significant

acceleration is achieved over a conventional software based

simulation.

There are several considerations when using a emulator or an

accelerator. These primarily involve the accessing of signals

deep in the design. Some emulation devices may need recom-

piling of the design if the verification engineer would like to

probe additional signals. Visibility into the design is available,

though at a certain cost. These devices are also very expensive

and hence are justified only when there is a strong need to have

accelerated performance from simulation.

Some other approaches taken by companies include placing

a portion of the design onto an FPGA or a group of FPGA’s

which have been linked together on a single board or multiple

boards. The design is then verified and any changes required

to get the system or design operational are made to the design.

Conclusions

Various approaches to verification were presented in this chap-

ter. The number of designs that are present today are very

varied in type and complexity. Sometimes, more than one ap-

proach is used to verify a device as was indicated in the exam-

ple. Given the nature of the verification challenge, the choice

of approaches is governed by many factors. It is hoped that

the overview presented above allows the reader to identify the

approach required to verify the design appropriately.

57

References and Additional reading

[1] Benjamin, Mike, Geist, Daniel, Hartman, Alan, Mas, Gerard, Smeets,

Ralph, and Wolfsthal, Yaron (1999). A study in coverage-driven test

generation. In DAC ’99: Proceedings of the 36th ACM/IEEE conference

on Design automation, pages 970–975, New York, NY, USA. ACM

Press.

[2] Brahme, Dhananjay S., Cox, Steven, Gallo, Jim, Glasser, Mark, Grund-

mann, William, Ip, C. Norris, Paulsen, William, Pierce, John L., Rose,

John, Shea, Dean, and Whiting, Karl (2000). The transaction based

methodology. Cadence Berkeley Labs, Technical Report # CDNL-TR-

2000-0825, San jose, California, United States.

[3] Bentley, Bob (2001). Validating the Intel Pentium 4 Microprocessor. In

DAC ’01: Proceedings of the 38th conference on Design automation,

pages 244–248, New York, NY, USA. ACM Press.

[4] Lee, Richard and Tsien, Benjamin (2001). Pre-silicon verification of

the Alpha 21364 microprocessor error handling system. In DAC ’01:

Proceedings of the 38th conference on Design automation, pages 822–

827, New York, NY, USA. ACM Press.

[5] Malley, Charles H. and Dieudonn, Max (1995). Logic verification

methodology for PowerPC microprocessors. In DAC ’95: Proceed-

ings of the 32nd ACM/IEEE conference on Design automation, pages

234–240, New York, NY, USA. ACM Press.

[6] Grinwald, Raanan, Harel, Eran, Orgad, Michael, Ur, Shmuel, and Ziv,

Avi (1998). User defined coverage - a tool supported methodology for

design verification. In DAC ’98: Proceedings of the 35th annual con-

ference on Design automation, pages 158–163, New York, NY, USA.

ACM Press.

[7] Ho, Richard C. and Horowitz, Mark A. (1996). Validation coverage

analysis for complex digital designs. In ICCAD ’96: Proceedings of the

1996 IEEE/ACM international conference on Computer-aided design,

pages 146–151, Washington, DC, USA. IEEE Computer Society.

[8] Lachish, Oded, Marcus, Eitan, Ur, Shmuel, and Ziv, Avi (2002). Hole

analysis for functional coverage data. In DAC ’02: Proceedings of the

39th conference on Design automation, pages 807–812, New York, NY,

USA. ACM Press.

[9] Piziali, Andrew (c2004). Functional verification coverage measure-

ment and analysis. Kluwer Academic Publishers, Boston.

[10] Kudlugi, Murali, Hassoun, Soha, Selvidge, Charles, and Pryor, Duaine

(2001). A transaction-based unified simulation/emulation architecture

References and Additional Reading

58

for functional verification. In DAC ’01: Proceedings of the 38th con-

ference on Design automation, pages 623–628, New York, NY, USA.

ACM Press.

[11] Cohen, Ben, Venkataramanan, Srinivasan, Cohen, Ajeetha Ku-

mari(2004). Using PSL/Sugar for formal and dynamic verification :

guide to property specification language for assertion-based verifica-

tion. vhdlcohen publishing.

[12] Open Verification Library, www.accelera.org. Open Verification Li-

brary.

[13] Foster, Harry, Krolnik, Adam, and Lacey, David (c2003). Assertion-

based design. Kluwer Academic, Boston, MA.

[14] Yeung, Ping (2002). The Four Pillars of Assertion-Based Verification.

www.mentor.com/consulting, San jose, California, United States.

[15] Yeung, Ping (2003). The Role of Assertions in Verification Method-

ologies. www.cadence.com/whitepapers, San jose, California, United

States.

[16] Synopsys Inc(2005). Hybrid formal verification.

and Damiano, Robert (2001). Formal property verification by abstrac-

tion refinement with formal simulation and hybrid engines. In DAC

’01: Proceedings of the 38th conference on Design automation, pages

35–40, New York, NY, USA. ACM Press.

[18] Bartley, Mike G., Galpin, Darren, and Blackmore, Tim (2002). A

comparison of three verification techniques: directed testing, pseudo-

random testing and property checking. In DAC ’02: Proceedings of the

39th conference on Design automation, pages 819–823, New York, NY,

USA whitepaper8001. ACM Press.

[19] (2001). Testbuilder/SystemC verification library. www.testbuilder.net,

San jose, California, United States.

[20] Dr Andreas Dickmann Lessons learnt: system verification methodol-

ogy and Specman e. In ClubV ’03: Proceedings of the Club verification

Europe

[17] Wang, Dong, Jiang, Pei-Hsin, Kukula, James, Zhu, Yunshan, Ma, Tony,

References and Additional Reading

Chapter 3

VERIFICATION WORKFLOW PROCESSES
Various Workflows Practiced in Verification

In this chapter, a brief overview of the various processes that

occur during the verification cycle are presented. Some orga-

nizations follow these processes with some degree of formal-

ism; Other organizations enforce these processes in an informal

manner. These processes vary in terms of detail or the exact

stages from organization to organization. The terminology also

sometimes tends to vary. The principles behind these processes

however,are common to all organizations.

3.1 An Overview of the Entire Verification Process

Today’s complex products in the marketplace are usually a

combination of hardware and software. The products use quite

complex hardware devices along with complex software to

make a product.

The product design process begins with a marketing require-Definition Phase

ments document that describes the requirements of the product.

This document is designed to provide specifications to enable

the product to successfully compete in the marketplace. This

requirement is combined with other technological inputs to

create an architectural specification for the product to be de-

veloped. This is described in the figure 3.1

59

60

This collection of requirements for the product are then broken

down into specific requirements that can be implemented in

software and hardware, keeping in view the long-term product

goals and the current technology used to implement the product.

Subsequent analysis of the hardware requirements specifica-

tion gives rise to the hardware architecture design process. The

hardware architectural description is then created. The hard-

ware architectural specification then is used to create a micro

architectural specification. This specification is then consid-

ered as inputs into the verification planning phase.

The verification planning phase is typically divided into a fewPlanning Phase

phases. The initial planning phase typically gives rise to a

verification plan document. The verification plan document

describes at a high level, the overall approach to the verifi-

cation challenge. The plan also describes the tools used and

the strategies that will be deployed in the course of verification.

The high-level plan is then broken down into checkers and

monitors and test cases and features in the environment as well

as the testbench for the verification of the device. An example

of a plan that is executable and track-able is shared at the end

of this book in the section Putting it all together.

During the initial stages of the RTL development, the verifica-RTL development

and verification tion environment is also developed based on the specification

of the device and the strategies adopted to verify the device.

The RTL and the verification are then run together and various

tests are run on the RTL. During this phase, several bugs in

the RTL and the verification environment are ironed out. The

bugs that are found because of debugging are filed using the

bug filing process that is described later on in this chapter.

As the RTL matures, the verification and the RTL are put

through a regression process to ensure that the design is in-

deed making forward progress. Periodic reviews of the RTL

and the verification code and the test cases ensure that the ver-

ification is indeed on track.

Verification Workflow Processes

An Overview of the Entire Verification Process 61

Environment development process

Architectural Specification

Planning process

Review and signoff process

Regression processes

Test case

development

Environment

Scripts/

Infrastructure

BFM’s Monitors Testbench

Run tests with RTL

Metrics

acceptable?

Bug filing process

RTL development

Review process

Periodic/Milestone

based
Test fail

Tests pass

Microarchitecture

Of device

RTL and Verification

Phase

Architectural

Phase

Planning Phase

Closure Phase

Figure 3.1. Overall View of the Verification Process

62

Completion of the verification plan and attainment of metricsClosure Phase

typically qualify the device for a signoff process. The signoff

process is then used to measure the state of the device and allow

the physical design process to complete and tape out the device.

In a similar manner, The software requirements are then an-

alyzed and a software architectural specification is designed.

Common software design practices which are then used to cre-

ate a software implementation that then is used along with the

hardware.

The pre-silicon environment is used to generate test patterns.

These test patterns are used with test equipment and help cer-

tify that the device was indeed fabricated correctly.

In the section above, a brief description of the various processes

was demonstrated. The detailed description is provided in the

sections that follow.

3.2 The Planning Process

This is typically one of the initial stages of a verification activity.

The process typically helps identify the various features in the

verification environment, the functions tested in the various test

cases etc. It provides a strategy to verify the device under test.

The planning process is typically broken into multiple steps.

The common ones are:

Verification plan creation.

Identification of testbench and monitors etc.

Development of tests.

Assignment of resources and people to complete the task.

Verification plan creation is one of the first steps of verification

planning. The verification environment is distinct and separate

from the test cases. The various components of the environ-

ment are identified. If a re-use strategy is indeed adopted, then

the components that are being reused must be checked for com-

patibility and availability.

Verification Workflow Processes

Some Other Aspects of Verification Planning 63

The test plan is then identified to define the various test cases.

The plan scopes out the size of the verification activity and al-

lows the planner to get a global view of the task. This test plan

must be developed before any test cases are developed.

Before a test plan is written, it would be very useful to collect

the following:

An architectural specification.

Different operating modes of the device.

Kinds of behavior of the device in case of normal or erro-

neous input.

Any specific standards that the device would adhere to.

A list of I/O ports for the design.

Interesting scenarios where the design might not behave

normally!

Applications where the device will be used etc.

The author has always found it useful to obtain feedback from

the designers who know the internals of the DUV implemen-

tation and can help define interesting test cases that may be

missed by the verification engineer. Hence, it is of importance

that they should be involved in the process of defining the test

plan.

3.2.1 Some Other Aspects of Verification
Planning

In many designs , the software-hardware interface is verifiedEmulation and

acceleration using a hardware emulator. Hardware emulators offer the ad-

vantage of being able to run quick regressions of tests. Hard-

ware emulation also needs some up-front work to be done to the

tests and the environment before the tests can be run. Hence,

some analysis must be done in the beginning to determine if

any extra requirements imposed by hardware emulation must

be considered. Many current generation devices now rely ex-

tensively on software. This factor must be taken into account

as well and should be made part of the plan.

64

In addition, the design may simulate well on a 32 bit machineGate simulations

and regressions in RTL simulations. However, the entire GATE netlist may be

too large to fit on a 32 bit machine. Estimations of the design

gate count are usually available early on. Consultations with

the simulation tools vendors usually helps identify any poten-

tial concerns.

Gate regressions also are extremely slow and difficult to debug.

Typically one of the main challenges is the size of the netlist

along with X propogation issues that tend to consume a great

deal of time if not planned for.

The device under verification may also be a mixed mode de-Mixed mode

simulations vice. Many a time, there may be the use of other programs like

MATLAB1 that may be used. There may be the use of refer-

ence data files or associated programs which may need special

licensing or large amount of compute power/disk space. The

appropriate simulators may require special handling or consid-

erations as well.

3.2.2 Verification Resource Planning

Resource planning is a vital step for a successful verification.

The size of a verification task can predict the simulation hard-

ware resources and the needed personnel.

Similarly, the number and complexity of IP’s in an SOC or

other complex device will determine the amount of estimated

regression time, hardware computing resources, and simula-

tion license requirements.

Software may also be a concern. Some specific software may

run on operating systems like HP-UX or Solaris2 or Linux. In

addition to this complexity, the software may run only with

some very specific patches installed and incompatible with the

rest of the compute environment and shared among multiple

projects.

1Matlab is a trademark of The Mathworks Inc
2trademarks: HP-UX belongs to Hewlett Packard, and Solaris belongs to Sun Mi-

crosystems

Verification Workflow Processes

The Regression Process 65

Schedule of large and expensive shared resources may also be

a concern as evidenced in some larger companies. Emulators

and related resources may be shared amongst multiple projects.

The compute farm and associated queues may also be shared

amongst multiple projects requiring detailed planning.

3.3 The Regression Process

A regression test suite is a collection of tests that can be run on

the design in an easy manner with minimal effort. The main

idea behind a regression stems from the ability to test every-

thing when the design changes. Such an approach ensures that

the design is always kept in a Working state .

On the surface of things, a small tweak to the design may notIs regression testing

even important? indicate a extensive round of tests. The change may actually

lead to a problem though. If the design is part of a larger sys-

tem and some blocks were impacted by a change, a regression

provides assurance that the change did not wind up breaking

something else. Hence the quality of the design is maintained

by ensuring that changes made do not break any functionality

that was verified before the new change was introduced.

Tool and script versions also have their impact on a regression

results. A newer version of a tool or script may behave differ-

ently from the version initially installed. Running a regression

usually helps flush out any issues that can crop up later.

One important consideration is that regression tests should be

repeatable and traceable. A test MUST be repeatable. If ran-

domness is built into a test, then it is important to specify a

SEED for a test in order to replicate an error detected on a

previous run. Traceability is defined as having enough infor-

mation to be able to debug the problem.

A graphical representation of this process is provided in the

figure 3.2. Typically, in most organizations, the regression

process is a periodic event that is usually triggered by some

fixed parameters. For example, there might be a weekly run

that is started at a specified time on a certain day of the week.

In other cases, it might be when a significant RTL milestone is

achieved.

“ ”

66

RTLand

testbench

integration

Test

development

RTL

development

Debug and

Bug filing

process

All pass?

Collection of

RTL and tests

Into a regression

Yes No

Figure 3.2. The Regression Process

One of the main factors that ought to be considered is that the

regression must run as quickly as possible. The information

available from this process usually signifies that nothing that

was known to be working was broken when changes were made

to either the tests or the environment or the RTL. (Except when

running random regressions to explore states of the design).

The number of machines and speed of the machines available

to run the regression amongst other factors govern the speed at

which the regression runs in this process.

Keeping the regression process going is an important task.

Many organizations typically tend to assign an individual in the

team to make sure that this process happens properly. In order

to keep this process going smoothly, it is important to make

sure that the various parameters like disk space, machine avail-

ability etc. are well taken care of before the jobs are launched.

Verification Workflow Processes

Block Regressions 67

Having to clean up a broken regression is no fun at all. Some

organizations use a policy of aborting the regression as soon

they can determine that the RTL under verification is indeed

broken in a certain release.

Another important consideration to this process is that there

must be some change to the RTL or the tests or the verification

runs to warrant a new regression run. In many organizations,

the regression at times takes many days to complete. Hence

having a broken regression run implies that it will take many

days to certify that the RTL passes the regression. This is in

direct conflict with the fact that there should be small number

of changes accepted before a regression is launched to enable

debug and traceability. Usually what has been observed is that

there is some sort of a compromise reached between the num-

ber of changes and the length of the regression based on the

circumstances at that time.

Different organizations follow different strategies to verify their

devices. Depending on the size of the modules being tested,

the steps in the process and timelines vary.

3.3.1 Block Regressions

This book characterizes subchips (portions of a chip) and mod-Block regressions

start when the

blocks or modules

are available.

ules as blocks in this book. For purposes of discussion, this pro-

cess is typically followed when there are a number of blocks

that are verified independent of one another and have signifi-

cant complexity and development time associated with them.

Block regressions are typically characterized by having some

bus functional models at their interfaces.

This process is typically followed when the block or module

is reaching a state of maturity and a fair number of tests are

developed. The module has many of the features expected of it

implemented. The block level regressions help enforce a level

of quality when subsequent changes are rolled in.

One of the key aspects of a block level regression is that most

reviews typically expect that the module has attained 100%

coverage metrics. It is difficult to get complete coverage, but a

sincere attempt must no doubt be made.

68

There are typically no waivers granted except for pressing tech-

nical reasons for any statement or code coverage items. It must

be noted that block level regressions happen early on in the

development cycle. When the design matures, the block level

regression activity usually tapers off and is replaced by the

chip level regression process. At times, block level regression

results may be combined with chip level regression results to

present a more holistic view of the verification effort during a

signoff review for the device.

3.3.2 Chip Level Regressions

The chip level regression is an extension of the block regres-

sion process, the difference being in the size of the design now

placed in simulation and the types of tests being run. Fre-

quently the tools and machines on which the regressions are

run may be a little different from the block level regressions in

case there are some capacity issues on the machines on which

the simulations are run.

From a process angle, however, this is a similar process to the

block regression process. However, it varies in the fact that the

simulations are much longer and the environment is probably

larger. Changes in the regressions are usually handled more

carefully than in the block regression stages since the penalty

for a failing regression is quite high.

Chip level regressions are usually used for the signoff review

process. They typically start once the design has reached some

point of maturity. The start of chip level regressions is usually

marked as a significant milestone in any device development.

(read that as a celebration party !).

3.3.3

Coverage can be classified into functional coverage and code

coverage. Functional coverage focuses on the features in the

design. Code coverage on the other hand measures whether

various components in the RTL were indeed exercised by the

Verification Workflow Processes

Coverage in Regressions

Maturing of the Design 69

regression. Coverage is nowadays usually available through

a set of tools that are used to measure the degree to which

the verification has exercised the design. The code coverage

is typically available by instrumenting some specific monitors

into the RTL and subsequently running the regression. Many a

time, the coverage mechanisms are built into the simulator and

can be invoked by using some specific simulator commands. In

some organizations, functional coverage is measured as well.

This coverage is measured using tests and specific infrastruc-

ture that is present in the environment.

Code coverage in regressions usually attracts some sort of a per-

formance penalty because the simulator now has to do some

additional “housekeeping” to report the various coverage met-

rics like line, code, statement coverage etc. Earlier coverage

approaches used to “instrument” the code with special monitors

and then run the coverage regression. Many organizations run

coverage in regression on a periodic basis to see the progress of

the design. (Some others do on every regression though!). Dur-

ing the final stages, the coverage from the regressions is usually

reviewed to ensure that there are no missing test scenarios. Any

exceptions are carefully scrutinized and then signed off before

a device tapeout.

3.4 Maturing of the Design

In the chapter Approaches to Verification various approaches

to verification were considered. Different approaches were de-

ployed at either the block level environment, the system level

environment and at higher levels of integration. The regres-

sion processes in this chapter described the various activities

as well. As the design matures, the levels of integration of the

modules increases. Different regressions are launched to en-

sure the health of the design. Initially the design startsout with

module level regressions. When the blocks are mature,these

regressions are completed and sub system regressions are pre-

dominant in the regression activity. In a similar fashion, the

chip level regressions become predominant when chip level

verification is taking place. This progression of the design to-

ward maturity is shown in the figure 3.3. As indicated in the

70

B
lo

ck
 le

ve
l

V
er

ifi
ca

tio
n

Sub
 sy

st
em

 L
ev

el

V
er

ifi
ca

tio
n

C
hi

p
le

ve
l v

er
ifi

ca
tio

n

Sys
te

m
 le

ve
l

(M
ul

tic
hi

p)

V
er

ifi
ca

tio
n

In
te

g
ra

ti
o
n

Time

Tape-out

attempts may

start here

Block level

Regressions

Sub

System

regressions
Chip level

regressions

System

Level

regressions

Figure 3.3. Levels of Integration

figure, the tapeout activity usually starts at the end of chip level

regressions or system level regressions if applicable.

3.5 The Periodic Review Process

In this process, the various features and functions of the device

are reviewed for understanding that the various tests actually

cover the scenarios expected of the tests. Some of the typical

questions that are asked during these reviews are:

Do the tests cover all of the functionality required?

Do we need any additional tests to cover the functionality

of the device?

Are there any additional random seeds needed?

Verification Workflow Processes

Regression Result Reviews 71

What are the holes in this approach to testing?

Is there a issue with runtimes?

Can we do this more efficiently?

Sometimes a detailed code review of the test code is also con-

ducted to ensure that the test code does what it is supposed to

do. This is similar to the RTL code reviews conducted during

the RTL development process.

A code review is useful since a great deal of details typically

emerge from the review. However, there are usually many tests

in the regression. This makes a code review of the tests some-

what difficult to implement. Breaking the code reviews into

small chunks helps make the entire process more manageable.

Such an approach is presented in the Putting it all together

chapter later on in the book.

One of the things to look for during the functional test reviews

that helps identify problems is the fact that the code coverage

(line, toggle, expression) for the block in question should be

at 100%. Anything other than 100% is a dead giveaway that

something is wrong somewhere. If there is a chunk of code

that is not exercised by the tests, either the code is a chunk of

dead code or the test suite is not complete, or something else

is going on that warrants an investigation.

3.5.1 Regression Result Reviews

This process is used to review the regression results. It is usu-

external customer or reviewer is involved, closer to a tape-out

phase, the process involves going over the regression results,

the tests and the functional features of the device to ensure that

the device has indeed been tested to the best extent possible.

Feedback that arises out of this process sometimes results in ei-

ther addition or modification of tests or the environment. This

process is typically one of the many processes involved during

the tape out signoff activity.

ally informal in most companies in the initial stages. When an

72

In many organizations, the regression results are reviewed reg-

ularly to make sure that the design is indeed making forward

progress. If analysis of a collection of regression results indi-

cates that the number of tests passing in each regression run

is not increasing, then usually an investigation is launched to

figure out where the problem lies.

3.6 The Verification Signoff Process

It is human nature to prefer binary answers to questions. En-

gineers being human, are no exception. As much as possible,

engineers like to prove that something is either true or not.

Unfortunately, using such binary decisions in determining clo-

sure in chip verification is extremely challenging. For the most

part, answering the question of whether the chip functions as

the designer and architect intended is very hard, In some cases

it is impossible to state that a design has been completely func-

tionally verified.

The fact is, achieving true functional verification closure, and

therefore taping out with full confidence, never happens. The

decision to tape-out is always a judgment call. Typically, most

successful engineers achieve a sufficient level of closure and

confidence based on a combination of verification thorough-

ness metrics, the rate and complexity of functional bugs being

found, and their own experience and judgment.

Towards the end of the design cycle, Verification signoff re-

views are arranged when an ASIC verification effort has been

more or less completed. During this review, various items are

reviewed.

Typically, the verification sign-off process involves going over

the test plan, device specifications, and the status of the tests.

Under some circumstances, verification is incomplete for sched-

ule or other reasons. Then care is taken to ensure that all high

priority features are covered. Clear assessment of the risk of

taping out is also made available. Some of the other items

checked are results of gate regression as well as code coverage

Verification Workflow Processes

The Verification Signoff Process 73

tation issues are also addressed. During the review process,

some of the items reviewed in addition to other metrics are:

Number of checkers in the design

Number of monitors in the design

RTL Code coverage reports

Specification stability

Number of bugs found

Vendor related checklists

Test case density

Test Object density

RTL stability

Bug find rates to look at the trend of bugs being found

Bug saturation curves that reveal the trend of bugs found

over a period of time

Special care is taken to ensure that all verification bugs are

closed and that all checkers and monitors are indeed enabled

for final certification. A detailed report of the features covered

etc. is generated during this phase.

One of the other major factors that help make a decision are

the bug find and closed curves as shown in figure 6.1 and 6.2 in

the next chapter. The bug find rate curve typically rises rapidly

and hits a peak and then begins to drop. A tape-out is typically

attempted in the stages when it is apparent that there are no

new bugs being found in the design in spite of efforts being

expended over a period of time.

In many organizations, verification continues as a separate ac-

tivity well beyond tape out. In some cases, the hardware em-

ulation activity is also reviewed to make sure that there are no

known issues at the time of the sign-off.

Verification sign off is a process that started with a great deal of

care and deliberation since mistakes can cost significant amount

of time and money and possibly market opportunity.

and functional coverage statistics. At this stage, any documen-

74

Conclusions

This chapter presented various workflows that occur during the

verification cycle. As mentioned earlier, the specifics of the

flow vary. It is hoped that people new to verification can use

the material presented to familarize themselves with the various

processes in verification. As mentioned earlier, there is a range

of enforcement of these processes in various companies. This

material should help the reader get well started as part of a ramp

up to a career in verification.

Verification Workflow Processes

PART II

INGREDIENTS OF SUCCESSFUL
VERIFICATION

As the reader is aware, success is made up of many factors. Some factors are

People make all the difference: People are one of the most important assets

are two main themes to this chapter. The first theme is dedicated to exploring

six qualities that help teams become successful. The second theme explores six

of hindsight indicates that things might have turned out better if things were

Tracking results that matter: This chapter provides an overview of various

metrics that are used in verification. It discusses various metrics and provides

This part focusses on helping the reader become more successful in verification.

abstract and some are well defined. There are three chapters in this part.

of any organization. This chapter presents factors and dynamics based on the

author’s experience that help teams and individuals become successful. There

habits that help an individual become successful in verification.

Doing it right the first time: This chapter explores various case studies from

actual designs in verification. It discusses specific incidents where the benefit

done differently. There are seven small case studies in this chapter.

an overview of the various items that are measured in the verification effort.

Chapter 4

PEOPLE MAKE ALL THE DIFFERENCE
Human Aspects of Verification

Verification is a team sport. Either the entire team wins or

loses. There is no scope for any one person to be successful

while others fail. Human aspects of verification play a great

and important role in the way of execution of a project and its

success.

Some of the material may seem out of context in a technical

book on verification. However, all things considered, vis-à-vis

how we do things is just as important as what we do with the

verification effort. Small things ignored early on, have unfor-

tunately become bigger problems later on. Successful teams

Small companies and startups aiming to strike the marketplace

quickly usually do not have a history of refining workflow pro-

cesses since they usually attract people from other companies

or assign roles to individuals in the company to accomplish the

verification task.

The author had the privilege of working with many people from

Silicon valley, and during the course of his career, the author

found that most of the successful engineers whom the author

had the privilege of meeting had actually developed a style of

working. Largely, as the author learned from them, he realized

that the following aspects were actually key to their success.

77

logies that take into account these aspects of verification.

have avoided some of the problems by using processes methodo-

78 People make all the Difference

The author trusts that this chapter will inspire engineers and

teams in their quest for verification excellence.

4.1 Team Dynamics and Team Habits for Success

Websters Dictionary[1] defines habits as

1. A recurrent, often unconscious pattern of behavior that is ac-

quired through frequent repetition.

2. An established disposition of the mind or character.

3. Customary manner or practice.

A habit is usually understood to be a practice that is ingrained

deeply in the conscience of a person so much so that it can be

performed without conscious thought.

Team dynamics and people dynamics typically play an impor-

tant role in the success of a project. Successful verification

teams have a system of their own incorporated into defined

workflow processes. These processes usually incorporate in

some way or form the six habits incorporated described herein.

Well formed teams typically comprise of members who com-

plement each other’s skills with their own and help the team

succeed overall.

4.1.1 Habit 1: Begin With the Big Picture in
Mind

Earlier chapters undertook discussion on the various aspects of

verification. The cost of verification as indicated in 4.1 reveals

the impact of a decision taken early on in the design cycle.

Given that ASIC design is such an expensive process, it is im-

perative to ensure first time success on silicon

Stephen Covey [2] mentions in his book on 7 habits “Begin

with the end in mind.” Verification is all about ensuring that

the device operates the way it was supposed to and in a satis-

factory manner.

Habit 1: Begin With the Big Picture in Mind 79

In simple words, typically looking at the larger picture and

attempting to solve a problem usually yields very effective re-

sults. This is one of the cornerstones of a successful verification

strategy. Many of the readers have no doubt been in a situation

where they certainly wished that they had done some thing or

other differently in order to overcome some problem or other.

Having the bigger picture in mind possibly could result in lesser

work than was originally envisaged.

One of the best (and probably most common) ways to design

an environment is to design it

’

top down’ and then implement

it bottom-up. This approach ensures that all the parameters

required to implement the verification environment and tests

are indeed considered completely. Some of the advantages of

doing so are:

1. The parameters are well defined. A sense of clarity and

stability is imparted to the entire verification process.

2. The design and architecture of the environment is usually

able to handle change very easily.

3. The end goal is always in view. The ultimate goal is what

matters in the end.

4. The task can easily be broken into smaller pieces (see habit

#3).

This habit usually is carried over all the way through from ver-

ification inception to tape-out. This habit needs to manifest

itself into many forms.

Many a time, We have noticed that some or the other short cuts

have been taken with consequences that have a negative effect

(see the chapter Doing it right the first time). These conse-

quences are not usually apparent when the decision is taken,

however, in hindsight, the lesson is usually apparent.

Consistency in adopting this habit is important to the success

of the team. This habit also provides rich dividends in terms

of time saved. In one instance, a verification team building a

very complex ASIC realized that it would be a real challenge

to write several tests for pre/post silicon in the time frame in-

volved. The team then proceeded to identify the manner in

80 People make all the Difference

which the real device would be tested. The information so

obtained was then used to architect a verification environment

where the tests from the pre-silicon environment could be used

with very little modification to validate the ASIC once it re-

turned from the ASIC foundry. The environment also included

features to enable tests written at the block level to be easily

reused at the top level. The implementation of this habit alone

saved the team from writing and working on several hundred

tests.

4.1.2 Habit 2: Do it Right the First Time

In simple words, think it through and do it once after all the

parameters have been considered. The task must be undertaken

in such a way that there must be no need to visit the topic again

and all eventualities and conditions are addressed in one at-

tempt. In all probability, this approach will wind up with the

most optimized solution for the particular situation.

A decision taken early on, in the process can have a remark-

able impact on the entire verification effort. In many cases,

procrastination could be sometimes quite dangerous! For in-

stance: One may choose to verify only a portion of a module

without considering completely if the coding styles or guide-

lines are required for top level activity, there is a chance that

the work may need to be redone again.

As an illustration, the events that happen when a decision is

postponed usually leads to:

1. Quite a bit of work is probably expended getting to a point

where the decision to postpone has already been taken.

Some of the effort is wasted since it did not go all the way

to conclusion.

2. Someone now needs to track the item down and ensure

completion.

3. When the item is revisited, there is a reasonably a good

chance some time will be lost recollecting what was done

and what was not.

4. Sometimes the details of the issue under discussion are lost.

Habit 3: Be Object Oriented in your Approach 81
N

u
m

b
er

 o
f

B
u

g
s

Time

Architectural

Bugs

Module level

Bugs

Chip

level

bugs

System

level

bugs

Cost
of fin

ding a bug in
the device

Figure 4.1. Cost of Finding a Bug in an ASIC

As the reader can observe, a simple ’I will take care of that

later/I do not think I care about that right now’ can balloon

into doing a fair bit of work all over again. This is a fact.

Readers will recognize that most of the time, any deferrals in

decision making invokes Murphy’s law1 and nothing ever hap-

pens the way it is supposed to.

The figure 4.1 illustrates the cost of finding a bug in a design

is very small in the initial stages. This is usually the case since

the turnaround time for fixing a bug is very small. A bug found

in a block level test bench could be fixed very quickly since

the complexity and run-times are not very high. However if

the same bug is deferred to the sub - system level, it becomes

a little harder to find the bug. It may also be a little more time

consuming. If the design is in the physical design phase, the

cost of fixing the bug increases, since an extensive regression

is needed to actually validate that the change did not break

anything else.

1This law says "‘If anything can go wrong, it will"’

82 People make all the Difference

4.1.3 Habit 3: Be Object Oriented in your
Approach

Object oriented methodologies have been mainstay in the soft-

ware industry for many years. The application of concepts

from the software domain to the hardware domain has begun

to break down the divide that existed between the hardware

and the software domains. In the current environment, the

Using these techniques allows designers and verification

engineers to quickly verify systems and increases their response

to time to market pressures.

Using object oriented techniques in itself have many advan-

tages as evidenced in, [3], [4]. The advantages of these tech-

niques for hardware design include:

Models can be maintained and reused extensively;

The ability to alter general-purpose components to more

specialized components;

The possibility of employing existing software synthesis

and verification techniques.

4.1.4 Habit 4: Reduce, Reuse and Recycle

Reuse is all about trust. It is also all about leveraging existing

work that has already been done.

Reuse in verification reuse implies reusing the existing verifica-

tion environments or its components. Components of verifica-

tion environments developed for the other designs or blocks or

previous versions of the design are usually reused. These com-

ponents are typically the monitors, checkers, tests and scripts,

BFMs etc that comprise of the environment.

duals modeling software appear more like software programmers.

increased use of software modeling practices has led indivi-

Object oriented techniques may seem alien to hardware designers.

However, the construction of modules using library components

is but a manifestation of the object oriented methodology.

Habit 5: Innovate 83

Given that the previous habit discusses object oriented prac-

tices, does reducing and recycling even merit being called a

habit?

Many a time, object oriented practices may not be followed.

