

FPGA Design

5

Philip Simpson

FPGA Design

Best Practices for Team-based Design

Philip Simpson
Altera Corporation
San Jose, CA 95134
USA
Feilmidh@sbcglobal.net

ISBN 978-1-4419-6338-3 e-ISBN 978-1-4419-6339-0
DOI 10.1007/978-1-4419-6339-0
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010930598

© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.
© 2010 Altera Corporation
ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS & STRATIX
are Reg. U.S. Pat & Tm. Off. and Altera marks in and outside the U.S.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

v

Preface

In August of 2006, an engineering VP from one of Altera’s customers approached
Misha Burich, VP of Engineering at Altera, asking for help in reliably being able to
predict the cost, schedule and quality of system designs reliant on FPGA designs.

At this time, I was responsible for defining the design flow requirements for the
Altera design software and was tasked with investigating this further.

As I worked with the customer to understand what worked and what did not
work reliably in their FPGA design process, I noted that this problem was not
unique to this one customer. The characteristics of the problem are shared by many
Corporations that implement designs in FPGAs. The Corporation has many design
teams at different locations and the success of the FPGA projects vary between the
teams. There is a wide range of design experience across the teams. There is no
working process for sharing design blocks between engineering teams.

As I analyzed the data that I had received from hundreds of customer visits in
the past, I noticed that design reuse among engineering teams was a challenge. I also
noticed that many of the design teams at the same Companies and even within the
same design team used different design methodologies.

Altera had recently solved this problem as part of its own FPGA design software
and IP development process.

I worked with the top talent in Altera Engineering to develop a Best Practices
Design methodology based upon Altera’s experience and the techniques used by
many customers successfully in FPGA design. The resulting methodology was
presented and implemented at the customer, with great success.

Through the analysis of past customer data and feedback from customers over
the last 3 years, it has become clear that this challenge exists broadly in the industry.
The challenge is not specific to one specific FPGA vendor; it is an industry wide
challenge.

As such, I have tuned the Best practices FPGA design methodology over the last
3 years and deployed it at several customers with great success.

This book captures the Best Practices FPGA design methodology and now
makes it available to all design teams implementing system designs in FPGA
devices.

San Jose, CA Philip Simpson

5

vii

Contents

1 Best Practices for Successful FPGA Design .. 1
1.1 Introduction .. 1

2 Project Management ... 5
2.1 The Role of Project Management .. 5

2.1.1 Project Management Phases .. 5
2.1.2 Estimating a Project Duration .. 6
2.1.3 Schedule ... 6

3 Design Specification .. 9
3.1 Design Specification: Communication Is Key to Success 9

3.1.1 High Level Functional Specification 9
3.1.2 Functional Design Specification .. 10

4 Resource Scoping .. 15
4.1 Introduction .. 15
4.2 Engineering Resources ... 15
4.3 Third Party IP ... 16
4.4 Device Selection .. 16

4.4.1 Silicon Specialty Features .. 17
4.4.2 Density ... 18
4.4.3 Speed Requirements ... 19
4.4.4 Pin-Out ... 19
4.4.5 Power ... 20
4.4.6 Availability of IP .. 20
4.4.7 Availability of Silicon .. 20
4.4.8 Summary .. 21

5 Design Environment .. 23
5.1 Introduction .. 23
5.2 Scripting Environment ... 23
5.3 Interaction with Version Control Software .. 24
5.4 Use of a Problem Tracking System .. 25

viii Contents

5.5 A Regression Test System .. 26
5.6 When to Upgrade the Versions of the FPGA Design Tools 26
5.7 Common Tools in the FPGA Design Environment 27

6 Board Design ... 29
6.1 Challenges that FPGAs Create for Board Design 29
6.2 Engineering Roles and Responsibilities ... 30

6.2.1 FPGA Engineers .. 30
6.2.2 PCB Design Engineer .. 31
6.2.3 Signal Integrity Engineer ... 32

6.3 Power and Thermal Considerations ... 33
6.3.1 Filtering Power Supply Noise .. 33
6.3.2 Power Distribution ... 33

6.4 Signal Integrity ... 34
6.4.1 Types of Signal Integrity Problems .. 34
6.4.2 Electromagnetic Interference ... 35

6.5 Design Flows for Creating the FPGA Pinout..................................... 36
6.5.1 User Flow 1: FPGA Designer Driven 36
6.5.2 User Flow 2 .. 38
6.5.3 How Do FPGA and Board Engineers Communicate

Pin Changes? .. 40
6.6 Board Design Check List for a Successful FPGA Pin-Out 40

7 Power and Thermal Analysis ... 41
7.1 Introduction .. 41
7.2 Power Basics .. 42

7.2.1 Static Power ... 42
7.2.2 Dynamic Power .. 42
7.2.3 I/O power ... 42
7.2.4 Inrush Current .. 43
7.2.5 Configuration Power .. 43

7.3 Key Factors in Accurate Power Estimation 43
7.3.1 Accurate Power Models of the FPGA Circuitry 44
7.3.2 Accurate Toggle Rate Data on Each Signal 44
7.3.3 Accurate Operating Conditions .. 45
7.3.4 Resource Utilization ... 46

7.4 Power Estimation Early in the Design Cycle
(Power Supply Planning) ... 46

7.5 Simulation Based Power Estimation
(Design Power Verification) ... 47
7.5.1 Partial Simulations ... 50

7.6 Best Practices for Power Estimation .. 50

ixContents

 8 RTL Design .. 51
 8.1 Introduction .. 51
 8.2 Common Terms and Terminology ... 51
 8.3 Recommendations for Engineers with an ASIC

Design Background .. 53
 8.4 Recommended FPGA Design Guidelines 54

 8.4.1 Synchronous Versus Asynchronous 54
 8.4.2 Global Signals .. 54
 8.4.3 Dedicated Hardware Blocks .. 55
 8.4.4 Use of Low-Level Design Primitives 56
 8.4.5 Managing Metastability ... 57

 8.5 Writing Effective HDL .. 57
 8.5.1 What’s the Best Language ... 58
 8.5.2 Good Design Practices ... 59
 8.5.3 HDL for Synthesis ... 65

 8.6 Analyzing the RTL Design .. 75
 8.6.1 Synthesis Reports ... 75
 8.6.2 Messages .. 76
 8.6.3 Block Diagram View .. 77

 8.7 Recommended Best Practices for RTL Design 78

 9 IP and Design Reuse ... 79
 9.1 Introduction .. 79
 9.2 The Need for IP Reuse ... 79

 9.2.1 Benefits of IP Reuse ... 80
 9.2.2 Challenges in Developing a Design

Reuse Methodology ... 80
 9.3 Make Versus Buy ... 82
 9.4 Architecting Reusable IP ... 83

 9.4.1 Specification .. 83
 9.4.2 Implementation Methods ... 83
 9.4.3 Use of Standard Interfaces ... 85

 9.5 Packaging of IP .. 86
 9.5.1 Documentation ... 87
 9.5.2 User Interface ... 87
 9.5.3 Compatibility with System Integration Tools 88
 9.5.4 IP Security .. 89

 9.6 IP Reuse Checklist ... 90

10 The Hardware to Software Interface .. 91
10.1 Software Interface .. 91
10.2 Definition of Register Address Map .. 91
10.3 Use of the Register Address Map .. 91

10.3.1 IP Selection .. 92
10.3.2 Software Engineers Interface ... 92

x Contents

 10.3.3 RTL Engineers Interface .. 92
 10.3.4 Verification Interface.. 93
 10.3.5 Documentation ... 93

 10.4 Summary .. 94

11 Functional Verification ... 95
 11.1 Introduction .. 95
 11.2 Challenges of Functional Verification ... 95
 11.3 Glossary of Verification Concepts ... 96
 11.4 RTL Versus Gate Level Simulation ... 97
 11.5 Verification Methodology .. 97
 11.6 Attack Complexity ... 98

 11.6.1 Modularize Your Design and Your Tests 98
 11.6.2 Plan for Expected Operation .. 98
 11.6.3 Plan for the Unexpected ... 98

 11.7 Functional Coverage .. 99
 11.7.1 Directed Testing ... 100
 11.7.2 Random Dynamic Simulation 100
 11.7.3 Constrained Random Tests .. 100
 11.7.4 Use of System Verilog for Design and Verification 100
 11.7.5 General Testbench Methods ... 101
 11.7.6 Self Verifying Testbenches .. 102
 11.7.7 Formal Equivalency Checking 103

 11.8 Code Coverage ... 104
 11.9 QA Testing ... 104

 11.9.1 Functional Regression Testing 104
 11.9.2 GUI Testing for Reusable IP .. 105

11.10 Hardware Interoperability Tests ... 105
11.11 Hardware/Software Co-Verification .. 106

11.11.1 Getting to Silicon Fast ... 106
11.12 Functional Verification Checklist... 106

12 Timing Closure .. 107
 12.1 Timing Closure Challenges .. 107
 12.2 The Importance of Timing Assignments and Timing Analysis ... 108

 12.2.1 Background .. 108
 12.2.2 Basics of Timing Analysis ... 109

 12.3 A Methodology for Successful Timing Closure 115
 12.3.1 Family and Device Assignments 115
 12.3.2 Design Planning ... 116
 12.3.3 Early Timing Estimation .. 121
 12.3.4 CAD Tool Settings ... 122

 12.4 Common Timing Closure Issues .. 129
 12.4.1 Missing Timing Constraints ... 130
 12.4.2 Conflicting Timing Constraints 130

xiContents

12.4.3 High Fan-Out Registers ... 130
12.4.4 Missing Timing by a Small Margin 131
12.4.5 Restrictive Location Constraints 131
12.4.6 Long Compile Times ... 131

12.5 Design Planning, Implementation, Optimization and
Timing Closure Checklist .. 132

13 In-System Debug ... 133
13.1 In-System Debug Challenges ... 133
13.2 Planning ... 134
13.3 Techniques ... 134

13.3.1 Use of Pins for Debug .. 134
13.3.2 Internal Logic Analyzer ... 135
13.3.3 Use of Debug Logic ... 138
13.3.4 External Logic Analyzer .. 139
13.3.5 Editing Memory Contents .. 139
13.3.6 Use of a Soft Processor for Debug 140

13.4 Use Scenarios ... 140
13.4.1 Power-Up Debug .. 140
13.4.2 Debug of Transceiver Interfaces 141
13.4.3 Reporting of System Performance 141
13.4.4 Debug of Soft Processors ... 142
13.4.5 Device Programming Issues... 143

13.5 In-System Debug Checklist ... 144

14 Design Sign-Off ... 145
14.1 Sign-Off Process .. 145
14.2 After Sign-Off .. 145

Bibliography .. 147

Index ... 149

5

xiii

List of Figures

Fig. 1.1 Three steps to successful FPGA development................................ 2
Fig. 1.2 Recommended best practices design methodology

for successful FPGA design ... 3

Fig. 2.1 Percentage complete dilemma .. 7

Fig. 3.1 Sample revision control page ... 11

Fig. 6.1 Example .csv file that interfaces between board design
SW and FPGA SW ... 32

Fig. 6.2 Design cycle diagram detailing engineering
discipline involvement .. 33

Fig. 6.3 FPGA designer driven flow for creating the FPGA pin-out 37
Fig. 6.4 Board designer driven flow... 39

Fig. 7.1 Key elements in accurate power estimation 43
Fig. 7.2 Graph of standby current versus temperature 45
Fig. 7.3 Sample power estimation spreadsheet for

the Altera Stratix IV GX family ... 47
Fig. 7.4 Probability of nodes toggling ... 49
Fig. 7.5 Sample power estimation report from

Quartus II PowerPlay Estimator ... 49
Fig. 7.6 Best practices for power estimation .. 50

Fig. 8.1 Behavioral modeling ... 52
Fig. 8.2 Structural modeling .. 52
Fig. 8.3 Synthesis ... 53
Fig. 8.4 Synchronizer for an asynchronous reset ... 55
Fig. 8.5 Instantiation versus inferencing .. 56
Fig. 8.6 Two-register synchronizer .. 57
Fig. 8.7 Good design partitioning .. 61
Fig. 8.8 Example bad and good partition ... 62
Fig. 8.9 Sample code for dealing with tristates at partition boundaries 62

xiv List of Figures

 Fig. 8.10 Divide and conquer approach to RTL design 62
 Fig. 8.11 Combine sub-blocks to create an optimized design block 63
 Fig. 8.12 Two-LUT levels between registers ... 67
 Fig. 8.13 Use of pipeline stages to break up routing delays 67
 Fig. 8.14 New data on simultaneous read/write ... 69
 Fig. 8.15 Coding style that will infer a RAM that returns

the OLD data on a simultaneous read/write 69
 Fig. 8.16 Initialize the RAM contents to all 1 s ... 70
 Fig. 8.17 Inferencing of a ROM ... 70
 Fig. 8.18 Finite state machine .. 70
 Fig. 8.19 Use of enumerated types in VHDL for state

machine inferencing ... 71
 Fig. 8.20 Verilog FSM ... 71
 Fig. 8.21 State machine encoding styles ... 71
 Fig. 8.22 Multiply-accumulate operation .. 73
 Fig. 8.23 Verilog example of a register .. 73
 Fig. 8.24 Register in VHDL ... 73
 Fig. 8.25 Synthesis priority of secondary control

signals for registers ... 74
 Fig. 8.26 Multiplexer tree .. 74
 Fig. 8.27 N:1 multiplexer ... 75
 Fig. 8.28 Quartus II RTL viewer .. 77
 Fig. 8.29 Quartus II state machine viewer ... 78

 Fig. 9.1 Example detailing the use of parameters in a
Verilog source file ... 84

 Fig. 9.2 Sample GUI for IP demonstrated by the
Quartus II Component Editor ... 88

 Fig. 10.1 Sample from Header file generated by the
Altera SOPC Builder tool ... 92

 Fig. 11.1 Constrained random test flow ... 101
 Fig. 11.2 Simple testbench that requires manual checking 102
 Fig. 11.3 Example diagram of a self-checking testbench 103
 Fig. 11.4 Verification system architecture ... 103

 Fig. 12.1 Launch and latch edge diagram .. 110
 Fig. 12.2 tsu and th diagram .. 111
 Fig. 12.3 Clock arrival and data arrival diagram .. 111
 Fig. 12.4 Multi-cycle path .. 112
 Fig. 12.5 Input delay .. 113
 Fig. 12.6 Output delay ... 113
 Fig. 12.7 Clock uncertainty .. 115
 Fig. 12.8 Bottom-up design flow ... 118

xvList of Figures

Fig. 12.9 Integration of modules in the top-level design 119
Fig. 12.10 Example design partitioned for incremental compilation 119
Fig. 12.11 Example of the RTL viewer in the Quartus II software 125
Fig. 12.12 Example view of a FSM from the Quartus II RTL viewer 126
Fig. 12.13 Critical Path View in Quartus II

technology map viewer ... 127
Fig. 12.14 The Quartus II chip planner detailing the

Stratix IV ALM architecture .. 127

5

1P. Simpson, FPGA Design: Best Practices for Team-based Design,
DOI 10.1007/978-1-4419-6339-0_1, © Springer Science+Business Media, LLC 2010

1.1 Introduction

This book which describes the Best Practices for successful FPGA design is the
result of meetings with hundreds of customers on the challenges facing each of their
FPGA design teams. By gaining an understanding into their design environments,
processes, what works, what does not work, I have been able to identify the areas
of concern in implementing System designs. More importantly, it has enabled me
to document a recommended methodology that provides guidance in applying a
best practices design methodology to overcome the challenges.

This material has a strong focus on design teams that are across sites. The goal being
to increase the productivity of FPGA design teams by establishing a common method-
ology across design teams; enabling the exchange of design blocks across teams.

Best Practices establishes a roadmap to predictability for implementing system
designs in a FPGA.

The three steps (Fig. 1.1) to predictable results are:

1. Proper project planning and scoping
2. Choosing the right FPGA device to ensure that the right technology is available

for today’s and tomorrow’s projects
3. Following the best practices for FPGA design development in order to shorten

the design cycle and to ensure that your designs are complete on schedule and
that the design blocks can be re-used on future projects with minimal effort

All three elements need work together smoothly to guarantee a successful FPGA
design.

The choice of vendor should be a long-term partnership between the Companies.
By sharing roadmaps and jointly managing existing projects, you can ensure that
not only is the current project a success but provide the right solutions on time for
future projects. A process of fine tuning based on experience working together to
guarantee success on projects.

These two topics are touched upon briefly in the Best Practices for Successful
FPGA Design methodology.

Chapter 1
Best Practices for Successful FPGA Design

2 1 Best Practices for Successful FPGA Design

The third topic is the FPGA design methodology.
This is the main focus of the best practices methodology. This covers the complete

FPGA design flow from the basics to advanced techniques. This methodology is
FPGA vendor independent in that the topics and recommendations are good practices
that apply to the design of any FPGAs. While most of the material is generic, it does
contain references to features in the Altera design tools that reinforce the recommended
best practices.

The diagram that is shown in Fig. 1.2 shows the outline of the best practices
design methodology.

Each of the blocks in the diagram is represented by chapters in this book, with
an additional chapter on power. Power is its own chapter as it spans many of the
other areas of the design methodology. The topics of Board Layout, RTL Design,
IP Reuse, Functional Verification and Timing Closure tend to be the areas where
design teams have different design methodologies and engineers need guidance on
achieving consistent results and shortening the design cycle.

Many of the challenges that are faced in FPGA design are not unique to FPGA
design but are common challenges in system design. FPGA devices themselves do
provide unique challenges and opportunities compared to ASIC designs. The
increase in capability of FPGA devices has resulted in much more complex designs
targeting FPGAs and a natural migration of ASIC designers to FPGA design. This
has resulted in many design teams migrating ASIC design principles to FPGA
designs. In general, this has been a benefit to the FPGA design flow; however it
needs to be balanced with the benefits that FPGAs bring to the design flow. The
programmable nature of FPGAs opens the door to performing more verification

Key Elements to Successful FPGA Design

Predictability
& Reliability

Program
Management

FPGA Design
Methodology Vendor

Choice
&
Partnership

•Device Selection

•IP Reuse

•Team Based Design
Environment

•Predictable Timing
Closure

•Optimized verification
environment

•Time to production

•Si foundry partner

•Technology roadmaps

•Component roadmaps

•Software roadmaps

•IP roadmaps

•Early Access to Advanced
Tools

•Project requirements and objectives

•WBS & schedule

•Resources & costs

•Risk assessment & management

•Change control

•Project execution

Fig. 1.1 Three steps to successful FPGA development

31.1 Introduction

in-system. When used correctly, this can greatly speed-up the verification cycle, how-
ever when abused it can lengthen the design cycle. The configurable nature of I/Os
provides challenges that do not exist in ASIC design. The tools that are used from
the EDA industry are also different for FPGAs than for ASICs, in both functionality
and cost.

This book will help you adopt the best design methodology to meet your
requirements.

While it is recommended that you read the book in its entirety, you can also
focus on the individual chapters of the book that target the areas of the design flow
that is causing the biggest challenge to your design team.

Acknowledgements Misha Burich for providing the idea for Best Practices. Brian Holley and
Rich Catizone for driving the idea at their customer base and providing a constant source of feed-
back. Chris Balough for encouragement on creating this book. Thomas Sears – Providing access
to his development teams, without whom this would not have been possible. YK Ning, Jeff Fox,
Ajay Jagtiani, Alex Grbic, Joshua Walstrom, Oliver Tan & Joshua Fender for contributing material
to the original presentations on Best Practices. The many customers who have contributed to the
material by describing their design environments and the challenges that they have faced in com-
pleting their system designs in FPGA devices. My wife Jill and daughter Kayla for their patience
and support through the process of gathering data and writing the book.

Recommended Design Methodology

SpecificationProject
Management

Resource Scoping

Design Environment
Infrastructure

IPRTL

Functional
Verification

Timing

In-System Debug

Design Sign-off

Board Design
SW

Development

Fig. 1.2 Recommended best practices design methodology for successful FPGA design

5

2.1 The Role of Project Management

The scope of project management is to deliver the right features, on-time and within
budget. As such there are three dimensions:

1. Features
2. Development time
3. Resources

The project manager needs to find the right balance of these three dimensions to
meet the goals of the project.

There are numerous books and training classes on project management. This chapter
provides a brief overview of the elements of project management. It is recommended
that you attend formal project management training.

2.1.1 Project Management Phases

Every project can be broken into three project management phases.

1. The planning phase. This is establishing the feature list, creating the project plan
and establishing the resource pools and budget.

2. The tracking phase. This involves holding monthly feature reviews, weekly plan
updates, reviewing the budget and staffing levels and reviewing any Engineering
Change Orders.

3. The wrap-up Phase. This involves project retrospectives, data mining and process
improvement review and action plan.

Chapter 2
Project Management

P. Simpson, FPGA Design: Best Practices for Team-based Design,
DOI 10.1007/978-1-4419-6339-0_2, © Springer Science+Business Media, LLC 2010

6 2 Project Management

2.1.2 Estimating a Project Duration

Estimating the overall project delivery target is best done with the following steps.

1. Select one of the latest successfully major completed projects.
2. Create a macro model. This involves identifying the major project phases for

specification, designing and verification. Extract the exact duration of the phases
and any overlap.

3. Set the overall process improvement target. An example would be stating that
I want to implement a project of similar complexity 10% faster.

4. Define project complexity metrics such as design characteristics and resource
utilization. Design characteristics can include the number of pages of specification,
the number of FPGA resources, the number of lines of RTL, design performance
technical complexity.

5. Derive the derating factor k.
6. Scale the upcoming project by the derating factor.
7. Evaluate the project with good judgment and make the appropriate adjustments.

2.1.3 Schedule

The project schedule should be updated regularly. It is recommended that it is
updated at least once a week.

Any schedule update meetings should be kept brief and should only focus on
collecting the status information. This includes information on whether a task has
started, is an activity complete, how long will a task take to complete, and any user
task information that determines the level of completeness of a task.

The update meetings should also be used to estimate when a task is expected to
be complete. The project manager must respect the duration estimates from the
resources performing a task but should question any estimates that appear to be
wildly wrong.

2.1.3.1 Weekly Schedule Analysis

The project manager needs to rigorously analyze the project schedule on a weekly
basis. There are ten main tasks involved in this process.

 1. Analyzing and scrutinizing the critical paths.
 2. Reviewing the planned tasks for the coming week.
 3. Discussing and agreeing on the task priorities with the rest of the review team.
 4. Identifying a plan to accelerate the critical path.
 5. Identifying other at risk paths that are just behind the critical path.
 6. Checking the load on the resources assigned to the critical path.

72.1 The Role of Project Management

 7. Confirming the availability of resources with the managers.
 8. Determining the part of the project plan that needs more work.
 9. Capturing action items.
 10. Performing task refinements.

It is critical that the project manager does not get fooled by the percentage complete.
It is a non-linear function and is not useful in estimating the remaining task duration
(Fig. 2.1).

2.1.3.2 Pro-active Project Management

It requires an extreme degree of pro-active behavior to deliver a project on time.
Be sure to dedicate enough management bandwidth to the project.

Due to the dynamic circumstances of design projects, it requires constant manage-
ment attention with weekly rigorous project schedule updates.

The complexity of the project require the right tools to facilitate the decision
making process. The identification and management of the critical path simplifies
the priority setting.

Fig. 2.1 Percentage complete dilemma

9

3.1 Design Specification: Communication Is Key to Success

Having a complete and detailed specification early in a project will prevent false
starts and reduce the likelihood of Engineering Change Orders (ECOs) late in the
project. Late changes to the design specification can dramatically increase the cost
of a project both in terms of the project schedule and the cost of the FPGA. The latter
occurring as significant changes may result in the need for a larger FPGA device.

The purpose of a specification is to accurately and clearly communicate
information.

Another way of saying this is that specifications are a means to convey information
between teams/people. Without a thorough specification, which has been approved
by all impacted parties, a project is prone to delays and late changes in the require-
ments; all of which lead to longer project cycles and higher project cost. A key
point in this statement is “agreed upon specification”. This implies that a process is
in place for the review of the specification.

A fully agreed upon specification ensures alignment between the different teams
working on the project. This ensures that the delivered product conforms to the functional
specifications and meets the customer requirements. This in turn facilitates accurate
estimation of development cost, resource & project schedule. A solid specification
enables consistent project tracking, which will ultimately produce a high quality
product release. The specification also serves as a reference for the creation of
documentation and collateral to be delivered with, or to support the product. All
specifications should clearly identify changes that have been made to the specification.
In addition, the specification should be stored under version control software.

Specifications are required at different stages of the FPGA design from definition
through the development process.

3.1.1 High Level Functional Specification

The high level functional specification is created and owned by the systems engineering
team. This document describes the basic functionality of the FPGA design including

Chapter 3
Design Specification

P. Simpson, FPGA Design: Best Practices for Team-based Design,
DOI 10.1007/978-1-4419-6339-0_3, © Springer Science+Business Media, LLC 2010

10 3 Design Specification

the required interaction with the software interface and the interfaces between the
FPGA and other devices on the board. This document should be officially reviewed
with the FPGA design team Manager and the Software engineering manager. After
the review, the document should be updated to reflect the recommend changes and
to answer any of the issues raised during the review process. This process is itera-
tive until all issues have been resolved and the FPGA design team understands and
agrees upon the requirements.

One of the challenges in creating the high level functional specification is suc-
cessfully describing the functionality in understandable English. Let’s be honest
here; most Engineers are strong in mathematics and science but will never be the
next John Steinbeck.

Executable specifications help resolve this issue. Executable specifications are
abstract models of the system that describe the functionality of the end system. It is
essentially a virtual prototype of the system. Most executable specifications are
created in one of the flavors of “C” (C, C++, System). These languages are good
for modeling the desired functionality but do not cover key features such as timing,
power and size of design. These need to be covered in an accompanying high level
specification to the executable specification. The virtual prototype at this stage is
the system model and the testbench which is part of the executable specification.
This executable specification can be used throughout the development process to
check that the detailed implementation is meeting the requirements of the execut-
able specification.

Not all Companies are using executable specifications as part of the FPGA
design process, but its use is becoming more common as more complex systems are
being implemented in FPGA devices.

3.1.2 Functional Design Specification

The team that is creating the FPGA design should create a detailed design specifi-
cation that represents the needs of the high level functional specification. The
owner of this specification is the FPGA engineering team. This specification should
be reviewed and approved by the FPGA design team, their management and with
representation from the systems engineering and software engineering teams. This
should finalize the specification for the functionality of the FPGA design and detail
the interfaces with the rest of the system including software.

It is critical to agree upon the details of the interfaces to the FPGA with the
appropriate development teams that will use these interfaces.

Take for example, the H/W to S/W interface for a design where an A/D converter
feeds the FPGA. The FPGA in turn feeds data to a microprocessor. The FPGA
requirements specification must cover the interface to the A/D and be designed to
avoid any functional failures, even under corner case conditions. Failure to do so can
result in functional failures not showing up until testing the design in system. Board
tests could show the FPGA passing junk data to the S/W interfaces. The S/W engineers

113.1 Design Specification: Communication Is Key to Success

will likely not know how to interpret or debug this issue. This can result in extended
board test time and under worst case scenario a redesign of either the software and/
or the FPGA design; ultimately this will result in a delay to the schedule.

3.1.2.1 Functional Specification Outline

In this section, we will detail the minimum set of requirements that need to be
included in the functional specification.

1. Revision history. A sample revision control page is shown in Fig. 3.1. This
includes the date of the changes, the author of the changes and the approval of
the changes.

2. Review minutes. This should include details on all review meetings on the speci-
fication. The minutes should include the meeting date and location, attendees,
minutes and the action items that need to be resolved to gain approval of the
specification.

3. Table of contents.
4. Feature overview. The feature overview should provide context of the system in

which the feature will be provided. If the feature is a subsystem in the end FPGA
system design, this section should describe where it fits in the overall system and
its purpose, i.e. the problem it solves. The feature overview should also include
a high level overview of its required functionality.

5. Source references. This section should describe the driver of the feature request,
e.g. High Level Functional Specification, Software Interface Functional
Requirements, etc.

6. Glossary. The glossary should describe any industry standard terms and acronyms
that are used in the document. More importantly, it should also do this for any
internal Company terminology used in the document. It is amazing how much
time is wasted and confusion caused due to the use of internal Company terminol-
ogy. Many new employees or employees from other groups are often embarrassed
to admit that they do not understand the “code” words in review meetings,
 resulting in confusion, delays in decision and often the stifling of creativity.

Revision History
Version Author Date Changes
0.9 psimpson 4-26-09 Initial revision

1.0 psimpson 5-11-09 Added timing details to CODEC

1.1 aclarke 5-30-09 Modified register map based upon review with SW
Engineering on May 28, 2009.

1.2 jjones 6-3-09 Adding a section to describe the interface to host processor.

1.3 psimpson 6-9-09 Updated host processor interface after second review with
SW Engineering on June 4.

Fig. 3.1 Sample revision control page

12 3 Design Specification

7. Detailed feature description. This is really the meat of the document. This section
should include descriptions of any of the algorithms used, details on the architecture
of the design and the interface with other parts of the design or system.

8. Test plan. The document should refer to the test plan, or at a minimum state the
need for a test plan and be updated when the test plan exists.

9. References. In this section the document should refer to all supporting documents
that should be read to understand the functional specification.

Following the creation of the detailed FPGA design specification, the engineering team
will create a number of specifications for internal review within the engineering
department. These include the Functional Test Plan and QA Test Plan. Each engineer
that is assigned to the project will create an engineering plan and functional test plan
for the portion of the design that they will be implementing. This should be reviewed
within engineering against the overall functional plan. This ensures that it meets the
overall requirements of the FPGA design.

3.1.2.2 Test Specification Outline

1. Revision history. A sample revision control page is shown in Fig. 3.1. This
includes the date of the changes, the author of the changes and the approval of
the changes.

2. Review minutes. This should include details on all review meetings on the
specification. The minutes should include the meeting date and location, attendees,
minutes and the action items that need to be resolved to gain approval of the
specification.

3. Table of contents.
4. Scope. This will provide an overview of what specific features this test plan will

cover. If test coverage overlaps with the testing of any subsystems, it should
detail what will be covered in this test plan and refer to the other test plans.

5. Test requirements. This should detail any special hardware, software, EDA tools
that are required to complete the testing. As part of this it should include any
special set-up requirements.

6. Test strategy. This includes the pass/failure criteria. Do the test results require cross-
verification with any other sub-systems. Will existing tests be re-used or modified
to meet the needs of this test plan. Will the tests be automated and if so, how will the
tests be automated. How will the tests be run. An example of this would be an
automated regtest that is run each night, or manual testing to verify that the graphics
appear correctly on the screen when run on a development board.

7. Automation plan. It is desirable to automate as much of the testing as possible.
This section will describe how to automate the test.

8. Running the tests. What is the expected runtime of the tests. If the test is not
automated, what is the expected time for the tests to be performed manually.

9. Test documentation. This section should include descriptions of the test cases.
As standard practice, the test infrastructure should be set-up to isolate each test.

133.1 Design Specification: Communication Is Key to Success

Thus each test case should have its own test directory. The documentation should
detail how to access the results from the regression tests database. This assumes
that a regression tests system has been established. Not establishing such a system
is setting a project up for failure as it will be incredibly difficult to monitor the
quality of the product.

The test documentation should also cover test procedures for the cases where sub-
tests cannot be automated. Under this scenario, it is necessary to document how to
manually test the sub-feature.

As work begins on the development of the FPGA design, there should be regular
design and verification reviews as part of the engineering process to ensure that
there are no changes to the plan. These reviews will provide a forum to communi-
cate any changes that may be needed to work around implementation issues and to
clear up any areas of ambiguity in the specifications. As a result of these meetings,
the specifications should be updated and reviewed. If the recommended changes
will impact the high level functional specification or any of the interfaces with the
FPGA, there should be formal reviews with the relevant personnel to reach closure
on the changes.

In summary, the main purpose of a specification is to communicate information
between teams such that the design meets the requirements and can be adequately
staffed to deliver on the requirements in the specified timeframe.

The requirements for the functional specification and test specification will be
driven by your Company’s policy on standards compliance, e.g. ISO 9001 compli-
ance. This book does not discuss the details on ISO 9001 compliance. A detailed
description of the ISO 9001 standard is available from http://www.iso.org.

Recommended further reading:
Requirements by Ian Alexander

http://www.iso.org

15P. Simpson, FPGA Design: Best Practices for Team-based Design,
DOI 10.1007/978-1-4419-6339-0_4, © Springer Science+Business Media, LLC 2010

4.1 Introduction

This chapter is broken down into three main sections. The first section deals with
engineering resources. Whether you use internal resources or whether you use
external contractor resources.

The second section deals with IP. Do you have IP within the company that you
can reuse, or do you use third party IP?

The third and last section deals with device selection. This details how to select
the right FPGA with the right resources for your application. It covers the various
techniques that you can use to help choose the right device to enable you to meet
your project schedule.

4.2 Engineering Resources

The assignment of engineering resource to the project is a project management task.
It is key that you adequately resource the project with the appropriate personnel for
the tasks in the project. When you are working on the FPGA its not only FPGA
designers that you need to consider, you need to look at the team of engineers that are
required to create the design. So, from a hardware engineer’s perspective you look at
who are the engineers that are going to work on the FPGA design. There are the RTL
designers, there are the engineers with the experience integrating the design in the
FPGA design software and the engineers with design verification experience.

