

HIGH-PERFORMANCE ENERGY-EFFICIENT
MICROPROCESSOR DESIGN

SERIES ON INTEGRATED CIRCUITS AND SYSTEMS

Anantha Chandrakasan, Editor
Massachusetts Institute of Technology

Cambridge, Massachusetts, USA

Published books in the series:

A Practical Guide for SystemVerilog Assertions
Srikanth Vijayaraghavan and Meyyappan Ramanathan

2005, ISBN 0-387-26049-8

Statistical Analysis and Optimization for VLSI: Timing and Power
Ashish Srivastava, Dennis Sylvester and David Blaauw

2005, ISBN 0-387-25738-1

Leakage in Nanometer CMOS Technologies
Siva G. Narendra and Anantha Chandrakasan

2005, ISBN 0-387-25737-3

Thermal and Power Management of Integrated Circuits
Arman Vassighi and Manoj Sachdev

2005, ISBN 0-398-25762-4

High-Performance Energy-Efficient
Microprocessor Design

Edited by

VOJIN G. OKLOBDZIJA
Integration Corp., Berkeley, California and University of California

and

RAM K. KRISHNAMURTHY
Microprocessor Research Laboratory, Intel Corp., Hillsboro, Oregon

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 0-397-28594-6 (HB)
ISBN-10 0-387-34047-5 (e-book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

All Rights Reserved
c© 2006 Springer

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, microfilming, recording or
otherwise, without written permission from the Publisher, with the exception of any material
supplied specifically for the purpose of being entered and executed on a computer system, for
exclusive use by the purchaser of the work.

Printed in the Netherlands.

TABLE OF CONTENTS

Introduction vii
Vojin G. Oklobdzija and Ram K. Krishnamurthy

1
Ultra-low power processor design 1
Christian Piguet

2
Design of energy-efficient digital circuits 31
Bart Zeydel and Vojin G. Oklobdzija

3
Clocked storage elements in digital systems 57
Nikola Nedovic and Vojin G. Oklobdzija

4
Static memory design 89
Nestoras Tzartzanis

5
Large-scale circuit placement 121
Ameya R. Agnihotri, Satoshi Ono, Mehmet Can Yildiz,
and Patrick H. Madden

6
Energy-delay characteristics of CMOS adders 147
Vojin G. Oklobdzija and Bart R. Zeydel

v

vi Table of contents

7
High-performance energy-efficient dual-supply ALU design 171
Sanu K. Mathew, Mark A. Anders, and Ram K. Krishnamurthy

8
Binary floating-point unit design: the fused multiply-add
dataflow 189
Eric Schwarz

9
Microprocessor architecture for yield enhancement and
reliable operation 209
Hisashige Ando

10
How is bandwidth used in computers? 235
Phil Emma

11
High-speed IO design 289
Warren R. Anderson

12
Processor core and low power SoC design
for embedded systems 311
Naohiko Irie

Index 337

INTRODUCTION

Microprocessor design is a discipline and an art. Since the introduction of the
first microprocessor in 1971 containing 2108 transistors embodied in Intel’s
4004, the complexity of the design has increased several orders of magnitude
with contemporary multi-core processors containing over two billion transis-
tors. Yet microprocessor design is still driven by the inspiration, passion and
vision of individuals involved.

This book deals with energy efficiency in microprocessors. As the complex-
ity increased and the number of transistors integrated on the chip skyrocketed,
power became the single most important issue limiting the otherwise unlimited
progress. Not only does power determine the maximal speed at which we can
allow a microprocessor to run, but it also determines the form factor, packaging
and price. This is particularly important as computers migrated into consumer
electronics characterized by mobility, portability and battery operation. Micro-
processor design is a centerpiece of contemporary electronics, computer engi-
neering and almost every complex electronic endeavor. Today microprocessors
are found in almost every product, from the personal computer to iPod, in per-
sonal digital assistants, cell phones, games consoles, digital electronic cameras
and television sets. They became an indispensable part of our everyday life
which is increasingly dependent on them and their sustained and reliable func-
tioning. In almost all of these applications energy efficiency is a must.

The importance of energy-efficient processor design is also recognized in
courses taught at universities, industrial courses or seminars. Several confer-
ences have been dedicated to energy-efficient design and several workshops
have augmented important conferences in attempts to highlight this particular
aspect. This book describes and teaches important topics of energy-efficient
processor design starting from circuits to architecture, test and design for testa-
bility. It is targeted toward engineers, practitioners and researchers, as well
as graduate students who want to learn about energy-efficient microprocessor
design. It is suitable for advanced undergraduate and graduate courses in elec-
trical engineering where the subject of low-power design is taught. The book
is divided into chapters that can be covered one per week, thus being suitable
for universities adhering to the quarter system courses. In the next edition we

vii

viii Introduction

plan to introduce exercises and problems at the end of each chapter to make it
more suitable for teaching. The chapters are written by the world’s top experts
in the field highlighting a particular aspect of their expertise.

The book starts with a chapter “Ultra-Low Power Processor Design”,
describing the ways of designing for energy efficiency in low- and ultra-low-
power processor design. It contrasts the ways of achieving low power with
the flexibility of design which is often of more importance. The techniques
widely used for the power reduction of microcontrollers and DSP processors
are reviewed in this chapter. They include basic CPI (clocks per instruction)
reduction, gated-clock mechanisms, optimal pipeline length, hardware accel-
erators, reconfigurable units and techniques to reduce leakage power. This is
augmented by several examples such as RISC 8-bit and 32-bit microcontrollers
and DSP cores. They describe the necessary tradeoffs between flexibility and
energy efficiency.

Energy-efficient design of digital circuits is discussed in the second chapter
of this book. In particular this chapter describes how transistor sizing affects
the energy and delay of digital circuits. It examines design methodology based
on the logical effort, and shows its limitations when designing for energy effi-
ciency. The chapter presents a new methodology for the design and analysis
of digital circuits in the energy-delay space which allows for energy reduction
without performance penalty.

Clocking, which is one of the most critical aspects of processor design,
is described in the third chapter of this book. Clocking strategy determines
processor performance and largely impacts its power consumption. Conven-
tional clocking strategies and circuit techniques descriptions, augmented with
an overview of the state-of-the art clocked storage elements used in modern
microprocessors, are contained in this chapter. Emerging methods aimed at
handling incoming challenges in microprocessor design are also described.

The fourth chapter is dedicated to static memory design and issues related
to the design of memory peripherals. This chapter presents design techniques to
reduce SRAM dynamic and static power. It explores the design of static memory
structures starting with a description of the single-port six-transistor SRAM
cell operation and subsequently addressing voltage-mode and current-mode
differential reads, single-ended reads, and control logic operation. The chapter
covers issues pertaining to SRAM reliability, testing, and yield. Subsequently,
implementation of efficient multi-port register file storage cells and peripherals
is described.

The fifth chapter addresses the problem of placing design blocks of widely
varying sizes and shapes and interconnecting them. Stability of placement
methods is now a key concern. To achieve timing closure it is essential that
gate sizing, buffer insertion, and routing can be completed without large disrup-
tions to the overall physical structure of a circuit. This chapter surveys modern

Introduction ix

techniques for circuit placement, with an emphasis on how placement interacts
with logic synthesis and routing.

The choice of the right algorithm and a corresponding adder topology is dis-
cussed in the sixth chapter. This depends on many factors closely related to the
technology of implementation. With the transition to deep-submicron CMOS
technologies further complexity has been introduced. Thus, it has become
even more difficult to make the right selection of appropriate design topology
when power consumption is included. In this chapter this complex relation-
ship is addressed and the important factors that influence the right selection of
algorithm, circuit topology, operating conditions and power consumption are
explained.

Fast 32-bit and 64-bit ALU with single-cycle latency and throughput are
described in Chapter 7. They are one of the most performance-limiting units
within the integer and floating-point execution clusters. ALU also contribute
to one of the highest power-density locations on the processor, resulting in
thermal hotspots and sharp temperature gradients within the execution core.
This strongly motivates energy-efficient ALU designs that satisfy the high-
performance requirements, while reducing peak and average power dissipation.
The chapter, describes a single-cycle 64-bit integer execution ALU fabricated
in 90 nm dual-Vt CMOS technology.

Chapter 8 deals with algorithms and implementation details used in today’s
floating-point units. It shows the implementation of the different parts of the
fused multiply-add dataflow including the counter tree, suppression of sign
extension encoding, leading zero anticipation, and end around carry adder
design which has a huge performance advantage over a separate multiplier
and adder. With one compound operation, effectively two dependent opera-
tions per cycle can be achieved. This type of design has a huge performance
advantage over a separate multiplier and adder.

Chapter 9 addresses microarchitectural techniques for avoiding defects.
Error detection and correction microarchitecture can significantly reduce the
probability of failure and enhance the yield and the reliable operation of a
microprocessor. The concept and methods of error detection and correction
are discussed, followed by a description of microarchitecture and logic design
error detection and recovery techniques. The failure mechanisms of nanometer-
class semiconductor VLSI circuits and commercial microprocessors using error
detection and recovery techniques are presented.

Chapter 10 deals with the issue of microprocessor bandwidth. It discusses
its effects on the performance of an individual processor as well its impact on
the overall system. The current trends in system evolution are examined, and
the implication of those trends on bandwidth is discussed. Finally, the chapter
explores the technologies that are likely to emerge and satisfy those trends.

x Introduction

Chapter 11 explores common methods and circuit architectures used to
transmit and receive data through off-chip links. It discusses the most prevalent
of these techniques, focusing on the chip-to-chip communication topolo-
gies common for microprocessors, namely access to memory, processor-to-
processor communication for parallel computing, and processor-to-chipset
communication.

The final chapter summarizes the approaches presented in this book through
an example of a system-on-chip (SOC) design where low power is imperative.
The chapter is based on the processor core implementing SuperHTM architec-
ture in a 130-nm CMOS process. The processor is suited for a wide range
of usage in consumer, low-power digital appliances such as cellular phones,
digital still/video cameras, and car navigation systems.

Finally we would like to thank the people who helped with this project,
Mark de Jongh of Springer in particular, for his diligence in executing this
project and patience and understanding when things did not go as expected.
The students Milena Vratonjic, Mandeep Singh and Christophe Giacomotto
provided invaluable help in reviewing the chapters.

Berkeley, California
Hillsboro, Oregon

March 30, 2006

Chapter 1

ULTRA-LOW-POWER PROCESSOR DESIGN

Christian Piguet
CSEM & EPFL

Abstract: Processor energy efficiency is a major issue in a majority of products; however,
it is difficult to achieve it, as it is in contradiction with the main characteristic
of processors, i.e. flexibility provided by embedded software. A given func-
tion implemented in random logic could consume 100–1000 times less energy
than the same function implemented in a processor and corresponding embed-
ded software. However, flexibility is more and more required, and ultra-low-
power processors are mandatory. Only a few techniques have been widely used
for the power consumption reduction of microcontrollers and DSP processors.
This chapter will review these techniques, which are basically CPI (clocks per
instruction) reduction, gated-clock mechanisms, optimal pipeline length, hard-
ware accelerators, reconfigurable units and techniques to reduce leakage power.
Several examples will be described in more details, such as some RISC 8-bit
and 32-bit microcontrollers as well as some DSP cores. The latter are a good
example of the necessary tradeoffs between flexibility and energy efficiency, as
many random logic-based accelerators are very often used.

Key words: Ultra-low power; CPI; gated-clock; pipeline; accelerators; reconfigurable; leak-
age; microcontrollers; DSP cores.

1. Introduction

For any application, several embedded processors such as microcontrollers
and DSP cores, as well as a large number of embedded memories and
specialized peripheral circuits, are today integrated on the same die called
systems on chip (SoC). The two main constraints are computation power
and low-power design. In any portable application for the consumer market,
low power is generally the most dramatic issue. Furthermore, the use of deep

Vojin G. Oklobdzija and Ram K. Krishnamurthy (eds.),
High-Performance Energy-Efficient Microprocessor Design, 1–30.
c© 2006 Springer. Printed in the Netherlands.

1

2 C. Piguet

submicron technologies implies solving new problems, such as very low
supply voltages, leakage, wire delays, networks on chip, signal input slopes,
noise and crosstalk effects.

Memories generally consume most of the power. However, the principles to
reduce power consumption of memories are basically well known: the memory
has to be cut in small pieces and only one piece is addressed to fetch or to
store data (cache, hierarchical, divided wordline and divided bitline). However,
this chapter is focused on low-power processors even if memories are larger
consumers. The principles to reduce power consumption of processors are more
difficult: they have to deliver more and more computation power, they have to be
totally flexible, and of very low power. These requirements are fundamentally
contradictory; so basically, designers have to trade off these requirements. They
have to choose the right processors with more or less flexibility to achieve the
required goals, which are also application-dependent.

2. Energy Efficiency Versus Flexibility

Figure 1 shows that the flexibility [1], i.e. to use a general-purpose processor
or a specialized DSP processor, has a large impact on the energy required to
perform a given task compared to the execution of the same given task on
dedicated hardware.

2.1. The Basic Choices

At the system level there are many important choices, as shown in Figure 1.
Specialized architectures in random logic are obviously better in performances

Figure 1. MOPS/watt versus flexibility.

Ultra-low-power processor design 3

(speed, power consumption) but are fixed without any flexibility. That is why
today microprocessor-based architectures are generally selected; however, with
reduced performances but much better flexibility.

It should be noted that a µP-based implementation results in very high
sequencing. This is due to the µP structure that is based on reuse of the same
operators and registers (ALU, accumulators). For instance, only one clock is
necessary to increment a hardware counter. For its software counterpart the
number of clock cycles is much higher, while executing several instructions
with many clocks each. This simple example shows that the number of clock
cycles executed for the same task can be very different depending on the archi-
tecture. For an electronic wristwatch 2000 instructions were necessary to update
the time versus one clock for a random logic circuit.

Assuming applications presenting control tasks as well as DSP tasks, one
can choose different architectures:

• a single microprocessor for control and DSP tasks
• a microcontroller with co-processors
• a microcontroller (8 or 32-bit) with a DSP processor
• configurable processors.

For the microprocessor-based approach the processor type is an important
issue. As shown in Figure 1, there is a trade-off between performance and
flexibility. This choice is obviously dependent on the application and required
performances. Reuse is mandatory, and the designer has to choose IP cores for
the microcontroller, DSP or co-processors. Configurable processors are quite
interesting, as specialized instructions and execution units can be configured
to the specified application.

2.2. Processor Types

There are several points to fulfill in order to save power. The first point is
to adapt the data width of the processor to the required data. This results in a
relatively increased sequencing to manage, for instance, 16-bit data on an 8-bit
microcontroller. As shown in Table 1, for a 16-bit multiply, 30 instructions
are required (add-shift algorithm) on a 16-bit processor, while 127 instructions
are required on a 8-bit machine (double precision). However, a better architec-
ture would be to have a hardware 16 ∗ 16 bit parallel-parallel multiplier with
only one instruction to execute a multiplication.

Another point is to use the right processor for the right task. For control
tasks do not use DSP processors; they are largely inefficient. Conversely, do
not use 8-bit microcontrollers for DSP tasks! For instance, to perform a JPEG
compression on an 8-bit microcontroller requires about 10 million executed
instructions for a 256 ∗ 256 image (CoolRISC, 10 MHz, 10 MIPS, 1 second per

4 C. Piguet

Table 1. Number of executed instructions in 8-bit microcontrollers

No. of instructions No. of instructions

CoolRISC 88:
in the code

CoolRISC 88:
executed

PIC 16C5x:
in the code

PIC 16C5x:
executed

8-bit multiply linear 30 30 35 37
8-bit multiply

looped
14 56 16 71

16-bit multiply
linear

127 127 240 233

16-bit multiply
looped

31 170 33 333

Figure 2. Heterogeneous architectures with many different processors.

image). It is very inefficient! Factor 100 in energy reduction can be achieved
with JPEG dedicated hardware.

Figure 2 shows an interesting architecture to save power. For any appli-
cations there is some control that is performed by a microcontroller (the best
machine to perform control). But in most applications there is also a main task to
execute, that could be a DSP task, convolution, JPEG or another task. The best
architecture is to design a specific machine (co-processor) to execute this task.
So this task is executed by the smallest and most energy-efficient machine.
Most of the time both microcontroller and co-processors are not running in
parallel.

3. Power Reduction Techniques

This section will review power reduction techniques, which are basi-
cally CPI (clocks per instruction) reduction, gated-clock mechanisms, optimal
pipeline length, hardware accelerators, reconfigurable units and techniques to
reduce leakage power. At the architecture level most of the improvements in
single processor performance are likely to come from lowering CPI.

Ultra-low-power processor design 5

3.1. Overview of Power Reduction Techniques

Future SoC will contain several different processor cores on a single chip.
This results in parallel architectures, which are known to be less dynamically
power-hungry than fully sequential architectures based on a single proces-
sor [2]. The design of such architectures has to start with very high-level mod-
els in languages such as System C, SDL or MATLAB. The very difficult task is
then to translate such very high-level models in application software in C and
in RTL languages (VHDL, Verilog) to be able to implement the system on sev-
eral processors. One could think that many tasks running on many processors
require a multitask but centralized operating system (OS), but regarding low
power, it would be better to have tiny OS (2K or 4K instructions) for each pro-
cessor [3], assuming that each processor executes several tasks. Obviously, the
latter solution is easier to implement, even if performances could be reduced
due to the inactivity of a processor that has nothing to do at a given time frame.

One has to note that most of the dynamic power can be saved at the highest
levels. At the system level partition, activity, number of steps, simplicity, data
representation and locality (cache or distributed memory instead of a centralized
memory) have to be chosen (Figure 3). These choices at high level are, however,
strongly application-dependent.

At the architecture level many low-power techniques aiming at dynamic
power reduction have been proposed (Figure 3). The list could be: gated clocks,

Figure 3. Power reduction techniques.

6 C. Piguet

pipelining, parallelization, very low Vdd, several Vdd, variable Vdd (DVS or
dynamic voltage scaling) and VT, activity estimation and optimization, low-
power libraries, reduced swing, asynchronous and adiabatic. Some are used
in industry, but some are not, such as adiabatic and asynchronous techniques.
At the lowest levels, for instance a low-power library, only a moderate factor
(about 2) in dynamic power reduction can be reached. At the logic and layout
level the choice of a mapping method to provide a netlist and the choice of
a low-power library are crucial. At the physical level layout optimization and
technology have to be chosen.

However, leakage or static power becomes more and more important in
very deep submicron technologies, and low-power design methodologies have
to take into account the total power, i.e. dynamic and static power [4].

3.2. Leakage Reduction at Architecture Level

Many techniques have been proposed to reduce leakage power, such as
gated Vdd, multi-VT technologies, DTMOS, VTCMOS and static or dynamic
SATS [4]. These techniques are effective at the cost of more or less complex
circuits or technologies. Another technique already proposed is weak inversion
logic for which transistors work in a weak inversion regime [5]. Despite the use
of these techniques, reducing static power in very deep submicron technologies
has to be addressed at all design levels, including system and architecture levels.
This section addresses this problem at architecture level.

3.2.1. Activity, logic depth and number of gates

By analyzing the ratio of dynamic over static power it is observable that
microprocessors presenting a low or very low activity will present a too large
static power compared to dynamic power. Performing a logic function with a
very small activity can be considered as far from the optimum, as the micropro-
cessor is idle most of the time. In other words, if a transistor or a logic gate is
not switching for a very long period it is not very efficient, as the ratio between
the switching time (related to dynamic power) and the idle time (for which the
transistor or the logic gate is leaky) is very small. This is obviously the case
when the microprocessor is in sleep mode, as no dynamic power is present.
Hence the only consumed power is the static one. However, in that case nothing
can be done at the architecture level and only circuit techniques [4] can be used
to reduce leakage.

The presented design methodology aims at searching an optimum in which
one has better use of switching transistors or gates in the reference period of
time, i.e. an increased activity in such a way that dynamic power is not too small

Ultra-low-power processor design 7

compared to static power. Obviously, this relative increase of activity has to
be understood as useful, and not, for instance, by suppressing gated clocks or
increasing glitches.

The conventional definition of activity is the factor a in the dynamic power
formula: P = a ∗ f ∗ C ∗ V dd2. This means that a is the ratio between the
number of switching gates in a clock period over the total number of gates.
Combinational circuits generally present activities around 1–5%. One has also
to consider idle gates when they are connected in series. If there are 20 gates in
series for a given pipeline stage or logic block (logic depth LD = 20), these 20
gates have to switch in series in a clock period. So only 1/20 of the clock period
is used for switching; the rest of the time the considered gate is only a leaky
gate. In running modes, with more and more leaky transistors, it seems that it
could be better to avoid designing very inactive gates and therefore to search
for an optimum ratio of dynamic power over static power. Leakage energy
could be considered roughly proportional to the number of gates and to the
duration of the clock period. It is not the case of the dynamic energy that is
only proportional to the number of switching gates. To have a better balance of
dynamic versus static energy, it could be mandatory to decrease significantly
the total number of gates, generally resulting in increase of global activity.

3.2.2. Optimal total power

This optimum of total power (dynamic + static) is roughly obtained with
similar amount of static and dynamic power [6, 7]. To reduce the total power
consumption an attractive goal could be to have fewer, but more active, tran-
sistors or gates to perform the same logic function. If a given logic function
requires 10,000 gates for its implementation and presents an activity factor of
1%, this means that on average 100 gates are switching in a clock period. If
the same logic function could be implemented with only 1000 gates, keeping
the same number of switching gates (100), the activity will be 10%, with the
same dynamic power but with a leakage reduced by a factor of 10 due to the
reduction of the total number of gates [7].

Figure 4 shows at the left such a theoretical situation with the same dynamic
power and a significant reduced leakage power for the architecture containing
fewer gates. This is however a naive situation, as nothing is said about the
speed of the two architectures. The architecture with the smaller number of
gates could be slower and would therefore require a larger Vdd to achieve the
same speed, impacting the dynamic power.

Figure 4 (at the right) shows a practical situation comparing a 16 × 16
multiplier automatically synthesized (Synopsys) with two different architec-
tures. Architecture A is realized with four RCA multipliers working in parallel
(3250 gates) and the second architecture B is implemented with two Wallace

8 C. Piguet

Figure 4. Various architectures with the same number of transitions for a given function (white
rectangle: static; filled rectangle: dynamic).

multipliers working in parallel (1960 gates). Both present 208 transitions for
executing a 16 × 16 multiply (3250 gates ∗ 6.4% = 1960 gates ∗ 10.6% = 208
transitions), showing that various architectures with a quite different number of
gates can achieve their function with the same number of transitions. Architec-
ture B (second bar, at the same Vdd and VT) with fewer gates than A presents
a larger activity, a smaller leakage but also a smaller dynamic power (smaller
transistors, due to improved delay slack). However, at the optimum of total
power consumption this architecture B can be supplied with smaller Vdd and
VT (third bar) to meet the same speed performances as A, with better results in
total power consumption. This shows, however, that the speed performances
are a very important parameter in such comparisons.

The goal of designing architectures with more global activity is not to reduce
only leakage power with same dynamic power (Figure 4 at left), but to find an
optimum of the total power, as shown at the right of Figure 4. This optimum
has to be searched for the same speed constraints, and looking at first and last
bars at the right of Figure 4, architecture B with less gates and more activity is
better in terms of optimal total power; however, with a similar ratio of dynamic
over static power of respectively 3.2 for A and 2.5 for B. This example shows
very clearly that the reduction of the total number of gates and the increase
of the activity could result in the same or even smaller dynamic power and
optimal total power. It is the paradigm shift, not increasing the number of
switching gates, but reducing the total number of gates. In this respect the
resulting activity, although increased, can be considered as a useful activity.
However, as already pointed out, the reduction in the total number of gates
and the increase of activity cannot be a goal per se, as some architectures for
a given logic function with significantly less gates could be extremely slow.
So one has to dramatically increase the supply voltage and decrease the VT

Ultra-low-power processor design 9

for satisfying the speed constraints, resulting in a much larger total power. It
could be the case, for instance, for a sequential multiplier using an add-shift
mechanism compared to a parallel multiplier.

3.2.3. Design methodologies based on optimal total power

In refs 7 and 10, it is shown that at optimal total power, the ratio Ion/Ioff of
a single device in a given technology is proportional to K1*(LD/a), i.e. propor-
tional to architectural parameters such as logical depth (LD) and activity (a).
K1 is not fixed as shown in refs 8 and 9, but goes from 3 to 6 depending on
the architecture. Dynamic over static power is also equal to K1, i.e. dynamic
power is 3 to 6 times larger than static power at the optimum of the total power.
It turns out that Ion/Ioff is quite low in very deep submicron technologies,
showing that leakage tolerant architectures do have to present small LD and
large activities. So pipelined architectures, reducing LD proportionally to the
number of stages with the same activity, have to be preferred to parallel archi-
tectures that reduce LD and activity. In other words, parallel architectures do
reduce LD, but the transistor count is also largely increased, having too much
impact on the number of inactive gates and therefore the leakage.

Obviously, what is searched for is design methodologies [10, 11] starting
from a given logic function architecture and generating a new architecture in
which the number of cells is reduced, the number of transitions for this given
logic function is constant, the activity is increased, but the logic depth is also
constant (or even smaller). If the logic depth is increased, as is generally the
case by increasing sequencing to reduce the gate count, the speed constraints
have to be satisfied by increasing Vdd and going down with VT, resulting in a
larger optimal total power.

4. Low-power Microcontrollers

4.1. Eight-bit Embedded Microcontrollers

The most well-known 8-bit microcontrollers are Intel 8051-based (many
versions), Motorola 68K, Microchip PIC, Zilog eZ80Acclaim! and many
Japanese microcontrollers. Basically, all these 8-bit microcontroller architec-
tures are based on old CISC (complex instruction set computer) architectures,
with instruction formats containing several bytes. This means that several
memory accesses are required to execute a single instruction, and it is impos-
sible to execute an instruction in a single clock cycle. So this results in a
CPI (clock per instruction) of 4–20. To provide good MIPS performances
(million of instructions executed per second), according to the following

10 C. Piguet

formula: MIPS = f/CPI, they have to be clocked at relatively high ƒ fre-
quencies. As the dynamic power consumption is proportional to ƒ, they present
a figure MIPS/watt that is not reduced as it could be.

However, for power consumption or for energy consumed per instruction,
RISC microcontrollers are much better.As the energy per clock cycle is roughly
the same in RISC and CISC microcontrollers (about the same number of tran-
sistors), RISC-like microcontrollers with a single clock cycle per instruction
provide a significant advantage regarding energy per instruction. Only two
RISC 8-bit microcontrollers are commercially available:

• Xemics/Semtech-CSEM CoolRISC (www.coolrisc.com)
• Atmel AVR (www.atmel.com)

4.2. CoolRISC 8-bit Microcontroller

The CoolRISC is a three-stage pipelined core [12, 13]. The branch instruc-
tion is executed in only one clock. In that way no load or branch delay can
occur in the CoolRISC core, resulting in a strictly CPI = 1 (Figure 5). For each
instruction the first half clock is used to precharge the program memory. The
instruction is read and decoded in the second half of the first clock. As shown in
Figure 5, a branch instruction is also executed during the second half of this
first clock, which is long enough to perform all the necessary transfers. For a
load/store instruction, only the first half of the second clock is used to store data
in the RAM memory. For an arithmetic instruction the first half of the second
clock is used to read an operand in the RAM memory or in the register set,
the second half of this second clock to perform the arithmetic operation and
the first half of the third clock to store the result in the register set.

Furthermore, to reduce the energy per clock cycle, the gated clock technique
has been extensively used in the design of the CoolRISC core (Figure 6). The
ALU, for instance, has been designed with input and control registers that are
loaded only when an ALU operation has to be executed. During the execution
of another instruction (branch, load/store), these registers are not clocked, thus

1 clock cycle

fetch & branchfetch

alu

the branch
condition
is available

The critical path:
- precharge ROM
- read ROM
- branch decoder
- address multiplexer
However, at 50 MHz, one
clock = 20 ns

CPI=1--> 50 MIPS
Enough for an 8-bit P

Figure 5. No branch delay.

Ultra-low-power processor design 11

ABus<8>

SBus<8>

ALU<8>

CY, Z

REG0

RAM Index L
ROM Index L

REG1

Status Register

BBus<8>

ROM Index H
RAM Index H

ctr

gated
clock

gated
clock

ALU

data registers

control
register

ACCU

Figure 6. Gated-clock ALU.

no transition occurs in the ALU (Figure 6). A similar mechanism is used for the
instruction register; thus, in a branch, which is executed only in the first pipeline
stage, no transition occurs in the second and third stages of the pipeline. It is
interesting to see that gated clocks can be advantageously combined with the
pipeline architecture; the input and control registers implemented to obtain a
gated clocked ALU are naturally used as pipelined registers. Automatic gated
clocks insertion is proposed today in many papers, such as ref. 14 and CAD
tools [15].

A main issue in the design of processor cores [16] is the design of the clock
tree with the smallest possible clock skew and avoiding any timing violations.
In deep submicron technologies this design becomes more and more difficult
as wire delays are larger and larger compared to gates delays. Generally, clock
trees do have very large buffers, resulting in a significant increase in power
consumption.Today, most processor cores are based on a single-phase clock and
are based on D-flip-flops. As clock input slopes are a key factor in D-flip-flop
reliability, as clock input capacitances of D-flip-flops in standard cell libraries
are significant, as clock skew is an issue, the design of clock trees becomes
more and more difficult in deep submicron technologies.

Another approach than the conventional single-phase clock with D-flip-
flops (DFF) has been shown to be more effective. This is based on using only
latches with two non-overlapping clocks. This clocking scheme has been used
for the 8-bit CoolRISC microcontroller [17] as well as for other DSP cores
such as ref. 18. Figure 7 shows this latch-based clocking scheme that has been
chosen to be more robust to clock skew, flip-flop failures and timing problems
at very low voltage [17]. The clock skew of Ø1 (respectively Ø2) has to be
shorter than half a period of CK, i.e. Ø1 can be delayed for half a period of
CK before Ø1 and Ø2 become active at the same time. However, this clocking
scheme requires two clock cycles of the master clock CK to execute a single
instruction. This means 100 MHz is necessary to generate 50 MIPS (CoolRISC
with CPI = 1), but the two Øi clocks and the two clock trees are at 50 MHz.
Only a very small logic block is clocked at 100 MHz to generate two 50 MHz
clocks.

12 C. Piguet

¿1

¿2

CKSkew
between
¿1 pulses
has to be
less than
1/2 period

Very robust

Figure 7. Latch-based clocking schemes.

The design methodology using latches and two non-overlapping clocks has
many advantages over the use of D-flip-flop methodology. Due to the non-
overlapping of the clocks, and the additional time barrier caused by having two
latches in a loop instead of one D-flip-flop, latch-based designs support greater
clock skew before failing than a similar D-flip-flop design (each targeting the
same MIPS). This allows the synthesizer and router to use smaller clock buffers
and to simplify the two clock trees generation, which will reduce the power
consumption of the two clock trees. Despite the fact that this clocking scheme
requires two different clock trees, each of them sees a much smaller clock
capacitance, and due to clock skew relaxed constraints it is likely that the
total power consumption is smaller that the power of a single clock tree using
D-flip-flops.

Furthermore, if the chip has clock skew problems at the targeted frequency
after integration, it is possible with a latch-based design to reduce clock fre-
quency. The result is that the clock skew problem will disappear, allowing the
designer to test the chip functionality and eventually to detect other bugs or to
validate the design functionality. Another advantage with a latch design is time
borrowing [17]. The latch design has additional time barriers, which stop the
transitions and avoid unneeded propagation of signal and thus reduce power
consumption (Figure 8). Using latches can also reduce the number of MOS in a
design. For example, a microcontroller has 16 ∗ 32-bits registers, i.e. 512 DFF
or 13,312 MOS (using DFF with 26 MOS). With latches the master part of
the registers can be common for all the registers, which gives 544 latches or
6528 MOS (using latches with 12 MOS). In this example the register area is
reduced by a factor of 2.

Using latches for pipeline registers significantly reduces power consump-
tion when using such a scheme in conjunction with clock gating. The clock
gating of each stage (latch register) of the pipeline with individual enable sig-
nals, reduces the number of transitions in the design compared to the equivalent
DFF design, where each DFF is equal to two latches clocked and gated together.

The latch-based design allows a very natural and safe clock gating method-
ology. Figure 8 shows a simple and safe way of generating enable signals for
clock gating. This method gives glitch-free clock signals without the adding
of memory elements, as is needed with DFF clock gating. Synopsys handles
very nicely the proposed latch-based design methodology. It performs nicely

Ultra-low-power processor design 13

Combinational
Circuit Combinational

Circuit

Clock A Clock B

EnableA EnableB
A B

Figure 8. Latch-based clock gating.

Figure 9. CoolRISC core and SRAM memories in 0.18µm technology.

14 C. Piguet

the time borrowing and correctly analyzes the clocks for speed optimization.
So it is possible to use this design methodology with Synopsys, although there
are a few points of discussion linked with the clock gating.

This clock gating methodology cannot be inserted automatically by Synop-
sys. The designer has to write the description of the clock gating in his VHDL
code. This statement can be generalized to all designs using the above latch-
based design methodology. Synopsys can do automatic clock gating for a pure
double-latch design (in which there is no combinatorial logic between the mas-
ter and slave latch), but such a design causes a loss of speed over a similar DFF
design. The most critical problem is to prevent the synthesizer from optimizing
the clock gating AND gate with the rest of the combinatorial logic. To ensure
a glitch-free clock this AND gate has to be placed as shown in Figure 8. This
can be easily done manually by the designer by placing these AND gates in a
separate level of hierarchy of his design or placing a “don’t touch” attribute
on them.

It is interesting to note that the CoolRISC core in a quite old TSMC 0.25 µm
consumes about 10µW/MIPS, resulting in 100,000 MIPS/W at 1.05 V. This is
roughly better for a factor of 2 over a similar design using D-flip-flops [17].
Figure 9 shows a CoolRISC core with SRAM memories embedded in a SoC
chip integrated in 0.18µm TSMC technology.

4.3. 32-bit Microcontrollers

Embedded 32-bit RISC microcontrollers are used in portable applications
for which low power consumption is an issue [19]. These 32-bit cores are quite
small, from 30,000 MOS to about 100,000 MOS. They are very power-efficient.
The main characteristics are as follows:

• load/store architectures (RISC);
• instructions of 32 bits (ARM, MIPS, StrongArm) or 16 bits (SH, Thumb,

TinyRISC);
• 32 registers (ARM, MIPS) or 16 registers (SH);
• small number of generic instructions;
• single pipeline, with a peak CPI = 1;
• the number of pipeline stages was generally three for the first 32-bit cores

(ARM7, Thumb, MiniRISC, TinyRISC) some years ago;
• for most recent 32-bit cores the number of pipeline stages has been

significantly increased to achieve larger frequencies, from five (MIPS
R3000, Hitachi SH, StrongArm, X-Scale, ARM9) to six pipeline stages
(ARM10) or even eight pipeline stages (MIPS32 24K).

The basic principle of a pipelined µP is to execute N-cycles instructions
in an overlapped fashion in a N-stages pipeline. At each cycle an instruction

Ultra-low-power processor design 15

is provided to the pipeline, and an instruction is completed. This results in the
execution of one instruction per cycle. However, there are some drawbacks,
such as pipeline stalls. Branch hazards occur when the target instruction after
a branch is determined in the second, third or xth stage of the pipeline. This
can be solved by the insertion of load delay or branch delay (reducing the
throughput) or by using a bypass technique: the preceding instruction is able
to transfer its result directly to the next instruction if needed.

The resolution of pipeline hazards can be achieved while using several
different approaches:

• Static approach, for which it is the compiler that is responsible for
re-organizing the code and/or inserting NOP instructions. Generally the
code size is increased [20, 22].

• Dynamic approach, for which the processor hardware is in charge to
solve the pipeline bubbles at run-time. Generally load and branch delays
are inserted, but code could also be reorganized dynamically, resulting
in out-of-order execution [20, 22].

• Pipelined multithreaded architecture.
• Short pipeline with branch instructions executed in one clock (Cool-

RISC [12]).

Prediction techniques can be used to guess the target instruction and to start
to fetch (sometimes to execute) it before the branch is resolved. Obviously,
in case of misprediction, the processor has to go back. The cost of a branch
and of mispredicted branches becomes so high in terms of clock cycles that
prediction techniques become very sophisticated. A given branch instruction
is generally not 50% taken and 50% not taken. More than 90% of branch
instructions are taken (or not taken) at 90% to 99%. Prediction techniques are
based on this fact, i.e. based on the prediction that the branch will do what
it did last time [21]. There are several techniques to implement a prediction
mechanism. For instance, the first ARM having prediction is the the ARM10
(static prediction: backward taken, forward not taken).

The most well-known 32-bit microcontrollers are as follows:ARM, Thumb,
Atmel AT91, StrongArm, X-Scale, MIPS, ColdFire, Hitachi SH SuperH,
Embedded X86, Transmetta Crusoe, XAP3, NECVR4 and many others. Just
to illustrate the energy efficiency of some 32-bit RISC cores, let us see some
well-known cores. ARM7 was a three-stage pipeline core. ARM8 and ARM9
have been designed while extending the pipeline to five stages with no predic-
tion (all taken) and branches executed in two clock delays. The ARM10 has six
stages with a static prediction. With this prediction logic the CPI will be around
1.5. ARM11 has eight pipeline stages. In some deep submicron technologies
one has the following numbers:

• In 0.18µm and 1.8 V, ARM9 core achieves 330 MHz, 365 MIPS,
120 mW, 3000 MIPS/watt.

16 C. Piguet

• In 0.13µm ARM1026 with caches achieves 475 MHz, 500 MIPS,
250 mW, 2000 MIPS/watt.

• The ARM11 processor family delivers up to 550 MHz of performance
with power as low as 0.24 mW/MHz using a 0.13µm foundry process,
so 4000 MIPS/watt.

XScale is Intel’s implementation of the fifth generation of theARM architec-
ture. It is the successor to the Intel StrongARM microcontrollers. The number
of pipeline stages was extended to seven or eight stages. The most interesting
feature of the XScale architecture is what Intel calls “Dynamic Voltage Scal-
ing”. In 2001, XScale was dissipating 450 mW at 600 MHz and 1.3 V and much
less at reduced supply voltage [23]. In 0.18µm and 1.3 V, XScale with caches
achieves 600 MHz, 660 MIPS, 750 mW, 880 MIPS/watt.

MIPS microcontrollers have been designed following the original MIPS
and MIPS-X of Stanford [24]. These first RISC machines were based on the
“delayed branch” mechanism that was handled by the compiler (called Reor-
ganizer). In the MIPS design the instruction following a branch is always
executed. The compiler is responsible for filling this delay slot with a use-
ful instruction or, if it is not possible, by a NOP. The original pipeline provided
five stages. The number of transistors was about 115,000. Performances today
are as follows:

• MIPS32 4 Kp: 1 mW/MHz or 1 mW/MIPS (1000 MIPS/watt).
• MIPS32-R2 4KEc Pro: 255-300 MHz, five pipe stages, 0.12–

0.37 mW/MHz (8500 MIPS/watt for 255 MHz and 0.12 mW/MHz) [25].
• MIPS32-R2 24K Pro: 400–550 MHz, eight pipe stages, 0.5 mW/MHz

[25] (2000 MIPS/watt).

As the pipeline becomes deeper and deeper due to increased frequencies,
branch prediction is used for MIPS, such as the MIPS32 24K with eight-stage,
dynamic prediction (four clocks penalty in case of mispredicted branch).

Adding DSP instructions to a RISC core was one of the first ideas to provide
flexible cores for both control and DSP tasks (see Section 5). Many companies
are offering such combinations, such as ARM, ARC and Tensilica. However,
while provided DSP extensions are meaningful, the resulting performances
are impacted. Generally, the resulting core is larger, maximum frequency is
reduced of 30% and power consumption is increased. Control as well as DSP
tasks are not energy efficiently executed on these cores. If some companies
like MIPS claim no performance degradation (MIPS32 24KE), it means that
the DSP extensions are very limited or that MAC-like operations are executed
in two clock cycles [26].

There is a clear trend for multicore and multithreaded architecture for
high-performance microprocessors [27]. For embedded microcontrollers into
SoC, as applications are more specific, generally the multicore approach is

Ultra-low-power processor design 17

implemented with different processors including DSP cores and co-processors.
A variety of chip vendors have recently announced multicore SoC designs,
including PMC-Sierra (MIPS), Broadcom (MIPS), RMI Raza Microelectron-
ics Inc. (MIPS), Freescale (PPC), Cavium (MIPS), and ARM Ltd. (ARM).
Multicore advantages include a better ratio of performance to power usage,
less heat dissipation, and a smaller physical footprint. One prime market for
multicore SoC appears to be networking equipment such as firewalls that deeply
inspect packets or perform compute-intensive spam filtering.

Most microprocessors are single-threaded computers, i.e. they are executing
a single flow of instructions stored in a program. This means that the depen-
dency between sequential instructions is quite high. For multi-threaded com-
puters or multiple-context processors, several independent tasks are executed
at the same time by the processor. Instructions of different tasks are completely
independent. So pipeline bubbles as well as limited parallel execution could
be avoided, providing excellent throughput. A multi-threaded scheme is gen-
erally used for very-high performance microprocessors, but it has also been
used for small, 8-bit microcontrollers like the low-power CSEM Punch [28].
The main problem in multi-threaded computers is the number of active tasks.
The processor is fully utilized only if all the tasks are active. However, if only
one task is active the throughput is drastically reduced. SUN is also designing
multi-threaded microprocessor architectures called Niagara [29]. So all branch
and load delays are removed, all the very sophisticated prediction mechanisms
about branch instructions are removed, this “new” microprocessor seems so
simple! But the idea is quite old.

5. Low-power DSP Architectures

DSP microprocessors are being used more and more in high-volume appli-
cations, such as portable phones, hard-disk drives, audio and image process-
ing, hearing aids, wired and wireless communication devices. DSP processors
are different from RISC processors: they are dedicated for executing arith-
metic operations and have to be very energy-efficient in executing DSP
algorithms [30].

5.1. Main Features of DSP Architectures

DSP architectures are specialized in the execution of digital signal process-
ing (DSP) algorithms. The basic DSP operation is the multiply-accumulate
(MAC), i.e. a sum of multiplications used, for instance, in digital filters, cor-
relation and Fast Fourier transforms. The goal is to execute the MAC in one
clock (CPI = 1) while using a pipeline. The accumulator provides extra bits

18 C. Piguet

to accommodate growth of the accumulated result (for 16-bit data the accu-
mulators are 40 bits, i.e. 32-bit multiplication result + 8 extra bits for the
accumulation).

Another main feature of a DSP processor is to complete several memory
accesses in a single clock. Simultaneously, instruction fetch from the program
memory, as well as two operands fetch from two data memories and one result
store, have to be performed in a single clock. DSP architectures are either
load/store (RISC) architectures (input registers to the datapath) or memory-
based architectures in which the operands are directly fetched from the data
memories to be processed. However, load/store architectures are capable of
executing in parallel an arithmetic operation and register-memory transfers
(to fetch operands for the next arithmetic operation).

The third basic DSP feature is specialized addressing modes. Both data
RAM are addressed through two banks of pointers with pre- or post-
incrementation/decrementation as well as circular addressing (modulo). These
addressing modes provide efficient management of arrays of data, to which a
repetitive algorithm is applied. These operations are performed in a specialized
address generation unit.

The fourth basic feature is the capability to perform efficiently loops with
zero overhead. Loop or repeat instructions are able to repeat 1 to N instructions
without loop counter (no need to initialize and to up-date a loop counter). These
instructions are fetched from the memory and stored in a small cache memory
in which they are read during the execution of the loop.

All these features have been introduced in DSP cores to increase perfor-
mances, mainly to reduce the number of clock cycles to execute some tasks.
Compared to microcontrollers, what is executed in one clock cycle in a DSP
core could take 10–20 clock cycles in microcontrollers.

5.2. Single MAC DSP Cores

Figure 10 shows a typical DSP datapath (in this case, 24-bit Motorola
56,000) producing a single MAC per clock cycle. It contains two data buses
that are connected to four 24-bit input registers. It is therefore a load/store
architecture in which operands have to be loaded into these few input registers
before processing. These registers contain two operands that can be multiplied
and accumulated in two 56-bit accumulators with 8 guard bits. The guard bits
allow the DSP to perform a series of MAC operations without arithmetic over-
flow. The extra bits in the accumulators are capable of accommodating the bit
growth resulting from the repeated additions. Memory-register transfers can
be executed in parallel with an arithmetic operation, for instance:

A ← X0 ∗ Y0,X0 ← RAM(R0),RAM(R1) ← Y1;

Ultra-low-power processor design 19

Figure 10. Typical single MAC DSP datapath.

Shifters are used to scale the operands or the results to avoid overflows. In
Figure 10 there are two shifters with limited capabilities. One is used in the
MAC and the other is used to scale the results that have to be stored in the data
memory. Overflows are generally solved by using saturation arithmetic, i.e. an
overflow value is replaced by the largest number that can be represented. It is
called a limiter in Figure 10.

Many single MAC DSP cores are still offered on the market, such as Ceva-
TeakLite [31] running at 200 MHz in 0.13 µm and consuming, for instance,
0.1 mA/MHz in an audio platform dedicated to MP3 stereo decoding.

5.3. RISC Cores with DSP Enhancements

As mentioned above, adding DSP instructions to a RISC core was one
of the first ideas to provide flexible cores for both control and DSP tasks.
Many companies have designed such cores. There are two options: adding
these instructions definitively, such as ARM, MIPS and SH3-DSP, or giving
the possibility to customers to add the desired instructions (customizable ARC,
Hyperstone and Tensilica).

Cores having control and DSP instructions result in lower performances,
as the cores are 30% bigger, maximum frequency reduced by 30% and power
consumption increased. Neither the control nor the DSP tasks are really energy-
efficiently executed on these cores. If some companies claim no performance
degradation, it means that the DSP extensions are very limited [26]. For
instance, inARM DSP extensions there are no X/Y memories, no zero overhead
looping or no special addressing modes [32].

ARC is offering synthesizable soft macros that can be configured to meet
specific performances. In a four-stage pipeline the instruction set contains
32 separate instructions; the first 16 are predefined and the last 16 are available

20 C. Piguet

for customers. They may be instructions from an ARC library or completely
new instructions defined by customers. This is a much better approach than
the previous one as the customer is free to add only the required DSP instruc-
tions for a given task. ARC 605 is a five-stage pipeline with static branch
prediction. The 605 is the smallest one [33] in 0.13µm, 0.36 mm2, 250 MHz
maximum frequency and 0.06 mW/MHz. This means 15 mW at 250 MHz,
250 MIPS, so 17,000 MIPS/W. Tensilica Xtensa proposed an instruction set
containing 78 basic immutable commands. Customers are also free to add their
special-purpose instructions by defining them using the provided hardware RTL
language. Not only new instructions can be specified, but also I/O ports can
be modified depending on the memories used, as well as the pipeline num-
ber of stages [34]. The RTL code includes gated clocks for powering down
various blocks and can be synthesized with any library. The process of syn-
thesis could be as short as 8 hours. Tensilica Xtensa LX has five to seven
pipeline stages and occupies 0.2mm2 in 0.13µm (19,000–25,000 gates). It
consumes 0.038 mW/MHz, or 15 mW at 390 MHz [33]. This means 390 MIPS,
so 26,000 MIPS/W.

5.4. More Computation Power Required

Various DSP architectures can be and have been proposed to reduce power
consumption significantly while keeping the largest throughput. Furthermore,
many portable applications require a significantly increased throughput, due
to new, quite sophisticated DSP algorithms and to wireless communication.
Beyond the single MAC DSP core of 5–10 years ago, it is well known that
parallel architectures with several MAC working in parallel allow designers to
reduce supply voltage and power consumption at the same throughput. That is
why many VLIW or multitask DSP architectures have been proposed and used,
even for hearing aids. The key parameter to benchmark these architectures is
the number of simple operations executed per clock cycle, up to 50 or more.
Another key point is the design of specialized execution units, such as Viterbi
and Turbo code. These dedicated execution units in DSPare mandatory to speed
up these algorithms while significantly reducing power consumption [35].

However, there are some drawbacks regarding very parallel architectures
such as VLIW or superscalar DSP processors. The very large instruction words
of VLIW of up to 256 bits significantly increase the energy per memory access.
Some instructions in the set are still missing for new, better algorithms. Finally
the growing core complexity and transistor count (roughly 2 million transistors
for the cores in a hearing-aid circuit) become a problem because leakage is
roughly proportional to transistor count.

To be significantly more energy-efficient there are basically two ways how-
ever, impacting either flexibility or the ease of programming. The first one is

Ultra-low-power processor design 21

to use reconfigurable DSP cores in which configuration bits allow the user to
modify the hardware in such a way that it can fit much better to the executed
algorithms. The second one is to have specific and very small DSP hardware
accelerators for each task (Figure 2). In that way each DSP task is executed in
the most energy-efficient way on the smallest piece of hardware.

5.5. VLIW and Superscalar DSP Cores

Texas Instruments provides an eight-issue VLIW 16-bit fixed-point
TMS320C6x with two execution units including two MAC and six ALU units.
As many as eight instructions can be executed in parallel (peak) with 32-bit
data.All instructions can be conditional, thus eliminating branches and pipeline
delays. In 2005, in 90 nm, the chip reaches 1000 MHz (so 8000 MIPS peak) and
contains some hardware accelerators (Viterbi, Turbo). The TMS320C6414T
consumes 673 mW at 600 MHz and 1.1V (7000 MOPS/W). But this peak per-
formance can never be reached, as only three or four instructions over eight are
executed in a single clock on average. Another drawback is the energy which
is required to fetch VLIW 256-bit words into the program memory. It is signif-
icantly more than 32-bit instruction words of superscalar DSP cores. StarCore
SC 140 is also a VLIW DSP core with 128-bit instructions.

Superscalar DSP cores contain parallel execution units (dual MAC or quad
MAC) with a 32-bit instruction set. Energy savings occur due to the small 32-bit
instruction word fetched from the memory. Ceva-X offers a scalable architec-
ture, i.e. dual MAC, four and even eight MAC architectures. Many new cores
are dual cores, i.e. a limited parallelism also due to the small instruction width.
These cores are, for instance, offered by 3DSP, LSI Logic and Philips [36].

Philips has introduced the dual MAC CoolFLUX DSP, 43,000 gates,
0.1 mW/MHz at 1.2 V, 0.13µm, 175 MHz, about 1000 MOPS. This gives about
57,000 MOPS/W. The SP3 of 3DSP is also a dual MAC DSP core five pipeline
stages, 0.13µm, maximum frequency 320 MHz, dissipating 8 mW at 1.0 V at
reduced frequency. The ZSP400 of LSI LOGIC is a low-power dual MAC DSP
core consuming about 0.1 mW/MHz in 0.13µm running at 225 MHz, achiev-
ing about 900 MOPS (40,000 MOPS/W). Table 2 shows the number of clock
cycles necessary for a FIR filter and a 256 point FFT.

Table 2. Number of clock cycles for a FIR and FFT256

Algorithm MACGIC 4MAC CoolFlux SP-3 LSI403LP

FIR N/4 N/2 N/2 N/2
FFT 256 1500 5500 n/a 5000

22 C. Piguet

5.6. Reconfigurable DSP Cores

As mentioned above, reconfigurable DSP architectures are between power-
hungry FPGA (reconfigurable at the bit-level) and programmable DSP proces-
sors (not at all reconfigurable). So reconfigurable DSP are reconfigurable at the
functional level, i.e. execution units (Figure 11) and interconnection networks
are reconfigurable. It is interesting to note [37] that an energy-efficient archi-
tecture is the one in which the main sources of power dissipation are operators.
In a general-purpose processor there is a waste of power due to load/store,
branch, prediction, etc. This is even more dramatic in FPGA in which the main
source (and waste) of power is due to interconnect (60–70%).

Reconfigurable DSP architectures are much more power-efficient than
FPGA. The key point is to reconfigure only a limited number of units within the
DSP core, such as some execution units and addressing units [38]. The latter are
interesting, as the operands fetch from memory is generally a severe bottleneck
in parallel machines for which 8–16 operands are required each clock cycle.
So sophisticated addressing modes can be dynamically reconfigured depending
on the DSP task to be executed. Figure 12 shows an example in which several
addressing modes can be reconfigured depending on the user’s algorithms.

An interesting reconfigurable architecture is DART cluster [37], in which
configuration bits allow the user to modify the hardware in such a way that it
can much better fit to the executed algorithms. Figure 11 shows an example.
The DART architecture has been used for a WCDMA receiver in 0.18µm [37].
The power consumption was at 79% in the operators (15% in a general-purpose
microprocessor [39]). The energy efficiency was 39,000 MOPS/W. Compared
to FPGA (Virtex) achieving for the same application 3000 MOPS/W, and to

Memory Memory

x +

MemoryMemory

- x

Figure 11. Hardware reconfiguration example.

Ultra-low-power processor design 23

DM ADDR

m0

m2

I

RP1 RP2 RP3

P2A P2B

RP4

A O M
WP1 WP2

RP1

RP2

RP3

RP4

RP5

RP6

RP7

P2A

P2B

WP1

WP2

PREAD

POSAD1

POSAD2

AGUOP

i0
i1
i2
i3

=0..3)

Examples of operations:

i0: DM ADDR = a0+(o1>>1),
WP1: a1 = (a1+o3)%m2,
WP2: o3 = m3 + o2<<2
WP3: a0+(o1>>1)

i2: DM ADDR = a2+o1,
WP1: none
WP2: a0 = (a0-o2)%m0+o3
WP3: a2 = a2+o1

WP3

RP6RES1 RP7

POSAD2

I

RP1

a3a3 o3o3

m1

m0

m2
m3

i1

i2

(n

RP6RES1 RP7

PREAD

RP5

POSAD1

RES2

SELAGUOP

VLIW AGU Reconfigurable
instruction registers

in = AGUOP

i0
i1
i2
i3

Figure 12. Addressing modes reconfiguration example (MACGIC DSP).

the TMSC64x achieving 2000 MOPS/W, the DART reconfiguration platform
outperforms these two FPGA and conventional DSP by a factor of 13–19.

However, generally speaking the power consumption of reconfigurable
hardware is necessarily increased due to the relatively large number of recon-
figuration bits that have to be loaded in the configuration registers. Similarly,
the reconfigurable units are necessarily more complex that non-reconfigurable
units in terms of transistor count and therefore consume more power. Software
issues are also difficult, as users can define new instructions or new addressing
modes that are difficult to support by the development tools [40].

5.7. MACGIC Reconfigurable DSP Core

The MACGIC DSPis implemented as a customizable, synthesizable, VHDL
software intellectual property (IP) core [38]. The core is assumed to be used
in systems on chip (SoC), either as a stand-alone DSP or as a co-processor for
any general-purpose microprocessor.

The DSP microprocessor is made of four units (Figure 13):

• Program sequencing unit (PSU).

24 C. Piguet

Host/
Debug
bus

ON-CHIP
DEBUG
ENGINE

P HW BREAK

X HW BREAK

W DATA

PC
UPDATE

BOOLEAN
EXPR. EVAL.

FLAG
REGISTERS HW

STAC
K

CTL

EXCEPTION
CTL

X
AGU

Y
AGU

PSU

DMU

DPU

HDU

X
GPR

Y
GPR

ALU MUL

ACC.
ALU

SHIFT

IRQ

HWS bus

PM bus

X DM bus

Y DM busY HW BREAK

R DATA FIFO

Figure 13. MACGIC architecture.

• Data move unit (DMU).
• Data processing unit (DPU).
• Host and debug unit (HDU).

The PSU handles the fetching of instructions as well as branches, subroutine
calls, hardware loops, instruction repeats and external interrupts requests. The
PSU dispatches operations to the DMU and to the DPU. The DMU is respon-
sible for the handling of the data moves among DSP registers, and between
data memories and DMU’s general-purpose registers. The DMU contains cus-
tomizable address generation units (AGU) that allow the DSP core to best fit
the algorithm needs in term of data memory address computation (described in
detail in the previous paragraph). The DMU is a pure load/store unit that imple-
ments simultaneous accesses to the two data memories. Up to eight data words
can be transferred between the memory and the DMU during each clock cycle.

The DPU implements the signal processing operations (such as add, sub-
tract, multiply and accumulate instructions). It can be customized to best match
the class of algorithms and data to be processed. As an example, the FFT but-
terfly kernel is entirely implemented in hardware and provides a set of specific
instructions to the software developer. DPU operations read their operands
from the DMU’s general-purpose registers. The wide data bandwidth available
between these units allows the parallelization of many algorithms (such as:
FIR, IIR, FFT, DCT, FEC, etc.). Up to 16 data words can be read from the
DMU registers and up to eight X and Y data memory words can be written
back to the DMU during each clock cycle.

Ultra-low-power processor design 25

Two versions of the MACGIC DSP core have been designed. The first one
is a simple core containing a single MAC unit. The second version is a large
core with four parallel multipliers and six adders. There are four categories of
DPU instructions:

• Standard: MAC, MUL, ADD, CMP, MAX, AND,

• SIMD (Single Instr. Multiple Data): MAC4, MUL4, . . . capable of per-
forming 4 independent MAC, . . . in parallel.

• Vectorized: MACV, ADDV, capable of performing, for instance, a
MAC with 4 operands providing a single result.

• Specialized operations, targeted to specific algorithms, such as FFT,
DCT, IIR, FIR, Huffmann, Viterbi, mainly “butterfly” operations.

Figure 12 shows the AGU (address generation unit). There are three classes
of addressing modes, the last two being reconfigurable:

• Seven basic addressing modes (fixed): indirect, ±1,± offset, modulo.
• Predefined addressing modes capable of combining three operations over

48 available, coded in the Cx configuration register associated to eachAx
index register, for instance the complex mode: an <-(an + on)%mn +
OFFA.

• Extended addressing modes, four operations coded in the Ix configura-
tion register, for instance, an <-(an + om)%mp + 2 ∗ mq (very com-
plex, impossible to find in other DSP).

The HDU allows the use of this DSP as a co-processor for any general-
purpose microprocessor. This interface allows full control of the DSP from the
host processor. The HDU’s debug logic helps the software designer during the
software development phase by allowing the placement of breakpoints and
the step-by-step execution of the DSP program.

The clock frequency for the DSP is 50 MHz in a 0.18µm TSMC technol-
ogy (slow), at 1.8 V, for a 24-bit data word size. It is 100 MHz in a 90 nm
process. A FIR filter needs 1

4 clock cycle per tap, an IIR biquad one clock cycle
per stage and FTT radix 4 size 64 needs 222 clock cycles. The last result is
similar to large VLIW DSP cores with very large instructions of 128–256 bits,
while the MACGIC DSP core has 32-bit instructions. This provides a signifi-
cant advantage in program memory energy accesses. The estimated number of
transistors for a 24-bit powerful version is 750,000 while it is around 500,000
for a 16-bit core. Table 3 shows some performances in energy and MOPS/W
for some instructions. One should note that performances are much better if
the parallelism of the DSP core is used. It is useless to use a single adder or
multiplier (ADD, MAC) in a four adder/multiplier datapath unit. Figure 14
shows the TSMC 0.18 µm test chip of MACGIC in July 2005; it was running
nicely.

26 C. Piguet

Table 3. Power consumption for a 24-bit, 8 MHz synthesis at 0.9 V, 0.18µm TSMC “G”
(generic process).

4-MAC 16-bit MACGIC 8 MHz synthesis, 0.9 V TSMC 0.18 “G”

NOP 27µA/MHz —
ADD 16-bit (7 op) 98µA/MHz 79,000 MOPS/W
MAC 16-bit/40-bit (9 op) 114µA/MHz 88,000 MOPS/W
4 * ADD 16-bit (16 op) 155µA/MHz 115,000 MOPS/W
4 * MAC 16-bit/40-bit (24 op) 212µA/MHz 126,000 MOPS/W
CBFY4 radix-4 FFT (31 op) 205µA/MHz 166,000 MOPS/W

Figure 14. MACGIC test chip in TSMC 0.18µm.

5.8. DSP Multicore Architecture

There is a clear trend for multicore architecture for high-performance micro-
processors. In this case the architecture is homogeneous, i.e. several identical
cores are integrated on the same chip. This trend is also significant in embed-
ded SoC, in which several cores are integrated on the same chip; however,
with a completely different heterogeneous architecture: the various cores are
completely different (microcontroller, DSPcore, co-processor and accelerator).

For instance, regarding heterogeneous architectures, TI offers the OMAP2
platform which integrates an ARM11 processor with a TMS320C55x DSP
and two other hardware accelerators. There are many other SoC having a
microcontroller core, a DSP core and accelerators, such as Freescale Jupiter
MXC275 (ARM11 and StarCore), Intel Bulverde PXA270 (XScale and

Ultra-low-power processor design 27

WMMX extensions), Sony PSP (MIPS and proprietary DSP core) and finally
Zoran Panda ER4225 (ARM9 and only accelerators) [41].AnotherARM-based
architecture is the OptimoDE acquired from Adelante. The OptimoDE is a
VLIW DSP engine [42]; it can also be used as a DSP core controlled by an
ARM microcontroller. Finally, many IP core vendors propose such combina-
tions based on microcontroller, DSP core and hardware accelerators.

It is however not so clear if arrays of identical DSP cores form a valid trend
for DSP. During recent years much of research has been performed on arrays
of identical parallel DSP processors, but no commercial chip resulted. It is an
open question whether this trend for embedded processors will also occur for
DSP. Arrays of identical DSP cores could be an answer to leakage increase.
Pushing too high frequencies implies lowering the VT, resulting in increased
leakage power. So arrays of identical DSP cores with high VT could provide the
same computation power with less leakage, provided that increased transistor
count will not impact too much leakage. Some recently announced chips do
have hundreds of identical DSP cores, such as the PicoChip 102 with 344
processors, most of them capable of executing MAC operations. It is a massive
parallelism running at low frequencies (160 MHz) in 0.13µm but delivering a
huge power computation [43].

5.9. A set of DSP Co-processors

For ultra-low-power applications, the architecture consisting of a small DSP
and co-processors is the most natural architecture, allowing programming the
DSP and putting heavy tasks in dedicated hardware co-processors (Figure 2).
Each DSPtask uses the minimal number of transistors and transitions to perform
its work. The control code unavoidable in every application is also efficiently
executed on the microcontroller or on the simple DSP, and some unexpected
DSP tasks can be executed on the simple DSP if no accelerator is available.
It is certainly very efficient in terms of energy. An example of such architec-
ture is Zoran Panda ER4225: controlled by an ARM9, all DSP functions are
accomplished via hardware cores [41]. However, such architectures present
some drawbacks:

• How to perform the software mapping of a given application onto so
many heterogeneous processors and co-processors.

• What the development tools are, how the software and hardware design-
ers cooperate, how they use a “programming” language for both DSP
and co-processors.

• It could be possible to have more hardware if several co-processors use
multipliers which are repeated in these co-processors and not shared by
a single processor.

28 C. Piguet

• There is some memory issue as to how DSP and co-processors share
memories.

• Regarding leakage, unused engines have to be cut off from the supply
voltages, resulting in complex procedures to start/stop them.

• The time to market of a new chip is longer, as the decision to add some
co-processors is taken at the system level and not at the core level, as
shown below.

The other architecture, based on a customizable DSP core, is basically the
same. However, hardware accelerators can be embedded in its datapath. So to
each hardware accelerator corresponds a specific instruction (or some specific
instructions). One has the following advantages:

• It is straightforward to add supplementary instructions to the develop-
ment tools. Furthermore, the software designer is not confused with
something different and the validation of the system is easier.

• These hardware accelerators can share some basic resources, such as
multiplier.

• The development effort to add some hardware accelerators is limited
through the concept of “customizable” DSP.

• Energy is not significantly higher than the original architecture.

Consequently, it is likely that customizable and reconfigurable DSP archi-
tectures will be preferred in the future to architectures consisting of a single
core (microcontroller or simple DSP) with many co-processors.

6. Conclusion

This chapter shows that power reduction techniques for low-power proces-
sors are well-known (CPI reduction, parallelism, gated clock, etc.), regarding
dynamic power. However, regarding leakage reduction in very deep submicron
technologies, many circuit and architectural techniques have been proposed but
they are not so used in industrial circuits. Looking at the best embedded proces-
sor architectures, it turns out that for 8-bit cores, RISC-like architectures are the
best; however, huge investments in software for old CISC machines drastically
limit the use of these new 8-bit RISC-like processors. In 32-bit embedded cores
the trend is clearly toward better performances with the same instruction sets
but pushing frequencies using deeper technologies and deeper pipelines requir-
ing sophisticated prediction mechanisms. But the architectural concepts remain
the same. It is different for DSP cores, for which many very different archi-
tectures have been designed and used in various industrial chips for various
applications. One can find single MAC cores, customizable cores, superscalar
dual MAC and quad MAC, VLIW, hardware accelerators with a controller,

Ultra-low-power processor design 29

multicores with various DSP and controller cores and finally reconfigurable
architectures. The list is quite long and it is not yet clear which architecture is
the best for which application.

References

[1] Rabay, J.M. “Managing power dissipation in the generation-after-next wireless sys-
tems”, FTFC’99, June 1999, Paris.

[2] Piguet, C. “Parallelism and low-power”, Invited talk, SympA’99, Symposium Archi-
tectures de Machines, Rennes, France, 8 June 1999.

[3] Jerraya, A. “Hardware/software codesign”, Summer Course, Orebro, Sweden, 14–16
August, 2000.

[4] Anis, M.; Elmasry, M. Multi-threshold CMOS digital circuits, Kluwer Academic Pub-
lishers, 2003.

[5] Vittoz, E. “Weak inversion for ultimate low-power logic”, in Low Power Electronics
Design, edited by C. Piguet. CRC Press, 2004, chapter 16.

[6] Heer, C. et al. “Designing low-power circuits: an industrial point of view”, PATMOS
2001, Yverdon, 26–28 September 2001.

[7] Piguet, C.; Schuster, C.; Nagel, J-L. “Optimizing architecture activity and logic depth
for static and dynamic power reduction”, Proc. 2nd Northeast Workshop on Circuits
and Systems, NewCAS’04, 20–23 June 2004, Montréal, Canada.

[8] Brodersen, R.W. et al. “Methods for true power minimization”, Proc. Int. Conf. on
Computer Aided Design. San Jose, California, November 2000, 35–42.

[9] Nose, K.; Sakurai, T. “Optimization of Vdd and Vth for low-power and high-speed
applications”, ASPDAC, January 2000, 469–474.

[10] Schuster, C.; Nagel, J-L.; Piguet, C.; Farine, P-A. “Leakage reduction at the architec-
tural level and its application to 16 bit multiplier architectures”, Patmos’04, Santorini
Island, Greece, 15–17 September 2004.

[11] Schuster, C.; Piguet, C.; Nagel, J-L.; Farine, P-A. “An architecture design methodology
for minimal total power consumption at fixed Vdd and Vth”, J. Low-Power Electronics,
2005, 1, 1–8.

[12] Piguet, C. et al. “Low-power design of 8-bit embedded CoolRISC microcontroller
cores”, IEEE JSSC, 1997, 32(7), 1067–1078.

[13] Masgonty, J-M. et al. “Low-power design of an embedded microprocessor”, ESS-
CIRC’96, 16–21 September 1996, Neuchâ tel, Switzerland.

[14] Oh, J.; Pedram, M. “Gated clock routing for low-power microprocessor design”, IEEE
Trans. Computer Aided Design of ICs and Systems, 2001, 20(6), 715–722.

[15] PowerChecker, www.bulldast.com.
[16] Keating, M.; Bricaud, P. Reuse methodology manual, Kluwer Academic Publishers,

1999.
[17] Arm, C.; Masgonty, J-M.; Piguet, C. “Double-latch clocking scheme for low-power

I.P. cores”, PATMOS 2000, Goettingen, Germany, 13–15 September 2000.
[18] Mosch, Ph. et al. “A 72µW, 50 MOPS, 1V DSP for a hearing aid chip set”, ISSCC’00,

San Francisco, 7–9 February, 2000, Session 14, paper 5, 238–239, 2000.
[19] Schlett, M. “Trends in embedded microprocessor design”, IEEE Computer, August

1998, 44–49.
[20] Kuga, M. et al. “DSNS (dynamically-hazard-resolved, statically-code-scheduled,

nonuniform superscalar): yet another superscalar processor architecture”, Computer
Architecture, 1991, 4, 14–29.

30 C. Piguet

[21] Michaud, P. “La prédiction de branchement”, SympA’99, Symposium Architectures
de Machines, Rennes, France, 8 June 1999.

[22] Omondi, A.R. The microarchitecture of pipelined and superscalar computers. Kluwer
Academic Publishers, 1999.

[23] Clark, L.T. et al. “A scalable performance 32b microprocessor”, Proc. ISSCC’2001,
San Francisco, 6 February 2001, 230–231.

[24] Rowen, C. et al. “A pipelined 32b NMOS microprocessor”, Proc. ISSCC’84, 1984.
[25] Halfhill, T.R. “ARC 700 Secrets Revealed”, Microprocessor Rep., 21 June 2004, 1–6.
[26] Tran, C. et al. “The MIPS32 24KE core family”, Microprocessor Rep., 31 May 2005,

1–9.
[27] Krewell, K. “Multicore showdown”, Microprocessor Rep., 31 May 2005, 1–5.
[28] Perotto, J-F; Lamothe,C.; Arm, C. et al. “An 8-bit multitask micropower RISC core”,

JSSC, 1994, 29(18), 986–991.
[29] “Sun’s Big Splash”, IEEE Spectrum, January 2005, 50–54.
[30] Frantz, G. “Digital signal processor trends”, IEEE Micro, November–December 2000,

52–59.
[31] http://www.ceva-dsp.com/
[32] Halfill, T.R. “MIPS24KE: better late than never”, Microprocessor Rep., 31 May 2005.
[33] Halfhill, T.R. “ARC’s preconfigured cores”, Microprocessor Rep., 14 March 2005,

1–6.
[34] Halfhill, T.R. “Tensilica tackles bottlenecks”, Microprocessor Rep., 31 May 2004.
[35] Verbauwhede, I.; Nicol, Ch. “Low power DSP’s for wireless communications”, Proc.

ISLPED’00, 2000, Rapallo, Italy, 303310.
[36] Cravotta, R. “Targeted DSPs take aim” EDN, 28 April 2005 www.edn.com.
[37] David, R. et al., “Low-power reconfigurable processors”, in Low power electronics

design, ed. C. Piguet. CRC Press, 2004, Chapter 20.
[38] Rampogna, F. et al., “MACGIC, a low-power, re-configurable DSP”, in Low power

electronics design, ed. C. Piguet. CRC Press, 2004.
[39] Rabaey, J.M. “Reconfigurable processing: the solution to low-power programmable

DSP”, Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), April 1997.
[40] Verbauwhede, I.; Piguet, C.; Schaumont, P.; Kienhuis, B. “Architectures and design

techniques for energy-efficient embedded DSP and multimedia processing”, Embed-
ded Tutorial, Proc. DATE’04, Paris, 16–20 February 2004, Paper 7G, 988–995.

[41] Baron, M. “2004: top features, low power”, Microprocessor Rep., 18 January 2004.
[42] Cravotta, R. “2004 DSP directory”, EDN, 29 April 2004, 49–67.
[43] Halfhill, T.R. “PicoChip makes a big MAC”, Microprocessor Rep., 14 October 2003.

Chapter 2

DESIGN OF ENERGY EFFICIENT
DIGITAL CIRCUITS

Bart R. Zeydel and Vojin G. Oklobdzija
ACSEL Laboratory, University of California, Davis

Abstract: Recent technology advances have resulted in power being the major concern for
digital design. In this chapter we address how transistor sizing affects the energy
and delay of digital circuits. The state of the art in circuit design methodology
(Logical Effort) is examined and we identify its limitations for design in the
energy-delay space. We examine how to explore the entire energy-delay space
for a circuit and present an approach for the design and analysis in the energy-
delay space which allows for energy reduction without performance penalty.
Finally, we present techniques for the design of energy-efficient digital circuits.

Key words: digital circuits; energy-delay optimization; energy-delay space; performance
optimization; power optimization; transistor sizing

1. Introduction

Advances in CMOS technology have led to dramatic improvements in
performance while maintaining constant power density. However, as device
dimensions continue to decrease traditional constant field scaling can no longer
be applied [1–3]. The problem with this trend is that performance and power
no longer scale proportionally across technology nodes leading to increasing
power density. Further adding to this problem has been the drive to produce
chips operating at higher and higher clock frequencies, which has caused cir-
cuit designers to focus solely on optimizing circuits and implementations for
delay regardless of energy.

In this chapter we present models to examine the energy and delay char-
acteristics of digital circuits and relate these characteristics to the physical

Vojin G. Oklobdzija and Ram K. Krishnamurthy (eds.),
High-Performance Energy-Efficient Microprocessor Design, 31–56.
c© 2006 Springer. Printed in the Netherlands.

31

32 Bart R. Zeydel and Vojin G. Oklobdzija

dimensions of transistors. Using these models we will analyze Logical Effort
(LE) [4, 5], the state of the art design methodology for digital circuits. The loca-
tion of the LE solution in the energy-delay space is then examined to determine
its applicability to energy-efficient design. The analysis demonstrates that LE
does not guarantee an energy-efficient circuit. To address this we examine the
entire energy-delay space for a circuit that can be obtained through transistor
sizing. From this we present a simplified approach for the high-level explo-
ration of the energy-delay characteristics of a circuit. Based on this analysis we
present guidelines for the design of energy-efficient digital circuits.

2. RC Modeling of Gate Delay

Delay modeling techniques for evaluating large circuits have historically
involved the simplification of current based delay modeling. The most common
simplification assumes a step input, allowing for the current to be approximated
over the time of interest [6–10].

2.1. Logic Gate Characteristics

In this section the physical characteristics of a CMOS logic gate are related
to its delay characteristics. The layout of a CMOS inverter is shown in Figure 1.
The physical parameters are Wn, Wp, Ln, and Lp which represent the widths
and channel lengths of the nMOS and pMOS transistors respectively. Under-
standing the dependence of gate capacitance, parasitic capacitance and effective
channel resistance on these physical parameters is essential to the use of RC
modeling for the optimization of CMOS logic gates.

Figure 1. CMOS Inverter.

Design of Energy Efficient Digital Circuits 33

Figure 2. MOSFET Gate Capacitance.

2.1.1. Gate capacitance

Gate capacitance, Cgate, is a function of the effective channel length, Leff ,
and the width of the transistor,W . The effective channel length can be calculated
from the drawn transistor length as Leff = Ldrawn − 2Ld , as seen in Figure 2,
where Ld refers to the lateral diffusion length of the source or drain into the
channel. To simplify notation Leff will be referred to as L.

The gate capacitance of each transistor can be calculated from the width
and length of the transistor and the per area capacitance of the gate, Cox.

Cgate = W · L · Cox

The gate capacitance is directly proportional to the width of the transistor.
Thus, as the width changes by a factor α the gate capacitance also changes by
the same factor α.

Cgate = α · W · L · Cox

The capacitance of an input to a gate, Cin, is the sum of the gate capacitances
attached to the input. For example, the input capacitance of an inverter is:

Cin = (Wn · Ln + Wp · Lp) · Cox

Scaling the width of each transistor in the inverter by a factor α causes Cin

to also scale by α.

2.1.2. Parasitic capacitance

The parasitic capacitance of a transistor has two components. The junction
capacitance, Cja, expressed in F per area in µm2, and the periphery capacitance,
Cjp, expressed in F per µm of the periphery length. These components are shown
in Figure 3.

34 Bart R. Zeydel and Vojin G. Oklobdzija

Figure 3. MOSFET Parasitic Capacitance.

The parasitic capacitance of each transistor can be computed directly from
layout as:

Cp = Cja · W · Ldiff + Cjp · (2 · W + 2 · Ldiff)

Parasitic capacitance is only roughly proportional to changes in gate width
by α, due to its constant term 2CjpLdiff . To simplify analysis this term is often
ignored allowing for the parasitic capacitance to be proportional to α.

2.1.3. Resistance

The channel resistance, Rchannel, in a MOSFET is dependent on its region
of operation, transistor width, and channel length. In saturation Rchannel can be
expressed as follows, where µ is the mobility of the channel and λ is the Early
effect:

Rchannel(sat) = ∂Vds

∂Id(sat)
= 2 · L

W · µ · Cox · (Vgs − Vt)2 · λ

In linear or triode, Rchannel can be expressed as:

Rchannel(lin) = ∂Vds

∂Id(lin)

= L

W · µ · Cox · (Vgs − Vt − Vds)

The resistance of the channel is inversely proportional to the width of the
transistor in both saturation and linear regions of operation. Thus, by changing
the width of the transistor by a factor α, the resistance of the transistor changes
by 1/α.

