John Fitzgerald - Peter Gorm Larsen
Marcel Verhoef Editors

Collaborative
Design for

Embedded
Systems

Co-modelling and Co-simulation

@ Springer

Collaborative Design for Embedded Systems

John Fitzgerald ¢ Peter Gorm Larsen
Marcel Verhoef

Editors

Collaborative

Design for
Embedded
Systems

Co-modelling and Co-simulation

@ Springer

Editors

John Fitzgerald Peter Gorm Larsen
Newcastle University Aarhus University
Newcastle upon Tyne Aarhus

United Kingdom Denmark

Marcel Verhoef

Chess WISE B.V.

Haarlem

The Netherlands

ISBN 978-3-642-54117-9 ISBN 978-3-642-54118-6 (eBook)

DOI 10.1007/978-3-642-54118-6
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014936992

© Springer-Verlag Berlin Heidelberg 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Foreword

Embedded systems permeate the world today, and they increase not only in numbers
but also in complexity. One by now archetypical example, also quoted in this book,
is the modern automobile, with its dozens of electronic control units (ECUs). The
behaviour and functionality of the embedded control of a car is not the result of a
single piece of software or silicon, but rather emerges from a very complex interplay
of ECUs. These components communicate with each other in complex, hard-to-
predict ways. Protocol mismatches are a common source of error, and agreeing
on common interfaces among components is one of the most difficult and time-
consuming tasks in managing large designs.

This very problem, of finding a common ground across collaboration interfaces,
also applies to the designers themselves who create these complex embedded
systems. Embedded, or cyber-physical, systems bring a multitude of disciplines
together, including, but not limited to, computer science, electrical engineering,
physics and psychology. Within each discipline, there is again a range of different
fields, with experts that are mostly used to work among peers of their own domain.
Vocabularies are different or, even worse, are the same but have different semantics.

In the realm of research projects, few attempt to bring together partners from very
diverse fields, or if they do, they limit interaction to high-level, narrow interfaces.
The European “Design Support and Tooling for Embedded Control Software”
(DESTECS) project, which we had the pleasure to accompany as reviewers in
2010-2012, did have the ambitious goal to work closely together across domains.
DESTECS combined discrete-event and continuous-time modelling, and this cross-
cutting aspect would be a key part of the success or failure of the project. This
did pose a non-trivial project risk, despite the fact that the participants were all
already highly acknowledged experts in their domains and brought together much
professional experience from earlier projects. Quoting from one of the project
reports: “The project is quite multidisciplinary and as a consequence it turned out to
be beneficial to produce exact definitions of terminology, as in the first half year of
the project, understanding of relevant terms was quite different.” This extra effort,
not accounted for in the original resource planning, did pay off very well, as we
could witness in subsequent project periods.

vi Foreword

One outcome of DESTECS that lasts beyond the project is the Crescendo
approach, which demonstrated its viability in several full-scale demonstrators devel-
oped jointly by academic and industrial partners. Another outcome that we expect
to have lasting impact is this book, which makes Crescendo and its underlying
concepts accessible in a way that transgresses any collection of separate papers and
which has added significant value to the project even after it has formally ended.
This book not only straddles the aforementioned boundaries between (mostly)
separate fields, but also finds a perfect balance between theoretical underpinnings
and practical advice. It should be equally valuable for researchers and practitioners
in the field of embedded systems design.

Elancourt, France Bernard Dion
Kiel, Germany Reinhard von Hanxleden

Preface

The embedded systems market is a lively—some would say volatile—place. There
is a growing demand for products that make the best use of rapidly improving
computer hardware to create everything from game consoles to flight controllers.
In this setting, the developers of embedded systems have to form creative teams
out of disparate engineering disciplines. For example, a product design team
might encompass software, mechanical, electrical and control engineers. However,
effective collaborative design is not simply a matter of sharing a whiteboard
with each other—the bases of engineering disciplines are different, and perhaps
the biggest gulf is between software and control engineering. Control engineers
describe how phenomena evolve and flow over continuous time, but software is
described using logic to relate discrete events.

The semantic gaps between engineering disciplines cost time and money because
the results of misunderstandings are often only detected when the physical product
is built and software fails to control it properly. Traditional product development
involves specialist engineering groups working independently on aspects of the
design which is passed between them, sometimes being misinterpreted and distorted
as it goes. This is a particularly pressing problem when we attempt to design for
resilience: dependability cannot be sprinkled over a completed design, but needs to
be integrated from the outset. Indeed, our experience suggests that around 80 %
of embedded software is related to complex supervisory control which includes
switching between modes or dealing with error detection and recovery. It is
essential, then, to have methods and tools to help manage the risk of early-stage
design flaws.

This book is a response to the challenge of delivering effective multi-disciplinary
design. It builds on the premise that early analysis of design models could lead to
early detection of errors and performance bottlenecks, and the models themselves
can serve as common bases for communication and the exploration of design
alternatives. But how can model-based methods work if the engineering disciplines
describe aspects of the product and its environment in such different ways? We focus
on the creation and analysis of collaborative models (“‘co-models”), composed of
discrete-event and continuous-time models. Typically, these contain discrete-event

vii

viii Preface

models of control elements to be realised on computers, coupled with continuous-
time models of controlled plants and the physical environment. However, rather
than forcing diverse disciplines into a single common modelling framework, we
show how it is possible to link otherwise separate tools for discrete-event and
continuous-time modelling through a harness that allows them to share data
during simulations to create a unified “co-simulation”. Co-simulation between tools
supports collaboration between designers, allowing engineers from each discipline
to continue work within familiar formalisms while being able readily to judge
the effects of a design decision in one domain on the behaviour of the other.
For example, we might choose to resolve a known hardware fault either by using
different sensors or by more complex control software. With co-simulation, we can
trade off these alternatives on such factors as performance, energy consumption and
cost before a commitment is made.

The methods and tools for co-modelling described in this book were developed
in a collaborative research project, “Design Support and Tooling for Embedded
Control Software” (DESTECS).! We were fortunate in DESTECS to have the
cooperation of several pioneering companies, who endured the instabilities of our
nascent methods and tools, applying them in several domains. Their experience
demonstrated the value of co-modelling in reducing design iterations, easing the
development of sophisticated software control and supporting dependability. We
hope that this book gives the reader a sense of the potential for innovation enabled
by methods and tools that support technically well-founded collaboration across
discipline boundaries.

Structure of the Text

Our goal is to present methods and tools for co-modelling, co-simulation and design
space exploration in a thoroughly practical way, with running examples. The book
is structured in three parts:

1. Part I introduces the technical basis of co-modelling and co-simulation using
one Continuous-Time (CT) and one Discrete-Event (DE) formalism. Chapter 1
describes the need for collaborative design and the challenges in providing
methods and tools to support it. We then introduce core concepts that underpin
the rest of the book (Chap.2). In Chaps.3 and 4, we present the specific CT
and DE technologies that we propose to link through co-modelling: respectively,
bond graphs, supported by 20-sim, and the Vienna Development Method (VDM).
Both are comprehensive formalisms, so in these chapters, we aim to give the
reader a sense of the main features of each. We then introduce the Crescendo
technology for co-simulation (Chap.5). Finally, Chap.6 discusses the use of
structuring mechanisms to promote the reuse of controller models.

'European Union Framework 7 project CNECT-ICT-248134, January 2010-December 2012 (see
http://www.destecs.org/).

http://www.destecs.org/

Preface ix

2. In Part II, we move from foundations to the application of co-modelling. Chap-
ter 7 introduces two case studies (a line-following robot and a ChessWay personal
transporter), which are used in this part of the book. The process by which a co-
model is developed is discussed in Chap. 8. Chapter 9 introduces techniques for
co-modelling faults and fault tolerance mechanisms, while Chap. 10 examines
the support for exploring large design spaces in the search for optimal solutions.
Chapter 11 brings these strands together, describing how the technology has been
applied on other industrial applications.

3. Part III considers more advanced topics. Chapter 12 reports the experiences of
three industry users following their experimental deployment of the Crescendo
technology. Chapter 13 gives a technical discussion of the semantics of the co-
simulation framework underlying the Crescendo technology and explains how it
can be re-used with other CT and DE technologies. Finally, Chap. 14 positions
our work in the broader setting of model-based collaborative design and sets out
the challenges posed by the development of cyber-physical systems.

4. The appendices include summaries of VDM and 20-sim, a catalogue of design
patterns for co-models, and an abstract VDM model of the ChessWay with a
focus on its safety aspects. A list of acronyms and a glossary of the main terms
used in this book are included.

Using the Book

The book is aimed at both researchers and practitioners in embedded systems
development. Among researchers, the book should be of interest to those working in
cyber-physical systems, embedded systems design and formal methods; in control
engineering, the material should be of interest to those working on advanced
control and modelling technology, especially for fault-tolerant and resilient systems.
Among practitioners, we target the book at those in research and product develop-
ment with an interest in improved design processes and tools. Among academics, we
expect the text to be of value for those teaching embedded software development at
all levels. We recommend that all readers make use of the Crescendo tool for hands-
on experience and access the additional content, including tutorials and training
material, on the accompanying web site (see below).

In keeping with the spirit of co-modelling, we assume that the reader has some
experience in either software development or control, but we do not assume both. In
Part I of the book, the introductions to CT modelling in Chap. 3 and DE (computing)
modelling in Chap. 4 are written with readers from both backgrounds in mind.

Practitioners with an interest in the techniques of co-modelling and co-simulation
are invited to approach the contents of Parts I and II in the order presented. Most of
the chapters in the technical flow of the book assume that preceding chapters will
have been covered. The advanced topics in Part III are relatively independent of one
another. Among the advanced topics, Chap. 13 will be of technical interest mainly

X Preface

to those working on the formal semantics of modelling languages and so may be
omitted by others on a first reading.

Readers with a primary interest in engineering management may wish to cover
the motivation and technical foundations in Chaps. 1 and 2, example case studies
in Chap. 7 and elements of co-model creation methodology in Chap. 8, followed by
industry applications and deployment experience in Chaps. 11 and 12 and future
directions for the technology in Chap. 14.

Accompanying Web Site

The accompanying web site, www.crescendotool.org, provides additional material,
including tool support for co-simulation, as described in the book, additional
example co-models that can be used with the tool and course material. We invite
readers wishing to use the material for teaching or research to take the distribution
only from this web site and contact the editors for further support.

Acknowledgments

DESTECS was supported by the European Commission under the Seventh Frame-
work programme. We are grateful to the expert reviewers, Mr. Bernard Dion
(Esterel Technologies) and Prof. Reinhard von Hanxleden (Kiel University), for
their constructive suggestions and recommendations throughout the project. It is
a pleasure to thank the many contributors to the book, particularly Kenneth Pierce,
Carl Gamble, Jan Broenink, Job van Amerongen, Christian Kleijn, Augusto Ribeiro,
Kenneth Lausdahl, Bert Bos, Sune Wolff and Joey Coleman. We are very grateful
to Koenraad Rombaut and Peter van Eijk, who kindly agreed to be interviewed
about their industrial application of the technology that we developed, allowing us to
recount their experiences in Chap. 12. We gladly acknowledge our other colleagues
from DESTECS who contributed to the technology: Claire Ingram, Kim Bjerge,
José Antonio Esparza Isasa, Claus Ballegard Nielsen, Xiaochen Zhang, Yunyun
Ni, Angelika Mader, Jelena Marinci¢, Stefan Groothuis, Peter Visser, Frank Groen,
Marcel Groothuis, Dusko Jovanovic, Jan Remijnse, Eelke Visser, Michiel De Paepe,
Yoni De Witte, Roeland Van Lembergen, Wouter Vleugels, Kim Visser and Jeffrey
Simons. We are grateful to Nick Battle, Stefan Hallerstede, Hiroshi Sako and all
those who provided feedback to us on draft material. We would also like to thank
Martin Peter Christiansen for providing the T1X tractor example and simulation
results. At a personal level, we are deeply grateful to our families and friends for
their patience and support since the genesis of this book, especially John Hudson,
Margit Sandvang Larsen and Natalie Ree.

Newcastle upon Tyne, UK John Fitzgerald
Aarhus, Denmark Peter Gorm Larsen
Haarlem, The Netherlands Marcel Verhoef

www.crescendotool.org

List of Acronyms

ACA
AD
BDD
BLDC
CoDES
CPS
CPU
CoDES
CRC
CSL
CT

DA
DAL
DATE
DE
DESTECS
DSE
DT
EDA
EMF
FCFS
FDIV
FMEA
FMI
FMU
ForTIA
FP

Automated co-model analysis

Analog to digital

Block definition diagram

Brushless direct current

Collaborative design for embedded systems
Cyber-physical system

Central processing unit

Collaborative design for embedded systems
Cyclic-redundancy check

CoDES scripting language
Continuous-time

Digital to analog

Development assurance level

Design automation and test in Europe
Discrete event

Design support and tooling for embedded control software
Design space exploration

Discrete time

Electronic design automation

Electro motive force

First come first served

Floating-point DIVision

Failure mode and effects analysis
Functional mockup interface

Functional mockup unit

Formal Techniques Industry Association
Fixed priority

xi

xii

FPGA
FSM
GUI
HAZOP
HiL
IBD
IDE
IEEE
IFG
INCOSE
i0OS

IoT
IPM
ISO
MIL
NFC
NTP
OMG
PC

PID
PWM
RC
RPC
RUP
SDP
SHARD
SI

SiL

SIL

SoS
SOS
SRI

SSS
SUT
SysML
TSS
TT™M
UML
VDM
VDM-SL
VDM-RT

Field-programmable gate array

Finite state machine

Graphical user interface

Hazard and operability

Hardware-in-the-loop

Internal block diagram

Integrated design environment

Institute of electrical and electronics engineers
Industry follow group

International Council on Systems Engineering
Internet operating system

Internet of things

Ideal physical model

International Standards Organisation

Model in the loop

Near field communication

Network time protocol

Object Management Group

Personal computer

Proportional integral derivative

Pulse width modulated

Resistor-capacitor

Remote procedure call

Rational unified process

Shared design parameter

Software hazard analysis and resolution in design
Systeme Internationale d‘unité
Software-in-the loop

Safety integrity level

System of systems

Structural operational semantics

French abbreviation for Inertial Reference System
Single-state simulation semantics

System under test

Systems Modelling Language

Transactional simulation semantics

Time to market

Unified modeling language

Vienna development method

Vienna Development Method Specification Language
Vienna development method real time

List of Acronyms

List of Acronyms xiii

WAM Weighted additive method
XBMC Xbox Media Center

XML Extensible Markup Language
XTE Cross track error

Contents

PartI Co-modelling and Co-simulation: The Technical Basis

1

Collaborative Development of Embedded Systems
Marcel Verhoef, Kenneth Pierce, Carl Gamble,
and Jan Broenink

1.1 Introductiono.eiiiiiiiii
1.2 Setting the SCeNe........vvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeees
1.3 The Embedded Systems Design Challenge........................
1.4 Embedded Systems Design: An Illustrative Story.................
1.5 A Solution: The Crescendo Approachcceevunnnnnn.
1.6 CONCIUSION .ttt e
Co-modelling and Co-simulation in Embedded Systems Design
John Fitzgerald and Kenneth Pierce

2.1 Introductionot
2.2 Systems and System Boundariesooeuuuiiiiiiiininn.
2.3 MOdEISt e
2.4 Co-mMOdelS ...
2.5 Co-SIMUIAtIONutteeit i
2.6 DSE and Automated Co-model AnalysiS............cccvvuuunnnn.
2.7 Co-simulation in Practice...........coooiiiiiiiiiiiiiiiiiiiiiinn.
2.8 CONCIUSION ..ttt e
Continuous-Time Modelling in 20-sim

Job van Amerongen, Christian Kleijn, and Carl Gamble
3.1 Introduction ...

3.2 Physical Systems. ...
3.3 Icons and Iconic Diagramscooiiiiiiiiiiiiiiiiiinnn,
34 A Domain-Independent Description: Bond Graphs
3.5 Simulating Physical Systems with 20-sim..........ccoeevviiinn..
3.6 CONtrol SYSEMIS vvveeeiiiete s

XV

XVi

Contents
3.7 A Small Note on NOtation ..., 58
3.8 1073763 11] 107 3 P 59
Discrete-Event Modelling in VDM.................ooiiiiiiiiiiiiiiinn., 61
Peter Gorm Larsen, John Fitzgerald, Marcel Verhoef,
and Kenneth Pierce
4.1 INtrodUCHION 61
4.2 Basic Elements: Data and Functionalitycooovnnee. 63
4.3 Example: A Basic Controller Model..............ccooeviiiinnn.. 72
4.4 Modelling with Structured Data............coooviiiiiiiiiiiinnn.. 73
4.5 Example: Supervisory Controlcoooiiiiiiiiiiiiiinnnnn. 81
4.6 Example: Controlling for Safetyccoooiiiiiiiiiiiiinnnn. 84
4.7 Object-Oriented StrucCturing...........vvvvivieiiiiiiiiereeeeeneens 87
4.8 CONCUITEIICY 1ttt vttttttteetee ettt ettt eeeeeeeeeeeeeeeeeeeeeeeees 91
4.9 Modelling SYSEEIMS 93
410 CONCIUSION .ttt 95

Support for Co-modelling and Co-simulation: The

Crescendo Tool ... e 97
Peter Gorm Larsen, Carl Gamble, Kenneth Pierce,

Augusto Ribeiro, and Kenneth Lausdahl

5.1 INtrodUCHION ...\ . e 97
5.2 Importing the Torsion Bar Co-modelccooonnnnn. 98
5.3 Crescendo CONIACTS ...vvuuurreteeitetieeeeeeeeeees 98
5.4 Starting a Co-simulation...........cooeiiiiiiiiiiiiiiiiiiiiiinnns 104
5.5 Using Scripts and SDPS ... 108
5.6 Changing the Torsion Bar Modelccoooiiiiiiiiint 109
5.7 CONCIUSION vttt eeeeeees 114
Co-model Structuring and Design Patterns 115
Kenneth Pierce, Peter Gorm Larsen, and John Fitzgerald

6.1 INtrodUCtion 115
6.2 Object-Orientation and Inheritancecccoeviiiiinnn.. 117
6.3 Interfaces for Sensors and ActuatorsS...........cooeuuuuuuuunnnnnnn. 119
6.4 Design Patterns.u . 121
6.5 Using Inheritance for Threads..............cooooiiiiiiiiiiiiin. 126
6.6 Structuring Constituent Models for Flexible Simulation.......... 131
6.7 CONCIUSION ..ttt eeeeeees 137

Part I Methods and Applications: The Pragmatics of

Co-modelling and Co-simulation

Case Studies in Co-modelling and Co-simulation....................... 141
Marcel Verhoef, Bert Bos, Kenneth Pierce, Carl Gamble,

and Job van Amerongen

7.1 INtroduction ... 141
7.2 The R2-G2P Line-Following Robotooooeia. 142

Contents

10

11

7.3 The ChessWay Self-balancing Scooteroooeeeeennn.
7.4 CONCIUSION ettt
Methods for Creating Co-models of Embedded Systems
Kenneth Pierce, Sune Wolff, and Marcel Verhoef

8.1 INtroductionc.euiiiiiiii
8.2 Paths to Co-modelscooviiiiiiiiiiiiiiiiii i
8.3 Using SysML Initiallyoooiiiiiiiiiiiiiiiii i
8.4 The CT-first Approachccouuuuuuiiiiiiiiiiiiiiinnans
8.5 The DE-first Approachcooiiiiiiiiiiiiiiiiiiiiiiiiiiin,
8.6 The Contract-first Approach...........ccoovviiiiiiiiiiinnnnnn.
8.7 CONCIUSION .ttt e
Co-modelling of Faults and Fault Tolerance Mechanisms

Carl Gamble, Kenneth Pierce, John Fitzgerald, and Bert Bos
9.1 INtrodUucCtionooouuiiiiie e

9.2 Fault Identificationoooiiiiiiiiiiiiiiiii i
9.3 Fault Selectionuveeiiiiiiiiii i
9.4 Fault Modelling ...
9.5 Fault Tolerance COVErage.uuuuuuuuuuuuiiiiiiiiiiiiiinnnnns
9.6 Fault Tolerance Modelling...........ccooiiiiiiiiiiiiiiiiiiiiinnn,
9.7 An Example Using the Line-Following Robot
9.8 An Example Using the ChessWayccooviiiiiiiiinnnnn.
9.9 CONCIUSION .ttt

Design Space Exploration for Embedded Systems Using
Co-simulation ...
Carl Gamble and Kenneth Pierce

10.1 Introductionoeeeiiiiiii i
10.2 USING ACA .ottt
10.3 An Example Using the Line-Following Robot
10.4 Candidate Parametersceeeeiiiiiiiieeiiiiiieeennnnnnns
10.5 Experimental Design..........c.eviiiiiiiiiiiiiiiiiiiiinenns
10.6 Using Folder Launch Configurationccooevviiviinnn
10.7 An Example Using the T1X Tractorc..oooeeiiiiinnn
10.8 Ranking of Results..........vviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinens
10.9 An Example Using the Line-Measuring Robot....................
10.10 CONCIUSION ..ttt e
Industrial Application of Co-modelling

and Co-simulation Technologyooiiinl
Marcel Verhoef and Peter Gorm Larsen

11.1 IntroducCtionooeiiiiiiiiii i
11.2 A Dredging EXcavatorc.covviiiiiiiiiiiiiiiiiiiiiiiiiennns
11.3 A Document Handling Systemccoeiiiiiiiiiiiiiniinnnn.
11.4 The ChessWay Self-balancing Scooterccoeevvvviinnn
11.5 ConcluSiONnoovnuiiiiiii it e

XVviii Contents

Part III Advanced Topics

12 Deploying Co-modelling in Commercial Practice....................... 263
Sune Wolff, Peter Gorm Larsen, and Marcel Verhoef
12,1 INtrodUCtionuueeeiiiiititt e eeeeees 263
12.2 Company Introductionscevviiiiiiiiiiiiiiieiieeeeeeeenens 264
12.3 Traditional Developmentcooeviiiiiiiiiiiiiiiiiiniinnnns 264
12.4 Integrating Co-modelling and Co-simulation
with EXisting Processes..........vvviiiiiiiiiiiiiiiiiiiiiiiinnnns 265
12,5 RESOUICES. ..ttt eeeeeeeeeeeeeeees 266
12.6 Challenges Encounteredccovviiiiiiiiiiiiiiiniinninnnns 266
127 Key Benefits......ovvviiiiiiiiiiiiiiiiiiiiiiiiieiic s 267
12.8 The Future of Co-modelling...........ccooeiiiiiiiiiiiiiiinnnn. 269
129 CONCIUSION vttt eeeeeeeeens 270
13 Semantics of Co-simulation...............................oooiiL.. 273
Joey W. Coleman, Kenneth Lausdahl, and Peter Gorm Larsen
13,1 INtrodUCtioneeeeiiiiiiiiiiiiieeeees 273
13.2 Structure of Co-sSimulationc.ccevviiiiiiiiiiiiiiiiiineiennns 274
13.3 Co-simulation Semanticseeeeiiiiiiieiiieeieeneeeeeenens 278
13.4 Adding Fault Injection Semantics to the Co-simulation 283
13.5 Semantics of the CSL ...t 285
13.6 CONCIUSION ..ttt eeeeeeeeeeees 291
14 From Embedded to Cyber-Physical Systems:
Challenges and Future Directionsol 293
John Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef
141 INtrodUCtionueeiiiiiiiiiiiii s 293
142 The Co-modelling and Co-simulation Landscape................. 295
143 Co-modelling in the CPS Design Flowcoooi. 297
14.4 Enabling Collections of DE and CT Models to Be Combined ... 298
14.5 Open Co-sIMUlationceviiiiiiiiiiiiiiiiiiiiieeiieeienes 298
14.6 Ubiquitous and Distributed Computing...........cccovvvvvvvenennn. 299
147 An Open and Lively Research Fieldooooooiiiit 301
14.8 CONCIUSION ..ttt eeees 302
A 20-SimM SUMMATYot 305
Christian Kleijn
A.l INtroduction ... 305
A2 OVETVIBW ..ttt ettt eeees 306
A3 Graphical Modelsoeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiees 307
A4 Equation Models ... 307
AS Modelling TOOIS 307
A.6 SIMUIAHON ...t 308
A7 ANALYSIS o 309

A8 SCIPUNG . . ettt 310

Contents
A9 Co-STMUIAIONeettte et
A.10 Code GeNnerationeevuuuueeeeenuiiiieeeniiieeeananaas

B VDM-RT Language Summarycoovviiiiiiiieieneeennnnnn...
Peter Gorm Larsen
B.1 Operators for Basic TYPesvvviiiiiiiiiiiiiiiiiiiieeenns
B.2 Operators for Set TYPeS....vvviiiiiiiiiiiiiiiiiiiiieees
B.3 Operators for Sequence TyPes........ovviiiiiiiiiiiiiiiiiiiinninns
B.4 Operators for Mapping TYPesvvviiiiiiiiiiiiiiiiinnnnnns
B.5 Record Types and Values in VDMcoooiiiiiiiiiiiiinnnn.
B.6 Small VDM-RT Examplescccoviiiiiiiiiiiiiiiiiiinnnnnns
B.7 Threads and Synchronisationin VDM..................oooooia
B.8 The System Class Conceptin VDM-RTcccoovinnnnnn.
B.9 Example of ClasSesuuuuunuiiieieiee e
B.10 UML Dia@ramsuuuueeee e

C Design Patterns for Use in Co-modelling

Carl Gamble, Kenneth Pierce, John Fitzgerald, Bert Bos,
and Marcel Verhoef

C.1 INtrodUucCtionooovuiiiiit e
C2 Controller Patternsoouiiiiiiiiiii i
C3 Fault Patternsoooviiii i i i
C4 Fault Tolerance Patternsccooviiiiiiiiiieiiieeiinennnn.
D Abstract Modelling of ChessWay Safety.................................
Marcel Verhoef and Bert Bos
ReferenCes.coooii e
GlOSSATY

Xix

List of Contributors

Bert Bos, Chess iX, Haarlem, The Netherlands

Jan Broenink, University of Twente, Enschede, The Netherlands
Joey Coleman, Aarhus University, Aarhus, Denmark

John Fitzgerald, Newcastle University, Newcastle upon Tyne, UK
Carl Gamble, Newcastle University, Newcastle upon Tyne, UK
Christian Kleijn, Controllab Products, Enschede, The Netherlands
Peter Gorm Larsen, Aarhus University, Aarhus, Denmark
Kenneth Lausdahl, Aarhus University, Aarhus, Denmark
Kenneth Pierce, Newcastle University, Newcastle upon Tyne, UK
Augusto Ribeiro, d60, Aabyhoej, Denmark

Job van Amerongen, University of Twente, Enschede, The Netherlands
Marcel Verhoef, Chess WISE, Haarlem, The Netherlands

Sune Wolff, Aarhus University, Aarhus, Denmark

XXi

Part I
Co-modelling and Co-simulation:
The Technical Basis

Chapter 1
Collaborative Development of Embedded
Systems

Marcel Verhoef, Kenneth Pierce, Carl Gamble, and Jan Broenink

1.1 Introduction

This chapter motivates our interest in collaborative modelling for embedded systems
design by describing the challenges faced by developers of contemporary embedded
systems. We set the scene in Sect. 1.2 indicating how ubiquitous embedded control
systems are in our daily life, and identifying the issues faced by industry when
producing solutions of sufficient quality in a timely manner. In Sect. 1.3, we list the
main challenges that we see in the development of this kind of product. In Sect. 1.4,
we introduce a small fictional case and investigate it from the perspective of
the different disciplines, illustrating the motivation for collaborative development.
In Sect. 1.5, we explain how the Crescendo technology can address the challenges
posed by embedded systems design. Section 1.6 concludes the chapter with a small
summary.

M. Verhoef (<)
Chess WISE, Haarlem, The Netherlands
e-mail: Marcel.Verhoef @chess.nl

C. Gamble * K. Pierce
Newcastle University, Newcastle upon Tyne, UK
e-mail: carl.gamble @newcastle.ac.uk; kenneth.pierce @newcastle.ac.uk

J. Broenink
University of Twente, Enschede, The Netherlands
e-mail: J.F.Broenink @utwente.nl

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 3
DOI 10.1007/978-3-642-54118-6__1,
© Springer-Verlag Berlin Heidelberg 2014

mailto:Marcel.Verhoef@chess.nl
mailto:carl.gamble@newcastle.ac.uk
mailto:kenneth.pierce@newcastle.ac.uk
mailto:J.F.Broenink@utwente.nl

4 M. Verhoef et al.
1.2 Setting the Scene

Computers are all around us and we use them every day, sometimes even without
giving it a second thought. The term “computer” often refers to the Personal
Computer (PC), which is used to send e-mail and browse the Internet or perhaps
a video game console that is used for entertainment. But computers are also part of
the alarm clock, coffee machine, dishwasher, video recorder, DVD player, camera,
television set and mobile telephone. This class of systems is often referred to as
“embedded systems” and you can easily count up to a hundred embedded devices
in an average family household nowadays [25].

We become more and more dependent on the proper operation of these embedded
systems. Not only because they are efficient and convenient to use but also because
they potentially affect the quality of life. Sangiovanni-Vincentelli already mentioned
in his key-note presentation [88] at the 2006 Design Automation and Test in
Europe (DATE) conference that a modern, high-end car contains 80 microprocessors
executing several million lines of code and this trend has continued to grow over
the last decade. These microprocessors are used to control not only the car radio
and air conditioning, but also the air bag, cruise control, fuel injection, brakes
and power steering. A failure in any one of those critical embedded systems may
have severe consequences. But the general public is typically not aware of this
because these computers are deeply embedded in the system, hidden well out of
plain sight. Dependability issues are typically associated with the military, medical
or aeronautical domains but not so much with consumer or capital goods. For
example, no one asks about the code coverage statistics of the power steering
unit (an embedded system that contains a microprocessor which executes possibly
several thousand lines of code) when you buy a new car. In 2004, Deutsche Welle
reported! that the reliability rating of German cars, which used to be unrivalled and
universally acclaimed, has been steadily decreasing for several years in succession
as compared to their main competitors. Analysts believe that this may very well be
due to the increased complexity as outlined by Sangiovanni-Vincentelli.

The economic relevance of embedded systems is easily demonstrated. For
example, take mobile telephony. Market analysts such as Informa Telecoms &
Media? predicted in 2005 that the number of mobile handsets deployed worldwide
would reach one billion early in 2007 which corresponds to roughly 15 % of the
population on Earth. Moreover, this target was reached in just 15 years and the
market is far from saturated. Growth is continuing, at the time of writing there are
an estimated 6.8 billion active mobile phone accounts.?

These numbers are just staggering, and it is obvious that such a market potential
generates an enormous amount of pressure on the companies that build these kinds

ISee http://www.dw-world.de/dw/article/0,2144,1400331,00.html.
2See http://www.informatm.com/.
3See ICTFactsFigures2013.pdf from http:/www.itu.int/.

http://www.dw-world.de/dw/article/0,2144,1400331,00.html
http://www.informatm.com/
http://www.itu.int/

1 Collaborative Development of Embedded Systems 5

of products. Production volumes are extremely high, profit margins are typically
low which implies that you have to reach the market with a new product before
your competitor, in order to be economically successful. This so-called “time-to-
market” (TTM) pressure is therefore the beast to beat. Companies like Nokia and
HTC were mobile handset market leaders in 2010, but their marketshare has dropped
spectacularly since Apple and Samsung introduced their smartphones. This also
caused a spectacular shift in the market for software ecosystems. Microsoft ruled
the personal computers era with Windows for two decades, but is now struggling
to keep its marketshare in mobile computing (for tablets, smartphones) as they are
competing against iOS (Apple), Android (Google) and Linux.

Companies invest huge amounts of money and effort in order to reduce the
production time and cost price of their products. This has created a secondary
economy consisting of companies that deliver (half-) products and services to
achieve those goals. For example, Gartner * reports that the revenues for Electronic
Design Automation (EDA) experienced double-digit growth in 2006, reaching 4.5
billion US dollars. Over the last decade, the market has stabilised to 5.7 billion US
dollars per year (2012 figures), but this stabilisation is mainly due to the economic
downturn that started in 2010, which caused investments to be postponed. But do
all these investments lead to good products? Unfortunately not. It seems that the
well-known adage “Price, Time, Quality - Pick Any Two for Success”, as is shown
in Fig. 1.1, is still a fact of life.

After the famous CHAOS report from the Standish Group® appeared in 1994,
there have been numerous published examples of projects failing or products
malfunctioning [49]. Although the way these numbers have been gathered and
reported has been criticised by the academic community [33], the same trends have
also been independently demonstrated by, for example, the Software Improvement
Group and Coverity. The latter company produces a yearly report in which they
publish measured software defect rates of open source software [26], including the
Linux operating system, the Network Time Protocol (NTP) and the Xbox media
center (XBMC). Coverity analysed 380 million lines of code from 250 proprietary
code bases, with an average code base size of 1.5 million lines of code. The average
defect density (of high- and medium risks) measured was 0.69 per thousand lines
of code. The trend since 2009 was that defect density is going up rather than down,
not because of deteriorated quality of the code analysed but due to the improved
performance of the static analysis tools used! In 2012, roughly 5,800 defects were
detected in the 7.4 million line Linux code base and approximately 5,200 of those
were fixed within the same year. Since 2006, 15,000 defects were found in total
and to date some 8,400 are fixed. Despite these numbers, Linux is considered to
be one of the most robust pieces of software as the mindset of the developers is to
continuously improve the code base by using static analysis tools, among others.

4See http://www.gartner.com/, Doc. Id. G00143619.

3See http://www.projectsmart.co.uk/docs/chaos-report.pdf.

http://www.gartner.com/
http://www.projectsmart.co.uk/docs/chaos-report.pdf

6 M. Verhoef et al.

Fig. 1.1 Decision making at large: how to find the optimum?

Despite efforts to improve the quality of computerised systems, it remains
difficult to make error-free systems, as the previous example demonstrates. Most
surprisingly, end-users seem to have accepted that as a given fact. People are used
to reboot their computer if a problem occurs. If it does not work, you just download
the latest software from the web site. Updates and upgrades have become part of the
business model of the product. Even more so, only limited warranties® are provided
and companies typically do not accept any liability from the use of their products.
Would you buy a car if you would have to sign such a legal document? Open source
software comes with a so-called “as-is” disclaimer, without warranty of any kind.
The GNU General Public License’ actually contains the following sentence: “The
entire risk as to the quality and performance of the program is with you.” Yet,
open source software is often believed to be of higher quality than most commercial
software because it is exposed to public scrutiny.

Quality is a major issue in embedded systems development, mainly because of
the production volumes involved. Intel Corporation was forced to recall a substantial
number of their early Pentium processors in 1994 because a problem was found
in the floating point unit after the product release. Harrison reported at the 2005
ForTIA Industry Day [71] that Intel wrote off 475 million dollars because of the
Pentium FDIV bug and suffered considerable damage to their reputation. But even
in a low-volume market things can go spectacularly wrong with great consequences.
On June 4, 1996, the inaugural flight of the Ariane-5 rocket failed. About 40s

%See for example the End-User Licence Agreement at http://www.microsoft.com/.
7See http://gplv3.fsf.org/.

http://www.microsoft.com/
http://gplv3.fsf.org/

1 Collaborative Development of Embedded Systems 7

after initiation of the flight sequence, at an altitude of about 3,700 m, the launcher
veered off its flight path, broke up and exploded. The Cluster mission, consisting of
four identical scientific satellites, was lost during this event. Conservative estimates
suggest that this accident costed the European tax payer in the order of 300
million Euro. The Inertial Reference System (abbreviated in French: SRI), which
is used to determine the attitude of the launcher, shut down mid flight because
an exception occurred in the software calculating the current flight path. Virtually
the same system had been used to launch Ariane-4 rockets successfully for many
years, but it was used outside its original specification in this particular case. The
investigation showed that the system was never tested under flight conditions despite
suggestions from the responsible engineers. In fact, the Ariane-5 Accident Report
[67] states: “...it was jointly agreed not to include the Ariane-5 trajectory data
in the SRI requirements and specification.” However, the report does not state why
this decision was made. It is commonly believed that the TTM pressure, to have
this new generation launcher operational as soon as possible, may have contributed
to this decision, taking into account the excellent track-record of a similar system
on Ariane-4. Johnson reports on similar problems at NASA in [48]. The “Faster,
Better, Cheaper” initiative, which was announced in 1998, fostered a culture in
which engineers took considerable risks to innovate with new designs in order to
meet requirements. In hindsight, TTM is one of the contributing factors [51] to the
loss of the Mars Polar Lander mission in 1999.

But the tide of acceptance seems to be turning, in particular in the area of security.
Here, users are less willing to accept failure in applications where trustworthiness
and reliability are paramount, such as authentication, digital identity, privacy
and on-line payments. In combination with the explosive growth of the Internet,
a myriad of exploits have been reported due to software vulnerabilities in browsers,
for example. An extensive overview of these can be found in the digest of the Usenet
newsgroup comp . risks. An entire industry, lead by Symantec and McAfee, has
grown around providing anti-virus and anti-malware scanners and services. These
issues seemed to be isolated to the personal computer, but now it is also entering
the realm of embedded systems. In 2008, the Digital Security group at Radboud
University Nijmegen demonstrated the feasibility of breaking the cypher used on
the Dutch public transport NFC payment card, in real time, by eavesdropping on the
encrypted communication between the card and the terminal.® This enabled them,
with very simple means, to copy the contents of the NFC card on the fly so that one
could in principle travel for free. In 2013, the same research group demonstrated
that it was possible to use a similar strategy to hack the secure wireless connection
for remote controlled car keys, not only giving you access to the car, but also the
ability to start it. Both examples attracted a lot of media attention’ but despite
the public outcry, instead of fixing the problem, the researchers were ordered to
refrain from publishing their results. The real problem here is that it cannot be fixed

8See http://www.ru.nl/ds/research/rfid/.
°See, for example, http://www.bbc.co.uk/news/technology-23487928/.

http://www.ru.nl/ds/research/rfid/
http://www.bbc.co.uk/news/technology-23487928/

8 M. Verhoef et al.

by a mere software upgrade as it requires replacement of (potentially millions of)
physical devices in the field. It is fair to say that the latter two examples are not
related to software problems, but are a case whereby a priori assumptions about
the robustness of certain cryptographic solutions are overestimated against the ever-
increasing power of modern computers. Nevertheless, with the advent of software
only solutions, such as openssl'® and bitcoin,'! one could imagine the economical
impact in case these could be broken due to software errors.

1.3 The Embedded Systems Design Challenge

One might argue that the examples mentioned above are dated and do not reflect
the current state of practice. But ongoing research, such as [26,49], has shown that
the average likelihood of projects succeeding has only marginally improved over the
last decades despite substantial investments in tools and processes. It is generally
believed that the performance in the embedded systems domain is rather worse than
better. Why is this the case? Looking at general trends there are a few potential
reasons.

The design gap problem. According to Moore’s law [75], the performance of
hardware is roughly doubled every 18 months. But recent advances in networking,
packaging and integration technology have enabled the development of heteroge-
neous embedded computing platforms that show a potential exponential growth
in performance and thus complexity.'> These platforms are commonly referred
to as System-On-Chip or Network-On-Chip and usually combine multiple and
interconnected radio-frequency, analog and digital components on a single chip.
However, the technology we use to design the applications for these new platforms
cannot keep up with this tremendous growth in capabilities, primarily because they
are currently focused on designing single, monolithic systems. In other words, the
complexity of the problem grows much faster than the capabilities of today’s leading
design tools. This is commonly referred to as the “design gap.”

The moving target problem. Rapidly evolving technology and the constant quest
for reducing cost-price forces designers of embedded systems to operate on the
edge of what is technically feasible. In order to stay competitive, they sometimes
need to adopt novel technology even while a product is already under development.
One of the key problems in embedded systems design is the validation of these
design decisions. How much effort and time does it take to check that the intent of a
design choice works out well in practice? Over-dimensioning is the usual approach
to accommodate for uncertainty in the design, but this is typically not economically

10See http://www.openssl.org/.
11See http://bitcoin.org/.

International Technology Roadmap for Semiconductors, see http://public.itrs.net/.

http://www.openssl.org/
http://bitcoin.org/
http://public.itrs.net/

1 Collaborative Development of Embedded Systems 9

viable because it usually increases the cost price. Sometimes actual prototypes need
to be built in order to assess the feasibility of some potential solution. Managing this
process is regarded as the key to success, and it is often referred to as “shooting at a
moving target.”

The requirement versus design paradox. Making design decisions in the early
phases of the system life-cycle is notoriously difficult. In this stage, requirements
are often unclear and under-specified, at best leading to a long list of properties that
the system shall eventually satisfy. In the past, emphasis has been put on managing
the requirements process, such that sufficient information is available at the time
the design decisions are made. However, this is often not realistic, in particular in
the domain of embedded systems. At the time when requirements are elaborated, the
major architectural design decisions also need to be taken, primarily in order to meet
the TTM target for the product. But how can one make these crucial decisions when
there is still so much uncertainty? This is in particular true for performance criteria
that the system must meet because they are in general surprisingly hard to quantify
and evaluate. It is obvious that elaboration of the requirements is guided by the
chosen architecture but in turn the definition of the architecture depends on clear and
unambiguous requirements. System architects have to deal with this paradox, for
example, by applying iterative development processes in order to close the design
loop.

Late closure of the design loop. Distributed real-time embedded control systems
are inherently complex and so is the associated design process. Many implementa-
tion choices need to be made, and the impact of each decision is difficult to assess
due to this complexity. This makes the design process error prone and vulnerable to
failure as other downstream design choices may be based on it, causing a cascade
of potential problems. Moreover, it may take some time to realise that a decision is
wrong because it requires feedback in the design process. Usually this happens late
in the life-cycle, at system integration and testing or even product manufacturing.
The repairs required to fix these problems cause significant project delays and cost
overruns or sometimes even worse: product cancelation.

Multidisciplinary design. Systems are traditionally designed in a mono-
disciplinary style usually with an organisational structure to reflect this (e.g.
mechanical department, electronics department, software department and so on).
While in the past systems where developed out-of-phase (mechanical design
precedes electrical design which in turn precedes software design), nowadays
concurrent engineering is applied in order to save development time. However,
system-level requirements that cannot be assigned to a single discipline, such as
performance, typically cause great problems during the integration phase because
the responsibility to meet the requirement is shared among all disciplines. The
root cause of this problem is the lack of cross-discipline design interaction.
This problem cannot be solved by improving the internal organisation; the way
(embedded) software is currently being developed is fundamentally different from,
for example, mechanical and electrical design. These engineers basically speak a

10 M. Verhoef et al.

different language, are concerned about different types of problems and use different
techniques to address and solve these problems. This challenge is dominant in the
embedded systems domain because the computer and the device it controls both
lose their function if they were to be separated. Hence, they cannot be designed in
isolation which makes the cross-discipline communication mandatory.

Dependability and fault tolerance. As embedded systems become more
pervasive, they face ever more demanding and interdependent functional and non-
functional requirements, including the need for reliability and fault tolerance,
performance and interoperability. In addition, they are increasingly distributed in
character, with multiple processors connected with different forms of network,
introducing a wider range of alternative architectures and faults for controllers.
In order to achieve dependability, the next generation of embedded systems
applications must be engineered to provide predictable behaviour in the face of
faults, including malfunctioning infrastructure, environmental hazards, malicious
intentions, design defects and degraded component services, any of which can have
very damaging consequences if fault tolerance mechanisms are not in place.

1.4 Embedded Systems Design: An Illustrative Story

To illustrate how some of the problems identified in the previous sections can
affect a company producing embedded systems under strong market pressures,
we present the story of such a development in Fig. 1.2. In this story, a fictional
agricultural vehicle company attempts to adapt to a rapidly changing market. Their
aim is to maintain their market share by producing a new version of their flagship
tractor system, the T1X, while competing against a rival firm. Unfortunately, due
to problems during the development, production is delayed significantly and this
allows their rival to release a competing product sooner and gain the upper hand in
the market.

Although this story is fictional, we have drawn on the experiences of the
industrial partners who participated in the development of our method. In the
following sections, we consider the different perspectives of the engineers and
software designers in this failed development and from this motivate the need for
collaborative development that underpins our approach.

1.4.1 The Control Engineers’ Perspective

When given the task of building an autonomous GPS-controlled tractor, the control
engineers at OPECorp (Fig. 1.2) focus on designing the control laws. They need
to find suitable parameters that can cope with the range of different agricultural
machines hauled by the tractor and they cannot rely on farmers updating the

1 Collaborative Development of Embedded Systems 11

OPECorp (Old Physics Engineering Corporation) is a long-established manufacturer of
agricultural equipment. In particular they have a historical reputation for producing reliable
tractors. While they used to hire mainly mechanical and electrical engineers, in more recent
years with the addition of computer controllers to their tractors, they have established a
strong software team.

While OPECorp was the market leader for many years, their market share has been eroded
recently by competitors producing rival products, in particular Upstart Farm Technologies
(UFT). Both OPECorp and UFT produce a range of agricultural machinery (e.g. plows,
harrows, seeders) that can be hauled by their tractors. Their tractors provide both hydraulic
power and digital data connections for more advanced accessories that sort of follow a
standard. The management of OPECorp are keen to maintain their market position and aim
to produce a new version of their flagship tractor, dubbed the T1X. The T1X will include a
new GPS-controlled autonomous mode. OPECorp expect that UFT are also working on a
new tractor on a similar time scale (18 months).

To begin, the control engineers design control laws for the new tractor, which must support
the range of agricultural machines that can be hauled by the tractor. Once the control en-
gineers are happy with their low-level control laws, the software team takes over the task
of building the software of the T1X. Meanwhile, a GPS unit has been selected and work
begins on fitting it to the T1 test rig that the company always uses for new products. With
six months to production, UFT announce at an agricultural trade fair that their rival prod-
uct will contain the latest GPS unit from market leader Loc8, with much higher accuracy
than OPECorp’s current choice for the T1X. In a surprise move, they also announce com-
patibility with third-party agricultural machinery from the Ploughman Group (PG). The
management at OPECorp insist that these features are incorporated into the T1X, in order
to keep up with their rivals. This means the engineers have to fit the Loc8 GPS unit to the
prototype and discover that it has to be placed in a different position on the vehicle to the
previous GPS unit. They also have to build an adapter for the digital interface used by the
PG machines. The software team must now adapt their communication protocols to deal
with the PG machines as well. Here it also turns out that the “standard” is not interpreted
in the same way by all vendors so it is not as easy as expected.

Once the prototype reaches field trials, the deadlines for the start of full production are
looming. The software is loaded onto the prototype machine and trials begin. Unfortu-
nately things go wrong from the start. The tractor drifts steadily from its intended path in
autonomous mode. When a PG machine is attached to the T1X, the prototype shuts down,
going into safety mode. The trials have to be abandoned and a large amount of money
and resources are wasted. It is discovered back at the factory that the new position of the
Loc8 GPS unit was not communicated to the software team, which threw off the controllers
calculations and caused the drift. The shut down when the PG machine was connected oc-
curred because the software used a library to encode and decode packets used in OPECorp’s
proprietary communication protocol, which made assumptions about the packets that did
not hold true for the PG system. So while the high-level messages were right for the PG
machine, the library couldn’t decode the low-level packets and didn’t recognise messages
from the PG machine, causing a safe-mode shutdown. It takes three months to fix these
problems found and another month to set up a second set of trials, delaying the release of
the T1X significantly and giving an advantage to UFT, whose tractor is released on-time to
much praise.

Fig. 1.2 A fictional story of a failed embedded systems development

12 M. Verhoef et al.

software once the machine is in production. The different machines hauled by the
tractor will affect the balance of the system as a whole, and they want to be sure that
the system can be controlled safely and stably. This low-level control is their main
area of expertise. To do this, the engineers build a Continuous-Time (CT) model of
the T1X and run simulations to tune control parameters that suit the various types
of machines.

1.4.2 The Software Designers’ Perspective

The software engineers at OPECorp (Fig. 1.2) receive the low-level control param-
eters from the control engineers, but from experience they know this only forms
10 % of their software for a tractor controller. They have experience in building
controllers for the T1 family of tractors and their main focus is on supervisory
behaviour. When tasked with adding autonomous control features to the T1X, their
experience tells them that mode changes (e.g. changing to and from autonomous
mode) and fault tolerance (e.g. dealing with problems caused by the environment
that the T1X will find itself in) will form the majority of the control software.
To handle this complexity, they build Discrete-Event (DE) models to capture and
analyse this mode-changing behaviour.

1.4.3 The Case for Collaborative Development

Heemels and Muller [42] identified a key set of issues that seem to be root causes
behind the problems outlined in previous sections:

1. Reasoning about system-level properties is difficult because a common language
is lacking. Each engineering discipline uses its own method, vocabulary and
style of reporting. This incompatibility causes confusion often leading to mis-
understandings and wrong assumptions being made on the sub-designs of other
disciplines. These inconsistencies are hard to spot because there is usually no
structured system design reasoning process in place.

2. Many design choices are made implicitly, usually based on previous experience,
intuition or even assumptions. System-level reasoning is made difficult if the
rationale behind such a decision is not quantified. The reasons are sometimes
kept hidden on purpose, for example, if strong personal preference or politics
plays a role. This may perhaps lead to a local optimum in the system design
but only rarely to a global optimum. It is therefore necessary to make design
knowledge explicit in order to enable the dialogue at the system level.

3. Dynamic or time-dependent aspects of a system are complex to grasp, and
moreover, there are not many methods and tools available to support reasoning
about time varying aspects in design, in contrast to static or steady-state aspects.

1 Collaborative Development of Embedded Systems 13

The effects of these points are amplified by the complexity of the product
under development (a typical high-tech system consists of tens of thousands of
components and millions lines of code) and the complexity of the design process
(number of people involved, organisational structure, out-of-phase or multi-site
development, etc.) Our hypothesis is that lightweight and abstract models that
capture the system-level behaviour and a reasoning method that indicates how
and when to use them will reduce these tensions considerably. A good system
engineering methodology will expose implicit or hidden design choices and replace
“hand-waving” by design rationale based on objective, quantified and verifiable
information.

1.5 A Solution: The Crescendo Approach

The aim of our approach is to bridge the gap between control engineers and software
designers by providing tools and methods that allow them to collaborate in the
design of distributed embedded control systems. Our approach allows them to
explore and test their designs without resorting to expensive prototypes, thereby
helping to manage the risks of embedded systems development. The essence of
our approach is to use models in all phases of the design. These models describe
the system in a more coarse way in the beginning and are gradually refined and
extended in later phases. Each result of a step in the design cycle is a combination
of design decisions and models, which are used for that decision, and are also the
starting point for the next design step. We refer to this as model-based design.

A single modelling formalism may be effective for a simple non-distributed
system, but it rarely scales. Continuous-time models are excellent for modelling
physical system dynamics, but if a distributed architecture is needed or if the
idealised assumptions do not hold, the model can become hard to maintain. Discrete-
event models are excellent for expressing system logic, making it possible to
incorporate a distributed system architecture and failure assumptions, but physical
laws are difficult to model. Combining these two worlds, if done in a semantically
sound way, can provide a collaborative modelling (co-modelling) framework in
which it is possible to experiment with both discrete and continuous aspects of the
whole system. This makes it possible to run a combined simulation (a co-simulation)
of both continuous and discrete models, observing the consequences of, say, a
change in process distribution or a sensor failure, on the full control system and the
controlled process. Changes in models can be caused by changes in requirements
or component capabilities, or by deliberate refactoring. In particular, changes in one
model may have ramifications on others. The co-modelling approach that we discuss
in this book could help address this because the impact of changes can be assessed
immediately, prior to the integration of separately developed constituent parts.

To deal with the first five design challenges mentioned in Sect. 1.3, use of
models and simulationa needs to start from the beginning of the design process.
The Crescendo methods and tooling support collaborative modelling and simulation

14 M. Verhoef et al.

in all stages of design, including early stages, and so aim to support a concurrent
engineering approach. To address the sixth challenge, relating to dependability
and fault tolerance, we provide guidelines and examples to enhance initial
co-models with realistic behaviour, faults and fault-tolerance solutions. Testing
via co-simulation allows designers to explore several possible designs, allowing
them to assess these trade-offs in the early phases of the design cycle. As such
testing can be laborious, especially when the number of alternatives in combination
with several fault situations can explode, the Crescendo automated testing tool can
facilitate this work.

But perhaps the most important aspect of Crescendo is not the potential
productivity improvement, but the ability to create abstract and multi-disciplinary
system-level models that are competent. In other words, the predictions obtained
from the models match, within some acceptable error margin, the behaviour of the
real system that is under development. At the end of the day, this is what modelling
is all about, since the overall aim is to raise the confidence in designs, especially in
the early phases of the product development life-cycle.

1.6 Conclusion

There is a pressing need for collaborative approaches to modelling in embedded
systems design, and presented our approach embodied in the Crescendo tools. In this
chapter, we have reviewed the design challenges facing the embedded systems
sector, including increased “TTM” pressures and the need for greater dependability.
We identified critical problems that occur during developments, including the gap
between existing design methods and rapidly changing technology, the challenge of
volatile requirements and a need for late closure of the design loop, as well as the
necessity for multiple disciplines to collaborate for a design to be successful.

Using a fictional account of an embedded systems design, we illustrated some
of these challenges and presented the rather different perspectives of engineers
and software designers. Although fictional, the story reflects the experiences of
industrial practitioners who participated in the development of the methods and tools
described in the remainder of this book. We explained the essential contribution of
the Crescendo approach, stressing three key points:

— using a model-based approach from the beginning of design;

— allowing multidisciplinary, collaborative modelling; and

— supporting dependability from early in product development by fault modelling,
fault injection and automated testing to check fault tolerance.

Chapter 2
Co-modelling and Co-simulation in Embedded
Systems Design

John Fitzgerald and Kenneth Pierce

2.1 Introduction

This chapter introduces the first basic concepts of co-modelling and co-simulation,
including notions of system, model and co-model, simulation and co-simulation,
etc. It also describes the ways in which co-modelling and co-simulation can be
integrated with established development processes such as IEEE 15288 (Systems
and Software Engineering—System Life Cycle Processes, [45]) and IEEE 12207
(Systems and Software Engineering—Software Life Cycle Processes, [44]).

The collaborative development of an embedded system requires productive
interaction between engineers from very different backgrounds. Control engineering
and software engineering have matured over many decades, each with its own
philosophy, methods and terminology, and so it is necessary to clarify the common
ideas that underpin co-modelling and co-simulation. This chapter introduces
these concepts, including the ideas of system (Sect.2.2), model (Sect.2.3), co-
model (Sect.2.4), co-simulation (Sect.2.5) and design space exploration (DSE)
(Sect. 2.6). Realising collaborative modelling and co-simulation within established
development processes is considered in Sect.2.7. Finally, Sect.2.8 provides a
summary of the chapter.

2.2 Systems and System Boundaries

We build models in order to assist in the design of systems. We regard a system as
an entity that interacts with other entities, including hardware, software, humans
and the physical world [6]. The system may itself be a group of interacting or

J. Fitzgerald (P<) « K. Pierce
Newcastle University, Newcastle upon Tyne, UK
e-mail: john.fitzgerald @newcastle.ac.uk; kenneth.pierce @newcastle.ac.uk

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 15
DOI 10.1007/978-3-642-54118-6_2,
© Springer-Verlag Berlin Heidelberg 2014

mailto:john.fitzgerald@newcastle.ac.uk
mailto:kenneth.pierce@newcastle.ac.uk

16 J. Fitzgerald and K. Pierce

interdependent items forming a coherent whole [4]. The system boundary defines a
frontier between the system and the entities that form its environment. The developer
can exercise some choice over the design of entities within the boundary of a
system of interest. By contrast, the laws governing the behaviour exhibited by the
environment are beyond the developer’s direct control.

In an embedded system, the entities within the system boundary may be digital
computing elements or physical elements such as machines. The environment
provides stimuli to the system, and the resulting behaviour of the system, visible at
its boundary, is termed its response. Embedded control systems are typically thought
of as being composed of a controller and plant (“that part of the system which is to
be controlled” [43]). The controller contains the control laws and decision logic that
affect the plant directly by means of actuators and receive feedback via sensors.

Experience suggests that, while control engineers and software engineers might
broadly agree on these definitions, they will have a natural bias towards some
aspects of a system. For example, software engineers may see the environment as
everything outside of the computing part of the system, including the plant, whereas
control engineers may focus mainly on the plant as the system. Communication is
therefore required in a co-modelling project to ensure common understanding of
where the boundaries of influence and responsibility lie in the design process.

2.3 Models

In this book, we focus on the use of models to describe designs during product
development. The act of creating models is called modelling. A model is an abstract
description of the reality of a putative system [4]. The model is abstract in the
sense that it omits details that are not relevant to the purpose for which the model
is constructed. For example, a model of an aircraft flight control system intended
to ensure smooth response to pilot commands may omit details of the cockpit
layout, but would instead focus on the commands that can be generated to the
control surfaces. Models that are expressed with sufficient clarity and precision
may be analysed to confirm or refute the presence of desirable characteristics or
the absence of undesirable properties. This helps developers to control risk by
providing assurance of design characteristics before expensive commitments are
made to implementation in target software and hardware.

A model may contain representations of the system, environment and stimuli.
We regard a model as being competent for a given analysis if it contains sufficient
detail to permit that analysis. Models may be analysed by inspection or by formal
mathematical analysis. Many models are also executable in that they may be
performed as a sequence of instructions on a computer; such an execution is termed
a simulation because the behaviour exhibited is intended to simulate that of the
system of interest.

2 Co-modelling and Co-simulation in Embedded Systems Design 17

A design parameter is a property of a model that can be used to affect the model’s
behaviour, but which remains constant during a given simulation. A variable is part
of a model that may change during a given simulation. We consider code generation
to be the process of implementing a controller by automatically translating a model
into some programming language, which can then be executed on the real computer
hardware of the system.

Embedded systems contain both computing and physical elements, and so we
expect that the models describing these may be quite different in nature. In this
book, we focus on two types of models: discrete-event and continuous-time. In
a Discrete-Event (DE) model, “only the points in time at which the state of the
system changes are represented” [83, p. 15]. Discrete-event modelling is typically
used for digital hardware [5, 68, 93], communication systems [11] and embedded
software [22]. In a continuous-time simulation, “the state of the system changes
continuously through time” and the simulator “approximates continuous change by
taking small discrete-time steps.” [83, p. 15]. By contrast, Continuous-Time (CT)
modelling uses differential equations and iterative numerical integration methods
to describe dynamic behaviour. Continuous-time modelling is typically used for
analogue circuits and physical processes [68].

In this book, we set out to answer the question of whether DE and CT models
can be brought together in a sound but practically useful way to enable the early-
stage collaborative design of embedded systems. The principles and experience
that we present can be applied to a wide range of notations and tools for CT
and DE modelling. However, we have realised the approach using two particular
formalisms: bond graphs [16] for CT models and Vienna Development Method
(VDM) [37,50] for DE models. VDM models can be constructed, animated and
analysed using the tool Overture [56], which provides natural features for describing
software structures and behaviour. In the same way, bond graphs can be supported
by the tool 20-sim [53] which allows the plant to be modelled in several ways,
including the powerful bond graph [52] notation which permits domain-independent
description of the dynamic behaviour of physical systems. Overture and 20-sim
are linked by a new tool Crescendo, which allows models expressed in the two
formalisms to be developed and analysed together. 20-sim and VDM are introduced
in depth in Chaps. 3 and 4.

2.4 Co-models

Our approach focuses on system models that are composed of a DE model of
a controller and a CT model of a plant (called “co-models”). The DE and CT
models are referred to as constituent models. Interaction between the DE and CT
models is achieved by executing them simultaneously and allowing information to
be shared between them. This is termed a co-simulation. In a co-simulation, a shared
variable is a variable that appears in and can be accessed from both the DE and CT

18 J. Fitzgerald and K. Pierce

Fig. 2.1 A co-model
contains a DE model, contract
and CT model, where a SONIBAGT J
contract may define shared DE - CT
design parameters, events and MODEL 2::;:: design parameters z MODEL
shared variables Shared variables

monitored variables *—

controlled variables —_

models. Design parameters that are common to both models are called shared design
parameters.

An event is an action that is initiated in one model and leads to an action in
another model. Events can be scheduled to occur at a specific time (time events)
or can occur in response to a change in a model (state events). State events are
described with predicates (Boolean expressions), where the changing of the local
value of the predicate during a co-simulation triggers the event. In our approach,
events are referred to by name and can be propagated from the CT model to the DE
model within a co-model during co-simulation.

Shared variables, shared design parameters and events define the nature of
the communication between constituent models. These elements are recorded in
a contract. For each shared variable, only one constituent model (either the DE
model or the CT model) can be assigned write access to it. In the control-system
paradigm, shared variables written to by the DE constituent model are called
controlled variables and those written to by the CT constituent model are called
monitored variables. A co-model is a model comprising a DE model, a CT model
and a contract. Note that a co-model is itself a model and that a co-simulation can
therefore be described succinctly as the simulation of a co-model. Figure 2.1 shows
a hierarchy of the concepts relating to a co-model.

For a co-model to produce simulation results that can be trusted, the DE and
CT models must be consistent with each other. Consistency can be broken down
into two parts. If the models agree on the identities and data types of the variables,
parameters and events they share, then they can be said to be syntactically consistent
with each other. Achieving syntactic consistency alone does not guarantee that the
simulation will produce trustworthy results. For that, the models must also agree on
the semantics of the variables, parameters and events they share. If this agreement is
reached, then the models can be said to be semantically consistent. Only when the
DE and CT models are both syntactically and semantically consistent can we say
that the co-model is consistent and only then can we place trust in its results.

We suggest that at a minimum, the following should be recorded about each
contract entry: the SI unit' or a simple description of the value, the range of
acceptable values, the datum against which a value is measured, and the direction

I'The international system of units, abbreviated ST from French: le Systéme Internationale d‘unité.

2 Co-modelling and Co-simulation in Embedded Systems Design 19

of positive values or frame of reference. For events, the condition under which the
event will be raised should be recorded.

2.5 Co-simulation

Simulation of a co-model is called co-simulation. During a co-simulation, the DE
and CT simulator have responsibility over their own constituent models. Overall
coordination and control of the co-simulation is the responsibility of a co-simulation
engine that is responsible for the progress of time in the co-simulation and the
propagation of information between the two constituent models. Crescendo acts as
such an engine.

Figure 2.2 shows the co-simulation engine interacting with the DE and CT
simulators. The thin arrows indicate inputs and outputs. The DE simulator and CT
simulator take a DE model and a CT model as input, respectively. The contract and
scenario are inputs to the co-simulation engine. The co-simulation engine outputs
a set of results (representing the outcome of the co-simulation). The large arrows
indicate data exchange between the co-simulation engine and the two simulators.
Note that the simulators do not communicate directly.

2.5.1 The Co-simulation Engine

In order to allow coherent co-simulations to be performed, it is important to recon-
cile the semantics of two simulation tools from different domains. This is covered
in detail in Chap. 13. At this stage however, it is useful to understand the basic
operation of a co-simulation and of the co-simulation engine.

Figure 2.3 presents an abstract view of the synchronisation scheme underlying
co-simulation between a DE simulation of a controller (top) and a CT simulation of
the plant (bottom). The DE and CT simulators are coupled through a co-simulation
engine that explicitly synchronises the shared variables, events and simulation time
in both linked simulators (the co-simulation engine is not shown explicitly in
Fig.2.3).

Each simulator maintains its own local state and internal simulation time. At the
start of a co-simulation step, the two simulators have a common simulation time.
The granularity of the synchronisation time step is always determined by the DE
simulator. The scheme does not require resource-intensive rollback of the simulation
state in either of the simulators, though rollback may occur inside the CT simulator
in order to catch the precise time requested, i.e., when a zero crossing is detected in
an equation.

At the start of a co-simulation step (#, in Fig. 2.3), the DE controller simulation
sets the controlled variables and proposes a duration by which the CT simulation
should, if possible, advance. The co-simulation engine communicates this to the CT

20 J. Fitzgerald and K. Pierce

DE /I I\ CcT
MopeL [] DESIM || CT SIM [<—| MopeL
|7

SCENARIO |
—

———— | | CO-SIMENGINE
CONTRACT | & !
! Data exchange, event RESULTS
\ passing, time steps /
Fig. 2.2 Tool-oriented perspective of a co-model
tn ty tn+1
DE SIM _—
step
controlled i
; monitored
ﬂ variables variables
CT SIM _—
step
tn tn+1 tn+1

Fig. 2.3 Example of the synchronisation scheme for DE-CT co-simulation

simulator. The CT simulator then tries to advance its simulation time. If an event
occurs before the proposed step time is reached, the CT simulator stops early so that
the DE simulator can be notified of the event. Once the CT simulator has paused
(reaching internal time #,,+), the monitored variables and the actual time reached in
the CT simulation are communicated back to the DE simulator. The DE simulation
then advances so that both DE and CT are again synchronised at the same simulation
time.

2.5.2 Scenarios

To predict a system’s behaviour using a co-model, it is often desirable to try out
a number of scenarios, in which certain aspects are varied, including the setup of
the modelled system, simulated user inputs and faulty behaviours. Scenarios are
realised through two features: co-simulation settings and scripts.

The settings configure a co-simulation before it begins. Settings include: selec-
tion of alternative components from within the co-model, setting of design param-

2 Co-modelling and Co-simulation in Embedded Systems Design 21

Fig. 2.4 A co-simulation run

comprises a co-model,
scenario and test results SCENARIOJ RESULTS J
CO-MODEL

Settings and Logs, graphs,
script and images

eters and various tool settings such as co-simulation duration and choice of
integration method. A script may influence a co-simulation during execution by
changing selected values in the co-model. Values can be changed at a given time
or in response to a change in the state of the co-model. Scripts are defined using a
simple, domain-specific language and are contained in a script file. Scripts can be
used for fault activation and for mimicking user inputs.

The output from a co-simulation is a fest result that may take a number of forms,
including a log of data collected during execution for post-simulation analysis and
2D and 3D plots to allow the simulation state to be observed more immediately.
The combination of a co-model, a scenario and corresponding test results is called a
co-simulation run. Figure 2.4 shows the elements that make up a co-simulation run.

2.6 DSE and Automated Co-model Analysis

As with other model-based techniques, our approach can be used to test a range of
solutions while creating a design. We view the design space as the set of possible
solutions for a given design problem, and DSE is an activity undertaken by one
or more engineers in which they build and evaluate co-models in order to reach a
design from a set of requirements. Where two or more co-models represent different
possible solutions to the same problem, these are called design alternatives. Each
choice involves making a selection from alternatives on the basis of criteria that are
important to the developer (e.g. cost, performance). The alternative selected at each
point constrains the range of designs that may be viable next steps forward from the
current position. Figure 2.5 illustrates the concept of DSE.

Crescendo aids DSE by supporting the selection of a single design from a set of
design alternatives. Ranges of values for co-model settings can be defined before
the tool then runs co-simulations for each combination of these settings. Results
are stored for each simulation and can be analysed. We call this feature Automated
Co-model Analysis (ACA). One way to analyse these results is to define a ranking
function, which assigns a value to each design based upon its ability to meet the
requirements defined by an engineer. After the co-simulation runs are complete, the
ranking function can be applied to the test results, producing analysis results that
contain the rank(s) for each design simulated.

22 J. Fitzgerald and K. Pierce

QO Design

} Potentialdesign
— Design choice
--- Potentialchoice

Initialidea

[GELFEIEIEY

Level of abstraction

Solutions that meet the abstract specification

Fig. 2.5 A cone symbolising exploration of the design space and showing how a choice restricts
further designs, inspired by [25]

2.7 Co-simulation in Practice

The approach proposed in this book may be applied in the concept definition phase
in order to clarify the optimal system-wide requirements for the different parts of
the system. However, if it is not just used at the very early stages, successful use
of our approach may rest on integrating it with existing practices and design flows.
This may involve identifying how our approach fits existing standards. In addition,
decisions about how to bring co-simulation into a design flow where model-based
design is already used will depend on the type of modelling done previously and
the competencies of the team involved. These two aspects also influence the choice
of how to build an initial co-model. We offer some insights into these points in the
following sections.

2.7.1 Where Does Co-simulation Fit with Existing Practice?

To help with getting a feel for how our approach can fit into existing prac-
tices, we describe how our approach can map into the following existing stan-
dards: ISO/IEC and IEEE standards 15288 [45] and 12207 [44]; ECSS-E-40 [31]
(Space Engineering—Software) and ECSS-Q-80 [32] (Space Product Assurance—

2 Co-modelling and Co-simulation in Embedded Systems Design 23

Software Product Assurance); and the Rational Unified Process (RUP) [82]. While
these workflows differ in some ways, they have two key properties in common. First,
none of them mandates a particular life cycle, but they do identify processes that
form part of life cycles that can be implemented in specific projects and development
organisations. Second, it is possible to identify a core progression of processes that
holds across all of these frameworks.

The development process starts with something that needs to be designed. This
is the operational concept in IEEE 12207 or the vision in the RUP. From here, each
of the four workflows defines a set of ordered processes that occur in a development
(described as requirements for engineering in ECSS-E-40, technical processes in
IEEE 15288/12207 or phases in the RUP). All four workflows broadly adhere to the
following pattern:

* Requirements definition

* Requirements analysis

e Architectural design

* Detailed design

* Implementation/integration
e Operations and maintenance

Collaborative modelling and co-simulation can have a role in several of these
processes. In IEEE 12207 terms, Crescendo forms an “enabling system” supporting
parts of the system life cycle, notably the more upstream technical processes.
Relating to ECSS-E-40, Crescendo represents “tools and supporting environment”.
We would expect to see applications of collaborative modelling and co-simulation
as follows:

Requirements definition: During elicitation, requirements can be expressed in
terms of a co-model or less formally. Defining the stakeholder requirements
includes the development of representative activity sequences or use cases
that help to elicit requirements that may not have been explicitly stated. Co-
models and co-simulation can help subsequent analysis and maintenance of
stakeholder requirements to identify areas of ambiguity or incompleteness and
the communication back to the stakeholders of these deficiencies. A collaborative
model allows system elements, continuous and discrete, to be expressed in
the appropriate formalism, and this in turn may make the model easier to
communicate to stakeholders.

Requirements analysis: A representation of a technical system (for example, a
co-model) that meets the requirements is built. It involves the definition of
a system boundary and of the services delivered at the boundary. Here, we
expect co-models to be valuable in considering in depth alternative boundaries
and functions. IEEE 15288 states that “System requirements depend heavily
on abstract representations of proposed system characteristics and may employ
multiple modelling techniques and perspectives to give a sufficiently complete
description of the desired system requirements” (IEEE 15288, Clause 6.4.2.3).

24 J. Fitzgerald and K. Pierce

Architectural design: This process involves the allocation of responsibilities to
units in a solution architecture, each unit having defined internal or external
interfaces. From the perspective of co-simulation, the key part of this process
is the evaluation of alternative design solutions. Expressed as co-models, these
alternatives can form the basis of trade-off and risk analyses.

Detailed design: Here, the design of the units in a solution architecture is built. By
this stage, a single design should have been chosen from the set of alternatives.
The constituent models of the co-model can then be used to explore the detailed
design of the chosen solution and co-simulation used to test the evolving
design.

2.7.2 Developer Background and Legacy Models

The choice of how to begin co-modelling can be influenced by the skills of the
development team and whether or not legacy models exist. Legacy models are
models that already exist and that relate to the system under design. These might
include existing models of the system as a whole in a single formalism; models of
a part of the system, such as a CT plant model; models of potential components
of the system; or models of other systems or components that relate to the system
under design. Legacy models, such as existing plant models, might be used directly
or could simply be used as a reference. Another potential source of modelling
information is in the form of prior art, existing implementations or other prototypes;
these can provide valuable measurements or simply inspiration. It is useful to
identify these models and sources before modelling begins.

The skill set of the co-model development team is another factor that can
influence the way in which our approach is adopted. Perhaps, the “ideal” make-
up for a team would be a group of experienced modellers from both the DE and
CT domains who understand enough of the mindset within the other domain to
communicate and collaborate effectively. Naturally, the real-world environment is
unlikely to be so idyllic; therefore, it is a good idea to consider the skills of the team
upfront. Software engineers with experience of object-oriented language should not
find the move to VDM-RT difficult. Similarly, experience of other CT formalisms
such as Matlab should permit a smooth transition to 20-sim for modellers. Note,
however, than a team entirely composed of DE or CT experts should be careful not
to be overly biased by their backgrounds.

2.7.3 Paths to Co-modelling

Building a first co-model is a big step towards adopting our approach. We define
three “standard” paths to reach a first co-model, which are based on the structure of
a co-model. Chapter 8 explores the following paths in much greater detail:

2 Co-modelling and Co-simulation in Embedded Systems Design 25

DE-first: Here, initial models are produced in the discrete-event formalism before
introducing a CT model to form the initial co-model. The focus is on developing
the DE controller first.

CT-first: In this approach, initial models are produced in the CT tool, with a DE
model being introduced later to form a co-model. The focus is on modelling the
dynamics of the plant.

Contract-first: In this third approach, a contract is defined initially. The con-
stituent models are then developed separately but concurrently, following the
respective DE-first and CT-first approaches. The contract acts as a guide and
target for constituent model development. This allows for early testing of
constituent models without reliance on a competent counterpart model. The
constituent models are then integrated into a co-model.