In some companies these roles will be performed by the same individual, or the
same pool of engineers. However, depending upon the size of the design or the com-
plexity of the project you may well require a team of engineers with different skill
sets from the different engineering disciplines. From a hardware engineering perspec-
tive, you also need to look at the board design, so you will to need to ensure that you
have board layout engineers on the team. They will have to work close with the
FPGA designers, so you want to make sure that the members of the team have a good
working relationship. If you are creating a high speed design, particularly if you are

Chapter 4
Resource Scoping

16 4 Resource Scoping

looking at design with high speed transceivers or high speed memory interfaces you
are likely going to need someone on the team with signal integrity experience.

If your design uses a soft processor such as the Nios® II processor form Altera,
you will also want software engineers on the team. Even if the FPGA is interfacing
with a microprocessor, you still want the software engineers to be available for
when you start to debug the design on the board. You also may need engineers with
other system specialties on the team. For example if your design contains DSP
algorithms the individual that created the algorithm may not actually be a hardware
engineer, thus will not be implementing the design in the FPGA. You need to ensure
that the Specialist is available for advice during the design cycle and for debug of
the design after implementation. Similarly, for other IP areas of excellence;
examples being the main interface protocols such as PCIe or GigE.

An important decision in the assignment of engineering resources is the deci-
sions as to what are you going to implement with the engineering resources that
exist in the company vs. what will you implement with external consultants.

4.3 Third Party IP

You need to look at what third party IP is available and will be used in the design.
Similarly what internal IP will be reused, do you have IP available from other proj-
ects targeting this FPGA family. Or if you are using third party IP you will probably
want to look at what are you getting with the IP, do you get a consultancy service
or what is your level of confidence that the IP will meet your exact requirements in
terms of area, speed and functionality.

4.4 Device Selection

There are seven main factors that influence your choice of device. These are:

1. Specialty silicon features. Are there certain capabilities that you need that dictate
that you use a particular FPGA because they are not available in other FPGA
devices.

2. Device density. How much logic will your design require? What is the mix of
logic to memory blocks to dedicated multiplier blocks that is needed for your
application. This will have a big impact on the price of the device that you
need.

3. Speed requirements. This will impact the family that you choose and the speed-
grade that you need to use. Once again this will have a large impact on the price
of the device.

4. Pinout of your device. What kind of package do you require? The choice of
package type and the number of I/O in your design will impact both the FPGA

174.4 Device Selection

cost and the board design. The package type will also influence the signal integrity
and performance of the I/O in your design.

5. Power. What is your power budget for the design and which device is going to
help you meet the budget?

6. Availability of IP.
7. The availability of silicon. You want to make sure that production silicon is

available when you need it.

So these are the areas that we need to look at in more detail.

4.4.1 Silicon Specialty Features

The first area that you want to look at is the dedicated resources on the device. Does
your design require high speed serial interfaces and if so, how many channels and at
what performance. Many of the FPGA devices that are available together come with
transceivers. The performance of transceivers tends to fall into three ranges, up to
3.125 Gbps, up to 6.5 Gbps and 10 Gbps+. These are important factors in the decision
process as they impact both the performance of your design and the cost of the FPGA.
You also need to look at your bandwidth requirements. Both the speed of the trans-
ceivers and the number of transceivers will determine your bandwidth. Take for
example the communications market; if you are trying to implement 100 Gbit
Ethernet, you will likely want a minimum of ten channels of 10 Gbps transceivers.

Similarly, if you are completing a design which is math intensive such as a DSP
encryption algorithm or radar application, you will require a device with a large
number of DSP blocks and adequate RAM blocks to interface with the DSP blocks.
The configuration of the DSP blocks is also important. The depth and number of
memory blocks will impact how much processing can be performed on chip vs.
having to use external memory. Internal memory is important in DSP for caching
of processing results between stages of the processing algorithm. You also need to
look at both the number and configuration of the dedicated DSP blocks. What is the
width of the multiplication operations that you need to perform? If the DSP block
does not have sufficient width, you will have to start combining DSP blocks with
logic to implement your functionality. This can impact the performance of the
operation that you are performing.

How many internal RAM blocks do you need? This is becoming increasingly
more important as we look at designs that make use of soft processors. Being able
to use internal memory blocks as cache can significantly increases the performance
of the soft processor. The sizes of block RAM that is available is also important. If
your design will use a lot of FIFOs, it’s the number of RAM blocks that are avail-
able that matters and not the amount of bits available. FIFO’s are notorious for
wasting memory bits when implemented in memory blocks.

You also need to consider the debug of your design. Internal block memory is
often used in the debug cycle for storing the data from embedded logic analyzers
for examination.

18 4 Resource Scoping

4.4.2 Density

When selecting the density of the device, it is unlikely that you will be fortunate
enough to have the completed design to determine the size of device needed. You
will be choosing the device based upon previous experience. Many designs are
based upon previous generations of the design. This can be aid in the device selec-
tion process. You should recompile the previous design or the portions that will be
used at your target FPGA family to get ballpark density estimates. If you have IP
that you will be using, compile it to add to your area estimates and if you are evalu-
ating IP for third party vendors, get an area estimate from the vendor. So, use the
previous generation of the design, if it exists, add in the area requirements from IP
and then using your experience, add in how much additional resources will be used
for the new functionality. Once you have done this, add an additional 25% on top.
You should always target a larger device than you think you will need; this is where
the extra 25% comes into the equation.

You should always target a larger device than you think you will need. Designs
have a nasty habit of growing and you want to guarantee that the design will fit in
the targeted device and be able to close timing. You don’t want to be struggling to
meet timing in a 95% utilized device or be put in the position of having to pull
functionality out of your system just to fit in the targeted device.

Another benefit of using a larger device is that it can help you get to in-system
checkout quicker. If there is headroom in the device, the place and route software
will likely not have to try as hard to meet timing and will result in shorter compile
times. This benefits both the hardware and software engineer. The sooner that you
have functional silicon, the sooner the software engineer can accelerate his code
development process by trying it out on the targeted hardware. You can start the
debug of the hardware and software much earlier in the design cycle.

Another benefit of the additional headroom in the device is that it makes it easier
to accommodate late ECOs in the device or accommodate growth in future versions
of the design after production.

After you have the design working functionally on the device and if there is signifi-
cant unused resources on the device, you can retarget the device to a smaller device to
reduce cost and not have to worry about impacting the project schedule. Some of the
FPGA vendor design tools have features that enable you to migrate between device
densities in the same family while maintaining the same pin-out. These features
restricts you to using only the I/O resources that exist across the density ranges selected
in the targeted family; the benefit being that you can retarget your design to a larger or
smaller density device avoiding a board re-spin. If this feature is not available in your
FPGA vendor software you can design the capability in manually by referencing data
sheets and application notes. The manual process is painful and prone to user error, but
is worth the investment if the automated flow is not available.

The key point is that you need to ensure that the ability to migrate between
device densities while maintaining the pin-out capability is available in the FPGA
family that you are considering for your application.

194.4 Device Selection

The recommendation is that you select a device that can migrate up in density to
accommodate future design growth and can migrate down in density to allow for
possible cost reduction.

This functionality is very useful if you intend to ship variations of your product at
different price points with changes in the functionality. This enables the same board
to be shipped. A single design can be created and functionality removed from the
FPGA at the lower price points. Normally the same FPGA is shipped on the same
board with a different programming file based on the reduced functionality of the
design. By maintaining the same pin-out you can now remove the functionality and
retarget the design to a smaller device, further cost reducing your bill of materials.

4.4.3 Speed Requirements

This can be determined from your previous design experience. You should compile
designs or design blocks that you already have to get an indication of the perfor-
mance that they get in the targeted device. This can be used as a good best case
indicator as to what you can expect from other design blocks.

The FPGA vendor’s data sheets are also a good source of information on perfor-
mance. They will tell you the absolute maximum that you can hope to get in terms
of clock and I/O performance. While these numbers are achievable, it is likely to
increase your timing closure cycle achieving these numbers, thus you should back
off the numbers by approximately 15% to give you a margin of safety for timing
closure.

The choice of speed-grade will impact the price of the device. When choosing
device, we recommend that you always start with the fastest speed-grade to enable
you to get the device on the board as soon as possible to start software debug and
hardware functional check out as early as possible. If the design meets timing com-
fortably in the fastest speed-grade, you will benefit from faster compilations as
the place and route engine does not have to try as hard to close timing. Later in the
design cycle, there is the option to retarget the design to a slower device after
the functionality is close to complete, for cost reduction purposes.

4.4.4 Pin-Out

The type of I/O interfaces that you need for the design will impact the number of pins
required and the package type. You need to understand the I/O standards that you
need, the requirements for drive strength. How many pins do you need? What are the
power supply requirements? A good way of determining these requirements without
the design is by looking at what your device will interface with on your board. You
also need to look at the signal integrity requirements for the design. Does your design
have interfaces with a large number of pins that are likely to toggle simultaneously;

20 4 Resource Scoping

if so, will you have SSN issues? It is worth noting that wirebond packages typically
have worst signal integrity and I/O performance than flip chip devices.

It is recommended that when looking at the pin count for your design, that you
reserve pins for in-system debug. The target should be a minimum of 15% of the
device pins. They can be used to route internal signals off-chip for analysis with a
logic analyzer.

4.4.5 Power

You know the power budget for your design based upon the specification. How many
power supplies will be required for the device? Most modern FPGA devices require
multiple power supplies as they have separate power planes for the core, I/O’s and
often the transceivers. The more power supplies that are required, the more expen-
sive the component cost on the board and the more complex the board design.

Once again, your previous FPGA design experience will come into play. Chapter 7
in the book is dedicated to power estimation; it will help master this challenge.

To summarize, it is recommended that you use the FPGA vendor’s power esti-
mation spreadsheet together with your previous experience to determine the power
that your design will consume.

4.4.6 Availability of IP

IP may be available for a particular family of devices but may not have been ported
to or verified on the particular FPGA family that you are considering using. This is
often the case with devices that are new to the market. Interface IP in particular is
a challenge for devices where the silicon has been available for less than 6 months.
The devices are normally not fully characterized thus the timing models are pre-
liminary. High performance interface IP cannot be guaranteed to close timing until
the models are final.

4.4.7 Availability of Silicon

If you have a project on the bleeding edge of technology, the chances are that you will
be considering using the latest FPGA devices on the market. You will also likely be
considering the latest FPGA device knowing that in the future, the pricing will be
more favorable. The decision to use the latest FPGA devices on the market makes
financial sense if the design will be going into production in 12 months but you know
that your volumes will be shipping for 5+ years such that you will be hitting volume
production when the FPGA process has matured and pricing is at its lowest.

214.4 Device Selection

4.4.8 Summary

We really recommend that when choosing FPGA technology that you quickly stitch
together dummy designs effectively to enable the process of successful device
selection. You are going to have a good idea of what type of interfaces you are
going to need on your device. This will help you to determine the pin requirements
and simplify the I/O planning requirements. By creating the dummy design you get
an idea of the utilization that you can expect to get out of the device in terms of
resources. It will also provide a good guide to the performance that you can expect
for your type of design. It also enables you to perform an early power estimate for
your design. The creation of a dummy design is instrumental in selecting the appro-
priate device and should include any known IP blocks that you are going to be used
in the design.

23P. Simpson, FPGA Design: Best Practices for Team-based Design,
DOI 10.1007/978-1-4419-6339-0_5, © Springer Science+Business Media, LLC 2010

5.1 Introduction

The FPGA design environment is best expressed as a combination of all of the
tools, techniques and equipment that is required to successfully complete a FPGA
system design. The design environment in each company is usually somewhat
unique in that it has been customized to meet the needs of the company. However,
there are some common elements that exist across all design elements. The goal of
this chapter is to make you aware of the bare minimum requirements for a design
environment that will enable the successful creation of an FPGA design on time.
The design environment can be represented by five main elements.

1. A scripting environment
2. Interaction with Version Control software
3. Use of a problem tracking system
4. A regression test system
5. Data collection for analysis

5.2 Scripting Environment

One of the challenges for engineers that are designing with FPGA devices, is when
to use a scripted design flow vs. when to use the GUI in the FPGA design
environment?

Scripts are ideal in the following scenarios:

1. Creation of projects
2. Creation of assignments for the design
3. Compilation of designs. In particular if you utilize a compute farm environment.

A compute farm environment enables you to fire off batch jobs to the server for
compilation

4. Functional verification and regression testing
5. Integration with version control software

Chapter 5
Design Environment

24 5 Design Environment

This covers most of the FPGA design flow. It may appear that it is recommended
to use scripting for every part of the design flow. This is partially true. You really
should deploy scripting for any repetitive tasks. It helps other users to easily reproduce
your environment and results.

So, when is it recommended to use the GUI?
The GUI should be used for the parts of the design flow that are interactive.

Areas where your actions will change based upon the results that you get. Examples
would be the following scenarios:

1. In-system debug of your design
2. Floorplanning operations. This could be looking at the details of the floorplan to

gain a better understanding of the device architecture or the resources that are
available. This could also be creating a physical layout of your design in the
floorplan in a team based design environment

3. Getting started with new tools. The GUI provides a great way for setting up your
first project and uncovering the features and capabilities of the tool. Once familiar
with the tool, it is recommended that you move to a scripting environment

Through the use of scripting you can save time and effort on repetitive tasks. One
of the big benefits is that it simplifies the passing of tasks between team members
in a team based design. If someone is taking over a project or design block, from
another engineer; Rather than having to write detailed instructions describing what
needs to be done to get your results, you give them the script which is self docu-
menting. The new engineer reads the script, runs the script and they get started
from where you left off on the project. Nearly all EDA tools that are part of the
FPGA design flow have scripting interfaces, both a command-line interface for
creating batch files and assignment scripting for creating settings in the project.
Most of the EDA industry has standardized on Tcl as the scripting interface for
tool assignments.

5.3 Interaction with Version Control Software

Revision Control software provides a record of the history of changes to your
design. When you are designing a FPGA, it is necessary to understand the mini-
mum set of files that is needed for check-in and check-out of the version control
system. You need to minimize the number of files because the more files that you
check-in, the more storage you will need and the more complex the operation will
become. Each time you make a change to your design you need to check the FPGA
project back in to the version control software. A good scripting environment helps
to simplify this process. The initial set-up of the scripts and the identification of the
files that need to be checked in and out may be complex. However, once the scripts
are established, the scripts can be shared among the engineers that are working on
the project. If you can recreate or describe your project with a script, the version
control interaction becomes much simpler.

255.4 Use of a Problem Tracking System

Different FPGA design tools require different sets of files to be placed under ver-
sion control in order to recreate the results; so the set-up that you use for one FPGA
vendor may differ significantly than the set-up used for another. The principle how-
ever is the same. If the tools use text files, the interaction with version control systems
is much simpler than tools that use binary files that store critical information.

To date, FPGA vendors have done a poor job in publicly documenting which
files need to be checked into version control software to enable you to recreate the
results of the previous compilation. This process becomes more complex if you use
multiple tools in the FPGA design flow. It is recommended that you contact the
vendors of each of the tools to understand their recommendations.

One of the major influences on how you use a version control system is the direc-
tory structure that you are using for your design environment. This comprises of the
location of the RTL design files, location of the RTL and IP libraries, “c” code and
programming image if you are using a soft processor, simulation testbenches, loca-
tion where the results of your regtests are stored and the scripts to compile the design
in the FPGA software or in other EDA software. You need to be able to link all of
these elements together successfully using the correct versions of the files.

You want to avoid the situation were you are trying to debug the design in the
lab and you are using the wrong programming image for the FPGA, or you are
loading the soft processor with old source code, or a designer is making changes to
an out of date version of the RTL. Proper use of version control will provide an
environment that prevents these scenarios from occurring. You also want to be able
to store the report files in version control as the report files document the status of
the design. This provides valuable information to other designers that work on the
same project.

5.4 Use of a Problem Tracking System

A problem tracking system is not a capability that you get from your FPGA vendor.
However, I can guarantee that it is a tool that FPGA vendors use as part of their
engineering and product planning process. Problem tracking systems tend to be
homegrown systems to meet the needs of the individual company. In fact many of
the EDA tool and FPGA vendors have a customer interface to their systems for
submitting problem reports.

There are commercial systems available on the market. These systems are essen-
tially database system with a customizable front-end to meet your companies
needs. In your design environment, you will use the system to track all known
issues with your FPGA design. It enables the design engineers to document prob-
lems with the design as they occur. This provides the team with an instant status on
the design and can be used to track the stability of the design throughout the design
process. It makes the other members of the team aware of the problems with your
design, avoiding the case were they are trying to debug a problem in their part of the
system that is being caused by your design. By looking at this data it can be determined

26 5 Design Environment

whether to use a particular project build or whether to revert to an earlier build that
did not exhibit the problems that were introduced into that particular build.

It also enables users to document the closing of issues. This enables the team to
collaborate on solving the issues in the design. This is very helpful in a team based
design environment that spans multiple time zones.

As mentioned, the system can be used to provide a snapshot of the health of the
project. To do this, it needs to be linked to the regression test system such that test
failures automatically file problems reports in the tracking system against the build
that is being tested.

5.5 A Regression Test System

As part of your testing, the design engineers will create point tests to show that the
design meets functionality. It must be a requirement that you have a set of tests that
are run regularly on the design to provide a health check on the design. These tests
give you confidence that as your design changes that you do not reintroduce old
problems or break existing functionality. Regression tests are discussed in more
detail in Chapter 11.

5.6 When to Upgrade the Versions of the FPGA Design Tools

One of the challenges that you will face if you have a design that spans more than
6 months is when to adopt new releases of the tools that are used in the FPGA
design environment. FPGA vendors typically have at least two major releases per
year plus a selection of service pack releases that include bug fixes and timing
model changes. When should you freeze the version of the design tools that you are
using?

This decision will be driven by where you are in the design flow. If you are in
the early stages of the design, then you should update to the latest release of the
FPGA design software unless you are aware of serious problems with the software.
This will give you access to the latest bug fixes and features in the software.
Normally there is some degree of compile time improvement in the major releases
of the FPGA design software.

If your design is mostly complete and the version of the FPGA vendor software
that you are using contains the final timing models for the devices that you are
targeting, then you should consider freezing the version of the design software that
you are using. An exception would be if you come across a bug in the design soft-
ware that impacts your design. This will likely require you to upgrade the design
tools to access the fix to the bug.

If your design is close to complete but the FPGA vendor timing models are still
preliminary you will have to upgrade the version of the design software once the

275.7 Common Tools in the FPGA Design Environment

final timing models become available. This can be problematic as it may require you
to upgrade the versions of the vendor IP blocks, possibly creating more work for
you; in particular in verifying the design. It is strongly recommended that you verify
your design against the production or final version of the FPGA timing models.

Some of the FPGA vendors provide the capability to read a database from one
version of the design software in a later release of the software. Thus the design
does not have to be recompiled and only timing analysis rerun to verify that the
design still meets timing, with the final timing models.

5.7 Common Tools in the FPGA Design Environment

FPGA design software: This comes from the FPGA vendor and includes the
FPGA Place and Route Software and Timing Analysis tools. The major FPGA
vendors also include RTL Synthesis, Advanced Timing Closure Features. On-Chip
debug and Floorplan Tools.

FPGA synthesis software: This may come from the FPGA vendor or may come
from EDA synthesis tool vendors such as Synopsys or Mentor Graphics. Most
FPGA synthesis tools support Verilog and VHDL. Some of the tools now support
SystemVerilog.

Simulation tools: Some FPGA vendors provide simulation tools but by far the
majority of the tools that are used come from EDA tool vendors. The most popu-
lar tools are Mentor Modelsim and Questasim, Synopsys VCS, Cadence Incisive
and Aldec Active HDL and Riviera Pro. Some of these tools include advanced
capabilities for assertion based verification, detection of clock domain crossing,
etc.

Formal verification tools: These tools are not commonly used in FPGA designs
due to the restrictions that they place on the optimizations that can be performed
when using these tools in order to perform a successful verification.

Timing analysis tools: There are timing analysis tools available from EDA tool
vendors. However, these are rarely used in FPGA design flows due to the avail-
ability of timing analysis tools in the FPGA vendor supplied design software. We
recommend that you use the FPGA vendor timing analysis tools for FPGA timing
analysis as the timing constraints that are used for timing sign-off are also used by
the place and route software for optimization.

It is recommended that the EDA timing analysis tools are not used for FPGA
verification, but are used for board timing analysis.

Board design tools: EDA tools are used for board design. These include the board
schematic tools, the board layout tools and the signal integrity tools. The HSPICE
and IBIS models that are used by the signal integrity tools come from the FPGA
vendois.

28 5 Design Environment

High-level synthesis: Most of the tools in this space are based on designing in
“C or C++” and having the code produce RTL or a netlist for an FPGA. The adop-
tion of these tools in the FPGA market has been slow. These tools have matured a lot
and are slowly gaining momentum in creating design blocks for certain applica-
tions, as opposed to creating a complete FPGA design. These tools tend to be
mainly focus on the High Performance Computing Market and DSP algorithm
implementation.

All of the offerings that are available are from EDA Companies.
The next class of High-Level Synthesis is Model based design tools. These utilize

optimized libraries in the Mathworks Simulink environment. Their target markets
are military markets and Modem designs. These tools rely on the Mathworks
Matlab environment and are available from the main FPGA vendors and EDA
Companies.

Load sharing software: This is software that is used to schedule jobs that are being
processed on compute farms. Load sharing solutions are heavily used in FPGA
development, particularly in script based design flows. There are commercially
available software packages as well as freeware. Some of the options in the FPGA
software include a form of load sharing software.

Version control software: Version control tools are not considered EDA tools per
se, but are a major part of the design flow environment, commonly used version
control software with FPGA designs are Clearcase, Perforce and PVCS.

29P. Simpson, FPGA Design: Best Practices for Team-based Design,
DOI 10.1007/978-1-4419-6339-0_6, © Springer Science+Business Media, LLC 2010

6.1 Challenges that FPGAs Create for Board Design

In order to meet the fast performance and high bandwidth of today’s system designs,
FPGA devices are providing a large number of pins with increasingly faster switch-
ing speeds. These higher package pin counts, together with the fact that the devices
support many different I/O standards and support different package types, creates a
challenge in successfully creating the FPGA pin-out efficiently and correctly. The cost
of a board re-spin, due to a problem with the pin-out, is expensive in terms of both
the cost of the board re-spin and the impact on the project schedule.

FPGAs provide pin-out flexibility by supporting many different I/O standards on
a single FPGA and by providing user control over drive strength and slew rate. This
flexibility also results in complex rules for the creation of a legal FPGA pin-out and
impacts the termination requirements for the Printed Circuit Board (PCB).

The high package pin counts create an EDA tool flow challenge in the manage-
ment of data between the board design software and the FPGA design software.

Due to the complexity in designing high performance PCBs, the PCB design
cycle needs to begin early in the system design cycle. This creates a challenge in
aligning the final FPGA pin-out with the board design cycle. Often the board layout
needs to be complete prior to FPGA design completion. In fact, it is becoming
increasingly common that the FPGA design and the board development are being
undertaken simultaneously and that for many user system designs, the board design
is often complete prior to the RTL code for the FPGA existing!

Early in the design cycle, it can be difficult to predict the size of the FPGA device
that is required for the project. Most FPGA families have a technical solution to this
problem; they support pin migration between devices of different density in the same
package. Thus, it is advised that designers select a FPGA device that has several densi-
ties in the same package. This creates the challenge for the board designer in creating
a pinout that is migratable across all the device densities. Once again, help is at hand
from some of the FPGA design tools via a feature that is often referred to as device
migration. Device Migration is the ability to transfer a design from one device in an
FPGA family to a different density device in the same device family which has the
same device package. This enables you to transfer a design from the design’s target

Chapter 6
Board Design

30 6 Board Design

device to a larger or smaller device with the equivalent pin-outs, while maintaining the
same board layout and pin assignments. This is a feature that can be selected in the
FPGA vendor software when making the device selection. This feature will prevent the user
from making pin assignments to pins that cannot be migrated across the different
device densities. It is recommended that you include this requirement as part of your
design plan as insurance against unforeseen changes in the FPGA design, particularly
if creating a pinout early in the FPGA design cycle. This enables you to use a larger
device if the changes to the design results in a significant logic growth or potentially
the ability to use a smaller, hence cheaper device, if the design size permits this.

The increase in system performance and bandwidth has resulted in faster pin
speeds. At the time of writing, FPGAs are capable of interfacing with 64-bit DDR
III SRAM running at 533 MHz. This is a data rate of 1,067 Mbps per pin. This can
produce a number of simultaneously switching pins on the FPGA, which can in
turn result in functional failures due to noise. The device needs to have a pin-out
that avoids Simultaneously Switching Noise (SSN) and the FPGA needs to be ter-
minated on the board in a manner that avoids SSN issues.

Many FPGAs also include transceiver blocks that can operate up to 11.3 Gbps
and support various I/O protocols such as PCI Express, Serial RapidIO®, Gigabit
Ethernet (GbE), to name a few. These high speed transceiver based interfaces
require careful termination on the board to avoid Signal Integrity (SI) issues.

Now that we have identified the potential pitfalls in creating a PCB design for high
performance systems containing FPGA devices, we will focus on the techniques that
can be deployed to ensure that the board design is right first time. The remainder of
the chapter describes the challenges in more detail. It describes the roles of different
teams in the board design process. It presents a methodology that addresses all of the
challenges that we have described and culminates in a check list that can be used on
any FPGA project to achieve successful FPGA pin-out and board design.

6.2 Engineering Roles and Responsibilities

The engineers that are involved in the board design of systems containing FPGA
devices can be classified into three distinct engineering skill sets. These are FPGA
design engineers, PCB Design Engineers and Signal Integrity Engineers. In some
organizations there is overlap in the functionality, but in general they are distinct dis-
ciplines and the functions are performed by different engineers or engineering teams.

6.2.1 FPGA Engineers

FPGA Engineers are familiar with the FPGA vendor software. The FPGA engineer
is typically responsible for writing and verifying the RTL code for the design. He,
or she, is also responsible for implementing the design in the FPGA and helps with
the debug of the design in the end system.

316.2 Engineering Roles and Responsibilities

The FPGA engineer has a keep role to play in the PCB design. He is responsible
for the generation of the FPGA pin-out from the FPGA design software. As such,
he interfaces heavily with the PCB design engineer, providing updates to the pin
assignments and implementing and verifying any recommended changes from the
PCB design engineer.

The FPGA Engineer also acts as the interface to the Signal Integrity engineer.
He provides the pin-out information, as well as any HSPICE and/or HSPICE mod-
els and netlists that are generated by the FPGA design software.

6.2.2 PCB Design Engineer

The PCB design engineer is familiar with PCB schematic and layout software. The
PCB design engineer is typically responsible for creating board schematics,
including the generation of device symbols. He is also responsible for creating the
board layout, which includes routing the board. The board layout and in particular
the routing of the board is heavily dependent upon the pin-out of the devices on
the board. As such, the PCB design engineer has a strong influence on the FPGA
pin assignments, as these greatly impact his task and the potentially the cost of the
board. While the PCB design engineer influences the choice of pin assignments
for the FPGA, he typically has no desire to use the FPGA design software. This
creates the requirement for an efficient means of passing information to/from the
FPGA engineer and the Board Designer. This is effectively the need for a two-way
interface mechanism between the FPGA design software and the board schematic
software, from EDA tool vendors. Today, some EDA tools provide a two way
interface to the FPGA design software. However, the most commonly used inter-
face for the communication of information between these two engineers is
Microsoft Excel. Most of the FPGA design software offerings from the FPGA
vendors have the ability to read and write the .csv format, which is used as the
interface to Microsoft Excel. Similarly some of the board schematic software
packages can read the .csv format. It is common practice within industry for board
design engineers to create scripts that generate the appropriate schematic symbols
from the .csv format or from the FPGA vendor pin report. Thus the .csv format
serves multiple purposes.

1. A source of integration between the FPGA and Board design software
packages.

2. Documentation of the design pin-out. As such, it should be stored under revision
control.

An example of a .csv file that can be used to interface between the FPGA design
software and board schematic software is detailed in Fig. 6.1.

A key point is that the csv details much more than the pin assignments. It
includes details on the I/O standard and current strength. These are important as
they impact the signal quality on the board, as well as the I/O timing.

32 6 Board Design

The PCB design engineer also interfaces with the Signal Integrity engineer, by
providing details of the board layout characteristics that are used to generate the
model of the board for Signal Integrity modeling.

6.2.3 Signal Integrity Engineer

SI engineers are familiar with signal integrity simulation software from leading
EDA vendors such as Synopsys, Mentor Graphics, Cadence, Agilent, etc. They are
responsible for verifying that the signal quality (e.g. overshoot/undershoot), includ-
ing simultaneous switching noise (SSN) effects are within specification. Ultimately,
the SI engineer is responsible for verifying that the board timing meets the system
requirements.

In the past, most FPGAs were designed without using the services of Signal
Integrity Engineers. In truth many FPGAs are still being designed today without the
services of SI engineers. Board designers have tended to lay the board out conser-
vatively when interfacing with FPGAs and assumed, correctly in most cases, that
this will meet their requirements. However, based upon the reasons stated earlier in
this chapter, this approach is no longer adequate. The increase in I/O speeds for
interfaces such as DDR II/III SRAM memories, plus the addition of high speed
transceiver blocks require correct board termination to prevent SI and SSN issues.

These types of interfaces can be successfully designed by following the guide-
lines that are provided in the application notes provided by the FPGA vendors.
However, each board design is different and it is recommended that SI engineers
simulate the I/Os that have high performance requirements. This creates the require-
ment that the board designer interfaces with both the FPGA and the board designer.

I/O StandardVREF GroupI/O BankLocationDirectionPin Name Current Strength
clk_in Input PIN_B13 4 B4_N1 3.3 -V LVTTL (default) 24mA (default)
in_port_to_the_button_pio[3] Input PIN_AE6 8 B8_N1 3.3 -V LVTTL (default) 24mA (default)
in_port_to_the_button_pio[2] Input PIN_AB10 8 B8_N1 3.3 -V LVTTL (default) 24mA (default)
in_port_to_the_button_pio[1] Input PIN_AA10 8 B8_N1 3.3 -V LVTTL (default) 24mA (default)
in_port_to_the_button_pio[0] Input PIN_Y11 8 B8_N1 3.3 -V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[7] Bidir PIN_A8 3 B3_N0 3.3 -V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[6] Bidir PIN_B8 3 B3_N0 3.3 -V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[5] Bidir PIN_C9 3 B3_N1 3.3 -V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[4] Bidir PIN_D9 3 B3_N1 3.3 -V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[3] Bidir PIN_G10 3 B3_N1 3.3 -V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[2] Bidir PIN_F10 3 B3_N1 3.3 -V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[1] Bidir PIN_C8 3 B3_N1 3.3 -V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[0] Bidir PIN_D8 3 B3_N1 3.3 -V LVTTL (default) 24mA (default)
out_port_from_the_led_pio[7] Output PIN_AA11 8 B8_N1 1.8 V 12mA (default)
out_port_from_the_led_pio[6] Output PIN_AF7 8 B8_N1 1.8 V 12mA (default)
out_port_from_the_led_pio[5] Output PIN_AE7 8 B8_N1 1.8 V 12mA (default)
out_port_from_the_led_pio[4] Output PIN_AF8 8 B8_N0 1.8 V 12mA (default)
out_port_from_the_led_pio[3] Output PIN_AE8 8 B8_N0 1.8 V 12mA (default)
out_port_from_the_led_pio[2] Output PIN_W12 8 B8_N0 1.8 V 12mA (default)
out_port_from_the_led_pio[1] Output PIN_W11 8 B8_N0 1.8 V 12mA (default)
out_port_from_the_led_pio[0] Output PIN_AC10 8 B8_N0 1.8 V 12mA (default)

Fig. 6.1 Example .csv file that interfaces between board design SW and FPGA SW

336.3 Power and Thermal Considerations

He requires the HSPICE or IBIS models from the FPGA design engineer and the
details on the board traces, etc. from the Board designers. SI simulations tend to be
lengthy and should only be performed on the pins of the FPGA that are considered
a high risk for Signal Integrity. That is the high performance I/O in the design.

The diagram in Fig. 6.2 details the stage in the design cycle where each of the
engineering disciplines should be involved throughout the FPGA design cycle. The
diagram is explained in more detail in the section of this chapter on Design Flows
for creating the FPGA pinout.

6.3 Power and Thermal Considerations

FPGA power estimation helps guide power supply design for the board.

6.3.1 Filtering Power Supply Noise

In order to reduce system noise it is critical to provide clean and evenly distributed
power to all devices on the board. Low frequency power supply noise can be fil-
tered out by placing a 100 mF electrolytic capacitor adjacent to where the power
line joins the PCB. If you are using a voltage regulator, the capacitor should be
placed at the final stage that provides the Vcc signal to the devices.

In order to reduce the high frequency noise to the power plane it is recom-
mended that decoupling capacitors are placed as close as possible to each Vcc and
ground pair.