2.2. RC Delay Model

The propagation delay of a CMOS logic gate can be represented using a
RC-model [6]. The model can be derived assuming a step input (Figure 4),

Design of Energy Efficient Digital Circuits 35

Figure 4. Step input response of a CMOS logic gate.

and related to gate capacitance, parasitic capacitance and channel resistance.
The load, Cload, consists of the output load, Cout, and the parasitic load at the
output of the gate, Cp. The derivation will only be shown for the high-to-low
propagation delay, thl, however a similar derivation can be performed for the
low-to high propagation delay, tlh.

The propagation delay, thl, can be calculated from:

−Id = Cload · ∂Vout

∂t

where thl is given by:

thl = −
Vdd/2∫
Vdd

Cload

Id

∂Vout

For a step input, the transistor will be in saturation for Vout from Vdd to
Vdd − Vt . In the saturation region, the drain current is given by:

Id(sat) = µn · Cox · W

L

(Vdd − Vt)
2

2

The transistor will be in the linear region for Vout from Vdd − Vt to Vdd/2.
In the linear region, drain current is given by:

Id(lin) = µn · Cox · W

L

(
(Vdd − Vt) · Vout − V 2

out

2

)

Substituting into the integration for thl:

thl = −
Vdd−Vt∫
Vdd

Cload

Id(sat)
∂Vout −

Vdd/2∫
Vdd−Vt

Cload

Id(lin)

∂Vout = thl(sat) + thl(lin)

36 Bart R. Zeydel and Vojin G. Oklobdzija

Integrating gives:

thl(sat) = − Cload

µn · Cox · W
L

(Vdd−Vt)2

2

Vdd−Vt∫
Vdd

∂Vout = 2 · Vt · Cload

µn · Cox · W
L

(Vdd − Vt)2

thl(lin) = − Cload

µn · Cox · W
L

Vdd/2∫
Vdd−Vt

⎛
⎝ 1

(Vdd − Vt) · Vout − V 2
out
2

⎞
⎠ · ∂Vout

= Cload

µn · Cox · W
L

(Vdd − Vt)
· ln

(
3 − 4

Vt

Vdd

)

Substituting thl(sat) and thl(lin) into thl:

thl = Cload

µn · Cox · W
L

(Vdd − Vt)
·
(

2 · Vt

Vdd − Vt

+ ln
(

3 − 4
Vt

Vdd

))

The channel resistance is physically dependent on W , L,µn, and Cox. These
terms can be grouped to describe the effective resistance of the channel, Rchannel:

Rchannel = L

µn · Cox · W · (Vdd − Vt)

The remaining terms can be grouped into a constant determined from Vdd

and Vt :

κ =
(

2 · Vt

Vdd − Vt

+ ln
(

3 − 4
Vt

Vdd

))

The resulting delay of a gate can be expressed as:

thl = κ · Rchannel · Cload = κ · Rchannel · (Cout + Cp)

In this form, delay is seen to be linear with respect to Cload. A graphical
representation of this model is shown in Figure 5. Rup and Rdown denote the
equivalent pull-up and pull-down resistance of a gate.

We would like to observe the delay dependence as transistor widths are
scaled by a factor α. The original resistances and capacitances will be referred
to as the template. The resistance of a gate changes inversely with α, as:

Rchannel = Rtemplate/α

The input capacitance and parasitic capacitance of the gate both change
directly with α:

Cin = Ctemplate · α

Cp ≈ Cp(template) · α

Design of Energy Efficient Digital Circuits 37

Figure 5. RC Model for a CMOS gate.

Plugging the scaled values for resistance and capacitance into the RC delay
model yields:

td = κ ·
(

Rtemplate

α

)
(Cout + α · Cp(template))

It is observed that the parasitic delay of a gate does not change with the size
of the gate.

td = κ ·
(

Rtemplate

α

)
· Cout + κ · Rtemplate · Cp(template)

However, the delay associated with a constant load changes inversely with
the sizing factor α. Through substitution, delay can be expressed in terms of
Cin and Cout of the gate instead of using α.

td = κ ·
(

Rtemplate · Ctemplate ·
(

Cout

Cin

)
+ Rtemplate · Cp(template)

)

2.3. Logical Effort Delay Model

In 1991 R. F. Sproull and I.E. Sutherland suggested that a technology inde-
pendent delay could be obtained by normalizing the RC-delay model of a
gate [4, 5]. They suggested that the delay of a gate be normalized to the per
fanout delay of an inverter.

td = κ · Rinv · Cinv

(
Rtemplate · Ctemplate

Rinv · Cinv
·
(

Cout

Cin

)
+ Rtemplate · Cparasitic

Rinv · Cinv

)

38 Bart R. Zeydel and Vojin G. Oklobdzija

The technology dependent constant is referred to as τ .

τ = κ · Rinv · Cinv

The logical effort (g), or relative drive capability, of each gate is given by:

g = Rtemplate · Ctemplate

Rinv · Cinv

The parasitic delay (p) of each gate is given by:

p = Rtemplate · Cparasitic

Rinv · Cinv

The relationship of output load to input capacitance is referred to as the
electrical effort (h) of the gate.

h = Cout

Cin

Using these terms, delay can be expressed as:

td = (gh + p) · τ

The logical effort of a gate can be determined by equalizing the resistance
of the gate to the inverter and computing the ratio of input capacitances. The
input capacitance is proportional to the sum of the gate widths attached to an
input of the circuit. For example, input-a of the 2-input NOR gate in Figure 6

Figure 6. Logical Effort of an Inverter and a 2-input NOR gate.

Design of Energy Efficient Digital Circuits 39

Figure 7. Logical Effort Delay Components.

has a total width of 5 which when normalized to the input capacitance of the
inverter, yields a logical effort g of 5/3.

The parasitic delay can be determined from the ratio of transistor widths
attached to the output node. For example, in the 2-input NOR gate the total
transistor width attached to the output node is 6 which when normalized to the
input capacitance of the template inverter, give a parasitic delay of 2pinv. To
simplify analysis, it is often assumed that Cp(inv) equals Cinv which makes pinv

equal to 1.
Agraphical representation of the LE terms is shown in Figure 7. The product

of gh is referred to as the stage effort, f , and represents the delay associated
with the output load of a gate. By plotting delay versus H the logical effort
values can be obtained from simulation. The parasitic delay can be found from
the delay intercept when h is 0, while the logical effort can be found from the
slope of the delay versus h. To obtain delay in terms of τ , each delay target is
normalized to the per fanout delay of the inverter.

3. Designing Circuits for Speed

Designing circuits for speed has been the focus of digital circuit designers
since the inception of CMOS technology. To achieve better speed, designers
initially focused on reducing the number of logic stages on the critical path.
Designers soon realized that the fan-in and fan-out of circuits needed to be
accounted for when analyzing circuits for speed [11]. As CMOS technology
progressed, designers were also given the ability to modify transistor sizes to
improve the performance of circuits. To address the issue of transistor sizing
CAD tools, such as TILOS [12], were used to optimize the performance of

40 Bart R. Zeydel and Vojin G. Oklobdzija

Figure 8. Chain of Gates with a Fixed Output Load and Fixed Input Size.

circuits. However, these tools offered designers little or no insight into why
one design was faster than another or how gates should be sized for optimal
delay. Logical Effort filled this void by providing designers with the ability to
compare delay optimized digital circuits in an intuitive manner.

3.1. Delay Optimization of a Single Path Circuit

Logical Effort provides a method for optimizing the delay of a chain of
gates driving a load. The constraints on the optimization are a fixed output load
and a fixed input size. The derivation for delay optimal sizing of a chain of
gates will be shown for the example in Figure 8.

The delay of the path can be expressed as:

Tpath =
[(

g1
C2

C1
+ p1

)
+

(
g2

C3

C2
+ p2

)
+

(
g3

Cout

C3
+ p3

)]
· τ

The input capacitances of gates 1, 2 and 3 are referred to as C1,C2, and C3

respectively. The minimum delay of the path with a fixed output load, Cout, and
fixed input size, C1, can be found by taking the derivative of the path delay
with respect to C2 and C3.

∂Tpath

∂C2
= g1

C1
− g2

C3

C2
2

= 0
∂Tpath

∂C3
= g2

C2
− g3

Cout

C2
3

= 0

Rearranging the expression yields:

g1
C2

C1
= g2

C3

C2
g2

C3

C2
= g3

Cout

C3

Expressed in terms of stage effort, f1 = f2 and f2 = f3. Thus the minimum
delay of the path is achieved when the stage efforts of each gate. The optimal
stage effort, fopt, can be found from:

fopt =
(

g1
C2

C1
· g2

C3

C2
· g3

Cout

C3

)1/3

=
(

Cout

C1
·

3∏
i=1

gi

)1/3

Design of Energy Efficient Digital Circuits 41

Generalized to an N-stage chain of gates:

fopt =
(

Cout

C1
·

N∏
i=1

gi

)1/N

The following definitions are introduced to simplify discussion. The elec-
trical effort or gain of a path, H , is defined as the ratio of output to input
capacitance of the path.

H = Cout

Cin

The Logical Effort of the path, G, is defined as the product of the logical
effort of the gates along the path.

G =
∏

gi

Using these simplifications, the optimal stage effort for a path is:

fopt = (GH)1/N

The optimal delay for a chain of gates is given by:

Tpath =
(

N · (GH)1/N +
N∑

i=1

pi

)
· τ

3.1.1. Example of delay optimized sizing

This example demonstrates how the sizes of the gates in Figure 9 are opti-
mized such that the delay of the path with a fixed input size and fixed output
load is minimal. The input capacitances of each gate on the path are referred
to as Cin,C2,C3, and C4, respectively.

The optimal sizing is obtained from fopt:

fopt = (GH)1/4 =
((

5

3
· 4

3
· 5

3
· 1

)
· 21.87

)1/4

= 3

Figure 9. Example Chain of Gates.

42 Bart R. Zeydel and Vojin G. Oklobdzija

The resulting optimal delay of the path is Td = (12 + 7pinv)τ . Using fopt,
the input capacitance of each gate can be computed as:

Ci = gi · Ci+1

fopt

3.2. Delay Optimization of Circuits with Branching

Although the solution to the previous problem is useful for a simple chain
of gates, it does not account for circuits with multiple paths. LE introduces
branching (b) to allow for the analysis of multi-path circuits. Branching relates
the off-path capacitance, Coff -path, to the on-path capacitance, Con-path.

b = Con-path + Coff -path

Con-path

This often leads to confusion as the definition for electrical effort,h, includes
the branching factor:

h = Con-path + Coff -path

Cin
=

(
Con-path + Coff -path

Con-path

)(
Con-path

Cin

)

= b · Con-path

Cin

When applying to a path it can be seen that

N∏
i=1

hi = H ·
N∏

i=1

bi = HB where, B =
N∏

i=1

bi

Resulting in the following expression for fopt:

fopt = (GBH)1/N

3.2.1. Multi-Path circuit optimization example

To achieve minimum delay in the multi-path circuit shown in Figure 10,
the delay through Path A and Path B should be equal [13, 14].

The delay for Path A and B can be expressed as:

TPath-A = [(g1h1 + p1) + (g2h2 + p2) + (g3h3 + p3)] · τ

TPath-B = [(g1h1 + p1) + (g4h4 + p4) + (g5h5 + p5)] · τ

Design of Energy Efficient Digital Circuits 43

Figure 10. Example Multi-Path Circuit.

The branching at the output of Gate 1 for Path A and B can be determined
as follows:

bPath-A = C2 + C4

C2
bPath-B = C4 + C2

C4

Solving for C2 and C4:

C2 = g2g3 · Cout1

f2f3
C4 = g4g5 · Cout2

f4f5

Substituting C2 and C4 into bPath-A and bPath-B:

bPath-A =
g2g3·Cout1

f2f3
+ g4g5·Cout2

f4f5
g2g3·Cout1

f2f3

bPath-B =
g4g5·Cout2

f4f5
+ g2g3·Cout1

f2f3
g4g5·Cout2

f4f5

Previously it was demonstrated that the optimal delay of a path without
branching occurs when each stage has the same stage effort. Simplifying the
delay to only include stage effort (by ignoring the parasitic delay difference
between the Path A and B) the delay of each branch is equal when f2 = f3 =
f4 = f5. Allowing for bpath-A and bpath-B to be expressed as:

bPath-A = g2g3 · Cout1 + g4g5 · Cout2

g2g3 · Cout1
bPath-B = g4g5 · Cout2 + g2g3 · Cout1

g4g5 · Cout2

A special case for branching occurs when g2g3 = g4g5 and Cout1 = Cout2.
In this case bPath-A = bPath-B = 2.

While branching allows for off-path gate load to be included in LE, constant
off-path loads of minimum sized gates and interconnect are not accounted for
as they introduce nonlinearity into the branching computation. Further compli-
cating branching are paths with different number of stages. Accurate account-
ing for these factors when optimizing for delay requires the use of numerical
optimization.

44 Bart R. Zeydel and Vojin G. Oklobdzija

Table 1. Delay Comparison of two circuits X and Y

Parasitic Delay (P) Logic Complexity (GB) Logic Stages (S) Best Design for all H

PX = PY GXBX = GY BY SX = SY Equal delay
PX = PY GXBX < GY BY SX = SY X is faster
PX < PY GXBX = GY BY SX = SY X is faster
PX < PY GXBX < GY BY SX = SY X is faster
PX < PY GXBX > GY BY SX = SY Depends on H

- - SX! = SY Depends on H

3.3. Designing High-Performance Circuits

The delay optimal solution for a path has two components. A constant
parasitic delay and a variable delay dependent on the gain of the path, H .
As H decreases, the delay of the path approaches the parasitic delay.

Tpath =
(

N
N
√

GBH +
N∑

i=1

pi

)

The Logical Effort, G, of a path is constant, regardless of H . While branch-
ing, B, is approximately constant depending on the impact of nonlinearities
such as wire and minimum sized gates with respect to H . These parameters
define the inherent complexity of a circuit. We refer to the product of GB as
the logic complexity of a circuit. By analyzing the logic complexity of a circuit
in conjunction with its parasitic delay it is possible to compare circuits over a
range of H to gain insight into designing high-performance circuits (Table 1).

From the table, it is seen that two circuits X and Y , which have the same
number of stages and implement the same function, will always have the same
delay if they have the same parasitic delay and logic complexity. Circuit X

will always be the same speed or faster than Y if its parasitic delay is less
than or equal to that of Y and its logic complexity is less than or equal to that
of Y . However, if the circuit has less parasitic delay yet more logic complexity
than the other circuit, the faster design will depend on the value of H . For
implementations which use a different number of stages the best design depends
on H .

4. Design in the Energy-Delay Space

CMOS technology scaling no longer has the favorable characteristics of
constant power-density. As a result it is no longer possible to design solely
for delay. Instead, both the energy and delay of a circuit must be accounted

Design of Energy Efficient Digital Circuits 45

for. In this section we present a basic energy model which can be combined
with RC-delay modeling to provide an energy estimate for LE delay optimized
points. From these points the energy-delay space of digital circuits can be
explored to identify the efficient region of operation and to identify energy-
efficient characteristics of circuits.

4.1. Energy Model

An energy model which yields reasonable results that can be computed
directly from gate size and output load is desirable (due to its compatibility
with the transistor sizing described in section 3). For hand estimation, the
dynamic energy of a circuit can be computed directly from the output load of
the circuit, as:

E = Cload · V 2
dd = (Cp + Cout) · V 2

dd

This model neglects the energy associated with short-circuit current and
leakage. The model can be improved through simulation to include the energy
associated with short-circuit current and leakage. The energy of a 2-input
NAND gate obtained from simulation is shown in Figure 11. A linear depen-
dence of energy on input size and output load is observed [15].

An offset can occur at zero size due to internal wire capacitance estimation,
which can be accounted for by Einternal-wire. The dynamic energy associated

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90

Output Load

E
n

er
g

y
(f

J) Cin=1
Cin=5
Cin=10
Cin=15
Cin=20

Figure 11. Energy Dependence on Input Size and Output Load for a 2-input NAND gate.

46 Bart R. Zeydel and Vojin G. Oklobdzija

with the output of a gate can be expressed as:

E = Ep · gate size + Eg · CL + Einternal-wire

Ep represents the energy per size and Eg represents the energy per output
load. These terms can be obtained from simulation and directly account for the
energy associated with output load and parasitic capacitance while providing a
best fit for short-circuit and leakage current. The static energy of a gate per unit
time,Eleakage, can be estimated by hand or obtained from simulation, from which
the total static energy of the gate to be computed as E = Eleakage · gate size ·
period. The switching activity of each gate is incorporated when estimating the
energy of an entire circuit.

4.2. Minimal Energy Circuit Sizing for a Fixed Output
Load and Fixed Input Size

To optimize a circuit with a fixed output load and a fixed input size it is
first necessary to understand where the Logical Effort design point lies in the
energy-delay space. The energy-delay space obtained through changing the
sizes of the second and third inverter in a chain of three inverters with a fixed
output load and fixed input size is shown in Figure 12. As can be seen, the
solution space is vast even for such a simple circuit. In this solution space the

E
n

er
g

y
[p

J]

Delay [ps]

LE

Minimal
Energy-Delay Curve

Figure 12. Energy-Delay Solution Space for a Chain of 3 inverters with a Fixed Output Load
and Fixed Input Size.

Design of Energy Efficient Digital Circuits 47

delay optimized sizing of LE sets the performance limit for the circuit. Efficient
design points in this solution space are those that achieve minimal energy for
each delay. These points are obtained by relaxing the delay target from the LE
point and resizing the circuit to reduce energy. The combined result of these
optimizations yields the minimal Energy-Delay curve of a circuit for a fixed
output load and a fixed input size.

It has been suggested that a tangent to this curve can be used to select an
efficient design point [16–20]. For high-performance, some commonly used
tangents are Energy. Delay2(ED2), Energy-Delay Product (EDP), and other
EDX metrics. The difficulty with designing for these metrics is that they can
not be directly computed and can not be used to achieve a desired delay target
or energy target. A minimal energy-delay curve for a fixed output load and a
fixed input size obtained through transistor sizing along with various design
metrics is shown in Figure 13.

The transistor sizings corresponding to each metric in Figure 13 are shown
in Figure 14.

Energy decreases dramatically from the LE point at only a slight increase
in delay. The rapid decent is due to the rippling affect of reducing the size of a
gate that occurs later in the path. This weighting of gates along a path can be
seen in the computation of the input capacitance of the k-th gate:

Ck = Cload ·
N∏

i=k

gi

fi

By changing the size of the N-th gate of the path by a factor α (equivalent
to changing fN by 1/α), the size of each preceding gate along the path also

100

120

140

160

180

200

220

240

260

280

3.5 4 5.54.5 5 6
Delay [FO4]

LE (Dmin)

EDP

ED2

ED3

ED0.5

Cout= 100Cin

Cin= Minimum size inv

ED3

ED2

EDP

ED0.5

constant metric curve

Points Obtained
Through Gate Sizing

E
n

er
g

y
[C

V
d

d
2]

Figure 13. Minimal Energy-Delay Curve for a Chain of 6 inverters with Fixed output load and
fixed input size.

48 Bart R. Zeydel and Vojin G. Oklobdzija

Figure 14. Corresponding Gate Sizing for Design Metrics on the Energy-Delay Curve.

changes by 1/α. It is this weighting of gates that causes the sizing to differ
dramatically from the LE solution of equal f . By allowing the total delay of
the path to be relaxed, the excess delay can be redistributed amongst the gates
which contribute the most energy to the path (by changing fi of these gates) to
reduce the total energy [21, 22].

4.3. Circuit Sizing for Minimal Energy with a Fixed
Output Load and Variable Input Size

In practice, circuit designers usually do not have the flexibility of degrading
the performance of a circuit as it is often tied to the performance of the entire
system. As a result, metrics which relate delay variation to energy variation
are inapplicable at the circuit level. Instead the circuit should be designed for
minimal energy at the desired performance target. As shown previously for a
fixed delay, fixed input size and fixed output load there exists only one solution
with minimal energy. However, if the input size is allowed to change, multiple
energy solutions can be obtained at a fixed delay [21, 22]. The solution space
obtained by varying the input size of a static 64-bit Kogge-Stone Adder [23] is
shown in Figure 15.

The upper bound of the solution space consists of the delay optimized
points obtained for each input size. The lower bound of the energy-delay space
is constructed from the minimal energy points for each delay. Increasing the
input size causes H to be reduced, allowing for performance to improve at the
cost of increased energy. The minimum efficient input size for each delay is
associated with the delay optimized point, while the maximum efficient input

Design of Energy Efficient Digital Circuits 49

0

50

100

150

200

250

300

350

11 12 13 14 15 16 17

Delay
Optimized

Energy
Minimized

Cin=3Cin=4
Cin=6

Cin=10

Cin=20

Cin=30

Cin increasing

Static 64-bit Kogge-Stone Adder
E

n
e

rg
y
 [

p
J
]

Delay [FO4]

30%
Energy
Saving

50%
Energy
Saving

Figure 15. Energy-Delay Space for a Static 64-bit KS Adder with Fixed Output Load and
Variable Input Size.

size for each delay is associated with the energy minimized point. By analyzing
the complete energy-delay space of a circuit for a fixed output load, a potential
30–50% energy savings is observed in the adder example, depending on delay
target.

4.3.1. Example: Energy minimization of an inverter chain

A chain of 6-inverters will be used to demonstrate how gate sizes change to
achieve the same delay for different input sizes. The minimal energy sizings are
shown in Figure 16 for several input sizes, with Cout equal to 100Cmin-inv and
a delay target of 18.9τ . As the input size is increased from minimal, a smaller
delay can be achieved due to reduced H . The excess delay is redistributed
amongst the gates to reduce total energy by reducing the sizes of the gates that
impact energy the most and by increasing the sizes of the gates that have a
smaller impact on energy to achieve the same delay. An increase in input size
by 20% allows for a 22.3% reduction in energy. Further increases in input size
yield savings at a diminishing rate.

4.3.2. Energy minimization of multi-path circuits

When optimizing circuits, the optimal solution occurs when the delay of
each path from input to output is equalized [13, 14]. When analyzing the energy

50 Bart R. Zeydel and Vojin G. Oklobdzija

Figure 16. Gate Sizing of an Inverter Chain for Energy Reduction at a fixed Delay.

Figure 17. Multi-Path Circuit.

of a circuit, it is necessary to know the sizes of each gate in the circuit (not just
those on the critical path). This further complicates the optimization process,
as seen in the example of Figure 17. Paths A and B must now be optimized to
include the constraint of having equal delay to that of Path C.

The exact solution to this problem requires a numerical approach such as
convex optimization [24], from which we can obtain little to no intuition. In [21]
we presented a simplified approach to analyze the energy-delay characteristics
of an entire circuit. In this approach each gate is assigned to a logic stage, with
every gate in the logic stage sized to have the same delay. Gates are assigned
to stages starting from the input and moving towards the output. If a path has
fewer stages than another path, the last gate of the path is sized to include the

Design of Energy Efficient Digital Circuits 51

combined delay of the additional stages of the longest path. Using this approach
the delay of each path in the circuit is always equal, allowing for optimization
to be performed at the stage level. The optimization has only a few variables
(equal to the number of stages) and can be performed using widely available
optimizers such as Matlab and Microsoft� Excel’s Solver.

5. Designing Energy-Efficient Digital Circuits

Designing energy-efficient digital circuits requires different guidelines than
those developed from Logical Effort. In LE a chain of inverters optimized for
delay is used to demonstrate the relative insensitivity of design implementation
to number of stages (Figure 18). While delay is relatively insensitive around
the optimal number of stages, energy is very sensitive to the number of stages.
Inverter chains which contain more stages than delay optimal are always sub-
optimal in terms of energy. This result is contrary to LE, and requires that the
number of stages be carefully analyzed to obtain an energy-efficient design.

In Figure 19 the minimal energy-delay curves of several inverter chains are
shown, each with the same output load and input size. It is observed that the
five and six stage designs are never energy-efficient, while the two, three and
four stage designs have regions of energy-efficiency depending on the desired
operating target.

Contrary to delay based optimization, the location of gates within a chain
impacts the energy characteristics of a circuit. For example, the two chains

0

0.5

1

1.5

2

2.5

D
el

ay
 /

O
p

ti
m

al
 D

el
ay

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
o

rm
al

iz
ed

 E
n

er
g

y

Delay insensitive
to number of stages (LE)

Energy highly sensitive
to number of stages

Energy-Inefficient
inverter chain

0 0.5 1 1.5 2 2.5

Stages / Optimal Stages

Energy-Efficient
inverter chain

Figure 18. Optimal Number of Stages for an Inverter Chain.

52 Bart R. Zeydel and Vojin G. Oklobdzija

0

100

200

300

400

500

600

700

E
n

er
g

y
[f

J]

2 stage

3 stage

4 stage

5 stage

6 stage

Energy-Inefficient

High-Performance

Low-Power

C
out

= 200C
in

C
in

= Minimum size inv

Energy-Efficient inverter chains
use less than or equal to

delay optimal number of stages

Delay [FO4]
3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Figure 19. Optimal Number of Inverters for Fixed Output Load and Fixed Input Size with
Varying Delay Target.

Figure 20. Energy Impact of Gate Placement in a Chain of Gates.

of gates in Figure 20 consist of the same gates, output load and input size,
which results in the two paths having the same delay. However, the relative
energy of each chain differs, from 81CinV

2
dd to 62.1CinV

2
dd. Simpler gates, i.e.

those with smaller g and p such as the inverter in the example, require less
energy to drive a load than more complex gates. This is because for the same
delay they present a smaller input capacitance to the previous gate and have
less parasitic capacitance compared to more complex gates. Thus, simple gates
should be placed in the most energy sensitive logic stage of a circuit whenever
possible.

The arrangement of circuits also has implications on the optimal number
of stages. For example, if we examine the impact of adding inverters to the

Design of Energy Efficient Digital Circuits 53

0

50

100

150

200

250

300

10 12 14 16 18 20 22

Delay [FO4]

E
n

er
g

y
[p

J]
Adder
Adder+1inv
Adder+2inv
Adder+3inv
Adder+4inv
Adder+5inv

Low-Power
benefits from

additional inverters

Diminishing
Returns

High-
Performance
no additional

inverters

Static 64-bit Kogge-Stone Adder

Figure 21. Impact of Buffers Insertion at the Output of a 64-bit KS Adder.

output of a 64-bit static KS adder as in Figure 21. Energy savings are obtained
if up to 3 inverters are added at the output, although each occurs at a degraded
performance target. Despite having more stages than delay optimal, the energy
still decreases. This is because by adding simpler gates to the output, the size
of the complex gates in the adder can decrease dramatically (similar to the
example in Figure 20). Therefore, despite paying a slight delay penalty due to
an extra logic stage, the energy of the design is decreased.

6. Conclusion

The design of digital circuits in current and future technologies requires
an understanding of the energy-delay space. Design principles developed for
optimizing delay, such as Logical Effort, no longer guarantee efficient designs
when energy is considered. We have demonstrated that an energy model can
be used in conjunction with standard RC-models to evaluate the energy-delay
characteristics of a circuit. The analysis leads to the realization that EDx metrics
can not be used when designing a circuit for a fixed delay or energy. Instead
circuits should be optimized for minimal energy at a fixed delay for a variety
of system constraints. Using this approach a potential 30–50% energy savings
can be achieved for circuits with no performance penalty compared to delay
optimized results.

54 Bart R. Zeydel and Vojin G. Oklobdzija

Acknowledgements

The authors would like to thank Hoang Dao and Milena Vratonjic for their
comments and suggestions.

References

[1] Taur, Y. “CMOS design near the limit of scaling,” IBM Journal of Research and
Development, 2002, 46(2/3).

[2] International Technology Roadmap for Semiconductors, public.itrs.net.
[3] Meyerson, B. “How does one define “Technology” Now That Classical Scaling is

Dead?”, Keynote presentation, 42nd annual DesignAutomation Conference,Anaheim,
CA, June 2005.

[4] Sutherland, I.E.; Sproull, R. F. “Logical Effort: Designing for Speed on the Back of
an Envelope,” Advanced Research in VLSI, Proceedings of the 1991 University of
California, Santa Cruz, Conference, Sequin, C.H. ed., MIT Press, 1991, 1–16.

[5] Sutherland, I.E.; Sproull, R.F.; Harris, D. Logical Effort Designing Fast CMOS
Circuits, Morgan Kaufmann Pub., 1999.

[6] Horowitz, M. “Timing Models for MOS Circuits,” PhD Thesis, Stanford University,
December 1983.

[7] Rubenstein, J.; Penfield, P.; Horowitz, M. A. “Signal Delay in RC Networks,” IEEE
Transactions on Computer Aided Design, 1983, Cad-2(3), 202–211.

[8] Hodges, D.; Jackson, H. Analysis and Design of Digital Integrated Circuits, McGraw
Hill, 1988.

[9] Sakurai, T.; Newton, A. R. “Alpha-Power Law MOSFET Model and Its Application
to CMOS Inverter Delay and Other Formulas,” IEEE Journal of Solid-State Circuits,
1990, 25(2), 584–594.

[10] Weste, N.; Eshraghian, K. Principles of CMOS VLSI Design A Systems Perspective,
Addison Wesley, 1992.

[11] Oklobdzija, V. G.; Barnes, E. R. “On Implementing Addition in VLSI Technology,”
IEEE Journal of Parallel and Distributed Computing, 1988, 5, 716–728.

[12] Fishburn, P.; Dunlop, A.E. “TILOS: A Posynomial Programming Approach to Tran-
sistor Sizing,” International Conference on Computer Aided Design, November 1985,
326–328.

[13] Sundararajan, V.; Sapatnekar, S. S.; Parhi, K. K. “Fast and Exact Transistor Sizing
Based on Iterative Relaxation,” IEEE Transactions on Computer Aided Design of
Circuits and Systems, 2002, 21(5), 568–581.

[14] Sapatnekar, S. Timing, Kluwer Academic Publishers, Boston, MA, 2004.
[15] Oklobdzija, V. G.; Zeydel, B. R.; Dao, H. Q.; Mathew, S.; Krishnamurthy, R.

“Comparison of High-Performance VLSI Adders in Energy-Delay Space”, IEEE
Transaction on VLSI Systems, 2005, 13(6), 754–758.

[16] Zyuban, V.; Strenski, P. “Unified Methodology for Resolving Power-Performance
Tradeoffs at the Micro-achitectural and Circuit Levels”, IEEE Symposium on Low
Power Electronics and Design, 2002.

[17] Zyuban V.; Strenski, P. “Balancing Hardware Intensity in Microprocessor Pipelines,”
IBM Journal of Research and Development, 2003, 47(5/6).

[18] Stojanovic, V.; Markovic, D.; Nikolic, B.; Horowitz, M.A.; Brodersen, R.W. “Energy-
Delay Tradeoffs in Combinational Logic using Gate Sizing and Supply Voltage

Design of Energy Efficient Digital Circuits 55

Optimization,” Proceedings of the 28th European Solid-State Circuits Conference,
ESSCIRC’2002, Florence, Italy, September 24–26, 2002, 211–214.

[19] Markovic, D.; Stojanovic, V.; Nikolic, B.; Horowitz, M.A.; Brodersen, R.W. “Methods
for True Energy-Performance Optimization,” IEEE J. Solid-State Circuits, 2004, 39(8),
1282–1293.

[20] Hofstee, H. P. “Power-constrained microprocessor design,” in Proc. Int. Conf.
Computer Design, 2002, 14–16

[21] Dao, H.Q.; Zeydel, B.R.; Oklobdzija, V.G. “Energy Minimization Method for Opti-
mal Energy-Delay Extraction”, European Solid-State Circuits Conference, Estoril,
Portugal, September 16–18, 2003.

[22] Dao, H. Q.; Zeydel, B. R.; Oklobdzija, V. G. “Energy Optimization of Pipelined Digital
Systems Using Circuit Sizing and Supply Scaling,” IEEE Transaction on VLSI Systems,
2006, 14(2), 122–134.

[23] Kogge, P.M.; Stone, H.S. “A parallel algorithm for the efficient solution of a gen-
eral class of recurrence equations”, IEEE Trans. Computers, August 1973, C-22(8),
786–793.

[24] Boyd, S.; Vandenberghe, L. Convex Optimization, Cambridge University Press, 2004.

Chapter 3

CLOCKED STORAGE ELEMENTS IN DIGITAL
SYSTEMS

Nikola Nedovic1 and Vojin G. Oklobdzija2

1Fujitsu Laboratories of America
2Integration Corp., Berkeley, California

Abstract: Clocking is one of the most critical parts of each processor, often determin-
ing its performance and largely impacting its power consumption. The clock-
ing subsystem and clocked storage elements in particular are responsible for
an increasingly substantial portion of the circuit design improvements needed to
accommodate the continuing scaling trends with each processor generation. This
chapter describes the conventional clocking strategies and circuit techniques, and
reviews the state-of-the art clocked storage elements used in modern micropro-
cessors. In addition, it addresses some emerging methods aimed at handling
incoming challenges in the microprocessor design.

Key words: clocked storage elements; latch; flip-flop; clock; clock jitter; clock skew;
pipeline; clock frequency; power.

1. Introduction

Scaling of high-end microprocessors in the past two decades has delivered
exponentially increasing performance at the price of exponentially increasing
power consumption [1–8] (Figure 1). The design of the clocking subsystem
and the clocked storage elements (CSE) is at the heart of this tradeoff. As
the performance and the circuit complexity scale, the clocking subsystem is
put to an increasingly substantial effort to synchronize the operation of the
wide pipelines over ever-increasing die size. With the constant increase in
the clock frequency and pipeline depth, and the reduction of the number of
logic gates per pipeline stage, the clocked storage elements become a major

Vojin G. Oklobdzija and Ram K. Krishnamurthy (eds.),
High-Performance Energy-Efficient Microprocessor Design, 57–88.
c© 2006 Springer. Printed in the Netherlands.

57

58 N. Nedovic and V. G. Oklobdzija

Figure 1. Microprocessor frequency and power trends.

contributor to the microprocessor performance and power consumption. In
addition, the clock uncertainties do not scale with frequency due to the load
mismatches, wire capacitances-dominated delays, and increased effect of the
various sources of noise to the clock distribution system. With the high-end
microprocessors operating frequencies well in the gigahertz range, clocking is
today routinely responsible for 30–50% of their power consumption [1, 9, 10],
and it is estimated to occupy up to about 30% of the cycle time. It is thus
clear that the design of the clocked storage elements is critical to the overall
performance of the entire microprocessor.

This chapter discusses the basic types and properties of the clocked storage
elements and clocking strategies. It then reviews clocked storage elements used

Clocked storage elements in digital systems 59

in the state-of-the-art microprocessors and points out the trends in this area.
A number of circuit-level solutions that, combined with the choice of clocking
strategy, may be used to improve the performance and power consumption
tradeoffs are addressed. Finally, the chapter gives some practical issues in
designing the clocked storage elements in microprocessors.

2. Clocked Storage Elements – Basics

The correct operation of a sequential system requires synchronization, i.e. a
method of ensuring that the data processing occurs in an orderly manner. Even
though this requirement is possible to meet using handshaking (asynchronous)
signaling, the use of the global clock signal that provides the timing reference
for the start and end of the computation is widely accepted as the most efficient
synchronization method in complex systems such as microprocessors. In this
synchronous framework a sequential system can be viewed using a finite state
machine (FSM) model, as shown in Figure 2(a). While the asynchronous sig-
naling promises an efficient way for synchronization of the computation in the
increasingly challenging environment of the future microprocessors [11, 12],

Figure 2. Finite state machine representation of a sequential system: (a) conventional repre-
sentation, (b) clocked storage elements viewed as fast path blockers.

60 N. Nedovic and V. G. Oklobdzija

it has thus far failed to deliver a significant improvement over clocked
(synchronous) methodology. The discussion in this chapter is limited to the
synchronous environment.

Contrary to common belief, the main purpose of the clocked storage ele-
ments in pipelines, and generally in sequential circuits, is not to store the data
computed in the previous cycle so that it can be used in the subsequent stage.
Instead, their purpose is to prevent the signals carrying the next state (Sn+1)
from disturbing the present state (Sn) signals, according to the timing imposed
by the control clock signal. Thus, CSE blocks the fast paths during the cycle
belonging to Sn. Even though they usually store the previously evaluated data,
data storage is not their primary purpose. Therefore, any structure that blocks
the propagation of the input according to the timing of the control clock sig-
nal can be considered a clocked storage element. This view of the finite state
machine (FSM) [13], shown in Figure 2(b), encompasses wave-pipelining [14]
and opportunistic time borrowing concept [15]. The most common clocked
storage elements are latches and flip-flops, and most of the attention in this
chapter will be dedicated to these structures, but other circuits not commonly
associated with clocking, such as conventional domino gates, also belong to
this category.

2.1. Non-idealities of the Clock Signal

Ideally, the clock distribution system provides the control clock signal with
constant frequency to all termination points, so that the timing references for
synchronization arrive to all clocked storage elements at the same moment in
the cycle. In reality, however, timing uncertainties exist and must be taken into
account in the design of a pipeline stage. These timing uncertainties manifest
themselves in two ways: clock jitter and clock skew.

Clock jitter is the temporal fluctuation of clock arrival time. It can be charac-
terized in two ways. Cycle-to-cycle jitter is the variability of the delay between
the two consecutive clock edges. Long-time jitter is the absolute deviation of
the clock edge arrival time over a long period of operation. Depending on the
method of clock generation, the long-term jitter can be an order of magnitude
larger than cycle-to-cycle jitter. Fortunately, cycle-to-cycle jitter is the most
important parameter for the circuit design as it affects the timing constraints
in the pipeline stage. In addition, it may be useful to define short-term clock
jitter (cycle-to-N-th-cycle jitter) as the jitter between two clock edges within
several (N) adjacent cycles. This definition allows us to account for the accu-
mulating property of clock jitter in the systems where interdependence between
data arrivals from several clock cycles exists. As the sources of cycle-to-cycle
and short-term clock jitter are usually statistical in nature, they are typically
quantified using standard deviation of their instantaneous value.

Clocked storage elements in digital systems 61

Clock skew is the spatial fluctuation of the CSE position in the system with
respect to the temporally concurrent edges of the clock signal. It is measured at
the different termination points of the clock distribution network. Clock skew
is mainly caused by the capacitive load and driver strength mismatches in
the different paths of the clock distribution system, resulting from the process
variations.

In the early days of microprocessor design, clock skew was the dominant
component of clock uncertainty, and it occupied a negligible portion of the
clock cycle. With recent trends in clock frequency clock jitter introduced by
the high-frequency clock generators (phase-locked loops) has become more
pronounced [16]. In addition, as circuit complexity increases, the delay mis-
matches and substrate and power supply noise cause clock distribution clock
uncertainties to increase relative to cycle time. As a result, overall clock uncer-
tainty does not scale with clock cycle time, making clock timing non-idealities
a major performance factor. For this reason, understanding the effects of clock
uncertainties to the timing of the pipeline becomes crucial in high-performance
microprocessor design.

2.2. Latch

A latch is a level-sensitive clocked storage element with the following func-
tional behavior: when the control signal (clock) is at the active level the latch is
transparent, and the output follows any transition at the input. When the clock
is at the inactive level the latch is non-transparent, i.e. it holds the output state
(Figure 3a,b). The transition of the clock signal from the active level to the
inactive level is referred to as its latching edge, and the transition of the clock
from the inactive level to the active level is the releasing edge of the clock.

The basic timing parameters of a latch are as follows:

• Set-up time – maximum allowed data arrival time with respect to the
latching clock edge in order to correctly capture it.

• Hold time – minimum allowed data arrival time after the latching clock
edge in order to correctly capture the previous value.

• Clock-to-output delay – delay between the releasing clock edge and the
latch output switching to the new value.

• Data-to-output delay – delay between the data arrival and the output
switching to the new value, assuming that the latch is in the transparent
mode.

The most common configurations of transparent latches are pulsed latches
and master–slave latches. A pulsed latch (PL) is a latch clocked locally with a
clock signal of a very short active level, whose duration is made independent
of the clock duty cycle – a clock pulse (CP) (Figure 3c). In this configuration

62 N. Nedovic and V. G. Oklobdzija

Figure 3. Latch definitions: (a) function, (b) timing diagram examples, (c) pulsed latch config-
uration, (d) master–slave configuration, (e) master–slave configuration emulating edge-triggered
storage element.

the latch is transparent only during the duration of the clock pulse. If the clock
pulse is narrow compared to the clock period the pulsed latch samples the data
at the edge of the clock, i.e. it behaves as an edge-triggered storage element.
However, note that this simplification generally does not hold in practice, as
the worst-case pulse width over all process, voltage, and temperature (PVT)
variations is usually not negligible and may even stretch to a quarter of a cycle
or more in a very high-speed design. Thus, pulsed latch is a mythical creation.
In reality we are dealing with the timing parameters that apply to a single latch
system as described in Unger and Tan [17].

A master–slave latch (MS latch) is a configuration of transparent latches
in which two latches are connected in series and clocked with two indepen-
dent clock signals (Figure 3d). The input data is captured at the latching edge
of the clock φ1 to the front-end (master) latch, and released to output at the
releasing edge of the clock φ2 to the back-end (slave) latch. This achieves non-
transparency in the system, if the two clocks, φ1 and φ2, are non-overlapping.
The timing parameters and the behavior of the master–slave latch depend on

Clocked storage elements in digital systems 63

the timing between master and slave clock phases, and they are described in
detail in Unger and Tan [17].

The most common implementation of master–slave latch pair uses com-
plementary clock phases so that at any moment only one of the latches is
transparent (Figure 3e). In this configuration a master–slave latch behaves as
an edge-triggered storage element. The MS latch shown in Figure 3e, in which
the master latch is transparent on the low level of the clock and the slave latch
is transparent on the high level of the clock, behaves as “rising-edge triggered”
flip-flop. This is the most common source of confusion and the reason why the
M-S latch combination is often referred to as a “flip-flop”, which is incorrect.

2.3. Flip-flop

A flip-flop is an edge-sensitive clocked storage element that captures the
value of the input during the active transition (edge) of the clock; otherwise
the flip-flop is non-transparent, i.e. it holds the most recently captured value at
the output. A flip-flop consists of two functional stages [13, 18] (Figure 4b):

• Pulse generator that produces a conditional set or reset pulse synchronous
to the active edge of the clock, depending on the input value to be
captured.

Figure 4. Flip-flop (a) function, (b) structure, (c) timing diagram examples.

64 N. Nedovic and V. G. Oklobdzija

• Capturing latch that captures the pulse created by the pulse generator
and keeps the captured value.

As opposed to the operation of a pulsed latch, the pulse created by the pulse
generator of a flip-flop contains information about the new data to be captured,
and the capturing latch is used only to create a static output. Such a pulse need
not have the short width as in pulsed latches, and it can be chosen to facilitate
the circuit design.

A flip-flop is characterized by the following parameters (Figure 4c):

• Set-up time – maximum allowed data arrival time with respect to the
capturing clock edge in order to correctly capture it.

• Hold time – minimum allowed data arrival time after the capturing clock
edge in order to correctly capture the previous value.

• Clock-to-output delay – delay between the capturing clock edge and the
flip-flop output switching to the new value.

A flip-flop designed to capture the data on the low-to-high transition of the
clock signal is referred to as rising-edge-triggered flip-flop. If the capturing is
achieved by the high-to-low transition of the clock signal, such a flip-flop is
referred to as a falling-edge-triggered flip-flop.

3. Clocking Strategies

The design decisions that define the means of achieving data synchroniza-
tion determine the clocking strategy. A pivotal decision in clocking strategy
is the choice of the number and mutual timing relationship between clock
phases. The most feasible options usually used in modern microprocessors
are the single-phase clock and the two-phase clock as the simplest multiple-
phase clocking strategy. While the multiple-phase clocking strategy provides
the multiple timing references per cycle that allow better immunity to fast path
hazards, the single-phase clock is usually the strategy of choice in modern
microprocessor design as it offers the needed simplicity of clock generation
and distribution. The most common clocked storage elements used with the
single-phase clock are flip-flops, while the transparent latches are usually asso-
ciated with the multiple-phase clock. The timing analysis in the system with a
single-phase clock and flip-flops can also be applied to the master–slave latch
with complementary clock phases and the pulsed latch [17].

3.1. Single-phase Clocking Strategy with Flip-flops

The system that uses a single-phase clock, flip-flops, and static logic is
shown in Figure 5. This system must satisfy two timing constraints. First, the

Clocked storage elements in digital systems 65

Figure 5. Pipeline stage in a system with flip-flops.

data must arrive to the receiving flip-flop FF2 at the earliest for hold time
tH2 after the clock, assuming the earliest possible arrival of the clock to the
releasing flip-flop FF1, the latest possible arrival of the clock to the receiving
flip-flop FF2, the shortest clock-to-output delay of FF1(tcq1), and the shortest
logic delay tl [17]. This constraint, known as fast path requirement, is described
by Equation (1).

tcq1 + tl ≥ tcu + tH2 (1)

Second, the data released by the flip-flop FF1 must arrive to the receiving
flip-flop in time to be captured properly. This condition must be met even with
the assumption of the latest possible clock edge at the releasing flip-flop FF1,
the earliest possible clock edge at the receiving flip-flop FF2, the worst-case
clock-to-output delay tCQ1 and data traveling through the slowest logic path
with delay tL [17]. This slow path requirement is defined by Equation (2).

tCQ1 + tL + tSU2 ≤ T − tCU (2)

In Equations (1) and (2), T represents the clock period, and tcu and tCU rep-
resent the worst-case time difference between the clock arrivals to the releas-
ing and receiving flip-flop due to the clock uncertainties (jitter and skew).
Equations (1) and (2) illustrate one of the key advantages of the single-phase
clock scheme that uses flip-flops – the simplicity of the timing analysis that
eliminates interdependencies between multiple cycles and multiple pipeline
stages. As will be shown later, this is not the case with clocking strategies
based on transparent latches.

Note that the clock uncertainty tcu in Equation (1) is not equal to the clock
uncertainty tCU in Equation (2). Since fast path requirement in Equation (1)
applies to the concurrent clock edges at the releasing and receiving flip-flops,
tcu equals the delay mismatch of the two paths from the same source to the
different destinations transferring the same clock edge. Therefore, only the part
of the clock distribution system from the point where the paths to the releasing
and receiving flip-flop diverge accounts for tcu. In contrast, the releasing and

66 N. Nedovic and V. G. Oklobdzija

receiving clock edge in slow paths originate from the two consecutive edges of
the reference clock. Therefore, tCU in Equation (2) consists of the jitter from the
clock generator and the clock distribution system, and the clock skew between
the releasing and receiving flip-flops. Although simple, this observation allows
us to make two important points: (1) the clock jitter from the clock generator
does not contribute to the clock uncertainty in the fast paths, and (2) placing the
releasing and receiving flip-flops close to each other (ideally, in the same local
clock domain) helps meeting both fast path and slow path timing requirements.

In addition to defining the specific timing requirement, Equation (2) also
points out the timing metrics of the clocking subsystem by indicating the
amount of time that the clocking strategy takes from the clock cycle for the
purpose of synchronization. This time is the sum of the clock-to-output delay of
the releasing flip-flop, setup time of the receiving flip-flop, and the clock uncer-
tainty between the two flip-flops. This synchronization overhead can be divided
into the sum of the setup time and the clock-to-output delay, called data-to-
output delay, as the measure of the performance of the flip-flop, and the clock
uncertainty, as the performance metrics of the clock distribution system.

The data-to-output delay characteristic of a flip-flop provides a variety of
useful information about its timing properties [13, 18]. It is typically a convex
function of its data-to-clock delay, due to the change in clock-to-output delay
from the nominal constant value when data arrives much before the clock, to
abruptly rising near the failure region (Figure 6). The data-to-clock delay for
which the data-to-output delay characteristic reaches its minimum is referred
to as the optimal setup time. Note that this setup time definition is somewhat
different from the conventional ad-hoc methods that define setup time as the
data-to-clock delay for which the clock-to-output delay increases for a certain

Figure 6. Data-to-output delay of a flip-flop (c© 2004 IEEE).

Clocked storage elements in digital systems 67

percentage of its nominal value, or for which certain critical nodes experience
a (unwanted) glitch of some predefined magnitude. Furthermore, recalling that
the data-to-output delay represents the overall timing overhead of the flip-flop,
it becomes obvious that a flip-flop whose characteristic is flat around the min-
imum has a capability to reduce the variation of the output arrival time as the
data-to-clock delay changes around optimal setup time. This property, called
soft clock edge, can be achieved using flip-flops based on transparency win-
dows, pulsed latches or master–slave latches with overlapping clocks. The soft
clock edge property has two important implications. First, it enables the flip-
flop to absorb the clock uncertainty by means of delivering its output approxi-
mately at the same moment regardless of the clock arrival time, when the data
arrival time is constant. This property of absorbing clock uncertainties can be
quantified using the clock uncertainty absorption coefficient that represents the
portion of the clock uncertainty not reflected at the output [18, 19]. Second, the
flatness of the data-to-output characteristic indicates a limited transparency of
the flip-flop to the input data when the clock arrival time is constant. This prop-
erty is normally associated with level-sensitive clocking strategies. It allows for
increasing the maximum operating frequency by using the technique known as
time borrowing, which consists of assigning more time for computation to the
slow logic in some pipeline stages at the expense of the time assigned to faster
logic blocks in other pipeline stages. As the clock uncertainty absorption and
time borrowing exploit the same soft clock edge property, these techniques are
essentially equivalent.

3.2. Two-phase Clocking Strategy with Transparent Latches

A system with two-phase clocking, transparent latches, and static logic,
together with the timing relationship between the clock phases, is shown in
Figure 7. In this configuration, also known as a split-latch system, the consec-
utive latches are controlled by the alternating clock phases and separated by
the logic blocks. In this way the pipeline stage is divided into two sub-stages.

3.2.1. Timing in a split-latch system

A split-latch system must satisfy one setup time and one hold time require-
ment for each of the two latches, totaling four independent constraints. Assum-
ing that the earliest data arrives to each latch before the releasing edge of its
clock, it can be shown [19] that the hold time requirements yield the following
constraints:

tl1 ≥ V12 + tH2 − tcq1 + tCU ,R1L2 (3)

tl2 ≥ V21 + tH1 − tcq2 + tCU ,L1R2 (4)

68 N. Nedovic and V. G. Oklobdzija

Figure 7. A system that uses split-latch configuration and non-overlapping clocks.

In Equations (3) and (4) tl1 and tl2 represent the minimum logic delays of the
logic blocks Logic1 and Logic2 that satisfy the hold time requirements, V12 is
the overlap between rising edge of φ1 and falling edge of φ2, V21 is the overlap
between rising edge of φ2 and falling edge of φ1, tH1 and tH2 are the hold times
of Latch1 and Latch2, and tcq1 and tcq2 are the minimum clock-to-output delays
of Latch1 and Latch2. The clock uncertainty between the releasing edge of φ1

and latching edge of φ2 is denoted tCU ,R1L2, and the clock uncertainty between
the latching edge of φ1 and releasing edge of φ2 is denoted tCU ,L1R2. The
significance of the Equations (3) and (4) is that they show that, with a sufficient
amount of clock separation, where clock separation is indicated by negative
overlaps V12 and V21, the split-latch system guarantees immunity to fast-path
hazard by design. This property is very appealing for complex microprocessor
design as it reduces or completely eliminates the need for time-consuming and
error-prone process of fixing the fast path violations in the design flow.

Since the latches are transparent for a portion of the clock cycle, the timing
depends not only on the mutual relationship between the clock phases but also
on the moment when the data enters the pipeline stage. We can contain the tim-
ing analysis within one stage if we assume that the time arrival of the latest input
occurs at the same moment in the cycle in all pipeline stages. In this case, it can
be shown [19] that the setup time requirements yield the following constraints:

tL2 ≤ T + V21 − tSU1 − tCQ2 − tCU ,L1 − tCU ,R2 (5)

tL1 + tL2 ≤ T + W1 − tCQ1 − tDQ2 − tSU1 − tCU ,L1 − tCU ,R1 (6)

tL1 ≤ T + V12 − tCQ1 − tSU2 − tCU ,R1 − tCU ,L2 (7)

tL1 + tL2 ≤ T + W2 − tCQ2 − tDQ1 − tSU2 − tCU ,R2 − tCU ,L2 (8)

tL1 + tL2 ≤ T − tDQ1 − tDQ2 (9)

Clocked storage elements in digital systems 69

Equations (5) and (6) correspond to the setup time requirement of Latch1

when the data is released by the rising edge of the clock φ2 from the preceding
Latch2 (Equation 5), or the rising edge of the clock φ1 from the preceding
Latch1 (Equation 6). Similarly, Equations (7) and (8) correspond to the setup
time requirement of Latch2 when the data is released by the rising edge of the
clock φ1 from the preceding Latch1 (Equation 7), or the rising edge of the clock
φ2 from the preceding Latch2 (Equation 8).

In contrast to Equations (5)–(8), Equation (9) defines the timing constraints
when the data arrives to all latches at the time they are transparent. It is inter-
esting to note that in this case the minimum logic delay in the stage does not
depend on setup times or clock uncertainty. This observation leads us to the
two important properties of the level-sensitive systems. First, as long as the
latest data arrives to each latch at the time when it is transparent, the level-
sensitive system is immune to clock uncertainty. Second, if we give up on our
requirement that the input data must arrive to all pipeline stages at the same
moment in the cycle, we can tolerate stages with propagation delay larger than
nominal, thus violating Equation (9), provided that this time is compensated
for by the faster logic in other stages. This property allows another form of
time borrowing, and it is summarized in Equation (10):

T = 1

N

2N∑
i=1

(tDQ,i + tL,i) (10)

Equation (10) states that the minimum clock period T in the pipeline is
not constrained by the delay of its slowest stage. Instead, it depends on the
average delay of logic and latches in all stages. Again, note that the essential
requirement for time borrowing is that the data arrives to all latches during the
time they are transparent [18].

The beneficial properties of immunity to fast path hazards and clock uncer-
tainty, as well as the time borrowing, make split-latch system very appealing
choice of clocking strategy, and it has been used in the design of some high-
end processors [20]. However, it has two serious drawbacks that undermine its
overall performance. First, its critical path consists of two transparent latches,
which presents a large timing overhead compared to the single-edge system that
uses flip-flops [19, 21]. Second, as can be seen from Equations (3–10), the tim-
ing analysis of a split-latch system is much more complicated than that based
on flip-flops due to larger number of clock phases and interdependence between
signal arrivals from multiple cycles. For these reasons most of the microproces-
sors designed today are based on single-edge clocking strategy with flip-flops.
The choice of this strategy is usually accompanied by the sophisticated CAD
tools used to identify and fix the hold time violations, and in some cases by
the use of fast soft clock edge flip-flops in the critical paths to help reducing
effects of clock uncertainty and exploit limited time borrowing.

70 N. Nedovic and V. G. Oklobdzija

3.2.2. Other latch-based strategies

Once we have determined the timing constraints for a split-latch system
it is easy to reduce them to other latch-based strategies. For example, if the
logic block Logic1 is eliminated in Figure 7, the split-latch system reduces to
a master–slave-based configuration, where Latch1 becomes master latch, and
Latch2 becomes slave latch. Similarly, if the delay of Logic1 is forced to zero, the
timing analysis of a split-latch system is directly applicable to a master–slave-
based strategy. Note that if the master and slave clocks are non-overlapping,
Equations (5–9) collapse into Equation (2) with effective clock-to-output delay
equal to the sum of the clock-to-output delay of the slave latch (tcq2) and the
clock separation between the master and slave clocks (−V21). In other words
the master–slave configuration with non-overlapping clocks trades fast path
immunity for delay.

Similarly, we can obtain the timing requirements of the single clock phase
strategy that uses a single latch if we start from the master–slave configuration,
force positive overlap between clocks (V21 >0), and combine the master and
slave latches into a single latch clocked with the logical AND of the master
and slave clocks. The setup and hold times of this single latch are equivalent to
the setup and hold time of the original master latch, its clock-to-output delay
is equal to the clock-to-output delay of the original slave latch, and its data-
to-output delay is equal to the sum of the data-to-output delays of the master
and slave latches. With this modification the timing requirements for a master–
slave-based system reduce to those for a single-latch-based system [17].

tl ≥ W + tH − tcq + tCU ,RL (11)

tL ≤ T + W − tSU − tCQ − tCU ,LR (12)

tL ≤ T − tDQ1 (13)

Note that the single-latch-based system achieves very low timing penalty
in the slow paths (only one data-to-output delay of a latch), and good time bor-
rowing and clock uncertainty absorption capabilities. However, as shown in
Equation (11), these beneficial properties are traded for the need for large min-
imum logic delays in order to prevent hold time violations. For this reason the
single-latch systems are almost exclusively used with the locally controlled nar-
row clock pulse widths (pulsed latches) in order to minimize fast path hazards.

4. Clocked Storage Elements in Commercial
Microprocessors

This section reviews the clocked storage elements used in modern high-
end commercial microprocessors. Through a chronological review we will see

Clocked storage elements in digital systems 71

how frequency scaling drove a dominant trend in high-performance micropro-
cessors from the slower latch-based strategy to faster flip-flops, to even faster
pulsed latches with the capability of clock uncertainty absorption. In each step
of this evolution the designers traded the reliability of the clocking strategy, i.e.
immunity to fast path hazards, for its speed and simplicity. Although an impor-
tant performance parameter at all times, the clocking energy consumption has
only recently emerged as a limiting factor.

4.1. Alpha 21064 (1992)

The first microprocessor in the Alpha family, Alpha 21064 [20], made
a radical change from the traditional Digital’s four-phase clocking strategy
by employing the level-sensitive split-latch scheme with two complementary
clock phases. This strategy used modified true single phase clock (TSPC) trans-
parent latches [22], shown in Figure 8, which enabled level-sensitive clocking
with a single-wire clock. The main issue with this type of clocking strategy was
the introduction of the fast path hazards that were eliminated by using careful
design methodology.

The clocking strategy of Alpha 21064 allows for the simple single-wire
clock distribution with shallow clock hierarchy. The delay penalty for clock-
ing is the delay of two transparent latches. This penalty is further reduced by
embedding various logic gates within the latch.

4.2. Power PC 603 (1994)

The Power PC 603 processor adheres to the clocking methodology of IBM
that relies on LSSD methodology, which demands the use of transparent latches
and supports full scanability [23]. It employs a conventional master–slave

Figure 8. Alpha 21064 latches (c© 1992 IEEE): (a) transparent on high level of clock,
(b) transparent on low level of clock.

72 N. Nedovic and V. G. Oklobdzija

Figure 9. Transmission gate master–slave latch (c© 1994 IEEE).

structure, with latches implemented using transmission gates (TGMS
latch [24]). The simplified version of transmission gate master–slave latch used
in the Power PC 603 is shown in Figure 9. The master and slave clocks supplied
to the TGMS are generated in the local clock regenerator, which also controls
the timing of the clock phases and the scan clock, and allows for shutting off
(gating) the local clock.

The internal switching activity of the TGMS latch is mainly driven by the
input data, which naturally reduces the energy of the storage element when the
input activity is low. The delay of the TGMS is moderately large compared
to clocked storage elements used in later microprocessors, as it consists of the
propagation delays through two latches. The input must be protected from the
noise by either incorporating an additional inverter driver in front of the trans-
mission gate as the part of the TGMS, or placing a logic gate driver physically
close to the latch.

4.3. AMD K6 (1996)

The hybrid latch flip-flop [25], (Figure 10), used in theAMD K6 processor, is
a soft-edge flip-flop whose operation is based on generating a short transparency
period synchronous to the edge of the clock. This transparency period, or the
transparency window, is the portion of the clock period where both clock Clk

and delayed reverse-polarity clock Ckd, are high. During the transparency
window the first stage of the flip-flop conditionally generates a pulse based on
the level of the input D. This pulse generator in the first stage is implemented
using the static three-input CMOS NAND gate. The second stage captures the
pulse generated by the first stage and extends it to the duration of the clock
cycle, thus acting as a latch. The static output is then buffered to ensure signal
integrity and sufficient driving capability.

Due to its simple structure, the HLFF is one of the fastest clocked stor-
age elements used in the industry. Furthermore, it has a compact layout, as
it requires only 14 transistors in addition to the three inverters for generating

Clocked storage elements in digital systems 73

Figure 10. Hybrid latch flip-flop (c© 1996 IEEE).

Figure 11. Alpha 21264 flip-flop (c© 1998 IEEE).

signal Ckd that can be shared among multiple flip-flops. Finally, since HLFF is
transparent for a short time after the rising edge of the clock, it has good clock
uncertainty absorption property. The most serious drawbacks of this flip-flop
are its large energy consumption, which is a consequence of the large internal
switching activity, the hazard of the glitch at the output, and somewhat complex
implementation of the second stage latch that presents a large capacitive load
to the clock.

4.4. Alpha 21264 (1997)

With the increasing demand for performance the third Alpha microproces-
sor,Alpha 21264, abandoned the slower split-latch scheme used inAlpha 21064
and Alpha 21164 in favor of a faster edge-triggered strategy [26, 27]. The flip-
flops used in this clocking strategy were based on the dynamic sense-amplifier
flip-flop proposed in Matsui et al. [28] shown in Figure 11 [9]. This flip-flop

74 N. Nedovic and V. G. Oklobdzija

features the differential first-stage pulse generator that compares the voltage
levels on inputs D and D at the rising edge of the clock. Once the voltage
difference between the S and R outputs of the pulse generators develops, it
is further amplified using the positive feedback that disables the discharge of
the opposite output. The second stage of the flip-flop is the simple S-R cap-
turing latch, implemented using the back-to-back NAND gates. The NAND
implementation of the S-R latch causes unnecessary delay degradation, as the
longest signal path must propagate through the two heavily loaded outputs [44,
45]. In critical paths this S-R latch was replaced by the push–pull S-R latch
that decouples the two output propagation paths.

4.5. UltraSPARC-III (2000)

The Sun UltraSPARC-III uses the fast edge-triggered flip-flop family whose
operation is based on generating the transparency window. The basic flip-flop
in this family is the semi-dynamic flip-flop SDFF [29, 30] (Figure 12a). The

Figure 12. Sun UltraSPARC-III flip-flops: (a) basic semi-dynamic flip-flop (c© 1999 IEEE),
(b) final version (c© 2000 IEEE)

Clocked storage elements in digital systems 75

SDFF is transparent during the time window determined by the delay through
the two inverters I1 and I2, and the NAND gate N1 (Figure 12a), which defines
the transparency window after the rising edge of the clock Clk. Depending on
the logic value of the input D in the transparency window, the first stage of the
flip-flop conditionally generates the pulse valid for the duration of the clock
width. The second stage of the flip-flop converts the pulse to the static output,
which is then buffered for improving the signal integrity and driving capability.

The main feature of the SDFF, compared to the HLFF, is the domino-like
implementation of the first-stage pulse generator. This implementation allows
for straightforward logic embedding, and eliminates the need for the trans-
parency window in the second stage, reducing its implementation to the simple
TSPC-based dynamic-to-static latch [22]. In addition, the SDFF is fast due to a
short n-MOS-dominated critical path. It also employs the conditional shut-off
mechanism in the first stage that uses positive feedback to improve low-to-high
setup time and further improve performance. However, similar to the HLFF,
due to the precharge/evaluation operation of the pulse generator, the internal
consumption of the SDFF is large even if input switching activity is low. In
addition, like the HLFF, the SDFF suffers from a glitch at the output in cycles
when both input and previous output are high. This glitch further increases
power consumption and reduces the noise robustness of the subsequent logic.
The occurrence of the glitch can be eliminated without a significant perfor-
mance penalty, as shown in Nedovic [31].

The final version of the flip-flop used in the UltraSPARC-III is shown in
Figure 12b. It is modified to use the conditional keepers instead of back-to-back
inverters used in SDFF in order to achieve sufficient robustness to the soft errors.

4.6. Fujitsu SPARC64 (2003)

With the continuing frequency-scaling trend, microprocessor designers
resort to even faster clocking strategies to accommodate growing performance
demand. The Fujitsu SPARC64 microprocessor that employs the pulsed latch-
based strategy with the capability of clock tuning and clock uncertainty absorp-
tion [7] is an example of this tendency. The pulsed latch, shown in Figure 13,
is implemented as a simple transmission gate-based design with added func-
tionality for scanability and asynchronous reset. The clock is distributed using
a tree structure for the purpose of reducing energy consumption. The local
clock buffer has the capability to shut off the clock for further energy saving,
and to fine-tune the clock delay to the latches in steps of 20 ps. In addition, the
SPARC64 clocked storage element comprises another latch connected in series
to the main pulsed latch. The second latch acts as a slave in a master–slave con-
figuration used in non-critical paths with the goal of reducing fast path hazards,
and as the scan output [23].

76 N. Nedovic and V. G. Oklobdzija

Figure 13. SPARC64 pulsed latch (c© 2003 IEEE).

The tunable clock delay allows for optimizing clock arrivals to the pipeline
stages with uneven delays. In addition, the clock pulse of the SPARC64 latch
is relatively wide (about 15% of the cycle time [7]), which provides the soft
clock edge and allows for absorbing clock uncertainties. However, such pulse
width causes a large hold time, which requires the use of sophisticated CAD
tools for identifying and fixing the fast path hazards.

5. High-performance and Low-power Circuit Techniques

As technology scaling itself is not sufficient to accommodate the increasing
demand for microprocessor performance, circuit design is required to pro-
vide speed improvements in each product generation. Furthermore, as high-
end microprocessors are reaching power consumption limits imposed by heat
removal simultaneously to the severe obstacles in technology scaling due to
process variability and sub-threshold leakage, circuit design must focus on
reducing overall energy consumption while still delivering a sufficient perfor-
mance. As clocking and clocked storage elements significantly affect micro-
processor performance and energy consumption, the innovations in this area
receive particularly wide attention.

Clocked storage elements in digital systems 77

This section describes several circuit-level techniques aimed at improv-
ing performance or reducing energy consumption of clocked storage elements
in microprocessor pipelines. These techniques are divided into performance
improvement techniques, where we address the design of soft clock edge flip-
flops; logic embedding and latchless pipelines, and energy-saving techniques,
which include local clock gating and dual edge triggering.

5.1. Design of Clocked Storage Elements with
Soft Clock Edge

As shown in Section 3.1, a soft clock edge is the property of the clocked
storage element to exhibit a limited transparency around the capturing clock
edge, which is manifested by the flatness of its data-to-output characteristic.
This property is beneficial for reducing the effect of clock uncertainty and for
compensation for unbalanced pipeline stage delays by means of allowing for
limited time borrowing between the stages [13, 18]. In order to design a stor-
age element with such characteristics one must define a narrow timing window
in which the storage element is transparent to the input. This property can be
achieved in three ways. The first option is to introduce delay in the path that
locks the state of the pulse generator of the flip-flops. This method is illustrated
in Figure 14a that shows the differential skew tolerant flip-flop [32]. In this
design the pulse generator is made transparent to the input by delaying the
transition of the pulse generator outputs S and R for the propagation delay of
the inverter and the NOR gate before using them to shut off the subsequent
transitions of the complement pulse generator output R or S. In addition, this
approach achieves significant speedup compared to the original sense-amplifier
flip-flop by relocating the computation of some functionality of the pulse gen-
erator outside of the critical path.

The second option for achieving the soft clock edge property is to clock a
latch with a narrow pulse after each clock edge, as shown in Figure 14b. In this
configuration, described in Section 2.2 as the pulsed latch, the storage element
is transparent to the input during the duration of the clock pulse. The clock
pulse is usually generated locally to the latch in order to minimize the variation
in the pulse width and reduce the effects of noise [33].

The third method for achieving the soft clock edge in the clocked storage
elements is overlapping master and slave clocks in the master–slave latch con-
figuration, Figure 14c. If the overlap between the releasing edge of the slave
clock and the latching edge of the master clock is larger than the delay through
the master latch, the latest data arrives to the slave latch only after it becomes
transparent. As a result, the master–slave pair is transparent to the input during
the short time after the releasing edge of the slave clock. Similar to the pulsed
latches, the overlap between master and slave clocks is generated locally.

78 N. Nedovic and V. G. Oklobdzija

Figure 14. Methods for designing clocked storage elements with soft clock edge: (a) flip-flop
(c© 2003 IEEE), (b) pulsed latch (c© 2001 IEEE), (c) master–slave latch with overlapped clocks.

5.2. Logic Embedding

In order to reduce the timing overhead for clocking in critical paths or for
testing purposes the clocked storage elements routinely incorporate a limited
logic function. The penalty of this logic embedding depends on the topology of
the clocked storage element. Historically, logic embedding was first proposed
in a static latch known as Earl’s latch in 1965 [34]. As this implementation

Clocked storage elements in digital systems 79

A

Clk

QS Q
C S

(a) (b)

B

A

B

Clk

Q QS

A

B

A

B

A

B

A

B

Figure 15. Embedding of XOR logic function: (a) NMOS (SDFF), (b) CMOS (TSPC).

allows for embedding logic in both stages of the latch, Earl’s latch can be used
to nearly eliminate the clocking overhead.

The clocked storage element topologies most suitable for logic embedding
employ the dynamic logic-like first stage, thus allowing fast and simple imple-
mentation of the domino-style logic gate within the storage element. This logic
embedding capability is illustrated in Figure 15a that shows the semi-dynamic
flip-flop (SDFF) with the XOR logic gate incorporated in its first stage [29].
Note that the logic embedding may increase the transistor stack height, which
in practice diminishes the overall delay improvement obtained from grouping
the logic with the storage element.

Another implementation of logic embedding is demonstrated in Dobberpuhl
et al. [19], in which the logic function is incorporated in the first stage of the
TSPC latches used in the split-latch configuration (Figure 15b). Due to the
latch topology the logic must be implemented in both pull-up and pull-down
paths, which makes this implementation less efficient than the one shown in
Figure 15a.

5.3. Latchless Pipelines

In modern microprocessors, depending on the design methodology, time-
critical pipeline stages are sometimes implemented using dynamic logic [5].
Analyzing the domino logic gate as a typical choice of the dynamic logic
family [35, 36] (Figure 16a), we can see that it possesses two features that allow
it to control the timing of the signal propagation through the pipeline. First,
the fast evaluation data cannot propagate through the domino gate before the
releasing (rising) edge of the clock. Second, since the signaling is monotonous
by convention, once evaluated data does not change until the pre-charging

80 N. Nedovic and V. G. Oklobdzija

logic 1 logic 2 logic 3 logic 4

domino
a

Φ 1 Φ 2 Φ 3 Φ 4

Φ 2

domino domino domino

logic 1

Φ 1

Φ 1

Φ 2

Φ 3

Φ 4

pipeline
stage

pipeline
stage

In 1
In 2

In N

Clk

Out

f

S

dy
na

m
ic

st
at

ic

dy
na

m
ic

st
at

ic

dy
na

m
ic

st
at

ic

dy
na

m
ic

st
at

ic

(a) (b)

Figure 16. Four-phase skew tolerant domino strategy: (a) single-ended footed domino gate
(c© 1984 IEEE), (b) structure of the pipeline stage (c© 1997 IEEE).

(falling) edge of the clock, even if the input is invalidated. A suitable clocking
strategy can be applied that exploits these properties of domino logic gates to
ensure proper data synchronization without explicit latches or flip-flops. The
key of such a clocking strategy is to divide the pipeline stage into several
substages, each clocked with a separate clock phase, and enforce the timing of
the clock so that the data in a substage gets invalidated (pre-charged) only after
it has been used in the subsequent substage.

An example of the latchless strategy is shown in Figure 16b [15, 37] together
with clock phase timing relationship. In this configuration, known as four-
phase skew-tolerant domino or opportunistic time borrowing, each of the four
substages consists of conventional footed domino gates, and is controlled by
the delayed clock with respect to that used to clock the previous substage. The
strategy ensures that the data enters each pipeline stage one cycle later than it
enters the previous stage by delaying the earliest data evaluation between the
substages at each of the four edges. The overlap between adjacent clock phases
is the essential feature of the skew tolerant domino strategy, as it enables the
data evaluated in one substage to be used by the subsequent substage before it
is pre-charged.

The skew-tolerant domino strategy has several beneficial properties. First,
it uses entire cycle time for useful logic computation. Second, as the latest
data can always be set to arrive to each individual domino gate during the
time when its clock is high, this strategy is tolerant to the clock uncertainty

Clocked storage elements in digital systems 81

approximately up to the amount of the overlap between the adjacent clock
stages. Hence it allows for clocking with zero performance penalty and for the
straightforward implementation of the time-borrowing technique. In addition,
for any data propagation path, the receiving clock edge always occurs for T/4
before the releasing clock edge for the subsequent data. This property is a direct
consequence of using multiple (four) clock reference edges in one cycle, and
it practically eliminates the fast path hazard by design.

The disadvantages of the skew-tolerant domino strategy are the need for
generating and distributing multiple clock phases, and the increased complexity
of the design and timing analysis, as there are no hard boundaries between the
stages. In addition, as the relative impact of the clock uncertainty continues
to increase with the frequency scaling and process variations, it may become
impossible or inefficient to guarantee the overlap between the adjacent clock
phases, which may compromise the functionality of the skew-tolerant domino
strategy.

A variation of latchless strategy commonly used in the high-performance
microprocessors uses the footless domino gates with multiple locally delayed
clock phases.Another implementation of the latchless strategy based on domino
logic style is presented in Itanium 2 [5]. This strategy uses two global clock
phases and specialized dynamic gates with the capability of delaying the pre-
charge until the evaluated data is consumed by the subsequent pipeline stage.
The use of the pre-charge delay makes the input to all pipeline substages valid
during the entire time of its evaluation.

5.4. Local Clock Gating

Both in high-performance and low-power microprocessors there is an
increasing demand for saving clocking energy. The clock gating comes as
one of the most straightforward methods for energy savings by reducing the
switching activity of clock or internal nodes when it is detected that such activ-
ity does not perform any useful work. The clock gating can be aimed at the
clock distribution (global clock gating), when it usually consists of shutting
off the clock to the individual functional blocks during idle periods, or at the
clocked storage elements (local clock gating), when it statistically reduces the
switching activity of the internal nodes.

The basic principle of local clock gating is to shut off an internal energy-
costly computation if it is detected that this computation would not result in
changing the state of the storage element. One method of implementing this
functionality is used in data look-ahead latch [38], shown in Figure 17a. In
this pulsed latch the clock activity is statistically reduced by keeping the latch
opaque if the monitoring circuit that consists of an XOR gate detects that the
latch output Q is equal to the new latch input D. However, this implementation

82 N. Nedovic and V. G. Oklobdzija

Figure 17. Local clock gating: (a) data transition look-ahead latch (c© 1998 IEEE), (b) con-
ditional capture flip-flop (c© 2000 IEEE).

has a severe drawback manifested as the increase of the setup time in order to
ensure the minimum width of the clock pulse. This delay increase significantly
diminishes the effectiveness of the data look-ahead latch.

Another way of implementing a local clock gating technique is illustrated in
Figure 17b that shows the differential conditional capture flip-flop (CCFF) [39].
The CCFF avoids the timing penalty of the activity monitoring circuit by condi-
tioning the generation of the transparency window of the flip-flop with the state
of the output. If the output is high, the assertion of nodeCS and discharge of node
S are disabled, even if input D is high. Similarly, if output is low, node R cannot
be discharged even if input D is low. This scheme reduces the switching activity
of nodes S and R, and statistically saves energy consumption.At the same time,
the delay of the CCFF is not compromised compared to the basic sense amplifier
flip-flop since the output monitoring is implemented in the non-critical circuit
for generating the transparency window. Similar to the CCFF, Nedovic and
Oklobdjiza [40] propose statistical reduction of the internal switching activity
by conditionally disabling the pre-charge of the pulse generator depending on
the current state of the flip-flop, thus simplifying circuit topology.

5.5. Dual-edge Triggering

Dual-edge triggering is a clocking strategy that reduces energy consump-
tion of the clock distribution system by using both edges of the clock for data

Clocked storage elements in digital systems 83

synchronization. This strategy allows for achieving the same data throughput
with halved clock frequency compared to the reference single-edge-triggered
clocking strategy. In order to fully exploit the potential for energy savings,
the dual-edge clocking strategy must meet two criteria [41]. First, the delay,
energy consumption, and clock load of the dual-edge-triggered clocked stor-
age elements it uses must be comparable to those of single-edge-triggered
clocked storage elements. This may be a challenging requirement, as dual-edge
triggering implies considerable increase of circuit complexity with respect to
single-edge-triggered clocked storage elements in order to provide additional
functionality. Second, due to the use of both clock edges, the clocking strategy
must be able to control the clock duty cycle with uncertainty comparable to the
uncertainty of the clock cycle time.