2.8 Conclusion

In order to realise the potential of co-modelling and co-simulation technology, we
need to take account of established modelling techniques and practices, rather than
abandoning trusted approaches. In this chapter, we have outlined the concepts,
semantics and pragmatics of co-modelling and co-simulation in our framework.
After introducing the basic concepts, we briefly discussed the mechanics of co-
simulation between DE and CT simulation engines. We indicated the potential of
this approach as a means of exploring alternative designs and described ways in
which this can be aligned with existing design flows, with reference to standard
development processes including IEEE 15288 and 12207. We have only described
the bare bones of the approach; the remaining chapters flesh it out by describing the
DE and CT formalisms on which it has been realised, the tool support developed
and the practical experience of several substantial industrial applications.

Chapter 3
Continuous-Time Modelling in 20-sim

Job van Amerongen, Christian Kleijn, and Carl Gamble

3.1 Introduction

This chapter provides an introduction to continuous-time modelling of physical
systems, written with the DE domain expert in mind. Fundamental concepts such
as bond graphs and differential equations are presented, together with graphical
representations (block diagrams and iconic diagrams) used in the 20-sim tool.
Control architectures in the form of feedforward and feedback controllers are
briefly discussed, including sensors and actuators. Modern controllers are mostly
implemented in computers. The sampled data controllers in the computer are
coupled to the continuous-time plant by analogue-to-digital and digital-to-analogue
converters. The roles of the sampling rate, the number of bits in the converters and
the arithmetic as well as event handing are shortly discussed.

As a running example, we will use the experimental setup of Fig.3.1. In this
setup, an electric DC motor is coupled to a voltage source on the electrical side
and to a mechanical load by means of a belt and a flexible rod. This model is
representative for a large class of mechatronic systems.

When we try to model such a physical system, a first step is to identify
subsystems in the system. The causal relation diagram sketched in Fig. 3.2 shows
how we can recognise subsystems in the electrical and mechanical domain, coupled
by means of a transducer in the form of an (electric) motor. All these components

J. van Amerongen (<)
University of Twente, Enschede, The Netherlands
e-mail: J.vanAmerongen @utwente.nl

C. Kleijn
Controllab Products, Enschede, The Netherlands
e-mail: Christian.Kleijn@controllab.nl

C. Gamble
Newcastle University, Newcastle upon Tyne, UK
e-mail: carl.gamble @newcastle.ac.uk

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 27
DOI 10.1007/978-3-642-54118-6_3,
© Springer-Verlag Berlin Heidelberg 2014

mailto:J.vanAmerongen@utwente.nl
mailto:Christian.Kleijn@controllab.nl
mailto:carl.gamble@newcastle.ac.uk

28 J. van Amerongen et al

+\ Controllab

s partres in mechatranic design

Fig. 3.1 A servo system with mechanical and electrical parts

\
electrical
domain
\

\

mechanical
domain

signal
domain

physical
domain

Fig. 3.2 Causal relation diagram of the system of Fig. 3.1

are physical components that interact with each other. When we want to control the
angle or angular velocity, we need a sensor and a controller. The sensor produces a
signal that is used in the controller to steer the electric motor.

We can further detail the different balloons in Fig. 3.2 and continue this process
until we arrive at subsystems that cannot be split anymore. We call the models
which describe these subsystems elementary models. The elementary models can
be described by basic physical elements, e.g. a mass, a spring or friction. We refer
to these elementary models as ideal physical models (IPMs). A real spring, as a
component, not only has the property of being a spring, it also has a certain mass
and damping. A component can be built from elementary, ideal models. In the next
section, elementary phenomena in the mechanical, electrical and hydraulic domain
will be described. For these elementary models, common icons in the mechanical
and electrical domains will also be given.

Section 3.2 discusses the basic equations in electrical, mechanical and hydraulic
systems and brings these equations in a generalised form. This emphasises that
dynamical systems in different domains can be described by the same equations.
Then Sect.3.3 illustrates how iconic diagrams can be used to represent such
generalised forms of equations. In Sect.3.4, a domain-independent notation is
introduced in the form of bond graphs. Bond graphs are used in 20-sim, either
explicitly or hidden behind iconic diagrams. This so-called port-based modelling

3 Continuous-Time Modelling in 20-sim 29

enables the use of models which are very close to the physical reality and which can
easily be extended or made more detailed with additional components.

Section 3.5 shows how these systems can be simulated in 20-sim. 20-sim is a
tool that fully supports physical modelling by providing graphical notations, which
are closely related to the physical world, such as iconic diagrams and bond graphs.
In addition, block diagrams and equations can be used as input formats. 20-sim
supports hierarchical modelling and has powerful integration algorithms as well as
tools for symbolically or numerically solving algebraic loops.

Sensors and actuators form the link between the physical world and the signal-
based computer world. Continuous-time and digital control systems are introduced
in Sect. 3.6, while Sect. 3.7 provides additional information on the notation used in
subsequent chapters. Finally, Sect. 3.8 provides a short summary of the chapter. For
a more comprehensive description of the topics treated in this chapter, see [4].

3.2 Physical Systems
In this section, we will describe the most important elementary models in various
domains. Each model is described by an icon and an equation.

3.2.1 Mechanical Systems (Translations)

The basic equations in the mechanical domain are given by Newton’s law, Hooke’s
law and by the relation between force, velocity and (viscous) friction.

Newton’s law describes the relation between a force, F' and the acceleration, a
(the derivative of the velocity, v) and a mass m:

dv
F = =m— 3.1
ma=m— (3.1)

Hooke’s law describes the relation between a force, F, and the extension, x, of a
spring with spring constant, k, or compliance, c:

1
W\ F=kior F = -x 3.2)
C

In the case of a damper with viscous friction, the damping constant, d, determines
the relation between the velocity, v, and the force, F':

30 J. van Amerongen et al

4} o % F=dv (3.3)

3.2.2 Mechanical Systems (Rotations)

The equations in the translation domain have their equivalents in the rotation
domain. Newton’s law for the relation between a torque, 7, and the angular
acceleration, « (the derivative of the angular velocity, @) and the inertia, J, is

dw
T = =J— 4
T PO "

Hooke’s law for the relation between a torque, 7', and the extension, ¢, of a spring
with spring constant, k, or compliance, c, is

—@) — 1
T =kporT =—¢ (3.5)
c

In the case of a damper with viscous friction, the damping constant, d, determines
the relation between the angular velocity, w, and the torque, 7':

i}' or é%%%* T =do (3.6)

3.2.3 Electrical Systems

The basic equations in the electrical domain are given by equations for inductance,
capacitance and resistance. The relation between the electrical current, i, the
voltage, u, and the self-inductance, L, of a coil is given by

Y YL di
u=L- (3.7)

The relation between the electrical current, i, the voltage, u, and the capacitance, C,
of a capacitor is given by

3 Continuous-Time Modelling in 20-sim 31
| I du
i=C— 3.8
7 (3.8)

Ohm’s law describes the relation between the current, i, the resistance, R, and the
voltage, u, of a resistor:

|1 u=Ri (3.9)

3.2.4 Hydraulic Systems

The basic equations in the hydraulic domain give the relation between pressure and
flow. The relation between the fluid flow, ¢ and the volume, V', for a fluid storage
(e.g. a cylindrical tank with water) is given by

V= / ¢dt (3.10)
or, when we take the area of the tank and the properties of the fluid into account:
1
pz—/d)dt (3.11)
c

where p is the pressure at the bottom of the tank and ¢ is a constant, which
determines the “capacity” of the tank.
For a restriction we find, similar to Ohm’s law:

p=ré (3.12)

where r is the hydraulic resistance, e.g. of a tap.

3.2.5 Equations in Integral Form

At first sight there is no relation at all between all these equations. However, we
can rewrite these commonly used forms and bring the equations into a common
framework. First of all we realise ourselves that for simulations in a computer
integral forms (or integral causality) are preferred above derivative forms. In
addition, we note that in a mechanical system the following relations hold:

32 J. van Amerongen et al

dx dv
= " andag = — 3.13
v o and a ” ()
or in integral form:
X = /vdt and v = /adt (3.14)
With (3.14) we can rewrite Newton’s law (3.1) and Hooke’s law (3.2):
dv .. 1
F =ma — F = m— orinintegral form: v = — | Fdt 3.15)
dt m
and
.. 1
F = kx — orin integral form: F = k/vdt or F = —/vdt (3.16)
c

In a similar way, we can rewrite the equations for the electrical domain (3.7)
and (3.8):

—Ldi—>i—1/ dt (3.17)
u= 7 =7 u .
and
du 1
| = C— =—11i N
I Cdt—>u C/ldt (3.18)

Because the equations for the electrical and hydraulic resistance and for the
mechanical friction are algebraic equations, there is no preference for one particular
form. Therefore, we can write Egs. (3.3), (3.9) and (3.12) in any of the forms below:

F=dw=F/dF —dv=0 (3.19)
u=Rii =u/Ru—Ri=0 (3.20)
p=r¢p=p/rp—rp =0 (3.21)

As a result of rewriting the equations, they can now be combined into a common
framework as in Table 3.1. Table 3.1 suggests that we can consider the variables F,
u and p as analogue variables. Similarly the variables v, i and ¢ can be considered
analogue variables. We could also have made the choice to consider F' and i as
analogue variables, but the so-called force-voltage analogy is most common.

The equation for the hydraulic inertia in the lower-right corner of Table 3.1 was
not mentioned before. It follows in fact automatically from the symmetry in the
rest of the table. This equation describes the inertia of a moving fluid mass. It is

3 Continuous-Time Modelling in 20-sim 33

Table 3.1 Equations and icons of elementary submodels in various domains

Domain Behaviours
Mechanical (translation) Spring: Damper/friction: Mass:
%% 1+ »%
P=Fv F=1[vat F—dv=0 v==L [Fdt
Mechanical (rotation) Spring: Damper/friction: Inertia:
¢
e a1 B 1
P=Tow T=1![wd T—do=0 w=1[Tat
Electrical Capacitor: Resistor: Inductance:
== —r o
P =ui u= % [idt u—Ri=0 i= 1 [udt
Hydraulical Tank: Resistance: Inertia:
P =p¢ p =/ ¢d p—ré=0 ¢ =1 /pdt

responsible for a phenomenon known as water hammer: a sudden change in the
flow of fluid, e.g. by closing a tap, will lead to large forces on the piping and may
produce a sound as if the pipes were hit by a hammer.

3.2.6 Power

Models of physical systems, like the system of Fig. 3.1, are often not restricted to
a single domain. But there is a variable that all domains have in common. That is
power. In the domains given in Table 3.1, power is the product of respectively F
and v, u and i, and p and ¢:

P =FvP =uiP = p¢ (3.22)

The fact that power is common in different domains enables us to couple
these domains. Take for instance an elementary electrical motor, i.e. a motor,
which converts electrical power into mechanical power, without any losses. At the
electrical side power (in [kWh]) is the product of voltage u and current i. At the
mechanical side, using SI units, power is expressed again in [kWh], now the product
of the force F' and the velocity v. To model an electrical motor, we need an element
that relates the electrical variables u# and i to the mechanical variables F' and v,
under the condition that

Ui = Py = Prech = Fv (3.23)

34 J. van Amerongen et al

Table 3.2 Summary of the basic icons in various domains

Mechanical translation
W\ —F s
spring damper mass fixed world
friction
Mechanical rotation
W A {F s
spring damper moment of fixed world
inertia
@ /%
spring friction

Electrical J_ g
T =

Capacitor ~ Resistor Inductance Ground

In Sect.3.4.2, we will see how power can be used as the basis for modelling of
systems in various physical domains and introduce this elementary motor model.

3.3 Icons and Iconic Diagrams

A causal relation diagram, like the one in Fig. 3.2, identifies the various subsystems,
but is still far from an exact description of the dynamics of the system. The
elementary submodels or elements, represented by the icons and formulas of
Table 3.1, can be used to describe real components and complete systems. The
various elements are summarised in Table 3.2. The icons of the references in the
form of the fixed world and the electrical ground are given as well.

By connecting these elements (icons), we can make a model. We call such a
model, consisting of interconnected ideal elements, an I/PM or an Iconic Diagram.
Because each of these elements is well described by the equations in Table 3.1, we
can derive the equation(s) that describe the behaviour of the complete system. As
an example of a mechanical system, we consider the mass-spring-damper system of
Fig.3.3.

This system can be seen as a mass that is connected to the ceiling by a spring-
damper combination. Each of the icons represents an elementary model and is thus
described by one of the equations of Table 3.1. The fixed world has a velocity equal
to zero. The mass, as well as the lower ends of spring and damper, has a velocity v.
When the system is at rest, the velocity and acceleration are both equal to zero and

3 Continuous-Time Modelling in 20-sim 35

Fig. 3.3 Mass-spring- N\ FixedWorld
damper system
Spring == Damper
m Mass
I:gravity mg

in this static equilibrium state the gravity force will be compensated by the force of
the spring. When the system is not at rest, the sum of all forces is still equal to zero,
but a, v and x vary constantly. This is called a dynamic equilibrium. The equation
which describes this “equilibrium” is called the equation of motion. In order to find
this equation, we consider the forces related to the elements:

1 1
Fspring = Z vdt = EX

Fdamper =dv (3.24)

1
Vmass = — Fmassdt ora = — Fru
m m
Fgravity = Fg =mg
When we define a downward velocity or force as positive, then a positive velocity

or position of the mass results in counteracting forces of the spring and the damper.
This implies that in the equilibrium state holds

Foravity = Fipring + Faamper + Fiass (3.25)
or
Frnass = Foravity — Fpring — Faamper (3.20)
This can be written as
Frnass = Feravity — éx —dv (3.27)

We can make a graphical representation of this system in the form of a block
diagram that can be used as a representation in the graphical editor of 20-sim.

36 J. van Amerongen et al

Fig. 3.4 Relation between a, a v x
v and x, represented by two —D f f —>
integrators

Fig. 3.5 Second-order E .+
. gravity

mass-spring-damper system

represented by a block

diagram

3
2
3=
lo
—
<
A
—
x
v

F

damper

Fspring 1

We start making the block diagram by drawing two integrator blocks, which give
the relation between x = [vdr (or v = %) andv = [adtor(a = ‘;—f) (Fig. 3.4).
Adding the relations from (3.24) and (3.27) yields a block diagram of this system
(Fig. 3.5).
Another well-known representation of a dynamic system is a differential equa-
tion. The differential equation of this system can be derived from the block diagram
or by rewriting (3.27):

Fnass = ma = gravjty-zx-dv
(3.28)
d’x 1 dx
m? = Fgravity'zx‘da
or
d’x dx 1
m? + d% + ;X = Fgravity (3.29)

Note: In the case that the derivatives of x (v = % anda = %) are equal to zero, (3.25)
describes the static equilibrium.

3.4 A Domain-Independent Description: Bond Graphs

When systems become more complex, deriving equations (and block diagrams,
which are just a graphical representation of the equations) requires more and more
effort. Also, when only minor changes are made in the system, it may be required
to derive a complete new set of equations. 20-sim is able to generate the equations
automatically, either from a block diagram (like Fig. 3.5) or from an iconic diagram
(like the one in Fig.3.3). How this is done will be explained here. In 20-sim, all
models of physical systems are based on bond graphs even when iconic diagrams
are used. In that case, the underlying bond graphs are hidden for the user. It is

3 Continuous-Time Modelling in 20-sim 37

Fig. 3.6 Electrical circuit Il [
. l LT
with a voltage source N c R g
U I ﬁ
=
Fig. 3.7 Electrical circuit: uc

the half arrows indicate
positive power flow

A2

u .
Isource @ I Iul
7 7

+

|||—

Fig. 3.8 Electrical circuit: c R
the half arrows indicate Uc Ur,
positive power flow i I

S, __ Ysource @ Uy I
u i - i 7

source

good to understand some basic properties of bond graphs because this helps to
make competent models of systems that extend over various physical domains.
Bond graphs are in fact domain-independent representations based on the analogies
mentioned in Table 3.1. We will demonstrate this with an example of an electrical
and a mechanical system. First we consider the electrical circuit of Fig. 3.6.

In this circuit, all elements share the same current. And when we add orientations
to the voltages, the sum of all these voltages is equal to zero. This is made clear by
redrawing Fig. 3.6 in Fig.3.7. In Fig. 3.7 also an elementary bond graph is drawn.
The half arrows are so-called power bonds. These bonds show how the power from
the source (Psource = Usourcel) 18 distributed over the C, R and l-elements:

Psource = Pc + Pr + P; = (UC + Ur + Ul)l = Usourcel (330)

The diagram with the half arrows of Fig.3.7 has been drawn separately in
Fig. 3.8. Each bond represents power, the product of u and i. This is indicated by
adding these two variables to each bond.

We can do a similar exercise with the iconic model of the mass-spring-damper
system of Fig. 3.3. In this iconic diagram, we see that all the mechanical elements in
Fig. 3.3 share the same velocity at the point where the mass, spring and damper are
connected to each other. The sum of the forces in this point with common velocity
is equal to zero. The power related to the gravity force is in this case distributed over
the spring, damper and mass. If we indicate the spring as a C-element, the damper
as an R-element and the mass as an l-element, this yields

38 J. van Amerongen et al

Fig. 3.9 Mass-spring-
damper system

C:c R:d C:c R:d
‘g Fy‘ ‘g Fy’
/ v v
F gravity F, gravity
S—— Vv Ss—— v

FL o Fltv

I:m I:m

Table 3.3 Effort and flow variables in various domains

Domain Effort (e) Flow (f) Power (P = ef)
Mechanical (translation) Force (F) Velocity (v) P =Fv
Mechanical (rotation) Torque (T) Angular velocity (w) P=Tw
Electrical Voltage (u) Current (i) P =ui

Pgravity =Pc+ Pr+ P =(Fc+ Fr+ Fj)v= FgravityV (3.31)

This results in Fig. 3.9, which shows almost the same graph as Fig. 3.7.

In order to emphasise the common properties of the systems, we make a slightly
more abstract representation. We saw already in Table 3.1 that when we consider F,
T, u and p as analogue variables, we get a set of similar equations. Therefore, we
generalise these variables the so-called effort variables (e). Similarly we generalise
the variables v, w, i and ¢ to flow variables (f). This is summarised in Table 3.3.

This leads to the generalised equations for the C, | and R-elements:

e—E/ft
f:%/edt (3.32)

e—Rf =0

In the bond graph, we could represent the variables i and v by the flow variable f
and the effort variables u and F by the effort variable e. At the junctions, where the
bonds come together we use the symbol 1 for a common flow and the symbol 0 for a
common effort. The 1-junction not only represents the current (i) or the velocity (v).
It also indicates the point where the power from the effort source (Se) is distributed
over the C, | and R elements:

Pse = Pc + Pr + Pg (3.33)

3 Continuous-Time Modelling in 20-sim 39
C R
eC e R
f /
e €se 1 e
f f
Fig. 3.10 Domain-independent bond graph representing the iconic diagrams of Figs. 3.3 and 3.6

Il — 1 Y c R I

I L . l

C R it} I2 is
Se 1

=0 Uy

S

|m+
N
c
P
N

iq+ip=i

L R:Rz

Fig. 3.11 Bond graph with a 0-junction (with two electrical elements in parallel)

or because all elements share the same flow:
esef =ecf terf +erf —ese—ec—e—ep=0 (3.34)

This leads to the domain-independent bond graph of Fig. 3.10.

Thus at a 1-junction the sum of the efforts (taking into account the direction of
the half-arrows) is equal to zero. In the dual case, a 0-junction not only represents
an effort but also that the sum of all the flows (taking into account the direction of
the half-arrows) is equal to zero.

An example of an electrical system with a 0-junction is given in Fig.3.11. The
parallel circuit of the inductance (I) and the resistor R, shares the same voltage u
and it is thus represented by a 0-junction.

The iconic diagrams of Figs.3.3, 3.6 and the bond graph representation in
Fig. 3.10 represent the same information with respect to the dynamics of the system.
In order to find the equations for these systems, the bond graph can be enhanced with
the so-called causal strokes. With these causal strokes the bond graph can be directly
translated into a set of equations, required to simulate the system. We have already
seen that for simulations it is preferred to compute the equations for the different
elements in integral form. In other words, we prefer integral causality. This implies
that according to Eq. (3.32), for a C-element we prefer to compute effort as output
with flow as input. This can be expressed as: C-elements have preferred effort-out
causality. Similarly, l-elements have preferred flow out causality.

Causality can be indicated in the bond graph. Elements with effort-out causality
have a so-called causal stroke at the end of the bond near the junction. Elements
with flow-out causality have the causal stroke at the end of the bond away from the
junction. A bond with a causal stroke can also be represented as an equation or a
block diagram (Fig. 3.12).

40 J. van Amerongen et al

Fig. 3.12 Preferred and
non-preferred causality of C-
and l-elements: bond graphs, 1
equations and block diagrams e= C f fat

I ——1:f

f:%fedt

de ar
= C— = J—
! dt dt
e, d » C —f> f—» d > 1 L&
dt dt
Fig. 3.13 R-elements have e) e) e)
indifferent causality R f 1:f R f 1:f R f 0:e
e—Rf=0 f=elR e=Rf

Fig. 3.14 Fixed causality of
effort and flow sources

a-causal

flow-out causality

S:e%lo:e

u

effort-out causality

§f|ﬁ? 1:f
i

e=1u f=i
[St—

The bond in the upper-right corner of Fig.3.12 shows that the flow of the 1-
junction is determined by integrating the effort of the l-element (according to
Eq.(3.34) e;: the sum of the efforts of all the other elements connected to this
junction) and dividing this by 7. In this case, we say that the l-element has the
preferred flow-out causality. When the causal stroke is at the other end (lower-right
corner of Fig. 3.12), the l-element has the non-preferred effort-out causality. In that
case, the effort must be computed as the derivative of the flow.

Because R-elements are described by a static relation, there is no preference for
effort-out or flow-out causality. R-elements have thus an indifferent causality (see
Fig.3.13).

Because an ideal voltage source always delivers a voltage (or effort), a voltage
source has fixed effort-out causality. In the dual case, a current (flow) source has
fixed flow-out causality (see Fig. 3.14).

In Figs. 3.12 and 3.13, we connected the bonds with effort-out causality always
to a 0-junction and the bonds with flow-out causality always to a 1-junction. When
there are more bonds connected to a junction, the junction can be either a 0- or a
1-junction.

3 Continuous-Time Modelling in 20-sim 41

Fig. 3.15 Causal bond graph

> C:c R:f
of the mass-spring-damper
system
2
4

Se ———i 1

1
Fgravity
3
I:m

Junctions have a causal constraint. A 1-junction represents a flow. This flow can
only be determined by one of the elements connected to the junction. This implies
that only one of the bonds connected to this junction has flow-out causality. The
other bonds must have effort-out causality. In the dual case, a 0-junction represents
an effort. This effort can only be determined by one of the elements connected to
the junction. This implies that only one of the bonds connected to a 0-junction has
effort-out causality.

3.4.1 Example

With these rules we can make the bond graph of Fig. 3.9 causal. We start with the
fixed causality of the gravity force, represented by the effort source Se (1). Because
there are no other elements with fixed causality, we assign the preferred causality
to the C-element (2). Then we assign the preferred causality to the l-element (3).
Of course we can interchange the order of step 2 and 3. The last (R-)element has
indifferent causality, but the causal constraint of the 1-junction tells us that there
can be only one bond with effort out causality at the 1-junction. This implies that
the R-element must have effort-out causality (4) (Fig. 3.15).

A causal bond graph can directly be converted into equations. Remember that in
this mechanical system the flow of the 1-junction stands for a velocity and the effort
for a force. The set of equations ((3.35) and (3.36)) is equal to Egs. (3.24)—(3.26):

The equation for the 1-junction yields

ese—ec—eg—e; =0— Frnass = gravity — Fspring - Fdamper (3.35)

The equations for each bond yield

1 1
f = —/eIdt - V= _/Fmassdt
m m
€se = ’i”g g Fgravity =mg (3.36)
ec = — /fdt = Fypring = —/vdt
Cc c
er =df g Fdamper =dv

42 J. van Amerongen et al

-
Km - GY
. Km

Fig. 3.16 Elementary DC motor (left) and bond graph representation: gyrator (right)

Because the bond graphs of the RLC circuit of Fig. 3.6 and the one of the mass-
spring-damper circuit of Fig. 3.3 are identical in terms of effort and flow variables,
a similar set of equations is found for both systems.

3.4.2 Models in Different Domains

The elements presented so far are all one-port elements. They have one so-called
power port. When we want to connect two different domains, we need a two-port
element, where one port is connected to, for instance, the electrical domain and
the other one to the mechanical domain. An example is the system of Fig.3.1.
The electric motor in this system converts electrical energy into mechanical energy
and when it is used as a generator also vice versa. An elementary electric motor is
described by the two equations at the left-hand side of (3.37) and the iconic diagram
of Fig. 3.16. As a bond graph element, the elementary DC motor is represented by a
gyrator (equations at the right-hand side of Eq. (3.37))

T'= K or, more general: e =n (3.37)
u= Kypow e; = nf,

where K, is the so-called motor constant. Note that these equations imply that the
electrical power is equal to the mechanical power:

1
Preech = T = Kle—bt =ui = Py (3.38)

m

Figure 3.16 represents an elementary DC motor. A DC motor as a realistic
component has additional electrical properties which can be represented by the
elements resistance and self-inductance and mechanical properties which can be
represented by the elements friction and inertia. This leads to Fig. 3.17.

In a similar way as we did in Figs. 3.7 and 3.9, we can draw the bond graph of
Fig.3.18.

In order to make this bond graph causal, we need to consider the causal
constraints of the gyrator. Equation (3.37) implies that if one end of the gyrator has
effort-out causality the other end must have effort-out causality as well. Similarly,
if one end of the gyrator has flow-out causality, the other end must have flow-out
causality as well. This is represented in Fig. 3.19.

3 Continuous-Time Modelling in 20-sim

ya'a'aw

1
L1
rR L
+
; el
UG
777
f
=

43

Fig. 3.17 IPM of a DC motor with electrical and mechanical properties connected to a voltage

source

'R |:L
R R:«
\Ur UL/,
I 7} w
Se T 71 i GY o—>1—7)
u i Km @
Fig. 3.18 Power flow to the various elements in the DC motor model
€1 €2 | e €2
11 Y 1 1 Y
—H 7 CY R 18I,
1 1
er=nf, e=nfi f1=;€2 fo=—e

Fig. 3.19 Causal constraints of a gyrator

In a similar way as in the example of Fig. 3.15, we can now make the bond graph
causal. We start again with the fixed effort-out causality of the voltage source (1).
In the next step, we assign the preferred flow-out causality to the inductance (2).
Because of the causal constraint of the 1-junction, the other bonds get effort-out
causality (3,4). The causal constraint of the gyrator results in effort-out causality at
the mechanical side of the gyrator (5). The inertia has preferred flow-out causality
(6) and the causal constraint of the mechanical 1-junction gives effort-out causality

to the friction (7) (Fig. 3.20).

From this causal bond graph, equations can easily be derived:

left 1-junction: right 1-junction:

Up = Usource-UR-UGY T; =Toy-Ty

1 1
izz/uLdt wzj/Tjdt

up = iR T, =dw

Ugy = me TGY = Kmi

(3.39)

44 J. van Amerongen et al
R:d 1:J

\/

|:L

2
Se 111 GY 11
U i Km ®

R:R
3
|
e
!

Fig. 3.20 Causal bond graph of a DC motor

Belt
PR L —
20 J) o J
77777
T d !
U — Km

Jmotor n JLoad

Fig. 3.21 Bond graph of a DC motor connected to a voltage source and a mechanical load via a
transmission

e1 62 e1 62
0l —=TFl—%—1 1—f ATF —,—lo
1 1
e =nep f=nfi f1=;f2 ex=-_e

Fig. 3.22 Causal constraints of a transformer

However, when using 20-sim, there is no need to derive the equations because
both iconic diagrams and bond graphs can be used as input formats for the graphical
editor of 20-sim. In addition, 20-sim does the causal analysis automatically.
However, the causal analysis is not only useful for deriving equations. It also helps
to make a proper model. This will become clear when we extend the model with
the inertia of the load. The load is connected to the motor via a long rod and a
transmission, a pulley-belt-pulley, as can be seen in the photo of the setup (Fig. 3.1).
In order to keep the model simple, we model the rod as a rigid axis and disregard any
flexibility in the belt. The transmission is added in the iconic diagram of Fig. 3.21.

In this case, the transmission corresponds to the elementary bond graph element
transformer (TF), described by Eq. (3.40) and Fig. 3.22

T, =nT, el = nep
or, more general:
Wy = nw fz = nfl

(3.40)
It follows from the equations that if one end of the transformer has effort-out
causality the other end has flow-out causality.
When we add the transmission in the bond graph, we get the graph of Fig. 3.23.
When we try to assign the causality to the elements in this graph, we notice that we
cannot give the l-element J;, the preferred causality. This implies that we can only

3 Continuous-Time Modelling in 20-sim 45

\ / R/i{ /J “Jmotor I Yioad
Se |1 I {11 TF | 1
U i k'm o] oy

Fig. 3.23 Bond graph of a DC motor connected to a voltage source and a mechanical load via a
rigid transmission

R:d C:c I Yioad

VALYt §

1l 3 1 0 1

w3
U i Km 01 Tspring 03

Fig. 3.24 Bond graph of a DC motor with a flexible axis

Belt FlexibleShaft

+
R L Lldde
=L e (o
1
d
U T Km Jmotor n JLoad

Gro_und

Fig. 3.25 IPM of a DC motor with a flexible axis

simulate the system with a simulation program (such as 20-sim) which is able to
compute this element in derivative form. But it is not only a computational problem.
Such a so-called causal conflict indicates that the model is probably either to simple
or too complex. It means in this case that the two inertias are not independent of
each other. Because they are rigidly connected they could be considered as one
inertia (taking into account the presence of the transformer). This would simplify
Fig. 3.23 to Fig. 3.20 with Jigw = Ji +n%J, (n < 1).

Another option is to look more closely to the setup and ask ourselves if we did not
simplify the model too much. The long plastic rod, which connects the transmission
with the load, is certainly not a rigid component. Therefore, it makes sense to model
this flexibility as a rotation spring with some damping. The spring and the damper
share the same velocity difference Aw = w,-w; and the same torque Tpring. This
can be expressed by adding a 1-junction connected to a 0-junction. This leads to the
bond graph of Fig. 3.24. This bond graph can be translated into the iconic diagram
of Fig.3.25.

In this example, the transformer represented a pulley-belt-pulley which “trans-
forms” a rotation into another rotation. Transformers also describe transformations
from the rotation to the translation domain or, in the electrical domain, from one
voltage (and current) to another voltage (and current).

46 J. van Amerongen et al

Belt FlexibleShaft

R L 77774
= S S ONCREAR Y

7777

d

Jmotor n JLoad

Uy

Fig. 3.26 Imploding the elements of the DC motor to a component

3.5 Simulating Physical Systems with 20-sim

20-sim supports all kinds of system representations as a basis for the simulation.
The equation editor allows for the input of differential equations, either in integral or
derivative form. The equations are, if possible, automatically converted into integral
equations for the simulator. If this is impossible, the problems with derivative
causality are solved symbolically or numerically. The graphical editor supports
inputs in the form of block diagrams, iconic diagrams (or IPMs) and bond graphs.
Block diagrams are in fact a graphical representation of equations. Iconic diagrams
and bond graphs are basically a-causal. In order to simulate the system, 20-sim
assigns the causality automatically. Causal conflicts as in Fig. 3.23 are indicated in
the bond graph by an orange causal stroke. This indicates that the causal conflict
will be solved symbolically or numerically in the simulator, but also alerts the user
to think about the complexity of the model. In iconic diagrams, causal conflicts are
reported by messages like

warning: Solved algebraic variables symbolically

{gMotorDisk\alpha in}

The model has 0 errors and 1 warnings.

Although no action is required for such a warning, it makes sense to reconsider if
the model is really adequate.

The different system representations may be used in one single simulation
model. A number of elementary models can be combined into a component by
using the implode option (Fig. 3.26). This option (and the inverse option explode,
see Fig.3.27), supports hierarchical modelling. In addition, the contents of the
component can be made more complex or simpler. As long as the interfaces with
the rest of the system remain the same, there is no need to change the rest of the
model. The imploded model can also be inspected or altered. You can draw your
own icon for the component or even use an image as icon.

When we take another look at Fig.3.1, we see that between the belt and the
flexible rod there is a another rather large metal disk, which can be modelled as an
inertia. In order to make a model with components as close as possible to the real
set-up, we add this inertia to the model (see Fig. 3.28). Because the belt is modelled
as rigid, this leads again to a causal conflict. We have seen that 20-sim can solve this
conflict symbolically.

3 Continuous-Time Modelling in 20-sim 47

o 4 —

7777
d
S U _T|_ Km Jmotor
Ground
Fig. 3.27 Exploding or inspecting the component
Motor Belt FlexibleShaft

+

R L Le

£ oot b
1

U _TI_ o d Jmotor n JMotorDisk JLoad

Ground

DCmotor Transmission Load

* DC
motor

Fig. 3.28 Model including the inertia between the belt and the flexible shaft, imploded into
components

3.5.1 Sensors and Actuators

The models in the previous sections have all in common that they describe physical
systems where power is involved in the coupling between the different elements.
Power is always the product of two variables, in general effort and flow. Effort and
flow are not only physical variables, they can also be seen as signals, containing
information. Block diagrams are pure signal based. The blocks are connected by
single signals in contrast to the bidirectional bonds, which always represent the two
conjugated variables e and f. A controller in a computer can always be expressed as
a block diagram. In the computer, only the information of the signals is important.
Power does not play a role (except for the power needed to run the computer itself).
When we want to connect a computer to a physical system, we need devices which
convert the signals from the computer to power-based actuators and sensors which
extract relevant information-carrying signals from the physical model.

In the example of the DC motor with a mechanical load, we may want to control
the angle or angular velocity of the load. In that case, we need a sensor that measures
an angle in the form of a potentiometer or a code disc. For the angular velocity,
a code disc or tachometer could be used. Although, for instance, a potentiometer
delivers the angle in the form of an electric signal, only the information about the
angle is relevant. In this example, the output of the controller will be a signal,
representing the voltage needed to give the motor the desired motion. This low-
power signal must be amplified by a power amplifier in order to connect it to the
physical system. In 20-sim, this can be done by a so-called modulated voltage

48 J. van Amerongen et al

e .
U—szeﬂo:ezu ’—>MSf|ﬁi1:f=i

+
u i
Fig. 3.29 Modulated sources. Top: Bond graphs. Bottom: IPMs

source. A modulated voltage source has a signal as input and power with a voltage
proportional to the input signal, as output. In a bond graph, this is a modulated effort
source or a modulated flow source. Figure 3.29 gives an example of a modulated
voltage and a modulated current source.

3.5.2 A Brief Introduction to Pulse Width Modulation

In the lower half of Fig. 3.28, we see that the DC motor is connected to a voltage
source and the speed of the motor can be controlled by adjusting the voltage applied
to it. A common way of implementing a variable voltage/power source is through
a method called Pulse Width Modulation (PWM). In PWM, the power to a device,
such as a motor, is switched on and off very rapidly and the result is equivalent to
connecting the device to a power source with a lower voltage. Figure 3.30 shows
three PWM signals, each one exhibiting a different duty cycle, where the duty cycle
represent the percentage of time the power is switched on. The upper signal has a
10 % duty cycle where the power is on for 10 % and off for 90 % of the time, the
middle signal represents a 50 % duty cycle and the lower signal a 90 % duty cycle.
If the voltage in the on state is 5V, then these PWM signals would be equivalent to
0.5, 2.5 and 4.5 V power sources, respectively. It is important that the length of one
cycle is short in comparison to the dynamics of the device being driven. Otherwise
fluctuations will be observed in the output of the device, such as the speed in the
example of a motor. So a lamp dimmer might use a cycle time in the order of 1072 s
while a motor controller cycle time might be in the order of 1073 to 10™*s.

It is possible to implement PWM in a co-model and have a DE controller
switching the power on and off at the CT side, but this would require the CT and DE
models to synchronise at twice the cycle time frequency (once for an on signal and
once for an off). This can result in a simulation progressing slower than is necessary,
especially if other monitored and controlled variables are updated at much slower
frequencies. It is generally the case then that an abstract PWM is modelled by
sending a value representing the PWM duty cycle from the controller to the power
source, and then using a modulated power source, as shown in Fig. 3.29, in the plant
model. This method for modelling PWM can be seen in the line-following robot
examples throughout the book.

3 Continuous-Time Modelling in 20-sim 49

On =]
S 0 10% duty
N 90% cycle
Off
| |
1 1
_ On T
]
g 50% 50% 50% duty
o < >ie P cycle
Off
| |
1 1
On o
o) 90% duty
. 90%) cycle
Off ‘
b 1 cycle i 1 cycle o

Fig. 3.30 Pulse Width Modulation (PWM) power signals

3.6 Control Systems

The torsion bar represents a wide class of electromechanical systems where the
angle or angular velocity (or the position and the velocity) of the load has to be
controlled. Examples are, for instance, the arm of a robot, a printer head or a wafer
stepper used in the semiconductor industry. We can connect the physical system,
in this case the torsion bar to a controller by means of one or more sensors and an
actuator. This is represented in Fig. 3.31. Here we consider position control. It can be
shown that in order to get a stable control system with a relatively simple controller,
the position of the motor and its derivative, the motor velocity, should be used in
the controller. We replace the voltage source of Fig.3.28 with an amplifier and a
modulated voltage source and use an encoder to measure the (angular) position of
the motor (Fig. 3.31).

Most controllers are feedback controllers. A feedback controller is part of the
control loop. It generates the voltage for the motor to bring or keep the load in the
desired position, by making the error between the output of the setpoint generator
and the measured position of the motor as small as possible (see Fig. 3.31).

The advantage of a feedback controller is that it can compensate for unknown
disturbances, uncertainties in the model of the system and parameter variations.
A disadvantage is that feedback controllers may become unstable. Therefore, they
must be designed carefully. The best performance is obtained when the controller
has a high gain, but a high gain may make the system unstable. When a good
model of the physical system is available, a feedforward controller can increase the
performance of the system. The feedforward controller could compensate for the
dynamics of the physical system and generate a proper input signal for this system
before any error signal can be measured. Of course, feedforward and feedback
control can be applied simultaneously (Fig. 3.32).

50 J. van Amerongen et al

Amplifier DCmotor Transmission Load
+
Setpoint | * DC) _
EncoderMotor

Fig. 3.31 Closing the loop with a sensor, a controller and an actuator

Feedforward
Controller "
Amplifier DCmotor Transmission Load
Set point | + Feedback i
generator _ Controller
EncoderMotor
Fig. 3.32 Feedforward and feedback control
position control loop
current control loop
Amplifier DCmotor Transmission Load
Postion | lref Current u DC _
Controller "1 controller motor’) ;
A 7'y :
i(motor current)
" EncoderMotor
¢ (motor position)

Fig. 3.33 Cascade control

Sometimes controllers are applied in a cascade (Fig. 3.33). In the example of the
torsion bar, it would make sense to apply current control instead of voltage control
of the motor. This can be realised by adding a current controller which makes the
current (7) out of the voltage source equal to the desired current (i,.f), generated by
the position controller. As a result the dynamics of the electrical part of the motor
are made so fast, that they can be disregarded. In addition, the current-controlled
voltage source becomes in fact a current source. This situation where the current-
control loop is placed inside the position-control loop is called cascade control. See
Fig. 3.33, where the output of the position-controller, the signal i, is the setpoint
for the current-control loop.

3 Continuous-Time Modelling in 20-sim 51

Amplifier DCmotor Transmission Load
+
+ PID DC
ref _ controller DA » .x“ motor - @
PositionSensor
AD |«

Fig. 3.34 Digital control of a servo system

3.6.1 Digital Control Systems

Physical systems are continuous-time systems. Computers are discrete-time sys-
tems. When we want to connect these two we need two additional converters:
an Analog-to-Digital (AD-)converter and a Digital-to-Analog (DA-)converter. An
AD-converter samples a continuous-time signal and converts it into a discrete-time
integer signal with a limited accuracy. DA-converters do the opposite. Typical AD-
converters have a resolution of 10-14 bits. DA-converters may have a little bit less
bits. They convert the discrete-time integers from the computer into continuous-
time signals. A simulation program must be able to handle all these signals
simultaneously.

Figure 3.34 shows an example of a continuous-time system coupled to a digital
control system. The DA-converter translates the digital controller output into an
analogue input of the power amplifier. The power amplifier is connected to the DC
motor, which drives the load through the transmission. A position sensor measures
the rotation of the motor. The continuous-time sensor signal is transformed into
a discrete-time signal by the AD-converter. A PID-controller (Proportional plus
Integral plus Derivative Controller; the most widely used controller) closes the loop
by comparing the sensor signal with the setpoint or reference and generates a proper
output when the sensor signal deviates from the setpoint.

Proper scaling of the signals before the AD- and DA-conversion is important
because otherwise the system behaviour is deteriorated due to a rough discretisation
or saturation of the signals. At the input of a 12-bit AD-converter with a range
of £5V, there should never be signals larger than 5V. On the other hand, if the
maximum signals are very small, the number of effective bits decreases, leading to
a loss of performance. Similar considerations hold for DA-converters.

In 20-sim, all models between an AD- and a DA-converter are automatically
simulated as discrete-time elements by calculating them at a fixed rate. This rate is
commonly known as the sampling rate. In 20-sim, you can set the sampling rate
to any desired value. During a simulation, 20-sim will calculate, at every sample
instant, the set of discrete-time models, starting from the AD-converter up to the
DA-converter. The controller output will be calculated instantaneously or with a
delay of a discrete number of samples. As a rule of thumb, the sampling frequency
should be chosen a factor 10 higher than the bandwidth of the system. Figure 3.35
shows a simulation result where you can clearly distinguish the continuous-time

52 J. van Amerongen et al

= Motor angle

= reference

0.5

= Pos. sensor out

= Motor angle

0.5

= Controller out
2.5

1.5

0.5

r——— — —
-0.5

0 0.5 1 1.5 2
time [s]

Fig. 3.35 Responses of the PID-controlled torsion bar

signal (the actual motor angle) and discrete-time signals. The top plot shows the
discrete-time reference signal and the continuous-time motor angle, the middle plot
shows the continuous-time motor angle and the discrete-time version of this signal
after AD-conversion. The plot at the bottom shows the discrete-time output of the
controller. The sampling frequency in this example is 50 Hz. All calculations in
20-sim are performed using floating-point arithmetic. Fixed-point calculations can
be emulated but is seldom used in practice.

3.6.2 PID Control

Proportional Integral Derivative (PID) controllers are the most widely used con-
trollers in industrial control systems. A PID controller takes as inputs, the desired

3 Continuous-Time Modelling in 20-sim 53

desired + error -I:J\"' control tual
»O) | Plant oo
_ +T

D

Fig. 3.36 Feedback PID controller shown as a block diagram

value of some property of the system (setpoint) and the current value of that property
(measured variable) and computes a control value (output) that will steer the system
towards the setpoint. The output is found by summing three weighted terms, where
all terms are based upon the error (¢) between the measured variable and the setpoint
(Fig.3.36). The first term is found by multiplying the current error value by a
weighting (gain), P. The second term considers what has happened in the past and is
found by integrating the error values and then multiplying this by a weighting (gain),
1. The final term considers the rate of change of errors. It is found by differentiating
the error and multiplying this by a weighting (gain), D. As a result the control
signal, u is given by

de

o (3.41)

u:Pe+I/(edt)+D

Of course, in digital control systems, a discrete version of this formula must be
used:

k
u(KT) = Pe(KT) + 1Y e(nT) + D €kT) - G(T(k —bT) (3.42)

n=0

The integral term of the PID controller makes it possible that the controller
output is unequal to zero even when the error and its rate of change are both equal
to zero. Therefore, it can, among others, account for external disturbances on the
system that would prevent it from reaching the desired setpoint value. Likewise, the
differentiating term, by considering the rate of change of the errors, may reduce the
chance of overshooting the setpoint. It is not always necessary to use all three terms
and so P, I, PI and PD control are all potential strategies that may be used.

Practical implementations of PID for digital systems mostly use the “series” form
(Fig.3.37) because tuning, that is, finding the proper PID parameters, is easier for
this form.

The I parameter is mostly replaced by its reciprocal value 1/7; and D by 4.
1/7; is called the integral time, it indicates how much time is needed to create an
output that is equal to the error. The smaller 1/t;, the quicker the response of the
controller. t4 is called the derivative time. It determines how forceful the controller

54 J. van Amerongen et al

| D
desired + error ’_' -J\"' F ;"’ control actual
P O Plant

A\

Fig. 3.37 Practical implementation of a PID controller shown as a block diagram

reacts on sudden changes in the setpoint or in the external disturbances and may
prevent overshoot because it takes the rate of change of the error into account.

The mentioned influences of the controller parameters / and D are true for
many systems, but certainly not for all systems. Therefore, proper tuning of a PID
controller can only be done in combination with (a model of) the physical system.

3.6.3 DE Systems

Digital control systems will run on a processor with some kind of operating system.
The operating system is required to load the controller code and execute it at
a specific rate. Most operating systems are not able to guarantee a proper real-
time behaviour. Real-time Linux operating systems are closest to proper real-time
control.

The “real-time performance” of a teller machine means in fact fast enough. This
type of real-time behaviour is called soft real time. From the perspective of control
engineering soft real time is not enough. Computers used for control must be able
to communicate with the continuous-time process at equidistant time intervals, as
will be explained in the next section. Furthermore, this communication must be fast
enough with respect to the dynamics of continuous-time system. The reason for this
is that otherwise there may be stability and accuracy issues. We call this behaviour,
where the computer interacts with the process fast enough and at fixed time intervals,
hard real time.

3.6.4 Sampling

A hard real-time computer observes the environment at fixed time intervals, uses
these observations to perform computations and finally delivers its results to the
environment. The most natural way to this is as indicated in Fig. 3.38a:

1. sample the data from the process (this yields the input signal for the computer),

2. perform the computations, and

3. send the computation results to the process (the output signal of the computer is
the input signal for the process).

3 Continuous-Time Modelling in 20-sim 55

a_ _ - b -
1 = sampling inputs 1 = sampling inputs
2 = computing 3 1 12| 2= sending outputs 112
3 = sending outputs 3 = computing
2 = 2 3 &
@ 1§ |idle time idle time
t t
kT (k+1)T kT (k+1)T

Fig. 3.38 Timing in a real-time control system. Left: Sending outputs after completion of the
computations. Right: Sending outputs in the next sampling interval

Both the input and output of data should take place at fixed moments in time.
Because the duration of the computations needed for computing the output signal
varies, this order of the different tasks causes jitter, that is, a variation in the duration
of the computations in task 2 and thus a variation in the distance between the tasks
1 and 3 and between the distances of the tasks 3 in different sampling intervals.
Therefore, this order is only acceptable when the jitter is small.

An alternative to perform this theoretically correct is the following (see
Fig.3.38b):

1. sample at ¢ = kT the data from the process

2. send the computation results of the former sample, at ¢ = (k—1)T, to the process

3. perform the computations: the input(s) measured at t+ = kT are used to compute
the outputs for t = (k + 1)T.

In this case, variations in the duration of the computations do not affect the
sampling process. There must always be some idle time because otherwise it cannot
be guaranteed that the computations are ready on time. If there is not enough time for
the necessary computations, unpredictable results may occur. The alternative order
of the different tasks gives the best guarantee that the AD- and DA-conversions
take place at equidistant time intervals. In addition, in order to guarantee proper
equidistant sampling, special measures can be taken at the hardware level of the
interface, for example, by adding an independent hardware clock implemented in
an FPGA.

The solution of Fig. 3.38b introduces one sample delay between the sampling of
the inputs (task 1 at # = kT') and the sending of the outputs (task 2 atz = (k+1)T).
In all cases, the use of a digital computer in a control loop leads to some time
delay. Time delays are harmful to the stability and therefore digital control systems
are in general less stable than their continuous-time counterparts. By choosing a
small enough sampling interval, the effects of the sampling on the behaviour of the
controlled system and its stability can be minimised.

Because the computer only sees the outside world through the sampling process,
it only sees values at discrete moments in time: ¢t = T, 2T, 3T, ..., kT. For the
computer, the outside world is a discrete world. This has as a direct consequence

56 J. van Amerongen et al

that the controller should be designed for the discrete system. However, the process
itself remains in most cases a continuous-time process, where the variables may
change during the sampling intervals.

Working with a fixed sample-rate and floating-point arithmetic will allow control
engineers to design stable and robust controllers. This is, however, always an
abstraction of reality. Digital control systems

— use fixed-point arithmetic in many cases,

— do not exactly run at a fixed sample rate,

— may be event based,

— have a more complex architecture in practice, and

— introduce a delay equal to the sampling interval in the control loop.

3.6.5 Events

Events are actions initiated outside the scope of a program that have to be handled
synchronous with the program flow. Two types of events may have a direct influence
on the execution time of the controller code.

Events that affect the operating system may force the operating system to
temporarily halt the execution of the controller code. Real-time operating systems
can guarantee a maximum time delay for handling events. Generally operating
systems cannot guarantee such a maximum delay. The operating system therefore
has a crucial influence on timing of the controller execution.

Events that affect the controller itself may directly influence the execution of
the controller. Consider, for example, the controller for a valve in a water tank. In
normal operation, the valve should allow a fixed flow of water into the tank. When
the water level reaches a maximum, an event is triggered, forcing the controller to
close the valve. Depending on the controller architecture, events may be handled
immediately or at the next sample time.

Events like the water reaching a maximum level are called state events. State
events are events that are not known in advance. Events that are known in advance
are called time events. 20-sim is perfectly capable of generating events. The
program can detect state events at the exact time when they occur, even if it is
between sampling times. However, 20-sim is not able to simulate controllers that
immediately respond to events. In 20-sim, the discrete-time controller is always
coupled to the continuous-time process by means of AD- and DA-convertors, which
are only active at fixed sampling intervals. If state events should be simulated as
well, this could be done by selecting a small sampling interval in the main control
loop or by adding an extra discrete-time loop with a (very) small sampling interval.

Figure 3.39 shows a state event. The maximum value is reached in between the
sampling time 37" and 47T . It is exactly determined by additional computations in
20-sim.

3 Continuous-Time Modelling in 20-sim 57

0 T 2T 3T 4T 5T 6T

Fig. 3.39 State event: detecting when the level reaches a maximum

Embedded control software | I/O hardware Plant

non _.-- soft [ard
real tipie real time ' real time

o D/A ¥ amplifier |- actuators
Q|2 c o | o

S |5 o3 82152 ,
5 3 5 '% 2g = T physical
Elcsg|82|0|> system
T |25 0|00|al®

o |S8E|%°|9|R filtering/

9 |o =% 181a < A/D (4 N9’ g sensors

s | scaling

Fig. 3.40 A general architecture for controllers [17]

3.6.6 Controller Architecture

The controllers described so far close the loop between the sensor measurement and
actuator output. These loop controllers have to ensure that a system will follow a
given setpoint, while providing stability and robustness. In general, controllers will
be more complex (see Fig. 3.40) and contain several layers.

At the lowest level, we find the loop controller, which translates measured sensor
inputs into actuator outputs, based on a given setpoint. In practice, multiple loop
controllers may be used, for example, for safe operation, normal operation, starting
up, etc. A sequence controller handles the generation of the setpoints and the type
of loop controller that is used. Sequence controllers may vary from generators
of a simple set of points to complex state machines generating a sequence of
interconnected profiles for varying loop controllers on multiple actuator systems.
A supervisory controller is responsible for the correct operation of one or more
sequence controllers and will handle communication with the user interface and the
network. To ensure a safe operation of the system, most controllers will have an
independently operating safety layer.

58 J. van Amerongen et al

0——1

Fig. 3.41 Examples of connecting arrows sharing: a single variable (fop row); multiple variables
(bottom row); bond graphs (right column); non-bond graphs (left column)

The loop controller has to run at a fixed sample rate to ensure stability. The
loop controller code therefore has to be executed with hard real-time guarantees.
Depending on the implementation, the other levels of the controller have less strict
requirements and can run at a slower pace. The safety layer has special demands
ensuring its stable operation even if the other levels fail. For safety critical systems,
this may force the safety system to run on a different processor or even on a different
computer system.

3.6.7 Co-simulation

In general, controllers consist of multiple levels, running with varying timing
demands on different processors, where each level has a different coding archi-
tecture. In fact, the code for the higher levels of control for products that needs
to be tolerant against potential faults are typically significant larger than the loop
controllers. A discrete event modelling and simulation tool like Overture/VDM
is far more capable of properly modelling these controllers than continuous-time
modelling programs like 20-sim. Therefore, it makes sense to couple 20-sim with
Overture/ VDM using co-simulation.

3.7 A Small Note on Notation

In this chapter, the blocks and icons in all models are connected using single-
lined arrows, each of these lines represents a single variable (in the case of block
diagrams) or a single conjugated pair of variables (in the case of bond graphs). Later
on in this book, in Chaps. 8 and 11, you will see the use of double-lined arrows to
connect blocks and icons in some models, similar to those in Fig. 3.41.

Double lines in 20-sim mean that multiple variables are being shared between
the icons they connect rather than just one and their principal goal is to maintain
clarity of the diagram.

3 Continuous-Time Modelling in 20-sim 59
3.8 Conclusion

In the space available, only an introduction to modelling and control of physical
systems could be given. With the information provided here, it should be possible
to make simple models of physical systems and apply an elementary controller. To
design more sophisticated (digital) controllers, a more thorough study of control-
system design is necessary, we refer for example to [4]. In the final realisation of
a control system, the controller itself may be only a minor part of the code. Safety
software and start-up and shut-down procedures may require many more lines of
code, as will be shown in the next chapter.

Chapter 4
Discrete-Event Modelling in VDM

Peter Gorm Larsen, John Fitzgerald, Marcel Verhoef, and Kenneth Pierce

4.1 Introduction

As indicated in Chap. 3, the design of real software controllers demands notations
and tools that have the features needed to describe systems that evolve via a series of
discrete events and so express the structure and logic of layered architectures. VDM
is one such formalism and is introduced in this chapter. VDM is a general-purpose
formalism for describing discrete event systems, with many more features than are
needed here. This chapter covers the core of the language so that a reader with
limited experience of DE modelling and software design will be able to understand
the DE controller models used in the first examples and begin to develop new
controllers of their own.! More sophisticated features, especially those needed to
describe a controller structure, are introduced in later chapters. Readers requiring
comprehensive coverage of VDM for controllers are directed to Appendix B, the
manuals available at the Overture web site? or to introductory texts [35, 36].

VDM has three dialects: the ISO-standardised VDM Specification Language (VDM-SL),
its object-oriented extension (VDM++) and a further extension for describing real-time sys-
tems (VDM-RT). The latter dialect is used in most of this book.

2http://www.overturetool.org.

P.G. Larsen (P<)
Aarhus University, Aarhus, Denmark
e-mail: pgl@eng.au.dk

J. Fitzgerald « K. Pierce
Newcastle University, Newcastle upon Tyne, UK
e-mail: john.fitzgerald @newcastle.ac.uk kenneth.pierce @newcastle.ac.uk

M. Verhoef
Chess WISE, Haarlem, The Netherlands
e-mail: Marcel.Verhoef @chess.nl

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 61
DOI 10.1007/978-3-642-54118-6_4,
© Springer-Verlag Berlin Heidelberg 2014

http://www.overturetool.org
mailto:pgl@eng.au.dk
mailto:john.fitzgerald@newcastle.ac.uk
mailto:kenneth.pierce@newcastle.ac.uk
mailto:Marcel.Verhoef@chess.nl

62 P.G. Larsen et al.

Complexity is a critical problem in the design of modern control software.
Software’s discontinuous behaviour means that model-based descriptions must deal
with large and complex spaces of system states in which it is not possible to safely
draw conclusions from tests on selected sample values. DE modellers typically
deploy several techniques to manage complexity, and modelling languages such as
VDM support these. The first is abstraction, which is the deliberate suppression of
detail that is not relevant to a model’s purpose. Second, structuring techniques are
used to organise models so that the system can be understood as the composition of
units that can be modelled and analysed separately. Third, a high degree of rigour
in modelling allows the systematic analysis of models and identification of flaws;
given a sufficiently formal modelling language, some analyses are so systematic
that they can be performed automatically. Conventional programming languages
have the benefit of a structuring mechanism and some degree of rigour, but it is
the capacity for abstraction that makes a DE modelling language such as VDM
radically different and able to provide early-stage analysis of controllers before they
are implemented in code on specific devices.

In this chapter, we introduce models of successively more sophisticated con-
trollers (full versions of all the controller models can be found on the book’s web
site). First, we introduce basic abstractions in data and functionality (Sect. 4.2). This
is enough to allow us to present a simple controller model in VDM (Sect. 4.3),
based on the PID controller for the torsion bar described in Sect. 3.1. However, the
real benefits of DE modelling lie in the ability to describe the logic of supervisory
control, and this requires a richer collection of data models than just numbers.
In Sect. 4.4, we introduce these models in VDM and in Sect.4.5 show how they
enable us to model an enhanced torsion bar controller that visits a series of defined
waypoints. This ability to model supervisory control is particularly valuable in
ensuring safety; we illustrate this with an example model of a torsion bar controller
that avoids specified regions (Sect. 4.6).

As we consider more sophisticated controllers, it becomes necessary to use
structuring mechanisms, with separate component parts linked in an architecture
and functioning concurrently. In Sect. 4.7, we introduce object-oriented abstractions
for modelling software structure, and in Sect. 4.8, we introduce the thread concept
for concurrency. We present a fully structured model of the torsion bar controller
by way of illustration. The final step in the DE modelling journey is from the
controller software to the digital system that runs it: the CPU on which software runs
determines its practical performance. In Sect. 4.9, we introduce the features of VDM
that allow us to model the deployment of a software process onto processors with
specified characteristics. Together, these features—data, functionality, structuring,
concurrency and deployment—constitute the DE part of a co-model. Having
introduced them all, we are then ready to present the first co-simulation in Chap. 5.
Finally, Sect. 4.10 summarises modelling concepts introduced in this chapter.

4 Discrete-Event Modelling in VDM 63
4.2 Basic Elements: Data and Functionality

Controllers typically take decisions and act on data that are sensed or come from
setpoints determined by users, and so it is natural to base models of controller
software around descriptions of data. The computations that are available to be
performed on data are referred to as the functionality of a computing system. The
functionality of a controller is exposed at its interface with the environment and
controlled plant and includes the main control functions, as well as the interactions
with external users, for example.

A model of a controller needs to contain representations of data and functionality.
Data include the monitored data coming into the controller from sensor devices
and the controlled data passed from the controller to actuators in order to effect
change. The core functionality of the controller is the control step: a sequence of
instructions that interprets the monitored values and sets the controlled data (sending
the desired values to the actuators). The control step can, for example, be executed
periodically, at a frequency that is determined by the control characteristics required
of the application. The periodic execution of the control step in a loop means that
this structure is referred to as a loop controller (see Sect. 3.6.6). In this section, we
introduce the elements of a basic loop controller model in VDM.

4.2.1 Data

In a control setting, one naturally thinks first of data that is numeric or quantitative,
for example, the angular velocity of a wheel, but a controller may also need to
know which one of a number of modes it is in (Starting, Cruising, Shutdown, etc.),
or which mode it must move to next. Data therefore includes both qualitative and
quantitative values of interest drawn from collections of values that we term types.
Data are not only single values, but a supervisory or sequence controller may require
more sophisticated structures to represent collections of values such as sequences
of recorded values, tabular mappings between operating modes, etc. We therefore
consider types of structured data as well as basic values.

The basic types in the VDM notation are summarised in Table 4.1. Note the
abstraction in these types: there is neither a built-in upper limit on the natural
numbers nor a lower one on the integers, just as there is no predefined precision
on reals. These additional restrictions, if desired, are explicitly declared.

Controllers are configured around specific values that represent design
parameters. Software engineers tend to refer to such values as constants because
they do not change as the controller operates. In VDM, such constants are defined
in a section of text that begins with the keyword “values”. For example, consider
the torsion bar controller introduced in Sect. 3.1. In describing a controller design

64 P.G. Larsen et al.

Table 4.1 Basic numeric types in VDM

Type Notation Example values

Natural numbers incl. 0 nat 0,1,2,...

Natural numbers excl. O natl 1,2,3,...

Integers int o -2,-1,0,1,2, ...

Reals real ..-37,...,0,m,...,5.8372,...

in VDM, we might define some conversion constants such as the encoder resolution
and the belt ratio as follows:

values
—-— conversion constants used
ENC_RESOLUTION : real = 2000.0;
BELT_RATIO : real = 3.75;

Each definition gives the name of the value, followed by its type and specific value.
Observe that we separate definitions by semicolons and that the formal text is
annotated with useful notes as comments on lines prefixed “-".

Data that vary during the execution of the software are referred to by means of
instance variables. Unlike mathematical variables which typically represent single
values, instance variables are names given to memory locations that can hold values
which change during a computation. Thus, a reference to an instance variable x at
one point in a calculation does not necessarily refer to the same value as x at another
point. The values held in instance variables are set by means of assignments, written
“variable name : = value”. For example, the assignment “x := 3" places the value
3 into the memory location referred to by the name x independent of what x was
bound to before. Note that this is in contrast to the = sign used in value definitions
where the values will never change.

Instance variables are used for many purposes in discrete event modelling of
controllers. Here we consider two main uses. First, variables are used to record the
monitored and controlled data. For example, a loop controller for the torsion bar
might contain variable definitions to represent the monitored data from the motor
encoder. Note that this data may be modified by the sensor—our controller software
only monitors it. In VDM, variables are defined as follows:

instance variables
—-— monitored variable
enc_motor: real := 0.0

4 Discrete-Event Modelling in VDM 65

For each variable, we give the type and define the initial value in the variable by
means of an assignment denoted by the : = symbol. Our controller can set the motor
(pulse width modulated) setting, and this is again modelled as a variable. The data
that is sent out to the motor may be modified by the controller and is defined as
follows:

instance variables
—-— controlled variable
pwm_motor: real := 0.0

The second use of a variable is to store data that are local to the controller itself
and that may be both read and modified by the controller internally. For example, a
discrete event controller typically calculates the actuator settings by performing a
calculation periodically, based on the current and previous values of the error. The
controller must therefore remember the previous error and use it in the next cycle.
We would therefore declare a variable to hold this data:

instance variables
prev_err: real := 0.0

4.2.1.1 Expressions

Controller models will typically contain formulae that describe complex values to be
calculated or properties that must be checked. Such formulae are just representations
of values, and though they may read variables, they do not write to variables (we
say that they have no side effects when evaluated). Straightforward numbers, the
simplest forms of numerical expression, have already been shown. More complex
expressions can be constructed using the full range of numeric operators (see
Appendix B). For example, the encoder signal is in the variable enc_motoxr. The
rotation computed from the encoder signal is given by the following expression,
which uses numeric division (/):

(enc_motor / ENC_RESOLUTION / BELT_RATIO J

where ENC_RESOLUTION and BELT RATIO are defined as constant values as
indicated above.

Certain operators on numeric values yield Boolean results (the values true or
false). These are typically comparators such as =, <, >= (greater than or equal
to) and <= (less than or equal to). As a consequence, some expressions such as “x

66 P.G. Larsen et al.

<= min” yield Boolean values. A range of operators is available for constructing
Boolean formulae, including logical operators such as not, and and or (see
Appendix B). For example, the expression:

(x >= min and x <= max J

records the assertion that x is between the limits min and max. Generalisations of
such Boolean expressions will be presented in Sect.4.4. Typically, min and max
would be defined elsewhere, whereas x typically is a variable. We call Boolean
expressions that depend on such variables predicates.

Experience shows that the most complicated logic operator to understand is the
implication, written as A => B. In essence, this means that if A is true, then B shall
also be true (in case A is false, the entire implication expression is true). This is
reflected in the truth table for implication. The left-hand side of the implication is
called the antecedent, and the right-hand side is called the consequent.

A B A => B
true | true | true
true [false| false
false| true | true
false|false| true

In Sect. 4.4, you will see this in action. Boolean expressions are used extensively.
For example, a conditional expression is of the form

if EB
then E1
else E2

If the Boolean expression EB evaluates to true, the conditional expression overall
is E1, otherwise E2. As an example, suppose that a controller has to limit the value
of an output x to a maximum max and minimum min. The output value would be

if x < min then min
elseif x > max then max
else x

Note that it is also possible to use an elseif keyword if the logic requires more
than two options. Many other forms of expression are defined in VDM and will be
introduced as they are required. For a full explanation of expression forms, see the
Overture VDM Language Reference Manual [59].

4 Discrete-Event Modelling in VDM 67

4.2.1.2 Data Types and Invariants

As the examples above suggest, an important application of Boolean expressions
is in defining restrictions on the values held in variables. Such restrictions are
represented in VDM as data type invariants. Invariants are Boolean properties that
must be respected by all the values within a specified data type. For example,
suppose we require that the value held in the variable x must always be between 1
and 12. In order to capture this, we need to introduce the notion of an invariant. In
order to do this, we can define a type as

types
Limited = real
inv lim == lim >= 1 and lim <= 12

This definition declares a data type that contains only the real numbers between 1
and 12 inclusive. The inv keyword is followed by a name (1 im in this case) of an
arbitrary element from the type, and the invariant is defined after the == symbol.
Suppose we declare an instance variable of this type:

instance variables
x: Limited

Any attempt to assign an invalid value such as 0 to the variable would yield a
runtime error. An operator is said to be partial if its result is undefined for some
argument values. Perhaps the best known example is numeric division, in which
the result is undefined if the denominator evaluates to zero. We seek to protect the
application of a partial operator by applying a guard that ensures the undefined
condition does not arise. For example, the following expression is undefined if y
has the value -10:

L[v/<y+10> J

If we wished to guard this, we might use an i £ expression, returning a 0 in the case
where the division is undefined.

if vy <> -10
then v/ (y+10)
else 0

Note that, given the invariant on the type Limited in our small example, the
following expression is guaranteed to be defined:

{Y/(x+10) J

68 P.G. Larsen et al.
4.2.2 Functionality

We have considered so far the definition of data—values, variables, types and
invariants—but we have not considered the modelling of computations that work on
data. A computation operates on input data and manipulates it in order to generate
output data. We distinguish two kinds of computation: functions and operations.
Functions work on input values and calculate a result based only on those input
values. Functions are pure and side effect free, which implies that calling a function
with the same input parameters twice will always yield the same result. Operations,
however, may also read from and write to the instance variables in the model.
This enables operations to have a sense of history over multiple invocations, which
potentially allows them to return different results with the same input parameters.

4.2.2.1 Function Definitions

Let us begin with a simple example of a function that computes the rotation from
our encoder signal. In VDM, we model this as follows:

functions
-— function to compute rotation from encoder signal
enc2rot: real -> real
enc2rot (penc) == penc / ENC_RESOLUTION / BELT_RATIO;

The functions keyword marks the beginning of a section of the model in which
one or more function definitions are given. A function definition always has two
parts: a signature and a body. The signature (here the line “enc2rot: real ->
real”) declares the name of the function, the types of its inputs and the type of its
result. The body consists of two parts to the left and right of the “==" respectively.
To the left, we give the function name and the name of the input argument; to
the right, an expression that defines the result. Note that the type of the defining
expression must match the return type defined in the signature.

Defined functions may be used in other expressions. For example, we may write
an expression using enc2rot elsewhere in the model. We might wish to represent
the error value as the difference between the current setpoint and the angular
position calculated from the encoder reading. This is given by the expression

(setpoint - enc2rot (enc_motor) J

Functions may have multiple input arguments. For example, if we were to
provide a limiting function that restricts a value to a range, we might define it thus
(with three input arguments):

4 Discrete-Event Modelling in VDM 69

functions
-— limit x between min and max
limit: real % real * real -> real
limit (x, min, max)
if x < min then min
elseif x > max then max
else x;

If you have a complicated expression that you would like to make use of
multiple times, VDM has a concept called a let expression that is useful. In this
way, a new local constant can be declared and used subsequently. The syntax for
this expression is

let name = some complex expression
in
expr that makes use of name

Such an expression can be thought of as first calculating the complex expression
and then afterwards binding the result of that calculation to the name which will
be usable in the expression after the in keyword. Whenever name occurs, it will
mean the value that was bound to it. In our torsion bar example, we could use this
inaget_ setpoint function that simulates a cycloid® curve:

functions
-— get setpoint for the given time (cycloid signal)
get_setpoint: real -> real
get_setpoint (call) ==
let delta = 2 x MATH'pi » (t - START_TIME) /
(STOP_TIME - START_TIME),
cycle = AMPLITUDE x (delta - MATH'‘sin(delta)) /
(2 * MATH‘pi)
in if delta < 0 then 0
elseif delta > 2 x MATH'‘pi then AMPLITUDE
else cycle
pre STOP_TIME > START_TIME;

(S

Here delta is defined as a local constant based on a complex expression (in the
same way, the constant cycle is defined to illustrate how multiple such constants
can be made in one let-expression). In this definition, there are also references to
pi and sin, which are standard mathematical concepts that are not built into VDM
themselves. Instead, they are placed in a library called MATH that you can choose to
include whenever needed. Other libraries will be illustrated later.

3See http://en.wikipedia.org/wiki/Cycloid.

http://en.wikipedia.org/wiki/Cycloid

70 P.G. Larsen et al.

Finally, the definition of get setpoint also has a so-called precondition
indicated by the “pre STOP_TIME > START_ TIME” part at the end of the
function definition. A precondition indicates that in order to call a function, you
must ensure that a given condition is satisfied. Here the condition is meant to ensure
that the partial division operator will not be called outside its defined area.

4.2.2.2 Operation Definitions

Functions deliver a result based only on their input arguments and any global
constants defined in the model. Operations, by contrast, may read and modify the
instance variables as well. Consider a trivially simple example. Suppose that we
have instance variables containing the current sensed angular position for the torsion
bar controller, the setpoint and the current motor setting:

instance variables

enc_motor: real := 0.0;
setpoint: real := 0.0;
pwm_motor: real := 0.0

We might wish to define a simple operation, named CalcP, that determines the
new motor setting on the basis of the current error, and returns a Boolean value
saying whether the error was within a specified tolerance.

operations
—-— calculate response for the current error
CalcP: real ==> bool
CalcP (tolerance) ==
(pwm_motor := Kp x (setpoint - enc2rot (enc_motor));
return abs (setpoint - sensed) <= tolerance)

There are some important notational differences between the operation and function.
The signature is distinguished from that of a function by the use of a “==>" arrow
instead of the “->". Notice that only the input and output types are shown in the
signature—not those of the instance variables. However, the main distinction is in
the body of the operation. Rather than containing a single expression that gives the
result, the operation body is a series of individual calculation statements, each of
which may read from or write to the instance variables. A single statement multiplies
the error by a constant Kp to determine the motor setting.* A special return
statement contains the expression that gives the output value. In our example, the

4This multiplication of the error by a constant is a form of proportional control, Kp is called the
proportional constant and hence the name CalcP for the operation.

4 Discrete-Event Modelling in VDM 71

output value is true for regular sensor values and false for unusually large sensor
values.

Just as there are several forms of expression available for the body of a function
or an invariant, VDM offers several forms of statements for use in the bodies of
operations. Again, here we just mention the most basic; others are introduced as
they become required. For a full explanation of statement forms, see the Overture
VDM Language Reference Manual [59].

Statements that are to be executed sequentially can be gathered into a block
delimited by parentheses. Sequential compositions of statements are separated by a
semicolon (and, by convention, line breaks). As an example, suppose that we wish
to model a more sophisticated PID controller of the kind introduced in Sect. 3.6.2
using the cumulative error and the rate of change of the error. The following
operation illustrates one method for determining the PID response and shows the
use of a block to group statements:

operations
—-— calculate PID response for the given error
CalcPID: real ==> real
CalcPID (err) ==

(ul := ul + (err = SAMPLETIME) ;
uD := (err - prev_err) / SAMPLETIME;
prev_err := err;

return (Kp x err) + (Ki % uI) + (Kd % uD))

The operation calculates the controller output to be applied: the body of the
operation has a return statement that computes the control output from the
proportional, integral and derivative terms. It is preceded by three sequential
assignment statements. The first two calculate the integral and derivative factors
which are multiplied by tuning constants Ki and Kd in the return statement. The
final assignment sets the current error to the variable prev_err for the next
control cycle. The PID algorithm requires the following instance variables to be
defined in the controller:

instance variables
—-— PID variables

uD: real := 0.0;
ul: real := 0.0;
prev_err: real := 0.0;

This is a far-from-perfect controller, but our purpose here is to introduce the
modelling concepts rather than present a sophisticated control algorithm.

72 P.G. Larsen et al.
4.3 Example: A Basic Controller Model

We have covered enough of the basic elements of VDM to show a discrete-event
model of a simple software controller for the torsion bar introduced in Sect.3.1.
The aim of this first example is simply to show the structure of a controller. With
only numbers, simple expressions and assignments in our modelling language, we
cannot describe much more than basic loop control. However, later in the chapter,
we introduce the features of a DE-specific modelling method like VDM that enable
this. Although simple, the torsion bar system has the main elements (e.g. controller,
sensor, amplifier, electric motor, transmission) that we also see in more complex
mechatronic systems such as robots.