6.3.2 Power Distribution

A power bus network or power planes are used to distribute power throughout the
PCB. A power bus network is the least expensive solution but does suffer from

Board
Engineer

Board
Specifications

Early Pin
Planning

Early SI
Analysis

SI analysis
with actual
board traces

Development Time

SI Signoff

RTL Design &
Verification,
Implementation

Pin
Signoff

PCB Design &
Verification

PCB
ready

Qualification,
Debug &
ECOFPGA

Engineer

Signal Integrity
(SI) Engineer

Fig. 6.2 Design cycle diagram detailing engineering discipline involvement

34 6 Board Design

power degradation. As such this should only be considered for cost sensitive appli-
cations on two-layer PCBs.

The recommended approach is to use two or more power planes. The power
planes cover the full area of the PCB and distribute Vcc evenly to all devices, pro-
viding good noise protection. It is recommended that you do not share the same
plane for analog and digital power supplies. Virtually all FPGA devices now con-
tain PLLs, thus board design must accommodate an analog and digital power plane
for the FPGA.

In summary, the power distribution recommendations are:

Use separate power planes for the analog and digital power supplies. –
Place a ground plane next to the PLL power supply plane. –
Avoid multiple signal layers when routing the PLL power. –
Place analog and digital components over their respective ground plane. –
Isolate the PLL power supply from the digital power supply. –

6.4 Signal Integrity

Digital designs have not traditionally been impacted by transmission line effects.
As system speeds increase, the higher frequency impact on the system means that
not only the digital properties, but also the analog effects within the system must be
considered. These problems are likely to come to the forefront with increasing data
rates for both I/O interfaces and memory interfaces, but particularly with the high-
speed transceiver technology being embedded into FPGAs. Transmission line
effects can have a significant effect on the data being sent. However, as speed
increases, high-frequency effects take over and even the shortest lines can suffer
from problems such as ringing, crosstalk, reflections, and ground bounce, seriously
hampering the integrity of the signal. Poor signal integrity causes poor reliability,
degrades system performance, and, worst of all, causes system failures. The good
news is that these issues can be overcome by following good design techniques and
simple layout guidelines.

6.4.1 Types of Signal Integrity Problems

There are four general types of SI problems. These are Signal Integrity on one net, cross
talk between adjacent nets, rail collapse and electromagnetic interference (EMI).

6.4.1.1 Signal Integrity on One Net

Drive strength specifies how much current the driver sources/sinks, while the slew rate
specifies how fast it sources/sinks the current. Together, these two settings determine the

356.4 Signal Integrity

rise and fall times of the output signal. Process technologies with smaller feature sizes
allow faster clocks, but faster clocks also signify shorter rise and fall times. This means
that switching times are reduced even on low frequency signals as the rise and fall times
are set by the technology. This reduction of the switching time comes together with
larger transient current; consequently, larger switching noise. For a high fmax link sig-
nal, it might be necessary to have short rise and fall times, but for a low fmax link signal,
you may reduce the noise by using longer rise and fall times.

6.4.1.2 Crosstalk

Whenever a signal is driven along a wire, a magnetic field develops around the wire.
If two wires are placed adjacent to each other, it is possible that the two magnetic fields
interact causing a cross-coupling of energy between the signals known as crosstalk.

The following PCB design techniques can significantly reduce crosstalk:

1. Widen spacing between signal lines as much as routing restrictions allow.
2. Design the transmission line so that the conductor is as close to the ground plane

as possible. This couples the transmission line tightly to the ground plane and
helps decouple it from adjacent signals.

3. Use differential routing techniques where possible, especially for critical nets.
4. Route signals on different layers orthogonal to each other, if there is significant

coupling.
5. Minimize parallel run lengths between signals. Route with short parallel sections

and minimize long coupled sections between nets.

6.4.1.3 Rail Collapse

Rail collapse is noise in the power and ground distribution network feeding the
chip. Switching I/Os can cause a voltage to form across the impedance of the power
and ground paths. This effectively causes a voltage drop with less voltage reaching
the FPGA, further accentuating the problem.

The solution is to design the power and ground distribution network to minimize
the impedance of the power distribution system.

6.4.2 Electromagnetic Interference

EMI is a disturbance that affects an electrical circuit due to either electromagnetic
conduction or radiation. The disturbance may interrupt, obstruct, or otherwise degrade
or limit the effective performance of the circuit. The source of EMI is rapidly chang-
ing electrical currents.

FPGAs are rarely a source of EMI, however the possibility of EMI being generated
increases with the use of heatsinks, circuit board planes and cables.

36 6 Board Design

EMI can be reduced on FPGAs through:

1. The use of bypass or “decoupling” capacitors connected across the power supply,
as close to the FPGA as possible.

2. Rise time control of high-speed signals using series resistors.
3. VCC filtering.
4. Shielding. This is typically used as a last resort due to the added expense of

shielding components.

The two most common sources of EMI on boards are:

1. The conversion of differential signal into a common signal, which eventually
gets onto an external twisted pair cable.

2. Ground bounce on a board generating common currents on external single-ended
shielded cables.

These EMI effects can be controlled by grouping high speed signals away from
where they might exit the product.

The key to efficient high-speed product design is to take advantage of analysis
tools that enable accurate performance prediction. Use measurements as a way of
validating the design process, reducing risk and increasing confidence in the tools.

6.5 Design Flows for Creating the FPGA Pinout

There are two flows that are recommended to successfully create an FPGA pinout
for the board design. In both flows there is significant communication between the
board designer and the FPGA designer.

6.5.1 User Flow 1: FPGA Designer Driven

In this design flow, the FPGA engineer generates the initial FPGA pin-out and
provides the FPGA pin-out details to the PCB design engineer. The board design
engineer makes suggested pin changes to ease the board design and provides these
details to the FPGA engineer. The FPGA engineer makes the pin changes in the
FPGA design software and confirms if the changes will work for the FPGA design.
This process is continued until a final pin-out is obtained that meets the needs of
both the FPGA designer and the board design engineer.

In reality the initial pin-out that is developed by the FPGA designer needs to be
created with knowledge of the board layout, i.e. the relative location of the board
components, such as memories, transceivers, microprocessors, etc. that the FPGA
will interface with. The FPGA engineer can then make flexible pin assignments,
such as assigning memory interfaces to particular I/O banks and leave the FPGA
design software to make the actual pin assignments. This approach will speed-up
the pin planning process such that the communication between the board design

376.5 Design Flows for Creating the FPGA Pinout

engineer and the FPGA designer is basic pin swapping for ease of board design to
minimize board trace crossovers, etc. as opposed to large scale changes (Fig. 6.3).

Step 1: This first step occurs in the FPGA design software. The FPGA designer
will create an FPGA design project targeting the appropriate FPGA device and
package. At this stage it is recommended that the designer enables any device
migration capabilities that exist in the FPGA design software to accommodate
future design expansion or contraction.

Step 2: The FPGA designer starts to enter pin information based upon the FPGA design.
The FPGA design is unlikely to be complete at this stage in the design cycle however
the interfaces must be solid. At a minimum, a top-level design file should exist. This
provides enough information for the designer to enter the pin names and to start entering
properties of the pins, such as I/O standard, current strength, etc. This information can
be entered into the FPGA design software manually or in most cases can be imported
from other sources, such as Microsoft Excel. The recommendation is that this informa-
tion is defined in the specification for the design and that the specification enables this
information to be available in the .csv format for import into the FPGA design software.
This will greatly shorten this process and reduce the risk of human error.

If interface IP is being used, some of the IP may already contain the pin properties
information. The source files should be added to the design. The FPGA design
software can usually read in the pin properties information.

Step 1.Create Project and
Choose Device

Step 2. Add Pins and
I/O Properties

Step 3. Define Design
Interfaces

Step 4. Make Pin
Assignments

Step 5.Perform I/O Rules
Checking

Iterative
pin changes

Fig. 6.3 FPGA designer
driven flow for creating
the FPGA pin-out

38 6 Board Design

Step 3: Define the design interfaces by configuring the ports and parameters of any
IP being used to make the port connections to the top-level HDL File. As mentioned
previously, it is recommended that a top-level design file already exists, however, in
the case were the specification is complete and the design file does not exist, some
of the FPGA design software solutions can automatically generate a top-level HDL
wrapper file based upon the Pin information that is entered in the FPGA design
software. The top-level design file is needed to enable I/O rules checking in the
FPGA design software. By creating the design interfaces, you are effectively creat-
ing a top-level block diagram of the interfaces to the FPGA design. By providing as
much design information as possible to the FPGA design software, the more com-
plete the I/O rule checks that can be performed by the FPGA design software.

Step 4: Make the pin assignments. If you know the exact pin locations that you
want, you should enter them directly into the FPGA design software. These can
often be imported for IP. If you only know the general area of the device that the
pin needs to be assigned to, then you can make broader assignments such as I/O
Bank 1 and allow the FPGA design software to select the actual pin location.

Step 5: Perform I/O rules checking and generate a valid pin-out. All FPGA design
software has an I/O rule checking capability. This should be run to check the valid-
ity of the pin assignments. Some of the FPGA design software packages have the
ability to generate pin assignments based upon assignments to a specific area of the
device as opposed to specific pins. These assignments can be accepted by the user
to replace the board assignments and passed to the board designer.

I/O rule checking options in the FPGA design software is limited in the mount of
rules it can reliably check without a complete design. Hence, it is strongly recom-
mended that you create a dummy design that includes all of the IP for the interfaces
and clock network details. The interfaces can be terminated with dummy logic such as
FIFO’s where internal design blocks are not yet available. This approach enables the
FPGA design software to check all of the I/O rules with confidence that the same pin-
out can be used when the internal design blocks are added to the design in the future.

Steps 4 and 5 are now performed iteratively until an FPGA pinout is achieved
that works on both the FPGA and the board.

As the design becomes complete any potential pin-out issues should be com-
municated back to the board designer and changes made at either the board or
FPGA design level. Changes will not be required for dummy designs that are rep-
resentative of how the final design will communicate with the pins in the FPGA.

6.5.2 User Flow 2

In this design flow, the PCB design engineer generates the initial FPGA pin-out in
the board design software and provides the FPGA pin-out details to the FPGA
design engineer. Optionally the Board Design Engineer can run the FPGA design
software to enter the pin details. In reality this is rarely the case unless the same

396.5 Design Flows for Creating the FPGA Pinout

engineer is performing both the FPGA and board design. The FPGA design engineer
makes the pin assignments in the FPGA design software and confirms if the assignments
will work for the FPGA design. If there is an issue with the assignments, the FPGA
design engineer makes suggested edits that the FPGA design software shows to be
legal and feeds these changes back to the board designer. This process is continued
until a final pin-out is obtained that meets the needs of both the FPGA designer and
the board design engineer (Fig. 6.4).

Step 1: The board designer creates the FPGA pin assignments based upon the
components on the board that will interface with the FPGA. This requires details
on drive strength and clock restrictions on the FPGA. In reality the Board designer
will work with the FPGA designer on this step, asking questions on where the
transceivers are located on the device, power rail requirements and other possible
restrictions to pin-out. The board designer will then create a first pass at creating
the pinout and pass this information to the FPGA designer.

Step 2, 3 and 4: This is the same as steps 1, 2 and 4 in user flow 1. The FPGA
designer will create the FPGA project, make the pin assignments and assign the pin
properties.

Step 5: The FPGA designer can run the I/O rule checker to validate the pin assignments
and communicate any recommended changes back to the board designer. This process
will continue until a satisfactory pinout is achieved. As in user flow 1, the FPGA

Step 1.Create
Pinout in Board
Design Software

Step 2. Create
FPGA Project &
Choose Device

Step 3. Add Pin
Properties

Step 4. Make Pin
Assignments

Step 5.Perform I/O Rules
Checking

Iterative
pin changes

Fig. 6.4 Board designer driven flow

40 6 Board Design

designer should create a dummy design or use the real design to ensure that the
pin-out will work.

6.5.3 How Do FPGA and Board Engineers Communicate
Pin Changes?

There is a tendency to communicate the pin-out changes verbally or via email.
However, this approach is prone to error. There needs to be an official document
which resides in version control that is used to communicate the changes between
the board designer and the FPGA designer. As mentioned earlier in this chapter,
Microsoft Excel tends to serve this purpose in many Companies. One of the advan-
tages of using Microsoft Excel is that many of the board design tools and some of
the FPGA design software can import and export .csv files.

6.6 Board Design Check List for a Successful FPGA Pin-Out

1. Perform Power Thermal Analysis to ensure that all power planes can deliver the
maximum current required while keeping the voltage rail within specification.

2. Perform pin assignment checking.

a. Check pin assignments in FPGA design software
b. Terminate unused inputs to Ground
c. Terminate unused I/Os as desired
d. Check correct VCCIO for each I/O bank
e. Does design meet the SSN guidelines?
f. Select migration devices to accommodate future design growth or reduction

3. Perform configuration mode check against vendor configuration handbook.
4. Check Power supply connections and decoupling against vendor power supply

recommendations.
5. Perform board Signal Integrity simulations.
6. Compare I/O Timing to I/O Timing Requirements. This requires the design to be

complete or at least the I/O interface portions of the design.
7. Complete board design review between FPGA design team and PCB design

team.

41

7.1 Introduction

The increase in density and performance of FPGAs has resulted in an increase in
power consumed by the FPGA. Both FPGA and PCB design engineers need to
consider the power when making the choice to use an FPGA and a particular
FPGA vendor, as the power consumed by the FPGA will impact the design of the
PCB power supplies, choice of voltage regulators, the heat sink and the system’s
cooling system. In short, it is crucial in developing the power budget for the entire
system.

For applications that are power sensitive and where it is anticipated that
meeting the power budget will be tight, the design engineer needs to perform
power analysis during the development of the design and deploy power saving
techniques as appropriate. Throughout the design cycle, the engineers need to be
able to refine the estimates and apply the appropriate power management design
techniques.

Today’s FPGAs come with a variety of features for reducing the FPGA power,
including power optimization options in the FPGA design software. Details on
power optimization techniques are covered in the RTL coding guidelines and
Timing Closure chapters of the book.

FPGA vendors also provide solutions for estimating the power that will be con-
sumed by the FPGA at different stages of the design flow.

In this chapter we will review the basic elements of power consumption in
FPGA devices, as well as the main factors that impact the ability of a designer to
obtain an accurate estimation of a design’s power consumption. We will look at the
tools and techniques for performing power estimation very early in the design
cycle, in order to enable the right choice of FPGA technology and to select the right
power regulators and components for the board design. Then we will examine the
tools and techniques to enable you to perform a more detailed power estimation
based upon the design implementation. Finally we will review the best practice
recommendations for dealing with power in FPGA designs.

Chapter 7
Power and Thermal Analysis

P. Simpson, FPGA Design: Best Practices for Team-based Design,
DOI 10.1007/978-1-4419-6339-0_7, © Springer Science+Business Media, LLC 2010

42 7 Power and Thermal Analysis

7.2 Power Basics

Thermal power is the component of total power that is dissipated within the device
package. Designers need to consider the thermal power in determining whether
they need to deploy thermal solutions on the FPGA, such as heat sinks, to keep the
internal die-junction temperature within the recommended operating conditions.

The total power consumed by a device, considering its output loading and exter-
nal termination, is comprised of the following major power components.

7.2.1 Static Power

Static power is the power consumed by a device due to leakage currents when there
is no activity or switching in the design. This is the quiescent state. This type of
power is often referred to as standby power and is independent of the actual design.
The amount of leakage current depends upon the die size, junction temperature, and
process variation. This data can be extracted from the FPGA device data sheet or
from the vendors Early Power Estimation Spreadsheet. It is recommended that you
extract the data from the vendors Early Power Estimation Spreadsheet as the data
is generally reported in a much clearer format than in most data sheets.

7.2.2 Dynamic Power

This is the power consumed through device operation caused by internal nodes in
the FPGA toggling. That is, the charging and discharging of capacitive loads in the
logic array and routing. The main variables affecting dynamic power are capaci-
tance charging, supply voltage, and clock frequency. A large portion of the total
dynamic power consumed in FPGAs is due to the routing fabric of the FPGA
device.

Dynamic power is design dependent and is heavily influenced by the users RTL
style.

7.2.3 I/O power

This is the power consumed due to the charging and discharging of external load
capacitors connected to the device output pins and any external termination net-
works. Again, I/O power is design dependent and is impacted by the I/O standard,
data rate, the configuration of the pin as either input or output or bidirectional. The
termination on inputs, and the current strength, slew rate and load for outputs
impact the I/O power.

437.3 Key Factors in Accurate Power Estimation

7.2.4 Inrush Current

Inrush current is the current, hence power, that the device requires during initial
power-up. During the power-up stage, a minimum level of logic array current
(ICCINT) must be provided to the device, for a specific duration of time. This dura-
tion depends on the amount of current available from the power supply. When the
voltage reaches 90% of its nominal value, the initial high current is usually no lon-
ger required. As device temperature increases, the inrush current required during
power-up decreases, however the standby current will increase.

7.2.5 Configuration Power

Configuration power is the power required to configure the device. During configu-
ration and initialization, the device requires power to reset registers, enable I/O
pins, and enter operating mode. The I/O pins are typically tri-stated during the
power-up stage, both before and during configuration in order to reduce power and
to prevent them from driving out during this time.

7.3 Key Factors in Accurate Power Estimation

Before discussing the best approach to performing power and thermal analysis for
an FPGA design, we will look at the key factors for accurate power estimation
(Fig. 7.1).

Toggle rates & signal
probabilities

(from simulation, user entry
and/or vectorless

techniques)

Operating conditions &
device characteristics

Power models of
circuitry

Power Report

Fig. 7.1 Key elements in accurate power estimation

44 7 Power and Thermal Analysis

7.3.1 Accurate Power Models of the FPGA Circuitry

These are the models that are provided by the FPGA vendors as part of their power
estimation solutions. The FPGA design engineer must trust that the FPGA vendor
is being honest with the models. These models are typically developed from
HSPICE and the models correlated with silicon characterization. This process var-
ies slightly across FPGA vendors. The accuracy of the models will vary depending
upon the maturity of the FPGA family. If the FPGA family is new to the market,
the power models will be preliminary and subject to change as the FPGA vendor
completes characterization of the family. The negative impact of the variation
should be minor if the FPGA vendor is conservative in the development of the
initial HSPICE models. Asking the silicon vendor for details on how they develop
their power models will help set your expectations on the accuracy of the models.

7.3.2 Accurate Toggle Rate Data on Each Signal

Toggle rate data, also referred to as Signal Activity, relates to the performance of
the design. While clock speed is important, the average number of times that a
signal changes value per unit of time is more important as this transition impacts
the power consumption.

A logic ‘1’ condition consumes more power than a logic ‘0’, thus the amount of
time that a signal is logic ‘1’ will impact power. This tends to have an impact on
I/O power on pins that use terminated standards.

Toggle rate data is under the control of the FPGA design engineer, in that it is
dependent upon system operation. This information is usually derived from design
simulations or toggle rates which are based upon previous design experience. As
such, entering reasonably accurate toggle rate data is an easier task for designs that
are derivatives of previous designs than for new designs. I cannot overemphasize
the importance of using toggle rate data that is reflective of the end system opera-
tion, as gross inaccuracy in the prediction of the toggle rate is the main source of
error in power estimation.

In many cases, the simulation data fails to represent real world operation. If
simulation is performed for the purpose of measuring code coverage, it is likely to
over predict the power that will be used in operation. As a designer, you need to
avoid the dangerous situation of under predicting the toggle rate, as this will result
in an under estimation of power. However, an over prediction of power may result
in a more expensive power management solution.

The power estimation solutions from the FPGA vendors assume a default toggle
rate of 12.5% unless specified otherwise by the FPGA design engineer. For many
applications, this is sufficient very early in the design cycle, as most designs do not
have a high toggle rate on all nodes, and the end application is specified to cope
with a margin of error within 30% of the total power. However, this may not be the
case for designs in which the majority of the design performs high performance

457.3 Key Factors in Accurate Power Estimation

processing, as is the case in many DSP processing applications. These designs will
typically exhibit a higher toggle rate.

The FPGA vendor power estimation solutions allow you to easily change the
toggle rate values and to quickly see the impact that it has on power. It is recom-
mended that you do what you can to correctly estimate the toggle rate for your
application. It is also recommended that if you are not sure of the toggle rate that
you try a range of toggle rate values to indicate a possible best case and worst case
scenario. Note that it is unlikely that a complete system design will have a toggle
rate above 40%.

7.3.3 Accurate Operating Conditions

When we look at the impact of temperature on standby power, particularly for
devices at process geometries of 65 nm and below, we can see that there is a dra-
matic increase in power above Tj of 85°C (Fig. 7.2).

Temperature has a big impact on static power, as the leakage power is an expo-
nential function of Tj. High leakage increases Tj, which, in turn, further increases
the leakage, forming a potential positive feedback loop. Tj = Ta + qja × (standby
power + dynamic power) where Ta is the ambient temperature, and qja is the ther-
mal resistance between the device junction and ambient air. It is essential to ensure
that the junction temperature remains within its operating range and does not enter
a positive feedback loop. The more power a device consumes, the more heat it
generates and this heat must be dissipated to maintain operating temperatures

4
© 2005 Altera Corporation - Confidential

Standby Power vs. TemperatureStandby Power vs. Temperature

Lower Temperature = Lower Power

Insufficient Heat
Dissipation

Curve affected by Heat
Sink & Cooling System

Junction Temperature (°C)

S
ta

n
d

b
y

P
o

w
er

125°100°75°50°25°

85°Adequate Heat
Dissipation

65°

Fig. 7.2 Graph of standby current versus temperature

46 7 Power and Thermal Analysis

within specification. For the FPGA and board designer it is essential that this is
modeled during power estimation and that the tools used to calculate the power
consider the heatsink used, air flow and other factors to correctly model Tj.

Thus it is important that the FPGA and/or board design engineer uses the appro-
priate thermal management technique to minimize power consumption.

7.3.4 Resource Utilization

There is a fourth element that impacts power and that is the utilization of the resources
in the FPGA device. In general, the more logic used, the more power consumed.

However, as a designer you need to be aware of the impact of the different types
of resources in the FPGA device on power. As the designer or implementer, you
have the ability to trade-off resource type usage, e.g. Logic element usage versus
dedicated hardware blocks, such as RAM and DSP Blocks.

If you look at a typical FPGA design, approx. 65% of the power is core dynamic
power, 24% is core static power, 10.5% is IO dynamic power and about 0.5% is IO
static power.

If we dig into the core dynamic power in more detail, the majority of it can be
attributed to routing and combinational logic in the logic elements. RAM blocks
also consumes significant dynamic power.

The dynamic power for the clock networks consists of the global clock routing
resources plus the power consumed by the local clock distribution within the LEs,
RAM and DSP blocks. Designers can control the dynamic via the choice of
resource type and the use of clock control blocks. This is discussed in more detail
in Chap. 12.

7.4 Power Estimation Early in the Design Cycle
(Power Supply Planning)

As mentioned previously, FPGA Vendor data sheets do not provide much data on
the typical power consumption of an FPGA family. FPGA vendors do however
provide Power Estimation tools to report the power for a given device.

Early FPGA power estimation helps guide power supply design for the board.
More often than not, this task needs to be performed before the FPGA design is
complete or started. The power estimation spreadsheets provided by the FPGA
vendors can be used to estimate the power for your design and to perform prelimi-
nary thermal analysis on your design at various stages of the design cycle.

Figure 7.3 shows a sample power estimation spreadsheet for the Altera Stratix®
IV GX family

The vendor provided spreadsheets are based upon Excel and can be downloaded
from the FPGA vendor website free of charge. The accuracy of the power estimation
increases as you provide more information that is indicative of your operating conditions

477.5 Simulation Based Power Estimation (Design Power Verification)

and of the final design. The maturity of the devices will also impact the accuracy,
i.e. are the vendor power models final or preliminary. With minimal effort this can
provide a good ballpark estimate on power, i.e. within 30% of real numbers;
enabling you to choose the right FPGA technology for your application and to
specify the power supply design. By investing more time on entering more detailed
data on your design and operating conditions, you can typically get within 20% of
the real power. These tools allow designers to enter details on their design and
operating conditions. Some of the FPGA vendor tools have the capability to import
data from their compiled designs into the Power Estimation Spreadsheet. This fea-
ture works well for partial designs or estimating power based upon legacy informa-
tion. This information serves as a starting point and the details, such as the different
resource counts, number of clocks, etc. can be edited in the spreadsheet to reflect
the expected size and characteristics of the final design. This is a much quicker and
less error prone approach to entering data by using the power estimation and analy-
sis solutions that exist in the FPGA vendor software as discussed in Sect. 7.5.

7.5 Simulation Based Power Estimation
(Design Power Verification)

Simulation based power estimation provides the most accurate power estimation
solution, providing the simulation vectors are representative of real system opera-
tion. Simulation based power estimation uses the results from running a simulation

Fig. 7.3 Sample power estimation spreadsheet for the Altera Stratix IV GX family

48 7 Power and Thermal Analysis

in standard EDA tools, such as Mentor Modelsim, Synopsys VCS and Cadence
Incisive, to name a few, in order to simulate the device operation. The resulting
simulation data is used as stimulus to the FPGA vendor simulation based power
estimation tool.

A Vector Change Dump (VCD) file is normally used to transfer the data from
the EDA simulation tool to the FPGA vendor software. The reason why the power
estimation solution in the FPGA vendor software is more accurate than the spread-
sheet power estimation solutions is that full Place and Route has been completed
on the design and at this point the modeling takes into account the actual placement
and the routing types used on the design. The ability to use real life operation vec-
tors also has a large impact on the accuracy of the estimation.

Having a design plus accurate simulation vectors implies that the design is com-
plete or is very close to being complete. Therefore it is recommended for most
designs that this type of analysis is run towards the end of the design cycle to deter-
mine what the real power consumption is for the design. Thus, it is more of a sanity
check that the design is within power budget rather than something that is run con-
tinuously throughout the design cycle.

An exception is power sensitive designs where this data can be used to determine
if the RTL needs to be optimized for power or whether to utilize power optimization
options that exist in the FPGA vendor software. Simulation based power estimation
can be run early in the design cycle on blocks of RTL that already exist to determine
the toggle rate on these blocks for use in the spreadsheet based power estimation
solutions. The power report on these blocks of reusable IP can also be included in
the documentation on the blocks to give other users of the design blocks or IP,
background data on the expected power consumption for the block.

One of the challenges with simulation based power estimation is that the most
accurate power estimation is based upon gate level simulation of the design, as the
toggle rate data from the simulation will be available for every node in the design.
However this type of simulation tends to be runtime intensive for certain application
spaces, such as video and image processing. So while this type of analysis provides the
most accurate power results, the simulation time may make it impractical for certain
applications. Thus, it is recommended that RTL simulations be used for these types of
applications. Gate level simulations can be run as a sanity check on the design, i.e. only
to model certain operating conditions of the design. It is recommended that you use
gate level simulation if the simulation time is feasible for your end application.

An RTL simulation will contain the correct toggle rate on the I/O pins and on
most of the registers. There will be some level of inaccuracy on the registers as
synthesis will perform register duplication and register merging as part of its opti-
mizations. The combinational nodes will also be inaccurate as the names will not
match due to the optimizations performed. This however is not a huge issue, as
most of the simulation based power estimation solutions contain a mode called
vectorless estimation, which can be combined with RTL simulation based estima-
tion to provide an acceptable level of accuracy.

Vectorless power estimation uses a statistical analysis approach to predict the
probability of the nodes between known good data points toggling. If we look at the

497.5 Simulation Based Power Estimation (Design Power Verification)

circuit in Fig. 7.4, if we know the static probabilities and toggle rates of inputs A,
B, C, D, E, F, G and H, it is possible to estimate the static probabilities and toggle
rates at I, J, K, L; hence the final output M.

This capability can be used to enhance the accuracy of RTL simulation based
estimation. As part of best practices we recommend running a sample of gate level
simulations, but for long simulations, RTL + Vectorless estimation is the recom-
mended approach. It is also advised that you perform simulation based estimation
at certain checkpoints throughout the design process. In reality, at this stage in the
project this should be more of a sanity check rather than a necessity. After perform-
ing the early power estimation, you ought to have left sufficient headroom on the
power budget such that you are not constantly optimizing your design for power.
As with Early Power Estimation, you need to vary the operating conditions in terms
of temperature and voltage, to ensure that you are reflecting the real world operat-
ing conditions.

The simulation based power estimation tools generate reports aimed at facilitat-
ing both thermal and power supply planning requirements. These reports pinpoint
which device structures and even design hierarchy blocks are dissipating the most
thermal power, thus enabling design decisions that reduce power consumption. This
provides very high quality power estimates which are usually within 20% of device
measurements, provided the toggle rate data is accurate (Fig. 7.5).

A
B
C
D

E
F
G
H

I

K

L

M
J

Fig. 7.4 Probability of nodes toggling

Fig. 7.5 Sample power estimation report from Quartus II PowerPlay Estimator

50 7 Power and Thermal Analysis

7.5.1 Partial Simulations

One of the challenges in a simulation based approach to power estimation is the
initialization time in the testbench and hence simulation. This can reduce your
effective toggle rate if the simulation is not run to reflect a long period of operation.
You can perform a simulation where the entire simulation time is not applicable to
the signal activity calculation, reducing the accuracy of the estimation. For exam-
ple, if you run a simulation for 10,000 clock cycles and reset the chip for the first
2,000 clock cycles. If the signal activity calculation is performed over all 10,000
cycles, the toggle rates are typically only 80% of their steady state value (since the
chip is in reset for the first 20% of the simulation). Some of the FPGA vendor solu-
tions allow the user to specify the useful parts of the .vcd file for power analysis,
enabling you to ignore the initialization stage as part of the power estimation.

7.6 Best Practices for Power Estimation

See Fig 7.6.

Stage of Design Cycle ToolsTask Additional Content
Legacy Designs
Previous Experience
Design Specification
Early RTL code

FPGA Vendor Power Estimation Spreadsheet Legacy Designs
Previous Experience
Design Specification
Early RTL code

FPGA Vendor Power Estimation Spreadsheet

Spot check Power Based Upon
Evolving Design FPGA Vendor Power Estimation Spreadsheet HDL Design

Testbench
EDA Simulation Tools

Determine Final Power HDL Design
Estimate Power for Power
Optimization Testbench

EDA Simulation Tools
Final Board and Test
EquipmentFinal Design

FPGA Vendor Board Design GuidelinesBoard DesignEarly Power Estimation

Evolving Design
FPGA Vendor Simulation Based Power
Estimation Tool

Estimate Power for Power
Optimization

Device Selection FPGA Vendor Power Estimation Spreadsheet

Board Power Supply Specification FPGA Vendor Board Design Guidelines

FPGA Vendor Simulation Based Power
Estimation ToolMeasure Power on Board

Fig. 7.6 Best practices for power estimation

51

8.1 Introduction

The high level challenges that designers face when writing RTL for FPGA devices
are similar to the challenges that are faced when writing RTL code for ASICs.

1. What is the goal for my design block?
2. Am I trying to achieve the highest performance or smallest area?
3. Is my code functionally correct and is it easy to synthesize in the target synthesis

tool?
4. Is my RTL code reusable?
5. Is my design easy for place and route to successfully compile the design?

There are however unique high level goals that apply to writing RTL for FPGAs.

1. Is my RTL optimized for the target FPGA architecture or can the RTL be tar-
geted across multiple FPGA architectures?

2. Is my RTL optimized for compile time?

As we look in more detail at writing RTL for FPGAs, we come across more differ-
ences compared to writing RTL for ASICs. These differences are due to the archi-
tecture of FPGA devices. This provides us with the first rule of writing RTL for
FPGA devices; “understand the architecture of the target FPGA.”

This chapter provides getting started tips to designers of various backgrounds. It
describes some general FPGA architecture features, before covering general good
practices in writing RTL. It then provides RTL coding guidelines that are optimized
for FPGA architectures, before ending with a summary of best practice recommen-
dations of RTL design for FPGAs.

8.2 Common Terms and Terminology

HDL: Hardware Description Language is a software programming language that is
used to model a piece of hardware.

Chapter 8
RTL Design

P. Simpson, FPGA Design: Best Practices for Team-based Design,
DOI 10.1007/978-1-4419-6339-0_8, © Springer Science+Business Media, LLC 2010

52 8 RTL Design

RTL: Register Transfer Level, defines input-output relationships in terms of
dataflow operations on signals and register values.

Behavior Modeling: A component is described by its input-output relationship.
Only the functionality of the circuit is described and not the structure of the end
implementation. There is no specific hardware intent and the coding style is generic
such that it can target any technology (Fig. 8.1).

Structural Modeling: A component is described by interconnecting lower-level
components and primitives. It describes both the functionality and structure of the
circuit.