Two examples of dual-edge-triggered clocked storage elements are shown
in Figure 18. The transmission gate latch-mux (TGLM) [42] (Figure 18a) is

S R

D

Clk

CKD

Q

CK3 CK4

Q

Q

S R S F

DD

Clk CK1

Clk CK1 CK4CK3CK2

M 9

I1 I2 I3 I4

S F

D

Clk

CKD

(a)

(b)

Figure 18. Dual-edge triggered clocked storage elements: (a) transmission gate latch mux
(c© 1996 IEEE), (b) symmetric pulse generator flip-flop (c© 2002 IEEE).

84 N. Nedovic and V. G. Oklobdzija

the representative of latch-mux structure and the dual-edge counterpart of
the transmission-gate master–slave latch [24] clocked with the complemen-
tary clock phases. It consists of two latches transparent at opposite levels of
the clock, and a multiplexor that selects the output of non-transparent latch.
The TGLM offers minimal increase in circuit complexity over its single-edge-
triggered counterpart. However, the considerable increase in clock load may
offset energy savings due to lower clock frequency by the increase of switching
capacitance in the clock distribution network.

The symmetric pulse generator flip-flop (SPGFF) [43], shown in Figure 18b,
consists of two pulse generators active at the opposite edges of the clock,
and the NAND gate that combines outputs of pulse generators into the static
output. After each clock edge the transparency window is generated, during
which the corresponding pulse generator can evaluate. At any moment one of
the nodes SX and SY holds the value of the input sampled at the most recent
edge of the clock, and the other one is pre-charged high. The critical path of
the circuit consists of a fast dynamic gate and a simple static CMOS NAND
gate. Thus the static output is available after two fast logic stages, making the
delay of the SPGFF comparable to the fastest single-edge-triggered clocked
storage elements. In addition, it presents a very small load to the clock distri-
bution network, thus enabling the full energy savings potential of the dual-edge
strategy.

6. Practical Issues in Design of Clocked Storage Elements

The clocked storage elements in microprocessors are presented to
application-specific requirements that may significantly influence their design
and choice of clocking strategy. Typically, clocked storage elements are catego-
rized as either standard or time-critical. Microprocessor designers commonly
use standard clocked storage elements in large volumes throughout the micro-
processor, and resort to the use of time-critical clocked storage elements only
in critical paths.

Clearly, design requirements for standard and time-critical clocked storage
elements are very different. As time-critical clocked storage elements are used
in slowest paths, the main concern in their design is speed in order to meet
the target cycle time. A desirable property of such time-critical clocked storage
elements is a soft clock edge for clock uncertainty absorption and time borrow-
ing. Furthermore, the relatively small number of time-critical clocked storage
elements in a microprocessor allows for an aggressively sized design with little
attention to their power consumption, layout compactness, and clock load. Sim-
ilarly, since time-critical clocked storage elements are normally placed in slow
paths that are less probable to experience fast path hazards, the hold time is
usually of no major concern in their design. The typical critical clocked storage

Clocked storage elements in digital systems 85

elements in modern microprocessors are pulsed latches and fast flip-flops with
a soft clock edge property.

Given the exponentially increasing trend in clocking power and the wide
use of standard clocked storage elements in microprocessors, their choice and
circuit design is usually more power- and size-aware. This choice is further
supported by the observation that the large delay is in fact beneficial, as it helps
reduce fast path hazards, while it usually bears little relevance to meeting the
cycle time of non-critical paths. Standard clocked storage elements are typically
implemented using conservatively sized slow and robust master–slave latches.
Note that the improving capability of CAD tools to identify fast path hazards
and to optimize a larger number of paths to reduce overall power consumption
results in replacing many non-critical clocked storage elements with time-
critical ones [7]. This trend alters the design requirements and somewhat blurs
the boundaries between the two groups.

Finally, due to the great complexity of modern microprocessors, most if
not all clocked storage elements are required to incorporate a scan function in
order to facilitate testing. The scanability of clocked storage elements allows
for loading arbitrary test vectors, thus bringing the microprocessor in a desired
state, and observing the result of the operation of each pipeline stage. During
the scan operation the system clock is shut off. The practical methods for
embedding the scan mechanism into clocked storage elements depends on its
topology and performance requirements. Typically, fast flip-flops use the logic
embedding property and combine the scan clock with the local clock in the local
clock buffer [30]. The latch-based systems usually provide a parallel input path
for scan in the master latch and reuse the slave latch [7, 23, 24].

7. Conclusion

Regardless of whether the technology scaling trend continues or not, the
clocking strategy, and specifically the design of clocked storage elements, will
remain a key factor for further performance scaling in microprocessors. As the
number of logic gates per pipeline stage decreases and the importance of clock
uncertainty and clock-related power consumption continues to grow, micro-
processor designers must devote increasing attention to the choice and design
of clocked storage elements. Accordingly, the past two decades saw a consider-
able shift in view of the role of clocking in microprocessors. This shift is vividly
illustrated by the change of the dominant clocking strategy from multiple-
phase clock latch-based to a single-wire fast flip-flop- or pulsed latch-based
strategy, often incorporating logic embedding and a soft clock edge property.

The further development of clocked storage element design within the syn-
chronous framework will arguably attempt to satisfy two conflicting require-
ments. In high-performance microprocessors the trend is to further minimize

86 N. Nedovic and V. G. Oklobdzija

the timing overhead and the effect of the process variations and mismatch
to the clocking by using fast and simple clocked storage elements with logic
embedding, and incorporating soft boundaries between the pipeline stages. At
the same time the increase in microprocessor complexity, clock frequency, and
comparative share of the clocking in overall microprocessor power mandate
that power consumption must be a major design objective for a clocking subsys-
tem. Accordingly, clocked storage elements must be designed to accommodate
for the power budget, as they are a significant contributor to overall micropro-
cessor power. The success of microprocessors in the near future will to a large
extent depend on the choice of clocked storage elements capable of meeting
the above contradicting criteria.

References

[1] Anderson, C.J. et al. “Physical design of a fourth-generation POWER GHz micro-
processor”, IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, February 2001,
232–233, 451.

[2] Heald, R. et al. “A third generation SPARC V9 microprocessor”, IEEE J. Solid-State
Circuits, 2000, 35(11), 1526–1538.

[3] Hofstee, P. et al. “A1-GHz single-issue 64b powerPC processor”, IEEE Int. Solid-State
Circuits Conf. Dig. Tech. Papers, February 2000, 92–93.

[4] Jain, A. et al. “A 1.2GHz Alpha microprocessor with 44.8GB/s chip pin bandwidth”,
IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, February 2001, 240–241.

[5] Naffziger, S.D.; Colon-Bonet, G.; Fischer, T.; Riedlinger, R.; Sullivan, T.J.;
Grutkowski, T. “The implementation of the Itanium 2 microprocessor”, IEEE J. Solid-
State Circuits, 2002, 37(11), 1448–1460.

[6] Stinson, J.; Rusu, S. “A 1.5GHz third generation Itanium processor”, IEEE Int. Solid-
State Circuits Conf. Dig. Tech. Papers, February 2003, 252–253.

[7] Ando, H. et al. “A 1.3GHz fifth generation SPARC64 microprocessor”, IEEE Int.
Solid-State Circuits Conf. Dig. Tech. Papers, February 2003, 246–247, 491.

[8] Hart, J. et al. “Implementation of a 4th-generation 1.8GHz dual-core SPARC V9
microprocessor”, IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, February
2005, 186–187.

[9] Gronowski, P.E.; Bowhill, W.J.; Preston, W.J.; Gowan, R.P.; M.K.; Allmon, R.L.
“High-performance microprocessor design”, IEEE J. Solid-State Circuits, 1998, 33(5),
676–686.

[10] Naffziger, S.; Stackhouse, B.; Grutkowski, T. “The implementation of a 2-core multi-
threaded Itanium family processor”, IEEE Int. Solid-State Circuits Conf. Dig. Tech.
Papers, February 2005, 182–183, 592.

[11] Sutherland, I.E. “Micropipelines”, Comm. ACM, 32, 1989, 32, 720–738.
[12] Furber, S.B.; Garside, J.D.; Gilbert, D.A. “AMULET3: a high-performance self-timed

ARM microprocessor”, Proc. Int. Conf. on Computer Design, October 1998, 247–252.
[13] Oklobdzija, V.G. “Clocking and clocked storage elements in a multi-gigahertz envi-

ronment”, IBM J. Res. Dev., 2003, 47(5/6), 567–584.
[14] Burleson, W.P.; Ciesielski, M.; Klass, F.; Liu, W. “Wave-pipelining: A tutorial and

research survey”, IEEE Trans. Very Large Scale Integration (VLSI) Systems, 1998,
6(3), 464–467.

Clocked storage elements in digital systems 87

[15] Harris, D.; Huang, S.C.; Nadir, J.; Chu, C-H.; Stinson, J.C.; Ilkbahar,A. “Opportunistic
time-borrowing domino logic”, U.S. Patent No. 5,517,136, May 1996.

[16] Mule’, A.V.; Glytsis, E.N.; Gaylord, T.K.; Meindl, J.D. “Electrical and Optical Clock
Distribution Networks for Gigascale Microprocessors”, IEEE Trans. Very Large Scale
Integration Systems, 2002, 10(5).

[17] Unger, S.H.; Tan, C.J. “Clocking schemes for high-speed digital systems”, IEEE Trans.
Computers, 1986, C-35(10), 880–895.

[18] Oklobdzija, V.G.; Stojanovic, V.M.; Markovic, D.M.; Nedovic, N.M. Digital system
clocking: high-performance and low-power aspects, New York: John Wiley, 2003.

[19] Nedovic, N. “Clocked storage elements for high-performance applications”, Ph.D.
thesis, University of California Davis, June 2003.

[20] Dobberpuhl, D.W. et al. “A 200-MHz 64-b dual-issue CMOS microprocessor”, IEEE
J. Solid-State Circuits, 1992, 27(11), 1555–1567.

[21] Stojanovic, V.; Oklobdzija, V.G. “Comparative analysis of master–slave latches and
flip-flops for high-performance and low-power systems”, IEEE J. Solid-State Circuits,
April 1999, 34(4), 536–548.

[22] Yuan, J.; Svensson, C. “High-speed CMOS circuit technique”, IEEE J. Solid-State
Circuits, 1989, 24(1), 62–70.

[23] LSSD Rules and Applications, Manual 3531, Release 59.0, IBM Corporation, 29
March 1985.

[24] Gerosa, G. et al. “A 2.2W, 80MHz superscalar RISC microprocessor”, IEEE J. Solid
State Circuits, 1994, 29(12), 1440–1452.

[25] Partovi, H.; Burd, R.; Salim, U.; Weber, F.; DiGregorio, L.; Draper, D. “Flow-through
latch and edge-triggered flip-flop hybrid elements”, IEEE Int. Solid-State Circuits
Conf. Dig. Tech. Papers, February 1996, 138–139.

[26] Gieseke, B.A. et al. “A 600MHz superscalar RISC microprocessor with out-of-order
execution”, IEEE Int. Solid-State Circuits Conf., February 1997, 176–177.

[27] Bailey, D.W.; Benschneider, B.J. “Clocking design and analysis for a 600-MHz Alpha
microprocessor”, IEEE J. Solid-State Circuits, 1998, 33(11).

[28] Matsui, M.; Hara, H.; Uetani, Y. et al. “A 200 MHz 13 mm2 2-D DCT macrocell
using sense-amplifying pipeline flip-flop scheme”, IEEE J. Solid-State Circuits, 1994,
29(12), 1482–1490.

[29] Klass, F. “Semi-dynamic and dynamic flip-flops with embedded logic”, Symp. on VLSI
Circuits, Dig. Tech. Papers, June 1998, 108–109.

[30] Klass, F.;Amir, C.; Das,A. et al. “Anew family of semidynamic and dynamic flip-flops
with embedded logic for high-performance processors”, IEEE J. Solid-State Circuits,
1999, 34(5), 712–716.

[31] Nedovic, N.; Oklobdzija, V.G. “Dynamic flip-flop with improved power”, Proc. Int.
Conf. on Computer Design, September 2000, 323–326.

[32] Nedovic, N.; Oklobdzija, V.G.; Walker, W.W. “Aclock skew absorbing flip-flop”, IEEE
Int. Solid-State Circuits Conf. Dig. Tech. Papers, February 2003, 342–343.

[33] Tschanz, J.; Narendra, S.; Chen, Z.; Borkar, S.; Sachdev, M.; De, V. “Comparative
delay and energy of single edge-triggered and dual edge-triggered pulsed flip-flops for
high-performance microprocessors”, Int. Symp. Low Power Electronics and Design,
Dig. Tech. Papers, August 2001, 147–152.

[34] Earl, J. “Latched carry-save adder”, IBM Tech. Disclosure Bull., 1965, 7(10), 909–910.
[35] Krambeck, R.H.; Lee, C.M.; Law, H.-F.S. “High-speed compact circuits with CMOS”,

IEEE J. Solid-State Circuits, 1982, SC-17(3), 614–619.
[36] Oklobdzija, V.G.; Kovijanic, P.G. “On testability of CMOS-domino logic”, Proc.

FTCS-14: 14th IEEE Int. Conf. on Fault-Tolerant Computing, 1984, 50–55.

88 N. Nedovic and V. G. Oklobdzija

[37] Harris, D.; Horowitz, M. “Skew-tolerant domino circuits”, IEEE J. Solid-State Cir-
cuits, November 1997, 32(11), 1702–1711.

[38] Nogawa, M.; Ohtomo, Y. “A data-transition look-ahead DFF circuit for statistical
reduction in power consumption,” IEEE J. Solid-State Circuits, 1998, 33(5), 702–706.

[39] Kong, B.-S.; Kim, S.-S.; Jun, J.-H. “Conditional capture flip-flop technique for statisti-
cal power reduction”, IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, February
2000, 290–291, 465.

[40] Nedovic, N.; Oklobdzija, V.G. “Improved hybrid latch flip-flop design”, Proc. 13th
Symp. Integrated Circuits and Systems Design, September 2000, 211–215.

[41] Nedovic, N.; Oklobdzija, V.G. “Dual-edge triggered storage elements and clocking
strategy for low-power systems”, IEEE Trans. on Very Large Scale Integration Sys-
tems, 2005, 13(5), 577–590.

[42] Llopis, R.P.; Sachdev, M. “Low power, testable dual edge triggered flip-flops”, Int.
Simp. Low Power Electronics and Design, Dig. Tech. Papers, 1996, 341–345.

[43] Nedovic, N.; Oklobdzija, V.G.;Aleksic, M.; Walker, W.W. “Alow power symmetrically
pulsed dual edge-triggered flip-flop”, Proc. 28th European Solid-State Circuits Conf.,
September 2002, 399–402.

[44] Nikolic, B.; Stojanovic, V.; Oklobdzija, V.G.; Wenyan Jia, Chiu, J.; Leung, M. “Sense
amplifier-based flip-flop”, IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers,
February 1999, 282–283.

[45] Stojanovic, V.; Oklobdzija, V.G. FLIP-FLOP, US Patent No. 6,232,810, 15 May 2001.

Chapter 4

STATIC MEMORY DESIGN

Nestoras Tzartzanis
Fujitsu Laboratories of America
E-mail: nestoras@us.fujitsu.com

Abstract: In this chapter, we explore the design of static memory structures. We start
with the description of the operation of the single-port six-transistor SRAM cell.
Subsequently, we discuss issues related to the design of memory peripherals
such as voltage-mode and current-mode differential reads, single-ended reads,
and control logic. We present design techniques to reduce SRAM dynamic and
static power. We also cover issues pertaining to SRAM reliability, testing, and
yield. Subsequently, we show how to implement efficient multi-port register
file storage cells and peripherals and we present an example of replica-based
self-timed control logic.

Key words: Static memory; SRAM; register file; cache; six-transistor SRAM cell; multiport
memory; differential memory reads; voltage-mode sense amplifiers; current-
mode amplifiers; single-ended memory reads; low-power SRAM; lowvoltage
SRAM.

1. Introduction

During the microprocessor evolution, memories became an integral part
of microprocessor design. The first integrated microprocessors contained only
register files as storage for temporary data, while their memory system was
entirely located off chip. The first microprocessors with on-chip caches were
reported in 1987 [1, 2]. Current microprocessor chips include up to three lev-
els of cache memory [3–5]. Furthermore, the total on-chip memory capacity
increased from a few kilobytes to several megabytes. Consequently, there is

Vojin G. Oklobdzija and Ram K. Krishnamurthy (eds.),
High-Performance Energy-Efficient Microprocessor Design, 89–119.
c© 2006 Springer. Printed in the Netherlands.

89

90 N. Tzartzanis

a strong demand for dense, fast, and energy-efficient memories. In addition,
there are some trade-offs between density, speed, and energy dissipation that
can be made, depending on memory design specifications. For instance, the
primary concern of multi-port register files (RF) is their delay time and clock
frequency. At the other end of the spectrum, density and energy efficiency
are more important than speed for single-port SRAM intended for second- or
third-level caches. Although advances in CMOS technology have facilitated
the integration of large SRAM inside microprocessor chips, they also have
created new design challenges such as reduced noise immunity and excessive
dynamic and static power dissipation.

In this chapter, we provide some basic single-port SRAM and multi-port
RF design guidelines. Although SRAM and RF share many design similarities,
they also differ in many aspects. Single-port SRAM use the same bit lines for
both writes and reads. Typically, multi-port RF have dedicated write and read
ports, and hence, bit lines are used either for writes or reads. Furthermore,
SRAM have larger bit capacity than RF and they commonly require both row
(i.e. word) and column (i.e. bit) decoding.

Next, we describe the single-port six-transistor memory cell including
static noise margin considerations. We continue with some basic SRAM array
organization and we focus on different bit-line architectures. We study both
differential and single-ended read-out circuits. Subsequently, we present tech-
niques to reduce both dynamic and static power in SRAM. Memories contain
many high-capacitance nodes such as address, word, bit, and data lines that are
major contributors of dynamic power. Their power dissipation can be reduced
by lowering their voltage swing, decreasing their switching capacitance, or
recovering some of their energy. Since SRAM are the densest microprocessor
blocks in terms of transistor width per area unit, leakage power has emerged as
a primary design issue. Proposed techniques to reduce leakage power include
supply voltage control, body bias control, and sleep transistors. We finish the
SRAM subsection with a discussion on reliability and testing. Then, we shift
our focus on RF design starting with various RF cell topologies and continuing
with RF bit-line architectures and control logic. Finally, we conclude with a
summary.

2. Single-port SRAM Design

In this section, we analyze various design configurations of SRAM key com-
ponents such as the six-transistor memory cell, typical memory array arrange-
ments, bit-line architectures, and control logic. We also cover techniques to
reduce SRAM dynamic and static power and we address SRAM reliability and
testing issues.

Static memory design 91

2.1. Six-transistor Storage Cell

The six-transistor memory cell (Figure 1) consists of two pull-down or
drive nFET (MN 1 and MN 2), two pull-up or load pFET (MP1 and MP2) and
two access or transfer nFET (MA1 and MA2). The differential bit lines (BL and
BL) serve as inputs for writes and outputs for reads. The word line (WL) enables
the cell. During writes, one of the bit lines is driven to the supply voltage Vdd

while the other is clamped to ground, forcing the new data into the cell. During
reads, both bit lines are precharged before WL is enabled. When WL is enabled,
depending on the data stored in the cell, one of BL or BL is discharged.

Sizing the six transistors is a delicate procedure since there are several
conflicting criteria that must be considered. First, the cell must be as small as
possible to improve SRAM density. Second, the access and pull-down nFET
must be strong enough to discharge the highly-capacitive bit line within a
specified time. Third, making the access nFET strong increases the bit-line
capacitance which affects its discharge time. Fourth, increasing the strength of
either the access or the pull-down nFET increases the bit-line leakage current
which increases static power and reduces the bit-line noise immunity. Fifth, the
cell static noise margin (SNM) that determines its stability, i.e. its immunity to
process, temperature, and supply voltage variations must be maximized given
other specifications.

Some of the design criteria listed above depend on the system specifica-
tions. For instance, fast access time is more important than high density for a
level-1 cache. In contrast, high density and low static power are more impor-
tant than fast access time for a level-3 cache. Thus, for example, three levels
of cache designed for the same microprocessor were optimized for different
specifications: the first level was optimized for latency [6], the second level for
bandwidth [7], and the third level for area efficiency [3]. Regardless of other
specifications, ensuring correct operation by improving noise immunity is key
to the design of any SRAM. In this subsection we study the cell static noise

Figure 1. Six-transistor SRAM cell.

92 N. Tzartzanis

margin. Noise issues related to the bit lines due to their leakage and coupling
are addressed in later subsections.

The SRAM cell SNM is defined as the minimum dc noise voltage that when
applied to its internal nodes bit and bit, causes the data stored in the cell to
flip [8, 9]. In other words, SNM is the maximum dc noise voltage that the cell can
tolerate. When the cell is idle, i.e. during data retention, WL is 0 V and the cell
flip point depends on the voltage transfer characteristics of the cross-coupled
inverters. The cell however is more sensitive to noise during reads when WL is
Vdd and both bit lines BL and BL are precharged to Vdd . Then the voltage of the
internal node (bit or bit) that is “0” raises to above 0 V. The voltage level that
this node raises to depends on the ratio of the transconductances between the
pull-down nFET and the access nFET, which is called the cell ratio r [9, 10].
Assuming that both nFET have the same channel length, r is determined by
the width ratio of the pull-down nFET to the access nFET. Furthermore, during
reads the access nFET is connected in parallel to the pull-up pFET changing
the voltage transfer characteristics of the cross-coupled inverters [9, 10].

Figure 2 shows the voltage transfer characteristics for an SRAM cell
designed for a 90 nm CMOS process during data retention (WL = 0V) and
during read (WL = Vdd) for different cell ratios r . The cell SNM is graphically
represented by the side of the maximum square that fits within the voltage
transfer characteristics of the two cross-coupled inverters. During data reten-
tion the cell SNM is approximately the same, independent of r . However,
during read, the cell SNM significantly improves for increasing r since the
voltage of the “0” node reduces from 196 mV (r = 1), to 110 mV (r = 2), and

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

bit (V)

bi
t (

V
)

r = 1
r = 2
r = 3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

bit (V)

bi
t (

V
)

r = 1
r = 2
r = 3

(a) During Data Retention (b) During Reads

Figure 2. SRAM cell noise margins for different cell ratios r (a) during data retention and
(b) during reads; squares are drawn for r = 2.

Static memory design 93

finally to 76 mV (r = 3). As CMOS technology scales, SRAM cell SNM tends
to decrease because of supply voltage and threshold voltage scaling [9]. To
mitigate the problem, in some deep sub-micron CMOS technologies, high-
threshold voltage FET are available for SRAM cells [4].

Other issues to consider in sizing the cell FET are that reads must be non-
destructive and writes must cause the cell to change state. The former can be
accomplished by meeting the cell SNM requirements so that the voltage rise
of the “0” node is lower than the cell flip voltage. Since the access devices
are nFET, they are more effective in passing a “0”. Assume that the cell stores
a “1” (bit is Vdd) and a “0” must be written (BL is 0V). For the write to be
successful, the access nFET MA1 must over-power the pull-up MP1. Once the
voltage of bit is lower than the threshold voltage of the inverter formed by
MP2 and MN 2, bit switches to Vdd and the cell flips. If both the access nFET
and pull-up pFET are minimum-size, the access FET would be stronger than
the pull-up pFET due to the higher mobility of electrons compared to holes.
Increasing the strength of access nFET improves write speed at the expense
of reducing the cell SNM and increasing the cell size, the bit-line capacitance,
and the bit-line leakage current.

2.2. Organization

Typically, SRAM are organized in a single array which is divided into
blocks. For instance, in ref. 11 the SRAM array has three levels of hierarchical
word decoding: global, subglobal, and local. The advantage of this architecture
compared to a flat design is that it reduces the decoding time since local word
lines that connect to the cells are relatively short and contain small capacitance.
Furthermore, it also reduces dynamic power since only the bit lines of the active
blocks are enabled. Another approach applicable to large caches is to divide the
cache into subarrays or macros [3–5]. Individual SRAM macros can be used
as “tiles” to fill irregularly shaped areas achieving high area efficiency. Using
SRAM macros to build the cache also results in low dynamic power if the idle
macros are disabled [12].

A typical SRAM macro (Figure 3) consists of the cell array, a row decoder
(including word line drivers), a predecoder, a column decoder (including bit-
line precharge circuitry), sense amplifiers for reads, and bit-line drivers for
writes. SRAM macros usually are small enough that it is not necessary to
divide them into blocks. The cell array contains n rows and m columns. The
column decoder operates as a demultiplexer for writes and a multiplexer for
reads selecting k out of m bits that are accessed. Usually, column decoding
combines 8 or 4 adjacent row bits to 1 input (writes) or output (reads) bit.
Although the row decoder is shown on the side of the array, usually it is placed
in the middle of the array to reduce the word-line RC delay. Signals SE and

94 N. Tzartzanis

Figure 3. Typical SRAM macro organization.

WE enable the sense amplifiers (for reads) and the write drivers (for writes),
respectively. Signals CS l−1:0 control the column decoder with l = 8 or l = 4.
Although not shown in Figure 3, address, control, and input data are generally
latched at the boundary of the SRAM macro. Output data could be latched
depending on the timing specifications.

Predecoders and decoders can be designed using static NAND or NOR gates
followed by inverter buffers. They can be sized similarly to standard CMOS
gates based on their output load [13]. It is also common for their devices to
be skewed for fast rise time to reduce access time. Furthermore, they can be
self-reset to produce pulsed word lines.

2.3. Bit-line Architecture

Next to the storage cell, the bit-line architecture is the most important design
aspect in an SRAM. As discussed earlier, the cell FET are relatively weak in
order to keep the cell small. Therefore, discharging the highly-capacitive and
highly-resistive bit line through the cell is a slow process. Moreover, the bit-line
architecture determines the design of the rest of the peripheral logic as well
as the control logic. Traditionally, the inherently differential structure of the
SRAM bit lines has been used to speed-up the read operation through signal
amplification.

Static memory design 95

A typical bit-line structure containing two adjacent columns (BLa/BLa and
BLa−1/BLa−1) is shown in Figure 4. MP5, MP6, MP7, and MP8 precharge the bit
lines while MP9 and MP10 equalize them to ensure both bit lines within a pair are
at the same potential before the cell is read. FET pairs MN 1/MP1, MN 2/MP2,
MN 3/MP3, and MN 4/MP4 form transmission gates that perform the column
decoding task, i.e. they connect one out of the two bit-line pairs to di/d̄i . During
reads, first the bit lines are precharged. Subsequently, the word line is enabled
along with the column decoder. Finally, when enough signal difference has
been built between di and d̄i , the sense amplifier is enabled. During writes, one
of the precharged bit lines is discharged through MN 5 or MN 6 depending on
dini , while the column decoder and the word line are enabled. During writes,
cells that are located in the non-selected bit lines maintain their data since
both of their bit lines are left precharged similar to a (non-destructive) read
operation.Although for simplicity two columns are shown in Figure 4, typically
four or eight bit-line pairs are connected to di/d̄i through the column decoder
transmission gates. In the extreme case that there is only one column per output
bit, these transmission gates are not required since their purpose is to multiplex
the bit lines.

Applying differential bit-line sensing during reads not only decreases the
read delay, but also improves noise immunity due to common-mode noise

Figure 4. Typical SRAM bit-line structure.

96 N. Tzartzanis

Figure 5. Sense amplifier circuit topologies.

rejection. Figure 5 shows two commonly used voltage-mode sense amplifiers.
The cross-coupled pFET sense-amplifier (CCPSA) was introduced as a replace-
ment to paired current-mirror sense amplifiers [14, 15]. CCPSA not only dis-
sipates less power than current-mirror SA, but also it is faster due to the high
gain of the pFET positive feedback. Its outputs must first be reset. One way to
reset them is to equalize them. Although in Figure 5 this task is accomplished
using a pFET (MP3), it may require a transmission gate or an nFET depending
on the supply and FET threshold voltages. The drawback of CCPSA is that it
requires careful timing and it is prone to transistor mismatches.

The latch-type sense amplifier (LTSA) which is based on inverter crosscou-
pling is another approach. In this case the SA inputs are also its outputs. LTSA
requires to be reset before the amplification occurs. LTSA is more effective
when reset to a voltage close to the metastability point of the cross-coupled
inverters. However, because the bit lines are precharged, it is typically ini-
tialized by precharging its internal nodes. This can be performed by explic-
itly precharging the internal nodes (as shown in Figure 5) or by the bit-line
precharge pFET through the column decoder transmission gates. The sense
amplifier is enabled when enough voltage difference has been built between di

and d̄i . When enabled, one of these nodes is completely discharged while the
other is charged to Vdd . Therefore, unless di and d̄i are disconnected from the
bit lines during sensing by disabling the column decoder transmission gates,
LTSA discharges an entire bit line, resulting in unnecessary power dissipation
and poor performance. Device mismatches in the LTSA can cause it to latch
to the wrong state if the differential input signal is not strong enough when
the LTSA is enabled. Excessive circuit simulations are required to determine
the minimum voltage difference for correct operation. In addition to corner
simulations, Monte Carlo simulations with statistical variations on the FET
device parameters are necessary. Typically, increasing the FET length beyond

Static memory design 97

the minimum channel length allowed by the CMOS process results in more
robust operation.

Many different sense-amplifier circuit topologies have been used in the
past. The exact topology depends on the CMOS process and the sense amplifier
requirements. For instance in ref. 16, which uses a hierarchical bit-line structure,
LTSA is used for the local bit lines, whereas a variant of CCPSA is used for the
global bit lines. It has also been common to employ multi-stage amplification
schemes [11, 14, 15, 17]. However, as the CMOS technology and the supply
voltage scale, in most cases a single amplification stage is sufficient.

Current-mode sense amplifiers have been successfully used in SRAM
[18, 19]. Instead of voltage difference they amplify a current difference in
the bit lines. Their merit compared to voltage-mode sense amplifiers is their
insensitivity to bit-line capacitance. However, as CMOS technologies scale,
interconnect capacitance per unit length remains about constant or slightly
decreases, whereas interconnect resistance per unit length increases [20]. Con-
sequently, the resistance factor dominates in the bit-line RC delay.

Typically, in current-mode sensing schemes, the bit lines are clamped either
to the supply voltage or to ground. When the cell is enabled, there is some
current drawn in one of the differential bit lines depending on the data stored
in the cell. Figure 6 shows a current-mode sense amplifier that is based on
the topology presented in ref. 18 and was used in a register file [21]. MP1,
MP2, MP3, and MP4 form a current sensing structure. MP5 and MP6 clamp
the multiplexed bit lines di and d̄i to the supply voltage Vdd . Before the sense

Figure 6. Current-mode sense amplifier (c© 2004 IEEE).

98 N. Tzartzanis

amplifier is enabled, MP7 equalizes di and d̄i to Vdd . Likewise, MP8 equalizes
nodes N1 and N2 to Vdd − Vthp1, where Vthp1 is the threshold voltage of MP1

and MP3. Also, MN 3, MN 4, and MN 5 pre-discharge nodes d and d̄. When the
sense amplifier is enabled the potential of N1 and N2 splits depending on the
current difference between di and d̄i . One node discharges to 2 · Vthp2 (where
Vthp2 is the threshold voltage of MP2 and MP4) and the other charges to Vdd .
Therefore, one of MP1 or MP3 turns off while the other is still conducting. One
of d and d̄ is charged to Vdd while the other remains at 0 V.

Recently, bit-line subthreshold leakage current has emerged as a serious
noise problem in SRAM. The conventional approach of amplifying the bit-
line differential signal is susceptible to subthreshold currents of the other
non-accessed cells attached to the same bit line, reducing the differential volt-
age available for sensing. To overcome this problem, SRAM designs use only
one of the bit lines for reads [6, 7] and the sense amplifier is replaced by a static
gate. Since bit lines must be fully discharged, reads can be very slow. To speed
up the operation, hierarchical bit-line architectures are adopted with local bit
lines connecting to only eight or 16 cells.

Figure 7 shows a single-ended bit-line architecture similar to that in ref. 7.
It is assumed that SRAM cells are arranged in blocks that consist of 16 rows

Figure 7. Single-ended bit-line structure.

Static memory design 99

and eight columns. The eight columns are multiplexed to produce one data
bit. To reduce overhead two opposing blocks share the same column select
and multiplexing circuit. All components in Figure 7 except MP1, MP2, MN 1,
and I1 are replicated for each column. Local bit-line pairs lbluj /lbluj and
lbllj /lbllj (j = 0 . . .7) connect the 16 cells within each row. For writes, one
of the eight write column select signals, wcolj (j = 0 . . .7) is activated. This
signal connects one of the local bit-line pairs to the global write bit-line pair
gwbl/gwbl through pass nFET. The global write bit-line pair connects to one
local bit-line pair of each opposing block, instead of just one local bit-line pair.
Although this leads to more energy dissipation since precharged local bit lines
are unnecessarily discharged, it does not cause any malfunction since only one
word line is activated. It could be possible to have two sets of write column
select signals, i.e. a total of 16, at the expense of increased area overhead for
the column select circuit. For reads, local bit lines from opposing blocks are
multiplexed using a static NAND gate. The NAND gate drives a dynamic
AND–OR gate. Read column select signals, rcolj (j = 0 . . .7) select one out of
the eight columns to conditionally discharge the AND–OR gate. The output of
this gate drives an nFET that pulls down a global read bit line grbl. Local bit
lines as well as the AND–OR gate are precharged by signal pclbl . Global read
bit lines are also precharged by a different precharge signal pcgrbl (not shown
in Figure 7). Global read bit lines can also be split in two pieces which are
multiplexed in the middle of the array.

More aggressive techniques include bit-line leakage compensation [22] and
bit-line leakage tolerance [23]. In the former, the bit-line leakage current is
detected and the same amount is then injected in the bit line to cancel out its
leakage, allowing differential sensing. In the latter, reads are single-ended in a
domino-like configuration but the local bit lines are pre-discharged instead of
precharged. As shown in ref. 23, this configuration causes the access nFET of
non-selected cells to be reverse biased, which reduces their leakage current.

2.4. Control Logic

Generating all the control signals required by an SRAM is an involved
design task. Most of those signals must be delivered within very stringent time
requirements to ensure proper operation. For instance, if the sense amplifiers
are enabled before sufficient voltage or current difference has been built in their
inputs, it is likely that their outputs would be incorrect. Furthermore, as caches
occupy increasingly larger areas, their designers must consider more extreme
process and voltage variations. Even if the cache is divided into small SRAM
macros, all those macros must be synchronized to deliver the data following
certain timing specifications.

100 N. Tzartzanis

Typically, the access time of second- or third-level caches is longer than
the microprocessor clock cycle time. The conventional approach to improve
cache bandwidth is pipelining [4, 7]. Not only the cache access operations, but
the SRAM macros themselves can be pipelined to meet the bandwidth require-
ments [24]. Since it is difficult to break SRAM operations into pipeline stages, a
wave pipeline approach has been used [24, 25]. In ref. 24 the micro-operations
are input-triggered, self-resetting circuit blocks. In ref. 25 a PLL is employed
to generate internal clock phases that control the SRAM operation. The design
challenge of wave pipelined SRAM is that eventually their output must be syn-
chronized with the system clock signal. Similar to wave pipelining, the 24 MB,
multi-cycle cache reported in ref. 5 was designed to operate asynchronously
eliminating delay associated with clock skew, latch delays, and cycle margins.
Also, since it was not necessary for the asynchronous operation to be split
within clock cycle boundaries, it was possible for accesses to complete in five
cycles instead of the projected eight cycles that an equivalent synchronous
design would require.

Control signals within an SRAM macro can be generated in a self-timed
manner tracking the delay of the micro operations. For reads, those micro
operations would be address predecoding, row decoding, memory access, col-
umn decoding, sense enable, and latch enable. The different ways that those
control signals are generated fall into three categories: (a) using clock edges
or phases [26], (b) using inverter delay chains [24, 27], and (c) using circuit
replicas [28]. It has been shown [28] that the latter approach tolerates bet-
ter process, voltage, and temperature variations, since the replicas match very
well the actual circuits and they are located close to them. Also, gate, inter-
connect, and cell delays vary differently even if all of them are in the same
chip. Therefore, using inverters to track interconnect and cell delays could be
ineffective or it would require larger margin than necessary. In Section 3 a
replica-based self-timed control logic for a register file will be discussed in
detail.

2.5. Techniques for Reducing Dynamic Power

Power dissipation has been a key design consideration for microprocessors.
Memories, being the largest blocks in microprocessor chips, are major contrib-
utors to their dynamic and static power dissipation. This subsection presents
some techniques for reducing SRAM dynamic power. The prevalent approach
for reducing dynamic power in CMOS digital circuits is to lower their operat-
ing voltage. Although this is simple with static CMOS, low-voltage memory
operation causes the cell SNM to degrade. Also, the bit-line discharge time can
substantially increase, especially coupled with the use of high-threshold volt-
age FET in the cell. Low-voltage SRAM have been reported [29, 30]. In ref. 29

Static memory design 101

Figure 8. Using replica bit line to control the bit-line voltage swing during reads.

a replica circuit is used to track bit-line delay for a wide range of operating
voltages (i.e., 1–5 V). In ref. 30 the word-line voltage is boosted to compensate
for the low-voltage operation.

As mentioned earlier, a small voltage difference between the bit lines is suf-
ficient for a voltage-mode sense amplifier to produce the output data. Therefore,
it is not necessary to fully discharge the bit lines during reads. In ref. 28, replica-
based techniques are exploited to reduce bit-line voltage swing (Figure 8). The
replica bit line (repBL) and the actual bit lines start being discharged at the
same time. Since repBL is discharged faster than the actual bit-lines, when it is
fully discharged, the actual bit-lines are partially discharged. When discharged,
repBL disables the word lines and enables the sense amplifiers. Two bit-line
replica circuits are presented. One is based on capacitance ratio with the replica
bit line being a fraction of the actual bit lines. The other is based on cell current
ratio, with the dummy cell drawing a multiple of cell current, thus discharg-
ing the replica bit line much faster than the actual cells discharge the actual
bit lines.

Although bit-line power can be straightforwardly reduced for reads, a full
voltage swing is commonly required for writes. In ref. 31, bit-line swing is
limited to Vdd/2 during writes by using Vdd/2 as the bit-line reference volt-
age and applying half-swing pulses. The same technique is also extended in
reducing decoder power dissipation. In ref. 32, a low reference voltage (i.e.
20% of Vdd) is used for the bit lines which swing by 10% of Vdd during writes.
Reads are performed using current-mode sense amplification while bit lines
are clamped to the reference voltage. To improve cell stability, word lines

102 N. Tzartzanis

swing to a reduced voltage during reads. In ref. 33, the sense amplification
of the bit-line voltage difference during reads is extended for writes. The cell
itself is a sense amplifier that is set to the new data based on a small volt-
age difference in the bit lines. This write scheme requires two control signals
per row (i.e. word line and sense enable). Extra area overhead includes an
nFET in series to the cell pull-down nFET to form a latch-type sense amplifier
(similar to Figure 5b). The overhead of the extra nFET can be amortized by
sharing it between several successive cells. In ref. 34 the bit lines are resonantly
powered during writes and their energy is recovered and recycled through an
LC tank. During reads the bit lines are clamped to 0 V. The energy recovery
approach is extended to all high-capacitance nodes including address, data, and
word lines.

The SRAM design proposed in ref. 35 combines bit-line low-voltage
swing with low-voltage operation. Specifically, instead of ground, the sources
of the pull-down nFET are connected to a variable supply called source
line. Reads are sped up by driving the source line to a negative voltage
which forward biases the substrate of the pull-down nFET. During writes
the source line is left floating, i.e. in high impedance, which makes it pos-
sible to flip the cell with a small voltage difference in the bit lines since the
pull-down nFET are inactive. When the write completes, the source line is
set to ground which triggers the cell to operate as a latch-type sense ampli-
fier. As shown in ref. 35, the speed-up obtained by using the negative-voltage
source line can be traded for power reduction by lowering the supply volt-
age. An improved design based on the source-line concept was presented in
ref. 36. The source line is driven to a positive voltage for non-selected cells
and to 0 V for accessed cells eliminating thus the need of a negative supply
voltage.

Reducing bit-line switching capacitance is another approach to decreasing
dynamic dissipation orthogonal to low-voltage operation. Typically, all bit lines
switch during reads or writes even if only a few of them are selected through
the column decoder. Dividing the SRAM array into blocks and using a hierar-
chical word-line scheme minimizes the number of switched bit lines [37]. Like-
wise, hierarchical bit-line schemes inherently result in reduced bitline switching
capacitance since the array is divided into horizontal segments and local bit
lines connect to relatively few cells (Figure 7). With proper row decoding it is
possible to limit the switching bit-line capacitance to local bit lines within one
segment. Although global bit lines span the entire cell array, their capacitance
is small since it includes mostly wiring capacitance.

Another target for power reduction is the data bus that connects multiple
SRAM macros or the cache to the processor. As is the case with any micropro-
cessor bus, low-voltage-swing [28, 37, 38] or energy-recovery [34] techniques
can be employed for power reduction in the data bus.

Static memory design 103

2.6. Techniques for Reducing Static Power

The on-going scaling of CMOS process technology has made FET static
current, which translates directly into static power, one of the most important
issues in microprocessor design. Caches, being the densest and largest compo-
nents in current microprocessors, are among the top contributors to static power.
According to ref. 39, static current accounts for 30% of level-1 cache power
and 80% of level-2 cache power in a representative 0.13 µm microprocessor.

There are four different current sources that contribute to static power in
the CMOS process: (1) the subthreshold current between the drain and the
source of an off FET due to the weak inversion in the channel region, (2) the
gate tunneling current between the gate and the channel through the gate oxide,
(3) the gate-induced drain leakage (GIDL) current between the drain and the
channel when the FET is off and there is a voltage difference between the gate
and the drain, and (4) the P-N junction reverse saturation and tunneling current.

The subthreshold leakage current depends mostly on the FET threshold volt-
age. Using SRAM-specific high-threshold voltage FET for the cells [4] not only
improves the cell SNM but also reduces its subthreshold leakage dissipation.
The gate-tunnel leakage depends exponentially on the gate oxide thickness and
the gate-to-source voltage. It has been reported that a 2-Å decrease in the gate
oxide thickness causes a 10-fold increase in the gate-tunnel leakage [40] and
it is more pronounced when the FET is on [41]. The GIDL current depends on
the gate-to-drain voltage difference Vgd and becomes noticeable when

∣∣Vgd
∣∣ is

equal to the supply voltage Vdd [40]. However, for current CMOS processes
GIDL is insignificant in carefully engineered devices compared to subthresh-
old leakage current [41]. Junction reverse saturation current is insignificant for
current CMOS processes, but future highly-doped 50-nm CMOS processes are
predicted to introduce a significant amount of junction tunneling current [42].

Figure 9 shows the effect of subthreshold and gate-tunnel leakage cur-
rents [40, 41], which dominate during nominal operation, on an SRAM cell. It
is assumed that bit is at Vdd , the word line is at 0 V, and both bit lines are at
Vdd . Static power reduction techniques seek to dynamically control the leakage
current paths [39], the FET threshold voltages [43], or the cell supply volt-
ages [36, 40, 41, 44–47]. These techniques can be applied either during standby
mode or during active mode. The former requires that the entire SRAM array is
disabled when the microprocessor is idle, whereas the latter requires that only
unused sections of the SRAM are disabled while selected SRAM sections are
made available for access. Active mode static power reduction is more difficult
since it incurs control timing complexity and possible delay overhead. Either
standby or active mode leakage control requires dynamic power and area over-
head, especially if the cell size must be increased. For any viable technique,
leakage power reduction must outweigh the dynamic power overhead. Finally,

104 N. Tzartzanis

Figure 9. Dominant leakage components in SRAM cells.

these techniques degrade the cell SNM at least during data retention when the
cells are disabled.

Controlling the leakage path (Figure 10a) was primarily proposed for reduc-
ing the subthreshold leakage current [39]. An nFET (MN 3) is inserted between
the pull-down nFET and the ground creating an internal virtual ground (Vgnd).
MN 3 is activated when the cell is accessed connecting the word line to its gate.
One nFET can be shared between several cells in the same row, thus reducing
the overhead. Depending on the supply and the FET threshold voltages, when
MN3 is off the cell SNM is reduced because one of the cell internal nodes (bit or
bit) that nominally should be grounded is floating and its voltage rises to above
0 V. Therefore, data retention could be problematic. In ref. 39, it is reported
that data retention is possible with proper transistor sizing. It should be noted
that this approach also reduces gate-tunnel leakage, since the gate-to-source
voltage of the FET that would draw gate-tunnel leakage current is reduced.

An alternative approach to reduce subthreshold leakage current is to control
the FET threshold voltage by dynamically adjusting their substrate bias [43]
(Figure 10b). Voltages Vnw and Vpw connect to the n-well of the pFET and
the p-well of the nFET, respectively. For unused cells, Vnw and Vpw reverse
bias all cell FET. For selected cells they are driven to their nominal settings,
Vdd and 0 V, respectively, before the word line is enabled. The area overhead
includes the Vnw and Vpw wiring in addition to the supply and ground voltages.
It is possible however for multiple rows to share the same wells to reduce
the overhead. Also, the substrate voltage control must be synchronized to the
word-line signal. More important, it is necessary to provide the supply volt-
ages for reverse bias from off chip or generate them on chip using dc–dc
converters. Unless using off-chip passive components, dc–dc converters have

Static memory design 105

Figure 10. Cell static power reduction by controlling (a) the leakage paths and (b) the FET
threshold voltages.

low efficiency, which may be acceptable depending on Vnw and Vpw current
requirements. Other process-dependent problems afflicting body-bias tech-
niques include GIDL current increase, especially for high-threshold FET [48],
and negative bias temperature instability (NBTI) [49].

Controlling the cell ground and/or power supplies (Figure 11) is used pri-
marily to suppress gate-tunnel leakage by reducing the internal gate-to-source
voltages of the FET that draw gate-tunnel leakage [40, 41, 45, 46]. The ground
supply Vssv is raised above 0 V for unused cells and is set to 0 V for selected
cells [40, 45, 46]. Likewise, the power supply Vddv is lowered below Vdd for
unused cells and is set to Vdd for selected cells [41]. Although the variable
ground and power supplies (Vssv and Vddv) connect only to the sources of pull-
down nFET and pull-up pFET respectively, their substrates connect to the
nominal supply voltages, i.e. ground for nFET and Vdd for pFET. In addition to
gate-tunnel leakage, this technique suppresses subthreshold leakage currents
since some of the FET are reverse biased. Varying the ground supply reverse
biases the pull-down and access nFET [40] and varying the power supply
reverse biases the pull-up pFET [41]. The variable supply voltages must be
restored to their nominal settings before the word line is enabled. This tech-
nique also requires extra supply voltages which can be provided off-chip or
generated on-chip using diode-connected FET [41, 45, 46]. As expected, the
cell SNM is degraded during data retention.

106 N. Tzartzanis

Figure 11. Cell static power reduction by controlling (a) the ground and (b) the power supply.

2.7. Reliability and Testing

In this subsection we address several issues related to SRAM reliability
and testing. First, we present techniques to improve the cell SNM when low-
voltage operation is necessary. Second, we discuss bit-line coupling issues
which could cause the SRAM to malfunction. Third, we describe soft errors and
error checking and correcting (ECC) mechanisms. Fourth, we address memory
redundancy to improve yield. Finally, we touch on SRAM testing, specifically
built-in-self-test (BIST) circuits.

Depending on the CMOS process it could be difficult to obtain adequate
cell SNM for low-voltage applications, especially if the cell is implemented
with low threshold voltage FET. In order to improve the cell SNM, its supply
voltage is boosted when accessed similar to the approach used to reduce leakage
dissipation (Figure 11b) [50–52]. In ref. 50, the array voltage is boosted when
the SRAM is activated, i.e. the cells operate at higher voltage for both reads
and writes. Typically, the cell SNM needs to be improved during reads. Also,
the higher cell supply voltage reduces the bit-line discharge time. In ref. 51
the supply voltage of the accessed row is bootstrapped when its word line
is activated. This is accomplished by running the supply lines next to word
lines and using their capacitance coupling for the bootstrapping. In ref. 52
the cell power supply voltage is boosted only for reads. As discussed earlier,
during writes, cells in non-selected columns perform dummy reads since their
precharged bit lines are left floating. To ensure that the dummy reads are non-
destructive, the supply voltage of the non-selected columns is boosted, whereas
cells in the columns selected for writes are connected to the low supply voltage.

Static memory design 107

Minimizing bit-line coupling capacitance is important to ensure correct
SRAM operation. Bit lines can couple either to word lines or to bit lines from
neighboring columns. Bit-line coupling capacitance to word lines is relatively
small since they run on different directions. Moreover, both bit lines are coupled
to word lines and hence they are both affected the same way. Common-mode
noise is rejected when differential sensing is used. Coupling between bit lines
of neighboring columns could be detrimental. The conventional approach to
reduce the bit-line to bit-line coupling capacitance is to use twisted bit-line
routing (Figure 12) [53, 54]. Twisting the bit lines not only reduces the coupling
capacitance, but also converts the coupling interference into common-mode
interference which is rejected with differential sensing. More aggressive bit-line
twisting routing methods span multiple pairs and can reduce bit-line coupling
capacitance by up to 44% [55].

There are two causes of malfunction in memories: soft errors and permanent
defects. Soft errors are non-recurring errors caused by alpha particles [54, 56]
and cosmic ray neutrons [57] that hit the cell storage node, or by internal
circuit noise due to lack of adequate design margins. Here we discuss only
alpha and cosmic-ray-induced soft errors, although either type of error can be
corrected with appropriate hardware or software. The occurrence of soft errors
is statistical and their probability increases as the storage node charge decreases
and the memory capacity increases. As technology scales, both storage node
capacitance and supply voltage decrease and therefore the storage node charge

Figure 12. (a) Straight and (b) twisted bit-line routing.

108 N. Tzartzanis

decreases. In general the storage node charge should be kept larger than a
critical charge Qc which is technology-dependent and decreases as technology
scales [54, 58]. Simple methods to estimate the cosmic-ray-induced soft errors
rates (SER) have been proposed [58]. In ref. 59, SER immunity was improved
3.5 orders of magnitude by artificially increasing the storage node capacitance.
Any type of soft errors can be handled with ECC mechanisms. Parity bits
are accessed along with data bits. Depending on the number of parity bits
used for ECC and their assignment to groups of data bits, it could be possible
to correct single-bit errors. For m data bits and k parity bits, the following
expression should be satisfied [54]: 2k ≥ m + k + 1. Unlike alpha particles
that affect single cells, soft errors caused by cosmic rays can disturb multiple
neighboring cells [60], which would be costly to correct using ECC. However,
the probability of multiple soft errors in a single word can be minimized by
increasing the number of columns that are multiplexed to generate one bit of
data [40, 60, 61]. To eliminate the ECC timing overhead during reads, a hidden-
ECC mechanism is proposed in ref. 61. SRAM words are read and checked
when the SRAM is idle. When a soft error is detected, the corrected data is
written back to the SRAM.

Meeting yield specifications and further improving yield is very impor-
tant for the success of any microprocessor. Yield problems arise from material
defects and process variations. SRAM defects can either be scattered, affect-
ing localized cells, or accumulated, affecting sections of SRAM [54]. The
former can be treated similar to soft errors, i.e. using ECC mechanisms, but
more often they are treated through row or column redundancy. The latter can
be treated through block redundancy. In either redundancy scheme, defective
cells or blocks are identified during initial testing. Fuses are then used to phys-
ically remap redundant circuitry to replace the defective circuitry. Accesses
to defected columns or rows are redirected to redundant ones. For reliability,
the fuses are located far from the SRAM and their settings are stored in soft
registers during power up [26]. Depending on the cache organization, different
redundancy strategies are possible [5, 26]. It has been shown that a combina-
tion of both ECC and redundancy is very effective to achieve high yield in
memories [62].

Memories can be tested effectively using BIST circuits. BIST is especially
useful for SRAM testing, since its area and performance overhead can be kept
extremely small. When used with an on-chip PLL to generate a full-speed
system clock, BIST can eliminate or greatly reduce the need for expensive high-
speed, high-bandwidth wafer probing. Typically, BIST blocks are programmed
through a serial scan chain to generate different address and data patterns and
execute many types of test. At minimum, a BIST block must perform 100%
stuck-at fault (nets shorted to power or ground), address uniqueness, and data
retention tests. Various data patterns to detect crosstalk noise and worst-case
leakage current operability are also essential. Following test, a BIST block

Static memory design 109

reports the defective circuits for fuse repair, and retests the final reconfigured
memories.

3. Multi-port Register File Design

Register files are multi-port static memories with dedicated read or write
ports. They are smaller in terms of bit capacity but faster than SRAM. This
section is an overview of RF design covering the following subjects: storage
cell, organization, bit-line architecture, and control logic.

3.1. Storage Cell

Similar to SRAM, the RF storage cell is based on cross-coupled inverters.
However, since write and read operations are not coupled, its design is typically
simpler than the six-transistor SRAM cell. As we see next, reads can be assured
to be non-destructive and not to degrade the cell static noise margin. Although
RF have relatively small bit capacity, it is still necessary to keep their storage
cell small. In addition to keeping the RF size small, this would also result in
short delay time and low-power dissipation since internal word-line and bit-
line wire length would be minimized. The cell size can be wire- or transistor-
limited. Writes and/or reads can be differential or single-ended. Apparently,
single-ended operations minimize the number of wires that run through the RF
array. Another issue to be considered is bit-line to bit-line coupling which is
different than in SRAM. In RF, bit lines can couple to other bit lines of the same
cell that belong to a different port. To prevent bit-line coupling from causing
the RF to malfunction, bit lines can be shielded with power lines or they can
be spaced farther apart than the minimum metal space allowed by the CMOS
process.

Different combinations of write and read port circuit topologies are possible.
Figure 13 shows several differential and single-ended write ports. The first one
is based on the SRAM cell. NFET M1 and M2 must be replicated for each
write port. In a single-ended alternative (Figure 13b), one of the access nFET
is replaced with a transmission gate, making it possible to transfer a strong
“0” as well as a strong “1” using one bit line per port [63] at the expense of a
differential word line. Inverter I2 should be a weak feedback inverter so that it
can be over-powered by the bit-line driver and the transmission gate. The write
port shown in Figure 13c requires single-ended bit lines and word lines. The
word line negative polarity is generated inside the cell and is used to disable
the feedback path of the cross-coupled inverters [64]. When the cell contains
more than one write port, all write word lines are fed into a NOR gate and
the output of the NOR gate drives M2 disabling the feedback when any one of

110 N. Tzartzanis

Figure 13. Register file write-port circuit configurations.

the write word lines is enabled. A similar approach is shown in Figure 13d, in
which the feedback inverter is disabled through a stack nFET (M6) in its pull-
down stack [65]. The next configuration (Figure 13e) relies on nFET passing a
strong “0” to accomplish write operations with single-ended write bit and write
word lines [66, 67]. When wbl is “1”, bit is pulled-down through M2 and M3.
Finally, the circuit topology shown in Figure 13f resembles a set/reset latch.
Depending on the input, one of the pull-down stacks sets the cell to “0” or “1”.
The advantage of this design is that when both wbl and wbl are “0” the cell
maintains its old data. This feature can be useful when certain bits in a word
should be masked out such as byte-wide write operations.

RF reads are typically single-ended based on precharged domino logic
(Figure 14a). When the read word line (rwl) is enabled the read bit line (rbl) is
conditionally discharged depending on the data stored in the cell. NFET M1 and
M2 are replicated for each read port. To balance the internal capacitance, both
bit and bit can be used to drive the read-port pull-down nFET with those driven
by bit producing negative polarity outputs. Figure 14b shows an example of a
complete RF storage cell [67]. M1,M2, and M3 are replicated for each write

Static memory design 111

Figure 14. Commonly used read port (a) stand-alone and (b) combined with a write port
(c© 2002 IEEE).

port and M4 and M5 are replicated for each read port. Inverter I3 is inserted
to isolate a large 10-read-port load from the bit/bit nodes. Compared to the
six-transistor SRAM cell, reads do not interfere with the data stored in the cell,
allowing a wide freedom in sizing the RF cell FET. Furthermore, low-voltage
operation can easily be achieved [68]. Other RF read-out methods have been
proposed using single-ended sense-amplifiers instead of precharged bit lines.
However, they result in excessive static dissipation [69, 70].

3.2. Organization

RF are simpler to organize than SRAM because usually they contain 128
or less words, which makes column decoding unnecessary. Also, RF cells are
larger than SRAM cells, which simplifies the design of the peripheral circuits
that must match the cell pitch. In a typical organization the port addresses are
first predecoded and then decoded (Figure 15). The decoder also includes the
word line drivers. Static CMOS gates or precharged domino logic [67] can be
used for predecoding and decoding. It is possible to place the decoders in the
middle of the array to reduce the word-line resistance and capacitance. This
is desirable especially for RF that support half-word accesses since the array
can be split in most significant (MS) and least significant (LS) bits. Read bit
lines are fed to a read-out circuit and potential latches. When read bit lines
are precharged, latching the output can result in dynamic power savings by
preventing the propagation of the bit-line precharging and discharging sequence
to the RF output. For write ports, input data is first latched and then inverter

112 N. Tzartzanis

Figure 15. RF organization and floor plan.

buffers are used to drive the write bit lines. If the write bit lines are too long
(i.e. the RF contains too many words), they can be split into sections and
repeaters can be used to drive each section. The same applies to the outputs of
the predecoder which span equal length.

3.3. Read Bit-line Architecture

As is the case with SRAM, bit-line leakage has also been a key problem in
RF design. The difference is that RF read-out circuits are already mostly based
on single-ended reads with precharged domino logic. Using a single bit line
does not completely solve the leakage problem since the bit line may still be
discharged below the threshold voltage of the receiving gate due to subthreshold
current of the cells attached to it. To ensure proper circuit operation, a feedback
pFET is inserted with required strength proportional to the number of cells on
the bit line. The feedback pFET typically considerably increases the read access
time. To overcome the problem bit lines are partitioned into smaller sections
that include eight or 16 cells [67, 71, 72]. Global bit lines are used to drive the
output (Figure 16). In case (a), each global bit line runs across the entire RF
array and outputs are available at the bottom of the array. In case (b), global bit
lines are also split into two pieces. Those half global bit lines are multiplexed
in the middle of the array.

Static memory design 113

Figure 16. RF read bit-line structures (c© 2004 IEEE).

Several techniques to improve bit-line noise immunity have been proposed.
In ref. 72, the order of the read-port stack nFET (Figure 14a) is reversed; rwl
drives the bottom nFET and also precharges the internal node between the two
nFET when non-selected. Also, a gate is inserted to mask the gate voltage of
the top nFET that is driven by the cross-coupled inverters to 0 V unless rwl
is enabled. When the bit line is precharged both the drain and the source of
the top nFET in the stack are at Vdd for the non-selected cells cutting off the
path of the bit-line subthreshold leakage current. The overhead is five FET
per port. In ref. 21, current-mode differential signaling is used to address the
subthreshold leakage bit-line noise. The single-ended bit-lines are split into
two pieces and a sense amplifier is placed in the middle. Differential sensing
is achieved by generating a reference current in the nonselected half bit line.
The nFET subthreshold leakage current is reduced since this technique makes
it possible to increase their channel length by 80%.

3.4. Replica-based Self-timed Control Logic

In this subsection we present a replica-based self-timed control logic imple-
mented in a 34 word × 64 bit, 10-read/6-write port RF [67]. This control logic
can be modified for use in an SRAM. It should be noted that the RF sup-
ports write-through operations (i.e. writes are followed by reads in the same
cycle) and half-word accesses. Figure 17 shows the RF control and data sig-
nal flow. Each write and read port has a 4-bit control input (wc[3:0] and rc[3:0],

114 N. Tzartzanis

Figure 17. Register file control and data diagram (c© 2002 IEEE).

respectively) that enables the port and determines the access width (i.e. LS bits,
MS bits, or both) and a 6-bit address (wa[5:0] and ra[5:0], respectively). Write
ports receive a 32- or 64-bit input data and read ports produce a 32- or 64-bit
output data. Only one bit is shown in Figure 17; din and dout respectively. The
address and control bits are predecoded (first logic stage) and then drive the
final decode stage (second logic stage). Reads have a third stage that is enabled
after the write operations have completed. The three logic stages are imple-
mented with precharged dynamic gates. Each word part (i.e. MS and LS) per
port is enabled with different control signals (wenls and wenms for write ports
and renls and renms for read ports). For write ports, input data drives write bit
lines (wbl in Figure 17) only when the port is active. For read ports, the output
latches are enabled only when the port is active. The RF operation is controlled
by a replica timing chain that imitates the sequence of the micro-operations
(i.e. write address decoding, data writing, and data reading). The self-timed
chain contains dummy predecoded address, write word, read word, and read
bit lines. These are placed along the real ones. Dummy word and bit lines are
50% and 25% of their respective actual load.

A timing diagram (Figure 18) from a circuit simulator shows the sequence
and dependency of control and data signals. Some signals (i.e. wenls, renls,
and ltcout) are omitted for simplicity. Operation is fired on the positive clock

Static memory design 115

Figure 18. Register file timing diagram (c© 2002 IEEE).

edge, which sets the set/reset latches on the bottom of Figure 17. These latches
generate two precharge signals: pcwr for the write decoder and pcrd for the read
decoder. Setting the precharge signals high initiates the self-timed operation.
The dummy decoder generates the doread signal which enables read word
lines. Doread is also used to precharge the read bit lines, which are actively
pulled up while the write bit lines switch. The last part of the self-timed logic
generates done, which indicates the end of the read operation and enables the
ltcout signal for read ports. Doread in conjunction with the negative edge of the
clock reset the latch that generates pcwr . Likewise, done resets the latch that
generates pcrd .

4. Summary

In this chapter, we presented some basic guidelines for designing efficient
single-port SRAM and multi-port RF. In general, design decisions depend
greatly on the specifications of the target static memory as well as the CMOS
technology process. We covered a variety of design approaches for the key
SRAM and RF circuitry. We also addressed design challenges that are related to

116 N. Tzartzanis

scaled CMOS technology. As was shown, SRAM static noise margin degrades
with decreasing supply and FET threshold voltages. Additionally, lowering
the FET threshold voltage decreases the bit-line noise immunity and causes
excessive static power dissipation. We presented advanced design techniques to
overcome or mitigate these problems. Finally, process, voltage, and temperature
variations become key design issues with increasing SRAM sizes and CMOS
process scaling. Operating second- or third-level caches asynchronously has
been shown to address this problem.

5. Acknowledgements

The author is grateful to Fujitsu Laboratories of America for providing the
time to complete this manuscript, and to W. Walker and H. Ando for their
constructive comments and suggestions.

References

[1] Archer, D. et al. “A 32 b CMOS microprocessor with on-chip instruction and data
caching and memory management”, ISSCC Dig. Tech. Papers, San Francisco, CA,
Feb. 1987, 32–33.

[2] Horowitz, M. et al. “A 32 b microprocessor with on-chip 2Kbyte instruction cache”,
ISSCC Dig. Tech. Papers, San Francisco, CA, Feb. 1987, 30–31.

[3] Weiss, D.; Wuu, J.J.; Chin, V. “The on-chip 3 MB subarray based 3rd-level cache on
an Itanium microprocessor”, ISSCC Dig. Tech. Papers, San Francisco, CA, Feb. 2002,
112–113.

[4] Chang, J. et al. “A 0.13 µm triple-Vt 9 MB third level on-die cache for the Itanium� 2
processor”, ISSCC Dig. Tech. Papers, San Francisco, CA, Feb. 2004, 496–497.

[5] Wuu, J. et al. “The asynchronous 24 MB on-chip level-3 cache for a dual-core
Itanium�-family processor”, ISSCC Dig. Tech. Papers, San Francisco, CA, Feb. 2005,
488–489.

[6] Bradley, D.; Mahoney, P.; Stackhouse, B. “The 16 kB single-cycle read access cache
on a next-generation 64 b Itanium microprocessor”, ISSCC Dig. Tech. Papers, San
Francisco, CA, Feb. 2002, 110–111.

[7] Riedlinger, R.; Grutkowski, T. “The high-bandwidth 256 kB 2nd level cache on an
Itanium microprocessor”, ISSCC Dig. Tech. Papers, San Francisco, CA, Feb. 2002,
418–419.

[8] Lohstroh, J.; Seevinck, E.; de Groot, J. “Worst-case static noise margin criteria for
logic circuits and their mathematical equivalence”, IEEE J. Solid-State Circuits, 1983,
SC-18(6), 803–807.

[9] Bhavnagarwala, A.J.; Tang, X.; Meindl, J.D. “The impact of intrinsic device fluc-
tuations on CMOS SRAM cell stability”, IEEE J. Solid-State Circuits, 2001, 36(4),
658–665.

[10] Seevinck, E.; List, F.J.; Lohstroh, J. “Static-noise margin analysis of MOS SRAM
cells”, IEEE J. Solid-State Circuits, 1987, SC-22(5), 748—754.

Static memory design 117

[11] Hirose, T. et al. “A 20-ns 4-Mb CMOS SRAM with hierarchical word decoding archi-
tecture”, IEEE J. Solid-State Circuits, 1990, 25(5), 1068–1074.

[12] Rusu, S. et al. “A1.5-GHz 130-nm Itanium� 2 processor with 6-MB on-die L3 cache”,
IEEE J. Solid-State Circuits, 2003, 38(11), 1887–1895.

[13] Amrutur B.S.; Horowitz, M.A. “Fast low-power decoders for RAMs”, IEEE J. Solid-
State Circuits, 2001, 36(10), 1506–1515.

[14] Sasaki, K. et al. “A 9-ns 1-Mbit CMOS SRAM”, IEEE J. Solid-State Circuits, Oct.
1989, 24(5), 1219–1225.

[15] Sasaki, K. et al. “A 23-ns 4-Mb CMOS SRAM with 0.2-µA standby current”, IEEE
J. Solid-State Circuits, 1990, 25(5), 1075–1081.

[16] Zhao, C. et al. “An 18-Mb, 12.3-GB/s CMOS pipeline-burst cache SRAM with
1.54 Gb/s/pin”, IEEE J. Solid-State Circuits, 1999, 34(11), 1564–1570.

[17] Flannagan, S.T. et al. “8-ns CMOS 64 K × 4 and 256 K×1 SRAM’s”, IEEE J. Solid-
State Circuits, 1990, 25(5), 1049–1056.

[18] Seevinck, E.; van Beers, P.J.; Ontrop, H. “Current-mode techniques for high-speed
VLSI circuits with application to current sense amplifier for CMOS SRAM’s”, IEEE
J. Solid-State Circuits, 1991, 26(4), 525–536.

[19] Blalock T.N.; Jaeger, R.C. “A high-speed clamped bit-line current-mode sense ampli-
fier”, IEEE J. Solid-State Circuits, 1991, 26(4), 542–548.

[20] Ho, R.; Mai, K.; Horowitz, M. “The future of wires,” Proc. IEEE, 2001, 89(4),
490–504.

[21] Tzartzanis N.; Walker, W.W. “A differential current-mode sensing method for high-
noise immunity, single-ended register files”, ISSCC Dig. Tech. Papers, San Francisco,
CA, Feb. 2004, 506–507.

[22] Agawa, K. et al. “A bitline leakage compensation scheme for low-voltage SRAMs”,
IEEE J. Solid-State Circuits, 2001, 36(5), 726–734.

[23] Hsu, S. et al. “A 4.5-GHz 130-nm 32-kB L0 cache with a leakage-tolerant self reverse-
bias bitline scheme”, IEEE J. Solid-State Circuits, 2003, 38(5), 755–761.

[24] Chappell, T.I. et al. “A 2-ns Cycle, 3.8-ns access 512-kb CMOS ECL SRAM with a
fully pipelined architecture”, IEEE J. Solid-State Circuits, 1991, 26(11), 1577–1585.

[25] Nakamura, K. et al. “A 220 MHz pipelined 16 Mb BiCMOS SRAM with PLL pro-
portional self-timing generator”, ISSCC Dig. Tech. Papers, San Francisco, CA, Feb.
1994, 258–259.

[26] McIntyre, H. et al. “A 4-MB on-chip L2 cache for a 90-nm 1.6-GHz 64-bit micropro-
cessor”, IEEE J. Solid-State Circuits, 2005, 40(1), 52–59.

[27] Schuster, S.E. et al. “A 15-ns CMOS 64 K RAM”, IEEE J. Solid-State Circuits, 1986,
SC-21(5), 704–712.

[28] Amrutur, B.S.; Horowitz, M.A. “A replica technique for wordline and sense control
in low-power SRAM’s”, IEEE J. Solid-State Circuits, 1998, 33(8), 1208–1219.

[29] Sekiyama, A. et al. “A 1 V operating 256-Kbit FULL CMOS SRAM”, Symp. of VLSI
Circuits, Honolulu, HI, June 1990, 53–54.

[30] Ishibashi, K. et al. “A 1-V TFT-load SRAM using a two-step word-voltage method”,
IEEE J. Solid-State Circuits, 1992, 27(11), 1519–1524.

[31] Mai, K.W. et al. “Low-power SRAM design using half-swing pulse-mode techniques”,
IEEE J. Solid-State Circuits, 1998, 33(11), 1659–1671.

[32] Alowersson, J.; Andersson, P. “SRAM cells for low-power write in buffer memories”,
Symp. on Low Power Electronics Dig. Tech. Papers, San Jose, CA, Oct. 1995, 60–61.

[33] Hattori, S.; Sakurai, T. “90% write power saving SRAM using sense-amplifying mem-
ory cell”, Symp. of VLSI Circuits, Honolulu, HI, June 2002, 46–47.

118 N. Tzartzanis

[34] Tzartzanis, N.;Athas, W.; Svensson, L. “Alow-power SRAM with resonantly powered
data, address, word, and bit lines”, Proc. Eur. Solid-State Circuits Conf., Stockholm,
Sweden, Sept. 2000, 336–339.

[35] Mizuno, H.; Nagano, T. “Driving source-line cell architecture for sub-1-V high-speed
low-power applications”, IEEE J. Solid-State Circuits, 1996, 31(4), 552–557.

[36] Yamauchi, H. et al. “A0.8 V/100 MHz/sub-5 mW-operated mega-bit SRAM cell archi-
tecture with charge-recycle offset-source driving (OSD) scheme”, Symp. of VLSI Cir-
cuits, Honolulu, HI, June 1996, 126–127.

[37] Amrutur, B.S.; Horowitz, M.A. “Techniques to reduce power in fast wide memories”,
Symp. on low power electronics Dig. Tech. Papers, San Diego, CA, Oct. 1994, 92–93.

[38] Matsumiya, M. et al. “A 15-ns 16-Mb CMOS SRAM with interdigitated bit-line archi-
tecture”, IEEE J. Solid-State Circuits, 1992, 27(11), 1497–1503.

[39] Agarwal, A.; Li, H.; Roy, K. “A single-Vt low-leakage gated-ground cache for deep
submicron”, IEEE J. Solid-State Circuits, 2003, 38(2), 319–328.

[40] Osada, K. et al. “16.7-fA/cell tunnel-leakage-suppressed 16-Mb SRAM for handling
cosmic-ray-induced multierrors”, IEEE J. Solid-State Circuits, 2003, 38(11), 1952–
1957.

[41] Nii, K. et al. “A 90-nm low-power 32-kB embedded SRAM with gate leakage sup-
pression circuit for mobile applications”, IEEE J. Solid-State Circuits, 2004, 39(4),
684–693.

[42] Agarwal,A. et al. “Effectiveness of low power dual-Vt designs in nano-scale technolo-
gies under process parameter variations”, Proc. Int. Symp. on Low Power Electronics
and Design, San Diego, CA, Aug. 2005, 14–19.

[43] Kawaguchi, H.; Itaka,Y.; Sakurai, T. “Dynamic leakage cut-off scheme for low-voltage
SRAM’s”, Symp. of VLSI Circuits, Honolulu, HI, June 1998, 140–141.

[44] Itoh, K. et al. “A deep sub-V, single power-supply SRAM cell with multi-VT, boosted
storage node and dynamic load”, Symp. of VLSI Circuits, Honolulu, HI, June 1996,
132–133.

[45] Nii, K. et al. “A90 nm dual-port SRAM with 2.04 µm2 8 T-thin cell using dynamically-
controlled column bias scheme”, ISSCC Dig. Tech. Papers, San Francisco, CA, Feb.
2004, 508–509.

[46] Yamaoka, M. et al. “A 300-MHz 25-µA/Mb-leakage on-chip SRAM module fea-
turing process-variation immunity and low-leakage-active mode for mobile-phone
application processor”, IEEE J. Solid-State Circuits, 2005, 40(1), 186–194.

[47] Bhavnagarwala, A.J. et al. “A pico-joule class, 1 GHz, 32 KByte × 64 b DSP SRAM
with self reverse bias”, Symp. of VLSI Circuits, Kyoto, Japan, June 2003, 251–252.

[48] Parke, S.A. et al. “Design for suppression of gate-induced drain leakage in LDD
MOSFET’s using a quasi-two-dimensional analytical model”, IEEE Trans. Electron
Dev., 1992, 39(7), 1694–1703.

[49] Schroder, D.K.; Babcock, J.A. “Negative bias temperature instability: road to cross in
deep submicron silicon semiconductor manufacturing”, J. Appl. Phys., 2003, 94(1).

[50] Yamaoka, M.; Osada, K.; Ishibashi, K. “0.4-V logic library friendly SRAM array
using rectangular-diffusion cell and delta-boosted-array-voltage scheme”, Symp. of
VLSI Circuits, Honolulu, HI, June 2002, 170–173.

[51] Bhavnagarwala, A.J. et al. “A transregional CMOS SRAM with single, logic VDD and
dynamic power rails”, Symp. of VLSI Circuits, Honolulu, HI, June 2004, 292–293.

[52] Zhang, K. et al. “A 3-GHz 70 Mb SRAM in 65 nm CMOS technology with integrated
column-based dynamic power supply”, ISSCC Dig. Tech. Papers, San Francisco, CA,
Feb. 2005, 474–475.

Static memory design 119

[53] Hidaka, H. et al. “Twisted bit-line architectures for multi-megabit DRAM’s”, IEEE J.
Solid-State Circuits, Feb. 1989, 24(1), 21–27.

[54] Rabaey, J.M. Digital Integrated Circuits: A Design Perspective, Prentice Hall, Upper
Saddle River, NJ, 1996.

[55] Takeda, K. et al. “A 16-Mb 400-MHz loadless CMOS four-transistor SRAM macro”,
IEEE J. Solid-State Circuits, 2000, 35(11), 1631–1640.

[56] May, T.; Woods, M. “Alpha-particle-induced soft errors in dynamic memories”, IEEE
Trans. Electron Dev., Jan. 1979, ED-26(1), 2–9.

[57] Ziegler, J.F. et al., Special Issue on “Terestrial cosmic rays and soft errors”, IBM J.
Res. Dev., 1996, 40(1), 2–129.

[58] Tosaka, Y. et al. “Simple method for estimating neutron-induced soft error rates based
on modified BGR model”, IEEE Electron Dev. Letters, 1999, 20(2), 89–91.

[59] Sato, H. et al. “A 500-MHz pipelined burst SRAM with improved SER immunity”,
IEEE J. Solid-State Circuits, 1999, 34(11), 1571–1579.

[60] Osada, K. et al. “Cosmic-ray multi-error immunity for SRAM, based on analysis of the
parasitic bipolar effect”, Symp. of VLSI Circuits, Kyoto, Japan, June 2003, 255–258.

[61] Suzuki, T. et al. “0.3 to 1.5 V embedded SRAM with device-fluctuation-tolerant access-
control and cosmic-ray-immune hidden-ECC scheme”, ISSCC Dig. Tech. Papers,
San Francisco, CA, Feb. 2005, 484–485.

[62] Kalter, H.L. et al. “A 50-ns 16-Mb DRAM with a 10-ns data rate and on-chip ECC”,
IEEE J. Solid-State Circuits, 1990, 25(5), 1118–1128.