We have so far presented some extracts from a model called TorsionBarl
-Minimal; here we add the remaining elements. In order to achieve periodic
execution of a control algorithm, a periodic thread is used (features for defining
these will be introduced in detail in Sect. 4.8.1). It is specified as follows:

thread
—-— define periodic thread (nanoseconds)
periodic (SAMPLETIME «x 1e9, 0, 0, 0) (Step)

where Step is the name of the operation to be executed in each iteration, and
the time length (i.e., the period) between its execution and the next will be
SAMPLETIME % 1e9. VDM uses nanoseconds as the core time unit, hence
the 1e9 factor. The periodic operation Step is defined as follows:

operations
-— periodic operation
Step: () ==> ()
Step() == (
-— write held value to actuator
pwm_motor := hold_pwm;

—— calculate new hold value
let err = get_setpoint (time/1le9) - enc2rot (enc_motor)
in

hold_pwm := limit (CalcPID(err), -1, 1)

S

where the “ () ” in the signature indicates that no input parameters are required and
no results are returned, that is, the operation affects only the instance variables. The
instance variable hold pwm is declared as

instance variables
—-— store sensor and hold values
hold_pwm: real := 0.0

4 Discrete-Event Modelling in VDM 73

This will hold the pwm value calculated in the previous iteration. The actual
calculation makes use of functions and operations that have already been presented
in the text. The error (err) is calculated and used with a PID controller to calculate
the best correction for the motor. The only remaining parts are the constant value
definitions used in calculations within the model. These are

~
values

—— thread period in seconds (0.02 = 50Hz)
SAMPLETIME : real = 0.02;

—-— conversion constants used
ENC_RESOLUTION : real = 2000.0;
BELT_RATIO : real = 3.75;

—-— cycloid signal parameters
START_TIME : int = O;
STOP_TIME : int = 1;
AMPLITUDE : int = 1;

—— PID controller parameters
Kp : real = 2.4;

Ki : int = 12;

Kd : real = 0.12;

4.4 Modelling with Structured Data

Very basic control algorithms can be modelled using numbers alone, but sophisti-
cated supervisory control requires a richer vocabulary. In this section, we introduce
a wider range of types that can be used to represent non-numeric data (Sect.4.4.1)
and describe the important types that model structured collections of values: records,
sets, sequences and mappings (Sect. 4.4.2). These abstractions will be illustrated
using an extended controller model called TorsionBar2-Visit. In this model,
we require the load disk to move through a set of positions (angles between 0
and 2mr) by ordering them into a path that minimises total travel distance. Similar
requirements often arise in robotics, for example, in robots that have to follow a
track of points for spot welding.

4.4.1 Nonnumeric Data

4.4.1.1 Characters

VDM contains a nonnumeric basic type called char containing the ordinary
characters. This can, for example, be used in strings that can be represented as
sequences of characters (we come back to sequences in general in Sect. 4.4.2):

74 P.G. Larsen et al.

types
String = seq of char

Strings can be used to generate descriptive messages using the standard IO library.

4.4.1.2 Union Types and Quote Types

Supervisory controllers often have to change mode, since different requirements
may apply during different phases of operation such as start-up, shutdown or error
recovery. In such circumstances, a modelling abstraction is needed to indicate the
current mode. While it may be tempting to encode these as numbers or characters,
this is certainly not in the spirit of abstraction, and the meaning of a model is made
more intuitive if it is possible to introduce simple labels that can be used in this sort
of situation. In VDM, quote types serve this purpose. A quote type is simply a label;
for example, to record the current direction of travel for a robot, one might simply
want to introduce labels for “left” or “right” motion. Each of these would be a quote
type. For example, <LEFT> is a quote type: it contains just one quote value (also
called <LEFT>).

If a variable is required to assume one of a range of distinct values that are
not numbers or characters, it is often appropriate to define a type that represents
the union of several quote values to represent an enumeration. For example, if
our robot’s direction can be left or right or unknown (perhaps because of a sensor
failure), it would be worth defining a type Direction to include the range of
possibilities:

types
Direction = <LEFT> | <RIGHT> | <UNKNOWN>
where the Direction type contains three values listed to the right of the “=" sign
and separated by the “|”. A variable of type Direction will always have exactly

one of the three distinct values shown. We may wish to model shutdown behaviour
in the case of sensor failure. In this case, we may need to interrogate an instance
variable of type Direction:

if d = <UNKNOWN> then Shutdown -- call some shutdown operation
else ...
The “|” symbol in the type definition represents the union of types, accumulating

the types on either side of the vertical bar into a single larger type. This type union
operator can be used for any type, but it is often used either between quote types or
to form the kind of enumeration of possible values that we have in this example.

4 Discrete-Event Modelling in VDM 75

4.4.2 Structured Collections: Records, Sets, Sequences and
Mappings

Some of the most powerful abstractions in VDM permit the modelling of the highly
structured data required to manage decision-making in supervisory controllers. In
this section, we introduce record structures that allow several related data items to be
treated as a single unit. We go on to introduce collection types (sets, sequences and
mappings) that allow whole groups of data to be treated as one. These abstractions
allow complex data to be represented in such a way that avoids the introduction of
unnecessary detail into the model. For example, mappings can be used to abstract
away from the detail of pointer structures, when all that matters for the model is
the representation of relationships between data values. Of course, details such as
pointer structures can be represented using these abstractions if they are necessary
for the model’s purpose.

4.4.2.1 Records

It is often convenient to be able to treat data items that relate to the same subject
as though they were a single item. Such compound structures are termed records
in VDM. A simple example might be data relating to each user of an information
system, for example, their name, user identifier and access rights. Such items might
typically be treated together in an application and so may be grouped into a single
item. In our torsion bar example, suppose that we require to control the process of
moving from one setpoint to the next within a specified time interval. Here it makes
sense to gather information of different types together in a common structure that
represents the change in position:

types
-— represents setpoint change time / value
SetpointChange :: setpoint : real
travel_time : Time
wait_time : Time

This defines a record type called SetpointChange with three compo-
nents (called fields): the first is a real number representing the setpoint, the second
and third represent travel and wait times. The latter are of type Time, and we
assume that this type is defined elsewhere.

Operators are required to build records from their constituent data items and
to select the individual data from within them. If a record type T is defined
as shown above, an operator mk T (called a constructor) becomes available to
build records of that type. In the torsion bar example, the constructor is called

76 P.G. Larsen et al.

mk_SetpointChange, so one particular change value could be written as
follows:

{ mk_SetpointChange (0,200, 50) J

indicating a setpoint at O rad, time to change to this setpoint 200 ns and a wait time
of 50 ns.’

We will often need to select the values held in individual fields of a record. We
use a simple dot notation for this. For a record value r containing a field called
£, the expression r. £ is the data value in the £ field of the record value r. In our
example above, if we have a value ch of type SetpointChange, the expression

(ch.travel_time J

is the travel time component of ch. To take another example combining the
constructor and selector, the following Boolean expression yields true:

{ mk_SetpointChange (0,200, 50) .wait_time = 50 J

4.4.2.2 Sets

Sets are one of the key abstractions used for describing collections of values. A set
is a finite unordered collection: there is no sense of one value in a set being before
or after another. Furthermore, there is no concept of a value occurring several times
in a set: a value is either in the set or not. We say that a value is an element of a set
if it occurs in the set. Sets are written with curly braces around the elements, which
are separated by commas. The empty set, which has no elements, is written { }. The
fact that elements are unordered means that the set {9, 2} is exactly the same as
the set {2, 9}. We use the operator card to get the number of distinct elements in
a set (for example, card {1,4,2,4} yields the value 3).

In the TorsionBar2-Visit model, the controller must maintain a collection
of the desired angles which the torsion bar must turn to at specific times. One such
possible collection is a set, so below we will illustrate some of the set operators
using such angles. If we have two sets of angles, these can be combined using the
add_angles function:

SFor the interested reader, the mechanism at work here is termed fagging. Record definitions
typically use the “::” instead of the equality symbol used in other type definitions. This indicates
that all values in the type carry a fag holding the name of the type, so that given a record, we can
tell which record type it belongs to, even if we have two record types with the same kinds of field.

For ataggedtype T :: .. .,the constructoris mk 7, where T is the tag.

4 Discrete-Event Modelling in VDM 77

functions
-—- join two sets of angles together
add_angles: set of Angle x set of Angle -> set of Angle
add_angles(sl,s2) == sl union s2;

where the union operator coalesces two sets. Conversely, we can extract the set of
values that are in two sets (the infersection) using the inter keyword. In order to
assert that a value a is in a set s, we simply write

&ainsets]

where the in set keyword will yield true if a is indeed one of the members
of s and false otherwise. It is usually impractical to enumerate the elements
of sets in real applications. Instead, sets are much more often constructed by set
comprehension.

({ value-expression | binding & predicate } J

The binding binds one or more variables to a type or set. The predicate is a
logical expression using the bound variables. The value-expressionis also an
expression using the bound variables, but this expression defines a typical element
of the set being constructed. The comprehension represents the set of all values of
the value expression for each possible assignment of values to the bound variables
for which the predicate is true. For example, the comprehension

L[{x**Z | x:nat & x < 5} J

represents the set of all values of x to the power of 2, where x is a natural number
such that x is less than 5, that is,

= {0,1,4,9,16}

[{x**Z | x:nat & x < 5} = {0%%2,1%x2,2x%x2,3x%x2,4%x%2} J

The operators for sets are summarised in Table B.2.

4.4.2.3 Sequences

Sequences are finite collections of values in which there is an ordering among
elements. Instead of a value simply occurring or not, it may be repeated several
times, and this repetition may be significant. Sequences are enumerated presented
in square brackets, and the empty sequence is written as []. There are many basic
operators that are used on sequences; an overview is given in Table B.3.

78 P.G. Larsen et al.

For the torsion bar case study, suppose that we need to visit a collection of
setpoints in order (so the order is significant). One design for doing this is to hold
a queue of setpoint changes modelled as a sequence (initially empty), so that the
values in the queue simply need to be read and applied in order. The queue would
be declared as follows:

types
-— setpoints to visit
queue: seq of SetpointChange := [];

where SetPointChange is the record type defined above. Several useful
operators are defined on sequences. The length of a sequence queue is given
by “len queue”, whereby the length of [] is zero. For a non-empty sequence,
hd gets the “head” or first element, and t1 gets the “tail”’; the sequence remaining
after the head is removed. These features allow us to define the Step operation
in the torsion bar controller. Here the setpoint change at the head of the queue is
selected for application, and the queue is updated so that the head has been removed:

Step: () ==> ()
if ... and len queue > 0
then let next_pos = hd queue in (
queue := tl queue;

The remainder of the St ep operation goes on to use the next pos value.

Sequences can be joined together by the concatenation operator (“*”); for
example, the expression queue * setpoints represents a sequence formed by
the elements of queue followed by the elements of the setpoints sequence, in
order. We can retrieve elements of a sequence by means of their index numbers. For
example, for a sequence queue, the third element is represented by queue (3).

Other operators allow us to extract the sets of elements (elems) or indices
(inds) of a sequence. These operators return sets, thus losing information about
ordering and duplicates. Notice that some operators are partial in that they are
undefined if applied improperly. For example, the head of a sequence is undefined
if the sequence is of length zero (hence the guarding condition on the “i£” line in
the Step definition. Accessing the nth element of a sequence queue only makes
sense if the expression n in set inds queue is true.

Sequences are often defined using a comprehension construction similar to that
for sets. For example, suppose that we have a set s of angles that should be visited,
but we wish to restrict the set to those that are within the range 0, [dots, 7 /2. We
might express this restricted set by means of a comprehension:

{Fa | a in set s & a <= MATH'‘pi/2} J

4 Discrete-Event Modelling in VDM 79

Suppose we want these angles to be in increasing order so that we can visit them
in sequence without reversing. The lack of ordering information in a set makes it
a poor choice here; a sequence of angles would be preferable. But how should the
sequence be ordered? In VDM, sequence comprehension provides a default ordering
of increasing numeric values. For example, consider the following expression:

{}a | a in set s & a <= MATH'‘pi/2])

This takes all the values for a in the set s that satisfy the condition and returns them
in increasing order. In fact, comprehensions can be more sophisticated, allowing
us to build sequences of complex values. For example, the following expression
returns a sequence of values formed by halving the angles in the desired range:

{Ea/Z | a in set s & a <= MATH'‘pi/2] J

In sequence comprehensions, we require that the bound variable (here, a) comes
from a numerical type, so we have an order in which to construct the elements
of the sequence. The result is evaluated for each value of the bound variable that
satisfies the predicate, in numerical order.

In the TorsionBar example, the Visit operation manages the visiting of
specified angle positions by first sorting a set of angles into a sequence (sorted).
This is ordered and converted to a sequence of rotational positions (setpoints)
by means of a sequence comprehension, and then it loops through all the positions
in the queue, converting them to Set PointChange records:

operations

-- visit a set of angles
Visit: set of Angle ==> ()
Visit(s) == (

let sorted = Sort(s),

setpoints = [angle / (2 * MATH‘pi)
| angle in set elems sorted]
in for sp in setpoints ° [0] do
queue := queue ~
[mk_SetpointChange (sp, TRAVEL_TIME, WAIT_TIME)]

)
pre s <> {};

(S

In this operation, we used a sequence for loop (“for identifier in sequence
expression do statement”) to iterate through the setpoints in the sorted list. Notice
our use of a precondition in the operation. This records the assumption that the
Visit operation will only be called with non-empty sets of angles.

The dual of a precondition is a post-condition. A post-condition is used to
record the guarantee that a function or operation makes to its users, provided its
assumption (precondition) is satisfied. It characterises the result and “after" state of

80 P.G. Larsen et al.

the function/operation, giving its essential properties, and so effectively frees the
modeller from the need to give a specific algorithm. Consider an example in which
we define the Sort operation used above:

operations
-— sort angles in ascending order
Sort: set of Angle ==> seq of Angle
Sort(s) == (...)

How should we describe the sorting process? There are many possible algorithms,
and we may not wish to bias the developer of the controller towards one rather
than another: an algorithm that is satisfactory for modelling may not have
adequate performance when implemented in real software. If we wanted merely to
characterise the sorting algorithm, we might do so by means of a post-condition:

operations
-— sort angles in ascending order
Sort: set of Angle ==> seq of Angle
Sort(s) == (...)
post elems RESULT = s and
len RESULT = card s and
forall i in set inds RESULT &
i <> len RESULT => RESULT (i) <= RESULT (i+1);
\. J

Note that the RESULT keyword just refers to the output produced by the operation.
The post-condition uses a universal quantified expression (forall ... & ...)to
quantify over all the indices of the result sequence, simply saying that each element
is less than its successor in the sorted sequence. This post-condition captures the
true requirement for the operation. We can then add an algorithm, with the lesser
risk of biasing subsequent development:

~
operations

-— sort angles in ascending order
Sort: set of Angle ==> seq of Angle

Sort (s) ==
(del sorted: seq of Angle := [];
—— insert each element into the right position
for all a in set s do sorted := insert(a, sorted);

return sorted)
post elems RESULT = s and
len RESULT = card s and
forall i in set inds RESULT &
i <> len RESULT => RESULT (i) <= RESULT (i+1);

4 Discrete-Event Modelling in VDM 81

Note that the body of Sort uses a del declaration to declare a local variable
that is visible only within the block enclosed by parentheses in which it is declared.
In this case, the declared variable just holds the sorted sequence as it is accumulated.
The algorithm is also described using a set loop statement (“for all identifier in
set set expression do statement”), which allows us to iterate through the values
in a set.

4.4.2.4 Mappings

We have shown the benefit of data structures that deal with collections of values.
In many supervisory control applications, however, we also need to record
relationships between values; this is done using mappings. A mapping is a collection
of pairs of values, each of which is called a maplet. For example, if we wished to
record a series of “speed limits” for different regions of rotation, we might want to
record a mapping from angles to angular velocities:

instance variables
LIMITS: map real to Speed := {MATH‘pi/2 | -> <FAST>,
MATH ‘pi | => <SLOW>,
3xMATHpi/2 |-> <FAST>}

A mapping is a directional relationship: the type of a mapping (here map real
to Speed) gives us the types of the “from” and “to” sides of the relationship;
these are called the domain and range types, respectively. Each maplet “x | -> y”
connects a domain element to a range element. Mappings do not have to cover the
whole of the domain type: the values that are connected to range values form a set
called the domain of the mapping, and the values mapped to are called the range.
Mappings can be arbitrarily large, but they are always finite in size. The empty
mapping (without any elements) is written as { | ->}. Operators for mappings are
presented in Table B.4.

4.5 Example: Supervisory Control

We have already used extracts from the updated TorsionBar2-Visit model,
which shows how supervisory control can be modelled in VDM. Below we will
introduce the remaining elements of the model. The Angle type represents the
desired angle in radians as a real number restricted by an invariant, as introduced in
Sect. 4.2.1.2:

82 P.G. Larsen et al.

types
-—- represents an angle in radians
Angle = real
inv a == 0 <= a and a <= (2 * MATH'‘'pi)

The same holds for the Time type:

types
-—- represents a time, must be positive
Time = real
inv t ==t >= 0

The periodic control thread introduced in Sect. 4.3 is unchanged, but the Step
operation has been updated to take the setpoints in the queue into account:

operations
Step: () ==> ()
Step () == (
—-— write held value to actuator
pwm_motor := hold_pwm;

—— change setpoint if necessary
if len queue > 0 then (
let now = time/le9,
mk_SetpointChange (sp, t_time, w_time) = hd queue
in (
if now >= next_time then (
queue := tl queue;

-— update setpoint generation variables

base := enc2rot (enc_motor);

amplitude := sp - enc2rot (enc_motor);
start_time := now;

stop_time := now + t_time;

-— set next change time
next_time := now + t_time + w_time
)i
)i
)i

—-— calculate new hold value

let err = get_setpoint (time/le9, base, amplitude,
start_time, stop_time) - enc2rot (enc_motor)

in hold_pwm := limit (CalcPID(err), -1, 1);

4 Discrete-Event Modelling in VDM 83

where time refers to the total simulation time in nanoseconds. The mk_Setpoint
Change (sp, time, wime)on the left of the equality in the 1et expression
is a pattern that assigns the elements in the head of the queue to the sp, t _time
and w_time of the SetpointChange. The signature for the get setpoint
function has been changed; the new version is

functions
get_setpoint: Time *» real * real x* Time x» Time -> real
get_setpoint (t, base, amplitude, start_time, stop_time) ==
if stop_time - start_time = 0 then 0 else
let delta = 2 » MATH'‘pi x (t - start_time) /
(stop_time - start_time),
cycle = amplitude x (delta — MATH'‘sin(delta)) /
(2 x MATH ‘pi)
in if delta < 0 then base
elseif delta > 2+«MATH'‘pi then amplitude + base
else cycle + base
pre stop_time >= start_time

The difference from the TorsionBarl-Minimal model is that values that were
previously constants are now variables. Such instance variables cannot be seen
inside a function definition, and thus additional arguments have been introduced.
Thus, to complete the TorsionBar2-Visit controller, we have new instance
variables:

instance variables
-— track time between setpoint changes
next_time: real := 0;

-—- variables for setpoint generation
base: real := 0;

amplitude: real := 0;

start_time: real := 0;

stop_time: real :=
\. Y,

I
o

Finally, the remaining setpoint time change constants need to be set:

values
-- setpoint time changes
TRAVEL_TIME = 1;
WAIT_TIME = 0.5;

84 P.G. Larsen et al.
4.6 Example: Controlling for Safety

Systems often have safety requirements, and parts of these may be delegated to
software as a safety function. In the TorsionBar3-Monitor model, we have,
for example, required that the controller meets a safety constraint that the load disk
must not enter a specified region. Let us now add an end stop safety constraint: the
load disk must not enter a region at the end of the turn, for example, in the range
(27 /3, 27), and must go slowly in a region leading up to this, for example, (57/6,
27/3). In VDM, these constants are modelled as

values
-— no go region
NO_GO_MIN = 5+«MATH'pi / 3;
NO_GO_MAX = 11+«MATH‘pi / 6;

-—- slow region

SLOW_MIN = 3xMATH‘pi / 2;

SLOW_MAX = 2%MATH‘pi

I\ J

The NO_GO_MIN and NO_GO_MAX must be incorporated in the pre-condition for
the Visit operation:

operations
-—- visit a set of angles
Visit: set of Angle ==> ()

Visit (s) ==
body unchanged
pre s <> {} and

forall a in set s & (a < NO_GO_MIN or a > NO_GO_MAX) ;

In real machines, the speed is mostly linearly limited from maximum when entering
the speed limit region to zero when entering the no-go region. This serves to avoid
sudden changes or “bumps" when crossing a region’s borders. The speed limit can
be modelled in VDM as another constant:

values
-— speed limit in slow region {rad/s}
SPEED_LIMIT = 1;

We will introduce a safety monitor that stops the controller and returns it to 0
degrees if the speed limit or no-go region is entered. This is of course just one
strategy; another approach might impose the speed limit and ignore requests to

4 Discrete-Event Modelling in VDM 85

enter the no-go region. In order to estimate the time, we need to record the previous
encoder values. This can be done as an instance variable as

instance variables
—— encoder sample
prev_encl: real := 0.0;

This can be used in a new CheckMonitor operation:

operations
CheckMonitor: () ==> ()
CheckMonitor () == (
-— read sensor value, calculate speed
let encl = (enc_load / ENC_RESOLUTION) =* 2 = MATH‘pi,
speed = (encl - prev_encl) / SAMPLETIME
in (if encl >= NO_GO_MIN and encl <= NO_GO_MAX
then -- inside no-go region
EmergencyStop ()
elseif encl >= SLOW_MIN and encl <= SLOW_MAX
then -- over speed limit in slow region
if speed > SPEED_LIMIT then EmergencyStop();
—— record sensor sample
prev_encl := encl
)
)

S

where a new EmergencyStop operation is used. This is defined as

r

operations

-— stop 1if speed limit or no-go region are violated

EmergencyStop: () ==> ()

EmergencyStop () == (
—-— stop movement; clear setpoint and queue
hold_pwm := 0;
start_time := 0;
stop_time := 0;
base := enc2rot (enc_motor);
queue := [];

)

\. J

which essentially sets everything to initial values and stops the output to the
actuator (the motor). Finally, the safety constraints need to be taken into account
in an updated version of the Step operation (where the CheckMonitor test is
carried out before sending output to the actuator):

86 P.G. Larsen et al.

operations
Step: () ==> ()
Step () == (
-— write held value to actuator
pwm_motor := hold_pwm;

—— check for no-go and speed violations
CheckMonitor () ;

—— change setpoint if necessary
if len queue > 0 then (
let now = time/le9,
mk_SetpointChange (sp, t_time, w_time) = hd queue
in (
if now >= next_time then (
dcl travel_time: real := t_time;
let next_angle = 2«MATH'pi * sp in
if next_angle = 0 or
(next_angle >= SLOW_MIN and
next_angle <= SLOW_MAX) then
—-— increase travel time to limit speed
let distance abs (next_angle -
(2*MATH‘pi * enc2rot (enc_motor)))
in travel_time := distance / 0.5;

—-— update queue
queue tl queue;

—-— update setpoint generation variables

base := enc2rot (enc_motor);

amplitude := sp - enc2rot (enc_motor);
start_time := now;

stop_time := now + travel_time;

—-— set next change time
next_time := now + t_time + w_time
)i
)i
)i

—-— calculate new hold value
let err = get_setpoint (time/le9, base, amplitude,
start_time, stop_time) - enc2rot (enc_motor)
in hold_pwm := limit (CalcPID(err), -1, 1);
)i

(S

Note how the SLOW_MIN and SLOW_MAX constants also are used to limit the speed
by increasing the travel time.

4 Discrete-Event Modelling in VDM 87
4.7 Object-Oriented Structuring

So far, we have shown how the abstraction features of DE modelling can be
used to support the description of supervisory control. Although these features
can do a great deal to help master complexity, models of real systems can still
be complex. The structuring features included in our DE modelling framework
help to manage this complexity. In the remainder of this chapter, we will discuss
basic model structuring features using the torsion bar again, presenting a new
model (TorsionBarBaseline) which has no more functionality than the
models shown so far, but which does show how a model can be structured as a
group of units that can be understood individually, and together supply the necessary
control.

VDM supports a form of structuring based on object-orientation, a philosophy
in which systems are treated as groups of individual entities termed objects, which
each provide functionality that other objects may use. An object is a unit that can be
understood on its own: it contains data and functionality, some of which is offered
publicly and some of which remains private to the object. This notion of privacy
allows objects’ internals to be modified safely without compromising the overall
system’s capability, so long as the interfaces offered to other objects are preserved.

In a given system, there may be many objects of the same kind. For example,
we might define a system composed of an array of smart sensors. These sensor
objects will have similar interfaces, and so it makes sense, rather than repeating
their definitions, to define a template for this kind of object. Such a “kind” of object
is termed a class, and a template for objects of a class is termed a class definition.
An object is often referred to as an instance of a class. In VDM, objects are dynamic
in that they may be created, interact and be destroyed during the life of a system. By
contrast, classes in VDM are static structures that do not change during a system’s
life: they are just templates used to create instances.

VDM objects have local state data in the form of instance variables. Within the
class definition for a given object, the full range of types and operators introduced
so far can be used to define local constant values, new data types, functions and
operations.

Objects can be either passive or active. Passive objects are typically used as
common stores of data for other objects, whereas an active object can be thought of
as a separate machine, performing its own thread of control once it has been started:
our smart sensors would probably be considered active objects if they monitor and
raise an alarm if a condition is exceeded, for example. If a system has several active
objects operating concurrently, it is necessary to have features for managing their
execution. VDM provides a logic-based mechanism termed permission predicates
for this purpose.

88 P.G. Larsen et al.

Encoder Monitor
| -encLoad

e
1

- encLoad Jnd-!otor 1 1

qinnlroller

Motor ' Controller PID
| - pwmMotor } - pid L

+PWM < +Angle —l
1 1| +Time 1 1
+SetpointChange
1
- controller

1

User

Fig. 4.1 UML class diagram with connections to/from the Controller class

4.7.1 Structure of the TorsionBarBaseline Model

A graphical representation of the classes in a model is called a class diagram. In
the remainder of the book, we will use a style of object-oriented description based
on the Unified Modeling Language (UML) [15]. To introduce this, we consider a
structure for the TorsionBarBaseline DE model.

The model has five user-defined classes, a system class (which we will come
back to in Sect.4.9) and five library classes (like the MATH and IO classes used
above). An overview of the relationship between the user-defined classes and the
PID library class is given in Fig. 4.1 in the form of a UML class diagram.

In a class diagram, classes are represented by boxes with two parts: the upper part
holds the name of the class, and the lower part gives the type definitions made inside
the class. It is also possible to have parts that show the attributes (i.e., the values and
instance variables defined in a class) and the functionality provided by the class (i.e.,
its function and operation definitions), but these and some of the libraries have been
omitted from Fig. 4.1. Each class in a UML class diagram corresponds to a class in
a VDM model.

Objects exist in relationships with one another. For example, we expect to have
a single controller object in our model, but this will be linked to a specific object
representing the motor, an object for the motor encoder, an object for the load
encoder and so on. These relationships between objects of certain kinds are termed
associations and are shown by labelled arrows in a class diagram, as in Fig. 4.1.

4 Discrete-Event Modelling in VDM 89

The underlying idea here is that, if we look at a controller object, we should be able
to follow the associations to find the motor and encoders to which it is connected.
An association in a UML class diagram corresponds to an instance variable in the
VDM, which records the object at the target end of the link. For example, the four
links from the controller in our example are represented as the following instance
variables in the VDM:

~
class Controller

instance variables
—-— sensors (two encoders)
private encMotor: Encoder;
private enclLoad: Encoder;

—-— actuators (one motor)
private pwmMotor: Motor;

—-— PID control object
private pid: PID;

end Controller
\. J

In this example, the associations are all one-to-one in that each object of the
“from" end of the association points to exactly one object of the target class, and
each object of the target class is associated with exactly one from the source class.
This need not necessarily be the case, and the numbers on the association lines
show the multiplicity of each association. It is possible for one end to show a range
of values, including zero.

Information hiding and visibility is a key feature of object-oriented modelling,
and so modellers are able to control the access rights to attributes. The private
keyword preceding a definition indicates that the defined attribute can only be
accessed by objects of this class directly; the public keyword indicates public
access. It is sometimes convenient to access definitions without requiring an instance
of the class in which the definition has been placed: these are indicated by the
static keyword.

4.7.2 Instances of Classes and Constructors

Recall that classes are static, but their instances are dynamic, being created, living
and dying within the running system. Given a class definition, we require a
mechanism for creating an instance. This is done through the new expression.
The creation of an instance of the Motor class would be modelled as follows:

90 P.G. Larsen et al.

Fig. 4.2 UML class diagram

illustrating different Controller P CycloidGenerator
association multiplicities +Angle = :
+SetpointChange 1 0.1

&?ew Motor () J

where the list of arguments is empty, as indicated by the *“ () part. If data are
required in order to create the new instance, we define a constructor for the class
with a number of arguments. Constructors are operations that create new instances
of that class. They have the same name as the class itself, and their return type must
be the same as the class. For example, the Controller class has a constructor
defined as follows:

public Controller: natl » Encoder x Encoder * Motor ==> Controller
Controller (f, encm, encl, motor) == (

-— set sampletime / period

sampletime := 1/f;

period := floor (sampletime % 1E9);

—-— set instance variables

encMotor := encm;
encLoad := encl;
pwmMotor := motor;

—-—- initialise instance variables
pid := new PID(k, taul, tauD);
pid.SetSampleTime (sampletime) ;

)i

S

The constructor is executed when a new instance of the class is created. For example,
the creation of an instance of Controller might be expressed as follows:

{ new Controller (50, encMotor, enclLoad, pwmMotor) J

4.7.3 Optional Types and Association Multiplicities

As indicated in Sect. 4.7.1, associations can have many different multiplicities. For
example, inside the Controller class, a reference to the CycloidGenerator

4 Discrete-Event Modelling in VDM 91

library is used, as shown in Fig.4.2. This is optional: we expect there to be at
most one cycloid generator or none at all, as indicated by the 0 .. 1 in Fig.4.2.
In VDM, this is modelled by the use of an optional type for the target reference.
A type is made optional by adding an extra value nil, which is frequently used to
indicate a special error value or the absence of a normal value. For example, while
the type nat contains all the natural numbers, the type [nat] represents all the
natural numbers plus nil. In our cycloid generator example, we use an optional
type for the instance variable representing the association

instance variables
-- signal generator
sp_gen: [CycloidGenerator] := nil;

Although we do not illustrate them here, a full range of multiplicities can be
described using the collection types and invariants.

4.8 Concurrency

As we come to model more complex controller structures, it becomes important to
have a natural way of modelling the simultaneous or concurrent execution of several
processes that may occasionally synchronise with one another. In VDM, concurrent
computations are modelled as threads, as described in Sect. 4.8.1. Synchronisation
is achieved using a permission predicate approach described in Sect. 4.8.2.

4.8.1 Threads in VDM

Threads can be procedural or periodic. Procedural threads are simply described
as a statement as in the body of an explicitly defined operation. Periodic threads
describe computations that occur repeatedly. In order to specify such a thread, we
define the operation that is to be invoked and the time period that should elapse
between invocations. In the torsion bar Controller class, we would want to set
the Step operation going with a fixed period:

thread
-—- define periodic thread
periodic (period, 0, 0, 0) (Step)

The Step operation is called every period nanoseconds. Besides the period, the
other parameters of a thread specification are, respectively, the jitter (the amount
of variance allowed around the invocations of the operation), the delay (minimum

92 P.G. Larsen et al.

permitted time between two occurrences of the operation) and offset (the absolute
time of the first occurrence of the event). In our example, we simply specify that
Step is to be performed exactly at the times 0, period, 2xperiod etcetera.
Threads are started explicitly by a start statement, often from an instance of a
special class (conventionally called Wor1d), which sets a simulation going, as in
our example:

~
class World

operations
-— run a simulation
public run: () ==> ()
run() == (

start (TorsionBar ‘ctrl);
start (TorsionBar ‘monitor) ;
start (TorsionBar ‘user) ;
block () ;

)i

end World
- J

Note that the monitor and the user also have threads of their own that are started
here.

4.8.2 Synchronisation of Threads in VDM

If we permit multiple threads, we also have to manage their synchronisation. In
VDM, this is done by means of permission predicates, which provide guards that
must be satisfied for an operation to be permitted to run. These are not the same
as preconditions: failure of a permission predicate causes the thread to be blocked
until the predicate is satisfied, whereas failure of a precondition means that the
operation’s outcome is undefined. Permission predicates can be logical assertions
over instance variables, but may also be assertions about the history of activations
and completions of the operations or the queues of operations waiting to execute.
One of the most common types of permission predicate ensures mutual exclusion
of running operation invocations. Such mutex constraints may be included in the
Controller class:

sync
mutex (Visit, Step)
mutex (Visit)
mutex (Step)

4 Discrete-Event Modelling in VDM 93

so at any point, at most one invocation of any of these operations will ever
be allowed to be started. In a rather technical example, in the World class, a
permission predicate is used to suspend the execution of the block operation:

operations
-— wait for simulation to finish
block: () ==> ()
block () == skip;

sync

per block => false;

This is used to block the execution on purpose. Note that the skip statement simply
indicates that no action is required.

4.9 Modelling Systems

We have examined at some length the facilities for modelling data and functionality,
structuring complex models and describing and constraining concurrency. Expe-
rience suggests that, if modelling a controller at a very high level of abstraction,
relatively few of these features are required. However, as we move closer to a
detailed description of a potentially complex, moded and multiprocessor controller,
more of the features of the language come into play. This has been reflected in the
increasing capability and complexity of the examples.

At some point in detailed design, we may wish to model the split between the
computer hardware element of the digital controller package and the software, for
example, in order to explore a design space of different processor characteristics
or consider the potential of different controller software structures on specific
computers. In VDM, we can model a computing hardware architecture consisting
of one or more CPUs (processors) and connected by communications BUSes. This
enables us to experiment more readily with alternative control architectures on the
DE side than is the case using CT formalisms alone.

At the top level of the DE model in VDM, we describe the whole computing
system by means of a special system definition which is similar to a class definition,
except that it may additionally use the CPU and BUS abstractions to model the
computing infrastructure and describe the deployment of elements of the control
model onto CPUs. For example, in the TorsionBarBaseline model, we can
construct a TorsionBar system class, within which the architectural components
of the system are defined:

94

P.G. Larsen et al.

system TorsionBar

instance variables
—-—- sensors (two encoders)
public static encMotor:

—-— actuators (one motor)
public static pwmMotor:
—-— controller object =~ 50Hz
public static ctrl:

new Controller (50,

-— monitor object = 60Hz
public static monitor:
new Monitor (60, ctrl,

~ 10Hz
User :=

-— user object
public static user:

Encoder := new Encoder();
public static encLoad: Encoder := new Encoder();

Motor := new Motor();

Controller :=
encMotor,

enclLoad, pwmMotor);

Monitor :=
encLoad) ;

new User (ctrl);

(S

Declaring these objects as public means that they can be accessed from anywhere in
the model; for example, the controller object is accessed as TorsionBar ' ‘ctrl.
These objects must be declared static as it is not possible to create instances of
the systemclass. Only one can exist in the model, and it is implicitly instantiated at
start-up. Having defined the architectural elements of the system, we can introduce
the CPUs and communications infrastructure. In our example, we consider two CPUs
connected by a single communications BUS. The definitions are given as follows:

instance variables

cpul CPU := new CPU (<FP>, 200E®6);
cpu2 CPU := new CPU (<FP>, 200E®6);
busl BUS := new BUS (<FCFS>, 115E2, {cpul, cpu2});

Each CPU is configured with parameters indicating its scheduling policy (Fixed
Priority or First-Come-First-Served) and its capacity in instructions per second.
Each BUS is configured with a scheduling policy, its capacity (bandwidth in bytes
per second) and the set of connected CPUs. In order to allow some freedom over
which parts of a DE model are deployed to CPUs and which continue to be executed
in a “perfect” environment, we assume a further virfual CPU with infinite capacity
(i.e., executions consume no simulated time) which is connected with all other CPUs
by a virtual BUS over which communication also takes no simulated time.

At any point in a model, the current simulated time can be accessed (by the
time keyword). When any construct is executed, increments are made to this time.
Default values for the increments can be overridden by a duration statement, which
enables time to be incremented by a fixed amount (in nanoseconds) or a cycles
statement, which enables the increment to be given in terms of processor cycles, so

4 Discrete-Event Modelling in VDM 95

that the actual increment depends on the CPU speed onto which the functionality is
deployed.

The deployment of the system elements to CPUs is done in the system’s
constructor. Suppose that, for the TorsionBar system, we wish to deploy the
controller to one CPU and the monitor to another:

operations
public TorsionBar: () ==> TorsionBar
TorsionBar () == (
—-— deploy controller
cpul.deploy(ctrl, "TorsionBarController");
cpu2.deploy (monitor, "Monitor")

)

The elements not deployed to specific CPUs are allocated automatically to the virtual
CPU and so are assumed to compute in zero time for the purposes of this model.
This is useful for those elements of the model that represent the environment of the
system.

A concurrent computation is said to be an asynchronous computation if the caller
need not stop to await a response after issuing a call to another operation. Instead,
the called operation will proceed in another thread. This is particularly relevant if the
call goes over a bus because the called operation resides in an object allocated to a
different CPU from that of the caller. We can define an operation as asynchronous in
VDM using the async keyword before the operation name; such operations cannot
return a value.

4.10 Conclusion

We have introduced the many forms of abstraction available to the DE modeller who
wishes to design a controller. These include basic data that can be restricted by data
type invariants, facilities for defining new types that are meaningful in the context
of the control application, operations that work on persistent data and facilities
for both implicit (pre/post-condition) and explicit (algorithmic) specification of
control functionality. These enable basic control to be modelled, as shown in
TorsionBarl-Minimal. Structured types such as records and collections such
as sets, mappings and sequences enable more sophisticated supervisory control to be
modelled, as demonstrated in the TorsionBar2-Visit model. Structuring facil-
ities for more complex controllers enable the description of architectural solutions
to problems like safety control, as presented in the TorsionBar3-Monitor.

In Chap. 6, we will see the further use of object-oriented structuring concepts to
facilitate the reuse of designs and patterns of design, especially in the DE side. All
of the techniques introduced here have been applied in the case studies described in
Parts II and III, and further technical details will be introduced as required. All the
models used as examples are part of the distribution of the Crescendo tool.

Chapter 5
Support for Co-modelling and Co-simulation:
The Crescendo Tool

Peter Gorm Larsen, Carl Gamble, Kenneth Pierce, Augusto Ribeiro,
and Kenneth Lausdahl

5.1 Introduction

Having seen how to construct CT and DE models in the two previous chapters, we
may now bring them together to form a co-model as described in Sect. 2.4. This will
be illustrated by reusing the torsion bar example used in the previous two chapters.
This chapter introduces the Crescendo tool and its support for co-modelling and
co-simulation. It focuses on illustrating the main tool functionality, rather than
acting as a user manual. More detailed documentation for the Crescendo tool, as
well as the individual CT and DE tools, can be accessed online for readers wanting
further explanation.

The Crescendo tool can be downloaded from the website supporting this book,
www.crescendotool.org, along with additional material such as a user manual [60].
We recommended that you download and install the tool to gain the most from this
chapter. The website also contains versions of all the examples introduced in this
book. This chapter uses the TorsionBar4-Baseline co-model as an example,
and so we suggest you import that so that you can better follow the information
presented in this chapter.

P.G. Larsen (<)) « K. Lausdahl
Aarhus University, Aarhus, Denmark
e-mail: pgl @eng.au.dk; lausdahl @eng.au.dk

C. Gamble * K. Pierce
Newcastle University, Newcastle upon Tyne, UK
e-mail: carl.gamble @newcastle.ac.uk; kenneth.pierce @newcastle.ac.uk

A. Ribeiro
d60, Aabyhoej, Denmark
e-mail: ars @d60.dk

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 97
DOI 10.1007/978-3-642-54118-6_5,
© Springer-Verlag Berlin Heidelberg 2014

www.crescendotool.org
mailto:pgl@eng.au.dk
mailto:lausdahl@eng.au.dk
mailto:carl.gamble@newcastle.ac.uk
mailto:kenneth.pierce@newcastle.ac.uk
mailto:ars@d60.dk

98 P.G. Larsen et al.

The chapter begins with a demonstration of how to import the TorsionBar
4Baseline model in Sect.5.2. Then Sect.5.3 explains how the CT and DE
models are combined with a contract and linked to form a co-model. Afterwards
Sects. 5.4 and 5.5 explains how co-simulation of the co-model can be carried out
with and without additional scripts aimed at providing inputs dynamically during
the co-simulation. Finally, Sect. 5.6 briefly demonstrates how to make changes to
the CT and DE models from the torsion bar example. Finally, Sect. 5.7 provides a
summary of the chapter.

5.2 Importing the Torsion Bar Co-model

Once the Crescendo tool has started and the Welcome screen has been closed, the
overall layout of the screen shown looks like Fig. 5.1. Essentially it is divided into
a menu bar at the top and five separate areas, called views. In the Explorer view, an
overview of the different projects is shown (one co-model per project). The Editor
view is used to view and edit files and includes syntax highlighting of keywords.
If the file shown in the editor view contains structured information (e.g. VDM source
text), the Outline view will provide a navigable outline of the contents, using icons
to indicate the nature of the different definitions. The last two views (the Simulation
Engine and Console views) are related to co-simulation, and we will come back to
these in Sect. 5.4.

To import the TorsionBar4-Baseline co-model, click on the File
menu entry and then selecting the Import... item in the menu and the import
window will appear. Select the Crescendo item and then Crescendo Book
Examples, selecting the TorsionBar4-Baseline co-model from the list.
This is shown in Fig.5.2. The imported model contains the CT model introduced
in Chap. 3, the final version of the DE model introduced in Chap. 4, and the contract
between them.

When the import has been completed, the TorsionBar4-Baseline project
will appear in the Crescendo explorer with the structure illustrated in Fig. 5.3. The
following sections explain the contents of these folders such that afterwards you will
be able to create your own co-model projects.

5.3 Crescendo Contracts

As explained in Sect. 2.4, a contract consists of:

* Shared design parameters (SDPs)

* Shared (controlled) variables (written by DE, read by CT)
* Shared (monitored) variables (written by CT, read by DE)
* Events (only considered in Chap. 11)

5 Support for Co-modelling and Co-simulation: The Crescendo Tool 99

(5 Crescenda - Torsi | de/Torsi Crescendo Tooks = o |
File Edt MNavigee Seasrch Project Run Window Help
. BrO~Q- A5l o e Quick Access &7 | [Crescendo | €3 voMm hmug
| & Crescendobp. 12 = O TorsionBasvdmit 5 = 0 |52 outne 1 HR e W=
= systes TorsionBar S + O TomionBar
i 3
= TersonBadl -M i : d- - o encMotor: £
4 t riabl .
3 Todontid v instance varisbles Editor view & srciand
1 TorsionBar3-Monitor sensors (two encoders o pwmMotor: M
7 TorsionBaed-Baseline public static encMoter: Encoder := new Encoder(); o el
= cenfiguration public static encload: Encoder := mew Encoder(); o rmouitors Manit
@ launches e i o user
> model ct public static pusbotor: Motor im new Motor(); b e epul
& epul: CF
Explorer troller object -~ son pbe
public static ctrl: Controller := new Controller(5, encMotor, encloa & TorsionBar) : T
view public static monitor: Monitor i= new Monitor(s9, ctrl, encload); | outline view
Uservdmn user cbject oMz
Worldvdmmt public static user: User = new User(ctrl);
& cutput - srchite .
(= scenarios cpul ¢ . (ouu:h 200EE);
¥ TersonBarS-Extended cpu2 : CW = new CPU(<FP>, 20066);
busl: BUS := new BUS(<FCFS>, 1152, {cpul, cpul});
1 Simulation Engine View { > 0 @ = 8|3 proble. | B Console I | Simula. | = Simuta. | = VOMD.. | & Vdm L.
Source Message & xbi|l At B ~r3~
an Semulation time: 2.200000 seconds / Completed: 11 % [Debug Console] TorsionBard-Baseline [VOM RT Model]
A Simulation time: 2400000 seconds / Completed: 12 % (3. £4000001], sp = 9. 41725043C0019; holdmem = B.0253 134815501 semES
[3.56000001] sp = 0.42205811 hold_pwm =
An Semulation tene: 2600000 seconds / Completed: 13 % [3.58000001] 5p = @ 3 hold_pm = 8
an [3.60000001] 3p = s2143464; sa
Al [3.62000001] sp = I g 9853; sample_
,.| Simulation Engme view i) 22| Console view [k
[3.66000001] sp = | i
A e T TRCEAaT T Lo =1 [3.68000001] sp = hold_pm = @ 317865 s
an Samulation time: 3600000 seconds rComplm 1B% 3 -

Fig. 5.1 The main Crescendo window

For the TorsionBar4-Baseline co-model, the controller needs to monitor
the encoders for the motor (enc_motor) and the load (enc_load), and control
the motor via a pulse-width modulated signal to an amplifier (pwm_amp, see also
Sect. 3.5.2). This is recorded in the contract as:

-— monitored variables
monitored real enc_motor;
monitored real enc_load;

—— controlled variables
controlled real pwm_amp;

Note that lines prefixed by a “-” sign are comments to help the reader. This contract
information can be found in the contract.csc file under the configuration
folder. All values exchanged between DE and CT simulators are numbers (integers
and reals), so if the model requires limitations on these, invariants should be defined
on the DE side. It is also possible to exchange one- or two-dimensional matrices of
numbers using a matrix keyword. This is not necessary in the current example,
but more information can be found in the user manual [60].

100 P.G. Larsen et al.

Select an import source:
| type filter text l

4 (= General
(3, Archive File
&5 Existing Projects into Workspace
(), File System
[, Preferences

4 (= Crescendo
() Crescendo Book Examples|
(&0 Crescendo Examples

i (& Install

b (= Overture

> (= Run/Debug

p (= Team

@ | <8k |[LNet>][Finish | [Cncel

Fig. 5.2 Importing the TorsionBar4-Baseline co-model

4 - TorsionBard-Baseline
4 (= configuration
1/ contract.csc
5 vdm.link
4 [launches
|:_?'\J TorsionBard-Baseline_noscript.launch
|| TorsionBar4-Baseline_script.launch
4 (= model_ct
| TorsionBar.emx
4 % model_de
b (= actuators
I+ = controller
b = lib
b [sensors
& | TorsionBar.vdmrt
b | Uservdmrt
b L Worldvdmrt
(2 output
4 = scenarios
|| user_behaviour.script2

Fig. 5.3 TorsionBar4-Baseline co-model project structure

5 Support for Co-modelling and Co-simulation: The Crescendo Tool 101

The contract also contains a SDP called ENC_ COUNTS. Recall from Chap. 2 that
SDPs are common to both models and are used when a parameter must be the same
in both constituent models. SDPs are commonly used to define tunable parameters in
a co-model. In the case of the torsion bar example, the SDP called ENC_COUNTS is
used to indicate the number of pulses per revolution generated by the encoders. This
parameter is used in the encoder blocks of the CT model to calculate the encoder
count. This parameter is also needed by the controller in order to decode the count
to determine the positions of the load and motor discs.

—— shared design parameters
sdp real ENC_COUNTS;

5.3.1 Introduction to the VDM Link File

In addition to the information provided above, it is necessary to connect these shared
variables to elements in the DE and CT models. However, this is done differently in
these two cases. For the DE side, there needs to be a VDM link file that makes the
connection from the contract elements to their statically declared counterparts in the
DE model. The syntax for these connections looks like:

location
location

input name
output name

The name refers to the name of the variable in the previous part of the contract and
the location needs to be an object field path from the system class defined in the
DE model. Thus, the location starts with the name of the system class and dots
to instance variables derived from here. For the torsion bar example, this is done as
follows:

—-— linking of the monitored variables
input enc_motor = TorsionBar.encMotor.val;
input enc_load = TorsionBar.enclLoad.val;

—— linking of the controlled variables
output pwm_amp = TorsionBar.pwmMotor.val;

102 P.G. Larsen et al.

This linking information resides in the vdm.1link file which is also in the
configuration directory. Note how each monitored variable is considered an input
while controlled variables is considered an output. The syntax used here indicates
the direction first, followed by the name of the variable. After that an equal sign
is used to link it to the variable it will be mapped to inside the DE model. Here,
TorsionBar is the system class (see Sect.4.9) and inside that encMotor
and encLoad are both statically declared encoder objects (of the Encoder
class). Inside the Encoder class an instance variable called val of type real
is declared and that is what is referred to here. The same applies to the output
where the TorsionBar system has a statically declared instance variable called
pwmMotor as an instance of the Mot or class. Inside the Mot or class there is also
an instance variable called val of type real declared and that is what is referred
to here. Thus, the right-hand-side of the equality sign shows the path from the top-
level system down to the variables that needs to be exchanged with the CT side. We
will illustrate how the linkage is done from the CT side in Sect. 5.3.2 below.

A similar connection must be made for the SDP. In the example, the SDP called
ENC_COUNTS is mapped to a value of the same name in the Wor1ld class of the
DE model.

—-— linking of shared design parameters
sdp ENC_COUNTS = World.ENC_COUNTS;

A fourth keyword can also be used in link files. The model keyword allows a
script to modify an instance variable on the DE side during co-simulation. As above,
only instance variables that are present statically (typically from the objects declared
in the system class) can be used here. In this case, the name input trigger
is mapped to the trigger instance variable inside the user declared in our
TorsionBar system. This looks like:

-— allow script to access trigger variable in User
model input_trigger = TorsionBar.user.trigger;

This instance variable allows a script to initiate user behaviour in a co-model. We
will return to the use of input trigger in Sect.5.5.

5.3.2 Global Variables in the CT Model

To open the CT model located in the model ct folder, double-click its file name
(in this case TorsionBar.emx). This will automatically open the model in

5 Support for Co-modelling and Co-simulation: The Crescendo Tool 103

|2 20-sim e oo TersionBarame -
Ettmn-??tw@mkw_wm
DaiE2 b ¢ s P87 RO B
e R AAEMALR L& Q-
i Ampifies

B It Reeak

FiuxtinShat |

Beit
Coniraler (CoSes)

Ed

] Encadertoad (Absske]

[EncoderMotor (Absokute)
Frexiasraft

=L Ground

“W

| 4] Imoter

EE

Interface || Ben || Globals * 7| Cutut | Process | Fnd

Opening fle C: o eo-sm_r " O

Caunality assgrment completed sucoessfully

Fig. 5.4 The CT model of TorsionBar4-Baseline inside 20-sim

20-sim externally to the Crescendo tool as shown in Fig. 5.4. Note how the left-hand-
side of 20-sim provides a navigable outline of the components that are included in
the example. The main canvas shows the top level of the model, as presented back
in Fig. 3.34.

For the CT side, the linkage to the elements included in the contract is done
differently. Here one needs to declare the variables under the externals heading.
Each variable also needs to be declared as being global in the CT model, and
then we indicate for each of them whether they are being imported into or exported
from the CT model.! Note that variables exported from the CT model will be input
to the DE model and vice versa. Double-clicking on the Controller block (see
Fig. 5.4) will reveal the linkage statements:

externals
real global import pwm_amp;
real global export enc_motor;
real global export enc_load;

The names in the CT model must be an exact match with the names from the
contract. The names must also be declared global, which allows them to be
accessed without using the name of the block in which they are declared (e.g. the
20-sim internal name Controller/pwm_amp is represented as pwm_amp).

The SDPs need to be declared in a similar fashion. They must be declared under
the parameters heading. In addition, SDPs need to be declared global and
marked as being (*shared’). This is done for the torsion bar example as follows:

'The 20-sim tool uses this principle to interface with other tools as well.

104 P.G. Larsen et al.

parameters
real global ENC_COUNTS (’shared’);

In order to connect the input ports of the Controller block in 20-sim to the
external variables, it is necessary to write this in either a code or an equations
section. For example:

code
enc_motor = EncoderMotor; // export encoder values
enc_load = EncoderLoad;

PWM = pwm_amp; // import pwm

Note that EncoderMotor, EncoderLoad and PWM are the names of ports in
the Controller block in 20-sim. These ports are used to connect the shared variables
to the rest of the CT model.

5.4 Starting a Co-simulation

In order to start a co-simulation, the Debug Configurations window has to
be opened. This is achieved by clicking the small arrow next to the debug button
(the one with the small bug on it as shown in Fig. 5.5) at the top menu line and then
selecting it. In a Crescendo setting, debug configurations are also called launches.
When TorsionBar4-Baseline noscript isselected, the window shown
in Fig. 5.6 should appear.
For a debug configuration, the following aspects need to be configured:

¢ A project must be selected for the co-simulation (in the case of Fig. 5.6 this is
TorsionBar4-Baseline);

* The paths to the DE and the CT models must be set. The DE path will already
be filled out, but the 20-sim file you wish to use must be selected (in this case
TorsionBar.emx). This allows multiple CT models to be present in one
Crescendo project;

* A script may be selected. Scripts are covered in the next section; and

¢ The simulation time (in seconds) must be set.

Once the above settings are configured in the Main tab, there is enough
information to launch a co-simulation.

The debug configuration also contains six other tabs to allow many other options
to be set. The Shared Design Parameters tab allows the values of the SDPs

5 Support for Co-modelling and Co-simulation: The Crescendo Tool 105

.@ Crescendo - Crescendo Tools
File Edit MNavigate Search Project Run Window Help

i GYo-a-s-0-

4

(1) Crescendo Explorer 53 (no launch history)
> 22 TorsionBarl-Minima Debug As »

b 1 TorsionBar2-Visit

> &;%I- TorsionBar3-Monitol
b 12> TorsionBard-Baseling
b bm» TorsionBar5-Extended

Debug Configurations...

Organize Favorites...

Fig. 5.5 Debug icon highlighted

Mame: TorsionBard-Baseline_noscript
Main Shared Design Parameters | DE simulator| CT simulator Post-Prncessinj Advanced| =] Common
Project
—_——
Project: TorsionBard-Baseline Browse.. |
Simulation Model Paths
DE Path: model_de Browse...
—_—
CT Path: model_ct/TorsionBar.emx | Browse..
Simulation Cenfiguration

Script: [__.B.'ff’_e.'_'l.J Remove

Simulation Duration

Total simulation time (in seconds): 20

Fig. 5.6 Configuring a co-simulation

Name: TorsionBard-Baseline_noscript

'Main | Shared Design P: t _DE simulator | CT simulator | Post-Processing | Advanced £ Common

l Synchronize with contract

Name Value
ENC_COUNTS 2000

Fig. 5.7 Setting a shared design parameter

defined in the contract to be set before co-simulation. In the case of the torsion bar
example, the ENC_COUNTS parameter should be set to 2000, as seen in Fig.5.7.
The other five will not be explained here.

To start a co-simulation, press the Debug button. Now the Crescendo
co-simulation engine will start executing the co-model with the DE and CT
simulators taking turns. In the Simulation Engine view, progress of the

106 P.G. Larsen et al.

[Simulation Engine View 2 >0 B~ O
Source Message -
All Validating interfaces...

All Validating interfaces...completed

VDOM-RT Setting sdp’s: [USE_SCRIPT = [0.0], ENC_COUNTS = [2000.0]]
20-5im Setting sdp's: [USE_SCRIPT = [0.0], ENC_COUNTS = [2000.0])
VDM-RT Simulator started with no errors
20-Sim Simulator started with no errors

m

All Starting simulation: Time=0.0 -> 20.0 Current=0.0
All Simulation: 0%
All Simulation time: 0.200000 seconds / Completed: 1 % -

Fig. 5.8 The Simulation Engine view, including the square stop button (top right)

Load disk position

= Lo sk pesbition frav}

o 5 0 15 .
time s}
Load disk velocity

Controlet ot
008 = Controlier out
004
002
[.
.02
L] & 10 15 F

tima 3}

Fig. 5.9 Plot of selected variables against time (from TorsionBar4-Baseline)

co-simulation is reported as a percentage of simulation time passed. If you for some
reason wish to abort a co-simulation, note that after starting it you can always press
the stop button (square button in the upper part of the Simulation Engine
view as shown in Fig. 5.8). Next to the stop button there are two parallel bars which
act as a pause button. To the left of that there is a small arrow pointing to the right
(grayed out in Fig. 5.8 but if it can be activated it would be green) which is a play
button to be pressed again after a paused co-simulation.

Both the DE and the CT simulators have their own ways for a model to report
progress of a simulation. On the DE side, progress is typically made using traditional
output to the standard console, but it is also possible to develop project-specific Java
Graphical User Interfaces (GUISs) that can be used to demonstrate the progress of a
simulation. On the CT side, progress of a simulation can be shown using graphs
such as Fig.5.9, but in many cases the most valuable way of showing progress
is using a 3D visualisation of the simulation as shown in Fig.5.10. In particular,
for stakeholders who are less technically skilled, this kind of animation can be

5 Support for Co-modelling and Co-simulation: The Crescendo Tool 107

Fig. 5.10 3D animation of the torsion bar during simulation

4 | TorsionBard-Baseline 1) 20simVariables.csv Microsoft Office E
configuration Engine.log Text Document
launches Message.log Text Document
model_ct resulte.m M File
model_de {54) SharedVariables.csv Microsoft Office E

2 | outpit Simulstion.log Text Document
2013_11_28 18 42 27 TorsionBard-Baseline_noscript TorsionBarBaseline_noscript.disunch DLAUNCH File

2013 11_28 1B 45 33 TersionBard-Baseline noscript
scenanios

Fig. 5.11 Example structure of the results from a single co-simulation

very valuable in understanding the consequences of different design decisions.
One particular benefit of the 3D visualisation is that is can be replayed after the
simulation (real time, sped up or slowed down) or saved as a video without having
to re-run the simulation.

In addition to the live outputs from the DE and CT tools, Crescendo also saves
results from every simulation run within the output directory of the co-model
project. The directory name includes both the date and the time that the simulation
was run, in addition to the name of the debug configuration used (see Fig.5.11).
Three of the files saved are of particular interest. In the CT Simulator tab of a
debug configuration, it is possible to select variables within the CT model that are to
be logged. If this is done, then they are saved in the 20SimVariables.csv. Itis
also possible to log the variables shared via the co-model contract. This is selected
by ticking Enable Logging in the Advanced tab of the debug configuration.
This data is saved in SharedVariables.csv. A .launch file is also added
to this directory, allowing the simulation to be repeated with the same settings if
required.

108 P.G. Larsen et al.
5.5 Using Scripts and SDPs

When performing a co-simulation, it may be convenient to influence its behaviour
“from the outside”. This might be done to disturb the system under test to observe
the results or to explore different scenarios. Creation of these scenarios is possible
with scripts. The Crescendo tool supports a scripting language called the Crescendo
Scripting Language (CSL).

In general, a script consists of a collection of condition and action pairs. The
conditions are written as logical expressions using keywords such as time as well
as the variables exchanged between the DE and CT simulators. All the actions get
reevaluated every time control is shifted from the DE to the CT side and vice versa
(see Sect. 13.4 for more detail on the semantics). Thus, since there are many such
shifts, the time taken to perform the co-simulation of the co-model is significantly
increased when using scripts. As an alternative to the when keyword, we could
equally well have used the once keyword. Semantically the only difference is that
with once the action will be carried out at most once whereas the when keyword
will invoke the action whenever the condition is true. The action part starts by an
indication of whether the action is related to the DE or the CT side (in this case, the
DE side).

The TorsionBar4-Baseline project contains a script called under the
scenarios folder. The TorsionBar4-Baseline script launch is used to
illustrate scripting. This launch has the script file already selected.> The simulation
can be initiated by clicking on the Debug button as before. The script file is called
user behaviour.script2 and opening it will show the following code:

when time >= 0.3 and time <= 0.4 do

(

de boolean input_trigger := true;
)i

The effect of this script is that when the time is between 0.3 and 0.4 s the value
of a variable called input trigger is set to true (the de part indicate that it
comes from the DE side). Recall from the contract description earlier in Sect. 5.3.1
that the variable input trigger is mapped to a variable with the location
TorsionBar.user.trigger. So in effect, when the time is between 0.3
and 0.4 s, the trigger variable in the user object declared in the TorsionBar
class is set to true.

2Note that an additional SDP, USE_SCRIPT, is used in this model. This prepares the constituent
models to run a script and must be set to 1. This is, however, a modelling choice and not a
requirement.

5 Support for Co-modelling and Co-simulation: The Crescendo Tool 109

During simulation, the Step operation within the User class is executed
periodically. The periodic operation checks for the value of t rigger changing to
true, after which it invokes the Visit operation of the controller (mimicking user
behaviour). The controller then visits them as shown in Chap. 4. The core definitions
for the User class are:

class User

operations

—— periodic operation
public Step: () ==> ()
Step () ==
if trigger
then (-- set angles to visit and reset trigger
controller.Visit (ANGLES) ;
trigger := false)

end User
(S

As seen in Fig. 5.12, the first setpoint is changed right after 0.3 s, indicating that
the script executed as expected. This output is generated by using the standard IO
library class. Here the relevant part of the definition is:

Step () ==

IO ‘printf ("[%s] Setpoint changed to %s. Next change at %s.\n",
[now, next_pos, next_time]);

5.6 Changing the Torsion Bar Model

In this section, we describe how to make some changes to the torsion bar model.
We start by altering the CT model to represent it containing a larger, more powerful
motor and then increase the mass of the load disk. These changes result in the load
wheel exceeding a speed limit initiating an emergency stop and so we then describe
how to input new parameters into the PID controller in the DE model to correct this
undesirable behaviour.

110 P.G. Larsen et al.

*. Problems | I Simulation M... | Simulation View | B Console &2 | [VDM DebugL... | I Vdm Log View..| = B

wbi|l 2 B i~
[Debug Console] TorsionBarExtended [VDM RT Model]
[e.22eeee01] sp = n/a; hold_pwm = ©; sample_encm = @; sample_encl
[@.24000001] sp = n/a; hold_pwm = @; sample_encm = @; sample_encl
[@.26000001] sp = n/a; hold_pwm = @; sample_encm = @; sample_encl
[@.28ee0001] sp = n/a; hold_pwm = @; sample_encm = @; sample_encl
[@.3eeee00l] Setpoint changed to ©.08333333333333333. Next change at 1.3eeeeeel. 5
[e. 1] sp = 3. 780686E-17; hold_pwm = 4.062926955231456E-17; sample_encm = @; sz ™

wonowom
M-I

Fig. 5.12 Triggering from a script during simulation

5 ke
00K
00K -
e
d Jmotor
EncoderMotor

Fig. 5.13 Iconic representation of the motor

5.6.1 Adjusting the CT Model

We start by here by adjusting the parameters in the CT model to represent a larger
electric motor. Figure 5.13 shows the iconic elements making up the motor and
encoder model. To model a larger motor, it will be necessary to reduce the motor’s
resistance (R element) and increase the inductance (L element), motor constant (K
element) and motor inertia (Jmotor).

The same method is used to effect a change in each of the parameters we need to
change. Using the resistance as an example, first click on the icon of the R element
to select it then right click to bring up a context menu. Select parameters from
this menu to reveal the parameters/initial values editor, Fig.5.14.
To reduce the resistance of this element, click on the value for the row R and replace
it with the new value, in this case a 1. We can now proceed to alter the values of
the other elements, either by closing the parameter/initial values editor
window and then selecting the next element, or you may select the next element to
edit in the model hierarchy panel on the left-hand side. Doing the latter will
reveal the parameters for this newly selected element, allowing them to be changed.
You should edit the parameters of all four elements listed in Table 5.1, replacing the
original values with the new values in the table.

Launching the co-simulation with these new parameters reveals that the new
larger motor give a slightly smoother plot for the “load disk position” than with
the original parameters, but otherwise the controller has ensured that the behaviour
of the load disk is the same as before (Fig. 5.15). Inspired by this we might consider

5 Support for Co-modelling and Co-simulation: The Crescendo Tool 111

f # Parameter/Initial Values Editar =
Medel Hasearchy: Passrosters | Iritial Values | Constants
> Ilrudel
L ;'r'" Mame | Vale uarily Unit Desciiption | Arthemelic .
= d ® R 1230ohm} ElecticResstance ohm Real
[EncoderLoad
[EncodesMotce
FlesibleShalt
E JLoadDink
Admahor
IMotoeDick
2 4
L
R - —
|| oA
Expand Vectors/Matices
e]) []
Fig. 5.14 Parameters/initial values editor view of the R element
Table 5.1 Parameter values for a larger electric motor
Element and parameter Original value New value
Resistance (R) 1.23 ohm 1 ohm
Inductance (L) 1.34 mH 2mH
Motor constant (K) 389m 60m
Motor inertia (Jmotor) 6.76e° kg m? 1.276e~> kg m?
Load disk position

= Load disk position {rev}

s 10 15 o
e {5}
Load disk velocity

time {s}

o L] 10 1% 20
tima (s}

Fig. 5.15 Co-simulation results with a larger motor

whether the system could drive a more massive load disk now we have the larger
motor attached. The current mass and dimensions of the load disk result in it having
an inertia of 0. 00137 kg m?, this may be found by right clicking the JL.oadDisk
element and selecting the “Parameters” option. A larger mass leads to a great
moment of inertia, so replacing the current value with 0.01312 kgm? represents
a load disk with a moment of inertia nearly one order of magnitude greater than the
previous one.

112 P.G. Larsen et al.

Load disk posiion
08 Lo disk p ot
08
04
02
o
a 5 10 18 0
e {8}
5 Load dak velocity
: = Load disk veloity (radis}
AUAWA
o VS
g \/
*o s 10 18 0
tima s}
Controller cut
[= Controller cut
S\
r /_} I~
005 U A%
0 s 10 18 Y
e (s}

Fig. 5.16 Co-simulation results with a larger motor and larger load disk

¥ Problems | [Simulation Messages View | 7] Simulation View | B Console i1 | [] VDM Debug Log Viewer Events.|] Vdm Log Viewer Messages

<terminated> (Debug Console] TorsionBarBaseline [VDM RT Model]

[é.ssaeeeel] sp = 8.743038960616491; hold pnI =8, 938423].415!1?51&?& sa-pI: encm = @, THIAEEEEEE6666667; sample_d encl = 9.1978666666666
[7.00000081] =p = 8.745282375777534; holﬂ_pn- = §.00605E599361764545; sample_encm = @.7376; sample_encl = @.19866666666666666
[7.02000001] sp = ©.7474728106038718; hold_pwe = ©.0056947909586831024; sasple_ence = @.7404; sample_encl = 0.1994666666666666

7.] sp =@, 1329639; hold_pwm = 8.005351211196800573; sample_encm = O.74306E6E66666668; sample_encl = @, 2991!!!!!!!!
[7.849999848] Speed limit broken.

[7.950174871] EMERGENCY STOP!

[7.06000001] sp = nfa; hold_pwm = @; sample_encm = 9.7455999999999999; sample_encl = 9.2008
[7.066666514] Speed limit broken.

[7.066840737] EMERGENCY STOP!

[7 080000011 cn s nia: hold rmem s G: camnls snce s A TATAREEEEEREEEEE: camnla anc] s A 301 ARAARARARRARAA

Fig. 5.17 Console output from simulation showing the emergency stop raised by the controller

Running the co-simulation with the more massive load disk shows that there is
now a problem in the modelled system as the profile of load disk position stops
changing after 7s of simulation rather than returning to zero as expected, see
Fig.5.16. If we review the controller output in the console view, we see that at
7.05 s, the controller reported an emergency stop as one of the safety conditions has
been breached (see Fig.5.17). So if we are to continue using the larger load disk,
then one option is to make a change to the controller to prevent the safety condition
being broken.

5.6.2 Adjusting the DE Model

One way to correct the safety constraint breach introduced in Sect.5.6.1 is to
modify the parameters used in the DE controller. Within the DE controller, there
exists a discrete time PID controller such as described in Sect. 3.6. This controller
implementation utilises three parameters, K, tauI and tauD to define its response

5 Support for Co-modelling and Co-simulation: The Crescendo Tool 113

Fig. 5.18 Location of the
controller class in the project
explorer

4 1.2 TorsionBard-Baseline
(= configuration
> (= launches
. [model_ct
4 model_de
. [= actuators
4 = controller
1. Controller.vdmrt
Monitor.vdmrt
. = lib
= sensors
TorsionBar.vdmrt
User.vdmrt
World.vdmrt
(% output
(= scenarios

Table 5.2 Control parameter

. Control parameter Original value New value
values accounting for larger
motor and load wheel K 1.0 02
tau/ 2E3 20
tauD 0.05 0.189

and by changing these we may alter the behaviour of the system such that the driven
wheel does not breach the speed safety constraint.

To edit the parameters, we must first locate the Controller class in the
project. The DE controller exists as a number of classes under the “model de”
folder within the project in the project explorer (Fig.5.18). Opening the
“controllers” folder reveals the controller.vdmrt file we need to alter
and double-clicking on the class name will then open it in the editor pane.* The K,
taul and tauD parameters may be found by scrolling to near the bottom of this
class in the values section of the class. The original and new values for all three
parameters can be found in Table 5.2.

Once the values have been changed, the controller class must be saved for the
changes to take effect. The tool indicates that unsaved changes exist by adding an
asterisk to the start of the class name at the top of the editor pane. Saving can be
performed by either selecting “save” under the file menu or by clicking on the
single disc save icon on the tool bar.

With the new control values in place, the system can be co-simulated once
again. This time it follows the setpoints without breaching the safety conditions
(see Fig.5.19).

3The small yellow triangle indicates that warnings are present in this file.

114 P.G. Larsen et al.

Load disk position

= Load disk position frev)

[3 10 15 0
e {5}
Load sk velocdy
= Loaed disk velocity [radis}

: M/
0 .
1
L] § 10 15 F
s {5}

Controber out

U L 10 1% F
time (s}

Fig. 5.19 Graphical overview of changes of selected variables over simulation with the new
control parameters in place

After co-simulation it is possible to inspect how well the simulation has exercised
the DE part of the model. This can be valuable information in case one would like
to ensure that a collection of scenarios are sufficient to execute each line of code in
the DE model at least once. In order to get hold of this information, you first need to
set a check-mark with the Generate Coverage in the DE simulator pane
of the debug configuration. After the co-simulation is complete, there will
be a new coverage directory in the output folder. If you also have the KX
text processing system installed on your computer, you can furthermore generate
a pdf file with the DE model including the test coverage information also with a
table with coverage percentages per function/operation.

5.7 Conclusion

In this chapter, we have sought to show how the theory of co-modelling comes
to life in the Crescendo tool. The tool provides a framework for constructing and
editing VDM and 20-sim models setting up the contracts between them and running
co-simulations. The ability to run scripts performing simulation scenarios, and
the ability to set and experiment with design parameters enables the exploration
of alternative designs. This process can be further systematised, as discussed in
Chap. 10. In order to fully understand the material presented in this chapter, we
strongly recommend obtaining and running the tools to appreciate their capabilities.

Chapter 6
Co-model Structuring and Design Patterns

Kenneth Pierce, Peter Gorm Larsen, and John Fitzgerald

6.1 Introduction

In the design of potentially complex embedded systems under software control, it is
essential to have the ability to structure co-models in order to manage complexity
and support re-use. This chapter looks in detail at the structuring of co-models and
DE models in particular. The role of inheritance in object-orientation is introduced,
along with the concept of a design pattern that records best practice in building
models. Some design patterns for DE controllers are illustrated by extending the
torsion bar example from that of Chap. 5. These include design patterns for sensors
and actuators and for reuse of thread definitions. In addition, some insight is offered
on how to build constituent models that can participate in DE-only and CT-only
simulations, as well as co-simulations, which is relevant for Chap. 8 on creating
co-models.

As described in the introduction to Chap.4, there are three key reasons to
use a discrete-event formalism such as VDM to model control software: using
abstraction to suppress unnecessary detail, the high degree of rigour permitted
by systematic analysis of such models and finally the ability to structure models
into separate units of behaviour that can be more easily understood and analysed.
There are many ways in which the DE formalism allows models to be structured.
For example, functionality can be divided into separate, reusable functions or

K. Pierce (D<) * J. Fitzgerald
Newcastle University, Newcastle upon Tyne, UK
e-mail: kenneth.pierce @newcastle.ac.uk; john.fitzgerald @newcastle.ac.uk

P.G. Larsen
Aarhus University, Aarhus, Denmark
e-mail: pgl@eng.au.dk

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 115
DOI 10.1007/978-3-642-54118-6_6,
© Springer-Verlag Berlin Heidelberg 2014

mailto:kenneth.pierce@newcastle.ac.uk
mailto:john.fitzgerald@newcastle.ac.uk
mailto:pgl@eng.au.dk

116 K. Pierce et al.

operations.! Custom data types can be defined to allow data to be structured and
manipulated. Comparisons can be drawn between the struct type of the C
programming language and the record types of VDM, for example; however, the
DE formalism has a more comprehensive set of ways to define data types. An
extension of these two forms is that of object-orientation, where objects combine
data and functionality into single units. Objects may then be passed round so that
functionality and data can be accessed or manipulated using the interface offered by
an object (as defined in its class).

Building a well-structured model brings several benefits. These include breaking
down a solution into behavioural units that make the solution more tractable in
construction, more understandable to others and more maintainable in the future.
Splitting functionality also allows unit tests to be defined and permits division of
labour between multiple parties. There are however a large number of equally valid
ways to build a model that we might say is “well-structured” according to these
criteria. In the context of our approach, we also want to structure DE models in a way
that is conducive to collaborative modelling and analysis through co-simulation.
Therefore, the primary purpose of this chapter is to present some particular ways of
structuring DE models that we have found most useful in our approach.