It is created with the implementation of the hardware in mind (Fig. 8.2).
Synthesis: This is the translation of HDL to a circuit and then the optimization

of the circuit. Basically the RTL description of your design is interpreted and hard-
ware created for the targeted FPGA architecture. The synthesis tools require certain
coding styles to generate correct logic. The coding style is important for fast and
efficient logic (Fig. 8.3).

input1, .., inputn
output1, .., outputn

if (input1)
for (j=0, j<8, j=j+2)

#5 output1 = 1’b0;
else

for (j=1, j<8, j=j+2)
#5 output1 = 1’b1;

Fig. 8.1 Behavioral modeling

input1

inputn

output1

outputn

Higher-level

Lower-level
Component1

Lower-level
Component1

Fig. 8.2 Structural modeling

538.3 Recommendations for Engineers with an ASIC Design Background

8.3 Recommendations for Engineers with an ASIC Design
Background

The first thing to be aware of is that FPGAs are loaded with registers. Whether you
use them or not, they are in the device that you have purchased. One way to look at
it is that registers are free, therefore use them or lose them.

This use of registers is important for the performance of your FPGA design.
FPGA logic is generally slower than that of ASICs on the same process geometry.
Make use of the registers to pipeline your design to meet the design performance
requirements.

Many ASIC designs make use of latches. Do not do this in FPGA designs. Use
registers in place of latches. This will significantly improve the FPGA clock per-
formance, albeit potentially at the cost of latency.

A common technique in ASIC designs for power reduction and for design test-
ability is to use gated clocks. In FPGA designs, do not gate the clock. Use the
“clock enable” instead. FPGA devices have a limited number of low skew clock
networks that are key to running the design at high performance. By gating the
clock you will exhaust the number of low skew global signals, thereby limiting the
design performance. Clock enable signals are available on all registers in the FPGA
and can be used to achieve power reduction and to test the design functionality
without inflicting unrecoverable damage on the performance of your design.

FPGA devices do not provide the option of using buffers as a safety net to boost
the performance in the design. Thus, when designing timing critical portions of your
design, it is best to be conservative and to guard band your timing requirements.

always @(a or b or c or d or sel)
begin

case (sel)
2’b00: mux_out = a;
2b’01: mux_out = b;
2b’10: mux_out = c;
2’b11: mux_out = d;

endcase

a

d
a

d

Translation

(architectural elements
of target device)

Optimization

a

d
sel

2

binferred mux_out
c

Fig. 8.3 Synthesis

54 8 RTL Design

While you pay for resources in FPGA devices, whether you use them or not, the
resources are limited to the density of the targeted device. You are limited to the
amount of logic, memory blocks and multiplier blocks in the targeted device. In addi-
tion, there is a fixed amount of routing in FPGAs. As your design reaches the higher
boundaries of device utilization, you are likely to see the performance of your design
start to drop off.

8.4 Recommended FPGA Design Guidelines

8.4.1 Synchronous Versus Asynchronous

In summary, practice Synchronous Design. It will help you to meet your design
goals consistently.

Asynchronous design techniques can result in a reliance on propagation delays
in a device, incomplete timing analysis, and possible glitches.

In a synchronous design, a clock signal triggers all events. As long as all of the
registers’ timing requirements are met, a synchronous design behaves in a predict-
able and reliable manner for all process, voltage, and temperature (PVT) condi-
tions. This will enable you to target synchronous designs to different device
families or speed grades.

8.4.2 Global Signals

The FPGA design software will automatically select global routing resources.
Global signal resources are limited and thus should be treated as being expensive.
It is recommended that you try to limit the number of clock domains whenever
possible. You can control the selection yourself, but it is rare that you will achieve
better results than the automated software.

You must select a reset scheme for your FPGA design, be it synchronous or
asynchronous. You need a system reset that puts your entire circuit in a well-
defined state and you should verify its operation by asserting it at the start of the
testbench simulation.

If you are unsure as to which scheme is best for your system, use synchronous
as it is easier to understand.

If you decide to use an Asynchronous reset, the asynchronous reset should be
driven by a synchronizer as shown in Fig. 8.4.

Why should an asynchronous reset be driven by a synchronizer?
When the reset is released, there is no sure way of knowing when this occurred in

relation to the clock. Some registers may see the clock first, some the released reset
resulting in mixed register states. If you have a short reset, it may not be seen at all.

The synchronizer circuit in Fig. 8.4 mitigates all of these issues.

558.4 Recommended FPGA Design Guidelines

8.4.2.1 Clock Network Resources

FPGAs provide device-wide global clock routing resources and dedicated inputs.
You should use the FPGA’s low-skew, high fan-out dedicated routing where
available.

You should limit the number of clocks in your design to the number of dedicated
global clock resources available in your FPGA. Clocks feeding multiple locations
that do not use global routing may exhibit clock skew across the device that could
lead to timing problems.

The use of combinational logic to generate an internal clock adds delays on the
clock line. In some cases, the delay on a clock line can result in a clock skew greater
than the data path length between two registers. If the clock skew is greater than the
data delay, the design will not function correctly.

8.4.3 Dedicated Hardware Blocks

All FPGA vendors provide custom resources, designed to perform a small set of
functions very efficiently. However, by instantiating these functions in your RTL
code, you are locking your code to one vendor or possibly even to one FPGA fam-
ily. This effectively reduces the reusability of your design. You are also likely to
suffer from slower RTL simulation. Your behavioral description of your mode of
RAM operation is likely to simulate much faster than the parameterized RAM
model from the FPGA vendor. The FPGA vendor model covers every possible
usage scenario and subsequently can simulate more slowly.

In some cases you may have no other option other than to use these optimized
macros, as they may be the only way to access certain capabilities of the device.
Examples of where these would be used are PLLs for the clock tree, or transceiver
blocks for high speed serial interfaces. It is normal practice to use the vendor pro-
vided building blocks for these types of applications. They can usually be replaced
by the equivalent technology primitives from other families or vendors with mini-
mal disruption to your design. Much like using purchased IP.

However, you may want to consider inferring the other blocks such as the inter-
nal RAM blocks and DSP blocks. These need only be instantiated if you need
access to underlying technology that cannot be reached by RTL inference.

D
Q

D
Q

clk
rst

aclr aclr

rst_n, to system
ACLR ports

Fig. 8.4 Synchronizer for
an asynchronous reset

56 8 RTL Design

These functions from the FPGA vendor have a limited degree of parameterization
and usually come with a wizard to help select the right parameters along with the
user documentation.

Easy to do, GUI assisted

Fully leverages HW features

Architecture specific

Requires library files to simulate

Architecture independent

Simple to simulate

Instantiation:

Pros

Cons

Inference:

Pros

Cons
Fiddly hand-coding

Dependency on CAD tool

Fig. 8.5 Instantiation
versus inferencing

8.4.3.1 Instantiation Versus Inferencing

See Fig. 8.5.

8.4.4 Use of Low-Level Design Primitives

This section deals with the use of vendor specific low level design blocks, such as
carry chains and LUT primitives to implement your design.

FPGA designers have been using this design technique since the invention of the
FPGA. In the dark and distant past, it was the only way to guarantee the implemen-
tation of your design through synthesis. EDA synthesis tools have become a lot
smarter over the years to the point where using this design style has become the
exception as opposed to the norm. It really is akin to assembly level programming
for hardware design or designing in schematics, only more painful in that you have
to declare the wiring connections of the blocks in HDL.

So why has this style of design not disappeared completely? After all it is a
tedious way of designing, synthesis tools are now exceptionally smart and the use
of these low level primitives can reduce the ability to reuse the design block.

Well, in certain cases a good designer can still outsmart a synthesis tool. Take
addition for example. Synthesis tools tend to restructure arithmetic and absorb logic
that feeds adder chains opportunistically. The absorption is heuristic and occasion-
ally produces sub-optimal groupings. If a designer thinks about the target hardware
and structures the HDL accordingly, he can ensure that he gets the densest possible
packing. The use of the low-level primitives makes the intent explicit, independent
of the surrounding logic. An example where this approach to design is useful would
be where you need to bit slice an adder, to clearly identify the intended carry-in and
carry-out signals.

57

It is recommended that you avoid using these low-level primitives, unless performance
or area packing is a problem for your end design. Use standard RTL coding tech-
niques and if you cannot get the implementation that you need for the design, then
consider using low level primitives to achieve your goal. It is possible to build up your
own library of blocks comprised of low level primitives, e.g. an optimized ternary
adder, or CRC. However you need to be aware that these blocks can only be reused
with that FPGA vendor and in some cases, only with that particular FPGA family.

8.4.5 Managing Metastability

If the data at the input to a register violates the registers setup and/or hold time
requirements, the output of the register may go into a metastable state. In this state,
the output of a register oscillates at a value between the high and low states. If this
value propagates throughout the circuit, registers may latch the wrong value, causing
system failure.

Metastability problems commonly occur when a data signal is transferred
between two sets of circuitry that are in unrelated clock domains.

It is good practice for asynchronous signals to travel through two to three regis-
ters before being used in order to avoid potential metastability issues (Fig. 8.6).

D
Q

D
Q

clk

din

aclr aclr

din_syncFig. 8.6 Two-register synchronizer

8.5 Writing Effective HDL

8.5 Writing Effective HDL

The first rule in writing effective RTL is to divide and conquer. Try to split the
design into smaller, unrelated problems for ease of tackling. Start with the areas of
the design that you expect to be problematic, particularly the bus interfaces. The
system should be designed such that you can exercise and test individual blocks,
even if all blocks are not yet present in the design. Besides helping out early in the
development process, this practice will allow you to make progress when specific
blocks of your design are being revised or are otherwise unavailable.

Follow good synchronous design practices; asynchronous designs that are pos-
sible in ASICs because of tight control over timing delays can easily run into
trouble in FPGAs. Pipelining your design, as well as registering all ports provides
several benefits. First, it breaks combinational logic into more easily synthesizable

58 8 RTL Design

portions. Pipelining also allows easier debugging since FPGA verification tools can
easily access the inputs and outputs of registers. Finally, it allows more options for
optimizing performance through register placement.

8.5.1 What’s the Best Language

For the purposes of this book we are only going to consider HDLs that have an
IEEE standard associated with them, i.e. VHDL, Verilog and SystemVerilog.

In the distant past there were numerous HDLs for targeting PLDs. Some of these
were developed by FPGA vendors. Once the IEEE endorsed Verilog and VHDL as
standards, these languages quickly conquered the ASIC design market and gained
in popularity in the FPGA market. Verilog, including SystemVerilog, and VHDL
provide the advantage of allowing users to be able to use the same language for
design implementation as for describing the test stimulus for simulation. Today,
Verilog and VHDL have effectively obsoleted the old PLD languages.

So, which of these languages is the best language for FPGA design?
There isn’t a “best” language. All of these IEEE standard languages have

strengths and weaknesses.
VHDL tends to be more verbose than Verilog, but also tends to be more feature-

rich. VHDL has strong type checking which makes it harder to make silly mistakes.
Verilog is concise but loosely typed.
In summary Verilog and VHDL both work well for FPGA design. The choice of

language is based upon personal preference. The key ingredient is that when you
choose a language, make sure that you fully understand the language. Read up on the
details of the language, as there are many non-obvious semantics in both languages.

A good starting point is to buy a copy of the relevant IEEE standard. While
standards can make for dry reading, they will cover the details that HDL design
books often gloss over.

There is an abundance of material on the web from white papers to training
courses on HDL coding. These are good for getting a feel for the language and build-
ing a base knowledge in the language. I recommend paying for the cost of a hands-
on HDL course from one of the many technology training vendors, local Colleges,
EDA vendors or FPGA vendors. The instructors will tend to have a wealth of infor-
mation that is often not covered in books and the hands on experiments will give you
experience in the tools that you will use for creating the design.

8.5.1.1 Mixed Language Design

Most of the EDA synthesis tools on the market support designs that contain a mix
of HDLs. There are however challenges in doing this and as such, it is recommended
that you do not adopt a mixed language design unless you have no option.

So when would you have no other option but to use a mixed language design?

598.5 Writing Effective HDL

1. If you purchase IP that is written in a different HDL than the one that you have
standardized on.

2. You are reusing design blocks from another design that was created in the “other”
HDL.

If your organization has a “genius” that prefers a different language to the language
that you have chosen, this is not a good reason to use mixed language design. This
“genius” needs to comply with the Company’s standard.

So, what are the problems that you may encounter when creating a mixed
language design.

1. It is easy to make a non-portable design. There is no IEEE standard for mixed
language design; consequently EDA tools make up their own rules, which can
result in a non-portable design.

2. Verilog is case sensitive, VHDL is not. If you deploy case sensitivity into your
naming scheme you could be heading into a minefield.

3. Not all simulators support mixed language design. Most of the major EDA simulation
tools do, but it will cost more than the entry level version of the simulation tool.

So while it is recommended that you avoid mixed language design it can work if a
module or entity to be instantiated in another language has bit or vector ports and
simple parameter types.

8.5.2 Good Design Practices

8.5.2.1 Documented Code

It should be common practice in an organization to include good documentation on
major design blocks. This is an additional document to the RTL code for the design.
This document should explain the structure of the design, including block diagrams
and a description of the hierarchy. It should also include a description of timing
details, such as which paths are timing exceptions. Timing exceptions are covered
in detail in the timing analysis chapter of this book.

Documentation on major design blocks, such as block diagrams is essential for
design reuse. If you do not understand what you are trying to reuse, you are unlikely
to be successful in reducing your design cycle through design reuse. Documentation
is also very helpful when you are returning to a design that you completed in the
past and for the training of new hires in the organization who are taking over the
maintenance of, or completion of your design block.

The RTL code for the design block should be self documenting, i.e. the naming
conventions used in the RTL should be descriptive of what the signal is doing, e.g.
dram_ctrl, regfile0, crc32, egress_buffer. Comments should be used extensively
throughout the RTL to explain the functionality of the code, e.g. identification of test
signals or multicycle paths and the purpose of certain modules within the design.

60 8 RTL Design

8.5.2.2 Recommended Signal Naming Convention

Create a company naming convention and adhere to it!
A standard naming convention needs to exist throughout your Company.
This will make code reviews much more productive. There are EDA tools on the

market to help establish coding guidelines and to enforce the coding standards. I
highly recommend that you invest in an EDA Lint tool to enforce your Companies
coding guidelines. This should also be built into your interaction with your version
control software. All RTL code must pass the Lint tool with a clean bill of health
in order to be checked into version control.

As discussed previously, all of the names used for ports, signal and variables,
should be meaningful.

Here are some standard conventions that you should consider using as part of
your signal naming convention.

“reset” or “rst”: reset signals.
“clock” or “clk”: clocks.
“clk125 or clock_125”: 125-MHz clocks.
“rst125 or reset125”: reset synchronized to the 125-MHz clock domain.
Suffix “_n”: an active low signal and the negative half of a differential signal,

e.g. we_n is an active low write enable.
Suffix “_p”: the positive half of a differential signal.
Prefix “a”: an asynchronous control signal, e.g. aclr is an asynchronous clear signal.
Prefix “s”: a synchronous control signal, e.g. sload is a synchronous load

signal.
“en or ena”: Clock enables.
“_ack, _valid, _wait: bus flow control signals.
Use UPPERCASE: to identify parameters, enums and constants.

While constants generally minimize during synthesis, they are important for
understanding the logic structure.

Bus signal rules:

Ensure that you use a uniform bus order. The most common use in industry is
MSB:LSB, e.g. [63:0].

Avoid declarations that omit the LSBs, e.g. [7:3]. These increase the likelihood
of structural errors in hooking up design blocks.

It is safe to omit unused MSBs, e.g. [12:0] rather than [15:0]. This has the ben-
efit of reducing the analysis time in synthesis tools and also in reducing the number
of warnings generated by the synthesis tool.

8.5.2.3 Hierarchy and Design Partitioning

Hierarchy is essential for design partitioning and should be designed for carefully.
A good hierarchy is helpful for zooming in on problem areas of the design. Too

618.5 Writing Effective HDL

many levels of hierarchy can also make a design difficult to understand. So, you
need to keep the hierarchy depth modest.

A flat design is virtually impossible to understand and will cause problems in debug.
The design should be partitioned along functional boundaries. This makes it easier

to see the design’s behavior. When looking at the hierarchical partitioning of the design,
the hierarchy of the design files should follow the spirit of block diagrams with one
Verilog/VHDL module per text file. This improves the understanding of the design and
will not impact the optimizations that can be applied by the EDA tools, as synthesis
tools will optimize across block boundaries freely, unless you instruct them otherwise.

A benefit of doing this is that it facilitates standalone simulation of sub-designs.
It also enables you to perform block performance analysis quickly.

When partitioning designs across functional boundaries you should register all
inputs and outputs of the blocks. This may cost you in terms of latency in the
design, however the benefits that this will bring will usually far outweigh the cost.
This method of insulating the blocks can be a life saver when it comes to timing
closure, as critical paths are usually contained within a single partition and can be
worked on in isolation from the rest of the design (Fig. 8.7).

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Easy to route

Minimizations and critical paths
tend to stay within blocks

Registers easy to find
in final results

Good setup for incremental compilation.
Is this a hard requirement? NO. Just make an effort.
Partial compliance = partial benefit.

Fig. 8.7 Good design
partitioning

In the recent past, this extremely valuable advice was rarely 100% honored by
designers, as it requires upfront planning on the design. A common mistake among
designers is to design with the mindset, “I can register the ports of the block later
if I need it.” This statement is a vast underestimation of the effort that this will
require. Any late latency changes will ripple through the rest of the design.

When partitioning the design, you must avoid inserting glue logic between parti-
tions, as shown in Fig. 8.8.

Do not use tri-state or bi-directional ports on hierarchical boundaries unless they
will always interface with device I/O pins. FPGA devices do not have internal tri-state
busses. As such, the hardware versus simulation behavior is difficult to understand as
the functionality will be implemented with multiplexers.

62 8 RTL Design

The recommended way to handle this is to use the approach detailed in Fig. 8.9.

Module A Module B’

Glue
Logic

GOOD

Module A Module B
Glue
Logic

BAD

Fig. 8.8 Example bad and good partition

Input : my_bus_in [16];
Output : my_bus_out [16];
Output: my_bus_oe;

Fig. 8.9 Sample code for dealing with tristates at partition boundaries

Desired
circuit

sub

Identify required
subfunctions

HDL Simulation

Write Verilog Behavioral test

P&R

Speed / Area
evaluation

Sub.v

Optimized block

sub HDL Simulation P&R Sub.v

sub HDL Simulation P&R Sub.v

Fig. 8.10 Divide and conquer approach to RTL design

Good design partitioning enables you to adopt a divide and conquer approach
for building optimized design blocks.

The building blocks can be developed in parallel, potentially by different teams
as shown in Fig. 8.10.

These optimized sub-blocks can be combined to form an optimized system with
minimal effort (Fig. 8.11).

638.5 Writing Effective HDL

8.5.2.4 Design Reuse

There is a complete chapter in this book dedicated to design reuse. In this section
we will cover how the HDL coding style can impact design reuse.

Reusability will happen if the design is synchronous and reasonably partitioned
for hierarchy.

It is very common for the FPGA design to be reused in its entirety in the next
generation chip. This may happen for cost cutting reasons, i.e. combine multiple
designs into a larger device, migration to an ASIC or for the addition of new func-
tionality to the next generation system in a larger FPGA device.

Optimized blocks will be generally reusable but may require some changes in cases
where you have used dedicated design primitives that are specific to a particular family.

So, what constitutes a good FPGA building block:

1. Something of which the purpose/functionality can be easily described.
2. It can be customized with parameters.
3. It is standalone testable.
4. It has registered IO. This provides timing closure insurance.
5. It uses a standard protocol interface.
6. The RTL code is self Documenting.
7. The number of signals on the boundary is limited. Too many signals make it dif-

ficult to interface with the design block.

What to avoid:

1. Too many levels of hierarchy in the design block.
2. The design block is too small.
3. It is difficult to interface with the design block because it requires a lot of spe-

cialized signals.

8.5.2.5 Techniques for Reducing Design Cycle Time

The RTL design cycle time can be shortened through both simulation and synthesis
techniques.

Sub.v

Optimized
 blocks

Sub.v

Sub.v

Optimized top

Merge to form
 top design

Place & Route

Compile to
 FPGA

Board testing

Fig. 8.11 Combine sub-blocks to create an optimized design block

64 8 RTL Design

Spending effort up from in functionally simulating the sub-designs will catch
problems that are hard to catch when you simulate the whole design or when you
are trying to debug a problem with the chip while operating on the board. It can be
tedious, but it is much faster and easier to eliminate bugs at the lowest level.

There are a number of techniques that you can utilize to reduce the RTL synthesis
time.

1. Perform an area evaluation. Run through the synthesis tool to get a ballpark fig-
ure of the size of the designs. Now you may be asking yourself why ballpark and
not an exact area result? There are two main reasons. Firstly, when your design
block is combined with the other design blocks, the synthesis tool performs a
number of cross-boundary optimizations. Secondly, FPGA Place and Route
tools perform a number of optimizations, e.g. packing unrelated registers with
LUTs and merging of memory blocks.

2. Perform place and route on the sub-block for a performance confirmation when
the sub design is almost done. If you just meet performance, you should try and
build some margin in place for when the complete design is integrated. A 10%
margin is good. 15% is better.

3. Try to avoid doing any hand placement or floorplanning early in the design cycle.
Instead change the RTL source to meet your performance goals.

There will be times when this is not possible. When you come across one of these
cases, you should detail this in the documentation for the design and make use of
incremental design practices for locking down the performance of the block.

You need to try and reduce the number of design iterations that you need to run,
as iteration time is expensive for large FPGA devices. In most synthesis tools, syn-
thesis runtime is approximately linear with design size. The harder the synthesis tool
has to work, the longer the synthesis time and quite likely the place and route time.

When structuring your design, you need to remember that the smaller the cones
of logic the faster the design performance and synthesis time. In effect, more pipe-
lined designs have smaller cones of logic and faster performance as well as shorter
synthesis time.

If your design has deep tangled cones of logic, the synthesis tool has to try harder
to traverse the logic untangling the logic cones, resulting in a longer synthesis time.

8.5.2.6 Design for Debug

This topic is covered in more detail in the chapter on In-System Debug. In this sec-
tion we will cover some techniques that can be used at the RTL code level to
increase the ability to debug your design in-system.

1. Register the signals that you want to see in the chip. These signals are less likely
to be optimized away by synthesis.

2. Hierarchically partition the design for ease of debug. For example, if you have
an interface that you are concerned about, you can place it at the edge of a device
with the interface feeding I/O pins, which makes it easy to monitor.

658.5 Writing Effective HDL

3. Build test blocks that can easily be extracted from the end design.
4. Ensure that there are free memory and logic resources in the device to enable the

use of Embedded Logic Analyzers.
5. Leave free pins on the design for access to debug signals.

8.5.3 HDL for Synthesis

Most Hardware Description Languages were originally developed for simulation
and not for synthesis. As such, it is easy to describe functionality that can’t be reli-
ably implemented in hardware. You need to be aware that many synthesis tools will
synthesize questionable code, which can result in an end result that may not match
your simulation results. In this section, I am not going to show you examples of
code that can be confusing, but rather recommend that you invest in an RTL coding
training course or book. There is a standard subset of Verilog and VHDL that all
synthesis tools understand and for which they will provide the same functional
implementation. Study and adhere to this standard.

So, what are the guidelines?

1. Keep the hardware in mind when describing your design. What I mean by this is make
sure that you can express the functionality in terms of logic gates and registers.

2. Know the limitations of the target device.
3. When your design has run through synthesis successfully, examine and elimi-

nate the warning messages in the synthesis tool.

8.5.3.1 Coding Styles

When creating your design, should you design structurally of behaviorally?
In practice you will and should use both structural and behavioral coding styles.

Old school FPGA designers will tell you that you need to use a highly structural
design to guarantee the design implementation and performance. In reality, this is
only true for designs that are pushing the envelope of performance and in these
cases, only for a very small portion of the design; if at all.

The top-level module is invariably a collection of sub-instances, wired together
with nets.

The sub-modules mostly implement core functionality with a behavioral style.
It is recommended that you describe your design using the most compact lan-

guage constructs from the recommended synthesis coding guidelines. This makes
it easier to understand the functionality of the design.

It is a general rule of coding that the less lines of code that you write, the less
you need to debug.

You should also only instantiate basic primitives when necessary. These may be
required to meet your performance requirements or to access device-specific func-
tionality, e.g. I/O primitives, transceiver blocks, etc.

66 8 RTL Design

8.5.3.2 General Verilog Guidelines

We are not going to cover Verilog coding guidelines extensively but will touch on
a few essential recommendations.

1. Invest in a Verilog RTL coding book or a copy of the IEEE Verilog standard.
2. Appreciate the different between non-blocking assignments (<=) and blocking

assignments (=).
Use = (blocking assignment) when modeling combination logic.
Use <= (non-blocking assignment) in an edge-triggered always block with the
following two exceptions.
Exception 1: Assignments to temporary variables.
Exception 2: Assignments to a RAM with write-before-read semantics.

3. Consider expression size.
You can freely assign a 16-bit vector to an 8-bit vector.
The context of an expression can alter the size of its operands, i.e. extend their
precision.

4. Consider the expression sign.
A single unsigned operand can coerce the sign of all the operands in a complex
expression, e.g. unsigned_a + signed_b + signed_c.

5. Beware of implicit net declarations.

8.5.3.3 General VHDL Guidelines

Again, we are not going to cover VHDL coding guidelines extensively but will
touch on a few essential recommendations.

1. Invest in a VHDL RTL coding book or a copy of the IEEE VHDL standard.
2. Standard Packages.

Use rising_edge(clk) and falling_edge(clk) for edge conditions (ieee.std_logic_1164)
Use ieee.numeric_std and ieee.numeric_bit for unsigned and signed types/operators

3. Don’t use meta-values (“X”, “U”, “Z”, “-”) in case statement choices.
The semantics of built-in VHDL “=” operator requires an exact match.
In particular, “X” and “-” don’t behave as don’t cares!

4. Constrain integer subtypes with actual dynamic range, e.g. integer range 7–0.
This reduces the hardware costs dependence on bit-width optimizations.

8.5.3.4 Designing for Performance

The main rule in achieving the fastest clock performance in a FPGA design is to
pipeline your design. Remember, registers are included in the FPGA cell fabric
whether you use them or not.

Select a target number for the levels of logic between the registers based upon
the data sheet numbers for the LUT and register delays for the FPGA technology

678.5 Writing Effective HDL

that you are targeting. You should aim to maintain this target in all of the sub-blocks
of the design.

There are advanced settings in synthesis tools and Physical Synthesis tools that
can improve performance using techniques such as register retiming. These are
good at fixing a small number of long paths in the design. However, fixing this
manually in the RTL, guarantees the performance, reduces the compile time and
will make the design block reusable. This approach also guarantees the implemen-
tation of the design block if you upgrade to a newer version of the FPGA design
software.

Figure 8.12 shows a design with two levels of logic between the registers.
Pipeline your design more than you expect. Figure 8.13 shows how an extra

pipeline stage can be used to help the place and route engine meet performance. If
the path shown is spread across the chip, possibly due to pin placement at both ends
of the path, the “wasted” register can be used to break up the long routing delay,
enabling you to meet your clock requirement.

D Q LUT LUT D Q

Two levels between registers

Fig. 8.12 Two-LUT
levels between registers

D Q D
Q

D Q D
Q

D
Q

The presence of this “wasted”
register can save the day during
place and route.

D Q D
Q

D Q D
Q

D
Q

Fig. 8.13 Use of pipeline stages to break up routing delays

 Timing Margin

When designing your sub-block, you should always be looking ahead to system
timing closure. Compile the sub-designs standalone and monitor the timing perfor-
mance using static timing analysis. You should always build margin into the timing
requirements for the sub-designs. This will allow headroom for integration with the
rest of the design.

68 8 RTL Design

Standalone designs get first choice placement and routing. However when the
overall design is integrated, not every sub-design can have first choice in a full chip.
You should try and budget for a 10–15% speed degradation. It is much easier to
avoid system timing problems than it is to fix them later. You do not want to put
yourself in the scenario where a change to the specification late in the design cycle
results in your module going from narrowly meeting timing to missing timing;
making you the delay in being able to ship the product.

Do not trust estimated timing numbers from synthesis. Placement has a big
impact on timing.

Sub-designs tend to be relatively small and do not take much runtime to get the
true place and route timing numbers.

8.5.3.5 Designing for Area

When you are writing your RTL, think about what logic you are creating. For exam-
ple, do you want one adder or two? Could you construct the RTL to get one adder?

Be familiar with the logic structure of the target architecture. What control signals are
available on the registers and how is the LUT structured, 4-input LUT, 6-input LUT?

Look at the synthesis report to get a good estimate on logic used. Most synthesis
tools detail the resource utilization on a hierarchical basis. This is helpful in deter-
mining if certain blocks are consuming more logic than anticipated.

For smaller design blocks, you should use netlist viewing tools to analyze the
optimization, e.g. one adder versus two, and so on.

If you have very slow logic in the design, consider deploying time division mul-
tiplexing. This approach is common place in DSP designs where one FIR runs 2×
or 4× required rate to save on resources.

When examining your design, look at duplicate registers and logic. These typically
occur due to multiple design blocks duplicating functionality. While a small number
of duplicates may be good for speed it is possible that you could achieve heavy area
savings by removing the duplication. If you see possible heavy area savings, this may
be an indicator of poor design hierarchy partitioning. You should consider creating a
separate level of hierarchy for the common portion of the design.

8.5.3.6 Synthesis Tool Settings

All synthesis tools come complete with dozens of options for optimizing your
design to meet you target goal. These settings can be very effective, however you
may not be guaranteed the exact same impact in a future release of the EDA tool.
By using these advanced settings, you are effectively removing the guarantee of
your RTL being reusable. Despite the marketing literature on the EDA synthesis
tool, it is recommended that you try to maintain the default Synthesis settings and
perform your optimizations in the RTL code, ensuring that your design is reusable.
If there is a setting that you have to use to meet your goals, this should be fully
described in the documentation for the design block.

698.5 Writing Effective HDL

8.5.3.7 Inferencing of FPGA Design Blocks

 RAMs

Most synthesis tools have the ability to infer basic RAMs with a single read and
write operation.

A few synthesis tools can also infer true dual-port RAMs.
Synthesis tools cannot infer all of the advanced features of the RAMs in FPGA

devices. These capabilities can be utilized either through the addition of attributes
to your RTL or through the instantiation of RAM primitives.

When writing the RTL that describes a RAM, you need to be aware that your
coding style may be such that the memory blocks require the addition of external
logic to match the behavior of your HDL.

When describing RAM blocks, it is recommended that you begin with the RAM
templates provided by your synthesis tool. From this, you can then create your own
library of RAM modules and re-use them in every design. The philosophy behind
this is that you work out all the tool/device inferencing issues in advance. This
makes it easy to replace inferred RAMs with instantiated RAMs, as needed.

Avoid unsupported read-during-write behaviors. The synthesis tools will need to
insert extra logic to achieve the functionality. This bypass logic will result in an
increase in area and slow the performance of the design.

 Read During Write Behavior

Does a simultaneous read/write to the same address returns the OLD data or the
NEW data? It depends on the HDL.

Figure 8.14 details a coding style that will infer a RAM that returns the NEW
data on a simultaneous read/write.

always@(posedge clk) begin
 if(we) ram[addr] = data; // blocking write
 q <= ram[addr]; // q reads NEW data if we == 1'b1
end

Fig. 8.14 New data on simultaneous read/write

Figure 8.15 details a coding style that will infer a RAM that returns the OLD
data on a simultaneous read/write.

always@(posedge clk) begin
 if(we) ram[addr] <= data; // non-blocking write
 q <= ram[addr]; // q reads OLD data at addr
end

Fig. 8.15 Coding style that will infer a RAM that returns the OLD data on a simultaneous read/
write

70 8 RTL Design

Figure 8.16 details the coding style for initializing the RAM.

-- RAM initializes to all 1’s
Signal my_ram : ram_t := (others => ‘1’);

// RAM initializes to all 1’s
ram [31:0] ram[0:15];
intial begin
 for(i = 0; i < 16; i = I + 1) ram[i] = 1;
end

Fig. 8.16 Initialize the RAM
contents to all 1 s

always @ (posedge clock)
begin
case (address)
8'b00000000: data_out = 6'b101111;
8'b00000001: data_out = 6'b110110;
...
8'b11111110: data_out = 6'b000001;
8'b11111111: data_out = 6'b101010;
endcase
end

Fig. 8.17 Inferencing of a ROM

S1 S2 S3S0
~reset

Fig. 8.18 Finite state machine

type state_type is (S0, S1, S2, S3);
signal my_fsm : state_type;
State names based on the enum names

Fig. 8.19 Use of enumerated types in
VHDL for state machine inferencing

 ROMs

EDA synthesis tools can detect sets of registers and logic that can be implemented
as ROMs in memory blocks.

Figure 8.17 shows how a ROM can be inferred through the use of case state-
ments and registering of the output.

 Finite State Machines

When creating Finite State Machines, you should always specify your reset condition
using an asynchronous condition; otherwise, the synthesis tool will guess your reset
state which may cause functional issues for your design (Fig. 8.18).

In VHDL, FSMs are inferred from signals/variables which have enumerated
types (Fig. 8.19).

718.5 Writing Effective HDL

In Verilog, FSMs are inferred from variables with the following properties.