[63] Henkels, W.H.; Hwang, W.; Joshi, R.V. “A 500 MHz 32-word × 64-bit 8-port self-
resetting CMOS register file and associated dynamic-to-static latch”, Symp. of VLSI
Circuits, Kyoto, Japan, June 1997, 41–42.

[64] Murabayashi, F. et al. “3.3-V BiCMOS circuit techniques for a 120-MHz RISC micro-
processor”, IEEE J. Solid-State Circuits, 1994, 29(3), 298–302.

[65] Fetzer, E.S.; Orton, J.T. “A fully-bypassed 6-issue integer datapath and register file
on an itanium microprocessor”, ISSCC Dig. Tech. Papers, San Francisco, CA, Feb.
2002, 420–421.

[66] Golden, M.; Partovi, H. “A 500 MHz, write-bypassed, 88-entry, 90-bit register file”,
Symp. of VLSI Circuits, Kyoto, Japan, June 1999, 105–108.

[67] Tzartzanis, N. et al. “A 34 word × 64 b 10R/6W write-through self-timed dual-supply-
voltage register file”, ISSCC Dig. Tech. Papers, San Francisco, CA, Feb. 2002, 416–
417.

[68] Tzartzanis, N.; Walker, W.W. “A transparent voltage conversion method and its appli-
cation to a dual-supply-voltage register file”, Proc. Int. Conf. on Computer Design,
San Jose, CA, Oct. 2003, 107–110.

[69] Lev, L.A. et al. “A 64-b microprocessor with multimedia support”, IEEE J. Solid-State
Circuits, 1995, 30(11), 1227–1238.

[70] Asato, C. “A 14-port 3.8-ns 116-word 64-b read-renaming register file”, IEEE J. Solid-
State Circuits, 1995, 30(11), 1254–1258.

[71] Tang, S. et al. “A leakage-tolerant dynamic register file using leakage bypass with
stack forcing (LBFS) and source follower NMOS (SFN) techniques”, Symp. of VLSI
Circuits, Honolulu, HI, June 2002, 320–321.

[72] Krishnamurthy, R.K. et al. “A 130-nm 6-GHz 256 × 32 bit leakage-tolerant register
file”, IEEE J. Solid-State Circuits, 2002, 37(5), 624–632.

Chapter 5

LARGE-SCALE CIRCUIT PLACEMENT

Ameya R. Agnihotri1, Satoshi Ono1, Mehmet Can Yildiz2, and
Patrick H. Madden1

1SUNY Binghamton, Computer Science Department
E-mail: pmadden@binghamton.edu
2IBM, Austin Research Laboratories

Abstract: Modern computing systems contain staggering numbers of transistors and inter-
connecting wires, and blocks of widely varying size and shape. The placement
problem is intractable for even small problems and simple metrics; heuristic
methods, and in particular, multi-level formulations, are commonplace across
the industry. In this chapter we survey modern techniques for circuit placement,
with an emphasis on how placement interacts with logic synthesis and routing.
Stability of placement methods is now a key concern: to allow timing closure it is
essential that gate sizing, buffer insertion, and routing can be completed without
large disruptions to the overall physical structure of a circuit. We also discuss
fundamental aspects of computing circuits that have made the placement prob-
lem progressively more difficult – resulting in a recent shift toward “multi-core”
microprocessors. We argue that this change is an extremely significant event, as
it fundamentally changes how microprocessor design must be pursued.

Key word: Placement.

1. Introduction

Circuit placement – the physical location of all logic elements – is a funda-
mental part of integrated circuit design, and has been studied for many years.
The first circuits could be designed by hand; with a small number of logic ele-
ments a human design can easily arrange them in a compact and efficient way.
As design sizes have increased, the problems have become far too complex

Vojin G. Oklobdzija and Ram K. Krishnamurthy (eds.),
High-Performance Energy-Efficient Microprocessor Design, 121–146.
c© 2006 Springer. Printed in the Netherlands.

121

122 A.R. Agnihotri et al.

for easy comprehension. Even at the highest levels of abstraction there can be
hundreds of objects and constraints to consider.

Microprocessors are at the leading edge of Moore’s Law; they are large and
complex, and provide the most challenging problems to placement tools. In
this chapter we consider two different placement formulations: floorplanning,
which is used at the highest levels of abstraction, and mixed size placement,
which combines both low-level logic elements and large functional blocks.
Algorithms for circuit placement have become more sophisticated over the
years. For floorplanning, simulated annealing has been dominant; in mixed
size placement one commonly finds annealing, analytic methods, and recursive
bisection.

In this chapter we will use a typical abstraction: we will approach placement
as the embedding of a hypergraph into a plane. The vertices of the hypergraph
correspond to logic elements – these are normally rectangular, with either a
fixed outline, or a range of feasible outlines. The hyperedges correspond to
the interconnecting wires, or “signal nets.” Because an interconnect wire may
attach to several logic elements, the hypergraph formulation is appropriate –
hyperedges model the “multiple connection” concept directly.

We first consider clustering techniques, and in particular, multi-level opti-
mization techniques. Modern designs are simply too large to be handled in
a “flat” way. With hundreds of millions, or even billions, of logic elements,
representing a circuit down to its lowest element is simply not practical. By
grouping related logic functions in a hierarchical manner the placement prob-
lem becomes more tractable.

Next, we discuss placement at the highest level of abstraction – the floor-
planning phase. While modern circuits may contain huge numbers of transis-
tors, it is almost always possible to reduce them to a few hundred distinct
logic blocks. By restricting these blocks to be rectangular, an arrangement that
has little wasted space and low wire length can be found. Our discussion will
revolve around an early floorplan representation, the sequence pair. A good
floorplan is an essential component in the production of a good microprocessor
design; a poor floorplan may doom a design.

Below the floorplanning level is mixed size placement, in which macro
blocks and large numbers of standard cells are intermixed. In mixed size place-
ment research, one finds annealing, analytic methods, and recursive bisection.
Mixed size placement is relevant to modern designs, as it allows the reuse of
predesigned blocks of logic, as well as the customization freedom of standard
cell design.

Modern designs normally require a great deal of gate sizing and buffer inser-
tion to meet performance constraints. The “stability” of a placement algorithm
is of great concern, and we discuss recent methods and metrics to quantify this.
If the overall structure of a placement changes significantly after the insertion

Large-scale circuit placement 123

of a buffer, the timing behavior may also change. During tuning, this erratic
behavior can prevent design convergence.

We conclude our discussion by presenting theoretical limits to circuit place-
ment. Soaring power demands have resulted in the introduction of “dual core”
microprocessors; this trend is likely to continue. By examining geometric con-
straints on the embedding of circuits, this change is not in the least surprising –
and there are interesting implications for the future of microprocessor design.

2. Multi-level Circuit Representation

As mentioned in the introduction, a circuit is frequently modeled as a hyper-
graph G(V,E). The graph is composed of a set of vertices V and a set of
hyperedges E.

Many of the circuit details – the functionality of each logic element or IP
macro block, the size of each element, signal directions on each net, and so
on, are abstracted away to simplify the placement problem. This simplification
is necessary for large designs: there is simply too much information to be
processed effectively. Issues such as timing criticality are usually considered
only indirectly in placement: computing the “true” critical path is too costly
for use within the inner loop of a placement engine.

The most common and effective simplification is clustering (also known as
“coarsening”); logic elements are grouped together, so that fewer objects must
be manipulated. In recent years multi-level clustering has become an essential
part of placement research.

2.1. Basic Clustering Techniques

Clustering reduces the size of the input graph G(V,E) by creating a new
graph G′. This new graph contains fewer vertices and edges, normally with
pairs (or groups) of vertices being condensed into one.

If a pair of vertices vi and vj are merged, both can be replaced by a single
new vertex vi,j . If all vertices of a signal net ei are merged, the net can be
eliminated from consideration. If two nets ei and ej share an identical set of
vertices, the nets can be replaced by a single new net ei,j , which may have
increased weight. There are many methods to cluster vertices and edges – we
mention a few here.

• While multi-level partitioning had been performed previously [1], the
hMetis partitioner [2] developed by Karypis achieved a leap in perfor-
mance. hMetis supports a variety of clustering methods; the first-choice

124 A.R. Agnihotri et al.

approach simply groups connected vertices together, and merges them
in a greedy fashion. A variety of hybrid methods modify the coarsening
scheme, to allow a preference for heavily weighted nets, or for merge
operations that eliminate hyperedges. Perhaps most significant is the use
of multiple V-cycles, which are described below.

• The edge separability approach developed in Cong and Lim [3] pur-
sues clustering with a more sophisticated objective function. The authors
developed a “CAPFOREST” algorithm, which distinguishes between
vertices with a high degree of local connectivity (good candidates for
clustering) and vertices that have less local connectivity.

• A third method, best-choice [4], mixes more complex (and time consum-
ing) objective functions with a lazy update scheme.

There are quite literally dozens of different methods to perform clustering.
They are all heuristic in nature, and there is no clear definition of “optimality”
for clustering. While many complex (and computationally expensive) meth-
ods have been explored, for many applications this is not necessary – the use
of “multiple V-cycles” can frequently overcome the shortcomings of a poor
clustering method.

2.2. The V-cycle

Clustering alone simply reduces the complexity of a hypergraph. For physi-
cal design there is obviously a need for a solution to the original “flat” problem.
This is achieved by a “V-cycle,” as shown in Figure 1.

In a typical multilevel approach, a hypergraph is repeatedly clustered until
a manageable problem size is obtained; this is the “downward” portion of a
V-cycle. A solution is found for the coarse graph – in the case of partitioning,
one typically finds the hill-climbing approach of Fidducia and Mattheyses [5].

The solution for the coarse graph is then projected onto a slightly less
coarse version of the graph. Given a high-quality initial configuration the graph
can be refined, and the solution quality improved. Repeated uncoarsening and
refinement forms the “upward” portion of a V-cycle.

A significant contribution of Karypis et al. [2] is the introduction of mul-
tiple V-cycles. Rather than repeatedly uncoarsening a graph, the graph may
be reclustered, producing a zig-zag pattern. With multiple V-cycles, excellent
solutions can be found for partitioning; most feel that modern partitioners are
close to optimal for even very large problems.

Multiple V-cycles address the shortcomings of clustering algorithms. It is
entirely possible for a clustering to make an optimal solution unreachable. Con-
sider the partitioning problem shown in Figure 2; if the signal net indicated is
clustered, a balanced partition with minimum cut cannot be obtained. By using

Large-scale circuit placement 125

Figure 1. In both placement and partitioning, clustering is normally performed with a “V-
cycle.” An initial circuit structure is repeatedly clustered, to simplify optimization. The circuit
is then progressively unclustered, with optimization at each step using the prior solution as an
initial starting point.

Figure 2. Apoor clustering may bound a solution away from optimality; in this case, contracting
the center edge results in balanced partitionings having a cut of two (compared to the optimal
solution of one). Multiple V-cycles are an effective means to overcome poor clustering choices.

multiple V-cycles an algorithm may recover from a poor clustering choice. As
theoretical results described in Section 6 indicate, it may be impossible to avoid
such choices.

126 A.R. Agnihotri et al.

Figure 3. A simple floorplanning problem; blocks of varying sizes must be packed into a
rectangular space.

3. Floorplanning

At the highest level of abstraction for placement is floorplanning. The
objects to be placed are frequently referred to as “blocks.” The number of
objects that must be placed is typically relatively small – from a dozen or so,
up to perhaps a few thousand. Each block may represent a very large, and very
complex, functional unit.

The placement problem at this stage may simply be making things fit into
the allowed space; there is a classic (and NP-complete) block packing problem
that is well known in the computer science community. Figure 3 shows a simple
example, in which four 2 × 1 and one 1 × 1 block must be placed. The total area
of the logic elements is nine; fitting them into a three-by-three area, however,
is not a simple matter.

Optimization of a floorplan (to minimize either interconnect length or chip
area) requires both a way to represent the arrangement of blocks, and a method
to modify that arrangement. While there are a variety of floorplan representa-
tions, we focus on sequence pairs [6] here.

3.1. Slicing vs. Non-slicing Floorplans

An important issue to note is that many good floorplans are not “slicing:” it
is not possible to divide the floorplan into two sections with either a vertical or
horizontal line. The example in Figure 3 illustrates this. The non-slicing nature
of the floorplanning problem makes the use of divide-and-conquer algorithms
more difficult.

There is a puzzle-like avor to floorplanning. In addition to being concerned
with the relative positions of the logic blocks, we must also consider how the
blocks interlock.

Large-scale circuit placement 127

3.2. The Sequence Pair

A primary constraint of a valid floorplan is that no two blocks overlap. The
sequence pair representation, which has been incorporated into many modern
design automation tools, is an elegant method to achieve this.

Consider the “non-overlap” constraint. In a non-overlapping floorplan, if a
pair of blocks A and B are vertically aligned, then either A must be above B, or
vice-versa. Similarly, if the blocks are horizontally aligned, then A must be to
the left of B, or vice-versa. If at least one of these conditions holds for every pair
of blocks, then the floorplan has no overlaps; the sequence pair representation
ensures that this is true.

A sequence pair consists of two strings; each string is simply one permu-
tation of a list of the blocks to be placed. The overlap constraints are derived
from the relative positions of the blocks within each string. If A appears before
B in both strings, we interpret this as a constraint that A be to the left of B. If
A appears before B in the first string, but their relative order is reversed in the
second, then A is below B. The other possible constraints (right or above) are
variations of the first two – the relationships are reflexive.

With n blocks there are n! × n! different possible sequence pair combina-
tions; the possible solution space is extremely large, and covers a wide range
of possibilities.

Translation from a sequence pair to an actual floorplan (with specific loca-
tions for each block) is relatively simple; the horizontal and vertical positions
can be determined separately. If one considers the “to the left of” constraints, a
directed graph can be constructed, as shown in Figure 4. Traversing the graph
with a longest path algorithm provides horizontal positions for the blocks such
that they cannot overlap horizontally. A similar vertical traversal provides posi-
tioning along the other axis.

Note that, in many cases, it is possible for a block to slide horizontally or
vertically; this is frequently performed as a post-processing step. In floorplan-
ning, blocks may also be mirrored, rotated, or flipped into one of eight different
orientations; these operations are normally kept separate from the sequence pair
organization, and are optimized separately.

3.3. Annealing Based Optimization

If the number of blocks to be planned is relatively small, it may be possible
to explore all sequence pairs to find the optimal configuration. In practice,
however, problems are large enough to prohibit brute force search, and heuristic
methods are applied.

Given the floorplan representation, almost all modern floorplanners perform
optimization with an annealing [7] based approach. Starting from an initial

128 A.R. Agnihotri et al.

Figure 4. A small floorplanning problem, with a sequence pair representation. The ordering
of blocks in each sequence has either a horizontal or vertical layout constraint. The x and y

coordinates for each block are determined by traversing the constraint graphs with a longest
path algorithm.

random configuration, the placement can be improved – by swapping the
sequence positions of two blocks, rotation of a block, and so on. The annealing
approach allows for exploration of the solution space while avoiding becoming
stuck within a local minima.

In early floorplanning work the primary objective was area minimization.
With each perturbation of the sequence pair the total (rectangular) area needed
to enclose the floorplan is computed; acceptance or rejection of a move is based
on the total amount of excess space required, the annealing temperature, and
the random variable.

As interconnect delay has increased, wire length has also become a com-
mon optimization objective during floorplanning. By combining both area and
length (with the total solution cost normally being a weighted sum), the anneal-
ing process can achieve both low area and low wire length.

3.4. The Human Touch

While annealing based floorplanners are effective at packing blocks
together, and can do an acceptable job with wire length minimization, it is
common for human designers to need some degree of control. These experts,
who have developed the circuit architecture with specific critical paths, busses,

Large-scale circuit placement 129

and configurations in mind, can commonly produce results that are far superior
to automatically generated floorplans.

Much of the recent work in floorplanning has focused on addressing user-
supplied constraints. Alignment of blocks (to support a signal bus), or matched
distances between blocks, are two common themes. Obstacle avoidance has
also received attention: many large designs have I/O pads within the boundary
of the placement area, or blocks in locations fixed by a designer.

4. Mixed Size and Standard Cell Placement

Below the floorplanning level is mixed size placement, which combines
large numbers of standard cells with macro blocks. The problem is sometimes
referred to as “boulders and dust” – to highlight the difference in size of the
blocks and cells. A small mixed size placement problem is shown in Figure 5;
all objects, both large and small, may be moved.

Almost all tools divide the placement problem into two steps; global and
detailed placement, to simplify the problem. The global placement step finds

Figure 5. A mixed size placement problem. Modern microprocessor blocks may contain hun-
dreds of thousands of standard cells, and thousands of macro blocks – some of which may be
moved, and some which may be fixed in place. By increasing the number of objects that can
be handled with mixed size placement, the number of blocks addressed by floorplanning can be
reduced.

130 A.R. Agnihotri et al.

a rough distribution of cells in the placement region with the primary objective
of wire length minimization. The detailed placement step removes overlaps
from the global placement and performs local optimization to further improve
wire length.Auniform distribution of cells by the global placer is very important
to make the job easier for the detailed placer.

4.1. Global Placement Techniques

Several competitive approaches have been developed over the years for
global placement and we survey them here.

4.1.1. Analytic methods

Analytic methods formulate the circuit placement problem as a mathemati-
cal optimization function, typically quadratic or linear. An excellent overview
of the approach is given by Vygen [8]. If logic elements vi and vj are con-
nected to each other, then expressions (1) and (2) represent quadratic and linear
objective functions respectively. Here (xi , yi) and (xj , yj) are the geometric
coordinates of vi and vj respectively.

minimize
∑

∀Nets

∑
∀i,j∈Netν

{(xi − xj)
2 + (yi − yj)

2} (1)

minimize
∑

∀Nets

∑
∀i,j∈Netν

{|xi − xj | + |yi − yj |} (2)

The quadratic objective function is popularly employed as it can be solved
efficiently using sparse matrix techniques. One problem, however, is that it
does not accurately model the interconnect length. Linear objective function is
a true measure of interconnect length but cannot be efficiently solved for large
problem size. Doll et al. [9] nicely explains this trade off. Recently, Naylor
et al. [10] proposed a log-sum-exponential objective function that balances
the trade-offs between the linear and quadratic objective. This is employed
successfully by some recent academic placers [11, 12].

Algorithm 1 illustrates the typical framework of an analytic placement
engine. The well-known analytic placement tool GORDIAN [13] could be con-
sidered a template for many modern methods. It recursively utilized a quadratic
formulation to find a relative ordering, and then used quadrisection to separate
logic elements into different regions. Without some method to force logic ele-
ments apart, analytic tools may produce degenerate solutions in which all logic
elements are located on top of each another.

Large-scale circuit placement 131

Algorithm 1. The framework of a typical analytic placement approach. For
large designs the problem is typically simplified through a multilevel clus-
tering approach. Clustering effectively reduces the numbers of variables and
constraints, allowing faster convergence with relatively little loss in solution
quality.

Create the initial placement region Rinit containing all components;
List of regions, Lr = {Rinit};
for each region Ri in Lr do

Lr = Lr − {Ri};
if |Ri | > k then

Use an analytic solver to solve the optimization function;
Partition the placement based on the locations derived from previous
step into two or four regions;
Add new regions to the list Lr ;

end if
end for

4.1.2. Recursive bisection

Capitalizing on the dramatic improvements of partitioning algorithms, a
number of tools based on recursive bisection have produced excellent results
with remarkably low run times. The placement approach is remarkably simple
and intuitive; modern placers such as Feng Shui [14] and Capo [15] have much
in common with the early work by Breuer [16] or Dunlop and Kernighan [17].

A typical recursive bisection placement flow is presented in Algorithm 2.
The process begins by creating a single region which represents the initial
placement area. A multi-level partitioning algorithm splits the circuit into two
components; the region is split into two halves (with either a vertical or hori-
zontal cut line), and portions of the circuit are assigned to each half. The lengths
of nets that span the two partitions are minimized through the use of terminal
propagation [17].

The direction of cut lines is typically determined by the aspect ratio of a
region [18]. If a region is tall, cut lines are horizontal, and vice-versa. With
each partitioning the number of regions doubles, until each logic element is
assigned to a single region.

If the number of components in a regionRi (denoted by |Ri | in the algorithm)
is one, then the component is placed at the center of the region and the region is
removed from the list of regions (Lr) to be partitioned. The algorithm terminates
when Lr is empty.

Unlike analytic methods, there is little difficulty with overlap removal. The
partitioning objective function (minimum cut) does not model the wire length

132 A.R. Agnihotri et al.

Algorithm 2. Recursive bisection placement. With each partitioning, a multi-
level algorithm such as hMetis performs clustering and multiple v-cycles. The
“placement” view of a large circuit may be flat, but a key component utilizes a
multi-level approach.

Create the initial placement region Rinit containing all components;
List of regions, Lr = {Rinit};
for each region Ri in Lr do

Lr = Lr − {Ri};
if |Ri | > 1 then

Partition Ri into Rx and Ry ;
Lr = Lr ∪ {Rx;Ry};

else
Place the only component in Ri at the center of Ri ;

end if
end for

objective as accurately, however, and solution quality from modern bisection
based tools typically trails the leading analytic tools.

4.1.3. Simulated annealing.

A typical annealing based placement flow is presented in Algorithm 3. An
initial placement is first generated either randomly or using some heuristic;
for example, the recursive bipartitioning-based technique described above. An
initial annealing temperature is then set.

The optimization consists of two main loops: outer and inner loop. The
outer loop runs till a termination condition is not true. This condition is usually
satisfied if a certain number of iterations of the inner loop pass without any
improvements to the placement quality. The inner loop is run for a predefined
number of iterations. During each of these iterations, several perturbations are
tried on the placement. Each change is accepted if it reduces the placement
cost (condition (�cost < 0) in Algorithm 3) or if the annealing cost function
value (e−�cost/T) falls above a random number between 0 and 1; otherwise the
move is rejected. At the end of each outer iteration the annealing temperature
is reduced.

Placement cost function is typically a combination of wire length and over-
laps generated by placement perturbations.

The perturbations could be: swapping locations of a pair of cells, moving
a cell to a new location, changing the orientation of a cell. During each of
these changes, two things need to be taken care of: first, the overlaps created

Large-scale circuit placement 133

Algorithm 3. Simulated annealing-based placement flow. The termination con-
dition of the outer while loop is usually a passage of a few iterations of the inner
for loop with little or no improvements to the placement quality.

Generate an initial random placement;
Initialize current temperature for cooling schedule, T = Tinit;
while Termination condition is not satisfied do

for A predefined number of iterations do
Save current placement Pi ;
Perturb current placement Pi to get placement Pj ;
Change in cost due to the perturbation, �cost = costj − costi ;
if (�cost < 0)‖(e−�cost/T > random[0,1]) then

Accept placement Pj ;
else

Roll back to placement Pi ;
end if

end for
Decrease temperature T ;

end while

by such changes; secondly, a limit on the cell displacement. The first goal
is typically achieved by penalizing changes that create overlaps. The second
goal is achieved by defining windows for cell displacement which are reduced
toward the end of the optimization.

In the presence of macros, certain additional rules could be enforced on the
kind of moves generated. For example, the placement tool TimberWolf [19]
prevents swapping of objects if they do not belong to the same exchange
class, where cells, macros and pads belong to three different exchange classes.
Another example is fixing the orientation of big macros, especially the ones
with a large aspect ratio, as this would sweep a huge number of standard cells
from their initial locations.

The annealing cost function is such that initially, when the temperature is
high, its value is large. So the probability of accepting a move that worsens the
cost is high. This makes sure that we do not get stuck in local minima. As we
reduce the temperature, the value of the annealing cost function also reduces
and the chances of accepting a bad move reduce. This makes sense, because as
our solution starts converging, we would not want to accept too many moves
that make the solution worse.

Given sufficient time by making sure that the temperature is reduced slowly,
annealing-based heuristics are known to produce high-quality results. The neg-
ative exponential function in Algorithm 3 indeed complies with this idea.

134 A.R. Agnihotri et al.

While annealing is clearly the dominant method for floorplanning, it has
fallen out of favor with mixed-size placement. A primary concern is a lack of
scalability; run times increase rapidly, making it impractical for largeproblems.

For small problems, the results of early annealing based placers such as
TimberWolf [20] are still impressive. To handle large problems, recent methods
such as Dragon [21] apply a hybrid of bisection and annealing.

4.2. Detailed Placement

Detailed placement involves removal of overlaps between logic elements
followed by local improvements to the placement to further minimize wire
length. This is explained in the following subsections.

4.2.1. Legalization

Placements produced by the techniques presented above can have overlaps
between logic elements. These overlaps need to be removed in order to make the
placement legal, a process called legalization. This involves the following steps.

• Overlap removal.
• Alignment of y coordinates of movable elements with placement row

boundaries.
• Alignment of x coordinates of movable elements with legal site locations

within a placement row.

For legalization, dynamic programming [22, 23] and network flow [24]-based
heurisics have been applied effectively.

For mixed size legalization, many current placers rely on a simple but
extremely fast and effective greedy technique proposed in Agnihotri et al. [14]
which is based on the patent in Hill [25]. This method is presented in Algo-
rithm 4. The cost function minimizes the displacement between the cell’s initial

Algorithm 4.Aplacement legalization algorithm. Input is a list of cells C where
each cell has a location assigned by the global placement algorithm. Output is
a legal placement.

Sort C by left-edge locations of cells;
for each cell ci in C, in sorted order do

Find a location for ci in a row that minimizes the cost function (�x + �y);
Fix ci and mark the corresponding placement sites as occupied;

end for

Large-scale circuit placement 135

and final (legal) location. Once fixed, each legalized cell acts as an obstacle for
subsequent non-legalized cells.

4.2.2. Local improvements

Post-legalization, many tools use sliding window techniques to further
improve interconnect length. In this approach a small group of cells is selected
and optimal permutation of cells is found, most commonly using a branch and
bound technique. Sliding the window over the entire placement improves the
wire length considerably. Due to run time limitations, these techniques can
usually be applied only to a small number of cells, typically six to eight.

An effective dynamic programming technique called optimal interleaving
was presented in Hur and Lillis [26]; the approach is polynomial time, allowing
optimization of larger groups than can be handled with branch and bound.
A small number of cells are selected in a window and divided into two sets A

and B. Then, using a simple dynamic programming formulation, an optimal
permutation of these cells is found that minimizes the wire length. The relative
ordering of cells from the subsets A and B is preserved. For example, if A

and B contain {a1, a2} and {b1, b2} respectively in that order from left to right,
then {a1, b1, a2, b2} is a valid placement whereas {a2, b1, a1, b2} is not, as the
ordering of cells a1 and a2 is reversed.

5. Synthesis and Stability

In modern designs, interconnect delay dominates system delay. As a result
the critical path is not known until placement is nearly complete – and at this
point it may be impossible to address performance problems. For large circuits
the need to run placement tools multiple times, and to adjust the size of logic
elements within the circuit, is unavoidable.

Commonly, in a physical synthesis flow, placement is applied to a given
netlist several times iteratively and all logic changes such as repowering, buffer
insertion, cloning, swapping, etc., are performed after each placement step. As
logic changes provide some improvement on the given objective (commonly
timing and/or power) they are mostly local and not capable of solving the
problems which involve a large number of gates. If placement changes are
not limited to small areas, the disruption of the overall circuit structure can
significantly change the state of the design. While placement is a powerful tool
in the physical synthesis flow, the changes introduced may increase the time
needed for convergence.Astable placement algorithm, which generates similar
solutions even with changes in the input netlist and placement parameters, is
important for a fast convergence in a physical synthesis flow.

136 A.R. Agnihotri et al.

Increasing design size and complexity and decreasing feature size makes
timing closure more difficult. Today, a tool can spend a week or more on a
several-million-gate design. If a designer makes a small change in the input
netlist and runs the tool again he or she should expect to see a result similar
to the previous run. If the underlying placement algorithm is not stable, it can
produce a totally different solution with a new set of problems for the designer
to fix.

High run times, and the need for convergence without a great deal of
designer effort, has made stability a key concern. Many groups would gladly
sacrifice wire length minimization for increased stability.

5.1. Stability Metrics

In order to improve stability of a placement algorithm we first should be able
to measure the stability; otherwise it is not possible to come up with a solution
and say that this increase the stability. Alpert et al. [4] defined two stability
metrics: object movement and net clusters. Both the metrics can measure the
stability of placement solutions if the netlist is the same in both the runs.

Quantifing stability requires defining the similarity metric between two
placements. We seek to answer; “what does it mean for a placement A to be
similar to a placement B?” Let S(A,B) represent a stability metric between
two placements A and B. A desirable characteristic would be measure stabil-
ity on a 0 to 1 scale, i.e. if S(A,B) = 0, then A and B are identical, and if
S(A,B) = 1 they are completely different. One can think of this as a percent-
age, e.g. if S(A,B) = 0.35, then they are 35% different. This criterion allows
one to measure algorithm stability for a range of designs and still intuitively
understand the behavior. In addition, the following properties of metrics should
hold.

• Reflexive property: S(A,A) = 0.
• Associative property: S(A,B) = S(B,A).
• Triangle inequality: S(A,B) + S(B,C) ≤ S(A,C).

5.1.1. Measuring object movement

Object movement metric measures how much the cell locations changed
from one placement to the next. The total object movement of cells in terms of
Manathan distance is given by:

OM (A,B) =
n∑

i=1

ai

(∣∣xA
i − xB

i

∣∣ + ∣∣yA
i − yB

i

∣∣) (3)

Large-scale circuit placement 137

The following equation, the object movement stability metric, gives us the total
amount of location changes weighted by area and scaled by the expected value
of the location differences.

SOM (A,B) = 3
∑n

i=1ai

(∣∣xA
i − xB

i

∣∣ + ∣∣yA
i − yB

i

∣∣)
At(W + H)

(4)

ai is the area of cell vi , and At = ai + . . . + an is the total area of all cells. (xA
i ,

yA
i) is the location of cell vi in placement A. W and H are the width and the

height of the placement area respectively.
This metric measures the linear movement between cells. Another object

movement metric is the squared object movement metric. This metric penal-
izes the objects that move a long distance while reducing the effect of short
movements.As is the practice in analytical placement the squared object move-
ment can be measured keeping the horizontal and vertical components separate.
Equation (5) gives the squared object movement.

SOMS(A,B) = 6
∑n

i=1 ai

(
(xA

i − xB
i)2 + (yA

i − yB
i)2

)
At(W 2 + H 2)

(5)

[Alpert] has both the details of the metrics and all the proofs.

5.1.2. Measuring net clusters

Both object movement metrics measure what happens to the cells, but they
tell us nothing about what happens to the nets or structure of the placement.
Consider the example in Figure 6. The placement A has a natural structure in
which there are two dominant clusters of logic as indicated by the coloring
of cells. Placement B is the mirror image of A while placement C is random.

Figure 6. Placement A has two natural clusters, placement B is a mirror image of A and
placement C is random. Arguably, A and B are similar, especially when compared to C, yet this
is not captured by object movement stability metrics.

138 A.R. Agnihotri et al.

According to object movement metrics, it is likely that S(A,B) would actually
be larger than one, since the average cell location moves quite a bit from A

to B. However, clearly A and B are quite similar, especially when compared
to C. Both A and B preserve the natural connectivity based clustering of cells.
Net center displacement metrics seek to quantify how well cells connected to
each net stay grouped together from one placement to the next.

Let nj be the number of pins connected to ej , (xcj , ycj) be the coordinates
of the center of the net and let

HDj (A,B) =
∑
vi∈ej

∣∣∣∣xA
i − xA

cj

∣∣ − ∣∣xB
i − xB

cj

∣∣∣∣ (6)

be the total difference of the horizontal distance of pins of net ej to the center
of ej for placement A to that of placement B. In other words, consider the sum
of the cumulative distances from each point to its net center. This is equiva-
lent to total net length in the star topology (for one-dimension). Similarly let
VDj (A,B) be the same as HDj (A,B) but only for vertical direction. The total
net center displacement over all nets is defined as:

NC(A,B) =
m∑

j=1

(HDj (A,B) + VDj (A,B)) (7)

To create a stability metric NC(A,B) needs to be normalized with the
expected value E[NC(A,B)]. So the net center metric is

SNC(A,B) =
∑m

j K(nj)(HDj (A,B) + VDj (A,B))

P (W + H)
(8)

where K(nj) is the constant coeffecient for the nets with size of nj , P is the
the total number of pins in the netlist and W and H are the width and height of
the image area respectively.

The squared net center metric which reflects the distance in the placements
more accurately is given below.

HDSj (A,B) =
∑
vi∈ej

∣∣(xA
i − xA

cj

)2 − (
xB

i − xB
cj

)2∣∣ (9)

is the total difference of the squared horizontal distance of pins of net ej to the
center of ej for placement A to that of placement B. HDSj (A,B) is for the
vertical direction. The squared net center metric is

SNCS(A,B) =
∑m

j KS(nj)(HDSj (A,B) + VDSj (A,B))

P (W 2 + H 2)
(10)

where KS(nj) is the constant coeffecient for the squared metric.
Empirically derived values for K and KS for each net of size nj is given in

Table 1.

Large-scale circuit placement 139

Table 1. Net degree constants for net center metrics

Size K(n) KS(n) Size K(n) KS(n)

2 7.50 20.00 14 6.05 12.23
3 6.66 15.24 16 6.04 12.19
4 6.39 13.89 18 6.03 12.15
5 6.27 13.27 20 6.03 12.13
6 6.20 12.94 30 6.02 12.07
7 6.16 12.72 40 6.02 12.06
8 6.12 12.58 60 6.01 12.03
9 6.10 12.48 80 6.00 12.01

10 6.08 12.40 100 6.00 12.00
12 6.07 12.30 ∞ 6.00 12.00

5.2. Achieving Timing and Power Closure on Real Designs

Companies always look for better and cheaper products in order to compete
well against others. This situation usually forces a chip designer to design
aggressively (i.e. using more transistors for better functionality as aiming for
shorter delay and less power). It is almost always true that a physical synthesis
tool cannot close on timing or give better power during the first run on a new
design. A tool needs to be tuned for each design to some extent based on to its
needs. Therefore, a physical synthesis tool should be as flexible as possible to
deliver a better result for variety of design.

6. Fundamental Limits for Placement

Microprocessor architectures have undergone a profound change in the past
few years. Starting with a revision of the PowerPC architecture in 2001, the use
of multiple processor cores has become common. The manufacturers of large
microprocessors have all moved toward multiple-core designs, while single-
core designs have all but been abandoned. Increasing clock rates (a traditional
method to improve performance) can no longer be done, as the frequency f

directly impacts power consumption. Similarly, lowering supply and threshold
voltages is difficult because of insufficient noise margins.

Parallelism (through multiple cores) allows for increased numbers of
instructions to be executed, without increasing the clock rate. While this might
appear to be a “free” way to improve performance, it is by no means clear if
these designs will be practical for consumers. Parallel computing (in various
forms) has long been a staple of the scientific community, but attempts to
broaden the market have failed repeatedly [27].

140 A.R. Agnihotri et al.

While power constraints were by no means unexpected, one might wonder
why the shift to multiple cores has come about so abruptly. There have been
many prior “barriers” to increased complexity in circuit design, and with great
regularity the industry has overcome these. By considering theoretical aspects
of the placement problem, we show that there are other factors at work – making
the placement problem more difficult with each generation, and accelerating
increases in power consumption. In this section we bring Moore’s Law, Rent’s
Rule, and classic computational complexity together, to provide better insight
into factors which have forced the move to multi-core designs.

6.1. A Theoretic Approach to Placement

As a first step we will assume we are working at some level within the
hierarchy of a computing system. We have a number of components (possibly
transistors, standard cells, macro blocks, etc.), and these are interconnected
in some way. To simplify the discussion we will further assume that these
components are square and of uniform size.

We abstract the concept of “length” by defining the length that a signal can
travel without buffering, or within a single clock cycle, to be some constant
factor of the average width or height of the components.

We will refer to this distance as L. If a connection must be made that is
longer than L, then buffers, repeaters, or latches become necessary. The delay
along this connection is assumed to be linear with distance, or possibly worse.

If our component represents a standard cell, a larger cell has higher drive
strength (and can drive a longer wire between repeaters). Inserting additional
repeaters allows the delay of the wire to be linearized.

If our component represents a block within a hierarchy, we assume that
higher portions of the hierarchy operate at lower clock rates – and thus, the
distance that can be traveled between latches increases with block size. In a
similar manner, L can be linearized by insertion of additional latches.

We next define the concept of “adjacency” in a formal way. We again assume
equal-sized square components. For any given component in a planar layout
there are four “immediately adjacent” locations – above, below, and to the left
and right.

If we consider a square group of n components, the number of immediately
adjacent locations to this group is 4 × n0.5. Extending further, within a distance
L from the group, there are 4 × L × n0.5 + 2 × L2 locations. This is illustrated
in Figure 7.

This property holds no matter what the components are: it is irrelevant if
they represent individual transistors, FPGA lookup tables, macro blocks, or
microprocessor cores. Further, it is irrelevant what the value of L is; it can

Large-scale circuit placement 141

Figure 7. The number of physical locations adjacent to a logic block grows with the size of
the block. In the first example, a single block has four neighboring locations; if the block has
five connections, at least one of these connections must have a length of at least two units. As
the number of components in a block increases, the number of adjacent locations (or locations
within a distance of L) grows at the square root of the number of elements within the block.

correspond to either the distance that can be traveled before buffering, or a
distance at which a latch must be inserted.

6.2. Rent’s Rule

Rent’s Rule [28, 29] was observed in the late 1960s – essentially, the obser-
vation was that as the number of components in a portion of computing hard-
ware increased, so did the number of electrical connections to that hardware.
Specifically, Rent’s Rule is commonly formulated at follows.

T = k × np

The number of terminals T on a portion of circuitry grows with the number
of components n within that circuit; the value k is a constant which addresses
the typical fanout of logic elements. p is the “Rent parameter” which models
the complexity of a circuit. For a pipeline (with low complexity), p = 0; if a
subcircuit is extracted randomly, p is at worst 1.

For a regular mesh,p = 0.5; if one considers a circuit structure such as mem-
ory or a programmable logic array, the number of terminals on the perimeter
of the circuit is the square root of the number of logic elements. For “general-
purpose” circuitry, repeated studies over the past 40 years have found p in the
range of 0.6–0.8.

While Rent’s Rule has been typically used for the estimation of interconnect
lengths or routing congestion, it also sheds light on why multicore processors

142 A.R. Agnihotri et al.

have emerged. In short, it is not possible to embed a large circuit into a two-
dimensional plane without having many long connections. Higher performance
was obtained in part by increasing clock frequency; compounding the problem
have been increases in the length of average and critical path wires, and also
increases in the number of buffers and the size of drivers. While device scaling
has provided increasing numbers of transistors, more of these are diverted
to simply moving signals down wires – consuming additional power without
providing computational advantage.

6.3. Rent Limit on System Size

If one has a computing architecture similar to those designed in the past
40 years, the number of terminals required for a block with n components
is k × np for p ≥ 0.6; this is O(np). The number of locations in which an
“external” computing element can be placed grows at L × n0.5 + L2, which
is O(n0.5).

Suppose we decompose a very large computing system into subcircuits of
size n. Without question, for some value of n, there will be external connections
from a subcircuit that must travel a distance of greater than L. As n increases,
the percentage of these “long connections” increases. This is true for any value
of L, and for any degree of component fan-in or fan-out. This is illustrated in
Figure 8.

The increase in n is tied to Moore’s Law – and thus, we have a direct conict
with Rent’s Rule. We will refer to the necessity of long wires as the Rent Limit
on system size. At some point the benefit gained by increasing the number of
computing elements within a system is surpassed by the increased delay of the

Figure 8. Computational complexity should make the following obvious: if the number of
adjacent locations increases at O(n0.5), and the terminal demand for the block increases at
O(np). for p > 0.5, the two curves will cross.

Large-scale circuit placement 143

interconnecting wires. As circuit sizes increase, the percentage of interconnect
wires that can be considered “worst case” increases towards 100%.

We wish to avoid digressing into specific process technology and device
details; as with the work of Hartmanis and Stearns [30], we feel that this
clouds the discussion and distracts from the fundamental nature of the problem.
Improved device technologies can shift where this “crossover point” occurs –
but we see no way in which it can be avoided using a traditional computing
architecture.

With the theoretic formulation of the Rent Limit, a number of observations
can be made.

• As the number of logic elements increases, the average length of an
interconnect wire must also increase. This supports the arguments made
in Sylvester and Keutzef [31, 32] that the size of a logic block should be
limited to avoid the need for large numbers of repeaters.

• Buffer insertion, which has become essential, in fact compounds the
problem. The Rent parameter has traditionally been tied to compo-
nents that “do something.” By inserting buffers into a design, we do not
increase the complexity of computations performed, but we do increase
the total area.

In the start of this section we assumed that components were uni-
formly sized squares. If we amortize the area demand for buffers and
repeaters, the “average size” of each component increases, thereby
decreasing the effective value of L. Additionally, the increased average
size of components means that wires internal to the block also increase
in length – and may themselves need additional buffers and repeaters.

Buffer and repeater insertion, as well as gate sizing, can be viewed
as having diminishing returns. As we increase the “average” size of a
computing element, the buffer demand increases as well. This matches
with the projections of Saxena et al. [33].

• At the architectural level it should be obvious that increasing interconnect
lengths imply that signals must go “further” during a clock period. This,
coupled with increasing clock rates, mean that many paths must have
high performance (and thus consume large amounts of power).

6.4. The Future of Microprocessor Placement

In many respects the physical design of microprocessors has been an uphill
battle. With each technology generation, required interconnect lengths have
increased – this is a fundamental requirement for the planar embedding of a
circuit. With increased clock rates there was the simultaneous need to transmit
signals over longer distances, and in less time. The only practical method to

144 A.R. Agnihotri et al.

achieve this is with buffering and gate sizing, resulting in exploding power
demand.

As power had become a limiting factor for microprocessors, clock rates
have stopped increasing. To avoid increased critical path lengths, the number
of logic elements in a processor core – the n used in Rent’s Rule – have also
become stable.

This is an interesting and somewhat surprising situation; with modern fab-
rication, designers have access to more devices than can be used effectively.
The only apparent solution is to implement a mesh of independent processing
elements. A mesh structure as one might find with a multi-core design has a
Rent parameter p = 0.5 at the top level, matching the physical space perfectly.

Over the next few years it is reasonable to expect that the number of cores
on a microprocessor will increase. This may occur much more quickly than
traditional scaling – the repeater explosion projected by Saxena et al. [33] may
force smaller blocks in designs – and this may cause a ripple effect throughout
the architecture, requiring lower transistor counts in each core.

It is by no means clear how the consumer market will react to these designs.
While scientific computing has utilized parallel machines for many years, con-
sumers have given the approach a very cool reception. Microprocessor man-
ufacturers have thrived on a vast market for high performance components;
multi-core designs represent a fundamental change in the product, and the next
few years look to be extremely challenging for the industry.

References

[1] Cong, J.; Smith, M. “A parallel bottom-up clustering algorithm with applications to
circuit partitioning in VLSI design”, Proc. Design Automation Conf., 1993, 755–780.

[2] Karypis, G.;Aggarwal, R.; Kumar, V.; Shekhar, S. “Multilevel hypergraph partitioning:
application in VLSI domain”, Proc. Design Automation Conf., 1997, 526–529.

[3] Cong, J.; Lim, S.K. “Edge separability-based circuit clustering with application to
multilevel circuit partitioning”, IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 2004, 23(3), 246–357.

[4] Alpert, C.J.; Nam, G.-J.; Villarrubia, P.G.; Yildiz, M.C. “Placement stability metrics”,
Proc. Asia South Pacific Design Automation Conf., 2005, 1144–1147.

[5] Fiduccia C. M.; Mattheyses. R.M. “A linear-time heuristic for improving network
partitions”, Proc. 19th IEEE Design Automation Conf., 1982, 175–181.

[6] Murata, H.; Fujiyoshi, K.; Nakatake, S.; Kajitani, Y. “VLSI module placement based
on rectangle-packing by the sequence pair”, IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 1996, 15(12), 1518–1524.

[7] Kirkpatrick, S. “Optimization by simulated annealing: quantitative studies”, J. Stat.
Phys., 1984, 34, 975–986.

[8] Vygen, J. “Algorithms for large-scale at placement”, Proc. Design Automation Conf.,
1997, 746–751.

[9] Doll, K.; Sigl, G.; Johannes, F.M. “Analytical placement: a linear or a quadratic objec-
tive function?”, Proc. Design Automation Conf., 1991, 427–431.

Large-scale circuit placement 145

[10] Naylor, W. et al. US patent 6,301,693: Non-linear optimization system and method
for wire length and delay optimization for an automatic electric circuit placer, 2001.

[11] Sze, K.; Chan, T.; Cong, J. “Multilevel generalized force-directed method for circuit
placement”, Proc. Int. Symp. on Physical Design, 2005, 185–192.

[12] Kahng,A.B.; Wang, Q. “Implementation and extensibility of an analytic placer”, Proc.
Int. Symp. on Physical Design, 2004, 18–25.

[13] Kleinhans, J.; Sigl, G.; Johannes, F.; Antreich, K. “GORDIAN: VLSI placement by
quadratic programming and slicing optimization”, IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 1991, 10(3), 356–365.

[14] Agnihotri, A.R.; Ono, S.; Li, C. et al. “Mixed block placement via fractional cut
recursive bisection”, IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 2005, 24(5), 748–761.

[15] Adya, S.N.; Chaturvedi, S.; Roy, J.A.; Papa, D.A.; Markov, I.L. “Unification of parti-
tioning, placement, and floorplanning”, Proc. Int. Conf. on Computer Aided Design,
2004, 550–557.

[16] Breuer, M.A. “A class of min-cut placement algorithms”, Proc. Design Automation
Conf., 1977, 284–290.

[17] Dunlop, A.E.; Kernighan, B.W. “A procedure for placement of standard-cell VLSI
circuits”, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
January 1985, CAD-4(1), 92–98.

[18] Yildiz, M.C.; Madden, P.H. “Improved cut sequences for partitioning based place-
ment”, Proc. Design Automation Conf., 2001, 776–779.

[19] Sechen, C.; Sangiovanni-Vincentelli, A. “The timberwolf placement and routing
package”, IEEE J. Solid-State Circuits, 1985, 20(2), 510–522.

[20] Swartz, W.; Sechen, C. “Timing driven placement for large standard cell circuits”,
Proc. Design Automation Conf., 1995, 211–215.

[21] Yang, X.; Choi, B.-K.; Sarrafzadeh, M. Routability driven white space allocation for
fixed-die standard cell placement. Proc. Int. Symp. on Physical Design, 2002, 42–50.

[22] Agnihotri, A.; Yildiz, M.C.; Khatkhate, A.; Mathur, A.; Ono, S.; Madden. P.H. “Frac-
tional cut: improved recursive bisection placement”, Proc. Int. Conf. on Computer
Aided Design, 2003, 307–310.

[23] Brenner, U.; Pauli,A.; Vygen, J. “Almost optimum placement legalization by minimum
cost flow and dynamic programming”, Proc. Int. Symp. on Physical Design, 2004, 2–9.

[24] Doll, K.; Johannes, F.M; Antreich, K.J. “Iterative placement improvement by network
flow methods”, IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 1994, 13(10), 1189–1200.

[25] Hill, D., US patent 6,370,673: Method and system for high speed detailed placement
of cells within an integrated circuit design, 2002.

[26] Hur, S.-W.; Lillis, J. “Mongrel: hybrid techniques for standard cell placement”, Proc.
Int. Conf. on Computer Aided Design, 2000, 165–170.

[27] Furht, B. “Parallel computing: glory and collapse”, IEEE Computer, 1994, 27(11),
74–75.

[28] Radke, C.E. “A justification of, and an improvement on, a useful rule for predicting
circuit-to-pin ratios”, Proc. Design Automation Conf., 1969, 257–267.

[29] Landman, B.; Russo, R. “On a pin versus block relationship for partitioning of logic
graphs”, IEEE Trans. on Computers, 1971, C-20, 1469–1479.

[30] Hartmanis, J.; Stearns, R.E. “On the computational complexity of algorithms”, Trans.
AMS, 1965, 117, 285–306.

[31] Sylvester, D.; Keutzer, K. “Getting to the bottom of deep submicron”, Proc. Int. Conf.
on Computer Aided Design, 1998, 203–211.

146 A.R. Agnihotri et al.

[32] Sylvester, D.; Keutzer, K. “Getting to the bottom of deep submicron II: a global wiring
paradigm”, Proc. Int. Symp. on Physical Design, 1999, 193–200.

[33] Saxena, P.; Menezes, N.; Cocchini, P.; Kirkpatrick, D.A. “Repeater scaling and its
impact on CAD”, IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 2004, 23(4), 451–463.

[34] Alpert, C.; Kahng,A.; Nam, G.-J.; Reda, S.; Villarrubia, P. “Asemipersistent clustering
technique for VLSI circuit placement”, Proc. Int. Symp. on Physical Design, 2005,
200–207.

Chapter 6

ENERGY-DELAY CHARACTERISTICS OF
CMOS ADDERS

Vojin G. Oklobdzija and Bart R. Zeydel
ACSEL Laboratory, University of California Davis

Abstract: Choosing the right algorithm and a corresponding adder topology depends on
many factors closely related to the technology of implementation. With the tran-
sition to CMOS, where circuit delay has a complex relation to implementa-
tion parameters, and the recent transition to deep-submicron technologies which
introduce further complexity, it becomes even more difficult to make the right
choice. This relationship is even more complicated when power consumption is
included. In this chapter we present this complex relationship and highlight the
important factors that influence the right selection of algorithm, circuit topology,
operating conditions and power consumption.

Key words: adders; digital arithmetic; digital circuits; energy-delay optimization; VLSI arith-
metic; fast digital circuits.

1. Introduction

For almost half a century realizations of addition algorithms have been
continually refined to improve performance due to changing technology and
operating constraints [1]. With each technology generation, the gap between
the underlying algorithms for addition and efficient realization of those algo-
rithms has grown. Many of the adders in use today were developed for older
technologies and under a different set of constraints than those imposed by
current technology, such as energy efficiency. To solve this problem a method
for analyzing designs in the energy-delay space was developed [2, 3], which
allowed for the energy-delay tradeoffs to be taken into account. In addition,
this method provides guidance for algorithm selection and realization. Using

Vojin G. Oklobdzija and Ram K. Krishnamurthy (eds.),
High-Performance Energy-Efficient Microprocessor Design, 147–169.
c© 2006 Springer. Printed in the Netherlands.

147

148 V.G. Oklobdzija and B.R. Zeydel

this method we explore the leading addition recurrence algorithms and their
realizations, to identify favorable characteristics of each for the development of
efficient adder realizations in modern CMOS technology. A comparison of var-
ious schemes in the energy-delay space is presented to demonstrate the relative
performance and energy efficiency of the proposed structures.

The most important step in the process of VLSI adder design is selecting
the initial adder topology which is expected to yield desired performance in the
allotted power budget. However, the performance and power will be known
only after a time-consuming design and simulation process is completed. There-
fore, the validity of the initial selection will not be known until the later stages
of the design process or even after several schemes under consideration have
been designed and completed. Going back and forth between several designs
is often prohibited by the design schedule, making it impossible to correct
initial mistakes. Thus, an uncertainty always remains as to whether a higher
performance or lower power was possible with a more appropriate choice of
topology or simply more effort. This problem is aggravated by a lack of proper
delay and power estimation techniques that are guiding the development of
computer arithmetic algorithms. The majority of algorithms in use today are
based on outdated methods of counting the number of logic gates on the critical
path, producing inaccurate and misleading results. The importance of transistor
sizing, load effects and power are not taken into account by most.

Different adder topologies may influence fan-out and wiring density, thus
influencing design decisions and yielding better area/power trade-offs than
known cases [4]. This emphasizes the disconnect existing between algorithms
and implementation. The importance of fan-in and fan-out effects on the crit-
ical path was demonstrated at the time CMOS technology started replacing
nMOS [5]. Similar conclusions were expressed later in the logical effort (LE)
method of Sutherland and Sproull [6] regarding critical-path delay estimation,
which was later introduced into common practice by Harris and co-workers [7].
Comparison of delay estimates of various VLSI adders obtained via LE, to sim-
ulation results obtained using H-SPICE [8] demonstrates good matching and
confirms the validity of LE. This matching is under 10% in most cases (Table 1).

Table 1. Delay comparison of 64-bit adders using logical effort

Circuit family Adder topology HSPICE (F04) LE estimate (F04)

Static Kogge-Stone [8] 11.8 10.9
Mux based adder [9] 11.4 12.8
Han-Carlson [10] 12.8 13.3

Dynamic Kogge-Stone [8] 8.7 9.2
Ling [11] 9.0 9.5
Han-Carlson [10] 9.8 9.9

Energy-delay characteristics of CMOS adders 149

Figure 1. Energy-delay dependency.

However, this is still an incomplete picture, because delay and energy can be
traded against each other; thus the energy aspect of this analysis is missing.

A method for analyzing the energy-delay tradeoffs of an adder was devel-
oped following the LE guidelines [3]. Using this method it is possible to com-
pare different adders in the energy-delay space (see Figure 1). This method
satisfies two requirements: it is simple and quick, yet sufficiently accurate to
guide correct selection of the appropriate algorithm and realization (topology).

In this chapter we elaborate on the problem of energy-delay design trade-offs
and their estimation, showing how different technology parameters affect the
performance of different algorithms. Further, we show how the best algorithm
and topology should be selected, and point to the most important factors in
their selection. Finally, we show the best topology for an energy-efficient high-
performance adder that was obtained in such a way.

2. Comparison of VLSI Adders

The most common approach in comparing VLSI adders is to use a sin-
gle delay point [4, 5]. An example of such a comparison (based solely on
delay) of high-performance 64-bit adders is shown in Table 1. The comparison
shows LE delay estimates and H-SPICE pre-layout simulation results in 130 nm
technology.

The comparison shows a significant speed difference between static CMOS
and dynamic CMOS implementations. This fact has been well known to

150 V.G. Oklobdzija and B.R. Zeydel

practitioners: high-speed processors use dynamic CMOS logic [12–14]. How-
ever, while the delay difference between different circuit families is more appar-
ent, the delay difference between topologies using the same circuit family is
relatively small, making it difficult to know which design can be improved
further in terms of speed. Energy is also important because if too much power
is used in order to achieve a target delay, hot spots can be created [15].

To illustrate the problem, suppose that two adders A and B were compared
against each other based on delay only. Such a hypothetical comparison is illus-
trated in Figure 1, where the delays of adder A and adder B are shown as points
A and B respectively. From the single point comparison, adder A appears faster
than adder B, leading to a conclusion that the topology of the adder A is better.
However, such a comparison provides an incomplete and potentially misleading
picture. If we consider that energy can be traded for delay, it is clear that further
analysis is needed. Hypothetical energy-delay dependencies of two designs, A
and B, optimized under the same constraints are illustrated in Figure 1.

As the curves show, adder B has more room for delay improvement, it
uses less energy in the high-performance region (Region 1) as compared to the
adder A.

On the other hand, if lower computational energy is the design objective,
adder A is the better choice as it uses less energy in the low performance region
(Region 2) compared to adder B.

The challenge is to make such a comparison early in the design process
without significant time overhead. A method for estimating energy and delay
with relatively low effort and in a short amount of time has been developed in
ref. 2. This method provides sufficient accuracy to make appropriate choices
for algorithm and circuit topology.

3. Delay and Energy Estimation

The speed of a VLSI adder depends on several factors: technology, circuit
family, adder topology, transistor sizes, wires, leakage currents and second-
order effects.As a result there are no simple rules to be applied when estimating
delay. Skilled engineers are capable of fine-tuning the design to obtain the best
performance and lowest energy through transistor sizing. However, this is often
an ad-hoc process not leading to the best solution. Thus, it is difficult, if not
impossible, to predict the best topology.

3.1. Delay Estimation

The introduction of LE was a significant step forward because it provided a
better way to estimate delay. Further, LE provides an optimal sizing for delay.

Energy-delay characteristics of CMOS adders 151

There is a tradeoff in delay estimation where improved accuracy is paid for by
complexity or resorting to CAD tools. LE simplifies the delay model to a single
parameter referred to as stage effort, f , which is used during optimization and
modeling. The LE model for gate delay is td = (f + p)τ , where f = gh [5].
Each gate has a logical effort, g, which represents its drive capability relative to
an inverter. The term h represents the electrical effort or effective fan-out of the
gate, h = Cout/Cin. The parasitic delay, p, corresponds to the delay associated
with parasitic capacitance. The term τ is the per fan-out delay increment of an
inverter, and is used to introduce technology-independent estimation of delay.

The accuracy of LE can be improved by obtaining the coefficients g and p

through H-SPICE characterization of logic gates in the chosen technology. This
step incorporates characteristics of a technology, slopes, and layout estimates
into the LE parameters. Gate characterization is performed under the constraint
of fixed input-to-output slope relationship to obtain the best matching between
estimation and simulation data. This step improves the accuracy of LE estima-
tion considerably and typically brings it within 10% of H-SPICE simulation,
as shown in Table 1.

The effect of gate-to-gate wiring is not accounted for using basic LE mod-
eling, and is often ignored in comparisons. However, we have observed that in
130 nm technology, for example, wire resistance and capacitance can contribute
up to 1F04 delay degradation in 64-bit adders. The wire capacitance introduces
a constant load at the output of each gate, which can be estimated from the wire
length. The impact of wire resistance can be estimated using the approximation
Twire = 0.38RwireCload , which provides reasonable matching versus H-SPICE.
A comparison of the impact of for the worst case impact of wire resistance on
a 64-bit adder is shown in Table 2.

Application of LE to simple path delay optimization is straightforward;
however, it is often difficult to apply the analysis to complex paths due to
branching (b). LE defines branching as b = (Con + Coff)/Con, where the terms
Con and Coff must be determined relatively. This analysis becomes prohibitively
complex when branches have differing gate types and number of stages. In
addition, constant loads, such as wires, require iterative computation. As a
result, the optimization of a complex path using the LE gate delay model must
be performed by changing individual stage efforts (f ’s) of each gate to achieve

Table 2. Worst-case delay impact of wire resistance in 130 nm 64-bit adders

Wire length HSPICE HSPICE Estimate
(bits crossed) (no resistance) (with resistance) (with resistance)

80 µm (8 bits) 54.7 ps 58.5 ps 58.9 ps
160 µm (16 bits) 57.7 ps 66.0 ps 66.8 ps
320 µm (32 bits) 64.0 ps 84.7 ps 84.2 ps

152 V.G. Oklobdzija and B.R. Zeydel

minimal delay. Instead of using a simple paper-and-pencil method (as suggested
by LE) the use of numerical optimization such as the built-in gradient based
optimization of Microsoft�-Excel or Matlab is required for delay optimization.
The use of these does not require considerable overhead compared to paper-
and-pencil analysis.

3.2. Energy Estimation

The use of LE for delay optimization provides a delay estimate and cor-
responding gate sizing. However, it does not account for energy. A model for
estimating the energy of a gate based on its LE sizing was presented in refs 1
and 2. By estimating the energy of each gate from its LE sizing, an estimate
for the total energy of a design can be obtained.

The energy of a gate is primarily a function of the output load, CL, and
parasitic capacitance which is proportional to gate size. The ratio of the energy
associated with CL and the energy due to parasitic capacitance varies depend-
ing on the electrical effort (h). For small values of h, the parasitic energy is
comparable to the energy associated with the output load, while for larger val-
ues of h the energy associated with the output load increases relative to the
parasitic energy (Figure 2).

Gate energy parameters can be extracted from H-SPICE simulation by vary-
ing CL and gate size. A linear dependence of energy on CL and size is observed
in ref. 1, which results in the following energy model for a gate:

E = Ep · gate size + Eg · CL + Einternal-wire

Figure 2. Dependence of gate energy on its size and electrical effort (h).

Energy-delay characteristics of CMOS adders 153

where Ep is the energy per unit size, Eg is energy per unit load, and Einternal-wire

is an offset due to internal wiring introduced by layout estimation. This energy
model directly accounts for parasitics, local wiring, and output load depen-
dence, while performing a best fit for crowbar current and leakage. The param-
eters, Eg, Ep, and Einternal-wire, are obtained using the same gate characterization
setup as in LE with the slight overhead of performing the characterization for
multiple gate sizes.

4. Energy-delay Estimation Method

The objective of the energy-delay estimation method (EDE) is to provide
a relatively simple and quick way to compare designs in the energy-delay
space [3] so that it can be used before design decisions are made and committed.

LE provides reasonable delay results and sizing, but it does not account for
wiring. To improve the estimate, wires and the correct handling of complex
branch dependencies are included in our analysis. As we are interested in com-
paring designs over a range of performance targets, each design is compared
over the same range of path gain (H), where H = Cout/Cin. After character-
izing a technology to find parameters g, p, Eg, Ep, and Einternal-wire for each
gate, the following steps are performed to obtain delay and energy estimates
of a design for each H :

1. Determine the critical path of the design.
2. Optimize the delay of the critical path to determine fopt .
3. Use fopt to size the gates on the critical path.
4. Estimate the energy of the entire design.

Using the sizing from Step 3 we can estimate the energy of the critical path.
However, Step 4 requires an estimate for the energy of the entire design and
not just the critical path. The energy of gates within a design can be estimated
according to two cases: gates on paths with the same number of stages as the
critical path, and gates on paths with fewer stages than the critical path.

For paths with the same number of stages as the critical path, the size of
each gate is proportional to the size of the gates on the critical path, allowing for
the energy of each gate to be computed directly. To facilitate this analysis the
energy of each gate is assumed to be the same as the energy of the equivalent
gate on the critical path.

For paths with a different number of stages than the critical path, the size of
each gate is not directly proportional to the gates on the critical path. Instead,
to obtain an energy estimate, the path must first be sized to have the same delay
as the critical path. Once the sizing is obtained, the energy of each gate can be
estimated. Similar to first case, the energy of any paths with the same number
of stages can be computed proportionally to this path.

154 V.G. Oklobdzija and B.R. Zeydel

The energy of each gate depends on its switching activity. In application
of EDE to VLSI adders it is common to use a 15% switching activity factor
for each gate in a static path and a 50% switching activity for each gate in the
dynamic path. These switching factors were obtained as an average of designs
that were analyzed based on experience and are consistent with the “rule-of-
thumb” used in the industry.

5. Energy-delay Estimation of Adders

Energy-delay estimation is a useful tool in comparing various tradeoffs in
adder design, such as the algorithm or circuit topology. The choice of the adder
topology and design style is also dependent on the required performance and
pressures to meet the critical path. In some instances the adder may not be the
critical path and the speed requirements may be relaxed, or it may be possible
to improve the speed of the clocked storage elements (flip-flops and latches) to
meet the required timing.

The analysis of these tradeoffs was performed by Zyuban and Strenski, who
termed these design characteristics “hardware intensity” [16, 17]. Hardware
intensity defines the design point in terms of the trade-off between energy and
delay. A tangent on the energy-delay curve represents the percentage of delay
reduction being paid for by the percentage increase in energy. Thus, several
algorithms can be examined in various design regions and the best one can be
chosen. Also, various circuit design styles can be examined. For example, the
analysis of three different circuits design styles: static CMOS, dynamic CMOS
and compound (dynamic-static) CMOS design, revealed that compound CMOS
achieves speed of dynamic CMOS design while maintaining the low energy
of static CMOS. An EDE comparison of 64-bit adders implemented in these
three design styles is shown in Figure 3.

5.1. Domino and Compound Domino CMOS Analysis

In order to improve adder performance, domino CMOS logic is often used
for implementation of an adders carry-merge (CM) blocks resulting in the
circuit shown in Figure 4(a). The static CMOS inverter is necessary after each
dynamic block in order to make the logic behave in a “domino” fashion. The
signal inversion, which is necessary in the domino CMOS logic block, can be
achieved using a more complex static gate instead of inverter. This is often
referred to as compound-domino, or dynamic-static CMOS. Thus, two domino
carry-merge stages can be merged into one by replacing the inverter with an
AOI, as shown in Figure 4(b).

Energy-delay characteristics of CMOS adders 155

Figure 3. EDE comparison of circuit design styles on 64-bit adders: compound CMOS shows
benefits of static and dynamic CMOS circuits.

Figure 4. (a) Carry-merge: domino implementation; (b) carry merge: compound domino
implementation.

Comparison of the 64-bit Kogge–Stone (KS) [9] and Han–Carlson (HC) [11]
adders implemented in dynamic-domino CMOS and compound-domino
CMOS is shown in Figure 5.

Comparing dynamic-domino to compound-domino, EDE helps us to
observe the benefits obtained by utilizing compound-domino logic. For the
same energy budget (e.g. 200 pJ) compound-domino KS yields 20% delay
improvement over domino KS. EDE provides a clear picture of the impact
compound-domino can have on adder design.

156 V.G. Oklobdzija and B.R. Zeydel

Figure 5. EDE Comparison of 64-bit HC and KS domino and compound-domino adders in
130 nm technology.

6. Adder Comparison

The ability, provided by EDE, to observe differences between implementa-
tions of the same adder using different circuit families, is beneficial in selecting
the appropriate circuit design style. However, it is also important to see trade-
offs between adder topologies implemented using the same circuit family. The
accuracy of EDE for demonstrating tradeoffs in the energy-delay space is shown
by comparing optimized H-SPICE results for 32-bit compound-domino KS [9]
and QT [13] adders versus EDE results in 100 nm technology. A comparison
of EDE estimation with simulation results adopted for a 100 nm technology
is shown in Figure 6 [3]. EDE estimates demonstrate the same tradeoffs as
observed in simulation. These results confirmed the validity of the QT adder
as a viable option for reducing energy without sacrificing performance.

Compound-domino and static 64-bit adders were analyzed using EDE to
see what tradeoffs exist (Figure 7). Different points on the energy-delay curve
were obtained by varying the size of the input gates for each adder. The output
of each adder was loaded with a 1 mm wire. A range of path gains (H ’s) was
chosen from H = 2 to the maximum H (i.e. where minimum input size occurs).

The results show the benefits associated with sparse designs: HC and QT.
However, the benefits of compound-domino QT are lesser at 64 bits than for the
32-bit design. This is a result of the one extra stage that the QT implementation
used versus the KS implementation. In the 32-bit design the QT implementation

Energy-delay characteristics of CMOS adders 157

Figure 6. Comparison of 32-bit QT and KS adders: EDE vs. simulation in 100 nm technology.

Figure 7. EDE analysis of 64-bit compound-domino and static adders in 130 nm technology.

used the same number of stages as KS. We also observe that the compound-
domino KS prefix-4 Park adder [18], which utilizes fewer stages at the cost of
increased gate complexity and branching, shows further benefits. The increased
gate complexity in the Park adder is offset by a reduction in parasitic delay and

158 V.G. Oklobdzija and B.R. Zeydel

number of stages, which allows for the Park adder to achieve lower delay with
less energy than the other designs. At lower performance targets the overhead
of the more complex gates is to much and designs such as QT and HC achieve
lower energy.

6.1. Representative High-performance Adders

In this section we present a comparison of high-performance adders used in
leading microprocessors in industry. All of the adders used in the comparison
were implemented using compound-domino design style which combines the
“best of both worlds”: low power and high performance, as has been realized
by the design community. The comparison shown in Figure 8 includes: IBM
implementation of KS adder [18], Kogge–Stone 4-2 consisting of a prefix 4
dynamic and prefix two static compound-domino stage [9], Quaternary adder
(QT) developed by Intel [13], Ling adder used by IBM and the Intel Itanium
processor, and Han-Carlson adder (HC) [11]. We first compared the adders
using the energy-delay2 figure of merit (Figure 8). Energy-delay2 only rep-
resents one point on the E-D curve; however, it is often used as a metric for
comparing high-performance designs [19]. From Zyuban’s analysis, this means
that we are willing to trade 2% of energy increase for a 1% improvement in
speed [16, 17]. The tangent to the E-D curve at this point has a slope of 2.
We see that, even though it is not the fastest, IBM adder developed by Park
et al. [18] shows the best ED2 figure of merit.

0

2

4

6

8

10

12

14

cdIBM cdKS4-2 cdQT7 cdLing cdKS cdHC cdQT9

Adder Topology

D
e

la
y

(F
O

4
)

0

3

6

9

12

15

18

21

T
h

o
u

sa
n

d
s

E
D

2
 (

p
J.

F
O

42
)

Delay

E x D^2

Figure 8. Comparison of representative high-performance adders used in the industry; “cd”
designates compound-domino circuit design style in 130 nm technology.

Energy-delay characteristics of CMOS adders 159

6.2. Contribution of Wire

In order to properly evaluate all of the adder topologies, the impact of wires
on adder performance and energy consumption needs to be properly accounted
for. Wires contribute in two ways: they add delay to the adder (effect of long
wires), and increase energy. In the past these effects were often ignored, but
as the technology continues to scale wire effects could make a substantial
difference between realizations. Therefore, the impact of wires on energy and
delay must be included in the optimization and analysis.

Figure 9 shows the wire effects expressed as the total wire capacitance in the
adder. This capacitance contributes to performance and energy deterioration.

Wire energy is shown as a fraction of the total energy of the adder. The
tradeoff between wire and delay is best seen on the IBM adder. Given the small
delay difference between the fastest and the slowest adders, this difference can
potentially change the ranking.Acomparison of representative adders, with and
without wire, is shown in Figure 10. The results are obtained by applying the
EDE method to the entire adder, where the energy of each gate is individually
calculated. Depending on the length of wires on the critical path, wire delay can
impact the adder delay by up to 1FO4, which is more than 10% of the total delay.

The impact of wire diminishes the differences between the best and the
worst designs. This shows that a hidden tradeoff exists in some of the designs
between the wiring and logic complexity. We can trade a stage of the adder
at the expense of more intense wiring. If wire contribution is not properly
accounted for, an unfair advantage may be apparent. Looking at, for example,
six-stage KS and seven-stage QT7, in Figure 11(a) and (b), one can notice that
they switch order when wire effects are properly accounted for.

0

500

1000

1500

2000

2500

3000

3500

cdIBM cdKS4-2 cdQT7 cdLing cdKS cdHC cdQT9

Adder Topology

W
ire

 C
ap

ac
ita

nc
e

(µ
m

 g
at

e)

0

30

60

90

120

150

180

210

En
er

gy
 (p

J)

Figure 9. Impact of wires on high-performance adders in 130 nm technology.

160 V.G. Oklobdzija and B.R. Zeydel

Figure 10. Energy-delay behavior of representative high-performance adders in a 130 nm
technology: (a) energy-delay with wire excluded from the model, (b) energy-delay with wire
included. It should be noted that, in general, wire effect diminishes performance differences
between designs, while energy increases only slightly.

Energy-delay characteristics of CMOS adders 161

Figure 11. Energy-delay behavior of representative high-performance adders after energy opti-
mization. The best behavior is that of IBM adder designed by Park et al. [18].

By applying energy minimization techniques to transistor sizing [20] the
energy can be reduced even further. The ultimate energy-delay Figure of the
representative adders is shown in Figure 11. This is about the best energy and
performance one can achieve [21].

7. The Ultimate Adder Topology

Efficient adder design requires proper selection of a recurrence algorithm
and its realization. Using the insight obtained through the application of EDE,
we analyzed several algorithms for their flexibility and suitability for realization
in CMOS. We found that the use of Ling’s algorithm provides up to 12%
improvement in performance of 32-bit static adders with the same recurrence
trees. Using Ling’s algorithm we developed general techniques for efficient
realizations based on technology constraints. From these techniques several
high-performance realizations of Ling’s algorithm are developed that achieve
better performance and energy efficiency than existing Ling and Weinberger
designs [22].

Technology characteristics limit potential realizations of Weinberger’s and
Ling’s recurrences for addition. The primary constraint in modern CMOS is
the fan-in of a gate, which is commonly limited to between 2 and 5. Several
realization techniques have been developed to map recurrence algorithms to
CMOS under these constraints [22].

162 V.G. Oklobdzija and B.R. Zeydel

7.1. Combined Bit Operator and First Carry Stage

In adder realizations, one stage can be removed by combining the 1-bit
operation for g and t into the first prefix computation stage [12, 18]. This
technique is more favorable to Ling’s recurrence than to Weinberger’s. Under
the same transistor stack height constraint a Ling realization can use a prefix
of 1 more than a realization using Weinberger’s. This saving is observed in the
prefix-2 equations for Ling’s recurrence:

Hi = aibi + ai−1bi−1

Ti−1 = (ai−1 + bi−1)(ai−2 + bi−2)

and for Weinberger’s recurrence:

Gi+1 = ai · bi + (ai + bi)(ai−1bi−1)

Ti = (ai + bi)(ai−1 + bi−1)

The implementation of Hi requires a stack of two nMOS transistors, while
the implementation of Gi+1 requires a stack of three nMOS transistors. The
implementations of transmit for both require a stack of two nMOS transistors.

The fan-in of the first logic stage for Ling’s transformation is reduced by 1 in
CMOS compared to Weinberger’s. Subsequent stages for both have the same
fan-in since the recursion is performed using the prefix “•” operator. Ling’s
transformation is especially useful for static realizations, as the first stage and
bit operator stage can be combined, while in Weinberger’s such a combination
would result in a stack of three nMOS transistors.

7.2. Conditional Computation of Sum

Several adder implementations make use of conditional logic for the compu-
tation of sum. Conditional logic allows for the number of gates in the recurrence
to be reduced at the cost of increased fan-out in the recurrence tree. Addition-
ally, in dynamic adders the conditional logic is implemented using static gates
allowing for the switching activity of the gates to be reduced compared to the
dynamic gates on the carry path. Both Weinberger’s and Ling’s recurrence fit
well into conditional computation. The issue with conditional computation is
determining how many bits to compute conditionally and using what structure.
The number of gates on the critical path consists of the carry structure, the bit
operator gate (if not combined into the first carry stage), and the sum. The con-
ditional sum must be computed prior to the sum selection by the carry path. For
example, in a realization with a four-gate carry tree the conditional sum must
be completed in the same time as the four-gate carry tree used to select sum.
As the number of stages in the carry tree increases, conditional computation

Energy-delay characteristics of CMOS adders 163

is a viable solution for reducing energy. If, however, the number of stages in
the carry tree decreases, the possibility that the conditional sum becomes the
critical portion of the design increases. The optimal number of bits to compute
conditionally, as well as the implementation of the conditional computation,
either by rippling the recurrence or through the use of separate recurrence trees,
is dependent on delay target and technology.

7.3. Ling Realizations and their Alternatives

7.3.1. Static adders

For static adders designers are often limited to a two stack of nMOS transis-
tors and a two stack of pMOS transistors. Knowles described [4] how to create
minimum depth carry trees for static adders using Weinberger’s recurrence.
The same trees can be constructed with Ling’s transformation by combining
the first stage of the carry tree as described in Section 7.1. This construction
allows for one stage to be removed from the critical path of the adder.

7.3.2. Dynamic adders

Ling’s transformation shows advantages of reduced logic complexity of the
critical path and should therefore yield good structures for addition in CMOS
technology. Several types of 64-bit dynamic realizations of Ling’s transforma-
tion are proposed in the following sections.

7.3.3. Fast parallel prefix ling adders

Ling’s transformation only displays advantages over Weinberger’s when
the factored ti term can be removed from the critical path. As shown in refs 22
and 23, this can be accomplished through the use of conditional logic for the
sum. The fastest Ling implementations are dependent on CMOS technology
limitations. In modern technology the nMOS transistor stack height is com-
monly limited between two and five, while pMOS transistors are typically
limited to a stack height of two.

7.3.4. A three-stage ling adder (TSL)

A three-stage adder can be constructed using a fully parallel prefix tree with
Ling’s transformation.Atechnology limitation of five stack nMOS for dynamic
stage allows for prefix-4 gates to be used in dynamic stages, while a limitation
of two stack pMOS limits static gates to prefix-2. Under these constraints a full

164 V.G. Oklobdzija and B.R. Zeydel

Figure 12. A 64-bit three-stage Ling adder (TSL).

prefix tree with prefix 4, 2, 4, and 2 for the first, second, third and fourth gates
respectively can be constructed (Figure 12).

The equations for the first level Hi and Ti are:

Hi = AiBi + Ai−1Bi−1 + (Ai−1 + Bi−1)Ai−2Bi−2

+(Ai−1 + Bi−1)(Ai−2 + Bi−2)Ai−3Bi−3

Ti−1 = (Ai−1 + Bi−1)(Ai−2 + Bi−2)(Ai−3 + Bi−3)(Ai−4 + Bi−4)

Both equations result in a worst-case stack height of four nMOS transistors.
These gates must be footed, because they are in the first stage of the adder,
bringing the worst case stack height to the technology limit of 5. The second,
third and fourth level Hi and Ti computations follow traditional prefix “•”
product operations for prefix-2 and prefix-4 and can be implemented without
violating stack height limitations. Weinberger’s recurrence can be used with
the same full parallel prefix tree for the carry recurrence at an increase of one
in the stack height of the first stage for the carry recurrence relative to Ling’s.
However, this would violate the limitation of stack of five nMOS transistors in
the first stage of the recurrence.