This may be particularly true of older designs. However, it

is definitely possible to reuse portions of the effort expended

when verifying the older design to save work.

The complexity of design verification is exponentially greater

than the design complexity. Verification today consumes around

60-80% of the overall effort. Reuse can bring the effort down

to a smaller number.

Reuse has some distinct advantages: it can reduce the devel-

opment effort and reduce the risk from a verification point of

view. In some cases, it helps shield the verification team from

having extensive knowledge about the modules that are being

reused if the modules are proven in silicon and are not being

altered.

In order that reuse is practiced as a habit, the modules must be

engineered with reuse in mind. Some of the typical consider-

ations are:

Documentation.

Ability to be extended and altered.

Customizable based on the environment.

Easy to use.

Another discussion and some good practices for reuse and their

implementation are found in [3] and [5].

4.1.5 Habit 5: Innovate

Designs usually increase in complexity and features. DoingChange is the only

permanent thing in

this world
things the same old way no doubt offers the opportunity to tread

the beaten path, but given the change that is being implemented

in designs today, exploring new methodologies and techniques

is essential. In fact, it becomes a mode of survival for verifica-

tion teams given the changing technology landscape!

In many projects, after the tape-out phase, a period of intro-

spection usually leads to a set of lessons learnt as a result of

84 People make all the Difference

the ASIC activity. These lessons are important since they have

been earned with the hard effort of experience.

An example: In one version of a chip the author worked on, the

register map for the device kept changing due to the change is

the specifications of the device. Unfortunately, the design en-

gineer was not able to contain the changes since many matters

were not in his control. This led to the tests being reworked a

total of five times through the life of the project! There were

3 different versions of the tests at one point in time with some

tests being ported from one version to the other just before

a regression run. The design engineer came up with a script

that helped the tests to migrate easily, but this could have been

avoided with a different coding style.

In the next device that the author had the opportunity to be

involved with, the first change that the author made was to

move the register map to a C++ based environment where the

changes were isolated to a database and a header file. The rest

of the verification environment was actually derived from the

database and these files. As the design moved, all that was done

was to update a single source and the rest of the environment

was automatically up to date when the RTL had changed to ac-

commodate the different specifications. It turned out that there

were 17 changes in some register definitions over a 2 month

period!

Not having made the single change based on prior experience

would have been disastrous in this project. During the course

of implementing the change, the author did encounter some

interesting viewpoints. However, the results paid off later on.

4.1.6 Habit 6: Communicate

This habit is one of the most important habits that a successful

verification team has had. Communication takes many forms.

Some of them are:

The grapevine usually exists as conversations over the cubeThe grapevine – I

told you about that

bug!
walls. For the most part, this seems to work in small well-

knit teams. It seems to be the case for many of the module

Habit 6: Communicate 85

level verification teams who share information constantly back

and forth. For the most part, as the size of the team increases,

the approach becomes impractical. Consider a module with

multiple verification stakeholders. Any stakeholder who was

probably affected by the conversation and not in it misses out

on learning about the issue. In addition, the possibility that the

person who was not part of the conversation will find the exact

same bug is very high.

The other problem with this approach is that there is no record

of what was found and fixed. There is no way to show that the

number of bugs found and the bug find rates are tapering off.

This has a wider audience than the first one. Many projectsThe email system- I

sent you email. in many time zones are sometimes run this way. Email is no

doubt one of the great ways of communication. However, peo-

ple are invariably inundated with email. There is the possibility

that the particular bug was overlooked. In addition some of

the verification stakeholders might not be copied on the email.

Somewhere along the line a “data retention policy” might kick

in and some vital information that should have been tracked

may be lost.

Unfortunately, this seems to work well in a small gathering.A team meeting

The presentation is shared with people in many places as a

communication medium. What the author has liked about this

medium is that there is the opportunity to interact with others

in a discussion and get some more information.

People are however hard pressed to keep taking notes in these

meetings and some essential items have the possibility of not

being assigned the priority required. A significant amount of

time is wasted and the meetings are expensive from an engi-

neering point of view. In addition, there is the possibility that

some important stakeholders may be missing from the meeting

for a variety of reasons.

This approach typically involves the use of a central databaseThe bug tracking

system with a web based or graphical user interface of some sort. Some

organizations use a spreadsheet, which may be centrally main-

tained. The main advantage of such systems is that the common

problems that are listed above are completely avoided and there

86 People make all the Difference

is a permanent record of the issues found in the design. Various

metrics are enabled by use of such systems that have become

very popular today. Various companies provide a variety of

systems with sophisticated features to enable their customers

to track bugs and changes effectively. The discussion of these

is beyond the scope of what is presented here.

No doubt, other methods not presented exist. In addition, It is

noticed that verification teams are closely in harmony when a

team member shares the information about a problem he/she

is facing with the rest of the group rather than allowing other

team members to encounter over the same hurdles again. Many

a time, the author have seen an alternative approach to the

problem coming up with a more optimized solution than was

originally envisaged.

4.2 The Six Qualities of Successful Verification Engineers

scribed in the previous section. It is apparent from the discus-

sion that team dynamics have a profound effect on the quality

of verification as a team.

successful tape-out. In that context, the sections below explore

the various individual qualities that help a verification engineer

become successful in addressing the challenges at hand.

Websters dictionary[1] defines qualities as:

1. An inherent or distinguishing characteristic; a property.

2. A personal trait, especially a character trait:

3. Essential character; nature:

4. Superiority of kind:

5. Degree or grade of excellence:

As the reader will discover, all engineers possess the qualities

described below in some shape or form and that the qualities

are essential to success.

The various habits of a successful verification team are des-

On the other hand, in addition to team habits, how an indivi-

dual approaches a challenge is also an contributing factor to a

87

4.2.1 Quality 1: The Ability to see the Full
Picture

The charter of verification is to verify that the design is oper-

ating correctly as per the specification of the device. Conse-

quently, the verification engineer’s view of the problem is quite

different from the designer’s view of the problem. Challenges

abound in verification since the amount of work is larger and

require many techniques to address problems. This implies an

ability to get an overall picture, which encompasses the design

and the surrounding environment.

The scope of verification includes:

Being able to understand the parameters of the device itself.

An ability to specify the items that need to be tested.

The ability to interpret failures.

Identify simulation bottlenecks and isolate them.

Thoroughness in resolution of various issues that crop up

during the verification phase.

Verification is indeed a costly business. This has been evi-

denced earlier. Any contributions towards cost cutting are

always welcome in any organization.

Illustrating the final point above, consider an device being

tested that dumps out the data and uses a pre-post process-

ing approach to verify device behavior. If the verification team

chooses to run the simulation along with the post-processor in

parallel, not only will the simulation slow down, it may cost

more depending on the number of licenses for the post pro-

cessing tool. Using some sort of a queuing mechanism may

help efficient post processing as well and save the organization

money.

Debugging a problem with a failure in simulation usually in-

volves looking at various factors. The manifestation of seeing

the full picture as a quality typically helps the verification en-

gineer to narrow down the source of the problem before signif-

icant time is lost in the debug effort.

Quality 1: The Ability to see the Full Picture

88 People make all the Difference

4.2.2 Quality 2: Assumes Nothing

One of the important aspects of verification is that no assump-

tions are made about anything in the design or the architecture

of the device.

Making an assumption about something or the other is the death

knell for verification. Making an assumption can actually limit

the space of verification and mask out some important bugs. In

addition, the assumption may be invalid which may be counter

to the original charter of verification itself!

In many instances, the design and architecture teams may have

made some assumptions of the system which may be proven to

be incorrect by verification.

The author does not suggest that it is possible to eliminate as-

sumptions completely. Assumptions can no doubt be made, but

it is absolutely crucial to document the assumptions that have

been made. It is also important that the assumptions made are

made out to be facts prior to the tape-out of the device.

4.2.3 Quality 3: Consistent

Webster’s dictionary defines consistency as

n. Reliability or uniformity of successive results or event.

Consistency is one of the more important habits of a verifica-

tion engineer. It reflects the fact that the verification engineer

can be relied upon to perform his task. Consistency breeds

repeatability and reduced confusion. Being consistent implies

that the results so obtained can be relied upon at any time.

Many a time, one typically observes the following sort of con-

versations: (the author is sure the reader has certainly observed

similar ones in his career!)

Why do all these messages look different?

Why does this not cause the test to fail?

Do I have to do this all over again?

Quality 6: Empower Others 89

Can we not get more of this like the other test that just ran?

How come this does not look like the other tests ?

Consistency helps avoid such concerns and issues. If the tests

and the environment use a standard coding style that is common

and pre-planned, then the benefits of having simpler implemen-

tations which are easier to debug and maintain.

4.2.4 Quality 4: Organized

Typically, design verification begins with unit level verification

wherein there are large numbers of signals and many combina-

tions to be tested. Keeping track of all these can be an onerous

task as SOC designs tend to get larger and larger. The number

of features to be verified increases dramatically. Being orga-

nized is one of the key attributes to help keep the complexity

at bay and allow task accomplishment on schedule. An object

oriented methodology can itself help in introducing a sense of

structure throughout the project. Since many bugs also do tend

to manifest themselves during this process, the ability to see

the root cause and identify the symptoms of existing identified

bugs.

4.2.5 Quality 5: Multi-skilled

Todays environments are complex. They are a homogeneous

integration of a variety of software, operating systems and lan-

guages. The successful verification engineer would have a va-

riety of languages in his repertoire. The verification engineer

typically has to be able to write scripts and analyze designs. In

addition, to find a problem, the engineer typically has to be able

to traverse many levels of abstraction. The current verification

environments today require a fair amount of sophistication to

use them.

Being in possession of multiple skills is now a must in verifi-

cation. It is no longer sufficient to know a particular type of

approach or HVL in order to be successful at verification. This

quality also signifies the ability of the verification engineer to

rise and adapt to the challenge posed by the current crop of

complex devices.

90 People make all the Difference

4.2.6 Quality 6: Empower Others

Todays SOC challenges are large and complex. The current

designs typically require the effort of many people to ensure

that they are bug free. Working in a team implies that the veri-

fication engineer is able to work with other design groups and

able to adapt to their terminology as well. This in other words

implies the ability to synergize with other team members.

The American heritage dictionary [5] describes synergy as:

The interaction of two or more agents or forces so that their combined

effect is greater than the sum of their individual effects.

Many verification engineers typically come together to work

on a ASIC verification effort. In a typical situation, each engi-

neer brings a bag of tricks and experiences to the table. Typical

teams have a diverse set of skill sets which are all required to

complete the task correctly.

Since the scope of design verification is vast, Synergy within

the group typically leads to co-operation between team mem-

bers. This synergy can take various forms ranging from assist-

ing team members challenged by a certain problem to sharing

best practices for success.

Being able to recognize each team members strengths and lever-

age them for the project success is vital to every verification

engineer.

Synergy has many positive effects. These include an increased

level of confidence and energy in the members of the group as

they progress toward device tape-out.

Conclusions

This chapter has explored various human factors that have made

or broken teams in verification. Six habits practiced by suc-

cessful verification teams and the six qualities of successful

verification engineers were explored. Human factors, though

hidden for the most part, can play a crucial role in the overall

success of a project. Depending on the team’s synergy, human

91

factors have the power to make an enormous difference in the

quality of verification. Hence, the human element of the veri-

fication process is not one that can be overlooked.

There are no doubt other important lessons that can be learnt

by studying how human factors affect ASIC development and

execution. Over a course of time, one of the main lessons

that the author has learnt is that successful teamwork and the

practice of the habits above are strong contributing factors to a

successful tape-out.

References and Additional reading

[1] The Houghton Mifflin Company (2000). American Heritage Dictionary

of the English language. Fourth edition.

[2] Covey, Steven (1990). Seven habits of highly effective people. Seven

habits of highly effective people. Free Press, New York, NY, USA.

[3] Yee, Steve (2004). Best Practices for a Reusable Verification Environ-

ment. www.design-reuse.com, New York, NY, USA.

[4] Kuhn, T., Oppold, T., Winterholer, M., Rosenstiel, W., Edwards, Marc,

and Kashai, Yaron (2001b). A framework for object oriented hardware

specification, verification, and synthesis. In DAC ’01: Proceedings of

the 38th conference on Design automation, pages 413–418, New York,

NY, USA. ACM Press.

[5] Albin, Ken (2001). Nuts and bolts of core and SoC verification. In DAC

’01: Proceedings of the 38th conference on Design automation, pages

249–252, New York, NY, USA. ACM Press.

References and Additional reading

Chapter 5

DOING IT RIGHT THE FIRST TIME
Case Studies from the Real World

In this chapter, a few case studies covering some issues found

in real life verification environments are presented. As a result

of the case study, it is hoped to learn from the past and use the

information herein to better equip us all in the future.

However, in

the current day and age, some thought must be devoted to how

the entire verification plan is prepared. Designs are getting in-

creasingly complex and the time available to turn around the

design into physical silicon from concept to product is decreas-

ing. This unfortunately means that there is a double whammy

on the poor verification engineer. The case studies below sug-

gest things that the reader might consider as thoughts before

designing the environment for verification.

For purposes of the study, The names of the company where

the incidents occurred and the specifics of the parties involved

in the incident have been masked for reasons of confidentiality.

Some of these might sound extreme, but truth is sometimes

harder to accept than fiction and have actually happened!

93

Writing a verification plan is no mean task. Designing a veri-

fication environment is even more so difficult.

94

5.1 Block and System Level Tests use Unrelated
Environments

This particular case was a complex control block that acted as

an arbiter. The entire environment at the block level was written

in e. Quite a few monitors and checkers were actually instanti-

ated in the block level environment. The top level was written

using a different approach. Consequently there was very little

re-use between the block level verification and the system level!

An analysis of this approach revealed several problems. First,

the verification engineer had spent quite a bit of time to test

the block level. The tests were not reusable because the coding

style used poked actual signals in the RTL. In addition, tests

had to be rewritten at the top level all over again. When a bug

was found at the top level, the poor engineer had to go through

block – Time that would have been better spent elsewhere!

An additional problem that arose from this approach was that

keeping track of issues overall became an issue. Not only

was the schedule delayed overall because of the increased ver-

ification effort, but also effectively increased the overall cost

since several things like salaries for people involved, tool costs,

missed opportunities came into play.

Conclusion: Attempt to reuse everything possible rather than

reinvent the wheel.

5.2 Not Implementing Monitors and Assertions Early on

The author has actually been in companies where the monitor

development was the least of the priorities in the verification

process. Interestingly, he has noticed that people think that they

should get all the tests written first before getting the monitors

or assertions done. More often than not, they never were done.

Unfortunately, this practice causes quite a bit of grief overall

in terms of the uncertainty that arises.

Doing it Right the First Time

environment thereby doubling his effort to verify the same

quite a bit of trouble to recreate the tests in the block level

Review Processes Not Done Timely 95

This particular case was of a memory controller block, which

had been verified with a great deal of effort. The block was

passing all the tests defined so far and a case was presented to

sign off on the verification of the block so that the engineers

could be moved to other tasks. During the review, it was noticed

that many of the monitors were not implemented completely.

Consequently, it was decided to implement monitors into the

verification environment so that some statistical data could be

collected prior to a formal sign-off.

Interestingly the coverage monitors revealed that only 40% of

the features were actually exercised by the verification envi-

ronment. Additional tests were needed to fill in the rest of the

gap! The closure process took an additional 4 weeks overall to

declare the block as done.

Analysis revealed that this information would have been avail-

able beforehand if only the monitors were instrumented in the

code. Tests could have been more efficiently written and time

spent a little better doing other things that mattered.

Several studies that have been done actually prove that adding

assertions and monitors actually reduced time instead of adding

to the burden of verification. The thought to consider for all

who propose that this is wrong: the time it actually takes to

write a monitor is much less than the time it actually takes than

the time it takes to debug something without the monitor put in.

Conclusion: Write the monitors and assertions early on. You

will learn more about the design up front and save everyone a

lot of trouble overall.

5.3 Review Processes Not Done Timely

The author has actually had the benefit of seeing quite a bit of

this error in quite a few companies! Unfortunately, this has

become quite common since the common excuse is that there

is no time to do it!

This was the case of a network processor block, which was

designed and verified by four junior verification engineers and

a couple of design engineers. They were working on the block

96 Case Studies from the Real World

for a couple of months and whenever they were asked for a

review, the reply given was that they did not have the time to

get it done.

Finally, when a review was conducted, it was revealed that

there were some things missing in the overall strategy. Many

of the tests were non-portable by nature of the constructs used

to build the tests. Some of the implementation needed a little

rework. By this time, a couple of months had passed and it was

probably going to take an additional two months to get it all

done.

Analysis revealed that had the reviews been conducted on time,

this could have possibly been averted somewhat. The other side

to this episode was that another senior engineer found a quick

way to salvage quite a bit of work and it only took an additional

three weeks get it close where the group wanted the verification

effort to be.

Conclusion: Review work regularly. This helps keep everyone

on the same page and avoids surprises later on.

5.4 Pure Random Testing Without Directed Tests

There have been many debates about the virtues of directed

tests vs. random tests in a variety of verification circles. The

author is of the opinion that each has its own place in the veri-

fication strategy.

This particular scenario was a state machine, which was verified

using the high-level language e. The test writer had written all

the tests as random tests without developing any directed tests.

All things appeared fine on the surface although there was a

hitch!. There was not a single regression where one or the

other seeds failed. The tests were getting longer and longer.

Some ran a good 24 hours before failing. All this was giving

a great deal of anxiety to the project leads and the manager of

the group as no end was in sight.

Analysis of the specifics of the problem showed that a few di-

rected tests could probably hit the same scenarios that were

being looked for in random testing. Not enough seeds were

Not Running a Smoke Test Before a Regression 97

run in the first place. Proper metrics on bug closure were not

applied as well. Doing so would probably increase the level of

confidence in the design to a point where decisions could be

taken on a course of action.

In another conversation the author had with the design manager

of a large company, the latter revealed that using randomness,

they were able to hit 70-80% of the coverage points quite eas-

ily. However, the last 20% of the coverage points was an uphill

battle taking a long time. It is the author’s opinion that a de-

cision on using directed tests or directed random to help cover

the rest of the coverage space would have probably yielded a

greater return on investments.

Conclusion: Use random testing wisely. It is good for some

things. Some things are better served by directed tests. An

analysis of the situation will reveal which approach will help

get the biggest bang for the effort invested in verifying the device

under test.

5.5 Not Running a Smoke Test Before a Regression

This has been a source of battles for as long as the author can

remember. Unfortunately, this has a huge impact on the overall

verification. It is one of the big time-wasters on the author’s

list.

SMOKE is a test that checks the design for sanity after mak-

ing changes to the RTL. It ensures that a certain minimum

quality is maintained by the RTL before a regression begins.

Unfortunately, too many designers overlook this. As a result,

a regression run is launched and then several members of the

verification team lose precious time going over the failures re-

peatedly. The author has actually seen instances of code that

does not even pass the “Compile” test being checked in!

Unfortunately, what is not bought out is the amount of trou-

ble this brings the verification engineer. Numerous CPU’s are

locked up, disk spaces to be managed, results to be parsed, ex-

planations to be given and time lost just because a quality step

was not met!

98 Case Studies from the Real World

Conclusion: Use a screen set of tests as a pre-acceptance

criterion. It does not make sense to spend a whole lot of work

especially if the basics are not working. One can always reduce

those tests from a regression list if runtime is a serious issue.

5.6 Lint Policies

The author actually had the privilege of being involved with

a design that had over 20,000 warnings! Some of them were

serious. The designer was insistent that the tests be written

and run against the design before he fixed the lint warnings

and errors. Unfortunately, the verification engineer was a ju-

nior person and a contractor to boot. Hoping to please all, the

verification engineer set about to do his job. The bugs he un-

covered were the same ones that were shown in the lint report.

The difference being that the results were several days late and

had a test case to prove the problem!

The test cases were redundant somewhat when the problem was

fixed. A lot of time was wasted for no reason if the RTL was

lint clean. No additional information was actually obtained

outside of running the lint report and a considerable amount of

time and money was wasted. The verification engineer would

have probably been better off writing tests to exercise the de-

sign harder.

Conclusion: Use lint wisely. It can actually save you a great

deal of trouble by telling you up front where the problem might

be rather than finding it the hard way.

5.7 Effective Use of a Source Control Strategy

This case study shows an interesting aspect of the human trait

that plagues us all! In a networking company developing an

ASIC, some of the verification engineers were quite new to

the job and had not completely understood the ramifications of

using a source code control system.

Effective Use of a Source Control Strategy 99

The design was made up of several large sub blocks. The design

in question was a large module. A designer and a verification

engineer were paired together to ensure that the module was

operational as is typical in ASIC development. There was a

single small hitch. The designer did not want to check in code

until it was bug free! He did not publicly announce his inten-

tions though or he would have probably been taken to task (or

crucified!) by all the people around him. The poor verification

engineer had to work with the designer under these circum-

stances!

Being new to the job, the verification engineer kept quiet about

this restriction posed on him by the designer. He would set

out to verify the RTL and every time a bug was discovered,

the designer would very quickly identify the problem and fix

it. He would then hand the verification engineer fixed RTL to

verify. No bugs were filed against the block since the version

number of the file never changed until the module was verified!

This went on for some time and what the rest of the team ex-

ternally observed was that the version number of the file was

not changing and the verification engineer seemed to be work-

ing very hard with no apparent output! There was no profile

available as to the kinds of bugs that were found in the module

because the team never wrote anything down.

Visibility into the module by other team members was terrible

since it was almost non-existent. There was no profile that also

tracked the development of the verification environment or the

RTL either. None of the normal metrics that were used to mea-

sure RTL quality was available during the review.

The matter was resolved when the verification team finally in-

sisted on checking in all the RTL code that was received and

then verifying it. All the bugs were then filed on the version

of the file that was received for verification. Interestingly this

happened close to the module freeze and most of the informa-

tion mentioned above was unavailable.

source control system. Verification should never start unless

the module is completely checked into a Source control system.

Doing so ensures that one can accurately reproduce bugs with

a certain version of the file and ensure quality of RTL and the

tests.

Conclusion: Ensure that RTL that is verified is checked into a

100 Case Studies from the Real World

Conclusions

This chapter presented various case studies in verification. As

always, the benefit of hindsight is never available when the

verification activity is in progress. While it is noted that many

of the incidents mentioned above do not happen frequently in

many modern environments, the learnings presented have been

affirmed by many in the industry as common issues frequently

seen in verification. It is hoped that this chapter allows the

verification engineers to use the benefit of hindsight offered

from the experience of many engineers to better optimize their

verification efforts.

Chapter 6

TRACKING RESULTS THAT MATTER
Metrics In an Verification Environment

6.1 Why Do We Ever Need any Verification Metrics?

Execution of verification plans is something that all teams andA manager’s dream

is to have complete

insight into the

design at all times

organizations care about. In order to ensure that the plan exe-

cution is indeed on track, we need to look at metrics that define

how well the verification effort is going. These metrics help

communicate the state of the verification effort.

Janick’s Book [1] suggests “Managers love metrics. They usu-

ally like to attach a name and a number to various items that

they are keeping track of, and assign a measure to track com-

pletion of the items ”.

Metrics are of all kinds. A large number of them influence

decisions on the verification effort. Hence, accurate reporting

and measurement of metrics is crucial to ensuring success in

verification.

In this section, various metrics that are in common use in the

verification environment are presented. These metrics are in

common use in the industry to date and are used to guage the

progress and performance of the design. The exact terminolo-

originating from a common source.

another with the core principles behind these measurements

gies of some of the metrics vary from one organization to

101

102 Tracking Results That Matter

One of the main advantages of having standardized metrics isMetrics are a

communication tool that the metrics allow the clear and consistent communication

of the design status to others who may not be completely famil-

iar with the details of the design per-se. By merely reviewing

the metrics, and having some knowledge of the design, many

people can get a sense of where the design is.

6.2 Metrics in a Regression

In a typical verification environment, regressions are usuallyTime duration

run on a periodic basis. The regressions typically range any-

where from a few minutes to several days. In a scenario where

the regression runs for a long time, it becomes of vital interest

to determine quickly whether the regression has a problem or

not (fact is, that is the only thing of interest!)

Several parameters affect a regression run. The time taken to

completely run a regression depends on several factors. A list

of parameters is presented herein. It is not an all-inclusive list

in any sense of the word though.

A typical regression run usually has many tests to be run. These

tests can be run in a variety of ways:

Running them sequentially on the same computer is usually

acceptable when the total time of the regression run is small.

However, when the overall time required to run a regression is

large, then running different jobs on different machines usually

gives an improvement in performance.

Running tests in parallel on multiple machines can be accom-

plished in a variety of ways, ie. dividing the jobs manually and

running them on different machines or automatically doing so

using a program.

Manually dividing the tests works fine for a small number of

tests with some specific parameters. It does break down quickly

as the number of tests increase. Using a software program to

do the distribution of tests to multiple machines is usually pre-

ferred since it makes a repetitive job a whole lot easier. These

programs are known as queuing or load balancing programs.

Metrics in a Regression 103

There are several well known programs1 which do the job quite

nicely. The use of queuing programs usually helps increase

the machine utilization time quite significantly. This has been

proven in several studies.

In recent days, this has become a fairly interesting topic. Ear-Effect of machine

types lier, design was mostly accomplished using large expensive

Unix machines. With the advent of powerful desktops with

clock speeds of over 3 G Hz along with operating systems

like LINUX [2] makes it possible to run the regressions very

quickly.

Why is the type of machine such a big concern? usually if

one were to look at the code profile generated by profiling a

simulation of a test, it is typically observed that the vast ma-

jority of instructions executed are arithmetic/logical in nature.

In a typical computer, many of them are executed on a single

clock/instruction. Hence, having a faster clock implies that the

simulation runs faster. The higher the clock speed, the faster

the test runs!

This is sometimes an overlooked parameter. Usually, using aEffect of PLI/FLI

calls PLI/FLI call in any environment is necessary. What is impor-

tant though, is to keep the usage of these calls to a minimum

and to use this feature in the environment cautiously.

Usually adding PLI/FLI introduces an overhead to the simu-

lator. The overhead is typically of the order of 10-20 % just

for using the call alone. Heavy usage of the PLI/FLI features

typically reduces the performance of the simulator drastically.

Time that could be used to simulate the circuit is now used in

the PLI/FLI calls. This means that at any given time, there are

less cycles passing through the device under verification.

Here is an example: Assume that a simulation runs for 100

hours. The PLI calls as measured account for 40% of the time

the simulation is running. This implies that 60 % of the time, the

design was actually exercised with some data passing through.

1LSF from www.platform.com, SGE from gridengine.sunsource.net, Queue from the

GNU foundation etc, to name a few.

104 Tracking Results That Matter

Assuming that x clock cycles passed through the design during

the 100 hours, it is noticed that a reduction of the PLI Calls to

20%, would enable the design to run at least 20% more clock

cycles through the design. This in turn could possibly stress

the design a little harder leading to more confidence overall.

The author is not saying that it is possible to eliminate PLI/FLI

calls altogether. Many modern languages (Vera [9], or edo

use the PLI/FLI interface to communicate with the simulator.

However, the benefits of using the PLI/FLI interface must be

weighed against the overall penalty of the regression runtimes.

A careful determination of what can be put in the PLI as op-

posed to placing it in a HDL testbench will definitely help

the user optimize the regression runtimes. There are no doubt

other methods like assertions from the Open Verification Li-

brary [11], The PSL language or other methods native to the

simulator that could possibly be an alternative to coding checks

that use the PLI/FLI to speed up the simulation overall.

This is another metric that specifies the rate of tests runningTest Run Rates

over thenetwork. This typically is a representative number of

how quickly the regression can be done. This parameter usu-

ally is affected by the number of machines available to run a

regression and the software used to run the regression

It is a well-known fact that the more the data one has to log andData Dump Policy

storeon the disk, the slower the simulation will get. In a typical

regression, most users would like to obtain the results of the

regression quickly. This implies that the amount of data being

written to disk has to be kept at a minimum (the minimum be-

ing the data required to debug the test effectively in case of a

failure).

Tip:Turn off the use of a waveform dump in a regression. This

will slow down the regression and if the test passes, provide

possibly no useful information at all. Use specially designed

monitors if you would like to keep track of specific signals in-

stead.

Commonly used Metrics 105

6.3 Commonly used Metrics

The number of checkers and monitors in a design are a roughNumber of checkers

and monitors indicator of the verification environment implementation. It is

usually implied that a large highly complex design should have

a sufficient number of checkers and monitors.

Is there a real problem if there are not enough checkers and

monitors in the environment? This is probably not true in many

cases. The major problem experienced if one does not instru-

ment enough monitors in the environment is that there is lack

of visibility into the design. In case there is the need to debug

a problem, the issue at hand becomes a time consuming one.

This is indicative of the number of specification changes inSpecification

stability the design. Changes in a specification are indicative of the

number of changes in the design, leading to changes in the ver-

ification environment as well. In the ideal case, a specification

for the device is created and then the device is designed. Un-

fortunately, that is never the case.

Due to either technical challenges or other reasons, the speci-

fication may change. When this happens, both the design and

verification are impacted. Assessing the changes and respond-

ing quickly to the changes in specification is frequently crucial

to the success of the device in the marketplace.

Using a methodology that encapsulates in an object oriented

manner, various functions in the functional specification is es-

sential to contain the instability that arises from a change in the

specification.

Many studies point to the average number of bugs found in aDesign complexity

metrics design of a certain complexity. The state of the RTL and the

number of bugs found are an indication of the complexity of

the design. Many a time, a complex design is deemed to have

more bugs than a simple design.

RTL stability is a big indicator of how well the design is doing.RTL Stability

This metric simply signifies the amount of time since the RTL

was actually modified. If the RTL has been running a variety

of tests and has passed the tests without modification for a long

106 Tracking Results That Matter

period, then the RTL is considered stable.

On the other hand, if the RTL has been undergoing changes and

the last change was recent, then the question of the complete-

ness of the RTL and verification arises. Most of the time, this

leads to additional verification and validation being requested

before the block is signed off.

This metric indicates the number of test cases that actuallyTest case density

address a functional object. While it does not imply that a

small number of test cases are indicative of missed scenarios,

however, if a test case undertakes to verify a large number of

functional objects, and the objects are not covered anywhere

else, then there is potential for a problem at hand. An example

of this report is provided in the review section of the chapter

Putting it all together in section 8.9.2.

This simple metric governs the number of test objects in a test.Test Object density

This metric is taken across the board and usually represents

the quality of the verification environment.

Why test object density or the test case density an issue? it it

even relevant? Test case density typically indicate how many

tests actually exercised a particular functional object. It pro-

vides an indication of how well the functional object is tested.

It is also a “free” metric that can very easily flag omissions or

errors in a verification plan that has been executed.

On the other hand, test object density reveals the complexity

of the tests. If the test object density is high, then there is a

potential for risk from a couple of viewpoints. The first being,

that if a certain functional object is invalidated or changed, then

the test case must also be changed.

The second concern is that a reuse scenario may pose compli-

cations, if certain objects are not present. This implies that the

test case must also be modified. Hence suitability of tests for

reuse becomes an issue.

Test object density and test case density are two newer metrics

that the author has been using in the past to gauge the state

of the verification effort from a “blind” point of view, when

Commonly used Metrics 107

W
ee

k
1

W
ee

k
20

10

40

W
ee

k
7

W
ee

k
6

W
ee

k
5

W
ee

k
4

W
ee

k
3

W
ee

k
2

Time

W
ee

k
13

W
ee

k
12

W
ee

k
11

W
ee

k
10

W
ee

k
9

W
ee

k
18

W
ee

k
17

W
ee

k
16

W
ee

k
15

W
ee

k
14

20

80

60

Open Bugs

Closed Bugs

Total Bugs

B
u
g
s

Figure 6.1. Bug curves typically observed in industry

the author had to conduct reviews in a rather short period with

limited resources at his disposal. Invariably, more times than

not, the author has found found tests that need to be written

within a very short period by just observing the numbers avail-

able because of a correlation process.

Measuring functional object density and test case density is not

very hard at all. If the concepts in automatic documentation

and tagging approach described elsewhere in this book are fol-

lowed, then the process of doing so becomes a fairly simple

data-mining process.

Bugs are being found in the RTL and in the environment at thisBug find rates

rate. The typical Bug curves are shown in the figure 6.1.

When the bug find rate curve finally tapers off as seen in fig-

ure 6.1, it is usually an indication that the design is probably

mature, as indicated in the diagram. A Tape-out is usually at-

tempted after other parameters are satisfied.

108 Tracking Results That Matter

W
ee

k
1

W
ee

k
7

W
ee

k
6

W
ee

k
5

W
ee

k
4

W
ee

k
3

W
ee

k
2

Time

W
ee

k
20

W
ee

k
13

W
ee

k
12

W
ee

k
11

W
ee

k
10

W
ee

k
9

W
ee

k
19

W
ee

k
18

W
ee

k
17

W
ee

k
16

W
ee

k
15

W
ee

k
14

3

6

9

12

15

B
u
g
s

RTL

Verification

New

features

added

DFT

related

FPGA

related

Figure 6.2. Delta Change in Bugs found

In a similar vein, the bug saturation curves are an indicationBug saturation

curves that the number of bugs found saturates after a period. As can

be seen in figure 6.1, the number of bugs found in the begin-

ning slowly tapers off as the design and the environment attain

maturity.