The various structuring suggestions will be illustrated using an extension of the
TorsionBar4-Baseline co-model called TorsionBar5-Extended. The
extended model has the same observable functionality as the original, but has a
more elaborate internal structure. Each of the structuring methods introduced will
be motivated by some need not currently met in the baseline model. What we are
mainly presenting here are what are known as design patterns. A design pattern
is a way of presenting tried-and-tested methods for structuring and divisions of
functionality derived from previous solutions to similar problems. The concept of
design patterns in object-oriented languages will be introduced with a standard
example, which will then be applied in the extended model. Design patterns also
feature heavily in Chap. 9 on faults and fault tolerance.

This chapter continues with an introduction to the concept of inheritance in
object orientation in Sect. 6.2, because it plays a major role in the remainder of
the chapter and elsewhere in our approach. This is followed by a discussion of
how and why to introduce generic interfaces for sensor and actuator objects in
Sect. 6.3. The more general concept of design patterns is introduced in Sect. 6.4,
with the standard decorator pattern applied in the TorsionBar5-Extended
example. Next, Sect. 6.5 explains how threading functionality can be placed in an
abstract class to permit reuse. This is followed by Sect. 6.6 discussing how both
DE and CT models can be structured to allow both DE- and CT-only simulation
and co-simulation using a single co-model. This section also includes guidance
on the placement of the boundary between the DE and CT models in a co-model.
This flexible structuring is particularly relevant for Chap. 8, which describes ways

'In other languages these can be alternatively called subroutines, procedures or methods.

6 Co-model Structuring and Design Patterns 117

to build up to initial co-models. Finally, Sect.6.7 ends this chapter with a short
summary.

6.2 Object-Orientation and Inheritance

The concept of inheritance is essential to object-orientation and is important to
understand for the design patterns described later in this chapter. As initially
described in Sect. 4.7, an object-oriented model is made up of one or more objects.
Each object typically contains some data in the form of instance variables and
functionality in the form of operations that may manipulate that data. The types
of data and the functionality of an object are defined by its class. Multiple object
instances can be created from the same class definition, where each object will have
the same functionality.

Inheritance allows a class to be defined as a subclass of another class, creating
an extended class. The subclass inherits all visible properties from the superclass,
including instance variables and operations. Naturally, a subclass may define its own
instance variables and operations as well. Through inheritance, a subclass inherits
from the superclass:

¢ Its value and type definitions.

 Its instance variables, including all invariants that restrict the state.
 Its operation and function definitions.

o Tts thread definition (see Sect.4.8.1?).

 Its synchronisation definitions (see Sect. 4.8.2).

The subclass may also override operations of the superclass, allowing it to
change their behaviour. Of course from a design perspective, the subclass has a
responsibility to alter the operation in a sensible way. Note that pre- and post-
conditions are not inherited by the subclass when overriding an operation, and as
such there is no restriction on how the subclass overrides the operations. Copying
the pre- and post-conditions to the subclass operation is good practice in situations
where the form of the result is the same, but the way it is achieved is changed.

In certain cases, a class may not give a definition for an operation, by declaring
the body of the operation as is subclass responsibility, in which case a
subclass must override this operation before it can be instantiated and used. A class
that contains any usages of the is subclass responsibility keyword are
considered as an abstract class. Abstract classes cannot be instantiated as objects
directly, but may serve as superclasses.

2If a class inherits from several classes, only one of these may declare its own thread (possibly
through inheritance). Furthermore, explicitly declaring a thread in a subclass will override any
inherited thread.

118 K. Pierce et al.

The concept of inheritance is demonstrated by the PID controller class used
in the example in Chap.4. This class inherits from a class called DTControl
(Discrete-Time Control). The role of a PID object is to calculate an output for
an actuator based on the error between the measured value and setpoint. For this
purpose, it has an Output operation. It must also know the sample time (time
since the last calculation) in order to calculate the integral and derivative elements,
so for this purpose it has a Set SampleTime operation.

In fact, there is a family of four low-level control objects in the DT control
library that inherit from DTControl; these are P, PI, and PD and PID. The
full library family is shown in the class diagram in Fig.6.1, where the arrow
with an open arrowhead indicates inheritance. Thus, this diagram shows that
DTControl is a general interface for the four other classes.> The setting and
storing of the sampletime as an instance variable will be the same in all cases,
so this is handled inside the DTControl class; however, the calculation of the
output will differ across classes, so this is delegated to the subclasses using the is
subclass responsibility keyword. This can be seen in the definition of
the DTControl class:

class DTIControl

instance variables

protected sampletime: [real] := nil;
operations

-— set the sample time used to calculate response
public SetSampleTime: real ==> ()
SetSampleTime (s) ==

sampletime := s
pre s >= 0;

—-— calculates output, based on the error
public Output: real ==> real
Output (err) ==

is subclass responsibility;

end DTControl
\S J

Note here that the sampletime instance variable is declared as protected,
this means that it can be accessed by the class and all of its subclasses. This is in
contrast to private (accessible only within a class) and public (accessible by
any class in the model).

30f course the P controller does not need to know the sampletime.

6 Co-model Structuring and Design Patterns 119

Fig. 6.1 Class diagram of l
the discrete-time (DT)
control library

DTControl

+ SetSampleTime({nat1)
| +Output() : real

| I l |

P ' PD | Pl | | PID

+ Outputi) : real + Output() : real I I + Output() : real | | + Output() : real I

Building the library not only allows for consistency across the four controller
classes, it also allows the type of controller object used to be changed seamlessly.
As long as the DE controller defines its instance variables using the DTControl
type, any of the four subclasses can be instantiated using the new keyword and can
be used by the DE controller without having to alter the model in any other way. The
selected controller object can also be instantiated elsewhere and passed to the DE
controller. This seamless switching idea is very useful for testing alternatives during
Design Space Exploration (DSE) activities, described in greater detail in Chap. 10.
It also enables some more complex behaviour, as we shall see later in this chapter
in Sect. 6.4.2.

6.3 Interfaces for Sensors and Actuators

In the previous section, we saw how the interface to the proportional control
objects was extracted and placed in the DTControl superclass. A similar style
can be applied to sensor and actuator objects. Recalling the object-oriented torsion
bar controller from Chap. 4, the encoder and motor shared variables are accessed
through encoder and motor objects. The Encoder class defines an instance variable
that is linked to the co-simulation contract and provides a Read operation that
returns this value:

~
class Encoder

instance variables

—-— this value will be set through the co-simulation
protected val: real := 0;

operations
—-— read the current value of this sensor

public Read: () ==> int
Read () == return floor val;

end Encoder

\. J

120 K. Pierce et al.

The Mot or class is very similar, though in addition it has a Wri t e operation that
allows a value to be set. This style for sensor and actuator objects is common to the
DE models of our approach. The interface here is a Read operation for sensors and
Read and Write operations for actuators. In a similar manner to DTControl
above, this interface can be extracted and placed in an superclass. The general
interface to the Encoder class is as follows:

class ISensorlInt
—— this sensor yields a single integer value

operations
—-— read the current value of this sensor

public Read: () ==> int
Read () == is subclass responsibility

end ISensorInt
I\ J

This interface appears in the TorsionBar5 - Extended co-model, along with
an altered version of the Encoder class that extends this interface:

-
class Encoder is subclass of ISensorInt

instance variables

val: real := 0;

operations

—-— read the current value of this sensor

public Read: () ==> int
Read () == return val;

end Encoder
- /

The same style is followed for the Mot or class in the TorsionBar5-Extended
co-model as well, with the TActuatorPWM class forming the interface.

At this point, it is worth noting the suggested naming conventions for sensor and
actuator interfaces and implementing classes. Interface names should begin with the
letter I (for Interface) followed by the word Sensor or Actuator and ending
with the type that is written or read. So in the example above, the encoder interface
yields an integer value, and the motor interface takes a PWM value in the range
(0,1). Implementing subclasses should then be given a useful name indicating what
the sensor or actuator represents, for example, motor, encoder, IR sensor. In models
of more complicated systems, there will typically be more sensor and actuator types
than the two in our small example. The types of values accessed through sensors

6 Co-model Structuring and Design Patterns 121

or modified through actuators may be the same (real numbers will be common, for
example). Where interface types are the same, the interface can be reused.

Here we are recommending that sensors and actuators are built in a certain
way, following objected-oriented practice. While this might not appear particularly
important for such simple objects, it has two main benefits. First, different sensor
and actuator classes can be defined for the same interface. If the various parts of the
controller are defined using the interface for access, then the alternative sensor and
actuator objects can be substituted seamlessly.

For example, if a model is built using the DE-first approach (see Sect. 8.5), an
encoder object might need to calculate the value from a DE model of the plant. Once
the switch to co-simulation is made, however, the calculation is done at the CT side,
so the encoder object does not need to perform a calculation. This warrants the use
of a different encoder class, yet has the same interface. Of course, a component that
uses the interface has an expectation that an object with that interface will behave in
a certain way (e.g., that a rotary encoder will yield information about the rotation of
the component to which it is attached), so it is important to bear this in mind when
producing classes that implement the interface.

The second and primary benefit, extending from the first, is that it enables sensor
and actuator objects to be incorporated into a design pattern. In the software world,
adesign pattern is a description of an approach to building some part of the software,
based on successful solutions built previously. Later in this book, we describe some
design patterns building on experiences with our approach.

To better acquaint readers unfamiliar with software design patterns, the next
section explains the principles of design patterns in more detail. It describes a
common design pattern from the world of object-oriented software and shows how
it can be applied in the TorsionBar5-Extended co-model. Further design
patterns appear in Chap.9 on faults and fault tolerance, and all design patterns
described in this book are given in full in Appendix C.

6.4 Design Patterns

A design pattern is a template that outlines a possible solution for a category of
problems. Design patterns aim to provide inspiration to designers by describing
solutions that have worked in the past. While the exact result of the application
of a design pattern is likely to be unique in every case, the core of the solution can
be broadly similar over numerous applications. We adopt the style of Gamma et
al. [39], which relates to object-oriented software, but which can be applied more
generally. The approach originally drew inspiration from the field of architecture [1].

The general form of each design pattern includes a name, a problem description,
a solution description and a description of the consequences of its application [39].
Note that since our approach is relatively new, experience relating the consequences
arising from some design patterns described in this book are limited; however, we
provide this information where possible.

122 K. Pierce et al.

Where design patterns in this book are described in full (such as in Appendix C),
we adapt from Gamma et al. [39] and provide the following information for each
design pattern description:

Name: An identifier that conveys the essence of the design pattern succinctly.

Intent: What does the design pattern do? What problem does the pattern address?
What is the rationale or intent?

Motivation: A scenario that illustrates how the design pattern solves the problem
and can help interpret the rest of the description.

Structure: A graphical representation of the elements of the solution, for exam-
ple, a UML class diagram.

Application to DE domain: Model fragments and guidelines on how the solution
can be realised within VDM (where applicable).

Application to CT domain: Model fragments and guidelines on how the solution
can be realised within 20-sim (where applicable).

Use in examples: If a design pattern is used in the Crescendo examples, it will be
listed here (where applicable).

Related patterns: Descriptions of other design patterns which are closely related
(where applicable).

Also known as: Other well-known names for the design pattern (where applica-
ble).

6.4.1 The Decorator Pattern

To help those readers who may be less familiar with design patterns and their
application, we now look at a standard pattern from the literature. We then show
the application of this design pattern in the TorsionBar5-Extended example.
The design pattern we describe is the decorator pattern, which presents a flexible
alternative to subclassing to add additional functionality to objects dynamically.
The following partial description is taken from Gamma et al. [39], and we direct
the reader there for a full description:

Intent: Attach additional responsibilities to an object dynamically. Decorators
provide a flexible alternative to subclassing for extending functionality.

Motivation: It is sometimes desirable to add functionality to individual objects
and not to an entire class. For example, visual components in a graphical user
interface (GUI) library may need scrollbars adding dynamically if the content
becomes too large to fit the screen. In this case, the visual component object can
be enclosed in a scrollbar object that adds this additional scrolling functionality.
The enclosing object is called a decorator. The interface approach described
previously in this chapter is used to allow seamless addition and removal of extra
functionalities dynamically.

6 Co-model Structuring and Design Patterns 123

systes TorsionBar

instance variables
«= sensors (two encoders)
pt‘lli: static encMotor: Encoder 1= mew Em
aBorderDecorator public static encload: Encoder i= new Enc
actuators (one motor) E
public static pesMotor: Motor t= Mot
aScrollDecorator i aaticy
-- controller cbject = SOMz
¢ public static ctrl: Controller := new Com
aTextView
-- monitor chiect - Gz
public static monitor: Monitor := new Mom

-« user cbject = 10z
public static user: User t= new User(ctrl

-~ architecture definition

epul : CPU := new CPU(<FPY, DDOEE);

cpu? 1 CPU 1= new CPU(<FP>, 20006);

busl: BUS := mew BUS(<FCFS>, 11562, (cpul =

Fig. 6.2 Visual representation of decoration of a textual view component with scrollbar function-
ality

Applicability: Use the decorator pattern:

* to add responsibilities to individual objects dynamically and transparently;
 for responsibilities that can be withdrawn; or
* when extension by subclassing is impractical.

The full description of the decorator pattern in Gamma et al. [39] gives a rich
example involving decoration of GUI components. Here we describe part of their
example where a textual view component is decorated with a scrollbar and a border.
Consider the visual representation of this idea in Fig. 6.2. Here, the responsibility
of the aTextView component is to render the text. It knows about fonts and
layout. The aScrollDecorator is responsible for rendering the scrollbars and
moving the aTextView around in response to the user moving the scrollbar.
The aBorderDecorator is responsible for drawing the dark border around the
component.

In order to enable this functionality, there are two key parts to this design pattern.
First, a common superclass, VisualComponent, is defined that requires all
subclasses to implement a Draw operation to render the contents of the component.
Second, an abstract Decorator holds a reference to a decorated object of the type
VisualComponent. Finally, the concrete decorators, BorderDecorator and
ScrollDecorator, implement the Draw operation.

Figure 6.3 contains a class diagram showing the relationships between the classes
statically. It is often useful to see how the objects instantiated from these classes are
related at runtime as well. This can be shown in an object diagram, where the blocks
with rounded edges are objects and the arrows show references between objects. An
object diagram is given in the lower half of Fig.6.3. This shows a border object
decorating a scrollbar object, which in turn decorates the text view object.

Figure 6.3 contains a class diagram showing the relationships between the classes
statically. It is often useful to see how the objects instantiated from these classes are
related at runtime as well. This can be shown in an object diagram, where the blocks
with rounded edges are objects and the arrows show references between objects.

124 K. Pierce et al.

Fig. 6.3 Class and object

. . VisualComponent
diagram for a GUI-oriented it

version of the decorator +Draw()
pattern ?
TextView Decorator |
| Draw() I} -comp : VisualComponent i 1 -conp
+ Draw() |
| BorderDecorator | ScroliDecorator
| + Draw() | -scrollx : real
- scrolly : real
| + Draw()
+ ScrollTof)

border
comp scroller
textview
comp 5
—

An object diagram is given in the lower half of Fig. 6.3. This shows a border object
decorating a scrollbar object, which in turn decorates the text view object.

When the Draw operation of the aScrollDecorator object is called, it first
calls the Draw operation, then can, determine using its size and the current scroll
position, decide what portion of the text to display. Note that using the Visual-
Component interface in this way means that decorators can be stacked; since
the aScrollDecorator object is also an instance of the VisualComponent
class, it can be in turn decorated, for instance, to add a border.

6.4.2 Application of the Decorator Pattern

We used the standard GUI example of the decorator pattern in the previous section
as this paradigm should be familiar to almost any user of a modern computer system.
It is also useful to see how design patterns such as this can be applied within our
approach. Recall in the TorsionBar4-Baseline model that a PID object is
used to calculate the control value for the Motor actuator based on the current
controller reading. The motor however takes a PWM value in the range (—1,1),
as defined by the PWM type (which is defined in the IActuatorPWM interface
in the TorsionBar5-Extended co-model). For large deviations between the
measured position and desired position, however, the PID object will typically yield
a value way outside of the (—1,1) range. Therefore in TorsionBar4-Baseline,
a limit function is used that restricts the output value to the valid range.

6 Co-model Structuring and Design Patterns 125

Fig. 6.4 Class and object

. DTControl
diagram for the
LimitedDTControl +SetSampleTime(nat1)
application of the decorator + Outputi) : real
pattern 2 |
PID LimitedDTControl
+ Output() : real -MIN : real ~
-MAX : real 1 - limted
+ Output()
controller

E——
limited_dt
limited

»

pid

pid

The decorator pattern can be applied here with the DTControl object taking
the role of the VisualComponent. This has been done in the TorsionBar5-
Extended co-model. A decorator class, LimitedDTControl, has been created
that encloses a DTControl object and imposes the limit on its output. When
Output is called, the limiting class first calls Output on its enclosed object, then
applies the limit to this value before it is returned. Calls to SetSampleTime are
passed to the enclosed object to ensure it is calculating with the correct time. A class
and object diagram showing this application is shown in Fig. 6.4.

The definition LimitedDTControl class is given below. Note that a construc-
tor that allows the enclosed object to be passed in and the 1imit function that
restricts the output are omitted for the sake of brevity:

-
class LimitedDTControl is subclass of DTControl

instance variables

limitedController: DTControl;

operations

—-— limit the output of the enclosed object

public Output: real ==> real

Output (err) == limit (limitedController.Output (err), -1, 1);
-—- delegate sampletime to enclosed object

public SetSampleTime: real ==> ()
SetSampleTime (s) == limitedController.SetSampleTime (s);

end LimitedDTControl

126 K. Pierce et al.

Hopefully, this example has shown the power of design patterns. A pattern
that was initially described in terms of GUI components has been applied to an
embedded controller model. This again makes clear that while the exact forms
of two applications of the same design pattern may look different, the common
approach described in the pattern can be seen in both. A number of design patterns
described in Chap.9 and Appendix C use variations of the decorator theme, for
example, to create filters for sensors. The interface classes for sensors and actuators
then play a role similar to the VisualComponent and DTControl classes in
the examples above.

6.5 Using Inheritance for Threads

Concurrency is a key element of the DE models used in our approach. Concurrency
is achieved by allowing multiple threads of control to exist and run in the model
at the same time (see Sect.4.8). The DE models in our approach will often have
multiple threads where, for example, a supervisory controller may run at the same
time as a safety monitor.

Threads are defined at a class level using a thread section; however, their
definitions are often very similar across classes. It is therefore useful to create a
generic class to handle definition of periodic threads, from which classes that need
threads can inherit. The TorsionBar5-Extended model has one such class,
called AbstractThread.

6.5.1 An Abstract Thread Class

The AbstractThread class has instance variables corresponding to the four
parameters of a periodic thread (period, jitter, delay and offset), and these are set
by the SetupThread operation:

-
—-— setup loop parameters

protected SetupThread: natl * nat x nat x nat ==> ()
SetupThread(f, j, d, o) == (
-— initialise the loop parameters

sampletime := 1/f;

period := floor (sampletime % RESOLUTION) ;
jitter = 3J;

delay = d;

offset := o

6 Co-model Structuring and Design Patterns 127

Note that this operation takes the frequency (in Hertz) as a parameter because
this is more intuitive than using a period in nanoseconds. The operation performs
conversion to thread period, taking into account the nanosecond resolution of the
DE simulator. The periodic thread is defined in terms of these instance variables in
the following way:

{thread periodic (period, jitter, delay, offset) (Step) J

One aspect that is often required in the DE models of our approach is timekeep-
ing. This includes keeping track of the current time and the time that has elapsed
since the periodic operation last occurred. In the above definition, the periodic thread
definition calls an operation called Step. This operation handles timekeeping, so
that the following instance variables are available to subclasses: now, the current
simulation time in seconds and delta, the time that has elapsed since the Step
operation last ran.

Subclasses of the AbstractThread class need some way to define the
actions that the class should perform during each period. If the Step operation
is overridden, however, then the timekeeping calculations are lost (or must be
recalculated by the subclass, which defeats the point of calculating them in the Step
operation). Therefore, the abstract thread offers another operation, StepBody,
that subclasses can override. The definition of the Step operation, showing the
timekeeping and calls to other operations, is as follows:

private Step: () ==> ()

Step() == (
-— update the time keeping (in zero time)
duration (0) (

last := now;
now := time / RESOLUTION;
delta := now - last;

)

—-— call the loop pre-amble
BeforeStep () ;
—-— call the loop body
StepBody () ;
—-— call the loop post-—amble
AfterStep();

)

—-— time book keeping must be consistent

pre last <= now
\. J

Note that in addition to StepBody, two other operations are pro-
vided, BeforeStep and AfterStep, that are called before and after
StepBody, respectively. These three operations can be overridden independently

128 K. Pierce et al.

by the subclass. Splitting the step operations into three is a modelling choice; in
applying this approach, the designer is free to choose whether it is useful to have
three, fewer or more operations.

In the case of this example, as shown below, the BeforeStep is used to
sample/hold (see Sect.3.6.4) the shared variables and AfterStep is used for
diagnostics and logging. The StepBody then implements the actual control
strategy and can be replaced without affecting the sampling or the diagnostics.

The AbstractThread class provides a default implementation for these three
operations that does nothing. For example, the StepBody operation is defined as
follows (where skip is a statement that does nothing):

—-— action to execute each control loop
protected StepBody: () ==> ()
StepBody () == skip;

This is a slightly different design pattern of inheritance to that seen in the DT -
Control example described above (see Sect. 6.2). In that example, the body of the
Output operation is declared as is subclass responsibility, meaning
that the subclass must override it and provide an implementation. In the case of
StepBody, a default implementation is provided so that the subclass does not have
to override it.

6.5.2 Using the Abstract Thread Class

The TorsionBar5-Extended example has two active classes (those with
threads), a Controller class and a Monitor class. Both reuse the predefined
thread behaviour of the AbstractThread class. In addition, an intermediate
AbstractController class is introduced between the abstract thread and
controller that is responsible for setting up the IO of the controller (in terms of
sensor and actuator objects). A class diagram showing this hierarchy is given in
Fig.6.5.

The AbstractController class is declared as a subclass of the
AbstractThread class. It defines three instance variables that represent the
sensors and actuators in the system (two encoders, encMotor and encLoad,
and one motor, pwmMotor). It provides an operation called SetupIO that
sets these references. This is done by calling operations on an object called
TorsionBar ‘io, which is known as a “factory” and is described in Sect. 6.6.3.
The SetupIO operation is defined as follows:

6 Co-model Structuring and Design Patterns 129

Fig. 6.5 Class diagram for
the use of
AbstractThread #period : nat
#jitter : nat
#delay : nat

offset: nat
#sampletime : real
#now: Time

delta : Time

SetupThread(nat1, nat, nat, nat)
BeforeStep()

StepBody()

AfterStep()

+ Step()

AbstractThread

AbstractController Monitor
[- motor : lActuatorPVWM - controller : Controller
-encLoad: ISensorint -enclLoad:|Sensorint
f - encMotor : ISensorint # StepBody()
| + SetuplO()

f

Controller
BeforeStep()
StepBody()
AfterStep()
+ Visit()
+ EmergencyStop()
- Sort()
—-— setup sensors and actuators
protected SetuplIO: IOFactory ==> ()
SetupIO(io) == (
-- set instance variables
encMotor := io.GetEncMotor () ;
enclLoad := io.GetEncLoad();
pwmMotor := io.GetMotor ()
)
S Y,

In addition, the AbstractController class overrides the BeforeStep
and AfterStep operations. In the former, it writes to the actuator and reads the
sensors to be stored in local instance variables, while in the latter, it outputs some
diagnostic information using the IO library provided by VDM. This means that
all the concrete controllers will inherit these behaviours and only have to provide
implementations for StepBody.

The definitions of the BeforeStep and AfterStep operations are given
below. Of particular interest is the precondition on the BeforeStep operation.
This ensures that the SetupIO operation has been called by the subclass and
that objects have been assigned to the instance variables. Note that the call to

130 K. Pierce et al.

IO'‘printf is shortened for the sake of brevity, but it shows the use of the %s
placeholder in the first parameter (a string) being replaced by values in the second
parameter (a sequence of values).

-
—-— action to execute before each loop body

protected BeforeStep: () ==> ()
BeforeStep () == (
—-— write actuator value
pwmMotor.Write (hold_pwm) ;
—-— read sensor values
sample_encm := enc2rot (encMotor.Read());
sample_encl := enc2rot (encLoad.Read())
)
pre pwmMotor <> nil and
encMotor <> nil and
encLoad <> nil;

—-— action to execute after each loop body

protected AfterStep: () ==> ()
AfterStep() == IO‘printf("[%s] hold_pwm = %s; ...",
[now, hold_pwm, ...]);
= J

The concrete controller Controller is defined as a subclass of the
AbstractController class. It must provide an implementation for
StepBody. In the case of the TorsionBar5-Extended example, this
implementation follows that first shown in Sect.4.6, deciding when to change
the setpoint and calculating the output for the motor using a PID controller. The
controller must call SetupThread and SetupIO from its superclasses, which is
done in the constructor shown below. This also shows the creation of the PID control
object, following the “limiting” design pattern described above in this chapter (see
Sect. 6.4.2).

rpublic Controller: natl ==> Controller
Controller (f) == (

-— setup superclass

SetupThread(f, 0, 0, 0);

SetupIO();

-—- initialise instance variables
pid := new LimitedDTControl (new PID(k, taul, tauD));
pid.SetSampleTime (sampletime) ;

Finally, the Monitor class inherits directly from AbstractThread. The
operation StepBody is defined as in the CheckMoni tor operation from Sect. 4.6
(not repeated here). In order to do this, it requires a reference to the controller that it

6 Co-model Structuring and Design Patterns 131

-
—-— constructor for Monitor

public Monitor: natl x Controller ==> Monitor
Monitor (£, ctrl) == (

-— setup superclass

SetupThread(f, 0, 0, 0);

-— set instance variables
controller := ctrl;
encLoad := TorsionBar‘io.GetEncLoad()

is monitoring, as well as access to the encoder on the load. As in the example above,
this is done in the constructor:

6.6 Structuring Constituent Models for Flexible Simulation

In this section, we look at ways to structure DE and CT models to allow them to
participate in both co-simulations and single-domain simulations. One benefit of
our approach is that the constituent DE and CT models of the co-models can still
be analysed in their existing tools, as well as through co-simulation. In order to do
this, some care has to be taken in how they are built and structured, which is what
is explored in this section. The TorsionBar5-Extended co-model is built in
such a way that it permits analysis through CT-only simulation, DE-only simulation
and co-simulation.

This property is useful when following the domain-first approaches to building
co-models: DE-first and CT-first (briefly introduced in Sect.2.7.3 and explained in
detail in Chap.8). In particular, it means that single-domain regression tests can
be performed after the co-model stage has been reached. For example, if a CT-first
approach is followed by creating a CT-only model with a simple controller and large
changes are made to the CT-model, old tests can be performed again in a CT-only
simulation to confirm that the changes are sound.

We can view the switch between domain-only simulation and co-simulation as
moving the “boundary” (or “interface”) between the constituent models. DE-only
and CT-only simulations are the two extremes, where the other model plays no part
in the simulation. Then for co-simulation, the boundary falls somewhere in between
the constituent models, with the contract defining the bridge over this boundary.
The choice of this boundary depends on the purpose of the model, and it may well
change during the course of a development as designs evolve and become more
detailed.

The structuring techniques described later in this section can also be useful
if the co-model needs to support switching between multiple boundaries. Before
describing the structuring of CT and DE models for flexible simulation (see

132 K. Pierce et al.

Sects. 6.6.2 and 6.6.3), we first look in more detail at the factors affecting the
placement of the co-model boundary.

6.6.1 Co-model Boundaries

In order to place the co-model boundary in the “right” place for a given co-
model’s purpose, it is necessary to have a solid idea of the components that form
the system. In our approach, physical components are typically modelled in CT
and software elements modelled in DE (though this is by no means mandated).
Certain components however fall around the co-model boundary (and could thus
be modelled in either CT or DE). Examples include loop controllers, sensors and
actuators. Choices here can therefore affect the boundary and the content of the
co-simulation contract.

In the early development stages, many design decisions will not yet have been
made, so multiple alternative components might be considered. In fact, it is entirely
possible that the same solution could be realised in software, hardware or a mixture
of the two, in which case it is interesting to explore the cost and benefits of each
solution. We revisit the possibility of trading off different solutions in the forward
look to Cyber-Physical Systems (CPSs) in Chap. 14.

There are a few factors that should be considered when determining the co-model
boundary and where each component is modelled:

Simulation Performance: Would a choice of boundary have an effect on the time
taken to perform a simulation? An example here would be the location of a PID
controller. If the PID were on the CT side, then the co-model interface carries
the setpoint for the controller which may be updated at a lower frequency than
the sensor and actuator signals, thus information traversing the co-simulation
interface less frequently.

Abstraction: It could be the case that the implementation details of some
component or series of components is not important to the purpose of the
model. An example here would be the sensing of a shaft position by an
encoder. At the detailed level, the sensor is modelled by scaling, sampling and
quantising the value, while at the simpler level, the actual value for the position
held by the simulator is sent over the boundary. A second example of this is a
movable guide that diverts paper down one of two paths with a small probability
that the paper arrives and collides with the mechanism while it is switching
position. This can either be modelled in CT if the dynamic response is important
or in DE if a simpler model where we only consider collision as a probability is
sufficient.

Maturity: If part of a model is not well understood or represents an unstable
part of the design, then a more abstract model may be an attractive option. As
the design becomes more mature and design choices are firmed, then the extra
fidelity potentially afforded by a more detailed model may be justified.

6 Co-model Structuring and Design Patterns 133

Modelling Gaps: It could be the case that either or both of the co-model parts are
not yet complete, meaning that sensor implementations on either side are not yet
available. In such a case, the co-model boundary could be wider than intended
for the final model, where the width means that the data is read from or written
to points that will not form the final interface.

As mentioned above, this boundary may change during the co-modelling process.
For example, co-simulation performance and control loop tuning may well be
important early on, hence modelling these on the CT side is preferable. Later on in
the development, when it is desirable to predict the performance of the DE controller
(including its ability to meet deadlines), then modelling the control loop in DE is
preferred. Abstraction levels, maturity and the closing of modelling gaps may also
affect the boundary choice as co-modelling progresses.

6.6.2 Structuring CT Models for Flexible Simulation

A CT model will generally contain elements for modelling the plant to be controlled
and sensors and actuators. In addition, a CT-only model will have a controller block
that is used to test the response of the plant and for creation and tuning of loop
controllers.

Once the move to a co-model is made, this controller block is replaced by a
controller block that connects to the DE model through the co-simulation contract.
Blocks in 20-sim can have multiple alternative “implementations” that can be
switched between. We recommend using this feature to retain the CT-only test
controller implementation while introducing a co-simulation implementation. In this
way, it is possible to switch between CT-only simulation and co-simulation. Addi-
tionally, if different co-model boundaries are explored, further implementations can
be created reflecting the choice of boundary.

To create a new implementation for a block or to swap between existing imple-
mentations, you right-click on the block and select the Edit implementation
menu. Figure 6.6 shows a screenshot from the TorsionBar5-Extended
example, showing that the controller block has two implementations, one called
“CTOnly” and the other called “CoSim” (which is currently selected as indicated
by the check mark). This menu also has options to add, remove and rename
implementations.

Note that each implementation can have its own separate icon. We recommend
altering the visual style of the different implementations to make it easy to see which
is selected at a glance. In the case of the example in the figure above, the colour
will change; however, more complex icon changes are possible using the 20-sim
icon editor (again accessible through the right-click menu through the Edit icon
option).

134 K. Pierce et al.

Controder

1 T Ampler Ber JhietorDink JLoacdDuk
co-sim
= RICI
Load $ Parameters ¥ i
& Variables
Show Name

& Choose Colors »
Edit Interface

Edit Icon
& Golp
¥ GoDown

Impiode

Edit Implementation N[Acdew

Chedk for Model Updates W Remove
< Cuf Ctri+x Clear
By ooy Cir+C Rename Implementation
| Paste Ctri+v
% o v CoSim

t

o CTonly
© teb F1

Fig. 6.6 How to change the implementation of the controller

6.6.3 Structuring DE Models for Flexible Simulation

A DE model generally contains various representations of software elements of the
system. In addition, a DE-only model will usually have an approximation of the
plant, sufficient to test the supervisory behaviours of the controller model. Here we
focus on the structuring of such models, while specific guidance on building DE
approximation is given in Sect. 8.5.

6.6.3.1 Environment Models

A simplified environment model can be modelled as a class with its own
thread, which acts as a basic simulator. It provides stimuli to, and observes the
responses of, the controller model. In the TorsionBar5-Extended co-model,
the Environment class approximates the position of the motor, and in turn the
load disc, by making a number of simplifying assumptions, for example, that the
PWM value directly controls the speed and that the shaft connecting the motor to
the load disk is completely rigid.

This model is sufficient to test the supervisory control (the Visit operation
and Monitor class), though it is of course not sufficient to tune the low-level PID
controller. An extract of the St epBody operation is given below. Note that the CSV
library is used to record the state of the environment in each time step. The file can
then be visualised in an external tool (including 20-sim, using a DataFromFile
block).

6 Co-model Structuring and Design Patterns 135

—-— simulation loop
protected StepBody: () ==> ()
StepBody () == duration (0) (

-—- stop simulation, or perform step
if time >= SIMULATION_TIME x RESOLUTION
then World‘'done := true
else (
—— compute new position of motor based on pwm
let speed = pwm x* MOTOR_MAX_SPEED,
distance = speed » sampletime,
pos = position + distance,
revs = pos / (2 * MATH'‘pi)

in (
—-— update state
position := pos;
—-— update variables read by sensors
encm := floor (revs *» ENC_RESOLUTION) ;
encl := floor (encm / BELT_RATIO);
—— diagnostics
IO‘printf ("[%s] Environment step\n", [now]);
—-— CSV output

if csv_open then
let lspeed = speed / BELT_RATIO,
lpos = revs / BELT_RATIO,
- = CSV'fwriteval ("tbar_extended_co-sim.csv",
[now, lpos, lspeed, pwm], <append>)
in skip; -- ignore return value of fwriteval

As described in Sect. 6.3, the controller in the TorsionBar5-Extended co-
model accesses the sensors and actuators in the system through interface classes
called ISensorInt and IActuatorPWM, respectively. In order to interact with
the simplified environment model in the Environment model, two concrete
subclasses are used, EncoderDE and MotorDE. These classes implement the
appropriate interfaces and have a reference to the environment object as in instance
variable. For example, the EncoderDE class begins as follows:

class EncoderDE is subclass of ISensorInt
instance variables

—-— environment model to access
env: Environment;

The DE encoder and motor classes use the env object to implement their
operations. The Environment class must also provide access to the data.

136 K. Pierce et al.

The following extract shows the Read operations of the EncoderDE class, which
returns the current encoder reading from the environment. Note that the class may be
instantiated as “motor” or “load” encoder, indicated by the instance variable, type:

-
—-— read the current value of this sensor

public Read: () ==> int
Read () ==
cases type:
<ENCM> -> return env.GetEncM(),
<ENCL> -> return env.GetEncL(),
others -> error
end

6.6.3.2 10 Factories

Within the DE model of the TorsionBar5-Extended example, there are two
sets of sensor and actuator implementations: the Encoder and Motor classes for
co-simulation and the EncoderDE and Mot orDE classes for DE-only simulation.
The controller model is built in terms of the interfaces, so it does not matter which
of the two sets of objects is passed used by the controller, but at some point the
decision has to be made.

The solution used in the TorsionBar5-Extended co-model is another
design pattern from Gamma et al., called the factory pattern. This design pattern
suggests defining “an interface for creating an object, [and letting] subclasses decide
which class to instantiate” [39]. In this case, the IOFactory (input—output factory)
interface provides operations to retrieve sensor and actuator objects. In order for
the controller to access the factory, the singleton pattern [39] is used. This ensures
that there is a single instance of a class that is globally accessible. This is done
using a static instance variable defined in the system class (as seen in Sect. 6.5.2, the
controller accesses TorsionBar ‘'io):

—-— sensors (two encoders)
public static io: [AbstractIOFactory] := nil;

The selection of the factory is made in the constructor of the system class. A
value in the Wor1d class, DE_ONLY, determines whether the DE factory (deio)
or CT factory (ctio) is selected.* This value is set to O through a shared design
parameter if a co-simulation is being run. This value is also used to instantiate the

“The deio and ctio objects are again singletons of the DE and CT factories, respectively.

6 Co-model Structuring and Design Patterns 137

environment object if a DE-only simulation is being run. The following is an extract
of the system class constructor:

public TorsionBar: () ==> TorsionBar
TorsionBar () == (
-— instantiate environment
if World‘DE_ONLY = 1 then env := new Environment (50);

-— instantiate factory based on simulation type
—-— (must be done after env)
if World'‘DE_ONLY = 1 then

io := deio
else
io := ctio;
)
\. Y,

6.7 Conclusion

In this chapter, we discussed techniques for building and structuring constituent
models, focussing on the use of object-oriented inheritance whereby a class can
be defined as an extension of an existing class. We showed inheritance being used
to promote reuse of definitions and cut down on repetition, as well as to define
generic interfaces for some behaviours that can then be realised in a variety of ways
depending on context. We also introduced design patterns as a means of describing
solutions to groups of related problems, often distilling previous experience and
best practice into a succinct description of both the problem and potential solutions.
Finally, we discussed strategies for structuring DE and CT models for “flexible”
simulation. Since models in our approach can still be analysed in their respective
tools, it is often useful to retain this ability to run single-domain (DE- and CT-only)
simulation even during co-modelling. This is particularly useful if the co-model
began as a DE- or CT-only model. The same strategies are also useful where the
boundary between the DE and CT model might change during a development. The
notion of the co-model boundary, and what affects the choice of boundary, was
also covered. The topics covered in this chapter are of particular relevance to the
pragmatics of co-model creation (Chap. 8) and pattern-based approaches to fault
modelling and fault tolerance (Chap. 9 and Appendix C).

Part 11
Methods and Applications: The Pragmatics
of Co-modelling and Co-simulation

Chapter 7
Case Studies in Co-modelling and Co-simulation

Marcel Verhoef, Bert Bos, Kenneth Pierce, Carl Gamble,
and Job van Amerongen

7.1 Introduction

Having described foundations for co-modelling and co-simulation using Crescendo,
20-sim and VDM, we now turn to the practice of collaborative development. In
Part IT of this book, we describe methods for constructing co-models (Chap. 8), tech-
niques for fault modelling and fault tolerance for which collaborative approaches
are particularly valuable (Chap.9) and approaches to the exploration of design
spaces (Chap. 10). Industrial case studies applying the technology are summarised
in Chap. 11.

In this chapter, we present the background and challenges for two medium-scale
case studies that will be used as running illustrations of the methods introduced in
Chaps. 8-10. The first case study involves a small line-following robot (Sect. 7.2),
which is a relatively simple example that provides a good basis for illustrating the
principles of co-model construction, fault modelling and design space exploration.
The second case study is more complex and is based on the experimental design of a
personal transportation device, the “ChessWay” (Sect. 7.3), which gives insight into

M. Verhoef (P<))
Chess WISE, Haarlem, The Netherlands
e-mail: Marcel. Verhoef @chess.nl

B. Bos
Chess iX, Haarlem, The Netherlands
e-mail: bert.bos @chess-ix.com

K. Pierce « C. Gamble
Newcastle University, Newcastle upon Tyne, UK
e-mail: kenneth.pierce @newcastle.ac.uk; carl.gamble @newcastle.ac.uk

J. van Amerongen
University of Twente, Enschede, The Netherlands
e-mail: J.vanAmerongen @utwente.nl

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 141
DOI 10.1007/978-3-642-54118-6_17,
© Springer-Verlag Berlin Heidelberg 2014

mailto:Marcel.Verhoef@chess.nl
mailto:bert.bos@chess-ix.com
mailto:kenneth.pierce@newcastle.ac.uk
mailto:carl.gamble@newcastle.ac.uk
mailto:J.vanAmerongen@utwente.nl

142 M. Verhoef et al.

the practice of co-modelling and co-simulation. We summarise the purpose of these
case studies in Sect. 7.4.

7.2 The R2-G2P Line-Following Robot

R2-G2P is a small two-wheeled indoor robot upon which several sensors are
mounted (Fig.7.1). The wheels are directly driven by a pair of continuous rotation
servos, allowing both their direction and speed to be set, with the servos containing
a feedback controller to maintain the set speed. There are four distinct types of
sensors mounted on the robot. There are two infrared reflection sensors mounted
near the front of the robot facing downwards. These sensors detect the reflectivity of
the surface below, by emitting infrared light and measuring how much is reflected
back via a light-dependent resistor. There are also two position encoders, one per
wheel. Each encoder faces a 44-segment black and white disc attached to the wheel,
allowing it to keep a count of how many segments have passed the encoder and in
which direction, thus giving a representation of the angular distance travelled by
each wheel. Finally, there are two infrared range finders on the front face of the
robot with a micro switch between them to detect contact with objects.

The robot has been co-modelled performing two tasks, line following and
line measuring. Both tasks present the engineer with interesting design decisions.
For example, it is necessary to choose the number and positioning of infrared
reflectivity sensors and how the wheel servos should respond to their signals.
Such decisions become more challenging when considering the consequences of
faults or difficult operating conditions. The construction of the R2-G2P co-model is
discussed in Chap. 8. The modelling of faults and realistic operating conditions, and
appropriate recovery strategies, are discussed in Chap. 9. Finally, Chap. 10 examines
the systematic exploration of the robot’s design space with a view to supporting the
selection of optimal designs.

7.2.1 Line-Following

In the line-following mode, the controller primarily utilises readings from the
infrared reflectivity sensors to guide the robot. Here it is assumed that the lines
the robot has to follow, which are black, have a lower reflectivity than the surface
upon which they are placed, which is white, in this way. The lines are all of a fixed
width but are free to follow straight paths, smooth curves or any radius and also
sharp corners.

The robot moves through a number of phases as it follows a line. At the start of
each line is a specific pattern that will be known in advance. This known pattern
allows the robot to calibrate its sensors as part of its fault tolerance strategy. Once a

7 Case Studies in Co-modelling and Co-simulation 143

Fig. 7.1 The line-following robot. (a) An R2-G2P robot. (b) A line-follow path. (¢) 3D represen-
tation of the R2-G2P

genuine line is detected on the ground, the robot follows it until it detects that the
end of the line has been reached, when it should go to an idle state. For modelling
purposes, the co-model accepts a textual representation of a bitmap as the surface
with a line to be followed.

The ability of a design to follow a line is assessed using two criteria: the first
is the time taken to follow the course of the line, from first detection of the line to
passing the end of the line. The second criterion is the amount of energy used to
drive the robot from start to finish. In this way, the best design can be a compromise
between speed and efficiency. There is also a third implicit criterion, which is that
the robot does not lose the line before reaching the end.

7.2.2 Line-Measuring Extension

The line-measuring mode of the robot is an extension of the basic line-following
capability. In this mode, the controller also makes use of the encoders attached to
each wheel to estimate the distance travelled by the robot while following the line,
and thus it is able to estimate the length of the line. In this scenario, competing
designs can be assessed using the same time and energy criteria as above but also
using the accuracy of the line measurement as estimated by the controller. This
additional need for accuracy of line measurement may favour a different number of
sensors and control algorithms to the one favoured by the basic line-following task,
in which only speed and energy are considered. Figure 7.2 shows examples of the
lines to be measured.

144 M. Verhoef et al.

Fig. 7.2 Images showing the lines of known length for development (a) and for design compari-
son (b)

ﬂ=' :”?Wheel position encoders ——

/

L—

103

—h — Servo driven wheels

WW\/,,/ Infrared reflectivity — \
: sensors

70
66.5
1

120 | 85
98 115
106
Rear elevation Left side elevation

Fig. 7.3 Line-following robot’s major dimensions in mm

7.2.3 Assumptions and Robot Dimensions

There are a few key dimensions of the robot that should be respected during
modelling. Figure 7.3 shows the significant geometric details of the robot. In
addition to this, Table 7.1 contains important non-geometric property values.

The key assumptions regarding the lines to be followed are that they will always
be 16 mm wide and the robot will start at a position where its left-hand side is over
black, while the right-hand side is over white. There will then be a small gap of
around 50 mm white space after the starting block before the line itself starts. The
starting position of the robot will always be such that the robot will not be facing
directly along the direction of the start of the line; instead the line will point either
to the left or the right of the initial robot heading.

7 Case Studies in Co-modelling and Co-simulation 145

Table 7.1 Robot property

Property Value Unit
values

Mass 0.414 kg

Moment of inertia 6.6e4 kg m?

Motor inductance 0.00171 H

Motor resistance 8.2 Q

Motor constant 0.796 -

7.3 The ChessWay Self-balancing Scooter

The ChessWay is a model-based design technology demonstrator based on the
famous Segway Personal Transporter, see http://www.segway.com. The device
exposes typical multi-disciplinary design challenges in real-time control, and for
this reason it was put forward as a realistic industrial case study. Like the Segway,
the ChessWay has two wheels, mounted on either side of a platform on which the
rider can stand, while holding on to a handlebar (see Fig.7.4). The weight of the
system, including the passenger, is mostly positioned above the two wheels, and as
such, it acts like an inverted pendulum which is inherently unstable.

Each wheel has an integrated direct drive electric motor which can generate
sufficient torque to enable the system controller to keep the ChessWay upright,
even while stationary. The controller measures the deviation angle and performs
immediate action in order to keep the ChessWay stable, by moving towards the
direction of the deviation, similar to the way that you might try to balance a pencil
on the tip of your finger. It does this by controlling the current flowing through each
wheel (motor) independently, hence controlling rotation and movement such that the
base of the ChessWay is always kept directly underneath the centre of gravity of the
entire system. The rider can move forward (or backward) by moving the handlebar
slightly forward (or backward). The purpose of the controller is to provide a smooth
and predictable driving experience. However, it is also intuitively clear that this is
far from trivial as small disturbances may have a big impact on the performance of
the device.

7.3.1 Robustness: A Key Design Challenge

Safety plays a crucial and complicating role in the overall system design. For
example, consider the situation where the power switch (indicated by p-sw in
Fig.7.4) is used to turn the system on. If the ChessWay is initially lying with the
handlebar on the floor, 90° from upright, then the controller would immediately
apply a large torque to the wheels in order to correct for this large measured position
error. This could result in the handlebar suddenly swinging upright and possibly
hitting the user. So, right from the start of the system design, we need to consider
this initial scenario. One possible solution could be to start controlling the device

http://www.segway.com

146 M. Verhoef et al.

side view front view

Fig. 7.4 The ChessWay personal transporter

actively if and only if the user has kept it manually upright for at least a few seconds,
after the device is turned on. The user can then step onto the device safely once he
or she feels force feedback on the handlebar, due to the torque applied to the wheels.
The user might also be operating the device outside its normal usage envelope,
for example, creating sudden deviations by pushing the handlebar on purpose back
and forth rapidly or by releasing the handlebar altogether. These situations can
cause equally violent responses from the device.! One could consider filtering the
measured angle to avoid malicious use and only allow active control within a certain
range from the upright position in order to circumvent this. In all other situations,
the approach could be to cut power to the wheels to avoid damage to both the device
and the driver. Cutting power—leaving the wheels to rotate freely—is preferred to
active breaking because it lowers the cognitive load on the human. This may also
create the opportunity to step down from the device normally in case of problems. If
brakes are applied in an emergency situation while moving at speed, the user would
simply fall due to inertia and the lack of time to respond to such a sudden change.
Note that there are also circumstances in which it is actually the safest thing to
do to allow the ChessWay to fall over. For example, consider the case where the
ChessWay hits some large object which causes the user to actually fall from the
device. It could be dangerous to keep the motors engaged during this emergency
situation. One possible solution is to monitor a safety switch (usually a so-called
“rip cord” is used, indicated by s-key in Fig. 7.4) and cut the power to both wheels
immediately as soon as the safety key is removed. We also need to consider how the

'Search www.youtube.com for “segway crashes” for examples of malicious users.

www.youtube.com

7 Case Studies in Co-modelling and Co-simulation 147

HALL
SENSORS

HALL
SENSORS

H-BRIDGE _ NETWORK | H-BRIDGE
(IceT) § | (1GBT)

"

e BATTERY e

emergency override emergency override

ACCELEROMETER (ACC) DIRECTION SWITCH (D-SW)

GYROSCOPE (GYRO) SAFETY KEY (S-KEY)
POWER SWITCH (P-SW)

Fig. 7.5 Conceptual view of the ChessWay electronics architecture

system should respond when the rip cord is re-inserted again, to recover from such
a situation.

Another key issue is the choice of the architecture of the control system itself.
Modern embedded systems are becoming more and more distributed, for example,
in order to balance cost price and performance. But what is the best way to inter-
connect all these components, sensors and actuators? These decisions have a major
impact on overall system reliability, so it is worth exploring these architectures and
make explicit trade-offs during the design process. An example conceptual control
system architecture with the allocation of these different elements to the electronics
is shown in Fig. 7.5. Note that in this architecture, safety is a shared concern between
the two controllers. The controllers have to communicate to each other in order to
assess the entire system state, as sensors are exclusively allocated to either of the
processors. This implies that reliability of the communication link between the two
controllers also becomes part of the system level reliability assessment.

The ChessWay is equipped with several sensors. Next to the power switch and
safety key, there is also a direction switch, a gyroscope and an accelerometer
(respectively indicated as d-sw, gyro and acc in Fig. 7.4). Furthermore, so-called
Hall effect sensors are embedded within the wheel in order to measure rotation. Any
of these sensors may degrade or fail entirely (e.g. missing, late, incorrect or jittery
data) causing the system to behave unexpectedly. Of course, the same is true for the
actuators, and also the control system itself may cause failures, for example, due to
an internal communication or integrity fault. There also exist potential faults that
appear gradually over the life-time of the device, such as battery degradation and

148 M. Verhoef et al.

mechanical wear and tear, which may cause other (instant) system failures at some
point in time.

The potential impact of the environment on the operation of the ChessWay should
not be underestimated, as the device relies on the proper transfer of energy between
the wheel and the surface in order to stay upright. For example, the surface might
not be flat but curved, or there may be obstacles of different shapes and sizes on the
track, some of these might even be too big to take on, friction might be different
depending on the actual position the device due to a non-homogenous surface and
ground contact may even be lost temporarily, for example, when the surface is
discontinuous (a pothole or a small bump taken at speed). And these conditions
may very well differ between both wheels, that is, only one wheel might be on
a slippery surface. These scenarios create a very large design space that needs to
be explored rigorously in order to assess overall system robustness. Note that this
design space is in fact infinite, so all we can do is to be as thorough as possible, to
build up confidence in the design without formal proof of correctness.

The main point to take away from this section is that design for resilience is not
an afterthought, but an integral part of the design process that needs to be addressed
right from the start.

7.3.2 The ChessWay Control Problem

We consider the well-known inverted pendulum basic physics problem, as shown
in Fig. 7.6, as a competent abstract mathematical representation of the ChessWay,
if we ignore the ability to steer the device. The driver is modelled as a point
mass which is connected to a weightless rod that is connected to a car through a
frictionless joint. This so-called rigid body system is inherently unstable, which can
be stabilised by moving the cart, by applying a force F. This force corresponds to
the torque generated by the motor of the ChessWay, which is transferred through
friction between the wheel and the surface. We select the following parameters for
our model:

— M =20 (kg), the mass of the cart

m = 70 (kg), the mass of rider

[=1 (m), the distance of the top of the cart to the centre of mass
- g =9.8 (m/s?), the gravity constant

A control model of this system should describe the translational motions of the
cart as well as the rotations of the rod. The coupling between these two motions is
highly non-linear, leading to a rather complex model. One of the approaches is to
use the Lagrange function L, which is given by

L=K-V (7.1)

7 Case Studies in Co-modelling and Co-simulation 149

Vy= -0/ cos 0

pendulum

— M cart

Fig. 7.6 Left: Inverted pendulum; right: translation of the angular velocity (é) to two linear
velocities (v, and v;)

where K is the kinetic and V' the potential energy. The potential energy is given
by the gravity force mg times the height & of the mass m above the cart. With
h = [cos 8, this yields

V = mglcos 6 (7.2)

The kinetic energy consists of the kinetic energy of the mass M of the cart and
mass m in the translation domain (%(M + m)x?) plus the kinetic energy in the

rotation domain %J 92 = %mléz. The latter can be written as a function of the

linear velocities of m in the horizontal (él cos) and vertical (él sin 0) directions,
as shown in Fig. 7.6:

1 1 . 1 .
K = E(M)x2 + omiE — 16 cos 0)* + Em(—ze) sin 0)? (7.3)
This can be written as

1 . 1 .
K= E(M + m)x* — mix6 cos O + Emlzez(cos2 6 + sin® 6)

(7.4)
1 -2 - [y
= E(M + m)x~ — mix6 cos 6 + EMZ 0
The equations of motion follow from the Lagrange equation:
9 L 9 L (7.5)
—_— | — —_—— =T .
dr | 9 dq

where T represents the external forces and moments and ¢ stands for x and 6.
Combining (7.5) with (7.2) and (7.4), this yields for the x-equation:

150 M. Verhoef et al.

d . -

d—t[(M—km)x—ml@cosO]—O—F (7.6)
or

(M + m)i —ml6 cos® + mif*sin = F (7.7)

and for the #-equation:

d .
o [—ml)'c cosf + mlze] —mglsinf =0 (7.8)

or

mi(—% cosf + 16 — gsinf) = 0

.. (7.9)
—Xcosf + 10 —gsind =0
The two equations of motion for x and € are thus
. 1 ; 32
X = Y (F + ml6 cos 8 — ml6- sin 0)
" (7.10)

. 1
0= 7()’éc039 + gsin@)

This model can be linearised when we only consider small variations in the angle 6.
For small values of 6, the following approximations hold:

sinf ~ 0
cosf ~ 1 (7.11)
0%~ 0

When we substitute (7.11) in (7.10), the model is simplified into

1 .
§= (F + mif)
T+m (7.12)
0 =7(%+2g0)

The resulting Egs. (7.10) and (7.12) are deceptively simple, but they contain an
algebraic loop, as 6 and X are mutually dependent. This is also reflected in the initial
controller model shown in Fig.7.7. An algebraic loop is a closed loop without an
integrator or a delay element, or, in other words, the input of a block depends directly
on its own output. This loop is indicated in the block diagram of the linearised
system, see Fig. 7.7. This loop must be removed before we can simulate the system.

7 Case Studies in Co-modelling and Co-simulation 151

K
.« |
LI
+ Kd_x
K
+
trantsla”tion translation dynamics
_ | controller ‘
F Q s v JTI x R
— + K
1/(M+m)
algebraic)
Criterion K loop coupling
ml
\ &3 .
0 0
Yk —’| / /
rotation + 7
controller ,TL
o rotation dynamics |—g|

+

Fig. 7.7 Block diagram of the linearised system (7.12). The algebraic loop is indicated by the
thick arrows

A similar problem occurs when sensors are introduced. One could imagine that a
multi-axis accelerometer could be used to determine the angle of the ChessWay, as
gravity is always pointing downwards. However, when the angle is non-zero (which
tilts the frame of reference of the accelerometer) and the ChessWay is accelerating,
the measurement of gravity will be biased by this forward or backward movement.
Alternatively, a gyroscope can be used to measure the angular rate, which can be
integrated to obtain the angle. In order to find the initial values of this integrator,
the orientation of the device must be known a priori. For that, we would again
need the accelerometer, so even ignoring issues such as sensor accuracy and drift,
determining the orientation of the device is a non-trivial problem.

7.4 Conclusion

The case studies presented in this chapter demonstrate the intrinsic complexity of
modern real-time control systems. This is of course a significant challenge and
representative of many industrial products being developed today. The trade-off
between the large variety in usage scenarios, functional requirements, environmental
conditions and fault types makes it clear that analysis of any design can only sensibly
be done semi-automatically in order to be effective. Deciding between the myriad

152 M. Verhoef et al.

of options is envisioned as a typical design space exploration task in the Crescendo
technology.

The need for this type of methodology is, for example, demonstrated by the
public debate regarding the legality of allowing the Segway on public roads. For
the device to become street legal, robustness had to be demonstrated to several
third parties, such as government road safety inspectors, and to private insurance
companies.

The line-tracking robot and ChessWay case studies will be used in the following
chapters to show that our methodology allows the system developer to define
alternative system architectures and controller strategies based on several possible
user or usage scenarios, while reasoning about the suitability of the system under
possibly changing environmental conditions and in the presence of potential faults.

Chapter 8
Methods for Creating Co-models of Embedded

Systems

Kenneth Pierce, Sune Wolff, and Marcel Verhoef

8.1 Introduction

In Chap. 2, we introduced concepts to describe alternative routes to the production of
initial co-models. In this chapter, we illustrate these approaches in some detail using
the case studies outlined in Chap. 7: the line-following robot and the ChessWay. The
ChessWay will illustrate DE-first co-model construction path and the line-following
robot will demonstrate the CT-first path. Furthermore, we will show how higher-
level descriptions such as SysML can be used to aid the process of initial model
construction.

Section 8.2 reviews the three co-model production paths, considering the circum-
stances under which each is likely to prove most effective. In Sect. 8.3, we show
how the SysML notation can be used both to clarify the purpose of a particular
co-model and to decompose the problem at hand in different views, providing
insights that help in selecting the co-model production path. The technique is
illustrated using the line-following robot in Sect. 8.3. The chapter then looks in more
detail at the common approaches to co-model production. Section 8.4 illustrates the
CT-first (continuous-time first) approach using the line-following robot. Section 8.5
illustrates the DE-first (discrete-event first) approach using the ChessWay example.
Section 8.6 briefly explains how the contract-first approach works. Finally, Sect. 8.7
provides a concluding summary.

K. Pierce ()
Newcastle University, Newcastle upon Tyne, UK
e-mail: kenneth.pierce @newcastle.ac.uk

S. Wolff
Aarhus University, Aarhus, Denmark
e-mail: swo@eng.au.dk

M. Verhoef
Chess WISE, Haarlem, The Netherlands
e-mail: Marcel.Verhoef @chess.nl

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 153
DOI 10.1007/978-3-642-54118-6_8,
© Springer-Verlag Berlin Heidelberg 2014

mailto:kenneth.pierce@newcastle.ac.uk
mailto:swo@eng.au.dk
mailto:Marcel.Verhoef@chess.nl

154 K. Pierce et al.
8.2 Paths to Co-models

In Chap. 2, we outlined three approaches to the production of a first co-model:
DE-first, where initial models are produced in the discrete-event formalism; CT-first,
where initial models are produced in the continuous-time formalism; and contract-
first, where the contract forms the basis for development of both constituent models.
In this section, we look in more detail at these approaches and the factors that
influence the selection of a path in a given development context. We also consider
some alternative approaches. When choosing a path to co-modelling, it is important
to understand the purpose of the co-model (why it is being produced) and to have
an idea of the various elements of the system being designed. In Sect. 8.3, we look
at one way to help discover these elements using SysML.

8.2.1 When to Use DE-first

The DE-first approach begins with initial models being produced in the discrete-
event formalism (VDM). This DE model will include a simplified model of the plant
that is only required to respond sufficiently to the supervisory controller to test its
basic operation. Later, this plant model is replaced by a higher-fidelity CT model as
part of the initial co-model. This approach allows supervisory control to be studied
early on in the development, so it is a good choice if this aspect is critical, such as in
systems with safety or security concerns. Initial system models in the DE formalism
will have overly simplified plant dynamics, and therefore loop controllers cannot be
tuned, for example. In addition, the complexity of the plant model increases rapidly
as the DE-first approach continues, so there is a natural limit after which a co-model
should be built. If legacy models exist in the DE formalism, or if the development
team has mainly DE experience, then this approach seems the most natural. It should
be noted however that legacy models might be seen to bias a development or result
in “tunnel vision”, so careful consideration of all factors is recommended.

8.2.2 When to Use CT-first

The CT-first approach begins with models being produced in the continuous-time
formalism (20-sim). The CT model should include a basic controller, such as a loop
controller, in order to gain confidence in the model dynamics. This approach allows
plant dynamics to be studied early on in the development and loop controllers to be
tuned at an early stage. Another good reason to choose the CT-first approach is to
perform a feasibility study to test whether the proposed design is in fact controllable.
Following the other approaches in this case may waste effort before it is discovered
that the design is physically infeasible.

8 Methods for Creating Co-models of Embedded Systems 155

Choosing this approach does mean that supervisory control cannot be studied
until later in the development, so it should be used only if the plant dynamics
are of a higher priority than supervisory control. If legacy CT models exist, or
if the development team has most CT modelling experience, then this approach
is a good way to reach an initial co-model. Again, caution is urged about legacy
models biasing new developments. Experience also indicates that if the physical
plant already exists and a new controller is to be built, the CT-first approach is again
the natural choice.

8.2.3 When to Use Contract-first

The Contract-first approach begins with definition of a co-simulation contract,
followed by concurrent development of the two constituent models. In this way,
the constituent models must evolve together. Following the DE-first and CT-first
approaches for developing the constituent models is recommended. We suggest that
minimal acceptance tests for the constituent models are defined, and that these are
met before new versions are “released” for inclusion in the co-model. This means
that the constituent models are not dependent on each other for testing, especially
in the early, volatile phases of development.

This is perhaps the most “pure” approach, and in theory a co-model can be
reached early on, though following the concurrent DE-first and CT-first approaches
on the constituent models adds extra effort (in producing DE environment model
and CT test controller). This approach may also suit a technical manager who is
overseeing a co-modelling team or teams: the contract can act as a means to manage
the teams’ work. Alternatively, if there is no obvious driver for choosing either
the DE-first or CT-first approaches, then a Contract-first is the best way to go. For
example, if there are no legacy models (or you wish to avoid using legacy models),
or if the development team has a good mix of DE and CT modellers (or perhaps
no experience of the formalisms used), this is the natural approach to take. It also
stresses the unknowns, early on.

8.2.4 When to Define the Contract

Note that selecting the Contract-first path requires the co-simulation contract, and
therefore the co-model interface, to be chosen early on. While this could be changed
later on as the co-model evolves, it is desirable to avoid this disruption and therefore
identifying the possible interfaces in the system under design early on is particularly
important when choosing this path. Conversely, the early definition of the contract
can help guide the teams working on the constituent models, especially if the teams
are geographically separated. With the DE-first and CT-first approaches, the initial
models can be used as a way to work out what the interface should be, and “playing

156

Table 8.1 Summary of approaches to co-model construction

K. Pierce et al.

Pros

Cons

Use where. ..

DE-first

CT-first

Contract-first

Complex controller

behaviour can be
studied early

Feasibility study; plant

dynamics can be
studied early on;
loop controllers can
be tuned

A co-model reached

early on; constituent
models not mutually
dependent for testing

Plant dynamics

over-simplified; loop
controllers cannot be
tuned; rapid increase
in environment
model complexity

Complex DE control

cannot be easily
studied

Contract required early

on; extra effort is
required in building
testing constituent
models

Complex DE control

needs priority; legacy
DE models exist;
modeller experience
is mainly in DE
domain

Feasibility of control

unknown; plant
dynamics need
priority; legacy CT
models and/or loop
controllers exist;
modellers’
experience is mainly
in CT domain

Integration is required

of two legacy
models; no legacy
models exist;
modellers from both

domains are available
(or have no bias)

The standard
approaches do not fit
your development
context; legacy
models or developer
experience in other
formalisms

Other A novel approach can fit Limited experience
better with existing from our existing
practice guidelines

around” is much easier within the single formalism. The co-simulation contract
should be derived from the initial, single-domain model, so there should be no need
to significantly alter this model in order to integrate it into a co-model.

8.2.5 Alternate Exploratory Paths to Initial Co-models

The standard paths summarised in Table 8.1 should be applicable in many contexts;
however, the best path to production of initial co-models may be different in other
contexts. For example, if legacy models exist, it may be instructive to focus on what
is unknown and take the opposite path from that suggested in the table. So if a DE
model exists, instead of working towards a co-model from there, a CT-first approach
could be taken to focus on the new aspects of the model.

In addition, real developments may not be as clear-cut as those described in
the table. For example, in the industrial applications described in Chap. 11, the

8 Methods for Creating Co-models of Embedded Systems 157

ChessWay personal transporter study began with a CT-only feasibility study. This
suggested that it was at least possible to build the device. Next, a DE-only model
was built to explore the modal aspects of the controller (see Appendix D). Finally,
a DE-first model was built that was influenced by the earlier efforts, described later
in this chapter.

In the document handling system, also described in Chap. 11, a DE-first model
was built. This approach was selected because of the background of the lead
engineer, as well as the complexity of having multiple connected sections of “paper
path” within the system. Later on, in the co-model phase, only a small part of
the plant model was replaced with a CT model. The interesting point here is the
placement of the co-model boundary with respect to the “standard” split mentioned
previously.

8.3 Using SysML Initially

Before the actual modelling process is initiated, it is beneficial to have a clearly
defined purpose for the model. This will help the model designer to apply an
appropriate level of abstraction, while still ensuring the model is competent for the
analysis at hand. In addition, having a fine-grained decomposition of the system is
an advantage when having to decide which modelling approach to choose. Having
specified the behaviour of the different blocks helps determine which parts of
the system contain the main complexity and also determine the most appropriate
modelling approach.

This section describes purpose modelling and system decomposition using the
system modelling language (SysML) [87]. SysML is an extension to UML defined
and maintained by the Object Management Group (OMG) in cooperation with
the International Council on Systems Engineering (INCOSE). SysML is widely
used in industry to manage and track requirements, link test cases to requirements,
decompose systems into more manageable components and allocate requirements
to the responsible system components.

The line-following robot is used as a sample application exemplifying the use
of SysML for purpose modelling and system decomposition. The modelling of the
line-following robot using the CT-first approach is described in Sect. 8.4.

8.3.1 Purpose Modelling

In systems engineering, use cases are used to represent missions or stakeholder
goals, and hence are perfect for defining the model purpose. Since use cases are
described using natural language, it is a good common communication platform
for engineers with different backgrounds and non-technical stakeholders like a
customer or potential end users.

158 K. Pierce et al.

uc Line following robot J

Line following Robot
Adjust motor
control signals

Read optical
sensor values /™.

«include»

Measure optical I
Read encoder
ticks

reflection
«include»

®
encoder ticks

Encoders Wheels

Motors

Controller

A

Sensors

Line

Fig. 8.1 SysML use case diagram

One of the key aspects of the model purpose is to identify all actors interacting
with the system. An actor can either be a person, a role, an external system or a more
abstract actor such as time. Unexpected actors can also be modelled: unauthorised
users, power loss or other unexpected interactions with the system. A use case
diagram for the line-following robot is shown in Fig. 8.1.

The main actors of the system are the hardware and software components of the
robot: the wheels, encoders, motors, sensors and the controller. In addition, the line
the robot needs to follow is included. The use cases define the main functionality
of the controller: the optical sensors are read to determine where the line is; the
encoders are read to determine how far the robot has travelled; and the motor control
signal is set to ensure that the robot follows the line. The <include>> relation
is used to describe the dependencies behind the sensor and controller operational
modes.

After identifying the use cases and actors of the system, more formal require-
ments that the model must satisfy can be defined. Some requirements can be
derived directly from a use case, whereas other requirements will be refinements
of use cases. In addition to these annotations, the trace association can be used to
document the rationale behind a certain requirement. The use of these associations
is a strong tool to ensure traceability of individual requirements and help document
the rationale behind the requirements. Requirements diagrams can also be used to

8 Methods for Creating Co-models of Embedded Systems 159

req FaultModelling J

«requirement»
faultyBehaviour

Model faulty behaviour
in the sensors
ld=s1

«requirement» «requirement» «requirement»
ambientLight conversionError sensorMalfunction
Model ambient light Model AD conversion Model malfunctioning
as noise in the optical erros in the LSB’s of the sensors that continuously
sensors optical sensor readings reads the same value
ld=s1.1 ld=s1.2 ld=s1.3

Fig. 8.2 SysML requirements diagram describing the required faulty scenarios that must be
included in the co-model

«requirement»

ambientLight
Model ambient light |- «satisfyn— «block-»
as noise in the optical SensorRight
sensors
ld=s1.1

Fig. 8.3 The right optical sensor is given the responsibility of satisfying one of the requirements
of faulty behaviour modelling

define different faulty scenarios that must be modelled. An example of this is shown
in Fig. 8.2.

The main requirement states that faulty behaviour of the sensors must be mod-
elled. Three sub-requirements define different types of faulty behaviour that must
be included in the model. The responsibility of satisfying individual requirements
can be defined in separate diagrams. An example of this is shown in Fig. 8.3.

8.3.2 System Decomposition

Once the model purpose and requirements have been determined, the system must
be decomposed into its main parts. A Block Definition Diagram (BDD) is used
for defining the main blocks of the system and how they are connected. Obvious
candidates for main blocks are all the actors as well as the main nouns used in the
use case descriptions. Some blocks are contained within parent-blocks which can
be shown using the part association. A BDD for the line-following robot is shown
in Fig. 8.4.

The BDD defines the composition of the main components of the robot. Separate
blocks have been defined for the left and right wheels, motors and encoders. In
addition, the physical body of the robot has been defined. The line the robot needs
to follow is contained in a separate Environment block.

160 K. Pierce et al.

bdd Line following robot J
«block»
LineFollowingRobot
«block» «block»
Robot Environment
«block» «block» «block»
Controller Body Line
«block» «block»
SensorLeft MotorLeft
«block» «block»
SensorRight MotorRight
«block» «block»
EncoderLeft WheelLeft
«block» «block»
EncoderRight WheelRight

Fig. 8.4 SysML block definition diagram

Once the main blocks of the system have been defined, it is time to determine
which parts of the system model should be modelled in the DE and CT formalism:s.
This is mainly a task for the domain experts who possess the detailed knowledge
required for distinguishing this. Blocks describing rigid body entities naturally
belong in the CT domain, whereas software controllers belong in the DE domain.
There are exceptions to this though: if the controller simply needs to control an
actuator in order to reach a preset output value using a Proportional-Integral-
Derivative (PID) regulator, this could be done in a CT formalism. 20-sim is capable
of tuning PID controllers and will in general obtain more precise results with less
simulation speed overhead. Since the controller of the line-following robot is a
software component, it is modelled using a DE formalism, whereas the rest of the
system is modelled using a CT formalism.

To add levels of detail to the SysML model, an Internal Block Diagram (IBD)
can be made for each of the main (parent) blocks of the system. In these diagrams,
the child-blocks, their interfaces and interconnections are described using SysML
ports. For defining a directed flow between two blocks, the atomic flow ports are
used, which map directly to a signal port in the interface of the 20-sim submodel.
The bi-directional flow ports of SysML are used to describe exchange of energy
(flow ports in 20-sim). The IBD of the robot and environment is shown in Fig. 8.5.

8 Methods for Creating Co-models of Embedded Systems 161

ibd Robot J

sensorSignall:real sensorSignalR:real
«block»
motorSignalL:real Controller motorSignalR:real

b
! «lock»
rotationR:rad/s MotorRight
toWheelL. «block» «block» toWhellR
WheelLeft foBodyL toBodyR WheelRight

encoderSignalL:real encoderSignalR:real

—

«block» . «block»
MotorLeft rotationL:rad/s EncoderLeft

«block»
EncoderRight

«block»
Body

«block»
SensorLeft

«block»
SensorRight

opticalReflectionL:real robotPosition:real[2,1] opticalReflectionR:real

ibd Environment J

,J; «block» l
T Line T

Fig. 8.5 SysML internal block diagram

All of the blocks defined in the BDD of Fig.8.4 have been added to the
IBD of Fig. 8.5 and their interfaces have been described. Signals to and from the
controller are described using SysML atomic flow ports, while the rotational energy
transferred between the motors, wheels and encoders are described using flow ports.

8.3.2.1 CT Constructs

To specify constraints on the parameters of the system, an additional BDD can be
made, containing constraint blocks that define general physical constrains which can
be applied to many different entities. An example of such a constraint is Newton’s
second law of motion which is not tied to any specific property, but can be reused
throughout the model. The use of constraint blocks to describe the forces acting on
the robot is shown in Fig. 8.6.

A parametric diagram that is a child of a block shows how one or more of the
general constraints are tied to properties of the owning block. An example of this
is how Newton’s second law of motion defined as a constraint block is tied to the
mass value property of a rigid body block as well as the resulting forces acting on
this block. If a non-causal CT modelling formalism like bond graphs is used, it is
enough to use the constraint blocks since the causality description of a parametric
diagram is not needed. This defines the differential equations of the system, and

162 K. Pierce et al.

bdd Constraints J
«constraint» «constraint»
TotalForce «block» RxForceRight
Robot
constraints ‘\ constraints
{totalForce=forceL+forceR} {rxForceR=forceL}
parameters parameters
totalForce:N rxForceR:N
forceL:N forcel:N
forceR:N
«constraint» «constraint» «constraint»
ForcelLeft ForceRight RxForceLeft
constraints constraints constraints
{forceL=genForcelL+rxForcel} {forceR=genForceR+rxForceR} {rxForceL=forceR}
parameters parameters parameters
forceL:N forceR:N rxForceL:N
genForceL:N genForceR:N forceR:N
rxForceL:N rxForceR:N

Fig. 8.6 SysML block definition diagram describing the physical constraints of the robot

par Robot J

genForceR

1]genForceR
{ T rxForceR

rxForceR[|

rxForceR:N forceR:N

totalForce:N

genForcel

forceL:N

rxForceL:N

genForceL
{] rxForceL

Fig. 8.7 SysML parametric diagram describing the combination of the physical constraints of the
robot

20-sim calculates the causality at run-time. An example of a parametric diagram
showing the causality of the forces acting on the robot is shown in Fig. 8.7.