7.3.5. Three-stage conditional sum ling adder (CSL)

The amount of wiring in an adder realization can be reduced without increas-
ing the number of stages by generating every other Hi and performing a 2-bit

Energy-delay characteristics of CMOS adders 165

Figure 13. A 64-bit three-stage conditional sum Ling adder (CSL).

conditional sum to be selected by a prefix 4-2-4-2 carry tree. The conditional
sum length was chosen based on the limitations on the number of conditional
sum bits described in Section 7.2 (Figure 13) and does not add complexity to
the carry path.

7.4. Results

All results are obtained using estimates for 130 nm technology by apply-
ing the energy-delay estimation method (EDE) we developed in ref. 2 to the
entire adder. A comparison of 32-bit static adder implementations between
Weinberger’s recurrence and Ling’s transformation is shown in Figure 14.

Ling’s transformation demonstrates a delay improvement of up to 12%, con-
firming the benefit that Ling can achieve in static implementations limited to a
stack height of two nMOS and two pMOS transistors. For dynamic implemen-
tations, technology constraints and adder size determine whether the advantage
of using Ling’s transformation is a logic stage or a reduction in transistor stack
height.

A comparison of 64-bit Ling dynamic adders with and without conditional
sum is shown in Figure 15.

The results show an energy savings for the 2-bit conditional sum variants.
This is primarily due to the reduced switching activity of the static gates on

166 V.G. Oklobdzija and B.R. Zeydel

Figure 14. Comparison of 32-bit static Weinberger and Ling adders.

Figure 15. Comparison of conditional sum in high-performance 64-bit dynamic adders.

the conditional path. In the fully parallel prefix-2 Ling carry tree, applying
a 2-bit conditional sum improves energy at only a slight increase in delay.
The delay penalty is due to increased loading of the adder input caused by
the static gates on the conditional sum path. The CSL adder results in a slight
energy savings and improved performance compared to the TSL design. In
contrast to the prefix-2 design, the static gates of the conditional sum path
reduce the loading of the inputs to the adder due to their reduced complexity
compared to the prefix-4 gates of the carry path.Acomparison of the best 64-bit

Energy-delay characteristics of CMOS adders 167

Figure 16. Energy-delay comparison of high-performance 64-bit dynamic adders.

adder implementations for Ling’s [25] and Weinberger’s recurrence [26] and
the proposed realizations are shown in Figure 16.

The results show the significant advantage obtained by the proposed realiza-
tions. These realizations demonstrate better performance than the Weinberger
adder and the previous best implementation of a Ling adder. While the best
delay is obtained by the fully parallel prefix-2 Ling design, the most energy-
efficient design is the proposed CSL adder.

8. Conclusion

We presented an energy-delay estimation (EDE) method that extends logical
effort (LE) and its application to the analysis and selection of high-performance
VLSI adders. The EDE method has proven to be a much-needed and effec-
tive tool in design space exploration, in particular when comparing high-
performance adders in the early stages of design. Further, the sufficient accuracy
of the method for adder selection in the energy-delay space was demonstrated
when comparing designs implemented in 130 nm and 100 nm CMOS technolo-
gies using static, domino and compound-domino circuit styles. The method
described here brings a new perspective to comparing arithmetic circuits
and advances the analysis and design of VLSI-oriented computer arithmetic
algorithms.

Ling’s and Weinberger’s addition recurrence algorithms demonstrate favor-
able characteristics for efficient CMOS mapping. Ling’s algorithm demon-
strates a fundamental advantage for high-performance addition in CMOS by

168 V.G. Oklobdzija and B.R. Zeydel

reducing the complexity of the first stage of the carry tree. Guidelines are
presented which aid in the selection of efficient realizations of Ling’s transfor-
mation for both prefix selection for the recurrence and selection of conditional
computation size. The proposed Ling structures, TSL and CSL, demonstrate
up to 50% savings in energy at the same delay when compared to the fastest
previous designs [18].

References

[1] Davari, B.; Dennard, R.H.; Shahidi, G.G. “CMOS scaling for high performance and
low power – the next ten years”, Proc. IEEE, 83, April 1995.

[2] Oklobdzija, V.G.; Zeydel, B.R.; Dao, H.Q.; Mathew, S.; Krishnamurthy, R. “Energy-
delay estimation technique for high-performance microprocessor VLSI adders”, Proc.
16th Int. Symp. on Computer Arithmetic, Santiago de Compostela, Spain, June 2003.

[3] Oklobdzija, V.G.; Zeydel, B.R.; Dao, H.Q.; Mathew, S.; Krishnamurthy, R. “Compar-
ison of high-performance VLSI adders in energy-delay space”, Transaction on VLSI
Systems, 2005, 13(6), 754–758.

[4] Knowles, S. “Afamily of adders”, Proc. 14th Symp. on Computer Arithmetic,Adelaide,
Australia, April 1999.

[5] Oklobdzija, V.G.; Barnes, E.R. “On implementing addition in VLSI technology”, IEEE
J. Parallel and Distributed Computing, 1988, 5, 716–728.

[6] Sutherland, E.; Sproull, R.F. “Logical effort: designing for speed on the back of an
envelope”, IEEE Advanced Research in VLSI, C. Sequin (editor), MIT Press, 1991.

[7] Sutherland, I.E.; Sproull, R.F.; Harris, D. Logical Effort Designing Fast CMOS Cir-
cuits, Morgan Kaufmann, 1999.

[8] Dao, H.Q.; Oklobdzija, V.G. “Application of logical effort techniques for speed opti-
mization and analysis of representative adders”, 35th Annual Asilomar Conference on
Signals, Systems and Computers, 2001.

[9] Kogge, P.M.; Stone, H.S. “A parallel algorithm for the efficient solution of a general
class of recurrence equations”, IEEE Trans. Computers, 1973, C-22(8), 786–793.

[10] Farooqui, A.A.; Oklobdzija, V.G.; Chehrazi, F. “Multiplexer based adder for media
signal processing”, Int. Symp. on VLSI Technology, Systems, and Applications, Taipei,
Taiwan, June 1999.

[11] Han, T.; Carlson, D.A.; Levitan, S.P. “VLSI design of high-speed low-area addition
circuitry”, Proc. IEEE Int. Conf. on Computer Design: VLSI in Computers and Pro-
cessors, 1987, 418–422.

[12] Naffziger, S. “Asub-nanosecond 0.5 µm 64-b adder design”, 1996 IEEE International
Solid-State Circuits Conf., Dig. Tech. Papers, Feb. 1996, 362–363.

[13] Mathew, S.K. et al., “Sub-500-ps 64-b ALUs in 0.18 µm SOI/bulk CMOS: design
and scaling trends”, IEEE J. of Solid-State Circuits, Nov. 2001, 36, 1636–1646.

[14] Mathew, S.K. et al., “A 4 GHz 130 nm address generation unit with 32-bit sparse-tree
adder core”, IEEE J. of Solid-State Circuits, 2003, 38, 689–695.

[15] Harris, D.; Naffziger, S. “Statistical clock skew modeling with data delay variations”,
IEEE Trans. VLSI Systems, Dec. 2001, 9, 888–898.

[16] Zyuban, V.; Strenski, P. “Balancing hardware intensity in microprocessor pipelines”,
IBM J. Res. Dev., 2003, 47(5/6).

Energy-delay characteristics of CMOS adders 169

[17] Zyuban, V.; Strenski, P. “Unified methodology for resolving power-performance trade-
offs at the microarchitectural and circuit levels”, Proc. Int. Symp. on Low Power Elec-
tronics and Design, Aug. 2002, 166–167.

[18] Park, J. et al. “470 ps 64-bit parallel binary adder”, Symposium on VLSI Circuits, Dig.
Tech. Papers, 2000.

[19] Nowka, K. IBM Austin Research Lab, Austin, TX, private communication, August
2001.

[20] Dao, H.Q.; Zeydel, B.R.; Oklobdžija, V.G. “Energy minimization method for optimal
energy-delay extraction”, ESSCIRC 2003, Estoril, Portugal, 16–18 September 2003.

[21] Oklobdzija, V.G. “Energy-delay tradeoffs in CMOS digital circuits design”, Presenta-
tion at Dallas IEEE CAS Workshop, Richardson, Texas, 10 October 2005.

[22] Zeydel, B.R.; Kluter, T.T.J.H.; Oklobdžija, V.G. “Efficient mapping of addition recur-
rence algorithms in CMOS”, Int. Symp. on Computer Arithmetic, ARITH-17, Cape
Cod, Massachusetts, USA, 27–29 June 2005.

[23] Sklanski, J. “Conditional-sum addition logic”, IRE Trans. on Electronic Computers,
1960, EC-9(2), 226–231.

[24] Bedrij, O.J. “Carry-select adder”, IRE Trans. on Electronic Computers, 1962, EC-11,
340–346.

[25] Ling, H. “High-speed binary adder”, IBM J. Res. Dev., 1981, 25(3), 156–166.
[26] Weinberger, A.; Smith, J.L. “A logic for high-speed addition”, Nat. Bur. Stand. Circ.,

1958, 591, 3–12.

Chapter 7

HIGH-PERFORMANCE ENERGY-EFFICIENT
DUAL-SUPPLY ALU DESIGN

Sanu K. Mathew, Mark A. Anders, and Ram K. Krishnamurthy
Circuits Research Laboratories, Intel Corporation, Hillsboro, OR, USA

Abstract: This chapter describes the design of a single-cycle 64-bit integer execution ALU
fabricated in 90 nm dual-Vt CMOS technology, operating at 4 GHz in the 64-
bit mode with a 32-bit mode latency of 7 GHz (measured at 1.3 V, 25◦ C). The
lower- and upper-order 32-bit domains operate on separate off-chip supply volt-
ages, enabling conditional turn-on/off of the 64-bit ALU mode operation and
efficient power-performance optimization. High-speed single-rail dynamic cir-
cuit techniques and a sparse-tree semi-dynamic adder core enable a dense layout
occupying 280 × 260 µm2 while simultaneously achieving (i) low carry-merge
fan-outs and inter-stage wiring complexity, (ii) low active leakage and dynamic
power consumption, (iii) high DC noise robustness with maximum low-Vt usage,
(iv) single-rail dynamic-compatible ALU write-back bus, (v) simple 2	 50%
duty-cycle timing plan with seamless time-borrowing across phases, (vi) scalable
64-bitALU performance up to 7 GHz measured at 2.1 V, 25◦ C, and (vii) scalable
32-bit ALU performance up to 9 GHz measured at 1.68 V, 25◦ C.

Key words: arithmetic and logic unit (ALU); sparse-tree architecture; semi-dynamic design;
dual-supply voltage design.

1. Introduction

Fast 32-bit and 64-bit arithmetic and logic units (ALU) with single-cycle
latency and throughput are essential ingredients of high-performance super-
scalar integer and floating-point execution cores. Furthermore, in a typical

Vojin G. Oklobdzija and Ram K. Krishnamurthy (eds.),
High-Performance Energy-Efficient Microprocessor Design, 171–187.
c© 2006 Springer. Printed in the Netherlands.

171

172 S.K. Mathew, et al.

ALU operation, the lower-order 32 bits of the ALU output are required
early for address generation and rapid back-to-back operations [1]. These
constraints require a high-performance ALU with a compact layout foot-
print that minimizes interconnect delays in the core. ALU also contribute
to one of the highest power-density locations on the processor, resulting in
thermal hotspots and sharp temperature gradients within the execution core.
The presence of multiple execution engines in current-day processors [1]
further aggravates the problem, severely impacting circuit reliability and
increasing cooling costs. Therefore, this strongly motivates energy-efficient
ALU designs that satisfy the high-performance requirements, while reduc-
ing peak and average power dissipation. Traditional dense-tree adder archi-
tectures such as Kogge–Stone [2] use full binary carry-merge trees that
result in large transistor sizes because of their high fan-outs and require
wide routing channels for inter-stage wiring. Adder architectures such as
Ladner–Fischer [3] address the wiring problem by reducing the number of inter-
stage interconnects at the expense of exponentially increasing carry-merge
fan-outs.

In this chapter a single-cycle 64-bit integer execution ALU [4] fabricated in
90 nm dual-Vt CMOS technology [5] is described.Asparse-tree adder architec-
ture is employed to address the high fan-out issue mentioned above, as well as to
reduce the inter-stage wiring complexity by up to 80% [6]. High-speed single-
rail dynamic circuit techniques and migration of non-critical paths to fully
static CMOS enable low carry-merge fan-outs, low active leakage and dynamic
power consumption, high DC noise robustness, and a dense layout. The com-
plete 64-bit ALU operates at 4 GHz in the 64-bit mode measured at 1.3 V, 25◦ C
and consumes 300 mW total power. The corresponding 32-bit mode latency
is 7 GHz, also measured at 1.3 V, 25◦ C. The lower- and upper-order 32-bit
domains operate on separate off-chip supply voltages, enabling conditional
turn-on/off of the 64-bit ALU mode operation and efficient power-performance
optimization, resulting in up to 22% power savings. The 64-bit ALU perfor-
mance is scalable up to 7 GHz measured at 2.1 V, 25◦ C, and the 32-bit ALU
performance is scalable up to 9 GHz measured at 1.68 V, 25◦ C. Burn-in tolerant
conditional keepers are inserted on all dynamic gates to enable full function-
ality under worst-case noise conditions and elevated supply/temperature stress
tests [7].

The remainder of this chapter is organized as follows: Section 2 describes
the organization of the ALU; Sections 3 and 4 present the key circuits that
enable an energy-efficient single-rail ALU design; the ALU clocking scheme
and timing plan are described in Section 5; Section 6 discusses the benefits of
this design over a conventional dual-rail dynamic implementation; Section 7
presents the 90 nm dual-Vt CMOS implementation and silicon measurement
results; the dual-supply voltage operation of the ALU is described in Section 8.
Finally the chapter is summarized in Section 9.

High-performance energy-efficient dual-supply ALU design 173

Figure 1. 32-bit/64-bit ALU organization.

2. ALU Organization

The integer executionALU operates on inputs that originate from the integer
register file, the L0 cache, bypass cache, and ALU write-back bus results. A 5:1
source multiplexer selects a pair of these operands and delivers them as inputs to
the single-rail adder/logical unit core. The output of the adder shares a bus driver
with the logical unit, and drives a 110µm write-back bus that sends the ALU
outputs back to its inputs. The ALU is designed for operation in both 32-bit and
64-bit modes. This organization (Figure 1) enables single-cycle, back-to-back
execution of 32/64-bit Add, Subtract, Accumulate and Logic instructions.

3. Single-rail Source Multiplexer

During Add/Logic operations, the source multiplexer selects a pair of ALU
operands from four sources, which include the integer register file, L0 cache,
bypass cache and the single-rail write-back bus. However, subtract operations
will also require a dynamic compatible complementary version of the write-
back bus result. This is obtained using the single-to-dual rail converting source
multiplexer, shown in Figure 2. This circuit has two dynamic pull-down paths,
both of which are precharged with the same 	1 clock [8]. The first dynamic
node (Sum#.En4) directly drives a dynamic inverter, whose output computes
(Sum#.En4)#. Depending on the logic state of the inputs (Sum and En4#), either
of these two nodes will discharge to ground, and will hold the complementary
node at Vcc through a cross-coupled PMOS network.

Due to the non time-borrowable nature of this gate, its inputs must be
set up before the clock switches to avoid false evaluation. This constraint is

174 S.K. Mathew, et al.

Figure 2. Single-rail to dual-rail converting dynamic source multiplexer.

required to prevent the turned on NMOS device (N0) from falsely discharging
the output node. Careful sizing of the cross-coupled PMOS keepers (P0 and
P1) limits the switching noise on the output node. Figure 3 shows the impact
of clock skew on peak noise-glitch at the non-switching dynamic output node.
Noise constraints of this design require the maximum noise-glitch to be less
than 75 mV. Simulations in 90 nm CMOS technology show that an 18 ps setup
time at the 	1 boundary enables this circuit to tolerate up to ±15ps clock
variation about the nominal point, while adequately meeting all propagated
noise constraints. The single-to-dual-rail converting source multiplexer circuit
eliminates the need for a differential write-back bus, thereby contributing to
the energy-efficiency and compact layout of this design.

4. Sparse-tree Adder Core

4.1. Critical Sparse-tree: 32-bit Mode of Operation

The performance-setting and power-limiting block in the ALU is the adder
core, which is designed to operate in both 32-bit and 64-bit modes. In the
32-bit mode the upper-order 32-bit section is powered down, leaving the lower-
order section to execute a 32-bit instruction (Figure 4). The first stage of the
adder is the Propagate-Generate (PG) block that outputs propagate (Pi = Ai#

High-performance energy-efficient dual-supply ALU design 175

Figure 3. Source-multiplexer peak output noise vs. input data arrival time trade-off.

Figure 4. Critical sparse carry-merge tree: lower 32 bits.

NAND Bi#) and generate (Gi = Ai# NOR Bi#) signals from the adder inputs
Ai# and Bi#. Complementary version of all ALU inputs, except for the write-
back, bus are available at the front-end multiplexer. As described in Section 3,
the complementary version of the writeback bus result can be easily gener-
ated using the single-to-dual rail converter circuit. The use of complementary
adder inputs results in single-transistor pull-up (GPi# = Pi NAND Pi−1) and
pull-down (GP = Pi# NOR Pi−1#) evaluation paths in the static and dynamic

176 S.K. Mathew, et al.

group-propagate gates, leading to a lower average transistor size on these paths.
Other implementations of this design using true inputs are also possible. The
adder core, implemented in single-rail dynamic logic, has a worst-case evalu-
ation stack of 2-NMOS and is followed by five stages of carry-merge (footless
dynamic gate [CM2] and footed dynamic gate [CM4] interspersed between
three static gates [CM1, CM3, CM5]) that perform a radix-2 carry-merge
operation in both the static and dynamic stages. The static carry-merge block
CM1 outputs the two-way group-generate (GGi = Gi + PiGi−1) and group-
propagate (GPi = PiPi−1) signals. The output of CM1 will pre-discharge low
(since its inputs are precharged high) and has a worst-case 2-PMOS pull-up
evaluation path. Thus, the carry-merge tree has a worst-case evaluation path of
2N-2P-2N-2P-3N-2P in order to generate the carry. The 3-NMOS evaluation
stack in the source multiplexer and CM4 is due to the presence of the footed
clock evaluation transistors required at phase boundaries.

This reduced-fanout carry-merge tree is the key advantage of the sparse-
tree adder architecture [6]. The sparse-tree generates every fourth carry (C3,
C7, . . . ,C23 and C27), unlike the Kogge–Stone architecture that generates car-
ries for every bit using a dense tree, with generate and propagate fan-outs of
2 and 3, respectively. In contrast, the sparse-tree has 73% fewer carry-merge
gates with generate/propagate fan-outs of 1 and 2 respectively, on the major-
ity of carry-merge gates. This is the theoretical minimum fan-out that can be
achieved in a parallel carry-merge structure. Consequently, the critical path
reduces to a pruned carry-merge tree with 33/50% reduction in P/G fan-outs
per stage and 25% reduction in maximum inter-stage interconnect length (spans
12 bits vs. 16 bits in the Kogge–Stone design). Furthermore, the 80% reduc-
tion in wiring complexity permits the use of wider/shielded wires on the few
performance-critical inter-stage “group generate/propagate” signals. The fan-
out reduction and relaxed wiring results in 20% improvement in performance
and 56% reduction in power consumption of the sparse-tree design [6]. Thus
the critical path of the adder is improved by retaining the same number of
gate stages as the Kogge–Stone architecture with reduced fan-outs/stage and
reduced interconnect delay between stages.

4.2. Non-critical Conditional Sum-generators

In parallel to the critical sparse-tree, four-bit sum generators speculatively
generate conditional sums corresponding to a carry-in of 0 and 1. The non-
criticality of the sum-generator permits the usage of a ripple carry-merge
scheme to generate the conditional carries. Thus, as shown in Figure 5, the
carry-in at the first level of each conditional carry rail is tied to 0 and 1 respec-
tively, generating two rails of conditional carries. An “XOR” of the partial sum
with the conditional carries generates the conditional sums. The carries from

High-performance energy-efficient dual-supply ALU design 177

Figure 5. Non-critical four-bit conditional sum-generators.

the sparse-tree (C3,C7, . . . ,C23 and C27) then select the appropriate four-bit
conditional sums using a 2:1 multiplexer, delivering the final 32-bit sum. In
this way logic traditionally implemented in the main carry-tree using expensive
parallel prefix logic is implemented in the sparse-tree design using an energy-
efficient architecture. Such an approach results in smaller area, reduced energy
consumption and lower leakage.

The conditional sum-generator block can be further optimized by exploiting
correlation of the inputs to the first-level conditional carry gates. As shown in
Figure 6, both first-level conditional carry-merge gates reduce to inverters,
which can be merged with the next gate in the ripple carry chain, reducing
the number of stages in the non-critical path from five to four. This additional
slack between the critical and non-critical paths may be further exploited to
save power.

4.3. Semi-dynamic Implementation

The performance criticality of the ALU demands a dynamic adder imple-
mentation. Partitioning the carry-merge tree into critical and non-critical sec-
tions enables an energy-efficient implementation by leveraging dynamic and
static techniques. Figure 7 shows the critical and non-critical sections of the
adder core. The critical path, implemented in single-rail dynamic logic, begins
with the two-stage source multiplexer (A dynamic 5:1 mux with a static (S)
NAND gate merging the true and complementary signals, as shown in Figure 2),
followed by the PG block that outputs the Pi and Gi signals from the inputs Ai#
and Bi#. At this point the critical and non-critical paths fork, with the five-stage

178 S.K. Mathew, et al.

Figure 6. Optimizing conditional-carry rails.

Figure 7. Critical and non-critical paths in sparse-tree adder.

sparse-tree (CM1-CM5) in the critical path and the four-stage conditional sum
generator (two stages of conditional ripple-carry gates, a sum XOR and an
inverter) in the non-critical path. The final 1 in 4 carry (C27#) from the crit-
ical path selects between the two conditional sums (Sum#31 0 and Sum#31 1)
using a 2:1 transmission gate multiplexer. The one-stage slack enables reduced
transistor sizes in the non-critical path, resulting in additional power savings.

To meet the performance requirement of the ALU, the critical path is imple-
mented in single-rail dynamic logic. Compared to other dual-rail dynamic
implementations [9], this 50% reduction in transistor count and interconnect

High-performance energy-efficient dual-supply ALU design 179

Figure 8. Stage 1 of sum-generator: set-dominant latch.

complexity results in reduced leakage power and higher performance. The crit-
ical sparse-tree path includes the PG block and carry-merge gates implemented
in dynamic logic. The non-criticality of the sum generator allows a completely
static CMOS logic implementation. The low switching activity of static gates
reduces the average power consumption in the ALU.

The inputs (Gi, Pi, and Gi−1) to the conditional carry gate (Figure 8) of
the static sum generator are dynamic signals that go high during precharge. To
prevent this precharge activity from propagating through the sum generators
when the clock goes low, the first gate in the sum generator is converted to a set-
dominant latch (Figure 8) by the addition of the clocked footer NMOS device
to the static carry-merge gate, clocked with stclk2, a staggered 	 1 clock,
as described in Section 5. This transistor cuts off the discharge path for the
output during the precharge phase, while a full keeper added to the output node
holds state. Thus switching activity in the downstream static blocks is reduced,
resulting in a semi-dynamic design that reduces average power consumption
without impacting performance.

The interface between the static and dynamic signals occurs at the 2:1
transmission-gate multiplexer, with the gates CM4 and CM5 representing the
fourth and fifth level carry-merge gates of the sparse tree (Figure 9). The Carry#
signal is a dynamic signal (pre-discharged low) that drives the select node of the
multiplexer. Inputs to the transmission-gate multiplexer are static conditional

180 S.K. Mathew, et al.

Figure 9. Semi-dynamic design: interfacing static and dynamic signals.

Figure 10. Sparse carry-merge tree: upper 32 bits.

sum signals from the side-paths. During precharge, the lower transmission
gate is turned ON, and the output sum is equal to Sum1. During evaluation,
Carry# may remain low or go high in response to activity in the dynamic carry-
merge gates. The multiplexer will select either of the conditional sums (Sum#0
or Sum#1) to deliver the final sum, enabling seamless time-borrowing at the
dynamic–static interface with no race conditions between the two paths.

High-performance energy-efficient dual-supply ALU design 181

Figure 11. Sparse carry-merge tree: 64 bits.

4.4. 64-bit mode of Operation

In the 64-bit mode the supply to the upper 32 bits of the adder is activated
(Figure 10). To enable layout reuse of the 32-bit adder cores, the upper 32-bit
section uses a similar sparse-tree to generate 32-way group-generates and prop-
agates. The carryout from the lower-order 32 bits is merged with these signals
in the additional carry-merge stage (CM6), generating every fourth carry of the
upper 32 bits (Figure 11). This architecture reduces design/layout effort and
produces the final 64-bit ALU outputs with only three additional gate stages
while minimally affecting the performance of the lower 32 bits of the adder.

5. ALU Clocking Scheme

The ALU loop operates on a simple 50% duty cycle 2	 dynamic tim-
ing scheme with seamless time-borrowing at locally generated clock bound-
aries [10]. 	1 begins at the dynamic source multiplexer and terminates at the
third carry-merge gate (CM3). 	2 begins at the fourth carry-merge gate (CM4)
and terminates at the end of the bus (Figure 12). By locally generating the 	2
clock from an inversion of the incoming 	1 clock, the falling and rising edges
of 	1 and 	2 are locked, enabling race-free debug at slow frequencies. The
conversion of the first stage of the non-critical path (CC0) to a latch, which is
clocked with a staggered 	1 clock (stclk2) , reduces switching activity in the
non-critical paths.

182 S.K. Mathew, et al.

Figure 12. ALU clocking scheme.

Figure 13. ALU timing plan.

The timing plan (Figure 13) illustrates the relative positioning of the ALU
clocks. The phase clocks 	1 and 	2 drive footed dynamic gates in the source
multiplexer and the fourth level carry-merge gate respectively. The remaining
carry-merge gates are implemented using footless dynamic circuits driven by
locally generated staggered clocks. Generation of these staggered clocks from
the phase clocks limits precharge races. Seamless time-borrowing occurs at all
clock boundaries except at the 	1 boundary, which requires a setup time of
18 ps to minimize noise generated at the single-to-dual-rail converting multi-
plexer’s output.

High-performance energy-efficient dual-supply ALU design 183

6. Benefits over Dual-rail Dynamic Implementation

A dual-rail dynamic implementation and its inherent costs are avoided by
the use of a single-to-dual rail converting multiplexer. This circuit allows gen-
eration of dynamic-compatible true/complementary versions of theALU inputs
from a single-rail write-back bus, thereby enabling a single-rail ALU design
with single-rail conditional carry circuits and simplified sum XOR gates. This
enables 50% reduction in area due to elimination of the dual-rail paths, 10%
reduction in delay due to shorter critical path interconnects, and 40% reduction
in active leakage power due to reduction in total transistor count.

7. Measurement Results

Figure 14 shows a microphotograph of the die implemented in 90 nm
dual-Vt CMOS technology, with the lower and upper 32-bit sections of theALU
in the middle, a total die dimension of 1622µm × 294µm, and the ALU occu-
pying 280µm × 260µm. Frequency and power measurements of this ALU
(Figure 15) are obtained by sweeping the supply voltage from 0.8 V to 2.1 V
in a temperature-stabilized environment of 25◦ C. At 1.3 V (nominal supply
voltage for this technology), the 64-bit ALU operates at a maximum frequency
of 4 GHz with worst-case switching power of 300 mW and a leakage compo-
nent of 9.6 mW. Average power consumption for a switching activity of 10%
is 89 mW. ALU performance in the 64-bit mode is scalable to 7 GHz at 2.1 V.
In the 32-bit mode the ALU operates at a maximum frequency of 7 GHz with a
power consumption of 238 mW at the nominal design point, with performance
scalable to 9 GHz at 1.68 V.

8. Dual Supply Voltage Operation

Depending on the mode of operation, the upper 32 bits of the ALU can be
selectively turned on or turned off (Figure 16). In the 32-bit mode the supply to

Figure 14. Die microphotograph.

184 S.K. Mathew, et al.

Figure 15. 32-bit and 64-bit ALU maximum frequency and power measurements.

Figure 16. Dual-supply operation of 64-bit ALU.

the upper section is turned off, thereby reducing active leakage power by 50%.
In the 64-bit mode the three-stage slack present in the upper-order 32-bit section
of the tree is exploited by lowering its supply, resulting in lower dynamic power
consumption, without impacting performance. Low-voltage operation of the
ALU also provides the additional benefit of reducing leakage power. Leakage
current measurements of a 64-b ALU in 90 nm CMOS technology (Figure 17)
show that a 66% active leakage power reduction is achieved by reducing the
supply voltage from 1.3 V down to 1 V. By operating the upper 32-bit section of
the ALU at this lower supply in the 64-bit mode we can obtain a 33% leakage

High-performance energy-efficient dual-supply ALU design 185

Figure 17. 90 nm measured results: scaling of 64-bit ALU active leakage with supply
voltage.

power reduction without impacting performance. No level converter is required
at the interface of the two supplies, since the carryout signal at a higher supply
voltage drives a carry-merge gate at a lower supply.

Figure 18 illustrates the power-performance tradeoffs in the 64-bit mode of
operation. The total power savings and the associated delay penalty are shown
as the supply voltage to the upper 32 bits is lowered from 1.3 V down to 0.9 V.
The lower 32-bit section of the ALU operates at the nominal supply voltage of
1.3 V and therefore its performance remains unaffected.As the supply voltage is
reduced from 1.3 V to 1.05 V the performance-setting path of the ALU includes
the lower 32-bit carry-merge tree (operating at the nominal supply voltage) and
the final three stages of the upper 32-bit ALU (operating at the lower supply).
A super-linear savings in power is obtained, while in this voltage range the
total delay penalty is minimal since only three stages of the performance-
setting path operate at the lower supply. Below 1.05 V the slack between
the upper and lower 32-bit sections is exhausted and the performance-
setting path of the ALU shifts entirely to the upper 32-bit section of
the ALU, which operates at the lower supply. Consequently, the delay
penalty overtakes the percentage power savings. Thus we have demonstrated
that, with appropriate choice of a lower supply voltage, efficient power–
performance optimization can be achieved, enabling up to 22% total power
savings.

186 S.K. Mathew, et al.

Figure 18. Total power savings and performance penalty vs. supply trade-off for upper-order
32 bits.

9. Summary and Conclusions

The design of an energy-efficient 64-bit integer execution ALU operating
at 4 GHz in a 1.3 V, 90 nm CMOS technology is described, with performance
scalable to 7 GHz at 2.1 V (measured at 25◦ C). The single-rail sparse-tree adder
core design enables an energy-efficient ALU design with a worst-case power
of 300 mW, measured at 4 GHz with a low leakage component of 9.6 mW. In
the dual-supply mode of operation up to 22% power savings are demonstrated.
Finally, the semi-dynamic design results in reduced switching activity in the
adder core with a low average power consumption of 89 mW. This mitigates
the power density issues and thermal hotspot challenges within the execution
core, increasing reliability and reducing cooling costs.

Acknowledgments

The authors thank R. Saied, S. Wijeratne, D. Chow, M. Kumashikar,
C. Webb, G. Taylor, I. Young, H. Samarchi, G. Gerosa, for discussions; Desktop
Platforms Group, Folsom, CA for layout support; and S. Borkar, M. Haycock,
J. Rattner and S. Pawlowski for encouragement and support.

High-performance energy-efficient dual-supply ALU design 187

References

[1] Sager, D. et al. “A 0.18µm CMOS IA32 microprocessor with a 4 GHz integer exe-
cution unit”, Digest of Tech. Papers, IEEE Intl. Solid-State Circuits Conf., February
2001, 324–325.

[2] Kogge, P.; Stone, H.S. “A parallel algorithm for the efficient solution of a general class
of recurrence equations”, IEEE Trans. on Computers, 1973, c22, 786–793.

[3] Knowles, S. “Afamily of adders”, Proc. 14th IEEE Intl. Symp. on ComputerArithmetic,
April 1999, 277–281.

[4] Mathew, S.; Anders, M.; Bloechel, B.; Nguyen, T.; Krishnamurthy, R.; Borkar, S.
“A 4 GHz 300 mW 64-bit integer execution ALU with dual supply voltages in 90 nm
CMOS”, Digest of Tech. Papers, IEEE Int. Solid-State Circuits Conf., February 2004,
162–163.

[5] Thompson, S. et al. “A90 nm logic technology featuring 50 nm strained silicon channel
transistor, 7 layer of Cu interconnects, low-k ILD, 1µm2 SRAM cell”, IEDM Tech.
Dig., December 2002, 61–64.

[6] Mathew, S.; Anders, M.; Krishnamurthy, R.; Borkar, S. “A 4 GHz 130 nm address
generation unit with 32-bit sparse-tree adder core”, IEEE J. Solid State Circuits, 2003,
38, 689–695.

[7] Alvandpour, A.; Krishnamurthy, R.; Borkar, S. “A sub-130 nm conditional keeper
technique”, IEEE J. Solid State Circuits, 2002, 37, 633–638.

[8] Anders, M.; Mathew, S.; Bloechel, B. et al. “A 6.5 GHz 130 nm single-ended dynamic
ALU and instruction scheduler loop”, Dig. Tech. Papers, IEEE Int. Solid-State Circuits
Conf., February 2002, 410–411.

[9] Naffziger, S. “A sub-nanosecond 0.5µm 64-bit adder design”, Dig. Tech. Papers,
IEEE Int Solid-State Circuits Conf., February 1996, 362–363.

[10] Alvandpour, A.; Krishnamurthy, R.; Eckerbert, D.; Apperson, S.; Bloechel, B.;
Borkar, S. “A 3.5 GHz 32 mW 150 nm multiphase clock generator for high-
performance microprocessors”, Dig. Tech. Papers, IEEE Int Solid-State Circuits Conf.,
February 2003, 112–113.

Chapter 8

BINARY FLOATING-POINT UNIT DESIGN:

The fused multiply-add dataflow

Eric M. Schwarz
IBM Corp., MS:P310, 2455 South Road, Poughkeepsie, NY 12601

Abstract: Since 1990 many floating-point units have been designed using a fused multiply-
add dataflow. This type of design has a huge performance advantage over a
separate multiplier and adder. With one compound operation, effectively two
dependent operations per cycle can be achieved. Even though a fused multiply-
add dataflow is now common in today’s microprocessors, there are many details
which have never been discussed in papers. This chapter shows the implementa-
tion of the different parts of the fused multiply-add dataflow including the counter
tree, suppression of sign extension encoding, leading zero anticipation, and end
around carry adder design. This chapter illustrates algorithms and implementa-
tion details used in today’s floating-point units that have been passed down from
designer to designer, becoming the folklore of floating-point unit design.

Key words: binary floating-point; fused multiply-add; computer arithmetic; end around carry
adder; leading zero anticipation.

1. Introduction

Floating-point units have been developed for many radices including binary,
hexadecimal, and even decimal. The most popular radix is binary, though the
future may change with the introduction of a new standard for decimal floating-
point datatypes in the next revision to 754 IEEE floating-point standard [1].
Decimal format is optimal for financial applications though binary is best for
scientific applications due both to its mathematical properties and performance
advantage.

Vojin G. Oklobdzija and Ram K. Krishnamurthy (eds.),
High-Performance Energy-Efficient Microprocessor Design, 189–208.
c© 2006 Springer. Printed in the Netherlands.

189

190 E.M. Schwarz

Binary floating-point units are available on every microprocessor and are
very common in embedded applications including game systems. Most designs
center around a fused multiply-add dataflow due to its simplicity and perfor-
mance advantage over separate multiply and add pipelines. One technique used
for increasing performance is to use Horner’s rule for transforming a set of
equations into a series of multiply-adds [2]. This numerical analysis technique
is very common and takes full advantage of this type of dataflow.

The first processor to contain a fused multiply-add dataflow was the first
IBM RS/6000 workstation which was introduced around 1990 [3]. Many of the
hardware implementation algorithms of this machine are still popular today.
The optimizing compiler was key to enabling C programs to be expanded into
a series of fused multiply-adds.

This chapter will detail current design techniques that have become com-
mon hardware design practices in creating fused multiply-add implementations.
These techniques have not been well documented except in patent filings or are
just part of folklore passed on by designers. This chapter will cover an intro-
duction to the IEEE 754 binary floating-point format followed by a detailed
look at a typical dataflow. The multiplier counter tree will be developed and the
counter tree reduction will be shown. The addend will also be discussed, which
is summed with the two partial products from the multiplier. This presents a
complication that is not well known due to the sign extension encoding of Booth
encoded partial products. Then the end around carry (EAC) adder will be dis-
cussed, which results in a positive magnitude result. Also, current techniques in
leading zero anticipation (LZA) design will be discussed. Then normalization
and rounding will be discussed to complete the design of fused multiply-add
dataflow. References will be given for more in-depth study of these topics.
This chapter will provide an overview of the complications of floating-point
unit design.

2. IEEE 754 Format

In the 1960s and 1970s many proprietary formats were popular, such as IBM
S/360 hexadecimal format [4], VAX, and CRAY [5], which were incompatible
and did not have the best mathematical properties. In 1985 the “IEEE standard
for binary floating-point arithmetic” [6], otherwise known as the IEEE 754
standard, was ratified, and has become the universal format in all microproces-
sor designs. The standard defines two basic formats: single-precision (32 bits)
and double-precision (64 bits), and also provides extended formats. Most man-
ufacturers implement at least single and double. In addition, Intel, as well as
clone manufacturers such as AMD, implement a double extended format [7, 8].
Intel and its clones optimize their dataflow for a double extended format while
other manufacturers such as IBM and Sun Microsystems optimize for the

Binary floating-point unit design 191

Table 1. IEEE 754 standard formats

Type Sign Exponent Fraction Format Bias Emax Emin
width

Single 1 8 23 32 127 +127 −126
Double 1 11 52 64 1023 +1023 −1022
Double 1 15+ 63+ 79+ 2(n−1)−1 2(n−1)−1 −(2(n−1)−2)

Extended

double format. Table 1 shows the bitwise breakdown of IEEE 754 standard
formats as well as their associated biases and signed exponent ranges.

Normalized numbers can be represented by the following equation:

X = (−1)Xs ∗ (1 · Xf) ∗ 2 (Xe−bias)

where X is the value, Xs is the sign bit, Xf is the fraction of the significand
which is augmented by an integer bit equal to one, and Xe is the unsigned
binary exponent. If the exponent, Xe, is not equal to the maximum (all ones)
or the minimum (all zeros) then the value of the number, X, is specified by this
equation. If the exponent is all ones or all zeros a special number is represented.
There are four types of special numbers. If the exponent is all ones and the
fraction is zero, a positive or negative infinity is symbolized. If the exponent
is all ones and the fraction is non-zero, then a not-a-number (called NaN) is
represented which is useful for representing non-numeric or non-representable
results. If the exponent is all zeros and the fraction is all zeros, a positive
or negative zero is symbolized. The fourth special number is a denormalized
number, sometimes called a denormal or subnormal number, and is represented
by an all-zero exponent and a non-zero fraction. Denormals, unlike the other
special numbers, require non-trivial calculations of a result. The following
equation specifies the value of a denormalized number:

X = (−1)Xs ∗(0 · Xf) ∗ 2 (1−bias)

where Xe = 0, and bias is the bias given in Table 1. Note that the implicit bit is
removed and there is a gradual loss of precision as the significand gets smaller.
Also, the exponent is set to (1− bias) rather than (0− bias) which creates less of
a discontinuity from the normalized numbers, but creates complications in the
implementation. Denormalized numbers are difficult to implement in hardware,
though with some added complexity and small addition of hardware, they can
be implemented in a pipelined manner [9, 10].

3. Fused Multiply-add Dataflow

A fused multiply-add operation can be described by the following equation:

T = B + A ∗ C

192 E.M. Schwarz

“A” is the multiplicand, “C” is the multiplier, “B” is the addend, and “T” is the
target of the result. The dataflow is designed to require several pipeline stages of
latency but to have a throughput of one instruction per cycle. Thus the dataflow
supports the performance of effectively two operations (a multiply and an addi-
tion) per clock cycle.The dataflow consists of a multiplier, addend alignment, an
incrementer, an adder, a leading zero anticipator, a normalizer, and a rounder
as shown in Figure 1. The dataflow of only the significand is shown, since
the exponent dataflow is rather simple. Only the critical path in the exponent
dataflow is discussed where it is used to calculate the addend alignment and
its update for normalization. Each of these blocks will be detailed. Unless oth-
erwise specified, examples will be based on double-precision operands which
have 11 bits for the exponent and 53 bits for the significand (52 bits of fraction
and an implied bit).

3.1. Addend Alignment

Before the addend, B, can be added, it must be properly aligned to the
product. At the point where the addend is combined with the product, it is
represented by two partial products called the sum and the carry. Each of these
partial products are two times as wide as the input operands or 106 bits. Usually,
in a floating-point adder, the operand with the smaller exponent is aligned. But
for a multiply-add dataflow it is very costly to swap and align two 106-bit
operands. Instead it is much easier to only align and conditionally complement
the addend which is one 53-bit operand. Thus, the product is treated as having
a fixed radix point and the addend is aligned to this radix point. The range of
shifting is from when the addend is 53 bits plus two guard bits greater than
the product, to when the addend’s most significant bit is less than the product’s
least significant bit. This is approximately three times the width of the data
plus some guard bits. For a double-precision dataflow the shift amount range
is around 161 bits. Since 8 bits can represent a shift amount of up to 256, only
the bottom 8 bits of the shift amount need to be considered. Any shift which is
greater than 256 can be capped to a maximum right or left shift.

The shift amount is based on the exponent difference which is expressed as
follows:

D = (Be − bias + b0′) − ((Ae − bias + a0′) + (Ce − bias + c0′))

where D is the exponent difference or shift amount, and a0, b0, and c0 are the
implied ones of the significands of A, B, and C respectively.

D = Be − Ae − Ce + bias + b0′ − a0′ − c0′

D = Be − Ae − Ce + bias + z where z ε {−2,−1,0,+1}
D∗ = Be − Ae − Ce + Offset + z

Binary floating-point unit design 193

C Reg

Booth Recoder

A RegB Reg

End Around Carry Adder
Incrementer

Normalizer

Partial Product
Array

3:2 Counter

Counter Tree

Aligner

B(low)

B(high)

Rounder

LZA/LZD

Figure 1. Fused multiply-add dataflow.

The shift amount can be based off any reference point and is usually chosen
such that all shift amounts are positive. The D∗ term represents the exponent
difference plus offset due to the change in reference point. The combined offset
with bias can be chosen such that the low-order 8 bits are all zeros by just finding
the appropriate reference point. This simplifies the calculation to just a three-
way add except for the case of denormal operands where z is non-zero. There are

194 E.M. Schwarz

several ways to take care of these cases [9, 10]. One simple solution is to design
multiple adders that take care of different values of z and choose between them
when it has been determined which operands are denormals. Another solution
is to first shift the addend by the exponent difference without z, and then have
a late stage which shifts by z.

The shift amount calculation is a critical path, so reducing this calculation
by choosing the proper offset is essential. After the shift amount is determined,
the alignment of the significand is performed. Shifting usually involves multi-
ple levels of multiplexing. The aligner is designed to shift small amounts first,
followed by large amounts. This reduces the width of the shifter in early stages.
Note that the alignment approximately involves a shift of the addend between
0 and 161 bits to the right. The result needs to be preserved for at least 161 bits
and any bits shifted out need to be logically ORed into a sticky bit representing
inexactness. The inexact sticky bit will be needed later for rounding. Inexact-
ness can occur wherever there is shifting right or where there is a reduction in
the width of the dataflow.

The low-order 106 bits are forwarded to the multiplier counter tree to be
reduced with the last two partial products. The high-order 55 bits are forwarded
to an incrementer. These bits, if non-zero, could be incremented by a carry out
of the adder. Once the carry out of the adder is known, the high addend bits are
selected from the incrementer output or from a non-incremented path.

3.2. Multiplier Design

Multiplication involves creating multiples of the multiplicand to form a
partial product array followed by their summation to form the final product.
A radix of the multiplier is chosen which determines the range of multiples
possible. A larger radix involves more work to create and choose the multiples,
but less effort to add. In grade school we are taught to multiply using a dec-
imal format, and perform a radix-10 multiplication to create partial products
in the range of 0 to 9 times the multiplicand. A partial product array is formed
out of digit multiplications and then the partial products are summed to create
the final product. In binary, the radix of the multiplier is typically a power
of 2, and for double precision, the operands are 53 bits. A radix-2 method is
the simplest method since it creates one partial product per bit of the multi-
plier operand, but requires a huge counter tree to reduce 53 partial products.
A radix-4 multiplication method will reduce the number of partial products to
approximately 2 bits per partial product, or more exactly ceil((n + 1)/2) = 27.
However, there is added complexity to the partial product creation. In a pure
non-Booth, radix-4 method, the multiples of (0X, 1X, 2X, and 3X) need to be
created. The 3X multiple is non-trivial to form and requires extra delay and area
for an adder. In the 1950s, Booth [11] showed a technique used in accounting

Binary floating-point unit design 195

where digits could be recoded into both negative and positive digits. In binary,
this technique is based on the string recoding theorem where a string of ones
can be replaced by 1 in the bit position immediately to the left of the most
significant bit in the string, and a -1 in the least significant bit of the string as
shown by the following equation:∑

(i=0 to n−1)

1∗ 2i = 1∗ 2n − 1∗ 20

Example: 0001111100 = 0010000(−1)00

This transformation eliminates two consecutive ones and thus will elimi-
nate the 3X multiple. A Booth radix-4 scanning simplifies the multiples to the
set of (−2X,−1X,0X,+1X, and +2X). 0X, 1X, and 2X are trivial to create
as well as their negative counterparts and this will be explained later. Many
implementations today use a Booth radix-4 multiplier and our example will
assume this type of design.

For IEEE double precision, Figure 2 describes the scanning of the multiplier
operand. Multiplier, Y, has bits labeled 0 to 52 where 0 is the most significant
and 52 is the least significant. As an example, partial product 10 is formed from
scanning bits 19 to 21. There are also two extra bits added at the ends to make
sure the recoding completes the scanning of strings. The most significant extra
bit, “o”, equal to zero also insures the 0th partial product is positive.

The scanning involves examining 3 bits of the multiplier and recoding them
as though they were a string. There are 27 partial products which are labeled
0 to 26 where 0 is most significant. The recoding of every 3 bits follows the
equations below:

sel 1x <= Yi+1 xor Yi+2

sel 2x <= (
Y′

i Yi+1 Yi+2
) + (

Yi Y
′
i+1 Y′

i+2

)
sel sign <= Yi

where Yi, Yi+1, and Yi+2 are three consecutive bits of the multiplier from
more significant to less significant, and Y′ indicates the complement of Y, and
sel 1x, sel 2x, and sel sign are selection signals to choose between the 1X
multiple, the 2X multiple, and the two’s complement of the partial product.

Figure 2. Radix-4 scanning of multiplier.

196 E.M. Schwarz

Figure 3. Partial product array.

Two’s complementing is performed by one’s complementing, or inverting the
partial product, adding a hot one in the subsequent partial product, and encoding
a negative sign extension for this partial product.

The resulting partial product array is shown in Figure 3. Each partial product
has 54 bits to represent a multiple of the multiplicand. The multiple is selected
by using a 2:1 true/complement multiplexor which chooses either the 1X or 2X
multiple, and then outputs either the true or the complement of this multiple. If
neither 1X or 2X is chosen, a zero is output. All but the top and bottom partial
product have 1S′ appended to the left side of the partial product. This is done to
encode the sign extension. It is equal to “10” for a negative partial product and
“11” for a positive partial product. The top partial product is shown with S′SS,
which equals “011” for a negative partial product and “100” for a positive partial
product. Creating a negative partial product involves one’s complementing a
positive multiple of the multiplicand and adding a hot one, which is represented
by “-H”, in the row below it. This encoding of the partial product is shown in
detail for any radix [12, 13]. The bottom row must be positive since there is no
position for adding a hot one to complement it, which is insured by the leading
zero (represented with an “o”) in Figure 2 as discussed earlier.

The next step in performing the multiplication is to sum the partial prod-
ucts [14, 15]. Many types of counters are available, but 3:2 and 4:2 counters
are very popular. 4:2 counters were introduced by Weinberger in 1981 [16] as
two cascaded 3:2 counters, and were later implemented as very fast, aggressive
pass gate multiplexors [17]. Similar implementations of larger counters are
possible, but they have not become popular. The pass gate implementation of a

Binary floating-point unit design 197

3:2 3:2 3:2

3:2 3:2

4:2 4:2

4:2

PP13 PP14PP12 PP16 PP17PP15 PP19 PP20PP18

3:2 3:2

3:2 3:2 3:2

Carry

3:2 3:2

3:2 3:2 3:2

3:2 3:2

3:23:2

PP7PP4PP1 PP10PP9 PP11PP8PP6PP0 PP2 PP3 PP5 PP22 PP23PP21 PP25 PP26PP24

Sum

Figure 4. Counter tree of multiply-add dataflow.

4:2 counter takes about 1.5 times the delay of a 3:2 counter versus twice the
delay if it were implemented using the cascaded method. For the reduction of
27 partial products a mixture of 4:2 and 3:2 counters works best as is shown
in Figure 4.

In the first level of the tree, 3:2 counters reduce 27 partial products to 18. In
the second level, 3:2 counters reduce 18 partial products to 12. In the third level,
3:2 counters reduce 12 partial products to 8. At this point it is best to switch
to 4:2 counters to reduce to 4 partial products. In the last level, a 4:2 counter
is used to reduce the 4 partial products to 2. At this point the addend is ready
to be reduced. The aligned addend, along with the 2 partial products from the
multiplier, are reduced by a 3:2 counter to 2 partial products. The counter tree
takes the equivalent of six 3:2 counter delays to reduce the 27 partial products
to 2, and an additional 3:2 counter level to reduce the addend.

3.2.1. Suppression of sign extension

There is a problem with combining the addend with the partial products of
the multiplier prior to reducing them to one final product. If the final product is

198 E.M. Schwarz

formed first, the sign extension encoding has a chance to propagate any carry
outs that need to be ignored. The carry out of the sign extension is similar to the
carry out of a two’s complement subtraction. In a subtraction, if there is a carry
out then the sum is positive, and if there is no carry out, the sum is negative. The
carry out of an effective subtraction with a positive sum is ignored since it is
in a bit position more significant than the most significant bit of either operand
being subtracted. The multiplier’s sign extension encoding should also cause a
carry out which should be ignored.

The sign extension encoding can be thought as a series:

Sign Ext = 1,S1′,1,S2′, . . . ,1,S(n − 2)′,1,S(n − 1)′,1, (S(n)′ + 1)

where Si is the sign bit of the i-th partial product. Given that

1 − Si = Si′

Then,

Sign Ext = 1, (1 − S1),1, (1 − S2), . . . ,1, (1 − S(n) + 1)

Sign Ext = 20 − �(i = 1,n)Si ∗4−i

All other terms can be considered to be positive. If all partial products are
positive, then the sum of these sign extension terms is one which is a carry out.

It can be proven that an effective subtract of two’s complement numbers
that results in a positive sum will always have a carry out. So, for either case
of having any negative partial products or having all positive partial products
there will be a carry out. And it can be shown that there will always be only
one carry out caused by this multiplier sign extension encoding.

This carry out, due to multiplier sign extension, must be detected and sep-
arated from carries caused by adding the addend with the product. In other
words, we must figure out whether there was a carry out of the sign extension
prior to the last 3:2 counter, which combines the product with the addend. To
do this, an extra bit in the counter tree is maintained for the carry out position.
If the carry out bit position is a one, the carry out has occurred and the carry
out bit of the last 3:2 counter is correct. However, if the carry out bit position
is a zero, then the carry out bit of the last 3:2 counter is incorrect and must be
inverted.

This has been implemented on many fused multiply-add dataflows but never
really discussed. It is a simple correction to implement. Designers learn about
this anomaly when they first try to simulate the counter tree and figure out why
they are getting failures. The multiplier sign extension encoding causes a carry
out which must be accounted for especially when combining an addend into
the counter tree.

Binary floating-point unit design 199

3.3. End Around Carry (EAC) Adders

The adder in a fused multiply-add dataflow has to produce a magnitude for
the result, since floating-point is in sign magnitude format. In a fused multiply-
add dataflow it is very difficult to determine a priori which operand is bigger.
The magnitude of the product is unknown in the early stages prior to combi-
nation with the addend. Even if it were determined early that the product was
bigger, there would be the problem of conditionally complementing two inter-
mediate operands, the carry and sum outputs of the counter tree, rather than
just one. Thus, an adder needs to be designed that will always output a positive
magnitude result and preferably only need to conditionally complement one
operand, the addend. This type of adder is called an “end around carry” adder
(EAC) and has been implemented on several microprocessors, though very few
details on their formulation and how they work exist in today’s literature.

The effective subtraction of operand B from operand P can be formulated as

P − B = P + 2n − B

P − B = (P + B′ + 1) (1)

This is useful if the B operand is smaller, but if the P operand is smaller,
then a more useful equation is:

B − P = −(P − B) = −(P + B′ + 1) = −(P + B′) − 1

B − P = (P + B′)′ + 1 − 1

B − P = (P + B′ + 0)′ (2)

Equation (1) is useful if B is the smaller operand, and Equation (2) is useful
if P is smaller. The operand which is smaller can be determined by using a
comparator. The best design of a greater than comparator is to use the carry out
of an adder performing an effective subtraction.

P − B = P + 2n − B = 2n + (P − B) (3)

In Equation (3) the 2n refers to a carry out of the adder and will be equal to 1
if P is greater than or equal to B. Remember, when doing two’s complement
subtraction, a positive result always produces a carry out, and a negative result
does not. If the carry out is 1, then Equation (1) should be used, but if the carry
out is 0 then Equation (2) should be used. Note that the difference between
Equations (1) and (2) is whether the carry in gets set to zero or one and whether
the final sum is inverted or not. One could think of implementing these equations
by taking the carry out of (P- B) and driving that to another adder’s carry in. This
is how the adder gets its name as an end around carry adder. There have been
several microprocessors that have implemented the adder with two carry chains
since the designers didn’t know these equations could be simplified. There have

200 E.M. Schwarz

also been many implementations that have two adders: (P-B) and (B-P) and
select between the two. This is common implementation practice even today,
especially in the implementation of the exponent difference circuit.

For decades there has been a better way to design an EAC adder. Unfor-
tunately, since it has not been documented, other less elegant designs have
been employed. The propagate and generate terms for both the comparator of
Equation (3) and the subsequent adder are similar. It would appear that the
common terms would combine. Several authors have mentioned this and have
actually said the carry should not propagate twice the length but only one length
of the adder [18, 19]. This is commonly known, but why and how does one
describe the combination of the comparator with the subsequent adder.

First as an example assume that the width of the adder is separated into four
groups labeled 0 to 3 where 0 is the most significant. Then the equations of the
comparator are derived. The comparator is described by a carry out equation
of P-B where the carry in equals 1.

Cout = G0 + P0G1 + P0P1G2 + P0P1P2G3 + P0P1P2P3 (4)

The next step is to describe the group carries of the subsequent adder:

C0 = G0 + P0G1 + P0P1G2 + P0P1P2G3 + P0P1P2P3Cin (5a)

C1 = G1 + P1G2 + P1P2G3 + P1P2P3Cin (5b)

C2 = G2 + P2G3 + P2P3Cin (5c)

C3 = G3 + P3Cin (5d)

where Ci is the carry out of the i-th group. If the Cout equation of the comparator
is substituted for the Cin of the adder, the following are the reduced equations:

C0 = G0 + P0G1 + P0P1G2 + P0P1P2G3 + P0P1P2P3 (6a)

C1 = G1 + P1G2 + P1P2G3 + P1P2P3G0 + P0P1P2P3 (6b)

C2 = G2 + P2G3 + P2P3G0 + P2P3P0G1 + P0P1P2P3 (6c)

C3 = G3 + P3G0 + P3P0G1 + P3P0P1G2 + P0P1P2P3 (6d)

This shows the combination of the comparator and adder equations result
in a carry chain for every group that is the length of the width of the adder.
An EAC adder has equal length carry chains. This wrapping of the carries is
needed for effective subtraction but is not correct for addition. To make the
adder selectable for addition and subtraction, the P3 term is modified. An extra
bit is added to the least significant bit of the adder to signal whether there is an
effective subtract operation and the carry chain should be propagated. This is
factored into P3, and P3 is equal to zero for an effective addition operation.

Another complication to the design is the inexact sticky bit. The two’s
complementation of P or B is supposed to be calculated for the full precision
operand. If the addend is shifted to the right and has any bits that are aligned to

Binary floating-point unit design 201

the right of the least significant bit of the product, these bits must be included
in the complementation operation and inexact sticky bit generation. If B has
any ones shifted out, the two’s complementation of B will not cause a carry in
to the adder

Assume B is separated into two parts: Bh which is aligned with the prod-
uct and Bl which is less significant than the product. The subtraction can be
described by:

P − B = P + Bh′ + Bl′ + 1

if Bl′ has zeros in it, (Bl′ + 1) will not propagate a carry into Bh′. The truncated
result is given by the following:

(P − B)tr = (P + Bh′ + Bl′ + 1)tr = (P + Bh′ + 0)

and if B is greater than P, the following holds:

(B − P)tr = ((P + Bh′ + Bl′ + 0)′)tr = (P + Bh′ + 0)′

This adjustment for an inexact aligned addend, B, can be handled in one
of two ways: (1) a Cin term can be added to Equations (6a) to (6d) which is
equal to 1 if there is an effective subtract and Bh is exact (no stickyness), or
(2) the P3 term can be modified by adding an additional bit to the propagation
equation which is equal to the complement of the inexact sticky bit. Method 2
of modifying P3 to have an AND with effective subtract and an AND with not
inexact, is straightforward and the preferred method.

With the minor adjustments to the least significant propagate term (P3) and
utilizing the EAC from Equations (6a) to (6d), an adder can be designed which
always returns a positive magnitude. The carry equation for each group is equal
in length and equal to the width of the adder.

Also, note that the last stage of the adder is an exclusive-OR level used
to conditionally complement the sum based on the complement of the carry
out of the adder for an effective subtraction. This allows the selection of P-B
(Equation 1) or B-P (Equation 2).

3.4. Normalization and Leading Zero Anticipation

The next step in the calculation of the fused multiply-add operation is nor-
malization. Rather than waiting for the adder to complete and then performing
a leading zero detection (LZD) off the sum, the number of leading zeros is
predicted using a leading zero anticipation (LZA) circuit, first implemented on
the IBM RS/6000 [20]. Many LZA circuits are discussed in [21]. A common
implementation of an LZA is shown.

202 E.M. Schwarz

The equations of an LZA are derived from examining the possible patterns
that have to be detected. Assume the equations for a generic adder with inputs
A and B, and result, R. Z is used to represent the case when A and B are both
zero in a given bit position. H refers to the exclusive OR of A and B which is
called the half-sum, and G is the generate of this bit. A case study is shown first
starting with the simple case of effective addition followed by three cases for
effective subtraction.

3.4.1. Case 1. A > 0,B > 0,R > 0

Case 1 is for A, B, and R positive. This case has the following pattern up
to the leading one: Z+ : Z′ where + symbolizes 1 or more, ∗ symbolizes zero
or more, and A′ represents the complement of A. Two examples are given in
Tables 2 and 3. The pattern in terms of Z, H, and G terms is shown, as well as
the position of the first one in the sum.

By predicting the pattern Z+ : Z′ the result could be off by one bit as shown
by the two examples. The leading one will either be at the location of Z′ or at
the next higher weighted bit position.

3.4.2. Case 2. A < 0,B < 0,R < 0

Case 2 is for A and B both negative two’s complement numbers. This case
will always have the following leading pattern: G+ : G′. An example is given
in Table 4. This case may not apply to a multiply-add dataflow since only the

Table 2. Example 1A

A: 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0

B: 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 0
Pattern Z Z Z Z H H H H Z Z H G G G G Z H Z
First X
One

Table 3. Example 1B

A: 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 1

B: 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1
Pattern Z Z Z Z G H H H Z Z H H G G G H H G
First X
One

Binary floating-point unit design 203

Table 4. Example 2

A: 1 1 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1

B: 1 1 1 1 1 0 0 0 0 1 1 0 1 0 1 1 0 0
Pattern G G G G H Z Z Z H G H Z H H H G Z H
First X
One

Table 5. Example 3A

A: 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0

B: 1 1 1 1 1 0 0 0 1 0 0 1 0 0 0 1
Pattern H H H H G Z Z Z H H Z G H H H H
First X
One

Table 6. Example 3B

A: 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0

B: 1 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1
Pattern H H H H G Z Z Z H H H G H H G H
First X
One

addend is negative, which will probably not cause both the carry and sum to be
negative. This case is included to have a complete LZA implementation that
could be used for any adder.

3.4.3. Case 3. A, B have different signs; R > 0

Case 3 is for one operand positive and the other negative and with a result
that is positive. This case will always have the pattern: H+ : G : Z∗ : Z′. Note
that H+ : G = 2n. For the result to be positive for an effective subtraction,
there must be a carry out which is equal to this term. Examples are given in
Tables 5 and 6.

3.4.4. Case 4. A, B have different signs; R < 0

Case 4 is for one operand positive and the other negative, with a negative
result. This case will always have the form: H+ : Z : G∗ : G′. Note H+ : Z < 2n

implies there is no carry out. This is required to have a negative result. This case

204 E.M. Schwarz

Table 7. Example 4

A: 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1

B: 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 0
Pattern H H H H Z G G G H G H Z Z G Z H
First X
One

occurs for the EAC adder design where the sum must be one’s complemented.
An example of this case is shown in Table 7. The position of the first one could
be off by one as with the other three cases. The carry information is not used to
fix this one-bit misprediction. Instead, the normalizer checks to see if the most
significant bit is a zero after the normalization process. If it is a zero, the result
is shifted to the left by one more bit position.

3.4.5. LZA Equations

The four patterns that indicate the leading one are known, and can be uti-
lized to design a predictor. A three-bit pattern is sufficient to indicate when the
position of the leading one has been identified. Case 1 suggests a pattern of
Z: Z′ but this won’t work because the scenario of Case 4 will fire for H+ : Z : G∗

and not H+ : Z : G∗G′. A pattern is needed that will not fire for H+ : Z : G∗. The
sequence H′

(i−2)Z(i−1)Z′
(i) for three consecutive bits from bit i-2 to bit i, works

for Case 1 and does not accidentally fire on Case 4 too early. For Case 2 the
same type of prefixing is needed to avoid firing on Case 3, so the sequence:
H′

(i−2)G(i−1)G′
(i) is used. Case 3 can be accounted for by H(i−2)G(i−1)Z′

(i) when
Z∗ occupies zero positions and H′

(i−2)Z(i−1)Z′
(i) when Z∗ occupies one of more

positions. Case 4 can be pattern matched by H(i−2)Z(i−1)G(i) when G∗ occupies
zero positions and by H′

(i−2)G(i−1)G′
(i) otherwise.

Using the four, three-bit, comparison patterns described above, the follow-
ing equation can be derived. This equation can be used to generate the vector,
which predicts the leading one.

V(i) = (H′
(i−2)Z(i−1)Z

′
(i)) + (H′

(i−2)G(i−1)G
′
(i))

+(H(i−2)G(i−1)Z
′
(i)) + H(i−2)Z(i−1)G

′
(i)) (7)

The predicted position of the leading one by the LZA vector may be off by
one bit. More precisely, an incorrectly predicted position is always one bit to the
right of the correct one. Due to the regularity in the incorrect prediction, LZA
logic can still be used with minor manipulation. The normalizer can account
for this misprediction by checking to see if the most significant bit of the

Binary floating-point unit design 205

normalized result is a zero. If it is, then the normalizer shifts the result to the
left by one more bit.

The LZA vector (V) formed by Equation (7) is formed for each bit in
parallel. Typically, another vector (U) is logically ORed to this vector to prevent
shifting a denormalized result past the smallest representable exponent. Thus,
the shift amount can be capped to not go beyond Emin. After ORing the two
vectors together, a LZD is performed to encode the shift amount needed by the
normalization [22, 23].

3.4.6. Normalization

The normalizer is formed out of a series of multiplexors that perform shifts
of different amounts. In the first level the coarse shift amounts are performed to
reduce the width of the dataflow. For instance, there might be a level to choose
between an incremented addend’s high bits concatenated with the high 53 bits
of the product versus selecting all 106 bits of the product. Then the next stage
will receive only about 106 bits as input and will perform shifts of multiple of
32 bits such as 0, 32, 64, or 96 bits shifted to the left. The following stage might
choose between shifts of 0, 8, 16, and 24 to the left. Futhermore, the last stage
shifts between 0, 1, 2, 3, 4, 5, 6, and 7 bits to the left. An extra stage is needed
with an inexact LZA as previously suggested. This stage is a 2 to 1 multiplexor
that receives as its select line the most significant bit of data from the previous
stage, and chooses between a shift of zero or a shift of 1 bit to the left.

3.5. Rounding

The rounder design is fairly simple. At this stage of the dataflow a truncated
intermediate result has been computed. Rounding will pick between the two
closest machine-representable numbers to the actual value. The two choices
are either this truncated result itself or incremented in the least significant bit.
The rounder needs to have an incrementer which can increment at different bit
positions. For instance, if single and double precision are supported then the
upper 24 bits and 53 bits respectively need to be incremented. An incrementer
can be developed from the equations of an adder with one operand equal to
zero and the carry in set to one. Then all the generate terms are equal to zero
and all the propagate terms are an AND string of all the bits of the operand
being incremented.

Following the incrementer, is a multiplexor which selects either a truncated
or incremented result. The choice between truncated and incremented result is
dependent on the result sign, rounding mode, least significant bit (L), guard

206 E.M. Schwarz

Table 8. Rounding table

Rnd mode Sign L G I Action

Nearest 0 Truncate
Nearest 0 1 0 Truncate
Nearest 1 1 0 Increment
Nearest 1 1 Increment
Zero Truncate
+ Infinity + 0 0 Truncate
+ Infinity + 1 Increment
+ Infinity + 1 Increment
+ Infinity − Truncate
− Infinity − 0 0 Truncate
− Infinity − 1 Increment
− Infinity − 1 Increment
− Infinity + Truncate

bit (G), and inexact sticky bit (I) as shown in Table 8. Either combined with
this multiplexor or separate is the choice between formats.

4. Evolving Design

The design of a fused multiply-add dataflow has changed since it was first
introduced in 1990. The most efficient adder design is now an EAC adder.
The multiplier sign extension encoding is suppressed, and the LZA algorithms
have been refined. There have been advancements in minimizing the delay of
denormal operands as well as for the cases of underflow and overflow, and the
counter tree designs have evolved.

Future designs will need to consider advances in counter tree designs as
well as many other factors. Some futuristic designs have been explored that
separate the addition path into two paths: a far and near path [24, 25]. These
designs reduce the latency by reducing the number of shifts in the critical path,
but at the cost of increased area.

Other research possibilities exist in trying to design a fused multiply-add
dataflow for decimal floating-point format. The first problem in this area is
how to design efficient decimal counters. This design area is fertile since it was
last explored in the 1950s and is being reinvestigated due to the new decimal
format defined in the IEEE 754R standard.

Hopefully these future advances will be documented and not become tricks
that are known only by the implementers. Eventually the folklore will turn into
literature, as has been finally accomplished for current binary floating-point
unit designs.

Binary floating-point unit design 207

Acknowledgements

Some of the algorithms described were learned through very experienced
designers and educators such as Martin Schmookler and Stamatis Vassiliadis.
The author is indebted to them for having the opportunity to learn and work
with them.

References

[1] “IEEE standard for floating-point arithmetic, ANSI/IEEE Std 754R,” The Institute of
Electrical and Electronic Engineers, Inc., In progress, http://754r.ucbtest.org/ drafts/
754r.pdf .

[2] Knuth, D. “The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,
3rd ed.” Addison-Wesley, Reading, MA, 1998, 467–469.

[3] Montoye, R.K.; Hokenek, E.; Runyon, S.L. “Design of the IBM RISC System/6000
floating-point execution unit”, IBM J. Res. Dev., 1990, 34(1), 59–70.

[4] “Enterprise Systems Architecture/390 Principles of Operation”, Order No. SA22-
7201-5, available through IBM branch offices, Sept 1998.

[5] Waser, S.; Flynn, M.J. Introduction to Arithmetic for Digital Systems Designers, Holt,
Rinehart, & Winston, 1982.

[6] “IEEE standard for binary floating-point arithmetic, ANSI/IEEE Std 754-1985,” Insti-
tute of Electrical and Electronic Engineers, Inc., New York, Aug. 1985.

[7] Intel Corporation, “Intel ItaniumArchitecture Sofware Developer’s Manual, Volume 1
Application Architecture,” ftp://download.intel.com/design/Itanium/Downloads/
24531703s.pdf, Dec. 2001.

[8] Intel Corporation, “IA-32 Intel Architecture Sofware Developer’s Manual,
Volume 1: Basic Architecture,” ftp://download.intel.com/design/Pentium4/manuals/
24547008.pdf, 1997.

[9] Schwarz, E.; Schmookler, M.; Dao Trong, S. “FPU implementations with denormal-
ized numbers”, IEEE Trans. Computers, 2005, 54(7), 825–836.

[10] Schwarz, E.; Schmookler, M.; Dao Trong, S. “Hardware Implementations of Denor-
malized Number Handling”, Proc. 16th IEEE Symp. on Computer Arith. Metic, June
2003, 70–78.

[11] Booth, A.D. “A signed multiplication technique”, Q. J. Mech. Appl. Math., 1951, 4(2),
236–240.

[12] Vassiliadis, S.; Schwarz, E.; Hanrahan, D. “A general proof for overlapped multi-bit
scanning multiplications”, IEEE Trans. Computers, 1998, 38(2), 172–183.

[13] Vassiliadis, S.; Schwarz, E.; Sung, B. “Hard-wired multipliers with encoded partial
products,” IEEE Trans. Computers, 1991, 40(11), 1181–1197.

[14] Wallace, C.S. “A suggestion for parallel multipliers”, IEEE Trans. Electron. Comput.,
1964, EC-13, 14–17.

[15] Dadda, L. “Some schemes for parallel multipliers”, Alta Frequenza, 1965, 34,
349–356.

[16] Weinberger, A. “4:2 carry-save adder module”, IBM Technical Disclosure Bull., 1981,
23, 3811–3814.

[17] Ohkubo N.; et al. “A 4.4 ns CMOS 54 × 54-b multiplier using pass-transistor multi-
plexer”, IEEE J. Solid-State Circuits, 1995, 30(3), 251–257.

208 E.M. Schwarz

[18] Richards, R.K. Arithmetic operations in digital computers, D. Van Nostrand Co., Inc.,
New York, 120, 1955, 120.

[19] Beaumont-Smith, A.; Lim, C. “Parallel prefix adder design”, Proc. 15th IEEE Symp.
Comp. Arith., Vail, June 2001, 218–225.

[20] Hokenek, E.; Montoye, R.K. “Leading-zero anticipator (LZA) in the IBM RISC Sys-
tem/6000 floating-point execution unit”, IBM J. Res. Dev., 1990, 34(1), 71–77.

[21] Schmookler, M.S.; Nowka, K.J. “Leading zero anticipation and detection – a com-
parison of methods”, Proc. 15th IEEE Symp Computer Arithmetic, Vail, 11–13 June,
2001.

[22] Oklobdzija, V. “An implementation algorithm and design of a novel leading zero
detector circuit”, Proc. 26th Asilomar Conf. on Signals, Systems, and Computers,
1992, 391–395.

[23] Oklobdzija, V. “An algorithmic and novel design of a leading zero detector circuit:
comparison with logic synthesis”, IEEE Trans. on VLSI Systems, 1993 2(1), 124–128.

[24] Seidel, P.M. “Multiple path IEEE floating-point fused multiply-add”, Proc. 46th Int.
IEEE Midwest Symp. Circuits and Systems (MWS-CAS), 2003.

[25] Bruguera, J.D.; Lang, T. “Floating-point fused mulipy-add: reduced latency for
floating-point addition”, Proc. 17th IEEE Symp. Computer Arithmetic, Hyannis, 27–29
June, 2005.

Chapter 9

MICROPROCESSOR ARCHITECTURE FOR
YIELD ENHANCEMENT AND RELIABLE
OPERATION

Hisashige Ando
Fujitsu Ltd., 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, Japan 211-8588

Abstract: With the advance of semiconductor scaling, smaller devices become more vul-
nerable to an SEU (single event upset, i.e. neutron hit etc.) and operating mar-
gin of the circuits is reduced both due to reduced operating voltage and larger
process variations. Robust circuit design alone cannot solve these problems.
Micro-architectural techniques for avoiding defects and error detection and cor-
rection microarchitecure can significantly reduce the probability of failure and
enhance the yield and the reliable operation of a microprocessor. The failure
mechanisms of nanometer class semiconductor VLSI circuits are described as
a background. Then concept and methods of error detection and correction are
described, followed by microarchitecture/logic design error detection and recov-
ery techniques. Commercial microprocessors using error detection and recovery
techniques are also presented.

Key words: redundancy; error detection; error correction; checkpoint; microprocessor.

1. Introduction

Microprocessors have been taking advantage of continuing semiconductor
scaling, from Intel 4004 microprocessors introduced in 1971 containing only
2300 transistors to recent processors integrating more than 1 billion transistors.
Semiconductor scaling reduced the minimum feature size of mass-production
integrated circuits down to 90 nm in 2004 and the scaling trend is expected to
continue down to 22 nm in 2016.

Vojin G. Oklobdzija and Ram K. Krishnamurthy (eds.),
High-Performance Energy-Efficient Microprocessor Design, 209–233.
c© 2006 Springer. Printed in the Netherlands.

209

210 H. Ando

However, CMOS semiconductor scaling becomes harder and harder as it
nears the end of scaling due to fundamental physical limits. As the feature size
becomes smaller, a smaller dust particle can cause fatal defects, which lowers
the yield of a chip. Also smaller features are harder to control and the electrical
parameter variation in the chips becomes larger. This also lowers the yield of
the chips.

Smaller transistors and reduced supply voltage reduce the operating margin
of the circuits as the noise margin is mostly proportional to the supply volt-
age and the parameter variation of the smaller devices is larger. Electrostatic
charge stored in a circuit node decreases rapidly as device sizes and voltage
are reduced. This makes circuits more susceptible to an alpha particle and a
neutron hit as the charge generated by a hit is constant and does not scale with
the shrinking geometry.

Circuits must be designed to accommodate larger device parameter varia-
tions, but it is inefficient to design circuits robust enough to accommodate very
large parameter variations or to withstand neutron hits.

Microarchitectural approaches, for repairing fixed errors and recovering
from transient errors, are becoming important means to enable microprocessors
and/or other VLSI systems to be manufactured economically and to operate
reliably.

2. Semiconductor Scaling Issues

2.1. Device Parameter Variation

In a photolithographic process, the intensity of the light, focus, sensitivity
and thickness of photo-resist etc. affect the size of the patterns exposed. In other
processes, variations in the mixture and flow rate of gases, process temperature
and so on, affect the thickness of a film or diffusion of impurities. Although
equipment manufacturers and semiconductor engineers are working hard to
reduce these variations, it is a tough battle to keep device parameter variation
small in line with the continuing scaling.

As the feature size becomes smaller than the wavelength of light, the inter-
ference of light affects the intensity of exposure and distorts the pattern to
be exposed. OPC (optical proximity correction) is used to compensate this
distortion, but the residual distortion becomes the source of device parameter
variation [1–3].

The light used for the photolithographic process is a beam of photons.
Near the edge of a line some roughness cannot be avoided as the photons
hit the photoresist like bullets. As the line width (which defines gate length)
becomes narrower, rough edges occupy an increasing percentage of the line
width [4]. As the length of the transistor channel becomes a few tens of

Microprocessor architecture 211

nanometers or less, the number of impurity atoms in a transistor channel
becomes smaller and causes a larger statistical variation of the threshold
voltage [5]. These statistical parameter variations cannot be avoided and make
relative device parameter variations larger as the scaling progresses.