A brief look at the figure 6.2 reveals that at the beginning of

the project, the number of bugs found rises very quickly with

over a short period. At some point in time, the number of bugs

peaks, and then begins to drop. The drop in the bug find rate is

attributed to the maturity of the RTL. In some cases, this figure

may exhibit some interesting spikes in the curve as new func-

tionality is brought online or a specification change happens.

Bug saturation curves are typically reviewed along with spec-

ification stability and other metrics in order to gauge whether

the design is actually progressing towards its tape-out goals.

The rate at which bugs are closed is sometimes used as an

indicator of productivity. In reality, What has been observed

is that the number of bugs filed and the number of bugs closed

over a period of time track typically well with a certain constant

Structural Coverage Metrics 109

number of bugs open at any one point in time. This is indicated

in figure 6.2.

6.4 Functional Coverage Metrics

With the advent of random generation techniques, it becomes

imperative to determine the areas of the design that have been

exercised with the test case. This brings about a need for a

metric that describes how well the specific function in the de-

sign has been tested. This metric is called functional coverage.

This coverage metric is measured by inserting specific coverage

monitors throughout the entire design. Given the complexity

of today’s designs, the use of functional coverage metrics to

reflect the health of a design has become commonplace and

has gained much popularity recently.

One of the more important issues governing functional cover-Functional

coverage needs to

be instrumented

across the entire

design

age is that the coverage needs to be instrumented across the

entire design. For example, it is meaningless to discuss func-

tional coverage if the coverage monitors are instrumented in

only 10% of the design and the rest of the design has no func-

tional coverage at all.

Functional coverage can be measured by inserting assertionsThere are a variety

of ways to

implement

functional coverage

in the code, which can be used to log data to disk or update a

scoreboard. The data can then be processed either during or

after the simulation to reveal the functional coverage metrics

being sought.

Many modern HVL”s like e actually provide a cover struct and

an analysis capability to analyze functional coverage.

While code coverage is measured regardless of the tests andFunctional

coverage is only as

good as the points

you define

the features being tested. In the case of functional coverage,

various monitors have to be instrumented at the appropriate

places. In addition, the monitor needs to be correct in order to

ensure that the coverage is measured appropriately.

110 Tracking Results That Matter

6.5 Structural Coverage Metrics

Code coverage comes in many forms. Code coverage can in-

deed be classified into many types.

Many of these coverage techniques are commonplace in the

industry. In the earlier days, coverage was generally available

by instrumenting the code with a special PLI/FLI that keeps

track of the required parameter during simulation. Some of the

modern simulators have this feature integrated into the simu-

lator and offer this as an option during the simulation run.

Since code coverage is quite extensively covered in literature,

the author has chosen not to include examples for each metric.

A detailed collection of examples may be found in [1].

This metric usually describes the number of times that a par-Line coverage

ticular line of code was executed.

State machine coverage provides information on the visitedState coverage

transitions, arcs, or states in a finite state machine. This cov-

erage can also provide the actual path taken through the state

machine.

In some companies, this coverage is sometimes called eventTrigger coverage

coverage. It indicates whether each signal in the sensitivity list

has been executed or not.

Expression coverage provides information about code that in-Expression

coverage volving expressions present in the RTL. Expression coverage

not only reveals if every line containing expressions was ex-

ercised, but it also tells you whether it was exercised in every

way possible in the design.

For example, an “if” statement might be true in more than one

way. Expression coverage indicates whether all the possible

combinations of conditions were exercised.

This metric shows the number of bits that have actually toggledToggle coverage

in the design, It is primarily designed for inputs and outputs and

indicates if all the input and output bits have indeed toggled over

Assertion Verification Metrics 111

the collection of simulations

This coverage metric also indicates which case of the if/elseBranch/path

coverage branches were taken. Branch coverage, is an extension of

expression coverage, shows which branches of an if statement

or case statement were exercised. Path coverage is similar to

branch coverage in that shows the exercised paths through a

sequential if statement or case statement

6.5.1 Some Caveats on Structural Coverage

Code coverage as a metric does not mean much. All it revealsDoes 100% code

coverage imply

anything?
is whether the verification code actually hit a portion of the de-

sign or not. When code coverage is run on a design, the results

can typically be used to determine the portion of the design

that is not currently exercised by the verification code.In many

cases 100 %statement coverage may be completely misleading

as evident from the example below.

In the figure A of Figure 6.3, one notices that If A = 1 and B = 1;

then it becomes possible to get 100% line coverage. However,

it only implies that we have 25% path coverage, However, one

may get complete path and condition coverage using the matrix

shown in the figure.

In a similar manner, If one uses a=0; b=0; c=0 and a=0; b=0;

c= 1 combinations then we get 100% line coverage, and 50%

branch coverage. One may add many more combinations to

the same, and yet not achieve complete trigger coverage.

In case of toggle coverage, some tools report 0->X, X-0; X-

>1 and X->0 as well. One important thing to note for is that

although toggle coverage reports a 100% coverage, there could

still be a serious problem as illustrated in the figure.

Many more shortcoming of coverage approaches are discussed

in [2]

6.6 Assertion Verification Metrics

Using assertions in verification brings about newer metrics that

are used to measure the quality of the ABV effort. The numberAssertion Density

of of assertions of each type in each module is termed as asser-

tion density.

112 Tracking Results That Matter

always @(A or B) begin

tempReg = InitialVal;

if (A)

tempReg = IntermediateVal;

if(B)

tempReg = FinalVal;

end

A B

TempReg = InitialVal0 0

0 1 tempReg = FinalVal

tempReg = IntermediateVal

tempReg = FinalVal;1 1

1 0

always@(a or b or c)

if ((a & b) | c)

WA = 1 b1;

else

WA = 1 b0;

Trigger Coverage Pitfalls

Line coverage Pitfalls

Figure B

Figure A

You can get 100% line

and toggle coverage.

However, getting

trigger coverage is not

easy!

Figure 6.3. Line Coverage Pitfalls

Time

Value remains at 0 after

reset and is an invariant

In the design. Is this OK?

Reset applied

Figure 6.4. Toggle Coverage Pitfalls

REFERENCES 113

Proof Radius Measures the amount of verification (in cycles)Proof Radius

that was achieved by formal analysis. It is a measure of depth

of the exhaustive search around each seed. The larger the proof

radius, the more thorough the verification. A proof radius of

200 cycles implies that formal verification has exhaustively

proven that no bugs can be triggered within 200 cycles of the

initial state of the analysis.

DFV can also be measured as the number of seeds as possible atDFV Seed rate

shallow depth in a given time. The number of seeds per second

per assertion at a small fixed proof radius is also a metric.

References and Additional reading

[1] Bergeron, Janick (2003). Writing testbenches - functional verification

of HDL models. Kluwer Academic Publishers, Boston, 2nd ed edition.

[2] Jeffrey Barkley. Why Statement Coverage Is Not Enough. TransEDA

Technical Backgrounder.

[3] The Linux operating system. www.linux.org. Also supplied by various

vendors including Redhat.

PART III

MAKING VERIFICATION EASIER

This part focuses on helping the reader become more successful in verification.

It is made up of many discrete sections. Each of the sections describes some care-

abouts that help the verification engineer reduce the workload by attempting to

structure verification workload in a optimal manner.

Some of the concepts presented herein are from various disciplines. All of the

concepts have been time tested in a variety of organizations that build ASIC

devices. Each of the concepts is treated in a discrete fashion. This will allow

the reader to pick, choose or otherwise combine ideas to make the verification

task go easier.

The author is confident that many of the techniques described herein have been

successfully in use by verification engineers all across the world. Many organi-

zations have these techniques as part of their cookbooks or processes. Some

organizations use these techniques to drive their design and verification activity

to ensure first pass silicon success with minimal difficulty.

There are no doubt a great many more techniques in use than what are described

in this book. Some of these techniques are no doubt more significantly advanced

others to share their experiences also so that we may all enrich one another.

There is a single chapter in this part titled Cutting the ties that bind.

than what is presented here. The author’s hope is that this part will encourage

“ ”

Chapter 7

CUTTING THE TIES THAT BIND
Reducing Work in Verification

Looking at the global picture, the task of verification is indeed

a much larger task than the design task. The design and de-

velopment of a device involves translating the specifications

down to RTL or lower levels. Verification on the other hand is

all about making sure that the aspects that were not covered by

the design and the proper operation of the design are covered

as well. Hence, it can be said confidently that verification is

indeed much bigger and more complex task.

Given that the verification task is huge, any tactic that reduces

work is always welcome. This chapter explores the various

methods by which the verification productivity can be im-

proved. It offers some shortcuts that help reducing the veri-

fication burden.

One of the main inspirations for sharing the information in this

chapter was to share some of these tips and tricks that the au-

thor has learned over a period of time. Some of these may seem

intuitive in hindsight, but one of the things the author has learnt

is that the “The devil is always in the details”and that small

things do matter after all. Frequently, commonly known con-

cepts are neglected and analysis and introspection in hindsight

reveal that it had cost the project dearly in terms of effort or

schedule or both.

117

118 Reducing Work in Verification

It is noted that not all the concepts presented herein are appli-

cable to every environment and there are probably many more

good concepts implemented in practice.The author invites peo-

ple to share these ideas in one of the more common forums on

the internet.

This chapter is a collection of knowledge. There are many

sections to this chapter, each different in theme from the other.

The sections are developed to be independent of one another

and may be implemented as desired. This allows the reader to

pick and choose necessary optimizations that they choose to

implement.

7.1 Considerations in a Verification Environment

Experience helps commonly made mistakes to be avoided! Ex-Testbench is like

RTL perience also plays a role in formulating coding guidelines.

These guidelines help insure uniformity in the code that is de-

veloped. Without these guidelines, many of the common mis-

takes usually wind up costing the verification teams time which

sometimes translates to stress!

Nowadays, The designs are getting larger and larger. Many

projects usually resort to using emulation or hardware acceler-

ators to help achieve the throughput required for regressions on

the project. Such an approach typically implies that a portion

of the testbench actually resides in the emulator or accelerator.

the author has actually noticed that the emulation or accelera-

tion activity starts somewhere in the middle of the project, If

care is taken early on in the development cycle, then the issues

involved in porting the testbench to the emulator can be mini-

mized.

One of the main reasons why some attention must be paidWhy is a

synthesizable

testbench even a

concern?

to this topic is that it is fairly easy to create a testbench that

makes extensive use of non synthesizable constructs like events

etc. When the partitioning of the testbench occurs, there will

be extensive communication overhead between the simulator

running on the host machine and the emulator. Under these

circumstances, not much speedup will be observed. Initial

planning and forethought could very easily avoid serious per-

formance issues.

Tri-State Buses and Dealing with Them 119

In one of the projects the author was on, the decision to even use

an RTL accelerator was made late in the design cycle. When

the testbench was ported on to the accelerator, little improve-

ment was observed. When a code profile of a test run was

analyzed, it became apparent that more than 70% of the time

was spent on the host machine running some file I/O constructs

in the testbench. When a good caching algorithm was used in

the testbench, the speedup obtained was significant.

The decision to move to an emulation/accelerator should beTake care before

you move to an

emulation or

acceleration

platform

taken only after a profile of the code is taken to understand

where most of the time is spent during the simulation. For

instance, if 70% of the time is spent in some constructs in

the testbench or in the simulation environment, and if a large

part of the testbench is not synthesizable, then speeding up the

remaining 30 % may not yield a great deal from an overall

point of view. It is typically considered a good idea if coding

standards for synthesis are also adopted for testbench and driver

code portions that are synthesizable since the code can possibly

reside in the accelerator/emulation platform if needed without

any changes.

7.2 Tri-State Buses and Dealing with Them

Tri-state busses are typically present in a verification environ-Ensure that there is

only one driver on

a tristate bus
ment when we have multiple drivers driving a bus. One of

the drivers drives the bus and the rest of the drivers on the bus

present high impedance to the bus. By far and large, it is pre-

ferred to have a single interface from the testbench side to deal

with the tristate bus. This typically helps avoid bus contention.

In some circumstances, this may not be easily possible. En-

suring using some mechanism that the drivers are unique or

one-hot simplifies the debugging effort.

120 Reducing Work in Verification

A long time ago, the author has had the (mis) fortune of con-Add an internal

signal to the driver

to let you know the

driver is driving the

bus

figuring a couple of drivers on the bus without any appropriate

debug signals that let the author know that the bus was being

driven! The only recourse the author had at the time was to

run the simulation to that point where a failure was suspected

and then use a step-through on the simulator interface to reveal

the drivers at every instant on the net that was being driven by

multiple drivers. This was a time consuming task and was dif-

ficult to manage since the failure occurred after a fair amount

of time was lost in simulation. In hindsight, the author believes

it would have been far easier to insert a signal and debug it by

observing signals instead1.

7.3 Dealing with Internal Signals

Internal signals are one of the “necessary evils” in a verification

environment. Sometimes, the I/O pins of the device may not

be able to provide sufficient information to allow the testbench

to perform certain tasks. Under these circumstances, it may be

needed to access some internal signals to simplify the task of

developing the testbench.

One of the main considerations that need to be made when aEnsure that all

internal signals are

maintained in a

single file or

location in the

environment.

test references an internal signal is whether the test needs to be

portable or reused at other levels. Such considerations usually

make the choice a little easier to make. Using such an approach

enhances maintainability. Further, if for some reason, an extra

layer of hierarchy is added to the verification environment, it

becomes a very daunting task to go through several files to ac-

tually add the correct hierarchy to the environment.

Another of the bigger concerns about referencing an internalEnsure that

synthesis does not

lose the signals that

you created.

signal is that signals are usually wires which aren’t usually pre-

served during the synthesis operation. The synthesis tool may

very well discard the very nets that are being observed. This

brings about the problem that the signals need to be maintained

a great deal. Such maintenance is usually non trivial.It is noted

1There are probably other simpler ways to do so, but at that time, other ideas hadn’t

occurred to the author.

Dealing with Internal Signals 121

that module boundaries may be used in some circumstances if

the synthesis tool has been specifically configured to leave the

module boundaries alone.

Typically, the design goes through a stage of development fol-

lowed by a stage of maturity. During the development phase,

the RTL may experience significant volatility depending on

various circumstances that are present during the development

of the RTL. If a test were to refer to some internal signal then the

test will have to be modified every time the signal is changed

or moved.

Doing so can be quite dangerous since forcing the signal canDon’t force internal

signals unless you

absolutely need to
indeed mask some failure that would otherwise not have been

detected. This practice has its share of pitfalls. There have

been occasions where the regressions were declared as passed

till a final review was done and then the results were declared

to be invalid when it was discovered that some of the signals

were forced. The result was that the tests had to be rerun and

re-certified before the tape-out of the device.

Such an approach can be costly if it is not caught early. On

the other hand, it may not be possible to create a specific set of

scenarios at a certain level of integration if internal signals are

not forced to some value.

The forced signal list needs to be maintained and periodicallyKeep all the list of

internally forced

signals in a single

place

reviewed to ensure that only the absolute minimum signals are

indeed forced. Keeping the list in a single place enhances main-

tainability. It also speeds up the review process.

It must be possible to account for each signal in the force list

with an explanation as to why the signal cannot be removed

from the force list.

In some circumstances, there will be various lists of signals that

are forced in different environments – RTL/Gate being one ex-

ample. Different block level environments also may have lists

of signals that are forced. Sometimes there are too many of

them to deal with.

122 Reducing Work in Verification

It is recommended that at the very minimum, a list of such

signal lists be preserved. This will ensure that all the signals

in the list are indeed tracked to ensure that there are no false

positives generated by the forcing of the signals.

7.4 Environmental Considerations

One of the key aspects of a verification environment is that itKeep the

environment easy to

use.
must be easy to use. Simplicity breeds reliability in the envi-

ronment.

Design engineers will use the environment as well as verifica-

tion people. It therefore becomes apparent that the people who

wrote the tests may be different from the people who wrote the

environment.

What is the consequence of the verification engineer not follow-

ing this guideline? Simply put, the design engineer has enough

to worry about. If the environment is large and complicated,

then every time, the designer will turn to the verification en-

gineer for help in running the tests in the environment. As a

result, the verification engineer is now burdened with not only

maintaining a complex environment, but also effectively being

at the beck and call of the designer to help the designer run tests!

There is sometimes a tendency to use non standard debug tools

or use macro’s extensively. Doing so makes debug of the en-

vironment very difficult and complicated. Usually, this works

against the engineer who has developed the verification envi-

ronment – No one can help the engineer who builds such an

environment since it is his own creation. The author has been in

a situation where every small modification to a set of files had

to go through a specific engineer simply because of the com-

plex macros the engineer had embedded in the environment. It

was impossible to even add a couple of lines to the configura-

tion file so that one could run a couple of tests to verify a few

ideas before asking anyone for help! Needless to say, there was

considerable confusion and a stifling of innovation.

Simplicity and ease of use also have other important implica-

tions. Engineers can be brought on board faster. In the begin-

Environmental Considerations 123

ning of a project, a few engineers typically wind up developing

major portions of the environment. They then involve other

engineers in test-writing and debug activities.

The environment is a combination of RTL and the testbench.Make sure the

environment is

debug-able using

the same tools that

areused for RTL

development

The environment is developed to test the device. Hence, it must

be concluded that there is the possibility that there are bugs in

the environment as well. It must be possible for anyone to

quickly identify a bug as being present either in the RTL or in

the verification environment. The most difficult thing that can

happen is that the RTL designer states that there is no bug and

the test fails and all the pressure is now on the poor verification

engineer who has to debug not only his environment and tests

but the RTL as well. Being the only one who can perform the

task makes it even more difficult!

One of the basic features that must be present in the environ-Capture all relevant

data ment is that it must be able to capture all the relevant data that

would be required to debug the test case if failure occurs Cap-

turing of relevant data must include at the very minimum the

following:

The seed and other data required to reproduce the run

Any command line options that were used

Any generics that were used in the test run

Any Output from the simulation

Output from debug and logging monitors

When a test case fails typically, the debug process usually be-

gins with parsing of a log file to see if any relevant clues that

would indicate point of failure are present. Sometimes, it be-

comes impossible and difficult to log all the appropriate data

into the log files because of the fact that the simulations are long

and the log files that are generated are huge. In such circum-

stances, the author recommends that extensive use of debug

levels can make the problem a lot more manageable.

124 Reducing Work in Verification

The environment is like RTL. If you look at it another way, theMake sure that the

environment

supports both stand

alone testing of the

RTL as well as the

environment

testbench is effectively a piece of code that is basically used to

test another piece of code. That is not to say that the testbench

is completely error free. Most engineers realize that the test-

bench and the environment itself have its own share of bugs.

Hence, it will become necessary to test either the environment

or the RTL using some specific directed test cases. These test

cases may choose to excite specific features of the environment

as well as the testbench in a particular fashion.

Under some circumstances, it might be necessary to rerun theEnsure that you

dump only the

minimum data into

the waveform dump

file

test case with some additional waveform dump to a file so that

the actual problem can be debugged properly. It is apparent that

a large waveform dump file will definitely take a little longer to

be created. In every project, disk space is always at a premium.

Often, the waveform data is kept around for a long time for cer-

tain reasons. The practice of saving some golden waveforms

from a simulation which had considerable time spent on it has

been observed frequently in many organizations. The duration

of the waveform storage has indeed varied though!

Being able to create a waveform with the right data and the

smallest size is nowadays possible with various tools that are

now available to manipulate the waveform dump files. This

feature must be used very effectively to prevent issues in Disk

management.

If the reader does need to keep a wave dump file around, it is

recommended that it be trimmed to the smallest possible size.

The author recommends saving a complete snapshot of the en-

vironment instead. This snapshot could be a version label that

reproduces the wave log file in question.

Providing options to the user to be able to select exactly what

is dumped into the waveform dump file is critical. Having too

little data dumped with a certain option into the file leads to the

consequence that the user chooses the default – Dump every-

thing and worry about it later. This compounds the problem of

already hard to obtain disk space.

Environmental Considerations 125

At the very minimum, it must be possible to partition test codePartition test code

based on functional

objects
and associate the each piece code with a certain functional

requirement. These functional requirements are termed Func-

tional objects 2

Why is such partitioning important? An effective partition-

ing enables the possibility of identifying tests and environment

code that is part of the verification environment. If features are

modified or modes are trimmed from the device, it becomes a

straightforward matter to identify the affected portions.

Time pressures are always a factor in any verification effort.

Many a time, the schedule for tape-out takes precedence over

the completion of verification. This is a fairly common occur-

rence. When this occurs, one can prioritize the tests that need

to be developed and maintained over other tests.

It now becomes possible to review test code and associate that

code with a functional requirement that is being tested.

In addition, the identification and preservation of tests that give

the most contribution to functional coverage is also enabled.

(test grading practices).

There are several ways to test that a test indeed did create theMake all tests be

self-checking scenarios that it was supposed to and that the response was ap-

propriate. The most common methods are:

Eyeballing: Looking at the test results visually to determine

if the test did indeed accomplish its goals.

Comparison with some expected output: In this method the

test output is compared with some expected result which

has been certified as correct.

Using a program to determine the correctness or failure of

a test.

Experience has often revealed that the introduction of the hu-

man element brings about opportunity for mistakes to be made.

2 Functional objects are described in detail in the chapter putting it all together.

126 Reducing Work in Verification

A computerized decision on the other hand does not suffer from

this deficiency. Consequently, It appears apparent that any test

must be created in such a manner that it allows the test to be

checked automatically. If it becomes possible to determine the

results of the test from some data, then we can make this test

regressable.

Another key environmental consideration is that the mechanismAutomate the

checking

mechanism as far

as possible

for checking the tests must not have any manual intervention

from the test writer as far as possible. This approach eliminates

the possibility of human error. In a typical verification project,

the same test may be run many times. If the test relies on the

human element to ensure the pass or fail of the tests, the possi-

bility of errors rapidly increases with the number of tests and

the number of runs of the same tests. This essentially limits

the number of tests and scenarios that can be tested since the

human element can only process a certain number of tests in a

given amount of time.

Sometimes it may not be possible to automate all the portions

of the checking mechanism. For example, when a mixed mode

simulation is being run, it may become necessary to look at the

spectral analysis of the circuit output. Such tests are hard to

handle in any project. In such situations, it may be possible to

check some portion of the output with an automated mecha-

nism and limit the amount of manual checking that is done.

Simulator warnings are usually something that needs immedi-Make sure that all

simulator warnings

and errors are

identified and

addressed

ate attention. The warnings from many commercial simulators

can be turned on/off. However, a detailed observation of the

warnings can often provide clues to the failure. This is one of

the first places to look at while debugging a simulation. (Old

saying: When all else fails, read the manual! In this case the

log file should never be the last one to be looked at!).

Warnings also serve a second purpose. They reveal to the user

the problems that the simulator found in the code. Usually,

simple issues like mismatching bus widths or redefinition of

some parameters are printed as warning messages.

It is important to ensure that all simulator warnings and mes-

sages are accounted for. Doing so ensures that the most obvious

errors leading to unusual/unexpected behavior are caught early

on in the game.

Environmental Considerations 127

In most projects, the RTL is typically the first to be developedCreate a testbench

so that both RTL

and gate simulation

are supported

properly

and debugged. Once the debug is complete, the RTL is typi-

cally synthesized. The Gate netlist that is built is then used for

simulation runs. Usually, the Gate netlist needs a little more

work than the RTL netlist to operate correctly. Some things that

worked in the RTL netlist may no longer work in the Gate en-

vironment. A notable example is the forcing of certain signals

in the design. Depending on the synthesis approach, the hier-

archical nature of the RTL netlist may or may not be present in

the Gate netlist. Another interesting thing that the reader may

find is that sometimes the RTL design is done in VHDL and

the GATE netlist possibly is in Verilog. If this is not accounted

for, one can be assured that complications will arise if some

VHDL specific aspects are used to construct the environment.

Under these considerations, it is recommended that the test-

bench be constructed in a fashion to allow the RTL and gate

netlist to be used from the same testbench. This approach will

save the effort of developing a separate testbench for the gate

netlist and make sure that the testbench components that are

used for the netlist are in sync between the RTL and the gate

netlist.

One project the author had an opportunity to observe had theEnsure that a subset

of all RTL stimulus

will operate on gate

level models

entire design in VHDL. The simulations and the environment

were all designed to operate using VHDL. However, when the

gate netlist arrived, the netlist was completely in Verilog. This

caused some difficulties when the gate netlist was to be used for

simulations. Some of the portions had to be completely rewrit-

ten to accommodate this change. If this fact were known and

accounted for in the beginning, then the entire process of mod-

ifications and iterations could have easily been done away with.

As the reader will observe, not all the tests from the RTL envi-

ronment will be run on the gate netlist since runtime is usually

a issue. Selectively picking the right set of tests will help the

verification engineer to ensure that the design is adequately

verified.

128 Reducing Work in Verification

One of the most important environmental considerations is thatTestbench should

drive the I/O

connections of the

module or the

device

there should be no signals from the testbench driven into the

internals of the device under test. This guideline is similar to

the guideline for internal signals. Doing so renders that some

portions of the logic may be untested or even lead to false re-

sults. The author’s opinion is that all statements on the quality

of the design are not valid if the testbench is driving and reading

internal signals.

In the real world, It is not possible to connect to the signals

inside the device. During the initial stages of the development,

a few internal signals are used to speed up testbench devel-

opment when the RTL is not mature. These signals must be

removed as soon as possible.

During a review, this is one of the most important things to look

for when ensuring that the device is indeed tested correctly.

7.5 Dealing with Register Programming

In the hardware world, All information that is communicated

to the outside world is done either through pins at the periphery

of the device or via a set of registers on the device. In a typical

device under test, the registers are programmed to set up some

specific parameters of the device.

In this section, we explore the ways that registers are pro-

grammed and also offer the reader some possibilities to simplify

the register programming effort.

Register programming has a large impact on the testing of the

device. A large portion of the verification engineers job is usu-

ally dedicated to having the right settings for the device. In his

career, the author has noticed that many times that the verifica-

tion engineer had to rework the tests time and again since the

engineer did not choose to use a programming style that would

support any changes in the register specification.

There have been many instances in the authors career where

the register specifications for the bits have changed. In some

instances, the register was moved to better accommodate the

Dealing with Register Programming 129

Device under test

Bus functional model for a

microprocessor

nd
at

a

r/
wn

ad
d
r

Figure 7.1. Register Read Write

designers needs. In some cases, the register bits moved posi-

tions. In others, additional bits were added. In many of the

cases, the tests needed updating to reflect the latest register

specification.

Given all this change, it becomes imperative that the tests do

not incur additional maintenance costs due to flux in the spec-

ification.

For example: Consider the device in the figure 7.1. This de-

vice is shown to have a microprocessor bus with a bidirectional

data bus and read/write signals. The device in this example is

considered to have about 500 bit settings. This is a large num-

ber, though not uncommon with telecommunications or other

devices today.

In the example in figure 7.1, we assume that the device has a

memory map from 0x0000 to 0xfff0. The figure also shows

a bus functional model of the microprocessor. This bus func-

tional model interfaces with the hardware of the device under

test.

If one were using transaction based verification typically, the

bus functional model offers a couple of transaction interfaces

to the microprocessor interface.

130 Reducing Work in Verification

task write_all_registers;

begin

……

do_write_UP1(0x0001,1001); // write to the outgoing and incoming enable bits

do_read_UP1(0x1119,0000); // read the status for the device.

// additional test code.

….

…

end

Figure 7.2. Read and Write

a typical example of the write and read transaction in a test

could be shown as:

An analysis of using this coding style indicates the following:

It is a simple style to write tests in this fashion. However, tests

using this method are not portable or easily reusable. If a bit is

moved or the register moves during some course of the project,

then the test will need to be rewritten.

If the device or a portion of the device is re-used in another

derivative device, then in all likelihood, the test will be thrown

away. At the end of the project, the only way to find out all

the settings that have been exercised by all the tests is to go

through and audit the tests or rely on some other metrics.

Some of the verification environments on the other hand use anOther alternatives

indirect scheme. The register name is built using a mnemonic

list that is then used to program the device. This approach

solves a few of the concerns of the previous approach.

This approach is still commonly used by many environments.

However, it still is impossible to identify from the tests the bits

that were set/unset without a copy of a bit map next to the en-

gineer! The process of referring to the bitmap is usually time

consuming.

A Hybrid Approach to Register Programming 131

task write_all_registers;

begin

……

do_write_UP1(ENABLE_REGISTER,0x1001); // write to the outgoing and

incoming enable bits

do_read_UP1(STATUS_COMP_REGISTER,0000); // read the status for the

device.

// additional test code.

….

…

end

Figure 7.3. Alternate read and write example

If this type of register programming is in a few tests, the amount

of work will explode! The approach does not scale well in

case of certain types of devices (for example networking de-

vices where there are thousands of bit settings). The approach

is also not portable between device versions. In addition, it

is still impossible to determine statistically how many of the

register bits have indeed been exercised during the course of

the verification effort.

There are variants to the above scheme that are widely used in

verification environments today. In the critical analysis above,

no statements on the validity of the approach is inferred. In

case of both the methods in question, the designer and the

verification engineer need to do some work in order to cope

with the design changes. In the initial stages of verification,

this change can be quite a bit. It can also be frustrating at

times.

7.5.1 A Hybrid Approach to Register
Programming

Modern languages like e or Vera now provide the ability to

create data structures for registers. if we consider a register

132 Reducing Work in Verification

and a bit as a class object, we observe that the bit field itself

has the following properties:

Value on reset.

Default value.

Offset from zero.

Size (number of bits) etc.

Read/only or similar attribute.

similarly, amongst other properties, the register itself will have

the following properties:

Value on reset.

Default value for undefined bits.

Offset from register base address.

Address.

It now becomes completely possible to create a collection of

simple data structures that address each register and bit by its

name as shown below.

A register can then be constructed using a structure of bits and

some additional properties as indicated in figure 7.5.

Using the coding style in the figure 7.6, one can now create

register programming sequences that look like that indicated

in 7.6.

There are many good examples and discussion of this code in

[9] and [10]. The approach indicated is not the only way to ad-

dress the register programming problem. There are many other

ways to achieve the same result. Some commercial tools like

[11] or Cadence register package [12] offer some additional

features that may be deployed effectively by the verification

user.

There are many advantages to using a scheme as above. These

are described below.

A Hybrid Approach to Register Programming 133

// The definition of a bit is below

class RegBit

{

public:

RegBit(void);

virtual ~RegBit(void);

void SetBitValue(unsigned short BitVal);

void CompareValue(usigned short value);

// initialization when the class is created.

void Init(unsigned short BitVal, unsigned short BitMask, unsigned short

BitShift); //void SetRegPtr(class Register *regPtr);

/* various elements to signify

value on reset

default value

Offset from zero

size (number of bits) etc.

read/only or similar attributes

*/

};

// The definition of a register is below.

Figure 7.4. Bit Example

If the reader were to observe, the power of a name now becomesA static analysis is

now possible incredibly evident, If the engineer were to factor out the basic

register read and write tests which have all the combinations,

the ones that have been exercised and tested in the tests are

now completely self evident. A simple text search and sorting

algorithm can easily identify issues in the verification.

If the register bit settings were to control certain functionality,

then the extent to which the functionality is coded is evident at

a glance!

Debug is one area of verification where time is spent in copiousDebug becomes a

simpler affair quantities. One finds often that a test fails because something

was not set somewhere.

The designer frequently asks the verification engineer for help

in debugging the design since the designer needs to look at an

address map or a bit map repeatedly for a debug. Using a name

convention ensures the “reduce, reuse, recycle” habit.Once the

134 Reducing Work in Verification

class MyRegister{public:

// Class Construction

MyRegister(void);

MyRegister(unsigned short Offset, unsigned short Value);

// Class Destruction

virtual ~MyRegister(void);

//Operators

// Class Initialization

void Init(unsigned short Offset, unsigned short defaultValue);

unsigned GetOffset(void);

unsigned short GetValue(void);

// Set Methods

void SetOffset(unsigned short Val);

void SetValue(void);

void SetValue(unsigned short Val);

// General Methods

void PrintReg(int opcode);

void CompareRegister(unsigned short mask, unsigned short shift);

void CompareRegister(int Value); // Instances of bits in this register

// Instances of Bits

RegBit bit1;

RegBit bit2;

RegBit bit3;

RegBit bit4;

// Various initialization sequences are included and not shown

// Various housekeeping elements

// value on reset

// default value for undefined bits

// Offset from register base address

// Address

};

Figure 7.5. Hybrid Register example

particular register is debugged, it is clean for ALL tests in that

design. One does not have to visit it again.

A Hybrid Approach to Register Programming 135

Register1.bit1.SetRegister(0x1);

Register1.bit3.SetRegister(0x0);

Register1.bit2.SetBit(0x1);

….

Register1.SetAllValues(0x0010);.

Figure 7.6. Hybrid Register Programming Example

The naming convention also ensures that a glance through the

test files usually reveals if some mis-programming of the de-

vice happened!