8.3.2.2 DE Constructs

In addition to defining the main blocks of the controller in the BDD and IBD as
described above, it is beneficial to make a more detailed specification of the software

8 Methods for Creating Co-models of Embedded Systems

act Controller J

left && right:

Sensor Reading

left &&! right

lleft && right

[Turn Left j [Turn Right j

b

b

lleft && Iright && lastSight==right

lleft&& Iright && lastSight==left

[Forward j lastSight=left lastSight=right [Rotate Left Rotate Rightj

163

Fig. 8.8 SysML activity diagram

structure and behaviour. Using the UML class diagram to specify the structure of
an object-oriented software structure is the most common approach. Since SysML
is built on top of UML, a class diagram can be integrated into the SysML model.

The behaviour of the controller and other significant parallel processes can be
specified using one of the behavioural diagrams of UML: sequence diagrams,
state machines or activity diagrams. It is even possible to make a combination of
these behavioural diagrams: using a state machine for defining the high-level state
changes of the controller and separate sequence diagrams for each of the individual
states. An activity diagram describing the main flow of the controller is shown in
Fig.8.8.

If both sensors can see the line, the robot continues forwards. If only one sensor
can see the line, the robot slowly turns in that direction. The controller keeps track
which sensors have last seen the line using the 1astSight attribute. If none of the
sensors can see the line, the robot rotates in the direction of the value of the lastSight
attribute.

8.3.2.3 Co-simulation Contract

Defining the monitored and controlled shared variables of the co-simulation contract
is supported by the details that have been added to all CT and DE blocks. The
interface between two blocks modelled using different formalisms has already been
specified: the name, type and direction of the individual ports have been defined in
the interface and can be added directly to the contract. A close-up of the controller
interface of the line-following robot can be seen in Fig. 8.9.

164 K. Pierce et al.

sensorSignall:real sensorSignalR:real
«block»
motorSignalL:real Controller motorSignalR:real
encoderSignallL:real encoderSignalR:real

Fig. 8.9 Close-up of the interface of the controller block. This interface defines the monitored and
controlled variables of the co-model

Shared design parameters (describing constant valued properties) can be derived
from constraint blocks in the parametric diagrams.

Events can be derived from sequence diagrams, which can specify both operation
calls as well as events happening. These events must be added to the contract to
enable event-driven communication.

8.4 The CT-first Approach

In the CT-first approach, initial models are produced in the continuous-time
formalism. The focus is on developing a CT model of the plant dynamics first,
with Discrete-Time (DT) loop controllers realising the core laws that control the
plant. Once sufficient confidence is gained in the CT-only model, the steps towards
an initial co-model are taken. There are two main choices here: either the loop
controller can be moved to the DE-side, which improves analysis potential but
reduces performance, or the DE model can be initially connected as a sequence
controller, providing setpoints to the CT model.

8.4.1 Preparation

Our approach recommends that CT models have a certain shape, which may be
somewhat more constrained than that experienced CT modellers are used to.

In general, a block is used to represent the plant and a block is used to represent
the controller. The controller has input ports for monitored variables and output
ports for shared and controlled variables. Sensors and actuators are also modelled
as blocks, and these are connected in between the plant and controller. Naturally
these blocks may contain further blocks (submodels) as appropriate.

A simplified overview of the CT-first approach is given in Fig. 8.10. Development
begins with a model of the physical plant in the CT formalism. This model contains
a plant block (P) and a controller block (C), which are linked by (one or more)
sensor and actuator blocks (S and A). Initially, the controller block should be used

8 Methods for Creating Co-models of Embedded Systems 165

= ‘E’ﬂ

CT-first
development

DE-only
modelling

Integration of

ctrl
initial co-model

Contract
definition

n

Fig. 8.10 The CT-first approach

to test the dynamics of the plant and to test the control laws. The sensor and actuator
blocks model A/D (analogue-to-digital) and D/A (digital-to-analogue) conversion,
respectively. The sensor blocks principally make values discrete in time (sampling)
and value to ensure that the control designed can control the real system.

Once sufficient confidence is gained in the CT-only model, the steps towards an
initial co-model are taken. The main change is that the controller block is replaced
by one that connects to the co-simulation and acts as a place for the shared variables
to reside. We recommended using a different implementation of the controller block
so that the original controller can be swapped back in if necessary. The change of
name from C to C’ in Fig. 8.10 indicates this new implementation.

As described in Chap. 3, blocks in 20-sim can be implemented in a number of
ways: graphically, with code, with bond graphs and with Idealised Physical Model
(IPM) blocks. These types may also be mixed. Experts in 20-sim advocate using
bond graphs or IPMs for the plant model in order to achieve the highest fidelity
simulation; however, these may present a barrier to new users, as the notation is not
as intuitive as the regular iconic diagrams they represent. Physical models can be
built directly by coding differential equations and using predefined blocks from the
20-sim libraries, and this may present an easier option for those less familiar with
bond graphs. Using signal blocks has lower fidelity and limited compositionality.
If the model is divided into blocks, it should be possible to replace a simple
plant model with a high-fidelity bond graph model with relative ease. Sensors and
actuators are by their nature signal level, and a choice is not required for these
components. The line-following robot example presented in the remainder of this
section uses bond graphs organised into submodels, which represent its various
components (body, wheels and servos). The sensors (wheel encoder and infrared
sensors) are implemented using signal-level equations.

166 K. Pierce et al.
8.4.2 Plant Modelling

Since a model is a simplified representation of the system under study, abstraction
is inevitable to capture only the relevant and interesting aspects of the system. The
basic modelling goal is to derive a competent model that is as simple as possible, but
sufficiently succinct to give the desired information. To judge whether a particular
model is competent, it can be validated using simulations. There are two situations
when modelling a plant. Either the plant exists and the model must reflect the real
apparatus, or the plant does not exist and is being designed.

For an existing plant, we can model its structure using a phenomenological
approach: look at the apparatus to discover what physical system elements the plant
consists of. Values of the model parameters can be found using identification tech-
niques, by exciting the real apparatus and measuring responses at relevant points.'
This often gives only a transfer function between excitation and measurement
points. For controller design, this is in most cases detailed enough. Simulations can
then be compared with the same experiments applied on the real machine to validate
the model.

Modelling a non-existing plant means that specifications for it need to be
described as physical system models. Multiple models may be produced as design
alternatives and compared to each other via simulation. In doing so the alternative
models cover (a part of) the design space. As modelling and simulation is in general
faster and cheaper than making prototypes, Design Space Exploration (DSE) can be
facilitated through modelling and simulation. The DSE process can continue into
controller design for the most promising design candidates. Then alternatives can
span all parts of the model, such that one can trade off between controller solutions
and plant solutions. Further guidance on DSE can be found in Chap. 10.

We recommend following the suggestions in the list below when building a CT
model.

1. Use meaningful names in the models and submodels.

2. Fill in quantities and units of the physical system variables, to let 20-sim use this

metadata for checking the model.

. Annotate graphs with coloured backgrounds as a means to bring in structure.

4. Let excitation signals start with equilibrium values (usually 0), to check that the
initial state of the model is in equilibrium.

5. Check that the shape of curves comply with the expected shapes. Use causality
information from the bond graph model to verify the system theoretic order of
the plant.

6. Check the ranges of the values of the variables.

7. Check results of “standard” experiments, like step response and transient
response.

8. Test non-linear model parts separately, as submodels in a test rig.

(O8]

I'This process is referred to as system identification in control engineering.

8 Methods for Creating Co-models of Embedded Systems 167
8.4.3 CT-first Modelling of the Line-Following Robot

The line-following robot co-model, first introduced in Chap. 7, was created using
the CT-first approach. As mentioned in the previous section, for an existing plant,
we should study it to see what elements it is composed of (a phenomenological
approach), then build and combine models of these elements. A stepwise approach
is often helpful, adding elements one at a time. As each stage is added, the model
should be tested to ensure that the model is behaving as expected. Initially these
tests might be made using simple signals or inputs, followed by a more complete
CT-only controller.

The robot example was studied in Sect. 8.3 above, using SysML. That description
gives the following elements that should be modelled:

* the robot’s body;

* left and right wheels;

* left and right motors (which are in the form of continuous-rotation servos);
* left and right wheel encoders; and

* left and right infrared sensors and the line they should detect.

8.4.3.1 Robot Body

The body is the main element of the robot to which the other elements are attached,
and therefore the body was modelled first. The body submodel is shown in Fig. 8.11,
along with the contents of the submodel. The body is modelled using a bond graph,
with the MTF node at the centre representing the mass of the body. The wheel_left
and wheel_right inputs may cause a rotation or translation of the body, which are
computed in the theta and position blocks, respectively.

At this early stage, it is already possible to connect the position and rotation to a
3D visualisation and check the behaviour or the body. To do this, constant sources
of effort (Se) are used to check that the body moves forwards, backwards and turns
as expected.

8.4.3.2 Wheels and Servos

The next item in the elements list are the wheels, so submodels were added in
between the Se nodes (see Fig.8.12). The sources of effort now take the roles
of motors in testing. A wheel works by rotating about an axis and producing a
translation perpendicular to this axis. This is modelled using the bond graph, also
shown in Fig. 8.12, with the TF elements computing the translation from the given
rotations.

Once testing of the wheel submodels is complete, the continuous-rotation servo
submodels are added. These replace the sources of effort used for testing and
rotate the wheels themselves. The input to the servos will be a signal from the

168 K. Pierce et al.

Inertia
|
Fl_to_TI Fr_to_Tr
II 1 TF -1 LS TF¢ ||
Wheel_| =10 |—- I | Theta 0 == Wheel_r
[A1 |
e T

¢——pstate_mux —3 Robot_State

R ~—11—=—p f
1, Position
I
Mass

Fig. 8.11 Bond graph model of the robot’s body

Wheel_| Wheel_r

k= =t> 2

i

to_bodyrc——= powermux ke—— TFhke——1c—Yy
rotation_to_translation

Fig. 8.12 Wheel submodel and bond graph

controller, and therefore it is in this step that the controller block was introduced.
The servo receives a signal in the range (—1,1) representing full reverse and full
ahead, respectively. This is shown in Fig. 8.13. A simple equation implementation
of the block is used to test the robot with servos attached.

A servo takes a signal (typically using pulse-width modulation) which tells it
what angle to move to and hold. In the case of continuous-rotation servos however,
this signal tells the servo how fast to rotate. So this signal actually represents a
setpoint, with the servo essentially representing a simple closed-loop controller. This

8 Methods for Creating Co-models of Embedded Systems 169

Wheel_| Wheel_r
Servo_|

Body -~

Controller

friction Servo_r
R R

[

to_wheelbke— 1 ke GY ~———1 1 i— MSe voltage

motor L

:II’—_ voltage_limit
¥

Pl | internal_controller

&1— K —motor_input

+

Fig. 8.13 Servo submodel and bond graph

can be seen in the bond graph model of the servo, also shown in Fig. 8.13, with a Pl
block controlling a motor element (GY) with a feedback loop.

8.4.3.3 Sensors

The encoders were the first sensors to be added to the model as they are simpler to
model than the infrared sensors. The encoders on the robot count as the wheel turns
(44 for one revolution). In the model, however, it is simpler to intercept the rotation
from the servo (which is an input to the wheel), therefore encoder submodels were
added in between the wheel and servos submodels, as seen in Fig.8.14. Input
ports were also added to the controller block. The encoder submodel integrates the
rotation, giving an angle. This is then converted to a count and quantised, also seen
in Fig. 8.14.

The final additions added to the CT robot model were the infrared sensors used
for line following. Submodels were added which take as input the position and
rotation of the robot body, as seen in Fig.8.14. From this input, the submodels
calculate their exact absolute position in the world. A black-and-white bitmap file
(representing a piece of white paper with a black line printed on) was made and

170 K. Pierce et al.

Wheel_| Wheel_r
Servo_l Encoder_| Encoder_r Servo_r

" Controller

Encoder_| IR_r

from_servo —41 —A to_wheel sensor_position raw_reading

Ill +
f integrate | reflection
to_count k K | to8bit

| quantize hold_signal

encoder_output robot_state sensor_reading

Fig. 8.14 Encoder and infrared sensor submodels

converted into a text file, with values for each pixel indicating whether that pixel
is black or white. A map submodel was added, which accesses the map text file,
taking sensor positions as input and yielding a value for black and white to the
sensor submodels. The bitmap was also added to the 3D visualisation.

The final version of the CT-only controller block performed a basic line-
following behaviour. This was sufficient to test the infrared sensor and map
submodels. Once sufficient confidence was gained, the transition to an initial
co-model was made, following the approach described in the next section.

8.4.4 Transition to Co-model

As mentioned in the introduction to this section, there are two main choices when
making the transition to an initial co-model from a CT-only model. Eventually, all

8 Methods for Creating Co-models of Embedded Systems 171

supervisory, sequence and loop control should be realised in the DE model. Since
the DE model should stand as a reference for software implementation and be used
as a predictor of timing behaviour, it should contain all elements of the software.

There are reasons however why it might not be best to transfer loop controllers
to the initial DE model. The main factor is simulation speed. Loop control typically
requires much more frequent co-simulation synchronisations than sequence control
as it occurs at a higher frequency. Another issue is complexity. While library classes
are provided to help realise P, PI, PD and PID loop control, generation of a controller
that only has to calculate the setpoint for these loop controllers is an easier task.

If the sequence controller method is followed, the loop controllers can be moved
later. If alternative block implementations are used on the CT side, and subclasses
used on the DE side, then it is possible to switch back and forth using the speed of
the sequence control boundary until it is necessary to test the timing properties of
the DE model. Note also that some systems may not require loop controllers in the
software, for example, if actuators are used that contain feedback control already,
such as servos.

In either case, a contract must be defined. Using the loop control boundary,
this should match the loop controllers defined previously. For the sequence control
boundary, this contract should allow the DE controller to pass setpoints to the loop
controller(s). Monitored variables may or may not change, depending on the sensors
used in the system (those used by the sequence controller may or may not be the
same as the loop controllers). Once this is done, the CT model must be made ready
to connect to co-simulation.

This block should define global import and global export variables
that match the names and “directions” (import for controlled, export for monitored)
of those in the contract. If a new implementation is used, it is possible to switch
back to the original implementation to test the model CT-only again as shown in
Sect. 6.6.

8.5 The DE-first Approach

In the DE-first approach, initial models are produced in the discrete-event formalism
and the focus is on developing the DE controller first. The DE model contains
a controller and a discrete approximation model of the controller’s environment
(e.g. plant), which are linked by one or more sensor and actuator objects. The
environment object is used to mimic an approximation of the behaviour of the
CT world in the DE domain. To create these objects, it is necessary to define a
class for each one that describes their properties and behaviours. These concepts are
discussed in Chap. 2.

The environment essentially acts as a basic simulator running in its own thread
and provides stimuli to, and observes the responses of, the controller model. At
this stage, scenarios can be tested using DE mechanisms, such as reading values

172 K. Pierce et al.

DE-first
development

CONTRACT COntraCt
definition

CT-only
modelling

==

Integration of

initial co-model

[
aim 35

Fig. 8.15 DE-first approach

from a file. Once the co-model stage is reached, these scenarios can be realised with
Crescendo mechanisms such as scripts (see Sect. 5.5).

8.5.1 Preparation

The shape of a DE-first model is closely linked to that of the general pattern
for VDM controllers. In general, the controller uses sensor and actuator objects
to access an environment model. This requires sensor and actuator classes that
contain references to an environment class, which allows them to read and mutate
the environment object, respectively. The controller and environment then run in
separate threads in order to interact with each other.

An overview of the DE-first approach is given in Fig. 8.15. Development begins
with a system model in the DE formalism. This model contains a controller object
(ctrl) and environment object (env), which are linked by (one or more) sensor
and actuator objects (sens and act). The environment object is used to mimic the
behaviour of the CT world in the DE domain.

Once sufficient confidence is gained in the DE-only model, the steps towards
an initial co-model are taken. This requires definition of a contract, which should
match that used by the sensor and actuator objects. In addition, alternative versions
(implementations) may be provided for the sensor and actuator objects that do not
interact with the environment object and act simply as locations for shared variables
that are updated by the co-simulation engine.

The contract then informs the creation of the CT model, which should represent
a higher-fidelity version of the initial environment model. These three elements can
be integrated into the co-model and tested. During co-simulation, the environment
object is not instantiated (hence it is omitted from the bottom of Fig. 8.15).

8 Methods for Creating Co-models of Embedded Systems 173

The order in which the elements of the DE-model are presented here is not
necessarily the only order in which they can be built. You may wish to begin
with the controller and tackle the environment last or begin with the sensor
and actuator classes and build outwards. Either way, one good approach is to
define minimal Controller and Environment classes, and abstract sensor
and actuator classes, then build in empty operations first. These classes can then
be elaborated in the most appropriate order.

8.5.2 Environment

We recommend building an Environment class that can act as (or be called by)
a thread. An operation in the Environment class should be called by this thread
periodically, with the time since the last call, dt, as a parameter. A common name
for such an operation is Step. This Step operation should compute the new state
of the environment model over the given time, responding to inputs as appropriate.

Within the Environment class, there are two main ways to build an environ-
ment model. The first is data driven, where some pre-calculated data is read into
the model and provided to the controller model via the sensors. The second is to
implement some integration method, such as Euler, acting as a basic CT simulator.

A combination of the two is perhaps more likely. For example, consider
a simple ticker-tape reading machine. The tape is white with black marks on
representing some information (e.g. Morse code). A small motor pulls the tape past
an infrared sensor so that the controller can read and decode it. To model this, the
Environment class needs to know the current position on the tape and be able to
read data on the colour of the tape at that point. The position of the tape depends on
the speed of the motor and the previous position of the tape, so a basic integrator
will be required.

8.5.2.1 Data-Driven

The Crescendo tool includes two library classes to help with data input. The first is
the TO class (introduced in Chap.4). This is a general purpose class that includes
operations to write data to the console. The useful function here is freadval,
which reads a value from a file. This can be accessed statically, that is, using
I0‘'freadval. Note that you must provide the expected type to be read in
square brackets when calling the function, for example, freadval [seq of
char] (filename).

An alternative is to use the CSV class for accessing Comma-Separated Value
(CSV) files. The CSV class also provides a freadval function that takes an
additional integer parameter which is the line of the file to read. Again you must
provide the expected type in square brackets, with seq of real being an obvious

174 K. Pierce et al.

a b c

Angle (degrees) Angle (degrees)
20 20

15 15

10 10

Angle (degrees) 5 5
20

0 T T T Y 0 —
1; 4 5 6 7
15 time (seconds) time (seconds)
5 Tuples: File entries:

4 E 6 7 (0.0,0.0) "time”,"angle”
time (seconds) (4.0,0.0) 4.0,0.0
(5.0, 15.0) :;gé
(6.0, 15.0) 4321
(7.0, 0.0) X

Fig. 8.16 Visualisation of the change in angle of a dial as it is rotated 15° clockwise and back
(a) and two DE approximations (b), (c). (a) Real-world curve. (b) Linear interpolation. (¢) Pre-
computed values

one for numerical sensor data. For boundary checking, the number of lines in the
file can be found using the £1inecount function.

To save on file accesses, the contents of a file can be read into a data structure
during initialisation (e.g. within the constructor of the Environment class).

8.5.2.2 Basic Integration

The key here is to find approximations that allow controller logic to be tested in a
reasonable time frame. The environment model will be composed of elements that
model devices in the physical environment of the controller. It must also handle
input from other external sources such as the user or the operating conditions.
Approximation strategies for defining components of the plant include replacing
non-linear relationships with linear approximations and replacing complex differ-
ential equations with a mixture of simpler differential equations and constants.

For example, in a water tank with an outflow, the rate of flow of water depends
on the volume of water, therefore as the tank empties, the rate will decrease. A
DE-first approximation might use a constant flow rate, where discrete quantities of
water disappear from the tank at each time step. This is useful if we are primarily
concerned with the correct logic of the controller, rather than with the exact time at
which the tank empties.

Although linear approximation is also useful when defining external input, we
may wish to define some erratic behaviours. For example, consider a user rotating a
dial clockwise and back again, with the variation in rate and the overshoot that may
be expected from a manual operation (Fig. 8.16a). One approach to approximating
the curve is to identify the key points at which the curve changes and interpolate
between these points linearly, representing the curve as a sequence of pairs each
giving a time and corresponding angle (Fig.8.16b). This gives a smooth, though
approximate, change in angle. If a less linear approximation is required, the data-

8 Methods for Creating Co-models of Embedded Systems 175

driven method can be employed, with values that can being pre-computed and read
from a file (Fig. 8.16c¢).

A basic integration method, such as Euler, can be sufficient for an environment
testing core control logic. Consider a moving object with an acceleration, velocity
and position, simulated over some time step, dt.

position = position + velocity * dt;
velocity = velocity + acceleration x dt;

In a CT model, the integration method will be much more accurate and, in
addition, the acceleration will be based on the mass of the object and in turn on
the forces acting on that mass. In a DE approximation, the acceleration can be a
constant, representing some force acting on the object. If necessary, more complex
equations can be added, though this will take more time to model, so there is a trade-
off here. In the above case, the forces acting on the object could be modelled and
therefore a more accurate acceleration modelled; however, more effort is required
to model and calculate these forces.

8.5.3 Sensors and Actuators

Sensor and actuator objects are used to allow the controller to interact with the
environment. To do this, classes are required. In addition, different classes may
be required for DE-first and co-model situations. In the former, for example, the
objects must interact with the environment object, perhaps performing calculations
to generate sensor values. In the latter, the objects may just act as placeholders,
updated by the co-simulation engine. Once the implementation level is reached,
additional code may be required to interface with hardware. To cope with this,
abstract classes or interfaces are recommended. The controller can then be built
referencing only these abstract classes, which means when the transition to a co-
model, and later code, is made, the controller does not have to be changed and can
seamlessly be placed into a co-model setting.

For each type of sensor and actuator in the system, an abstract class is created
(see Chap. 6). It is suggested these have a name of the form AbstractSensor or
AbstractActuator. Each class should have instance variables representing the
value(s) of the sensor and actuator. A single real or bool variable is common,
so where multiple sensors will have the same interface (type), only a single abstract
class is required, for example, AbstractSensorReal.

Each abstract class should declare Read and Write operations as appropriate,
whose body should be declared as is subclass responsibility. This de-
claration delegates the workings of the read and write operations to the concrete
classes created later.

176 K. Pierce et al.

For the sensor and actuator classes to interact with the environment model, they
must be able to access and modify its state. Therefore, operations should be added
to the Environment class so that the sensor classes can read the data they need
and the actuator classes can write the data they need. Typically, these can be of the
standard object-oriented Get and Set style.

For each type of sensor and actuator in the system, concrete classes should be
created that subclass the appropriate abstract class created previously (based on the
type of the value). It is suggested that these have a name of the form Sensor DE
and Actuator_ DE. As opposed to abstract classes, a concrete class is suggested
for each type of sensor and actuator. These concrete classes should have an instance
variable of type Environment and allow this to be set in the constructor.

Each concrete class must declare Read and Write operations with the same
signature as the abstract superclass. These operations should then be implemented
with a body that reads or updates the environment instance variable, as appropriate.

In the case that the system will be required to handle events, such as a button
being pressed, then a slightly different structure should be employed. Here the
controller must contain an asynchronous operation that is to be invoked when the
event occurs, this method is the event handler for the controller and it should not
expect to have any parameters to be passed to it. Then the environment model
should also contain an event generator, this object reads the environment and
contains a statement of the conditions under which the event should be raised.
When those conditions are true, the event generator calls the event handler method
of the controller. When the model changes from DE only to a co-model, the
event generator can be discarded and the event handler can be invoked by the co-
simulation engine when the CT model raises the appropriate event.

8.5.4 DE-first Modelling of the Chess Way Self-balancing
Scooter

8.5.4.1 The Environment Class

The Environment class contains discrete approximations of the plant and
external elements that may ultimately be replaced by CT models. External inputs
include the state of the safety key, direction switch, on/off switch and user input
(leaning forward/backward). The evolution over time of these environment variables
is described by linear approximations. The environment class defines a set of
reserved names, one for each external input, and an instance variable that maps
each of these input names to a sequence of readings from points in the approximated
curve. For example, the following defines such an approximation mapping for four
inputs of interest.

The tCtCurve elements give a time, a value of the relevant input at that time
and the gradient at that point. A possible behaviour for a scenario to be described as

8 Methods for Creating Co-models of Embedded Systems 177

values
reserved: set of seql of char =
{"RIGHT_SAFETY", "RIGHT_DIRECTION", "RIGHT_ONOFF", "USER"}
types

public tCtCurve = real x real * real;
public tCtBehavior = map seq of char to seql of tCtCurve

instance variables
private mCtBehavior: tCtBehavior := {|->}

S

a constant within the environment model. For example, consider a simple scenario in
which the ChessWay is enabled after 2 s and disabled again at 8 s, and the handlebar
is moved forward and backward in the period between 4 and 7s. The following
mapping defines the scenario in terms of the evolution of the four external inputs
mentioned above. This is only one possible approximation structure, and modellers
are free to choose more or less elaborate and detailed approximations as they see fit,
and depending on the purpose of the simulation.

{ "RIGHT_SAFETY" |-> [mk_(0.0, 1.0, 0.0) 1,
"RIGHT_DIRECTION" |[-> [mk_(0.0, 0.0, 0.0) 1,
"RIGHT_ONOFF" |-> [mk_(0.0, 0.0, 0.0),

mk_(2, 1.0, 0.0),
mk_ (8, 0.0, 0.0) 1,
"USER" |-> [mk_(0.0, 0.0, 0.0),
mk_ (4.0, 0.0, 0.2618),
mk_ (5.0, 0.2618, 0.0),
mk_ (6.0, 0.2618, -0.2618),
mk_ (7.0, 0.0, 0.0)]
}
\

The operation mainLoop implements the core functionality in the Environment
class, which executes as a periodic thread started by the RunScenario operation.
On each iteration, it determines the system time and updates the environment model
in a manner that reflects the causal relationship between the external inputs and
elements of the plant (e.g. the user’s state affects the accelerometer and gyroscope).
First, it evaluates the external inputs to the sensors by reading the scenario, then it
updates the wheel, then the Hall effect sensors and finally the user’s state (including
their deviation from upright).

The mainLoop operation also checks the current simulation “wall clock”
against a preset maximum simulation target time. Once this is reached, the
terminate operation is called, which will stop simulation and return control to
the user.

3

178 K. Pierce et al.

operations
private mainLoop: () ==> ()
mainLoop () ==
(del ticks: nat := time,
clock: real := ticks / World‘SIM_RESOLUTION;

evalSensors (clock);
mLeftWheel.evaluate (); mRightWheel.evaluate();
mLeftHall.evaluate (); mRightHall.evaluate();
mUser.evaluate () ;
if (ticks >= mMaxSimTime) then terminate ()
)i
thread
periodic (1E6, 0, 0, 0) (mainLoop) -- 1kHz frequency
S Y,

8.5.4.2 The World Class

A special Wor1ld class is the top-level entry point of the ChessWay DE model.
In this class, instances of the controller and environment are created, and then the
RunScenario operation instantiates the entire simulation model. It loads a user-
defined scenario which specifies the initial settings of all ChessWay devices (such
as the safety, direction and on/off switches) that are controlled by external forces
(such as the rider) and the evolution of those settings over time, during a simulation
run.

The environment model is linked to the ChessWay system class to facilitate
simulation (the link has no counterpart in the final implementation of the system).
Simulation commences through the PowerUp operations starting the periodic
controller threads in the left and right controller objects. The environment simulator
thread is started in order to execute the scenario. In this model, the coupling between
the environment and controller objects is created by the setEnvironment
operations of the left and right controllers.

~
operations

public RunScenario: seql of char ==> ()

RunScenario (fname) ==

(del env: Environment := new Environment (self, MAX_SIM_TIME) ;
env.loadScenario (fname) ;
ChessWay ‘lctrl.setEnvironment (env) ;
ChessWay ‘rctrl.setEnvironment (env) ;
ChessWay ‘lctrl.setRightController (ChessWay ‘rctrl);
ChessWay ‘rctrl.setLeftController (ChessWay‘lctrl);
ChessWay ‘lctrl.PowerUp(); ChessWay'‘rctrl.PowerUp () ;
start (env) ;
waitForSimulationEnd ()

8 Methods for Creating Co-models of Embedded Systems 179

8.5.4.3 Sensors and Actuators

~
class MotorSensorDE is subclass of MotorSensor

instance variables
private mwheel: Wheel
operations

public GetValue: () ==> HallData
GetValue () ==
let position = mwheel.GetPosition() in
cases (position div 60):
0 —-> return mk_HallData (true, false, true),
1 -> return mk_HallData (true, false, false),
—> return mk_HallData (true, true, false),
return mk_HallData (false, true, false),
—> return mk_HallData (false, true, true),
-> return mk_HallData (false, false, true),
others -> error
end;

g W N
|
\%

end MotorSensor
- v

The class MotorSensorDE shows how the state of the Hall sensors is
determined, based on the current angular position of the wheel axis. Note that the
so-called Grey codes are used to encode the motor position, whereby only one of the
Hall sensors changes state when the wheel is rotated 60°. This enables the controller
to assess the validity of the sensor data as well as determine the direction of rotation.

8.5.4.4 The ChessWay System

The ChessWay controller’s distributed architecture is composed of two CPUs con-
nected by a bus which enables communication between the controllers deployed on
each processor, for example, to exchange information relating to their internal state.
The VDM-RT model defines these in a system class that uses built-in CPU and BUS
abstractions available in VDM-RT. The two FPGAs are defined as instance variables
using the CPU constructor with parameters defining the scheduling policy, either
Fixed Priority (FP) or First-Come-First-Served (FCFS), and processor capacity in
terms of instructions per second. The BUS constructor’s parameters are the type
of bus (FCFS is in fact the only kind available in the language at present), its
bandwidth in bytes per second and the identifiers of the set of CPU instances that
the bus connects. The constructor in the system class deploys the instances of the
LeftController and the RightController, one to each CPU, which are
named LeftCtrl and RightCtrl, respectively.

180

K. Pierce et al.

Controller

|| - mMotorActuator : MotorActuator
- mMotorSensor : MotorSensor

|['+ ctroopp

LeftController

-retrl : LeftControl
- mAccelerometer : Accelerometer
-mGyroscope : Gyroscope

RightController

-letrl : LeftControl

- mSafety Switch : Safety Switch

- mOnOffSwitch : OnOffSwitch

- mDirectionSwitch : Direction Switch

Fig. 8.17 ChessWay controller class diagram

letrl

i o
i retrl -l
| mGyroscope mGyroscope | | !
 J
| mAccelerometer |]\‘_ Gtk
! mhAccelerometer MStorActustor | S
| mMotorSensor |
| /|
I |
] mMotorActuator |
| . !
I |
: mMotorSensor :
-~
\ {
N ‘e FPGA1 //

mSafetySwitch
mOnOffSwitch
mDirectionSwitch
mMotorActuator
mMotorSensor

Fig. 8.18 ChessWay controller deployment model (object diagram)

-
system ChessWay

instance variables

operations
public ChessWay:
ChessWay ()
(fpgal.deploy(lctrl,
fpga2.deploy (rctrl,

() ==> ChessWay

)

end ChessWay
&

fpgal: CPU := new CPU(<FP>, 10E6);

fpga2: CPU := new CPU(<FP>, 10E6);

bus: BUS := new BUS (<FCFS>, 100E3, {fpgal, fpga2});

static public lctrl: LeftController := new LeftController();

static public rctrl: RightController

"LeftCtrl");
"RightCtrl")

new RightController ()

The ChessWay controller class hierarchy is illustrated in Fig.8.17, and the

deployment of instances of these classes

is illustrated in Fig.8.18. Alternative

system architectures deploying the functionality to different processors can be

explored by changing this part of the model.

8 Methods for Creating Co-models of Embedded Systems 181

8.5.4.5 The Controller Class

There are two controllers in the system model, so their common features are defined
in a superclass from which the left and right controllers inherit. Each controller is
linked to a MotorActuator and a MotorSensor.

class Controller

instance variables
public mName : seq of char;
protected mMotorActuator : MotorActuator;
protected mMotorSensor : MotorSensor;

The right-hand controller in the ChessWay controls the right wheel and monitors
the safety, direction and on/off switches. The RightController is created by
subclassing the generic Controller class and overriding the operation prototypes
for CtrlLoop and PowerUp. The LeftController class is similar to the
RightController class with the exception that it manages an accelerometer
and a gyroscope instead of the switches controlled by the RightController.
For reasons of brevity, we omit details here.

8.5.5 Transition to Co-model

The sensor and actuator classes built for the DE-first model hold reference to the
Environment class, and the instance variable comes from or influences the DE
environment model. When running a co-simulation, the environment class will not
be instantiated as this role will be filled by the CT model. Therefore, alternative
sensor and actuator classes are required that simply act as placeholders for shared
variables. These classes are simple, with sensors only being required to return the
local variable in Read operations and actuators being required to set the local
variable in Write operations. Class names along the lines of Sensor DE and
Actuator_ DE classes are suggested.

In order to perform a co-simulation, the “DE” versions of the sensor and actuator
classes must be instantiated. In order to perform a DE-only simulation, the original
versions and Environment class must be instantiated. Following the principles
of building models for flexible simulation described in Sect.6.6.2, a conditional
statement can be used to select which set of classes to instantiate. This allows the
simplified environment model to be retained in the co-model, giving the option to
perform both co-simulations and DE-only simulations into later stages of co-model
design.

182 K. Pierce et al.

Contract
definition

[sen) [s] Concurrent

=)) CK— AP DE-first and CT-first
\at) 1AY development

arl | — = ra 1S} Pl Integration of

= \ax) — =Napy+ initial co-model

Fig. 8.19 The Contract-first approach

8.6 The Contract-first Approach

The Contract-first approach emphasises collaboration within a team, where one or
more engineers work on the DE model while other engineers produce the CT model
in parallel. The engineers collaborate to define the contract first, then constituent
models are developed separately but concurrently, following the respective DE-first
and CT-first approaches. The contract acts as a guide and target for constituent
model development. An overview of this is shown in Fig. 8.19.

Unlike the DE-first and CT-first approaches, the Contract-first approach requires
a contract to be defined upfront. While this does not have to be the final contract
of the co-model, changes to the contract will affect both constituent models.
We recommend defining a procedure for changing the contract, such that both
constituent model teams can be prepared to propose, and to deal with, changes to
the contract. An initial contract that at least captures the core ideal functionality of
the co-model is recommended.

In order to produce a co-model from the constituent models, it is necessary to
combine them with the contract. This is called integration. We recommend nomi-
nating an integration tester to perform this task. This could be handled by a third
party, or someone from either the DE or CT team. Experience with co-modelling
to date suggests that a DE modeller can perform this role relatively easily, since
replacing a DE environment model with a CT model is a straightforward task.

It is important to note that the integration tester’s job is not to test the constituent
model’s functionality, but that of the overall co-model. Effort is wasted if the
constituent models are buggy and the integration tester is involved in debugging.
Therefore, it is suggested that a minimal acceptance test is defined for each con-
stituent model. The constituent models should not be passed to the integration tester
unless they meet these criteria. As the development progresses, new acceptance tests
can be defined for new functionality.

8 Methods for Creating Co-models of Embedded Systems 183

8.7 Conclusion

The choice of process for the development of a co-model is governed both by
technical features of the problem and its decomposition and by pragmatic concerns
such as the relative development risks of the DE and CT elements. In this chapter,
we presented CT-first, DE-first and Contract-first routes to the production of co-
models and the use of SysML to provide early clarity on the purpose of modelling
and suggest structural decompositions. These approaches were illustrated using the
line-following robot and ChessWay case studies (full models are available online on
the book’s web site). Practical experience to date suggests that co-modelling can—
with care—be integrated successfully into a range of development processes and
business contexts.

Chapter 9
Co-modelling of Faults and Fault Tolerance
Mechanisms

Carl Gamble, Kenneth Pierce, John Fitzgerald, and Bert Bos

9.1 Introduction

Since it is not feasible to predict statically the behaviour of systems in the presence
of faults, we advocate fault simulation, the simulation of the system in the presence
of faults. This is achieved by modelling the faulty behaviour, fault modelling, then
activating this behaviour, fault activation (or fault injection; note, however, that in
some computer science fields, injection implies automated perturbation of a model
or data set). Due to this approach, it is sometimes necessary to distinguish between
the part of the model that represents the system we wish to build, the System Under
Test (SUT) and aspects of the model that would not be realised in the real system.
For example, we may model a fault to test the behaviour of the SUT, but we would
not then go on to implement these in reality.

To cope with these behaviours, a system can implement some sort of fault
tolerance or resilience mechanisms to continue providing a service in the presence
of faults. This can be achieved through error detection and recovery. A system may
also offer degraded behaviours if it cannot achieve a full service in the presence of
faults.

Where possible, we adopt the terminology of Avizienis et al. [6] with respect to
dependability concepts. We regard a fault as the cause of an error, which is part
of the system state that may lead to a failure in which a system’s delivered service
deviates from specification. Note that the term “fault” is often used informally to

C. Gamble (<) « J. Fitzgerald * K. Pierce

Newcastle University, Newcastle upon Tyne, UK

e-mail: carl.gamble @newcastle.ac.uk; john.fitzgerald @newcastle.ac.uk;
kenneth.pierce @newcastle.ac.uk

B. Bos
Chess iX, Haarlem, The Netherlands
e-mail: bert.bos @chess-ix.com

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 185
DOI 10.1007/978-3-642-54118-6_09,
© Springer-Verlag Berlin Heidelberg 2014

mailto:carl.gamble@newcastle.ac.uk
mailto:john.fitzgerald@newcastle.ac.uk
mailto:kenneth.pierce@newcastle.ac.uk
mailto:bert.bos@chess-ix.com

186 C. Gamble et al.

refer to any of these three concepts. Accordingly, this book considers three levels of
behaviours during the process of modelling:

1. A model of ideal behaviour includes only the core behaviour of a component or
system.

2. Models containing realistic behaviours, including disturbances, are more faithful
representations of reality. They include such behaviours as manufacturing toler-
ances and signal noise. These behaviours may well be found on a component’s
data sheet, or come from previous experience, and are therefore within the
specification of a component (and hence do not represent a failure in the
terminology of Avizienis et al. [6]).

3. Models of faulty behaviours represent components or systems failing to meet
their specifications.

This chapter provides guidance for the addition of realistic behaviours, faults and
fault tolerance to a model. It starts by discussing how to identify a set of realistic and
faulty behaviours for a model in Sect. 9.2 and offers a method to reduce that set if
there is not sufficient resource to model them all in Sect. 9.3. General principles for
modelling faults in Crescendo are then discussed in Sect. 9.4. The second part of the
chapter starts with a note on coverage of fault tolerance mechanisms in Sect. 9.5 and
then discusses the inclusion of fault tolerance mechanisms in a model using design
patterns in Sect. 9.6. Afterwards, the application of these techniques is shown in the
line-following robot in Sect.9.7 and the ChessWay in Sect.9.8. Finally, Sect. 9.9
provides a summary of the contents of the chapter.

9.2 Fault Identification

If a component is well known through use, then its real behaviours and faults
may also be well documented. However, if a different component is being used
or a component is being used outside its normal usage envelope, then we need a
means to explore what deviations from ideal behaviour might occur. The suggested
method is to employ a set of guidewords to inspire thinking about this set of deviant
behaviours. There are two sets of guidewords presented here, HAZOP [86] (Hazard
and Operability study, Table 9.1) and SHARD [80] (Software Hazard Analysis and
Resolution in Design, Table 9.2); the choice of which to use is dictated by where
the output of a component is used. The HAZOP set of guidewords is widely used
in industry and is well suited to considering deviations in physical processes. The
SHARD guidewords were inspired by HAZOP and are better suited to the electrical
components providing or using services. So if a component represents a sensor that
is read by the controller, then SHARD should be used; if the component modelled is
within the plant, such as a hydraulic pump, then HAZOP would be more appropriate.

The first step when using guidewords is to identify the significant components
that exist in the model. These components should be small enough that their
behaviour can be understood, but not so small that their effects are trivial or need to

9 Co-modelling of Faults and Fault Tolerance Mechanisms

Table 9.1 The HAZOP set of guidewords with examples

187

Guideword Meaning Example

No or Not Complete negation of design intent A motor that is frozen or gives no power

More Quantitative increase More voltage/current than expected is
supplied to a component

Less Quantitative decrease A sensor that is less sensitive to some
property than expected

As well as Qualitative modification or increase Extra actions, switch bouncing

Part of Qualitative modification or decrease Missing actions

Reverse Logical opposite of design intent Relay switches off instead of on for a
given signal

Other than Complete substitution A motor catching fire when energised

Early Relative to the clock time -

Late Relative to the clock time -

Before Relating to order or sequence -

After Relating to order or sequence -

Table 9.2 The SHARD set of guidewords with examples

Guideword Meaning Example

Subtle Value is incorrect but is plausible A rotary encoder missing a count
each turn

Coarse Value is detectably wrong A bit flip in a register

Early Value/message is early A sensor responds quicker than
expected

Late Value/message is late A sensor is slow responding to

the environment
A switch bouncing
A sensor fails silently

Commission
Omission

Value/message is sent when not expected
An expected value/message is not received

be combined with multiple other components before it may affect the behaviour of
the system. For example, a servo motor could be considered as a single component,
rather than as a motor or a gear train, components that convert a signal to a voltage
and the sensor that feeds back motor position.

With a set of components in place, the next step is to define the ways in which
each component affects its environment. These are not only the inputs and outputs of
the component but could also be its physical presence. Returning to the example of
the servo motor, the inputs include the electrical voltage and speed/position signal;
the output is the rotation/position of the output shaft.

The final step is to apply each guideword to each input/output of each component
and to consider whether that input/output could deviate from the ideal behaviour in
the manner described by the guideword. In the case of the servo component, the
“more” guideword applied to its rotational output could mean more speed or more
torque. An application of the “less” guideword could be applied to the voltage input
resulting in lower speed or it could represent a lower electrical resistance in the
motor due to a short circuit if such concepts are of interest to the model. It should

188 C. Gamble et al.

be noted that not all guidewords will apply to all components and inputs/outputs.
An example of a guideword that does not apply would be the “after” word when
thinking of the servo output shaft as there is no sequence of events for the shaft.
At the same time, it is possible that a guideword may yield more than one failure
behaviour. An example here could be a light sensor, where the “subtle” guideword
could result in an error due to ambient light affecting the value, analogue-to-digital
noise affecting the value or the effects of temperature affecting the sensor’s output.

9.3 Fault Selection

If there is not sufficient resource to model and analyse all faults determined by the
previous step, then a subset of the faults that will be modelled must be derived.
One method that can be used to produce an ordered list is to assess each fault
using a modified version of the Failure Mode Effects Analysis (FMEA) technique.
In FMEA, three properties of each failure mode are considered, the probability of
occurrence, the probability of detection of occurrence and finally the severity of the
effects of occurrence. From this, a value can be derived indicating the level of risk
each failure mode poses in the system as it stands. For our purposes, we are only
interested in the likelihood that a fault will occur and the estimated severity of the
effects it could cause. We do not consider detection at this point, as even if a fault
could be easily detected, if it could be a source of significant problems, then we
should model it so that fault tolerance mechanisms in the models can be exercised.

The two properties of interest, occurrence and severity, are given a value from
one to ten for each identified fault. For occurrence, a value of one indicates that we
have no experience of this fault occurring in similar components or processes, while
a value of ten indicates that it is almost inevitable that it will occur in a short period
of time. Similarly for severity, a value of one indicates that the fault occurring would
have no effect on the system, while a value of ten indicates very severe consequences
including complete failure of operation, injury or death.

The score for each failure mode is calculated by multiplying the occurrence and
severity figures together. When all scores are calculated, the failure modes can be
placed into an ordered list according to the scores, where a higher score implies a
higher priority. This list may then be used to guide modellers when choosing which
faults to model.

9.4 Fault Modelling

Each faulty or realistic behaviour that was determined to be significant by the
previous process should be included in the models. When including fault behaviour
in the model, it is important that the introduced fault behaviour is distinct from
the desired ideal behaviour. This is to ensure that any faults modelled do not get

9 Co-modelling of Faults and Fault Tolerance Mechanisms 189

a b
Fault_Block Fault_Block

Componen-‘/ \— —/ \—‘SubModelAA/ \—SubMode‘/ \;

Fig. 9.1 Fault injector pattern. (a) Component wrapped by fault block. (b) Two submodels
wrapped by a single fault block

included in the implemented system. The general approach to achieve this goal of
separation depends on whether the fault is being modelled in the DE model or the
CT model.

When introducing a fault into the DE model, we advocate taking the original
class that exhibits the desired behaviour and creating a subclass that extends it (see
Chap. 6). This subclass is then instantiated in the model rather than the original
superclass whenever faulty behaviour is required. The subclass implementation will
only contain the operations and data required to model the faulty behaviour along
with at least one function from the original class. This last operation overrides its
counterpart in the superclass and so will be the one used when the model is executed.
The original class may also require fields to be given protected rather than private
status for the subclass to function; finally, constructors for the subclass, rather than
the original class, will need to be invoked. These modifications will mean that the
controller model is distorted from the controller that would be implemented in the
final product, but these distortions are necessary to allow testing.

There is no concept of inheritance in 20-sim models, and so a different operation
must be employed to add fault behaviour to a specific component. We propose the
use of a fault injector pattern where a fault block effectively wraps the component
allowing it to intercept and alter both the inputs and outputs of that component.
Figure 9.1a shows an example of a component which is wrapped by a fault block.
Here the component’s input may be pre-processed by the fault block before being
passed to the component, then the output from the component may be processed
before release to the next part of the model. If a component is modelled using more
than one submodel, then a fault block that intercepts the inputs and outputs of each
submodel may be used, Fig.9.1b.

The 20-sim feature permitting each block to have multiple implementations is
used here (see Sect. 6.6.2). A “no-fault” implementation would allow the signals to
pass through it unaltered. Then, alternate implementations are added, each mutating
the data that passes through it as required by the fault it represents. The modeller is
then able to select the implementation of the fault block required for the simulation
to be performed.

A collection of design patterns may be found in Appendix C.

190 C. Gamble et al.
9.5 Fault Tolerance Coverage

The list of faults selected for modelling can be used to assess the coverage of fault
tolerance mechanisms. For each fault on that list, it should be possible to describe
the mechanism and location in the design where it will be handled; this information
can be appended to the list. This will yield a list of fault tolerance elements that
should exist in the model. An example of such an element would be a voting
mechanism and the use of redundant sensors measuring the same property, Fig. 9.2.
This element could be said to be mitigating the risk of an individual sensor failing.
If a fault will have no fault tolerance elements attached to it, then a justification of
why the fault is not handled can be recorded instead.

9.6 Fault Tolerance Modelling

Unlike fault modelling, the inclusion of fault tolerance in a model should not be
considered “pollution” of the model. At the same time, there is still an argument
for keeping the definition of fault tolerance mechanisms and the description of
the “normal” operation of the model distinct as this may reduce the complexity
of maintaining both of them. Again we suggest the use of design patterns here
as these help make the choice of mechanism explicit and can also reduce effort
and increase confidence through the reuse of an existing design. The example of
the voting mechanism from the previous section is used here also. In this pattern,
Fig. 9.2, the use of a voter object that contains references to the actual sensors and
also exhibits the same interface as the sensors means that the voter may be used in
place of a single sensor seamlessly while also adding fault tolerance. A set of fault
tolerance patterns may be found in Appendix C.4.

9.7 An Example Using the Line-Following Robot

Both the modelling of faults and fault tolerance explained above can be illustrated
using the line-following robot. After the initial models of the line-following robot
were constructed, the faults and fault tolerance that the robot might exhibit was
explored. Following the guidelines, the first step was to utilise guidewords to help
elicit a first set of faults to consider. The focus of this was on the two sensor types
included in the model, the infrared reflectivity sensors for line-following and the
wheel position encoders for distance measurement. A group of engineers sat down
and considered the application of each SHARD guideword to each sensor in turn;
the sanitised results of this work can be seen in Table 9.3.

If we take the example of the infrared reflectivity sensors that are crucial to the
line-following robot’s ability to follow a line, then we can identify four distinct

9 Co-modelling of Faults and Fault Tolerance Mechanisms 191

Fig. 9.2 Class and object

. Controller
diagrams of the voter pattern

-sens: |SensorReal

f

ISensorReal

|| +Step()

+ GetValue() : real

1
I |

Sensor Voter
-value: real | “in: ISensorReal[] |
1. -in
+ GetValue() : real + GetValue(): real ‘
sensi
controller ;
4 ' value
Ging % voter
%, '
in[1] o sens2
in[2) >
II‘I[3] : value
\ sens2
value

Table 9.3 The results of applying SHARD guidewords to the R2-G2P robot

Guideword Line-follow sensor Wheel position encoder

Subtle A/D conversion noise, Missing or additional counts
incorrect reading due to ambient light each turn

Coarse Fail at a fixed value A bit flip in a register

Early Sensor responds quicker than expected None found

Late Sensor slow to respond to reflectivity change None found

Commission None found Non found

Omission Broken connection to sensor Failure to count position pulses

behaviours that are significant. Figure 9.3 shows examples of the output of a sensor
on a graph as the sensor passes over two black lines (shown below each graph). The
first graph shows what we might consider to be the ideal behaviour of one of these
sensors; here we can see the sensor’s output is uniformly high when the sensor is
over a white region and it drops down to a very low value when the sensor is over a
black region. If such an ideal sensor were available, then it would be a very simple
task to follow a line.

The second graph represents one of the realistic behaviours identified for these
sensors. Here the issue is that in bright conditions, the sensor will never return a very
low value to the controller as there is always a significant amount of infrared light
falling on its receiver. In our model, the addition of ambient light has no discernible

192 C. Gamble et al.

Fig. 9.3 Graphs of sensor output behaviour, left-to-right: ideal behaviour, ambient light added,
A/D conversion noise added, total sensor failure

effect when over a white region, but when over black, we see the value returned to
the controller is higher than with the ideal sensor.

The third graph shows the effect of adding another realistic behaviour, that of
electrical noise when performing A/D conversion. The combination of both ambient
light and electrical noise reduces our confidence that we can determine if the sensor
is over a black region or a white region from a single reading alone.

Finally, the fourth graph represents the sensor output in the case of a total failure
of the sensor; in this case, the sensor constantly returns a reading indicating black
under the sensor.

The sensor was implemented using a series of blocks within the CT model.
The original sensor model, without any fault included, is shown in Fig.9.4a. It
contains a block to convert the colour of the floor at a point to a reflectivity value;
the reflectivity is converted to an 8 bit value (0-255) before being sampled for
consumption by the controller.

Figure 9.4b shows the block model of the sensor with blocks adding fault and
realistic behaviour added. The ambient 1light block adjusts the correct value
output from the reflectivity block so the extra IR in the ambient light is accounted
for. The small time for the sensor to respond to a change in the measured IR
is modelled in the response delay block. A/D noise is added in a modified
AD 8bit block in which Gaussian noise is added into the signal before it is
quantised to an 8 bit value. Finally, there is a stuck fault block, with an icon
indicating to us that the fault is not currently active. This empty box icon along
with the sensor response and ambient light icons were all custom designed during
the construction of the model and allow the differentiation between library blocks
supplied by 20-sim and bespoke equation blocks built for the project.

Finally, Fig. 9.4c shows the sensor mode with the stuck fault active. The
fault was activated by selecting a different implementation of the block; in this
implementation after a specified time during the simulation, the sensor value
computed in the model is replaced by a fixed value to model the effect of the
sensor output sticking. The icon is also changed by selecting the active fault
implementation; this helps the modeller to visualise the state of the model.

Figure 9.5 shows a simplified class diagram of the fault controller used in the
line-following robot, which contains mechanisms targeting each of the above faults.

9 Co-modelling of Faults and Fault Tolerance Mechanisms 193

a b raw_map_reading C raw_map_reading

raw_map_reading

sensor_stuck_flag:

sensor_reading

Fig. 9.4 Infrared reflectivity (line-following) models. (a) Original sensor model with no faults.
(b) Model with ambient light, A/D noise, sensor response time and stuck value fault added, but not
active. (¢) Model with all faults and with the stuck value fault activated

Controller + GetValue() : real
- encleft: ISensorReal i
- encRight: ISensorReal | |
- servoleft: lAc RealPercent —
- servoRight : lActuatorRealPercent IRSensor Filter
-mode : Abstractiode -value: int -sens: |Sensorint
+Stepl) GetValue(): int i
+CheckModeChange(: [Mode] + GetValue(): in + Get\Value() : int
+ ChangeMode(Mode)
+Forward()
+Reverse()
+ TurnLeft()
+ TurnRight() IA rRealPercent
? + SetValue(Percent)
AbstractMode i
-¢on : Controller SpeedServo
+ Step() -value : Percent
? + Set\Value{Percent)
| Idle | | | TwosensorFoliow
| +Step() | + Step()
Calibrate J| OneSensorFollow
+Step()] + Step()

Fig. 9.5 Simplified class diagram of the fault-tolerant controller in the line-following robot

194 C. Gamble et al.

The basic line-following behaviour is contained within the Controller and the
TwoSensor classes, which could follow a line if presented with the output of ideal
sensors. The problem of ambient light is addressed by the Calibrate mode class.
When the robot is first switched on, it expects one of its sensors to be over a black
region and the other to be over a white region. The controller, after a brief time in
the Id1le mode, moves to Calibrate mode, where it proceeds to take a series
of readings from each sensor. These readings are used to determine what values
represent a white region and what represents black. The results of calibration are
passed to the TwoSensor mode, which uses them for line-following operations.

The problem of A/D conversion noise is addressed by extending the IRSensor
class to implement the Filter Pattern (see Appendix C.4.2). This filtered sensor
returns a floating mean sensor reading to the controller instead of the value most
recently read. This has the effect of reducing the variation of the signal due to the
random noise and therefore increasing the confidence in decisions which rely on
that value. The cost of such a floating mean is the response time of the sensor to a
real change of value increases and so this may be detrimental to performance.

Finally, when the total failure of a sensor is detected, the controller shifts to
the OneSensor mode. This mode utilises the one sensor that remains working to
continue following the line, albeit with a slightly degraded performance in terms of
the speed at which the line is followed.

9.8 An Example Using the ChessWay

There are two controllers in the ChessWay personal transporter, each with access
to a different set of sensors. These controllers act in a distributed fashion, each
controlling one wheel. The ChessWay is designed for humans to ride on, and
therefore safety aspects are particularly important as explained in Sect.7.3. For
example, the controllers have a start-up mode that stops the handlebar moving
violently when the device is lying on the ground. The controllers must also shut
down the device if the safety key is pulled out (for example, if the user falls off).

The two controllers communicate over a data connection in order to access the
sensor data (from the other controller) and synchronise their behaviour. Studies on
prototypes showed that this data was often corrupted, failing a Cyclic Redundancy
Check (CRC) and indicating that errors had occurred in transmission. In terms of
fault identification (see in Sect.9.2), the SHARD guidewords are applicable here.
The corruption of messages is a course failure, since the controllers can detect an
error using the CRC. If the message needs to be resent, then this can be viewed
as the late arrival of the message. If further messages are sent as well as repeated
messages, then data can arrive out of order.

It is important that the controllers can handle these communication errors. For
example, the controllers rely in particular on accurate and up-to-date readings
from the gyroscope, and acting on late or out-of-order information could lead to

9 Co-modelling of Faults and Fault Tolerance Mechanisms 195

dangerous oscillations or violent movements. This is one aspect that the engineers
wanted to address at an early stage in design.

From a modelling perspective, the problem of corrupted communications is an
interesting one, because the communication mechanism spans the border between
software and physical systems. There is clearly a physical element to the com-
munications, since electrical circuits are used to transmit the messages. In fact,
the engineers suggested that the cause of the corrupted messages was most likely
electrical interference from the powerful motors driving the wheels of the device. On
the computing side, the messages are created and interpreted at a software, typically
passing down through various transport layers, before eventually being converted to
analogue signals to pass along the wire.

So this raises the question of where in the co-model to represent these errors
(corrupted messages). Such questions often arise for components such as the sensors
and actuators that also bridge the software and physical sides, as in the robot
example in the previous section. The answer of course depends on the purpose of
the co-model and the level of abstraction. In the case of the ChessWay, there was no
model of ideal behaviour for communications on the CT side, so modelling the fault
there would require a lot of extra modelling. On the DE side, however, the model
already used the features of VDM to model two CPUs communicating via a shared
bus; therefore, this seemed an appropriate place to model the fault. In addition,
the various abstractions and structuring mechanisms of VDM lend themselves to
modelling the fault.

Of course there are circumstances where a CT model of such faulty behaviour
may be appropriate, if the nature of the electrical interference and its specific effects
on messages was of interest to the engineer. In the case of the ChessWay example,
however, the engineers felt a more stochastic approach was sufficient, where the
effects on the controllers of dropping a certain percentage of messages are simulated
(e.g. 5%, 10 % and so on). This level of abstraction matched that of the initial co-
model with normative behaviour.

In order to model the loss of messages, the Ether pattern was developed for and
applied by the engineers in the ChessWay study (see Appendix C.3.1). The pattern
permits the modelling of realistic communications between networked controllers.
In VDM, the CPU and BUS abstractions can model communications that take time,
but that are ideal in the sense that no messages are lost, duplicated or corrupted. The
ether pattern introduces an explicit model of an ether, which represents a medium
through which data must travel.

The pattern is general enough that it can be applied to represent direct connec-
tions between controllers, a connection through a wired system such as an ethernet
or wireless communications. The implementation of the ether can be tailored to
different guarantees offered by different media, ranging from having no quality of
service guarantees to one where each message will arrive once and only once with
all messages in order.

Figure 9.6 shows a class and object diagram for the ether pattern. The Ether
class represents the communication medium: messages are passed into the ether and
may or may not then arrive at the destination. The ether knows about components

196 C. Gamble et al.

Ether
- Ist : map IListenerto DeltaQueue
- IListener
+Register: IListener==> () 0.' -lst -
+Broadcast: Message === () + Receive(Message[]])
+Step: () ==> () ?
|| Controller
DeltaQueue || -ether: Ether
- entries : map nat1 to Message | + Step()
+ Push(nat1, Message) ‘ * RecoveMensagell
+Pop(): Message[]

| | {1.m1}, {2m2} " | {1.m1}.{2,m2}|

£ —\ e Rl eSSy,
:| ether | | | || ctr2 |
| Ist 4 ctrit : : ether :
| ether || | T |
I i I I ; 1o i I
' | ' I ! Il : |
e, |

zhesbat e iroor e =i e Rl |
\ vepu |YBUSI ey I cpuz '
Nt ol \ 2 7\ J

Fig. 9.6 Ether pattern class diagram (fop) and object diagram (bottom)

that are connected to it (they must implement the IListener interface in order
to interact with the ether), and those components can send messages by calling the
Broadcast operation. When applying the pattern, point-to-point communications
could be modelled by giving assigning identifiers to connected components;
however, in the ChessWay case, this was not necessary as there were only two
controllers.

To model the passing of messages, the ether holds the messages in a map
of queues (one for each controller connected to the ether). The class is active,
defining a thread that periodically updates each queue to indicate time passing.
The DeltaQueue class models message travel time: messages are placed into the
queue with a given delay to be simulated; this value is reduced as simulated time
passes until it reaches zero, at which point the message is passed to the recipient.

The object diagram shows an ether object deployed on a virtual CPU, with two
controllers on separate (real) CPUs, all connected by a virtual bus. The use of the
virtual CPU and bus for the ether ensures that its use does not affect the (simulated)
execution time of the controllers.

Communication errors modelled by creating subclasses of Ether override the
Broadcast operation. In the case of the ChessWay example, a subclass is defined
that took as a parameter a percentage of messages to drop. Then when Broadcast

9 Co-modelling of Faults and Fault Tolerance Mechanisms 197

is called, a pseudorandom number generator is used to decide if a message should
be dropped (not placed on the queue).

Other subclasses could be created to model different errors. For example,
corruption could be modelled by extending the message type. This would involve
allowing the message to have a value indicating that it is corrupt. Again the
Broadcast operation could be overridden to select which messages should be
corrupted. To model injection of messages (in a “hostile” ether), the ether or an
adversarial object could be created that places messages on the queue that were not
sent by one of the components. In order to explore the design space with different
quality of service guarantees, subclasses of Ether could provide different levels of
service with associated costs in terms of transmission time, and co-simulations run
with each of these implementations to observe the consequences.

9.9 Conclusion

We have described the use of SHARD and HAZOP guidewords to help identify
a set of faulty/realistic behaviours that a component might exhibit and shown
how a modified FMEA process allows prioritisation of these faults. The fault
injector pattern allows fault modelling to be distinguished from the desired normal
behaviours. Examples of faults and fault tolerance were outlined for both the line-
following robot and ChessWay case studies. Finally, we discussed the use of known
design patterns within the software controller to handle these faults.

Design for dependability is essential for the increasing range of embedded
systems with rich digital control. From our experience developing and applying
the co-modelling framework, the sharing of both fault models and resilience mech-
anisms as patterns is likely to prove highly beneficial in managing the additional
design complexity introduced by the need for confidence in correct, safe and secure
functioning of embedded systems.

Chapter 10
Design Space Exploration for Embedded
Systems Using Co-simulation

Carl Gamble and Kenneth Pierce

10.1 Introduction

The purpose of conducting simulation experiments is to help select a design that
best meets the requirements for a system, where best means better than the other
candidate co-models rather than necessarily meeting them all. The problem that a
designer may face at this point is that the number of potential designs available can
far outweigh the number of simulations that can be performed. In these situations,
some tactics must be employed if the designer is to have any confidence that the
final design selected represents a good choice either in terms of compliance with
the requirements or simply that sufficient alternatives have been considered.

There are two key concepts relating to this: (1) the design space and (2) the
response surface. If we consider a design with two parameters that we may vary,
then the cartesian product of all values each parameters may take is termed the
design space. It represents all possible variations of a design. If we assume that we
are able to estimate the performance of the design for each pair of parameter values
and if we then plot those points, the shape we end up with is termed the response
surface. This surface can guide the engineer to select a design that is optimal with
respect to that performance measure. The following sections provide guidance on
exploring this design space and assessing the performance of the design at those
points.

Two case studies are presented in this chapter. The line-following robot is used
early on to demonstrate the use of the Automated Co-model Analysis (ACA)
features of the Crescendo tool. In this example, we explore the effects of moving
the infra-red line following sensors on the speed and accuracy of line following
along with the energy consumed by the robot. Then near the end of the chapter, the

C. Gamble (<) « K. Pierce
Newcastle University, Newcastle upon Tyne, UK
e-mail: carl.gamble @newcastle.ac.uk; kenneth.pierce @newcastle.ac.uk

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 199
DOI 10.1007/978-3-642-54118-6__10,
© Springer-Verlag Berlin Heidelberg 2014

mailto:carl.gamble@newcastle.ac.uk
mailto:kenneth.pierce@newcastle.ac.uk

200 C. Gamble and K. Pierce

automated tractor case study, similar to the one introduced in Chap. 1, is used to
show how orthogonal matrices may be used to reduce the number of experiments
needed to obtain a near optimal result. Here the experiment is used to find the
optimal speed the tractor may drive given the ground conditions and location of
its centre of gravity (CoG) due to any load carried.

The chapter begins by introducing the ACA feature of the Crescendo tool in
Sect. 10.2, before presenting their use in the line-following robot in Sect. 10.3.
The chapter then moves on to discuss issues that arise when the design space is
larger or more complex. Section 10.4 discusses the identification of parameters for
a simulation experiment, and Sect. 10.5 introduces approaches that may be taken to
reduce the number of simulations performed while maintaining some confidence
of discovering a good set of parameters. Section 10.7 presents the automated
tractor example, and Sect. 10.8 discusses the issue of choosing a design based upon
multiple attributes. In Sect. 10.9, we return to the line-following robot considering
more sensors using the exploration ideas presented for the tractor example. Finally,
Sect. 10.10 summarises the material from this chapter.

10.2 Using ACA

10.2.1 How ACA Works

ACA, as introduced briefly in Sect.2.6, is a feature that enables running many
different co-simulations with minimal user intervention. The ACA feature enables
the user to select different configurations for each individual part of the co-model
and then runs the co-simulation combining all possible configurations that were
selected by the user.

It is possible to construct complete configurations by combining different partial
configurations. Figure 10.1 together with the following description helps to illustrate
the concept. The result of generating complete configurations from the partial
configuration would be four different complete configurations: A1-B1-C1; A1-B1-
C2; A1-B2-C1; and A1-B2-C2. The user can easily get many more configurations by
adding more parameters or adding more values to existing parameters, for example,
simply adding an A2 value would result in four more different configurations.

10.2.2 Configuring an ACA Launch

An ACA debug configuration is used to describe the aspects of a model that we wish
to vary during the series of simulations, and it is created by selecting ACA Launch
and then pressing the New button, see Fig. 10.2.

10 Design Space Exploration for Embedded Systems Using Co-simulation 201

Configuration Part A Configuration Part B Configuration Part C
Al I > B1 I — C1
> B2 I ¥ Cc2

Fig. 10.1 How configuration parts are combined with ACA

(Z0 Debug Configurations é
Create, manage, and run configurations ‘@j\ ‘
X B3H- Name: New_configuration

pe filter text Main . Architectures | SDPs Sweep | Scenarios| CT Settings | (7] Comman
+ B AcALaunch

Base Configuration
B ACA_CG_speed_mu L

B ACA_Chessway 20 Pi 3 Browse...
B New_configuration| |~ Shew plet autematicaly when the seript runs
&0 Co-Sim Launch Data intensive
(L Folder Launch
B voM PP Model -
=
Filtes matched 45 of 45 items
@ Debug | | Close

Fig. 10.2 Creating an ACA debug configuration

There are several options that may be configured, which will be outlined here to
give an overview of what is possible with the ACA feature. For a more complete
description of the features, one should consult the Crescendo user manual [60].

Each ACA debug configuration must have a reference to an existing “normal”
debug configuration defined in its Main panel. From this, it learns the basic
parameters of the simulation such as the base project, CT model, simulation time
and so on.

The Architectures panel can be used to choose which configurations of
the DE model to sweep over during the simulation. This is useful for exploring the
effects of deploying the controller software onto different hardware configurations
(CPUs with different speeds, different numbers of CPUs and so on) or employing
different controller implementations. When multiple architectures exist in the base
project, they will be listed on this panel and those architectures to be included in the
parameter sweep may be selected.

The SDPs Sweep panel allows the user to define sets of values each SDP should
adopt during the simulations. They can be defined in two ways. The first involves
setting a from value, a to value and the step to increment by, the Crescendo tool
then computes all values the parameter should adopt. The second method allows the
user to explicitly define each value an SDP should adopt.

202 C. Gamble and K. Pierce

4 |. output

+ | 201310 091522 15 LineFollowACA Enginedog

"""" launch

[} 20simVarisbles.csv

LineFollowingRobot.dlaunch
------ Messagelog

results.m

______ 8} SharedVarisbles.cov

...... Simulation.log

2013_10_09 15_29_46_LineFollowingRobot (9]

Fig. 10.3 Structure of results from an ACA co-simulation run

The Scenarios panel lists all the script files included in the base project. If
any exist, the user may select one or more of these to be included in the run of
simulations.

The CT Settings tabis similar to the Architectures panel above, except
that it allows options within the CT model to be selected. For example, if there are
multiple implementations defined for submodels within the CT model, these may be
selected for inclusion in the parameter swept over allowing their effects to be seen
in the results. This is another way for activating faults in the CT model by selecting
both faulty and non-fault submodel implementations.

A word of caution: each parameter defined above that is to be included in the
sweep adds to the number of simulations that must be performed. For example, if
there are two architectures, three SDPs each with three values, two scripts and two
CT submodels each with two implementations, then this will require 144(2 x 3 x
3 x 2 x 2 x 2) simulations to be performed. Methods for reducing the number of
experiments performed are discussed later in the chapter.

When the experiment is complete, Crescendo stores the simulation results in
much the same way as for a single simulation (see Sect.5.4) but with two key
differences. The first difference is a two-level directory structure. A directory is
created to contain the ACA run under the output directory and then the results for
individual simulations are stored in their own subdirectories within it (Fig. 10.3).
If the design space is large, then finding the results of a specific simulation could
take some time, so the second change for ACA generated results is the addition of an
index. The index .html file stored in the ACA results folder (not shown) contains
all of the settings used for each simulation and so allows for searching for a specific
simulation by SDP settings. Next to each experiment’s settings is a hyperlink to
the directory containing the results for that simulation, making it easy to locate the
desired results.

10.3 An Example Using the Line-Following Robot

An example of using the ACA functionality is an experiment performed on the line-
following robot to determine if the initial positions of the line following sensors
were optimal for line-following performance. This raised the question of what

10 Design Space Exploration for Embedded Systems Using Co-simulation 203

we meant by “performance” and how were we going to measure it. After some
discussions, we identified four metrics that we believed would vary when altering
the robot sensor positions:

Distance travelled: Since the simulations were all 30s long, the robot that
travelled the furthest distance in that time would have the highest mean speed
and so would be considered better. This purely considers the speed the robot
travelled and not the accuracy of line following which is addressed by the final
two metrics.

Energy consumed: A robot that uses a smaller amount of energy would have
lower running costs and so would be considered better.

Deviation area: Measuring the area between the line and the path the robot
reveals if a robot deviated from the line for long periods of time.

Maximum deviation: Measuring the maximum deviation reveals if a robot
design made a big departure at some point.

The model was set-up to provide the information required to facilitate making
these measurements. To compute the energy used by a robot, we took advantage
of the bond-graph basis of the robot model. There is a bond-graph element, an
EnergySensor, that may be placed between any two elements and which outputs
the energy that has been transferred between them. Placing one of these in each of
the servo submodels made computing the total energy consumed by a design almost
trivial. To compute the remaining metrics, we configured Crescendo to output the
path followed by the robot as a sequence of co-ordinates. These sequences were
processed after each simulation to obtain the distance travelled, deviation area and
maximum deviation.

The experiment involved altering the positions of the sensors literally in both the
lateral and longitudinal axis when looking at a plan of the robot. The actual positions
of the sensors on the real robot are 70 mm in front of the wheel centre line and 10 mm
either side of the robot centre line; this is represented by position “(B)” in Fig. 10.5
and Table 10.1. Two alternative values were selected for each axis, 10 and 130 mm
longitudinal positions and 30 and 50 mm lateral positions. This means three values
for two parameters and so there are nine different configurations to simulate and
assess. Each combination of lateral and longitudinal was given an identifying label,
(a)—(1); the positions of the sensors for each experiment are shown graphically in
Fig. 10.4 and tabulated in Table 10.1.

To enable the experiment, the robot co-model was altered to make the lateral
and longitudinal positions of the sensors a shared design parameter. Once done
this allows us to make use of the ACA parameter sweep of the Crescendo tool.
Figure 10.5 shows the SDPs Sweep panel in the ACA debug launch for the robot
experiment. On the screen you can see the two parameters that are to be swept, their
starting values, the increment between experiments and the final values.'

I'The use of the terms “starting” and “final” here only refers to the sequence of values each
parameter will adopt. The simulations themselves may not be performed in the same order.

204 C. Gamble and K. Pierce

Left Sensor Right Sensor

————
i 0.00000

Robot centre-line

50mm
30mm
k_,1Omm

000000

130mm

65mm

Robot centre-line —E (@) @

IS
£
S

—

Robot forwards direction

Fig. 10.4 Graphical positions of the sensors overlayed on a plan view of the robot

Table 10.1 Lateral and
longitudinal sensor offsets
with their designated

Longitudinal offset
Lateral offset 0.01m 0.07m 0.13m

identifiers, (a)—(i) 0.01 m (a) (b) (©)
0.03m (d) (e) ()
0.05m (@ (h) (i)

Mame: LineFellowACA_sensor_distance

Main | Architectures | SDPs Sweep . Scenarios| CT Settings|] Common

Incremental Sweep

Name From To Increment by Clear
linefollow_later... 0.01 0.05 0.02 [Delete |
linefollow_long... 0.01 013 0.06 ([Delete]

Fig. 10.5 Defining the SDP parameter sweep in an ACA launch configuration

The results of the simulation are shown in Table 10.2. Here we can see the
rankings each robot design achieved for each of the four metrics, and we can see
that the designs perform differently for each metric. For example, design (b) attained
the greatest distance during its simulation but was outranked by design (i) for energy
consumed and design (f) in terms of maximum deviation. For this reason, we needed
a way of combining the individual metrics to obtain an overall rank for the designs.
For this experiment, the overall rank was trivially determined by taking the mean
of the four individual ranks; this value appears in the final column and indicates
that design (b), the original design, gives the best overall performance. This ranking

10 Design Space Exploration for Embedded Systems Using Co-simulation 205

Table 10.2 Ranking

i . Metric

positions for each metric)

along with the mean ranking Rank Design A B C€C D Meanrank

position to give an overall 1 (b) 1 5 1 2 2.2

position. Metrics are: A: 2) 7 2 4 1 35

distance travelled; B: energy 3 (@) 2 8 2 4 40

consumed; C: deviation area, 4 (e) 3 6 3 5 42

and D: maximum deviation 5 () 9 1 5 3 45
6 (c) 5 3 6 8 55
7 (d) 6 4 7 7 60
8 (h) 4 7 8 9 170
9 () 8 9 9 6 80

Fig. 10.6 Paths followed by a b

two robot designs during the
ACA experiment. (a) Design
(b). (b) Design (h)

assumes that all the metrics are of equal importance to the stakeholders, which is
likely not to be the case and so the subject of multi-attribute decision making is
discussed later in Sect. 10.8.