2.2. Internal Noise

The power density of microprocessors is increasing rapidly [6, 7] as the
scaling increases transistor and wire capacitance per unit area roughly inversely
proportional to the feature size shrink. The clock frequency of a microprocessor
increases as the smaller transistor switches faster. The improvements in circuit
design, logic design and microarchitecture design further help to increase clock
frequency.

The power supply current of a microprocessor chip increases faster than the
power density increase as the supply voltage decreases with the semiconductor
scaling. This increase in supply current results in a larger IR drop and even
larger L*di/dt noise as dt decreases with the faster switching transistors [8, 9].

Capacitive coupling noise may increase due to the thick wires needed to
reduce wire resistance.

On the other hand, the noise margin of a static complementary CMOS circuit
decreases with the reduced supply voltage and the larger device variations as
the noise margin is expressed as (Vdd − Vt)/2 where Vt is a threshold voltage
variation. Analog circuits are more sensitive to device parameter variation and
they also have lesser noise margins than complementary CMOS logic circuits.

In addition to these noise sources, chip temperature varies as circuit activity
varies. This causes local temperature variation on a chip [10]. Since the tem-
perature affects the transistor parameters and resistivity of a metal wire, the
temperature variation further reduces the noise margin [11, 12].

2.3. Single Event Upset

When an energetic atomic or subatomic particle hits a silicon substrate and
collides with a silicon atom, electron and hole pairs are generated [13, 14]. The
generated electrons are attracted to a positively biased nearby N+ drain when
the hit occurs in an NMOS region. On the other hand, the holes are attracted to
a negatively biased P+ drain when it hits a PMOS region. This charge injection
occurs in a short period of time, usually less than 1 ns, and is equivalent to a
current pulse injected into the drain nodes. This pulse causes the noise spike
proportional to the amount of charge injected and inversely proportional to the
parasitic capacitance of the node.

If the noise exceeds the threshold voltage of the receiving gate by a certain
amount or more, it will be amplified, and it can flip the state of a memory cell or

212 H. Ando

a latch [15]. The minimum amount of charge causing the flip is called a critical
charge. The frequency of failure is dependent on the design of the circuit and
semiconductor process used.

With the improvement in removal of radioactive isotopes from the mate-
rials used for chip and package fabrication, the alpha particle hit became less
significant and the cosmic neutron hit became the dominant cause of failure.

The semiconductor scaling makes each RAM cell/latch become more sen-
sitive to a more abundant lower-energy particle hit as the operating voltage
and parasitic capacitance are reduced. But the scaling reduces the probability
of hit as the target size becomes smaller. References 16 and 17 report that the
frequency of a single bit failure is relatively constant with the scaling as these
two factors mostly cancel out. However, the frequency of a failure per chip
increases with the scaling as the number of bits per chip increases.

When the noise is large enough it can also affect logic gates. However,
propagation of the noise through a logic gate is affected by the state of the
other inputs of the gate. The arrival of the noise to a receiving flip-flop must
also be within a narrow latching window of the receiving circuit to cause an
error. Due to these masking effects, a radiation particle hit to a combinatorial
logic gate is far less likely to manifest as an error than the hit to a storage
element [18].

3. Redundancy and Repair

3.1. Yield Improvement with Redundancy

Yield (fraction of good chips among the total chips manufactured) is a
function of defect density and the size of a chip. Assuming the distribution of
the defects is random, the yield of a chip is expressed as follows.

Yc = e−(D0×A) (1)

where D0 is the defect density and A is the size of the chip. With a clustered
defect model used in ITRS2003 roadmap [19], the yield is expressed as follows:

Yc =
(

1 + D0 × A

α

)−α

(2)

where α is a cluster factor and α = 2 is used in ITRS2003 roadmap.
If we build N + 1 set of identical units and allow one unit to be defective,

by eliminating one bad unit by some means after fabrication of the chip, the
yield of the chip can be improved.

The yield of each unit is expressed as follows:

Yu =
(

1 + D0 × A/N

α

)−α

(3)

Microprocessor architecture 213

0.001

0.01

0.1

1

0 0.5 1 1.5 2

Defects/unit

Y
ie

ld
4+1

4

8+1

8

16+1

16

Figure 1. Yield with and without redundancy.

The yield of the chip with one redundant unit is expressed as follows:

Yc = Y (N+1)
u + (N + 1) × YN

u × (1 − Yu) (4)

= YN
u × (1 + N × (1 − Yu)) (5)

=
(

1 + D0 × A/N

α

)−αN

×
(

1 + N ×
(

1 −
(

1 + D0 × A/N

α

)−α
))

(6)

The first term in the equation 6 is YN
u and is the yield without redundancy.

Hence the yield gain of the N + 1 redundancy is 1 + N(1 − Yu). When Yu is
very close to 1.0, the gain is small. When Yu is low and N is large, the yield
improvement is significant as shown in Figure 1. However, when Yu is too
low or N is too large, YN

u becomes extremely small and the resulting yield Yc

is uninteresting even with the large improvement. It is important to pick the
correct combination of Yu and N for N + 1 redundancy to be beneficial.

3.2. RAM

Since random access memories have a regular array of storage cells, they
are a natural candidate for the use of redundancy-based yield enhancement.
A column redundancy [20] is the most widely used redundancy technique for

214 H. Ando

Figure 2. RAM column redundancy scheme.

RAM. As shown in Figure 2, one spare column for every 32 columns and a
multiplexer is added to the output of each column to select either the read
signal from its own column or the one from the adjacent column on the right.
The multiplexer selects the right-hand input when the column number input
is greater than or equal to the fuse input. Assuming column i has a defective
memory cell, the multiplexers in column 0 to i − 1 select their own column
read signal. However, the multiplexers in column i to 32 select the right-hand
side adjacent column and avoid using the defective column i.

Identifying a defective column and substituting a good spare is done when
the manufacturing test is performed. The information on which column to be
avoided is usually stored in the programmable (by laser or electronically) fuses
on the same chip.

3.3. Logic Blocks

The application of a redundancy to logic blocks is more difficult than RAM
since it is usually not the repetition of the same blocks. Even with the repeated
logic blocks, multiplexer switch circuits which remove a defective logic block
may become significant in size compared to the logic block itself when it has
large number of interface signals. In this case the yield of the multiplexer
reduces the yield gain obtained from the redundancy. Also the testing for each
logic block is a challenge when it has a large number of signals and the function
is complex.

Microprocessor architecture 215

For this reason large logic blocks with a well-defined compact interface,
e.g. processor cores, are a promising candidate for a block redundancy scheme.

As the power dissipation issue of a microprocessor is becoming the limit of
an increase in processor core size, a chip integrating multiple smaller processor
cores is becoming more desirable [21, 22]. It is practical to apply a redundancy
scheme for yield improvement of a chip multiprocessor having many cores.

The IBM z900 mainframe processor MCM (multi-chip module) contains
10 dual-core processor chips which totals 20 processor cores, but uses only up
to 16 of them for data processing and keeps four of them for redundancy [23].
A game console using a cell processor integrating eight synergistic processor
elements [24] is going to use seven of them for processing, and keeps one as a
redundant spare for yield enhancement.

The Intel Itanium 2 processor uses block redundancy for its third level on-
chip cache [25]. It uses 32 SRAM blocks for the data storage, two blocks for the
ECC (error correcting code) and one block for the spare. The defects in decoders
and sense amplifiers can be tolerated with use of this block-based redundancy
scheme whereas the column-based scheme described in Section 3.2 can only
repair cell or column-related defects.

4. Error Detection and Correction

As the noise margin of circuits decreases and SEU due to a neutron hit
become more frequent, a malfunction needs to be detected for preventing the
output of an incorrect result without any warning. The correction upon the
detection of an error is more desirable than the detection as it allows the system
to run continuously.

4.1. Redundancy for Error Detection and Correction

To detect an error, redundancy is required. There are many ways to add
redundancy and they are categorized as follows:

• Information redundancy
• Hardware redundancy
• Time redundancy

4.1.1. Information redundancy

For a block with multi-bit output signals, redundancy can be added to make
all correct outputs different from the wrong outputs. The most frequently used

216 H. Ando

information redundancy is a parity check. Odd parity check adds one redundant
check bit to a collection of data bits and sets the value of the check bit to make
the total number of the “1” bits odd for correct outputs, whereas the wrong
outputs have an even number of “1” bits.

A 2 out of (5C2) code for decimal numbers is another example. Any correct
output has two “1”s whereas the number of “1”s in wrong outputs can be any
number but two. Since four bits are sufficient to represent a decimal number,
it has redundancy in information; but there is no specific redundant bit like a
parity bit.

The history of error detection and correction codes is long and many codes
have been invented. Some of them are described in Sections 4.2 and 4.3; also
see ref. 28 for more codes.

4.1.2. Hardware redundancy

A duplicate and compare scheme uses two identical logic blocks, one for
master and the other for checker, and comparing both outputs for error detection.
For a triple modular redundancy (TMR) error correction, three identical blocks
are used and a majority voter at the output guarantees correct output unless more
than one block produce the same error, which is an extremely low probability
event.

Figure 3(a) shows a duplicate and compare scheme. This configuration can
detect errors in one module, but, cannot correct an error. Figure 3(b) shows a
configuration using two duplicate compare blocks and a switch controlled by the
error indication signals from both units to select which block to drive the output
with. This configuration can mask the occurrence of an error and continuously
produces correct results. Figure 4(a) shows a TMR configuration. The outputs
from three identical modules are fed into a majority voter. Assuming at most

Master

Checker

Compare

Input Output

Error

Input

Output

Master

Checker

Compare

Master

Checker

Compare

Switch

Self checking module

(a) Duplicate and Compare (b) Error masking

Figure 3. Duplicate and compare.

Microprocessor architecture 217

Module 1

Module 2

Module 3

Voter
Input Output

Module 1

Module 2

Module 3

Voter

Inputs

Outputs

Voter

Voter

(a) Single Voter (b) Triple Voter

Figure 4. Triple modular redundancy.

Function Logic
Check Symbol

Predictor

Check symbol
Generator

Equality
Checker Error

Input

Output

Figure 5. Algorithmic check.

one block generates an erroneous output the triple input majority voter always
produces correct output; but this configuration is vulnerable for faults at the
common inputs of the modules and the outputs of the voter. Figure 4(b) shows
a more reliable configuration with three voters. This configuration is safe for
any single point of failure [26].

These hardware redundancy schemes are simple and straightforward, but
the overhead is high as they require twice to four times the number of modules
and the additional compare or voter circuits.

Algorithmic check is a way to reduce high overheads of duplication. It com-
presses the output of a target logic block with the use of some algorithm and
having a logic block which calculates the same compressed output indepen-
dently from the target logic block.

An example shown in Figure 5 is the one having a check symbol generator
for the output compression from a target function block and having a check
symbol predictor which calculates the expected check symbol of the function
block output independently from the function logic itself.Adetection capability
of an algorithmic check depends on the scheme used. For example, when the
parity check is used for the check symbol generation, a class of errors with even
number of output bits flip cannot be detected. On the other hand, a modulo-3
check can detect any single point of error in a partial sum adder in a multiplier.

218 H. Ando

4.1.3. Time redundancy

Assuming the nature of the fault is transient, such as SEU, performing the
same calculation again and comparing both results will detect an error if it
exists. If they differ, the system will do the same calculation one more time to
get the correct result. These are equivalent to duplicate and compare or TMR,
but, the replication is done in the time domain instead of hardware.

Simple time redundancy cannot detect fixed faults as they give the same
wrong results for the two comparing calculations. This problem can be avoided
by using two processors and making the first and second calculation in the
different processors. When all the calculations are duplicated, it is similar to
the duplicate and compare hardware redundancy.

Time redundancy is often implemented in a software layer. It generates a
pair of threads or processes for the code sections which require high reliability
and an operating system assigns one thread each to a processor. For the rest of
the code sections two processors can be used as a multiprocessor system with
each processor doing different processing and improving the total throughput
of the system.

4.2. Error Detecting Codes

Various error detecting codes were designed for different purposes, for
example, random bidirectional error detecting codes, unidirectional error
detecting codes, burst error detecting codes and so on. For the error detection
in a microprocessor, bidirectional error detecting codes are the most frequently
used as both “0” to “1” and “1” to “0” errors can occur. For some circumstances
unidirectional error detecting codes may be useful as those codes can detect
any number of bits of unidirectional error with a relatively small number of
check bits compared to bidirectional error detecting codes.

4.2.1. Parity check

The Hamming distance between the two N -bit binary numbers is defined
as the number of differing bit positions. Mathematically, this is the Manhattan
distance between the two points corresponding to those binary numbers in N -
dimensional binary space. Since an m bit error moves a position of a code
word by distance m from its original position, an m bit error cannot change one
code word into another code word with distance m + 1 or more. So any error
with m or less bit flips can be detected if we can choose a set of code words
with minimum distance m + 1 between any two code words.

Microprocessor architecture 219

Parity check adds one check bit to data to make the total number of “1”s to
even (even parity) or odd (odd parity). With even parity, any code word (data +
parity bit) has an even number of “1”s. Since any one bit change makes the
number of “1”s to odd, which is not a code word, any single bit error can be
detected. Parity check is a simple way to make the minimum distance between
any two code words to two.

4.2.2. All unidirectional error detection code

The Berger code [27] is an all unidirectional error detection (AUED) code.
It adds a count of the number of “0”s in data bits as the check bits. For example,
when the data bits are 0011001, the number of “0”s is four, hence the check bits
are 100. Any error with a direction of “0” to “1” occurring in data bits reduces
the “0” count, whereas any error with the same direction in check bits increases
the binary representation of the count. Hence they do not match. Any error in
reverse direction can also be detected.

Constant weight code, for example 5C2 code has two “1”s in a 5bit code
word. This code also is an AUED code since any unidirectional error can
increase or decrease the number of “1”s from the original two.

4.3. Error Correcting Codes

The minimum distance between any two code words must be 2m + 1 for m

bit error correction. Since m bit error moves one code word by distance m, a
data word with an error is contained in a (hyper) sphere with radius m centered
at the original code word. Any two spheres with radius m do not overlap since
the minimum distance between any two code words is 2m + 1. So any data
word with less than or equal to m bit error can be identified with the code it
originated from.

Hamming code is a minimum distance 3 code generated as follows. As
shown in Figure 6, each column of the Hamming code H matrix is a binary
representation of the column number. The columns with single “1” are check
bits (C0 to C2) and remaining columns are data bits (D0 to D3). The first row of
the H matrix contains “1” in C2 and D1 through D3. This means that the EOR
of these four bits must be “0”, or C2 = D1 ⊕ D2 ⊕ D3. The second and third
rows define C1 and C0 respectively.

When an error occurs at bit position i, for example bit position 6, the EOR
for some H matrix row(s) will not be “0”. Since the row 1 and row 2 contain
“1” in column 5, row-wise EOR will be 110. This indicates that bit position 6
is flipped and this makes the correction possible. A set of these row-wise EOR
results is called a syndrome.

220 H. Ando

Figure 6. Hamming code H matrix.

Table 1. SECDED code length

Total length Check bits Data bits

General relationship ≤2N N + 1 <2N − N

Common use 72 8 64
137 9 128

Two bit error moves a code word by distance two and can make it within
distance one from some other code word which is distance three from the
original code word. In this case, Hamming code mistakenly corrects it to the
other code word without giving any indication of a mistake. Since this is highly
undesirable, a code which can correct single bit errors and also detect double
bit errors is commonly used. This type of code is called a SECDED (single
error correction double error detection) code.

Hamming code can be extended to make it detect double bit errors by adding
an all “1”s row and a column with all “0”s except the added row to the original
H matrix. The all “1” row is an even parity for all code word bits. If this parity
check for the received word fails, the syndrome should indicate the failed bit
position as described above. When the parity check of all received word is
correct and the syndrome is non-zero, it is an indication of an even number of
bits flipped.

Although the construction of the Hamming code is clever but conceptually
simple, finding a set of code words with minimum distance 2m + 1 by trial
and error is almost impossible. The modern SEC (single error correction) and
SECDED codes are mostly constructed using abstract algebra [28].

There are many SEC or SECDED codes with the same correction capability,
but some of them, for example the Hsiao code [29], which contains a smaller
number of “1”s in H matrix, the hardware required for encoding and error
detection is simpler than the Hamming code.

Table 1 shows the total length, number of check bits and usable data bits
for optimal SECDED codes. For the 64 bit data, 8 check bits are required and
the resulting total code length is 72 bits.

Microprocessor architecture 221

For chips with multiple output bits a single physical fault can flip multiple
bits. For example, a failure in power supply connection makes all outputs go to
ground level. To cope with this situation the codes which can detect and correct
an error with any number of bits as long as all these errors are within one block
of bits (called byte regardless of the number of bits) were developed. These
codes are called SbEC (single byte error correction) or SbECDbED (single byte
error correction and double byte error detection) codes. The Kaneda–Fujiwara
[30] code can make a S8ECD8ED code for 64 bit data with 14 check bits.
Both the Kaneda–Fujiwara code and the Reed–Solomon code [31] can make
an S8EC code for 128 bit data with 16 check bits. These codes are used for
chip-kill error correction for 8 bit output DRAM chips.

5. Error Detection and Correction in Microprocessors

5.1. Error Detection in Data Path

Figure 7 shows a simplified diagram of a microprocessor data path. The
data is read from a memory and stored into a register file entry through the
cache and the load store unit. Both the value and the representation of the data
are not altered in this path.

Parity check is an efficient way to detect errors in the data path without data
alteration. A parity generator is placed at the point where new data values are
generated; at the output of the function unit in Figure 7. As the other blocks
store and/or transfer the data without alteration, only a parity checker is placed
at the input of each block.

DRAMs and caches contain a large number of storage elements and the
failure rate of these blocks is high compared to the rest of the microprocessor

Cache Load
Store

Reg
File

Func
Unit

DRAM

Data Transfer Data Manipulation

PG

PC PC

PC
PCPCPC

PC

PC

PC

PC

PC

PG Parity Generator

PC Parity Checker

Figure 7. Parity check for the data path.

222 H. Ando

Cache Load
Store

Reg
File

Func
Unit

DRAM

PG

PC PC

PCPCPCEC

CK

CK

CK

PC

PC

EG

Error Correction Code Parity Check

PG

PG Parity Generator

PC Parity Checker

EG ECC Generator

EC ECC Corrector

CK ECC Checker

Figure 8. Microprocessor data path with memory ECC.

system. For this reason the use of an error correction code, like the SECDED
code described in Section 4.3, is common. As shown in Figure 8, ECC check
bits are generated at the output of the store unit and stored into the cache and
the DRAMs. For the read, error correction is done at the input of the load unit.
The rest of the processor data paths are checked by the parity check as the
timing in the processor core is tight and it is difficult to fit an error correction
stage in the pipeline. The output of a load unit is a generator of the new data
and a parity generator is added.

An ECC checker is added to the inputs of the cache and DRAMs for detect-
ing data corruption. When an uncorrectable double bit error is detected at the
DRAM and/or cache interface checkers, the data is changed to a special pattern
without raising an error interrupt. The special data pattern indicates where the
error is detected and the check bits are arranged to give a special syndrome as
an error flag. An error is raised when the flagged data is read into the load unit
for use. This technique, called data poisoning, is effective in avoiding unnec-
essary error detection and interrupt when the corrupted data is not used by the
processor core.

5.2. Error Detection for Arithmetic Units

As the number of ones changes from an input of an arithmetic unit to an
output, a simple parity check or ECC cannot be used to check an occurrence
of an error in the arithmetic unit.

The duplicate and compare gives high detection coverage, but it requires
a checker unit and a compare circuit which more than doubles the amount of
required hardware. For reducing the amount of hardware required, an algorith-
mic check can be used.

Microprocessor architecture 223

Carry
GeneratorAdder

Parity
Tree

Parity
Tree

A Cin PA PB

Sum Error Psum

B

Figure 9. Adder with parity check.

5.2.1. Adder with parity check

The sum of each bit is expressed as Si = Ai ⊕ Bi ⊕ Ci , where Ai and Bi

are the ith input bits and the Ci is the carry into the ith bit. The parity of the
whole n-bit sum is expressed as follows:

Psum = S0 ⊕ S1 ⊕ . . . ⊕ Sn

= A0 ⊕ B0 ⊕ C0 ⊕ A1 ⊕ B1 ⊕ C1 ⊕ . . . ⊕ An ⊕ Bn ⊕ Cn

= A0 ⊕ A1 ⊕ . . . ⊕ An ⊕ B0 ⊕ B1 ⊕ . . . ⊕ Bn

× ⊕ C0 ⊕ C1 ⊕ . . . ⊕ Cn

= PA ⊕ PB ⊕ C0 ⊕ C1 ⊕ . . . ⊕ Cn (7)

This equation (7) means that the parity of the sum, Psum is calculated with
the binary sum of the parity of the input A, PA and input B, PB and all the
carry bits. These carry bits can be calculated with a carry generator, like the
ones used in a carry look-ahead adder. The predicted parity Psum and the parity
calculated from the sum itself are compared as shown in Figure 9 for the error
detection.

This error check is equivalent to checking an error at the output of the adder
and cannot detect a class of faults in the adder which causes an even number
of bit flips in the sum. The detection capability can be improved by choosing a
smaller parity check unit, for example, 8 bit instead of whole 64 bit.

There are other more complete self-checking adder designs, but, they require
more hardware [32, 33].

224 H. Ando

Bit4 Bit2 Bit0

Carry Sum

Bit5 Bi3 Bit1Bit10 Bi8 Bit6

 1 2 1 2

 2 2 1 1

Adder

 2 1

CSA

CSACSACSA

CSA CSA

CSA

Figure 10. CSA tree for mod3 calculation.

5.2.2. Multiplier with residue check

With the following arithmetic relation a multiplier can be checked with the
calculation of residue:

Modp(A × B) = Modp(Modp(A) × Modp(B)) (8)

Modp is a Modulo operation with a prime number p. Since Modp is the
residue with the division by p, this method is called a residue check.

Modp can be calculated as follows without using a divider. When the bit
is set, mod3 of the least significant bit (bit 0) is 1, mod3 of the next bit 1 is 2,
mod3 of the bit 2 is 1 and mod3 of the bit 3 is 2 and so on. Mod3 of a binary
bit is an alternating sequence of 1 and 2. Mod7 of a binary bit is a repeating
sequence of 1, 2 and 4. Using this relationship, mod3 can be calculated with a
tree of carry save adders as shown in Figure 10.

An error in a multiplier can be detected by implementing Equation (8) as
shown in Figure 11.

This error detection is equivalent to the residue check error detection for
the output of the multiplier and it cannot detect any faults resulting in the
same mod3 output values. This is possible in cases when the input A is zero
with mod3, and all the stuck- at faults at the input B (or the ones equivalent
to) cannot be detected since the mod3 of the product is zero regardless of the

Microprocessor architecture 225

MULT

Mod3

Mod3 Mod3

Mod3 MULT

A

P

Mod3(P)

Error

B

Figure 11. Multiplier with the residue check.

B input value. The same is true for the A input. This shortfall is corrected by
adding a parity check to the inputs and the check for the booth encoder in the
multiplier. This complete checker configuration is described in ref. 34.

Both the last stage adder in Figure 10 and the mod3 multiplier in Figure 11
are simple combinatorial circuits with four inputs and two outputs.

5.3. Error Detection for Control Circuits

Duplicate and compare is often expensive for control circuits since they
need a large number of compare circuits for the outputs whereas the amount of
control logic is relatively small.

Control circuits can be checked with an assertion as shown in Figure 12.
With the introduction of information redundancy in a state assignment and the
state transition logic which makes transition from one of the correct states into
a correct state, an error can be detected as a manifestation of a wrong state [35].
Although this scheme does not cover the decode logic block, it is effective as
the neutron hit failure rate of latches is higher than combinatorial circuits.

5.4. Other Error Detection Methods

Based on knowledge of the microarchitecture, some apparently anomalous
condition can be detected as an error by assertion. A watchdog timer is an
error detection mechanism in this category. A timer is reset at the issue of any
instruction and the timer is counted up with the processor clock. If the issue
of the next instruction occurs within the predetermined number of cycles, the
timer is reset again and will not fire. But if something goes wrong and the next

226 H. Ando

Figure 12. Error detection with redundancy check.

issue did not happen within a certain number of clock cycles, the watchdog
timer fires and reports an error.

A special logic can be designed to check the correctness of the state of a
microprocessor based on the knowledge of microarchitecture and its correct
operation, like the watchdog timer; these checkers in general are called asser-
tions. Assertion can also be implemented in software [36]. Strategically placed
assertion checkers are useful for efficient error detection.

5.5. Fixed Fault Detection vs. Transient Fault Detection

Any error detection circuit can detect both transient and fixed faults, but
the detection of a fixed fault is much easier because of its persistent nature,
allowing it to be detected in multiple processor cycles.

For example, the simple adder parity check described in Section 5.2.1 cannot
detect any fault generating an even number of bit flips. But with a different input
combination, the same physical fault can cause an odd number of bit flips and
the existence of the fault can be detected. Assuming an error detection circuit
can detect 60% of the total possible faults, a chance of detecting a transient fault
is only 60% . But with the randomly changing inputs, a probability of successful
detection of a fixed fault is 1 − (1 − 0.6)n, where n is the number of cycles
tested. With only five cycles of testing with varying inputs the probability of
detection increases to 99% .

The detection after multiple cycles may be too late for error correction with
the checkpoint recovery described in the next section. But it is certainly useful
for the prevention of the most damaging unnoticed erroneous output case.Also,
it gives vital information for the failed component replacement for later repair.

Microprocessor architecture 227

6. Checkpoint Recovery

6.1. Basic Concept

More often than not it is desirable to recover from a state of error to resume
normal operation. The error detection techniques described so far allow for
efficient detection but the erred process must be stopped for recovery. Although
TMR can mask the occurrence of an error, it is a very expensive solution.

When the known correct state is kept as a checkpoint, a microprocessor
or a system can go back to the checkpoint and redo the processing after the
checkpoint is made when an error is detected. Assuming the nature of the error
is transient, it will not happen again and the system recovers from the error.

Cache-based recovery [37, 38] is the method to keep a checkpointed state
in the memory. It keeps state changes due to the instruction execution, after the
checkpoint is made, within CPU registers and cache memories. When a cache
line needs to be written back into the memory, all modified cache lines are
also written back in addition to CPU registers to make a consistent checkpoint.
There are other memory based checkpoint schemes [39] as well.

Multiple generations of IBM mainframe processors [42, 43] have a special
storage unit called an R-unit (recovery unit) for storing checkpoints for the
recovery. The R-unit gathers processor state changes to make checkpoints.

Since it takes some time to do the recovery, an error correction by means of
checkpoint recovery may not be appropriate for time-critical real-time systems,
like fly-by-wire controls.

6.2. Checkpoint Recovery for the Microprocessor with
Speculative Execution

Modern high-end microprocessors often do speculative execution, speculat-
ing an outcome of a conditional branch before the condition calculation is com-
pleted, and execute instructions in the predicted path. This method improves
the performance of the microprocessor as it can proceed without waiting for
the resolution of the branch condition. With modern branch prediction mecha-
nisms, the speculated branch direction is correct for over 90% of the time.

However, when the speculation turns out to be wrong, the processor needs to
go back to the mis-predicted conditional branch and re-start from that instruc-
tion. This is done by making a checkpoint before the conditional branch.

The Fujitsu SPARC64 V processor [46, 47] used this speculative execution
checkpoint-recovery for transient hardware error recovery [40, 41]. The pro-
cessor implemented an error detection network similar to the one described
in Section 5. The design guarantees that the error detection report arrives

228 H. Ando

at the commit stage earlier than the commit time of the instruction with the
detected error.

This implementation is efficient as it uses an already existing checkpoint-
recovery mechanism for the speculative execution and the additional hardware
required is for error detection only.

7. Microprocessors Examples

High reliability and continuous non-stop operation is very important
for large computer systems handling social, governmental and/or enterprise
infrastructure information processing. To meet this demand, some commercial
microprocessors, especially designed for large multiprocessor servers, have
implemented error detection and correction as well as a checkpoint-recovery
system.

7.1. Intel Itanium 2

The Intel Itanium 2 microprocessor implemented block redundancy for its
large level 3 on-chip cache for yield enhancement. The first Itanium 2 proces-
sor [44] has 135 24 KB SRAM blocks, and each of them produces a 2 bits
output. These SRAM blocks are divided into two groups including one spare
block each. The selection of the outputs from the SRAM blocks in each group
is done in the same manner as the column redundancy described in Section 3.2.

The newer dual core Itanium 2 processor with 24 MB level-3 cache [45]
added one redundant block for each 34 data+ECC blocks.Although this level of
redundancy is about the same as having one spare column for each 32 columns,
the major advantage of this design is its capability to tolerate failures other than
column failure.

It also implements an SECDED code for error correction for the on-chip
caches which hold the original data. The level-1 instruction cache which is a
read-only cache is protected by the parity check. The level-1 data cache is also
parity protected since it is a store-through cache and the same content is written
into the SECDED code protected level-2 data cache. The dual core Itanium 2
chip with 24MB level-3 cache added parity check to the integer register file.

It also uses ECC for the data bits and parity check for the address bits of
the chip I/O bus.

It can correct an error that occurs in the ECC protected data. It also can
recover from an error in level-1 caches by invalidating the entry where the error
is detected and reading the error-free data from the ECC protected storage; but
it does not have a checkpoint-based error recovery mechanism.

Microprocessor architecture 229

Table 2. Error detection and recovery scheme

Hardware unit Error detection Recovery

L1I$ data Parity check Invalidate & Retry
Translation

lookaside buffer
Parity check Invalidate & Retry

Branch target
address

Parity check Miss prediction recovery

Buffer
L1I$ /L1D$ tag Parity check + Duplication Pick correct side and

rewrite
L1D$ data SECDED code Hardware ECC
L2$ data and tag SECDED code Hardware ECC
Registers Parity check Checkpoint recovery
ALU, shifter,

VIS
Improved parity prediction Checkpoint recovery

Multiplier/divider Residue check and improved
parity prediction

Checkpoint recovery

7.2. Fujitsu SPARC64 V

The error detection and recovery scheme for the Fujitsu SPARC64 V pro-
cessor [46, 47] is summarized in Table 2.

Level-1 instruction cache (L1I$) data is protected by parity check as it is
read-only and the same information is in the SECDED code protected level-2
cache (L2$) or the memory. The Translation lookaside buffer is also a copy
of the memory map stored in the memory. The Branch target address buffer
(BTAB) gives a branch direction and a target address, but the whole information
is a hint for performance improvement. Even if it is wrong it only makes a wrong
speculative branch, which will be corrected later. An error in BTAB only slows
down the execution, but it does not affect the correctness of the processing.

The level-1 data cache (L1D$) tag contains information which is not stored
in other places. This array is designed to survive from any single bit error. The
L1D$ tag is protected with the duplication with parity check. When an error
is detected in one set, the output from the other set is used and the error-free
data is rewritten into the other set for transient error correction. Although the
L1I$ tag does not require error correction, the same structure as the L1D$ tag is
duplicated. The L1D$ data array is protected with the SECDED code. When an
error is detected, error correction and the re-write for correcting array content
is performed by hardware. The level-2 cache tag and data are also using the
same SECDED scheme.

Logic circuits are protected with the parity check for the data transfer portion
as shown in Figure 13. The data manipulation portion is covered by the various
algorithmic checks described in Section 5.2.

230 H. Ando

Figure 13. Error checker placement in SPARC64 V processor.

When an error is detected in the registers and the arithmetic units, checkpoint
recovery is performed.

7.3. IBM z990

The IBM z990 processor [48] duplicates instruction and execution units and
compares both outputs. Although the duplicate and compare more than doubles
the amount of hardware, it achieves an excellent error-detection capability.
Processor states are continuously stored into the R-unit which checkpoints
the processor state after every instruction execution. When a hardware error
is detected, an appropriate checkpoint is recovered from the R-unit and the
recovery is done.

An additional benefit of keeping the checkpoint in the R-unit is that the
contents of the R-unit can easily be extracted and transferred to the other z990
processor and continues the execution. This capability gives the z990 the ability
to survive from a fixed hardware failure in addition to a transient failure.

Level-1 caches, TLB and R-unit are protected by SECDED code or other
appropriate means to be able to recover from a single bit error.

8. Summary

Semiconductor scaling makes device parameter variations larger and neg-
atively affects the yield of VLSI chips. The mechanisms showing why the

Microprocessor architecture 231

semiconductor scaling makes VLSI devices having larger device parameter
variations and why yield enhancement with microarchitecture is beneficial are
presented.

Scaling also reduces the noise margin of the circuits and the devices are
more susceptible to an error caused by a cosmic neutron hit. Various means for
adding redundancy for error detection and correction are presented. The codes
for error detection and error correction are also described.

In Section 7 three microprocessors examples for high-reliability large-scale
servers are explained as regards their error detection and correction features.

Error detection and recovery by microarchitecture is practically the only
way to assure reliable operation of the scaled VLSI devices.

Microarchitectural techniques described in this chapter will be more widely
used for yield enhancement and reliable operation as semiconductor scaling
continues.

References

[1] Li, X.-Y. et al., “An effective method of characterization poly gate CD variation and
Its impact on product performance and yield”, Proc. Int. Symp. Semicond. Manuf.,
2003, 259–262.

[2] Nagase, M.; Tokashiki, K. “Advanced gate etching for accurate CD control for 130-nm
node ASIC manufacturing”, 2004 17(3), 281–285.

[3] Schellenberg, F. “A little light magic [optical lithography]”, Spectrum IEEE, 2003,
40(9), 34–39.

[4] Asenov, A.; Kaya, S.; Brown, A.R. “Intrinsic parameter fluctuations in decananometer
MOSFETs introduced by gate line edge roughness”, Electron Devices, 2003 50(5),
1254–1260.

[5] Asenov, A. “Random dopant induced threshold voltage lowering and fluctuations in
sub 0.1 micron MOSFETs: A 3D ‘atomistic’ simulation study,” IEEE Trans. Electron
Dev., 1998, 45, 2505–2513.

[6] Pollack, F. “New microarchitecture challenges in the coming generations of CMOS”,
1999. MICRO-32. Keynote, 32nd Annual International Symposium on Microarchi-
tecture.

[7] Gelsinger, P.P. “Microprocessors for the new millennium: challenges, opportunities,
and new frontiers,” IEEE Int. Solid-State Circuits Conf., 2001, XLIV, 22–25.

[8] Chen, H.H.; Ling, D.D. “Power supply noise analysis methodology for deep-
submicron Vlsi chip design”, Proc. 34th Design Automation Conf., 1997, 638–643.

[9] Zhao, S.; Roy, K.; Koh, C.-K. “Estimation of inductive and resistive switching noise
on power supply network in deep sub-micron CMOS circuits”, Proceedings, Int. Conf.
Computer Design, 2000, 65–72.

[10] Prakash, M. “Cooling challenges for silicon integrated circuits”, Proc. 9th Int. Conf. on
Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. (ITHERM
’04) 2, 705–706

[11] Bota, S.A. et al., “Within die thermal gradient impact on clock-skew: a new type of
delay-fault mechanism”, Proc., Int. Test Conf., 2004, 1276–1283

[12] Banerjee, K.; Mehrotra, A. “Global (interconnect) warming”, Circuits and Devices
IEEE, 17(5), 16–32

232 H. Ando

[13] Ziegler J.F. et.al., “IBM experiments in soft fails in computer electronics (1978–1994)
”, IBM J. Res. Dev. 1996, 40(1), 3–18

[14] Ziegler, J.F. “Terrestrial cosmic rays”, IBM J. Res. Dev., 1996, 40(1), 19–40.
[15] Freeman, L.B. “Critical charge calculations for a bipolar SRAM array”, IBM J. Res.

Dev. 1996, 40(1), 119–130.
[16] Baumann, R. “The impact of technology scaling on soft error rate performance and

limits to the efficacy of error correction,” IEDM Tech. Dig., December 2002, 329–332.
[17] Tosaka, Y.; Ehara, H.; Igeta, M. et al., “Comprehensive study of soft errors in advanced

CMOS circuits with 90/130 nm technology,” IEDM Tech. Dig., December 2004,
941–944.

[18] Liden, P. et al., “On latching probability of particle induced transient in combinational
networks”, Int. Symp. on Fault Tolerant Computing FTCS24, June 1994, 340–349.

[19] http://public.itrs.net/Files/2003ITRS/Home2003.htm
[20] Smith, R. et al., “32K and 16K MOS RAMs using laser redundancy techniques”,

Solid-State Circuits Conference. Digest of Technical Papers, 1982, XXV, 252–253.
[21] Horowitz, M.; Dally, W. “How scaling will change processor architecture”, ISSCC

Dig Tech Pap. 2004, 132–133.
[22] Ando, H.; Tzartzanis N.; Walker, W. “A case study: power and performance improve-

ment of a chip multi-processor for transaction processing”, IEEE Trans. VLSI Syst.,
July 2005 (To be published).

[23] Alves, L.C. et al., “RAS design for the IBM eServer z900”, IBM J. Res. Dev., 2002,
46(4/5), 503–522.

[24] Pham, D. et al., “The design and implementation of a first-generation CELL Proces-
sor”, Tech. Digest, Int. Solid-State Ciruit Conf., February 2005, 184–185.

[25] Wuu, J. et al., “The asynchronous 24MB on-chip level-3 cache for a dual-core Itanium-
family processor”, Tech. Digest, Int. Solid-State Ciruit Conf., February 2005, 488–489.

[26] Nelson, V.P. “Fault-tolerant computing: fundamental concepts”, IEEE Computer,
1990, 23(7), 19–25.

[27] Berger, J. “A note on error detecting codes for asymmetric channel”, Info Control,
1961, 68–73

[28] Fujiwara, E.; Pradhan, D.K. “Error-control coding in computers”, IEEE Computer,
1990, 23(7), 63–72.

[29] Hsiao, M.Y. “A class of optimal minimum odd-weight-column SECDED codes”, IBM
J. Res. Dev., 1970, 14, 395–401.

[30] Kaneda, S.; Fujiwara, E. “Single byte error correcting–double byte error Detecting
codes for memory systems”, IEEE Trans. Computers, July 1982, C31(7), 737–739.

[31] Reed I.S.; Solomon, G. “Polynomial codes over certain finite fields”, J. Soc. Indust.
Appl. Math.” 1960, 8, 300–304.

[32] Gorshe, S.; Bose, B. “A self-checking ALU design with efficient codes”, 14th VLSI
Test Symp. April 1996, 157–161.

[33] Nocolaidis, M. “Efficient implementations of self-checking adders and ALUs”, Int.
Symp. on Fault Tolerant Computing FTCS23, June 1993, 586–595

[34] Sparmann, U.; Reddy, S. “On the effectiveness of residue checking for parallel two’s
complement multipliers”, IEEE Trans VLSI Systems, 1996, 4(2), 219–228.

[35] Matrosova, A.; Ostanin, S. “Self-checking FSM design with observing only FSM
outputs”, Proc. 6th Int. On-Line Testing Workshop, 2000. 153–154.

[36] Goloubeva, O. et al., “Soft-error detection using control flow assertions”, Int. Symp.
on Defect and Fault Tolerance in VLSI Systems, November 2003, 581–588.

[37] Hint, D.B.; Marinos, P.N. “A general purpose cache-aided rollback error recovery
(CARER) technique”, 17th Symp. on Fault Tolerant Computing, 1987, 170–175

Microprocessor architecture 233

[38] Ahmed, R.E.; Frazier R.C.; Marinos, P.N. “Cache-aided rollback recovery (CARER)
algorithms for shared-memory multiprocessor systems”, Digest of Papers, 20th Int.
Symp. on Fault-tolerant Computing, 1990, 82–88.

[39] Bowen, N.S.; Pradhan, D.K. “Processor- and memory-based checkpoint and rollback
recovery”, IEEE Computer, 1993, 26(2), 22–31.

[40] Ando, H.; Kitamura, T.; Shebanow, M.; Butler, M. US Patent 6,519,730 “Computer
and error recovery method for the same”; February 11, 2003, Filed on March 16, 2000,

[41] Sato, T. “Exploiting instruction redundancy for transient fault tolerance”, Int. Symp.
on Defect and Fault Tolerance in VLSI Systems, November 2003, 547–554.

[42] Webb, C.F.; Liptay, J.S. “A high-frequency custom CMOS S/390 microprocessor”,
IBM J. Res. Dev. 1997, 41(4/5), 463–474.

[43] Schwarz, E.M. et al., “The microarchitecture of the IBM eServer z900 processor”,
IBM J. Res. Dev. 2002, 46(4/5), 381–396.

[44] Rusu, S. et al., “A 1.5-GHz 130-nm Itanium 2 processor with 6-MB on-die L3 cache”,
IEEE J. Solid-State Circuits, 2003, 38(11), 1887–1895.

[45] Naffziger, S.; Stackhouse, B.; Grutkowski, T. “The implementation of a 2-core multi-
threaded Itanium�-family processor”, ISSCC Dig. Tech. Pap., 2005, 182–183.

[46] Inoue, A. “Fujitsu’s new SPARC64 V for mission-critical servers”, Microprocessor
Forum 2002.

[47] Ando, H. et al., “A1.3GHz fifth-generation SPARC64 microprocessor”, IEEE J. Solid-
State Circuits, 2003, 11, 1896–1903.

[48] Slegel, T.J.; Pfeffer E.; Magee, A. “The IBM eServer z990 microprocessor”, IBM J.
Res. Dev. 2004, 48(3/4), 295–310.

Chapter 10

HOW IS BANDWIDTH USED IN COMPUTERS?

Why Bandwidth is the Next Major Hurdle in Computer
Systems Evolution and What Technologies Will Emerge
to Address the Bandwidth Problem

Phil Emma
IBM Corp., USA

Abstract: This chapter will explore the issue of bandwidth: how it is used, and how that
effects the performance of an individual processor in a system, as well as how it
impacts the overall system. It will examine the current trends in system evolution,
and explain what those trends imply in light of bandwidth. Finally, the chapter
will explore the technologies that are likely to emerge to satisfy those trends.

Key words: bandwidth; bus width; cache; cache line; cache miss; central electronic complex;
CEC; computer system; DRAM; embedded DRAM; finite cache effect; line size;
miss penalty; miss rate; miss ratio; multicore; multithread; optical interconnect;
optics; prefetching; queuing; trailing edge; trailing edge effect; virtualization;
wavelength division multiplexing; WDM.

1. Definition of Bandwidth

Figure 1 shows two entities, A and B. The bandwidth from A to B is equal
to the product of the number of channels connecting A to B and the data rate
per channel:

Bandwidth = (# channels) × (data rate per channel)

In computer systems, channels are aggregated into byte-oriented busses, where
a byte is 8 bits (or 9 bits with parity, or more bits for more powerful error-control

Vojin G. Oklobdzija and Ram K. Krishnamurthy (eds.),
High-Performance Energy-Efficient Microprocessor Design, 235–287.
c© 2006 Springer. Printed in the Netherlands.

235

236 P. Emma

Figure 1. Definition of bandwidth.

codes). That is, a bus will generally be some number of bytes wide, where that
number is a power of 2, and a byte comprises 8 (or 9) channels.

Common on-chip bus widths in modern systems are in the 16 byte–32 byte
range, and run at frequencies equal to (or perhaps half as much as) the processor
frequency. Therefore, on-chip busses today move 16–32 bytes per processor
cycle (or on every-other processor cycle) [1, 2].

Off-chip busses tend to be narrower (by a factor of 2 or so) and slower (also
by a factor of 2 or so) [3]. This is because off-chip drivers are more complicated
and take more power than on-chip drivers, and the packaging infrastructure
required to support wide fast busses is much more expensive than for on-chip
busses.

Similarly, when busses leave each successively higher level of packaging
(board, backplane, and frame), they get progressively more narrow, and gen-
erally slower. Again, this is because the connector density, cost, and electrical
performance become less and less favorable as the level of integration becomes
cruder, and the physical dimensions grow. Still, within the structure of the cen-
tral electronic complex (CEC) that comprises a monolithic computer system,
the busses remain byte-oriented. Again, a byte requires 8 (or 9) channels.

How is it that, as connectivity goes from intrachip to interchip to interboard
to interframe, the bandwidth need not remain constant? In fact, how can it be
allowed to drop by factors of 2, 4, and 8 at each level, without hampering
performance?

The first answer is that the bandwidth leaving an entity can be mitigated
by providing more on-entity storage. I will refer to the amount of on-entity
storage as the content. Typically, content takes the form of cache memory. The
first and most important message of this chapter is that bandwidth and content
are mutually fungible. That is, each can manifest the properties of the other
(excess bandwidth can have the same effect as excess content, and vice-versa),
hence they can be exchanged. The bandwidth within a CEC is primarily used
to service cache misses, which is basically why content and bandwidth are
manifestations of each other. I will explain this in detail later.

How is bandwidth used in computers 237

The second answer to the question of reducing bandwidth capability is
that as you reduce the bandwidth leaving an entity, you certainly can hamper
performance. Further, there are nonlinearities in how this occurs. If you are
unaware of what the nonlinearities are, you can be in for some unhappy sur-
prises when you put a system together. I will explore these effects in this
chapter.

When data traffic leaves the CEC (or the room, or building, or city), the
physical infrastructure changes – usually to bit-serial optics. This is transport
technology (telecommunications or data communications), which is different
technology from what is currently used within the CEC. I will not address the
transport area in this chapter.

At the end of this chapter I will explain the directions in which the intra-CEC
signaling technology is likely to evolve. While much of this technology will
certainly become optical, it will be fundamentally different technology than
what is currently used in high-speed serial communications.

2. Bandwidth Scaling

From first principles it is useful to ask how bandwidth needs to scale over
time, and whether the technology is on track to provide that scaling. In the case
of a uniprocessor on a chip, the purpose of the off-chip bandwidth is to service
the misses from the highest level of on-chip cache.

It has been known for several decades that the cache miss rate (in misses
per instruction) is proportional to the reciprocal of some root (typically, the
square root) of the cache capacity. Since, for a fixed capacity, the miss rate
is independent of the speed of the processor, the bandwidth must scale with
the speed of the processor, but is palliated by the cache capacity. If we give
the speed of the processor in millions of instructions per second (MIPS), the
relationship is:

Bandwidth = MIPS/SQRT(Cache size)

Until fairly recently the SIA roadmap projected that uniprocessor MIPS would
double every 18 months. At the same time, Moore’s Law has the cache capacity
doubling every 3 years. If these projections hold, then to keep the bandwidth
on track requires that bandwidth increases by 2SQRT(2) every 3 years.

Recall that bandwidth is equal to the number of channels times the data rate
per channel. Therefore, scaling bandwidth at this rate either requires that the
bus width (which I will use from here on as a proxy for the number of channels)
increases, or that the bus frequency (which I will use from here on as a proxy
for data rate) increases, or both.

238 P. Emma

In the case of off-chip busses, increasing the bus width requires more
advanced packaging to accommodate a denser I/O pitch, and more layers of
metal in the package to escape the larger number of signals from the I/O pitch
to whatever wiring pitch is used within the package. Historically, the num-
ber of I/Os per chip has not evolved nearly at this rate. Roughly speaking,
it has increased less than 3 orders of magnitude (from the order of 10 to the
order of 1000) in about 50 years. Do not plan on achieving sufficient scaling
from I/Os.

On the other hand, frequency has scaled much more quickly, although not
quite quickly enough. In the past two decades bus frequency has remained
on the same scale as processor frequency, although it has usually been a little
slower – by a factor of 2 or 4. Since frequency scaling has been the primary
factor driving the SIA projection of MIPS growth, we might say that frequency
scaling should give us a factor of 2×, but not of 2SQRT(2)×.

Therefore, it appears that bandwidth cannot quite scale to keep pace with the
SIA roadmap, even when taking Moore’s Law into account. On the other hand,
the trend as we came into the new millennium has become much more focused
on power-efficiency [4], and is now de-emphasizing frequency scaling. Power
and power density are seen as the next major limitations on system performance.
For a fixed amount of power, a system can deliver more total performance if
its (growing number of) constituent parts use power more efficiently.

Since continuing to scale frequency is not power efficient, there has been
a general industry consensus that processor frequency will not grow much
beyond 5 Gigahertz in the next few CMOS generations [5]. This would appear
to offer relief. On the other hand, there are three emerging trends in system
design and processor design that could put us on a trajectory that is even worse
than that of frequency scaling.

First, all major processor manufacturers are putting multiple processors
on the same chip [2]. So while today’s available off-chip bandwidth may be
sufficient to supply the needs of a single 5 Gigahertz processor, putting 2, or 4,
or 8 processors on a single chip will eventually stress this bandwidth. This is
because the bandwidth must now be used to satisfy the misses of 2, or 4, or
8 processors. If there is no sharing of data, the aggregate miss rate will scale
linearly with the number of processors.

As the number of processors on a chip grows, the on-chip systems will be
run as symmetric multiprocessors (SMP) that share data – perhaps by sharing
a large on-chip cache – with a capacity that we will say (for now) scales with
Moore’s Law. If some fraction of the working set is shared by all processors,
then the aggregate bandwidth is mitigated by this fraction, but the remaining
bandwidth must still scale linearly with the number of processors.

Second, the processors are becoming increasingly multithreaded. Essen-
tially, this means that each processor appears to be running as if it is multiple
processors [6]. This requires that the on-chip caches be sufficiently large to

How is bandwidth used in computers 239

hold the working sets of all threads. For a fixed cache size, this will strain the
bandwidth; again, linearly with the degree of multithreading.

Third, systems are becoming virtualized, so that multiple logical partitions
can be co-resident on the hardware [7]. Since the logical partitions are indepen-
dent, so are the working sets. Again, this places a linear strain on the on-chip
caches, and on the off-chip bandwidth.

For example, we could have 4 processors on a chip, and each processor
could be 4-way multithreaded. The chip then appears to have 16 processors.
The hypervisor may then bring up 4 independent (virtual) systems on that chip.
Thus, the 4 processor chip has to be have like it is four independent 16-way
SMPs, i.e., the chip must logically behave as 64 processors. This will put a
huge strain on the on-chip caches, and on the off-chip bandwidth.

3. Components of Uniprocessor Performance

Before understanding and evaluating bandwidth quantitatively, it is helpful
to review processor performance from the systems-design point of view [8].
Figure 2 shows a conceptualization of a uniprocessor system. The processor (or
“core”) comprises: (1) an instruction unit (I unit) which fetches, decodes, and
stages instructions for execution; (2) an execution unit (E unit) which executes
the instructions; and (3) a first-level cache (L1 cache), which is a small local
memory system that holds the instructions to be executed, and the data to be
operated on.

In many modern machines the L1 cache is actually two separate caches:
one to hold the instructions, and one to hold the data. The I unit, E unit, and
L1 cache are designed to be a strongly coupled aggregation. The fetching and
execution of instructions and data are pipelined in assembly-line fashion so
that multiple instructions are in flight simultaneously. This enables a processor

Figure 2. Conceptualization of a uniprocessor.

240 P. Emma

cycle time to be much faster than the time it would take to process any single
instruction, and it allows multiple instructions to be processed at the same time
(“in parallel”).

Since the L1 cache is integral to the processor pipeline, its capacity is
determined by the cycle time. That is, if the processor is to run at a given
frequency, and a fetch is specified to take a given number of cycles in the
pipeline flow (usually a small number if the pipeline flow is to be smooth), then
these two constraints determine the maximum size of the (integral) L1 cache.

The cache is a buffer that temporarily holds instructions and data that are
brought in from the memory subsystem when they are needed. As long as the
data in the cache continues to be referenced by the processor, it will remain
there. When it stops being referenced, it will eventually be replaced by newly
referenced data.

Outside the processor core is a hierarchy of progressively larger (ergo
slower) caches, which eventually reaches the main storage of the CEC. Main
storage in a server is many Gigabytes of commodity dynamic random access
memories (DRAMs) packaged on hundreds of dual in-line memory modules
(DIMMs). Main memory is connected to magnetic storage (usually disks) via
channel processors.

In Figure 2 the first level of cache outside the processor has been labeled
“L2.” In principle, the choice of labels is arbitrary; but in some circles the
label “L1” specifically connotes the cache that is integral to the processor
pipeline, and the label “L2” specifically connotes the point of coherency in
a multiprocessor. I will not explain coherency here [9, 10]. I mention it only
because if the first level beyond the L1 is not the coherency point, then a label
such as “L1.5” would be used in some lexicons.

If the processor finds all of the data and instructions that it needs in the L1,
it is said to run at its infinite cache performance (which is a limit). When the
processor references instructions or data that are not in the L1, these events are
called cache misses. When a miss occurs, the referenced data must be brought in
from the cache hierarchy, and the delay associated with fetching data from the
slower levels of cache will generally cause the pipeline to stall. The resulting
slowdown is called the finite cache effect (FCE).

Figure 3 shows how the components of Figure 2 map into a conceptualiza-
tion of performance. The performance metric that I will use in this chapter is
cycles per instruction (CPI). This is the average number of cycles required to
process an instruction. Note that the rate of processing instructions, MIPS, is
proportional to the processor frequency divided by CPI. That is, a small CPI is
desirable, and a large CPI is bad.

In Figure 3, CPI has been plotted as a function of the cache miss rate.
When there are no misses, the miss rate is zero, and the CPI line intersects
the y-axis at the point corresponding to the infinite cache performance. The
infinite cache performance comprises a piece called “E Busy” (which accounts

How is bandwidth used in computers 241

Figure 3. Conceptualization of uniprocessor performance.

for the inherent work done by the E unit), and a piece called “E Not Busy”
(which accounts for pipeline effects – those things that inhibit the processor
from running at the inherent E Busy limit).

The finite cache effect is determined by the slope of the CPI line, and the
miss rate. The miss rate (the x coordinate) is measured in misses per instruction
(MPI), and the slope of the CPI line is the average miss penalty, measured in
cycles per miss (CPM). Determining the slope of this line – the CPM – can be
done by measuring a running machine to get a cluster-plot of CPI versus MPI,
or it can be done by running a simulation using different L1 cache sizes so as
to get a range of miss rates. Or, if you have lots of experience working with the
particular microarchitecture in question, you can probably intimate its value
from various parameters (logic paths, access times, etc.).

Bandwidth affects MPI in several different ways. These are all explored in
this chapter. While CPI is shown as a straight line in Figure 3, it is not really
straight; instead it has three linear regimes. As I will explain later, miss events
are random in time; as such, they can cluster. For a typical operating L1 miss
rate (the middle regime), the clustering of misses causes some of the penalty
associated with them to be overlapped. Thus, the average penalty of clustered
misses may be less than the penalty that would have accrued to the same misses
were they taken in isolation.

If the miss rate is extremely low (as it approaches zero – the leftmost regime),
clustering will not happen to the same degree. This causes the average miss
penalty to be somewhat worse than when the miss rate is higher. Thus, as the
CPI “line” approaches the y-axis (from the right), it will actually curve upwards
a little bit.

At the other end of the spectrum (the rightmost regime), if the miss rate is
extremely high, the cache hierarchy (and the bus to it) becomes saturated. The
systems performance has very little to do with the processor when this happens.
Instead, the CPI is limited by the cache hierarchy. This is another linear regime,
but it has a (much) steeper slope than for a typical steady-state miss rate (the
middle regime).

242 P. Emma

4. Cache Miss Rate

It has been known for several decades that the cache miss rate is proportional
to the reciprocal of some root of the cache capacity [11]. The exponent (corre-
sponding to the root) varies with workload, and can change if the capacity is
changed drastically. Figure 4 is a log–log plot (base 2 is used on both axes so as
to make the slope readily apparent) of the miss rate versus capacity for a typical
business workload (TPC). This is shown over a range of 9 successive doublings
(512×) of cache size for three different line sizes (to be discussed later).

As is apparent in the figure, there are two linear regimes that predominate
over the 9 doublings, with a fairly clean break on a particular doubling. The
clean break occurs because some significant aspect of the working set becomes
subsumed at a particular capacity (in this case, 218 kbytes). Obviously (although
not shown) after the doubling that causes the entire workload to be subsumed
(which is off the right end of the graph), the miss rate will drop precipitously
toward zero.

The first regime in Figure 4 has a slope of− 1/2 (two doublings of the capacity
cuts the miss rate in half), which indicates that the miss rate is proportional to
the reciprocal of the square root of the capacity. The second regime has a slope
of − 3/4 (four doublings of the capacity cuts the miss rate by three doublings),
so the miss rate is proportional to the reciprocal of the 3/4 root of the capacity.

This curve is shown for a uniprocessor. In a uniprocessor there are only
two reasons that a miss can occur within any set [12]. When the processor first
references a datum that it has never referenced before, there is no way that the
datum can be in the processor’s cache, hence the reference must be a miss.
These misses are called compulsory misses.

If the processor had referenced a particular datum in the past, but misses
again when re-referencing the same datum, then it must be that the datum was

Figure 4. Log (miss rate) versus log (capacity) over nine doublings in capacity for a TPC
workload.

How is bandwidth used in computers 243

replaced by other (more recently referenced) data because the cache was not
large enough to hold the first datum while also accommodating more recently
referenced data. These misses (re-references to data previously referenced) are
called capacity misses. They occur because capacity of the cache is finite.

Now consider a multiprocessor system, as shown in Figure 5. In a multipro-
cessor there is another mechanism for missing. If processes running on different
processors share (and modify) data, then for the processes to be coherent (that
is, for them to have the same view of the state stored in memory), a proces-
sor modifying data must first ensure that the data is removed from all remote
caches. By doing so, it ensures that when any remote processors reference the
data, the remote references will miss, and will obtain the new (modified) data
when the misses are satisfied.

Misses that occur because remotely running processes cause the data to be
removed from the local cache (when the cache is large enough to have retained
the data) are called intervention misses. They occur because of intervention
events (invalidation requests) coming from other processors.

Figure 6 shows how the three kinds of misses interact as a function of capac-
ity in a multiprocessor system. In accordance with their definition, compulsory

Figure 5. A multiprocessor system with a shared L2 cache.

Figure 6. Three kinds of misses in a multiprocessor, and their interaction as a function of
capacity.

244 P. Emma

misses are independent of the cache size. They are also statistically negligi-
ble over the long run, and are shown as greatly exaggerated in the figure just
for the sake of acknowledging their existence. I make no further reference to
compulsory misses.

The interaction of interest is between the capacity misses and the inter-
vention misses. If the cache size is inadequately small (near the y axis), the
capacity miss rate is very high, and data in the cache is very short-lived. It is
unlikely that data will reside in the cache long enough to be invalidated by
a remote process, hence the intervention miss rate is very low. As the cache
capacity increases, data in it are resident longer, and the likelihood of interven-
tion events increases too. Thus (at least initially), capacity can be thought of
as a “converter” that converts (a fraction of the) capacity misses into interven-
tion misses. Once the cache gets sufficiently large (so as to cause all modified
data to generate intervention events), the intervention misses level off. The
asymptote for intervention misses is determined by the rate at which running
processes share data. The intervention miss rate is independent of cache size
past this point. On the other hand, the capacity miss rate will continue to fall
as the cache size is increased further. As a general rule, bigger is always better
(insofar as miss rate is concerned).

5. Misses, and the Trailing Edge

Most of the bandwidth within a computer is used for moving cache lines so
as to satisfy the misses in the system. There is other traffic too, depending on
the coherency protocols, the desired recoverability, and other factors. The other
traffic is primarily single-store traffic, and some control signaling. This other
traffic will not be addressed in this chapter, and is (generally) not the primary
performance concern. In the interest of focusing on the main issue, I consider
only cache misses.

Figure 7 is a temporal depiction of a cache miss, with a timeline going from
left to right. The impinging arrows above the timeline depict events occurring at
the processor, and the impinging arrows below the timeline depict bus events.

Figure 7. Temporal depiction of a cache miss.

How is bandwidth used in computers 245

The first event is that the processor references a datum that is not in its cache,
and this causes a miss (shown as the first impinging arrow).

As a result of the miss event at the processor, numerous events happen
within the system (not shown in the figure) to fetch the desired data from the
cache hierarchy and deliver the referenced datum to the processor. This flow
would generally be: (1) generate ECC code for the miss address and request
the address bus to the L2; (2) on the granting of the bus request, transmit the
miss address to the L2; (3) on receipt of the miss address by the L2, check the
ECC, and request an L2 access; (4) on the granting of the access request, look
up the address in the L2 directory, and fetch the data from the L2 (assuming
that it’s there); (5) check the ECC that was stored with the data in the L2 and
request the data bus returning to the processor; (6) on the granting of the data
bus, return the requested datum to the processor, followed by the other data
within the cache line being returned; and (7) check the ECC on the arriving
data at the processor. The data is now ready for use, and its access (to the first
data) is shown as the next event in Figure 7.

This flow contains a number of logic stages (mostly ECC generation and
checking, and prioritization and multiplexing), some requesting and granting
of shared resources (the busses, and the L2) with opportunities to queue (wait)
at these resources, wire delays from the processor to the L2 and back, and the
nominal access time of the L2 directory and arrays. This flow of events – from
the miss event to the receipt of the desired datum – is what is nominally thought
of as the “miss penalty.”

But this is not the entire miss penalty. We refer to this first set of events (up
until the delivery of the datum that caused the miss – the first data back) as the
leading edge (LE) of the miss. Data are not stored in cache levels as individual
words. Rather, data are stored in contiguous blocks, each block containing
multiple data. Originally, these blocks were called cache blocks; now they
are usually referred to as lines. In modern processors, line sizes are at least
32 bytes. In large servers, the line sizes are as large as 128 or even 256 bytes.
Since the busses in the system are not nearly this wide, the cache line is delivered
to the processor as a sequence of packets, each packet being the width of
the bus.

For example, if a 256 byte line is transmitted over a 16 byte bus, the number
of packets required is 256/16 = 16. When a line is returned to the processor,
modern processors start by returning the packet containing the datum that was
actually requested. By returning this packet first, the processor is able to start
running (if the miss caused it to stall) as soon as the first packet arrives, i.e.,
immediately after the leading edge of the miss.

The remaining packets are transmitted to the processor at the bus frequency.
The transmission of the remaining packets is called the trailing edge (TE) of the
miss. The trailing edge is the number of processor cycles required to move the
line. Since the packets are moved at the bus frequency, if the bus frequency is

246 P. Emma

slower than the processor frequency, the trailing edge is equal to the number
of packets times the ratio of the two frequencies:

TE = (Line size/Bus width) × (Processor frequency/Bus frequency)

In the example above in which there are 16 packets, if the bus runs at half the
speed of the processor, the trailing edge is 16 × 2 = 32 cycles. If the bus runs
at one-third the speed of the processor, the trailing edge is 16 × 3 = 48 cycles.
The complete miss penalty is then equal to the sum of the leading edge, plus
whatever effects are caused by the trailing edge:

Miss penalty = Leading edge + Effects[Trailing edge]

The trailing edge effects are bandwidth effects. For the time being we will
assume that the trailing edge effects are proportional to the size of the trailing
edge. This is not really true, but it can be used as a good approximation if
the miss rate is held relatively constant. Since the trailing edge effects are
bandwidth effects, their significance depends to a large extent – as I will show –
on the bus utilization, which depends on the size of the trailing edge, and on
the miss rate as follows:

Bus utilization = (Miss rate/CPI) × TE

Note that the miss rate (in misses per instruction) divided by CPI is a temporal
miss rate (in misses per cycle), and since TE is in cycles per miss, the bus uti-
lization is dimensionless. Physically, utilization is a probability (the probability
that the bus is busy), so it can only have physically meaningful values between
0 and 1. Also, note that the reciprocal of the temporal miss rate is the average
intermiss distance (in cycles per miss) which is the average number of cycles
between misses. An equivalent formula is then:

Bus utilization = TE/Intermiss distance

Since the utilization cannot exceed 1, TE cannot be greater than the intermiss
distance.

6. Choosing Cache Line Size

If trailing edge effects hurt performance, why do we store data as lines –
which cause the trailing edge effects in the first place – instead of as individual
words?

From a cost perspective, storing data as individual words would be pro-
hibitively expensive. This is because, in a cache structure, each item that is
stored must have a directory entry that identifies (by address) what the item is.

How is bandwidth used in computers 247

Depending on the format of the directory entry and the granularity of informa-
tion stored, a directory entry will be on the order of a doubleword (8 bytes)
wide. If we kept a doubleword of directory information for every word of data,
the directory would be larger (and slower) than the cache. This would be a
terrible use of space. If a directory entry is a doubleword, it is desirable to have
the item to which the directory entry pertains be much larger than this.

Even if cost were not the issue, making lines large will help performance
(up to a point), despite the fact that doing so causes trailing edge effects. The
choice of line size is an optimization problem.

There are two (orthogonal) heuristically observable characteristics of refer-
ence patterns, called spatial locality of reference, and temporal locality of ref-
erence. If a particular datum is referenced, then the property of spatial locality
means that it is very likely that other data that are spatially close to that datum
(by address) will also be referenced. Because reference patterns have spatial
locality, it helps to fetch that locality (as a cache line) when a miss occurs,
i.e., spatial locality is the rationale for cache lines. The property of temporal
locality is that if a particular datum is referenced, then it is very likely that
the same datum will be re-referenced in the near future. Temporal locality is
the rationale for caching data in the first place. If reference patterns were not
temporal, the cache would not be useful.

No reference pattern is purely spatial or purely temporal; all reference pat-
terns contain both elements. Thus the choice of line size is a choice that trades
temporal locality against spatial locality as illustrated in Figure 8. This figure
shows two caches, each having the same total capacity. The leftmost cache is
labeled “spatial cache,” and it is divided into a small number of large lines.
To the extent that spatial locality predominates a reference pattern, it will be
captured by the large lines. The rightmost cache is labeled “temporal cache,”
and it is divided into a large number of small lines. To the extent that temporal
locality predominates a reference pattern, it is better captured by this cache
because there are many more lines with which to capture it.

Note that filling the temporal cache will require incurring many more misses
than will be incurred by the spatial cache, because there are many more lines

Figure 8. Choosing cache line size to capture spatial context or to capture temporal context.

248 P. Emma

to bring in. However, even though the spatial cache will incur fewer misses
than the temporal cache, each spatial miss costs more because it has a longer
trailing edge.

The optimization (first for miss rate) can be done by first defining a parameter
called the occupancy of the line, denoted P, as the probability that both halves
of a line are used while the line is in the cache [13]. While P will depend on
the line size, and should not be extrapolated through many doublings, it can be
treated as a constant for a given line size. It will also depend (to a small extent)
on the cache miss rate. We will ignore this – we are doing an optimization that
is well above this level of accuracy.

To do the optimization we ask the question: “For what occupancy, P, does
the spatial cache have the same miss rate as the temporal cache?” We will take
the line size of the spatial cache to be twice the line size of the temporal cache.
Let the spatial cache be denoted C(N, 2L), meaning that it has N lines of size
2L. Let its miss rate be denoted M(N, 2L). Similarly, let the temporal cache
be denoted C(2N, L), meaning that it has 2N lines of size L. Note that the two
caches are the same size, 2NL. We want to know what value of P will make
M(N, 2L) and M(2N, L) equal.

If the occupancy of a line of length 2L is P, then by definition, spatial
cache C(N,2L) has the same useful contents as the temporal cache denoted
by C((1 + P)N,L), i.e., 1 − P of the long (2L) lines are not fully used. But
C((1 + P)N,L) has to take 1 + P misses for every miss taken by C(N, 2L) to
fetch that useful content, because it has 1 + P times as many lines. That is:

(1 + P)M(N,2L) = M((1 + P)N,L)

But from the inverse root law (as was shown in Figure 4), we know that if we
make the cache Z times larger while holding the line size constant (by adding
more lines), the miss rate decreases by Z**(−α) for some fraction α. Then:

(1 + P)M(N,2L) = M((1 + P)N,L) = ((1 + P)∗∗(−α))M(N,L)

= ((1 + P)∗∗(−α))(2∗∗α)M(2N,L)

Dividing both sides by (1 + P) M(2N, L) reveals that the two caches – C(2N, L)
and C(N, 2L) – have the same miss rates when:

P = (2∗∗(α/(1 + α))) − 1

This allows us to slice the plain into two pieces as shown in Figure 9. In this
figure the value of occupancy, P, that causes the two caches to have the same
miss rate is plotted as a function of the root exponent, α. For given set of
coordinates α and P (as measured from a workload), look to see whether (α, P)
lies above or below this curve. If it lies above, then doubling the line size (to
capture more spatial context) will result in a lower miss rate. If it lies below,
then doubling the line size will result in a higher miss rate.

How is bandwidth used in computers 249

Figure 9. The value of Occupancy that makes the miss rates M(2N,L) = M(N,2L) as a func-
tion of α.

This analysis only considers miss rate; it does not take the trailing edge
effect into consideration. Recall that we had said that the trailing edge effect
is proportional to TE. Let β denote the constant of proportionality. That is, we
assume

Effects[TE] = βTE

We had said earlier that this is not really true, and that β depends on the miss
rate. We will show this relationship later, and proceed with the optimization
assuming that this is a good enough approximation for now. Since LE should
be independent of the line size (which is another approximation, as we will see
later), the penalty for a miss in C(2N, L) is LE + βTE, and the penalty for a
miss in C(N, 2L) is LE + 2βTE. Choosing the breakpoint (at which doubling
the line size is a break-even proposition) is matter of setting the finite cache
effects of the two caches equal. That is, set:

M(2N,L)X (LE + βTE) = M(N,2L)X (LE + 2βTE)

From our previous optimization (for miss rate alone), we found the ratio
between M(N, 2L) and M(2N, L) as a function of β and P. Substituting this
solution into the equation above yields:

(LE + βTE)/(LE + 2βTE) = (2∗∗α)X((1 + P)∗∗(−(1 + α)))

This equality contains five parameters. To make this more tractable, we define
a new parameter called the significance of the trailing edge, denoted γ , as the
ratio of the trailing edge effect to the leading edge:

γ = βTE/LE

250 P. Emma

Quite literally, γ captures the significance of the trailing edge effect relative
to the leading edge. This allows us to make the substitutions LE + βTE =
(1 + γ)LE and LE + 2βTE = (1 + 2γ)LE. Substituting these into the
equation above, and doing some manipulation, results in a break-even point
for P expressed as a function of α and γ :

P = (((1 + γ)/((2∗∗α)X (1 + 2γ)))∗∗(−(1/(1 + α))) − 1

Figure 10 shows a plot of this function. The break-even point for occupancy, P,
is plotted as a function of the significance of the trailing edge, γ , for two
different values of α, specifically, for α = 0.5 and for α = 0.75. For a given α,
the curve again splits the plane into two pieces: one for which doubling the line
size helps, and the other for which doubling the line size hurts.

Note that the two curves, α = 0.5 and α = 0.75, intersect the y-axis at the
points P = 0.25 and P = 0.35, respectively. On the y-axis γ = 0, which means
that there is no trailing edge. This corresponds to the previous optimization in
which the trailing edge was ignored, and we optimized only for miss rate. This
corroborates the curve obtained in Figure 9, because the curve in that figure
intersected the vertical lines at α = 0.5 and α = 0.75 at the points P = 0.25
and P = 0.35, respectively.

Figure 10 clearly illustrates how important the trailing edge effect is. If
we optimized purely on miss rate, a root value of α = 0.5 would lead to the
conclusion that it is a good idea to double the line size for occupancies greater
than 0.25. But when we take the trailing edge into account, a significance of
0.5 would require an occupancy of nearly 0.55 to reach the same conclusion.
And with values of TE nearing 32 or 48 (as they are), a significance of 0.5 could
be a realistic number.

In this optimization, I assumed that the trailing edge effect was β TE for
some constant β. As I had pointed out, it’s more complicated than this. There
are multiple effects of moving a line and, by definition, all of them are trail-
ing edge effects. They can be separated into direct and indirect effects. The

Figure 10. The value of Occupancy that makes the FCEs of C(2N, L) and C(N, 2L) equal as
a function of the significance of the TE, γ , shown for α = 0.5, and α = 0.75.

How is bandwidth used in computers 251

direct effects are the immediate consequences within a processor that occur
independently of what else is going on within the system, i.e., they impact per-
formance regardless. The indirect effects are queuing effects that depend both
on the previous trailing edges generated by the local processor, as well as on
the other traffic in the system.

7. Direct Trailing Edge Effects

There are three direct effects of the trailing edge. The first is a local band-
width problem at the L1. The second is a matter of accounting for spatial
references, and the last concerns the utilization of the local miss facilities.

For all processors having non-blocking caches (meaning that the processor
continues to run – if it logically can – when there are misses in progress), the
infinite cache portion of the CPI is predicated on having a certain amount of
L1 bandwidth available for use by the processor. As is apparent from Figure 7,
during the trailing edge portion of a miss, the incoming line uses L1 cache
bandwidth. Therefore, the available bandwidth as seen by the processor is
diminished, and the processor runs a little slower (on the average) than it
otherwise would.

Of course, buffering can be put into the cache interface so that the L1 need
not be impacted by the arrival of every packet. The L1 put-away width can be
made wider than the packet width so as to reduce the L1 utilization associated
with storing the incoming line. For example, a double packet can be stored
after the arrival of every other packet, or a quadruple packet can be stored after
the arrival of every fourth packet. While input buffering can greatly reduce this
effect, it is present nonetheless.

Next, I have said that reference patterns are spatial and, in fact, this is the
rationale for having long cache lines. This means that after the datum that
generated the miss arrives (in the first packet), the processor can continue to
run if the miss had logically blocked its progress. Because the reference pattern
is spatial, it is likely that the processor will (very soon) reference another datum
that is in the incoming line but that has not arrived yet, i.e., a datum from another
packet in the line. This is called an upstream reference.

Had the line size been much shorter, this upstream reference would likely
have been another miss (assuming that the short line size did not contain both
of the referenced data). Since the line size was long enough to capture the
spatial context (of the second reference), the second reference does not cause
a miss. Instead, the second reference appears as a trailing edge effect. The
processor may have to stall to await the arrival of a particular packet within
the trailing edge.

Finally, consider the hardware that is needed at the L1-to-bus interface to
administer a miss. A miss has an address associated with it (the miss address
which is sent to the L2), it may have an instruction tag associated with it

252 P. Emma

(so that it can revive a stream after the leading edge), a stream tag associated
with the instruction, a miss sequence number and perhaps other information so
that the returning packets can be matched up with the correct misses.

A hardware miss facility is needed for each outstanding miss. A miss facility
must contain registers for all of the accounting information mentioned above,
as well as some buffering to handle the incoming line (if the incoming line is
buffered before impinging the L1 as mentioned above).

In order to have multiple outstanding misses or prefeteches, there must be
a hardware miss facility for each outstanding miss or prefetch. In addition,
there must be arbitration and selection logic to handle the returning misses
appropriately. Each time the processor wants to issue a prefetch, and each time
the processor has to issue a miss, it must find an available miss facility, and
it must allocate the facility to the new prefetch or miss. That miss facility
will remain in use until the prefetch or miss assigned to it is completed in its
entirety – including its trailing edge.

Once all of the miss facilities are in use, no new misses can be issued until
one of the outstanding misses completes and releases its miss facility. The most
common problem with real prefetching is that it pre-allocates the miss facilities.
This can cause major delays if exigent misses occur that were not anticipated by
the prefetch mechanism.The exigent miss may wind up queued behind a number
of prefetches which (even if they are correct prefetches) are not needed urgently.
This results in a loss of performance even when the prefetches are correct.

If all miss facilities are in use and another miss occurs, the processor must
stop. It must wait for a miss facility to become available. The processor remains
stopped until the trailing edge that is currently in progress completes. This is
the last direct trailing edge effect.

8. Indirect Trailing Edge Effects

Indirect trailing edge effects are caused by bottlenecks that are external to the
processor. Specifically, they are bus effects. Miss traffic from a processor will
collide with – and be delayed by – the trailing edges of its own misses (which
is self interference), as well as with the traffic generated by other processors
(which is general queuing delay). In this section I discuss both of these effects.

8.1. Self Interference

Figure 11 shows a hypothetical sequence of four references made by a
processor. Let’s assume that if there are no misses (i.e., in an infinite-cache run)
the distances between the references are 22 cycles, 4 cycles, and 40 cycles as
shown. Figure 12 shows this same sequence in a finite-cache run in which all
four references are misses. In this figure I have assumed a leading edge of

How is bandwidth used in computers 253

Figure 11. An infinite-cache temporal sequence of four references.

Figure 12. A finite-cache temporal sequence of the same four references in which all of them
are misses.

24 cycles, and a trailing edge of 32 cycles. Each “tick” in the trailing edges
depicted represents 4 cycles.