1. Assigned values are constant expressions or module parameters.
2. Variables are not declared as an output port or used in a port connection.
3. They are referenced or assigned as a whole.
4. The state names are based on binary representation of state value or the name of

the parameter that represents the state.

Figure 8.20 details an example of a Verilog FSM.

localparam S0 = 0, S1 = 1, S2 = 2, S3 = 3;
reg [2:0] state_reg;

always@(posedge clk or negedge reset)
If (~reset)
 state_reg <= S0;
else
 case(state_reg)
 S0: state_reg <= S1;
 S1: state_reg <= S2;
 S2: state_reg <= S3;
 S3: state_reg <= S3;
 Endcase

Fig. 8.20 Verilog FSM

You should always specify your reset state.
In VHDL, use STATE_TYPE’FIRST
In Verilog, state with value == 0 or the state with the smallest value.

 State Machine Encoding Styles

Most FPGA synthesis tools have a default state machine style that they will use.

State Binary
Encoding

Grey-Code
Encoding

One-Hot
Encoding

Idle 000 000 00001

Fill 001 001 00010

Heat_w 010 011 00100

Wash 011 010 01000

Drain 100 110 10000

Fig. 8.21 State machine encoding
styles

One-hot encoding is generally used for FPGA devices as the architecture fea-
tures lesser fan-in per cell and an abundance of registers.

Binary (minimal bit) or grey-code encoding is generally used for CPLD or product-
term devices, as these architectures feature fewer registers and greater fan-in (Fig. 8.21).

72 8 RTL Design

 Safe State Machines

One-hot encoded state machines are commonly used in FPGAs, due to the avail-
ability of registers. However, given n encoding bits, there are 2n − n illegal states.
Many of the synthesis tools targeting FPGAs will optimize away any manual recov-
ery logic that you have created. They tend to have a safe machine option that can
be set in the tool or controlled through the use of synthesis attributes. Make sure
that you use this option as noise and spurious events in hardware can cause state
machines to enter undefined states.

If state machines do not consider undefined states, it can cause mysterious
“lock-ups” in hardware. It is good engineering practice to consider these states.

 Large Complex State Machines

Embedded Processors are ideal for implementing large complex state machines.
Most FPGA vendors provide soft processors that can be used for this purpose

with an easy to use “C” programming environment for describing the state machine
operation. When using dedicated hardware to implement state machines, each addi-
tional state or state transition increases the hardware utilization. The advantage of
using a soft processor is that the hardware resources consumed are fixed, with the
exception of the memory resources, which depends upon the size of the state
machine. A processor by definition, is a state machine that contains many states.
These states can be stored in either the processor register set or the memory avail-
able to the processor; the advantage that this provides is that state machines that do
not fit in the footprint of a FPGA can be implemented using memory connected to
the soft processor.

The FPGA vendors provide guidelines on implementing state machines with
their particular flavor of soft processor.

 DSP Blocks

Most FPGA devices contain a fixed amount of dedicate hardware that is optimized
for multiplication operations.

FPGA synthesis tools recognize the * operator and will infer the appropriate
hardware in the FPGA silicon.

Some EDA synthesis tools have the additional capability of being able to detect multiply-
accumulate operations and multiply-addition and to infer the dedicated DSP block.

In addition, some of the tools will map input/output registers into the DSP
blocks to pack registers, improving performance and area utilization.

However, some of the more advanced features of the DSP blocks, such as high
pipeline modes are only available via vendor primitives and these DSP blocks must
be instantiated in the design.

Figure 8.22 details a Multiply-Accumulate operation that will infer the dedicated
DSP block.

738.5 Writing Effective HDL

 Registers

FPGA synthesis tools infer registers from the same basic if-else templates.
In verilog, asynchronous conditions differentiate the clock from asynchronous

controls, as shown in Fig. 8.23.

always@(posedge clk or negedge rst)
begin
 if(~rst) q <= 1'b0;
 else q <= data;
end

Fig. 8.23 Verilog exam-
ple of a register

assign multa = dataa_reg * datab_reg;
assign adder_out = multa_reg + dataout;

always @ (posedge clk or posedge aclr)
begin
 if (aclr)
 begin
 dataa_reg <= 0;
datab_reg <= 0;
multa_reg <= 0;
dataout <= 0;
 end
 else if (clken)
 begin
dataa_reg <= dataa;
datab_reg <= datab;
multa_reg <= multa;
dataout <= adder_out;
 end
end

Fig. 8.22 Multiply-
accumulate operation

In VHDL the rising_edge() indicates the clock as shown in Fig. 8.24.

In VHDL the rising_edge() indicates the clock as shown in figure sss:
if(rst = '0') then
 q <= '0';
elsif(rising_edge(clk)) then
 q <= data;
end if;

Fig. 8.24 Register in VHDL

You must specify all asynchronous conditions first, which takes priority over
synchronous conditions.

 Secondary Signals for Registers

Once again, it is necessary to understand the target hardware.

74 8 RTL Design

 Conditional Statements

The use of if-else statements infers 2:1 multiplexer trees with preserved priority.
This coding style gives the user the control over late arriving signals, as shown in
Fig. 8.26 where “a” is a late arriving signal.

1. Asynchronous clear, (aclr)
2. Preset (pre)
3. Asynchronous load (aload)
4. Enable (ena)
5. Synchronous clear (sclr)
6. Synchronous load (sload)
7. Data in (data)

highest

lowest

Fig. 8.25 Synthesis pri-
ority of secondary control
signals for registers

if(cond1) then
 o <= a;
elsif(cond2) then
 o <= b;
else
 o <= c;
end if; cond1

cond2

c b

a

Fig. 8.26 Multiplexer
tree

In some technologies, the device registers support asynchronous clear only, only
power up to ground and may not support asynchronous load.

For registers that do not support asynchronous load, it must be emulated with
latches and combinational logic that is inherently prone to glitches.

The use of secondary signals also impacts place and route. Many devices have a
limit in the amount of secondary resources that are available. An example being the
Altera Stratix architectures where clock enable (ena), synchronous clear (sclr), syn-
chronous load (sload) are shared by all logic cells within the same LAB. Too many
unique LAB-wide signals will impact the logic utilization of the design (Fig. 8.25).

Care must be taken when using this style of coding for inferencing of multiplexers.
Too much nesting can increase delay significantly.

It is recommended that if the conditions are mutually exclusive, to recode the
multiplexer as a case statement which will infer a N:1 multiplexer (Fig. 8.27).

Case statements infer N:1 muxes.
This type of multiplexer is easier to optimize and provides much better delay

than the equivalent priority multiplexer implementation.

758.6 Analyzing the RTL Design

8.6 Analyzing the RTL Design

All FPGA synthesis tools include a set of tools that report information on your RTL.
This information can be used to check that your RTL design description is meeting your
goals. They also provide the added benefit of detailing the structure of the design, thus
helping in the understanding of design blocks that you have not created yourself.

8.6.1 Synthesis Reports

All synthesis tools generate a report file that details critical information about your
design.

8.6.1.1 Source Files

The synthesis report will detail which source files and libraries were synthesized
for the design. This is important in ensuring that you are using the intended version
of source files in the design.

8.6.1.2 Synthesis Settings

This will detail which options are being used to implement the design in the synthesis
tool. This information should be included in the documentation on the design as it
is critical for repeatability of results.

8.6.1.3 Resource Usage Information

This is typically broken down by hierarchy. This information is useful for identifying
areas of the design that consume a lot of FPGA resources. It can also help identify

case (sel)
2'b00: o = a;
2'b01: o = b;
2'b10: o = c;
2'b11: o = d;

endcase

a b c d

sel

2

Fig. 8.27 N:1 multiplexer

76 8 RTL Design

areas were logic has been optimized out unintentionally or implemented in a manner
that is different than what you intended. An example of this would be a multiply
operation that is implemented using LUTs as opposed to dedicated DSP blocks.

8.6.1.4 State Machines

Most reports will have a dedicated section that identifies all of the state machines
that have been recognized in the design and will detail information on the state
machine encoding. This information will identify cases were your coding style
resulted in a different encoding than you intended. It will also identify cases were
state machines were not recognized. This can result in non-optimal implementation
and can impact the debug of your design.

8.6.1.5 Optimization Information

This section of the report contains information on optimizations that have been performed
on the design. This is usually with regard to registers that have been optimized out
or duplicated. In some tools it will explain why the optimization has occurred, e.g.
register has no fan-out therefore optimized out, or a register has been duplicated to
reduce fan-out. It also contains connectivity data such as input port to a module or
input to a register is stuck at ground. This is useful for uncovering possible errors
in the RTL code, in particular for the hook-up of structural code.

8.6.1.6 Timing Estimates

As mentioned previously. The timing estimates from synthesis are inaccurate and
should be viewed as a coarse estimate. It is best to perform a place and route opera-
tion to get a good feel for the timing of the design or sub-design.

8.6.2 Messages

You should review all of the messages from the synthesis engine to ensure the design
gets a clean bill of health.

Synthesis tools will generate a large number of messages of different levels of
severity.

The code or synthesis options should be modified to remove any warning mes-
sages. If the messages cannot be avoided, you should fully understand the cause of
the message and if it is verified that there is not a problem, cover it in the documentation
for the module. Most synthesis tools provide the capability to review messages and
to suppress them in subsequent compiles. This will greatly simplify the review pro-
cess for subsequent compiles.

778.6 Analyzing the RTL Design

However, we recommend that a full message review be completed before final
design sign-off.

8.6.3 Block Diagram View

Most EDA synthesis tools have schematic viewer options that can be used to ana-
lyze your design. The viewers create a schematic view of your designs and provide
the ability to quickly debug your RTL design. In most cases they can cross-probe
between these schematic views and HDL source code for easy tracing of signals
and debug of the design implementation.

These tools are excellent for gaining an understanding into RTL code that you
did not create but are reusing from another designer. It quickly shows the structure
of the design and the flow of data through the design.

Figure 8.28 shows an example of such a tool from the Quartus® II software.
It is very easy to view a state machine design and determine if your description

meets the desired implementation.

Fig. 8.28 Quartus II RTL viewer

Figure 8.29 shows an example state machine diagram created by the Quartus II
software.

78 8 RTL Design

8.7 Recommended Best Practices for RTL Design

 1. Choose an HDL language
 2. Select the EDA synthesis tool
 3. Understand the capabilities of your FPGA
 4. Create a rough system design
 5. Follow recommended HDL coding guidelines
 6. Divide and conquer
 7. Identify goals for each design block – speed, power or area
 8. Run compilations with individual design blocks for area and performance

estimates
 9. Simulate each block
 10. Document each block
 11. Remove warnings from synthesis reports
 12. Combine blocks to form full project
 13. Simulate complete design
 14. Analyze synthesis report for complete design
 15. Remove warnings from complete design
 16. Document complete design
 17. Move onto Timing Closure for complete design

Fig. 8.29 Quartus II state machine viewer

79

9.1 Introduction

This main purpose of this book is to guide you in creating reusable design blocks
targeting FPGA devices; from specification through RTL design and verification.
This chapter on IP reuse is complementary to these other chapters. It focuses on the
benefits of IP reuse, how to determine whether to design your own IP versus buying
IP and how to package your IP for ease of reuse.

9.2 The Need for IP Reuse

It is universally accepted in the industry that design reuse can result in reduced
engineering effort; consequently resulting in faster time to market and reduced
development costs.

This is demonstrated with many projects where the next version of the product
is a variation of the previous design, hence effective design reuse. In most of these
cases the new product has additional functionality to the existing design and the
original design is used in its entirety.

However, when it comes to completely new designs or other products that are
developed by other design teams, design reuse is not so common.

In practice, design blocks from other designs could be utilized in these other
designs by other teams.

So, why does this happen so infrequently?
The main reason is that most companies do not have a design reuse methodology

that is adopted across development teams.
Engineers that develop design blocks are not going to drive a design reuse

methodology within a corporation. They will be the adopters and contributors to a
design reuse methodology.

It is the engineering management that needs to drive the design methodology
from the top.

Chapter 9
IP and Design Reuse

P. Simpson, FPGA Design: Best Practices for Team-based Design,
DOI 10.1007/978-1-4419-6339-0_9, © Springer Science+Business Media, LLC 2010

80 9 IP and Design Reuse

9.2.1 Benefits of IP Reuse

There are five main benefits to a design reuse methodology.

1. Leverage of existing investment. It doesn’t make sense for every design team to
create their own design of a function that is common across all designs. Reusing
a functional block across designs makes use of the investment that was originally
invested in creating the design block.

2. Predictable results. The performance of existing design blocks is a known entity.
Through the use of existing design blocks, you are reducing the amount of your
design for which the results are unknown. In the case of design blocks that are
retargeted to another FPGA technology, if the design block has followed the rec-
ommendations in Chap. 8 on RTL coding, it is relatively easy to compile the
design block in the new technology and quickly gauge the performance of the design
block in the new technology. This is much faster than creating and verifying a
new RTL design from scratch.

3. Enables engineers to focus on their core competencies. Some of the components of
a design may not be an area for which the designer has intimate knowledge. By
leveraging design blocks from experts in this area, the designer can focus on their
area of expertise. An example could be a packet processing design where the data
comes onto the chip via an Ethernet interface. The design engineer may be an expert
in packet processing but not in developing an Ethernet interface. By reusing an exist-
ing design block that implements the 10 G Ethernet interface, the designer can focus
on his core competency of implementing the packet processing functionality.

4. Minimizes the verification cycle. The design blocks that are being reused have
previously been verified, thus they only have to be re-verified as part of full sys-
tem verification.

5. Achieve faster time-to-market. It may take a matter of hours to add existing
design blocks to your system design as opposed to the months that it may take to
implement complex functionality, such as an Interlaken or DDR III memory
interface.

9.2.2 Challenges in Developing a Design Reuse Methodology

Design reuse does not come for free. While the benefits in turns of cost and productivity
are huge, it requires a change in mindset across the engineering teams in a corporation.

9.2.2.1 Engineers Mindset

The first challenge is winning the mindset of the engineers that develop design
blocks and that will in turn become the consumers of existing design blocks. Many
companies suffer from the not-invented-here (NIH) syndrome. Some engineers

819.2 The Need for IP Reuse

view the reuse of other engineers design blocks as reducing their personal value in
the designs they are creating. They want to create the design themselves as opposed
to using others code.

In addition, when some designers create blocks, they often want to keep the
blocks to themselves as their own intellectual property. They may view the sharing
of their design blocks as reducing their ownership of the design. There can also be
a fear that other designers that reuse their design blocks will criticize their designs.

The largest barrier is the fact that there is extra effort involved in making design
blocks reusable, some engineers are not given adequate time or do not want to
expend the effort in making life easy for other engineers at cost to themselves.

These challenges can be addressed through formal development policies at the
company. After the initial pain of adoption, it will become a way of life for engi-
neers and they will take pride in creating reusable design blocks just as they do
today in creating their designs.

9.2.2.2 Awareness of Reusable Design Blocks

IP distribution is a challenge. Engineers need to be aware of where to find design blocks
that may benefit them. Consumers of these design blocks need to be able to find infor-
mation that makes them aware of the capability of the IP, how to use the IP and how the
IP has been verified. This will remove any concerns over the quality of the design.

Similarly engineers need to be aware of how to publish their IP; publishing in
this context meaning how to make their IP available to other users.

IP distribution and validation can be a hurdle in the adoption of an IP-reuse
methodology. Since the IP, is used by the designers who do not directly have access
to original design process, they need a lot of information packaged with the IP. This
includes documentation, verification plan and tests etc.

These issues can be resolved via a common managed design reuse website, wiki-
site or sharepoint site that is linked to version control software.

9.2.2.3 Development Effort

There is extra time and effort, hence cost in making a design block reusable as
opposed to designing a block for one time use in a single project. The project sched-
ule can be a factor in determining whether a block is developed for reuse. A com-
pany that is serious about design reuse needs to ensure that all of their project
schedules allows for key design blocks to be designed for reuse. This will allow for
more efficient designs in the future.

It is crucial to avoid trying to make every single piece of a design reusable.
Proper definition and selection of design blocks for reuse can be a difficult task.

It is not easy to define design blocks that can successfully be used in different
applications.

82 9 IP and Design Reuse

Thus when defining the specification of a design block, it is necessary to understand
the functionality of the design block with respect to other applications and products
within a company. This information can be used to determine whether the block
should be created in a manner for design reuse and documented accordingly in the
specification for the design block.

Certain small blocks such as address decoders and arbiters are best left to system
integration tools.

Similarly, performance challenged design blocks where the functionality of the
design is closely related to the timing, may not be reusable in other FPGA families
or even in other devices in the same family. These blocks will have a onetime use
model and need not follow all of the design reuse recommendations.

9.3 Make Versus Buy

One of the questions that an engineering manager will face is when to develop IP
in-house versus when to purchase IP from a source outside of the company.

One of the influences on the decision for the in-house development of IP is
whether an IP is critical to the overall performance of the design. Internally devel-
oped design blocks provide more control over design optimization and potentially
customization. If this is a concern, then designers should consider designing this
functionality in house or re-using design blocks from other teams, for which they
have access to the source code.

Similarly, if the design block is one of the areas where you are going to differ-
entiate your product from the competition, you will want a strong understanding of
the capability and ownership of the RTL code.

Another factor that will impact in-house development versus purchasing of the
IP is cost. It needs to be understood how much it would cost to develop and verify
the functionality in-house versus buying a readily available solution.

Time to market may push you in the direction of purchasing IP. If your schedule
is tight, purchasing IP may save you several months of development, if your exist-
ing resources are already fully occupied.

The availability of IP for your target FPGA technology is another point to be
considered. There is usually a delay from the availability of new FPGA families to
the porting of IP to these new families. Many of the smaller FPGA vendors will
wait for a lead customer prior to performing the port. This can cause a delay in the
availability of IP that has tight timing requirements. The risk in being the first
adopter of new IP is that you may become the cleaning house on the IP verification
in the new technology. This can also be a benefit in that if you are the first to adopt
the IP in a leading edge technology, you may gain a lead on your competition.

Anytime that you are receiving design blocks from another source, there will be
concerns over the quality the design blocks, in particular if you are purchasing the IP.

There is no industry standard for IP quality that is available to help in the selec-
tion of IP. Several initiatives have started in the past, but never reached the level of

839.4 Architecting Reusable IP

industry approval and adoption. Consequently, you need to rely on IP provider’s
reputation or ask for details on the IP provider’s verification process and results for
the IP that is being purchased.

These are all cases were you can compare the costs of internal development of
design blocks versus purchasing of design blocks.

If your design team does not have the knowledge or experience in the area of
functionality that you need, it should be a slam dunk to use purchased IP.

9.4 Architecting Reusable IP

9.4.1 Specification

The overall system specification should identify new blocks that are being devel-
oped that could be used in other designs. This will impact the schedule and speci-
fication for the development of these blocks.

Thus when these blocks are being defined it will be in their requirements that
they should be developed for reuse and should follow the IP reuse guidelines.

When the specifications for these reusable blocks are being reviewed, it should
include reviewers from the other teams that could be consumers of the IP. This will
serve three main purposes. Firstly it will increase the awareness of the IP across
teams. Secondly, by involving the other teams in the specification process they will
have a vested interest in the IP and will be more open to adopting the blocks in their
design. Finally, these other teams may provide feedback that your team may have
overlooked.

9.4.2 Implementation Methods

9.4.2.1 Parameterized RTL

Developing IP using parameterized RTL is the most common IP development
methodology in the industry. It provides the simplest way to create and maintain
reusable design blocks. Some examples would be the use of parameters to set dif-
ferent data widths for memory or FIFOs.

Parameterization provides built-in flexibility through the use of non-constant
variables; these are parameters in Verilog and generics in VHDL.

When you are determining what should be parameterized in an IP you should
consider the likely uses of the core, anticipate the range of desired features and
build parameterized functionality for each desired configuration.

Generate statements which are available both in Verilog and VHDL should be
used together with parameters in reusable IP to achieve efficient implementation of

84 9 IP and Design Reuse

the design. Generated instantiations and module parameters can be used to remove
redundant logic and create flexible designs.

Generate loops allows multiple statements and blocks to be instantiated using
‘for’ loops.

Generate based upon conditions can be used to create parameterized logic. An
example showing the use of a generate statement with parameters to generate a bus
multiplexer is shown in Fig. 9.1.

More detailed guidelines on creating RTL for IP reuse are available in Chap. 8
on RTL design.

Section 8.5.2.3 of Chap. 8 provides guidelines on hierarchy and design partitioning.
Section 8.5.2.4 provides coding guidelines for design reuse.

9.4.2.2 High Level Synthesis

High level synthesis is good for algorithmic exploration; particularly in the DSP
space where users enter their design in Ansi C/C++. This class of tools has been
shown to provide a large development time reduction over designing algorithms in
RTL and opens the hardware design process to a new class of user; the software or
system engineer. They are excellent for the architecture exploration phase of the
algorithm design as the description is much closer, or the same as the algorithm
model. The amount of ‘C’ code needed to describe the functionality is likely to be
much smaller than an RTL implementation; hence the gain in productivity. These
tools also tend to provide more flexibility in porting the design across FPGA families.

module bus_mux (din,sel,dout);

parameter DAT_WIDTH = 16;
parameter SEL_WIDTH = 3;
parameter TOTAL_DAT = DAT_WIDTH << SEL_WIDTH;
parameter NUM_WORDS = (1 << SEL_WIDTH);

input [TOTAL_DAT-1 : 0] din;
input [SEL_WIDTH-1:0] sel;
output [DAT_WIDTH-1:0] dout;

genvar i,k;
generate
 for (k=0;k<DAT_WIDTH;k=k+1)
 begin : out
 wire [NUM_WORDS-1:0] tmp;
 for (i=0;i<NUM_WORDS;i=i+1)
 begin : mx
 assign tmp [i] = din[k+i*DAT_WIDTH];
 end
 assign dout[k] = tmp[sel];
 end
endgenerate
endmodule

Fig. 9.1 Example detailing the use of parameters in a Verilog source file

859.4 Architecting Reusable IP

At the highest level of design, the code is not created with a target FPGA family in
mind.

Their main disadvantage in these solutions is that they tend not to be an optimal
solution for fine tuned optimized Quality of Results; thus can be area inefficient or
leave some performance on the table. In recent years, these tools have made good
progress in the QoR aspect for certain classes of DSP applications. They should be
considered for the creation of non-performance critical DSP IP.

In addition to C/C++ tools there is also another class of design tools which is
model based design. These tools provide an interface to the MATLAB environment
via Simulink. Once again, these tools mostly target DSP applications. They have
been shown to be used successfully in a smaller application space; mostly in
modem designs and some military applications. This class of tools should be con-
sidered for creating IP in these application spaces.

9.4.2.3 IP Generator

IP generators are programs that are written in C++, Perl, or other high-level languages
that build RTL code dynamically, based on parameter settings from the end user. The
generators tend to pull together RTL design blocks based upon the chosen parameters.

This technique is commonly used by FPGA vendors to provide complex IP to
their customer base.

An IP Generator generates the HDL code based on the customer specification
with all of the parameters resolved.

They are suitable for complex parameter combinations, complex legality check-
ing and advanced processing for arithmetic operations.

The disadvantage of IP generators is that they require software programming
skills to implement.

9.4.3 Use of Standard Interfaces

It is recommended that you adopt a common interface standard on all of your IP.
The use of standard interfaces simplifies the interconnection and management of
the functional blocks that makes up a design.

1. It ensures compatibility between IP components from different design teams or
vendors.

2. It enables fast system level integration of IP. Consumers of the IP are aware of
the operation of the signals to which they are interfacing; greatly simplifying the
interface logic to the design block.

3. It also opens the door to using design automation tools for system integration.
4. This simplifies team based design, by enabling individual team members to build

and test their individual design blocks. Through the understanding of the common
interface protocol, each of the team members will understand how to interface to the

86 9 IP and Design Reuse

blocks that use the common specification. This simplifies the integration of the
individual design blocks into a full system design.

5. It enables plug and play interoperability of IP.
6. It also increases the stability of the IP. The operation of the interface signals are

described in the specification for the interface protocol and the operation of the
interface signals on the core verified against the specification.

There are various standard interfaces on the market today. The most widely adopted
interface standards that are used in FPGA and ASIC design are AMBA (AXI, AHB
and APB) from ARM, Avalon (MM and ST) from Altera, OCP from OCP–IP and
Wishbone from Opencores.

When selecting a standard interface protocol you need to ensure that the IP infra-
structure is in place. When we refer to IP infrastructure we mean that IP is available
targeting the FPGA technology that you will be targeting using the standard interface
protocol and that the specification for the protocol is solid. IP includes both the IP that
will be part of your end design and verification IP such as Bus Functional Models.

The interface standard needs to be easy to understand, compact, and the hard-
ware interfaces should not produce performance or area penalties when imple-
mented. The standard needs to support all of your application needs. This will
normally include memory mapped interfaces with address-based read/write inter-
faces typical of master–slave connections, point-to-point interfaces that support the
unidirectional flow of data, including multiplexed streams, packets, and DSP data.

In summary the use of a standard interface protocol really is the heart of a design
reuse strategy.

9.5 Packaging of IP

The IP package is the IP core plus the supporting files and utilities.
A good IP package should place everything at the user’s fingertips. It should be

easy to find, install and to maintain.
User access to the IP could be in a company library of reusable IP or it could

require installation on the user’s workstation or design environment. If it requires
installation, it is recommended that you leverage an off the shelf commercial prod-
uct to perform the installation, such as install shield, or create a self extracting
executable using WinZip or a similar program.

The minimum requirements for an IP package are:

1. IP core. The design that implements the required functionality.
2. Timing constraints and any location constraints.
3. Simulation model.
4. User documentation. This should be the user manual for the IP as well as any

errata. This is described in more detail in Sect. 9.5.1.
5. User interface.
6. Compatibility with any system integration tools that you intend using.

879.5 Packaging of IP

9.5.1 Documentation

As mentioned previously the documentation on the IP should include the user
manual and any errata. It should include version control on the documentation
that details the history of changes to the IP core and documentation. The version
of the core needs to be identifiable in the core itself, as well as in the
documentation.

While the functionality of the design may be unique to the IP core, the format
of the documentation needs to be consistent across all IP cores. This includes the
user documentation and the RTL code formatting which in itself should be self
documenting.

The documentation should include an example design or testbench for the IP
that demonstrates how to connect the IP to the rest of a design. Ideally this can be
used to demonstrate the functionality of the IP.

The file structure of the design must be common with all other IP and the nam-
ing convention of signals must follow the company coding guidelines.

For parameterized IP, there should be tips on the parameter settings.

9.5.2 User Interface

The most common way that designers make IP available to other designers within
their company is that they provide the RTL for the design along with user documen-
tation on the design. While this works, it makes it difficult for the end user to really
understand how to use the IP that they are receiving.

IP should come with an interface that makes it easy for the user to understand
the constraints that apply to the IP. At a minimum the IP should come with a docu-
mented command-line script that enables users to pass values to the parameters in
the IP. Ideally it should come with a GUI to help users get started.

Our recommendation is that you provide a simple GUI for your IP and a script-
ing interface.

The simple GUI should enable users to set parameters, set constraints and be
able to validate that the selections are legal.

This type of interface will help designers to learn the functionality of the IP,
generate the correct verification files and scripts for the block, as well as providing
a link to documentation that is available for the IP.

This is the type of interface that you will see in the IP that is provided by the
FPGA vendors and in many cases from other IP providers.

The GUI need not be elaborate; it needs to show the user what settings that they
can make and enable them to make the settings.

A sample GUI available in the Component Editor from Altera is shown in Fig. 9.2.
If you have reasonable programming skills, you could create a GUI in Tcl/TK

or in Java.

88 9 IP and Design Reuse

If not, you can adopt the IP GUIs from the FPGA vendors. This requires the
adoption of the FPGA development tools.

9.5.3 Compatibility with System Integration Tools

Standardized design entry and design integration tools can reduce the design entry
overhead.

System integration tools auto-generate the HDL for the interconnection of IP
blocks. The major FPGA vendor tools provide IP integration tools that perform this
function. These system integration tools take care of the relatively mundane tasks
that RTL designers have to do such as address decoding, data multiplexing, wait
state generation in processor systems, dynamic bus sizing, slave side arbitration and
direct interconnect of blocks. This functionality is analogous to a software linker.

Fig. 9.2 Sample GUI for IP demonstrated by the Quartus II Component Editor

899.5 Packaging of IP

A software linker creates an executable program out of MAIN and a selection of
precompiled library functions.

System integration tools, such as SOPC builder from Altera, automatically cre-
ate a system out of a variety of system blocks. This enables designers to focus on
value-add architecture ideas, effectively extracting themselves from the low level
integration details.

These tools should be used in both the architecture exploration and implementa-
tion phases of the design process, where they will increase your productivity. They
facilitate architecture exploration by allowing you to plug and play design blocks
into your system and to quickly generate the RTL for the given architecture without
having to modify the arbitration logic, width adaption logic, memory map, etc.
manually. This enables you to quickly try different architecture variations. Once
you find the architecture that you want to use for the implementation you can then
fine tune the blocks that are in the system to meet your overall goals.

9.5.4 IP Security

The IP that you purchase from IP vendors normally arrive encrypted. The IP ven-
dors do this to preserve the integrity of their RTL and to prevent non-authorized
users from being able to design with their IP. The encryption scheme that is used
tends to vary across IP vendors and EDA vendors. From the perspective of a con-
sumer of IP, you care about which synthesis tools support the IP and the quality of
the simulation model from the IP vendor.

There are moves in the industry to provide a standard encryption methodology.
The IEEE has created the IEEE 1499 standard based upon the Open Mode Interface
(OMI). The standard enables the RTL to be compiled into a model format that can-
not be reversed engineered. These models can be simulated in OMI-compliant
simulators. The benefit is that the RTL code for simulation model and synthesis is
the same. This reduces the development effort for the IP vendor.

Some IP vendors will provide the source code for the IP. This simplifies the
design flow but usually costs significantly more than the encrypted RTL.

If you intend to provide encrypted IP, you must work with your FPGA vendor
to utilize their encryption tools.

Some IP vendors provide obfuscated RTL. This provides a limited form of secu-
rity in that the code is difficult to understand as the signal names appear to be
nonsensical. Obfuscation makes it difficult for non-authorized users to reverse
engineer the RTL. It does not prevent them from compiling the design.

Some of the FPGA vendors enable you to provide the IP in a post-compilation
format as opposed to at the RTL level. An example being a design block that has
been compiled using an incremental compilation methodology with the place-
ment and routing locked down. This level of IP guarantees the performance of the
IP, thus reducing the support burden on the IP, but restricting its use to particular
device.

90 9 IP and Design Reuse

These are some of the ways that you can provide IP to other users. Most corporations
provide the RTL for design reuse within their own corporation and encryption only
comes into play on purchased IP. However, some corporations are deploying
encryption schemes internally for the distribution of key IP blocks.

Due to the complication of the design flow, it is recommended that you only use
encryption or obfuscation on your design blocks if security is a major concern.

9.6 IP Reuse Checklist

1. Purchase or design the functionality?
2. Does the specification state that the design be reusable?
3. Select the appropriate IP implementation method, i.e. RTL, high-level synthesis

or generator?
4. For RTL solutions, follow the RTL coding guidelines.
5. For RTL solutions, parameterize the IP.
6. Use standard interfaces on the design block.
7. Is encryption or obfuscation required?
8. Does the IP follow the IP packaging guidelines?

91

10.1 Software Interface

The main interface between the application software and the RTL is the Register
Address Map. The register address map is shared across multiple disciplines in the
design process.

This creates the challenge in the project of synchronizing the firmware, RTL,
hardware verification, and the documentation. In the case of documentation this
refers to both internal use and in the case of IP development, the documentation that
is provided to the end user.

As such, it is essential that the information is strictly controlled and any change
in the information is communicated across the design team, with changes being
avoided as much as possible to avoid a firmware and/or hardware rewrite.

10.2 Definition of Register Address Map

The register address map is often referred to by many different names including
Control and Status Registers (CSRs), Memory Mapped registers, Register File,
Register Block, or Register Interface. Registers in the design are used to represent
data that is communicated between the hardware and the software. Each block of
IP provides a register interface that is mapped to addresses for the software inter-
face. This register address map creates a view of the hardware/software interface
for software programmers to read from or write to. Effectively, communicating
between the software and the hardware.

10.3 Use of the Register Address Map

As mentioned at the start of the chapter, the Register Address Map is used by dif-
ferent disciplines throughout the design process. Each of the different disciplines
will likely require the data in a slightly different format.

Chapter 10
The Hardware to Software Interface

P. Simpson, FPGA Design: Best Practices for Team-based Design,
DOI 10.1007/978-1-4419-6339-0_10, © Springer Science+Business Media, LLC 2010

92 10 The Hardware to Software Interface

10.3.1 IP Selection

As part of your selection criteria for IP, you need to understand how you will interface
to the IP from both the hardware and the software perspective. The Register
Address Map will address how your software will interface with the IP. The user
documentation on the IP core should reflect this information.

10.3.2 Software Engineers Interface

The software engineer needs to know the register map in order to develop the soft-
ware drivers that interface with the hardware. The software engineer will want the
register map information in the form of software header files which define the
component base address and register offsets (Fig. 10.1).