Saving the path of the robot allows it to be overlayed on the modelled line to help
understand why one design performed differently to another. Figure 10.6 shows
plots of the paths followed by designs (b) and (h). It helps to visualise why, for
example, the deviation area for (h) is at the opposite end of the ranking scale to
(b) and can be useful when explaining ACA results to non-technical stakeholders.

10.4 Candidate Parameters

It may be the case that the design space is more complicated than the simple
positioning of two sensors that we saw in the previous section. In such situations, it
is important to have a clear picture of what parameters will be varied and how many
values each may adopt. The number of parameters to be varied and the number of
values each parameter can take have a direct effect on the number of simulation
experiments that will be needed and so a judgement should be made regarding the
necessity of each new parameter or value.

206 C. Gamble and K. Pierce

Two characteristics may be used to classify parameters, one characteristic
considers whether a parameter is part of the design, which can be controlled or part
of the environment, which cannot be directly controlled by the designer (this can
also include potential faults in case tolerance against these are desired). The other
characteristic divides the nature of the parameter. These parameters can be divided
into two groups: continuous parameters, such as the separation between two sensors,
and parameters with discrete values/design alternatives, such as the selection of an
electric motor from a catalogue. These characteristics are expanded below.

10.4.1 Design or Environmental Parameters

10.4.1.1 Design Parameters

These are the parameters that the designer defines, perhaps within a limited
range, and which characterise the object being designed. These parameters may be
represented by a single value, for example, the diameter of a wheel, but they may
also represent choices of distinct design alternatives, such as the choice of either
infrared or ultra-sonic sensors for a particular purpose.

10.4.1.2 Environmental/Uncontrollable Factors

A category of parameters that should be accounted for when designing an experi-
ment are those that either represent the environment in the simulation or undesirable
events such as faults occurring within the product being simulated. Environmental
parameters could include the ambient temperature or light level during the test, the
nature of the terrain a vehicle would need to traverse or the behaviour of other actors
such as extra robots. Fault activation parameters include whether a fault becomes
active during a particular simulation run, when the fault becomes active, the severity
of the fault and the duration of the fault being active if it is transient.

10.4.2 Nature of the Parameters

10.4.2.1 Continuous Parameters

These are the parameters that can be varied according to the designer’s will and
can be placed in an ordered list. The values are either real (floating point) or natural
(integer) numbers and represent the quantification of some property. Examples could
include the length of a beam, the capacity of a battery, the sampling rate of a sensor
or the number of sensors contained in a particular design.

10 Design Space Exploration for Embedded Systems Using Co-simulation 207

For each of these parameters, there are two decisions that need to be made. The
first determines the range of values, minimum to maximum, that each parameter
will vary over and this must be guided by the designer’s knowledge of the system at
hand. The second decision is the choice of how many values to test with the chosen
range. This second decision is a trade-off between choosing a higher number, which
will better reveal the nature of the surface response to this parameter, and choosing
a lower number, which will reduce the number of experiments that will need to be
performed.

It may be the case that while a variable may be adjusted continuously, it may
only be practical to produce a product with specific values within that range.
A mechanical engineering example would be the use of aluminium extrude beams,
which are generally available in a range of specific sizes from each supplier, an
example from electrical engineering would be the available sizes of resistors. In such
cases, choosing values that match the available components will yield simulation
results that better represent the candidate design in reality.

10.4.2.2 Parameters with Discrete Values/Design Alternatives

There may be design parameters that do not naturally sit in an ordered list.
Alternative designs for a product’s control software would be an example here.
There are two ways in which parameters of this type may be considered when
designing a set of simulations to perform. The first way is to treat each design as
a distinct value for some parameter, then each design can be represented equally
within the set of experiments performed. The second way is to determine a set of
properties that describe the differences between the set of designs. The next step
then is to design a set of simulations that yield a good spread of these property
values rather than one that tests each design alternative. A simple example would
be the choice of a battery pack for a mobile device, and there may be many
alternative batteries leading to a large number of simulations; however, it would
be possible to describe each battery pack using its capacity and number of cells.
In this way duplicating experiments employing, for example, 1,800 mAh three-cell
battery packs of different manufacturers could be avoided.

10.5 Experimental Design

The first step when designing an experiment is to define the purpose of that
experiment as this may provide a guide as to which parameters must be varied
and if any should remain static. For example, if the purpose of the experiment is to
verify that a model complies with the requirements, then the parameters representing
the design will be fixed, while parameters used to represent the environment and
usage of the product under test will be varied, possibly focussing on the worst-case
conditions.

208 C. Gamble and K. Pierce

After selection of the candidate parameters and the range of values each may
adopt, the process of designing the simulation experiments to run can start. It is
important at this stage to understand how many experiments can be performed as
this is a major factor for the design of the simulation experiment.

A thorough simulation experiment would explore both environmental and fault
dimensions as well as the dimensions relating to the design. If this is not possible
due to the number of experiments to perform, then the effects of faults could be
simulated on a reduced number of the better designs once the bulk of the design
space has been eliminated by simulation and ranking.

10.5.1 Screening Experiments

Screening experiments can help to reduce the total number of experiments that
will be performed. Their purpose is to filter out parameters that potentially have
little effect on the observed results of a simulation. The simplest form of screening
experiments will examine each property in turn, once with a “low” value and then
again with a “high” value; those properties that show little or no effect on the
results when compared to the effect of the others can be screened out of the main
experiment.

10.5.2 Fractional Factorial Experiments

When it is not possible to perform a complete set of simulations testing all
combinations of parameter values, a fractional experiment technique must be used.
The goal of these techniques is to determine sets of simulation parameters that give
a good coverage of the possible design space. Three alternative techniques are now
described.’

10.5.2.1 Orthogonal Matrices (Taguchi Methods)

Orthogonal matrices for various combinations of numbers of parameters and
numbers of values for each may be found in tables or generated algorithmically [92].

There are currently two methods for executing fractional factorial experiments in Crescendo. The
first is to manually launch individual simulations with the required SDP settings. The second
involves making copies of a normal debug launch configuration file, one for each simulation
required by the experiment. Each of these copied launch configuration files is then edited on the
destecs launch config shared design param line to contain the SDP settings for
one simulation. The simulations can now be executed by creating a Folder Launch debug
configuration and selecting the co-model project and the folder in which the launch files reside.

10 Design Space Exploration for Embedded Systems Using Co-simulation 209

Table 10.3 125 Taguchi table for five parameters with five values

Experiment Param 1 Param 2 Param 3 Param 4 Param 5
1 1 1 1 1 1
2 1 2 2 2 2
3 1 3 3 3 3
4 1 4 4 4 4
5 1 5 5 5 5
6 2 1 2 3 4
7 2 2 3 4 5
8 2 3 4 5 1
9 2 4 5 1 2
10 2 5 1 2 3
11 3 1 3 5 2
12 3 2 4 1 3
13 3 3 5 2 4
14 3 4 1 3 5
15 3 5 2 4 1
16 4 1 4 2 5
17 4 2 5 3 1
18 4 3 1 4 2
19 4 4 2 5 3
20 4 5 3 1 4
21 5 1 5 4 3
22 5 2 1 5 4
23 5 3 2 1 5
24 5 4 3 2 1
25 5 5 4 3 2

Each column in the tables represents one parameter, and the numbers in those
columns represent the possible values the parameter can take. Experiments to be
run (rows) are then defined by the values in each column for a particular row.
Table 10.3 shows the five parameter, five value table used for the line-measuring
robot experiment.

10.5.2.2 Space-Filling Search

If the number of simulation runs that can be performed differs from the number
defined by an orthogonal matrix, then a space-filling search can be used. An
important component of the space-filling approach is the concept of some opti-
mality criteria. The criteria represent the experiment designer’s purposes for the
experiment, such as having an even spread across the design space, avoiding certain
regions of the design space or ensuring that all corners of the design space are
included. These criteria are represented as an algorithm that can compare two sets
of simulation runs to see which best fits that criteria.

210 C. Gamble and K. Pierce

A space-filling search starts by randomly selecting parameters for the number
of simulation runs that can be performed. An iterative process then begins. In each
iteration, the parameters for a new simulation run are randomly generated and a
simulation run in the existing experiment design is selected. The optimality of the
existing experiment design is then compared to the optimality of that experiment
design with the new simulation run substituted for the selected one. If the new
experiment design is more optimal, then the substitution is retained, otherwise
it is rejected. This process continues until repeated iterations yield no further
improvements and the simulation process may begin.

10.5.2.3 Parameter Sweeping

It may be the case that the product of multiplying the number of values for each
parameter is small enough that it is possible to perform a complete set of simulation
runs. In this situation, a parameter sweep experiment, where all combinations
of parameters are simulated, may be performed. This gives the most complete set
of results and so will result in confidence that the optimal design from that set of
parameter values will be found.

10.6 Using Folder Launch Configuration

As described in the previous section, there are times when it is not possible to run
a complete set of experiments that explore the entire design space offered by the
alternatives within a product; in these cases the ACA feature described in Sect. 10.2
can not be used. Instead, we need another mechanism that permits more control over
the experiments that will be performed such as allowing the experiments defined by
a Taguchi orthogonal matrix to be run.

The Folder launch configuration is the method currently supported by Crescendo
that allows detailed control over the experiments to be run at the cost of manual
or tool supported construction of launch files. The basic principle is that the user
constructs debug configuration launch files, one for each simulation they wish to
run, these files are placed into a single folder and Crescendo can then be instructed
to run each of the simulations described and saves the results in the same way as
for standard ACA. These launch configuration files may be named in any way so
long as they have the .launch file type extension. Figure 10.7 shows the dialog
box used to define a folder launch. It only required two pieces of information, the
project the launch relates to so the results can be saved in the right location and
path to the folder containing the launch configuration files. Once defined this folder
launch configuration can be executed in the same way as any other by selecting the
Debug button.

To create the launch configuration files, we suggest starting with an existing
debug configuration launch file for the project of interest and making copies of

10 Design Space Exploration for Embedded Systems Using Co-simulation 211

Browie

Fig. 10.7 Folder launch dialog box

it in the designated directory. These files have an XML structure and contain all
the information required to launch a co-model simulation. While in principle
any of the parameters can be changed in these files, it is only necessary to
make changes to the destecs launch config shared design param
parameter to implement the experimental designs previously discussed. The
value of this parameter contains a list of all the shared design parameters
defined in the co-model and their values from the original launch configuration
copied. The values associated with each shared design parameter for each
experiment can be defined by editing them in this location in the file.
Two other parameters can be changed to suit the experimental need. The
destecs_launch config simulation time parameter defines how
long the simulation will run for and can be used to reduce the time spent running
simulations if certain parameters are known to require longer or shorter simulations.
Finally, the destecs_launch config ct model path can be changed if
a project contains more than one CT model and the experiment requires simulating
with them.

10.7 An Example Using the T1X Tractor

In Chap. 1, the fictional T1X GPS controlled tractor example project was briefly
introduced. This example is based upon an independent research project modelling
an experimental small tractor shown in Fig. 10.8 using the Crescendo technology.’
The purpose of this research project is to develop an autonomous controller for the
tractor to allow it to traverse fields, following a predefined path using satellite-based
navigation systems, while taking into account the position of any loads being carried
and in spite of the condition of the soil [23].

3See http://www.frobomind.org/index.php/FroboMind_Robot:ASuBot for more detail about this
project.

http://www.frobomind.org/index.php/FroboMind_Robot:ASuBot

212 C. Gamble and K. Pierce

Fig. 10.8 ASuBot: a Massey Fergusson 38-15 garden tractor retrofitted with a Topcon AES-25
steering system

The resulting experiment identified three parameters that will be varied. The first
parameter is the speed at which the tractor moves; this has a range of 1-2m/s and
it is assumed that here faster is better. The second parameter to be varied is the
position of the CoG of the tractor. As the position of the load carried by the tractor
moves rearwards, this has the effect of moving the CoG backwards from its normal
position in front of the rear wheels. This rearward CoG shift has a detrimental
effect on the tractor’s ability to steer, resulting in the potential for understeering
or oversteering. In this experiment, the CoG offset ranges from 0 m, indicating the
most forward position, to 0.4 m, representing the most rearward position. The third
and final experimental parameter represents the coefficient of friction () between
the wheels and the surface upon which the tractor is running. A high value for u,
0.7, represents nearly dry conditions, while a lower value, 0.5, represents more wet
and slippy conditions.

The simulations will be evaluated by computing the maximum Cross Track
Error (XTE) from the ISO 12188-1:2010 standard. The simulation outputs
the co-ordinates of the path the tractor took and these are compared with the
co-ordinates of the track the tractor should have followed to find out the maximum
distance the tractor deviated and this value becomes the XTE for that simulation.
An XTE of 0.3m or less is considered to be acceptable, and the results will be
classified accordingly.

The design space has been separated into 21 speed values, 21 CoG offset
values and 5 values for u, thus if we wanted to exercise all combinations of the
experimental parameters this would require 2,205 simulations. In the case of this

10 Design Space Exploration for Embedded Systems Using Co-simulation 213

Table 10.4 Table of

E iment Speed CoG offset XTE
parameters used for the Apenmer pee oo i

tractor experiment, based on 1 1 0 0.5 0.10948
Table 10.3, along with the 2 1 0.1 055 0.l11614
resulting cross track error 3 1 0.2 0.6 0.11555
(XTE) for each experiment 4 1 0.3 0.65 0.11124
5 1 0.4 0.7 0.11111
6 1.25 0 0.55 0.14498
7 1.25 0.1 0.6 0.14678
8 1.25 0.2 0.65 0.14528
9 1.25 0.3 0.7 0.13749
10 1.25 0.4 0.5 0.29989
11 1.5 0 0.6 0.18475
12 1.5 0.1 0.65 0.18099
13 1.5 0.2 0.7 0.17424
14 1.5 0.3 0.5 0.19995
15 1.5 0.4 0.55 1.4123
16 1.75 0 0.65 0.22096
17 1.75 0.1 0.7 0.21059
18 1.75 0.2 0.5 0.31918
19 1.75 0.3 0.55 0.80918
20 1.75 0.4 0.6 0.64782
21 2 0 0.7 0.29832
22 2 0.1 0.5 0.73324
23 2 0.2 0.55 0.83668
24 2 0.3 0.6 1.014
25 2 0.4 0.65 0.53127

particular co-model, each simulation took only a few tens of seconds to run and so
the full set of experiments could be, and in fact was, performed. For the purpose
of this example, two additional ACA experiments were performed to illustrate
the principles and to allow comparison of results. The first of these experiments
considered 5 values for each of the three experimental parameters and the second
experiment considered 21 values for the speed and CoG parameters and retained
the 5 values for p as in the other experiments. Complete experimental coverage
for each of these additional experiments would require 125 and 2,205 simulations,
respectively; however, when we produced Taguchi orthogonal matrices for each
of these experiments (Tables 10.4 and 10.5), the number of simulations for these
experiments reduced to 25 and 441, respectively. These experiments were executed
using the technique described in Sect. 10.6.

With the experiments performed the next step is to analyse the results. Generally
a Taguchi-type analysis is used to determine such trends for multiple parameters
and the graphs in Fig. 10.9 show the XTE for the 21-level ACA experiment plotted
against both speed and CoG offset. Both tables are annotated with a trend line
confirming the intuition that driving the tractor more slowly or reducing the CoG
offset will reduce the XTE. It is interesting to note that as the ranking function in

214 C. Gamble and K. Pierce

Table 10.5 Small sample of
the parameters for the

21-level ACA along with the
resulting cross track error 1 9

Experiment Speed CoG offset XTE

0.36 0.65 0.11216

(XTE) for each experiment 20 038 0.7 0.11726
21 1 0.4 0.5 0.11342
22 1.05 0 0.55 0.12259
23 1.05 0.02 0.6 0.11829
16 1.6
1.4 * 14 ‘
12 : “ *5 12 0“0
2 ‘0 * 14 *e b4
E os "*0““’ 08 .zo ‘t.‘!!:: ¢
0.6
0.4 ‘ &
°'2¢Mm“t‘t“0§“'r oz ”"‘m‘m“‘r“‘i‘
1 12 14 16 18 2
Speed (m/s) CoG Offset (m)

Fig. 10.9 Individual parameter graphs for the 21-level ACA experiment

b

04 & * 04

038 035

03 ¢ . * 03

0.5 015 i;

oz ¢ . . * XTEo03 o ;' * XTE<e 0.3
0.15 015

01 & + * * XIE=03 01 i XTE>03
0.05 005

0e 0 3

1 12 14 16 18 2

1 12 14 16 18

CoG Offsat (m)

CoG Offset (m)

Speed (m/s) Speed (m/s)

Fig. 10.10 Scatter graphs indicating which combinations of speed and CoG offset achieved an
XTE of 0.3 or less. (a) 5-level experiment. (b) 21-level experiment

this experiment only considers XTE, and that for this error a lower number is better,
these graphs indicate that a tractor with 0 m CoG offset travelling at 0 m/s would
perform best. This is intuitively untrue as such a tractor would not perform any
useful work and highlights the need for either a ranking function that accounts for
all relevant properties or a different presentation of the data.

In this case, we may present the data as shown in Fig. 10.10a, b. In these graphs,
diamonds represent a pair of parameters, resulting in an XTE of no more than 0.3,
while squares represent pairs that failed to meet this acceptance criteria. Here we
can note that the results follow the trends indicated in the previous graphs where the
tractor is better able to follow the path if it travels slower and also when the CoG
offset is lower (more weight on the front wheels).

Parameters for the controller may be found by following lines, horizontally, from
the CoG offset axis. Doing this yields the maximum speed that the tractor was able

10 Design Space Exploration for Embedded Systems Using Co-simulation 215

Fig. 10.11 Comparing T T T

results from the different 18 ~— St =
experiments 16 T P——— X
1.4 X

1.2 *

1) === 5level

LY

08 hY 21 Level
0.6 v
1 L L] L Complete
0.2

0

0 01 0.2 03 0.4

CoG Offset (m)

Speed (m/s)

Table 10.6 Factorial

2 Experiment ~ Minimum (%) Maximum (%) Mean (%)
experiment errors

5 levels 0 66.7 20
21 levels 0 10 3.1

to follow the track for a given CoG offset. Here is where we find the benefit of
performing the larger 21-level experiment compared to the 5-level experiment. If
we take the CoG offset of 0.3 m as an example, in the 5-level experiment we find the
highest speed that resulted in the tractor following the track correctly was 1.25 m/s,
while in the 21-level experiment the result is 1.7 m/s. Similarly for a CoG of 0.1 m,
the 5-level experiment gives a highest viable speed of 1.75 m/s while the 21-level
experiment yields a speed of 1.90 m/s.

Figure 10.11 shows the tractor speed against CoG offset curves that result
from both the 5- and 21-level experiments and also the complete sweep over
all parameters. We can see that despite it only using 20% of the number of
simulations the 21-level experiment is very close to the results found during the
complete parameter sweep. Table 10.6 evaluates the errors between the Taguchi-
based experiments and the complete sweep. It is to be expected that the 5-level
experiments, which explored the design space using only 25 experiments, will have
a greater error than the 21-level experiment, but the result of this experiment had a
mean error of only 20 % compared to the complete experiment while using only
1.1 % of the simulations. This shows that such a technique could be fruitful in
the earlier stages of design for the rapid selection between design alternatives. The
21-level experiment, on the other hand, achieved a mean error of 3.1 % compared
to the complete experiment at a cost of only 20 % of the simulation time. Again this
demonstrates the time savings that can be made using these techniques.

10.7.1 An Iterative Approach

In the case of the tractor project, we could use an engineering intuition to predict
that increasing the speed of the tractor or shifting it backwards will reduce the ability
of the tractor to follow the track. In such situations, it may have been possible to
increase the accuracy of the result while maintaining a low simulation cost using an
iterative approach.

216 C. Gamble and K. Pierce

0.4
0.35
03
0.25

further exploration
warranted

CoG Offset (m)

0012 viable designs & XTE<=03
01 XTE=>0.3
0.05
0 *
1 1.2 1.4 1.6 1.8 2

Speed (m/s)

Fig. 10.12 Design space divided into areas known to work after the 5-level experiment and where
further experiments at higher resolution might be fruitful

In such an approach, we might first perform an experiment such as the 5-level
experiment to obtain an approximation of the relationship between CoG offset and
the maximum tractor speed, a boundary between viable and possibly infeasible
designs. We may then apply our engineering intuition and hypothesise that the opti-
mal boundary between viable and infeasible designs is to the right (increased speed)
of where the 5-level results show it to be. Based on this we divide the graph into two
areas, a viable area where we have some confidence that all designs will work and an
area where further exploration is warranted. These areas can be seen in Fig. 10.12.

If we then explored the identified region at the same resolution as the 21-level
experiment, including the borders, this would require an additional 231 simulations.
This would result in obtaining the same speed against CoG offset profile as in
the 21-level experiment but at a cost of only 256 experiments, under 12 % of the
complete experiment simulations.

10.8 Ranking of Results

Simulation experiments can produce large amounts of data both from the number
of experiments performed and also the number of properties recorded during the
simulation. In these cases, automated support for ranking of results can help reduce
designer workloads. The first step towards defining this automated support is to
understand what properties are significant for the stakeholder goals and from where
in the model these properties can be derived. Then ensure that these properties are
included in the simulation output.

At the same time as including results that permit the ranking of different designs,
the simulation results should ideally allow the automatic rejection of a design
that fails in some way. This additional data should relate to any invariants or
safety requirements that a design should not violate.* Alongside this data it will

4“When possible to express these directly in VDM, that is recommended, but in some cases, this is
not natural.

10 Design Space Exploration for Embedded Systems Using Co-simulation 217

be necessary to precisely define what it means to violate any of these conditions,
such as what is the maximum current a motor can accept or what is the maximum
force we can apply to a human user.

For automated ranking, there must be some form of ranking function. This
function should be able to place the designs in at least a partially ordered set based
upon their simulation results. If these results are being compared using only a single
criterion, then the ranking function is trivial to describe, for example, ordering the
results based upon their maximum speed. If the results are being compared on
multiple criteria, then the function may be more complex. Three forms of ranking
functions follow in the subsections below.

10.8.1 Simple Equation

The simplest form of ranking function is just an equation. Such an equation could
be used to determine the ratio between two results or perhaps the statistical mean of
a series of results. The numerical output from the equation then allows the results to
be ordered.

10.8.2 Weighted Additive Method

The Weighted Additive Method[9] (WAM) is based on equations that explicitly
highlight the relative weight given to each measured result. In this method, each
of the n metrics, x, are evaluated using a function v and then multiplied by a
weighting w. The scores for each metric are summed together to give a final score
V for that design. The equation for a design a is shown in Eq. (10.1)

Va = wi v (xf) + w5 v () + -+ wi v () (10.1)

10.8.3 Enumeration and Scoring

Enumeration and scoring [9] (ENUM) is based upon defining logical predicates,
each of which describes some desirable condition in the results. These predicates
may consider only a single metric from the simulation results, for example, the
object travelled more than 5 m, or they may consider multiple metrics, for example,
the object travelled more than 5 m and used less than 40 J of energy. These predicates
are then placed into sets, where all predicates g; — g, in a set are considered to be
equally desirable. With the sets of predicates constructed, each predicate is assigned
a score. The score for a particular design is the sum of the scores for all predicates

218 C. Gamble and K. Pierce

Fig. 10.13 Example outputs a b c

showing possible trends for a Better

parameter with three values / — o o /\
Worse

vl v2 v3 vl v2 v3 vl v2 v3

satisfied by the simulation results. The scores for each predicate are such that the
score for a single predicate in set S, outweighs the total scores for all predicates in
all rows below that row. The general equation for this method is shown in Eq. (10.2)

order, =
{
St ={gl:g):...gl}score_S* = w;
S¢ ={g?:g3:...82}score_S§ = y; (10.2)
S.
St ={gl:85:...80};score_S¢ =z
}

10.8.4 Analysis of Results

The results returned from any fractional factorial experiment will only cover a part
of the design space. It is therefore possible that the best results returned are not
in fact the best results possible within the scopes defined for the parameters. One
way to approach this problem is to consider the effect of each parameter value on
the results obtained individually, such as in sensitivity analysis. Figure 10.13 shows
some example graphs that could be obtained if the mean simulation ranking for a
parameter value is plotted against that parameter value. In graph a, there is a general
move towards better values as the parameter changes from v1 to v3, in graph b the
parameter value is found to have little or no effect and in c there is a peak at v2 and
dips either side. If these graphs are produced for all parameters, then a suggestion
for a potentially good design can be obtained by finding the values that give the max-
imum result for each parameter; such a prediction can be validated by performing
a simulation run with exactly those parameters. The graph results may also be used
to indicate a number of potentially valuable designs worthy of further investigation,
and so these predictions form the focus for an additional series of simulations.

10.9 An Example Using the Line-Measuring Robot

In Sect. 10.3, we saw the effects of making dramatic changes to the sensor positions
on the speed and accuracy with which the robot was able to follow a line. In this
second visit to the line-following robot, we see it used in its line-measuring mode

10 Design Space Exploration for Embedded Systems Using Co-simulation 219

Fig. 10.14 Graphical Robot centre line
positions of the sensors = ‘
overlayed on a plan view of
the robot. Positions (a) and
(b) refer to the earlier ACA
experiment in Sect. 10.3

/ Position (a)

Robot centre line

Table 10.7 Sensor offsets: letters indicate longitudinal offset and numbers indicate lateral offset

Longitudinal offset (m)
Lateral offset (m) 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.0050 (al) (b1) (ch) (dn (el) (1) (1) (h1)
0.0075 (a2) (b2) (c2) (d2) (e2) (2) (22) (h2)
0.0100 (a3) (b3) (c3) (d3) (€3) (f3) (3) (h3)
0.0125 (ad) (b4) (c4) (d4) (e4) (f4) (g4) (h4)
0.0150 (a5) (b5) (c5) (d5) (e5) (f5) (&5) (h5)

to demonstrate the use of the multi-attribute ranking functions, WAM and ENUM,
described in Sect. 10.8.

If we assume that a design that is considered good for line following is likely to be
good for measuring a line as well. With this in mind we will constrain the positions
of the sensors to a region indicated to be “good” by the previous experiment. We
will also constrain the search to include positions within the boundaries of the robot
itself. The top four designs from the previous experiment were (b), (), (a) and (c).
Of those designs only (b) and (a) are actually within the boundaries of the robot and
so we will use those two to guide the parameters for this exploration. Figure 10.14
shows the locations of sensor positions (a) and (b) from the previous experiment,
overlayed with dots representing the positions that are explored in this experiment,
and Table 10.7 gives names for each of the sensor positions.

The co-model of the line-measuring robot is instrumented to allow assessment
of three potentially antagonistic properties, line-measuring accuracy, mean speed at
which the line is measured and the energy consumed per meter of measured line.
These three properties can then be used to rank the designs to determine which one
performs the best. In the earlier experiment, each design was assigned a ranking
for each of the four line-following measures identified and then an overall score for
each design was found by taking the mean of each measure’s rank. This assumes
that all of the measures are of equal importance to the stakeholders and ignores
relative values of each measure. Below we present two instances of possible ranking
functions that can be applied to this line-measuring version of the robot that do not
suffer from these weaknesses.

220 C. Gamble and K. Pierce

error“-MinError speed®-MinSpeed energy“-MinEnergy

" MaxError-MinError MaxSpeed-MinSpeed

v, =2(1 +(1

_MaxEnergy—MinEnergy
Fig. 10.15 Weighted Additive Method ranking function for the line-measuring robot

Table 10.8 Enumeration and scoring ranking function predicates for the line-measuring robot

Set Predicates Score per predicate
M error® < 0.7 speed® > 0.075 A energy® < 17 48
speed® > 0.08 error* < 1 A speed® > 0.075
energy® < 16 error® < 1 A energy® < 17
S> error® < 1.5 speed® > 0.07 A energy® < 18.5 7
speed® > 0.07 error® < 3 A speed® > 0.07
energy® < 18 error® < 3 A energy® < 18.5
S3 error® <5 speed® > 0.055 A energy*20 < 1
speed® > 0.06 error* < 6 A speed® > 0.055
energy® < 19.5 error® < 6 A energy® < 20

The first function uses the WAM. In this implementation, each of the three
measures is first normalised against the complete set of simulation results to be
on a scale of zero to one, where zero implies a result equal to the worst result,
a one represents a result equal to the best and varying linearly in between. This
represents the v (x;) term in Fig. 10.1 for measure n of design a. The second part of
the method is to multiply each of these terms by its weighting and sum the resulting
terms to obtain a score for each design. In the case of a line-measuring robot, we
can imagine that the accuracy of line-measurement might be of greater importance
than the speed of measurement or the energy used and so the accuracy term is
given a weighting of two while the other two terms have a weighting of one. The
resulting equation is shown in Fig. 10.15. The MaxError, MaxSpeed, MaxEnergy,
MinError, MinSpeed and MinEnergy refer to the maximum and minimum for each
metric across all designs tested.

The second ranking function uses the ENUM method. In this implementation
(Table 10.8), there are three sets of predicates, Si, S, and S3, with each of these
representing progressively less desirable conditions for the robot design to satisfy.
In each set there are three predicates containing only one metric and three predicates
containing combinations of these metrics. The single metric terms represent a more
narrow view of robot performance than the twin metric terms and so, to be similarly
desirable, impose a higher requirement on performance. For example in S, it could
be desirable that the robot measures the line at a speed of greater than 0.08 m/s,
but it could be equally desirable for the speed to be greater than 0.075 m/s but if
the energy consumed is less than 17 J/m. The “Score per predicate” column shows
the score obtained for each predicate satisfied; these are such that, for example,
satisfying even a single predicate in S, outweighs satisfying all predicates in S3.

The simulation results are presented in Table 10.9. Five of the designs failed
to complete the line-measuring task and these designs are indicated within the
table. For those designs that did complete the task, their performance is indicated in

10 Design Space Exploration for Embedded Systems Using Co-simulation 221

Table 10.9 The scores and resultant ranking from the robot metrics and both ranking functions

Speed Error Energy WAM ENUM

Design Score Rank Score Rank Score Rank Score Rank Score Rank
(al) Failed to follow line

(a2) Failed to follow line

(a3) 0.0722 28 4.94 19 19.24 35 1.48 34 13 32
(ad) 0.0654 35 6.40 23 19.12 33 0.97 35 3 35
(a5) Failed to follow line

(bl) 0.0759 20 374 16 19.16 34 1.88 27 13 33
(b2) 0.0755 23 361 15 19.10 32 1.90 26 13 34
(b3) 0.0751 24 228 10 18.80 30 2.20 17 20 30
(b4) 0.0683 33 1.08 5 18.05 24 2.34 11 34 23
(b5) 0.0682 34 1.21 6 18.08 25 2.30 15 34 24
(cl) 0.0776 16 2.14 9 18.88 31 2.31 14 20 31
(c2) 0.0786 13 0.81 4 18.64 29 2.66 4 75 11
(c3) 0.0759 21 0.38 1 18.21 27 2.74 2 137 1
(c4) 0.0702 31 0.78 3 1770 21 2.57 6 48 20
(c5) 0.0701 32 1.45 7 17.59 19 2.48 9 48 21
dn 0.0800 10 0.65 2 18.37 28 2.82 1 137 2
(d2) 0.0810 9 1.98 8 18.11 26 2.70 3 82 10
(d3) 0.0768 18 2.64 11 1777 22 2.50 8 41 22
(d4) 0.0720 29 331 12 1721 16 2.34 12 27 25
(dS) 0.0717 30 358 14 17.18 15 2.29 16 27 26
(el) 0.0828 5 344 13 17.87 23 2.59 5 75 12
(e2) 0.0823 7 3.84 17 17.70 20 2.55 7 75 13
(e3) 0.0784 15 4.77 18 17.32 18 2.32 13 27 27
(ed) 0.0735 26 517 20 16.92 14 2.15 18 26 28
(e5) 0.0732 27 570 21 16.80 11 2.08 21 26 29
(f1) Failed to follow line

(£2) 0.0852 4 6.10 22 17.32 17 2.37 10 72 14
(f3) 0.0794 11 6.77 24 16.92 13 2.12 19 72 15
(f4) 0.0755 22 7.43 25 16.52 8 1.95 23 72 16
(f5) 0.0751 25 770 26 16.46 7 1.91 25 72 17
(gh Failed to follow line

(g2) 0.0860 3 8.63 27 16.83 12 2.10 20 120 3
(g3) 0.0811 8 8.90 28 16.55 9 1.92 24 120 4
(g4) 0.0776 17 943 29 16.21 5 1.78 29 72 18
(g5 0.0765 19 9.83 30 16.07 3 1.70 30 72 19
(h1) 0.0889 1 9.96 31 16.65 10 2.04 22 120 5
(h2) 0.0872 2 11.02 32 16.33 6 1.87 28 120 6
(h3) 0.0828 6 11.29 33 16.12 4 1.69 31 120 7
(h4) 0.0791 12 11.42 34 15.84 2 1.59 32 120 8
(hS) 0.0786 14 11.69 35 15.71 1 1.56 33 120 9

Top three results according to each ranking highlighted in bold

222 C. Gamble and K. Pierce

five different ways. The first six columns present the scores and resultant rankings
within the group for the three metrics, speed of line measurement, accuracy of
measurement and energy consumed per metre of line. It is not surprising to find
that the rankings are different for each of the measures, for example, the fastest
design, (h1), ranked 31st out of 35 for accuracy while the most accurate design (c3)
ranked 27th for energy consumed. The final four columns contain the scores and
rankings according to the two ranking functions. Both functions agree, although
transposed, on the top two designs, (c3) and (d1), they also agree on the worst design
(a4), though in between these the orderings are quite different. This highlights that
ranking functions should be agreed by the stakeholders of a project or against the
project requirements.

10.10 Conclusion

Co-simulation permits the systematic exploration of the design space with the
aim of selecting models of optimal solutions, and allowing trade-offs between
the computing and physical elements of alternative designs. In this chapter, we
presented an approach to such design space exploration using experiment design.
We started with a classification for the parameters that one may wish to vary during
an experiment. We discussed methods for reducing the number of experiments
performed, from screening experiments to find parameters that have little effect to
the use of orthogonal matrices or a space-filling search to find actual parameter
values to use in simulations. This was done using two different case studies which
showed that it matters how well experiments are designed. The chapter concluded
with a discussion of the ways in which experimental results may be ranked to permit
automatic selection of the best designs simulated. The reader is invited to further
explore the examples introduced in this chapter by defining additional experiments;
all the relevant co-models can be imported to the Crescendo tool.

Chapter 11
Industrial Application of Co-modelling
and Co-simulation Technology

Marcel Verhoef and Peter Gorm Larsen

11.1 Introduction

This chapter provides an overview of three industrial applications that have been
carried out using the Crescendo co-modelling and co-simulation technology. The
models have been developed by industry users and this presentation also includes a
summary of the achievements and main lessons learned from the work performed
in an industrial context. The applications include

* adredging excavator system,
* adocument handling system and
* a self-balancing scooter, the “ChessWay”, as introduced in Chap. 7.

The applications reported in this chapter have been produced by three different
companies as case studies for the DESTECS project [28] under which the Crescendo
technology was originally developed. First, we provide a short overview of the
companies involved:

Verhaert New Products & Services N.V. Verhaert is an integrated product
development center delivering innovation, development and engineering services
for state-of-the-art high-technology products. Verhaert is based in Kruibeke,
Belgium, and is active in many technology development programmes leading to
innovative hardware, software and devices. For more information, we refer to
http://www.verhaert.com.

M. Verhoef (<)
Chess WISE, Haarlem, The Netherlands
e-mail: Marcel. Verhoef @chess.nl

P.G. Larsen
Aarhus University, Aarhus, Denmark
e-mail: pgl@eng.au.dk

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 223
DOI 10.1007/978-3-642-54118-6__11,
© Springer-Verlag Berlin Heidelberg 2014

http://www.verhaert.com
mailto:Marcel.Verhoef@chess.nl
mailto:pgl@eng.au.dk

224

Table 11.1 Case study context

M. Verhoef and P.G. Larsen

Document inserting

Application Self-balancing scooter system Dredging excavator
Company CHESS NEOPOST VERHAERT
Disciplines Mechanical, control, Mechanical, control, Mechanical, control,

Fault source
Challenge
Improvement
Purpose

Approach

Prior knowledge

electrical, software
Design faults
Manage complexity
Reliability analysis
Trustworthy design
DE-first, CT-first and

contract-first
VDM, 20-sim

electrical, software
Error handling
Concurrent design
MIL simulations
Raise product quality

DE-first
20-sim

electrical, software
Operator error
Product robustness
Design exploration
Reduce product TTM

CT-first

MIL model in the loop, TTM time to market

Neopost Technologies B.V. Neopost is one of the two world leaders in small-
to middle-range mail handling equipment manufacturing. Its portfolio includes
machines for flexible packing of multiformat documents, automated handling
of incoming high volume mail and supporting information systems. Neopost
Technologies B.V. is based in Drachten, the Netherlands, with a 75-head R&D
force, which forms the “Document Systems” Competence Centre of the Neopost
Group. For more information, see http://www.neopost-technologies.com.

Chess WISE B.V. and Chess iX B.V. The Chess group forms a design and devel-
opment centre with core competences in both hardware and software. They
also take operational responsibility and perform life-cycle maintenance of the
electronic products and systems that they develop. Chess is based in Haarlem,
the Netherlands, with a multidisciplinary engineering team of approximately 50
engineers. See http://www.chess.eu and http://www.chess-ix.com.

The applications described in this chapter are very different in nature and
they use the alternative approaches introduced in Chap. 8. The case studies have
been carefully selected to provide a range of embedded systems applications
with different forms of complexity, involving engineering heterogeneity (so that
collaborative approaches are of interest) and all having the need to provide a
predictable level of fault tolerance. They were chosen to represent a state-of-the-art
innovative design problem, but they also intended to be recognisable and acceptable
to the industry at large, in order to ensure impact. They were proposed and taken
on by individual partners in order to reduce risks and optimise resourcing but
also to expose different working practices. Thus, they complement each other and
illustrate the variety of situations in which the Crescendo technology is applicable.
An overview is provided in Table 11.1.

Unfortunately, we are not able to present the full co-models from the case
studies for commercial reasons. However, we are able to provide an overview of
the approaches taken, to a certain extent the structure of the co-models and the main
findings from the case studies. This chapter first introduces the dredging excavator

http://www.neopost-technologies.com
http://www.chess.eu
http://www.chess-ix.com

11 Industrial Application of Co-modelling and Co-simulation Technology 225

case study from Verhaert in Sect. 11.2. The Neopost document handling system is
presented in Sect. 11.3. For confidentiality reasons, the details of the latter model
are replaced by a paper path co-simulation model from the BODERC project [96]
that has similar characteristics. Afterwards, Sect. 11.4 introduces the ChessWay
application. Finally, Sect. 11.5 provides a summary of the chapter.

11.2 A Dredging Excavator

11.2.1 Case Description and Main Challenges

The Verhaert case study concerns the design of an excavator-based dredging system.
The dredging process can be defined as the repositioning of soil from the seafloor
for infrastructural or ecological purposes. This process typically involves expensive
machinery and complex operator control as well as several days of operation,
resulting in expensive and difficult processes. A dredging system is a complex
application that involves a thorough logistical planning of the dredging process
itself, besides the associated control problem of the elements involved in it.

As a general goal, it is Verhaert’s intention to elevate the performance of dredging
systems by introducing semi-automated control to improve productivity and also to
reduce the down time due to repairs. At a lower (loop control) level, this includes
a dynamic response function of the digging resistance to avoid overload of the
machine. At a higher (sequence control) level, automation should provide predefined
trajectory control (e.g. digging along a straight path) and optimisation of the digging
pattern. The ultimate goal of this automation is to design an excavator which can
operate completely autonomously.

Currently, the expertise of the operator has a large impact on the performance of
the machine. In particular, the resistance encountered by the bucket during its path is
crucial. For example, a novice operator tends to apply too much force with the arm,
while an experienced operator is able to operate the excavator smoothly. By creating
a system that assists the user, optimal operation can always be achieved. The goal
of this case study is to investigate an automated control system as described above
in order to increase the performance and the uptime of the excavator.

Verhaert based their work on a realistic excavator scale model with three axes
of freedom (the shoulder, connecting the undercarriage with the boom, the elbow,
connecting the boom with the stick and finally the wrist, connecting the stick
and the bucket), which allowed for easy model validation as the setup can be
used for realistic tests and measurements under controlled conditions. The scale
model, which is shown in Fig. 11.1, is powered by electrical linear actuators instead
of hydraulics, which are common in practice. The continuous time model of the
excavator case study is introduced in Sect.11.2.2 and the discrete event model
is presented in Sect.11.2.3. Afterwards Sect.11.2.4 presents the co-simulation

226 M. Verhoef and P.G. Larsen

House + undercarriage

Linear actuator

Fig. 11.1 The Verhaert excavator scale model and test setup

analysis conducted on this co-model and finally Sect. 11.2.5 provides an overview
of the key results of this study.

11.2.2 The Continuous Time Model

A top-level overview of the CT model of the excavator is presented in Fig. 11.2.
This figure uses the block diagram notation but represents a hierarchy of differential
equations, as illustrated by the model snippet in Fig. 11.3. The electrical linear
actuators are managed using encoders that send motor axle rotation measurements
over to the controller. Based on the requested operator inputs, the controller
determines the Pulse Width Modulation (PWM)signals to be sent to the power
amplifiers driving the motors inside the linear actuators that make the excavator
parts (boom, stick and bucket) move.

A special ground model was introduced to investigate the impact of ground
material properties on the automated control, by comparing simulations with
different ground material properties (e.g. mass density, drag). The ground model
describes the forces experienced by the bucket when digging through the ground.
Two different forces have been modelled: a constant cut force (velocity independent)
that is required to break open the ground and a drag force (velocity-dependent) due
to the bucket moving through the ground. The ground consists of several layers
(along the z-direction) of different composition. The parameters of these layers
(height, cut and drag force, mass density) can be set by reading in a table from a text
file. It is also possible to activate an obstacle at a certain position in the x-direction.

11 Industrial Application of Co-modelling and Co-simulation Technology 227
T | —
il
o —|
Motor Driver \
(PWM) Controller 3D Mechanical
f model
s |
g Q = A
~
I T S
PR BoomEncoder
——ﬂ-d'llb, = =§" StickEncoder
- BucketEncoder
Stcittor e \
i S F rw
Q l__ﬂ' /_...--" 3 " Encoders
— Ground
Bl titotor
\ Grmond &
Linear actuators
Ground model
Fig. 11.2 The top-level continuous time model of the excavator
equations
// Motor equations
Tm = K x* iMotor;
pl.u = K » omega + R x iMotor + 0.0000000001;
pl.i = iMotor + minCurrentx sign(pl.u);
// spindle speed relation
p2.v = omega * ij;
// spindle force/torque relation
Tm = Tmax * Fspindel”™2 / (Fspindel™2 + Fx"2);
Fspindel = p2.F + col;
load = Tm / i;
overload = (not collision and abs(load) > maxLoad);

Fig. 11.3 Part of the 20-sim submodel for a linear actuator

This obstacle has a different composition than the rest of the layer. This feature can
be used to model discontinuities, for example, a hard rock in the otherwise soft soil,
at which point the excavator will experience a possible overload when trying to dig
through it. The ground model also calculates the volume and mass of the ground that
is dug up. This mass is then fed back into the mechanical model, to represent the
varying mass and inertia of the bucket load while digging. In case of the dredging
excavator, buoyancy effects can be added if the bucket is still under water.

228 M. Verhoef and P.G. Larsen

Fig. 114 The 3D - L
mechanical model of the Stick
excavator

Linear actuator
House +
undercarriage

Visualisation techniques can be used in order to get a better understanding of the
physical behaviour of the excavator. 20-sim provides a 3D mechanical editor that
creates a 3D model with all its associated static properties (such as centre of gravity,
inertia and so on). This 3D model is automatically and directly coupled to the
differential equations describing the dynamical behaviour of the system. Animation
is basically a time-lapse recording of the evolution of those model variables, and this
is visualised directly in the 3D model. A screen dump of the excavator animation is
shown in Fig. 11.4.

11.2.3 The Discrete Event Model

An overview of the structure of the VDM model of the excavator is shown in
Fig. 11.5. The model consists primarily of three VDM classes, each allocated to
their own CPU, to denote their independence. All three have a separate control loop
running periodically, albeit at different intervals. The operator mimics the behaviour
of the human operator in terms of using the controls at his disposal: the joystick and
some buttons. The controller is the core of the model implementing the feedback
control strategy, by reading from sensors and writing to actuators. The safety unit is
concerned with independent assessment of the system safety state. It also observes
the sensors and in case it detects an anomaly, it will shutdown the controller.

The main VDM classes operator, controller and safety unit are explained in more
detail in the following sections. Also, the key operating modes of the excavator are
described, as they are essential to understand the dependability analysis conducted
in Sect. 11.2.4.

11.2.3.1 Operator

The Operator class is the first of the three principal classes. Although in a
physical sense the operator is not part of the controller hardware, the creation of
this class allows us to model the interaction between the human operator and the

11 Industrial Application of Co-modelling and Co-simulation Technology 229

Buttons 3
Operator . Controller
> Joystick 3 > S
CPU1 B Sl X CPU2
'T Indicators L
Joystick input 'E §
. 3 [
profile E =]
(csv-file) A 2
Plant o
:

5105U35

A

Safety unit

CPU3

Fig. 11.5 A context diagram of the VDM model of the excavator

system. The operator receives input from the controller by means of indicators
(lights and gauges on the dashboard), as well as visual feedback (the positions of
the components of the excavator). Based on this feedback, he can manually operate
the excavator using buttons and joysticks. The joystick handling at a given time is
imported by reading a table from a comma separated text file using the CSV standard
library.

11.2.3.2 Controller

The second principal class of the VDM model is the Controller class. The
controller has a total of ten inputs: four buttons (power on/off, emergency on/off,
start/stop and manual/assisted); three joysticks (one for each of the three Degrees
of Freedom (DoF): boom, stick and bucket); and three sensor values (the angles
between each of these components, measured with a relative encoder). Based
on a fixed time step (typically 100 Hz), the controller reads these input values,
processes them and provides three output signals to the actuators (again, one for
each DoF). Using the co-simulation engine, the controller exchanges the sensor and
actuator signals with the CT model of the excavator. The relationships from the
Controller class are shown in a class diagram in Fig. 11.6.

11.2.3.3 Safety Unit

The third and final principal class is the SafetyUnit. This class has a thread that
runs in parallel with the controller and also reads and processes the sensor values
(the sensor signals are split in the software and then sent to both the controller

230 M. Verhoef and P.G. Larsen

Movingfvg
.’\.‘
+ avgSpeeds
+ - MechElement
AngularSensor Controfler SamplingLogger
+ sensorBoom + sampleLoggers
+AngleLimits le | +Frequency:real -

1 | ~MaxMotorSpeed . real T ,i:
- MinMotorSpeed : real
- sale : bool

1

1+ sensorBucket

+ sensorStick

bultonEmergency
+ actuatorBucket [
g SwitchButton
+ actuatorStick + buttonManualMode

+ acluatorBoom 1

v
ValveActuator

Fig. 11.6 An overview of the relationships from the Controller class

and the safety unit). The safety unit is a redundant system that under normal
circumstances does not need to take any actions. It acts as a safety mechanism that
only comes into action when the controller fails. There can be different reasons for
such failures (e.g. a software bug, an unforeseen situation or a hardware failure), but
this is irrelevant from the point of view of the safety unit.

One specific function of the safety unit is to prevent the actuators from crashing
into their end stops, potentially resulting in breakdown of the entire excavator. Even
though the controller contains the intelligence to slow down the motion to a soft stop
before running into the end stop, the safety unit always makes an additional check to
ensure that a crash does not occur. Since the safety unit only makes simple checks,
it requires less processing power and thus runs on a lower-performance processor,
but at a higher speed.

When action is required, the safety unit intervenes in several ways simulta-
neously. Firstly, it triggers the emergency state of the controller, resulting in a
power shutdown of the excavator, thereby stopping all motion. This emergency state
will only be reached when the controller is still running. An example of this is a
controller failure due to an erroneous calculation of the limits. Secondly, the safety
unit overrules the output of the controller and thereby stops all motion. Lastly, the
safety unit opens three relays, by which power to all actuators is cut off. The system
can be restarted by following an explicit reset procedure where the controller has
only limited functionality at its disposal until the safe operating zone is reached
again.

11 Industrial Application of Co-modelling and Co-simulation Technology 231

Fig. 11.7 The different states W

of the controller class

PowerButton pressed
g EmergencyButton ‘off

artin: |

PowerOn

Initializing

PowerButton pressed

ManualButton ‘on’,

ManualButton ‘off’

Start/stop button
pressed

Assisted

Button

switched

11.2.3.4 Controller States

The controller class has seven different states, described by the informal state
diagram in Fig. 11.7. The initial state is “PowerOff”, in which the excavator is
unpowered. By pressing the “PowerButton”, the operator turns on power and the
controller goes to the “PowerOn” state and then to the “Initialising” state. This
state can be used to perform a homing procedure in which the actuators are moved
to their starting position. This position is then used as a reference such that the
read out of the relative encoders can be used to measure absolute angles between
the components. When the initialisation is done, the controller turns to the “Idle”
state. In the “Idle” state, the excavator is powered and the controller is running. By
pressing the “Start/Stop button”, the controller moves either to the “Manual” or the
“Assisted” state, depending on whether the “ManualButton” is switched on or off.
When the controller is in either of these two states, switching the “ManualButton”
turns the controller from the “Manual” to the “Assisted” state or vice versa. By
pressing the “Start/Stop button” again, the controller moves back to the “Idle” state.
When the operator pushes the “PowerButton” again, power to the excavator is shut
down and the controller returns to the “PowerOff” state.

Besides these normal states, the controller also has an “Emergency” state. This
state can either be triggered by the operator by turning on the “EmergencyBut-
ton”, or by the “SafetyUnit” when a dangerous situation is detected. When the
“Emergency” state is triggered, power is shut down and the controller moves to
the “PowerOff” state. As long as the “EmergencyButton” is on, power cannot be
restored and so the controller remains in the “PowerOff” state.

11.2.3.5 Modes of Operation

In normal operation, the controller runs in either “Manual” or “Assisted” mode.
These are the only two modes in which output signals can be sent to the actuators to
move the excavator. To prevent overload of the actuators by sudden changes in input

232 M. Verhoef and P.G. Larsen

speedPercentageAtAngle: MechElement * real x real ==> real
speedPercentageAtAngle (element, angle, speed) ==
(

let softlLimit = sensors(element).getSoftLimit (useMinAnglelLimits),

hardLimit = sensors(element) .getHardLimit (useMinAngleLimits)
in
if slowdownLimiter = 1.0
then ratio := 1.0 - (angle - softLimit) / (hardLimit - softLimit);

return if hardLimit > softLimit

then if angle > hardLimit
then 0.0
elseif angle > softLimit
then ratio
else 1.0

elseif hardLimit < softLimit

then if angle < hardLimit
then 0.0
elseif angle < softLimit
then ratio
else 1.0)

Fig. 11.8 A VDM model snippet of the motion limiter

by the operator, the controller smoothes out the input signals from the joysticks. This
is done by defining a slope, which limits the maximum rate by which the signal can
vary over time. Since the actuators have a limited range, we must also prevent them
crashing into their end stops. Therefore, the controller reads in the encoder signals
which are then used to determine the angles between the components. By setting
a limit to these angles, we can limit the movement of the actuators and prevent
these crashes. For both endpoints (beginning and end) three limits are defined. Two
of these, the soft and hard limit, are used by the controller. As soon as an actuator
passes the soft limit, the controller limits the output signal to this actuator. When the
actuator passes the hard limit, the signal is turned to zero. In between both limits, the
actuator signal is limited by multiplying the signal with a factor that scales linear
between O (hard limit) and 1 (soft limit). A VDM model snippet of this function
is shown in Fig. 11.8. This limiting is only activated when the actuator is moving
towards the end stop. When it is moving away from it, its motion is not limited.
The third limit that is set for this range limiting lies behind the hard limit. It is used
by the safety unit and when the actuator passes this limit the “Emergency” state is
triggered and power to the excavator is shut down. This safety mechanism is a last
resort that only kicks in when the controller fails.

In “Manual” mode, the operator drives each of the actuators directly by control-
ling the rotation speed between the components. In “Assisted” mode, the operator
drives the movement of the bucket (the translation in the x and z direction and
the angle between the bucket and the ground), while the controller translates the
requested motion into the individual rotation speeds of the components. It uses a
reverse kinematics calculation based on the measured angles between boom, stick
and bucket to generate setpoints for the linear actuators dynamically such that
perfectly straight and smooth movements can be made.

11 Industrial Application of Co-modelling and Co-simulation Technology 233

 20-sim 30 Animation
[ie e Bropertes Repley el Bl Yew Propeties Fecler Heb
aly ¢/ HHEH & T o Ix vlal ¢/ MHPEH S) e [B

Fig. 11.9 The standard digging motion used in some of the simulations (from top-left, top-right,
bottom-left to bottom-right)

11.2.4 Co-simulation Analysis

Using the co-model, different co-simulations have been executed investigating
several aspects of the behaviour of the excavator. This information was then used
to improve the functionality of the controller and to fine-tune the parameters of the
control algorithm. The most interesting results of these co-simulations are presented
in this section.

11.2.4.1 Ground Model

In a first experiment, a standard digging motion was performed (see Fig. 11.9) and
the mass of the ground load in the bucket was taken into consideration, as well as the
load on the actuators. This experiment was repeated for different values of the mass
density of the ground, to validate the impact of the ground model on the performance
of the system. Results of these simulations are shown in Fig. 11.10. Considering the
load of the boom actuator, it is possible that first there is a positive load (bucket goes
down), then there is no load (bucket moves towards the actuator) and then there is a

234 M. Verhoef and P.G. Larsen

Fig. 11.10 The mass of the 500 TTTTSETSEITIIIT 20
load in the bucket and the] £ I
load on the boom actuator] H B
250 1 H 15
z . : I =
i | s E N . [10 &
3] : [=
- ’ !
1 |—Load 1000kg/m? : B
-250 A |-+ Load 4000kg/m? : B
1 |—mass 1000kg/m?| [
1 |2+ - Massa000kg/m* / TRt
5004 e A —————+t 0
0 10 20 30
Time (s)

negative load (bucket goes up). Looking at the graph of the mass, we see that after
13 s, the bucket hits the ground and starts digging, thereby accumulating mass in
the bucket. The mass keeps increasing, until the bucket is retrieved from the ground,
at 20s. We can clearly see that the mass in the bucket scales with the mass density
of the ground. When the mass density in the bucket is higher, this has a significant
effect on the performance of the excavator. This effect only appears when the bucket
is pulled up again, thus after it has been filled, which demonstrates that the ground
model works appropriately.

11.2.4.2 Overload

One of the aims of this case study is to design a controller that assists the operator
so that overloads of the system are avoided. In the controller model, two types of
overload protection are included. The first type is protection against abrupt changes
to the input of the actuators, resulting in high accelerations and thus loads. An
example of this is the situation where the operator pulls the joystick rapidly from one
end to the other, resulting in an abrupt switching in the direction of the actuator’s
motion (i.e. from full speed backward to full speed forward). This abrupt change
in input and the resulting load on the actuator are shown in Figs. 11.11 and 11.12.
Due to inertia, this results in a very high load on the actuator (the maximum load on
the actuator in the test setup is specified at 500 N), enough to cause severe damage
to it. To prevent this overload, the controller needs to smooth the joystick input
before passing it to the actuator. This smoothing is implemented by a ramp function,
defined by a maximum slope (per increase in input voltage per second). A different
slope can be set for the forward and backward movement. The figures show the
result for an input smoothing with the controller running at 10 Hz and at 100 Hz.
Using this smoothing function, we see that the load on the actuator becomes much
smaller, thus preventing an overload.

11 Industrial Application of Co-modelling and Co-simulation Technology 235
Fig. 11.11 The input signal -
to the actuator, as function of 5 4|Step input
time. The step input —Smoothed input 10 Hz
. b mp . -Smoothed input 100 Hz
represents the abrupt signal = 44
that is received without an “;
intervention of the controller, 2 3 4
as opposed to the signals that °C 1 el
are smoothed by the % 24 1 A
controller 3 g < A
< 1- ’.“ A
\ 4
0 ; 3 ; ;
0 1 2 3 4 5
Time (s)
Fig. 11.12 The load on the 500
actuator, for a step and a —Step input
smoothed input —Smoothed input 10 Hz
= 250~ Smoothed input 100 Hz
ey f
m
o 0 — Jl‘»
=3 ™ W
< -250-
‘500 T T T T
0 1 2 3 4 5

Time (s)

11.2.4.3 Endstop Protection

The second protection mechanism prevents the actuator from actually crashing into
its physical end stops. In order to achieve this, two additional protection mechanisms
have been included, one in the controller and one in the safety unit. The input signal
and the resulting actuator load are shown in Fig. 11.13. Without any protection
mechanism, the input signal to the actuator remains at full speed and the actuator
crashes into the end stop, resulting in a very high load.

The protection mechanism of the safety unit terminates motion immediately
when such a crash is imminent. Although this mechanism prevents a crash with
the end stops, it still does this in an abrupt way which also introduces a high load on
the actuator. However, this is acceptable as the hard stop will not be used in every-
day operation but only in case of emergency, that is, when the controller fails. In that
case, the emergency stop is more important than potential damage to the system, for
example a person might be in harms way, which requires immediate action leading
to a full stop as soon as possible.

The mechanism modelled in the controller also terminates the motion, but it does
this in a smooth way, by slowing down the motion between a soft angular limit and

236 M. Verhoef and P.G. Larsen

Fig. 11.13 The input signal
to the actuator as function of 51
time. The collision signal
corresponds to the simulation g 4 4
without any protection, safety &
refers to the protection o
mechanism implemented in -
the safety unit and slowdown % p s
. . —Collision
is the mechanism o sty
implemented in the controller < 1 slowdown fast
—Slowdown slow
0 L) T L)
0 2 4 6 8

Time (s)

a hard one. The distance between both limits defines how fast the motion is slowed
down, which clearly has an impact on the load on the actuator. When choosing this
distance, a compromise has to be made between the maximum allowed load, the
performance of the system and the useful angular range of each component. This
was determined using the Automated Co-model Analysis feature of the Crescendo
technology presented in Sect. 10.2.

11.2.4.4 Emergency Switch

In a final collection of co-simulation experiments, the effect of the emergency switch
has been validated. Two co-simulations were performed, where first the system was
powered on and then started. Then a certain input signal was given by the joystick
and the encoder value of the actuator was logged, as shown in Fig. 11.14. In the
second co-simulation, the emergency switch was pressed after 3 s, after which the
excavator came to a halt. With the emergency activated, we then tried to restart the
system, but the system did not respond, thus indicating that the emergency switch
works correctly. Here the system can only be restarted after an entire power-down.

11.2.5 Key Results and Observations

Based on the experiences in the case study, Verhaert concluded that the Crescendo
approach has added great value for modelling complex systems like the dredging
excavator. They report that it enables teams with different technical backgrounds to
work easily together on the same project. Interfaces can be managed by models
instead of writing and maintaining lengthy documents (typically tens to several
hundreds of pages). The software team can develop and verify the control software
in combination with a relevant physical (yet virtual) model. The machine design

11 Industrial Application of Co-modelling and Co-simulation Technology 237

Fig. 11.14 The joystick 6 . 180
input and the encoder value —oystick | s L 160
as function of time. The - 5 ;;ﬁ:::r{em] 140
Flifferent button presses are 2 44].. Encoder (em) “3"
indicated below the time axis. % - 120 %
The dotted lines represent the g 34 - 100 2
additional buttqn presses in Y T Y L 30 g
the second co-simulation, the @ o

R K =3 60 o©
one in which the emergency o 14 =
was activated and the operator < : - 40
tried to restart the system 04 - 20

. 1 T T l: . T = 0
0 | 1 2 3 Mt 5
Start Time (s) Start Start
Emergency

team can verify the behaviour of the machine as driven with the control software
and it can improve the mechanical (or hydraulic) design where needed.

In their opinion, this is particularly interesting for complex controls, for example,
multiple states of the excavator and inverse kinematics as part of the control, and for
the combination of mechanics and hydraulics. More scenarios than in real life can
be tested, and more parameters can be monitored. Our approach also allows for
off-nominal or critical simulations that are difficult or dangerous to perform with
real hardware. Upscaling the model from a test setup to full scale also allows the
designer to check for differences in behaviour between lab scale and full scale. That
information can be used to guide the design of the full scale machine and control.

By their detailed modelling of the controller, Verhaert discovered some short-
comings in the initial implementations of the controller that would have been
hard to find with other simulation tools. For example while testing the end stops,
Verhaert discovered that the assisted mode control behaved in a strange way. After
this observation, some changes were made to their controller to accommodate this
shortcoming. These changes were first checked in the model and then validated on
the setup. Our approach also enabled Verhaert to efficiently validate their emergency
supervisor. Last but not least, Verhaert modelled, implemented and successfully
demonstrated a fully working version of their “assisted mode” excavator operation
on their scale model test setup.

11.3 A Document Handling System

11.3.1 Case Description and Main Challenges

The Neopost case study concerns the model-based design of a document inserting
system, whereby different sheets of paper need to be folded and inserted into
envelopes. Such a document inserting system, as shown in Fig. 11.15, has a number

238 M. Verhoef and P.G. Larsen

Fig. 11.15 Layout of a Neopost document inserting system: (1) Document bins, (2) collator area,
(3) folding area, (4) inserting area, (5) closing area and (6) document exit

of bins containing printed documents and a bin containing empty envelopes.
Depending on settings for the application job, the system will separate documents
from the available piles (1) in the right order, transport them sequentially to a
collator area (2) until the document set is complete. Then, the set will be folded
(possibly more than once) and transported to the insert area (3). Meanwhile, an
envelope has been separated from the pile of envelopes. This envelope is transported
to the insert area and opened mechanically (4). At the insert area, the folded set of
documents will be inserted into the envelop (5). Finally, the filled envelope will be
glued, closed and transported to the exit of the system (6).

Co-models were developed by Neopost to study the misalignments of documents
with respect to each other and/ or the heart line of the paper path. This is important,
as large misalignments may lead to uncontrolled collisions between documents
and envelopes which is critical to quality for document inserting systems, as
these collisions may lead to paper jams and hence significant loss of productivity.
Understanding how the different causes of misalignment contribute to the total
misalignment of a set of folded documents during the insertion process might
give direction to how to distribute the available effort over the different possible
improvement activities, and this was the main research topic, using our approach.

Due to commercial confidentiality, we cannot show the actual DE and CT models
of the document inserting system produced by Neopost. But fortunately, to a large

11 Industrial Application of Co-modelling and Co-simulation Technology 239

Paper Input Module PDpim Paper g:ilc:i)es Pinch PDcorr PDfyse Output tray
o -~ =l - | -~
RO O QN 9
Fig. 11.16 Schematic overview of the experimental setup from [3]
«— controller (discrete) plant (continuous) — motor belt pinch paper

pwm | JROR SO

enc ! .
controller - electronics

encoder sensor

Fig. 11.17 Overview of the controller—plant I/O interface

extent the modelling of this device has great similarity to the paper path control for
a digital printer that has been studied in the BODERC project [96]. Thus, we will
describe the main characteristics of the BODERC paper path and its experimental
setup instead here. Figure 11.16 presents a side view of the paper path. It consists,
from left to right, of a single paper input module with a built-in sheet separation
device, and four pinches to transport the paper towards the output tray. Each pinch
is driven by an electric motor through a belt and each motor is equipped with a
rotary encoder. Simple paper guides are used to lead the paper from pinch to pinch
and optical sensors are available to detect the edges of the sheet.

Figure 11.17 presents the overall controller architecture, for a single motor—pinch
pair. The digital controller produces a PWM signal which is connected to a power
amplifier. The power amplifier produces an electric current that is proportional to
the PWM signal. The motor torque is in turn proportional to the current supplied
by the amplifier. The motor torque is transferred to the pinch through a belt, while
rotation of the motor axle (and not the pinch axle) is measured by a rotary encoder.
Each pinch consists of two rubber rollers which are mounted such that their surfaces
touch. Paper can then be transported due to friction by inserting a sheet in between
the rubber rollers. The position of the leading and trailing edge of a sheet can be
measured with an optical sensor, the paper detector, which triggers as soon as the
light levels are changed by the passing sheet.

The paper path setup emulates the behaviour of a high-volume digital printer,
whereby each motor—pinch pair has a specific control function to perform. The first
pinch is used to stabilise the speed of the paper coming from the paper input module.
The second pinch is used to decelerate, stop and accelerate each sheet in order to
simulate the alignment process. The purpose of the third pinch is to deliver the sheet
at exactly the right time and at the right constant speed at the fourth pinch. The
fourth and final pinch represents the printing process, where the image is put on the
sheet. This pinch delivers each sheet in the output tray. The overall control goal is to

240 M. Verhoef and P.G. Larsen

maximise throughput while ensuring that individual sheets never touch each other
while in transit, and ensuring that alignment of each image on each sheet remains
within the set accuracy requirement. We will first introduce the continuous time
model in Sect. 11.3.2 and then the discrete event model in Sect. 11.3.3. Afterwards
Sect. 11.3.4 presents the co-simulation analysis conducted on this co-model and
finally Sect. 11.3.5 provides an overview of the key results of this study.

11.3.2 The Continuous Time Model

The top-level bond graph model of the plant is shown in Fig. 11.18. At the bottom of
the figure, we see the interface towards the controller. There is a pair of PWM and
encoder signals connected to each motor-belt-pinch icon.! These icons represent
lower level bond graph models, or submodels, which we will present later in more
detail. The plant model has four motor-belt-pinch submodels while our experimental
setup has five. The first motor in the setup is only used to inject new sheets
into the paper path. Since its operation is only of minor importance to the total
system behaviour it is only abstractly represented in the plant model by means
of the FeedSheet signal. The behaviour of the individual sheets is represented
by the photographic icon. This submodel maintains the state of each sheet in the
paper path, such as for example its current speed and position. The state of the
PaperDetectors signal is automatically derived from this information. If the
position of a paper detector is in between the leading and trailing edge of at least
one sheet then it will yield 1 else 0.> Similarly, the sheet is under the control of a
pinch if the position of the pinch is in between the leading and trailing edge of the
current sheet position. The animation icon is used as a monitor which allows us to
visualise the simulation graphically.

The pinches drive the sheets and this transfer of energy is influenced by friction.
In kinematic models the friction is assumed to be zero but this is usually not very
realistic. The friction force which is imposed on each sheet is a function of the
mass of the sheet and the speed difference between the sheet and pinch. Of course,
the friction force is imposed if and only if the sheet is in control of a pinch. What
happens if a sheet is under the control of two pinches? In our model, we assume that
the pinch near the leading edge of the sheet dominates the pinch near the trailing
edge. The assumption is that the force imposed by the leading edge pinch will cause
the sheet to slip in the trailing edge pinch. This abstraction can be used if and only
if the speed of the leading edge pinch is equal to or slightly higher than the speed
of the trailing edge pinch. This condition can be checked at simulation time. Only
a very trivial friction model is used here, but it can simply be replaced by more
complex hybrid friction models if the need arises, without affecting the plant model
architecture demonstrated here.

'The Neopost document handling system also makes use of pinches for transporting the paper.
2Similar paper detectors are used in the Neopost document handling system.

11 Industrial Application of Co-modelling and Co-simulation Technology 241

FeedSheet

FrictionModel

Animation

Pinch1 inch2 / \F’inch.’i Pinch4

() () Q

v
PaperDetectors PWM ENC

Fig. 11.18 Top-level bond graph of the plant model

The bond graph submodel for the motor, belt and pinch is presented in Fig. 11.19.
This iconised diagram demonstrates at a very high level of abstraction how the
control signal relates to the movement of the sheet. For example, observe that the
behaviour of the power electronics, the so-called H-bridge, has been modelled as a
simple multiplication (or gain) factor. In other words, the amount of power provided
to the motor is linearly proportional to the duty cycle of the PWM input signal
obtained from the controller. The motor converts this electrical energy into torque.
The torque causes the belt to rotate and the belt in turn drives the pinch, whereby
the “Belt and Gear” submodel simply multiplies the rotational speed of the motor by
the gear ratio. And finally, the pinch transfers its energy towards the sheet of paper
as described previously. The angular velocity is measured at the motor axis and this
value is multiplied by 27 to obtain the number of rotations per second. We will see
later how this value is converted into encoder values in the detailed I/O interface
model.

242 M. Verhoef and P.G. Larsen

Belt and Gear

PaperPower

H_Bridge Motor Pinch

d/ InternalMotorVelocity

MotorVelocity K L’-

Rad2Rev

Driving Coupling Driven

Fig. 11.19 Bond graph of the motor, belt and pinch subsystem

Electricallnductance InertiaMotorAxis
| |
electricity >MSe 11t GY 11t rotation
L MotorConstant L
R R
Electrical Resistance CoulombFriction

Fig. 11.20 Bond graph of the DC motor from Fig. 11.19

The “DC motor” icon in Fig. 11.19 is itself a bond graph submodel as shown
in Fig. 11.20, which again demonstrates the explicit hierarchy in the model. The
inductance L, internal resistance R, motor torque constant, rotor inertia and
Coulomb friction parameters required by this submodel can usually be found in
the supplier data sheet.

Finally, we revisit the I/O interface model. The I/O model acts as a mediator
between the discrete time controller model and the continuous time plant model,
as shown earlier in Fig. 11.17. In other words, discrete values need to be converted
into continuous signals and vice versa and we have to ensure that this conversion
process does not affect the overall analysis at the system level. A detailed overview
of the I/O model is shown in Fig. 11.21. The top row demonstrates from left to right
how the discrete PWM values are converted into their continuous counterpart, in
this case an analog voltage between (—1, 1) V.

11.3.3 The Discrete Event Model

The control application will have to satisfy different goals simultaneously. The
behaviour of a sheet, in terms of its speed through the paper path, is graphically
presented in Fig. 11.22. The numbers 2—4 correspond to the pinch that is in control
of the sheet at a given point in time. The grey areas indicate where the paper is in
control of two pinches simultaneously.

11 Industrial Application of Co-modelling and Co-simulation Technology 243

——
PWM_In—>» ——»PWM_Out

Delay PWM

ENC_Oute—— <«<——ENC n

SampleENC RoundENC Rev2Pulse Vel2Rev

T —
PD_oute——— <——PD

SamplePD RoundPD Gain

Fig. 11.21 Detailed overview of the I/O interface model

— |

Vfu5e I B 4 &
/ 2 \ / 3 4 lpdcorr
T
t

ot

pim stop fuse

Fig. 11.22 Overview of a typical sheet velocity profile

This velocity w is determined by the required system throughput performance as
described in the following equations:

Viom = (pagesize + isd) - tp/ 60 (mm/s) (11.1)
® = Viom/27 * 'pinch (rad/s) (11.2)

whereby pagesize represents the length of a sheet (in mm), isd represents the inter-
sheet distance (in mm), #p represents the throughput (in pages per minute) and finally
T'pinch Tepresents the radius of the pinch (in mm). The inter-sheet distance is defined
as the distance between the trailing and leading edge of two consecutive sheets. The
primary task of the paper path subsystem is to deliver each sheet on time and at the
right speed at the pinch.? This requirement has two implications:

3For the Neopost document handling system, similar requirements are present for preventing
skewing of paper when folding.

244 M. Verhoef and P.G. Larsen

1. With respect to on time. The inter-sheet distance shall be maintained in order to
meet the required system performance and to ensure the correct alignment of the
image on the sheet. A maximum deviation of 0.5 mm is allowed exactly at the
pinch but the inter-sheet distance may vary elsewhere as long as two consecutive
sheets do not collide or overlap.

2. Withrespect to right speed. The leading edge of each sheet shall have the nominal
speed Vyom just before it is in control of the pinch. A maximum deviation of Vo
of 2 % is allowed.

Now the main control goal has been identified, we can look at the secondary tasks
to perform by the control application. Considering the pinches in the experimental
setup, we have the following additional requirements:

1. The first pinch is part of the paper input module and it is used to retrieve sheets
from the tray. The challenge is to ensure that single sheets are separated. The
solution is to control this motor belt pinch subsystem in open loop. Basically
the motor is told to accelerate as fast as possible for a very short period of time
and then immediately decelerate. The friction force between the pinch and the
top sheet is larger than the friction force between the top two sheets, which will
cause clear separation of a single sheet.

2. The purpose of the second pinch is to get the sheet under control by moving it
down the paper path at the nominal speed V;,om-

3. The purpose of the third pinch is to decelerate, stop and accelerate the sheet. The
length of the stop period can be defined by the super-user setting up experiments
on the paper-path.

4. The purpose of the fourth pinch is to ensure that the sheet is delivered with the
correct inter-sheet distance and speed to the exit of the paper path. It will have to
compensate for the time lost during alignment of the sheet at the previous pinch.

The control application will have to satisfy all these sub-goals simultaneously.
The behaviour of a sheet, in terms of its speed through the paper path, is graphically
presented in Fig. 11.22. The numbers 2—4 correspond to the pinch that is in control
of the sheet at a given point in time. The grey areas indicate where the paper is in
control of two pinches simultaneously.

We will take a step-by-step look at the lifetime of a sheet during its travel through
the pinches in order to get a feeling for the control complexity involved. The events
mentioned are also shown in Fig. 11.22 (similar to the DE-first approximations
shown in Fig. 8.16b).