One of the nice things about using a naming approach that usesRelocation of

registers and bits is

now possible
a object mechanism as shown in the preceding discussion is

that it now becomes to make the test completely insensitive to

bit movements in the design. For the most part, there is not

much movement in the bit locations once they are designed.

However, consider a scenario where an IP that has been verified

without this approach used for a certain version of a device that

has been successfully taped out. Let us consider a derivative

design that needs to modify the IP so that some additional con-

trols needs to be added and as a result some control bits need to

move around.Its certainly possible that the address map would

possibly change as well.

If care wasn’t taken in the beginning, it would be reasonable to

assume that most of the tests exercising this IP were going to

be affected. Interestingly the approach ensures that a straight

recompile of the code with an updated header would probably

take care of the issue.

136 Reducing Work in Verification

7.6 Dealing with Clocks

Use a single constant or a variable, that is in the clock moduleCreate clock

modules with

parameterized

delays for control

and skew

that can be used to scale the clock up or down. This makes

the changing the frequency or the design or adapting it to a

different design much easier.

Use of division instead of multiplication can cause roundingBe careful of

rounding and

truncation in clock

expressions

errors based on timescale and resolution. For example: Con-

sider the use of a simple clock at 622 MHz. This frequency

is typically used in some telecommunications devices. If there

is the need to generate the following frequencies: 311 MHz,

155.55 MHz, 77.75 MHz, and 4.8 MHz, one of the common

things to do is to define the highest clock at 622 MHz and then

use a set of successive dividers to arrive at the lowest frequency.

Interestingly, this causes errors as the frequency is lowered

and successive division takes place. This is particularly true

if timescale and precision are not chosen appropriately.Hence

it is recommended to use multiplication using the appropriate

multipliers. A good example of this is given in [5].

A derived clock is generated by a flip-flop, latch, or any inter-Treat derived clocks

with care nal clock generator (such as PLL’s, frequency dividers, etc.) in

the circuit. Derived clocks can render a large part of the design

un-testable later on, because the flip-flops are not controllable

from any primary input. Derived clocks usually lead to DFT

headaches as well. Another important issue to watch out for is

that the derived clocks must be generated in the same process

block (always in Verilog) to take care of skews that may be

unintentionally created.

Many a time, clock skew modeling is typically done later in theModel the skew on

the clocks in the

clock generator

module

verification cycle when the design is stable. Typically, how-

ever, the clock skew, jitter and other parameters are usually

available early on in the design cycle when the product speci-

fication is available.

The author recommends that the appropriate skew and other

parameters on the clock be modeled early on and instantiated

Driving the Design 137

in the testbench. For the most part, these can be turned off

during the initial testing. The parameters can then be used for

verification as and when deemed necessary. The approach also

helps the testbench to avoid changes at a later date when the

design and the testbench are stable after having passed many

regressions.

Driving a clock input deep into the design is akin to using aDo not drive any

clock inputs deep in

the design
pseudo internal signal. The design must be able to generate

any clocks needed to drive the internal nodes of design as a

relationship of signals that are present on the external pins.

If a clock is needed deep down inside the design, the author

recommends that the reader file a bug on the design!

7.7 Driving the Design

For the most part, a driver must completely cover the inter-Each driver has a

single function. -

Drive one interface
face it is designed to be with. If commands for the particular

interface are not generated, it is important that the driver flag

the command as an error. Otherwise, the user of the driver will

spend a lot of time in debug which may point back to the driver

and result in loss of trust in the driver. One thing to avoid in a

complex protocol is to keep a subset of driver commands from

one driver and another subset from another driver. A corollary

of this is that it is important not to have different transactions

coming from different drivers for the same interface merely

because it is easy to implement in the initial stages. This also

implies that the driver must be designed properly. An example

of how to do so is derived in the next chapter.

The other key requirement is that the driver in itself should notKeep the driver

modular and simple have any instances of another driver in it. This makes the driver

hard to port between environments.

Drivers or bus functional models must only drive the primaryDrivers only drive

boundary signals

and not internal

signals

external signals. For the most part, the driver will not be usable

properly if it is referencing internal signals deep in the design

and using some particular protocol that is specific to that inter-

face. If the design moves from an RTL to a gate netlist, then it

is possible that the driver is unusable.

138 Reducing Work in Verification

Another key aspect of the driver is that the driver should onlyDrive Inputs only as

long as you need to drive the nets or ports of the design only as long as they need

to. They must not function as “bus keepers” by holding the

value longer than it is necessary. It is highly possible that such

behavior will mask an accidental bug.

It is important to provide a mechanism to disable the driverMake it possible to

disable drivers from

a single location
and this disable mechanism must be centrally located. It can be

called by all the sources that need to use this driver. One may

choose to use some global variables which are then mapped to

each driver specifically to control the drivers.

This guideline comes from a mistake that the author once made.Do not mix driver

and checker

functions in same

file

The code for checking a protocol relied on the same signals that

the driver was using. In order to save time, the author coded

both into the same file little realizing that the practice would

create problems later! The author then had to port the checker

over to the next hierarchical level in the design and had to

rework the checker to fix the mess!

7.8 Debugging the Design

One of the main factors in a debug effort is that it takes quite aDebug always takes

a significant

amount of time
bit of time. The paragraphs that follow describe general debug

advice that is gained by experience gained by many over the

years in verification. The author is sure that with the advent

of modern tools and techniques which are many, there is much

that can be added to this list to make it more comprehensive as

a guide to debugging designs.

Note that a wave dump file must always be the absolute last re-

sort when debugging a design. Unfortunately, it is sometimes

the first thing that gets looked at!

Almost all verification engineers have heard this often repeatedIt is important to

find the root of the

problem and get rid

of it

mantra “get to the bottom of the matter”. However, doing so

is quite challenging. The biggest challenge is to identify with

certainty the actual cause of the problem and deal with it prop-

erly.

Debugging the Design 139

The author has observed a bug filed in a bug tracking system

making the “bug rounds”. The bug is typically filed in response

to a test failure and deemed to be a certain problem. It is then

recategorized as a different issue and then another. Pretty soon

the bug finds a life of its own! Jumping from owner to owner.

At the end of it all, it becomes pretty much impossible to search

for the bug in a system if it was not categorized properly in the

first place. In the light of the , the author recommends that the

original bug be closed with a new bug entered in the right place.

The most important thing before beginning a debug is to iden-Places where the

problems could be tify what had changed from the previous time the test ran. If

a test is written and run against the RTL for the first time, the

problem could be anywhere. This poses a significant challenge.

Many people tend to triage issues by using some sort of an al-

gorithm appropriate to the situation.

The most important item is to understand the scenario that is

being tested. After this is done, the triage is done to eliminate

issues with the following broad categories.

What changed since the test ran last time around?

Test code that was developed.

Any similar outstanding bug.

The RTL itself if the code was untested.

The environment causing issues.

Non repeatable issues.

And so on. The idea being to quickly determine if some known

problem already exists or if a new problem has arisen. The

common method of identifying problems is to typically start

by looking at the log files for obvious signs that something

is wrong. Any well written environment will have detailed

logging controlled by verbosity levels. Assertions that have

been embedded in the design that fail help identify the prob-

lem quickly.

An encoding scheme in the log file which reveals the details of

where the transaction is coming from is usually helpful.

140 Reducing Work in Verification

Many tools today have powerful active annotation and debug

features that allow the user to identify the source of the prob-

lem. X propogation problems or incorrect values are quickly

identified in this approach.

Debug levels have been discussed elsewhere in this chapter. At

the very minimum, an error may or may not stop the simulation

using a flag controlled by the user depending on the particular

situation.

The author would like to suggest that any error flagged by ei-Use a coding style

that tells you where

the errors are

coming from

ther the testbench or the design use some sort of a coding style

that uses an error number or something similar so that a unique

string can be attached to it. This sort of style is very prevalent

in the software industry.

For example: a range of numbers can be given to each block

in the design. When the messages are printed in the log file, a

script can help to parse the messages for each block and help

debug.

There are many scenarios where the test case or testbench mayLockup or Runaway

detection is a must be hung up waiting for an event to happen. In order to determine

if this is indeed a problem, a watchdog timer that terminates

the testbench is useful to help the testbench to terminate. An

error message must be put out dictating why the simulation

was terminated and what the testbench was waiting for. This

approach helps the debug effort.

Most parsers and filtering mechanisms wind up using errorDo not use

keywords like

error/warning in

the stimulus

or warning as standard keywords.These filters will then either

trigger false results and this will cause unneeded confusion.

This is a simple guideline. The interesting thing is that a key-

word like “error” or warning is something intuitive. The in-

teresting thing is everybody is yet to come across a project

where this guideline is not violated!. Someone or another usu-

ally winds up breaking this guideline and wreaking havoc on

the regression results at least once during the lifetime of the

project!

Debug Levels 141

7.8.1 Making Note of Errors

A key guideline in error reporting is that a uniform error formatUse common

routines to report

errors
typically helps to simplify scripts that parse the log file and also

helps speed up debug.

There is usually a script that parses the log files and determines

the pass/fail result of a test. Having a uniform format simplifies

the parser script and makes it easy to implement.

One of the important aspects of detection of errors is that theErrors must be

detected at the

point of failure
error must be detected within a few cycles of the point of fail-

ure. The testbench should also allow the simulation to continue

based on a user configurable switch.

Failure detection could be by many methods. Using assertions

in the design is one of them. The test bench should be able

to detect and terminate the simulation even if several monitors

are instantiated and also be able to provide the exact location

of the fault. This aids in debugging.

7.8.2 Debug Levels

There is extensive mention of debug levels at many points in

this book. The concept of using debug levels is a fairly common

concept that has been borrowed from the software world.Used

wisely, it can encapsulate debug messages at different points

to help identify the possible source of the problem.

An example of a debug level with some pseudo-code is shown

below. There are three debug levels in this example. As can be

seen from the example, one can control the amount of output

by choosing DEBUG LEVEL 1, DEBUG LEVEL 2 and DE-

BUG LEVEL 3

142 Reducing Work in Verification

ifdef DEBUG

ifdef DEBUG_LEVEL_1

display the monitor level

display some packet statistics

endif

ifdef DEBUG_LEVEL_2

More display code

display some monitor output on level and time

display some more monitor output and number of

packets so far.

log all transactions into a log file with full details of

the start and end of each transaction

endif

ifdef DEBUG_LEVEL_3

display some monitor output

display some more monitor output

log all transactions into a log file with full details of

the start and end of each transaction

print all the packets into the log file.

endif

endif

Figure 7.7. Debug Levels

Debug levels can be implemented easily when the verificationPlan out the debug

level

implementation
code is being developed. Alternatively, it can also be added af-

ter the core pieces of the verification environment have indeed

stabilized. There are usually different contributors to the ver-

ification environment, what is important is that the definition

of the debug level is uniform across all the implementations of

the verification environment.It is important to have consistency

in the debug environment implementation. It is crucial that a

certain debug level has the same definition regardless of its

location in the project.One can very well imagine what would

happen if DEBUG LEVEL 1 in the example meant verbose in

one module and no verbosity in the next, and medium output

in a third module!

Code Profiling to Keep the Inefficiency Out 143

Debug is intended to increase the verbosity of the output. It isAlways have one

level where all

debug is turned off
important that there be a single level where the regressions can

run with minimum verbosity.

For the most part, there is a balance that needs to be struck

between two conflicting requirements. The requirements are

between being able to debug a failure in a regression which

implies maximum data is logged, and running as fast and effi-

ciently which implies as little data as possible is logged. This

is particularly true in the final stages of regression, most of the

time, all that matters are the results of the test in the regression.

As run times increase to be in the order of days, the log files can

get huge and sometimes exceed file system limits. Having to

rerun the test again with a debug turned on is another challenge

altogether. Use of controlled verbosity levels as illustrated

help the user to identify the problem quickly and then address

it quickly.

7.9 Code Profiling to Keep the Inefficiency Out

Many simulators today offer some advanced tools that help the

verification engineer identify where the simulator is spending

most of its time. This is called profiling. The code profile

reveals the area or segment of the code where the simulator is

spending most of its time in relation to the overall simulation

time.

Such a report is usually available automatically from many

tools. Many simulators can provide this output with the mere

application of an option.HVL’s like e also prove a tool that

allows the user to find out where most of the time is spent and

how frequently the particular piece of code is accessed.

The example in figure 7.8 looks like a fairly simple piece ofMake sure the

testbench isn’t in

the profile!
code written in Verilog. The task reads a file and places the

data in a variable called packet data. It uses a PLI call to get

the data from the file.

Code profiling is a powerful tool. Code written in a certain way

may inadvertently cause the simulator to spend quite a bit of

144 Reducing Work in Verification

task get_bytes;

 input [31:0] fileptr;

 reg [31:0] char_read;

 reg [7:0] data;

begin

 packet_count = 1;

 char_read = $fgetc(fileptr);

 while (char_read!=32'hFFFF_FFFF) begin

 //1st Byte

 while (char_read[7:0]==8'h0A || // NEW LINE

char_read[7:0]==8'h5F || // UNDER SCORE

char_read[7:0]==8'h20) // SPACE

 char_read = $fgetc(fileptr);

 if (char_read!=32'hFFFF_FFFF) begin

// Checking for EOF after the SPACE or NEWLINES.

data[7:4] = convert_hex(char_read);

char_read = $fgetc(fileptr);

data[3:0] = convert_hex(char_read);

packet1_stream_data = data;

// Reading the Next Character.

char_read = $fgetc(fileptr);

 end

 else begin // ON EOF exiting out of task.

disable get_bytes;

 end

 @(posedge packet1_clk);

 #1;

 end

 packet1_stream_data= 8'h00;

end

endtask

Figure 7.8. Code Profiling Example

time, something that the verification engineer did not actually

intend. On observation of the code in the example, one ob-

serves that this code is functional and does not pose a problem

Regression Management 145

if it were studied in isolation.

Now if one were to consider using this task to read data from

say eight files to feed data to a device with eight different ports,

one notices that the simulation becomes very slow because of

the file I/O that is part of the testbench.

In any simulation, the most important thing to ensure is that the

simulator is spending as much time as possible sending cycles

or events though the design. Any time spent in the testbench

is in effect not utilized in sending cycles through the design.

The testbench may be preparing the data to be sent through the

design, But the clock has not stopped ticking while the test-

bench is doing so.Hence the total time for the simulation is the

sum of the time spent in simulating the design and the testbench.

In order to maximize the performance of the environment in

simulation, it is recommended to make efforts to ensure that

the simulator spends most of its time simulating the design

rather than in the testbench. If one were to use the code from

the above example in an hardware accelerator, then one may

see very little speedup offered by the accelerator compared to

conventional simulations.

One has to read the profile numbers carefully.The quantity ofBe careful when

you interpret the

numbers
the testbench code in relation to the amount of device code

must be taken into account when reading the profile data. If

the device under test is very small, then the testbench code may

dominate the profile. Then optimizing the RTL may be quite

the wrong thing to do!

This sort of scenario is very common in module level environ-

ments where there are a large number of checkers and monitors

and the device under test is very small. It is recommended to

review the profile more in subsystem and system level simula-

tions where the run time of simulations is usually a concern.

7.10 Regression Management

Management of regressions is typically assigned to one mem-Report a regression

summary ber of a verification team. This member typically runs periodic

146 Reducing Work in Verification

16 Port networking

ASIC

Driver 1

Driver 2

Driver 3

Driver 15

Sink Port 4

Sink Port 3

Sink Port 16

Sink Port 2

Sink Port 1

Figure 7.9. Test Bench with Multiple Drivers

regressions and reports the results. Sometimes, it is a rotating

duty handed by all team members. Many a time, a special user

is created on the network to handle the regressions.

The tests in the regression finish at different times. Since many

members would like the status quickly without waiting for the

results, It is suggested that a periodic process or program be

used to automatically generate the state of the regression. This

can be accomplished simply by using a cron 3 job.

3Cron is a facility available on UNIX systems. It allows the user to run some programs

periodically.

Regression Management 147

Such a practice has some advantages. If a member of the verifi-

cation team were to notice a problem, then action can be quickly

taken without wasting much time at all.In addition, none of the

team members need to wait to figure out the state of the re-

gression. This is particularly helpful if tests are run in multiple

sites and the results of the regression need to be consolidated

by an engineer on the particular site. If an automated job is

not put in place to update the regression results, then one has

to wait for the engineer to update the results to everyone.This

small oversight can be costly in projects with multiple sites and

multiple timezones.

Another key aspect of the regression summary is to be ableAutomation of

Status generation to report automatically the status of the tests in the regres-

sion.Many tools like [LSF] do this automatically by optionally

sending an email to the user when the test is done. However,

what is important is that the status generated by parsing the

log files and determining a pass/fail criteria is done automati-

cally as far as possible. As indicated, the important thing is to

determine as quickly as possible the results from the regression.

Almost all ASIC development today deploys a version controlLabel everything

and use version

control.
system. The Version control system like CVS 4 or Clearcase 5

or RCS or SCCS.

Almost all these systems provide a mechanism to mark a group

of files with a certain unique name. This marking is created

without actually creating a new version of the file.This pro-

cess is called labeling of a file. The other alternative to this

is to record the version numbers of the file used for verifica-

tion. However tracking version numbers when there is a large

amount of files quickly becomes an arduous task!

At the risk of sounding paranoid, one of the main things the au-

thor learnt from a senior verification engineer was that every file

in the file system that was being worked upon and exchanged

between teams should have a label on it. The RTL designer

works on the RTL and then releases a label which represents a

4 CVS is available from It is free software.
5 Clearcase is a product of Atria Technologies. (as known to the author at the time of

this writing) The trademarks and copyrights are owned by the respective owners.

148 Reducing Work in Verification

Test case and RTL and environment label

RTL source version

Label

Verification

environment

Version label

Figure 7.10. Use of Labels in a Regression

collection of files of certain version numbers as a configuration.

The verification engineer accepts the RTL label and verifies it

and responds with a label which is a configuration of files from

the simulation environment. This label is a superset of the label

released by the RTL engineer. Such a relationship is shown in

figure 7.10.

This simple philosophy has saved endless hours when some-

thing critical needs to be reproduced. (see the case study on

the Effective use of source control strategy).

Why is this concept of labeling a file so important? Using a

label allows the user to take a snapshot of the code database and

report all the issues with that version of code so that they may

be fixed. It is entirely possible that the verification team may

be able to find multiple problems with a certain version of RTL.

Without a label or a version number, traceability is non existent.

Labels are basically free. Once the label is very old and the

RTL is mature,the older labels may easily be purged from the

source control database using some administrative commands.

Compile your Code 149

7.10.1 Identify Failures Before You Run Again

As the project approaches the end, the cost of running a re-

gression typically rises. This is usually due to the fact that the

regression at the end of a project has many many tests that need

top be run. Every time a regression is run and the regression

is broken, there is a test debug cycle that is activated. As can

be seen from figure 3.3, the level of integration also implies

that the size of the design is very large. Hence, each regression

iteration becomes costly in terms of time and effort. Unless a

collection of regression failures is completely understood, the

author recommends that the regression not be launched again.

7.10.2 Don’t Postpone Features to be Tested

This practice can have some undesired and unwanted side ef-

fects. In some cases some features may have some effect on the

environment and on the test cases.The environment may need

updating triggering frequent regressions that have no relation-

ship with the RTL. In addition, some test cases may need to be

updated as well.

need to be updated as a result. If all went well, this clock mode

support should not be a big issue.

to be repeatedly debugged since the clock mode support was

occurs with no apparent progress overall.

7.10.3 Compile your Code

Manymodern HVL languages today have an option to use either

an interactive or a compiled mode. The compiled mode usually

has many debug features turned off and runs quicker during

the regression. In addition, loading of several modules that are

static when verifying some blocks may take a lot of time. using

compiled libraries will help under these circumstances.

not thought of beforehand, considerable rework and time loss

port was not built into the testbench. Many tests in this example

During the building of the environment, the clock mode sup-

However, if the tests need

Consider an example where the device had multiple clock modes.

150 Reducing Work in Verification

7.11 QC Processes to run a Clean Run

Prior to launching a new regression, some care needs to be

taken to ensure that progress is made in a orderly fashion.

1. Bugs reported from the last defined label must be fixed and

addressed. This makes sure that there are no pending issues

from the current label.

2. The smoke tests for the new RTL release must also be clean

with no issues.

3. All known issues from the RTL and test cases are identified

and addressed before the regression is launched.

4. The previous run must be complete. This will allow regres-

sion management to be easily manageable without confu-

sion in results.

7.12 Using a Data Profile to Speed up Simulations

Users running a simulation usually care about a few things.

1. How fast can this simulation be run?

2. Did the test pass or fail?

3. If the test failed, can it be debugged with what is available?

4. Where is the disk space to dump all this data?

A quick review of the data profile on a machine reveals a great

deal. Some simulations generate a lot of data and it is often a

challenge to manage this data. In addition to all this, network

characteristics and performance play a key and important role in

defining the way the overall simulation environment responds.

Fortunately, more and more attention is being paid to this topic.

If we study the diagram in figure 7.11, this figure embodies a

typical network architecture found in many organizations. In

this example, there are a number of compute servers connect-

ing to a central fileserver through a network. This network is

Using a Data Profile to Speed up Simulations 151

Network

Compute Servers

Ive

Storage Servers

Figure 7.11. Data Dumping using a Network Drive

represented as a cloud since there could be several elements in

it.

Assuming that the design in question is now generating a large

amount of data, the data now has to make its way from the

machine’s CPU where it was generated on to the network and

navigate to the server where it will be stored. If the data set

is huge and is being generated fairly rapidly, then the slowest

link in the chain affects the speed at which the simulation will

run. In case of a 100 Mb/ps network would necessarily mean

a 12.5 MB/sec connection between the compute server and the

storage server.

An alternate view is to locate the data generated on the compute

server locally and then send the results to the server at the time

the simulation ends. The idea here is to communicate only the

test results and the data if needed. If the test has passed, there

is a probability that the data was not needed for the most part

anyway. The information that is stored on the scratch disk can

be very easily cleaned up by the post processing script that runs

152 Reducing Work in Verification

Data dump to

local hard

disk

Summariz
ed Results

Figure 7.12. Dumping Data using a Local Disk

at the end of the test or by means of a script run periodically

that acts as a data retention policy manager.

One of the considerations that needs to be taken when this ap-

proach is followed is the fact that the automounter6 needs to

be set up a little more carefully than the previous method. The

author notes that this is not an impossible task since he has had

the luxury of being in some environments where it was set up

to operate seamlessly.

The network setup for this approach is a little more involved

than the previous method. However, the connection between

the CPU and the local hard drive is a local connection. The

author has observed a 20% boost in simulation performance

through this method when dealing with large amounts of data

during debug sessions.

6The automounter is a program available on UNIX and UNIX-Like systems, It allows

the mounting and un-mounting of network resources automatically.

Using a Data Profile to Speed up Simulations 153

Why is the concept of looking at local disks of any relevance?

Fact is, centrally administered disk space is usually more ex-

pensive to start up and harder to get. They are always in short

supply no matter which organization I’ve been at. On the other

hand, most of the data is temporally close in nature and has a

short lifetime.Once the information is gleaned from the data,

the data is typically regenerated on another test run. Local

disks make sense because one can get 100 – 200 GB of data for

a very small sum of money 7 plugged into the local machine.

Multiplying this by the number of machines in the regression

environment, one notices that there is a huge amount of tempo-

rary space that is available for running regressions at almost no

cost at all. This is particularly true with operating systems like

LINUX. Since the operating system typically takes less than 10

GB of space and the minimum size of the disks nowadays ex-

ceeds 40-80 GB, this practice has an effect of speeding up data

intensive simulations as well. It must be noted that the above

discussion implies that there is some sort of a data management

policy which periodically cleans up disks of outdated files. In

the past, the author has found this approach very effective 8.

7 The cost/megabyte of data has been falling for a while now. It is possible to get

fairly large disks (160GB) for as little as 100$ US at the time of writing.
8To determine if this particular situation affects the reader’s simulation environment,

the reader merely has to run a data intensive simulation on a typical machine using the

simulation scripts and the environment. The target of the data is set to be the fileserver.

The total time taken to run the simulation is measured. This time is called T1.

The next step is to run the same tests with the same parameters on the same machine

with the target of the data to be the local hard drive in a directory on the compute

machine. The total time taken to run the simulation is measured. This time is called

T2. If T2 is less than T1 by a threshold (say 10-20%) or so, then the organization

will benefit from running the tests locally and using some sort of a script to report

the results. This method works particularly well when there are large waveforms for

debugging. Most of this data is scratch data which is useless after the data is looked

at and the problem is understood. This method also works well if the temporary data

generated during a simulation is large.

154 Reducing Work in Verification

7.13 Getting the Machine to Document for You

In most verification environments, the test plan contains a list

of tests and a plan of record revealing the tests being developed

to test the device.

Often, There is a gap between the tests being developed andUsually a gap exists

between what is

documented and

what is coded

the test documentation. The two are developed and completed

at different times. This approach sometimes has problems.

Sometimes if the gap is large, some details may be missed

out during documentation and critical details are sometimes

masked accidentally.

Usually, the author has found that the test plan documentation

and the tests are sometimes uncoordinated due to paucity of

time on the part of the test writer or for other valid reasons.

Almost always, the paucity of time and the lack of importance

given to documentation when the code is being developed lead

to this scenario. A lot of time is sometimes wasted on doc-

ument formatting and writing which can be minimized using

some sort of templates.

In such a situation, if there was a way to cut out the work in-Use scripts to cut

the amount of work

you do
volved in documenting and keep all the vital information on

record, then that system would be ideal. This system is de-

scribed as below, as it has been effectively used by many people

and is definitely in use by the software industry.

One of the key things that helps keep people organized is thatPlace the

documentation in

the test
the information that is required is kept in a single place. This

also keeps things simple.

The other key aspect is that the test code typically takes someThe cost of doing so

is very low time to mature and be final.

Looking at a test, for example, the test may take about a day

or so to be developed, run against the RTL debugged and then

saved as a final version. During all this time, the test file may

undergo several modifications.

Getting the Machine to Document for You 155

On the other hand, once the test debug is completed and final-

ized, the test itself contains a step –by – step description of

what needs to be done to create and test the specific scenario.

This can be easily placed in the test using some marked- up

headers in the comment section of the test.

As can be seen from the figure above, a typical test case has

the following information:

1. A copyright notice that states the copyright owners’ name

and conditions.

2. Test Name: Name of the test. Usually the file name.

3. Test Intent : what is intended to be tested in this test.

4. Test Description: How does the test go about achieving

this?

5. Test Assumptions: Any assumptions that the test writer

made.

6. Test Results: The kind of results that are expected if the test

passes or fails.

All that the test writer has to do is to ensure that the description

at the top of the test file matched with the description in the test.

No additional care is required. A simple script can then har-

vest everything from the section TEST DOCUMENTATION

BEGIN and END sections and then format it according to the

style that is prevalent in the organization.

This process is shown diagrammatically in figure 7.14.

This approach has a few advantages. First of all the test code

and the documentation stay together. There is no opportunity

for one or the other to be out of versions if the person updating

the test updates the description at the same time. Since it is the

same file, it is a trivial operation with little overhead.

A reviewer can also look at the test and the code in one file andAll the relevant

information is now

in a single place
determine if anything needs to be done.All the information is

one self contained file. Following the object oriented method-

ology in Section 3, the reader will be able to observe that the

process becomes easy since the reviewer has to deal only with

156 Reducing Work in Verification

/*

**

Confidential information. Some Company. No rights without permission….

,,,,,

,,,,

TEST_DOCUMENTATION BEGIN

Test Name: fifo_register_overflow_1.v

Test Intent: Check the register for the fifo overflow bit.

Test Description:

This test checks the read and write of the fifo overflow

bit using a register write to an addressable register. Steps are:

1) Do a write to the RING_WRTR_ADDRESS register with the data for the bit

2) Read back the register along with the mask to make sure it compared correctly

3) Read the fifo register…..

…..

….

Test Assumptions: None

Test Notes: This test will run at both block and system level.

Test Results: Test is deemed pass if the register bit is set and no other errors are found.

Functional Objects Covered: fifo_tag_1, Fifo_reset_2

TEST_DOCUMENTATION END

***/

`include test,v

If(reg_write_main) begin

// We have a register wrtite to the main block and not the decoder

 do_write(RING_WRTR_ADDRESS, RING_WRTR_MASK, data);

do_check(RING_WRTR_ADDRESS, RING_WRTR_MASK, data);

….

…...

end //

…..

….

Test Documentation

of the test

Test Code for the test

Copyright notice

 These should match!

Figure 7.13. Test Documentation

Getting the Machine to Document for You 157

Test 1 Test N

Parse tests and template

Verification Test

description

Document and Test Plan

Test description templates

Figure 7.14. Process of using Test Documentation Automatically

a small number of files on a periodic basis.

In the figure above, there is an entry for functional objects inData can be used to

correlate with other

metrics
the documentation portion of the test. This entry is a list of

functional object tags that are associated with this particular

test. How this ties into the overall picture is presented in the

“putting it all together” chapter

This approach to automatic documentation relies on a headerThere are other

ways of

implementing this

concept

script which does a post processing to create a document for

review. On the other hand, many users the author has known

simply “expose” the latest version of the tests using some sort

of a filter to a web server and configure their browsers!! This

158 Reducing Work in Verification

is no doubt an easier approach to implement, but suffers from a

small disadvantage that the user cannot get everything together

without some fair amount of post-processing.

7.14 Keeping an Eye on the Design – Monitors

Monitors are used to observe the design and print some warning

messages if needed into a log file. They serve as a important

tool in debugging the design completely since they capture in-

formation about the events in the design into a log file and

allow a detailed analysis to be completed after the simulation

has been completed.

Monitors can be created and instantiated into the verification

environment using a variety of methods. Some engineers have

chosen to use HVL’s like Vera or e which offer ease of use. On

the other hand, some others have chosen to implement the mon-

itors using various testbench constructs available in the HDL

itself.

Some of the discussions here are written based on what has

been practiced by the author. The discussions below is pre-

sented more as a collection of thoughts which may serve as

guidelines. Another good example of these guidelines could

be found in [34] which can offer excellent insight into this topic

There are no doubt some good discussions that can be available

in [1] or elsewhere in industry publications.

The monitor instantiated must observe all transactions on theEach monitor has a

single job interface.One important aspect of the monitor is that it should

be able to decipher complex protocols if needed.This aspect

of the monitor will save considerable time during debug if a

failure were to occur. This approach is exemplified in the next

chapter where the derivation of various monitors is made as

part of the planning process.

Every monitor that is developed should not be relying on an-Ensure that a

module is a self

contained unit.
other checker or monitor for its operation. The code for the

monitor should be self contained and complete in all aspects.

Keeping an Eye on the Design – Monitors 159

Why is this important? Having dependencies between the mon-

itors not only makes the problem a little harder to debug, it also

makes it difficult to turn off certain monitors and leave others

on.For example: consider a certain monitor producing exces-

sive amounts of output that are not entirely required for a certain

simulation. If other monitors depend on the code in the mon-

itor, it will be impossible to switch off the monitor and expect

monitors with code dependencies to work. This leads to ‘all or

nothing’ situation. – definitely not a nice situation to be in.

Later on in this section, each monitor is associated with a test

object. This approach ensures that the monitor is completely

self contained.

An important requirement for any signal that is indeed used byAny signals

sampled by a

monitor must

survive the

synthesis process

a monitor should be available after synthesis. Usually, What

typically happens is that that there is the chance that the moni-

tor will be unusable by the GATE netlists since the signal that

the monitor was depending on no longer exists. As a result, it

may become necessary to rewrite the monitor or retire it from

service in the verification environment.

Writing the monitor to use interface signal boundaries is some-

times a safe bet and sometimes not. Many synthesis tools offer

an option to keep module hierarchies.If a netlist is flattened,

then all hierarchy information is lost and it may become very

difficult to hook up the monitor.

Disastrous results loom if the monitor is written after tapping

some signals in RTL without paying any regard to whether the

signal will indeed be available after the synthesis process

Another important aspect of monitor development is that theAny unusual

interface behavior

ought to be flagged

as an error by the

monitor

monitor must be in position to display a message of some sort

when it sees a behavior that it does not recognize. For example,

if a monitor is set to observe some transactions on a read only

bus, and observes a transaction that did not look like a read

transaction, it must flag an error.

160 Reducing Work in Verification

Every monitor should be developed keeping in mind that thereUse debug levels

for the monitor.

This can be used

with various levels

of debugging

are certain instances where extensive monitor output is redun-

dant or no longer needed. It must be possible to turn off the

monitor if required. When the monitor is being developed,

the author recommends that the monitor be coded with multi-

ple debug levels. Having multiple levels of debug allows the

user of the verification environment to customize the verbosity

of a certain monitor depending on the needs of the debug effort.

One of the important features of a monitor is the ability toUse Monitor output

to do data analysis

and reporting
analyze the data available from the monitor after the simulation

is done. For example, considering a bus protocol where there

are several transactions between several devices, the monitor

output could be post processed to observe the latency of the

bus under certain conditions. The output of the monitor could

also be used to keep a running trace of the kinds of scenarios

experienced during the simulation. In the author’s opinion, the

fact that a monitor output could be used for other purposes is

considered a free benefit of having the monitor.