10.3.3 RTL Engineers Interface

The RTL Engineer needs to connect the Register Map interface to the rest of the
system. This involves writing the logic for each of the register bits and creating
address decoders for read/write cycles. The challenge to the RTL design is defining

#ifndef __ALT_ETH_10G_REGS_H__
#define __ALT_ETH_10G_REGS_H__

#include "alt_types. h"

/* Revision register */
0x00#define ALT_ETH_10G_REV_REG

#define IOADDR_ALT_ETH_10G_REV(base) __IO_CALC_ADDRESS_NATIVE(base, ALT_ETH_10G_REV_REG)
#define IORD_ALT_ETH_10G_REV(base) IORD_32DIRECT (base, ALT_ETH_10G_REV_REG)

#define ALT_ETH_10G_REV_CORE_REVISION_OFST (0)
#define ALT_ETH_10G_REV_CORE_REVISION_MSK (0x0000FFFF)
#define ALT_ETH_10G_REV_USER_REVISION_OFST (16)
#define ALT_ETH_10G_REV_USER_REVISION_MSK (0xFFFF0000)

/* Scratch register */
#define ALT_ETH_10G_SCRATCH_REG 0x04
#define IOADDR_ALT_ETH_10G_SCRATCH(base) __IO_CALC_ADDRESS_NATIVE(base, ALT_ETH_10G_SCRATCH_REG)
#define IORD_ALT_ETH_10G_SCRATCH(base) IORD_32DIRECT(base, ALT_ETH_10G_SCRATCH_REG)
#define IOWR_ALT_ETH_10G_SCRATCH(base, data) IOWR_32DIRECT(base, ALT_ETH_10G_SCRATCH_REG, data)

/* Command register */
0x08#define ALT_ETH_10G_CMD_REG

#define IOADDR_ALT_ETH_10G_CMD(base) __IO_CALC_ADDRESS_NATIVE(base, ALT_ETH_10G_CMD_REG)
#define IORD_ALT_ETH_10G_CMD(base) IORD_32DIRECT(base, ALT_ETH_10G_CMD_REG)
#define IOWR_ALT_ETH_10G_CMD(base, data) IOWR_32DIRECT(base, ALT_ETH_10G_COMMAND_CONFIG_REG, data)

#define ALT_ETH_10G_CMD_TX_ENA_OFST (0)
#define ALT_ETH_10G_CMD_TX_ENA_MSK (0x00000001)
#define ALT_ETH_10G_CMD_RX_ENA_OFST (1)
#define ALT_ETH_10G_CMD_RX_ENA_MSK (0x00000002)
#define ALT_ETH_10G_CMD_XON_GEN_OFST (2)
#define ALT_ETH_10G_CMD_XON_GEN_MSK (0x00000004)

Fig. 10.1 Sample from Header file generated by the Altera SOPC Builder tool

93 10.3 Use of the Register Address Map

this up front and maintaining the register map throughout the design cycle. It is
likely that at sometime in the design cycle that the RTL designers will need to
change some part of the Register Address Map. The whole process of coding, docu-
menting, reviewing and communicating the Register Address Map is an error prone
task that many RTL designers prefer to avoid.

Fortunately there are several tools on the market that help with this task. The
System Integration tools from the FPGA vendors provide an automated interface
between the Hardware System Design and the Software Engineer, by automatically
generating software header files. In addition they take care of the generation of the
logic for the address decoding.

There are EDA tools that provide much more advanced capability. These tools
can create the synthesizable RTL for the Register Address Map from register
descriptions, generate the software header files, header files for verification and
also create user documentation in various formats.

10.3.4 Verification Interface

It is good engineering practice to develop testbenches that verify the operation of
the RTL Register Address Map. As such the verification engineer needs the
Register Address Map details in a format that can be used with the verification
language that is being used.

As part of the verification cycle, you will want to validate that the software can read
and write to the Register Address Map as detailed in the specification. This can be tested
on the device with the register map document being used as a functional checklist.

10.3.5 Documentation

As mentioned at the start of this chapter, documentation refers to both internal
documentation for use among the design team and the documentation that is pro-
vided to the end users of IP.

Whenever there are changes to the RTL for the Register Address Map, it is the
designer’s responsibility to update the documentation and to review the changes
with all of the teams that may be impacted by the change.

The format used to describe the Register Address Map must be consistent in
terms of the naming convention that is used among all designers. This achieved by
having a process for creating the Register Address Map specification which speci-
fies how it should be documented.

There is a standard format that exists in the industry for specifying the Register
Address Map for IP. This is the IP-XACT standard which uses XML metadata that
can be read by several EDA tools on the market. However, at the time of writing,
this standard has not been widely adopted by all IP vendors and EDA tools.

94 10 The Hardware to Software Interface

It is recommended that you review the standard prior to beginning your project
as you may want to consider adopting this standard as opposed to developing your
own format.

10.4 Summary

The Register Address Map Interface is the main interface between the Software
Engineer and the RTL Engineer. This information is used by several different func-
tions in the design process, all of which need access to the same information in
different formats to fit in with their function. As such this information needs to be
strictly controlled and any changes reviewed with the teams that need this informa-
tion. Due to the fact that it is time consuming and error prone to manually update
all of the file formats that use this information, it is recommended that you invest
in an EDA tool that specializes in Register Address map Management.

95

11.1 Introduction

There are two simple questions that every design team needs to be able to answer.
Does my design function properly and is my design verification complete?

These two simple questions are likely to take more than 60% of your design
cycle to achieve acceptable answers. Just defining what is meant by functioning
properly and what is deemed acceptable as complete are difficult tasks.

In the past, when FPGA designs were small and many designer were not con-
cerned with the concept of design reuse, FPGA designers deployed the “blow and
go” approach to FPGA design verification. They would create the design, perform
a cursory functional simulation on the RTL, then program the FPGA and test the
design in system. If they found a problem, they would fix the code and repeat. This
approach is not practical for large, complex, high quality system designs.

The programmable nature of FPGAs does add a powerful weapon to the design
verification armory. However, when used by itself, it is not a method for creating
reliable and reusable designs.

There are many publications and EDA tool solutions dedicated to the topic of
functional verification.

There are also many different verification techniques that can be used to verify that
a design meets the requirements that are dictated in the specification. Many of the
techniques that are used in the verification of ASICs are applicable to the verification
of FPGA designs. As mentioned, the programmable capabilities of FPGAs provide
some additional capability that can be used in the verification of designs that are
targeting FPGA devices. This chapter will describe the techniques that are known to
work well in functionally verifying FPGA designs and IP targeting FPGA devices.

11.2 Challenges of Functional Verification

At a high level, the goal of functional verification is to verify that the design functions
as specified. This applies to the complete design as well as any of the sub-designs.

Chapter 11
Functional Verification

P. Simpson, FPGA Design: Best Practices for Team-based Design,
DOI 10.1007/978-1-4419-6339-0_11, © Springer Science+Business Media, LLC 2010

96 11 Functional Verification

Functional verification of the design must cover all modes of operation of the
design. This includes corner cases. The last thing that you want is that when your
design is deployed in a product, that your system enters a mode of operation that
you have not considered or tested against, resulting in a catastrophic failure.

The application interface to your design needs to operate as expected, i.e. testing
needs to emulate the interaction of your design with the rest of the system.

In the scenario where your FPGA device interfaces to the rest of the system via
standard protocol interfaces, such as PCI Express or Serial Rapid I/O, it is neces-
sary to verify that the interface block complies with the appropriate standard.

In the case of parameterized IP, it is necessary to test all architectural variations
of the design based upon the parameterization. This will provide confidence to
consumers of the IP that the IP meets their requirements.

In the case that the IP has been packaged for reuse and there is a user interface
to the IP, it must be possible to verify that the user interface operates as intended
and on all supported operation systems.

Finally, you need to verify that the documentation on the design or IP block is
clear and matches the behavior of the core.

This may sound like a lot of work…and it is!
The challenges that you face include how do you achieve adequate verification

coverage in the given schedule with the resources that are available?
How do you determine what is an acceptable level of coverage?
The answer to these questions will come from the verification plan. The verifica-

tion plan must detail the coverage goals and other completion metrics. As such, this
has an impact on the project plan.

You need to plan the verification of the design at the same time that you are
developing the functional specification of the design.

There needs to be a system in place that enables you to monitor the progress
against the verification plan throughout the design and verification cycle. This sys-
tem must be capable of managing the large amount of data that you will receive
from the testing and report the progress against the verification plan.

11.3 Glossary of Verification Concepts

1. Device Under Test (DUT): This is the IP being tested.
2. Assertions (coverage points). These describe the behavior of the design that is

true when the design is behaving correctly. Assertions are also activated when
the design behaves incorrectly. It effectively covers the state of the DUT.

3. VMM. Synopsys Verification Methodology Manual: It details a methodology
based around SystemVerilog for verifying complex designs.

4. Testbench: A test bench is an environment that is used to exercise and verify the
correctness of the design.

5. Transactors: In a testbench environment, the transactor is a model that defines
the sequence of events or tasks to be performed.

9711.5 Verification Methodology

 6. Scoreboards: The scoreboard is a data structure that holds the expected results
from an operation for comparison against the actual results achieved.

 7. Register Abstraction Layer (RAL): The VMM Register Abstraction Layer (RAL)
automates the creation of the high-level abstraction layer for memory-mapped
registers and memories. The VMM specification provides more detail on RAL.

 8. Executable specification: An executable specification is a high level model that
describes the functionality of the design, hardware and/or software. It is usually
written in a high level language such as C, C++, SystemC or SystemVerilog.

 9. Regression Tests: Regression tests are a set of tests that are run on the application
after every design change and on a regular basis, such as every night or every
weekend, in order to ensure that no new bugs have been introduced. It is an auto-
mated environment that proves that the design operates to the specification.

10. OVM (Open Verification Methodology): OVM is a standard SystemVerilog library
and verification methodology developed by Cadence and mentor Graphics.

11.4 RTL Versus Gate Level Simulation

Simulating at the RTL level performs functional verification without consideration
for the timing delays that will occur when the design is implemented. It is common
practice to perform RTL simulations to prove the functionality of the design and
timing analysis to prove that there is no timing violations in the design.

Gate level simulation utilizes the timing netlist generated after place and route.
This contains the device timing delays in the Standard Delay Format (SDF). This
provides a more accurate view of how the design will function on-chip as it includes
timing information. Timing simulations take considerably longer to run than RTL
simulations. In fact they are considered by many designers as prohibitively long for
certain application types such as video and image processing applications and for
large designs. As such it is recommended that timing simulations should only be
performed on critical sub-designs instead of the full design, or when debugging
problems that are found during hardware checkout of the system.

11.5 Verification Methodology

In order to achieve success in verifying your design, you must deploy a variety of
techniques.

You should use a combination of functional coverage and code coverage
techniques.

These are complementary to each other.
In the case of certain protocols, you should also perform hardware interoperabil-

ity testing.
Finally, let’s not forget that the target devices are programmable. Implement

parts of the design in hardware to find those hard to reach bugs that may take days

98 11 Functional Verification

or weeks of simulation to uncover. In-system debug techniques are described in
more detail in the Chap. 13.

The verification methodology should use the following steps.

11.6 Attack Complexity

There are three main rules for helping to deal with the complexity of testing your design.

11.6.1 Modularize Your Design and Your Tests

It is extremely unlikely that you will be able to test all of the functionality of your
design with a single test. As such you should have different tests for testing differ-
ent aspects of the design. In addition to providing a more thorough verification
environment, this approach will make it easier to transfer the testing to other per-
sons as the tests will be easier to understand.

For large design blocks you should adopt a functional verification methodology
that breaks the design into smaller sub-designs, as described in the Chap. 8 and
thoroughly verify each sub-design prior to verifying the complete design.

11.6.2 Plan for Expected Operation

Create tests to confirm that the design will work in the planned or normal mode of
operation. You should exercise the design under all of the operational modes under
the various normal conditions. These tests must cover all of the features listed in
the functional description and specification.

Exercise the corner cases and confirm that they operate as defined.
As part of the functional tests, ensure that you exercise every register bit and

every signal on every port.
When verifying designs with multiple modules that can be user parameterized,

you need to exercise all possible combinations of the modes to verify the interac-
tions between the adjacent modules.

After each operation, verify that the system returns to the correct state.

11.6.3 Plan for the Unexpected

The last thing that you want is that your system enters an unrecoverable state based
upon system conditions that you had not tested. As such, you must test exception
conditions. These exception conditions will vary from application to application.
Examples of such conditions are overflows, underflows, CRC errors, aborts. As

9911.7 Functional Coverage

part of testing unexpected conditions you should test the functionality in these
unplanned conditions and then exercise recovery from the exception conditions.
Exceptions aren’t necessarily errors; they can be outlier conditions that are unlikely
to occur in practice. The key thing is that your system can recover from them.

This testing should test conditions that cannot happen

1. Test illegal conditions
2. Violate design assumptions
3. Violate protocols
4. Change modes in mid-operation

Once again, the key factor is that while the design may behave incorrectly, it should
recover eventually.

As part of the functional verification of IP or design blocks, you should test the
interaction with other cores in the overall design to ensure that the interfaces oper-
ate as expected.

11.7 Functional Coverage

Compliance and corner case testing, as described in the Sect. 9.6, attack complex-
ity, is good but on its own it is not sufficient to fully test your system. It is unlikely
that you will be able to predict and exercise all possible conditions. This increases
the risk of failure in system. Functional coverage increases the confidence in the
verification of your design block or system. It is the determination of how much
functionality of the design has been exercised by the verification environment. Each
test is created to check the particular functionality of a specification. The key point
is that you need to be able to prove that the test executed the functionality that it is
supposed to check.

The test plan for your design block and for the overall system should specify the
metrics for verification coverage. That is the functional coverage goals for the design.

The challenges that you face when planning for functional coverage are ensuring
that the design implements the formal Functional Description and in the case of
interfaces, conforms to standard protocol specifications.

Your goal is to ensure that it satisfies formal Functional Test Plan and matches
the behavior established by a suitable golden reference model.

In the case of reusable design blocks, you want to ensure that the coverage items
capture

1. All features and capabilities of the Device under test
2. All configuration variants
3. Types of stimulus applied
4. The response of DUT

Functional coverage does have limitations in that it is difficult to define a list that
proves 100% functionality of the design. Thus it is important to identify the cover-
age holes in the coverage space.

100 11 Functional Verification

11.7.1 Directed Testing

Directed testing requires hand crafted test case for each test plan item. Thus the
number of tests required to achieve acceptable coverage is enormous. The tests
themselves tend not to be easily reusable.

It is best used to test typical behavior due to the time it takes to perform the
simulations.

It is recommended that directed testing be used for reasonably small blocks. For
much larger blocks and at the system level, you will need to adopt constrained
random techniques.

11.7.2 Random Dynamic Simulation

In this verification methodology, random stimulus is used to increase the functional
coverage. This method of verification is best performed using a high level verifica-
tion language. Over the years, many languages and tools have been developed to
serve this purpose. SystemVerilog has emerged as the leader in this space.
SystemVerilog has been ratified as a standard by the IEEE and provides the broad-
est tool support among verification languages.

It is recommended that you should consider adopting SystemVerilog for the
verification of your system.

11.7.3 Constrained Random Tests

Constrained random testing is built on top of random dynamic simulation. Random
simulations are best run in the early stages of the design to catch a lot of bugs. Then
as the design nears completion, the random simulations are constrained to fully
cover the test space.

A single test run can cover many items in the test plan, resulting in less simula-
tion time.

This approach can also detect problems/bugs that are not part of test plan
(Fig. 11.1).

11.7.4 Use of System Verilog for Design and Verification

SystemVerilog is really three languages in one.

1. It contains design constructs that are more powerful than Verilog and VHDL for
design and synthesis.

10111.7 Functional Coverage

2. It has advanced testbench constructs for stimulus and coverage.
3. It supports assertion constructs to capture the designer intent.

SystemVerilog has built-in support for coverage-driven constrained-random
verification.

It has options for pre-verified libraries of assertions with the major EDA simula-
tors on the market.

At this time, the industry is split on the SystemVerilog verification methodology.
The two main libraries are VMM (Verification Methodology Manual and OVM
(Open Verification Methodology). There is a push to standardize on a single library.

11.7.4.1 Assertions

Assertions are used to check assumptions made by designers and the behavior associ-
ated with a design. They are triggered during a dynamic simulation if the design meets
or fails the specification. They can be used at both the module and the system level.

They also provide the benefit that they are reusable with reusable design
blocks.

Assertions provide early visibility into problems such as FIFO overflow/under-
flow errors. They also capture inter-block communication such as memory interface
behavior.

11.7.5 General Testbench Methods

The simplest testbenches to write do not involve the creation of verification code. It
requires that the engineer manually verifies that the design passes. This is normally

Simulate
Design

Debug
Failures

Generate
Coverage

Report

Analyze
Coverage

New Seed
and/or
Modify

Constraints

Passing?
Yes No

Met
Coverage

Goal?

No

Yes

Done

Fig. 11.1 Constrained random test flow

102 11 Functional Verification

achieved by viewing the resulting waveforms. One of the challenges with this approach
is that while the designer who fully understands the design can understand the waver-
forms, a different engineer may miss errors or take much longer to understand the
results.

This approach is best applied to simple design blocks that are not intended for
re-use.

The designer creates the “test harness” code to instantiate the design code and
creates stimulus signals (Fig. 11.2).

mycode_tb.vhd (or .v)

Single process
to control each
signal

clk_assignment mycode.vhd (or .v)

clk

in1
out1

out2

in2
in3

rst
reset_assignment

datagen_process

Fig. 11.2 Simple testbench that requires manual checking

11.7.6 Self Verifying Testbenches

Self verifying testbenches are more difficult to create. Being able to write the
“expected results” requires a strong understanding of the design block under test.
This requires more work up front as any errors in the “expected results” can be hard
to catch. However once it is set, you can run the tests and get a quick pass or fail.

This is the approach that you should use for reusable design blocks.
When creating self-checking testbenches, you must add the functions to an exist-

ing process so that the outputs can be monitored. A “compare_process” or equiva-
lent is used to check the received results against the expected results (Fig. 11.3).

This class of testbench can contain sequential or concurrent stimulus, as well as
the expected results.

Often the signaling is too complicated to model without using vectors saved in
“time-slices.” This can be achieved using internal arrays or external files.

When using an array containing stimulus and with the expected results inside the
testbench, there is no need to perform type translations. This provides faster simula-
tion times, but is difficult to write and can create very large files.

10311.7 Functional Coverage

When using an external file that contains the stimulus and the expected results,
it is likely that you will need to use type translations. This can result in slower simu-
lation times, but is easier to write (Fig. 11.4).

11.7.7 Formal Equivalency Checking

Formal Equivalency Checking compares the logical equivalence between different
points in the design flow, or between different netlists. It uses mathematical tech-
niques to compare the logical equivalence of two versions of the same design rather
than using test vectors to perform simulation.

mycode_tb.vhd (or .v)

mycode.vhd (or .v)clk_assignment

wavegen_process

reset_assignment

clk

in1
out1

out2

compare_process

in2
in3

clk

Fig. 11.3 Example diagram of a self-checking testbench

Coverage

Generator/
Monitor

Self-Check
Scoreboard

BFM
DUT

BFM Generator/
Monitor

Verification
IP

IP Core

Fig. 11.4 Verification system architecture

104 11 Functional Verification

It is normally used to compare the RTL code to the post-synthesis gate level netlist
to ensure that the synthesis optimizations have not introduced any bugs. It can also be
used to compare the RTL or post-synthesis netlist to the post-fit netlist to ensure that
the Place and Route optimizations have not changed the functionality of the design.

Whilst Equivalency checking can determine if two netlists are functionally the
same, it does not guarantee functional correctness. If the design functionality has been
implemented incorrectly in the RTL, equivalency checking will report a “Success” if
the netlist it is compared with has the same functionality. Thus equivalency checking
is normally used to compare functionally verified RTL to gate level netlists.

Formal Equivalency checking tools tend to be limited in the size of design that
they can support and as such are used mostly on design blocks as opposed to com-
plete designs.

It is a particularly difficult technique to use for FPGAs. FPGA synthesis optimi-
zations perform a lot of register optimizations such as register merging, register
duplication and register retiming. The first two optimizations can lead to false
reports of failures. Investigation of the design can remove these false negatives but
is time consuming. The third optimization type, register retiming, is usually a show-
stopper. Most Formal Equivalency tools cannot cope with the register retiming that
is performed by FPGA synthesis or physical synthesis. Thus Formal Equivalency
checking is rarely used in FPGA design flows.

11.8 Code Coverage

Code coverage reflects how thoroughly the HDL code has been exercised.
It provides information about how many lines of code is executed, providing a

quantitative measurement of the testing effort and assisting in the directing of future
testing effort.

Code Coverage is limited in that it does not look at the sequence of events, nor
does it check any interaction between design blocks. It only looks at what is in the
design, thus can overlook what has not been implemented. In short, it does not look
at the functionality of the design.

One of its benefits is that it can be used to hit the corner cases which are not
reached by the random test cases. In order to do this, users have to write the directed
test cases to reach the missing code coverage areas.

11.9 QA Testing

11.9.1 Functional Regression Testing

The objective of functional regression testing is to provide an automated environ-
ment that proves that the design operates as specified.

10511.10 Hardware Interoperability Tests

Regression testing is necessary to ensure that there is not the reemergence of old
faults. It is considered good practice that when a bug is identified and fixed, that a
test is created to test that the bug is fixed. This test is then run on any future changes
to the design to ensure that the new changes have not re-introduced the bug.
Regression testing automates this testing process. This test is combined into a test
suite of designs that enables the testing environment to execute all the regression
test cases automatically.

Typical automated QA regression testing exercises the IP or design via scripts. It
compiles and compares the results against a known good standard. The testing is self-
checking with a verification log for reporting exceptions. Note the use of the term excep-
tions. A test failure is an exception until any analysis determines that the failure was
caused by a bug in the design. Often the exceptions occur due to problems with the test
environment as opposed to a bug in the design. If this is found to be the case, the problem
with the test environment should be resolved and the test rerun to verify that the test
passes. The regression test environment must be capable of compiling the test statistics
and reporting on the health of the design. This includes reporting on the individual design
blocks as well as the final system design that integrates all of the design blocks.

11.9.2 GUI Testing for Reusable IP

While the GUI for IP should be relatively simple to use, it needs to be tested to
ensure a good user experience. The GUI is likely to be other user’s first exposure
to your IP. You want to ensure that it is a good experience and avoid the scenario
where your IP is not being used because of bugs in the Graphical User Interface.

There are test programs available in the market that will enable you to perform
regression testing on GUIs, however the most valuable testing is Manual GUI testing.

The purpose of the testing is to:

1. Ensure that parameterization GUI functions as intended.
2. Validate the behavior when used correctly.
3. Validate the behavior under user error conditions.

The testing is performed by humans thoroughly exercising the GUI against a check-
list. The testers click buttons, load files, examine expected results and perform error
reporting.

This method of testing is labor and time intensive but will guarantee a good user
experience with the graphical user interface.

11.10 Hardware Interoperability Tests

Hardware Interoperability testing is used where your design is interfacing with
standard protocols. Hardware is tested in the lab against industry standard ASSP(s)
and/or tested at industry plug-fests and testing laboratories.

106 11 Functional Verification

11.11 Hardware/Software Co-Verification

There are tools on the market that enable hardware/software co-simulation. This is
effectively running the ‘c’ code on the model of the hardware. The ‘c’ code will run
much slower than it will on silicon. As such, it is a common technique with FPGA
designs to bypass this test and run the code on the FPGA on a development board
or in the end system.

11.11.1 Getting to Silicon Fast

FPGAs offer the ability to get preliminary designs on boards fast. In system testing
can uncover bugs that cannot be detected using RTL verification. Hardware check-
out should be combined with simulation to verify your design. Simulating the
FPGA design is most valuable in the early stages of the design. Hardware checkout
is useful when debugging interfaces and drivers.

11.12 Functional Verification Checklist

1. Create the test plan. This should detail the interesting test cases to verify the
design.

2. Create the functional coverage specification. This should define what should be
covered.

3. Build the system testbench.
4. Write functional tests and perform simulations to measure functional coverage.
5. Perform Code Coverage. This should only be run after the RTL is steady.
6. Achieve thorough coverage – if block coverage is at 100%, expand the system

level coverage.
7. Perform GUI testing on IP.
8. Complete Hardware Interoperability testing for standard protocol IP
9. Perform In-system debug. This includes hardware–software co-verification with

the software running on the targeted hardware.

107

12.1 Timing Closure Challenges

Timing Closure is the area of the design flow that can cause the most frustration to
FPGA designers. This is the area which can eat up the compute cycles on your
workstation, it can result in feature drop from your system design and may result
in you having to pay for a faster speed-grade device than you intended to use.

Most of the chapters in this book have revolved around preventing timing clo-
sure challenges in your design.

This chapter presents moves onto the next stage by presenting a design method-
ology for achieving timing closure.

So, why is timing closure a challenge in FPGA designs?
Over the last decade there has been a huge increase in the FPGA device density

and the size of the designs targeting FPGAs. FPGA device logic density has
increased by approximately 30×, and the amount of embedded memory has
increased by approximately 70×. Over the same period of time, the speed of work-
station CPUs have only increased by a factor of 14. All of these create a compile
time challenge for high density FPGA designs.

On top of this, the clock speeds of the designs and the interface speeds have risen
substantially. Today’s devices include transceivers that can reach speeds of more
than 11 G and DDR III memory interfaces that run in excess of 533 MHz.

These types of applications require more complex timing constraints such as
source synchronous interfaces and inter clock transfers.

The process geometries of modern FPGAs now dictate that timing analysis be per-
formed at two or more timing corners in order to guarantee timing closure. At these
smaller process geometries the delays are typically dominated by the delays of the inter-
connect routing as opposed to the cell delays. This creates a challenge in the placement
of the design to avoid long interconnect delays whilst avoiding routing congestion.

The addition of dedicated hardware blocks, such as embedded memory and DSP
blocks provide the benefit of increased functionality, but can create a challenge in
placement with relation to the logic that interfaces with these blocks.

The good news is that the FPGA vendor software has risen to the challenges and
includes a number of features to solve these challenges. In many cases, the default

Chapter 12
Timing Closure

P. Simpson, FPGA Design: Best Practices for Team-based Design,
DOI 10.1007/978-1-4419-6339-0_12, © Springer Science+Business Media, LLC 2010

108 12 Timing Closure

settings will meet your performance goals push-button. For the designs that do not
meet your goals there are a number of analysis tools and features to enable you to
succeed.

12.2 The Importance of Timing Assignments
and Timing Analysis

Timing Analysis is the singly most important topic that you need to understand
when it comes to timing closure. Unfortunately, it is also the topic that designers
have the greatest challenge in understanding.

In this section of the chapter we will explain the importance of timing analysis and
provide a basic background on timing analysis. In depth coverage of timing analysis
could be a book in its own right. For an advanced understanding of timing analysis,
it is recommended that you attend training from one of the FPGA vendors and
download the various application notes from their websites.

Timing assignments serve two purposes in FPGA design.

1. They direct the synthesis and place and route software. The impact on place and
route is described in detail in Sect. 12.3.4.1, “understanding the fitter (place and
route).” Timing assignments drives where the optimizations are focused for syn-
thesis and determines which paths the place and route engine needs to prioritize
in the fitting process.

2. They are used in timing analysis. Timing analysis does not guarantee the func-
tionality of the RTL but does guarantee that your design does not have timing
violations. Static timing analysis computes the timing of the design without per-
forming a simulation.

12.2.1 Background

If we step back in time, timing analysis on FPGA designs was relatively simple.
The end applications were reasonably simple in that there were a limited number
of clock domains and the timing models from the vendors were heavily guard-
banded such that designers needed only to analyze the design at a single timing
corner. Each FPGA vendor created their own timing assignment language with a
heavy focus on the clock frequency. The FPGA vendors effectively sheltered the
designers from needing to know the intricacies of timing analysis.

If we look at the current class of designs targeting FPGA devices, designers now
face much of the same timing analysis challenges that ASIC designers have been
facing for several years. Typical designs now use multiple clock domains, have
complex relationships between clock domains and have a heavy focus on interface

10912.2 The Importance of Timing Assignments and Timing Analysis

timing rather than purely finding the maximum clock frequency. On top of this the
modern process geometries of 65 and 40 nm require that analysis be performed at
multiple timing corners to guarantee operation. The original vendor timing lan-
guages were not originally designed for constraining this class of designs. This has
resulted in FPGA designers needing to learn ASIC timing analysis techniques.

The good news is that FPGA vendors and the EDA tool industry is standardizing
on a timing constraint language. This is the SDC (Synopsys Design Constraints)
language from Synopsys.

12.2.2 Basics of Timing Analysis

This section of the chapter explains the common terminology that is used in timing
analysis, along with a brief description of the base level of timing constraints upon
which timing analysis is built.

12.2.2.1 Static Timing Analysis

Static timing analysis measures the timing delays along the timing paths in the design
and reports the timing against the timing constraints. It identifies whether the design
will operate functionally based upon the timing characteristics of the FPGA silicon.
The timing analysis is performed independent of the functionality of the inputs and
determines the delay of the circuit over all possible input combinations with every
device path in the design being analyzed with respect to the timing requirements.

Static timing analysis catches timing-related errors faster and easier than gate-
level simulation and board testing.

12.2.2.2 SDC

SDC is the acronym for Synopsys Design Constraints. This is the industry standard
language for timing constraints that has been adopted by most FPGA vendors and
EDA tools that support FPGA devices.

12.2.2.3 Clocks

Clocks are used to specify register-to-register requirements for synchronous trans-
fers and to guide the Synthesis and Place and Route optimization algorithms to
achieve the best possible implementation of the design.

Clocks should be the first constraints specified in any design’s SDC files. This
is important as many constraints reference clocks; therefore, the clocks must be
defined first.

110 12 Timing Closure

12.2.2.4 Launch Edge

The launch edge is an active clock edge that sends data out of a sequential element,
such as a register, acting as a source for the data transfer.

12.2.2.5 Latch Edge

A latch edge is the active clock edge that captures data at the data input of a sequen-
tial element, such as a register, acting as a destination for the data transfer.

This is detailed, along with the launch edge in Fig. 12.1.

12.2.2.6 Hold Time (th)

Hold time is the minimum length of time for which data that feeds a register via its
data or enable input(s) must be retained at an input pin after the clock signal that
clocks the register is asserted at the clock pin.

A hold time failure occurs when an input signal change too quickly after the
clock’s active transition on a sequential element. This will result in a timing failure
on the sequential element.

12.2.2.7 Set-Up Time (tsu)

Set-up time is the length of time that the data that feeds a register via its data or
enable inputs must be present at an input pin before the clock signal that clocks the
register is asserted at the clock pin.

This is detailed in Fig. 12.2.
A set-up time violation occurs when a signal arrives too late at the input of a

sequential element missing the time when it should advance. This will result in a
timing failure on the sequential element.

reg1

0 ns

dk

dk

5 ns 10 ns 15 ns

D Q D Q

reg2

Launch Edge at Source Register reg1

Latch Edge at Destination Register reg2

Fig. 12.1 Launch and latch
edge diagram

11112.2 The Importance of Timing Assignments and Timing Analysis

12.2.2.8 Arrival Time

Arrival time can be separated into data arrival time and clock arrival time.
Data arrival time is the delay from the source clock to the destination register.
Clock arrival time is the delay from the destination clock node to the destination

register.
Data arrival time and clock arrival time are detailed in Fig. 12.3.

reg

0 10 20 30

D Q D Q

reg

data_in

src_dk

dst_dk

setup

data_out

hold

Fig. 12.2 tsu and th diagram

D Q D Q

Data Arrival

Clock Arrival

Fig. 12.3 Clock arrival and data arrival diagram

12.2.2.9 Required Time

This is the latest time at which a signal can arrive without making the clock cycle
longer than desired.

112 12 Timing Closure

12.2.2.10 Slack

Slack is the margin by which a timing requirement is met or not met. It is the dif-
ference between the required time and the arrival time. A positive slack value
indicates the margin by which a requirement was met. A negative slack value indi-
cates the margin by which a requirement was not met.

12.2.2.11 Timing Exception

This is a constraint that is not required, but may be needed to better describe how
a design should work. Timing Exceptions adjust how timing analysis is performed
on the design. Examples of timing exceptions are multi-cycle paths and false
paths.

12.2.2.12 Multi-Cycle Path

Multi-cycle paths require more than one clock cycle for a signal to be updated.
These paths need to be identified by the designer of the block, as their identification
requires a detailed understanding of the functionality of the design.

A multi-cycle assignment relaxes the setup relationship by allowing you to specify
the number of destination clock cycles required before a register latches a value.

Figure 12.4 details a Multicycle value of 2 to a clocked register which delays the
latch edge by one destination clock cycle.

new setup
default setup

0 10 20 30
Fig. 12.4 Multi-cycle
path

12.2.2.13 False Path

A False path assignment is used to define paths that the timing analyzer should not
analyze. Examples of such paths are test logic or any other path not relevant to the
circuit’s operation. False paths are also commonly used on paths that cross clock
domains.