1. A new print job arrives and the image processing starts. Meanwhile, pinches 2—4
are booted up until they run at Vo, and then the first sheet is requested from the
paper input tray. The sheet is separated by pinch 1 and it is inserted into the paper
path. It will hit pinch 2 with some force and at the wrong speed since we use a
rather brute force separation method.

2. Pinch 2 accepts the first sheet and will try to stabilise its speed to Vom. The
timing tolerance caused by the brute force separation is known when the leading
edge of the sheet is detected by PD,;,,, as shown by the 1-arrow.

11 Industrial Application of Co-modelling and Co-simulation Technology 245

sheet [Fh, set point b
planning [1 profiles
»| Sequence loop |
) control [fF———=—=--] control =
supervisory P [——=——]

control

paper detectors

H pwm/enc

A

Fig. 11.23 An informal overview of the three tier control application architecture

3. The sheet continues to move downstream and gets into joint control of pinches 2
and 3 (the first grey area in the figure). The control application knows that the
sheet has left the control of pinch 2 when the trailing edge of the sheet is detected
by PDim, as shown by the | -arrow. The alignment phase of the sheet can now
start because pinch 3 is in full control. The deceleration needs to be quick enough
to ensure that the leading edge of the sheet does not reach pinch 4.

4. The sheet is accelerated to Vpom after the user-defined alignment time 8t ., has
expired. The acceleration must be performed quickly to ensure that the nominal
speed has been reached before the leading edge of the sheet hits pinch 4.

5. The sheet continues to move downstream and gets into joint control of pinches 3
and 4 (the second grey area in the figure). The control application knows that the
sheet has left control of pinch 3 when the trailing edge of the sheet is detected
by PDyjign, as shown by the |-arrow. The correction phase of the sheet can now
start because pinch 4 is in full control. The sheet is accelerated to compensate for
the time lost in the alignment phase and the tolerances caused by the brute force
sheet separation.

The informal description of the requirements for the control application listed
above gives us some inspiration for the control application architecture that is
required to address these challenges. From the engineering point of view, it is
usually a good idea to apply the “separation of concerns” principle, for example
to divide the time critical parts from the less time critical parts of the application.
In fact, we will provide each motor-belt-pinch subsystem its own controller in
our architecture because the requirements differ and they may be deployed on
different hardware in the final implementation. In contrast, the timing requirements
for the high-level sheet flow control, as presented in the sheet life-cycle are far less
demanding and a single application may suffice for this purpose. The linking pin
between this high-level supervisory control layer and the real-time controllers is a
set of so-called sequence controllers, one per real-time controller. These sequence
controllers generate so-called setpoint profiles ahead of time, based on the planning
information received from the supervisor. An informal overview of this well-known
three tier control application architecture is shown in Fig. 11.23.

An extract of the VDM-RT models for the controller application architecture
is presented in a bottom-up fashion. We start at the plant model interface and the
real-time loop controller and work our way up towards the supervisory control.
Each motor-belt-pinch subsystem has an interface consisting of a PWM input

246 M. Verhoef and P.G. Larsen

and encoder output (ENC). This interface is well suited for feedback control.
A standard PID control strategy will be used for pinches 2-5. The real-time
controller will periodically sample the encoder value. This value is a measure for
the distance covered and it is compared to the so-called setpoint, which represents
the intended value. The difference between the two is called the error and with the
PID algorithm we calculate a new PWM value to compensate for this measured
error, by accelerating or decelerating the motor accordingly. The four PID loop
controllers will operate at 1 kHz in our controller models. Open loop control is used
for pinch 1. Basically, the setpoint is forced upon the motor-belt-pinch system by
writing the correct PWM value but the encoder value is ignored. For convenience,
the loop controller for pinch 1 will also run at 1 kHz.

11.3.3.1 The Loop Controller

Consider the VDM-RT model for the loop controller shown below. The constructor
of the active class LoopController takes two arguments. The first argument,
ptp, determines whether the calculated output value is sent to the plant model at
the start of the next iteration or immediately. The second argument, p£b, is used to
distinguish the control strategy: closed loop or open loop.

P
class LoopController

instance variables
—-— time-triggered (true) or immediate output (false)
private hold : bool := true;
—-— closed loop (true) or open loop (false)
private feedback : bool := true

operations
public LoopController: bool % bool ==> LoopController
LoopController (ptp, pfb) ==

(hold := ptp; feedback := pfb)
. J

The instance variable output is used to temporarily store the calculated PWM
value. The operation Ctr1Loop implements the real-time control strategy and this
operation is periodically executed.

The operation getSetpoint used inside CtrlLoop retrieves the setpoint
from the passive SetpointProfile object for the current local time 1time.
Setpoint profiles are the interface between the loop and sequence controllers. The
setpoint profile can be updated by the sequence controller by calling the asyn-
chronous addProfileElement operation. The operations get Setpoint and

11 Industrial Application of Co-modelling and Co-simulation Technology 247

instance variables

private output : real := O;
private ltime : real := 0
operations
public CtrlLoop: () ==> ()
CtrlLoop () ==
-— first retrieve the current encoder value
(del enc : real := getEnc();

—— update the old output if time-triggered
if hold then setPwm(output);
—-— calculate the new PWM value

output := if feedback
then limit (calcPID (enc)) —-— closed loop
else limit (getSetpoint()); -- open loop

—-— update the output if not time-triggered
if not hold then setPwm(output))

thread
—-— execute the controller at 1 kHz
periodic (10E6, 0, 0, 0) (CtrlLoop)

addProfileElement are declared mutual exclusive to prevent data corruption
by simultaneous access to the profile instance variable.

instance variables
profile : SetpointProfile := new SetpointProfile ()

operations
private getSetpoint: () ==> real
getSetpoint () == profile.getSetpoint (ltime);

async public

addProfileElement: real x real * real ==> ()

addProfileElement (px, py, pdt) ==
profile.addElement (px, py, pdt)

sync
—-— access to the profile is mutual exclusive
mutex (addProfileElement, getSetpoint);
mutex (addProfileElement)

end LoopController

248 M. Verhoef and P.G. Larsen

11.3.3.2 The Setpoint Profile

The passive class SetpointProfile is used as a container to collect all
knowledge about manipulating so-called setpoint profiles. A setpoint profile is an
ordered collection (a sequence) of left-closed, right-opened, line elements which
together define the evolution of the setpoint over time similar to the strategy
followed in Sect. 8.5.4. Each line element, or ProfileElement, is defined by
three real numbers. The first number defines the domain: the starting time # at which
this element is valid. The second and third number define the range: the current value
at time ¢ and the direction coefficient that is valid from this point in time onwards
respectively. Setpoint profiles are defined from some point in time to infinity, since
the last element in the profile is right-opened. The invariant of the profile
instance variables ensures that the domain is strictly monotonically increasing but
it does allow discontinuities in the range. The operation addElement can be used
to extend the current setpoint profile.

class SetpointProfile

types
private ProfileElement = seq of real
inv pe == len pe = 3

instance variables
profile : seq of ProfileElement := [];
inv forall i, j in set inds profile &
i < 3 => profile(i) (1) < profile(j) (1)

operations
public addElement: real x real x real ==> ()
addElement (t,v,a) ==
profile := profile = [[t,v,a]l]

pre len profile > 0 => profile(len profile) (1) < t
. J

The operation getSetpoint is used to compute the actual setpoint at some
specific point in time based on linear interpolation of the abstract continuous time
description maintained in the profile instance variable. Consider the example

[[[0,0,01, [1,0,11, (2,1,0], [4,1,-1], [5,0,0]] J

This trapezoid setpoint profile ramps up from (1, 2) and ramps down from (4, 5).
Hence, getSetpoint (1.5) would yield the value 0.5.

11 Industrial Application of Co-modelling and Co-simulation Technology 249

-
operations

public getSetpoint: real ==> real
getSetpoint (t) ==
if len profile = 0
then return 0
else (dcl prev_pe : ProfileElement := hd profile;
for curr_pe in tl profile do
if curr_pe(l) > t
then return calcSetpoint (t, prev_pe)
else prev_pe := curr_pe;
return calcSetpoint (t, prev_pe))
pre t >= 0 and len profile > 0 => t > profile(1l) (1)

functions
private calcSetpoint: real *x ProfileElement —-> real
calcSetpoint (t, [px, py, pdydx]) ==
py + pdydx x (t - px)
pre t >= px

end SetpointProfile
~

11.3.3.3 The Sequence Controller

The active class SequenceController contains the knowledge to translate
high-level paper path planning commands into setpoint profiles that are used by
the loop controllers. Each sequence controller is associated with exactly one loop
controller loopctrl.

class SequenceController

instance variables
public loopctrl : [LoopController] := nil

The operation initNominal is used to power-up the pinches until they reach
the nominal paper path speed v_nom. The motors are not started at full throttle
immediately, but they are ramped up gradually. The user can influence the power-up
time by setting the acceleration parameter a_nom.

The operation setStopProfile is used to bring the sheet in the paper path to
a complete stand still for dstop seconds. The procedure will start at #; with speed
v mm/s and the sheet will accelerate and decelerate with acc mm/s2.

250 M. Verhoef and P.G. Larsen

operations
async public initNominal: real * real ==> ()
initNominal (v_nom, a_nom) ==
(—— ramp up the motor to the nominal paper speed
loopctrl.addProfileElement (0, 0, a_nom);
—-— and maintain a constant speed indefinitely
loopctrl.addProfileElement (v_nom/a_nom, v_nom, 0))
pre v_nom > 0 and a_nom > 0 and loopctrl <> nil;

async public initPeak: real ==> ()
initPeak (tpeak) ==
—-— give the sheet a good kick for 60 msec
(loopctrl.addProfileElement (tpeak, -40, 0);
loopctrl.addProfileElement (tpeak+0.060,0,0))

pre loopctrl <> nil
S

-
operations

async public
setStopProfile: real x real x real x real ==> ()
setStopProfile (tl, vl, acc, dstop) ==
def dt = vl / acc in
(loopctrl.addProfileElement (tl, vl1, -—acc);
loopctrl.addProfileElement (t1+dt, 0, 0);
loopctrl.addProfileElement (t1+dt+dstop, 0, acc);
loopctrl.addProfileElement (t1+dt+dstop+dt, v1,0))
pre acc <> 0 and loopctrl <> nil

end SequenceController

(S

11.3.3.4 The Supervisory Controller

The active class Supervisor represents the supervisory control in our architec-
ture. It has four instance variables of type SequenceController. The links to
these objects are created at model instantiation time. Each sequence controller takes
care of one motor-belt-pinch subsystem.

The core functionality of the supervisory control application is captured in the
operations that respond to the paper detectors. For example, the pimDownEvent
operation will be called whenever a trailing edge of a sheet has been detected by
paper detector PD,;,,. This event signals the start of the alignment process which
will bring the sheet to a complete stand still, in our case for 100 ms.

11 Industrial Application of Co-modelling and Co-simulation Technology 251

(class Supervisor
instance variables
public ejectSeqCtrl [SequenceController] := nil;
public pimSeqgCtrl [SequenceController] := nil;
public alignSeqgCtrl [SequenceController] := nil;
public corrSeqgCtrl [SequenceController] := nil;
S
operations
—-— operation to initiate the alignment procedure
async public pimDownEvent: () ==> ()
pimDownEvent () ==
—-— start decelerating in 10 msec from now
def dectime = time + 0.01 in
alignSegCtrl.setStopProfile (dectime, 50, 500, 0.1)
pre alignSegCtrl <> nil
~ J

11.3.4 Co-simulation Analysis

In the case of the paper path models presented in the previous section, we
encountered two significant problems that were only exposed during co-simulation.
Interestingly, neither problem was found during CT-only analysis nor during DE-
only analysis, which demonstrates the added value of our approach.

The first problem was a simple mistake with potentially severe consequences.
The VDM-RT controller model used mm/s as the unit of measure in the setpoint
profiles, but the loop controller measured the distance covered in radians. Hence,
the integrated setpoint values provided to the PID controller were incorrect, causing
the wrong output values to be calculated because the error was off the chart at
every iteration, leading to the constant spin-up of the motor at maximum speed. The
root cause of this problem was easily identified since it is very simple to monitor
model parameters during simulation. It would have taken substantially more time
and effort if the cause of the problem had to be investigated on the embedded target
(implementation).

The second problem was slightly more complex but is also due to a misinterpre-
tation of the informal requirements. The designers of the plant model assumed that
the time earmarked for the alignment of the sheet also included the time required to
decelerate the paper. However, the designers of the controller model followed a strict
interpretation of the requirement: the time needed to decelerate is not included in
the alignment time. The designers of the plant model performed a simulation using
a simplified controller model and claimed that an inter-sheet distance of 50 mm was
feasible at a productivity rate of 50 pages per minute and an alignment time of

252 M. Verhoef and P.G. Larsen

o] wawm

I LoopCamen MestCamess | 000003/ 000015 Frass: 344

Fig. 11.24 3D visualisation of the paper path co-simulation in 20-sim

200 ms. However, when the experiment was performed on the experimental setup
it turned out that their controller model was incorrect and they circumvented the
problem by increasing the inter-sheet distance to 100 mm, reduced the alignment
time to 100 ms and operated the alignment motor with maximum acceleration and
deceleration values.

As sometimes happens in real life, these lessons learnt were not properly
documented and communicated. Therefore, the designers of the controller model
based their design on the wrong data. This issue became very clear when the
controller model was tested in combination with the plant model. Both the different
assumption about the same requirement as well as the lack of communication
of the insight gained from the plant experiments were easily identified using the
visualisation capabilities of 20-sim. The plant model designers developed a three
dimensional model of the paper path as a plug-in to their plant model. This interface
is shown in Fig. 11.18. The visualisation runs in parallel with the co-simulation,
whereby the virtual prototype is fully synchronised with the simulation state. It
also provides the ability to stop, rewind and replay the visualisation such that the
system behaviour can be inspected in detail. Using this facility it was demonstrated
convincingly that two consecutive sheets would always collide if the original
parameters were used. An example of the visualisation is shown in Fig. 11.24.

Both examples illustrate a key problem occurring in industrial practice: errors
are made in critical design parameters (unvalidated assumptions) due to lack of
communication in the design team. Co-simulation exposes these issues early in the
development life-cycle.

11 Industrial Application of Co-modelling and Co-simulation Technology 253
11.3.5 Key Results and Observations

Neopost Technologies confirms these findings from the BODERC project as they
had similar experiences as those listed in the paper path case study. The co-
modelling approach forced the CT- and DE-groups of engineers to communicate
right from the start of the project, which was experienced as being of great value for
the mutual understanding and overall project progress.

With respect to the system under development, Neopost identified and solved
several flaws in the system design due to the co-modelling work performed.
Actually, these defects were discovered even before physical parts of the system
were realised, which saved several weeks of development time. In fact, the entire
software implementation was written and tested using a system mock-up that
was directly based on the Crescendo co-simulation models. This allowed parallel
development of both hardware and software and also significantly reduced the
time required to perform software integration when the physical system became
available. This integration process was also smoother than usual, saving again
several man months in development lead time. But even when the hardware became
available, the Neopost engineers kept using and maintaining the development
approach based on the Crescendo models, because of the following:

* In the early stages of the project, the simulator was working more reliably and
was more flexible than the real physical system. This meant that by using the
simulator instead of the real machine, the engineers could concentrate on the
development of their software instead of keeping the mechanics running.

* The availability of the simulator was greater than the availability of the real
machine. The system prototype turned out to be under constant development and
near constant maintenance led to low availability for the software engineers. This
became of crucial importance when the development team grew and only a few
systems where available.

11.4 The ChessWay Self-balancing Scooter

11.4.1 Case Description and Main Challenges

The ChessWay case study and its main control challenges were introduced in
Sect. 7.3, and models of the ChessWay have been used to illustrate the DE-first
approach to co-model creation (Sect.8.5.4), and approaches to the modelling of
faults and fault tolerance (Sect.9.8). In this section, we report on the actual
development of the ChessWay study within Chess.

One of the main motivations for the study was the need to explore the range
of potential faults. In fact, before following the DE-first approach presented in
Sect. 8.5.4, an abstract model was produced of the full system with the purpose
of identifying interfaces, considering safety aspects and analysing potential fault

254 M. Verhoef and P.G. Larsen

handling strategies as early as possible. The emphasis of this model has been on
initial exploration of the system complexity, rather than on model structuring and
analysis from a traditional object-oriented point of view, or co-simulation. However,
this model provided valuable insights that have been transferred over into the DE-
first approach shown in Sect. 8.5.4. An overview of this initial model can be found
in Appendix D.

11.4.2 The Continuous Time Model

The initial CT model described the dynamic behaviour of the ChessWay self-
balancing scooter limited to two-dimensional space, so it could only ride forward
and backwards, and assumed only a single-driven wheel, whereby the digital (closed
loop) control was embedded deep within the CT model. When co-simulation with
the initial DE model was acceptable, the CT model was expanded to a 3D setting,
with two independent driven wheels including steering, and potential faults were
also incorporated. Moreover, the closed loop control was partly moved from the CT
model to the DE model. This top-level CT model is presented in Fig. 11.25. At the
top, we see two independent PWM signals, coming from the DE model, that drive
the power amplifiers, one for each wheel. Each wheel has an explicit contact model
which reflects the energy transfer between the wheel and surface, which in turn
might depend on its actual location. This allows the execution of experiments with
different surface models, independent from the system model. Last but not least,
the CT model provides the current forward speed and the angle of the handlebar as
input back to the DE model.

11.4.3 The Discrete Event Model

A distributed controller architecture was chosen for the ChessWay, whereby each
wheel has its own controller. This was done on purpose in order to demonstrate and
expose typical reliability challenges that occur in these type of architectures. Each
motor controller is guarded by a safety, which has the task to intervene and put the
system in a fail-safe state if a fault is detected. The fail-safe state condition for the
ChessWay is the situation whereby both motors are not actuated and free running.
Furthermore, the system should be able to recuperate from such an intervention and
return to normal operating mode if the root cause of the fault has been removed, for
example, due to the user’s intervention.

An overview of the distributed controller architecture of the ChessWay is shown
in Fig. 11.26. Each controller has its own safety monitor and a motor controller. The
architecture seems mirrored, but note that only one of the safety monitors has direct
physical access to the safety key, the other safety monitor needs to communicate
over the bus connecting the two controllers to access the device remotely, see
Fig.7.5. If the safety key is removed, then the safety monitor will move to the

11 Industrial Application of Co-modelling and Co-simulation Technology 255

Pumit % LP-1 |
filter

frction
R i1 l 1t R
R
INE- /
Chesqfiay3d

LeftWheelContact RightWheelContact

Angle_out # CarAngiet

Fig. 11.25 Top-level CT model of the ChessWay

1
UNSAFE e
/

| \ S
H - N
LEFT SAFETY | RSAFE? LEFT MOTOR RIGHT MOTOR LSAFE? RIGHT SAFETY
MONITOR .': CONTROLLER i] CONTROLLER . MONITOR

Fig. 11.26 Distributed DE controller architecture

256 M. Verhoef and P.G. Larsen

UNSAFE state and the wheel will be undriven. In that case, the safety monitor will
force the motor controller to go to the IDLE state. Note that the safety monitor only
affects the local motor controller so some synchronisation is required with the other
controller. If the safety key is inserted then the motor controller will move from
IDLE to CHECK mode. The motor controller will move from CHECK to SYNC mode,
whenever the ChessWay has been kept upright for at least 3 s (this test is not shown
here). This is to prevent the user being hit by the handle bar when the ChessWay
is lying flat when the power is turned on. The motor controller will move from
SYNC to DRIVE mode if and only if the other motor controller is also in the SYNC
state. The general idea being that both motor controllers will proceed to DRIVE
mode at the same time. The motor controller will execute the control algorithm to
keep the ChessWay upright and steer only while in DRIVE mode. It will continue
to remain in DRIVE mode for as long as the safety monitors on both controllers are
in the SAFE state. Again, note that the motor controller needs to communicate to its
neighbour to inquire its current safety state. This implies that the communication
path between the left and right controller potentially affects the system reliability,
as communication may corrupt or delay data, or even fail entirely.

11.4.4 Co-simulation Analysis

Results of a co-simulation are shown in Fig. 11.27, with, from top to bottom:

e The pole angle (in radians).

¢ The state of the safety switch (1 = CLOSED, 0 = OPEN).

e PWMInR, the right-hand-side PWM value, being the equivalent to the average
current (in A) to the motor. This should be the same as the following curve,
multiplied with the safety switch. That means that as soon as the safety switch
is opened by the safety monitor, the PWMInR will become zero, which is indeed
the case.

* PwmSettingR the right-hand-side PWM setting as it is transferred from DE to CT.
This signal continues until the state machine of the right-hand-side controller has
changed its state from DRIVE to CHECK. This is shown in the graph.

e Status of the right-hand-side controller (0 = IDLE, | = CHECK, 2 = SYNC,
3 = DRIVE).

¢ Status of the right-hand-side safety monitor. (0 = UNSAFE, 1 = SAFE).

We show here a specific simulation to demonstrate the cooperation between the
DE and CT part of the co-simulation. It shows the closed loop control, stabilising
the vehicle and handling of a simulated error. The vehicle starts in an off-balance
position of 0.1rad in the controller state DRIVE and safety state SAFE. The real-
time controller generates a PWM signal to bring the pole angle to zero rad. Initially
the PWM signal peaks to generate a relatively large current, to force the pole angle
towards zero to prevent the vehicle from falling. At 0.205 s, a fault was introduced
by pulling the safety key. Immediately the safety monitor changes from SAFE to

11 Industrial Application of Co-modelling and Co-simulation Technology 257

Ha b ¢zwmw /W v EH &0

model

0.os \ = sbsPlant angle
e “\\

:; = w"'_‘\—-"'_"\ o — ﬂ\\f"/_-:"“___/_\H_/“_/““___..f”“\

= safatySwilchiR

= monitoeodeRt

Fig. 11.27 Simulation result: (1) the controller forces the vehicle to change from 0.1 rad approach-
ing zero, (2) handling of an error that is introduced at 0.205 s and (3) recovery of that error from
0.25 s onwards

UNSAFE and the safety switch changes from CLOSED to OPEN. The PWM signal
(average current to the motor) should become zero here as well, to simulate open
loop wires to the motor (safety switch open). The control status changes to CHECK
as well, but a little later. This is to show that the emergency fault handling acts faster
and therefore overrules the slower running controller. The safety key is inserted
again at 0.25 s, which causes the safety monitor and safety switch change to SAFE
and CLOSED, respectively. The controller detects the safe state and changes to SYNC
and after both sides are in SYNC, it changes state to DRIVE again after which the
motor is powered by a PWM signal.

The diagram nicely shows the relationship between the dynamic behaviour of
the vehicle and the state changes of the controller, monitor and safety switch. It also
clearly demonstrates the purpose of having the graphical presentation of the DE
states in the same diagram as the CT graphs.

11.4.5 Key Results and Observations

The DE model helped the stakeholders to differentiate precisely the real-world
phenomena that take place and their interpretation (observation) in the control
software. Originally, a fault was injected in the DE model, and therefore directly
seen by the DE model and reacted to instantaneously. However, in real products,
there is always a delay between the occurrence of a fault to its detection by sensors

258 M. Verhoef and P.G. Larsen

and followed by the response of the control software. This leads to a difference
between the software’s picture of the physical system, and the physical system’s
real state.

It is important to take account of this delay because too large a detection time can
cause hazards to users. This distinction has been modelled by the explicit definition
of distinct plant (real world) and software states. The software interacts with the
plant via sensors and actuators; errors and faults in the plant are discovered by the
software only via sensors, just as in real systems. The software transforms one state
instance to the other. Several processes that handle such actions have been identified,
for example

* An actuator representing the PID controlled pulse with modulator of the motor
current.

* A controller, being a state machine for discrete control, such as startup, shut
down, handling of faults.

* A safety monitor to detect errors and perform an emergency reaction independent
from the controller.

The DE modelling has helped to identify these independent processes early and
they have been maintained throughout the evolution of the models, leading to a
very high correspondence between the abstract initial models and the elaborated
models used for co-simulation. This has added to the confidence in the model
correctness and likewise for the (manual) implementation that followed. The only
errors that were found in the implementation had to do with the “glue code” between
the computing hardware and the handwritten implementation of the model. As the
structure of the implementation followed the structure of the co-simulation models,
it was relatively easy to spot and fix the mistakes made, which reduced the test- and
integration effort significantly.

The ChessWay case study contributed a great deal to identifying the conceptual
boundaries between the DE and CT models, as reflected in Chap. 8, including the
insight that the interface between them is actually a layer in its own right, as shown
in Figs.3.40 and 11.21. The co-simulation contract basically reflects an arbitrary
“knife-cut” boundary drawn right through this I/O layer. Consequently, some
elements of the interface end up as part of the DE model while the rest becomes part
of the CT model. This not only affects the way the system is described but it also
affects the performance of the co-simulation, sometimes even significantly. Hence,
making this “knife-cut” demands careful consideration in relation to the required
fidelity of the model.

11.5 Conclusion

We have briefly presented three industrial case studies that have used our approach.
The ChessWay case has been discussed in detail in earlier chapters. For the new
studies presented here—Verhaert’s dredging excavator and Neoposts’s document

11 Industrial Application of Co-modelling and Co-simulation Technology 259

handling system—the use of co-modelling had positive technical consequences
when compared to alternative approaches. These results are, of course, encouraging,
but we also know from experience that the successful deployment of modelling
technology requires more than a technical capability [84]. In Chap. 12, we record
the lessons learned by Chess, Verhaert and Neopost about the impact on industrial
development practice of introducing co-modelling and co-simulation using the
Crescendo technology.

Part I11
Advanced Topics

Chapter 12
Deploying Co-modelling in Commercial Practice

Sune Wolff, Peter Gorm Larsen, and Marcel Verhoef

12.1 Introduction

We have gained experience in the first industry deployments of collaborative
modelling and co-simulation technology in a variety of settings. In this chapter,
we describe the “life stories” of model construction, analysis and maintenance from
those studies and include suggestions for integrating the technology into established
development processes.

However strong the potential benefits of a new modelling or design technology,
the process of industrial deployment brings many interesting challenges relating
to cost-effectiveness, overcoming barriers to entry, the strength of tool support
and the characteristics of the engineering skills base. This chapter records the
experience gained applying collaborative modelling and co-simulation technology
in the development of Neopost’s document handling system and Verhaert’s dredging
excavator case studies introduced in Chap. 11, as well as Chess’ ChessWay case
study introduced in Chap. 7.

The text here is based on interviews with engineers from all three companies:
we introduce them in Sect. 12.2. In Sect. 12.3, the engineers describe how the cases
would have been developed using traditional means, and in Sect. 12.4 they describe
how the co-modelling and co-simulation integrated with existing development
methods. Section 12.5 gives an overview of the resources used in developing the
case studies, and Sect. 12.6 describes the challenges encountered. Section 12.7
discusses the main benefits of using the Crescendo technology. Finally, in Sect. 12.8,
the future of co-modelling is examined.

S. Wolff (P<) » P.G. Larsen
Aarhus University, Aarhus, Denmark
e-mail: swo@eng.au.dk; pgl@eng.au.dk

M. Verhoef
Chess WISE, Haarlem, The Netherlands
e-mail: Marcel.Verhoef @chess.nl

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 263
DOI 10.1007/978-3-642-54118-6__12,
© Springer-Verlag Berlin Heidelberg 2014

mailto:swo@eng.au.dk
mailto:pgl@eng.au.dk
mailto:Marcel.Verhoef@chess.nl

264 S. Wolff et al.
12.2 Company Introductions

Neopost employs around 70 R&D engineers with an equal split between engineers
with backgrounds in mechanical and software engineering. Approximately 30 % of
the engineers have a master’s degree in computer science or mechanical engineering.
Four engineers were involved in the development of the Crescendo model of
the document handling system: one with a PhD in control engineering; one
with a master’s degree in mechanical engineering; one with a master’s degree in
electronics; and Peter van Eijk, who was interviewed for this chapter, is a PhD in
physics.

Chess employs development engineers with a bachelor’s or master’s degree and
a few with a PhD in either electrical engineering, computer science, mathematics
or physics. Five engineers were involved in the development of the Crescendo
model of ChessWay: one with a bachelor’s degree in control engineering, two with a
bachelor’s degree in electrical engineering, one with a PhD degree in discrete-event
modelling and Bert Bos, who was interviewed for this chapter, is a PhD degree in
continuous-time system modelling.

Verhaert employs engineers with a wide range of backgrounds: product inno-
vation, product development, conceptual design, mechanics, embedded electronics,
embedded software and physics. Five engineers were involved in the development
of the Crescendo model of the excavator: one with a physics background who had
previous experience in university research on computer tomography algorithms; one
with background in embedded electronics, embedded software and data processing;
one with a software background (embedded, PC and mobile platforms); and two
with background in electro-mechanical engineering. Koenraad Rombaut, who was
interviewed for this chapter, had management rather than technical responsibilities
in the creation of the co-model.

12.3 Traditional Development

We asked the engineers to describe how the case study systems would typically
have been developed using the technology and processes then in place in their
organisations. Two of the companies would traditionally have made use of physical
prototypes. Koenraad Rombaut from Verhaert reported:

Initially, measurements would be made on a real-life excavator to determine the char-
acteristics of the physical behaviour and the existing controller. Following this, a basic
standalone model of the excavator would be built in Matlab/Simulink to be used for
controller development. A downscaled test setup of the excavator would be built in a lab
environment for tuning and verification of the main loop controller. The final production
code for the controller would be based on code generated from the Matlab/Simulink control
model.

12 Deploying Co-modelling in Commercial Practice 265

Bert Bos from Chess reported a similar traditional approach:

Traditionally, the design effort would be smaller and lead to building and testing to be
carried out on several physical prototypes. Fault handling is traditionally very difficult to
test thoroughly, and errors appear during initial use. This can lead to required repairs after
the product has been delivered, which increases overall cost.

At Neopost, software simulators would normally be used to fine-tune the
software controllers of embedded systems. Peter van Eijk reports:

Without the co-simulation technology we would use pure discrete-event based simulators
built using C++.

All three companies already use modelling to some extent in the development
of embedded systems, and so the step onward to collaborative modelling and
co-simulation would not require revolutionary change in their technology and
process base.

12.4 Integrating Co-modelling and Co-simulation
with Existing Processes

We asked the engineers to discuss how well the use of the co-modelling technology
integrated with their development process. Koenraad reported the biggest change in
practice, especially in the timing of the phases of system development:

Using the co-modelling technology forced our engineers to use a more structured approach
to system development. We experienced a slight shift in timing and development approach
compared to the traditional embedded systems development process. Fortunately, this did
not conflict with the flexible development approach used at Verhaert. Detailed verification
of the system shifted to an earlier stage of the development process by using the CT and
DE models instead of physical hardware. The development of the software controller could
also be started a lot earlier because of the availability of the CT model.

Engineers from Neopost and Chess adapted the methodology to their existing
processes. Bert commented:

Chess traditionally follows a development process similar to IEEE 12.207: Initially the
operational concept is defined, followed by defining the architecture before developing the
full project. It is an iterative process where details are added over time. We have experienced
no difficulties integrating this process with the co-modelling technology. After an initial
idea phase (operational concept) a first model and physical prototype were developed to
demonstrate the fidelity of the co-model. Collaborative modelling could be seen as part
of the architecture phase and gives substantial and objective feedback on the architectural
ideas. Normally this feedback does not arise until during the integration testing of the full
system.

These comments suggest that it is possible to adapt co-modelling methodology
to existing development processes without too many alterations. Shifts in the timing
of some phases are bound to happen, since our method requires that more time is
invested in early design and modelling to enable earlier verification ensuring rapid
feedback on critical system properties.

266 S. Wolff et al.
12.5 Resources

We asked the technology users how resources were spent on developing the case
studies. Peter van Eijk reported that Neopost had spent less than one full-time
equivalent on developing the case study. He envisaged saving some time from
the training effort in subsequent projects, but did not anticipate other major effort
reductions.

The introduction of new methods and tools necessarily entails investment of
time and effort, but second and subsequent uses of the same tool chain are likely
to incur lower training costs. If the same tool-chain and methodology are reused in
later projects, further training requirements will be minimal. Koenraad made similar
observations:

Approximately 26 man-months of engineering effort were spent on developing the case
study. We estimate that all tool training could be saved in subsequent case studies. In
addition, we spent a lot of time testing intermediate versions of the tools and adjusting
the models to be compatible with new tool features. This effort could also be saved in
subsequent case studies using a stable tool-chain. On the other hand, this approach enabled
us to have a first time right test setup with loop control.

The case studies reported here were conducted over the 3 years of a research
project, with the participating companies allocating between two thirds and one
full-time equivalent staff. During the project, the methods and tools for co-modelling
and co-simulation were necessarily developed “from scratch”, in parallel with
case studies. Consequently, a considerable proportion of the time was invested
in evaluating intermediate versions of the tools. Adapting existing models to tool
feature updates can be very time-consuming. Bert Bos from Chess reports a similar
experience:

The models were built by two persons: one with experience in DE modelling and one with
experience in CT modelling. A significant part of the resources were spent on evaluating the
tool chain; to explore the capabilities of the tool; and to pin down errors in the tool. Different
methodological approaches were also considered: how should the technology be embedded
into larger projects; when should fault modelling be initiated; and how to gradually add
details in an iterative manner. These considerations gave valuable input to the development
of the methodological guidelines. In total, 23 man months were used on the modelling
activities: 9 for model development; 9 for tool and methodology evaluation; and 5 for tool
training and error finding.

With more mature and stable tools, all three companies agree that they would be
able to allocate a much larger proportion of staff time to new case studies.
12.6 Challenges Encountered

We asked the engineers to identify the difficulties encountered during the develop-
ment of the three case studies. Koenraad reported:

12 Deploying Co-modelling in Commercial Practice 267

Our non-software engineers had no experience with the Eclipse platform on top of which
the tool-chain is built. Also, VDM was unknown to our engineers which lead to steep
learning curves with regards to both the language and the modelling philosophy. The main
functionality missing from the tool-chain is code generation. This would make the final step
towards physical verification on a test setup less labor intensive and remove the potential of
errors introduced in the implementation of the final production code of the controller.

Using a model-based approach to embedded systems development requires a
paradigm shift: engineers must be trained in using new tools and languages, and
there are often steep learning curves. Bert experienced similar difficulties in gaining
a common understanding of the semantics of co-simulation in Crescendo:

The main difficulty encountered was how to correctly scope the model: what should the
model represent; and which parts of the model should be modelled in DE and which in CT?
The timing model used in the tool is still understood by only a select few persons in the
project. In particular how data exchange between CT and DE interacts with the differential
equation solver within CT is not fully understood which leads to uncertainty during the
model development.

Peter observed the effects of tool instability:

The main difficulties encountered had to do with the stability of the tool. In early phases of
the project the tool changed a lot and there were frequent feature additions. This required us
to adjust our model to be fully compatible with the tool. At later stages of the project more
stable versions of the tool were released.

The difficulties reported were predominantly in early phases and were caused by
the need to develop skill at using the tools, tool instability and the need to update
models to stay in synch with new tool releases. At the time of writing, work on the
provision of code generation has been initiated. The semantics of the co-simulation
have been described in a clearer style, as demonstrated in Chap. 13.

12.7 Key Benefits

What were the benefits of using co-modelling and co-simulation? Peter reported:

We saved a lot of time by locating design error prior to creating a physical prototype. We
estimate that an entire prototype production cycle was saved due to the early and rather
complete analysis of the system.

Reducing the need for physical prototypes can be very beneficial: saving an entire
prototype production cycle greatly reduces the overall cost of a product. Peter also
identified the use of the DE model for testing the hand-coded software:

The VDM simulation model that was developed for the feeder folder has been manually
translated to C++ and this code has been used to develop and pre-integrate the embedded
control software before the feeder/folder hardware was available. Even when the hardware
of the feeder folder was available the engineers continued to use this simulator for two
reasons:

* First of all in the early stages of the project the simulator was working more reliably
than the real system. This meant that by using the simulator instead of the real machine

268 S. Wolff et al.

the engineers could concentrate on the development of their software instead of keeping
the mechanics running.

* A second reason was the availability of the simulator compared to the availability of the
real machine. The real machine turned out to be under development constantly leading
to a low availability for the software engineers. When during the project the number of
embedded software engineers was raised from one to three and the fact that we had only
one physical model the advantage of using the simulator became of crucial importance.

Koenraad similarly reported resource savings as a result of using computerised
rather than physical prototypes:

Since a CT model of the physical dynamics of the excavator was created, a lot of time
was saved on building physical prototypes. This ensures much faster iterations on physical
models compared to traditional approaches. The Crescendo technology enabled us to
easily swap between different design solutions (e.g. hydraulic vs. electrical drives). Such
design space exploration would be extremely time consuming on real-life prototypes. The
control software development could start from day 1 in parallel with the physical model
development — traditionally the development of the control software would not be initiated
before the physical test set-up had been completed. This ensured that several controller
errors were found very early in the development process which saved development time.

Computerised models of the physical plant can be used to test embedded software
at an early stage, avoiding some of the issues commonly encountered during an
integration test. Bert told us that engineers from Chess used the co-model in a similar
way:

Debugging in the co-simulation environment is much quicker than debugging real-time

embedded control software. Debugging the final implementation of the system was

supported by the model. A technical error in the sensor interface was found by comparing

its output with what was expected from the model. After solving minor technical issues

such as Hardware-Abstraction-Layer (HAL) sensor wiring and a driver problem, the initial

system implementation worked the first time. This was an exceptional experience for us,
since fault handling usually takes several cycles to work properly. Also, the functional
behaviour of fault handling was evaluated in the co-model, and after implementation the
system worked as foreseen. This ensured that integration overhead was kept to a minimum.

The co-modelling and co-simulation technology allowed us to explore alternative designs

quickly without having to do changes to physical prototypes. The collaborative model

served as a means to communication between the system architect and the programmer
developing the DE model.

It was notable that, even though this was the first time the engineers from the
three companies used co-modelling approaches for embedded systems development,
all experienced time savings. In all three case studies, the users felt that the
additional time invested in earlier phases would be recovered in later stages.

This claim is given credibility by the thorough evaluation that was performed
[97]. At the start of the DESTECS project, explicit tool and methodology require-
ments were formulated by the industrial partners. These requirements can be
perceived as a statement to the lack of support of some feature or process, or,
in other words, a deficiency that was explicitly identified which hampers product
development as perceived by an end-user. They implicitly represent a benchmark
of the state-of-the-art and state-of-practice at the time, based on similar experiences
with other tools and techniques. Hence, when a requirement is realised, we can

12 Deploying Co-modelling in Commercial Practice 269

conclude that we have made a step forward if its evaluation is also positive.
The evaluation was performed at the end of the 3 year research project for all
requirements that were implemented in Crescendo. This evaluation was based on
concrete acceptance criteria that were formulated at the time when the requirement
was established. Moreover, the industrial partners also rated the perceived impact
on productivity. Out of the 25 implemented requirements that have been evaluated,
no less than 21 reached the improvement to productivity threshold, and 12 of those
also passed the significant productivity improvement mark. Overall, this implies that
a 30 % increase in productivity is within reach when using Crescendo technology.
One can argue that the data is statistically irrelevant with only three independent
assessors, but we feel confident about this claim since the experiences from the
challenges of the Industrial Follower Group' and the DESTECS Summer School
have also demonstrated that impressive results can be achieved.

12.8 The Future of Co-modelling

Peter, Bert and Koenraad identified several benefits and some drawbacks of the
co-modelling methods and tools. Peter van Eijk reflected on the future of model-
and simulation-based development of embedded systems in Neopost:

Simulation will become increasingly important for Neopost. Test setups and physical
prototypes will become more costly and have less availability. The Crescendo technology
can be one of the critical enablers for a more model-based approach to embedded systems
development. The most critical current drawback of the Crescendo technology is the
incompatibility with the tools we use for generating the code for the embedded platform.
Code generation within Crescendo will mitigate this drawback.

Bert and Koenraad agreed on the potential benefits of code generation. Bert also
offered an alternative view on the use of the technology:

The complexity of embedded systems is ever increasing with the increased focus on: error
handling, safety demands, and added functionality. This complexity cannot be overseen by
a single lead engineer or by a single engineering team. To avoid making expensive mistakes,
modern embedded systems cannot be developed anymore without utilising modelling
during project initiation and architecture phases. When following this sort of concurrent
and holistic model-based development principles, a technology like Crescendo is a critical
enabler.

Koenraad saw considerable potential in the approach:

We see great potential in the Crescendo technology during the development of complex
systems combining some of the following: complex multi-physics (e.g. multiple interacting
subsystems where behaviour is hard to predict); multiple controls (e.g. multiple interacting
subsystems); multiple inputs (e.g. users, data inputs, supervisory controls, safety systems);
high reliability and safety requirements and systems that are difficult to test due to high risk,
cost, timing constraints.

"For more information, we refer to http://www.destecs.org/deliverables.html.

http://www.destecs.org/deliverables.html

270 S. Wolff et al.

Koenraad also offered some ideas for Crescendo usability improvements:

Adding a GUI shell on top of Crescendo (similar to the way bond graphs are encapsulated
in 20-sim using the iconic diagrams) could broaden the use of the tool to non-software
engineers. Graphical tools for visual validation of the discrete behaviour of the Crescendo
model would be beneficial as well: monitoring discrete values, state changes, etc. Finally,
an increase in simulation speed would of course be a welcome improvement.

Chess have embarked on several new projects using the Crescendo technology:

The persons using the technology need some experience in abstracting from implementation
details. Learning the modelling metaphor and the VDM syntax is a big hurdle as well.
With that said, we are currently using the technology in the development of a taxi on-board
computer, to validate the sensor system to determine the driven distance and to detect fraud
in distance measuring. We also use the technology to evaluate state machines used in a
payment system. Payment systems used in e-commerce follow various state flows. A model
is under investigation to unify the states over several payment means. State sequences and
timing are important here as, in practice, critical races occur in reporting the payment result.

With stable tools available and no need for training, it is anticipated that the
added time investment in the early design phases will easily be saved in later
implementation and integration phases.

12.9 Conclusion

Peter, Koenraad and Bert were pioneers: the first to apply Crescendo for
co-modelling and co-simulation in an industrial environment. They had to contend
with the instability of initial research versions of tools and only basic initial training.
Itis noticeable, however, that they retained a pioneer’s clear view of the technology’s
potential to improve product development in their organisations. Their experience
suggests that several factors might motivate the decision to use these methods
and tools in commercial practice. These include the need for rapid early-stage
innovation, the need for dependability and the cost of physical prototyping and
testing.

Innovation in embedded systems is being driven by rapidly evolving capabil-
ities of computing platforms and networks. This is leading to the invention of
mechatronic applications in areas like robotics, medicine and transport that rely
on novel and complex control software or in areas such as agriculture that may
previously have seen little use of computing systems or software for control. Where
innovation is rapid, it becomes imperative to eliminate infeasible or suboptimal
designs quickly, and it would appear, for example, from experience with the
ChessWay, that co-modelling is valuable as a means of gaining confidence in the
appropriateness of a design direction without having to build physical prototypes of
products that may be out of the ordinary for the organisation.

Increasingly, users come to rely on the correct functioning of complex embedded
devices. The achievement of dependability demands both fault avoidance and fault
tolerance. The experience in both Neopost and Chess suggested that avoiding

12 Deploying Co-modelling in Commercial Practice 271

defects by early detection could save design iterations; there is also a pay-off in
using early-stage models as an oracle or design aid for later-stage implementation
tests. Modelling could be seen as a form of early virtual prototyping, reducing the
risk of failing tests when expensive or dangerous physical prototypes have to be
built. In Chap. 14, we examine ways in which the methods developed here could be
extended to more complex products and cyber-physical systems.

Chapter 13
Semantics of Co-simulation

Joey W. Coleman, Kenneth Lausdahl, and Peter Gorm Larsen

13.1 Introduction

This chapter provides an overview of the semantics for the whole co-simulation
framework, covering the co-simulation engine and the scripting language. It is
presented in a combination of styles, including graphical representations and
Structural Operational semantics (SOS), see [77, 78]. This chapter assumes a
background in formal semantics and is intended primarily for readers seeking a full
understanding of the semantics underlying the Crescendo technology.

The mathematical foundations for bond graphs and the VDM-RT notation
are substantially different. In this chapter, we present the formal foundations
that enable coupling of these diverse formalisms to permit co-simulation. The
Crescendo tool implements the semantics presented here following a traditional
master/slave architecture. The master is the co-simulation engine that manages all
communication between the DE and CT simulators which act as slaves and progress
the simulation according to the directives coming from the master co-simulation
engine.

The overall structure of the co-simulation engine, a basic explanation of the
synchronisation of the two “slave” simulators, and the semantic constraints for
the simulators are presented in Sect. 13.2. Section 13.3 provides the actual co-
simulation semantics. Then, Sects. 13.4 and 13.5 explain how the co-simulation can
be extended using the semantics for a small language Crescendo Scripting Language
(CSL) that enables scenarios to be exercised by a co-simulation. Section 13.6 ends
the chapter with a short summary.

J.W. Coleman (P<)) » K. Lausdahl ¢ P.G. Larsen
Aarhus University, Aarhus, Denmark
e-mail: jwc@eng.au.dk; lausdahl@eng.au.dk; pgl@eng.au.dk

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 273
DOI 10.1007/978-3-642-54118-6__13,
© Springer-Verlag Berlin Heidelberg 2014

mailto:jwc@eng.au.dk
mailto:lausdahl@eng.au.dk
mailto:pgl@eng.au.dk

274 J.W. Coleman et al.

DE TIME tde Lde tde+0ta
DE Tde 7
HW&&) H(U#»&d H<0§75t/>
CT Ot ——— ol ol
CT TIME et tet+0tq tei+0tq
tct = tde tct = tde

Fig. 13.1 Example of the synchronisation scheme for DE-CT co-simulation

13.2 Structure of Co-simulation

Figure 13.1 illustrates the synchronisation scheme underlying co-simulation
between a DE simulation of a controller (top) and a CT simulation of the
plant (bottom). It is an expanded diagram of Fig 2.3. The DE and CT simulators are
coupled through a co-simulation engine that explicitly synchronises the shared
variables, events and the simulation time in both linked simulators (the co-
simulation engine is not shown explicitly in Fig. 13.1).

Each simulation maintains its own local state and time at which the state is valid.
Thus, let o4e be the internal state of the DE simulation at simulation time #4¢, and let
o be the internal state of the CT simulation at simulation time #.,. The controlled
variables defined in the co-simulation contract (whose values are defined in o) are
set by the DE controller and read by the plant; the monitored variables (oy,) are set
by the plant model and read by the controller.

Consider a synchronisation cycle which starts with the two simulators having a
common simulation time (#;; = Z#4.). On each cycle, the DE controller simulation
sets the controlled variables and proposes a duration §¢ by which the CT simulation
should, if possible, advance. As the CT simulation of the environment advances,
it may encounter a state in which one of the event predicates defined in the
contract becomes true. The state of the monitored variables o, and the actual time
that it reached §¢, are communicated back to the DE side. If no events occur in
the CT simulation during this interval, 6z, = &¢. While the CT simulation has
been progressing, the DE simulation remains unchanged, so its local simulation
time remains at fg. and state og.. The DE simulation then advances by §¢, so
that both DE and CT are again synchronised at the same simulation time, and
the controlled variables are updated (o) and the next time step is proposed to
CT. The performance of the DE state change takes place in two stages, with the
calculations being performed first, separately from advancing the DE simulation
time. The granularity of the synchronisation time step is always determined by

13 Semantics of Co-simulation 275

the DE simulator. The scheme does not require resource-intensive roll-back of the
simulation state in either of the simulators, though roll-back may occur inside the CT
simulator in order to catch the precise time requested. The CT simulator typically
performs a binary search technique to determine zero crossings for event signalling.
This process is called microstepping, which is even performed when fixed time step
solvers are used.

The overall structure of the co-simulation semantics presented in the remainder
of this chapter consists of a central semantic model of the co-simulation engine. It
consists of the necessary semantic models for the individual pieces of a co-model.
This means that we have three semantic models instantiated for a typical co-model:
the co-simulation engine; the Discrete-Event (DE) semantic model of the formalism
(VDM) used to describe an embedded digital controller; and the Continuous-Time
(CT) semantic model of the formalism (bond graphs) that is used to describe the
environment that the embedded controller interacts with. The semantic model of
the co-simulation engine is necessarily generic: it needs to be able to support
the opaque embedding of other heterogeneous semantic models. In addition, the
semantic models of the two simulators are only characterised in this chapter, and we
rely on opaque embeddings of them in the semantics of the co-simulation engine.

The semantics of the co-simulation engine can only embed semantic models
that conform to certain constraints. Some of these constraints are common to both
DE and CT models and these are described in Sect. 13.2.1. The constraints of the
CT and DE simulator semantic models are explained in Sects. 13.2.2 and 13.2.3,
respectively.

This structure consisting of a central engine coordinating the simulated time and
shared state of the overall co-model provides a clear modular division between the
generic co-simulation properties and the formalism-specific subject model needs.
As a part of this, the actual subject model simulations are delegated to separate
semantic models, allowing them to be fit for the needs of those subject models.
This, in turn, enables an implementation of the co-simulation engine that allows the
use of a variety of different specific simulation engines, as has been done in the
Crescendo tool.

13.2.1 Common Semantic Constraints

There are a few common constraints on the semantics of the simulators involved
in co-simulation that must be respected. The constraints common to both simulator
semantics are as follows:

C1: It must be possible to have the semantics “step” from a given state at a given
time to a successor state at some future time, and it must be able to do so in
relatively small time increments.

276 J.W. Coleman et al.

C2: It must calculate the next state of the subject model in a given simulator
semantics, taking into account the values from the shared state that have been
changed by other simulator semantics.

The first constraint, C1, is required to ensure that it is possible to interleave the
simulation of the subject models. The ambiguity that it is able to do so in relatively
small increments relates to the subject models (in the Crescendo tool the scale is
nanoseconds).

For CT simulator semantics, this effectively means that it must be possible to
determine the observable state of a model for any arbitrary (future) point in time,
given the granularity defined by the “small time increments” noted above.

Constraint C2 is required to support a shared state between the various subject
models in the co-simulation engine. Without this, one may as well just run the
individual subject models independently.

13.2.2 Continuous-Time Simulation Semantics

The first type of semantic description that may be used as a simulator semantics in
the co-simulation framework is labelled “continuous-time”. Semantic descriptions
of this type are characterised by a model that is based on a single model state with
no hidden or transactional variables. As such, simulators with this sort of semantic
model are typically used to model physical systems.

Given the basic assumption that any semantics model in the overall co-simulation
framework must make finite steps, there are four primary requirements on a CT
semantic model:

CT1: It must be possible to observe the complete state of the semantics for a
given point in time.

CT2: It must be possible to set bounds on the maximum duration of each
simulation step of a subject model in the semantics.

CT3: It must always produce the actual duration of the simulation step that was
taken.

CT4: It must be able to produce “events” as part of a simulation step of a subject
model.

The first constraint, CT1, means that there must be no hidden state: the successor
state of a CT semantics must be dependent only on the observable state and the time.
This lack of pre-determination, in turn, in principle allows changes to shared state
variables to have immediate effect on the simulated model.

The second constraint, CT2, is necessary to support the interleaving of CT and
DE semantic models. Because it is possible for a DE model to determine that its
observable state will change at some given point in the future, we then know that
we will need to synchronise the simulator semantic models at that point. Thus, it
must be possible to ensure that a step of the semantic model will be no later than
that known synchronisation point.

13 Semantics of Co-simulation 277

The third constraint, CT3, is required as it may be possible for the step to
have taken less time than the maximum allowed by the bound. It may happen
that the subject model’s successor state in a step is earlier than that bound; this
can represent something occurring in that subject model, altering shared state, that
requires synchronisation with the other simulation semantics.

Constraint CT4 allows for a mechanism to indicate that something of interest has
happened in the simulation of the subject model—an event—without the need to
record the event directly in the shared state. This is a sort of side-band signalling
mechanism enabling both time-triggered as well as event-triggered behaviour.

13.2.3 Discrete-Event Simulation Semantics

The second type of semantic model for simulation is called the “discrete-event”
model. Semantic descriptions of this type are characterised by a model that allows
portions of the overall subject model state to be hidden. These hidden portions
of the overall model state may be the result of determining the future value of
state elements, but not allowing them to be observed until the appropriate point in
time. Not surprisingly, this sort of model is typically used to model computational
systems, such as embedded controllers.

The requirements on a DE semantic model are concerned with managing the
subject model’s state and the bounds on the duration of steps of other simulators.

DE1: Every step must indicate the time at which hidden state will next be
revealed.

DE2: It must be possible to have the semantics perform a synchronisation step
that only exposes hidden state that is ready to be revealed up to a given
point in time and updates the internal subject model state with the shared
state from the co-simulation engine.

DE3: It must be able to update to a point in time prior to the next point at which
hidden state will be revealed.

DE4: It should accept the notification of events that occurred in other simulators.

The first constraint, DE1, on DE semantic models is necessary to indicate to the
co-simulation engine the point at which there will next be a change to the shared
state due to this subject model. It allows the co-simulation engine to set a bound on
the maximum duration of the next step of CT simulation semantics and is necessary
to keep the various simulator semantics in the co-simulation engine in step with
respect to time.

The second constraint, DE2, anticipates the addition of a fault injection frame-
work and is not strictly necessary for the co-simulation engine itself. In a CT
semantic model, as it has no hidden elements, the control and value state of the
subject model are always synchronised with the time reported to the co-simulation
engine. The DE model, in contrast, may allow hidden elements in its internal state
to contain values which are not valid until future points in time. This means that for

278 J.W. Coleman et al.

the subject model to be affected by changes to the shared state from other subject
models, it must have a mechanism to update the present internal state before the
next internal state is calculated. The initial semantic rules presented in Sect. 13.3.3
do not entirely conform to constraint DE2; however, Sect. 13.4 depends upon the
constraint and alters the semantic rules in the required manner.

The third constraint, DE3, allows for this simulation semantics to gracefully
handle the other simulation semantics taking steps shorter than expected. The
expectation is that a DE model would not normally change any state on such a step.
Connected to this is constraint DE4, which requires that the simulation semantics
accept the notification of events from the CT model; these events give the subject
model an opportunity to react to their presence.

13.3 Co-simulation Semantics

We use the SOS format [77, 78] to present the semantic definitions in this chapter.
An SOS description consists of two major elements: a set of type definitions that
describe the static structure of the system; and the definitions of the transition
relations that describe the behaviour of the system.

The semantics is described using a collection of transition rules. Each of these
has a number of hypotheses (typically one per line) over a horizontal line. Below
the line the conclusion can be reached if all the hypotheses above the line can be
reached. It is also possible that such transition rules have side conditions that also
need to be satisfied to ensure the validity of applying a specific transition rule. Many
of the hypotheses and the conclusion are typically described as transitions which are
indicated as something that matches a configuration followed by a line (from left to
right with a name above it) and followed again by the new configuration that a
system is transformed into.

13.3.1 Structural Operational Semantics

The logical notation used for the assertions in the semantic descriptions is the basic
VDM-SL type system and expressions [20,27]." This notation is used to define the
static structure of the co-simulation engine and give its behaviour.

In an SOS definition, the static state of a system is modelled as a configuration
that contains all of the information needed to capture the complete state of a system
at any given point. This includes, for the co-simulation semantics we present,
information about which simulator semantics was used for the previous step, the

'The mathematical syntax will be used for these definitions in order to clearly distinguish it from
the use of VDM-RT in the models used in this book.

13 Semantics of Co-simulation 279

shared variable state, the current simulated time and the complete internal states of
both simulators’ semantics (treated opaquely). Configurations are typically given as
tuples.

The behaviour of a system is defined through the use of transition relations, at
least one of which must involve the complete static state configuration. In a fine-
grained SOS definition, the overall system behaviour is typically defined using a
transition relation from configuration to configuration, though this is not strictly
necessary.

The transition relations are defined through the use of inference rule schemata,
where each rule’s conclusion defines a subset of the entire transition relation. The
least relation that satisfies all of the inference rules is taken to be the relation defined.

Consider the following rule:

P(a,b,a’,b")
Q(a,b)
R

Example (a,b)—s>(a’,b’)

The Example rule here would be a (partial) definition of the 5 transition
relation. The conclusion below the line has four free variables—a, b, a’ and b'—into
which values may be substituted. For this rule to be true of a given pair of pairs—
(a,b) and (a’,d’) in this case—then the three hypotheses above the line must be
satisfied.

In general, the rule applies for any set of values that may be substituted into
the free variables so long as all of the hypotheses of the rule are satisfied. This
substitution is similar to the pattern matching as done in VDM models and, where a
free variable is equated to some other structure, the resolution of the possible values
for the free variable is done in a way that allows the constraints in the other structure
(concrete values, restrictions to certain types and so on) to hold of the value in the
substitution. In practice, however, the rules are often used to determine a successor
configuration, that is, the configuration on the right of the transition relation, based
on some given predecessor configuration.

For the Example rule, that means that we would start with known values of a and
b and then proceed to determine values for a’ and b’ that satisfy P(a,b,a’,b’) and
R(b'). However, we would first check that this rule applies to the given a and b by
checking any hypotheses that apply only to a and b; here we check Q(a, b).

The task of finding values for the successor configuration, @’ and & in this
case, may be one of simply calculation, or a more complex constraint satisfaction
problem. It may also involve choosing between equally valid alternatives for some
values—these cases can introduce non-determinism into the semantic model,?

20r under-definedness, rather than non-determinism, depending on the perspective and interpreta-
tion of the semantic model.

280 J.W. Coleman et al.

which can be useful but must be resolved during implementation. Finally, it may
not be possible to find values for a successor configuration: this may indicate that
the predecessor configuration is not a part of the system modelled; that the wrong
rule is being applied; that there’s an error or missing rule in the semantic model; or
that the semantic model has deliberately chosen that the predecessor configuration
has no successor.

13.3.2 Co-simulation Static State

Given a co-simulation system that has a CT-type simulator and a DE-type simulator,
the overall co-simulation system configuration is given as

Config = DE x CT x X x Time x Time x Event-set x Tag (13.1)

where

* DE is the type of representations of the DE-type simulator, covering all of the
possible states that it may reach;

e (T is the type of representations of the CT-type simulator, also covering all of
the states that it may reach;

e XY is the representation of the variables shared between the two simulator
semantic models and is defined below;

* the first Time component of the tuple represents the current simulated time of the
overall co-simulation system;

* the second Time component represents a time bound that must be respected by
CT simulator semantics;

e Event-set is the set of Events generated by CT semantic models for the DE
models to react to; and

» Tag is a token that records which of the two semantic models took the last step.

The definitions of the DE and CT representations are left undefined here; it suf-
fices that they conform to the constraints given in Sect. 13.2. These representations
are the overall configurations from their respective semantic models.

The type of the shared variables is a map from an identifier (represented by the
inexhaustible set /d,) to a pair of a value and a tag indicating which simulator
semantics controls the value of that variable.

X = Id, 2> (Value x Tag) (13.2)

Note that a shared variable ownership is immutable over the course of a co-
simulation run. Changing the ownership of a shared variable would imply some
significant change to the structure of the subject models in the co-simulation.

The tag is simply a structure-less token, either (DE) or (CT).

13 Semantics of Co-simulation 281

(de, 0,7, events) N (de',0’,7})
DES 6" = mergeStates(c,0’,(DE))
IE (de,ct, 0, T, Ty, events, (CT)) — (de ,ct, 6", 7,7}, events, (DE))

(ct,0,%) % (cf', 0, T, events')

oT St 6" = mergeStates(c,0',(CT))
IE (de,ct, 0,7, Ty, events, (DE)) -~ (de,ct’, 6", 7', 7y, events', (CT))

Fig. 13.2 Inference rules for the behaviour of the co-simulation engine

Tag = (DE) | (CT) (13.3)

13.3.3 Co-simulation Behaviour

With the static state defined, we can now define the transition relation for the co-
simulation semantics, Ny

. Config x Config (13.4)

Note that the colon, above, is a type assertion; 2, is a relation over the type of
configurations, Config.

We give two inference rules to define the high-level behaviour of the co-
simulation semantics in Fig. 13.2. The first rule, DE Step, describes the behaviour
that is dependent on the semantics of the discrete-event simulator; the second rule,
CT Step, handles the corresponding case when the behaviour is dependent on the
semantics of the continuous-time simulator.

Starting with the DE Step rule, consider first the Config tuple on the left of the

—, relation. This tuple is given in terms of its components to allow us to name the
components for use in the rule.
Moving our focus to the first hypothesis of the rule, we see some of the

. d .
components of the Config tuple being used in a new transition relation, =, This
transition relation is defined as

i>: (DE x X x Time x Event-set) X (DE x X X Time) (13.5)

and it represents a single step in the discrete-event semantics. Informally, the left

side of the £> transition is a tuple of a DE simulator state, shared variable state,
a new simulated time for the DE to update to and a set of events that happened
between the last point at which the DE semantics took a step and the new simulated
time; the right side is a tuple of the new DE simulator state, the new values of shared
variables and a new time bound.

282 J.W. Coleman et al.

mergeStates: X X ¥ x Tag — L
mergeStates(0,, 0,tag) == 0, T {id — 0,(id) | id € dom &, A 0, (id) #2 = tag}

Fig. 13.3 Function to merge two shared states, taking only the values paired with a specific tag
value

The second hypothesis merges the new values in the shared variable mapping
what were produced by the DE semantics into the overall co-simulation shared
state. The details of the merge are encapsulated into the mergeStates function,
defined in Fig. 13.3. This hypothesis is separate from the DE semantics to emphasise
that this synchronisation is, properly, the responsibility of the overall co-simulation
semantics and not the individual simulator semantics. One important property that
is maintained by this separation is that each simulation semantics may only affect
the values that it “owns”, as marked by the control tag in the state.

So, the DE Step rule defines the behaviour of the co-simulation semantics when
executing a DE step directly in terms of the behaviour of the DE semantics, with a
bit of extra mechanism to ensure that the overall shared state is updated.

The second rule in Fig. 13.2, CT Step, is structured in a similar manner to the

t
first, but uses the N transition relation to model the behaviour of the CT semantics
as it performs a single step. This transition relation is defined as

. (CT x X x Time) x (CT x X x Time x Event-set) (13.6)

where, informally, the left side of the transition relation is the CT simulator state,
the shared variable state and a time bound; and the right side of the transition relation
is the new CT simulator state, the modified shared variables, the time up to which
the CT semantics actually reached and a (possibly empty) set of events generated
during that step.

The primary advantage of this semantic description of co-simulation is that it
isolates the semantics of the two simulators as much as possible, allowing the
semantics for each simulator to be defined independently.

13.3.4 Simulator Properties and Their Transition Relations

. .. d t
For the common constraints, C1 and C2, it is clear that both the L and -5
transition relations are satisfactory. The ability of the semantic models to step from
state to state is inherent in SOS descriptions, thus satisfying C1. Satisfaction of C2

is actually handled internally within the individual definitions of e, and —> that
we must be satisfied with the simple structural compliance present. Specifically, the
shared co-simulation state is in the signature of the transition relation, allowing a
definition of the transition to use and update it.

13 Semantics of Co-simulation 283

Focusing on N transition, it must satisfy the four CT constraints, CT1-CT4.

. .. 1 .
Two, CT1 and CT3, are dependent on the internal definition of the N transition,
and the external structure cannot speak to this. However, CT2 requires that the

internal definition of —> be aware of a maximum duration and this appears
structurally in the left-hand configuration. Finally, CT4 requires that the semantic
description be allowed to produce events, and this appears directly in the structure
of the right-hand configuration.

For the i) transition, the four DE constraints, DE1-DE4, must be satisfied.
Constraints DE1, DE3 and DE4 are satisfied as far as possible by the structure of

the signature of —e>; what remains is the responsibility of the internal definition of

d . . d . .
— to handle. For constraint DE2, the signature of - can support this, as it is
possible to indicate that a synchronisation-only step is required by defining an event
with such a special meaning. Beyond the structure, again, the rest is handled by the

d
internal definition of —.
Possible internal definitions for the — transition may be found in [61], and

d
a description for the BN may be found in [24]. In this book, the 5 transition

. . 't
corresponds to the semantics of the executable subset of VDM-RT while the =
transition corresponds to the simulation of the bond graphs.

13.4 Adding Fault Injection Semantics to the Co-simulation

The co-simulation engine used in the Crescendo tool presents an opportunity to
create a fault injection framework that is independent of any of the constituent
simulators. This framework only has access to variables that have been explicitly
shared between the simulation engines, but this is sufficient for the creation of fault
injection and external event scripting.

The CSL is introduced in the Crescendo user documentation and is a minimal
language intended to allow for changes to the shared state of the simulators when
certain conditions are met. The basic structure of a script—a series of commands in
CSL—is just a sequence of triggers, each with a firing condition, body and optional
reversions.

The CSL is essentially a reactive language, and a script is a sequence of triggers.
A trigger consists of a test expression and a set of assignments to the shared state
and may also optionally have a list of variables to revert to their values prior to
the trigger. A trigger may be set to react every time its test expression is true, or it
may react only once during the entire co-simulation run.

In the basic co-simulation cycle, the DE simulator runs first, followed by the CT
simulator, and execution continues, alternating between the two simulators. To add
CSL into this cycle, we need to split the DE step and add a new CSL step. We must
also extend the configuration, Config, with a representation of the CSL script, and
the Tag type of tokens with (CSL) and (SYNC) to include tags for the CSL.

284 J.W. Coleman et al.
Config = DE X CT x CSL x ¥ x Time x Time x Event-set x Tag

(de, 0,,T,events) e, (de' oy, 7)
o, = mergeStates(0,, 05, (DE))

DE &t 7, = min(Ty, T,)
IE (de,ct,csl, 0,,7, Ty, events, (CSL)) == (de', ct,csl, 6), 7,7}, events, (DE))

(de,,,7,{(SYNC)}) % (de', 6y, 7))
o), = mergeStates(0,, 0y, (DE))

[oE syre e |
y (de,ct,csl, 0,,7, Ty, events, (CT)) — (de ,ct,csl, 6., T,]! ,events, (SYNC))

(ct,0,5,)~ (ct', 0y, T events')

TS o, = mergeStates(0,, 0, (CT))
IE(de,ct,csl,GmT,Tb,events, (DE)) %5 (de,ct ,csl, 6!, 7', Ty, events', (CT))

0

(esl, 0,,7) o, (esl',0),7))

CSL Step [2= 7))
P (de,ct,csl, 0,,7T, Ty, events, (SYNC)) —= (de, ct,csl', 6!, 7,7} events, (CSL))

Fig. 13.4 New semantic rules for the behaviour of the simulators in the co-simulation semantics

When splitting the DE Step rule from Fig. 13.2, we replace it with the version in
Fig. 13.4. The difference between the two rules is that the extended version requires
that the 7ag in the left-hand configuration be (CSL) instead of (CT) and that the
new time bound, 7;’, must be the least between that generated by the DE semantics,
in ‘L’é, and last execution of the CSL script, in 7.

d .. .
We also add a new rule, DE Sync, that does a %, transition with a SYNC

event marked; the intent is to signal to the internal definition of the i transition
that it should perform synchronisation of hidden state, and not perform any new
computation, as per Constraint DE2. This rule also takes the least available time
bound for ;.

For completeness, Fig. 13.4 also shows the updated CT Step rule and definition
of the updated Config.

The transition, il), for the CSL can be defined as

csl

—: (CSL x X x Time) x (CSL x X x Time) (13.7)

where CSL is the type representing CSL scripts. The two Time values correspond,
respectively, to the simulated time in the subject model at which the CSL script is
evaluated and a time bound indicating the next simulated time at which the CSL
may be triggered.

13 Semantics of Co-simulation 285

The necessary semantic rule to use the L—d> transition for the CSL is the last rule
given in Fig. 13.4. This rule follows the pattern of the rest of the rules in Fig. 13.4,
except that it does not need to merge states as it operates on the shared state directly.
Further, given that the CSL is intended to allow changes to the shared state of both
simulators, there is no need to handle ownership of variables.

Taking the rules in Fig. 13.4 as a whole, we can see that the round-robin cycle is
preserved; in order, the rules proceed from the DE Step rule to CT Step to DE Sync
to CSL Step and then back around.

13.5 Semantics of the CSL

The intended execution of a CSL script is straightforward: for a setpoint in time,
each trigger is sequentially processed, modifying the shared state as necessary.
The semantic model given below reflects this as the transition relation recursively
processes the sequence of triggers, producing a new shared state when given an
empty sequence.

13.5.1 Top-Level CSL Structures

The active structure of the CSL in the co-simulation semantics is the CSL construct.
CSL :: ts : Script
ms : Marker*
The CSL construct contains the script of CSL triggers and a sequence of the same
length to hold a minimal amount of state for each trigger.
Script = Trigger™
Each trigger state—a Marker—is either nil, a constant DONE or a pair of a time

value and a state.

Marker = [DONE | Time x X|

e e . . slinit ..
The initialisation of the CSL construct is handled by the ‘o transition,

cslinit

—> : Script x CSL (13.8)

with its definition given in Fig. 13.5. The initialisation rule simply transforms a fault
injection script into the CSL object used by the main CSL rules. The top-level rule
is given in Fig. 13.6

The Trigger construct is defined as

286 J.W. Coleman et al.

Fig. 13.5 CSL initialisation elems markers = {nil}
rule len markers = len script

CSL Init script calinit mk-CSL(script,markers)

Fig. 13.6 The top-level o = {id + value | 0,(id) = (tag,value)}
semantic rule for CSL i

trig ’ ’
ts,ms,T,0) — (ms', 0
execution (ts,ms,T,0) (ms’,c")

o, = {id — (0,(id),value) | 6’ (id) = value}
T = calculateCSLTimeBound (ts,ms")

CSL Top (mk-CSL(ts,ms), G, T) <, (mk-CSL(ts,ms'), 0., Tp)

Trigger :: once : B

test : Expr
dur : [Time]
body : Stmt*

rev : Id,-set

A Trigger has a flag, once, indicating whether or not it may occur only once or
many times; a condition, test, which is evaluated to determine if the trigger should
fire; an optional duration field, dur, which if present requires that the condition
hold over the given duration; a body field, body, that holds assignment and print
statements to be executed when the trigger fires; and a field, rev, that stores a set of
variable names to be reverted to their values prior to the trigger firing.

The basic execution of a CSL script is modelled by the i relation,

L (CSL x X, x Time) x (CSL x X, x Time)
and that rule delegates most of the actual work of executing the triggers to the e
transition relation. Of the rest of the rule, the first and third hypotheses deal with
the flattening and rebuilding of the shared state, and the final hypothesis calculates
a time bound for the co-simulation based on the triggers that are actively testing a
condition over a duration.

trig

The — transition relation,

ﬂ;; (Trigger* x Marker* x Time x X) x (Marker* x X)
only alters the sequence of Markers and the shared state; the actual triggers are
never altered. The three basic rules for a trigger with a simple test (no duration) are
shown in Figs. 13.7, 13.8 and 13.9.

Reading the Exec rule in Fig. 13.7, we see that the configuration is structured to
pattern match the heads of the sequences of triggers and markers, ensuring that we
only execute a trigger that is not already active. Then, the first hypothesis pattern
matches the first trigger on the sequence to ensure that it is one without a duration.
The second hypothesis ensures that the trigger’s condition has been met; evaluation
of the expression zest is done using the semantic evaluation function [-], and the
result is, in turn, given a T and a o to evaluate the expression in the time and
state context down to its value. The third hypothesis delegates the execution of the

13 Semantics of Co-simulation 287

Fig. 13.7 The Exec trigger = mk-Trigger(once, test,nil,body, rev)
semantic rule for executing [test]to = true
triggers (body, &) " o
(ts,ms,T,0") g, (ms',6")
[Exec] ([trigger] " ts, il ~ms,7,0) =% ([(1,6)] "V ms',6")
Fig. 13.8 The Skip semantic trigger = mk-Trigger(once, test,dur,body, rev)
rule for executing triggers [test] To = true

dur € Time = T-Tg > dur
trig
(ts,ms,7,6") =% (ms', 6")

@([lrigger] s, [(10,00)] " ms, 7,6) 2 ([(t,00)] ¥ ms’, 6"

Fig. 13.9 The After semantic trigger = mk-Trigger(false, test, dur,body, rev)
rule for executing triggers [rest]|to = false

dur € Time = 7T-T9 > dur

o' =07 (rev<dop)

(ts,ms,T,0") LN (ms',c")

@ ([trigger] ™15, [(0,00)] ms, 7,0) % ([nil] ', 6")

body of the trigger to the = transition relation, producing a potentially altered
shared state. The last hypothesis executes the rest of the sequence of triggers.’ The
conclusion of this rule places a pair containing the present time—that is, when the
trigger fired—and the initial state at the head of the sequence of markers in the
resulting configuration. This indicates to future evaluations of this trigger that the
trigger has fired and is waiting for the condition to become false.

The Skip rule in Fig. 13.8 just skips over triggers that have a pair as their marker
and a true condition; for triggers with durations, the rule only applies when the
duration has been exceeded (third hypothesis). When the marker is a pair, this
indicates that the trigger has been active; furthermore, that the condition is still true
means that it is not yet time to revert any variables.