7.15 Checkers in an Environment

One of the main guidelines when developing a checker or aEnsure that a single

checker does a

single job
monitor is that it’s parameters are well defined. It must be

designed to do a single job. For example: the author has my-

self written a datapath checker and merged it with a protocol

checker. When the protocol went through some variations, it

became difficult to maintain both the checkers at the same time

in the same file. This for me led to grief sooner or later.

For example:If a checker is designed to check the protocol, it

is crucial to let the checker focus on that aspect alone. La-

tency and data path checks should never be made part of that

particular checker. The requirements for a latency checker are

quite different from those of a datapath checker. Mixing the

two requirements will invariably result in a checker that does

a little of both.

Often, attempt is made to create a single checker that will do it

all. The author had been in that situation himself! Two different

types of checkers were embedded into a single checker mod-

Checkers in an Environment 161

ule. The end result was that one of the checker seemed to work

well and the other was seriously impaired. The faulty checker

was causing havoc with regressions. Since the two checkers

were clubbed together, the decision was taken to rewrite them

as separate units after effectively throwing away the effort built

into the checker.

Recovery of state machines in the checker should be part ofChecker

specification should

include the ability

to recover from

errors

a checker specification. Any well written checker should be

written in a way to help the checker recover from errors. Er-

rors may be from multiple sources. The design may be in an

erroneous state caused by some test case or data. The checker-

may also be forced into a unique state since it is observing the

data patterns passing through the device.

Being able to recover from these errors is essential for the

checker, it should not need a reset of the design and the en-

vironment to be able to reset the checker. One of the most

catastrophic things that can happen is that the design is able to

handle abnormal inputs and the checker aborts the simulation.

A key attribute of a checker is that it must be self contained.Make the checker

self contained. All the necessary information for the checker should be con-

tained within itself. In many cases the checker may choose to

instantiate some existing monitor code to promote reuse. How-

ever, the same should not need to instantiate another checker

for completeness.

Such a guideline is essential to promoting reuse of the checker

in other environments. For example: Let us consider a checker

A that instantiates another checker B for its proper operation.

In another derivative design, the features offered by checker

B may be redundant or not of vital importance to the specific

design. However, features offered by checker A may be of vi-

tal importance. Since the checker B is now a part of checker

A, checker A will effectively have to be rewritten although not

much of it has probably changed!

One of the important aspects of placing a checker on a singleBe careful with

clock domains. interface is that it allows the checker to be completely self con-

tained as far as a single interface is concerned.

162 Reducing Work in Verification

Clock domain synchronization is one of the more trickier as-

pects of digital designs. Many designs devote time and energy

to ensuring that the design operates correctly when clock do-

main crossings are present.

A similar approach needs to be taken for the checker code as

well. In any design with multiple clocks, it is important to en-

sure that the checker either operates in a single clock domain

or is designed to handle the data across multiple clock domains

correctly. Not paying attention to detail may cause the checker

to fail in some specific scenarios and expend significant re-

sources of both the design and verification engineers to find

the source of the problem.

Many a time, a checker and a monitor are built together. Theuse monitors or

debug statements

inside checkers if

needed for

advanced

debugging of the

checker

author recommends that the monitor be built separately and

instantiated in the checker if need be. Adopting this practice

may at first seem to make the checker design ungainly and un-

wieldy. However, if a monitor is used in multiple places, then

any bugs found in the monitor and corrected will also benefit

the checker. The added advantage is that there is proper reuse

of the modules in the verification environment.

It is considered it a good coding style to use existing monitors

wherever possible and enhance the debug capabilities of the

monitors using multiple debug levels.

In a design the author worked on, a checker for a collection ofDo it right and do it

once! modules was worked on by a team. It was buggy and incom-

plete at best. It used to fail frequently and sometimes for the

wrong reasons as well. Many false failures were reported and

time lost over it. Over a period of time, it was taken out of the

environment rather than fixing it.

7.16 Linting Code

Some engineers who develop their code tend to ensure that the

RTL is mostly lint free before they actually submit the code for

verification. This approach has ensured that the most common

errors are caught up front and the verification can focus on

other important things. (See the chapter Cost of doing things

incorrectly for an actual case study).

The RTL Acceptance Criterion 163

7.17 The RTL Acceptance Criterion

The verification team is typically a separate and independent

team from the RTL. Depending on the size of the team and

the degree of cooperation between the teams, Varying degrees

of formalism in accepting RTL for verification have been ob-

served by the author at various companies.

In some organizations, the module owner typically creates a

module level testbench and verifies the code to some degree

before handing it off to the verification team. In others, the

RTL designer writes the code, makes sure it compiles and with-

out any verification whatsoever “throws it over the wall” to the

verification engineer for verification. This kind of a dramatic

range in RTL quality brings about a few criteria for accepting

RTL as discussed below.

In some cases, the verification suite is extensive. During the

later cycles of the project, the verification engineer can insist

that the RTL pass all the tests that passed on a previous build

of the module prior to submitting the RTL for verification.

In some other scenarios, the verification team makes sure that

the module submitted for verification at least passes tests de-

signed to ensure that there is at least a minimum quality before

accepting the module for verification (SMOKE tests).

Why is an acceptance criteria even required? Is not the verifi-

cation engineer’s job to make sure the RTL is of good quality?

The answer lies in the fact that the verification activity is usually

a much bigger activity in scope than the actual design activity.

Making sure that the RTL is of some good quality helps the

verification engineer to concentrate on activities that add more

value instead of dealing with simple problems that cost a lot

of time and effort. Similar thoughts are shared in [1] In order

to do this however; a good deal of teamwork and respect for

one another is required of both the RTL and verification teams.

One interesting thing the author has observed over the years is

that RTL designers who submit good quality pre-verified code

164 Reducing Work in Verification

for verification have always earned the greatest respect from

their verification peers!

Conclusions

This chapter presented various techniques to reduce work in

verification. As the reader is aware, many of these techniques

are common techniques in the industry. The appendices pro-

vide detailed information to enable implementation of the con-

cepts presented herein. It is hoped that the reader is able to

implement some of the presented concepts and is able to take

verification productivity to the next level in the project that they

are working on.

References and Additional reading

[1] Todd Austin. Building buggy chips that work! Presentation from the

Advanced Computer Lab, 2001.

[2] Kudlugi, Murali, Hassoun, Soha, Selvidge, Charles, and Pryor, Duaine

(2001). A transaction-based unified simulation/emulation architecture

for functional verification. In DAC ’01: Proceedings of the 38th con-

ference on Design automation, pages 623–628, New York, NY, USA.

ACM Press.

[3] Bening, Lionel and Foster, Harry (c2001). Principles of verifiable RTL

design - a functional coding style supporting verification processes in

Verilog. Kluwer Academic Publishers, Boston, 2nd ed edition.

[4] Kuhn, T., Oppold, T., Schulz-Key, C., Winterholer, M., Rosenstiel, W.,

Edwards, M., and Kashai, Y. (2001). Object oriented hardware synthesis

and verification. In ISSS ’01: Proceedings of the 14th international

symposium on Systems synthesis, pages 189–194, New York, NY, USA.

ACM Press.

[5] Bergeron, Janick (2003). Writing testbenches - functional verification

of HDL models. Kluwer Academic Publishers, Boston, 2nd ed edition.

[6] Motorola (2003). The functional verification standard.

PART IV

PUTTING IT ALL TOGETHER

This part describes ten steps to help the reader get started from a verifica-

tion plan to successful silicon. The steps presented to the reader are design

and tool agnostic and discuss basic principles that can be used to verify any

design. The procedure described does combine some concepts discussed in

earlier parts.There is a single chapter in this part titled Putting it All Together.

It starts out by helping the reader identify the features of the device that need

to be verified. Guidelines are offered to the reader to help complete a review

of features and identify a test case list. The discussion of various types of test

cases and test strategies is presented here.

The chapter then goes on to discuss the concept of a Test Graph Matrix which

is a grid like structure allowing the user to apply high level optimizations to the

verification effort. These optimizations allow the reader to become effective at

generating high yeild test cases.

Being able to track where one is in the overall verification effort is crucial to the

success of verification. This chapter builds on concepts presented in the previ-

ous part by showing the reader how to embed "tags" that simplify the task of

managing the verification effectively. The chapter then concludes by discussing

the need for Gate Level simulations and the steps in verification signoff.

Chapter 8

PUTTING IT ALL TOGETHER
Ten Steps to Success

We have discussed several aspects of functional verification in

the last few sections. Now the task ahead is to bring all these

aspects into a functionally complete, executable plan that helps

assure good first quality silicon.

A good functional verification plan is important to success of

any project. While most managers wind up asking the ques-

tion, “when are we done?” in turn, the engineers reply “We’ll

be done when we’re done!”

Being able to tape out on time and answer the above two ques-

tions is one of the crucial aspects of a good verification plan.

A good plan helps engineers to address all concerns with the

device’s functionality while allowing adequate visibility to the

program managers without excessive reporting overhead.

Another key aspect of verification plans is that it should be

able to predict accurately the amount of effort required to tape

out the device.This is indeed a difficult question. Hence, many

teams use a verification plan that is defined to be as complete

as possible and then attempt to tape-out the device based on

certain commonly used metrics. These metrics were described

in the Tracking Results That Matter chapter.

Nowadays the world has become a “global village” as far as

ASIC development is concerned.The design is conceived in

167

168 Ten Steps to Success

one part of the world, built and probably verified in a different

part of the world. Hence, it becomes vital to use a process

that allows various teams to exchange information in a smooth

manner.

On further reflection, it becomes apparent that no one solution

fits various kinds of designs in the marketplace. Given that de-

sign complexity is rising with increasing levels of integration,

an effective object oriented methodology can be very useful

in helping manage the challenge posed to verification teams to

completely verify the device under verification [1].

Verification has traditionally been an ad hoc process where

the specification is reviewed and tests are written to match the

specification. In some organizations, a well defined process is

used to derive the tests that need to be done for verification. In

addition, a variety of factors affect the verification challenge.

These factors exist in varying degrees in different organizations

as is evident in the following paragraphs.

It may not be possible to run all the appropriate test cases onExisting

infrastructure

problems
all process corners due to limitations in infrastructure. While

some of these may be solved easily, under some circumstances

due to the size of the design, it may require a move from a

32 bit platform to a 64 bit platform. During such a move,

many scripts and other programs may become inoperable fur-

ther compounding the issue.

In some cases, the design may have been taped out due to vari-Legacy design

constraints ous reasons and may not have been completely verified. Hence,

the tape-out would have some known and some unknown bugs.

Later, it would be difficult to make changes to this design since

it is deemed to be “working” albeit with some known issues.

The individual who had been working on the design may notHuman factors and

design expertise be presently assigned to work on the design. Alternately, the

person may have chosen to part with the organization. It is

also possible that the team member currently assigned to the

verification effort may not be well versed in the design and may

need significant time to acquire knowledge of the design.

169

Schedule has always been the adversary of verification ac-Schedule

constraints tivities. Many a time, a tight schedule may cause significant

pressure on verification activities.

Under some circumstances, the verification may be operatingCost constraints

with a fixed budget due to various other factors that may be at

play. As an example: for cost reasons, portions of the verifica-

tion may be outsourced and done by a third company. Alter-

nately, there may be a limited number of licenses available, and

it may not be possible to obtain all the required licenses all the

time. This may result in longer turnaround times to complete

regressions.

In some of the contemporary designs, the design and verifica-Physical

constraints tion teams are sometimes in different locations and in different

time zones. This adds to the difficulty for communications and

other debug activity that may take place between design and

verification engineers.

There is no one solution to this challenge posed to design and

verification engineers. Different problems demand different

approaches. However, the core principle behind all method-

ologies is ensuing that the device will work as specified.

The above discussion makes it apparent that the entire verifi-

cation challenge is a multi faceted one which involving may

items in several disciplines coming together to make verifica-

tion a success. Many scripts in possibly multiple languages,

approaches, and strategies typically find their place in the ver-

ification approach. The entire effort can be looked upon as a

puzzle. Some of the main pieces of this puzzle are depicted in

the figure 8.19. Many of the items in the puzzle owe their roots

to the verification plan. This plan needs to be comprehensive

in all aspects. Hence, a step by step approach to ensuring com-

pleteness and correctness is essential.

This chapter is all about building a successful test plan and en-

suring that it stays the test of time and the course. The methods

described herein can be adopted in part or in full based on the

particular scenario and situation. It is designed to grow with

the user’s needs and can be customized fairly simply. The pro-

cess presented is a synthesis of much iteration and attempts to

170 Ten Steps to Success

Verification

Plan

Tests and

Regression

Code and Functional

Coverage metrics

Core/Block

Level

Testbench

FPGA

Or

Accelerator

Gate level

Property

Checking/,

Checkers/

Monitors

Environment and

Scripts

Progress

and

Measurement Metrics

Figure 8.1. Components in the Verification Effort for Pre-silicon Verification

address the verification challenges listed above using a step by

step approach.

As can be observed from the figure in figure 8.19 , several

aspects of verification need to work “hand in glove” with one

another in order to successfully complete the device validation.

The verification plan is one of the most crucial aspects of suc-Verification Plan

cessful functional verification. The verification plan includes

tests to verify the device at various levels of integration. This

171

plan may be supplemented by various methodology documents

and other documents which specify the scope of the verifica-

tion effort.

The also are a part of the implementation of the verificationAsser-

tions/Monitors and

Checkers
plan. These are used to monitor the health of the device un-

der verification. Various considerations for these components

were presented in the earlier chapter. The derivation of the

assertions, monitors and checkers is covered later on in this

chapter.

The environment for verification must be clean and easy toEnvironment and

scripts use and various scripts in the environment must be able to exe-

cute on the appropriate platforms. The implementation of the

scripts usually are done in a scripting language like PERL or

TCL. There are many excellent resources on the web on the

topic of script development and the reader is referred to them.

The discussion of various metrics was presented in the chapterCode and

Functional

Coverage Metrics
Tracking Results That Matter. The metrics provide a means to

measure the extent to which the device has been verified.

The are typically the Bug Find/close rates, test object density,Progress and

Measurement

Metrics
and other metrics presented in the chapter Tracking Results

That Matter. These metrics provide a mechanism to reveal the

progress in verification of the device.

The are always key components of the verification effort. Ef-Tests and

Regression fective selection of tests and their various types is discussed in

this chapter.

Gate level regressions with both zero/unit delays and back-Gate Level

annotated SDF are essential to ensuring that the design will

operate properly at various temperature and voltage corners.

FPGA are also a useful method to verify that the design isFPGA

indeed functional before a Tape-Out is attempted.

Various aspects of the testbench and other components was de-Core/Block

Testbenches scribed in the earlier chapters. It is essential that the testbench

be extremely efficient in order to allow the simulator to spend

172 Ten Steps to Success

the maximum time simulating the device under verification.

Some considerations were discussed in the earlier chapters.

It is hoped that the step by step approach that is discussed allows

the reader to identify the items that are important rather than

how to develop tests and other items in the verification envi-

ronment. The latter is actually well covered in many texts[2],

[3] etc. While the latter consumes most of the time, Identify-

ing the former is usually the bulk of the work in verification

and most challenging. Once the scenarios and other items are

identified, it becomes a straightforward task to implement and

test the device.

Verification is in the author’s opinion 70% methodology, plan-

ning and strategy and about 30% work. If planned correctly,

the verification experience will be a very enjoyable one.

The approach in this book has been to keep any implementation

specific discussions outside the realm of this book and focus

on concepts. This approach is deliberately chosen to enable

the reader to come up with an implementation easily to suit the

needs of the particular situation.

The steps presented have come about as a synthesis of work-The implementation

described is a

generic

implementation that

can be adopted

easily

ing in many companies. While it would be ideal to expect the

reader to follow all the steps in sequence, The author realizes

that each verification engineer has their own personal style to

solve the verification challenge. It is hoped that the steps pre-

sented could also offer the reader some ideas to augment what

the reader already has in the verification environment currently

under development.

The way the steps are laid out, the approach appears to lends

itself very well to situations where the design is starting from

scratch. This is many a time not true. However, in a legacy en-

vironment, the author has used this approach to help build cor-

relations, feature lists etc effortlessly toward the end of many

projects to help ensure verification quality. In one instance,

several changes were made to the tests and environments to

overcome shortcomings and bugs in the design exposed by the

process described herein. It may be possible to follow the steps

for only portions of the design that have changed. The author

encourages the reader to use whatever steps are appropriate in

his/her environment.

Step 1: A Specification Review 173

There are no doubt many other approaches as evidenced by

literature [4],[5],[6]. However, given the nature of the verifi-

cation process, The reader will discover that that the approach

represents a significant reduction in the quantum of work both

from a workload and management point of view.

Habit 1 described the concept of keeping the big picture in

mind at all times. Hence, the data for the verification plan is

presented in a “grid” like format, so that the reader can get

a complete view of the verification activity. The reader may

choose to implement the plan using a design of the reader’s

choosing without using the grid like structure presented in the

sections that follow. It may be possible to store the results in a

standard word processing document by merely generating the

data from the grid into the document and reviewing the docu-

ment for completeness and accuracy1. The effectiveness of the

process is not reduced using any particular data format as long

as the principles are followed.

A bird’s eye view of the entire process is presented in the figure

8.2. This process should be self explanatory for the most part.

The reader is encouraged to refer to this figure as various steps

are presented in the sections that follow.

8.1 Step 1: A Specification Review

Prior to beginning a verification effort, the top level architec-“The journey of a

thousand miles

begins with the first

step” –old proverb

tural and implementation specifications should be finalized or

as close to final as possible. This is one of the starting steps in

building a solid verification plan. The top-level architectural

descriptions provide a view of the device behavior while the

implementation specifications provide insight into the specifics

of the device under test. The device being designed may be re-

quired to conform to certain specific industry standards. These

standards may also specify specific responses that the device

is supposed to have for certain conditions.

1The implementation of this concept is given in the appendices.

174 Ten Steps to Success

Specification review

Identification of test objects

Review of the test object list and tagging of test objects

Partitioning of tests at Block and

Top level

Development of tests,

Running against the design

and filing bugs

Review

Hole analysis

Signoff Process

Test Case

Identification

Checker and Monitor

Strategy

Test Development and

hierarchical strategy

Figure 8.2. Overview of the Verification Process

A complete understanding of the specifications and the target

socket for the device to be verified is a manifestation of Habit

1. Understanding of the specifications is important to making

sure that the device is verified correctly and operates as speci-

fied when it is fabricated on silicon.

Step 1: A Specification Review 175

This happens all the time. Especially in some innovative prod-Many a time, the

specifications are

not final
ucts where product research mingles with product develop-

ment, there is a chance that a significant specification “creep”

happens during the project. The duty of the verification engi-

neer is to make sure that the nature of the changes, the driving

force behind the changes and its impact on the verification en-

vironment are understood. It is noted that the environment and

tests need to be robust to be able to handle specification updates.

In current times, modern System on Chip devices (SOC’s)Verification effort

can also influence

the specification
attempt to reuse portions of the design from other previously

released designs. This common trend is seen today. One of

the common observations that are made is that the size and

complexity is growing for the current generation of ASIC’s.

If a certain portion is too expensive to verify, then the system

architects can look into how the existing effort can be leveraged

while being able to create newer generation devices without

impacting verification extensively 2 3.

2This actually happened on a couple of projects the author has worked on. In one of

the projects, during the initial stages, we found that we could not implement and verify

a design which was extensively using memories. On analyzing verification impact,

the module was redesigned to eliminate the memories altogether.
3In another project that incorporated a processor like state machine that the author

had the opportunity to be associated with, the design was altered to accommodate the

fact that it was impossible to verify the design completely. The newer version of the

design cut the verification effort significantly.

176 Ten Steps to Success

8.2 Step 2: The Identification of Test Objects

The next step is to identify various features of the design.TheExtract features

from the design that

will be verified
features are usually extractable from the specifications of the

device.A design today can be split up into various kinds of fea-

tures.

Application level features of the device typically are featuresApplication level

features that define the behavior of the device at the application level.

For example, the device has a MPEG2 decoder, or a Bluetooth

module.

Under normal circumstances, the verification engineer must be

able to obtain specific information about the typical application

of the design so that he can determine the various aspects that

must be captured at the application level.

Application level features may take advantage of some behav-

ior inside the device as well as outside the device.Hence, it

becomes necessary to capture all relevant information regard-

ing these features.

Application level features can involve multiple interactions

across multiple interfaces, sequentially or concurrently. Be-

cause this type of coverage information often encompasses the

entire design, or at least significant portions of the design. The

application level features are typically captured at the subsys-

tem or at the full chip level.

Interface level features are the most common form of func-Interface level

features tional objects. Internal-interface features are captured at the

block and subsystem Levels while the external-interface fea-

tures are captured at the chip level or at a multi-chip system

level.

Since interfaces are both internal and external to the device,

capturing interface protocol information occurs at the block,

subsystem and chip levels of verification.

Step 2: The Identification of Test Objects 177

Examples of the interface include the various types of reads and

writes across a bus, such as the peripheral component intercon-

nect (PCI) bus, the advanced micro-controller bus architecture

(AMBA) bus, or sending and receiving frames across an ether-

net or SONET port.

Structural features relate closely to the implementation of theStructural features

design. The structural features may be found in the micro ar-

chitecture of particular blocks of the design. The following are

examples of design elements that embody structural features in

the design. Some examples are:

Finite state machines (FSMs).

First-in-first-outs (FIFOs).

Memory elements.

Arbiters.

Handshaking on an interface.

It is noted that some structural coverage is indeed offered by

code coverage, namely state machines.

The design may have some specific design implementationSpecific

implementation

information
which needs testing. For example, the use of a memory buffer

with some upper and lower thresholds, the use of certain I/O

signals in a specific way etc. Such information is usually avail-

able from the design documents.

The device may have a set of registers that may be used to con-Configuration

information figure the device in various modes. Some of the behaviour of

the device may be changed by configuration. All the possible

modes and possibilities will need to be tested.

The device may choose to implement all or part of a standardProtocol

implementation protocol. The compliance to the protocol will contain many

items which will need to be verified.The list of these items is

also added to the test object list.

The pins of the device may exercise some control on the func-I/O Ports of a

module tionality of the device. In addition, the device may accept data

in a certain format and offer data in a certain format on the pins.

The controllability and various modes and formats will also be

test objects needing to be tested.

178 Ten Steps to Success

Many times, the device may have been required to have a spe-Industry standard

specification cific response to certain inputs which have been defined as an

industry standard. The compliance of the device to the stan-

dard may involve some standard checks which will be part of

the test object list.

Many devices also have a collection of performance goals toPerformance of the

device be met. These goals may be in the form of noise performance,

bandwidth etc for some mixed signal devices or alternately

throughput parameters etc. These performance requirements

for the design may also need to be verified. Each of the per-

formance requirements must also be added to the list of test

objects if they must be verified.

This makes for a long list! In case of an SOC, the list can

be huge. Looking at a large specification, one can easily be-

come a little challenged on the size of this task. Abstraction

and divide-and-conquer approaches [7] are some of the known

tools known today to help reduce complexity.

One of the approaches frequently adopted to conquer the fea-

ture list completion is to request the appropriate engineers to

actually share their lists of features for the block in question,

(divide the chip into parts and involve the design and verifi-

cation engineers for the block in question). The lists are then

correlated and a master list is generated that acts as a superset

of the lists provided by the engineers.

Since many people now work on their lists, the lists are easy to

generate. Every verification engineer has a list of items to be

tested anyways. What is being done is to build a top level list

that can be used to understand the complete picture. Adding

to the list user level scenarios and discussing these in a review

(done in the next step) usually completes the list.

Each of the items on the list can then be broken into several

atomic properties to add granularity. In the description moving

forward, these are addressed using the term test objects4. At

the end of this step, there must be a complete list of test objects

4For the purpose of the discussion that follows, the terms “test object list” and “feature

list” are used interchangeably in this book.

Step 2: The Identification of Test Objects 179

for the design. This list is called as the test object list or a

feature list moving forward.

Many a time, the author has been asked the question: Does itFeature list can

contain objects at

many levels
really matter if some of the features are elaborated properly

and some are at a little higher level during this process?The

fact of the matter is that it does not matter too much if you have

a firm grip on the features that are being verified.

At some stage of the list development, the list may only con-

tain high level verification goals. As verification progresses,

It will become apparent that the high level verification goals

will eventually have to be broken down to lower levels at some

point during the verification process to allow the implementa-

tion to proceed. This natural process will happen as a course

of evolution of the verification plan’s development.

The only effort that has to be made is to keep the list as completeThe test object list

may contain some

duplicates when the

list is being created

as possible. At some point, there will be duplicates. Since the

test object list is actually a collection of inputs from a variety

of sources, it is possible that during the initial stages, the list

will contain some duplicate entries. The list may contain some

high level objects and some implementation specific ones that

refer to the same feature.

Periodic reviews are part of any process. These reviews usually

have the effect of consolidating duplicate objects and eliminat-

ing redundant ones. As long as the list can be maintained, it

is suggested that the list be provided with a mechanism that

allows certain entries to be invalidated while leaving the list in-

tact. When the tape out review is undertaken, the list of invalid

and duplicated entries can be carefully reviewed to ensure that

there are no missing scenarios or link to tests that have been

omitted from the verification effort.

Do the fact that there are duplicates mean that there is lot extra

work? It must be apparent that each engineer is working on a

portion of the list. Hence, duplicates show up immediately.

What has typically worked is to maintain an “invalid/reject”

column on lists that allows one to keep track of objects that

have been invalidated or replaced by others. During a review,

what is normally done is to prove that the replaced item is

indeed covered by other items.This approach has ensured that

180 Ten Steps to Success

nothing is missed.

The list will be a working living document. It must be antici-Change is about the

only permanent

thing in this

universe

pated that during the course of the project, the list will probably

grow in some areas.The fact that the list has changed, implies

that one has to be in a position to know if the items on the

list have indeed been replaced by newer entries that clarify the

design intent a little better or is some new entry to the list.

Is list management a great deal of work? For the most part,

the list once created and reviewed will only require periodic

maintenance.

8.3 Step 3: Review of the Test Object List

In the previous section, A test object list that was as complete

as possible was created. This activity might initially sound a

little bit redundant. However, the list actually is the foundation

stone of a successful verification strategy.

Identifying the specifics of the device is sometimes the dif-

ficult part of verification plan development. The intent is to

make sure that the list of items to be tested is complete. This

can be accomplished by reviewing the functional list of objects

with the designer of the module or other verification members

of the team. This is an important step that must be taken early

on in the verification planning stages, this step ensures that the

list of test objects is complete. Any functional requirements or

objects that are missed out in this phase may have some larger

implications later on

Another offshoot of this step that has been observed is that it

helps clarify the functional behavior of the module or device

under test to both the design and verification engineers. Any

missing information from the specifications is quickly ironed

out in this step.

Conducting a test objects review is a process that is sometimesIt is not imperative

to do the entire

review in one sitting
known to take some time. Many engineers have hesitated to

take this step, wanting to go “piecemeal”. However, the value

in this step is such that all parties have a complete and clear

Step 4: Tagging the List of Test Objects 181

Block Name Feature Object Priority

Cache Cache arbitration for Port B read p1

Cache Cache arbitration for Port B write p2

Cache Cache arbitration for Port A read p1

Cache Cache arbitration for Port A write p1

Cache Cache flush algorithm p3

Cache Cache controller states p1

Fifo Functional soft reset p1

Fifo Insert 0 pattern p2

Fifo Autoincrement feature p3

Fifo Frame timing reference p1

LLC Different n bit positions for L1 and L2 p2

LLC Continuous output pointer increment p2

LLC Payload crc insertion p1

Figure 8.3. Features with a Priority Assigned to them

understanding of the task in front of them. It is not required

that the entire review be conducted at one go, however, this

step is a gating step to executing a well written test plan. This

step must be completed before any further progress is made.

In the figure 8.3, a list of features and their priority is illustrated.It now becomes

possible to

associate a

verification priority

with the feature list

During the review of the test object list, it becomes possible to

identify some of the key features of the device that are critical

to the success of the device. Some of the other features may be

“nice to have”. Hence, a verification priority can be set on the

features. The high priority features can be verified thoroughly

with appropriate priorities if other factors like schedule/market

pressure are at stake.

Successful manifestation of Habit 2 by verification teams helpsThe test object list

is NOT a test list by

any means
ensure that this step yields a complete list of test objects avail-

able and allows the teams to complete the review quickly.

Breaking the list of test objects into small chunks helps teams

usually make this more manageable.

It must be noted that the test objects must not be confused for

test cases or test scenarios. At this point, the main thing that

must be captured is the functional features or properties of the

design. The actual test cases and test scenarios are extracted a

little further in this process.

182 Ten Steps to Success

8.4 Step 4: Tagging the List of Test Objects

The list of test objects was created in the previous step. In

the steps that follow, this list will be used extensively both by

humans and by computer programs. To help manage the in-

formation in a concise manner, it becomes imperative to give

each feature a distinct name.

Why is naming of test objects even a consideration? One no-

tices that there are features that are at various levels. It was

mentioned before that the list may contain test objects at dif-

ferent levels. At some point, these get mapped into test cases.

Given that one needs to manage a list that has the potential to

grow or shrink over a period, it becomes essentially obvious

that some sort of method to identify objects in the list becomes

necessary. This is accomplished by means of a unique string

that uniquely identifies the test object in the test object list.

Information in databases all over the world use a similar con-

ceptual idea by means of key or index to quickly get the infor-

mation to the user.

In the sections that follow, this name is referred to as a “tag”.

This tag can be anything of the readers choosing. Even a se-

rial number of the item in the list is acceptable for this step.

However having an alphanumeric string of some sort that adds

some description usually helps later on in the verification cycle.

This is because looking at the name, one might be able to infer

something about the particular feature in question.

The example in figure 8.4 indicates a list of tags chosen with

a naming convention. The convention uses an ‘ ’ to separate

groups of characters. The first group of characters indicates the

block name, the second group of characters indicates the type

of feature, and the third group indicates a particular module in

the design and so on. In a similar manner, a naming convention

of the user’s choice can be used.

There are some advantages to tagging the test objects. It allows

a computer program to help keep track of the objects. It also

provides a short description that could possibly communicate

Using Tags to Simplify the Regression Process 183

BLK1_FUNC_FIFO_FULL1 -- Fifo is full

BLK1_FUNC_FIFO_EMPTY1

BLK1_FUNC_FIFO_HALF_FULL1

BLK2_FUNC_FIFO_HALF_FULL2

BLK4_FUNC_FIFO_HALF_EMPTY1

Figure 8.4. Use of Tags

a great deal effectively when some debug is needed during a

regression. The other advantage is that it now becomes possi-

ble to use some filters or other pattern processing tools to act

on the results of a test should such processing be required in

a regression environment. An example of using the tags to re-

move tests from the regression for features that are known to

be broken is shown in the next section.

In this chapter, the concept of tags is used extensively. The rea-

son for using the tags is that it presents the user with a simple

easy way to keep track of what is happening in the verification

environment.

8.4.1 Using Tags to Simplify the Regression
Process

Using the scheme above, one aspect of application of the tags

would be to identify features that fail in a regression. For ex-

ample: One may choose to filter out all failing tests that have

anything to do with BLK1 FUNC FIFO EMPTY1 since it may

be known that the particular function does not work at that point

in time or has a problem in implementation.

An illustration is provided in the figure 8.5, Two different ap-

proaches are contrasted. The first is that of a regression that

did not use the tags, The second is a implementation that uses

the tags.

In the example, the jobs in the first instance were named us-

ing a script. Assume during the course of a regression, it is

assumed that a discovery is made that the feature BLK FIFO 1

184 Ten Steps to Success

and BLK FIFO FULL 2 don’t quite work right and cause tests

to fail.

The verification engineer would typically wind up killing the

entire regression for that particular module and restarting it af-

ter the design engineer fixed it. It is safe to assume that the

engineer would not go about finding those specific tests be-

fore he/she issued a kill command to the regression. Without

a naming mechanism, it is just too much work.

On the other hand, using tags as a portion of the job name. the

output from the queuing system would look similar with one

key difference. The name of the job now uses the tag selected

above as a portion of the job name.