11312.2 The Importance of Timing Assignment and Timing Analysis

12.2.2.14 Source Synchronous

Source Synchronous clocking is used to describe the technique of sourcing a clock
along with the data. In source-synchronous interfaces, the source of the clock is the
same device as the source of the data.

12.2.2.15 Rise/Fall Time

The rise time is the time required for a signal to change from a low value to a high
value. A low value is typically 10% of the signal value and the high value is 90%
of the signal value. The fall time is the time required for a signal to change from a
high value to a low value.

12.2.2.16 Input Delay

The input delay (set_input_delay) specifies the required data arrival times at the
specified input ports relative to the clock. The input delays are specified relative to
the rising edge or falling edge of the clock (Fig. 12.5).

External Device Altera Device

Oscillator

Fig. 12.5 Input delay

12.2.2.17 Output Delay

The output delay (set_output_delay) specifies the required data arrival times at the
specified output ports relative to the clock The output delays are specified relative
to the rising edge or falling edge of the clock (Fig. 12.6).

Altera Device External Device

Oscillator
Fig. 12.6 Output delay

114 12 Timing Closure

12.2.2.18 Operating Conditions

Operating conditions consist of the combination of voltage and temperature settings
that are used during the timing analysis of the design. These values impact the
delays in the timing models used during timing analysis.

12.2.2.19 Multi-corner Analysis

Multi-corner analysis allows a design to be verified under a variety of operating
conditions while performing a static timing analysis on the design. This typically
performed on the slow corner model and the fast corner model.

You must perform multi-corner timing analysis on your design before signing
off on the design timing. Many years ago, FPGA vendors only provided a single
timing model that represented worst case operating conditions. The model had
enough timing guard-band built in that users could perform timing sign-off with the
one model and be guaranteed that the design timing would work. As the process
geometries of FPGA devices have shrunk to 65 nm, 40 nm and below, this state-
ment is no longer true. You need to sign off on the design timing under best and
worst case conditions. This means that you will have to optimize your design in
both the best case and worst case operating conditions.

12.2.2.20 Slow Corner Model

The slow corner timing model indicates the slowest possible performance for any
single path timing under worst case operating conditions. The model represents the
slowest device at the max operating temperature and VCCMIN. The Slow timing
model is typically used to ensure setup timing is met.

12.2.2.21 Fast Corner Model

The fast corner timing model indicates the fastest possible performance for any
single path timing under best case conditions. This model represents the fastest
device at the minimum operating temperature and VCCMAX. The Fast timing
model is typically used to ensure hold timing is met.

This analysis allows you to verify that short paths meet timing requirements
under best-case operating conditions.

12.2.2.22 Clock Uncertainty

Clock uncertainty is often referred to as the skew for clocks or clock-to-clock trans-
fers. It is specified separately for setup and hold times and can specify separate
rising and falling clock transitions (Fig. 12.7).

11512.3 A Methodology for Successful Timing Closure

12.2.2.23 Clock Latency

There are two types of clock latency. These are network and source. Network
latency is the delay on the clock network between the clock and register clock
pins.

Source latency is the clock network delay between the clock and its source (e.g.,
the system clock or base clock of a generated clock).

The source latency can be assigned to generated clocks for specifying board
level delays from a clock output port to a clock input port when the clock input port
is acting as a feedback clock.

12.3 A Methodology for Successful Timing Closure

This section of the book will describe a design methodology that will consistently
enable you to successfully achieve timing closure in your FPGA design.

12.3.1 Family and Device Assignments

12.3.1.1 Speed-Grade Selection

It is recommended that you start with the fastest speed-grade of the targeted device
to enable you to close timing quickly. This will enable you to get to the board
quicker for functional checkout and to start on software development sooner.

You can work on optimizing the design for a lower speed device during the verifica-
tion cycle or later once functional verification is complete.

0 6 7 10

Clock Setup Uncertainty

Setup Relationship with Uncertainty
Setup Relationship without Uncertainty

Fig. 12.7 Clock uncertainty

116 12 Timing Closure

12.3.1.2 I/O Settings

The drive strength and I/O standards that you select will impact the timing at your
pins. They will also impact the power consumption and signal integrity of your
device.

The techniques that can be used to improve the I/O timing are, in order of
preference:

1. Ensure that the appropriate timing constraints are set on the I/O pins.
2. Examine the report file to determine if the I/O registers are being used. If they

are not being used, look at the RTL and recode the RTL such that the output
registers drive the pins and the pins drive input registers. The place and route
software will normally use the I/O registers in order to meet the I/O timing
requirements. If this is not working, you can force the use of I/O registers via
settings in the FPGA design software.

3. Look at the delay chain settings for the I/O cells. Use the shortest delays for pins
that feed or are fed directly by pins. Most FPGA devices have programmable
delays options in the I/O cells that can be used to minimize the tsu and tco times.
These are typically set by the FPGA design software based upon the I/O timing
settings. If this is not working, you can manually set the delay through settings
in the software.

4. Use PLLs to shift the clock edges to meet the I/O timing. If a PLL is provid-
ing the clock to the registers that are driving the I/O pin or are being fed by
the I/O pin, the PLL output can be phase shifted to change the I/O timing. A
backwards shift in the clock will provide better tco at the expense of tsu.
Shifting the PLL output forward provides a better tsu at the expense of tco
and thold.

12.3.2 Design Planning

As mentioned in Chap. 8, it is important that you plan up front for timing closure.
Up front planning will help to identify issues before they arise and avoid delays late
in the design cycle.

One of the common mistakes in timing closure is waiting for all of the RTL
code to be available before compiling the top-level design. You should compile
the top-level design as soon as the RTL for any of the major lower level modules
is complete, in order to catch integration and resource issues as early as
possible.

In order to be able to do this, you need to have planned for timing closure at the
specification stage where you define how the design will be partitioned into func-
tional blocks. This will include the timing requirements for the individual blocks,
inter-block timing requirements and any placement restrictions on blocks that interface

11712.3 A Methodology for Successful Timing Closure

with dedicated hardware blocks or device pins. These requirements need to be
adhered to when compiling the RTL at the top-level. More detailed information on
RTL design partitioning is available in Sect. 8.5.2.3.

It is also recommended that you plan to use an incremental design methodology.
In reality, by partitioning your design appropriately, as described in Sect. 8.5.2.3
you will have planned for an incremental compilation methodology. The advantage
of such an approach is that it makes it easy to apply a team based design methodol-
ogy to the FPGA design, whereby multiple engineers can work on the design and
timing closure of the FPGA design. This design methodology will also enable you
to minimize the impact of Engineering Change Orders on the design.

The major FPGA and EDA vendors include features in their FPGA design soft-
ware to enable an incremental design methodology

12.3.2.1 Incremental Compilation

As mentioned previously, incremental compilation capabilities that are available
from the FPGA vendors can dramatically shorten you compile times. This is not the
only benefit of this approach. An incremental compilation methodology can shorten
the timing closure cycle. The key factor behind the use of this capability is good
design planning.

So, how does incremental compilation work?
Incremental compilation provides the ability to preserve the blocks in your

design that have not changed and to only compile the parts of the blocks in the
design that have changed. The net benefit is reduced compile time as there is less
logic to recompile and a reduced number of compilations, as you can lock down the
timing critical modules in the design once timing is met, thus preserving the per-
formance of these blocks. A third benefit that is often overlooked is that you can
add in debug logic when going to the lab without impacting the design. This is
discussed in more detail in Chap. 13.

You should deploy an incremental design methodology.
You should also be aware of the restrictions that it can place on your design so

that you can avoid the pitfalls.

1. It requires up front planning on the design partitioning, as described in
Sect. 8.5.2.3. This can place restrictions on how your design blocks interface.

2. It prevents optimizations across design blocks. This restriction can be alleviated
by maintaining the critical path inside a design block, by registering the ports on
the design block and by not inserting combinational logic between design blocks
at the next level of hierarchy.

3. It reduces the device utilization that you can achieve. This is true in that some of
the area optimizations that exist in FPGA design software are more effective
when applied to the complete design. An example of such an optimization is the
packing of unrelated registers and LUTs in the same logic cell to save area. If you

118 12 Timing Closure

are trying to utilize every logic cell in your design, you are likely to have timing
closure issues due to the routing resources available in devices. Sacrificing device
utilization for faster timing closure and higher performance is a decision that
should be addressed in the device selection and specification. Most designs can
reach 85%+ logic utilization and close timing using an incremental design
methodology

 Top-Down Design Flow

In a top-down design flow, the entire design is compiled in one project and timing
closure is performed on the whole design. As the RTL for the different blocks in
the design are complete, they are added to the top-level design and compiled with
the rest of the design. One of the advantages of using this technique is that it pro-
vides good visibility into the paths between partitions. Timing closure is performed
on the whole design. Once the designer is satisfied with the results for his block, it
can be locked down such that it does not need to be recompiled, reducing the com-
pile time and locking down the performance.

 Bottom-Up Design Flow

In a bottom-up design flow, the modules are compiled in separate projects and
locked down once the designer has achieved timing closure on the blocks. The
lower-level partitions are then imported into the top-level project for final integra-
tion. This does not require a recompile, but rather a merger of the place and routed
netlists followed by a routing operation for the connections between the blocks
(Fig. 12.8).

The bottom-up design flow lends itself to a simpler partitioning of the design
between different team members, but has the disadvantage of involving total isolation
of lower-level modules. This requires more up front effort in the allocation of chip

‘Motion’
Project

Programming
Files

‘Control’
Project

‘Motion’
Results Top-

Level
Project

HDL

Top-Level

‘Control’
Results

Lower-Level Top-Level

HDL
Netlists

Fig. 12.8 Bottom-up design flow

11912.3 A Methodology for Successful Timing Closure

resources. This creates the need for detailed floorplanning to accommodate each
block that will be compiled in a separate project. It also complicates the timing con-
straints for the overall project as timing constraints need to pass from the top-level
project to the lower level project. Any timing constraints that are added in the lower
level project will also need to be migrated to the top-level project (Fig. 12.9).

Without a Floorplan With a Floorplan

Top-Level
Integration Successful

Top-Level
Integration Conflict

Fig. 12.9 Integration of modules in the top-level design

Motion

Control

75% of Design

15% of Design

Decoder

Output
Controller

Partition
‘Top’

Partition
‘Control’

Partition
‘Motion’

Timing Critical

10% of Design

Top-Level
Glue Logic

IP Core
Controller

IP Core

Memory
Motion

Compensation
Engine

Fig. 12.10 Example design partitioned for incremental compilation

12.3.2.2 Design Scenarios Using Incremental Compilation

In this section we are going to look at a few scenarios where incremental compila-
tion can significantly reduce the timing closure cycle.

Take the example design shown in Fig. 12.10.

This design has been planned to contain three main hierarchies that have been
partitioned for incremental compilation. The hierarchy “Motion,” the hierarchy
“Control” and the block “Top”. Top is the top-level hierarchy of the design and
contains the block “Motion,” the block “Control” as well as other levels of hierar-
chy. The block “Motion” is also hierarchical containing two other design hierar-
chies and the block Controller is a sub-set of the “Decoder” Module which is one
of the design blocks in hierarchy “Top”. The design has been compiled and meets
performance.

120 12 Timing Closure

 Scenario 1: Parameter Tuning

In this scenario, the system needs some fine tuning due to a small change in the
specification that will impact the memory module in the top-level file. The user can
lock down the place and route on the “Control” and “Motion” blocks, as their RTL
will not be changed, make the change to the block “Memory” and recompile the
block “Top”. This will preserve the performance of the “Control” and “Motion”
blocks as they are not compiled and greatly reduce the compile time as only 75%
of the design has to be recompiled and the timing critical block that would typically
challenge the fitter has not been touched.

If this design typically compiles in 6 hours, a complete recompile means that
you can only achieve one iteration of the design in a normal working day. It is usu-
ally an iterative process to make a design change successfully.

By using the incremental compilation approach, your compile time would likely
drop to less than 4 h, enabling two design iterations in a day, possibly more if these
parts of the design are not timing critical allowing you to use the fast compilation
options described in Sect. 12.3.3 on early timing estimation.

 Scenario 2: Bug Fixing

In this scenario, you have finished the design and are in the final stages of in-system
testing in the lab. The system is running at-speed and you have a functional failure.
You need to find and fix this bug fast.

You can preserve the place and route of the complete design and utilize some of
the debug options available from the FPGA vendors without having to complete a
total recompile.

You can route internal signals in the design to unused pins quickly without dis-
turbing the placement or routing of your design.

You can add in the Embedded Logic Analyzer from the FPGA vendor without
recompiling the blocks “Top,” “Motion” and “Control.” As you try to isolate the
bug, you can refine the trigger conditions of the Embedded Logic Analyzer and
quickly create a new programming file.

A total recompile would take 6 hours and would change the design implementa-
tion. Without the incremental compilation methodology, the addition of the
Embedded Logic Analyzer, or changes to the Embedded Logic Analyzer may cause
the bug to disappear; leaving you wondering is your design functionally correct?
Will the problem reappear in production?

Using the incremental compilation capability, the design implementation is preserved
and the compile time is likely to be in the order of 45 min; enabling multiple iterations
as you debug the design. The design preservation guarantees bug reproduction.

An example of the type of bug that you would capture is an asynchronous signal
with a race condition. This type of bug is hard to capture with simulation. Once you
find the bug in-system, you correctly constrain the paths and recompile the blocks
that are impacted.

12112.3 A Methodology for Successful Timing Closure

This is the recommended methodology that you should adopt for bugs that only
occur when running at speed.

 Scenario 3: Timing Closure

In this scenario, there is a need to make a few enhancements to the time to increase
the overall performance of the design. This may happen if you receive a new ver-
sion of IP from a third party. In the example that we have been looking at, a new
version of the “Motion” core must be used. The specification has also changed such
that the block performance must increase from 120 to 150 MHz.

You compile the design and have trouble closing timing in the “Motion” core.
You do not have the option to optimize the RTL code, as the design is an encrypted
core from a third party. Your only option, outside of waiting for the IP vendor to
deliver a new version of the IP core, is to use the advanced optimization settings in
the FPGA vendor software. You try the various settings until you close timing on
the IP core, “Motion” and lock in the results by setting the block to post-fit and
preserve routing.

If there is a change in any of the other design blocks, such as “Top” there will
not be a timing closure problem on the blocks “Motion” and “Control” as they are
locked down.

12.3.3 Early Timing Estimation

As mentioned in the Chap. 8, timing estimation is inaccurate unless a design has
had some level of placement performed. Early in the design cycle, you do not want
to go through a complete place and route compilation to get a performance estimate
for your design. The FPGA vendors have provided a solution to this problem.

Most FPGA vendor software includes a setting that results in reduced compile
time. This is achieved by limiting the number of placement attempts. This can dra-
matically reduce the compile time, usually at the expense of performance. The
timing results using the fast compilation options are usually within 10% of the
results that can be achieved by performing a full compile, but in less than half of
the compilation time. This is a powerful tool that can greatly reduce your timing
closure cycle.

It is recommended that you use this Fast compilation option in the following
scenarios.

1. Early in the design cycle when you are determining the performance on design
blocks that are undergoing change. Your timing results are likely to be within
10% of what is possible, but your iteration time will be significantly shorter.

2. Use it on complete designs that can easily meet timing. If your design is not high
performance compared to the FPGA technology being targeted, this mode will
reduce your iteration time throughout the full life of the project.

122 12 Timing Closure

The project documentation should reflect the fact that this fitter option has been
used for the design or for a particular design block.

If your design is missing timing by more than 10%, go back and work on the
RTL rather than continuing with a complete compile.

As stated in design planning, you should compile your major design blocks as
early as possible at the top-level of the design in order to catch integration and
resource issues as early as possible. In order to achieve this, you can create dummy
blocks for the blocks that are not complete. These empty blocks need to contain the
correct port connections.

12.3.4 CAD Tool Settings

It is recommended that you try to maintain the default Synthesis and Fitter settings.
The FPGA vendors provide you with dozens of knobs and switches that will impact
the results. You should avoid the temptation to fiddle with them and only use them
when you have exhausted your RTL coding capability.

This being said, these settings can be very effective and can drastically change
compilation results. However the results that they provide can vary significantly
from one release of the FPGA vendor software to the next. Thus they can make
your design non-portable between tool versions, effectively making your IP non-
reusable.

If you have your back to the wall and have to close timing on this project at all
costs, then you should take advantage of these options.

In addition to optimization settings, the FPGA vendor software also provides the
ability to influence the result via floorplanning of the logic. You can specify cell
placements, in various groups, regions, down to individual routing tracks.

Again it is recommended that you avoid doing this unless the FPGA vendor
software is doing a poor job on placement.

It is rare for human architecture experts to beat the tool with hand-work, how-
ever it can work in isolated cases and is another weapon in your arsenal if it appears
that all hope is lost.

12.3.4.1 Understanding the Fitter (Place and Route)

The Place and Route tools from the main FPGA vendors will adjust their operation
to try and meet the requirements for your design. This means that you will see dif-
ferent results based upon your timing constraints. Tougher timing constraints
equates to longer compilation time.

The Place and Route engines are timing driven and understand complex timing
constraints. Thus it is recommended that you use real timing constraints.

The Fitter tries to find a placement that can be routed to meet your timing
requirements.

12312.3 A Methodology for Successful Timing Closure

One of the phenomena of FPGA Place and Route Software is the variation in
results based upon the “seed effect.”

The initial placement for the logic is random, based upon the starting condition
of your design and it is possible that different placements can meet your goals. The
Place and Route seed, also known as the Fitter seed, changes the initial starting
point of the algorithm for placement, effectively impacting how optimizations pro-
ceed. The Fitter’s algorithm runs multiple placement attempts based upon the previ-
ous results to converge on a successful result. However, by changing the initial
starting placement you may result in a different final placement and hence different
timing results.

A common technique used in timing closure is “seed sweeping”. This is running
multiple different seeds to determine which will give the best result for your design.
In the past, seed sweeping resulted in large changes in performance. Today, the
average change in performance for the latest FPGA technologies is in the ±5%
range. Note this can change significantly from FPGA vendor to FPGA vendor and
family to family.

It is recommended that you avoid using seed sweeping on design blocks that you
intend to reuse or on final designs that are likely to require future updates as the
same seed will have a different effect in future versions of the FPGA vendor soft-
ware or if you make any changes to your design, such as logic changes, assignment
changes or pin changes.

So when would you use seeds?

1. If the design can meet timing, however you want to maximize your timing
margin.

2. You need to quickly get the design in the lab for functional checkout. You should
always go back and remove the need for a particular seed or seed sweeping.

3. This is the final version of the design, it is the only way to meet timing and there
will not be future versions of the design. An example of this would be FPGA
prototyping of an ASIC design.

An IP, or design block is not reusable if timing closure depends upon a particular
seed and hence a particular version of an FPGA vendors software.

12.3.4.2 Advanced Optimization: When You Need More

As mentioned in the CAD tool settings section, FPGA design tools provide dozens
of options for optimizing your design. In this section we will cover the options that
are typically most effective.

 Physical Synthesis Optimizations

Most FPGA vendor tools contain Physical Synthesis optimization options. Physical
synthesis is tightly integrated with the place and route engine and re-synthesizes the

124 12 Timing Closure

logic where timing is a problem. Common techniques that are used include register
retiming and register duplication. These are techniques that could be fixed at the RTL
level, but may require major recoding. There are a lot of other optimizations performed
by Physical Synthesis but these are the most common and often most effective.

In certain designs, it can improve the clock performance by greater than 20%. For
designs which have been carefully coded with balanced registers, the performance gain
may be only 1–2%. This optimization comes with a price. The design compile time will
increase dramatically, normally by a factor of 2 or more. It will also limit your use of
Formal Verification tools as they typically struggle with register retiming optimizations.

Due to the compile time impact, you should consider limiting the use to problem
blocks in an incremental design flow.

The use of Physical Synthesis is fully automated, i.e. you set the option and compile.

 Design Space Exploration

Most of the FPGA vendors provide utilities in their tool that will automatically run
multiple compilations using different settings and seeds to find the settings in the
tools that provide the best results for your design.

Due to the effect of seeds on place and route, you should only use Design Space
Exploration in the late stages of your design when the design is effectively com-
plete and you are focused on timing closure.

This type of utility will typically perform ten or more compilations and as such
can result in compilation times of several days.

Fortunately the main FPGA vendors have added multi-processing to their utili-
ties such that multiple compilations can be performed in parallel as opposed to
sequentially. This greatly reduces the compile time.

The downside of using a Design Space Exploration tool is that if you make a
change to the RTL of your design, you will need to rerun the utility due to the ran-
dom nature of seeds.

Design Space Exploration can be run on individual blocks in your design. This
is a powerful technique for reducing the compile time and only focusing the opti-
mizations on the performance critical areas of the design.

This technique is particularly effective in an incremental compilation design
flow where Design Space Exploration is only run on the blocks of the design that
are timing critical.

If you use Design Space Exploration on a design block or complete design the
exact settings used should be documented with the design to enable other users to
recreate the results.

12.3.4.3 Compilation Reports and Analysis Tools

Review the messages from the synthesis and place and route reports to help with tim-
ing closure. These will often provide information that can be used to help improve the

12512.3 A Methodology for Successful Timing Closure

performance of the design. Your design process should dictate that designers should
always review and remove all warnings from a project. This is necessary as the
messages may indicate problems with the design such as the inadvertent use of
latches or missing timing constraints. One of the challenges with reviewing warnings
is that the messages may come from purchased IP and you cannot change the RTL to
remove the message. In this scenario, you should check with the IP vendor on the
message and if they prove that it is safe to ignore the message, you can document
this information in the project and ignore the message for future compilations.

The report file itself details information on resource usage in the device and can
be used to determine which modules are using the most resources in the device.

Information from the compilation reports, such as the amount of time spent in
placement and routing, can help identify challenges to the fitter. Long route time
can be due to restrictions created by the placement. This can be improved by pos-
sible hand placement of some nodes or increasing the placement effort.

The compilation report also provides details on the optimizations that have been
performed, such as the registers that have been removed from the design. This
information can help you to find problems in the RTL, or explain why debug logic
has been removed, enabling you to fix the RTL.

Similarly messages on ignored assignments can resolve problems caused by
typos when creating assignments or identify assignments that are out of date and
should be removed from the project.

In addition to the compilation report files, the FPGA vendors provide tools that
detail the design in graphical form.

These tools should be used when examining the results for gaining an under-
standing of the RTL and viewing the results of synthesis and place and route.

These viewer tools provide hierarchical block diagram views of the design, as
well as a technology implementation view detailing how the design has been
mapped to the target technology after synthesis or after fitting.

The hierarchical block diagram view is useful for understanding the architecture of
the design, thus is useful for understanding the design flow as shown in Fig. 12.11.

Fig. 12.11 Example of the RTL viewer in the Quartus II software

This should be applied when inheriting design blocks from other users to gain a
visual understanding of the design and for planning the floorplan of a device as it will
detail the data flow through the design and interaction of the blocks. It also provides
visibility into functions such as Finite State Machines as shown in Fig. 12.12.

126 12 Timing Closure

The technology-specific view is useful for understanding how the design has
been implemented in the FPGA and can be used to determine where optimization
is possible.

It can quickly detail the number of levels of logic in the critical path and can link
back to the RTL to help relate the implementation to the original RTL.

The technology map view helps in creating legal complex timing constraints for
your design when used with the timing analysis tool. It is possible to locate from a
path in the Timing Analysis timing report to the Technology Map View. In the
Technology Map view, you can examine the implementation, determine whether
the path is a timing exception, such as a multicycle path or false path, and then
make the appropriate assignment in your timing constraint file.

12.3.4.4 Floorplanning Tools

All FPGA vendor design tools contain a floorplan tool, or in some cases multiple
floorplan tools.

In the early days of FPGAs, these tools were critical for both understanding the
FPGA architecture and optimizing the design for performance.

Today, the former statement is still true. Floorplan tools help explain what
resources are available in the FPGA device and can be useful in analyzing the results
of place and route on a design. The latter statement on design optimization is less true.
In most cases it is not necessary to floorplan a design to meet the performance
requirements. In the cases were floorplanning for performance provides a benefit, you
will likely be floorplanning a small part of the design rather than all of the design.

Today there is another area where floorplanning can help. This is in a bottom-up
team based design flow. In this scenario, you will assign design blocks to areas of
the device rather than designing at the cell level. Each major design block is
assigned an area in the device.

Fig. 12.12 Example view of a FSM from the Quartus II RTL viewer

12712.3 A Methodology for Successful Timing Closure

Fig. 12.13 Critical Path View in Quartus II technology map viewer

Fig. 12.14 The Quartus II chip planner detailing the Stratix IV ALM architecture

128 12 Timing Closure

In summary, there are four main uses of the FPGA vendor floorplan tools. These
are architecture exploration, analysis of placement and routing, creation of floor-
plan assignments and Engineering Change Orders.

 Architecture Exploration

The floorplan provides a visual display of chip resources. It is akin to having a data
sheet on your desktop that details the resources used as well as the resources that
are still available. The floorplan can be used to view details on the device architec-
ture, such as the number of registers in a LAB, number of LABs in a row, placement
of memories and routing information. It will also allow you to view the logic inside
of dedicated blocks, such as the configuration of LUTs and registers.

It provides visibility into the configuration of the I/O cell such as details on the
delay chains, I/O standard, direction and use of registers inside of I/O cells.

It is a real benefit in team based designs for viewing the connectivity of your
design blocks.

It is also extremely useful for clock network planning. As well as detailing the
configuration of PLLs it details which areas of the chip can be driven by the outputs
of the PLLs and from the global signals in the device. This capability works well
in a team based design environment where you need to assign devices resources to
the different engineers and functional blocks, preventing resource conflicts and
enabling you to plan for the sharing or merging of resources, such as PLLs.

 Analysis of Placement and Routing

The floorplan tool provides an excellent solution for examining design
implementation.

It displays logic placement information, detailed routing information, fan-in and
fan-out connections and enables the viewing of critical path information.

An analysis of placement and routing need only be performed if you have a
problem. In the case of timing failures it can be used with the timing analyzer to
locate from failing paths in the timing report to a view of these paths in the floor-
plan. It is then possible to analyze the placement and routing of the design to deter-
mine if the issue can be fixed by location constraints or to get visibility into the
congestion in that area of the chip.

The floorplan provides visibility in the number of levels of logics between reg-
isters as well as whether the registers in the I/O cell are being used. This informa-
tion can also be viewed in other tools such as the compilation report and Technology
map views.

 Floorplan Assignments

The floorplan can be used to optimize the performance of the design through placement
assignments. In most cases it is difficult to perform a better placement than what

12912.4 Common Timing Closure Issues

the place and route software does automatically. However there are cases where it
can help. A good example is the placement of pipeline registers between nodes that
are placed far apart due to resource constraints, such as access to dedicated hard-
ware blocks and/or pins. In this scenario, the place and route software does not
always optimize the placement of the registers between the source and destination
nodes, Users can move the registers on the floorplan for optimal placement and
performance.

Assignments should mainly be used in the floorplan to create region constraints
in an incremental or team based design environment. In this scenario, regions are
created in the floorplan and blocks of the design assigned to the region. Alternatively
region assignments can be used to prevent the resources in a region being used,
effectively reserving resources for design blocks that are not yet complete.

One of the challenges in creating region assignments is dealing with internal
memory blocks and DSP blocks. Depending upon the resource requirements of the
block you may need a non-rectangular region in order to include enough memory
or DSP blocks for the design.

You also need to consider how the design block interfaces with the rest of the
design so that you do not inadvertently hurt timing closure.

 Engineering Change Orders

The floorplan tool can help in the in-system design debug cycle. It provides a
means to try out small design changes quickly.

It allows the editing, creation and deletion of logic and connections in the
design. It is recommended that you only do this for simple changes, such as chang-
ing the polarity on clocks, clock enables, or the insertion of simple test logic.

This method is particularly useful for changing the properties of I/O cells such as
delay chain values, use of pull-ups, slew rate, I/O standard and current strength.

It should also be used to modify the PLL settings or for routing a signal out to a
pin for analysis.

It is not recommended that you go to production using changes that are made
to the logic with this method, as the RTL will no longer match the functionality of
the implementation. This method should only be used to try out simple changes
and when proven to work in-system, the RTL be modified to match the functional-
ity, the design simulated, recompiled and the new programming image tested
in-system. The full verification cycle should be performed on this new version of
the design.

12.4 Common Timing Closure Issues

This section lists some of the common timing closure issues that you may face and
recommends the course of action that should be taken to resolve the problem.

130 12 Timing Closure

12.4.1 Missing Timing Constraints

The FPGA vendor place and route software optimizes the design based upon the
timing constraints that are provided. If you fail to constrain a critical path, this path
will not be optimized by the FPGA software and may fail timing. To further com-
plicate issues, you may not know that you have a timing problem. Timing analysis
will only report timing against the timing constraints, thus if a path is not con-
strained, it will not be analyzed.

Most timing analysis tools have a command to report paths that do not have timing
constraints. It is recommended that you run this command to determine if you have
unconstrained paths and then set the appropriate timing constraints on the paths.

It is important that you use the correct timing constraints for your design. Analyze
the timing report and ensure that any multi-cycle or false paths truly are timing
exceptions. It is easy to use wildcards as part of a timing exception and inadvertently
apply the constraint to a register that is not a timing exception, resulting in a timing
failure in-system that is not reported as a failure by timing analysis.

12.4.2 Conflicting Timing Constraints

It is possible that you create conflicting timing constraints on paths through the use
of wildcards. While the use of wildcards is encouraged, you need to be certain that a
wildcard is appropriate. If a path has conflicting constraints, the optimization of the
place and route engine will only work on one of the constraints. This is generally the
last constraint entered. This can result in a timing failure on the other constraint.

Timing conflicts often happen in designs with paths between multiple clock
domains.

12.4.3 High Fan-Out Registers

The location of the destination registers for high fan-out registers can result in long
routing delays between the source and the destination register. The Place and Route
software will normally optimize the placement such that this is not a problem.
However it can still be a problem when location constraints restrict the placement
options. An example could be a register with a high fan-out that feeds many regis-
ters that interface with pins on different sides of the device and there is a tight tco
requirement from the registers to the pin. The destination registers have to be placed
inside or next to the I/O cell to meet the tco timing. The source register cannot pos-
sibly be placed close to all of the destination registers.

The best solution to this is to either:

1. Create better pin assignments, or
2. Duplicate the source register such that it can be placed close to each group of

pins. This is best performed at the RTL level.

13112.4 Common Timing Closure Issues

12.4.4 Missing Timing by a Small Margin

If your design is complete, you are marginally missing timing and your schedule
does not permit you to go back to the RTL code, then you should try every option
that is available in the FPGA design tool to try and close timing. Most of the ven-
dors have design space exploration features that will cycle through variations of the
optimization settings along with seed sweeps to try and find the optimal settings to
meet timing on your design. This approach is extremely time consuming as you
may have to run 10+ compilations. However, it can provide performance improve-
ments in excess of 20%. In order to reduce the compile time hit of performing
multiple compilations, you should compile multiple settings in parallel on multiple
machines using the capabilities inside the Design Space Exploration tools.

12.4.5 Restrictive Location Constraints

When location constraints are used early in the design process, there is a tendency
to keep the constraints throughout the evolution of the design. This can result in the
scenario where constraints that added value to the early versions of the design can
hinder the performance in later versions of the design.

There is also the temptation to overly constrain the design. The constraints
may work well on individual blocks, but when the design is integrated restricts
the optimizations that the place and route tool can perform, resulting in poor
performance.

In both of these scenarios, the recommendation is to create a new revision of the
design and remove the logic location constraints. If the design does not meet your
timing requirements, examine which blocks are having the problem and add back
in the constraints on the problem blocks individually. See if it impacts timing. If it
does not, remove the constraint. If it does, keep the constraint and move onto the
next constraint.

Ideally you want to be able to close timing without using logic location
constraints.

12.4.6 Long Compile Times

The first technique is to use an incremental compilation design flow. If you have
used an incremental compilation methodology then you will not be suffering from
long compile times.

The second technique compliments the first technique. That is to use a workstation
with multiple processors or multi-core processors. The algorithms in the FPGA
vendor software are multi-threaded and can take advantage of multiple cores or pro-
cessors to reduce the compile time. To compliment the multiple processors you should
ensure that the workstation has plenty of fast RAM. The compilation of designs

132 12 Timing Closure

targeting the latest FPGA devices can use as much as 16 G RAM. The algorithms are
constantly accessing RAM, thus fast RAM will help the compilation time.

If your design meets performance reasonably easily, you may consider using one
of the FPGA vendor options to quickly fit the design. This can cut the compile time
in half but will result in reduced design performance.

12.5 Design Planning, Implementation, Optimization
and Timing Closure Checklist

 1. Follow synchronous design practices.
 2. Follow recommended coding guidelines.
 3. Partition the design for an incremental design methodology.
 4. Ensure that the RTL is taking advantage of the dedicated hardware resources in

the device. This can be achieved by instantiating vendor primitives to access
special hardware features that cannot be inferred from RTL.