Note that the first and second misses are far enough apart so as not to collide.
So are the third and fourth misses. But the second and third misses (having a
nominal infinite-cache distance of 4 cycles) are clustered together, and there
is a trailing edge effect. Specifically, following the leading edge of the second
miss (M2), the second access occurs (A2). Four cycles later, the reference to
the third datum is attempted, which results in the third miss (M3). The leading
edge of M3 takes 24 cycles, so it completes 4 + 24 = 28 cycles after A2. But
the trailing edge of M2 is 32 cycles, starting from A2. So although the leading
edge of M3 is completed, the processor is unable to access the datum, because
there are 32−28 = 4 cycles of trailing edge left on the bus from the second
miss. Thus, the access to the third datum A3 is delayed by this difference.

The general rule is that if the distance between two miss accesses is less
than the trailing edge, there is a trailing edge penalty equal to this difference. If
the infinite cache distance between two miss references is denoted Ak → Ak+1,
then the nominal temporal distance between them is their infinite cache distance
plus the leading edge of the second miss. If this nominal temporal distance is

254 P. Emma

Figure 13. The intermiss-distance density function measured from a typical commercial
workload.

less than the trailing edge of the first miss, the second access will be delayed
until the trailing edge completes. The trailing edge penalty is then the difference
between the two.

Effect[TEk] = (TEk − (LEk+1 + (Ak → Ak+1)))
+

The superscript “+” at the end of the rightmost expression denotes that there is
only a delay if the expression is positive. For misses that are spread far apart,
the rightmost expression will be negative, and there is no trailing edge effect.
Note that for the trailing edge to manifest in this particular way, it must be
larger than the leading edge.

The next obvious question is: “To what extent do the misses cluster like
this, and what is the average trailing edge effect?” Figure 13 shows a real
intermiss distance density function. The data used to create this figure were
measured from a real processor running a typical business workload (TPC).
While, strictly speaking, deeper analysis has shown that this is not actually an
exponential function, it is fairly close to one. Hence, for the sake of obtaining
a tractable understanding of what’s happening, we can treat the miss process
as a Poisson process.

Let τ be the trailing edge: τ = TE. Let r be the temporal miss rate, and let ρ

be the average intermiss distance: ρ = 1/r. The trailing edge effect due to self
interference is then the integral of miss arrivals at t for t less than τ of (τ − t)
re**(−rt) dt. The solution to this integral is

Effect[τ] = τ − ρ(1 − e **(−τ/ρ))

This says that the trailing edge effect is equal to the trailing edge minus a
scaled function of the intermiss distance. The scaling function is an exponential
function of τ/ρ, which is the bus utilization, U.

How is bandwidth used in computers 255

Figure 14. The trailing-edge effect normalized to the trailing edge as a function of the average
intermiss distance.

Figure 14 shows the trailing edge effect normalized to (meaning divided
by) the trailing edge. As is evident from the equation above, this is 1 − ((1 −
e**(−U))/U). This is the fraction of the trailing edge that manifests as delay.
It is exactly the fraction β that I used in the line size optimization previously.

Since ρ must be at least as large as τ , the curve has been plotted over the
range of τ to 10τ . Note that at the point ρ = τ , the utilization is 100%, and
the normalized trailing edge effect is 1/e, which is about 0.37. This means
that β = 0.37 when the bus is completely saturated. Of course, it would not
make sense to run the utilization at 100%, as will be seen later. Caches should
be made large enough so that ρ is at least several times larger than τ . For
example, ρ should be large enough to make the approximation that “β is a
constant” reasonable. If a cache is too small this is a very poor approximation,
but the system performance in this case will also be very poor; so much so that
the accuracy of this approximation is academic.

Having understood the self-interference aspect of trailing edge, we can now
revisit an earlier simplifying assumption that CPI was linear in miss rate; shown
previously in Figure 3. Figure 15 shows the actual situation. There is a large
linear region in the center of the curve (where most machines operate) where
there is some clustering of misses. In this region the average miss penalty is
equal to a portion of the leading edge, αLE, because the clustering effect hides
part of the leading edge, plus a portion of the trailing edge, βTE, because the
clustering also causes self-interference.

For very low miss rates (at the left end of the curve), there is very little
clustering, so the full leading edge is exposed, but there is no self-interference.
The miss penalty in this region is just LE (which is how most people conceive
of miss penalty). For very high miss rates the performance is dominated by
the miss process, and the miss process is limited by whichever of {LE,TE} is
the largest.

256 P. Emma

Figure 15. Three linear regimes: a revised view of uniprocessor performance (in CPI) as a
function of the miss rate.

Figure 16. Three linear regimes: showing how a reduction in trailing edge changes the revised
view of uniprocessor performance.

Figure 16 shows that if there were a way of creating enough bandwidth to
make the trailing edge very small (e.g., moving an entire cache line in a cycle),
the curve of the previous figure would degenerate into three regions. The outer
two regions (very high and very low miss rates) would have a miss penalties
of LE. The center region, where most machines operate, would have a smaller
miss penalty, αLE. Excessive bandwidth is a good thing.

8.2. Queuing

Figure 17 shows a single bus drawn as an open queuing system. The single
bus is the “server” in the system, and it has a fixed service time, τ . There is an
infinite queue in front of the bus, and there are n “producers” (processors) that
generate miss requests with Poisson arrival rates of r/n. The aggregate arrival
rate is then r.

The question is: “How long are misses delayed because they have to wait in
the queue?” In other words, what is the expected waiting time, E[wait]? This
is an M/D/1 queue; the M denotes a Poisson arrival process, the D denotes a

How is bandwidth used in computers 257

Figure 17. An open M/D/1 queuing model for a single bus.

Figure 18. Queuing delay (E[wait]) in the open M/D/1 bus model as a function of utilization,
depicted abstractly to show the effects of trailing edge.

deterministic (constant) service time, and the 1 indicates that there is a single
server (bus). This model is open because there is no feedback: when misses are
serviced, they leave the system; the fact that they were delayed (by E[wait]) has
no effect on the arrival rate. We will revise this later. For an M/D/1 queue [14]:

E[wait] = 1/2 Uτ/(1 − U)

Figure 18 shows E[wait] drawn as a function of U in cartoon style to illustrate
a point. (Note that E[wait] and U are both functions of τ , so plotting this is not
straightforward.) What this shows is that if the utilization is kept low, E[wait] is
ignorable.At some “threshold” (in quotes, because the term is a little too strong),
E[wait] “explodes.” There is a serious nonlinearity in this relationship that is
compounded by two things as τ increases. First, the threshold is determined by
a series of terms that is dominated by a term in (1/τ)**2. This means that as τ

increases, the threshold point moves to the left. But since U is proportional to
τ , as τ increases, the operating point moves to the right!

This is a “double whammy.” What it means is that many systems designers
(because of satisfactory bus speeds and smaller line sizes) are accustomed to

258 P. Emma

Figure 19. Queuing delay (E[wait]) in the open M/D/1 bus model as a function of utilization,
depicted abstractly for very high bandwidth (i.e. as the trailing edge approaches 0).

having a low enough utilization so that there are no queuing effects. It is off their
radar screens. But in a single doubling of the trailing edge (either by scaling
the processor speed without being able to scale the bus speed, or by doubling
the line size), queuing delay can cause a major problem. Repeating the point:
increasing the trailing edge moves the operating point out (to the right) while
pulling the threshold point in (to the left).

This is not good. It is a direct statement about the importance of bandwidth,
which can be used to reduce the trailing edge directly. Figure 19 shows the
potential benefit of having excessive bandwidth. If very high bandwidth is
used to remove trailing edge (say, by allowing an entire cache line to be moved
in a single cycle), the “threshold” point moves far to the right. This would allow
us to drive the bus traffic very hard, without seeing queuing delay. This could be
used to prefetch very aggressively, with little concern for prefetching accuracy,
and would allow the processor to run down multiple speculative paths. This is
discussed in the next section.

Figure 19 does not depict reality. The bus utilization cannot approach 1
without causing queuing delay. This graph is an artifact of solving the system
as an open queuing network, i.e., we did not feed back the delay to slow
down the requesting processors. Figure 20 shows the corresponding closed
queuing system. In this system, feedback is used to modulate the request rate
as r′ = f (r,E[wait])), where r is the original (unmodulated) rate.

This can be solved by taking r out of the time domain, and then putting it
back into the time domain. Recall that r is the temporal miss rate (in misses per
cycle). Define the time-independent miss rate, rI, as the number of misses per
instruction. The assumption is that rI is independent of how fast the processor
runs. This cannot be extrapolated too far because of high-MIPS effects [8],
but is a reasonable assumption for a processor that will not run at a drastically
different speed. Now define a base performance, CPI0, as the performance in
the absence of queuing delay, and the actual (modulated) performance as CPI.
The next three equations follow from things already known, and these lead

How is bandwidth used in computers 259

Figure 20. A closed M/D/1 queuing model for a single bus.

Figure 21. Bus utilization and relative system performance as a function of the log of the miss
rate, shown for four values (three quadruplings) of trailing edge.

to the fourth equation, which (when substituting in the appropriate expressions
from the first three equations) gives E[wait] as a function of itself, and the other
known parameters. The fifth equation is the solution.

CPI = CPI0 + rIE[wait]

ρ = CPI/rI = (CPI0/rI) + E[wait]

U = τ/ρ = rIτ/(CPI0 + rIE[wait])

E[wait] = 1/2 Uτ/(1 − U)

E[wait] = 1/2 (τ − θ + SQRT(θ(θ − 2τ) + 3(τ**2)))

where θ = CPI0/rI . Based on this queuing delay, we recalculated CPI and U,
and used these to create the plots in Figure 21.

Figure 21 shows four identical pairs of curves. Each pair of curves was
constructed for a particular value of the trailing edge, these being 128, 32, 8,
and 2 cycles per trailing edge, respectively as we go from left to right; each

260 P. Emma

pair having a factor of 4 less trailing edge than the previous pair. For each pair
of curves, the lower curve (which curves upward) is the bus utilization, and the
upper curve (which curves downward) is the relative performance. Relative
performance is CPI0/CPI. (Recall that performance in MIPS is proportional to
the reciprocal of CPI. That is, as CPI increases, performance decreases.)

Relative performance is plotted because it has the same range as utilization.
That is, as utilization starts at 0 and climbs upward to something less than 1,
relative performance starts at 1 (recall that CPI0 is defined as the value of CPI
when there is no queuing delay), and declines as queuing delay grows with
utilization. The x-axis is the log (base 2) of the miss rate. Note that when the
trailing edge is cut by a factor of 4 (going from one pair of curves to the next
pair), the next pair is identical to the first pair, but is shifted to the right by 2
places. Since it is a log (base 2) scale, shifting to the right by 2 places represents
quadrupling the miss rate.

That is, if we cut the trailing edge by a factor of 4, and increase the miss rate
by a factor of 4, the utilization stays the same.At any fixed value of utilization (in
any pair of curves), the relative performance also has a fixed value. This means
that relative performance is purely a function of utilization. It doesn’t matter
whether the utilization is achieved by having lots of short events (a high miss
rate and a low trailing edge) or by having fewer long events (a larger trailing
edge with a smaller miss rate). The only thing that matters is the utilization
itself. The bus doesn’t care why the utilization is what it is. This is why every
pair of curves is identical.

So how does system performance vary with bus utilization? Figure 21 shows
that, as soon as the bus utilization exceeds 15%, system performance begins
to drop off very slowly. At a bus utilization of 30%, system performance is
degraded by more than 10%. And at a bus utilization of 40%, system perfor-
mance has fallen off by nearly 20%. It is unacceptable to be losing more than
10% of the entire system performance to bus queuing. For this reason it is a
good rule of thumb that bus utilization should not be driven much higher than
30% if the miss process resembles a Poisson process. (Note that this is not true
for scientific workloads, for which the busses can be driven much harder.)

Therefore, if you can calculate how much data needs to be moved for a
given workload (given the cache size – which will determine the miss rate, and
assuming a nominal CPI – so that the miss rate can have a temporal interpreta-
tion), you should plan on providing at least 3× the bandwidth required to move
this much data. Without at least 3× this bandwidth, the system performance
will be unacceptable. When it comes to bandwidth, more is always better.

9. Bandwidth and Prefetching

The principal method that has been proposed by many to reduce the finite
cache effect is prefetching [15, 16]. The idea is that if data are prefetched far

How is bandwidth used in computers 261

ahead of their actual reference points, the misses that would normally occur will
not occur. This requires that the reference pattern be predictable sufficiently
far ahead in time so that misses are anticipated and avoided. In fact, this is the
only way to avoid misses, excepting some hypothetical (but as yet, unspecified)
new ways of programming that do not need to touch the same data in the same
general order.

That is, misses are inherent to a program that ruminates on a working set
at a certain rate, and that runs on a machine having a cache that is not large
enough to hold that working set. There are four parameters that are used to
characterize the efficacy of prefetching:

1. Timeliness is the degree to which correct prefetches are initiated early
enough so that their associated misses do not occur.

2. Coverage is the percentage of misses that are correctly anticipated.
3. Accuracy is the percentage of prefetches that bring in data that is actually

used.
4. Bandwidth will limit the ability to prefetch in a number of ways to be

discussed below.

Note that, while these four parameters give lots of insight into the efficacy
of a prefetching mechanism, they are not sufficient for accurately predicting
performance. For example, coverage is the percentage of (original) misses
avoided, but the miss ratio is not necessarily reduced by this amount exactly.
The prefetching mechanism will cause other lines in the cache to be replaced,
and some of that replacement activity will result in new misses that were not
part of the original set of misses.

Note also that timeliness, coverage, and accuracy all work against each
other. To achieve excellent timeliness, prefetches must be done well ahead of
time – before there is much certainty as to the path being followed by the pro-
gram. Thus, an algorithm that is very timely might not achieve good coverage
(because the wrong path was anticipated), and may similarly have poor accu-
racy (because it brings in the wrong lines). Similarly, to get high coverage,
a prefetching mechanism cannot be conservative about deciding whether to
prefetch things. High coverage usually has the side-effect of poor accuracy.
To get high accuracy requires that the prefetching mechanism be very certain
about what is prefetched, so the coverage will be lower.

Since the accuracy cannot be 100%, and since prefetching (correct or not)
will cause new misses because of replacements done by the prefetched data,
and since correct prefetching should enable the processor to run further down
speculative paths and generate new misses, the amount of traffic will increase
when any type of prefetching is done. This can, and usually does, put a strain
on the bus bandwidth.

In modern machines, real prefetching mechanisms seldom improve perfor-
mance even when scoring high marks on the first three metrics: timeliness,
coverage, and accuracy. This is because machines today do not have a huge

262 P. Emma

surplus of excess bandwidth available. When the prefetching mechanism makes
any “mistake,” the limited bus bandwidth makes the system very unforgiv-
ing. The cost for mistakes can more than negate any gains made by correct
prefetching.

The definition of a “mistake” can be very loose. A mistake could mean
bringing in the right line at an inopportune time so that it gets in the way of
a demand miss – because there is insufficient bandwidth to handle both. Or
it could mean bringing the right things in, except doing it in the wrong order.
A demand miss sequence may allow the machine to run faster than it could
with prefetching if the prefetching fetches the right things in the wrong order.

For example, Figure 22 shows four different flows for the same sequence
of four misses. The first flow (on the top line) is exactly the flow that was
described in Figure 12. It is a nominal sequence of misses, M1, M2, M3, and
M4, with no prefetching.

Suppose that a prefetching mechanism knew that these four misses were
coming in this order. The second line of the figure shows the flow starting with
a sequence of four prefetches P1, P2, P3, and P4, for the four corresponding
misses M1, M2, M3, and M4. Note that all prefetches are issued far enough
ahead of time (in terms of the leading edges) to eliminate all four misses. The
first miss is eliminated: A1 appears as the first event following P4; there is no
miss M1. However, the trailing edge of the first miss prevents the second miss
from disappearing, despite the fact that prefetch P2 had been issued well enough
in advance of when miss M2 was to occur. So miss M2 is not removed, although
its penalty is reduced somewhat. Similarly, the trailing edge of M2 prevents
prefetch P3 from eliminating miss M3. The fourth miss, M4, is eliminated.

If we put the event A4 in correspondence between the first two lines, we
can see the amount of delay that was removed by “perfect” prefetching. By
“perfect,” we mean that:

1. All of the misses were predicted (100% coverage).
2. All of the predicted misses were predicted in the correct order.
3. All of the prefetched lines were used (100% accuracy).
4. All prefetches were issued far enough ahead of time so that they should

have eliminated their corresponding misses (adequate timeliness).

Despite having perfect prefetching, we only eliminated half of the misses. This
shortcoming is entirely because of the bandwidth limitation.

Real prefetching mechanisms will not be perfect. On the third line of
Figure 22 the same flow is shown with the prefetching being only slightly
less “perfect.” In this flow I slightly permuted the order of the prefetching
as follows: P2, P1, P4, and P3, i.e., I swapped the first two prefetches, and
swapped the last two prefetches. Otherwise, all other aspects of the prefetch-
ing are perfect. In this flow only one miss, M2, is eliminated. If we put the
event A4 in correspondence between the second and third lines, we can see

How is bandwidth used in computers 263

F
ig

ur
e

22
.

Fo
ur

flo
w

s
sh

ow
in

g
th

e
sa

m
e

se
qu

en
ce

of
fo

ur
m

is
se

s
us

in
g:

no
pr

ef
et

ch
in

g;
pe

rf
ec

tp
re

fe
tc

hi
ng

;o
ut

-o
f-

or
de

r
pe

rf
ec

tp
re

fe
tc

hi
ng

;a
nd

ou
t-

of
-

or
de

r
pe

rf
ec

tp
re

fe
tc

hi
ng

us
in

g
4×

m
or

e
ba

nd
w

id
th

.

264 P. Emma

that, by making this slight mistake, we have lost about half of the gain made
by “perfect” prefetching.

The fourth line of the figure shows the same flow as the third line, except
the bandwidth has been quadrupled. This cuts the trailing edges by a factor
of 4. In this flow three of the misses have disappeared, and the performance
gain is much more than what was achieved with “perfect” prefetching on the
second line. This shows that bandwidth has a profound effect on the efficacy
of prefetching.

In fact, no real prefetching mechanism is as good as the mechanism depicted
on the third and fourth lines of Figure 22.As explained, this mechanism achieves
perfect coverage and accuracy, with adequate timeliness. To take this one step
closer to reality (but still unrealistic), let’s see what happens if we insert a single
bad prefetch into the middle of the prefetch sequence. This would keep the
coverage at 100%, and drop the accuracy to 80% – which is unrealistically high.

Figure 23 shows this flow. The top line in the figure is a copy of the third line
in Figure 22. It is repeated here for easy comparison with the second line. As
we saw, permuting the order of the perfect prefetch sequence caused us to give
back roughly half of the performance achieved by the same sequence issued in
the correct order. In the bottom line of Figure 23, an incorrect prefetch, Px, has
been inserted into the stream. The result of this is that so many cycles are lost
so as to make this flow worse than the original flow without prefetching (the
first line of Figure 22). Access A4 appears to the right of the finishing point
shown for no prefetching.

Remember that, while this sequence is hypothetical, no real prefetching
mechanism is quite this good. In real processors, whenever prefetching is used,
despite achieving fair levels of coverage and accuracy, bandwidth limitations
almost always cause the prefetching mechanism to hurt performance. This
statement pertains to business computing. Prefetching can be used effectively
in scientific computing, where there are regular predictable strides, very pre-
dictable branches, and few surprises.

I have said that real prefetching mechanisms are less than perfect because:

1. They fail to anticipate all of the misses.
2. Of the misses anticipated, their ordering changes as the algorithm starts

to work, hence as the algorithm adapts, it issues many of the prefetches
in the wrong order.

3. In addition to prefetching useful data, they prefetch data that is not useful.
4. Even when prefetching correct data, they prefetch at inopportune times,

and sometimes get in the way of exigent misses that were unanticipated.

In addition to these obvious drawbacks of imperfect prefetching, there is
another major effect that is intrinsic to how I have defined the leading edge.
Recall that I had said that, when a miss occurs, the first packet returned through
the hierarchy is the packet containing the specific datum that was requested

How is bandwidth used in computers 265

F
ig

ur
e

23
.

Tw
o

flo
w

s
sh

ow
in

g
th

e
sa

m
e

se
qu

en
ce

of
fo

ur
m

is
se

s
us

in
g:

ou
t-

of
-o

rd
er

pe
rf

ec
tp

re
fe

tc
hi

ng
;a

nd
im

pe
rf

ec
tp

re
fe

tc
hi

ng
.

266 P. Emma

by the processor, i.e., the packet containing the datum that generated the miss.
A processor-generated miss stream contains specific (byte or word) addresses,
since these are the actual data being requested.

Many prefetching algorithms work only at the granularity of cache lines,
and make no attempt to predict what packet within the line will be used first.
For example, a commonly used next sequential prefetching algorithm simply
predicts that if line x is referenced, then line (x + 1) will also be referenced [17].
(This is a simple use of spatial locality; if this algorithm works, doubling the line
size achieves much of the same benefit.) But the algorithm does not anticipate
which packet in line (x + 1) will be the first packet referenced.

When a prefetching mechanism merely issues line addresses to the miss-
handling apparatus, the prefetched line will be returned starting with packet 0,
and continuing with the remaining packets of the line in order. If the first
referenced packet is packet y, then the leading edge of the prefetch subsumes
part of the trailing edge. Specifically, the leading edge becomes lengthened
by y times the ratio of the processor and bus frequencies, minus 1.

Because of this effect, if the prefetching mechanism is not extremely timely,
it can actually be better to wait for the demand miss to identify the correct packet
than to let the prefetching mechanism request the line starting with packet 0.
For example, if the prefetching mechanism does a correct prefetch to (packet 0
of) a line 10 cycles before the demand miss happens, but the demand miss
goes to the middle packet in a line having a 32-cycle trailing edge, the correct
prefetch done 10 cycles early will return the requested data about 6 cycles later
than it would have been received had we suppressed the prefetch, and allowed
the miss to happen normally.

But remember that excessive bandwidth makes the system very forgiving
of “mistakes” made in prefetching. To underscore this, Figure 24 shows the
same hypothetical sequence of Figure 23, both with the original trailing edge
(which causes the prefetching to lose performance) shown on the first line,
and one-quarter of the trailing edge (achieved by quadrupling the bandwidth)
shown on the bottom line. On the bottom line a big savings is achieved despite
the mistake made by the prefetching mechanism.

In fact, there is a genuine synergy between prefetching and excessive band-
width. In combination they achieve far more than would be expected by study-
ing either one by itself. Our laboratory did an experiment in which we annotated
all of the misses on an execution trace (identified by running the trace once in
a finite-cache simulation). These annotations were then post-processed to find
the string of branch instructions (up to 20) preceding each miss. We then did
20 more runs to find the optimal point (at one of the 20 branches) to issue a
prefetch for each miss [15].

We reran the annotated trace, issuing prefetches for the misses at their
optimal timeliness points. We repeated the experiment multiple times prese-
lecting fixed percentages of the misses to prefetch (to allow us to artificially

How is bandwidth used in computers 267

F
ig

ur
e

24
.

Tw
o

flo
w

s
sh

ow
in

g
th

e
sa

m
e

se
qu

en
ce

of
fo

ur
m

is
se

s
us

in
g:

im
pe

rf
ec

tp
re

fe
tc

hi
ng

;a
nd

im
pe

rf
ec

tp
re

fe
tc

hi
ng

us
in

g
4×

m
or

e
ba

nd
w

id
th

.

268 P. Emma

specify the prefetching coverage), and also issuing a preselected percentage
of prefetches to known wrong addresses (to allow us to artificially specify the
prefetching accuracy). We also had the flexibility of specifying other (than the
optimal) timeliness points in terms of how many branches ahead of the miss
each prefetch was to be done.

This gave us a framework to independently specify the timeliness, cover-
age, and accuracy of a hypothetical prefetching algorithm – even when no real
algorithm could achieve these numbers – so as to explore the space of prefetch-
ing, and to study the amount of bandwidth required to support any particular
algorithm.

Figure 25 is a set of bar charts showing the finite cache effect (FCE) for a
particular processor and cache configuration generated with this technique. In
this particular experiment we used the optimal timeliness points, and perfect
accuracy. The leftmost set of bars shows the base case FCE with no prefetching.
The next four sets of bars show the FCE for coverages of 50%, 67%, 75%, and
100%, respectively.

Each set of bars has a leftmost bar showing all of the misses, a middle
bar showing just the misses on the data (operand) side, and a rightmost bar
showing just the instruction misses. In addition, each of these bars has a striped
portion, which subsumes a solid portion. The height reached by the striped
portion denotes the FCE using a 16 byte bus. The (lower) height reached by
the solid portion denotes the FCE using a 128 byte bus.

Figure 25. The finite cache effect (in CPI) for a 128-byte line size as a function of the fraction
of misses prefetched (perfectly). At each fraction the three bars show: showing all misses,
D misses only, and I misses only; and for each bar the effect is shown using a 16 byte bus and
using a 128 byte bus.

How is bandwidth used in computers 269

The line size is 128 bytes, so the solid portions of the bars have no trailing
edge effects. It is particularly useful to plot the bars this way, because the striped
portion of any bar can then be directly interpreted as the trailing edge effect for
that bar.

Looking only at the leftmost bars in the first and last sets, it can be seen
that (from the heights of the striped sections) by prefetching all of the misses,
we took the FCE down from 0.75 CPI to 0.5 CPI. That is, prefetching with
optimal timeliness and with perfect coverage and accuracy only removes 1/3
of the FCE because of bandwidth effects.

Looking just at the first bar in the first set (all misses with no prefetching)
it can be seen that by eliminating all bandwidth effects (removing the trailing
edge) we took the FCE down from 0.75 CPI to 0.55 CPI. In and of itself, this is
not quite as good as perfect prefetching; but it shows that, without prefetching,
bandwidth effects account for over 25% of the FCE.

However, if we do perfect prefetching and remove the bandwidth effects
(the solid portion of the leftmost bar of the last set), we take the FCE down to
about 0.12 CPI. This is more than a 6× reduction in FCE, and is quite dramatic.
It obviously shows that there is a very strong synergy between prefetching and
increasing the bandwidth.

Figure 26 shows this even more directly. All that was done here is that each
of the bars in Figure 25 was normalized to itself. All of them are 1 unit high.
This allows us to see what portion of each bar (the striped portion) represents
bandwidth effects. Note that the heavier the prefetching (as we move from left
to right), the bigger the striped portion becomes. This demonstrates that it is
difficult to leverage prefetching without an oversupply of bandwidth.

Figure 26. The bar chart of Figure 25, in which each pair of bars (for a 16 byte bus and for a
128 byte bus) is normalized to itself to show the trailing-edge effects (dotted bars) in relation to
the leading edges (solid bars).

270 P. Emma

Figure 27. A static program conceived as a directed acyclic graph (a binary tree) in which each
node denotes a conditional branch instruction, and in which a dynamic instance of the program
is represented by a particular flow through the nodes from the root to a leaf node.

Finally, work is being done in compiler-directed prefetching. The basic idea
is that if a compiler can anticipate the path to be taken through a program, and
if it can anticipate the data that will be touched along this path, then “touch
instructions” (which do non-architected fetches to data) can be put into the
code far enough ahead of the actual use of the data to prefetch the data and
eliminate misses.

Predicting the path taken through a program is a matter of predicting the
branches in it. Figure 27 shows a static conceptualization of a program drawn
as a directed acyclic graph; in this case a binary tree. Each node in the graph
represents a branch that will be encountered along a permitted dynamic flow
through the program. (The same static branch can appear in many of the nodes,
e.g., a looping branch will continue to branch back to itself.) The figure shows
that, at each branch point, the program can either flow to the left or to the right.
Any particular instance of the program will follow exactly one path down the
tree to a leaf node. In principle, paths to all leaf nodes are allowed, and will
occur for some set of inputs to the program.

Figure 27 shows one particular flow being followed: at branch B1 flow goes
to the left; at branch B2 flow goes to the right; and at branch B5 flow goes to the
left. Suppose that there is a miss that will occur down the left path following
branch B5. To prefetch the correct data so as to avoid taking this miss requires
knowing what that data is, and it requires prefetching it early enough in the
flow so as to avoid any delay when referencing the relevant data.

For example, let’s assume that to be timely enough to eliminate penalty for
this miss, the data must be prefetched before the flow reaches branch B1. We
percolate the prefetch (for the miss occurring along the left path after branch B5)

How is bandwidth used in computers 271

up the tree past branches B5, B2, and B1. If we have predicted all three of these
branches correctly (when we perform the percolation), then the prefetch is a
good prefetch. If we predicted any of the branches wrongly, then the prefetch
may be a useless prefetch that puts a strain on the available bandwidth, and that
replaces other valuable data in the cache.

Therefore, to do a good job of eliminating penalty for misses (assuming
that they can be anticipated correctly) requires that the prefetches (or “touch
instructions”) be percolated up past a number of branch points. The further up
the tree we can percolate the prefetch, the better the timeliness. But the further
up the tree we percolate the prefetch, the less certain we are that the prefetch
is a good prefetch, because the less certain we become that we can predict the
entire string of branch instructions correctly. This figure directly shows how
timeliness works against accuracy and coverage.

To give a rough idea as to path certainty as a function of percolation distance,
Figure 28 shows the approximate relationship. To plot this figure I assumed a
fixed predictive accuracy for branches (which is not really the case). Curves are
drawn for predictive accuracies of 80%, 85%, 90%, 95%, 98%, and 99%. The
x-axis is the percolation distance – the number of branches predicted along a
percolation path. Each branch prediction is treated as a Bernoulli trial with the
prescribed probability of being correct. The y-axis is the path certainty – the
probability that we are still on the correct path following × branch predictions
at the prescribed probability.

Figure 28. Path certainty (the probability of being on the correct path) as a function of perco-
lation distance (the number of branches through which a prefetch is percolated up the tree) for
a range of branch prediction accuracies from 80% to 99%.

272 P. Emma

Typical commercial business programs have branch prediction accuracies
in the 80% range, unless very exotic prediction algorithms are used. At an 80%
predictive accuracy, the figure shows that, after 3 branches, there is only a 50%
chance that we are on the right path.After 5 branches there is only a 30% chance
of being on the right path, and after 10 branches there is only a 10% chance.
This shows that, with a predictive accuracy of 80%, it is practically hopeless
to do timely prefetching via touch instructions.

At 98–99% predictive accuracy, touch instructions are viable. Again, scien-
tific workloads have very high predictive accuracies, because they are domi-
nated by looping branches. But this is not realistic to do for typical commercial
business workloads given an adequate, but not excessive, amount of bandwidth.

However, suppose we wanted to use a percolation distance of three branches,
and we were given 8× as much bandwidth to do prefetching. Looking again at
Figure 27, a brute force approach would be to prefetch down all 8 (leaf) paths
in the figure as soon as we knew we were going to encounter branch B1. With
slightly more finesse, we could prune off some of these paths as being unlikely,
and could increase the percolation distance, perhaps dramatically.

Again this illustrates that, given huge amounts of excess bandwidth, we
would enable very rich prefetching, and push back the “memory wall.” But
with bandwidth that is merely adequate (adequate for a running program that
does not prefetch) the limited bandwidth inhibits the prefetching from working
very well.

10. Lessons Learned

There are four main principles that pervade all of the preceding discussions:

1. What seems to be a sufficient amount of bandwidth might not actually
be enough.

2. An insufficiency of bandwidth will manifest itself as latency.
3. Bandwidth and content (cache capacity) are exchangeable.
4. Prefetching and high bandwidth are mutually synergistic.

Let’s review each of these points.
I showed that trailing edge effects can cause lots of problems, both directly

and indirectly. Directly, trailing edge will diminish the L1 bandwidth available
to the processor, it will cause the processor to stop when the miss facilities are
full, and upstream references to an incoming line will be delayed. Indirectly,
clustered misses will incur delays by running into the trailing edges of previous
misses, and there are general queuing effects within the system due to both local
and remote traffic.

I showed that queuing effects on a bus become unacceptable (10% or more
loss of system performance) when the bus utilization is driven beyond 30% if the

How is bandwidth used in computers 273

miss process is Poisson. This means that if you know the average bandwidth
(how much data must be moved in a certain amount of time) required by a
particular application, you should make sure that you have more than 3× this
bandwidth available.

When the bandwidth is barely sufficient, perturbations in the miss stream
will cause delays that add to the basic leading edge delay of a miss. In addi-
tion to the nominal logic, wire, and array flow in the leading edge, there are
numerous opportunities for queuing at shared resources. When this happens
the leading edge is increased by queuing delays if there is not a large surplus of
bandwidth.

Since the principal role of the bandwidth in a processor system is to service
cache misses, and since the miss rate depends on the capacity of the cache (and
the line size), bandwidth and content are exchangeable. Making caches larger
allows them to function well with less bandwidth. Conversely, providing very
high bandwidth to a cache allows it to be smaller.

Bandwidth that has been provided to do an adequate job of servicing misses
is probably insufficient if prefetching is retrofitted into the system. To even con-
sider prefetching requires that there be a large surplus of bandwidth available.
Having bandwidth that is merely adequate will not allow the prefetching to
work well. In fact, it is more than likely that a processor will actually lose
performance by prefetching – even when the standard prefetching metrics are
auspicious – if there is not a large surplus of bandwidth.

On the other hand, if there is a large surplus of bandwidth, prefetching will
work extraordinarily well. These two things (bandwidth and prefetching) work
in strong synergy. Very large amounts of bandwidth enable prefetching to be
sufficiently unconstrained so as to achieve very high coverage. Specifically, if
accuracy is unimportant (which it is if the bandwidth is excessive), the coverage
can be driven very high.

When it comes to the miss process, bandwidth and latency are not inde-
pendent things. Since a deficiency in bandwidth manifests itself as latency, it
is just as important to a system to provide high bandwidth as it is to keep the
access times of the caches short.

11. Future Trends in Systems: Why Bandwidth Matters

What are the coming trends in computer systems, and will these trends stress
the bandwidth even more? I touched on a few of those trends in Section 3. I will
reiterate those, and talk about a few more trends. None of them is auspicious,
and there is every reason to believe that bandwidth scaling is the next major
systems roadblock after power management.

Figure 29 shows a general trend that has been progressing since the begin-
ning of the electronic computing industry. The graph starts circa 1950, when

274 P. Emma

Figure 29. An abstract historical trend line showing that portion of system performance that
is determined by the processor, and the (remaining) portion of system performance that is
determined by the cache and memory hierarchy, starting from 1950, and projected to 2010.

the frequency was on the scale of 1 kilohertz 1, and it continues past today (into
the next couple of technology generations) until 2010, where the frequency
will not likely exceed 10 Gigahertz. This is a 7 order-of-magnitude increase
over the 60-year span shown.

The graph shows that portion of the system performance that is determined
by the processor core itself (the lower half plane), and that portion of the system
performance that is determined by the cache and memory hierarchy (the upper
half plane). The earliest computers did not have caches, or even hierarchies of
memory. Programs were fairly self-contained, and were written to run within
the single-level memory on the processor, which was very slow. Essentially all
of the performance was dependent on the processor itself.

As processors got faster – mainly because of Moore’s Law, but also through
advances in microarchitecture – the processor portion of the performance
shrunk. The memory portion of performance did not shrink at nearly the same
rate, so when viewed proportionately, it grew relative to the processor speed,
which was improving much faster. In attempting to scale the memory perfor-
mance, caches were invented [18], and then they became hierarchical.

It is fundamental that the memory system could not scale at the same rate
that Moore’s Law made the processor scale. While Moore’s Law made memory
denser, as the processors became faster they needed more and more memory.

1In fact, there is no straightforward interpretation or notion of a “cycle time” in computers of this era.
Pipelining had not yet been invented, and many operations were performed asynchronously. In addition,
many operations were bit serial operations. ENIAC was working by 1946, and had an internal oscillator
that produced pulses at 100 kilohertz that were phase shifted and used to produce other pulses which
controlled the machine [19]. The processing yielded roughly 5000 arithmetic operations per second. Thus,
the 1 kilohertz rate shown in Figure 29 is a very rough “equivalent” (order-of-magnitude) rate based on
trying to translate the basic steps of performing an operation into time. The basic number used here comes
from interpreting Figure 1.5-1 on page 37 in a book by Matick [20].

How is bandwidth used in computers 275

(There are various rules of thumb about the number of Megabytes per MIPS
required to have a well-tuned system.)

Because each generation of systems required much more memory than
the previous generation, although the memory technology became denser, the
physical size of the memory system did not shrink nearly as fast as the processor
did. This meant that the basic latencies up through the memory hierarchy and
back expanded relative to the processor cycle time.

Further, since memory chips are sold by the billions, they are a commodity.
The financial driver to any commodity item is cost, since margins are slim in
any commodity market. The DRAM business is purely cost-driven; all of the
emphasis is on density so as to make the margins viable. In DRAM, achieving
the highest density precludes achieving the highest speed [21].

This is not true in logic technology, which is not (yet) a commodity technol-
ogy, at least not in high-performance microprocessors. This is a second factor
that causes the speed gap to widen. As we can see in the figure, these factors
taken together cause the memory portion of the performance to become more
and more significant. In large server systems today, more performance is lost to
the cache and memory hierarchy than is lost to the processor; and this is getting
worse. This problem is sometimes referred to as the “memory wall” [22].

The latencies in the cache and memory hierarchy cannot change very much.
The only other lever to use to close this gap is bandwidth. Massive bandwidth
can be used to do very aggressive prefetching (much more aggressive than
the mechanisms generally discussed in the literature today); and remember
that bandwidth and content are mutually fungible. If we can facilitate massive
bandwidth, it can take the place of added capacity. This is the only real approach
to smashing through the “memory wall.”

In Section 3 I had pointed out that frequency scaling is slowing down
considerably, at least in CMOS technology. While this offers some relief, there
are three other trends in system design that (together) put even more pressure
on the on-chip caches:

1. There is a concerted move to multiple cores per chip [2, 23]. This scales
the on-chip MIPS as aggressively as frequency did, and it puts more
pressure on the on-chip caches.

2. The cores are becoming multithreaded, and the degree of multithreading
is growing [6]. This means that each core must have multiple working
sets co-resident. This also puts more pressure on the on-chip caches.

3. With virtualization technology, the chips are being used to run as mul-
tiple independent systems simultaneously [7]. The on-chip caches must
accommodate the storage associated with multiple virtual systems.

While all of these trends are advances, they all put more pressure on the
on-chip caches, hence on the off-chip bandwidth. In addition to these trends,
there are four other trends that merit comment.

276 P. Emma

First, off-chip drivers and receivers are much more complex, and are in a
different field of design than CMOS logic. While the on-chip logic has been
running at over 1 Gigahertz since the late 1990s, it is much harder to run off-chip
signals at commensurate speeds. In the first place, at much above 1 Gigahertz,
careful impedance control is needed in the packaging. The driver impedance
must be matched to the wiring impedance, and the wiring must be terminated –
which burns more power. Beyond a Gigahertz the signals may need special
encoding, and may need special pre-distortion added to them. The circuits to
do this take more area and burn even more power.

This is why as processor speeds have climbed into the 5 Gigahertz regime,
the bus speeds have not kept pace. (And yes, it is known how to design off-chip
drivers this fast, but doing it may be a poor choice because of area, power, and
packaging costs.) When the processors run at these frequencies, the busses that
service them run at a 2:1 or even a 3:1 reduction.

If logic speed continues to scale (say to 10 Gigahertz), the bus ratios will
probably get worse. Recall that the trailing edge (hence the bus utilization) is
directly proportional to this bus ratio. If processors get faster, the trailing edges
will increase – probably almost in proportion.

Second, advances in microarchitecture have processor threads doing more
speculation. This means executing past conditional branches (which may be
guessed wrongly), doing more out-of-order processing, and running down mul-
tiple paths (knowing that not all of them are correct) [24, 25]. This increases the
number of misses per useful instruction processed. Speculation fundamentally
requires more bandwidth.

Third, as cache sizes increase, line sizes increase. The reason for this is that,
even when the cache is made larger, hence slower, it is desirable to maintain
the speed of the directory lookup. Since the directory has to have one entry per
cache line, the only way to maintain the directory speed is to keep the number of
entries (hence cache lines) constant. Thus, when the cache size is (say) doubled,
the directory speed can be maintained only by doubling the line size.

Since the trailing edge is directly proportional to the line size, making the
on-chip cache larger will drive the demand for more off-chip bandwidth. This
is because, while doubling the cache will cut the miss rate (hence bandwidth)
by roughly SQRT(2), doubling the line size will double the bandwidth needed
for each miss. The net effect is to increase the bandwidth required by SQRT(2).
Well if this is true, you might ask: “Then why are we making the caches larger?”

Very simply, the argument above assumes that nothing else on the chip is
changing except for the cache size. This will not be the case. The reason that the
caches are made larger is in response to the growing miss rates as other things on
the chip continue to scale (speed of the processors, number of processors, degree
of multithreading, and number of logical partitions). The caches are made larger
so as to prevent the off-chip miss rate from growing too much. So the assertion
that doubling the cache size will cut the miss rate is not necessarily true.

How is bandwidth used in computers 277

Were it true, the demand for more bandwidth would only grow by SQRT(2).
The actual demand for bandwidth will grow by a lot more than this. One other
method of increasing the line size without increasing the trailing edge (in direct
proportion) is to sector the cache lines. While sectoring has not been used since
the early 1960s [18], expect to see a resurgence in sectored caches in response
to the bandwidth demand.

Fourth and finally, symmetric multiprocessor (SMP) sizes – meaning the
number of processors in SMPs – are growing. Both the number of processors
in a chip, and the number of chips, boards, etc., in the largest systems are
increasing from generation to generation. This means that, when traffic leaves
a processor chip, there is increasingly more other traffic in the system that it has
to contend with. Thus the “value” of the off-chip bandwidth diminishes, even
if its magnitude remains constant. It costs more in prioritization and queuing
to move the bandwidth (leaving the chip) through the rest of the system.

All of these trends portend that bandwidth will be the next major bottleneck
if scaling at any level (system, chip, processor, circuit, etc.) continues. In the
final section I discuss the technology evolutions that are likely to occur in
response to this demand.

12. Future Trends in Technology to Support Bandwidth
Demands

Because bandwidth and content are mutually fungible, easing the growing
demand for bandwidth requires technology innovation in two different areas.
First, we need technology innovation that enables much denser storage for on-
chip caches; and second, we need innovation in interconnection technology.
I outline some likely directions in both areas below.

12.1. Dense On-chip Memory Technology

On-chip caches have always been made out of static random access mem-
ory (SRAM), and usually, the SRAM cell was a 6T (meaning 6 Transistor)
cell [26, 27]. The 6T cell comprises two cross-coupled inverters, with a pass
transistor on each pole to allow differential sensing and storing. As device sizes
scale much below the 90 nanometer node, there appear to be stability issues
with this type of cell because of the inherent variability in transistor strengths
caused by localized dopant fluctuations in devices this small.

Thus, even if 6T SRAM were capable of handling the expanding working-
sets of workloads (which is unlikely – as described in the previous section), as
logic technology continues to scale, it appears that the density of 6T SRAM

278 P. Emma

cannot continue to scale at the same rate as logic. Thus, there needs to be a
denser technology solution to on-chip storage.

Today the densest semiconductor storage is dynamic random access mem-
ory (DRAM), which has a 1T1C (meaning 1 transistor, 1 capacitor) cell [28].
The problem with commodity DRAM is that it is too slow for cache applica-
tions. As previously explained, the reason that commodity DRAM is slow is
that it is designed exclusively for density because it is a commodity. Embed-
ded DRAM (EDRAM) is a relatively new technology that has been used in the
ASICS domain (where density and low power was required), but it has not yet
been deployed in the high-performance domain.

EDRAM is basically a different circuit-design point for DRAM that empha-
sizes performance as well as density [21]. It is less dense than DRAM, bus
appears to be between 2× and 4× as dense as SRAM, depending on the speed
required, which is in the range of 2×−4× slower than SRAM. It represents
a new {performance, density} point in on-chip storage. At the highest level of
on-chip cache, the added latency is not nearly as significant a detractor as the
added capacity is a benefit.

It is obvious that EDRAM will become ubiquitous in future high-
performance processor chips. Beyond EDRAM there are two other dimensions
in which to improve density further. The first is some new technology (perhaps
magnetic) that is not yet known. The second is literally another dimension:
three-dimensional (3D) circuit chips.

There has been lots of rudimentary work done in 3D processing technology.
This work makes it fairly clear that 3D structures can be built. The most direct
approach is to build two or more planes of 2D circuits, and laminate them
together into a 3D stack that is interconnected with vias [29, 30]. The challenges
that have not yet been ironed out are power distribution, cooling, design tools,
and microarchitecture. These are things that will be solved, once they become
important enough.

The real promise of these structures is that with dense vias, staggering
amounts of bandwidth are possible between the planes. With cache levels
stacked directly above each other, the number of connections can be extremely
large (orders of magnitude more than today’s bus widths), and the intercon-
nection distance can be very short – a vertical via of a few hundred microns,
with very little horizontal connection required. In addition to this making the
transmissions wide and fast (thereby eliminating trailing edge), the short data-
flow wires have the potential of being much lower power interconnections than
what is achievable in horizontal on-chip busses today.

So it is clear that EDRAM will be the next step in on-chip storage. Several
generations later, we expect to see 3D chips in which one or more planes will
be EDRAM planes implemented as adjacent levels of cache. In addition to
3D enabling more on-chip capacity, it has the potential of offering staggering
bandwidth between cache levels at very low power.

How is bandwidth used in computers 279

12.2. Interconnection Technology

Electronic signaling will not be sufficient to meet bandwidth requirements if
systems continue to scale. To justify this statement I first use some approximate
numbers, and then posit the parameters of a system in the near future to make
an estimate of the required bandwidth. I discuss the implications of achieving
this bandwidth electronically, and show that this particular case is actually
understated, and that systems cannot evolve much further using only electrical
interconnections.

With a 256 byte line size, a 1 Megabyte cache can have a miss rate in
the range of 1 miss per 60 instructions in commercial business computing. If
the largest on-chip cache is 16 Megabytes, this is four doublings in capacity
(over 1 Megabyte), which drops the miss rate by a factor of 4 (assuming that the
SQRT(2) rule holds). If the chip is being run as four virtual (disjoint) partitions,
this quadruples the miss rate again, so the 16 Megabyte cache has a miss rate
of 1 miss per 60 instructions when there are four virtual partitions.

If there are four processors on the chip that run these four partitions (that
is, there are four virtual 4-way systems) against the 16 Megabyte cache, and
the four processors effectively share half of the on-chip data, the effective miss
rate doubles to 1 miss per 30 instructions. If each processor runs four threads,
and the threads effectively share half of the on-chip data, the effective miss rate
doubles again to 1 miss per 15 instructions.

If each thread runs at 4 CPI, the temporal miss rate is 1 miss per 60 cycles. If
the processors run at 5 Gigahertz, this miss rate corresponds to 83.3 Megamisses
per second. With a 256 byte line size, the total data moved is 21.3 Gigabytes
per second. Since we showed that we need bandwidth of at least 3× the total
data moved, the chip needs a minimum off-chip bandwidth of 64 Gigabytes
per second. In bits (assuming 9 bits per byte with ECC) this is 576 Gigabits per
second (Gbps).

Assuming that the off-chip bus is 64 bytes wide, this requires 576 signal
pins, each running at 1 Gbps. Today, this is feasible. Note that, for good signal
integrity, we require at least one power pin per signal pin. So this requires a pack-
aging technology that supports well over 1200 pins per chip (there will be other
signals besides this bus), and we need 576 on-chip receivers that run at 1 Gbps.

This calculation ignores the system topology, and assumes that there was one
bus. Real SMP systems contain multiple processor chips. A pure hierarchical
(tree) structure has unacceptable latency for maintaining coherency because
many requests would require two round-trips up and back down the hierarchy.
This is too many “hops,” so many real systems have direct chip-to-chip busses
(a fully connected topology) supplementing the hierarchical tree. The actual
number of pins would be much larger than what is calculated above.

Continuing to ignore this major caveat, suppose we extrapolate this chip
forward a few generations. Suppose we have 16 processors per chip running

280 P. Emma

at 10 Gigahertz. We’ve quadrupled the number of processors, and doubled the
frequency. The bandwidth has to increase by at least 8×; and remember that,
to support these advances, the on-chip cache had to grow, which (as explained
earlier) will have a deleterious effect on the bandwidth, perhaps another 2×.
For the sake of argument and round numbers, let’s assume that the bandwidth
has to increase an order of magnitude, 10×.

Since bandwidth is equal to the number of channels times the data rate per
channel, we can accomplish this by increasing the number of pins by 10× (to
12,000 pins). Or we can achieve this by running the signals 10× faster – at
10 Gbps. Or we can do something in between, say 6000 pins running at 5 Gbps.
None of these solutions is likely in the electrical domain.

In the first place, escaping 6000 signals (that is, having wiring layers and
vias in the package to transform the pin array escape pitch into the wiring pitch
of the package) is very difficult, and requires many layers of metal. Further,
because there are many layers of metal (and vias) in the signal paths, the paths
have lots of discontinuities. This means that precise impedance control for this
number of signals is practically impossible, and that lots of the transmitted
power will be radiated into the package at high signaling rates. Having lots of
signals will limit their speed.

On the other side of the equation, running well above 1–2 Gbps is difficult.
As mentioned, in the escape path there are many discontinuities if the number
of signals is large. Running much faster than this probably requires differential
signaling (which doubles the number of pins), and some pre-distortion of the
signals – which requires other circuity, hence power and area in the signal path.
Above 3 Gbps the power increases quadratically as a function of the data rate.

Achieving 5 Gbps (as in this naive extrapolation) may require 100% of
the chip power, and more than 100% of the chip area just to support the off-
chip bandwidth. It is clear that, if systems continue to scale, we need a different
interconnection technology that will scale with it. Further, we need transmission
technology that runs with much less power.

Since we are discussing interconnection technology, we should first consider
the system interconnection topology, and reconsider what is really required.
Figure 30 shows how system topology has evolved. Multiprocessor systems of
the 1970s (with the exception of IBM System 370) had the topology depicted
on the left side of the figure. Multiple processors that required coherency were
all connected to the same bus. This was simple because the number of channels
was of order 1. Also, the coherency protocols were simple, since every entity
in the system could see all of the traffic in the system.

These systems were modular, hence flexible, and moderately extendable.
The processor frequencies were very slow by today’s standards (below 1 Mega-
hertz), and the shared bus structure was adequate at below 100 kilohertz. But
the length of the bus, and all of the capacitive loading (due to the multiple drop
points) prevented this kind of topology from scaling very far. You cannot put

How is bandwidth used in computers 281

Figure 30. Physical system topology from the past, and physical system topology in the
present - conceptually showing the IBM zSeries and IBM pSeries structures.

that many processors on a shared bus, nor can you run a multidrop structure up
into the Gigahertz regime.

Instead, processor topologies like the ones on the right of Figure 30 evolved.
The top figure is an IBM zSeries structure of the mid-1990s, which has con-
tinued to evolve [1]. It is a binodal structure, where each processor has its own
bus to a shared L2 structure. The shared structure is the point of coherency.
The bottom figure is an IBM pSeries structure of the same era. Physically, it
looks like a hypercube, although logically, it is a “flat” SMP [2].

The main advantage of these structures is that the interconnections are all
single-drop point-to-point wires. This allows the fastest possible electrical sig-
naling to be used. However, the number of wiring channels required is massive
(on the order of the square of the number of chips) and the packaging technol-
ogy required to support this is niche, hence extremely expensive. Further, the
coherency protocols have become quite complicated (because of the number
of physical places that can have logically required information), which has a
negative performance impact, and it makes design verification very complex.

Logically, these structures are all shared-bus, single-point-of-coherency
systems. Physically, they have become widely distributed, “multiple-hop” sys-
tems with very expensive packaging and complicated coherency protocols. This
evolution was entirely because of the requirement for point-to-point wiring,
driven by the need to drive the busses fast. That is, this physically unnatural
evolution was driven by the demand for bandwidth subject to the limitations
of electrical interconnections.

It is clear that a good portion of the physical interconnection structure of
large systems will become optical. However, for intra-system signaling the
optics will not be a derivative of transport technology. Instead it will be a lower-
speed, lower-power, digital technology that is silicon-CMOS compatible.

282 P. Emma

High-speed electrical signaling (below 3 Gbps) requires on the order of
5 milliwatts per Gbps. The digital optical technology to come will run at
5–10 milliwatts (frequency independent) up to 10 Gbps, i.e., it will run at
an order of magnitude less power.

Transport optics evolved from a mindset of very high-speed bit-serial com-
munications over large distances. The mindset was not a parallel bus (with par-
allel ECC) running a few centimeters, or at most a few feet. Thus, the transport
mindset was one in which the communication channel (perhaps transcontinen-
tal, or transoceanic) is very expensive, so lots of complexity was put into the
transceivers to make them extend to very high data rates (e.g. 80 Gbps).

A transport driver is an amplifier in which a laser – having a nonlinear trans-
fer characteristic – is carefully biased, and then modulated over a short linear
range in the small-signal domain. Because this must be very precise (and ther-
mally controlled) to reach to very high speeds going long distances, the exact
shape of the transfer characteristic of the laser is crucial, and becomes integral
to the definition of laser “yield,” hence cost. For this reason, linear arrays of
lasers (as would be suited to parallel bus applications) are very expensive.

Digital optics will not modulate lasers this way. They will treat them as
“on-off” (large signal) devices that run in the digital domain over short dis-
tances. The natural speed to use is the processor speed, or perhaps twice that
(5–10 Gbps). It would be unnatural to run signals at 10× the processor speed,
because the multiplexing would be complex, and would add latency to the path.
Digital optics will not be bit serial. It will be parallel-bus optics (with ECC) just
as intra-system electrical busses are today. This is natural. There is little notion
of bit error rate (BER) in a parallel bus usage. Serial optics is also undesirable
because the serialization process adds power and latency.

While (unless there is some new development in photonics) silicon cannot
laze (because it has an indirect band-gap), and lasers will likely continue to be
gallium arsenide, arrays of lasers can be grafted onto silicon, and connected to
silicon CMOS drivers. These drivers will be simple on-off switches, perhaps
with some passive bias [31]. Arrays of lasers will become cheaper both because
they will become volumized, and because the definition of “yield” in this appli-
cation is much more relaxed. Receivers will probably be metal-insulator-metal
(MIM) structures in silicon CMOS.

In addition to easily providing a 5–10 Gbps data rate over relatively short
distances with very low power (that is independent of the data rate), the principal
advantage of optics is that optics can be multidropped without limiting its
frequency. This means that mutlidrop shared bus structures are enabled in the
Gigahertz regime.

Systems, or at least large subsystems, will revert to shared bus structures.
This will obviate the massive number of wiring channels (order n-squared),
and will greatly simplify the copper infrastructure. The copper infrastructure
will still exist (for power distribution, service functions and diagnostics, and

How is bandwidth used in computers 283

to support some of the control structure), but it will not require thousands
of pins. The optical structure will provide the main bandwidth-intensive data
flow within the system. The packaging will become cheaper (because of a
drastic reduction in copper wiring channels), and the power associated with the
bandwidth will be greatly reduced.

However, the packaging infrastructure will have to support multidrop opti-
cal channels. Since they will be multidrop, the optical “wiring” can be planar,
i.e. it can be a single polymer layer within the copper infrastructure. Chips will
have optical “pins” that will connect to the on-package optical channels with
matched-index materials built as lens structures that will match the size of the
solder balls on the chip [32].

Circuit boards will have optical connectors that will provide optical connec-
tions when the boards are plugged into their sockets. That is, board-to-board
cabling (in addition to the copper backplane) is impractical, too complex, and
error-prone. Backplanes will have a planar optical layer with “tap-point” grat-
ings and couplings at the board-sites. Gratings can be designed to out-couple a
small amount of the optical power in a channel, so that a backplane can support
a large number of drops, say 16 or perhaps even 32.

Board-to-backplane connectors will likely have active components (optical
to electrical to optical repeaters) so that precision mechanical alignment (which
is very expensive) will not be required. Optical connections will be simple butt-
couplings. With repeaters, the losses due to imprecise mechanical tolerances
will be rendered irrelevant to the link budgets [33].

Finally, once a parallel-bus multidrop optical infrastructure is in place, small
degrees of wavelength division multiplexing (WDM) will start to be incorpo-
rated. With a basic 850 nanometer laser, it is possible to shift the wavelength a
few times by 50, or even 25 nanometers so as to reliably provide a few different
colors (more than 2 but less than 10). This would enable a single channel (or
chip connection) to carry multiple bits simultaneously; one bit per color.

Figure 31 shows the potential for the off-chip interconnection density of
optics relative to copper. The large black circles depict 3-mil diameter sol-
der balls on 6-mil centers, as is used in aggressive packaging infrastructures
today. Interstitially between the solder balls, a number of 3 × 3 grids have
been drawn. These grids show (to scale) the potential for placing groups of
10-micron diameter lasers. Each grid represents nine lasers. Assuming an opti-
cal connection that is the same size as a solder ball, each optical connector will
support the nine lasers in its grid. Assuming that primitive WDM could extend
to nine colors, this means that we can transmit a byte (with ECC) through each
optical connector. The interstitial arrangement shows that associated with each
copper solder ball, we can provide 3 bytes (27 lasers) of optical connections.

The digital-CMOS optical infrastructure described in this section is very
different technology than transport optics. Attempts to scale transport optics
into this domain will be unsatisfactory because the cost and the power will not

284 P. Emma

Figure 31. A scale drawing of an array of 3 mil solder balls placed on 6 mil centers, with 3×3
arrays of 10-micron diameter lasers placed interstitially between the solder balls.

scale sufficiently to be practical. But with a digital-CMOS optical infrastructure
in place, system structures and costs will become simpler, will extend further,
and will run with lower power.

13. Conclusions and Predictions

Bandwidth dominates all aspects of performance at the system level. This
is apparent by looking at the unnatural physical structures that have evolved
to support the bandwidth growth that accompanied that evolution. Bandwith
is used primarily to service the cache misses in a system. An insufficiency of
bandwidth manifests in the form of numerous trailing edge effects. There will
be a resurgence in sectored caches so as to ameliorate some of these effects.

Bandwidth and content are mutually fungible entities. As systems continue
to evolve, more pressure will be put on the on-chip caches, and on the off-chip
bandwidth. I have explained why SRAM will not be able to provide the required
on-chip storage capacity required, and why electrical signaling will not be able
to provide the required off-chip bandwidth required as systems scale past the
next few technology generations.

I have posited that on-chip cache hierarchies will eventually contain
EDRAM, perhaps in the form of several planes in a 3D structure. In addi-
tion to providing more on-chip storage, 3D structures can be arranged so as to
provide staggering amounts of bandwidth at very low power within the on-chip
cache hierarchy.

I have also posited a new digital-CMOS optical technology that is not a
derivative of optical transport technology. This technology will be all CMOS
(except for the lasers), and will be designed to run at relatively (for optics) low

How is bandwidth used in computers 285

data rates over short distances. Specifically, it will run in the 5–10 Gbps regime
at distances up to a few feet. This will be much cheaper and run at much lower
power than any transport derivative.

Further, the multidrop capability of optics will be used to facilitate a simple
planar optical infrastructure that will replace the existing massive point-to-point
infrastructure of copper today. This will simplify the copper infrastructure,
and make packaging cheaper. It will further enable a resurgence to shared-bus
system structures, which are simpler to operate and to verify. This will enable
systems to evolve more easily and at lower power. While optics can be used
to provide raw performance (and this is part of the puzzle) the real leverage of
optics is that it can provide a real simplification to the packaging infrastructure
and to the system topology. This is how the “optics card” will be played.

Bandwidth is the real key to system evolution. It is the reason that caches
were invented and then made hierarchical. It is the reason that costly packag-
ing evolved, and that system topologies (and their coherency protocols) have
become complex. Continuing to evolve systems will require paradigm shifts in
technology so as to enable much higher bandwidth at much lower power, and
so as to provide much more on-chip storage.

Today, power is the main limitation to system evolution. In the past decade
lots of work went into learning new techniques at all levels (device, circuit,
microarchitecture, and system) to make power usage much more efficient. To
the extent that this has been “solved,” the next major hurdle will be bandwidth.
This is the next “brick wall” that is standing in the road to systems evolution.

References

[1] Mak, P.; Strait, G.E.; Blake, M.A. et al. “Processor subsystem interconnect architecture
for a large symmetric multiprocessor system”, IBM J. Res. Dev., 2004, 48 (3/4).

[2] Tendler, J.M.; Dodson, J.S.; Fields, J.S.; Le, Jr. H.; Sinharoy, B. “POWER4 system
microarchitecture”, IBM J. Res. Dev., 2002, 46 (1).

[3] Winkel, T.M.; Becker, W.D.; Harrer, H. et al. “First and second-level packaging of the
z990 processor cage”, IBM J. Res. Dev., 2004, 48 (3/4).

[4] Srinivasan, V.; Brooks, D.; Gschwind, M.; Bose, P.; Zyuban, V.; Strenski, P.; Emma, P.
“Optimizing pipelines for power and performance”, 35th Annual IEEE/ACM Int. Symp.
on Microarchitecture, November 2002, 333–334.

[5] Agarwal, V.; Hrishikesh, M.S.; Keckler, S.W.; Burger, D.; “Clock rate vs. IPC: the end
of the road for conventional microarchitectures”, Proc. 27th Annu. Symp. Computer
Architecture”, 10–14 June 2000.

[6] Eggers, S.J.; Emer, J.S.; Levy, H.M.; Lo, J.L.; Stamm, R.L.; Tullsen, D.M. “Simulta-
neous multithreading: a platform for next-generation processors”, IEEE Micro, 1997,
17(5), 12–19.

[7] Armstrong, W.J.; Arndt, R.L.; Boutcher, D.C. et al. “Advanced virtualization capabil-
ities of POWER5 systems”, IBM J. Res. Dev. 2005, 49 (4/5).

[8] Emma, P.G. “Understanding some simple processor-performance limits”, IBM J. Res.
Dev., 1997, 215–232.

286 P. Emma

[9] Collier, W.W. Reasoning About Parallel Architectures, Prentice Hall, 1992.
[10] Dubois, M.; Scheurich, C.; Briggs, F.A. “Synchronization, coherence, and event order-

ing in multiprocessors”, Computer, 1988, 21(2), 9–21
[11] Chow, C.K. “On optimization of storage hierarchies”, IBM J. Res. Dev. 1974, 18.
[12] Hill, M.D.Aspects of Cache Memory and Instruction Buffer Performance, PhD Thesis,

University of California at Berkeley, 1987.
[13] Emma, P.G. “Storage hierarchies”, Encyclopedia of Computer Science, 3rd edn. Van

Nostrand Reinhold, 1993, p.1290.
[14] Jain, R. The Art of Computer Systems Performance Analysis, John Wiley & Sons,

1992.
[15] Emma, P.G.; Hartstein,A.; Puzak, T.R.; Srinivasan, V. “Exploring the limits of prefetch-

ing”, IBM J. Res. Dev. 2005, 49(1).
[16] Puzak, T.R.; Hartstein, A.; Emma, P.G.; Srinivasan, V. “When prefetching

improves/degrades performance”, Proc. 2nd Conference on Computing Frontiers, 4–6
May 2005, 342–352.

[17] Dahlgren F.; Stenstrom, P. “Effectiveness of hardware-based stride and sequen-
tial prefetching in shared-memory multiprocessors”, 1st IEEE Symposium on High-
Performance Computer Architecture, 1995, 68.

[18] Liptay, J.S. “Structural aspects of the system/360 model 85, Part II: the cache”, IBM
Sys. J. 1968, 7(1).

[19] Lukoff, H. From Dits to Bits, Robotics Press, 1979.
[20] Matick, R.E. Computer Storage Systems and Technology, John Wiley & Sons,

1977.
[21] Matick R.E.; Schuster, S.E.; “Logic-based eDRAM: origins and rationale for use”,

IBM J. Res. Dev. 2005, 49(1).
[22] McKee, S.A. “Reflections on the memory wall”, Proc. First Conference on Computing

Frontiers, April 2004, 162–167.
[23] Kalla, R.; Sinharoy, B.; Tendler. J.M. “IBM POWER5 chip: a dual-core multithreaded

processor”, IEEE Micro, 2004, 4(2).
[24] Chen, T.F. “Supporting highly speculative execution via adaptive branch trees”, Fourth

International Symposium on High-Performance Computer Architecture, 1–4 Feb.
1998, 185–194.

[25] Uht, A.K.; Sindagi, V.; Hall, K. “Disjoint eager execution: an optimal form of specu-
lative execution”, Proc. 28th Annual IEEE/ACM Int. Symp. on Microarchitecture, 29
Nov.–1 Dec. 1995, 313–325.

[26] Pleshko P.; Terman, L. “An investigation of the potential of MOS transistor memories”,
Trans. Electronic Computers, August 1966.

[27] Schmidt, J. “MOS memory chip”, Solid State Design, January 1965.
[28] Terman, L. “MOSFET memory circuits”, IEEE Proc., July 1971.
[29] Guarini K.W.; Wong, H.-S.P. “Wafer bonding for high-performance logic applica-

tions”, Wafer Bonding: Applications and Technology, M. Alexe and U. Goesele (eds.),
C.H.I.P.S. 2004, 157–192.

[30] Guarini, K.W.; Topol, A.W.; Ieong M. et al. “Electrical integrity of state-of-the-art
0.13µm SOI CMOS devices and circuits transferred for three-dimensional (3D) inte-
grated circuit (IC) fabrication”, Tech. Dig. IEEE International Electron Devices Meet-
ing, San Francisco, CA, USA, December 2002, 943–945.

[31] Bozso F.M.; Emma, P.G. “High speed data channel including a CMOS VCSEL driver
and a high performance photodetector and CMOS photoreceiver”, U.S. Patent #
US20040101007A1, Assigned to IBM Corporation, Filed 27 Nov. 2002, Issued 27
May 2004.

How is bandwidth used in computers 287

[32] Bozso, F.M.; Emma, P.G. “Optically connectable circuit board with optical components
mounted thereon”, U.S. Patent # US20040100781A1, Assigned to IBM Corporation,
Filed 27 Nov. 2002, Issued 27 May 2004.

[33] Bozso F.M.; Emma, P.G. “Backplane assembly with board-to-board optical intercon-
nections and a method of continuity checking board connections”, U.S. Patent #
US20040100782A1, Assigned to IBM Corporation, Filed 27 Nov. 2002, Issued 27
May 2004.

Chapter 11

HIGH-SPEED IO DESIGN

Warren R. Anderson
Intel Corporation

Abstract: This chapter explores common methods and circuit architectures used to transmit
and receive data through off-chip links.

Key words: High-speed IO; off-chip links; serial data transfer; parallel data bus; FR-4; skin
effect; dielectric loss; clock phase alignment; derived clocking; source syn-
chronous; forwarded clocking; plesiochronous; mesochronous.

1. Introduction

In order for system performance to keep pace with the ever-increasing speed
of the microprocessor, the bandwidth of the signaling into and out of the micro-
processor must follow the trend in on-chip processing performance. However,
the physical limitations imposed by the interconnect channel, which exhibits
increasing amounts of signal loss and jitter amplification at higher frequen-
cies, impedes the increase in off-chip signaling speed. Numerous strategies to
cope with the interconnect properties have been developed, enabled by more
sophisticated techniques to control and process the off-chip electrical signals.

This chapter discusses the most prevalent of these techniques, focusing
on the chip-to-chip communication topologies common for microprocessors,
namely access to memory, processor-to-processor communication for parallel
computing, and processor-to-chipset communication. These links generally run
over short distances of up to one or two meters and consist of buses of parallel
data lanes carrying wide data words. Although serial communication shares
many of the same properties and techniques as the parallel bus designs, serial

Vojin G. Oklobdzija and Ram K. Krishnamurthy (eds.),
High-Performance Energy-Efficient Microprocessor Design, 289–309.
c© 2006 Springer. Printed in the Netherlands.

289

290 W.R. Anderson

communication, which generally takes place over much longer distances, will
not be discussed explicitly here.

Our discussion begins with a comparison of the on-chip and off-chip data
transmission environment, with an emphasis on the desired properties of the
off-chip communication system. Several common signaling methods will be
shown. We then explore the properties of the off-chip signaling medium, par-
ticularly those that dominate at high frequencies and therefore limit off-chip
signaling speed. Techniques and example circuit topologies for adapting to
these effects in both the time and voltage domains, as well as their limitations,
are shown.

2. IO Signaling

The overall function of IO is to faithfully convey data from a transmitter
chip to a receiver chip [5, 8]. Similar to on-chip communication, where data is
passed from one section of the chip to another, off-chip communication must
define the data representation for a “1” and a “0.” It must also transmit the
output data and capture the input data synchronously so that the input data
stream can enter the synchronously clocked logic on the receiver side.

Atypical configuration for microprocessor IO is shown in Figure 1. It depicts
the processor in communication with a variety of external components, such as
memory, a memory chipset, another processor, and a chipset communicating
with external storage and networking devices. Off-chip communication takes
place through a variety of parallel data buses. Each data bus consists of sev-
eral parallel data lanes conveying information through an interconnection wire

Figure 1. Typical components connected to a microprocessor.

High-speed IO design 291

or channel routing through the off-chip interconnection medium, which may
consist of package wiring, board wiring, or cables.

Because the properties of the interconnect medium differ significantly from
on-chip and off-chip connections, the optimal methods for communicating
in these two environments also differ significantly. Off-chip communication
must often take place between integrated circuits with different supply volt-
ages, must compensate for losses in the interconnect medium, must traverse
larger distances, and must take place in a noisy off-chip environment. Higher
performance requires a robust representation in the voltage domain.

In the time domain, synchronization must be maintained across the parallel
data bus. As shown in Figure 2, the larger off-chip communication distance
creates skew across a parallel data bus, which, unless extremely well controlled,
increases between transmitter and receiver. In addition, the receiver clock must
fan out to all of the data lane receivers, which increases its jitter, and must
be phase aligned to capture all of the data symbols in the valid data region. A
data symbol is the representation for one bit of a “0” or a “1” on a data lane.
Whereas on-chip clocks are designed with low skew between transmitting
and receiving synchronization points, the IO transmitter and receiver reside
on different pieces of silicon and often cannot be so well controlled. The IO
architecture must compensate by aligning the receiver clock to sample the input
data at the most optimum time.

Figure 2. Typical timing of transmitter output and receiver input signals in a dual data-rate
signaling IO system.

292 W.R. Anderson

2.1. Single-ended Voltage-mode Signaling

Returning to the voltage domain, we first consider how the value of the
data can be represented for off-chip signaling. As opposed to on-chip data
propagation where a voltage representing a “1” must be near the positive supply
rail Vdd and a voltage representing a “0” must be near the negative supply rail
Vss, numerous schemes may be used for IO.

Some single-ended schemes work analogously to on-chip signaling, but
must be standardized in order to enable interoperability among integrated cir-
cuits regardless of IC process technology. Off-chip signaling standards define
explicit signaling voltage levels and tolerances independent from the on-chip
supply, which can vary with process technology generation. At the input
receiver, for example, a voltage below a maximum input voltage level VIL

represents a “0” and a voltage above a minimum input voltage level VIH repre-
sents a “1.” Minimum and maximum output levels are defined as VOL and VOH,
usually with a slightly wider separation to allow for noise to degrade the signal
between transmitter and receiver. Examples of voltage-mode signaling include
the TTL and LVTTL standards. Such a scheme for a bi-directional interface is
shown in Figure 3.

For high-speed communication, single-ended voltage-mode signaling
exhibits numerous disadvantages. Since high-speed operation requires deliver-
ing as much energy as possible to the electrical pulse representing a symbol, any
effect that removes energy from a symbol and combines it with another degrades
operation speed. Transmission-line reflections represent one such effect.

Figure 3. Bi-directional link using single-ended voltage mode signaling. The resistor in series
with the output sets the VOH and VOL levels and also provides board impedance matching. The
pre-driver outputs predrive h and predrive-l are separated to tri-state the output driver when
receiving input data. Separation of the transmitter and receiver supplies, as shown here, is often
used to avoid simultaneous switching noise from the transmitter appearing on the supply of the
more sensitive input receiver.

High-speed IO design 293

As will be discussed in Section 3.1.1, impedance discontinuities cause
reflections that, if reflected back toward the receiver, create noise on un-related
symbols. In order to absorb these reflections, high-speed transmitters must be
impedance matched to the line. As shown in Figure 3, the driver itself becomes
part of the termination network; therefore the driver must not only be controlled
to launch the correct VOL and VOH levels, but it must also form the proper ter-
mination network, preferably at all voltage levels. This becomes extremely
difficult in practice.

To overcome these difficulties and provide more noise immunity, the VOL,
VOH, VIL, and VIH levels are often made wider than necessary, consuming more
power. The wider swings are usually less well controlled, making higher-speed
operation difficult.

2.2. Current Mode Signaling

Faster data rates can generally be obtained with current mode drivers.
Signaling speeds can be further enhanced using current-mode signaling in
pseudo-differential or differential mode, as will be described in Sections 2.3
and 2.4.

In current mode signaling, the output driver forces a current into the trans-
mission line, using the natural impedance of the line to create a voltage. An
example is shown in Figure 4, where the driver forces Idrive = 20mA into the
parallel combination of the 50� interconnect impedance and the Rterm = 50�

near-end termination, generating a 500mV signal. To avoid reflections, the line
is terminated at the receiver end (far end). To absorb reflections from impedance
discontinuities, the line is often terminated at the transmitter (near end) as well.
The termination usually ties to ground to avoid depending on the value of the
positive supply rail and to avoid coupling the signal to noise on the positive
supply rail.

Figure 4. Current mode signaling.

294 W.R. Anderson

Although a calibrated current-mode driver can launch the same signal on
the line as a well-tuned voltage-mode driver, the current-mode driver decou-
ples the driver function from the impedance matching section, here provided
by the independent termination resistor. Since the current source portion of
the current-mode driver has a high impedance, the actual impedance of the
current source is not critical, as long as its impedance is much greater than
that of the termination resistor. As a result, the driver is simpler to design and
control than a voltage-mode driver, where the driver and impedance-matching
functions are combined. Furthermore, current-mode signaling provides greater
noise immunity since it decouples the driver from the positive supply rail.

Through the calibration of the current-mode output source with a known
current or voltage, the output level can generally be driven within 10% or greater
accuracy. Periodic calibration can compensate for voltage and temperature
drifts on the transmitter die. The receiver, however, must still detect if the input
voltage is above or below the input thresholds. As described in the next two
sections, additional means are required to improve the accuracy of the input
levels.

2.3. Pseudo-differential Signaling

The reduced swings usually found in current-mode signaling require a more
sensitive means to discriminate between high and low input levels. One method
for achieving this uses pseudo-differential signaling, which compares the signal
at the receiver to a reference voltage. Since this reference voltage can be gen-
erated through matched resistor devices or other precision means, it will not
depend strongly on process condition or temperature. Depending on the off-
set between the transmitter and receiver supplies and the receiver tolerance
requirements, the reference voltage may be generated in the receiver, at the
transmitter and routed to the receiver, or externally with precision, matched
resistors. An example of a pseudo-differential bus is shown in Figure 5.

Pseudo-differential signaling has been used in both voltage mode and cur-
rent mode standards, such as HSTL, GTL, and SSTL.

2.4. Differential Signaling

Although the explicit reference in pseudo-differential signaling provides
for more robust signal detection, pseudo-differential signaling is still subject
to several problems that must be eliminated for operation at higher speeds.

One such problem is simultaneous switching noise. Any signaling scheme
using a single wire for each data lane creates simultaneous switching noise
(SSO). SSO creates a transient decrease or increase in the transmitter supply

High-speed IO design 295

Figure 5. A parallel bus with pseudo-differential signaling.

voltage as it reacts to providing the dI/dt needed when switching the output
[1, 9]. For example, consider the case of Figure 4 when the output drives low.
In this condition no current flows in the transmission line. When the driver
pulls the line high by sourcing a constant current from the positive supply
rail into the output, this current creates a dI/dt in the circuit loop formed by the
positive supply, the output, the interconnect signal’s transmission line, its return
path in the underlying ground plane, and the negative supply. Any inductance
in this loop generates a transient voltage excursion when it experiences the
dI/dt. This generally occurs where the driver’s output pad and the supply rails
interact with the package, particularly in bond wire designs. In our example,
the inductance in the package between the positive supply on the board and
on the die develops a voltage that temporarily decreases the on-die supply
rail. Likewise, the inductance in the ground supply develops a voltage that
temporarily raises the on-die ground voltage.Although the effect is also present
on the signal itself, it is generally worse for the supplies since the ratio of
signals to supply pairs is generally at least 2 to 1. Therefore, the effect is worst
when all output drivers on a bus switch in the same direction simultaneously,
creating the largest possible dI/dt. Although simultaneous switching can be
tolerated through proper construction of the supply network [1, 9], it cannot be
completely eliminated for single-ended signaling.