When the regression is running, if we assume that all tests with

the particular feature BLK FIFO 1 fail, then all tests that test

that particular feature still in the wait queues can be easily iden-

tified and killed. the rest of the regression can probably proceed

to uncover other issues found with the design. The initial de-

bug can start with identifying the specific circumstances that

caused tests with BLK FIFO 1 to fail by merely looking at the

jobs

Structure of a Test Case 185

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

3621 mendonca RUN short jupiter.a.eng.r.com pdsflx23.ne psax 6/29/2005 11:32

3851 shiv_runall RUN short ganymede.eng.r.com pdsflx23.ne job1_1 6/29/2005 10:30

3852 shiv_runall RUN short ganymede.eng.r.com pdsflx23.ne job1_2 6/29/2005 10:31

3853 shiv_runall RUN short ganymede.eng.r.com pdsflx23.ne job1_3 6/29/2005 10:31

4001 robjose RUN short saturn.eng.r.com pdsflx23.ne regress_1 6/29/2005 12:31

4002 robjose RUN short saturn.eng.r.com pdsflx23.ne regress_2 6/29/2005 12:31

4040 ribbit RUN short saturn.eng.r.com pdsflx23.ne regress_1 6/29/2005 12:34

Queue output without using test object Tags

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

3621 mendonca RUN short jupiter.a.eng.r.com pdsflx23.ne psax_status 6/29/2005 11:32

3851 shiv_runall RUN short ganymede.eng.r.com pdsflx23.ne BLK_FIFO_1 6/29/2005 10:30

3852 shiv_runall RUN short ganymede.eng.r.com pdsflx23.ne BLK_FIFO_1 6/29/2005 10:31

3853 shiv_runall RUN short ganymede.eng.r.com pdsflx23.ne BLK_FIFO_2 6/29/2005 10:31

4001 robjose RUN short saturn.eng.r.com pdsflx23.ne fifo_full_1 6/29/2005 12:31

4002 robjose RUN short saturn.eng.r.com pdsflx23.ne fifo_full_2 6/29/2005 12:31

4040 ribbit RUN short saturn.eng.r.com pdsflx23.ne frame_stat1 6/29/2005 12:34

Queue output using test object tags

It is possible now to kill any test

testing BLK_FIFO_1 if it is found to

be broken in this release of RTL

You cannot distinguish features

without a little digging in!

Figure 8.5. Queue Management using a Tag Mechanism

8.5 Step 5: Test Case Identification

8.5.1 Structure of a Test Case

The next step is to identify the test cases that are required to

test the design. A test case is one of the basic ingredients of

any verification environment. A well written test case can be

reused many times depending on the circumstances. Prior to

identifying the test cases, a brief discussion on different types

of test cases is presented.

186 Ten Steps to Success

There are a number of ways to write a test case. However,

an analysis reveals that a test case has usually three parts to

it. These parts are can be broadly classified into the following

three parts:

1. Test setup section.

2. The test body section.

3. The test end (or cleanup) section.

Depending on the environment built for testing the design. The

test setup section and cleanup sections are typically present ei-

ther implicitly or explicitly in the test cases.

If the environment is built such that the tests modify or ex-

tend existing functions present in the environment, then the

test setup and cleanup parts are deemed implicit. Many envi-

ronments built using the HVL’s typically fall into this category.

Having implicit or explicit sections has no bearing on the effec-

tiveness of the verification environment. Both in my opinion

are deemed equally effective. They are merely different ways

to achieving the same goal.

However, from a management perspective, there could be a dif-

ference. A verification engineer who is new to the environment

has to typically go through study, and ramp up, before he/she

is able to write tests when implicit setup and cleanup are used.

In projects where the verification cycle for a module is very

short or compressed for time, this may become a factor in de-

termining whether additional engineers would be in a position

to help the effort or not. The choice of the strategy also dic-

tates whether all engineers know the verification environment

infrastructure or whether a lesser number of people will be able

to help maintain the environment.

A typical example of a test case with various sections is de-

picted in figure 8.6.

This section is typically used to setup the environment to runTest Setup section

the particular test. The section may comprise of reset code to

reset the device, and possibly other programming information.

It may also include test code to bring the device to a certain

state so that a test can be done. In some cases, some memory

Structure of a Test Case 187

Void globals () {

 #define INIT_PACKETS 10

 #define LAST_PACKET_COUNT 20

 #define OFFSET_HEADER 6

 extern int CurrentPacketCOunt;

}

//----------------- Begin test setup section --

Void init () {

 tbSet.DumpEnable = FALSE; //If you want the signal dumps

 tbSet.StartDumpPktNo = 0; //Starting Pkt no for signal dump

 tbSet.StopDumpPktNo = 0;

 tbSet.AbortSimulation = FALSE;

 tbSet.EnableShortPkts = FALSE;

}

// ------------------- End of test setup section ---------------------------------------

Void test () {

 init() ;

 // Programming the payload and the CRC byte of some of the packets

 if(PacketStream[MAC1_1].CRC==0)

 {

SetCRCError(packet[3], 0, "00", FALSE, mac[1]);

else

 {

packet_no = packet_no * 100/4; // every 25 packets

SetCRCError(packet[3], 0, "01", FALSE, mac[1]);

 }

……

…other test code

….

}

//---------- test cleanup section --

Void cleanup() {

// all cleanup actions go here

for(int I = 0; I < MAC_COUNT; i++) {

Delete PacketStream[i];

}

Figure 8.6. Test Sections Example

188 Ten Steps to Success

required by the test as well as checkers, may be initialized and

brought to operational mode in this section.

This code is portion of the actual test code that causes specificThe test section

condition(s) to occur in the device. This code could be of many

forms. A brief example of this code is given above.

The test section is the actual code. While the setup and end

sections of a test may be common to all tests, this section is

notably different from one test to another.

This section could be either in the test or in the environment.The test completion

section Typical actions taken in this phase of the test include checking

the tests for error or releasing allocated memory or generating

some statistics etc before the test ends.

8.5.2 Test Case Classifications

Tests are the essential ingredient in any methodology. In the

section that follows, we present a taxonomy that classifies the

tests into a few categories. This division of tests is based on

the characteristics of the tests.

8.5.2.1 Directed Tests

These tests are usually procedural types of tests. They are usedThe tests are

usually the first

tests to be written
to address a specific scenario or condition in the device. These

tests have the properties listed below. In many verification en-

vironments, this kind of tests is typically used to debug the

RTL and the environment at the early stages. This is because

the directed tests can be written to create a specific condition.

For example: Consider a device that uses an 8 bit micropro-

cessor bus as shown in figure 8.7. This bus supports read and

write transactions. Hence, a test to read and write from a spe-

cific memory location may be considered a directed test.

Test Case Classifications 189

Device under verification

Bus functional model for a microprocessor

nd
at

a

r/
wn

ad
d
r

Figure 8.7. Microprocessor Bus Test Case Example

The tests have one important quality: Consistency. Every timeDirected tests are

repeatable with the

same results
the test runs, they produce the same results.

In a random verification environment where the values of theThey are present in

almost all

environments
inputs are determined randomly, the directed tests can be pro-

duced by merely constraining the random generator to produce

a specific value every time.

Many designs that use a datapath typically use a set of directedThey are still an

important test

method
tests to ensure that the tests are functional. Some designs do

not benefit a great deal from a random methodology and use

directed tests instead.

Moreover, in some designs, depending on the randomness of

the test, it may be very difficult to create some specific scenar-

ios to test the device. It is possible that the test may have to

run for a long time to create the scenario. Under these circum-

stances, a directed test may be deployed effectively to test the

device. (see the chapter on Doing it right the first time.)

In case of a large SOC with many functional features, the listIn some cases they

may be impractical of functional features may run into the hundreds or thousands

as the case may be. Using a directed test case for each scenario

will quickly become a very daunting task. The task of main-

taining them also becomes a big challenge very quickly.

Using a random generator or a tool that generates the tests in-

stead of coding the tests by hand is frequently a good alternate

190 Ten Steps to Success

option to developing directed tests in these circumstances.

8.5.2.2 Sweep Test Cases

Sweep test cases are similar to directed test cases. However,

they are classified differently since they tend to cover a range

of scenarios very efficiently.

These test cases offer a high level of stress in the design and

are used to test on variations for a variety of clocking/protocol.

They sweep through the entire range of operation by repeating

a scenario across the design with a variation in time.

Why do these test cases even merit a different classification?

This division presented by the author is deliberate. Having a

separate test category for this test case type helps the test writer

to think “out of the box” and otherwise identify test cases that

the writer may not have thought of. The author has been able

to find some rather interesting bugs quickly rather than wait to

find bugs by generating the sequences randomly.

To further illustrate the idea of sweep test cases, consider a

bus interface block which interfaces between two subsystems.

This bus interface block interfaces between a internal system

bus called LX bus and a system bus controller(may be a PCI

type bus or some other similar bus for example!) This module

is shown in the figure 8.8. When a request for date is made on

the LX bus shown in the top half of the figure, the bus interface

module translates the request and sends it to the system bus

based on several parameters. It does so by raising the REQ

line to the system bus controller.

The system controller gives back a GNT signal as shown in the

figure. The GNT signal signifies that the bus is available for

use. Such a protocol is shown in the figure 8.8.

In this example, it is specified that the response from the sys-

tem bus could come anywhere from 2-20 clock cycles as per

the specification of the device. Any response to the device less

than 2 cycles and more than 31 cycles and less than 48 cycles

is considered an error. Any response after 63 clock cycles is

Test Case Classifications 191

Req`

Other modules

Bus interface module to a system bus

System Bus

controller module

Data valid

Data

Could be 1 to 16 clocks

Addr

R
E

Q

 G
N

T

Figure 8.8. Sweep Cycle Test Cases

ignored and considered a timeout.

Looking at the module and the specification, one can write a

few directed test cases to exercise the device. However, the full

gamut of test cases becomes a challenging task. One approach

is to set up some monitors and then use random responses to

effectively test the design. This is also a valid approach.

A third alternative is to use some code that generates the fol-

lowing test sequence. The pseudo-code for this is illustrated in

192 Ten Steps to Success

For (delay in 1..70 cycles)

 Begin loop

 Do a transaction do_write(address1) from LX bus

 Wait for delay clocks

 Send response from the system controller.

Delay = delay + 1;

 end

Figure 8.9. Sweep Test Cases

figure 8.8.

This approach involves developing a single directed test to en-

sure sanity of test case and then extending the test case. All

possible responses are covered at once.

In the author’s opinion, a test similar to the above could be de-

veloped very easily after the completion of the development of

a single directed test case. The incremental cost of test devel-

opment is very low compared to the benefits this style of cases

offers.

8.5.2.3 Negative Testing

Negative cases are those cases which exercise a design outside

the given specification for the device. These cases are charac-

terized by intending to create erroneous behaviors in the device

and then observing the response of the device. An example is

writing to a FIFO block when the FIFO is full. Another exam-

ple is writing to a read only register.

Negative test cases are sometimes characterized by needing

some sort of special handling. These test cases may cause

some assertions in the environment to fail. In some cases, the

fact that the design failed due to the erroneous inputs is actually

a “passing” test case since it did produce the correct behavior

from the device. However, in automated testing environments,

these tests may prove to offer a challenge in making sure that

The Creation of a Possible List of Test Cases 193

the status is indeed reported correctly.

It is noted that every Bus Functional Model and Checker

or Monitor will support such negative testing by default. The

importance of not designing this into the environment cannot

be overstressed by the author.

8.5.2.4 Random Test Cases

One of the main advantages of random testing is that it now

becomes possible to uncover bugs faster than using directed

tests. However, it must be realized that many a time, the ran-

dom generator may not be in a position to generate specific

random sequences without extensive intervention of the ver-

ification engineer. This may be due to several factors: The

quality of the constraints placed on the random generator, the

random generator itself and the nature of the environment and

support for random test debug.

One important thing that must be noted during the use of ran-

dom generators is that the output of the random generator must

be continuously monitored to make sure that a large state space

is indeed being generated by the random generator. This flow

is shown in figure 2.10.

This class of tests is typically found where the random gener-Directed random

tests ator is constrained to produce a subset of the possible values to

test a specific area of the device.

The author has chosen to classify this class of tests separately.Interactive random

tests In many verification environments, it becomes necessary to test

the interaction of any one feature with many other features, for

example a SOC. A CPU with many different types of instruc-

tions is a good example. In this class of tests, there is a large

state space. Functional coverage metrics and other metrics are

usually used to determine whether the requisite state space has

indeed been met.

Random interactions between different features is typically a

well known method to rapidly uncover any issues of interaction

between blocks.

194 Ten Steps to Success

8.5.3 The Creation of a Possible List of Test
Cases

The steps in the previous sections were focused on creating the

list of test objects. In this step, we create a list of test cases

based on the functional list of objects.

In this section, we attempt to create a list of possible test cases

by extending the list of test objects that were created in the

earlier step. This list attempts to find out which of the following

kinds of tests that were described earlier are actually applicable

to a given test object. A summary of the different types of tests

is provided below.

1. Directed Tests

2. Sweep Tests

3. Clock Crossing Tests - Tests that exercise designs with mul-

tiple clock domains.

4. Error Tests or random tests

5. Random Directed Tests

6. Random Interaction Tests

In order to create a effective test case list, the following ques-

tions are then asked for each of the test objects on the list.

1. What are the properties of this test object?

2. What range of values can be created for this test object?

3. What is classified as an error for this test object? Do any

negative tests apply to this object?

4. Does this test object actually encompass multiple clock do-

mains?

5. Is there some sort of a protocol associated with this object?

6. Are there interactions between other features or properties

for this Object?

And so on. One may choose to customize the categories and

classes of tests based on the relevance of the types of tests and

The Creation of a Possible List of Test Cases 195

environmental support available. Doing so helps the verifica-

tion engineer identify specific scenarios that may be used to

test the device.

In some cases, the test object may be of a bus type response. If

this is indeed true, it may be possible to use the sweep method

to attempt to test the test object exhaustively for some specific

conditions.

If a clock crossing feature is present in the test object, it will

become necessary to include tests to verify the design for these

conditions as well.

Erroneous behavior is also determined for each test object.

For example, writing to an read-only register. Typically doing

something outside of the region of specification would classify

the test as an negative test.

In some situations, it will become impossible to write a huge

number of directed test cases. This is becoming true today. In

such circumstances, tools like Specman5 and Vera6 help the

verification engineer to choose a random or a coverage driven

strategy to test the device. Hence we can create a plan as shown

in the picture 8.10.

The grid shown figure 8.10 has the list of features on one axis

and the types of test cases/monitors etc on the other axis.

Initially, it may be possible to just capture the intent of the de-

sign in a brief review. This intent may merely state which test

categories are applicable for a particular test. In the figure 8.10,

the intent may be captured by marking an ‘x’ in the appropriate

column. Alternatively, the team may choose to describe the

test by describing the scenarios as indicated.

5Specman is now a trademark of Cadence Design Systems.
6A description of Vera can be found on http://www.openvera.org Tools for this lan-

guage are sold by some vendors including Synopsys.

196 Ten Steps to Success

D
ir

ec
te

d
 t

es
ts

S
w

ee
p
 T

es
ts

C
lo

ck
 C

ro
ss

in
g

E
rr

o
r

R
a
n

d
o
m

 D
ir

ec
te

d

R
a
n

d
o
m

 i
n

te
ra

ct
iv

e

Test

Object Tag

Block

Name Feature Object

Cache Cache arbitration for Port B read x x x x x Cache_2

Cache Cache arbitration for Port B write x x x x Cache_4

Cache Cache arbitration for Port A read x x x x Cache_1

Cache Cache arbitration for Port A write x x x Cache_3

Cache Cache flush algorithm x x Cache_5

Cache Cache controller states x x x x Cache_6

Fifo Functional soft reset x x B1_RST_1

Fifo Insert 0 pattern x x x B2_0_PAT_1

Fifo Autoincrement feature x x x B1_AUTO_1

Fifo Frame timing reference x x x B1_FRATIM_1

LLC Different n bit positions for L1 and L2 x x x B2_NBIT_1

LLC Continuous output pointer increment x x B2_OPINT_1

LLC Payload crc insertion B2_PAYL_1

1. Sweep the cache with port B write and Read for same address

2. Sweep Arbitration for different types of accesses

Figure 8.10. Template for a Verification Plan

Initially it might sound like a lot of work to actually come upSome other

alternatives that

can be practiced in

this step

with a plan in this manner. However, it is possible to undertake

many shortcuts in this step. All the appropriate scenarios can

be marked on this plan. The actual test descriptions and test

intent can be saved for later and completed when the actual

verification is done in a succeeding tests.

At this time, it must be recalled that all that has been accom-

plished so far is an analysis using a pen/paper or a computer

spreadsheet or other means. The actual test definitions will be

automatically extracted from this work process.

Partitioning of Tests between Block and Top Level 197

Looking at the completed plan, It might be noted that the readerDo not attempt to

optimize the test

cases at this point

yet!

may begin to wonder that there is a large number of test cases,

Some of them might be redundant and some of the tests aren’t

of high importance or unlikely to occur. A priority can be eas-

ily assigned at this stage or later. Optimizing the test cases is

done in the following steps.

The intent of this process is to identify if there are any specific

scenarios that need to be tested. The recommendation is that

the identification of scenarios be done without any attention

being paid to the actual work that this step may generate. The

actual trimming of tests will be done in a subsequently in step 8.

Following such an approach allows the test writers to completeNecessary and

complete criteria

are defined
a necessary and complete criterion without being concerned

about the actual work. If optimization were carried out earlier,

the issue that crops up is that not all parameters are considered

when tests are pruned or optimized.

Some of the features may be completely covered at other levels

and some other features will be covered by monitors or check-

ers. When these are marked off in the next couple of steps, then

the actual pruning work becomes very clear and very simple.

A detailed example is presented in Step 8.

8.5.4 Partitioning of Tests between Block and
Top Level

In the previous sections, we had built a list of features for the

device without looking into the testability aspects of the fea-

tures. As the features are analyzed, it becomes apparent that

some of the features of the device are buried deep in the mod-

ules of the device. In some cases, the features of the module

may have an effect on other modules.

The partition for testing the feature at the top level or at the block

level is dependent on some factors. If the feature is buried deep

in the module under test and does not affect other modules, it

may be a good idea to test this feature in a module level. If

there is interaction between other modules for this feature, it

198 Ten Steps to Success

becomes apparent that the feature needs to be tested at the top

level. It must be noted that any features extensively tested only

at the module level may indeed lose gate level coverage.

For example, an arbitration signal to an external arbiter module

will affect the behavior of the other module. However, a mod-

ule specific item like a tap point coefficient in a digital filter

may have some effect on performance, but the operation of the

filter itself can be well tested at the module level. The behavior

of the system with some specific filter settings could of course

be tested at the top level. (This would obviously be a separate

test object!)

Consequently, it now becomes essential to identify features and

properties of the module that have an global effect on the device

operation. These features would essentially need to be tested

(in an order of priority of course!) at the top level of the device.

Looking at the table, we can add a column indicating to the

user the various features at the top level. The tests and features

can then be sorted as shown in the figure so that an report could

be extracted

Partitioning of Tests between Block and Top Level 199

D
ir

e
c
te

d
 t

e
s
ts

S
w

e
e
p

 T
e
s
ts

C
lo

c
k
 C

ro
s
s
in

g

E
rr

o
r

R
a
n

d
o

m
 D

ir
e
c
te

d

R
a
n

d
o

m
 i

n
te

ra
c
ti

v
e

C
h

e
c
k
e
r

M
o

n
it

o
r

Unique name L
E

V
E

L
 o

f
te

s
ts

Block

Name Feature Object

Fifo Functional soft reset x x C1 B1_RST_1 chip

Fifo Insert 0 pattern x x x C1 M2 B2_0_PAT_1 chip

Fifo Autoincrement feature x x x C2 M1 B1_AUTO_1 module

Fifo Frame timing reference x x x C2 M3 B1_FRATIM_1 chip

LLC

Different n bit positions for L1 and

L2 x x x C3 M2 B2_NBIT_1 module

LLC

Continuous output pointer

increment x x C4 M1 B2_OPINT_1 module

LLC Payload crc insertion C5 M1 B2_PAYL_1 chip

Cache Cache arbitration for Port B read x x x x x Cache 2 m3 Cache_2 module

Cache Cache arbitration for Port B write x x x x Cache 2 m3 Cache_4 module

Cache Cache arbitration for Port A read x x x x Cache1 M3 Cache_1 module

Cache Cache arbitration for Port A write x x x Cache1 m3 Cache_3 module

Cache Cache flush algorithm x x m3 Cache_5 chip

Cache Cache controller states x x x x m3 Cache_6 module

Figure 8.11. Partitioning of Tests at Block and Top Level

Why is this review process helpful? One of the main benefits ofA review process

will be able to

identify if some

specific features are

missing from any

particular list with

ease!

approaching the test objects as described above is that it helps

the verification team to very quickly identify the features that

ought to be tested at the top level.

Many a time, the top level environment may enforce a coding

requirement that can be taken into account when the module

level tests are being written. Such an approach will minimize

the effort of porting of the tests later on in the environment.

At the end of a project, it becomes a fairly trivial task to identify

which features are tested where. This review is crucial. The

review usually helps ensure that the features needing attention

at specific levels did indeed get the attention that they deserved!

Since all the features needing to be tested at various levels

have been identified, a review process can then be used to hi-

erarchically identify if a feature tested at the block level ought

to have been tested at the top level or vice versa. This review

200 Ten Steps to Success

can be very easily facilitated by producing a few lists with the

following information:

A list of features that are tested only at the block level.

A list of features that are tested only at the top level.

A list of features that are tested at both the top level and the

block level highlighted separately.

A list of features that were missed out and need to be looked

at to determine if they are redundant.

Any error from any of the lists usually stands out as a glaring

omission on the combined list #3 above.

8.6 Step 6: The Definition of a Correctness Strategy

In the previous section, we identified the various possible test

scenarios that were possible to test the various test objects in

the device. In this step, we attempt to create the definition

of a correctness strategy for the device that will be verified.

The checkers that are described in this section may choose to

implement monitors internally. However, for reasons that are

described earlier, the checker is expected to perform only the

function of checking and leave the function of observation to

the monitors.

The figure 8.12 gives an indication of the various types of

checkers and their positioning in the verification environment.

As can be seen from the figure 8.12, the data and cycle accu-

rate checkers may be connected in parallel with the device. The

protocol and interface checkers may be connected on specific

interfaces of the device.

8.6.1 Data Checkers

Data checkers are typically used to verify the integrity of the

data that is being transmitted through the device. These check-

ers are typically connected to the inputs and outputs of the

Interface Checkers 201

device as shown in the figure. The datapath checker typically

maintains a copy of the data that was passed into the module.

It then examines the data that is made available on the output.

The checker then ensures that the data was not corrupted or oth-

erwise changed when the data passed through the module. In

some cases, the checker may be able to predict the data which

may be altered by the device under test presented at the outputs

of the module under test.

Writing a data checker should be undertaken by taking into

account whether the data checker may possibly be reused in

environments other than the module level alone.

8.6.2 Protocol Checkers

The protocol checker is a checker that checks the protocol on

the interface where it is connected. It usually flags an error if

there is a problem with the protocol. A couple of examples for

these checkers are the PCI bus or the IIC bus which is used by

some devices to communicate with other devices on the system

that they are designed into.

Some of these checkers are available from third party sources

as verification IP. Given the high amount of integration, that

most new SOC designs are experiencing today, outsourcing

these checkers is becoming commonplace.

8.6.3 Interface Checkers

Interface checkers are checkers that will verify the interface

of the device. These checkers usually are capable of identify-

ing whether something has indeed gone awry on the module

boundaries. These checkers may under some circumstances be

protocol checkers if the modules exchange information via a

well defined protocol that has been coded using the protocol

checkers. In other cases, they may manifest themselves as as-

sertions that verify the absence of illegal input to the module

that is being tested.

202 Ten Steps to Success

Microprocessor
MP3

decoder

SDRAM

Controller

System Bus

SDRAM

PCI Bus

Chip

Boundary

Processor

Control

path

checker

Protocol

Checker

Bus

Checker

Data Checker

PCI

Monitor

Data

Checker

Figure 8.12. Checkers in a Verification Environment

Some of the interface checkers may also be placed on the out-

puts of the module to make sure that the module is indeed giving

the right responses on the interface.

Using Assertions and Formal Verification in the Methodology 203

8.6.4 Cycle Accurate Checkers

Cycle accurate checkers are checkers that are used to check that

the output or other monitored points of the device are correct

on a cycle by cycle basis.

Cycle accurate checkers are usually difficult to write. These

checkers may in some embodiments be simple by obtaining

their output from a golden model which is a accurate repre-

sentation of the design. In other embodiments, they may have

extensive checking functionality built into the checker itself.

Since the design is usually subject to significant change early

on in the design cycle, maintenance of the checker may be dif-

ficult. However, depending on the circumstances, the checker

will be a very good way to identify issues when the design does

not meet or match the specification.

8.6.5 Using Monitors

Monitors are used to observe the design and print warning mes-

sages if needed into a log file. They serve as a important tool

in debugging the design completely since they capture infor-

mation about the events in the design into a log file and allow a

detailed analysis to be completed after the simulation has been

completed.

Monitors can be created and instantiated into the verification

environment using a variety of methods. Some engineers have

chosen to use HVL’s like Vera or “e” which offer ease of use.

On the other hand, some of my colleagues have chosen to imple-

ment the monitors using various testbench constructs available

in the HDL itself. Various considerations on writing monitors

are presented in the previous chapter.

8.6.6 Using Assertions and Formal Verification
in the Methodology

The previous sections described the derivation of test objects

and the process of making sure that the test object list is a com-

plete and accurate one. In this section, the possibility of using

assertion based methodologies is explored.

204 Ten Steps to Success

Assertion based techniques have many advantages. These are:

Using assertions in a simulation environment helps the user toAssertions in

simulation leverage the infrastructure that is present in the existing simu-

lation environment. During the simulation, assertions can be

used to monitor activities inside the design and on the inter-

faces. When a failure occurs because of an assertion, the prob-

lem can be flagged immediately. In many cases, this timely

warning allows the testbench to detect an error and take appro-

priate action before waiting for the results after post-processing

etc. The assertions help with “bug triage” and allow the cause

of any violation to be easily identified.

Since the assertions are now embedded in the design, the as-Coverage

sertions can also serve as coverage monitors. They can be

configured to collect statistics and coverage information for

various parts of the design. Once the data is available, it can

be processed to ensure that design has been simulated for all

possible cases.

A third benefit from using an assertion is that it now becomesDyamic formal

simulation possible to use a formal verification tool to aid with finding

bugs. Formal analysis can also be used to determine if the

design exhibits some interesting corner-case behaviors. If a

violation is discovered, formal analysis will provide a coun-

terexample to the assertion. Since stimulus from simulation

is leveraged to find the violation, the counterexample is some-

thing that can be found as an extension of the existing stimulus

and is a whole lot easier to debug.

In order to be able to effectively deploy assertions in the method-

ology described herein, the author proposes some simple guide-

lines that may be modified to the needs of the user.

Each test object on the test object list can now be mapped to oneMap each test

object to a

collection of

assertions

or more assertions in the assertion list. At this juncture, what

is required is that the test object must be completely specified

in terms of assertions. If there are any temporal dependencies

for the property, i.e. the test object has some time related prop-

erties as well (can be easily seen with sweep test cases etc)

then it is apparent that the assertions will not be merely static

but also temporal as well. This is seen in the figure 8.13. The

Using Assertions and Formal Verification in the Methodology 205

Test Object

Assertion # n

Figure 8.13. Mapping Assertions to Features

key side effect of this organization is that it becomes possible

to determine if the list of assertions for each test object is now

a necessary and complete set of assertions. Any review of the

assertion list can now focus on answering the question of com-

pleteness of mapping.

The use of a coding style where it is evident from the assertionA coding style that

tells you what the

assertion does and

is mapped to is a

must

instance the feature of the design is a must. The author would

like to propose that the test object tag be a part of the instance

name. This will allow the verification engineer to quickly share

information with the design engineer specifics of the failing

feature and thereby get the debug cycle done more quickly. In

the figure 8.14 , it is apparent that the test object cache1 has

several assertions Cache1 assertA port1,

Cache1 assertA port wr check etc. As a result of this organiza-

tion, the verification engineer can now focus on the following

and other important aspects:

Did the intent required for this particular test object get

defined?

Are the assertions correct?

Are the assertions enough and complete?

Are the assertions in line with the test object? Ie. Are there

temporal assertions if there is some time dependency?

Is it possible to prove the formal verification with a tool?

Can the assertions be reused as monitors?

Formal verification techniques do offer the user complete proofKeep in mind that

any formal

methodology may

give a

indeterminate

response

of the assertion being made. On the other hand, the formal

verification tool may suffer from some capacity constraints de-

pending on how the tool is implemented. As a result, the ver-

ification engineer may find that it is very challenging to prove

206 Ten Steps to Success

some assertions. The author recommends that the assertions

so developed are deployed in a manner that the simulation en-

vironment and the formal environment use the same assertions

without any modifications. As a result, if the verification engi-

neer finds some capacity or other challenges and is faced with

a very tight delivery schedule, all is not lost. A partial proof

may be possible supplemented by simulation. This recommen-

dation is made based on the observation that some verification

approaches use two different approaches which have no possi-

bility of overlap may actually cost the verification engineer a

great deal of time and effort, not to mention stress!

In the example given it may be possible that the assertion

Cache1 portA read no asser could not be proven using a for-

mal verification tool. The verification team then has the alter-

native of either decomposing the assertion into several smaller

ones and attempting to prove them or using simulation as a

backup option to verify the test object if there are some other

factors at work like schedule, licenses etc. In spite of these

challenges, Formal verification has found many bugs which

have been deemed "hard to find" and instances of this can be

found in literature. The modern verification efforts would be

hard pressed to achieve closure of verification if formal verifi-

cation is not part of the overall strategy.

It is well known that formal techniques have some capacity

limitations. These limitations are being actively worked on in

the industry. Until a solution is found, the default has been

the simulation environment. For test objects where the formal

techniques are unable to close the gap, the simulation method

can be used. This enables that there is no single feature that is

unproven because of the two different approaches.

Many modern testbenches [8] actually use dynamic simulation

and formal verification to attempt to verify the design.

8.7 Step 7: The test strategy

The previous step identified various checkers and monitors and

helped define a correctness strategy that helps to check the de-

vice under test. In this step we attempt to identify the tests

that need to be developed to verify the device. The tests by

design should be able to trigger various events that are checked

Step 7: The test strategy 207

Directed tests

Sweep Tests

Clock Crossing

Error

Random Directed

Random interactive

Checker

Monitor

U
n

iq
u

e
 n

a
m

e

F
ea

tu
re

 O
b
je

c
t

F
u
n
ct

io
n
al

 s
o
ft

 r
es

et
x

x
C

1
B

1
_
R

S
T

_
1

A
u
to

in
cr

em
en

t
fe

at
u
re

x
x

x
C

2
M

1
B

1
_

A
U

T
O

_
1

F
ra

m
e

ti
m

in
g
 r

ef
er

en
ce

x
x

x
C

2
M

3
B

1
_

F
R

A
T

IM
_

1

D
if

fe
re

n
t

n
 b

it
 p

o
si

ti
o
n
s

fo
r

L
1
 a

n
d
 L

2
x

x
x

C
3

M
2

B
2
_
N

B
IT

_
1

C
o
n
ti

n
u
o
u
s

o
u
tp

u
t

p
o
in

te
r

in
cr

em
en

t
x

x
C

4
M

1
B

2
_

O
P

IN
T

_
1

P
ay

lo
ad

 c
rc

 i
n

se
rt

io
n

C
5

M
1

B
2
_
P

A
Y

L
_
1

In
se

rt
 0

 p
at

te
rn

x
x

x
C

1
1

M
2

B
2
_
0
_
P

A
T

_
1

C
ac

h
e

ar
b
it

ra
ti

o
n
 f

o
r

P
o
rt

 A
 r

ea
d

x
x

x
x

C
a
c
h

e
1

M
3

C
ac

h
e_

1

C
ac

h
e

ar
b
it

ra
ti

o
n
 f

o
r

P
o
rt

 B
 r

ea
d

x
x

x
x

x
C

a
c
h

e
 2

m
3

C
ac

h
e_

2

C
ac

h
e

ar
b
it

ra
ti

o
n
 f

o
r

P
o
rt

 A
 w

ri
te

x
x

x
C

a
c
h

e
1

m
3

C
ac

h
e_

3

C
ac

h
e

ar
b
it

ra
ti

o
n
 f

o
r

P
o
rt

 B
 w

ri
te

x
x

x
x

C
a

c
h

e
 2

m
3

C
ac

h
e_

4

C
ac

h
e

fl
u
sh

 a
lg

o
ri

th
m

x
x

m
3

C
ac

h
e_

5

C
ac

h
e

co
n
tr

o
ll

er
 s

ta
te

s
x

x
x

x
m

3
C

ac
h
e_

6

--
p

sl
 C

ac
h

e1
_

as
se

rt
A

_
p

o
rt

_
1

:

--
p

sl
 C

ac
h

e1
_

as
se

rt
A

_
p

o
rt

_
w

r_
ch

ec
k

:

--
p
sl

C
ac

h
e1

_
as

se
rt

A
_

p
o

rt
_

re
ad

_
n

o
_

as
se

r:

T
h

e
as

se
rt

io
n

 i
n

st
an

ce
 i

s

la
b

el
le

d
 w

it
h

 t
h

e
ta

g
 a

s
p

ar
t

o
f

th
e

n
am

e

--
p

sl
 C

ac
h
e1

_
as

se
rt

_
p

o
rt

_
w

r_
d

at
a_

v
al

id

T
h

es
e

as
se

rt
io

n
s

ar
e

m
ea

n
t

fo
r

th
e

ta
g

C
ac

h
e1

.
 T

h
e

re
v
ie

w
 p

ro
ce

ss
 n

ee
d
s

to

en
su

re
 t

h
at

 :

1
)

T
h
e

re
q
u
ir

ed
 a

ss
er

ti
o
n
s

ar
e

p
re

se
n
t

fo
r

th
e

in
te

rf
ac

e
(

N
ec

es
sa

ry
 a

n
d

co
m

p
le

te
)

2
)

T
h

e
as

se
rt

io
n

s
d

o
 w

h
at

 t
h

ey
 a

re

su
p

p
o

se
d

 t
o

 d
o

.
(c

o
rr

ec
tn

es
s)

O
n
e

m
ay

 n
ee

d
 t

o

d
ec

o
m

p
o

se
 a

ss
er

ti
o

n
 o

r

u
se

 s
im

u
la

ti
o

n
 i

f
it

 i
s

n
o
t

p
o
ss

ib
le

 t
o
 f

o
rm

al
ly

v
er

if
y

Figure 8.14. Implementing Assertions in the 10 Step methodology

208 Ten Steps to Success

by the checker or the monitor that is related to the tests object

being tested. Indirectly, the checker and monitor can be used

to verify each other. I.e. For a given tests object, the tests that

is developed and run must trigger the related checker or mon-

itor. If this event of triggering does not occur it can be safely

assumed that there is a disconnect somewhere that needs to be

addressed.