 5. Create complete timing assignments for the design.
 6. Ensure that any multi-processor features for reduced compilation are enabled.
 7. Floorplan timing critical partitions in the design.
 8. Perform timing analysis at all process corners.
 9. Analyze all warnings and errors. Make the necessary changes to remove these

warnings and document any exceptions.
10. Document the settings that achieve timing closure.

133

13.1 In-System Debug Challenges

The debug of any chip that is operating in-system is a challenging a nerve racking
experience. As your board springs to life…. or not, the thought that crosses your
mind is “Does my design work?” Then the real discussion starts, is it the system
software or the system hardware. Due to the expense in developing system soft-
ware, the hardware is almost assumed guilty until proven innocent. In this chapter
we will look at techniques that can be deployed to identify the problems,
quickly.

FPGAs have a distinct advantage over ASICs when it comes to in-system
debug. This is programmability. With an ASIC design, you have to design your
debug logic up front in order to prove the design operation on the board. With an
ASIC, you need to be as close to 100% certain as possible that the design is func-
tionally correct in order to avoid an expensive chip respin. The up front design of
debug logic is a critical functionality that should also be used when designing
FPGAs. However, the programmability that is inherent in FPGAs enables debug
logic to be controlled by a host processor or added to the design as the in-system
debug progresses.

The intent of simulation is to catch any design or integration bugs prior to get-
ting to silicon. However, exhaustive simulation of an FPGA design is time consum-
ing and compute intensive. The ability to stimulate a design under real world
conditions, can uncover problems that are difficult to detect in simulation. Examples
of such problems are asynchronous timing issues, signal integrity peculiarities and
hardware/software integration issues.

In this chapter we will recommend a debug methodology that will enable
you to verify your design operates in-system as intended and helps you capture
problems with your design while operating in-system. The techniques dis-
cussed will draw upon the tools and techniques that are commonly available
today.

Chapter 13
In-System Debug

P. Simpson, FPGA Design: Best Practices for Team-based Design,
DOI 10.1007/978-1-4419-6339-0_13, © Springer Science+Business Media, LLC 2010

134 13 In-System Debug

13.2 Planning

When creating designs, most engineers tend not to consider that they will have bugs
in the design or implementation. Inexperienced engineers only start to think about
in-system debug once there is a problem with the board. The seasoned veteran has
been through the pressure of debugging designs many times and wants to minimize
the time spent in this high pressure environment. He/she wants to avoid spending
evenings and weekends in the lab determining the cause of a problem. As such,
these engineers plan for debug up front. This is what you need to do!

In-system debug should be part of the design specification. Each of the major
blocks in the design should have a plan for how its operation is going to be verified
in-system and what the debug strategy will be for that block. This should include
information on the type of information that can be viewed to determine that the
block is operating as intended. This includes system level statistics, such as the
efficiency of memory interfaces, performance bottleneck analysis on buses and bit
error ratio information on high speed transceiver interfaces.

In addition to the debug of blocks, there should be a debug plan for the top-level
design, when all of the design blocks are implemented. This information is derived
from the information in Chap. 4, where it addresses density and pins.

This plan should specify how many pins and how much logic and memory are
reserved for in-system debug. It should also detail the techniques and tools that will
be used as part of the in-system debug process.

A good guideline is to reserve 15% of the device pins for debug of the design.
This does not include the JTAG pins that are used for programming the FPGA and
can be used as part of the debug process. The recommended resource requirements
for debug will be discussed further in Sect. 13.3 on debug techniques.

13.3 Techniques

There are multiple tools available from FPGA vendors and EDA Companies that
can be used to facilitate the debug of your design in-system. In this section we will
look at the mostly commonly used tools and techniques and recommend when they
should be used.

13.3.1 Use of Pins for Debug

This is the mostly commonly used debug technique for FPGA designs. One of the
reasons that it is so popular has to do with the programmability of FPGAs and the
fact that compile times for routing different signals to the pins are fast. Thus when
debugging in the lab, you can have a new programming file that routes a different
set of signals to the debug pins in tens of minutes. In most cases this can occur

13513.3 Techniques

without impacting the previous design implementation, outside of adding a fan-out
on the signals that you are probing.

If your design is highly utilized, it may be necessary to change routing or place-
ment in order to be able to access the signals. This latter scenario should be avoided;
as such a change may cause any asynchronous timing issues to disappear.

This capability requires that you have reserved selected pins or a bank of pins
for debug.

There are several ways to route internal signals to pins in the FPGA design soft-
ware. The most common approach is via the Floorplan tool where you select the
required signal as the source and the pin as the destination. The Place and Route
software will incrementally route the signals to the pin. This approach is simple for
one or two signals. However, it can become laborious for larger groups of signals.
A common example is debugging a 32-bit bus on 32 pins. Some of the tools have
the capability to allow you to select the source and destination via a signal find utility
or scripting interface, and then it will automatically route the signals to the pins.

The timing of the routing of the signals at the pins is important, particularly if
routing a bus out to the pins. It is recommended that you register the pins at the pins
to synchronize the bus to a clock. You do not want these signals to be the critical
path in your design, thus you should add timing constraints to these paths. For high
performance designs you may need to insert several levels of pipeline registers
between the signal and the pins. Once again this is an automated option in some of
the FPGA vendor software offerings.

The steps in using pins for debug signals are:

1. Reserve the pins for debug
2. Set the appropriate I/O standard on the pins
3. Identify the signals that you want to route to the pins
4. Determine if the signals require the insertion of pipeline registers
5. Make the appropriate timing assignments
6. Route the signals to the pins
7. Analyze the timing of the signals
8. Program the device
9. Analyze the data at the pins with an external logic analyzer or oscilloscope

If you want to view different signals at the pin, remove the connections to the pins
that you no longer want to examine and repeat from step three.

13.3.2 Internal Logic Analyzer

The internal logic analyzer (ILA) is the tool that has saved the day for many designers.
This is the tool that is considered by many as an option in their design flow; until the
day when come across a bug in the lab that they cannot find with simulation. They use
the ILA to isolate and debug the problem and to verify the fix in system. After this first
eye opening scenario, the ILA becomes a key part of their FPGA design flow.

136 13 In-System Debug

This capability is provided by the major FPGA vendors and some of the EDA
tool vendors. The ILA solutions are implemented in the FPGA device using the
spare logic and memory resources inside the device.

So what exactly is an Internal Logic Analyzer, or ILA?
Basically it is a tool that is implemented inside the FPGA that provides similar

triggering capabilities to the capabilities that is provided by external logic analyzers.
ILAs have the advantage that they do not require additional pins to be reserved for
debug as they rely on the JTAG interface. They can acquire data on internal signals
while the design is running at full speed on an FPGA device at clock speeds exceed-
ing 250 MHz in the latest FPGA technology. However, the performance may vary
depending upon the complexity of the trigger conditions being used. They also have
the benefit of being able to be used without requiring changes to your design files,
as the FPGA vendor software can automatically insert the ILA into the design after
the design has been implemented in the FPGA ‘without disturbing the implementa-
tion of the design.

The captured signal data is stored in device block memory until you are ready to
read and analyze the data. In addition, multiple logic analyzers can be implemented
in a single device. This provides the benefit of being able to capture data from
multiple clock domains in a design at the same time.

So, the question is that if they are so great, why are they not used by all designers?
The answer is quite simply, poor planning. Many designs do not leave sufficient

resources in the device to be able to use an ILA. The most common mistake is not
leaving adequate memory resources for storing the data for analysis.

As mentioned many times in this book, you must plan for debug up front.
You need to ensure that you have the following in order to use an ILA.

1. A JTAG connection
2. Memory blocks for storing the data for analysis
3. Logic for creating the trigger conditions

Most ILAs come with the following standard feature sets.
Control over the sample depth and the type of RAM that is used to store the data.
Advanced trigger conditions such as state based triggering. This precisely

defines upon what conditions the ILA will capture the data.
Continuous storage of data. When the trigger condition occurs, the data that is being

tapped is continuously written to memory. This mode of operation can result in the need
for large amounts of internal memory in order to prevent data being overwritten.

Transitional storage of data. During acquisition, if any of the signals being
tapped have changed since the previous clock cycle, new data is written to the
acquisition buffer. If none of the signals being tapped have changed since the previ-
ous clock cycle then no data is stored.

Conditional storage. Only stores data if the qualifying condition to write data to
memory is true.

The amount of logic and memory that is required to implement the ILA depends upon
the complexity of the trigger conditions and the amount of data that needs to be stored.

A useful technique to reduce the amount of logic that is required is to minimize
the number of segments in the acquisition buffer to only those required.

13713.3 Techniques

Another technique is to use the buffer acquisition control to precisely control the
data that is written into the acquisition buffer. This enables you to discard data
samples that are not relevant to the debug of your design.

Transitional storage and conditional storage can be used to reduce the amount of
internal memory that is required.

13.3.2.1 The Design Flow with an ILA

1. Add an ILA to your design. This can be auto-inserted by the FPGA vendor soft-
ware without modifying your design or the design implementation in the FPGA

2. Configure the logic analyzer. Define the signals that you want to capture and the
storage conditions

3. Define the trigger conditions
4. Compile design
5. Program device
6. Run the ILA application on the host workstation
7. View and analyze captured data

13.3.2.2 ILA Limitations

Not all signals in the design are able to be viewed, or tapped, due to architectural
limitations. This includes signals that are part of a carry chain.

You cannot view JTAG signals.
You can only view signals that are available after fitting, unless you want to

perform a full design compilation. This can make it difficult to identify combina-
tional signals in the design. This is because RTL synthesis tends to change the
names due to the optimizations that are formed during synthesis. These signals can
be made available for viewing by using attributes in the RTL to preserve these sig-
nals. However, this will change your design implementation. As such it is recom-
mended that you focus your in-system debug on registers, most of which will be
available post-fit and not require a full compilation.

13.3.2.3 Tips

 Remote Debug

Leave the ILA in the end design. This will enable remote debug of designs in
remote locations, if there is JTAG access to the FPGA. This can prove invaluable
in debugging designs that are in remote locations or even provides you with the
ability to debug designs that are in the lab while you are in your office or at home;
this is providing that you have a network connection to the workstation connected
to the board.

138 13 In-System Debug

 Interface to MATLAB

Some of the more advanced ILAs provide an interface to the Mathworks MATLAB
software. This is a useful option for analyzing DSP data. Once the data has been
imported into the MATLAB environment, the view of the data can be displayed in
a format suitable to the application being tested.

 Insufficient Device Resources

If you are in the position that you have a design that does not leave adequate
resources for using an ILA to debug the design, you should strip out functionality
from the end design as part of the debug cycle. This enables you to debug isolated
blocks in-system, verifying the functionality of these key blocks. This will not
enable you to resolve full system integration issues, but will enable you to examine
the integration of certain key blocks.

13.3.3 Use of Debug Logic

It is a common and recommended design practice to insert debug logic in the
design. This is discussed in Sect. 13.4.3, reporting of system performance.

As mentioned you should build in test logic, monitors and checkers on the inter-
face of major design blocks. The debug logic can be removed after the design is
proved to be functionally complete; however leaving the logic in the design pro-
vides remote debug capability in the case of in-field failures. If the debug logic is
left in the production version of the design, is recommended that the debug logic
be disabled and controlled by a pin, JTAG or a soft processor. This will reduce the
power consumption in your final design.

Debug logic can also be used with the other debug techniques that are described
in this chapter. The addition of a simple multiplexer that interfaces with the debug
pins enables the user to more efficiently interface signals that they may want to
view to the pins. Which signals are switched through to the pins can be controlled
via debug pins that are controlled by the user or via a soft processor in the design.
This technique enables fast switching of signals to the debug pins without having
to create a new programming file for the FPGA each time that you need to view
different signals. This can save you hours of debug time.

The use of debug logic can also be used to force the FPGA into certain conditions, in order
to recreate failure conditions or to test the operation under these isolated corner cases.

The main FPGA vendors provide utilities that can help with forcing logic to a
particular state via their debug utilities. Using these utilities can reduce the amount
of development that you need to do.

Once again these utilities can be combined with other debug capabilities to pro-
vide advanced debug solutions. When combined with JTAG it enables you to

13913.3 Techniques

dynamically control run-time control signals. Similarly it can be combined with
ILAs to force the occurrence of trigger conditions setup in the ILA. Through this
approach it is possible to create simple test vectors that exercise your design and
displays internal signal information without requiring the use of external test
equipment.

13.3.4 External Logic Analyzer

The major FPGA vendors provide interfaces to the Logic Analyzers from Agilent
and Tektronix. In order to use these optional interfaces in the Logic Analyzers, it
requires a JTAG connection and a test header for the Logic Analyzer.

The interface enables viewing of internal signals using an external logic analyzer
and using a minimal number of FPGA I/O pins, while the design is running at full
speed on the FPGA.

This solution uses a multiplexer, similar to the method described in Sect. 13.3.3
on custom logic, to connect a large set of internal device signals to a small number
of output pins.

The multiplexer is JTAG controlled via the user interface of the Logic Analyzer.
In addition to controlling the multiplexer, the logic analyzer can display the signal
names on the logic analyzer to simplify debug.

This debug approach provides some key advantages over using ILAs.

1. Wider sample depth
2. Ability to handle more data. External Logic Analyzers have much more memory

than the amount of memory that is available inside of FPGAs

This debug technique is recommended when you need to store and analyze a large
amount of debug data and have room on your board for a test header.

13.3.5 Editing Memory Contents

The contents of the internal memory blocks in your design can be used to force your
system into conditions for test and debug. This technique can be extremely effective
in testing DSP Applications, such as filters were the memory blocks are used to store
coefficients. There are three main approaches to performing this operation.

1. Update the memory initialization files by programming the device with a new
image. You can change the memory initialization files without having to recom-
pile the design. You normally only have to run the Assembler to generate the new
programming image. This approach works but requires you to bring the FPGA
system down in order to change the memory contents

2. The second solution is to generate logic to enable you to write to the internal
memory for debug. This is using the technique described in Sect. 13.3.3 on

140 13 In-System Debug

using logic for debug. This has more flexibility than the previous technique in
that you control the writing to the memory blocks while the design is opera-
tional. The creation of the logic can be quite complex but the return is
invaluable

3. The third technique is to use one of the FPGA vendor supplied solutions that use
the JTAG interface to control the writing and reading to the internal memory
blocks. This needs to be designed into your system. This means that you will
have to replace some of your inferred memories with the primitives from the
FPGA vendor. While this offers the simplest and most flexible approach to
updating the memory blocks in system, it also comes with some limitations. The
biggest limitation being that it does not work with dual port RAM

These techniques work well for other applications outside of DSP applications.
They can be used to test and correct memory parity bits. It can be used to write

incorrect parity bit values into the memory to check the ability of your design to handle
errors. In addition if you are in the lab and your system is failing due to incorrect parity
bits, you can use this technique to correct the errors and to continue the check-out.

This technique can be combined with the other debug techniques that are
described in this chapter to provide a very powerful debug arsenal.

13.3.6 Use of a Soft Processor for Debug

Many designers overlook the fact that a processor can be added to your design for
the purpose of design debug. The cost of adding a soft processor is 1,000–2,000
Logic Elements, plus internal memory resources.

This is a powerful weapon when combined with custom logic for debug. The
processor can take care of controlling the operation of the debug logic or can serve
as debug logic itself. It can be easier to describe complex debug trigger conditions,
such as state machine trigger conditions, in “C”, rather than in HDL.

The processor can also be used to control the reading and writing to memory. A
benefit that it adds beyond the ILA solution is that it can enable the storage of data
in external memory, such as DDR III. This enables a larger amount of data to be
stored for analysis.

If you are comfortable with coding in “C”, you should consider using a soft
processor as one of your debug options,

13.4 Use Scenarios

13.4.1 Power-Up Debug

When the board is first being brought to life, you will want to determine if certain
sequences are happening in your design in the correct sequence, to give you confidence

14113.4 Use Scenarios

that the design can communicate with the rest of the system. In the case were the
system does not appear to be operating at power-up, you can use the ILA to capture
trigger events that occur during device initialization, immediately after the FPGA
is powered on or after the FPGA has been reset. The ILA can then capture data
immediately after device programming. This power-up debug feature is available in
some of the FPGA vendor ILA solutions.

13.4.2 Debug of Transceiver Interfaces

Just after the board has been powered-up, you will want to determine if the trans-
ceiver on the FPGA is operating, i.e. is it capable of transmitting/receiving data
from the system.

It is not uncommon that the settings that you have used in your design for the
transceiver do not perfectly match the actual board. This scenario can be debugged
fairly easily if your transceiver can be dynamically reconfigured, i.e. the settings
reprogrammed while the device is operational. Once again the main FPGA vendors
provide solutions in this space that can cycle through the settings in the transceiver
and report Bit Error Ratio data.

This can be achieved using your existing design if you have built the debug design
blocks into the transceiver interface, or you can load the device with one of the debug
designs from the FPGA vendor. The latter is the approach that is most commonly used.

These designs consist of Data Pattern Generator and checker blocks along with
the dynamic reconfiguration block of the transceiver, which allows modification of
the PMA configuration. For the Transmitter, it can change the pre-emphasis set-
tings which affect the eye opening at the receiver end and the Differential Voltage
(VOD); which targets different channel medium. On the Receiver, it can change the
settings on Equalization and DC gain.

By cycling through the settings and generating and checking data, Bit Error
Ratio Testing can be performed on each of the settings. This can serve two main
purposes.

1. Analysis of transceiver signal quality
2. Tuning of the transceiver settings to match the board for board bring-up and to miti-

gate possible signal integrity issues between the transceiver interface and the board

Once the optimal settings have been found they can be applied to the transceiver
design in the real design.

13.4.3 Reporting of System Performance

It is likely that you will want to collect system-level statistics on your design to deter-
mine if the design is achieving the system performance that you want. The type of data

142 13 In-System Debug

that you may want includes details on the throughput and bandwidth of your system.
By identifying the bottlenecks, you can improve the design to meet your throughput and
bandwidth requirements. This analysis can be achieved through the use of monitors.

You may want to generate data traffic in order to exercise different transactions
in early testing or to isolate corner cases. Normally the system software will take
care of this, however early in the board debug, there could be problems with the
software or the software may not be ready, so the hardware engineer needs a means
to generate traffic to test blocks of the design.

For applications that use specific protocols, you may want to check and report
protocol violations. You may want to instrument and analyze the state of the trans-
actions and signals.

These types of data capture, stimulus and reporting are best solved by building
verification IP into your design, e.g. monitors that hang off your processor sub-
system blocks or protocol checkers that are on your interface IP.

As mentioned previously, by planning for in-system verification, you will hit the
ground running when you first receive hardware. If you have been using a standard
interface on your design blocks, as recommended in Chap. 9, you will quickly be able
to build up a library of verification IP that can be reused on future designs and will easily
plug-into your system. It will enable you to use system integration tools, such as
Altera’s SOPC Builder to drop the verification blocks into your system with minimal
design work and impact on the system performance. By having the verification IP avail-
able in the final design it will also help in the debug of any systems that fail in the field.
The verification IP that you are using can be used with the JTAG control infrastructure,
on the FPGAs, to enable you to access/control the data via the JTAG interface.

13.4.4 Debug of Soft Processors

The debug of soft processor designs requires familiarity with multiple disciplines. This
complicates the process as it requires the debugging of both the hardware and the appli-
cation software. The debug of the hardware can be completed using the techniques
described previously in this chapter. However it needs to be performed with code run-
ning on the processor. Limited debug can be completed using techniques that can force the
hardware into known conditions, effectively emulating the operation of the software.

The debug of the software is heavily reliant on the software tool chain that is
being used. It is recommended that you read the literature on your soft processor to
understand what debug capabilities are available.

In the remainder of this section, we will look at the standard feature set that is
available in most software debug tool chains and how they can be used to perform
run-time analysis of your design.

13.4.4.1 Software Profiling

Most processor tool chains provide a software profiler. This can be used to provide
reports on how long the various functions run in your application. This will identify

14313.4 Use Scenarios

non-optimal areas of your code that may cause performance issues on your design.
You should always profile your software to determine where you need to optimize
the software code or potentially accelerate the code via hardware.

13.4.4.2 Watchpoints

The insertion of watchpoints in your code enables the capture of all writes to a
global variable. This technique is useful for the debug of a global in the “C” code
that appears to be corrupted.

13.4.4.3 Stack Overflow

This technique is applicable to processors that are running a real-time operating
system. In this scenario, each task that is running has its own stack. This increases
the probability of a stack overflow condition occurring. This type of problem can
be more common in FPGA based embedded systems where there is more likely to
be restrictions on the amount of memory available for the stack. Most processor
IDEs include options to enable runtime stack checking.

13.4.4.4 Breakpoints

Some processor tool chains provide a debug option to set hardware breakpoints on
code located in read-only memory such as flash memory. This requires modifying
the compilations settings on your code which will result in less optimized code, but
code that is much easier to debug.

13.4.4.5 Step Through the Code

By setting the software compiler optimization level to none, you will get software
code that runs slower but is much easier to debug as the source code and executable
code will now match. This method works well with software breakpoints where the
code will run until it hits a breakpoint at which point it will halt. This enables single
stepping through the code to examine the values of your variables in order to debug
the functionality of the operation.

13.4.5 Device Programming Issues

There is a wealth of JTAG Debug tools from independent Companies and from the
FPGA vendors to help you to debug programming issues via JTAG. The most com-
mon problem is trying to debug a JTAG chain issue where there are multiple
devices from different vendors in the JTAG chain.

144 13 In-System Debug

The debug tools that come from the FPGA vendors focus on testing the signal
integrity of the JTAG chain and to detect intermittent failures of the JTAG chain.
The tools check that the devices are connected correctly and provide the ability to
run JTAG debug commands.

These tools are excellent for detecting the following type of failures:

1. Open circuits
2. Short to VCC
3. Short to GND

It is recommended that you use a JTAG debug tool on your JTAG chain as soon
as you receive your board in house.

13.5 In-System Debug Checklist

1. Plan for debug
(a) Reserve pins for debug
(b) Reserve logic and memory resources for ILA use
(c) Ensure that you use the JTAG interface to the FPGA
(d) Place a Header on the Board as an interface to an external logic analyzer or

scope
(e) Add debug logic to your design or considering using the FPGA vendor utili-

ties for forcing data to memories and multiplexing data at the pins
(f) Consider adding a soft processor to your design for debug

2. Perform debug
(a) Lock down the design implementation using incremental compilation
(b) For free running data, or for a small handful of control signals, incrementally

route the signals to pins for analysis on a logic analyzer or scope
(c) In order to capture data based upon events, add an ILA to your design. Where

possible, use post-fit signal names to avoid a full recompile of the design
3. If there are multiple devices within the JTAG chain, select the device that you want

to target
4. Once you have identified the bug, fix the RTL and validate that the fix works

with functional simulation

145

14.1 Sign-Off Process

There needs to be a process in place to decide at what point to release the design to
production. This decision will occur after the design has been fully hardware tested
and all of the design and testing processes have been met.

There should be a “GO”/“NO GO” approval process with a management meet-
ing between all of the stake holders in the project. This will review the quality data
and decide on whether the design is acceptable for production.

All known bugs should be closed or accepted as not being a gating factor for the
release. They should be documented and transferred to the next version of the
design for repair.

There needs to be approval for sign-off from all parties and departments.
The sign-off process draws upon the metrics that are captured by the tools

described in Chap. 5.

1. The RTL must meet the coding guidelines.
2. The design must meet the functional coverage and code coverage targets.
3. The FPGA project must be free of warnings and any exceptions fully documented.
4. It must meet the timing requirements from the specification.
5. It must meet the in-system debug requirements. In some products, this may

involve burn-in testing and full environmental testing.
6. All exceptions to the specification must be fully documented.

14.2 After Sign-Off

After the design has been approved for production, it is necessary to archive the
release version and all related design and testing materials. This will serve as the
base for any future versions of the design.

Chapter 14
Design Sign-Off

P. Simpson, FPGA Design: Best Practices for Team-based Design,
DOI 10.1007/978-1-4419-6339-0_14, © Springer Science+Business Media, LLC 2010

146 14 Design Sign-off

The project manager will host a post-project review to discuss what went right,
what went wrong, and what was learned from the project. This information will be
used in future project plans.

After the well deserved design release party, start working on the next project,
which could well be the next version of the design!

147

Dempster D and Stuart M. Techniques for Verifying HDL Designs. Teamwork International:
Hampshire, UK

Bogatin E. Signal Integrity – Simplified. Prentice Hall: Upper Saddle River, NJ
Pellegrin D and Thibault S. Practical FPGA Programming in C. Prentice Hall: Upper Saddle

River, NJ
Grotker T, Liao S, Martin G and Swan S. System Design with System C. Kluwer Academic:

Dordrecht, The Netherlands
Keating M and Bricaud P. Reuse Methodology Manual for System-on-a-Chip Designs. Springer:

New York
Bhasker J. A VHDL Primer. Prentice Hall: Upper Saddle River, NJ
Altera Corporation. Quartus II Handbook v9.0. Altera Corporation: San Jose, CA
Altera Corporation. Altera AN75: High Speed Board Design. Altera Corporation: San Jose, CA

Bibliography

149

A
Altera Corporation, 45
Area, 1–3, 13, 16–18, 24, 34, 38, 51, 57, 60, 64,

68, 69, 72, 75, 76, 78, 80, 82, 83, 85, 86,
104, 107, 117, 124, 126, 128, 143

ASIC, 2, 3, 51, 53–54, 57, 58, 63, 81, 86, 95,
108, 109, 123, 133

Assertions, 27, 96, 101
Asynchronous, 54, 55, 57, 60, 70, 73, 120,

133, 135

B
Behavioral, 52, 55, 65
Board design, 15, 17, 20, 27, 29–41, 46
Bottom-up, 118–119, 126
Breakpoints, 143

C
Clock network, 38, 46, 53, 55, 115, 128
Clock tree, 55
Code coverage, 44, 97, 104, 106, 145
Compile time, 18, 26, 51, 67, 107, 117, 120,

121, 124, 131–132, 134
Configuration, 17, 42, 43, 83, 128, 141
Constrained random testing, 100, 101
Constraints, 27, 86, 87, 107, 109, 112, 116,

119, 122, 125, 126, 128–131, 135
Critical path, 6, 7, 61, 117, 126–128,

130, 135
Crosstalk, 34, 35

D
Debug, 11, 16–20, 24, 25, 27, 30, 58, 61,

64–65, 76, 77, 97, 98, 106, 117, 120,
125, 129, 133–145

Density, 16, 18–19, 29, 41, 54, 107, 134

Design block, 1, 19, 24, 28, 38, 48, 51, 56, 59,
60, 62–64, 67–75, 78–83, 85, 86, 89, 90,
98, 99, 101, 102, 104, 105, 117, 119,
121–126, 128, 129, 134, 138, 141, 142

Design environment, 1, 3, 23–28, 86, 128, 129
Directed testing, 100
Documentation, 9, 12, 13, 31, 48, 56, 59, 64, 68,

75, 76, 81, 86, 87, 91, 93–94, 96, 122
DSP, 16, 17, 28, 45, 46, 55, 68, 72–73, 76,

84–86, 107, 129, 138–140
DSP block, 17, 46, 55, 72–73, 76, 107, 129
Dynamic power, 42, 45, 46

E
ECO. See Engineering change order
Electromagnetic interference (EMI), 34–36
Embedded memory, 107
EMI. See Electromagnetic interference
Engineering change order (ECO), 5, 9, 117,

128, 129
Executable specification, 10, 97

F
False paths, 112
Field programmable gate array (FPGA), 1, 6,

9, 15, 23, 29, 41, 51, 79, 93, 95, 107,
133, 145

Finite state machine (FSM), 70–71, 125, 126
Fitter, 120, 122–123, 125
Floorplan, 24, 27, 119, 122, 125, 126, 128,

129, 132, 135
Fmax, 35
Formal verification, 27, 124
FSM. See Finite state machine
Functional coverage, 97, 99–104, 106, 145
Functional specification, 9–11, 13, 96
Functional verification, 2, 95–106, 116

Index

150 Index

G
Gated clocks, 53
Global signals, 53–55, 128
GUI, 23, 24, 87, 88, 105, 106

H
Hardware interoperability, 105
Hierarchy, 49, 59–63, 68, 75, 84, 117, 118
High-level synthesis, 28, 51, 84–85, 90, 95,

97, 100

I
Inference, 55
Instantiate, 55, 59, 65, 69, 72, 84, 102
In-system debug, 20, 24, 64, 98, 106, 129,

133–145
Intellectual property, 81
Internal logic analyzer, 135–137
I/O standard, 19, 29, 31, 37, 42, 116, 128,

129, 135
IP

3rd party, 15, 16, 18, 121
reuse, 2, 16, 79–81, 83, 84, 90
security, 89–90
SW development, 3

L
Load sharing software, 28
Logic analyzer, 17, 20, 65, 120, 135–139, 144

M
Memory map, 86, 89, 91, 97
Metastability, 57
Microprocessor, 10, 16, 36
Multicycle paths, 59, 126

P
Parameterization, 56, 83, 96, 105
PCB. See Printed circuit board
Performance, 17, 19–21, 28–30, 32–36, 41,

44, 51, 53, 54, 57, 58, 61, 64–67, 69,
72, 78, 80, 82, 85, 86, 89, 108, 114,
118, 120, 121, 123–126, 128, 129, 131,
132, 134–136, 138, 141–143

Phase locked loop (PLL), 34, 55, 116,
128, 129

Physical synthesis, 67, 104, 123–124

Pinout, 16, 29, 30, 33, 36–40
Place & route, 18, 19, 27, 48, 51, 64, 67, 68,

73, 76, 97, 104, 108, 109, 116, 118,
120–126, 129–131, 135

Planning phase, 5
PLL. See Phase locked loop
Power

distribution, 33–35
supply, 19, 20, 33, 34, 36, 40–43, 46–47, 49

Printed circuit board (PCB), 29–36, 38, 40, 41
Profiling, 142–143
Project management, 5–7, 15

R
RAM, 17, 46, 55, 66, 69, 70, 131–132,

136, 140
RAM block, 17, 46, 55, 69
Register address map, 91–94
Regression test, 13, 23, 26, 97, 104–105
Resource scoping, 15–21
Revision control, 11, 12, 24, 31
RTL, 2, 6, 15, 25, 27–30, 41, 42, 48, 49,

51–80, 82–85, 87–95, 97, 104, 106,
108, 116–118, 120–122, 124–126,
129–132, 137, 144, 145

S
Schedule, 1, 6–7, 9, 11, 15, 18, 28, 29, 81–83,

96, 131
Scripting, 23–24, 135
SDC. See Synopsys design constraints
Signal integrity, 17, 19, 20, 27, 30–36, 40,

116, 133, 141, 144
Simulation, 25, 27, 32, 33, 40, 44, 47–50, 54,

55, 58, 59, 61, 63, 65, 86, 89, 95, 97,
98, 100, 101, 103, 106, 108, 109, 120,
133, 135, 144

Simultaneously switching noise (SSN), 20, 30,
32, 40

Soft processor, 16, 17, 25, 72, 138, 140,
142, 144

Specification, 9–13
Speed-grade, 19, 107, 115–116
Standard interfaces, 85–86, 90
Standby power, 42, 45
State machine, 70–72, 76–78, 125, 140
Static power, 42, 45
Static timing analysis, 67, 108, 109, 114
Structural, 52, 60, 65, 76
S/W interface, 10

151Index

Synchronous, 54, 57, 60, 63, 73, 107, 109,
113, 132

Synopsys design constraints (SDC), 109
Synthesis, 27, 28, 48, 51–53, 56, 58, 60, 61,

63–65, 67–78, 84–85, 89, 90, 100, 104,
108, 109, 122–125, 137

System design, 1, 11, 23, 29, 45, 78, 80, 86,
93, 95, 105, 107

SystemVerilog, 27, 58, 96, 97, 100, 101

T
Testbench, 10, 50, 54, 87, 93, 96, 101–103, 106
Test plan, 12, 99, 100, 106
Thermal, 33–34, 41–50
Timing analysis, 27, 54, 59, 67, 97, 107–115,

126, 130, 132

Timing closure, 2, 19, 41, 61, 63, 67, 78,
107–132

Timing margin, 67–68, 123
Toggle rate, 44–45, 48–50
Top-down, 118
Tracking phase, 5
Transceivers, 16, 17, 20, 30, 32, 34, 36, 39, 55,

65, 107, 134, 141

V
Verilog, 27, 58, 59, 61, 65, 66, 70, 71, 73, 83,

84, 100
Version control, 9, 23–25, 28, 40, 60,

81, 87
VHDL, 27, 58, 59, 61, 65, 66, 70, 71, 73, 74,

83, 100

	FPGA Design
	Preface
	Contents
	List of Figures
	Chapter 1: Best Practices for Successful FPGA Design
	Chapter 2: Project Management
	Chapter 3: Design Specification
	Chapter 4: Resource Scoping
	Chapter 5: Design Environment
	Chapter 6: Board Design
	Chapter 7: Power and Thermal Analysis
	Chapter 8: RTL Design
	Chapter 9: IP and Design Reuse
	Chapter 10: The Hardware to Software Interface
	Chapter 11: Functional Verification
	Chapter 12: Timing Closure
	Chapter 13: In-System Debug
	Chapter 14: Design Sign-Off
	Bibliography
	Index