Differential signaling avoids this problem by transmitting the data and its
complement on parallel interconnect wires to the receiver, where a positive or
negative difference between the signal pair indicates a “1” or a “0,” respec-
tively. Provided the true and complement transmitters are balanced to draw

296 W.R. Anderson

Figure 6. Differential signaling on one lane of an IO link.

equal currents even when switching, no simultaneous switching noise occurs.
Furthermore, the voltage swing is effectively doubled. Rather than swinging
± 1/2 Vs around the pseudo-differential reference, for example, the signals can
swing ±Vs between each other with the same single-ended output voltage.
A final benefit is that noise that couples to both signals in the differential pair
only alters the common mode and does not change the differential voltage.
Therefore, differential signaling is more tolerant to certain types of noise than
single-ended or pseudo-differential signaling.

The penalty for differential signaling is that each data lane now uses two
interconnect wires, which reduces in half the number of lanes for a bus with
a fixed number of interconnect wires. Furthermore, without optimization, dif-
ferential signaling doubles the driver power. The factor of two decrease in bus
width is justified if each lane in the link can run at double the single-ended data
rate, which is often the case. Differential signaling is used in such standards as
LVDS and PCI-Express. An example link topology is shown in Figure 6.

3. Coping with the Interconnect

The green epoxy glass resin printed wiring board material FR-4 is the
workhorse of the electronics industry. A metal wiring trace over a power or
ground plane with FR-4 dielectric in between forms a transmission line. This
transmission line is far from ideal, however [2, 6, 7]. Several mechanisms create
loss at high frequencies. Impedance discontinuities produce reflections. Adja-
cent signals and noisy supplies cause interference. Understanding these mech-
anisms through studying the properties of the interconnect is key to achieving
higher speeds.

3.1. Interconnect Properties

An ideal transmission line consists of a distributed inductance per unit length
l0 and capacitance per unit length c0, where both l0 and c0 depend on the
geometry of the signal trace, the geometry of the dielectric surrounding the

High-speed IO design 297

signal, and the dielectric constant. Signals injected into the line propagate with
a velocity

v0 = 1√
l0c0

= c√
εr

, (1)

where c is the speed of light and εr is the relative permittivity of the dielectric.
An ideal transmission line acts as a fixed impedance element, with impedance

Z0 =
√

l0

c0
. (2)

3.1.1. Reflections and impedance discontinuities

Because the ideal line has no loss, an injected signal travels un-attenuated
until it encounters a discontinuity, which may consist of a change in impedance
or a load, such as the termination at the end of the line. When an incident wave
of magnitude Vi propagating through a transmission line with impedance Z0

encounters change to a new impedance Z1, a reflection occurs. The ratio of the
voltage of the reflected wave Vr to that of the incident wave Vi is given by

Vr

Vi

= Z1 − Z0

Z1 + Z0
. (3)

Loads, stubs, and vias on the line create discontinuities as well. Capacitive
loads or capacitive-like vias create a complex impedance. An incident wave
into a capacitance initially sees a short, which decreases the impedance Z1 to
zero and causes a negative reflection by Eq. (3). The impedance rises to its
steady-state value as the capacitor charges. Uniformly distributed loads add
distributed capacitance per unit length and also alter the impedance through
Eq. (2).

Since any reflection causes a loss of incident wave energy to the backwards-
propagating pulse, only loss-less lines with uniform impedance allow all of the
injected signal’s energy to coherently propagate to the end of the line. Further-
more, termination that is not impedance-matched to the line causes reflections
to occur which, if not completely absorbed, may combine with and distort
other symbols. Therefore, operation at higher speeds requires minimizing all
impedance discontinuities and terminating with a matched impedance.

3.1.2. Transmission line losses

Up to this point we have only considered loss-less lines. Unfortu-
nately, transmission-line losses cause high-speed signals, even in a perfectly

298 W.R. Anderson

Figure 7. Transmission line with loss components.

impedance-matched and terminated line, to lose a portion of their energy
through other means. A real transmission line exhibits a distributed resistance
per unit length R(ω) in the signal trace and also contains, at high frequencies,
a finite amount of conductance per unit length G(ω) through the dielectric
between the signal and its return path, as shown in Figure 7.

For an injected signal Vi(0,ω) with angular frequency ω, the resulting signal
V (z,ω) at any point z along the line is given by

V (z,ω) = Vi(0,ω)e−γ (ω)z, (4)

where

γ (ω) = √
(R(ω) + jωL0)(G(ω) + jωC0). (5)

If both R(ω) and G(ω) are small, we can approximate γ (ω) by

γ (ω) ∼= R(ω)

2Z0
+ Z0G(ω)

2
. (6)

As the notation indicates, both the series resistance R(ω) and dielectric
loss G(ω) are frequency dependent. The frequency dependence of R(ω) arises
from the skin effect, which confines the current ever closer to the surface of
the conductor at higher frequencies. For a strip conductor of trace width w and
resistivity ρ, the frequency dependence is given by [3]:

R(ω) = 1

2w

√
ωµρ

2
. (7)

The frequency dependence in the dielectric loss arises from the response
of the medium to high-frequency electro-magnetic waves. From Figure 7, the
admittance of the dielectric contains a real term G(ω) and an imaginary term
jωC. Their ratio defines the loss tangent δ, given by

tan δ = G(ω)

ωC
. (8)

The loss tangent is nearly constant in frequency and is a fundamental property
of the dielectric material. Rearranging Eq. (8) yields

G(ω) = ωC tan δ, (9)

High-speed IO design 299

indicating that the conductance of the dielectric, and therefore the dielectric
loss attenuation term from Eq. (6) is proportional to frequency. In typical FR-4
channels, dielectric loss dominates over skin-effect loss at frequencies greater
than about 1GHz.

3.2. Inter-symbol Interference

Now consider a system sending symbols representing data from transmitter
to receiver. For long lines at high data rates, the interconnect will carry many
symbols in flight between the transmitter and the receiver. Because data carries
information, an arbitrary pattern of “0” and “1” symbols will be present on the
line, representing a variety of frequency components. Under these conditions,
both reflections and frequency-dependent losses cause the output of the line at
the receiver to depend strongly on the input data pattern.

Reflections not only take energy away from any given symbol, they also send
energy from that symbol in the opposite direction. If the initial reflection reflects
again, the reflected pulse joins other non-related symbols propagating in the
direction of the receiver, interfering with and potentially corrupting the victim
symbol. Furthermore, frequency-dependent loss causes data patterns with a
high-frequency content to be attenuated while patterns with low frequency
content are not. Both of these effects illustrate inter-symbol interference (ISI),
where symbols can interfere with each other, resulting in strong data pattern-
dependent characteristics for the signaling medium.

The frequency domain characteristics, represented by the ratio of the out-
put signal to the input signal as shown in Figure 8, demonstrate where both of
these effects occur. In the frequency domain, reflections cause dips and spikes
at frequencies where the reflections result in destructive or constructive inter-
ference at the output. Loss is evident in the increasing attenuation of the output
at high frequency. In the time domain, reflections diminish the amplitude of
the initial step and also introduce delayed glitches at the output, potentially
interfering with later symbols. Loss causes dispersion of the input step as well
as a slowly-rising tail after the initial step.

These two effects, dispersion of the initial step and the slow, asymptotic
approach to the steady-state condition, combine with the data pattern to create
loss of margin on both the time and the voltage axes. Consider a lone symbol
representing a “1” in field of “0” symbols, as shown by the pulse response
characteristics of Figure 9. Prior to the “1,” the line will have sat inactive for
a period of time, allowing it to decay close to its steady-state condition. The
interconnect losses disperse the rising edge of the “1” pulse and attenuate its
peak. Likewise, losses do the same to the falling edge at the tail of the “1”
pulse. As a result, the peak pulse amplitude, which must rise from the low
steady-state level, is severely attenuated and, in some cases, may not cross the

300 W.R. Anderson

Figure 8. Frequency-domain characteristics of a differential transmission line consisting of
two daughter cards and one baseboard, total length 15 inches (38 cm).

receiver threshold at all. Furthermore, the dispersion of the rising and falling
edges compresses the symbol such that the pulse width is much narrower at the
receiver. Without correction, noise in either voltage or time could corrupt the
symbol.

Through superposition techniques, the pulse response can be extrapolated
to provide the output characteristics for any input data pattern and to find the
pattern yielding the worst-case minimum voltage and timing margin [10].

3.3. Equalization

Equalization techniques compensate for the frequency-dependent charac-
teristics of the channel so that the combined frequency response of the system
is nearly uniform over the frequencies of interest [4]. Imagine, for example,
that the channel response is given by the transfer function H(s). If we
can process the input or output signal through another transfer function
G(s) = 1/H(s), the total transfer function of the system will be H(s)G(s) = 1.

In practice, it is difficult to cancel the channel response so accurately. How-
ever, even schemes that cancel the channel response at or near the highest
operational frequency, where channel losses are greatest, can provide a signif-
icant benefit to IO performance.

High-speed IO design 301

Figure 9. The pulse response of the differential transmission line of Figure 8. The input and
output pulses are shown on different, translated time and voltage scales (left-bottom and top-
right), that have been shifted for better comparison, with the arrows indicating the respective
axes for each type.

Equalization can occur at the transmitter, the receiver, or both. At the trans-
mitter, equalization is usually performed through pre-distortion of the input
signal processed through on-chip logic [3, 4, 11]. Symbols with high-frequency
components are injected into the line with higher amplitude while those of lower
frequency are injected with lower amplitude. The example shown in Figure 10
uses a scheme where any symbol that is different from the previously trans-
mitted symbol is sent with full amplitude. Symbols with the same value are
attenuated. This is known as two-tap de-emphasis since only two bits of history
are examined to decide the amplitude for the symbol entering the line, which
is generally referred to as the cursor.

This scheme can be extended to any arbitrary number of symbols of history,
either before or after the cursor, at the cost of power, die area, and potentially
data latency. If we represent the data stream xi with values of +1 and −1,
equalization can be performed for the cursor symbol x0 through a finite impulse
response (FIR) filter as given by

y0 = α−mx−m + ·· · + α−1x−1 + α0x0 + α1x1 + ·· · + αmxm, (10)

where the αi represent the coefficients of equalization required to cancel the
channel response. This summation can be performed in digital logic for any

302 W.R. Anderson

Figure 10. An example two-tap de-emphasis equalized waveform at the output of the
transmitter.

arbitrary number of taps [11], but a typical 20-inch channel at 5 Gbits/s will
require no or one tap prior to the cursor and one to four taps following the
cursor.

Equalization can also be performed in the receiver through similar logic
processing means. Receiver equalization requires an accurate capture of the
initial portion of a data stream, usually through a training sequence, to provide
knowledge of the history of the data stream. It also suffers from the amplification
of the noise at the receiver along with the signal. However, the main advantage
of receiver equalization is that it may apply a larger gain than the transmitter,
which is limited in range between the maximum signal amplitude allowed out
of the transmitter and the minimum signal needed to maintain an acceptable
signal-to-noise ratio.

4. IO Clocking

Even if the link architecture can convey coherent symbols from transmitter
to receiver through a high-loss channel, the symbols must be captured at the
appropriate time and delivered synchronously to the receiver’s processing unit.
Figure 11(a) shows an ideal timing diagram for edge-triggered clocking of dual
data-rate input data at the receiver’s data sampling unit. Both rising and falling
edges of the clock sample the input data. The clock is aligned to the center of
the data symbol, which provides the greatest voltage in the sample and also the
greatest timing margin. Any jitter of the data or the sampling clock with respect
to one another results in timing margin loss, as shown in Figure 11(c). Jitter
amounting to more than half of the symbol width causes the sampling clock to
miss the data symbol entirely.

Two standard clocking topologies, derived clocking and source-
synchronous or forwarded clocking, deliver the timing reference to the trans-
mitter and receiver.

High-speed IO design 303

Figure 11. Synchronous capture of input data: (a) synchronous capture circuit, (b) ideal data
and clock timing, (c) example timing with voltage noise and jitter.

4.1. Derived Clock Design

In derived clocking, a synchronization source is provided to both the trans-
mitter and the receiver. This source may be common to both, as shown in
Figure 12, or it may come from independent sources that are frequency matched
to within a certain tolerance. Phase-locked loops (PLL) in both the transmitter
and receiver multiply the input clock to the link frequency. In the transmitter,
the link frequency clock is generally used without further phase adjustment to
capture data from the internal processing unit and feed it onto the link. In the
receiver, however, the PLL output clock must be phase aligned to coincide with
the input data as shown in Figure 11(b).

The overall architecture to perform the phase alignment is shown in
Figure 12. The receiver clock from the PLL enters two phase adjustment units,
which deliver two clock phases to the input samplers. The first alignment unit

304 W.R. Anderson

Figure 12. Clocking in a derived-clock architecture.

adjusts the phase of the sampling clock at the receiver to coincide with the
data transitions at the symbol boundary. The second clock is shifted 90 degrees
from the first clock and is used to sample the data at its midpoint. Following
its capture, the data typically passes to an on-chip logic clock domain derived
from the same input source but not adjusted in phase.

Figure 13 shows how over-sampling the input data in this manner provides
phase alignment information through the clock alignment decision logic. If, as
in the left two cases, the edge sampled data matches the earlier data sample,
the clocks are early and should move later. In the right two cases, the edge
samples match the later data sample, indicating that the clocks are late and
should be moved earlier. By collecting this alignment information from the
final data sampling point and feeding it back to the phase adjustment units, this
architecture can also compensate for clock distribution delays in the system.

In fact, dynamic feedback also allows the alignment units to continu-
ously track any drift between the clock and the data. Continuous alignment
is often desirable for several reasons. In mesochronous systems, described in
Section 4.3, the average frequency in the transmitter and in the receiver must
be identical. However, voltage and temperature changes can cause a change

High-speed IO design 305

Figure 13. Over-sampling the input to lock the clock to the input data.

in circuit delay, shifting the data or clock in time. In plesiochronous systems,
also described in Section 4.3, clocks may differ slightly in frequency, causing
a continuous shift in phase between data and clock.

The scheme where the clock alignment is common across all data lanes, as
illustrated in Figure 14, works only when the skew among data lanes is low
enough to allow an adequate timing margin. When skew among data lanes
becomes large, the clock alignment must be adjusted on a per-lane basis. This
can be done by making the clock alignment decision and clock phase adjustment
for every lane, at a cost of more circuits, area, and power to duplicate these
circuit blocks in every lane.

4.1.1. Jitter in derived clock systems

Although dynamic tracking schemes follow slow drift, they are generally
unable to correct for high-frequency jitter between clock and data. Such jitter
causes misalignment of the sampling clock with respect to the data symbol and
creates loss of timing margin which, when it exceeds half of the symbol width,
causes data loss.

Timing misalignment occurs when differing jitter arises along the clock and
data paths or when clock and data paths are of unmatched lengths so that they
no longer share the common characteristics of the source clock. Specifically,
the sources of jitter include

1. Jitter injected along one path that is not injected along the other, such as
supply noise-induced delay variations in the transmitter or receiver.

2. Source clock jitter filtered by different PLL with differing characteristics.
3. Path length differences from the common point, which separates the

original edge that creates the data from the original edge that creates the
sampling clock.

306 W.R. Anderson

Figure 14. Clocking in a forwarded or source-synchronous clock architecture.

With enough knowledge of the system characteristics, the timing loss from
these effects can be calculated [12] or measured [14].

4.2. Source Synchronous Design

An alternative clocking structure is source synchronous or forwarded clock-
ing, shown in Figure 14. In this architecture, a clock lane is added in parallel
with the data lanes and a clock is sent from transmitter to receiver. The for-
warded clock at the receiver is amplified, phase aligned, and distributed to the
input data samplers.

As long as the skew among data and clock lanes is within tolerable limits,
clock alignment can be performed with the in-phase clock at the forwarded
clock lane sampling input. Alignment is performed such that the in-phase clock
is placed in the edge sampling position with respect to the forwarded clock

High-speed IO design 307

input, as shown in Figure 13. The quadrature clock is shifted 90 degrees from
this position so that it samples the data in the center of its valid region, providing
the greatest margin for timing degradation through jitter. Alignment with the
forwarded clock input eliminates the need for in-phase over-sampling at the
data lane receivers.

Furthermore, because the forwarded clock shares the same source timing as
the input data, both data and clock experience the same timing drift and jitter
from the transmitter. This creates an inherent tracking between clock and data.
In fact, dynamic tracking is often unnecessary in forwarded clock systems.
Only periodic re-alignment is needed to compensate for temperature drift in
the receiver clock path.

As with the derived clocking case, if skew among data lanes becomes too
large, the clock alignment and phase adjustment can be pushed into every data
lane to perform the clock alignment on a per-lane basis. The over-sampling
receiver must be added back to the data lanes and the phase alignment overhead
must be duplicated for every lane.

4.2.1. Jitter in source synchronous systems

Although in source synchronous systems the clock timing is common with
the data timing at the point of transmission, clock and data paths are not iden-
tically matched. The clock traverses the amplifier, phase alignment, and distri-
bution circuits in the receiver, each of which may add jitter to the clock that
will not be seen in the data. Furthermore, these circuits plus any channel skew
cause a delay mismatch between clock and data. Since the receiver clock path
delay is fixed, jitter will accumulate up to the clock and data delay difference.
Therefore, it is still critical to minimize jitter in the transmitter clock to achieve
higher speeds.

4.3. Clock Drift Considerations

The construction of the source clocks into either a forwarded or a derived
clock system also affects the gross synchronization between transmitter and
receiver. Two situations are possible. In the first, the source clock to the trans-
mitter and to the receiver may come from the same oscillator or from separate
oscillators that are frequency matched such that the average frequency of the
transmitter and the receiver clock is the same. This is known as a mesochronous
system. In the second situation, known as a plesiochronous system, the aver-
age clock frequency of the source clock at the transmitter and at the receiver
may differ by a small amount. The difference is usually constrained to parts per

308 W.R. Anderson

million. For both cases, the data path topology must comprehend the difference
in data transfer rate arising from the clock system topology.

Although the rate-matching of a mesochronous system implies a straight-
forward one-for-one transfer along the data path, it is usually not so simple in
actual systems. Although the average clock frequency must match between
transmitter and receiver, short-term deviations may occur. These arise, for
example, from differences in the response of the transmitter and the receiver
PLL to phase noise from the reference oscillator or from voltage and tempera-
ture drift in the transmitter or receiver. These drifts cause the transmitter clock
to run temporarily faster or slower than the receiver clock by a slight amount.
To overcome the data-rate difference, we can buffer the data in a first-in first-
out (FIFO) structure. This makes data available to the receiver in case its clock
temporarily speeds up and also provides a buffer for received data in case the
transmitter clock temporarily speeds up.

In a plesiochronous system, the clock frequency difference implies a con-
tinuous difference in the data rate between transmitter and receiver. Buffering
the data does not provide a solution since any finite buffer will eventually run
out. Possible solutions include either handshake mechanisms or skip charac-
ters. Hand-shake mechanisms work by transferring data only when it becomes
available [15]. This can be done either per serial bit or by constructing the data
into a parallel packet and transferring it when the packet is complete. Skip
characters work by allowing the receiver to ignore or add in occasional null
data sequences so that the same effective data transfer rate can be maintained.

5. Conclusions

Significant physical effects impede the operation of off-chip signaling at
speeds higher than 1 to 2 Gbit/s. These include transmission-line effects such
as dielectric loss and skin effect loss, inter-symbol interference, and clock-
and data-skew loss. These effects can be overcome through the dedication
of more on-chip computational resources to process the signal in a way that
compensates for these effects. Such schemes include precision calibration of
signaling levels, equalization, and clock phase adjustment. Further methods
will be required to achieve speeds in excess of 5 Gbit/s.

Acknowledgements

The author is grateful to Xiaoxiong (Kevin) Gu and Mohiuddin Mazumder
for providing the channel characteristics and simulation results. Thanks to Ken
Drottar and Pascal Meier for valuable feedback.

High-speed IO design 309

References

[1] Bakoglu, H.B. Circuits, Interconnections, and Packaging for VLSI. Addison-Wesley,
1990.

[2] Dabral, S.; Maloney, T.J. Basic ESD and I/O Design, John Wiley & Sons, 1998.
[3] Dally, W.J.; Poulton, J.W. Digital Systems Engineering, Cambridge University Press,

1998.
[4] Dally, W.J.; Poulton, J.W. “Transmitter equalization for 4-Gbps signaling”, IEEE

Micro, 1997, 48–56.
[5] Horowitz, M.; Yang, C.-K.K.; Sidiropoulos, S. “High-speed electrical signaling:

overview and limitations”, IEEE Micro, 1998, 12–24.
[6] Johnson, H.W.; Graham, M. High-Speed Digital Design: A Handbook of Black Magic,

Prentice Hall, 1993.
[7] Hall, S.H.; Hall, G.W.; McCall, J.A. High-Speed Digital System Design: A Handbook

of Interconnect Theory and Design Practices, John Wiley & Sons, 2000.
[8] Sidiropoulos, S.; Yang, C.-K.K.; Horowitz, M. “High-speed inter-chip signaling.”

In Design of High-Performance Microprocessor Circuits, Anantha Chandrakasan,
William J. Bowhill, and Frank Fox, eds., IEEE Press, 2000.

[9] Thierauf, S.C.; Anderson, W.R. “I/O and ESD circuit design.” In Design of High-
Performance Microprocessor Circuits, Anantha Chandrakasan, William J. Bowhill,
and Frank Fox, eds., IEEE Press, 2000.

[10] Casper, B.K.; Haycock, M.; Mooney, R. “An accurate and efficient analysis method
for multi-Gb/s chip-to-chip signaling schemes”, Symposium on VLSI Circuits, 2002,
54–57.

[11] Erdogan, A.T.; Arslan, T.; Horrocks, D.H. “Low-power multiplication schemes for
single multiplier CMOS based FIR digital filter implementations”, IEEE Int. Symp.
Circuits Systems, 1997, 1940–1943.

[12] PCI Express Jitter Modeling (July 14, 2004), http://www.pcisig.com.
[13] Stojanovic, V.; Horowitz, M. “Modeling and analysis of high-speed links”, Custom

Integrated Circuits Conference, September 2003.
[14] Kossel, M.A.; Schmatz, M.L. “Jitter measurements of high-speed serial links”, IEEE

Design Test Comput., 2004, 536–543.
[15] PCI Express Base Specification, Revision 1.1 (March 28, 2005),

http://www.pcisig.com.

Chapter 12

PROCESSOR CORE AND LOW-POWER SOC
DESIGN FOR EMBEDDED SYSTEMS

Naohiko Irie
Hitachi Ltd, Japan

Abstract: Aprocessor core SH-X based on SuperHTM architecture is described. It is imple-
mented in a 130-nm CMOS process running at 400 MHz achieving 720 MIPS and
2.8 GFLOPS at a power of 250 mW under worst-case conditions. It has a dual-
issue seven-stage pipeline architecture, but reaches 1.8 MIPS/MHz, which is
equivalent to the previous five-stage processor. The processor meets the require-
ments of a wide range of applications, and is suitable for digital appliances aimed
at the consumer market, such as cellular phones, digital still/video cameras, and
car navigation systems. In this chapter a system-on-a-chip (SOC) implementa-
tion called SH-Mobile3 that uses SH-X core and low-power circuit technology’s
also described. The SOC applies power-switch circuit and low-leakage SRAM
and achieves less than 100 µA in a stand-by mode.

Key words: processor core, embedded system, digital appliance, pipeline, floating-point unit
(FPU), 3D graphics, system-on-a-chip (SOC), low power, power-switch, SRAM,
leakage current

1. SH-X Processor Core for Wide Range Embedded
Applications

1.1. Background and Issues for Embedded Systems

Processors for embedded systems are increasingly being used in digital
appliances designed for the consumer market, such as cellular phones, digital
still/video cameras, and car navigation systems. They must deliver high per-
formance, while maintaining a reasonable size and low power consumption.

Vojin G. Oklobdzija and Ram K. Krishnamurthy (eds.),
High-Performance Energy-Efficient Microprocessor Design, 311–336.
c© 2006 Springer. Printed in the Netherlands.

311

312 Naohiko Irie

Each digital consumer appliance has some unique features that have their
own specific requirements for the processor core. Digital consumer appliances
can be categorized into two types: one is a mobile type, such as cellular phones
and digital still/video cameras, and the other is an equipped type, such as car
navigation systems, DVD recorders, and game consoles.

Ideally, we should be able to provide an optimized chip for all appliances,
to meet the wide range of requirements for various applications. For example,
mobile-type appliances require lower power in average especially in stand-by
mode. On the other hand, equipped-type appliances require performance head-
room for functional extension under a certain peak power budget for thermal
design. LSI implementation is required to satisfy the severe power and cost
restrictions. As you can see, customization is an effective way to improve the
cost-performance and power-performance ratio. Unfortunately, mask produc-
tion costs increase for finer processes, and design and verification costs also
increase with the integrated logic scale. Even though these initial costs increase,
the mass-production costs decrease for the finer processes.

Figure 1 illustrates the cost structure model. The horizontal and vertical axes
represent units and cost/sales, respectively, and the slope represents the unit
cost of mass-production or sales price. The cost structure changes from cost #1
to cost #2 when using a finer process. Then, when costs and sales intersect, the
break-even point increases. Therefore, the required market size for products
using a customized chip increases when the finer processes are used. However,
initial cost reduction changes the cost structure from #2 to #3, and decreases
the break-even point.

Using common intellectual property (IP) and unifying design and verifica-
tion of similar IPs are effective for reducing the initial costs. The processor core
in particular requires enormous costs for design, verification, tool and software
development, and using a common core for a lot of products contributes to the
initial cost reduction. Therefore, it is important to make the core specifications
flexible enough to expand to fit the required product range.

Figure 1. Initial costs of finer processes.

Processor core and low-power SOC design for embedded systems 313

The flexibility can be enhanced by preparing optional modules, such as
DSPs and floating-point units (FPUs), to augment the capabilities of a basic
processing core. Optional DSPs can be added as execution units. These are
much smaller than a full DSP core and can effectively accelerate standardized
applications such as multimedia [1–3]. While PCs and game consoles may be
able to justify the high cost of special graphics hardware that is much larger than
a processor core [4, 5], other consumer appliances cannot. However, an optional
FPU can handle a wide range of dynamic data, thus simplifying programming,
especially for graphics acceleration. An optional FPU is therefore a good way
of improving graphics performance with an embedded processor [6–8].

1.2. Specifications and Pipeline Structure

The flexible SuperHTM (SH) processor core SH-X was developed to meet the
above requirements for the digital consumer appliances [9–11]. As mentioned
above, we must reduce the initial costs including the design cost. Therefore, the
SH-X is designed as the master design to implement various processor cores.

1.2.1. Processor core specifications

SH-4A and SH4AL-DSP are standard and low-power versions of the SH-X.
The specifications of the cores are shown in Table 1.

The cores were fabricated using a 130-nm process. The SH-4A runs at
400 MHz with a supply voltage of 1.25 V in worst-case conditions, achieving

Table 1. SH-X processor core specifications

Core version SH-4A SH4AL-DSP

Process 130-nm CMOS
Supply voltage 1.25 V 1.0 V
Optional modules FPU DSP
Frequency 400 MHz 200 MHz
Performance 720 MIPSa 360 MIPSa

2.8 GFLOPSb –
36 M Polygons/sc –

Powera 250 mW 80 mW
First-level caches 32 kB I- and D-caches
First-level RAM 16 kB
Second-level memory 256 kB cache or RAM

a Measured using Dhrystone 2.1.
b Peak floating-point performance.
c Measured using a simple geometry benchmark program.

314 Naohiko Irie

CRU

ITLB UTLB
CPU

I-cache

D-cache

1st Level RAM
DSP or FPU

2nd Level

RAM

or

Cache

SuperHyway: On-chip Standard Bus

BIU

Figure 2. SH-X core block diagram.

720 MIPS and 250 mW (measured using Dhrystone 2.1), and 2.8 GFLOPS and
32 M polygons/s. It was first integrated into a product chip used for a car
navigation system. The SH4AL-DSP runs at 200 MHz and 1.0 V, and achieves
360 MIPS and 80 mW resulting in 4500 MIPS/W. It was integrated into an
application processor for cellular phones [12, 13]. The processor cores have
32-kB first-level instruction and data caches (I- and D-caches) and 16-kB RAM.
They also have a 256-kB second-level cache or RAM, which is selectable. The
size is flexible depending on requirements. The use of on-chip RAM ensures
real-time response, which is a key feature of embedded processors.

Figure 2 illustrates the SH-X core block diagram. The SH-X core consists
of a CPU, a cache RAM control unit (CRU), a bus interface unit (BIU), optional
modules (DSP or FPU), and an optional second-level memory (RAM or cache).
The SH-X core uses SuperHyway as the on-chip standard bus to interface with
other on-chip intellectual properties (IPs).

1.2.2. Pipeline structure

The structure of the pipeline and its characteristics are illustrated in Figure 3.
With dual-issue superscalar architecture, two instructions are issued to two of
five execution pipelines, i.e. branch, CPU execution, load/store, DSPexecution,
and FPU execution. The FPU data transfer pipeline is categorized as being
part of the load/store pipeline. A DSP instruction is a long instruction word
(LIW) type and can specify both multiply and ALU operations, while the DSP
execution pipeline can treat both of them simultaneously.

A seven-stage pipeline architecture is used to increase the clock rate. With
this architecture the performance is typically about 20% lower than that of

Processor core and low-power SOC design for embedded systems 315

Execution

ALU

Arithmetic Execution

Ad-
dress

WB
Tag Data Store

WB

WB

-

WB

Multiply WB
WB

DecodeInstruction
Fetch CPU

DSP

FPU

I1 I2 ID E1 E2 E3 E4 E5 E6 E7

Delayed Execution Starting PointsEarly Branch

Decode

Decode

Flexible Forwarding

Data Transfer

WB: Write Back

Data Load

Figure 3. Pipeline structure.

a five-stage pipeline operating at the same frequency, mainly because of the
long cycles needed to fetch instructions and to load and store data. Therefore,
an early branch architecture, in which branch operations in the instruction
queue are started out-of-order, is used. This reduces the longer branch penalty
caused by longer instruction–fetch cycles. The delayed execution hides the load
latency. However, it delays the timing for store data, and branch conditions.
Store buffers are used to hide delays in store data, and branch prediction based
on a branch history table hides delays due to branch conditions. Early register
release and short latencies are useful for enhancing register availability. Flexible
forwarding enables early release and simplifies programming.

Optimizing the pipeline by enhancing aspects of the microarchitecture
enables the SH-X to compensate for the slower performance of the architec-
ture. As a result it has achieved the 1.8 Dhrystone MIPS/MHz of the previous
five-stage processor.

Aconventional out-of-order architecture may achieve the same performance
or better, but it requires a large amount of hardware. Although our architecture
is less flexible than an out-of-order one, it is very efficient, achieving high
performance with low-power and a small area.

1.2.3. Delayed executions

Figure 4 shows an example of the effects of delayed execution. Delayed exe-
cution accelerates multiple-cycle and dependent-instruction flows. The exam-
ple shows a typical DSP instruction flow, i.e. a load, multiply, and store
sequence. As shown in Figure 4, the load instruction calculates the load address
at the E1 stage, and loads the data at the E2 and E3 stages. Then the multi-
ply instruction multiplies the loaded data by other data in a register at the

316 Naohiko Irie

E4
E5E4

E5

E5E4
E5

E2 E3
E1 E2

MOVX.W @R4,X0
PMULS X0,A0

E1 E2 E3
E3 E4

MOVX.W A0,@R5 E1 E4 E5

E5E2 E3

E1 E2 E3
E3

E4E1
E1 E2

Load:
Multiply:

Store:

Load:
Multiply:

Store:

Delayed Execution: No Pipeline Stall

Conventional Architecture: 3-cycle Stalls

Figure 4. Example of effects of delayed execution.

E1 E2 E3
Compare

CMP/EQ R1,R0

Conditional Branch
BT

I1 I2 IQ IQ

Target Instruction

I1 I2

E1 E2 E3I1 I2

ID

Condition Fix

Instruction Fetch

No Pipeline Stall
IQ: Instruction Queue

6-cycle earlier Issue

ID ID

In-order without prediction

Out-of-order

ID

ID

With prediction

Figure 5. Example of effects of early branch architecture.

E3 and E4 stages. Finally, the store instruction calculates the store address
at the E1 stage, and stores the multiplied data at the E4 and E5 stages. With
delayed execution the sequence does not cause a pipeline stall. However, with
conventional architecture, the same sequence would result in three-cycle stalls
and a serious degradation in performance because conventional architecture
would require all the source operands to be ready at the E1 stage.

1.2.4. Early branch architecture

Figure 5 shows an example of the effects of early branch architecture.
The SH-X issues a branch out-of-order before a condition fix with a branch
prediction. In this example the compare instruction stays in the instruction
queue (IQ) for two cycles. During this time a conditional branch instruction
initiates an instruction fetch out-of-order before a condition fix. The timing

Processor core and low-power SOC design for embedded systems 317

starts four cycles earlier with a prediction, and two cycles earlier when an
instruction is issued out-of-order compared to the case when an instruction is
issued in-order without a prediction. A conditional branch can then be issued
six cycles earlier, and no pipeline stall occurs between the compare and target
instructions.

The SH-X fetches four instructions per cycle. Even when the SH-X issues
two instructions every cycle, the number of fetched instructions in the IQ
increases until an instruction cache miss, a branch prediction miss, and so
on. Therefore, instructions are likely stay in the IQ for several cycles, like the
compare instruction in Figure 5, and out-of-order issuing of branches works
effectively. The branch frequency of multimedia applications, which are the
major applications of the SH-X, is relatively low as nested branch prediction
works effectively, and we did not implement the nested prediction.

1.2.5. Flexible forwarding

Figure 6 shows an example of the effects of flexible forwarding. The
FADD.S is a single precision add instruction with a latency of three, as shown
in Table 2. The addition uses the pipeline stages from E2 to E4. In the case of
early register release, the store instruction gets the add result FR1 forwarded
at the E4 stage. The store instruction then stores the FR1 value immediately
after it has been generated by the add instruction. In the case of late register
allocation, the copy instruction gets the add result that the FR1 forwarded at the
E1 stage. The copy destination register FR2 is then allocated late, and can be
used for another purpose until it is allocated. Thus, flexible forwarding ensures
that the timing of register release and allocation is flexible, easing programming
constraints.

E2 E3 E6E4 E5Add:
Store:
Load:

E7
E2 E3 E5

E2 E3 E4

Early register release

Late register allocation

E4
E1

E1
E1

FMOV FR1,FR2

E2 E3 E6E4 E5 E7

E2 E3 E5
E2 E3 E4

E4

E1

E1
E1

1 cycle

5 cycles

FADD.S FR0,FR1
FMOV.S FR1,@R0
FMOV.S @R1,FR1

FADD.S FR0,FR1

FMOV.S FR2,@R0

Add:

Store:
Copy:

Figure 6. Example of effects of flexible forwarding.

318 Naohiko Irie

1.3. Vector FPU Design

1.3.1. FPU arithmetic instructions

Since floating-point instructions tend to have long latencies, four special
instructions – a four-element inner product (FIPR), transform four-element
vector (FTRV), square-root reciprocal approximate (FSRRA), and sine and
cosine approximate (FSCA) – were added to shorten the effective latencies.
Table 2 shows the set of arithmetic instructions for the FPU. In the table the
pitch represents resource-occupying cycles. The FDIV and FSQRT instruc-
tions occupy one dedicated resource, and the FSRRA and FSCA instruc-
tions occupy another. The values in parentheses indicate these dedicated
resource-occupying cycles. An instruction using the same resources can be
issued after the resource-occupying cycles. We call the cycles the pitch of the
instruction.

Multiply–accumulate (MAC) is one of the most common operations in
intensive computing applications. An FIPR instruction is implemented with an
effective latency of one-quarter that of the equivalent sequence for one MUL
and three MAC instructions. The use of four-way SIMD achieves the same
throughput as an FIPR, but the latency is longer and the register file must be
larger.

Table 2. FPU arithmetic instructions

Arithmetic instructions Pitch/Latency

Single Double

FADD (add) 1/3 1/5
FSUB (subtract) 1/3 1/5
FMUL (multiply) 1/5 3/7
FDIV (divide) 2(13)/17 2(28)/32
FSQRT (square root) 2(13)/17 2(28)/32
FCMP/EQ (compare) 1/1 1/1
FCMP/GT (compare) 1/1 1/1
FABS (absolute) 1/1 1/1
FNEG (negate) 1/1 1/1
FLOAT (integer to float) 1/3 1/5
FTRC (truncate to integer) 1/3 1/5
FCNVSD (single to double) – 1/5
FCNVDS (double to single) – 1/5
FMAC (multiply–accumulate) 1/5 –
FIPR (four-element inner product) 1/5 –
FTRV (transform four-element vector) 4/8 –
FSRRA (square-root reciprocal) 1(3)/5 –
FSCA (sine and cosine) 3(5)/7 –

Processor core and low-power SOC design for embedded systems 319

FMAC

FMUL

FMAC

FMAC

FIPR

Result is
available here

20 cycles
5 cycles

20 operations for
peak throughput

4-way SIMD

P
ro

gra
m

 F
lo

w

5 operations

Figure 7. FIPR vs. four-way SIMD FMUL/FMAC.

Figure 7 illustrates the differences. In this example each box shows an
operation issue slot. Since FMUL and FMAC have a five-cycle latency we
must issue 20 independent operations for peak throughput in the case of four-
way SIMD. The result is available 20 cycles after the FMUL issue. Therefore,
FIPR requires one-quarter of the program’s parallelism and latency. An FTRV
instruction, which multiplies a four-by-four matrix and a four-element vector,
is implemented using the FIPR hardware four times.

An FSRRA instruction is also used to accelerate vector normalization oper-
ations. It has an accuracy of 23 bits, which is similar to that of a series of
square-root and divide instructions. Figure 8 compares the pitch and latency
of the FSRRA and the equivalent sequence for an FSQRT and FDIV. There
are two-cycle FSQRT and FDIV pitches because they require a one-cycle issue
slot to initiate a special resource operation and a one-cycle post-process to nor-
malize and round the result. The FSQRT and FDIV latencies take 17 cycles,
and the result is available 34 cycles after the issue of the FSQRT. In contrast,
the pitch and latency for the FSRRA are one and five; that is, only one-quarter
and approximately one-fifth of the equivalent sequences, respectively. If we
try to reduce these latencies we have to increase the special resources for
FDIV/FSQRT. However, FSRRA is much faster using a similar amount of the
resource.

An FSCA instruction is also defined to enhance graphics programmability.
The FSCA generates the sine and cosine of the source operand with an error
rate of less than 2−22, which is sufficiently accurate for graphic applications.

1.3.2. Implementation

The FPU decodes FPU instructions, transfers FPU data as part of the load-
store pipeline, and executes FPU arithmetic operations. This set of instructions
consists of short- and long-latency instructions. The simple single-precision

320 Naohiko Irie

FDIV

FSQRT FSRRA

Result is available here

17 cycles
5 cycles

11

4

11

4

(post process)

(post process)

17 cycles

4

P
ro

gra
m

 F
lo

w

Figure 8. FSRRA vs. series of an FSQRT and an FDIV.

instructions, FADD, FSUB, FCMP, FLOAT, and FTRC, are categorized as
short-latency instructions. They have three-cycle latency except FCMP, whose
latency is one with the branch prediction. The FABS and FNEG instructions
only treat the sign of the FPU data, and are executed by the load-store pipeline
like transfer instructions.

Figure 9 illustrates the FPU arithmetic execution pipeline. With the delayed
execution architecture, the register operand read and operand forwarding are
done at the E1 stage, and the arithmetic operation starts at E2. The short arith-
metic pipeline treats short-latency instructions. All the arithmetic pipelines
share one register write port to reduce the number of ports. There are four for-
warding source points to provide the specified latencies for any cycle distance
of the define-and-use operations. The FDIV/FSQRT pipeline is occupied by
13/28 cycles to execute a single/double FDIV or FSQRT instruction, and these
instructions cannot be issued frequently. The FSRRA/FSCA pipeline is three
cycles long and is occupied by three times to execute an FSRRA or FSCA

Register Read
Forwarding

Main
Pipeline

E1

E2

E3

E4

E5

E6

Short
Pipeline

WB
Register

Write

FSRRA
/FSCA

Pipeline

FDIV/
FSQRT
Pipeline

Figure 9. FPU arithmetic execution pipeline.

Processor core and low-power SOC design for embedded systems 321

Multiplier
Array

Aligner
Reduction Array

Carry Propagate
Adder (CPA)

Leading Non-zero
(LNZ) Detector

Exponent
Difference

Exponent
Adder

Mantissa Normalizer Exponent
Normalizer

Rounder

E2

E3

E4

E5

E6

Multiplier
Array

Aligner

Multiplier
Array

Aligner

Multiplier
Array

Aligner

Figure 10. Structure of main FPU pipeline.

instruction. Therefore, the third E4 stage and E6 stage of the main pipeline
are synchronized, and the FSRRA/FSCA pipeline output merges with the main
pipeline at this point.

The FSRRA and FSCA are implemented by calculating the 3D polynomials
of the properly divided periods. The width of the 3D term is eight bits, which
adds a small area overhead, while enhancing accuracy and reducing latency.

Figure 10 illustrates the structure of the main FPU pipeline. There are four
single-precision multiplier arrays at E2 to execute FIPR and FTRV and emulate
double-precision multiplication. Their total area is less than that of a double-
precision multiplier array. The calculation of exponent differences is also done
at E2 for alignment operations by the four aligners at E3. The four aligners
align eight terms, four sets of sum and carry pairs of four products generated
by the four multiplier arrays, and reduce the eight terms to two using the reduc-
tion array at E3. The exponent value before normalization is also calculated
by the exponent adder at E3. The carry-propagate adder (CPA) adds two terms
from the reduction array, and the leading non-zero (LNZ) detector searches
the LNZ position of the CPA result from the two CPA inputs precisely and
with a speed comparable to that of the CPA at E4 [14]. Therefore, the result of
the CPA can be normalized immediately after the CPA operation without the
need to correct position errors, which is often necessary when using a conven-
tional 1-bit error LNZ detector. Mantissa and exponent normalizers normalize
the CPA and exponent-adder outputs at E5 controlled by the LNZ detector
output. Finally, the rounder rounds the normalized results into the IEEE 754
format.

The extra hardware required for the special FPU instructions is about 30%
of the original FPU hardware and the FPU area is about 10–20% of the SH-X
core depending on the size of the first and second on-chip memories. Therefore,
the extra hardware is about 3–6% of the SH-X core.

322 Naohiko Irie

1.3.3. 3D graphics benchmark performance

We estimated the effect of special floating-point instructions using a simple
benchmark based on the geometry of 3D graphics. Figure 11 illustrates the
benchmark, which consists of coordinate and perspective transformations, and
intensity calculations using parallel light. In general, a 3D object is divided into
triangles or quadrangles. We used triangles and assumed a strip model with one
vertex and one normal vector per polygon. Coordinate transformation can be
used to make a polygon rotate, move in parallel, and increase or reduce in size by
multiplying the transformation matrix by the vertex vector V of the polygon and
getting a transformed vertex vector V′′. Perspective transformation enables the
x and y coordinates of the transformed vertex V′′ to be projected onto a screen,
and to get the coordinates Sx and Sy on the screen. Intensity calculation is used
to calculate the surface intensity of the transformed polygon by transforming
the polygon’s normal vector N to get the cosine I of the transformed normal
vector N′ and light vector L.

The formulas are shown in Figure 12. Since we need only V′′
z of V′′ to judge

which object is closest to the viewing point, we do not need to calculate V′′
x and

V′′
y . The coordinate and perspective transformation requires seven FMULs, 12

FMACs, and two FDIVs without the special floating-point instructions, and
one FTRV, five FMULs, and two FSRRAs with them. Intensity calculation
requires seven FMULs, twelve FMACs, one FSQRT, and one FDIV without
the special floating-point instructions, and one FTRV, two FIPRs, one FSRRA,
and one MUL with them.

Figure 13 shows the execution cycles for 3D geometry. After program opti-
mization no register conflict occurs, and performance is restricted only by the
arithmetic and FDIV/FSQRT special resource usage cycles. First, I will explain
the coordinate and perspective transformation cycles. The gray areas of the
graph represent the usage cycles. Without special instructions the FTRV, FIPR,
FSRRA, and FDIV/FSQRT resources are occupied by the longest cycles, and
these usage cycles determine the number of execution cycles, i.e. 26. Using the

screen
(z=1) z

y

x

V

V
SxSy

N

N LI

Figure 11. Simple 3D-geometry benchmark.

Processor core and low-power SOC design for embedded systems 323

(2) Intensity Calculations (Parallel Light)

Txx Txy Txz Txw
Tyx Tyy Tyz Tyw
Tzx Tzy Tzz Tzw
Twx Twy Twz Tww

Vx
Vy
Vz
1

Vx
Vy
Vz
Vw

=

Vx
Vy
Vz
1

=

Vx
Vy
Vz
Vw

Vw
1

Vx
VzSx=

Vy
VzSy=

Txx Txy Txz Txw
Tyx Tyy Tyz Tyw
Tzx Tzy Tzz Tzw
Twx Twy Twz Tww

Nx
Ny
Nz
0

Nx
Ny
Nz
Nw

=
Nx 2+Ny 2+Nz 2

LxNx +LyNy +LzNzI=

(1) Coordinate & Perspective Transformations

Vx
Vy
Vz
1

Vx
Vy
Vz
Vw

Vx
Vy
Vz
1

vertex
vector

:
trans-
formed
vertex
vector

:
inter-
mediate
vector

:

Txx Txy Txz Txw
Tyx Tyy Tyz Tyw
Tzx Tzy Tzz Tzw
Twx Twy Twz Tww

trans-
form
matrix

:

x,y coordinates on screen I: surface intencity

Nx
Ny
Nz
0

Nx
Ny
Nz
Nw

normal
vector

:
trans-
formed
normal
vector

:

where:

Sx, Sy:

Lx
Ly
Lz
0

light
vector

:

Figure 12. Formulas for benchmark.

FDIV
FMUL FMAC FDIV

0 20 4026

Arithmetic

FDIV/FSQRT
Coordinate & Perspective

Transformations

without Special Inst. (FTRV, FIPR, FSRRA)

FMUL

11

FTRV
with Special Inst.

FSRRA

58% shorter

FSQRT FDIV
FMUL FMAC

FSQRT FDIV

52

Intensity CalculationFMUL
FIPR

19

63% shorter
Arithmetic

Resource-occupying cycles

Figure 13. 3D Geometry execution cycles.

special instructions enables some of these instructions to be replaced. In this
case the arithmetic resource usage cycles determine the number of execution
cycles, i.e. 11, which are 58% shorter than when special instructions are not
used. Similarly, when intensity is also calculated, the execution cycles are 19
and 52 with and without special instructions, respectively, and 63% shorter
using special instructions compared to not using them.

324 Naohiko Irie

Coordinate & Perspective
Transformations

Plus Intensity Calculation

19 cycles

11 cycles/polygon

7.7M

21M

15M

36M

M
 P

o
ly

go
n

s/
s

0

10

20

30 with Special Inst.

without Special Inst.

x2.4

x2.7

Figure 14. 3D geometry benchmark performance at 400 MHz.

Figure 14 shows the 3D-geometry benchmark performance at 400 MHz,
according to the cycles shown in Table 3. Without special instructions the
coordinate and perspective transformation performance is 15 M polygons/s.
With special instructions, the performance is accelerated 2.4 times, increasing
to 36 M polygons/s. Similarly, with intensity calculation, but without any spe-
cial instructions 7.7 M polygons/s is achieved. Using special instructions the
performance is accelerated 2.7 times, increasing to 21 M polygons/s.

2. SOC Implementation and Low-Power Technologies
for Mobile Applications

2.1. Outline of the Mobile SOC

2.1.1. Background and issues for mobile SOCs

To get high performance using a finer process, leakage current control
to meet power budget is necessary especially for embedded systems. In this
Section 1 describe a method of reducing leakage power in an SH-Mobile3,
application processor in 3G cellular phones as an example of SH-based mobile
SOCs [12]. 3G phones are used not only for voice communication, email,
and web browsing, but also for more advanced functions such as videophone
and 3D games. The phones have an application processor embedded in them
in addition to a base-band processor to achieve multimedia performance on
demand without compromising standby or talk-time capacity [15].

The challenge for chip designers is to maintain a long enough battery life
to support these applications. A common solution is to provide several low-
power standby modes in the microprocessors. An important aspect of these

Processor core and low-power SOC design for embedded systems 325

standby modes is not only the power consumption in each mode, but also the
transition time from the standby to the active mode. A long transition time may
cause a significant speed overhead and this prevents using the standby mode,
resulting in high leakage-power consumption. Minimizing the leakage current
for various phone operating scenarios is therefore important.

This section describes the techniques used to reduce the leakage power
used in the SH-Mobile3 processor. A notable feature is the implementation of
on-chip power switches, which enables two new hierarchical standby modes:
resume standby (R-standby) and ultra standby (U-standby) modes.

2.1.2. Chip overview

The SH-Mobile3 is a system-on-a-chip (SOC) device that is implemented on
a low-power SOC design platform. This platform enables advanced circuit tech-
niques, including on-chip power switches, to be used. These include thick-tox
on-chip power switches (PSWs) for plugging leakage currents, µI/O for sup-
porting multiple power domains with a wide range of conversion functions, and
a low leakage data-retention RAM. (Details of the low leakage data-retention
RAM are described in Section 2.)

Figure 15 shows a chip micrograph of the SH-Mobile3.A130-nm five-layer-
Cu dual-Vth dual-tox CMOS technology is used. The supply voltage for the
core is 1.2 V with 1.8/3.3 V for the I/O. The operating frequency is 216 MHz
under the worst PVT conditions. The chip size is 7.7×7.6mm2. The SH-
Mobile3 integrates one SH-X core with DSP, 32-kB four-way set-associative

URAM

Processor
Core

3D
Graphics
Engine

MPEG-4

Video
Interface

LC
D

C

CPU

PSW1

PSW2

7.7mm

7.
6m

m

URAM

Processor
Core

3D
Graphics
Engine

MPEG-4

Video
Interface

LC
D

C

CPU

PSW1

PSW2

7.7mm

7.
6m

m

URAM

Processor
Core

3D
Graphics
Engine

MPEG-4

Video
Interface

LC
D

C

CPU

PSW1

PSW2

7.7mm

7.
6m

m

Figure 15. Chip micrograph of SH-Mobile3.

326 Naohiko Irie

instruction and data caches, a four-entry instruction TLB, a 64-entry unified
TLB, a 16-kB local RAM (XYRAM), a 256-kB user RAM (URAM), sev-
eral media-processing IPs, such as MPEG-4 and 3D graphics accelerators,
and other peripheral modules. The on-chip power switches are called PSW1
and PSW2.

2.1.3. Basic concept for lowering power

A key hint to achieving low power in cellular phones is that applications
that run on phones are more limited than on PCs. Integrating a dedicated
computation engine and providing sufficient performance at a minimum oper-
ating frequency is an effective way of improving overall power efficiency.
Accordingly, the SH-Mobile3 includes advanced CMOS technology and inte-
gration of high-performance-per-clock dedicated multiple computation engines
such as a 1.8-MIPS/MHz embedded processor core described the previous
section.

Lowering the operating frequency also enables the threshold voltage to be
raised. The operating frequency of the SH-Mobile3 is thus successively reduced
to 200 MHz, and leakage power consumption is limited to about 1% of the
total power consumption. However, this leakage current is not low enough for
a cellular phone in standby mode. It should be noted that the leakage budget
for the application processor is about 10–100 µA.

A back-biasing technique [16] is an effective way of reducing the leakage.
However, this is unsuitable for high-Vth thin-tox circuits because it cannot
plug the gate-tunneling leakage current and the gate-induced drain leakage
(GIDL) current is not negligible [17, 18]. Back biasing is also less effective in
advanced process technology. Power gating, i.e. using off-chip regulators to cut
off the power supply to the chip externally, is another solution. The SH-Mobile1
uses this method [1], but it requires multiple power supply channels. It is also
difficult to shorten the transition time from standby mode due to the large C
or L components on the power line between the chip and off-chip regulators.
The SH-Mobile3 therefore uses on-chip power switches.

Using power cut scheme with on-chip power switches, we need to consider
which area can be turned on in stand-by mode. The straightforward way of
cutting power is to turn on only the I/O module and wake-up control part. This
mode is implemented as ultra-standby (U-standby) mode [1] targeting under
10 µA leakage current. But it takes a long recovery time from U-standby to
normal mode and it causes a limited opportunity to enter U-standby mode. To
solve this problem we also implemented resume-standby (R-standby) mode. In
this mode data for resumption is kept in a back-up area which is turned on in
R-standby mode. To realize this mode, optimized on-chip power switches and
low-leakage SRAM for back-up data are required.

Processor core and low-power SOC design for embedded systems 327

2.2. Circuit Technology for Mobile SOCs

2.2.1. On-chip power switches

Figure 16 shows the basic configuration of the two power domains and
on-chip power switches. The on-chip power switches, PSW1 and PSW2, pro-
vide local ground level (vssm1 and vssm2). PSWC is an on-chip power switch
controller. The interface circuitry between the two power domains is based
on a µI/O, which is described below. The critical factors in implementing the
on-chip power switches are as follows:

1. The configuration of the switches (polarity of MOS, threshold voltage,
gate-oxide thickness).

2. The size of the switches.
3. Preventions of invalid signal transmission while the power supply on

one side is cut off.
4. Prevention of rush current when power switches are turned on.

2.2.1.1. Configuration of on-chip power switch. A high-Vth thick-tox
NMOS transistor is used for the power switch for three reasons. First, an NMOS
transistor has a gm more than two times larger than that of a PMOS. (The on-
resistance of the power switches is expressed by 1/gm.) Low on-resistance is
essential to minimize area and speed overheads.

Secondly, there are two options for the gate-oxide thickness of the power
switches: a thin-tox or a thick-tox MOS can be used in the I/O circuitry. The
crucial factor is the gate-tunneling current. The gate-tunneling current in the
power switches is not negligible because it flows even when the switches are
turned off and it is therefore essential that they are large enough to minimize
speed overheads. A thin-tox MOS has too much gate-tunneling current for the
power switches to clear the leakage budget so a thick-tox MOS is the only
solution possible.

e

out

vssm1 vssm2

vdd1 vdd2

cds cdr

in

vss1 vss2

PSWC PSWC

I/O
Power
Domain 1

Power
Domain 2

e

out

vssm1 vssm2

vdd1 vdd2

cds cdr

in

vss1 vss2

PSWC PSWC

µI/O
Power
Domain 1
Power
Domain 1

Power
Domain 2
Power
Domain 2

Figure 16. Basic configuration of two power domains and on-chip power switches.

328 Naohiko Irie

Lastly, a low-Vth NMOS transistor provides low on-resistance, but it needs
negative voltage to turn it off completely, thus requiring an additional power
supply or on-chip voltage generator. The on-resistance of a high-Vth thin-tox
NMOS may be insufficient for the power switches. However, a high-Vth thick-
tox NMOS, which applies an I/O supply voltage (3.3 V) to the gates, provides
sufficient on-resistance.

2.2.1.2. Size of on-chip power switch. The size of the on-chip power
switch should be determined so as to ensure that the speed overhead is negligi-
ble when the power switch is implemented. Large on-resistance of the power
switch (Rsw) causes a voltage drop across the power switch, resulting in speed
degradation. In the SH-Mobile3, the size of the power switches is designed so
that the Rsw is less than 0.1% of the equivalent resistance (Req) of a circuit to
which power is supplied via a power switch. The Req is defined as:

Req = V/Imax,

where V is the supply voltage applied to the circuit, and Imax is the maxi-
mum current in the time resolution of the tc of the decoupling and/or parasitic
capacitors on the terminal between the power switch and the circuit. For exam-
ple, when Rsw = 2k� · µm, Imax = 1A, V = 1.2V, and Req = 1.2�, the Rsw

should be less than 12m�. In total, the power switches should be more than
166-mm wide.

2.2.1.3. Prevention of invalid signal transmission. It is essential to pre-
vent invalid signal transmission between the power-on and power-off domains
because this causes a significant increase in power due to short-circuit currents.
The µI/O in Figure 16 prevents this by using a four-input AND function [19].
The µI/O may require a signal level-shift function when the sender’s supply
voltage is different from the receiver’s one. Figure 17 shows an µI/O with a
signal level-shift function. LC is the level-shifter circuitry, where a dual-rail
input signal (n1 and /n1) with a signal swing of vdd1 is converted to a single-rail
output signal (n2) with a signal swing of vdd2.

The four-input AND function in the µI/O supports both internal power
shutdown by the on-chip power switches and external shutdown by off-chip

e

out

vss1

vdd1 vdd2

in

cdr

cds LS

vss2

e

out

vss1

vdd1 vdd2

in

cdr

cds LS

vss2

Figure 17. µI/O with level shifting function.

Processor core and low-power SOC design for embedded systems 329

regulators. Three input signals (cds, cdr, and e) are used as control signals. The
cds and cdr signals are automatically controlled by a power switch controller
(PSWC1 or 2); the cds and cdr are driven to low when the sender and receiver
domains, respectively, are turned off internally by the power switches. All the
designers have to do is to drive “e” to low when the sender domain is turned
off externally.

2.2.1.4. Preventing rush current. Turning on the power switches may
cause a large rush current on power lines because large parasitic capacitances
(tens of n-F) are required to charge the initial voltages [15]. This may result
in a large drop in the supply voltage. When power lines are shared with other
domains, this drop in supply may be critical for other domains. Supply variation
due to a supply drop can lead to timing violations. The power-switch controller
implemented in the SH-Mobile3 therefore uses a slew-rate control scheme to
prevent rush currents.

Figure 18(a) shows a block diagram of a power-switch controller (PSWC).
The gate of the power switch (g) is driven at a low slew rate using two drivers
(C1 and C2). Figure 18(b) shows simulated waveforms. In the first stage (at t1),

req
ack

C1 driver

C2 driver

Timer

C1

C2

C3

Power
switch

g

vssm

cds / cdr vss

Power-switching controller

0

1

2

3

0 5 10 15
Time (µs)

vssm

cds / cdr

ack

g

vth1

vth2

req req

Vo
lta

ge
 (

V)

t1 t1
2

(a)

(b)

req
ack

C1 driver

C2 driver

Timer

C1

C2

C3

Power
switch

g

vssm

cds / cdr vss

Power-switching controller

Figure 18. (a) Block diagram of the power-switch controller (PSWC) and (b) simulated
waveforms.

330 Naohiko Irie

g is driven by a small driver (C1). After C3 detects that g is above the threshold
voltage (Vth1) at t1a, a large driver (C2) drives g again to keep it at low
impedance. A simulated rush current showed that this system reduced the rush
current at a rate of over 20 dB.

The slew-rate control scheme not only prevents rush current but also pro-
vides a req/ack handshake interface so that the domain can assess the condi-
tion of the power-switch state. A timer in the power-switch controller counts
from t1 to t1a (see Figure 18(b)), and drives ack to high at t1b, satisfying
t1b = (t1a − t1)/2. Thus, when the ack signal is high, the power switch is
guaranteed to be completely on. This decreases the overhead for the transition
time from the standby to the active mode.

2.2.2. Implementation of power switches

Figure 19 shows a block diagram of the SH-Mobile3. The chip is divided
into four power domains. The power supply for power domains 1 and 2 can
be cut off independently by the on-chip power switches (PSW1 and PSW2).
Signals across the power-domain boundary are routed via the µI/O. The power
switches and µI/O are controlled by a power-switch controller (PSC) located in
power domain 3. The total gate width of PSW1 and PSW2 are 794 and 221 mm,
respectively.

Power domain 2

Power domain 1

Vss (0V)

Power
manag.

unit

CPU DSP

Cache

domain2 reset

cd
n

cd
n

PSW1

PSW2

TLB

Control

BAR

Vdd (1.2V)

PSWC
1

Power
domain 4

PSWC
2

Vcc (3.3V)

XY
RAM

BTU

URAM

Rclk

Vssm1

Vssm2

req

ack

I/O

I/O

I/
O

NMI

I/O

I/
O

Backup
latches

Power
domain3

Power domain 2

Power domain 1

Vss (0V)

Power
manag.

unit

CPU DSP

Cache

domain2 reset

cd
n

cd
n

PSW1

PSW2

TLB

domain1 reset

Control
Register

BAR

Vdd (1.2V)

PSWC
1

Vcc (3.3V)

XY
RAM

BTU

URAM

RclkRclk

Vssm1

Vssm2

req

ack

µ

I/O

I/
O

NMINMI

µ /O

I/
O

Backup
latches

Power
domain3

µ

µ

µ

Figure 19. Block diagram of the SH-Mobile3.

Processor core and low-power SOC design for embedded systems 331

2.2.3. Leakage reduction in SRAM module

In R-standby mode, a large capacity SRAM, URAM, in power domain 2
has to retain its data (see Figure 19). For data retention the power of the SRAM
module cannot be cut off and the leakage current of the SRAM module has
a large impact on the whole leakage power. To reduce the leakage current in
R-standby mode, the SRAM module supports a standby mode, in which the
SRAM module retains its data with lower leakage power. Besides, increasing
leakage current in the active state will be a problem for saving power consump-
tion. One of the solutions for this problem is reducing leakage current during
low-speed operation. A low-leakage active mode is implemented in the SRAM
module. This mode is not supported in the SH-Mobile3 processor, but this mode
will be important when the active leakage current becomes a critical issue.

We first consider a SRAM that fits these operating modes of the processor
adaptively. We developed a on-chip SRAM [13] with three operating modes:
a high-speed mode, low-leakage active mode, and standby mode (R-standby
in the SH-Mobile3). Note that this SRAM features leakage-current reduction
for word-drivers even in high-speed active mode. To the best of our knowledge
this is the first trial in which a leakage-reduction circuit technique has been
implemented in an actual production chip to reduce leakage current in a high-
speed active mode.

2.2.3.1. Source-line self-bias technique. The SRAM has to retain its
data during the standby state. Therefore, the leakage current of the SRAM
memory cell has to be reduced with data retention. In this SRAM, the Vssm,
the voltage of the source power line of the memory cells (Figure 20(a)), is
increased to reduce the leakage current. As the Vssm voltage increases, the
leakage current is further reduced. However, the memory cells then become

Vdd

Vssm

Vss

Vdd

MS1 MD1 MR1

sw1

Array

MOSFET Vth variation

Use only diode (MD1)

0

0.1

0.2

0.3

0.4

Vs
sm

(V
)

Ideal

-100 mV

with resistance (MR1)

This work

0 mV100 mV

(a) (b)

Figure 20. Self-biased source line voltage control [13].

332 Naohiko Irie

less stable. To satisfy the requirements of both low leakage and high stability,
the lowest Vssm that satisfies the leakage target must be generated. Therefore,
we developed a new Vssm controller, the PLVC1, which consists of three
nMOSFETs, MS1, MD1, and MR1. The MS1 works as a power switch
between the Vssm and Vss, MD1 as a diode, and MR1 as a resistor. The MR1
has a long gate length and is normally on.

When a manufactured MOSFET has a high Vth, memory-cell leakage
becomes smaller and the current through the MR1 is greater than the memory-
cell leakage, so the Vssm voltage becomes lower. However, when the Vth is
low, the Vssm voltage is high, but the MD1 restricts the rise in the Vssm voltage.
This keeps the voltage low enough to retain stored data. Figure 20(b) shows
the Vth of a manufactured MOSFET vs. the Vssm voltage. The horizontal axis
shows the Vth difference in the Vth between the designed value and the value
of the manufactured MOSFET, which varies according to process variations.
When the Vth of the manufactured transistor is low and the leakage current
is high, the Vssm voltage has to be high to significantly reduce the leakage
current. The broken line indicates the ideal values that just satisfy the leakage
target and ensure the highest memory-cell stability. If the voltage controller is
composed of only a power switch and a diode, the Vssm voltage is indicated
by the “use only diode” line in the graph. This line satisfies the leakage target,
but with low operation stability.

Using three types of MOSFETs, MS1, MD1, and MR1, for the voltage
controller, ensures that the Vssm voltage is closer to the ideal value. These
values satisfy the leakage target and maintain better stability.

2.2.3.2. Leakage-current reduction of array-associated circuits.
Figure 21 shows the leakage-current reduction scheme for an array of asso-
ciated circuits. The memory array is divided into four parts according to their
structure, and the leakage current of each part is reduced by controlling each
voltage line.

One part is word drivers, and the leakage current is reduced by a cut in
its Vdd line (Vddw) by a pMOSFET power switch controlled by SW2. Since
the Vddw is only connected to word drivers, and its parasitic load is small,
the Vddw can be charged to Vdd level even if the Vddw is activated after the
bank selection. The Vddw can therefore be controlled every cycle, and be in
an active state when the bank is accessed and be inactive when the bank is not
accessed.

One part is a memory cell array, and the leakage current of the cell array
can be reduced by the source-level control (see Section 2.1), and its state is
controlled by the SW1 signal. One part is a peripheral circuit in the bank, for
example the controller and sense/write a circuit, and the leakage current is
reduced by cutting its Vss line (Vssa) by a nMOSFET power switch controlled
by SW3. The Vssm and Vssa have a large parasitic load and it takes a long time

Processor core and low-power SOC design for embedded systems 333

Vdd

MC MC MC MCMC

MC MC MC MCMC

Write Amp W
A

W
A

W
A

W
ADecoder,

Buffer, etc.

Sense Amp SA

VddVssm

V
dd

wV
ss

a

Vdd

bank0

bank1

bank2

bank3
sw2[0]

sw1[0]

sw3[0]

Power Line
Controller

Vss

Vssa

Vss

Vsspsw4

Vss

PLVC2

PLVC1

PLVC3

PLVC4

MC MC MC MC

Vss

Vdd

MS1 MD1 MR1

Periphery

Vdd

MC MC MC MCMC

MC MC MC MCMC

Write Amp W
A

W
A

W
A

W
ADecoder,

Buffer, etc.

Sense Amp SA

VddVssm

V
dd

wV
ss

a

Vdd

bank0

bank1

bank2

bank3
sw2[0]

sw1[0]

sw3[0]

Power Line
Controller

Vss

Vssa

Vss

Vsspsw4

Vss

PLVC2

PLVC1

PLVC3

PLVC4

MC MC MC MC

Vss

Vdd

MS1 MD1 MR1

Periphery

Figure 21. Low leakage SRAM module structure [13].

to be discharged to the Vss level, so the Vssm and Vssa cannot be activated
in time in high-speed mode. Therefore Vssm and Vssa are always Vss level
in the high-speed mode, and Vssm and Vssa of the non-accessed bank can be
controlled to a low-leakage state only in low-speed low-leakage mode. The
remaining part is the bank-control circuits and its leakage current is controlled
by an SW4 signal. In active mode (high speed and low speed), the bank-control
circuit has to operate; therefore SW4 is only deactivated in standby mode.
Table 3 shows the state of the switches.

2.2.3.3. Leakage-current reduction of 1-Mbit SRAM module.
Figure ?? shows the measurement results for a worst-leakage sample of the 1-
Mbit SRAM module, which is the equivalent circuit of the SH-Mobile3 shown
in Figure 15. The temperature was 45◦C. The figure shows the leakage current
in each operating mode. The values of conventional circuits were estimated

334 Naohiko Irie

Table 3. Switch control

SW1 SW2 SW3 SW4

Active mode On On/Off On On
Low-leakage active On/Off On/Off On/Off On
Standby Off Off Off Off

Memory cell Word driver Amp.

100 200 300 400 500
Without
SPC-scheme

(µA) 0

High-speed
mode
Low-leakage
(access)
Low-leakage
(NOP)

Standby
Mode

460 µA

350 µA

150 µA

50 µA

25 µA

Figure 22. Leakage currents in 1-Mb SRAM module [13].

using the results of leakage simulations and of measuring this prototype chip.
The technologies described in this chapter reduced active leakage by 25% even
in high-speed mode (150 MHz), by 90% in low-leakage mode (10 MHz), and
by 95% in standby mode.

2.3. Measurement Result of Stand-by Modes

The use of on-chip power-switch and low-leakage SRAM technol-
ogy enables two new standby modes in the SH-Mobile3: resume standby
(R-standby) and ultra standby (U-standby) modes. Figure 23 shows the standby
power consumption, or leakage current, measured at room temperature at a
power supply voltage of 1.2 V. In standby mode, without the power being cut
off, the leakage current is 2.2 mA.

In the U-standby mode, both PSW1 and PSW2 are turned off (Figure 19),
producing ultra-low leakage of only 11 µA. In this case, however, the transition
to the active mode takes longer because most of the information on the chip is
lost and the system requires a boot sequence. This standby mode is used when
a flip-type cellular phone is closed.

In the R-standby mode, only PSW1 is turned off. This cuts off the power
supply to the CPU core, MPEG and 3DG hardware IPs, and peripherals. The
power supply to the low-leakage SRAM and back-up registers is kept on. As
a result, recovery from the R-standby mode is much more rapid than from the
U-standby mode. The leakage current in this mode is 86 µA.

Processor core and low-power SOC design for embedded systems 335

Standby w/o
power cutoff

0 25 50 75 100 2200

Resume
standby

Ultra
standby

Leakage current (µA)

2200 µA

86 µA

11 µA

Figure 23. Leakage current consumption in each standby mode.

w/o D.PLL lock

2.8 ms

PSW on
PLL lock-in
D.PLL lock-in
State transition
Restore regs.
Restart tasks

w/o D.PLL lock

2.8 ms

PSW on
PLL lock-in
D.PLL lock-in
State transitionState transition
Restore regs.
Restart tasks

1.6 ms

w/ D.PLL lock
(Ext. CLK=32kHz)

0 1 2 3

Figure 24. Transition time from the resume standby mode.

To ensure a quick transition from the R-standby mode with a minimum
hardware cost, data backup using a backup latch (see Figure 19) is used. If all
the information in the flip-flops is cleared by turning off the power switches,
a longer recovery time is required. To avoid this, backup latches are imple-
mented in the same power domain as the memory, and the power supply for
this domain is kept on in the resume-standby mode. Key information for achiev-
ing quick recovery is stored in the backup latches before the transition to the
resume standby mode, and this is restored to the original flip-flops during the
recovery operation. The control-register contents that are needed immediately
after wake-up, such as clock and interrupt settings, are saved to the backup
latches. The boot address register (BAR) that holds the restart address is also
backed up in the backup latches.

The transition time from the resume standby mode is plotted in Figure 24.
Transition is triggered by an interrupt signal. When an interruption occurs,
hardware recovery operations such as power-switch control and a PLL lock
are activated. Software recovery operations then start from the BAR address
and the OS recovery routine is executed. This bar graph shows a breakdown
of the recovery time. A digital PLL generates 27 MHz from a 32-kHz clock.
This needs a long lock time, so if a 27-MHz clock is available for an external
clock input, the recovery time is only 1.6 ms. Otherwise, the recovery time
is 2.8 ms.

336 Naohiko Irie

References

[1] Yamada, T. et al. “A 133MHz 170mW 10µA standby application processor for 3G
cellular phones”, ISSCC Dig. Tech. Papers, 2002, 474, 370–371.

[2] Yamada, T. et al. “A low-power embedded RISC microprocessor with an integrated
DSP for mobile applications”, IEICE Trans., E85-C(2), 253–262.

[3] Tsunoda, T. et al. “Application processor for 3G cellular phones”, COOL Chips V
Proc., April 2002, I, 102–111.

[4] Kutaragi, K. et al. “A microprocessor with a 128b CPU, 10 floating-point MACs,
4 floating-point dividers, and an MPEG2 decoder”, ISSCC Dig. Tech. Papers, February
1999, 256–257.

[5] Rogenmoser, R. et al. “Adual-issue floating-point coprocessor with SIMD architecture
and fast 3D functions”, ISSCC Dig. Tech. Papers, February 2002, 414–415.

[6] Arakawa, F. et al. “SH4 RISC multimedia microprocessor” HOT Chips IX Symp. Rec.,
August 1997, 165–176.

[7] Nishii, O. et al. “A200MHz 1.2W 1.4GFLOPS microprocessor with graphic operation
unit”, ISSCC Dig. Tech. Papers, February 1998, 447, 288–289.

[8] Arakawa, F. et al. “SH4 RISC multimedia microprocessor” IEEE Micro, 1998, 18(2),
26–34.

[9] Yoshioka, S.; Hattori, T. “SH-X 4500MIPS/W 2 2-way superscalar CPU core and its
SoC products”, Microprocessor Forum 2003 Conf. Program, Session 4: Low-Power
Processors, San Jose, USA, October 2003.

[10] Arakawa, F. et al. “An embedded processor core for consumer appliances with
2.8GFLOPS and 36M polygons/s FPU”, ISSCC Dig. Tech. Papers, February 2004,
531, 334–335.

[11] Arakawa, F. et al. “An embedded processor core for consumer appliances with
2.8 GFLOPS and 36M polygons/s FPU”, IEICE Trans. Fund., 2004, E87A(12),
3068–3074.

[12] Kamei, T. et al. “A resume-standby application processor for 3G cellular phones”,
ISSCC Dig. Tech. Papers, February 2004, 531, 336–337.

[13] Yamaoka, M. et al. “A 300MHz 25µA/Mb leakage on-chip SRAM module featuring
process-variation immunity and low-leakage-active mode for mobile-phone applica-
tion processor” ISSCC Dig. Tech. Papers, February 2004, 542, 494–495.

[14] Arakawa, F. et al. “An exact leading non-zero detector for a floating-point unit”, IEICE
Trans. Electron., 2005, E88C(4), 570–571.

[15] Royannez, P. et al. “9nm low leakage SoC design techniques for wireless applications”,
ISSCC Dig. Tech. Papers, February 2005, 138–139.

[16] Kuroda, T. et al. “A 0.9V 150MHz 10mW 4 mm2 2-D discrete cosine transform core
processor with variable-threshold scheme”, ISSCC Dig. Tech. Papers, February 1996,
166–167.

[17] Soden, J.M. et al. “Identifying defects in deep-submicron CMOS ICs”, IEEE Spectrum,
September 1996, 66–71.

[18] Chan, T.Y. et al. “The impact of gate-induced drain current on MOSFET scaling”,
IEDM, December 1987, 718–721.

[19] Kanno, Y.; Mizuno, H.; Oodaira, N.; Yasu, Y.; Yanagisawa, K. “µI/O architecture for
0.13-µm wide-voltage-range system-on-a-package (SoP) designs”, Symp. on VLSI
Circuits, Digest of Technical Papers, 2002, 168.

INDEX

3D graphics 322

accelerators 1
adders 147
arithmetic and logic unit (ALU) 171

bandwidth 235
binary floating-point 190
bus width 237

cache 89, 237
cache line 245
cache miss 237
CEC 236
central electronic complex 236
checkpoint 226
clock 57
clock frequency 61
clock jitter 60
clock skew 60
clocked storage elements 57
computer arithmetic 148
computer system 236
CPI 4

derived clocking 302
dielectric loss 298
digital appliance 311
digital circuits 31
DRAM 275
DSP cores 1

embedded DRAM 278
embedded system 311
end around carry adder 199
energy-delay space 32
error correction 216
error detection 215

finite cache effect 240
flip-flop 63
floating-point unit 313
forwarded clocking 302
FR-4 296

fused multiply-add 190

gated-clock 4

latch 61
leading zero anticipation 190
leakage 2
leakage current 324
line size 247
low power 311
low-voltage SRAM 100

mesochronous 304
microcontrollers 1
microprocessor 209
miss penalty 241
miss rate 237
miss ratio 261
multicore 16
multithread 238

optics 237

parallel data bus 290
pipeline 4, 57, 314
placement 123
plesiochronous 305
power 57
power-switch 329
prefetching 252
processor core 311

queuing 251

reconfigurable 4
redundancy 213
register file 97

semi-dynamic design 179
six-transistor SRAM cell 109
skin effect 298
source synchronous 306
SRAM 90, 326
static memory 115
system-on-a-chip (SOC) 325

337

338 Index

trailing edge 244
trailing edge effect 246
transistor sizing 32

ultra-low-power 27

virtualization 275
voltage-mode sense amplifiers 96

wavelength division multiplexing 283
WDM 283

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