This relationship between the test, monitor and the checker is

crucial to the architecture of the verification environment. If

the tests and the checker/monitor are developed by different

people as is usually the case; the tests and the monitor effec-

tively check one another. This gives an additional amount of

confidence in both test and checkers/monitor code.

The relationship between the tests and the checkers/monitors

is maintained in this verification approach is by means of the

test object tags that were picked for each test object in step 3.

This relationship is shown in the figure 8.15.

8.7.1 Hierarchical Strategy

Functional requirements of the device dictate that some tests

will need to be developed at the block level and some tests

will need to be developed at the chip level. This choice of level

where the tests are developed is usually dictated by whether the

particular test object is something that is buried deep down in a

module or has a global effect. An interface between two mod-

ules at the chip level must obviously be tested at the chip level.

If it is apparent that a test object must be tested at the top level,

then coding styles at the block and top level need to be taken

into account. Doing so will make the transition between the

block level and the top level proceed smoothly. Such an ap-

proach also allows the verification engineer to focus his time

on the additional top level tests that need to be written.

Common instances of test objects that may span module bound-

aries are bus protocols and signals crossing module boundaries

at the chip level as well as chip level reset etc.

Reuse Strategy 209

Test Object Tag_

Chip level tests

CheckerMonitor

Block level

tests

Assertion #1 for

Test Object Tag

Assertion #n for

Test Object Tag

Coverage

Points

Coverage

Points

Figure 8.15. Relationship between the Tests and the Checkers/Monitors

A review of the test object list now reveals the objects that will

need to be tested at the top level. These objects can then be

identified in the test object list. Later on in this step, the tests

are then linked to test objects. Since the objects are now re-

quired to be tested at the chip level (and possibly at the block

level as well) a set of coding requirements is imposed on the

tests by the environment automatically.

210 Ten Steps to Success

8.7.2 Reuse Strategy

Many a time, if the tests are being reused from another project,

then these tests no longer need to be developed. These test cases

that are being reused are also identified and removed from the

list of tests that need to be developed.

One notes that verification reuse is not as prevalent as design

reuse. However, verification reuse is easier than design reuse

[9]. There are:

No performance requirements.

No technology-specific requirements.

No synthesis tool requirements.

What is however required to be defined are:

– Requirements for verification components

– Functional correctness.

– Reusability in verification environment.

8.7.3 Stimulus Strategy

At this juncture, the reader can make a well informed choice

of the strategy for the stimulus generation. Many a time, the

use of random generators to achieve state coverage quickly is

considered7. In some cases it may be the perfect solution to

the problem. Usually a combination of tests helps complete

the plan.

Control based devices (an example is a microprocessor) are

typically complex devices which may benefit from a random

environment. Verification of these devices usually incorporate

random testing, formal testing as well as other methodologies

to help address the large state space problem.

Datapath based devices usually are a little different than control

based devices. In the case of datapath based devices, most of

the data processing elements and functions operate on the data

7See the section on Doing it right the first time.

Identifying Test cases for Maximum Yield & Coverage 211

flowing through the device. In these devices, the operations

performed on the data are important.

When verifying a datapath, one suggestion that is offered is to

keep the environment as efficient as possible. The focus must

be kept on being able to send large quantities of streams through

the device. Hence, the overhead from the testbench and other

components must be kept to a minimum. The penalty for ignor-

ing this consideration is that the simulations and debug cycles

typically tend to be long.

8.7.4 Test Case Strategy

The test objects in the test object list may be tested using a

checker or monitor or a test case or an assertion based method-

ology.

It must be however noted that the assertion monitors must be

placed on interfaces, corner case implementations and at spe-

cific points in the design, for which complete function valida-

tion is required (possible only by using formal verification).

The location, quality and type of assertion monitor being used

in a simulation environment will play an important role in the

debug effort required after the detection of a bug.

When using a simulation methodology along with a group

of tests, results of the simulation can be used to measure

progress.

to determine coverage using several metrics that have been

discussed earlier.

8.7.5 Identifying Test cases for Maximum

Various types of test cases and their applications were discussed

in the earlier portions of this chapter. The test object list that

Yield & Coverage

monitors and checkers by means of the test object tag.

tors is evident since the assertions are all related to the tests,

When using assertions, the assertions can easily be used

The relationship between the assertions and the checkers/moni-

212 Ten Steps to Success

has been developed so far contains a exhaustive list of possible

scenarios that may be tested for the device. The earlier discus-

sion had specifically avoided identifying test cases at that stage

of development of the test object list.

At this juncture, all the information that is required to develop

the test cases exists in the test object list. We have been able

to identify test objects that are reused from other projects as

well as test objects that need to be exercised at the chip level of

the device. Specific assertions that can be used to test the test

object have also been identified.

Various types of test cases and their applications were discussedThe test cases that

give the maximum

yield and Coverage

can be picked right

off the graph

in the earlier portions of this chapter. The test object list that

has been developed so far contains a exhaustive list of possible

scenarios that may be tested for the device. The earlier discus-

sion had specifically avoided identifying test cases at that stage

of development of the test object list.

In addition, all the specific features that need testing at the top

level have been identified. The testing and components to test

the device at the block level or at the top level are also identified.

This leads to some rather interesting derivations and conclu-

sions as the reader will observe in the discussion that follows.

If the test object list is sorted by ROW, then it is now possible

to identify the test scenarios that would be most effective in

testing out the test object. This is shown in the figure 8.16.

While the decision to choose a particular style of test cases is

completely up to the verification engineer who is developing

tests for the particular test object, all that needs to be ensured

is that the test cases that are developed have taken into account

the various features embodied in this test object (Range of

values needing a sweep test, cross of clock domain boundaries

etc, error handling etc).

All the test cases that are developed for the test object need to

be in accordance with the plan that is presented above. In a

similar vein, it is now possible to find the most efficient test

case that tests a group of test objects. This is done by creating

a test that picks the most test objects sorted by a certain column

Identifying Test cases for Maximum Yield & Coverage 213

Clock Crossing test

spanning multiple

test objects

Test that is highest

yeild for both objects

and scenarios

Test covering multiple

test types (efficiency

per object)

D
ir

e
c
te

d
 t

e
st

s

S
w

ee
p

 T
e
st

s

C
lo

c
k

 C
ro

ss
in

g

E
rr

o
r

R
a

n
d

o
m

 D
ir

e
c
te

d

R
a

n
d

o
m

 i
n

te
ra

c
ti

ve

C
h

ec
k

er

M
o

n
it

o
r

Unique name

Feature Object

Functional soft reset x x C1 B1_RST_1

Autoincrement feature x x x C2 M1 B1_AUTO_1

Frame timing reference x x x C2 M3 B1_FRATIM_1

Different n bit positions for L1 and L2 x x x C3 M2 B2_NBIT_1

Continuous output pointer increment x x C4 M1 B2_OPINT_1

Payload crc insertion C5 M1 B2_PAYL_1

Insert 0 pattern x x x C11 M2 B2_0_PAT_1

Cache arbitration for Port A read x x x x Cache1 M3 Cache_1

Cache arbitration for Port B read x x x x x Cache 2 m3 Cache_2

Cache arbitration for Port A write x x x Cache1 m3 Cache_3

Cache arbitration for Port B write x x x x Cache 2 m3 Cache_4

Cache flush algorithm x x m3 Cache_5

Cache controller states x x x x m3 Cache_6

Figure 8.16. Finding the Optimal Tests to be Developed

as shown in the figure 8.16.

However, the test case that basically needs to be in a smokeThe most valuable

tests are the ones

that cover both the

rows and the

columns

or other regression is one that covers the most from a row and

column basis Such a test case would be one that encompasses

multiple rows and multiple columns. This is illustrated in the

figure 8.16. While there might be better groupings and opti-

mizations available more than what is shown in the figure, the

grouping could otherwise be considered akin the Karnaugh map

principle which is widely discussed in digital design books. It

is only a symbolic representation of what is indeed possible.

Some of the test scenarios may be covered by other test types inElimination of tests

that are redundant

is also possible
the verification plan. These tests can now be eliminated from

the test development list. Any reused tests can be eliminated

214 Ten Steps to Success

from the list of work to be completed prior to a tape-out

Verification is all about determining that the device under testIt is possible to

generate multiple

views and analyze

them to cut down

verification effort

does indeed work as designed. Verification is also about the

challenge to identify scenarios that the designer could not en-

visage when the module was designed. The verification plan

that has been generated allows the verification engineer to have

multiple views of the verification effort. The engineer may

choose to implement some features as monitors or checkers.

Alternatively, the engineer may choose to use some specific

test strategy for some modules and other strategies for other

modules. Any assumptions or limitations are immediately ap-

parent.

What is apparent is that there is a “holistic” strategy that al-

lows the verification engineer to move back and forth between

choices at any point of the project and never lose track of what

is done and left behind.

Determining alternatives like replacing a group of tests for a

certain feature by a checker or monitor would have initially

been difficult. Since there is a distinct mapping between the

features and the tests and monitors via a collection of tags, it

becomes possible to consider some changes during actual im-

plementation of the tests themselves.

As had been mentioned earlier, change is probably one of theChange

management is now

a trivial task
more constant things in this world we live in. Frequently, due

to a variety of reasons the feature list of the device may change

somewhat. This may be due to engineering reasons or market

forces. Since we now have a detailed list that maps to the test

cases, checkers and monitors, all we now have to do is to iden-

tify which test objects indeed have changed. A corresponding

list of tests, checkers and monitors to be worked on becomes

apparent!

The important thing to be noted however is that the management

of the entire test database can be done easily using automation.

At the completion of this step, the planning and identification

process of the verification plan is complete. What now needs

to be done is to create the appropriate scenarios and ensure that

the design is tested.

Component identification 215

8.8 Step 8: Testing the design.

8.8.1 Component identification

The previous step helped us identify the various tests, checkersIdentify the

testbench

components based

on the items in step

7

and monitors in the verification environment. Now, the hierar-

chical and reuse strategies are also well defined.

There is also all the information regarding the various features

that needed to be supported by the device at the top or block

levels.

Given the structure of our verification plan, it is now possi-

ble to sort the list by Module. The appropriate checkers and

monitors that are instantiated in the design and testbench are

immediately obvious.

As can be seen from the figure 8.17, checker C2 must be able toThere is an explicit

specification in this

representation for

the checker

check all aspects of The FIFO module’s Auto-increment fea-

ture and the frame timing reference. It must operate across

multiple clock domains and be able to handle inputs both in-

side and outside the specification of the above features. It must

also be able to be used at the module level and at the chip level.

The checker must be robust enough to handle random data as

well.

The second example that is presented is for monitor M3. ThisThere is an explicit

specification for the

monitor in this

representation.

monitor operates with the cache module and must be able to

handle a variety of inputs both inside and outside the speci-

fication for arbitration of ports A and B. It must be able to

understand the cache flush algorithm and the cache controller

states. The monitor may be instantiated at the chip level and at

the module level.

In a similar manner, the specification for each checker and mon-

itor may be derived. The tags that are common between the

monitor and checker now help keep a balance.

216 Ten Steps to Success

Specification of Monitor M3

B
lo

c
k
 N

a
m

e

F
ea

tu
re

 O
b

je
ct

D
ir

ec
te

d
 t

es
ts

S
w

e
ep

 T
es

ts

C
lo

ck
 C

ro
ss

in
g

E
rr

o
r

R
a

n
d

o
m

 D
ir

ec
te

d

R
a
n

d
o
m

 i
n

te
ra

ct
iv

e

C
h

ec
k
er

M
o

n
it

o
r

L
ev

el

U
n

iq
u

e
n

a
m

e

Fifo Functional soft reset x x C1 Top B1_RST_1

Fifo Insert 0 pattern x x x C1 M2 Module B2_0_PAT_1

Fifo Autoincrement feature x x x C2 M1 Module B1_AUTO_1

Fifo Frame timing reference x x x C2 M3 Top B1_FRATIM_1

LLC Different n bit positions for L1 and L2 x x x M2 Module B2_NBIT_1

LLC Continuous output pointer increment x x M1 Module B2_OPINT_1

LLC Payload crc insertion M1 Top B2_PAYL_1

Cache Cache arbitration for Port B read x x x x x Cache 2 M3 Top Cache_2

Cache Cache arbitration for Port B write x x x x Cache 2 M3 Top Cache_4

Cache Cache arbitration for Port A read x x x x Cache1 M3 Top Cache_1

Cache Cache arbitration for Port A write x x x Cache1 M3 Top Cache_3

Cache Cache flush algorithm x x Cache 3 M3 Module Cache_5

Cache Cache controller states x x x x Cache 3 M3 Module Cache_6

Specification of Checker C2

Figure 8.17. Specification of Checkers and Monitors

If there are any special considerations for the coding styles ofCoding styles for

the monitor and

checker are

apparent.

the monitor and checker for either the top level or the module

level, then these are immediately brought to the surface.

Any architectural restrictions can be resolved and decisionsAny restrictions are

also apparent. can be taken by the team before the implementation begins.

Explict definition is present in this representation. If there areThere is an explicit

definition of the

BFM for a module

in this

representation

any special considerations for the coding styles of the Bus func-

tional model for the module level or the top level, then these

are immediately brought to the surface as well.

In addition to these aspects, there is also the need to develop

some scripts to enable the handling of regression, compilation

and other housekeeping scripts. There is also the need to ensure

that the bug tracking and other compute infrastructure essential

to verification is now in place.

Component identification 217

D
ir

ec
te

d
 t

es
ts

S
w

ee
p
 T

es
ts

C
lo

ck
 C

ro
ss

in
g

E
rr

o
r

R
a
n

d
o
m

 D
ir

ec
te

d

R
a

n
d

o
m

 i
n

te
ra

ct
iv

e

L
ev

el

Block

Name Feature Object

Fifo Insert 0 pattern x x x Module

Fifo Autoincrement feature x x x Module

LLC

Different n bit positions for L1

and L2 x x x Module

LLC

Continuous output pointer

increment x x Module

Cache Cache flush algorithm x x Module

Cache Cache controller states x x x x Module

Fifo Functional soft reset x x Top

Fifo Frame timing reference x x x Top

LLC Payload crc insertion Top

Cache Cache arbitration for Port B rd x x x x x Top

Cache Cache arbitration for Port B wr x x x x Top

Cache Cache arbitration for Port A rd x x x x Top

Cache Cache arbitration for Port A wr x x x Top

Bus Functional

Model

Description at

Block level

Cache BFM

spec at Top

level

X

X

Figure 8.18. Bus Functional Model Specs

Since the definition of various items is complete, it now be-

comes possible to ensure a complete view of the task that has

to be done is assembled.

218 Ten Steps to Success

Verification Plan Regression

Functional Coverage

Code

Coverage

Acceleration/

Emulation

Property

Checking

Checkers and

Monitors

Core/Block

Level Testbench

Closure metrics

Figure 8.19. Various Aspects of Verification

In the previous step, the test cases that need to be developedWe now know

exactly what we

have to do. What is

required and what

is necessary is now

completely

apparent from the

verification plan

had been identified on the list. As can be observed, the test ob-

ject list has now graduated to becoming a complete verification

plan. This plan is complete from a testing point of view since

it is able to now reveal the necessary and sufficient tests that

are now required to test the device. The plan that is marked

above now has a complete picture of what is necessary to test

the device under test. All possible scenarios are mapped into

one or other cells on the verification plan that has been created.

Component identification 219

At the very minimum, this plan should now be reviewed for

completeness and accuracy. The main intent of the review is

to focus on the test plan and understanding of the test objects

which has led to the test plan.

Completing a review prior to creating the test cases ensures

that any assumptions in the plan are addressed. This essential

step ensures that everyone in the verification team is now on

the same page as far as the development is concerned.

We have also been able to optimize the pre silicon verificationWe have been able

to get a very good

handle on the work

to be done

plan and the post silicon verification plans. In addition, we

have been able to optimize the tests at the block level and at

the top level.

Now that we have identified the particular types of tests casesThe verification

schedule is now

apparent since we

now know what we

have to do

and the coding styles that are associated with each one, we

have a rough handle on how long the verification effort will

take. It is now possible to extract a summary from the verifi-

cation plan that has been implemented. This summary can be

easily generated to reveal what tests need to be written at the

top level and module levels. A list of checkers and monitors

are also available as part of the summary. Using some metrics

on engineer productivity, we can then estimate easily what is

involved in completing the verification plan. This is embodied

in the calculation.

Any top level tests that need to be ported from the module level

will probably impose a certain coding style or restrictions on

what can be accomplished in a certain test. These are also ap-

parent from the summary.

Total Days =
Number of objects

rate of coverage of objects
(8.1)

It is now easily possible to divide the work in a fair manner

among all the verification engineers in the team. Some of the

verification team can attempt to complete the environment de-

velopment while others focus on the tests or other elements that

need development.

220 Ten Steps to Success

Many standard metrics like the bug find rate, the test objectThe progress of the

verification effort

can be be measured

using available

metrics

completion rates and the bug close rates now play an important

role in determining the state of progress of the design. Since

a list is now available, it becomes possible to take a educated

guess at estimating how long verification is going to take. This

estimate is something that in the author’s opinion opinion will

dictate tape-out schedules.

During some earlier projects, typically, RTL design started asAny schedule is

probably closer to

the truth than a

guess-estimate

an activity followed by the physical layout design activity. The

verification process was usually a “fuzzy” process that hap-

pened somewhere in between! Added to this was the fact that

verification was frequently over cost and over budget anyways

making estimation a challenge.

Many managers typically wind up giving a verification engineer

a document and ask the engineer to come up with a schedule

and a test plan for testing the device. Depending on the en-

gineers past experience, this became a “shot in the dark” or a

“shooting from the hip” kind of experience. The above process

can be followed for even block level modules. The list that is

generated now allows for both optimistic and pessimistic pre-

dictions on how long the effort will actually take.

Honestly, although the process may seem a little long winded

initially, many parameters come very quickly under control.

The verification plan is typically made available as a first draft

shortly after the functional specification is released. Many a

time, these efforts may go in parallel in many organizations.

Keeping the test object list provides the engineers the necessary

insulation against changes in the functional specification and

having to rework everything.

Depending on the engineering skill sets and personal prefer-

ences, one can easily identify a week-to-week plan which they

will follow. If something in the project schedule looks unreal-

istic (This happens a lot somehow, the reasons are unknown!).

Immediate feedback can be given and appropriate risk miti-

gation is possible. In addition, there are instances where the

author has used data from previous projects to request architects

to leave pre-verified IP intact based on the cost of verification.

Getting the Job Done. Execution of the test plan 221

8.8.2 Getting the Job Done. Execution of the
test plan

The previous sections concentrated on development of the plan

and identifying the various components that need to be devel-

oped and verified. Now that most of the elements of the ver-

ification environment and test cases have been identified, the

task of execution now begins. During this activity, various con-

siderations from the Cutting the ties that bind chapter and the

learnings from the case studies in Doing it right the first time

chapters may be taken into account before the environment and

test cases are constructed.

The beginning stage of this process is to create an estimation

of the time involved in creating the tests and the environment.

Since the previous steps had broken the entire complex task into

a number of pieces, this task can be taken on and accomplished

with ease as mentioned earlier. Any cross dependencies can

also be worked out before execution of the plan. The test cases

and the environment development work can then be divided

amongst various team members and completed as per a sched-

ule.

The process begins with the design engineer beginning devel-

opment work on the RTL. In parallel, the verification environ-

ment, necessary scripts, and infrastructure are created. Based

on the frequency of RTL releases, the tests are then run against

the RTL after integrating the RTL with the testbench. Bugs are

filed on the design when the design does not meet the specifi-

cations. (Bugs on the environments or tests as well!)

One of the recommendations of the author is to have a bi-

weekly correlation of the tests and the state of the RTL in order

to ensure that the test development is on track. This correlation

described in the review section could be an informal one where

issues of what worked and what didn’t as well as the progress

to date can be discussed along with any pressing issues that

impede the verification effort. This way, any verification issue

that arises will be addressed as soon as possible.

222 Ten Steps to Success

Periodic review to

ensure that plan is

on track

Tapeout reviews

File bugs where

appropriate

Periodic RTL

releases

Environment

development

Run tests

Against RTL

Test Case

development

Figure 8.20. Execution of the Test Plan

On completion of the execution of the verification plan, the ver-

ification signoff review process begins. This process ensures

that nothing got left out from the verification front as far as

possible and that the device will work as intended.

8.8.3 Getting a Helping Hand from External
Resources

Many a time, it becomes necessary for the verification team to

get some external help via contractors or additional people in

order to complete the verification on time. This happens fre-

quently if there is some extreme risk to the schedule.

The Case for GATE Simulations 223

During such circumstances, it is imperative to specify exactly

what is required of the person who is helping with the verifica-

tion effort. It is also important that the person who is coming in

to help the team is not a burden on the existing team’s already

stretched resources.

For instance: The example above in figure 8.1 now helps in

clarifying the requirements to the person who will be helping

the team. All that is required is to share the verification plan

and request that the member to develop monitor M3 or checker

cache2. Such a specification is inbuilt into this process and

hence there is no possibility of misunderstandings. (An exam-

ple of habit 6: Communicate).

The other advantage of this process is that the person coming

into the team is immediately productive. There is no need for

the person to read all the specifications and understand what is

to be done.

All that is required is that the implementation and implications

of Monitor M3 or cache2 be understood. This is a much simpler

problem to address since it becomes a straightforward imple-

mentation issue.

8.8.4 The Case for GATE Simulations

This topic has been a source of debate in recent years. ManyYou do need to run

at least a few

simulations on a

gate netlist

a time, I have been presented with the argument that it is un-

necessary to run a simulation on a GATE netlist. The author

concedes that this may be true if the timing constraints used

in the synthesis scripts are correct or if the design has a single

clock of a single frequency. The gate simulations are designed

to catch errors where the timing constraints are not what they

are supposed to be. The designer definitely can provide input

on the timing critical paths in the design. Appropriate care is

definitely taken during the synthesis of these paths. However,

it is impossible to mention all the other paths in the design,

and these are the paths to be concerned about. Those paths are

not the ones that are looked at in detail since there are quite a

few of them.

224 Ten Steps to Success

Usually running a few Gate level simulations with a few well

chosen tests is enough to verify the integrity and timing of the

Gate netlist. Gate simulations are typically done at the end

of the RTL development cycle. During this period, the Gate

netlist is simulated with test cases to ensure that there is no

problem with the design.

In some organizations, many a time, the Gate netlist is simu-

lated with unit delays to flush out any problems with the netlist.

The netlist is then annotated with SDF (standard delay format)

files which provide post layout delay information across vari-

ous process and temperature parameters.

There has been considerable discussion about eliminating Gate

level simulations altogether. For single clock designs, static

timing analysis and equivalence checks available are some-

times considered as alternatives for Gate level simulations.

However, in many situations, it may not be possible to elimi-

nate Gate simulations altogether.

Many a time, some transactions take multiple cycles to com-Multicycle paths

plete. Although these are described as multi-cycle paths during

synthesis and timing analysis, It becomes essential to verify that

the constraints were indeed interpreted correctly and the syn-

thesized design performs as expected.

Many a time, there are false paths through the design. Some ofFalse paths through

the design these may be accounted for in the synthesis constraints. How-

ever, there is always the possibility that something is missed

out.

Clock domain crossings are typical in many designs. Typi-Clock domain

crossings cally, care is taken during the synthesis phase as well as the

RTL design phase. However, it is possible that not all the sce-

narios are accounted for. The RTL design is typically built

using either unit level or no delays at all. Hence, it becomes

challenging to uncover issues in a RTL level simulation. Gate

level simulations will easily uncover such problems with the

appropriate test cases.

Clock gating with the appropriate delays is another reason whyClock gating

Gate simulations are useful. Any clock that passes through a

The Case for GATE Simulations 225

Gate will be skewed with respect to a non Gated clock. There

may be some situations where there might be problems because

of the Gated clocks which can be uncovered in Gate simula-

tions.

The Gate level simulations are usually used to generate ValueTester data

simulations Change Dumps (VCD) files which are then post processed to

create files that can be used to qualify parts on the tester. The

VCD files are usually converted into a TDL (tester description

language) file used to control the tester. The tester uses the

TDL files to test the device after it has been fabricated.

Gate level simulations after annotation can provide a good esti-Power estimations

mate of the power consumption of a device for some scenarios8.

One of the other important reasons to run a Gate level simu-Verify the STA and

synthesis

constraints
lation is to verify the synthesis and Static timing analysis con-

straints. This verification is not about the constraints that have

already been put in, but about the ones that may have been

missed.

Many designs may have some STA unfriendly components inSTA unfriendly

designs the designs like latches etc. Under these circumstances, it may

be impossible to do an accurate timing analysis. Gate level

simulations serve to increase the level of confidence of the ver-

ification engineer.

8It is noted that there are now several tools that perform this function. However, some

organizations still use the approach of power estimation using a Gate simulation.

226 Ten Steps to Success

8.9 Step 9: Figuring out where you Are in the Process

In any project, verification is one of the few activities that takes

the longest and according to some managers, costs too much,

no matter what is done. Given the nature of the verification

effort, it becomes imperative to ensure that all is going well with

verification during the course of the project. Various metrics

are available to gauge the effectiveness of the verification effort

as a whole.

One of the common activities is to conduct a review where all

aspects of the design are discussed with all the parties.

Is not a review process a hindrance in the first place? The au-Why is the review

process even

important?
thor has been at a few places where the designers hated the

review process. To them, it was a hindrance to their getting

their job done. Some of the review conclusions were known to

them anyway and to some was an absolute waste of time.

The review process is crucial. It can be kept as a short process,

to save everyone time, but it must never be “short-circuited”.

The review process allows everyone to take a moment to get

the bigger picture before they delve back into the detail of their

activity.

Many of the organizations use some periodic review process.

The nature and content of the review does vary, however, this

procedure seems to be very useful overall to bring people not

’

In this step, we present several methods that can be deployed

successfully by any verification team to ensure that progress is

indeed made on the design. Many of these methods rely on a

weekly or bi-weekly schedule of activities. While the author

does not particularly like to insist on a specific schedule, It is

however emphasized that the review must follow some sort of

a schedule which ensures that the review activity happens on a

periodic basis.

project s progress.

completely aware of the project details to understand the

Step 9: Figuring out where you Are in the Process 227

In the earlier steps, each test object was assigned a unique tag.Using tags to tell

you where you are

in the verification

process

This tag now comes to the rescue of the verification engineer.

During the process of writing the test, it had been suggested

that the test writer place the documentation in the same test file.

A similar suggestion is also made to place the documentation

for the checkers in the checker files.

A simple script can now build a correlation between the tests,

the checkers and the monitors can now be deployed. This script

will very easily reveal where the tests and monitors correlate

well.

In the previous steps, various tests were written to test the com-

pliance of the device with the specification. In this section, we

discuss how we could tie these items all together.

In the test documentation portion of “cutting the ties that bind”,

a sample format for test documentation was discussed. It is pos-

sible to use some of these features now to bring together all the

various components.

In the figure 8.21, we notice that there is an entry in the docu-

mentation section for a list of test objects that were covered by

the test case. In the test documentation section, a list of test ob-

jects exercised by the test case is also listed. A structure similar

to the figure indicated (possibly with some additional informa-

tion captured would be used for the Monitors/checkers).

It hence becomes possible to create a “fact sheet” or a “sta-

tus sheet” using the following algorithm shown in figure 8.22.

Such a correlation is now possible since all the infrastructure

was built when test development progressed. The correlation

is now very easy having embedded the tags and other compo-

nents in the test case when the test cases were developed.

The reader will note that it appears reasonably trivial! There is

not a whole lot of engineering to it either!

The result of the correlation is now captured and could possibly

be presented as shown in the figure 8.23. It is noted that tests

that have been optimized to cover multiple objects will actually

show up in the report for the other objects as well. For exam-

ple: Cache2 and Cache4 could share a test. All the tests for

a particular test object are now in the report. It now becomes

228 Ten Steps to Success

/*

Confidential information. Some Company. No rights without permission….

……….

….

**

TEST_DOCUMENTATION BEGIN

Test Name: fifo_register_overflow_1.v

Test Intent: Check the register for the fifo overflow bit.

Test Description:

This test checks the read and write of the fifo overflow

bit using a register write to an addressable register. Steps are:

1) Do a write to the RING_WRTR_ADDRESS register with the data for the bit

2) Read back the register along with the mask to make sure it compared correctly

3) Read the fifo register…..

…..

….

Test Assumptions: None

Test Notes: This test will run at both block and system level.

Test Results: Test is deemed pass if the register bit is set and no other errors are found.

Functional Objects Covered: fifo_tag_1, Fifo_reset_2, MMR_qualify_1,….

TEST_DOCUMENTATION END

***/

`include test,v

If(reg_write_main) begin

// We have a register wrtite to the main block and not the decoder

 do_write(RING_WRTR_ADDRESS, RING_WRTR_MASK, data);

do_check(RING_WRTR_ADDRESS, RING_WRTR_MASK, data);

….

…...

end //

…..

….

Use these tags to correlate!

Figure 8.21. Using Test Documentation to Correlate

Step 9: Figuring out where you Are in the Process 229

Step 1:

For all the test cases in the test case list

begin

For each test case, parse the test file and compile all the documentation

information

End

Step 2:

For all the monitors and checkers in the list

begin

For each monitor, parse the code and compile all the documentation information

End

Step 3:

For each test object tag in the test object list

Begin

Get a list of monitors &checkers coded so far matching the test object tag.

Get a list of test cases coded so far matching the test object tag

Use the checker data structure from step 2 and the test data structure from

step 3 to do the following:

Check them against the plan on the plan

Report any differences from the plan

End

Figure 8.22. Correlation Algorithm

possible to take a quick look and see whether there is anything

missing from the testing of test object cache2. It also becomes

very quickly evident if the tests for test object cache2 are the

necessary and complete ones9.

9The list of tests presented is obviously a partial list and for illustrative purposes only.

The test object could itself be broken up into several sub objects like the ones for error

testing only etc and the process repeated fairly trivially.

230 Ten Steps to Success

Directed tests

Sweep Tests

Clock Crossing

Error

Random Directed

Random interactive

T
es

t

O
b
je

ct
 T

a
g

B
lo

ck

N
a
m

e
F

ea
tu

re
 O

b
je

ct

C
ac

h
e

C
ac

h
e

ar
b
it

ra
ti

o
n
 f

o
r

P
o
rt

 B
 r

ea
d

x
x

x
x

x
C

ac
h
e_

2

C
ac

h
e

C
ac

h
e

ar
b
it

ra
ti

o
n
 f

o
r

P
o
rt

 B
 w

ri
te

x
x

x
x

C
ac

h
e_

4

C
ac

h
e

C
ac

h
e

ar
b
it

ra
ti

o
n
 f

o
r

P
o
rt

 A
 r

ea
d

x
x

x
x

C
ac

h
e_

1

C
ac

h
e

C
ac

h
e

ar
b

it
ra

ti
o

n
 f

o
r

P
o
rt

 A
 w

ri
te

x
x

x
C

ac
h
e_

3

C
ac

h
e

C
ac

h
e

fl
u
sh

 a
lg

o
ri

th
m

x
x

C
ac

h
e_

5

C
ac

h
e

C
ac

h
e

co
n
tr

o
ll

er
 s

ta
te

s
x

x
x

x
C

ac
h
e_

6

F
if

o
F

u
n
ct

io
n
al

 s
o
ft

 r
es

et
x

x
B

1
_
R

S
T

_
1

F
if

o
In

se
rt

 0
 p

at
te

rn
x

x
x

B
2
_
0
_
P

A
T

_
1

F
if

o
A

u
to

in
cr

em
en

t
fe

at
u
re

x
x

x
B

1
_
A

U
T

O
_
1

F
if

o
F

ra
m

e
ti

m
in

g
 r

ef
er

en
ce

x
x

x
B

1
_
F

R
A

T
IM

_
1

L
L

C
D

if
fe

re
n
t

n
 b

it
 p

o
si

ti
o
n
s

fo
r

L
1
 a

n
d
 L

2
x

x
x

B
2

_
N

B
IT

_
1

L
L

C
C

o
n

ti
n
u

o
u

s
o

u
tp

u
t

p
o

in
te

r
in

cr
em

en
t

x
x

B
2

_
O

P
IN

T
_
1

L
L

C
P

ay
lo

ad
 c

rc
 i

n
se

rt
io

n
B

2
_
P

A
Y

L
_
1

T
es

t
O

b
je

ct
 T

ag
 C

ac
h

e_
2

1
.

 S
w

ee
p

 t
h

e
ca

ch
e

w
it

h
 p

o
rt

 B
 w

ri
te

an
d
 R

ea
d
 f

o
r

sa
m

e
ad

d
re

ss

2
.

 S
w

ee
p
 A

rb
it

ra
ti

o
n
 f

o
r

 N
o
n

ca
ch

ea
b

le
 r

ea
d

 a
cc

es
s

1
.

V
er

if
y

 t
h

at
 t

h
e

L
R

U
 f

o
r

p
o

rt
 b

 p
as

se
s

S
an

it
y

 t
es

ti
n

g

2
.

V
er

if
y
 t

h
at

 a
ll

 r
ea

d
 t

y
p
es

 w
o
rk

1
.

V
er

if
y

 o
p

er
at

io
n

 w
h

en

a
ad

d
re

ss
 i

n
 t

h
e

n
o

n
 c

ac
h
ea

b
le

 s
p
ac

e
is

 g
iv

en
 a

s
a

ca
ch

ea
b
le

 a
d
d
re

ss

2
.
P

er
fo

rm
 s

u
cc

es
si

v
e

re
ad

s
b

ef
o

re
 t

h
e

o
th

er
 o

n
e

fi
n

is
h

es

V
er

if
y
 r

an
d
o
m

 a
d
d
re

ss
es

 a
cr

o
ss

 t
h
e

en
ti

re

sp
ac

e

V
er

if
y

 r
an

d
o

m
 o

p
er

at
io

n
s

in
 r

an
d
o

m

se
q
u
en

ce
s

V
er

if
y

 a
ll

 c
o

m
b

in
at

io
n

s
o

f
ac

ce
ss

 a
cr

o
ss

th
e

en
ti

re
 a

d
d
re

ss
 s

p
ac

e

C
h

ec
k

er
 C

3
 f

ir
es

 o
n

 a
b
o

v
e

te
st

s

M
o
n
it

o
r

M
3
 a

ls
o
 f

ir
es

 o
n
 t

h
e

ab
o
v
e

te
st

s

Figure 8.23. Sample Extraction Report

Performing Hole Analysis of What got Left Out in the Test Plan 231

Step 1:

For all the test cases in the list

Begin

For each testcase, parse the test file and compile all the documentation information

End

Step 2:

For all the monitors and checkers in the list

begin

For each monitor, parse the code and compile all the documentation information

End

Step 3:

For each test object tag in the test object list

Begin

Create an index of the test cases and monitors / checkers from the data

structure above.

Print out a list of tests and the monitors for each tag

Identify the gaps using a correlation algorithm.

End

Figure 8.24. Correlation Using Tags

The tags from various files now help us bring together the vari-

ous components of the verification environment so that we have

a complete picture of the state of the design. During the process

of writing all the tests that were identified in the test plan, the

author suggests holding a few periodic reviews to ensure that

everything is indeed going according to plan.

8.9.1 Performing Hole Analysis of What got
Left Out in the Test Plan

During test development, it always happens that something or

the other is left out and caught during a review. This is a normal

occurrence. Doing the reviews periodically allows the reader

to find problems sooner than later. That said, it is now possible

to get a handle on the holes in the design using the steps in

figure 8.24.

232 Ten Steps to Success

8.9.2 The (bi)Weekly Review Processes

While the author has indicated a review process on either a

weekly or a biweekly basis, the intent of the process is to un-

derstand if appropriate and necessary thoroughness has been

applied to each of the test objects that have been identified in

the verification plan.

The principle behind this is to typically involve the designer

and perhaps someone not working on the module who can of-

fer a different perspective on the features tests.

The review process could be weekly/biweekly or whenever

based on the team’s opinion. It is defined to be something that

is somewhat short. for every group of test objects. It is intended

to go into low level details of the implementation. If the ma-

terial has been made available to the reviewers beforehand (as

can be facilitated using the algorithms given above) the authors

opinion is that the review can go smoothly and quickly.

In my previous companies, good results have been obtained

when the process is kept brief and spaced apart. In modules

where due diligence was not followed, The price of a marathon

session and a few complaints of “time wasted” seemed to

abound. This seems to have usually been true for many of

the modules though!

During the review, a quick code review of test code along with

a feature mapping of the features tested against the plan can be

undertaken. The bugs found and other possible scenarios that

were missed out and need work can be discussed.

Conducting the review in this manner enables a few things:

The test environment code is reviewed much like an RTL code

review. It takes minimal time and not everyone needs to be

present for the bi-weekly/weekly ones.

The other effect is that any bottlenecks or understanding of

the implementation is ironed out quickly. The engineer who

has been focused on the particular test objects for that period

has already kept the test code fresh in his memory, hence the

The (bi)Weekly Review Processes 233

turnaround time to fix something will certainly be a lot less

than if he was asked to fix something sometime later.

The review process for each test object could have the following

questions asked:

1. Was the functional object understood correctly?

2. Did the test writer get the intent of the test? (i.e: Did we

miss something?)

3. Are there any additional tests that were not specified on the

plan?

4. If so, what was missed.? Did our understanding change?

5. Is there the need for any additional directed test cases?

6. Does the test need any additional random test cases based

on coverage data?

7. Are all the negative tests conditions covered based on what

is known during implementation?

8. If the functional object was at a higher level (not imple-

mentation friendly, was it broken down into some smaller

feature objects?) did we cover all of them?

9. Is the testing complete? i.e. we don’t need to test this test

object any further?

10. If we chose random testing, did we get enough seeds into

the simulation?

Any other questions may be added to this list or deleted from it

as the reviewer feels fit. The basic intention is to ensure that a

review process moves onward smoothly and covers the intent

of verification

In addition, the reviewer can look at the test case densities re-

port for some clues. Consider the example shown in figure

8.26. In the figure, one can see that the report for the correla-

tions show that the test objects MAC ARB1 STATE START 1,

MAC ARB1 STATE LOGIC 2 and others are actually covered

in many tests. the feature MAIN ARBIT PRIORITY 1 is a fea-

ture which is tested only in the test case mac eth loop1 and not

234 Ten Steps to Success

1. Sweep the cache with port B write

and Read for same address

2. Sweep Arbitration for Non

cacheable read access

1. Verify that the LRU for port b passes

Sanity testing

2. Verify that all read types work

1. Verify operation when a address in the

non cacheable space is given as a

cacheable address

2. Perform successive reads before the

other one finishes

Verify random addresses across the entire

space

Verify random operations in random

sequences

Verify all combinations of access across

the entire address space

Checker C3 fires on above tests

Monitor M3 also fires on the above

tests

1. Was the functional object understood

correctly?

2. Did the test writer get the intent of the

test? (ie: Did we miss something?)

3. Are there any additional tests that were not

specified on the plan? If so, what was

missed.? Did our understanding change?

4. Is there the need for any additional

directed test cases?

5. Does the test need any additional random

test cases based on coverage data?

6. Are all the negative tests conditions

covered based on what is known during

implementation?

………

….

Other questions etc

Test Object Cache2 Review.

Figure 8.25. Reviews For a Test Object

tested anywhere else in other test cases. Hence it becomes

imperative that there be a review to ensure that the feature

MAIN ARBIT PRIORITY 1 is tested for all possible scenarios

in the mac eth loop1 test case. Otherwise there is a possibility

that there are some scenarios for testing which have escaped

the verification activity.

Change does happen even after all this work is done. We all

live in a world of change. However, once a object is deemed

completely verified, there is usually not much push to “get rid

of it” unless there is some pressing area or market pressures.

Any change to the test object is usually deemed easy to de-

termine and complete due to the above review. If a feature is

deleted, the elimination or modification of affected tests is now

The (bi)Weekly Review Processes 235

Test Case Density report

List of test cases for each test Object -- Click on test cases to see descriptions of each test,

The number of links under each test object indicate the number of tests for that test object.

MAC_ARB1_STATE_START_1

mac_arbiter_full_chip_priority1

mac_arbiter_full_chip_priority_with_boot

mac_arbiter_sub_chip_priority_with_ring

mac_arbiter_check_all_states

mac_eth_loop_1

MAC_ARB1_STATE_LOGIC_2

mac_arbiter_full_chip_priority1

mac_arbiter_check_all_states

mac_eth_loop_1

MAIN_ARBIT_PRIORITY_1

mac_eth_loop_1

MAC_PKT_TRANSMIT_START_FINISH

mac_eth_loop_1

mac_arbiter_sub_chip_priority_with_ring

mac_arbiter_full_chip_priority_with_boot

Test Object Density Report

This report is an extract from the test cases that reveal the number of test objects tested by

that test case.

mac_arbiter_full_chip_priority1:

MAC_ARB1_STATE_START_1,

MAC_FIFO_STATE_START_1,

mac_eth_loop_1:

MAIN_ARBIT_PRIORITY_1,

MAC_ARB1_STATE_START_1

MAC_ARB1_STATE_START_2

MAC_PKT_TRANSMIT_START_FINISH

MAC_PKT_RECEIVE_START_FINISH

MAC_FULL_LOOP_TEST,MAC_SELF_TEST

MAC_ARB1_STATE_LOGIC_2

mac_arbiter_full_chip_priority_with_boot:

MAC_ARB1_STATE_START_1

MAC_PKT_RECEIVE_START_FINISH

MAC_FULL_LOOP_TEST,MAC_SELF_TEST

MAC_PKT_TRANSMIT_START_FINISH

mac_arbiter_sub_chip_priority_with_ring:

MAC_PKT_TRANSMIT_START_FINISH

Figure 8.26. Test Case Density

236 Ten Steps to Success

a straightforward task.

What has effectively been done is to break up the entire ver-Everything is now a

bite sized chunk in

the verification plan
ification plan into a series of very small chunks. Each of the

small chunks could be reviewed for completeness and closed

on a periodic basis. The reviewer of the code could possibly

be another person other than the one who developed the code.

The other side effect of this is that a script could pretty much

print out only the relevant pieces of code into a single file so

that a reviewer could peruse it. Since the reviewer is not look-

ing at the entire verification code base, the reviewer’s job gets

a whole lot easier since all that is accomplished is review a

very small collection of files related only to that test object and

offer feedback. This cuts down significantly on the workload

of members of a team.

For each test object, it now becomes a trivial task to extract theJust pay attention

to the exceptions! exceptions to the above rules or others that may be agreed upon

by the verification team. Any test objects which reveal a status

not the norm are the only ones a verification team has to look at.

The representation of the tests in the above plan in some form

ensures that most code coverage metrics are at their desired

targets automatically. Any code that does not have coverage at

the stated goal can have the following implications:

1. The RTL code is possibly dead code.

2. The verification plan is not complete – Something is missing

from the test object list or the test case list.

3. Something is wrong with the test implementation.

4. This should have been caught in either the reviews done

periodically.

5. Something is constrained in a random environment.

The dynamic coverage that is obtained from simulation is also

included in the review process. This is shown on the right hand

flow in the figure 8.27.

The monthly Review Processes 237

Directed tests, Sweep tests,

 Random tests, Error tests

Product and

Microarchitecture

Specification

Test Objects

Analysis to determine

tests combining test

Objects

Block

Level tests

System

Level tests
Coverage

using

simulation

Analysis of Functional

Targets to determine

problem areas

Coverage

via

Monitors

Functional

Static

Coverage

Complete!!

Static

Functional

Coverage

100 % Correlation

between 2 methods

Code Coverage

Line State

Toggle

All Metrics

100%?

RTL

Gate Only

Gate + SDF

List of

Monitors

List of

Checkers

Figure 8.27. Complete Correlation Flow

8.9.3 The monthly Review Processes

The monthly review is seen in many organizations. It is a pro-

cess that allows the team to take a step back and look at what

got accomplished and identify the big picture moving forward

in the verification effort.

238 Ten Steps to Success

The monthly review process is at a much higher level that fo-

cuses on program level objectives. The earlier reviews focused

on the quality of the verification effort and were targeted to

make sure that the right actions were happening all the time.

During this process various metrics are reviewed and conse-

quent actions are identified that need to be done by either the

design or verification team for the project.

8.10 Step 10: Correlations on completion to sign-off

The final step is to correlate that all the features of the deviceEnsuring

completion of

various metrics.
are tested as intended. The section Tracking results that matter

discusses various metrics that are commonly used to track com-

pletion of the verification effort. In addition, the review process

to signoff typically includes a thorough review of all the tests

in the test plan to ensure that they meet the specifications of the

device. In addition, common metrics like code coverage and

functional coverage along with bug rates etc. are also reviewed

to ensure that the device is indeed ready for tape-out.

In case the tape-out is scheduled before the completion of ver-

ification activity, then a detailed analysis of what has been ver-

ified and the test scenarios is reviewed to ensure that the device

will at least be functional when it is fabricated.

After the RTL netlist is verified and deemed fully functional,Running it on

various Process

and temperature,

voltage corners

the netlist is typically synthesized into Gates. The Gates netlist

is also formally verified against the verified RTL to ensure that

the Gate netlist is an accurate and true representation of the

RTL netlist.

The ASIC vendor typically provides library data for the various

process corners. This information to back annotate the netlist

is typically made available shortly after the design is routed

in the physical design phase. It is recommended that a few

simulations be run with this information so that the reader can

ensure that the circuits will behave as intended over various

process corners.

Step 10: Correlations on completion to sign-off 239

Conclusions

The previous ten steps outlined a 10 step verification plan thatA template is built

from the ground up is comprehensive and complete. From a starting point where

there was no verification plan, a full verification plan was built.

Various checkers and monitors were identified as a result of this

process and a chart created has allowed the reader to measure

tangible progress.

Almost all verification efforts suffer from a paucity of time toThe necessary and

complete criteria

are built in!
get the job done. Consequently, the question that is asked is

whether the necessary tests are written and if the verification

plan is complete.

If each of the features are completely understood and the cor-

responding tests and monitors are developed according to the

verification plan, then it can be shown that the plan that had

been built in the above steps has the information to declare that

the necessary and complete tests have indeed been a part of the

verification plan.

The periodic reviews suggested reinforce the fact that every

engineer is indeed on the same page as far as test development

is concerned.

At some point, it may be possible to formally verify the entireAbility to “Bridge”

to formal

verification

methods

design. Analysis of test objects results in a list of checkers

and monitors which can then be conveniently translated into

properties in formal verification. The translation effectively

becomes a format conversion if the approach is defined cor-

rectly.

The reader may choose to implement some part of the veri-

fication plan using a formal based approach and others using

simulation. This approach is widely demonstrated by the offer-

ing of tools by many vendors like Cadence, Synopsys, Mentor

and others.

The reader will note that there is a check-and-balance systemQuality is built

right into the

process
that is built into the process. In typical verification environ-

ments, the checkers and the tests are built by different individ-

uals. The tests check the checkers and monitors and vice-versa.

In addition, the process of tagging items ensures that the rela-

tionships which were conceived because of several peer reviews

240 Ten Steps to Success

are now captured as intent of the tests. Most of the tracking

aspects of verification are now an inbuilt part of the process in

addition to better predictability.

Many readers may wonder “isn’t this a lot of data to keep trackMinimized

reporting! of?”. “We did not do many of these steps and still got a work-

ing chip!” Or “I don’t think I need any of this!”

One of the key differences the author would like to point is that

when building any type of SOC or other device where verifica-

tion IP is being heavily reused, the challenge is more in keeping

track of things than the actual work itself. Many a time, the

data that was collected was collected using some straightfor-

ward PERL scripts and neatly formatted so that the reporting

was more or less automatic without the intervention of the en-

gineer. The engineer only had to share what was covered and

what issues he faced during a quick review and that was it! The

rest of the story is easily told using a script.

The approach described above is a “divide and conquer” ap-Hierarchical

Encapsulation of

the problem
proach. Each test Object is encapsulated into an object oriented

approach wherein the scope of the problem is reduced dramat-

ically. The effect is that it allows the engineers to think in

“small chunks”. The author has been approached many a time

by junior verification engineers who just ask me the question:

“Tell me what you want me to do next so that I can help!”

The other side effect of this approach is that it is possible to give

different people different aspects of the verification challenge

being secure in the knowledge that it will all come together to

form a successful package without errors and redundancy. One

engineer can develop the checkers and/or monitors and another

can focus on the tests.

Based on the relationships we had built above, it becomes pos-

sible to ensure that the quality of the verification environment

is very high. The tests exercise the design and the checkers

and monitors and vice versa. Since different people are con-

tributing, an automatic “check and balance” is automatically

achieved.

Step 10: Correlations on completion to sign-off 241

As can be observed, unless the features change or an under-Schedule

predictability is

inherent in this

process

standing of the feature changes dramatically, the schedule pre-

dictions as part of the process are usually close to accurate.

The focus on test objects allows the test engineer to identify theAbility to see the

big picture

throughout the

project

features required in the environment up front. The engineer is

able to stay focused on the item being worked on.

At any point of time, a few standard reports that have been

agreed to by the team can be used to determine if the features

are tested or not. The review process is designed to reveal any

holes in the methodology and the ability of the team to com-

plete the tests.

The verification effort now has tags embedded in the tests, theAbility to get “Real

time” Status on the

verification effort
monitors and the checkers. Hence, it now becomes easily pos-

sible to use some of the simple algorithms outlined above to

get a clear cut status of the verification effort.

It is possible at any point of time to use a simple method of look-

ing for the test object tags in the tests and the monitors/checkers

to present on a verification status.

One of the biggest challenges for outsourcing any portion ofAbility to spec out

the problem for

Outsourcing/.

“Rightsourcing?”

the design is that the specification is a “soft” specification. Un-

derstanding and communicating ideas is also a challenge. A

clear specification enables the completion of a goal on time and

on schedule.

The earlier steps revealed how each test, checker and monitor

are now explicitly specified. If outsourcing of a certain num-

ber of tests/checkers/monitors is planned on, then the complete

specification is available directly from the Test Graph Matrix.

Consequently, it will be possible to come up with a list of test

objects that can effectively given to another team for execu-

tion. Measurement of deliverables becomes possible since the

coverage (both static and dynamic) is measured using a set of

standard tools that are available today.

In short, the benefits of the 10 step methodology presented

above are many. The author is confident that the concepts pre-

sented above are practiced in some shape or form by almost

all the organizations in the ASIC industry. It is hoped that the

242 Ten Steps to Success

above gives the reader a good insight into the verification effort

and allows the engineer to be successful in their careers.

References and Additional reading

[1] Kuhn, T., Oppold, T., Winterholer, M., Rosenstiel, W., Edwards, Marc,

and Kashai, Yaron (2001b). A framework for object oriented hardware

specification, verification, and synthesis. In DAC ’01: Proceedings of

the 38th conference on Design automation, pages 413–418, New York,

NY, USA. ACM Press.

[2] Bergeron, Janick (2003?). Writing testbenches - functional verification

of HDL models. Kluwer Academic Publishers, Boston, 2nd ed edition.

[3] Foster, Harry, Krolnik, Adam, and Lacey, David (c2003). Assertion-

based design. Kluwer Academic, Boston, MA.

[4] Meyer, Andreas (2004). Principles of functional verification. Newnes,

Amsterdam.

[5] James for a verification plan.

www.everaconsulting.org.

[6] Peet, James (2000). The day verification plan.

www.everaconsulting.org.

[7] Albin, Ken (2001). Nuts and bolts of core and SoC verification. In DAC

’01: Proceedings of the 38th conference on Design automation, pages

249–252, New York, NY, USA. ACM Press.

[8] Synopsys Inc(2005). Hybrid formal verification.

[9] Yee, Steve (2004). Best Practices for a Reusable Verification Environ-

ment. www.design-reuse.com, New York, NY, USA.

(2001). TemplatePeet,

five

GLOSSARY

SOC System On a Chip

ASIC Application Specific Integrated Circuit

BFM Bus Functional Model

HDL Hardware Description Language

RTL Register Transfer Language

IP Intellectual Property

ABV Assertion Based Verification

DFV Dynamic Formal Verification

DDFV Deep Dynamic Formal Verification

DUT Device Under Test

PCI Peripheral Component Interconnect

HDL Hardware Description Language

HVL Hardware Verification Language

IP Intellectual Property

PLI Programming Language Interface

SDF Standard Delay Format

PERL Practical Extraction and Reporting Language

TCL Tool Command Language

FPGA Field Programmable Gate Array

243

Appendix A

Using PERL to connect to Microsoft Excel

and Access

This appendix provides information that has been put together by the author

to help readers to set up a database like mechanism on their windows desktop

computers so that they may be able to generate data and reports easily. The

main motivation for this appendix came from the fact that most verification

engineers are typically UNIX/Linux users and many a time, the expertise on

Microsoft programs is not usually readily available. In many organizations,

the verification work is done on UNIX like machines while the presentations

and other spreadsheets have been maintained typically as Microsoft Access

or Microsoft Excel programs1.

This appendix shows the reader step by step instructions to hook up PERL

to a Microsoft spreadsheet or Microsoft database so that SQL like com-

mands may be deployed and the full power of PERL is available. The best

of Microsoft programs and PERL will then be available to the user. De-

tailed screenshots to help users through the process will also be available on

http://www.effective-verification.com/ along with other similar techniques.

This information is culled from many sources. There are no doubt many

sources on the internet which provide details of each of the steps presented

herein. Readers wishing to learn more are requested to search for this infor-

mation using their favorite internet search engine2.

1Many products are mentioned here. The trademarks belong to the respective compa-

nies
2The information presented here is deemed to be accurate at the time of writing. It has

been used by the author effectively in many situations and provided to assist fellow

verification engineers. However, neither the publisher nor the author can assume any

responsibility for the fitness of these instructions for any purpose. Please use them as

you will at your own risk.

245

Note: The commands that the user has to type in is presented in italics.

Step 1:

Ensure you have administrative rights and install Activestate Perl. This

release of Perl is extremely popular among Windows users. It is available

from http://www.activestate.com/.

If you use the regular PERL installation, you will be able to use the cpan>

shell instead of the ppm environment described below.

Step 2:

After the above program is installed,in your windows environment, Click

Start -> Run

In the input box type in the command cmd

A Dos window will open on the screen.

Step 3:

If you use a proxy to access the internet, type in the command

set HTTP PROXY=<whatever is the proxy> (Do not use the angular braces)

1. Type in the command ppm The reader will notice a ppm> prompt.

2. At the prompt, type install dbi

The Perl Package Manager (ppm) should go off and download some

material from the internet if necessary. It should return the ppm>prompt

when it is completed.

3. At the prompt, type install dbd-odbc

Many drivers will get installed on your computer. These drivers help

you to access the database easily.

4. Type exit to exit the ppm shell

5. Type exit to exit the dos command window.

Step 4:

The hardest part is complete. The next step is to set up an source/destination

to which the PERL interface has to connect to. This is typically the file that

the reader would like to access in PERL. The reader will have to repeat steps

1-8 for each EXCEL/Access file that needs to be accessed.

1. Click Start ->Control Panel -> Administrative Tools -> ODBC

2. Start up the ODBC applet by double clicking on it.

3. Click on Add

(a). Choose the type of file. There are many choices from them. for

Excel Files, you may choose the Microsoft Excel Driver.

(b). Click Finish

4. You will see another window for ODBC data sources. In this window,

Create a Data Source name. This should NOT contain any spaces.

246 Appendix A

This example is written by the author based on his prior experience.

Search the web for “ PERL ODBC example” to get more detailed
examples using

your favorite search engine and you will see similar information

#!/usr/bin/perl

use DBI;

use Data::Dumper;

the name in the next line must be replaced with the ODBC source you
created.

my $dbh = DBI->connect("dbi:ODBC:<name>","root","",)

or die "Unable to connect:".$DBI::errstr."\n";

set the length of the

$dbh->{LongReadLen} = 100000;

This is to clear out the existing stuff

tablename is the name of the table/sheet in the ODBC setup.

 my $sql = "SELECT * FROM tablename";

 my $sth = $dbh->prepare($sql) or die "preparing: ",$dbh->errstr;

$sth->execute();

 while ($row = $sth->fetchrow_hashref)

 {

push(@result,$row);

 }

 $sth->finish;

Now @result is a PERL array that has all the results from the database.

You can use other SQL commands similar to the above example

5. Type in a description in the description field.

6. Click on Select Workbook and choose the file that is required.

7. Click OK

8. You should now see the Data Source in the list of data sources on your

machine

Step 5:

Connect to the database from the PERL script. Sample code is shown below.

Appendix A 247

Appendix B

Using PERL to convert between UNIX

text files and Microsoft Word

The chapter Cutting the Ties that Bind presented an Automatic Documenta-

tion methodology which allowed users to significantly reduce the work that

they had to do when generating documentation. The information presented

below is a collection of basic HTML techniques which have been used by

the author to implement the concept presented.

Assuming that the test documentation is placed in the test, the reader will

notice that there are some times when a complete verification test description

document is needed with all the tests developed so far. Since the information

now resides in many files, a simple parser script can be used to get this in-

formation into a data structure in PERL. This information can then be neatly

formatted automatically and saved as a single document periodically.

It is acknowledged that there are many ways to achieve the above result.

What is presented is only one of very many ways. The reader is encour-

aged to use this information to implement a solution that fits the readers own

unique situation. The following is intended as a general guide to help the

reader get started.

Step 1:

Create a document in the favorite WYSIWYG (What you see is what you

get) editor of your choice. This editor must be capable of generating and

reading in HTML. You can add all the graphics and other material you need

to make the document as per your needs.

249

Step 2:

1. In the document, identify the location where the test descriptions have

to reside.

2. Mark this location in the document with a START HERE marker. (Change

the text to your liking, it only has to be unique.)

3. Create a dummy test description with some arbitary data with the style

(Font, numbering etc) that is appropriate for the situation.

4. At the end of this test description, put in a END HERE or similar marker.

5. Save this file in its native format and HTML format.

6. In the steps that follow, the HTML file in step 5 is called a template file.

The author recommends that the reader save it in a separate directory

since the graphics may render into some sort of images.

Step 3:

1. It is assumed that the reader has implemented a simple parser to read in

information from the various test files. A template for the styles for the

test descriptions was created in the previous step.

2. Open the file using a text editor as a text file. Cut out everything between

the START HERE and END HERE into a second file. This serves as

your test template for each of the descriptions.

3. Save the template HTML file.

4. Use the perl script to open the Template file and reach the START HERE

point in the file. Print all the contents of this template file into a output

HTML file upto the START HERE point. (as shown in pseudo code

below).

5. For each test, format the test as per the test template and print this in-

formation into the second HTML file. (shown in print test descriptions

pseudo code below).

6. Copy anything after the END HERE from the template file into the output

file.

7. Close all the files. Open the HTML file either with your browser or

favorite editor and print/save it as required.

An Example:

Assuming that the template file is called template.htm, the test description

is called test desc.htm,

The template file would have the following

<HTML>

. . . .

some html text

. . . . START HERE HTML describing the test description

....

END HERE

. . .

. . .

250 Appendix B

Some more HTML . . . </HTML>

The test description template file that is created Could have the following

(everything between START HERE and END HERE tags after omitting the

tags: Test Name: name of the test. Test Intent:

Intent of the test Test Description> Test Description ..

any other items from the test that are required as per test template. It will be

obvious to the reader as they carry out these instructions.

A sample pseudo code in PERL is presented in the example below. The

code is not complete and is intended only as an illustration. The reader can

easily create something based on the template. and the details are left as an

exercise to the reader.

251Appendix B

#!/usr/bin/perl –w

user variables.

my $test_template_file = “”;

my $test_description_template_file = “”;

my $output_file = $ARGV[1];

open files.

open(TEMPLATE_FILE,”$test_template_file”) || die “Cannot open test template file\n”;

open(OUTPUT_FILE,”$output_file”) || die “Cannot open output file\n”;

get the test descriptions

&get_test_descriptions;

copy everything from TEMPLATE_FILE to the output file

$state = 0;

while(<TEMPLATE_FILE>) {

if(/START_HERE/) {

$state = 1;

Print the test descriptions

&print_test_descriptions;

}

if(/END_HERE/) {

$state = 0;

next;

}

if($state == 0)

print OUTPUT_FILE $_;

}

} ## while

close(TEMPLATE_FILE);

close(OUTPUT_FILE);

sub get_test_descriptions {

Implement your test case parser here.

Details not provided as they vary from situation to situation

It is assumed that the test descriptions are in some sort of a array of hashes

}

sub print_test_descriptions {

my $i;

$number_descriptions = $#test_desc_hash_array;

for($i = 0; $i <= $number_descriptions; $i++) {

create some local variables

$test_name

$test_description

print OUTPUT_FILE “

 Test Name: $test_name

 Test Description $test_description

…

“;

 } # end for

} # End sub

Figure B.1. Sample Code for Automatic documentation

Appendix B252

About the Author

Srivatsa Vasudevan has spent much of his working career work-

ing in the field of ASIC verification. He has worked in various

companies as a verification engineer in Silicon Valley, USA

and Bangalore, India. He has worked on a variety of designs

ranging from microprocessors to networking, wireless and mul-

timedia devices. Much of his work involved developing test-

benches and tests to verify devices in addition to developing

methodologies. His interests include verification methodol-

ogy and techniques to enhance time to market while deliver-

ing successful products. He has worked in many companies

like Philips, Fujitsu, Crimson Microsystems, Ciena and Texas

Instruments during the course of his career and has had the

opportunity to work with and interact with many engineers in

many parts of the globe.

253

The author was formerly a Member
of Group Technical Staff at Texas Instruments. He is currently
Engineer, Senior Staff/Manager at Qualcomm Inc.

Index

Acceleration, 55

Application level features, 176

Assertions

Challenges, 48

Coverage, 204

debug time, 47

Design Confidence, 47

Designer resistance, 48

Documentation, 47

Interface Check, 47

Locations, 43

mapping, 204

Module level, 45

Simulation, 204

Simulation mismatch, 48

Simulation with assertions, 47

Static, 45

Temporal, 45

Bug Find Rates, 107

Bug saturation curves, 108

Bug tracking, 85

Checker

Explicit specification, 215

Clock

Derived, 136

Rounding, 136

Clocks

driving, 137

Clock

Skew, 136

Code

compilation, 149

Code Coverage Implications, 111

Coverage

Branch, 111

Expression, 110

Line, 110

State, 110

Toggle, 110

Trigger, 110

Data Dump Policy., 104

Design complexity metrics, 105

Device

Recall, 6

Directed tests

limitations, 189

properties, 189

Driver

Interface, 137

Drivers

Boundary signals, 137

Disable, 138

Duration, 138

Dumping

Data, 124

Effect of machine types, 103

Effect of PLI/FLI calls, 103

Emulation, 55

Environment

Debuggable, 123

Ease of use, 122

Standalone testing, 124

Errors

Coding style, 140

common routines, 141

Keywords, 140

Feature list

duplicates, 179

levels, 179

reviews, 180

Formal

Deep Dynamic, 50

Dynamic, 50

Model Checking, 51

Static, 50

Functional coverage, 109

Gate

Clock Domain Crossings, 224

Clock gating, 224

False paths, 224

255

Multicycle paths, 224

Simulation, 223

Golden Model

Automated, 37

Bugs, 39

Initial Effort, 39

Real time failure detection, 41

Reference, 38

Specification clarification, 37

Stable Specification, 37

Interface level features, 176

Internal Signals

debug, 120

Forcing, 121

List, 121

Maintenance, 120

Internal signals

Synthesis, 120

Metrics

Assertion Density, 111

Module

Self contained, 158

Monitor

behavior, 159

Debugging, 160

Explicit specification, 215

Monitors

Signals, 159

Number of checkers and monitors, 105

Planning

emulation, 63

gate simulations, 64

mixed mode, 64

PVT Corners, 238

Register

Debug, 133

Static analysis, 133

Regressions

Chip level, 68

Coverage, 68

review, 71

starting, 67

Review

Specification, 173

RTL Stability, 105

Scripts

Work reduction, 154

Simulator warnings, 126

Specification

influencing, 175

Specification stability, 105

Specification

stability, 175

Structural features, 177

Team meetings, 85

Testbench

Emulation considerations, 119

RTL similarity, 118

Synthesizable concerns, 118

Test Case Density, 106

Test Object density, 106

Test Run Rates, 104

Tests

completion section, 188

Directed, 189

random, 193

Subset for gate simulations, 127

test section, 188

Test setup sections, 186

Time duration, 102

Transaction based

abstraction, 33

Coverage, 35

partitioning, 35

Tristate bus

Driver, 119

Verification

Change management, 214

Complexity, 13

cost, 5

cost constraints, 169

effort compared to design, 5

Gate, 9

Human expertise, 168

Importance, 4

Infrastructure issues, 168

Layout, 10

legacy constraints, 168

location constraints, 169

Manufacturing, 10

Need, 3

Outsourcing, 241

Performance, 10

plan, 170

schedule constraints, 169

Timing, 10

Workflow

closure phase, 62

definition phase, 59

planning phase, 60

RTL and verification, 60

256 Index