The After rule in Fig. 13.9 handles the case where the trigger’s condition has
become false and there are shared variables to revert. This rule applies to all
repeating triggers, regardless of whether or not they have a duration. The first
two hypotheses pattern match the trigger at the head of the sequence and that the
condition is false. The third hypothesis is a guard for triggers with a duration, to
ensure that we do not revert shared variables when we should instead be cancelling
a trigger with a duration that was still waiting for the necessary time to pass.
The fourth hypothesis does the necessary reversion of the state, pulling the values
of the variables to be reverted from the state at the start of the trigger, oy; note that
if the trigger did not have any reverts specified, then the set rev will be empty and

3The base case—an empty sequence of triggers—is handled by the rule Base in Fig. 13.10.

288 J.W. Coleman et al.

Base Q

trig

,ms,T,0) —> (ms, o)

(ts,ms,T,0) s, (ms',0")
@ ([trigger] " 1s,[DONE] "~ ms, T,0) LN ([DONE] ¥ ms', c”)

trigger = mk-Trigger(true, test,dur,body, rev)
[test] To = false

dur € Time = 1-T9 > dur

o' =0t (rev<dop)

(ts,ms,t,0") LN (ms',0")

I@([Zrigger] s, (19, 00)] ¥ ms, T,6) 25 (IDONE] ¥ ms', 6"

Fig. 13.10 The remaining semantic rules for executing triggers

o’ = 0. The fifth hypothesis is the usual recursive step of executing the rest of the

triggers.

Those are the three basic rules for executing triggers in the CSL semantics. There
are ten semantic rules in total and they have been constructed so that there is no
situation where multiple rules apply.

Of the remaining semantic rules, some of the base cases are given in Fig. 13.10.
The first, Base, is only necessary to handle the base case of processing a sequence:
that is, when the sequence is empty. Two rules, Done and Once after, deal with the
non-repeating triggers: the former skips non-repeating triggers that have already
triggered; and the latter places a DONE constant in the marker after the trigger
completes.

The last four remaining rules in Fig. 13.11, Duration init, Duration pending, Duration
cancel and Duration exec, handle the specific cases where a trigger with a duration
on its conditional must, respectively, start monitoring the duration in which the
conditional has been true; do nothing between the condition becoming true but
before the duration has passed; stop monitoring the duration if the condition goes
false before the duration passes; and to execute the trigger body when the duration
is met.

13.5.2 CSL Statement and Expression Semantics

The rules for statements and expressions are included only to give a complete
semantic model of the CSL. There are only three statements—assignment, output
and quit—and the expression evaluation is essentially a subset VDM’s expressions
(with the singular addition of a special identifier to obtain the current time value).

13 Semantics of Co-simulation 289

trigger = mk-Trigger(once, test,dur,body, rev)
[test] To = true
dur € Time

(ts,ms,T,0) g, (ms',0")

[Duration init (1™ 15 i)~ s, 7,0 75 (((7,0)]

ms',c’)

trigger = mk-Trigger(once, test,dur,body, rev)
[test]|To = false
-7 < dur

(ts,ms,T,0) nis, (ms',0")

[Duration cancel [o A o e 0) T (il)

trigger = mk-Trigger(once, test,dur,body, rev)
[test] To = true
T-Tp < dur

(1s,ms,7,6) 2% (ms', ")

Duration pending [1,,i0eer] ™ 15, [(, 60)] " ms,7,6) =% ([(20,00)] "~ ms', ")

trigger = mk-Trigger(once, test,dur,body, rev)
[test]to = true

T-T9 = dur

(body,t,0) B 1

(ts,ms,T,0") LN (ms',0")

I@ ([trigger] s, [(70,00)] ™ ms, 1, o) g, ([(t0,00)] e

ms', G”)

Fig. 13.11 Duration rules for the CSL

13.5.2.1 Structure

Statements in CSL are represented by the Stmt type and consist of assignment
statements, output statements to print message to the log and the quit statement.

Stmt = Assign | Output | QUIT
Assignment statements have the state variable that will be modified and an
expression that is evaluated to a value assigned.
Assign :: id : Id,
e : Expr
Output statements may print a message to one of three logs: the regular message
log, PRINT, the warnings log, WARN, or the error log, ERROR.

Output :: target : PRINT | WARN | ERROR
message : String

290 J.W. Coleman et al.

Expressions in CSL are represented by the Expr type and consist of the special
variable TIME, time values, Time, Boolean values, real number values, identifiers,
unary expressions and binary expressions.

Expr = TIME | Time | B | R | Id, | UnaryExpr | BinaryExpr

Unary expressions in CSL include the arithmetic operators for negation and
absolute value, the rounding functions floor and ceiling and the boolean negation
operator.

UnaryExpr :: op : - | ABS | FLOOR | CEIL | NOT

e : Expr

Binary expressions in CSL include the usual logical operators for conjunction,
disjunction, implication and bi-implication; the basic arithmetic comparison opera-
tors; the usual arithmetic addition, subtraction, multiplication and division; and the
integer modulo and division operators.

BinaryExpr :: op : A |V|=|&|<|<|=|>|=|#] + |- | x| = | MOD | DIV
a : Expr
b : Expr

. tstmt
Finally, the transition relation for statement execution in CSL is defined as —,

which relates a tuple containing a sequence of statements, a current time value and
an initial state, ', to a final state.

tstmt

—: (Stmt* x Time x X) x X

13.5.2.2 Statement Rules

tstmt
There are four rules to define ﬂ), giving the behaviour of statements in CSL.

Stmt base tstmt

([],t,0) — 0

The first rule defines the base case behaviour for sequences of statements, just
giving the state on the left of the transition relation as the final state.

o' =0 t{id — [e]ro}

tst
(rest,o’) Y

tmt Assi . . J
I@([mk-Asszgn(ld, e)]Vrest,t,0) e

The rule for assignment statements evaluates the expression given the current
time and state, and then executes the remaining statements in an appropriately
modified state.

13 Semantics of Co-simulation 291

output (target, message)
tstmt
(rest,0) — o

Stmt Print . tstmt
E ([mk-Print(target, message)] "~ rest, T, o) e

The function output() in the Stmt Print rule is left undefined; the intent is that it
maps to some implementation-dependent logging facility.

The third type of statement, QUIT, does not have a semantic rule defined here.
The quit statement is implementation-dependent as it is intended to stop simulation
of the entire co-model.

13.5.2.3 Expression Evaluation

Expression evaluation in the CSL is defined in the usual way, though we include
access to the current time value using the special identifier TIME. Note, also, that
the set of time values, Time, is a subset of the real numbers.

The semantics of expression evaluation is given as a function, [-], over three
parameters that results in either a Boolean value or a real number. The first parameter
is the expression to be evaluated, the second is the time at which the expression is
evaluated and the third is the state in which it is evaluated.

[1 : Expr x Time x ¥ — (B | R)
The specific cases in the definition of [-] are given below.

[true]zo = true
[false]to = false
[TIME]to =1
[rlto =r & relR
[id]to = o(id) & id € domo
[mk-UnaryExpr(op,e)]|to = op([e]zo)

[mk-BinaryExpr(op, ey, e)]to = ([e1]zo) op ([ez]to)

The first four cases deal with constant values: the Boolean and real values
evaluate to themselves (the first, second and fourth lines), and the special constant
TIME evaluates the given time value, t. The fifth case deals with variable identifiers
by returning their corresponding value from the state. The last two cases deal with
operators by applying the operation to the result(s) of evaluating their operand(s).

13.6 Conclusion

In order to be able to trust the outcomes of model-based analyses, we need languages
and tools that have a formal semantics, and the semantics must form the basis of
the tooling. For co-simulation, the semantic basis is perhaps more intricate than

292 J.W. Coleman et al.

that of monodisciplinary modelling because of the need to be precise about the
management of communication and the time in the collaborating simulations. The
overall manner in which the Crescendo co-simulation works was presented at the
start of this chapter, and that was used as a starting point to give the general
semantic constraints under which a co-simulation framework must operate. With
those constraints in mind, we described a modular operational semantic model that
gives the behaviour of co-simulation while leaving the behaviour of the individual
simulators abstract. We then presented an extension to the co-simulation semantic
model that includes support for fault injection. This was presented as an extension
to the whole co-simulation semantics to allow the fault injection to be abstract
with respect to the simulators. We then gave the operational semantics of CSL, as
that was the fault injection language implemented for the Crescendo tool. Readers
interested in a detailed presentation of the VDM-RT simulator are invited to review
the execution semantics [24].

Chapter 14
From Embedded to Cyber-Physical Systems:
Challenges and Future Directions

John Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef

14.1 Introduction

The embedded systems market is now well established, with some estimates placing
it in excess of $120 billion, and expected to grow by over 6% per annum.
This growth is driven in part by declining prices for multi-core devices, but also
by increasing demand for smart devices that can be networked to create new
applications in areas such as power grids, medical monitoring, automotive and
transport. This rise in networked applications suggests that embedded systems of
the types considered in this book are only the first generation of a larger class of
Cyber-Physical Systems (CPSs) which consist of many collaborating computational
elements interacting with the physical world [65, 81]. Examples might include the
dynamic selection of electrical power sources in a grid, coupled with dynamic
control of consumer-side devices so as to select the cheapest appropriate power
source at a given time; collation and processing of data from multiple non-invasive
sensors in the home to identify and respond to changes in a person’s state of health;
or cooperative platooning of road vehicles to manage fuel consumption.

The challenges facing developers of CPSs are significant [19,72]. CPSs combine
the characteristics of embedded products with the features of Systems of Sys-
tems (SoSs) such as the autonomy of the constituent systems, their distribution,
capacity to evolve and—crucially—the reliance on the delivery of a behaviour

J. Fitzgerald (P<)
Newcastle University, Newcastle upon Tyne, UK
e-mail: john.fitzgerald @newcastle.ac.uk

P.G. Larsen
Aarhus University, Aarhus, Denmark
e-mail: pgl@eng.au.dk

M. Verhoef
Chess WISE, Haarlem, The Netherlands
e-mail: Marcel.Verhoef @chess.nl

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 293
DOI 10.1007/978-3-642-54118-6__14,
© Springer-Verlag Berlin Heidelberg 2014

mailto:john.fitzgerald@newcastle.ac.uk
mailto:pgl@eng.au.dk
mailto:Marcel.Verhoef@chess.nl

294 J. Fitzgerald et al.

that emerges from the interactions of these independent constituents. The presence
of multiple distributed, mobile and heterogeneous components and the need to
accommodate change and reconfiguration make it difficult to demonstrate the levels
of dependability required in many applications. CPSs will typically interact with
other systems and human beings, so that they may be considered as an SoS involving
diverse stakeholders and engineering disciplines in their design and operation.
For example, development of a CPS for rail transport management might require
collaboration between control engineers, mechanical engineers, power transmission
specialists and software developers.

The pace of innovation in both the market and the technology of CPSs means
that multidisciplinary methods and tools are needed to support rapid but accurate
multidisciplinary exploration of design alternatives. Although model-based methods
and tools require formal foundations in order to support consistent analysis, models
must nevertheless be accessible to engineering practitioners and domain experts, be
capable of integration with established techniques and processes [100] and support
views covering different system facets.

Like embedded systems, CPSs feature close coordination between computational
and physical elements [81]. Imagine, for example, automobiles moving under
computer control in platoon. Platooning allows each vehicle to travel close enough
to the car in front to benefit from the reduction in air resistance, saving fuel
and increasing road capacity. It can only be done with computer software, but
understanding the consequences of a software bug requires a model of the software
in each vehicle, communications mechanisms available between cars and of course
the physics of the vehicles and their surroundings. This is not merely an embedded
systems design problem: it is essential to take account of multiple vehicles and
their controllers (all from different manufacturers), as well as the communications
infrastructures. Can co-modelling and co-simulation help us to explore the emergent
behaviour of these larger-scale networked CPSs? If co-models represent reality with
sufficient fidelity, such an approach could be a major cost saver in industries where
assurance of CPS behaviour is needed [46].

A full-fledged CPS is a network of interacting elements rather than stand-
alone devices. In contrast, the collaborative modelling presented in this book has
been between one DE model and one CT model. In order to conveniently model
and analyse networks of DE and CT elements, it is necessary to generalise the
technology with support for multiple DE and CT models and a description of
their connections. Such DE and CT elements may even be owned and managed
by different stakeholders, leading to what is known also as SoS [70]. In our
platooning example, we have the obvious vehicle-based constituent systems being
independently managed by their drivers and/or control software, as well as the
less visible constituent systems managing communications between vehicles, for
example. Crucially, in a CPS as in an SoS, it is critical that attention is paid
to the behaviours exhibited by the collective in addition to the behaviours of
the individuals. In some CPSs, reliance is placed on some of these emergent
behaviours—for example, the platoon is expected to provide a certain level of traffic

14 From Embedded to Cyber-Physical Systems: Challenges and Future Directions 295

density—while other emergent behaviours may be undesirable, such as frequent
and rapid changes in inter-vehicle spacing as a result of interactions between the
features of the control algorithms operating in the different vehicles. The analysis
of emergence is particularly significant when we consider exceptional behaviour
related to faults and error recovery.

In this book, we have presented an approach to the multidisciplinary design
of embedded systems. In this chapter, we examine the prospects for scaling co-
modelling and co-simulation up to the challenge of CPSs. We begin an overview
of co-modelling approaches (Sect. 14.2). Section 14.3 considers design flow for
CPS and the role of co-modelling within it. Section 14.4 then considers how
the limitation of one DE and one CT model can be generalised to include a
collection of such models. Section 14.5 looks at the generalisation of co-simulation
to incorporate other simulators and Sect. 14.6 considers the future about distributed
control and intelligence. Afterwards, Sect. 14.7 discusses challenges for future
research. Section 14.8 concludes.

14.2 The Co-modelling and Co-simulation Landscape

In order to realise the potential of model-based methods in the development of
many real systems, including CPSs, it is essential to embrace models expressed
in semantically distinct formalisms [95]. Hardebolle and Boulanger [41] identify
several approaches to heterogeneous modelling. These include: translating models
between formalisms, composing modelling languages to create a new composed
language, composing models themselves, composing modelling tools and providing
a unifying semantics. It is instructive to compare contemporary methods and tools
against this scheme.

A hybrid system exhibits both continuous and discrete dynamic behaviour [2].
The term is often (wrongly) used interchangeably with embedded system or CPS.
Hybrid systems are often described using transition systems that lend themselves
to model checking, the major challenge here being to have a meaningful notion
of time progression that can align with simulation of CT elements so that there is
reasonable fidelity to the physical phenomena being modelled. A hybrid system can
be described by means of a hybrid automaton consisting of a finite automaton with
continuous dynamics. Each discrete state includes initial conditions for time and
values of the continuous state, differential equations that describe the flow of the
continuous state and invariants that describe regions of the continuous state-space
where the system stays at the discrete state. The modelling of hybrid systems has
also been investigated using UML, for example, in the work on HybridUML [12],
introducing structure diagrams similar in some respects to the Internal Block
Diagrams (IBDs) subsequently introduced in SysML, and providing for multiple
views over a model. Hybrid systems approaches tend to fall into the “composition

296 J. Fitzgerald et al.

of modelling languages” category. Here the combination of continuous and discrete
time in the models is typically carried out in an ad hoc manner. However, if a
modelling problem fits the constraints of a specific approach, it is generally very
efficient.

Modelica [38] is a non-proprietary, object-oriented, equation-based language
intended to model complex physical systems. Both commercial and free Modelica
simulation environments exist. The Modelica Association is a non-profit organi-
sation with members from Europe, USA and Canada. Since 1996, its simulation
experts have been working to develop an open standard and an open-source
standard library. Modelica has a comprehensive collection of components in its
libraries, including components that enable the simulation of delays in network
components. The DE modelling primitives lie closer to the abstraction level found
in programming languages than the DE formalism we present in this book.

Ptolemy1 [7,30,79] has studied modelling, simulation and design of concurrent,
real-time embedded systems, using a mixture of models of computation using
an actor-oriented modelling approach. Ptolemy takes a “composition of models”
approach in that it permits coherent coupling of heterogeneous models. The
models are organised into hierarchical layers, where each layer has one Model of
Computation (MoC). To our knowledge, Ptolemy is the approach which supports
the widest range of MoCs.

Matlab/Simulink created by MathWorks is one of the most widely used tools for
creating CT models. Matlab is a modelling language and interactive environment
which lets the user create models more rapidly than is the case using traditional
programming languages. Simulink is an environment for multi-domain simulation
and model-based design for dynamic and embedded systems. It provides an
interactive graphical environment and a customisable set of block libraries which
let the user design, simulate, implement and test a variety of time-varying systems,
including communications, controls, signal processing, video processing, and image
processing.

TrueTime is an extension of Matlab/Simulink that enables to study detailed
timing models of computer-controlled systems [21]. This enables both timing delays
for both the computing node and the network communications between them in a
network control systems setting.

In our work, we aim to enable CT and DE experts to collaborate while being able
to use established notations and tools that are familiar to them and are regarded as
natural for their work. In Hardebolle and Boulanger’s terms, we are not composing
modelling languages or models, but our work is based on “joint use of modelling
tools”, with a “unifying semantics”—in our case an operational semantics—that
describes the interaction between DE and CT simulators participating in a co-
simulation.

ISee http://ptolemy.berkeley.edu/publications/index.htm.

http://ptolemy.berkeley.edu/publications/index.htm

14 From Embedded to Cyber-Physical Systems: Challenges and Future Directions 297

requirements

architecture models automated co-model analysis
—— design space exploration

: stub model ::J’

™ " =
madels of cyber elements ; models of physical elements =
generation 3 =
shared computing : i
. ., 0 3 &
o0 [@o —— 3 @
C ML Ena %, [=% : c
il B (Mit} PR [y &) & testoutomation | £
shared network Sil Hil model madel checking =
J \ =]
code generation realisation
A 4

real code real plant
laboratory testing

Fig. 14.1 CPS design flow from requirements to realisations

14.3 Co-modelling in the CPS Design Flow

One of the aims of co-modelling and co-simulation is to support the consideration
of design alternatives. Where does this fit in the larger design flow for CPSs? It is
worth noting that CPSs will typically integrate at least some pre-existing systems
that may not have been conceived with the intention of contributing to the CPS and
which may be independently owned and managed. The development of a complete
CPS from scratch will therefore be a rare event. Nevertheless, it is important to
consider a process of development, even though integration may form a greater part
of the process than classical implementation. Figure 14.1 illustrates a possible flow
for the development of CPSs. In addition to co-simulation, the figure also shows
Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) simulations enabling
a gradual transition of either DE or CT elements from models to their corresponding
realisations. In order for this to work appropriately, it is not enough just to have
competent co-models; one also needs to consider the fidelity of the different models.
On the DE side, refinement theories exist to allow the relationships of abstract
models to be addressed. However, on the CT side, this is not so simple because
a CT model will hardly ever be a 100 % match to a corresponding realisation.” The
issue here is to determine when a model is sufficiently close to the corresponding
realisation to be able to use simulations including the models to provide the evidence
required for external stakeholders.

In implementing this kind of design flow, we envisage that SysML could be used
more extensively than was suggested in Chap. 8. Requirements diagrams can be

2We might envisage partial automation of the realisation of physical elements using controlled
manufacturing devices or even 3D printers.

298 J. Fitzgerald et al.

used to link structured requirements to CPS elements and the analysis that needs to
be conducted to check that the requirements have been satisfied. The composition
of a CPS into its constituent elements can be described using Block Definition
Diagrams (BDDs) and IBDs. At the lowest level, each of these can be represented
either as DE or as CT elements, and thus it should be possible to derive the contracts
that link such constituents together. This kind of information can then be used in
simulations. Developers need to be able to gradually move from a modelling level
to realisation. The realisations of DE elements are typically manifested in source
code running on a CPU; automating this requires code generation support. For the
CT elements, they are typically represented as a physical device interacting with its
environment.

14.4 Enabling Collections of DE and CT Models
to Be Combined

Combining collections of DE models into a single DE model, or collections of CT
models into a single CT model, is conceptually straightforward if the topology of
components can be statically determined. However, for many CPSs, the topology
is likely to evolve dynamically, for example, in models of smart transportation,
further increasing the complexity of the modelling task. In order to properly
describe dynamic evolution, the BDDs and IBDs currently offered by SysML are
insufficient, because they cannot describe dynamic behaviour. One solution would
be to introduce a new type of “dynamic evolution” diagram to SysML; however,
this would likely increase the complexity of models significantly. Therefore, adding
such diagrams would only be worth the increased effort if the level of assurance
required merited it. In order to support dynamic, evolving topologies at the
modelling level, it is necessary to be able to express dynamic reconfiguration
in the modelling language [73, 76]. The handling of time in CPSs is absolutely
essential [18, 29, 64, 65]. CPSs demand that timing is a correctness criterion and
not just a quality factor. Hence, time, mobility and dynamic topologies would all be
essential elements of a reconciled operational semantics for co-simulation of CPSs.

14.5 Open Co-simulation

In general, CPSs involve cyber elements interacting not only with a full range of
physical behaviours (electrical, mechanical, hydraulic, for example), but also with
people. If we wish to model the effects of a particular control system in a public
transport network, for example, it may be necessary to include agent-based models
of human behaviour within a co-simulation [14, 90], or stochastic descriptions of

14 From Embedded to Cyber-Physical Systems: Challenges and Future Directions 299

such behaviours. This potential for a wide range of constituent model types means
that co-simulation platforms like Crescendo need to be both open and extensible.

One option for more open co-modelling than is currently available in Crescendo
would be to create tool-specific Functional Mock-up Units (FMUs) that can be used
in heterogeneous co-simulation via the platform-independent Functional Mock-
up Interface (FMI) [13].> FMI comes in two flavours: FMI for Model Exchange
(FMI-ME) and FMI for Co-simulation (FMI-Co). FMI-ME provides a mathematical
description of a model. FMI-Co additionally includes a numerical solver to allow a
co-simulation. FMI is a platform-independent standard that was developed in the
MODELISAR project* for describing tool-specific models as FMUs. Four modes
of FMI could be considered:

1. Importing FMU-MEs into tools that support a Crescendo co-simulation. This
could be realised by developing a generic method for importing FMI-MEs into
arbitrary simulation tools like 20-sim, ANSYS Simplorer’ and TRNSYS.6

2. Direct coupling of FMU-Cos to the Crescendo co-simulation. This could be
realised both directly through the coupling of the XML-RPC protocol of
Crescendo to the FMI and indirectly by importing the FMI-Cos into HiL tools
like 20-sim 4C and RT-Tester.”

3. Converting FMU-MEs into FMU-Cos and using Method 2. This could be realised
by developing a generic method to extend FMI-MEs with a numeric solver.

4. For integrating tool-specific models like TRNSYS into the Crescendo technol-
ogy, export functionalities to FMU-MEs could be provided.

14.6 Ubiquitous and Distributed Computing

Distributed computing will play an increasingly important role in next generation
CPSs. The importance of these concepts is already acknowledged in VDM-RT
described in this book, as the language is execution context aware, with CPU
and BUS as first-order citizens of the specification language and the keywords
duration and cycles available to express execution time. This enables the
description of deployments of software on a given hardware architecture, connected
to an independent environment, which allows for light-weight performance analysis.
Using the automated co-model analysis features of the Crescendo tools, it is even
possible to make trade-offs between competing system architectures, automatically
generated based on user specified templates. We consider this already a significant

3https://www.fmi-standard.org/.
“http://en.wikipedia.org/wiki/MODELISAR.
Shttp://www.ansys.com/.
Shttp://www.trnsys.com/.

Thttp://www.verified.de/en/products/rt-tester.

https://www.fmi-standard.org/
http://en.wikipedia.org/wiki/MODELISAR
http://www.ansys.com/
http://www.trnsys.com/
http://www.verified.de/en/products/rt-tester

300 J. Fitzgerald et al.

step forward as current design methods typically ignore distribution and timing
(which are critical for system-level performance requirements) until the test and
integration phase, for example, using techniques such as worst-case execution
time analysis. This typically leads to designs that are overdimensioned in order
to overcome the uncertainty at design time, or mandate a specific model of
computation, such as for example the time-triggered architecture [55], in order
to make a priori guarantees about meeting non-functional requirements such as
performance.

Even though VDM-RT provides features to express time aware and distributed
software, there are some restrictions. For example, both the hardware architecture
and the software deployment are static and cannot be changed at run-time, and only a
single BUS can connect two CPUs. With the advent of self-healing and autonomous
systems, with computing nodes that can dynamically change the processor speed
and connectivity in order to balance power consumption and performance, it is clear
that the capabilities that Crescendo currently offers are still limited in this respect.
Furthermore, the types of communication buses and their associated behaviours are
limited to just a common few, leaving the specifier to encode alternative approaches
explicitly on top of these basic artefacts. An example of this is for example the
Ether pattern, used to express lossy communication, as presented in Appendix C.3.1.
Similarly, there are no out-of-the-box facilities to support broadcasting, for example,
to mimic publish-subscribe (point to multi-point) style communication interfaces,
as are paramount in wireless communication. Design patterns obviously provide
flexibility at the cost of increasing model complexity and perhaps even simulation
performance.

We believe that further improvements are needed to address the modelling
challenges, in particular in the areas of multi-core and wireless computing, two
competences that will carry future CPS implementations. Multi-core computing will
be used to improve the performance of computation intensive tasks such as image
processing, whereby algorithms are parallelised and executed on a large number
of processing units that are interconnected within the same chip. Challenges that
arise here are the integrity of the parallel code, synchronisation of the associated
data flows in this massively parallel setting, possibly dynamic distribution of
those artefacts over the available cores and in situ reconfiguration of the network
topology while maintaining strict performance requirements and minimising power
consumption. Wireless computing presents the challenge of a lossy communication
channel with a constantly changing topology that depends on the current physical
location of the communicating device. Wireless computing will be the back-bone of
the so-called Internet-of-Things (IoT), where several devices might work together,
in an ad hoc fashion, in order to perform a certain task. This even affects the more
fundamental notion of what a system exactly is, as the system boundary might not
be static but volatile in both space and time. This is commonly referred to as the
SoS paradigm.

14 From Embedded to Cyber-Physical Systems: Challenges and Future Directions 301
14.7 An Open and Lively Research Field

CPSs, their applications and their engineering are a highly active research area.
The topic is intriguing because it brings together many ICT and non-ICT disciplines
as well as systems and control engineering. Furthermore, significant public invest-
ment has been placed in research and development, notably in the USA, Germany
and at the level of the European Union. The research challenges for CPSs in general
are a subject of current debate [8, 19, 62, 63], and domain-specific challenges have
been identified in areas including energy-sustainable CPSs [40] and in the medical
domain [66]. From the point of view of co-modelling and co-simulation, and their
role in design of dependable CPSs, we identify in outline some of the open areas for
research:

Modelling CPSs: It is important to develop methodical approaches to CPS
engineering [47], regardless of the specific formalisms used. Although we
have presented specific formalisms for modelling DE and CT constituent ele-
ments, there are many other potential candidates, each with the limitations and
advantages. Preliminary research, for example, has suggested that it is possible
MATLAB/Simulink into the Crescendo framework [54]. However, there is a
much wider class of formalisms relevant to CPSs that could be linked in.
Examples might include agent-based models [14], cost or economic models.
Deeper issues surround the semantics of integrating stochastic formalisms to
describe probabilistic phenomena, for example.

Verifying Properties of CPSs: We have chosen to focus on simulation as a
means of creating evidence about the properties of embedded systems and
CPSs, but inevitably the quality of this evidence is limited by the quality of
the underlying test set. Static analysis techniques, including proof and model-
checking, allow symbolic analysis of models that, in principle, can deliver a
high degree of confidence in the truth or falsehood of a proposition about a
specific model. Such techniques can be partly or largely automated, but for each
application there is a trade-off to be made between the investment demanded by
these forms of verification and the evidence and risk reduction that they buy.
The question of whether automated verification will ever be possible for fully
fledged CPSs is an open one. There are current questions about the extent to
which verification evidence composes over the structure of a CPS [98]. There
have been attempts to do verification of CPS from a purely DE perspective [69]
and with a focus on CT-side [89].

Designing for Robustness of CPSs: Error detection and recovery is an interest-
ing topic in the context of co-modelling, since the technique enables a direct
comparison of mechanisms both DE-side and CT-side, allowing a wide range of
hybrid approaches to be analysed within a product development (for example,
building DE-side redundancy to address CT-side errors or vice-versa). At the
scale of CPSs, the challenges (and hence the potential benefits of co-modelling)
magnify: you may not simply reboot all the cars in a platoon when an error
is detected! In particular, the reliability of communications media will be a

302 J. Fitzgerald et al.

bounding factor in deciding the range of mechanisms available. In our work,
design patterns and guidelines for fault-tolerance in embedded systems were
developed, but there are many other aspects of dependability that also need
exploring in CPSs [74]. For example, there are interesting efforts to decouple
system stability from cyber timing uncertainties at the design phase of CPS
development [91]. We have indicated that people interact with and in CPSs,
and indeed when considering “Human-in-the-loop” problems, we can envision
technical CPSs collaborating with people to overcome human deficiencies.

Controlling CPSs: CPSs share some characteristics with SoSs, including the
high degree of autonomy that may be shown by at least some of the constituent
systems. This means that the constituents may have a bounded contractual rela-
tionship between one another, rather than exposing a full range of functionality
to the other elements of the SoS. In considering the control of a CPS, we have to
think not only about how accurate data on distributed state is gathered, but how
effective control can be exercised in such an environment.

Analysing and Ensuring Security and Safety in CPSs: Although we have con-
sidered error detection and recovery, the design patterns and methods addressed
in this book tend to assume non-malicious faults. Certainly, one can consider
the augmentation of co-models of CPSs with details of vulnerabilities and the
introduction of formalised attacker models. Given the independence of CPS
constituents, there are certainly questions of managing trust [99] and provenance
issues around the acquisition of critical data for decision-making in CPS control.
Openness of platform standards and communications protocols is sometimes
seen as a desirable characteristic of a CPS, enabling much of the agility that
the CPS paradigm seeks to bring. However, CPSs have obvious attendant risks
for both safety and security, making the development of appropriate design
methodologies essential [10]. A safety roadmap for CPSs has been proposed,
incorporating run-time features in order to cope with open and adaptive systems
consider both security and safety with a focus on context awareness [94].

14.8 Conclusion

Our aim in this book has been to describe the foundations, methodology, practice
and experience of collaborative modelling and co-simulation in the design of
embedded systems. We began with the belief that this approach could have long-
term value in promoting rapid and early innovation by providing a vehicle for real
cooperation between engineering disciplines based on discrete event and continuous
time formalisms. Our experience in several industry case studies is profoundly
encouraging. The viability of our approach has been confirmed using independent
modelling and simulation environments for VDM and bond graphs, harnessed
together by the Crescendo tool linking Overture and 20-sim. Although we have a
very new co-simulation engine here, we have been able to achieve positive results

14 From Embedded to Cyber-Physical Systems: Challenges and Future Directions 303

with reductions in the number of early design iterations and a reduced need for early
(expensive) physical prototypes.

Where next? Our work has only scratched the surface of co-modelling, with
a limited initial range of supported simulation engines, but we have argued that
the kind of collaborative working supported by Crescendo could be extended to
allow the early-stage modelling and analysis of markedly more complex CPSs
that demonstrate characteristics of both embedded systems and SoSs. The range
of models could be extended significantly to permit trade-off analysis against a
much wider range of design variables, including energy consumption, cost and
human factors. We have concentrated to some extent on the role of co-modelling
in addressing the complexity in design necessarily caused by the need to address
faults and fault tolerance, often in both hardware and software.

The term “CPS” is still fairly new, and the field is still establishing itself. We
would not encourage tribal debates about whether a system is or is not “really cyber-
physical”. Instead, we prefer to concentrate on support for “cyber-physical thinking”
during product development. This is characterised by the ability to move easily
across the boundaries between discipline-specific models, exploring the full design
space rather than one silo within it. Exercising cyber-physical thinking on products
of modern scale and complexity entails having semantically well-founded support
for the integration of a wide range of models, not just those of control software
and the environment. Providing sound methods and robust tools to support such
thinking has enormous potential benefit in systems development and engineering,
from practical theories up to the provision of libraries of design patterns for models,
system architectures and verification. Together, such techniques could help us all
the more rapidly to develop embedded and cyber-physical products that earn a place
in the market and also earn our trust.

Appendix A
20-sim Summary

Christian Kleijn

A.1 Introduction

20-sim is a modelling and simulation software package for mechatronic systems.
With 20-sim, models can be created graphically, similar to drawing an engineering
scheme. With these models, the behaviour of dynamic systems can be analysed and
control systems can be designed. 20-sim models can be exported as C-code to be
run on hardware for rapid prototyping and HIL simulation.

20-sim includes tools that allow an engineer to create models quickly and
intuitively. Models can be created using equations, block diagrams, physical
components and bond graphs. Various tools give support during the model building
and simulation. Other toolboxes help to analyse models, build control systems and
improve system performance. You can find more information on 20-sim on the
website www.20sim.com and download the free Viewer.

Figure A.1 shows 20-sim with a model of a controlled hexapod. The mechanism
is generated with the 3D Mechanics Toolbox and connected with standard actuator
and sensor models from the mechanics library. The hexapod is controlled by PID
controllers which are tuned in the frequency domain. Everything that is required
to build and simulate this model is inside the package. No external software or
compiler is needed!

C. Kleijn (<)
Controllab Products, Enschede, The Netherlands
e-mail: Christian.Kleijn @controllab.nl

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 305
DOI 10.1007/978-3-642-54118-6,
© Springer-Verlag Berlin Heidelberg 2014

www.20sim.com
mailto:Christian.Kleijn@controllab.nl

306 C. Kleijn

B8 20-sim Editor on: hexapod.emx E=nnc

Ble Edit Vew [nsert Model Drawing Settings Tooks Help

DoatE O hih ¢ 2L é72 R0 .

F @::ﬂ_l : Hexapod 3
o] et 2
[Pl ctr_3
H:H_ﬁ

s

™

"
W

Hexapod 30 Lischanics Editor

Leg Sensory & Actuators Leg Controders Rederance Paih

Interface | Io * ¥ | Output | Process | Find

|: . Opening fie Y:'F 1aalFac

Causality assignment completed successfully
L — =

\Introduction into 20-smf e

——— = — —— S

Fig. A.1 20-sim Editor with the model of a hexapod

A.2 Overview

The 20-sim software consist of two windows which are tightly integrated. Models
are created in the Editor, and simulation runs and results are shown in the Simulator.
When 20-sim is started, the Editor will open. The Editor contains a model library
tree from which you can drag and drop elements to the drawing canvas to construct
your models. The 20-sim Editor will show CT models either in a graphical editor or
in a text editor depending on the model that is shown.

The library contains elements for building bond graph models, components for
building physical systems and blocks for building block diagram models. All library
elements are open and can be changed by the user. The library contains the following
elements:

Bond Graph: Elements for building bond graph models
Iconic Diagrams: Components for building physical systems:

Electric: Components for building electric networks

Mechanical: Components for building translational and rotational mechanical
structures

Hydraulics: Components for building hydraulic systems

A 20-sim Summary 307

Thermal: Components for modelling heat transfer

Block Diagrams: Blocks for building block diagram models: Linear and non-
linear blocks, sources and sinks, transfer functions, etc.
Examples: Example models showing the basic use of the library models.

A.3 Graphical Models

Models in 20-sim are hierarchically oriented. The model on top is called the Main
model. It is constructed using graphical elements which are called Submodels.
Submodels can be connected. Depending on the submodel, the connection can be
a shared variable or a physical connection. A Submodel itself can be constructed
from multiple submodels, and these submodels themselves can be constructed with
submodels, going many layers deep. At the bottom of the hierarchy, the models are
described by sets of equations. These models are called equation models.

A.4 Equation Models

Equation models are specified in a special language called SIDOPS++.
SIDOPS++ has great resemblance with Maple, Matlab and other mathematical
software packages.

Figure A.2 shows an example of an equation model. 20-sim equation models
have a basic layout indicated by keywords:

Parameters: definition of values that do not change during simulation
Variables: definition of values that do change during simulation
Equations: the actual equations

Equations are relations between parameters and variables and indicated by an
equal (=) sign. Various mathematical functions and operators are available for use
in equations.

A.5 Modelling Tools

20-sim comes with a number of tools to build advanced models:

Controller Design Editor: The Controller Design Editor helps users to design
feedback systems with a linear plant, controller and pre-filter. Open and closed
loop responses can be investigated using Bode and Nyquist plots.

3D Mechanics Editor: 3D mechanical systems are notoriously difficult to model
using 1D elements. The 3D Mechanics Editor enables the user to define

308 C. Kleijn

f B8 20-sim Editor on: hexapod.emx B
fle Edit View Insert Model Drawing Settings Tools Hebp

DoeEHR 0O0xDDIS 0 (42K ¢e @ @

Model | Library W) k)t s {m} add =
4 maodel ~ || parameters -
Em real kp = 500.0 {}:
[rol vl 2 taud = 0.2 {s};
(o) et _3 = 0.1 (3;
= Ll = 0.2 {2}
[mlcris |E ;
E o6 variables
-i4F 1 real pdout, pdrate, pdscate; =
- 1F:2 real pirate, pistate;
-4F_3 equations
~4F 4 pdrate = (kp * error - pdout) / (beta * taub);
“HFS pdstate = int (pdrate);
1FS pdout = pdscate + (kp * error / beta):
hexapod =
i pirate = pdout / taul}
EF!LP"' piscate = int (pirate):

output = piscate + pdout:

F m b

Interface | Io * 7| Output | Process Find |

Operu'\gﬂeu.'r. I\Factsheets\20-sim\Introduction into 20-sm'hexapod.emx...

Causality assignment completed successfully

"

Fig. A.2 20-sim Editor with an equation model

mechanical systems by dragging and dropping bodies, joints and other objects
in a 3D workspace. The corresponding set of optimised differential equations is
generated automatically.

Wizards: Various wizards will help you to create motion profiles, define cams,
build servo motors and much more.

A.6 Simulation

When a CT model is ready, the Simulator can be opened from the Editor. Under
the hood, the model is automatically compiled to create simulation code. 20-sim
uses a built-in compiler for creating the simulation code, no additional tools are
required. In the compiling-phase, 20-sim will check if the model is correct and
optimise the equations. During optimisation, a built-in symbolic solver is used to
remove derivatives, algebraic loops and other potential problems.

The Simulator is used to run simulations and analyse CT models. Before a
simulation run can be started, the user has to define some settings:

Run properties: The start time and finish time of a run.
Integration method: 20-sim supports a number of advanced numerical methods
for running a simulation. The numerical method can be chosen along with proper

A 20-sim Summary 309

ER 20-sim Simulator E@g
Ele View Properties Smulation Tools Help
B D sdeowm /i »rrw A5 S @
[T Plot Windows 06 osition x
4 E References 0.2 / 2 X I
= position x 1 1 1 I g
position y 0.6 —_— osition
position z 0.2 + ; 1 St " : ¥ i f
orientation phi - : !
orientation psi 4 / ositionz
: H 0.2] -
i orientation thet: i -z
{7 3D Animation
02 NG orientation phi
: 1= phi
0.2 3 orientation psi
0 = psi H
0.3 — =
0 _' > orientation theta
t t t — theta)
0 2 4 & € 10
] m b time {s}

Qutput i
Starting Simulation -
Simulation stopped after 4,398 seconds. Model caloulations: 31339 Number of output points: 630 Average steps per second -

- m v

! 20-sim 4.4 (c) 2013 Controllab Products B.V.

L%

- — = = - = == J

Fig. A.3 20-sim Simulator showing six simulation plots

settings. These settings include, for example, maximum integration error and step
size.

Parameter values: Before a simulation run, the default parameters values may
have to be changed.

Plot properties: The number and appearance of the plots have to be set and the
variables to be plotted have to be chosen.

Next to simulation plots such as those shown in Fig. A.3, results can also be
displayed as 3D animations in 20-sim. A special editor is available in which any
variable can be connected to the position, orientation, size and colour of 3D objects.
Standard 3D objects are available like cubes and spheres, but objects can also be
imported from CAD packages.

A.7 Analysis

The 20-sim package has two toolboxes which can be used to analyse models.

Time Domain Toolbox: The Time Domain Toolbox provides the ability to
change parameter values and run multiple simulations to permit model analysis.
Parameter sweeps, Optimisation and Curve Fitting will help to improve the

310 C. Kleijn

system performance. Sensitivity Analysis, Monte Carlo Analysis and Variation
Analysis will help to check the robustness of a CT model.

Frequency Domain Toolbox: Models in 20-sim can be linearised to show the
corresponding linear system in the Linear System Editor. The Linear System
Editor is a specialised tool for the design and display of linear systems. The
editor supports continuous-time and discrete-time SISO systems and can show
the system response by Bode and Nyquist plots. If models cannot be linearised,
Fast Fourier Transforms can be used to show the frequency behaviour of a
model.

A.8 Scripting

With scripting, tasks can be run in 20-sim automatically using specialised scripting
functions. With these functions, models can be opened and run automatically,
parameters can be changed, results can be exported and much more (Fig. A.4).

20-sim scripting functions can be run as m-files in Matlab or GNU Octave.
GNU Octave is an open source environment that allows to run m-files similar
to Matlab. Scripting functions are available to open and simulate 20-sim models,
export parameters values to a 20-sim model, run simulations, export simulation plots
and much more.

A.9 Co-simulation

Based on the scripting engine, 20-sim can be run in a co-simulation. During
simulation, 20-sim can receive input from external tools and send output to external
tools. Co-simulation with the Crescendo tool and its predecessor DESTECS are
currently supported.

The only change that has to be made to enable a 20-sim model for co-simulation
is the definition of import and export variables. These variables should be defined in
equation models using the keyword “external”. Figure A.5 shows an example.

A.10 Code Generation

Out of any 20-sim model, C-code can be generated for use in external systems, HIL
simulators, etc. Templates allow customisation of the C-code with pre- and post-
commands, file-linking, comments, etc. There are built-in templates that allow you
to generate code for various targets:

A 20-sim Summary 311

-
i Figure 1 LEM
Bode plot of estimated 4*th order linear systems
expediment-] =
experiment 2—
o experiment 3=
g experiment 4—
. i 45—
E
e
= - =z
L]
=
Te+2
T T T T T T ur—
200 ; L=
=
g 250 T | S | B T TP -
-
]
& -300 -
|
.350 “epee H : =
s PRI | L PR SR s i
le1 1e+0 Te+1 le+2
Frequency [rad/s]
izjl G | P I Ri ?I [5.757, -22.59]
-

Fig. A.4 Bode plot in Octave, generated with scripting from a 20-sim model

20-sim 4C: The package 20-sim 4C helps to run c-code on hardware to control
machines and systems. 20-sim 4C imports models (c-code) from 20-sim and runs
them on hardware like embedded arm boards, PC 104 systems and much more.
For more information, see www.20sim4c.com.

Matlab Simulink: Generating C-code for use in MATLAB Simulink also
includes a submodel block with input and output terminals. 20-sim uses
the MEX-compiler to compile this code directly into an S-function. These
S-functions can also be used in the Real Time Workshop in order to generate
code for a specific platform, for instance, xPC Targets.

C-Code: 20-sim can generate standalone C-code for use in C and C++
programs. The generated C-code is supplied with several fixed step simulation
algorithms to enable it to run in real time. The Euler and Runge—Kutta methods
are supported by default.

www.20sim4c.com

[Fie Edt Vew Insert Model Drawng Settngs Tools Hebp

Do LEB(0 ><hib s [2Lh6 2 &
[[XL

externals
real global export x;
real global import y:

variables
real result;

code
// THE EXPORT FOR THIS MODEL
x =sin(time);

// IN BETIWEEN HERE THE VDM/DESTECS WILL CALCULATE THE NE|
// ¥y = amplitude * x;

8
4 ¥ | output| Process | Find |
Optimizing equation structure...
Generating smulation instructions...
The model is empty
|The model has 0 errors and O wamings.

Fig. A.5 Equation model defining import and export variables for co-simulation

Appendix B
VDM-RT Language Summary

Peter Gorm Larsen

B.1 Operators for Basic Types

Table B.1 provides an overview of the main operators for the basic types in
VDM-RT (bool,nat,natl, int and real). In these tables, the partial operators

are indicated with the — arrow. Note that the Boolean values true and false are
different from numbers such as 1 and 0.

B.2 Operators for Set Types

Sets are unordered finite collections of elements. Sets are written with curly braces,
and the empty set is written as { }. The operators on sets in VDM-RT are provided
by Table B.2.

B.3 Operators for Sequence Types

Sequences are finite ordered collections of elements. Sequences are written with
curly braces, and the empty sequence is written as []. The operators on sequences
in VDM-RT are provided by Table B.3.

P.G. Larsen (<)
Aarhus University, Aarhus, Denmark
e-mail: pgl@eng.au.dk

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 313
DOI 10.1007/978-3-642-54118-6,
© Springer-Verlag Berlin Heidelberg 2014

mailto:pgl@eng.au.dk

314

Table B.1 Operators on basic types; “T” stands for any type

P.G. Larsen

Operator Name Type

not b Negation bool — bool

a and b Conjunction bool * bool — bool
a or b Disjunction bool * bool — bool
a =>b Implication bool * bool — bool
a <=> b Biimplication bool * bool — bool
a=> Equality T * T — bool

a <> b Inequality T * T — bool

-X Unary minus real — real

abs x Absolute value real — real

floor x Floor real — int

x +y Addition real * real —> real
X -y Difference real *x real —> real
X *x y Product real * real — real
x /vy Division real * real — real
X**y Power real * real — real

Integer division
Remainder
Modulus

Less than
Greater than
Less or equal
Greater or equal

int * int = int
int * int = int
int *x int :> int
real * real — bool
real * real — bool
real * real — bool
real * real — bool

Table B.2 Summary of VDM++ set operators

Operator Name Type

e in set sl Membership A * set of A— bool

e not in set sl1 Not membership A * set of A — bool

sl union s2 Union set of A*set of A—>set of A
sl inter s2 Intersection set of Axset of A—>set of A
sl \ s2 Difference set of A*xset of A—set of A
sl subset s2 Subset set of A*set of A—bool

sl psubset s2 Proper subset set of A*set of A—bool

sl = s2 Equality set of Ax*set of A—Dbool

sl <> s2 Inequality set of Axset of A—>bool
card sl Cardinality set of A—nat

dunion ss Distributed union set of set of A—>set of A
dinter ss Distributed intersection ~ set of set of A — set of A
power sl Finite power set set of A—> set of set of A

B VDM-RT Language Summary

315

Table B.3 Summary of VDM++ sequence operators

Operator Name Type

hd 1 Head seql of A— A

£kl 1 Tail seql of A—>seq of A

len 1 Length seq of A — nat

elems 1 Elements seq of A—>set of A

inds 1 Indexes seq of A— set of natl

11~ 12 Concatenation (seq of A)*(seq of A)—> seq of A
conc 11 Distributed concatenation seq of seq of A—>seq of A

1 +4+ m Sequence modification seq of A*map natl to A;seq of A
1(1) Sequence application seq of A *mnatl SaA

11 = 12 Equality
11 <> 12 Inequality

(seq of A)*(seq of A)— bool
(seq of A)* (seq of A)— bool

Table B.4 Summary of VDM++ mapping operators

Operator Name Type

dom m Domain (map A to B) > set of A

rng m Range (map A to B)—> set of B

ml munion m2 Merge (map A to B)* (map A to B);map A to B
ml +-+ m2 Override (map A to B)*(map A to B)—>map A to B
merge ms Distributed merge set of (map A to B);map A to B

s <!'m Domain restrict to (set of A)* (map A to B)—>map A to B

s <-:m Domain restrict by (set of A)* (map A to B)—>map A to B
m > s Range restrict to (map A to B)*(set of B)—>map A to B
m:-> s Range restrictby (map A to B)* (set of B)—>map A to B
m(d) Map apply (map A to B)*A:)B

ml = m2 Equality (map A to B)* (map A to B) —bool

ml <> m2 Inequality (map A to B)*(map A to B) —> bool
inverse m Map inverse inmap A to B— inmap B to A

B.4 Operators for Mapping Types

Mappings are finite unordered collections of pairs of elements with a functional
relationship. Mappings are written with curly braces and with a small “| - >” arrow
between the domain and range values. The empty mapping is written as { | ->}.
The operators on sequences in VDM-RT are provided by Table B.4.

B.5 Record Types and Values in VDM

A record types (partly similar to struct’s in C) can be defined as:

316 P.G. Larsen

RecordT
sell : T1
sel2 : T2

[T

This is a record type with two fields. Note that this type definition uses ““::” instead
of the equality symbol used in other type definitions. This notation indicates that all
values belonging to the type contain a tag holding the name of the type, RecordT.
The presence of a tag allows us to define a constructor operator for the tagged
type. The constructor is written mk_fag, where tag is the name in the tag. Values
belonging to this type could be written as follows:

&mk_RecordT(tl,tZ) J

The “mk” operator is known as a record constructor, and the sell and sel2 are
called selectors that can be used to select elements from a record value.

B.6 Small VDM-RT Examples

B.6.1 General

Traditional if-then constructs can be used in VDM also with an elseif keyword.

{if predicate then Expression else Expression J

Casing between multiple alternatives can be carried out with a cases expression
using pattern matching.

cases expression:

pattern list 1 -> Expression 1,

pattern list 2,

pattern list 3 -> Expression 2,

others -> Expression 3
end

B VDM-RT Language Summary 317

Given a set of values one can traverse over them using a statement like:

for all value in set setOfValues
do Expression

Inside a block statement it is possible to declare local variables like:

(écl variable : type := Variable creation J

Otherwise local temporary “constants” can be defined using a 1et-expression
(and here pattern matching can also be used):

in Expression

[let variable : type = Variable creation J

A let-be-such-that expression can be used to select an arbitrary value from a
set satisfying some predicate, pred:

in Expression

[let variable in set setOfValues be st pred(variable) J

B.6.2 Comprehensions (Structure to Structure)

Comprehension expressions can be very valuable for sets, sequences and mappings:

{element (var) | var in set setexpr & pred(var)}

[element (1) | 1 in set numsetexpr & pred(i)]

Typically

[element (1ist (1)) | 1 in set inds list & pred(list(i))
{dexpr (var) |-> rexpr(var) | var in set setexpr & pred(var)}

318 P.G. Larsen

These can be used for describing implicit ways for characterising the elements
contained inside the collection.

B.6.3 From Structure to Arbitrary Value

If one needs to select an arbitrary element from a set, it can be done as:

Select: set of nat -> nat
Select (s) ==
let e in set s
in
e
pre s <> {}

B.6.4 From Structure to Single Value

In case one wish to extract a single value from a structure, it is most naturally done
using recursion:

SumSet: set of nat -> nat
SumSet (s) ==

if s = {}

then 0

else let e in set s

in
e + SumSet (s\{e})

measure CardMeasure

The measure here is used to show the reader (and the tool) how termination
is ensured. Such a measure function like CardMeasure must take the same
parameters as the function it is a measure for and yield a natural number.

B.6.5 From Structure to Single Boolean

For the special case where one needs to move from a set of values to a single
boolean, quantified expressions are most natural:

B VDM-RT Language Summary 319

forall p in set setOfP & pred(p)
exists p in set setOfP & pred(p)

existsl p in set setOfP & pred(p)

the exists1 quantifier is only true if there is exactly one value from setOfP that
satisfy the predicate pred (p) .

B.7 Threads and Synchronisation in VDM

In a VDM class, it is possible to define a thread. In the context of this book,
periodic threads are used. These can be declared, for example, as:

thread
periodic(1000,10,200,0) (IncTime)

The four numbers used here in order represent the period (1000), jitter (10),
delay (200) and offset (0) and the operation to be called in the example here is
IncTime. Objects instantiated from a class with a thread part are called active
objects. However, they still need to be actively started using a start statement.

When multiple threads exist, it may be necessary to synchronise them using
permission predicates. These can, for example, be written as:

per Push => length < maxsize;
per Pop => length > 0

Such permission predicates can also make use of history counters (#regq, #act and
#fin) for describing mutex constraints.

B.8 The System Class Concept in VDM-RT

In VDM-RT, a special system class is needed to be able to describe distributed
systems. Here it is possible to declare the static structure of a distributed system.
This is done using CPUs and BUSses which connect different CPUs. The constructor
of the system class then enables deploying the statically declared top-level
instances to the different CPUs.

320 P.G. Larsen
B.9 Example of Classes

New instances of a class (called an object) can be produced using a new expression.
Inside such a class it is possible to refer to itself using the sel £ expression.

class Person
types

public String = seq of char;
public Sex = Male | Female

values
protected Name : seq of char = "Peter";
instance variables

public nationality : seq of char:="Danish";

comment : String;

yearOfBirth : int;

sex : Sex;

friends : map String to Person
operations

public Person: int * Sex ==> Person
Person (pYear,pSex) ==

(yearOfBirth := pYear;

sex := pSex);

public GetAge : int ==> int
GetAge (year) == CalculateAge (year, yearOfBirth)
pre pre_CalculateYear (year, yearOfBirth);

functions

public CalculateAge : int % int -> int
CalculateAge (year,bornInYear) == year-bornInYear
pre year >= bornInYear

post RESULT + bornInYear = year;

Card: set of nat -> nat

Card(s) == card s;
thread
while true do
skip;

end Person

(S

B VDM-RT Language Summary 321

Subclasses can be defined as:

class Male is subclass of Person

end Male

And...

class Female is subclass of Person

end Female

B.10 UML Diagrams

Classes can be visualised as a UML class diagram, where boxes represent classes
and arrows indicate the relationships between classes. The classes in such dia-
grams may also show the instance variables and operations of the class. The
subclass relationship between the Person class and the Male and Female
classes is shown in Fig.B.1. The arrowhead in this case indicates a subclass
relationship.

While class diagrams visualise the static relationships between classes, object
diagrams show relationships between object at run time. They complement class
diagrams, showing how instances of objects are related. In object diagrams, the
boxes with rounded corners represent objects and arrows represent references to
other objects. In the Person class example, the friends instance variable is a
map of Person objects. Figure B.2 shows the relationship between three objects:
a person called Peter, with two friends, Paul and Mary.

322

Fig. B.1 UML class diagram
for the Person class and its
subclasses

Fig. B.2 UML object
diagram showing
three-person objects and their
relationships

P.G. Larsen

Person

-sex : Sex

+ nationality : seq of char
- comment:
- yearOfBirth : int

- friends : map String to Person

String

+ Person(int, Sex) : Person
+ GetAge(int): int

Male

Female

friends("paul”) *—
friends(“mary”)

Appendix C
Design Patterns for Use in Co-modelling

Carl Gamble, Kenneth Pierce, John Fitzgerald, Bert Bos, and Marcel Verhoef

C.1 Introduction

A design pattern is a template that outlines a possible solution for a specified
problem. Patterns aim to provide inspiration to designers by describing solutions
that have worked in the past. While the exact result of the application of a pattern is
likely to be unique in every case, the core of the solution can be broadly similar over
numerous applications. We adopt the style of [39], which relates to object-oriented
software, but which can be applied more generally.

The general form of each pattern includes a name, a problem description,
a solution description and a description of the consequences of its application [39].
Adapting from Gamma et al. [39], pattern descriptions include the following
sections:

Name: An identifier that conveys the essence of the pattern succinctly.

Intent: What does the pattern do? What problem does the pattern address? What
is the rationale or intent?

Motivation: A scenario that illustrates how the pattern solves the problem and
can help interpret the rest of the description.

C. Gamble (P<) » K. Pierce * J. Fitzgerald

Newcastle University, Newcastle upon Tyne, UK

e-mail: carl.gamble @newcastle.ac.uk; kenneth.pierce @newcastle.ac.uk;
john.fitzgerald @newcastle.ac.uk

B. Bos
Chess iX, Haarlem, The Netherlands
e-mail: bert.bos@chess-ix.com

M. Verhoef
Chess WISE, Haarlem, The Netherlands
e-mail: Marcel.Verhoef @chess.nl

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 323
DOI 10.1007/978-3-642-54118-6,
© Springer-Verlag Berlin Heidelberg 2014

mailto:carl.gamble@newcastle.ac.uk
mailto:kenneth.pierce@newcastle.ac.uk
mailto:john.fitzgerald@newcastle.ac.uk
mailto:bert.bos@chess-ix.com
mailto:Marcel.Verhoef@chess.nl

324 C. Gamble et al.

Structure: A graphical representation of the elements of the solution, for
example, a UML class diagram.

Application to DE Domain: Model fragments and guidelines on how the
solution can be realised within VDM (where applicable).

Application to CT Domain: Model fragments and guidelines on how the
solution can be realised within 20-sim (where applicable).

Use in Examples: If a pattern is used in one or more of the running examples,
it will be listed here (where applicable).

Related patterns: Descriptions of other patterns which are closely related (where
applicable).

Also known as: Other well-known names for the pattern (where applicable).

C.2 Controller Patterns

C.2.1 Minimal Controller Pattern

C.2.1.1 Intent

To build a minimal DE controller model in VDM suitable for initial co-simulation.

C.2.1.2 Motivation

In order to test initial co-models, it is often useful to build a minimal controller
with a simple structure to perform basic tests. With a small number of classes, it
reduces the possibility for bugs in the DE controller, making it easier to determine
if the co-model as a whole is working correctly. This pattern is suitable for initial
testing of a co-model, that is, at the level of loop control. Although it does not follow
best practice (see Sect. C.2.2), it is simpler and easier to debug for building initial
models.

C.2.1.3 Structure

A class and object diagram is shown in Fig. C.1. The class diagram (Fig. C.1a) shows
that the minimal VDM controller consists of three classes:

* World. This class is simply used as a bootstrap to initiate a co-simulation with
the Run operation.

* MySystem. This system class is used to define the shared variables that will be
updated by the co-simulation engine and the topology of the controller (which in
this case is simple).

C Design Patterns for Use in Co-modelling 325

Fig. C.1 Minimal VDM a _
controller (class and object | Controller | | MySystem !
diagram). (a) Class diagram. -5 real | -controller : [Controller]
(b) Object diagram || 2t | | zopu: GRU

I + Step() | | +MySystem()

[World

+mni)
b

— (et

-
ctrl -
s - monitored real s:
a o controlled real a;
J

Controller. This class is the actual controller, which defines a periodic
thread and an operation that performs control: reads sensor values, performs
calculations and writes actuator values.

The object diagram (Fig. C.1b) shows that the system holds a reference to the

controller and that the controller holds references to two shared variables. Note
the non-standard notation used to denote which elements of the contract the shared
variables refer to.

C.2.1.4 Application to DE Domain

The class definitions in Listings C.3—C.5 can be used to build a minimal controller
for a co-model. The following notes can help in the use of these classes and in
avoiding some possible errors.

The World class in Listing C.3 can be used as is, with no modification.

The MySystem class in Listing C.4 defines a single sensor and actuator (of type
real). These should be replaced by variables that match the co-model contract
(and with more useful names).

The MySystem class may only define instance variables and a constructor
(an operation called My System with return type MySystem).

The constructor of MySystem is implicitly called before the run operation of
World.

The Controller class requires Step operation to be implemented with some
control logic.

The Controller class can access sensor and actuator values statically through
the My System class, that is, MySystem's, MySystem'a.

The first parameter of the periodic thread definition controls the period (the other
parameters can be left as zero for this minimal controller). This period is given
in nanoseconds. A simple conversion from milliseconds to nanoseconds is to add
the suffix E6 to the previous value, that is, 10ms is 10E6 ns. The parameters
of the periodic thread can be parameterised. This means that you can use a

326

C. Gamble et al.

function to convert to a period from a frequency, for example. You may also
reference an instance variable as long as it has the right value when the thread
is started. This means you can pass the period to the constructor of an object. See

Listings C.1 and C.2.

values
public FREQUENCY = 25; —-- Hz
functions
freq to_period: real -> nat
freq to_period(f) == floor 1E9/f
thread periodic(freq _to_period(FREQUENCY), O ,O0,

0) (Step);

S

Listing C.1 Using a function as a parameter to a periodic thread (a)

instance variables
private period: nat;

operations
public Controller: nat ==> Controller
Controller (p) == period := p;

thread periodic(period, 0 ,0, 0) (Step)

S

Listing C.2 Using a function as a parameter to a periodic thread (b)

class World
operations

—-— run a simulation

public run: () ==> ()

run () ==

(
start (System‘controller);
block () ;

)i

-— wait for simulation to finish
block: () ==> ()

block () == skip;

sync per block => false;

end World
-

Listing C.3 World.vdmrt

C Design Patterns for Use in Co-modelling 327

-
system MySystem

instance variables

-—- sensor, actuator, controller and CPU

public static sensor: real := 0O;

public static actuator: real := 0;

public static ctrl: Controller := new Controller();
private cpu: CPU := new CPU(<FP>, 1E6)

operations

public MySystem: () ==> MySystem

MySystem() ==

(
cpu.deploy (ctrl)
)

end MySystem
.

J
Listing C.4 System.vdmrt
e
class Controller
public Step: () ==> ()
Step () ==
(
—— read System'‘'sensor
—-— perform calculation
-— write System‘actuator
)
-— 1Hz
thread periodic(1E9, 0 ,0, 0) (Step);
end Controller
\. J

Listing C.5 Controller.vdmrt

C.2.2 Object-Oriented Controller Pattern

C.2.2.1 Intent

To build a well-structured DE controller model in VDM for co-simulation.

C.2.2.2 Motivation

The full controller model expands on the minimal controller (see Sect. C.2.1) and
introduces more features and best practices. Once initial testing is complete and

328 C. Gamble et al.

Fig. C.2 Full VDM a
controller (class and object Sensor
diagram). (a) Class diagram. -value: real
(b) Object diagram +Read() : real
Controller MySystem |
-sens: Sensor -ctrl : [Controller]
-act: Actuator &® -sens:Sensor
+Controller(...) : Controller act: Actuator
| +Step() +MySystem()
World Actuator
+mun() -value: real
+setup()
4 +Wite(real)
b

sens
| value .—}—)i monitored real s l

lvalue H controlled real a]

it is necessary to build a more full VDM controller, the following pattern can help
structure it. The main difference from the minimal pattern is that the shared variables
are now placed in Sensor and Actuator classes, following object-oriented
practice. Objects of these types are then passed to the Controller object, which
uses them to perform control.

C.2.2.3 Structure

A class and object diagram is shown in Fig.C.2. The class diagram (Fig. C.2b)
shows that the full VDM controller consists of five classes:

World. This class is simply used as a bootstrap to initiate a co-simulation with
the Run operation.

MySystem. This class holds references to sensor and actuator objects (which in
turn hold shared variables, which will be updated by the co-simulation engine).
This class also handles creation of CPU and BUS objects and deployment of the
controller, sensors and actuators to them.

Controller. This class is the actual controller, which defines a periodic thread
and an operation that implements a control loop (reads sensor values, performs
calculations and writes actuator values).

Sensor. This class is an example sensor class, which holds a shared variable as
an instance variable (of type real) and provides an operation Read with which
to access the variable.

C Design Patterns for Use in Co-modelling 329

Actuator. This class is an example actuator class, which holds a shared
variable as an instance variable (of type real) and provides an operation Write
with which to modify the variable.

The object diagram (Fig. C.2b) shows that the system holds a reference to the

controller and that the controller holds references to the sensor and actuator classes.
Each of these contains a single shared variable. Note the non-standard notation used
to denote which elements of the contract the shared variables refer to.

C.2.24 Application to DE Domain

The class definitions in Listings C.6—C.10 can be used to help construct a full
controller for a co-model. The following notes can help in the use of these classes
and in avoiding some possible errors.

The Sensor and Actuator classes should be replaced by classes that
match the co-model contract (and with more useful names). MySystem and
Controller will all need to be modified to reflect these changes.

The MySystem class may only define instance variables and a constructor
(an operation called My Sy stem with return type MySystem).

The constructor of MySystem is implicitly called before the run operation of
World.

The Crescendo tool requires that instance variables in the MySystem class are
given a value, therefore the types are all given as optional (in square brackets)
and they are initialised tonil.

The use of Sensor and Actuator classes follows good object-oriented
practice. It allows access to shared variables to be controlled and multiple
identical sensors and actuators can be easily created. It also aids fault/fault
tolerance modelling.

Sensor and actuator objects are passed to the constructor of the Controller
class (as opposed to being accessed statically via MySystem), following good
object-oriented practice.

The controller is deployed to a CPU, meaning that statements within controller
will take time (advance the simulation clock). The default is two cycles per
statement. The sensors and actuators are not deployed and will therefore be
(implicitly) deployed on a virtual CPU (meaning their computations will take
zero simulation time).

The Controller class requires the Step operation to be implemented with
some control logic.

The first parameter of the periodic thread definition controls the period. See the
tips from the minimal controller pattern above (Sect. C.2.1).

330 C. Gamble et al.

~
class World

operations

-— run a simulation

public run: () ==> ()

run() == (
start (System‘controller);
block () ;

)i

-— wait for simulation to finish
block: () ==> ()

block () == skip;

sync per block => false;

end World
-)

Listing C.6 World.vdmrt

-
system MySystem

instance variables

—-— sensor, actuator and controller

public static s: [Sensor] := nil;
public static a: [Actuator] := nil;
public static ctrl: [Controller] := nil

—-— architecture

cpu: CPU := new CPU(<FP>, 1E6);
operations
public MySystem: () ==> MySystem
MySystem () == (
—— instantiate System instance variables
s := new Sensor();
a := new Actuator();
ctrl := new Controller(s, a);
—— deployment

cpu.deploy (ctrl);

end MySystem
\. J

Listing C.7 System.vdmrt

C Design Patterns for Use in Co-modelling 331

class Sensor
instance variables

—-— this value will be set through the co-simulation
value: real := 0;

operations
-— read the current value of this sensor

public Read: () ==> real
Read () == return altitude;

end Sensor
\. Y,

Listing C.8 Sensor.vdmrt

-
class Actuator

instance variables

—-— this value will be set through the co-simulation
private value: real := 0

operations
-— write a value to this actuator
public Write: real ==> ()

Write(v) == value := v

end Actuator

Listing C.9 Actuator.vdmrt

C.2.3 Modal Controller Pattern

C.2.3.1 Intent

To encapsulate modal behaviours using mode objects. Mode objects can be switched
easily at runtime to change mode, activate fault-tolerance mechanisms or switch to
degraded behaviours. This is a special case of finite state machine patterns and is
similar to the strategy pattern.

C.2.3.2 Motivation

Specifying modal controller behaviours, where the controller behaves differently
in different circumstances, is a key benefit of co-modelling with a DE controller

332 C. Gamble et al.

~
class Controller

instance variables

private sensor: Sensor;
private actuator: Actuator

operations
public Controller: Sensor x Actuator ==> Controller
Controller(s, a) == (
sensor := s;
actuator := a
)
public Step: () ==> ()
Step () == (
—— sensor.Read()
—-— perform calculation
—— actuator.Write(...)
)
-— 1Hz

thread periodic(1E9, 0 ,0, 0) (Step);

end Controller
S

Listing C.10 Controller.vdmrt

written in VDM. Modes can be described using simple conditional statements, but
these become unwieldy as complexity is added and are difficult to maintain and
evolve. The idea of this pattern is to encapsulate the algorithm for each controller
mode into an object, much like the strategy pattern [39], such that these can be easily
swapped at runtime. Designing each mode is then focused into a single operation
in a single class. This also separates mode-switching from the modal behaviours
themselves.

C.2.3.3 Structure

A class and object diagram for this pattern is given in Fig. C.3. The important class
in this pattern is the AbstractMode class. It holds references to sensors and
actuators and has an abstract Step operation that should implement the control
algorithm in a given mode. The Step operation in the ModalController class
calls the Step operation of the current mode, thus delegating the responsibility
of control. This modal controller Step operation can also determine if the mode

C Design Patterns for Use in Co-modelling 333

a
| ModalController
-sens |SensorReal AbstractMode
-act: lActuatorReal ! - £]
-mode : Mode -context: ModelController |
"-modos :map Mode to AbstractMode +Step(: Mode]
+ Step() + Enter()
+GetSens() : ISensorReal + Exit{)
+GetAct() - lActuatorReal +Denel): bool
-CheckModeChange() : [Mode] —‘?
-ChangeModeMode) l]
| ModeOne ModeTwo
+Step(): [Mode] +Step() : Mode]
+Enter() +Exit()
- +Done(): bool
pren sens I
mctri
value .J—yl monitored real s

sens I

ack act

mode “maodel”

modes y, Lvalue 0-}—-—)1' controlled real a |

[Cmoder Ty |[modez 1|

| modei | mode2 |
context | context { I

Fig. C.3 Modal controller pattern (class and object diagram). (a) Class diagram. (b) Object
diagram

should be switched, for example, if a sensor fails. The various mode subclasses
should actually implement control actions.

C.2.3.4 Application to DE Domain
The following listing is some (simplified and shortened) extracts from the LineMea-

surer2Sensor example, showing how modes are initialised and how mode changing
works. The mode types are defined like this:

types
public Mode = token

instance variables
protected mode: Mode;
protected modes: map Mode to AbstractMode;
private first: bool := true;

Listing C.11 Mode types

334 C. Gamble et al.

Modes are initialised in the constructor. The use of a token type means that
more modes can be easily added at run time. The controller class acts as the context
for modes, so it passes itself to the constructor of each mode and has operations to
access sensors, actuators and so on.

—— create modes
modes := {
mk_token ("WAIT") | -> new WaitMode (self),
mk_token ("CALIBRATE") |-> new CalibrateMode (self),

}i
—-— initial mode
mode := mk_token ("WAIT");

Listing C.12 Mode constructor calls

The main control loop works like this. The init flag is used once at the
beginning to call Enter on the initial mode. Then the controller checks if the mode
needs to change (using another operation), then delegates control to the current
mode. The mode may request an internal transition, in which case the mode is
changed.

rpublic Step: () ==> ()
Step () == (
if first then (
—— initial mode
IO‘printf ("Initial mode: %s\n", [mode]);
modes (mode) .Enter () ;
first := false
)i

—— check if a mode change is needed
let m = CheckModeChange () in
if m <> nil then ChangeMode (m) ;

—-— delegate output to current mode
—— change mode if it requests
let m = modes (mode) .Step() in

if m <> nil then ChangeMode (m) ;

)i
~ J

Listing C.13 Checking for a mode change

The actual mode change is performed by an operation that calls Exit () on the
current mode, switches the mode, then calls Enter () on the new mode.

C Design Patterns for Use in Co-modelling 335

public ChangeMode: Mode ==> ()
ChangeMode (m) == (
-— call exit on the current mode
modes (mode) .Exit () ;
—-— change mode "pointer"
IO ‘printf ("Switching from %$s to %$s\n", [mode,m]);
mode := m;
—-— call entry on new mode
modes (mode) .Enter () ;
)
pre m in set dom modes;

Listing C.14 Change mode operation

The mode change operation looks like this. Modes may use the Done ()
operation to show that their task has finished, then the controller moves to the next
mode.

public CheckModeChange: () ==> [Mode]
CheckModeChange () == (
-— wait for sensors to come on
if mode = mk_token ("WAIT") and modes (mode) .Done ()
then return mk_token ("CALIBRATE");

Listing C.15 Check mode change operation

C.2.3.5 Use in Examples

This pattern is used in the LineMeasurer2Sensor example.

C.2.3.6 Related Patterns

State pattern [39]; strategy pattern [39].

C.2.4 10 Synchronisation Pattern

C.2.4.1 Intent

To explicitly control co-simulation synchronisation in order to ensure accuracy of
simulation and reduce simulation time.

336 C. Gamble et al.
Fig. C.4 10 synchronisation a e
pattern (class and object iofactory: IOFactory
diagram). (a) Class diagram. Thread l / +Step()
. . =ctrl: Controller —
(b) Ob_]eCt dlagram -iofactory: I0Factory _
+Step() | IOFactory
- - -sens: Sensor
| -actiActuator =~ |
+GetSens(): ISensorReal
+GetAct(): [AchuatorReal
+Synel)
ISensorReal | lActuatorReal
: +Read(): real + Wrte(real)
Sensor Actuator
-value:real | -value:real
-local_value:real | | -local_value:real
+Read():real +Wite{real)
+ Syned) +Synel)
[sens
thread iofactory value -l
iofactory sens local_value
ctrl o] etrl | act S
bofsicAbry value - controlled real a
local_value

C.2.4.2 Motivation

Due to the way co-simulation works, whenever (an instance variable linked to) a
shared variable is read or written on the DE side, a co-simulation synchronisation
occurs. This means that accessing shared variables more than once per control loop
operation slows down co-simulation. More importantly, accessing a shared variable
more than once can affect the outcome of a co-simulation because the value may
change between reads due to a co-simulation synchronisation to occur. The solution
in this pattern is to declare a second, local copy of each shared variable and explicitly
control when these are synchronised.

C.2.4.3 Structure

The basic structure of this pattern is to have a local copy of each shared variable
and to explicitly read or write to that value to cause a synchronisation to occur. In a
full object-oriented solution, each sensor and actuator object maintains its own local
copy of its own shared variable and provides a Sync operation. This is shown by
the class and object diagram in Fig. C.4.

The IOFactory class creates and hold the sensor and actuator objects. It pro-
vides operations to retrieve these objects, which the controller uses to access them.
It has a Sync operations that synchronises that in turn calls Sync on all sensor and
actuator objects. If placed in a cycles statement, only a single synchronisation will
occur per control loop. To hide this synchronisation from the controller, the periodic

C Design Patterns for Use in Co-modelling 337

thread is defined in a Thread class. The Step operation of this class calls Sync
on the 10 factory object, then the Step (control loop) method of the controller.

C.2.44 Application to DE Domain

The following listing is some (simplified and shortened) extracts from the LineMea-
surer2Sensor example, showing how synchronisation works. The extract from the
Encoder class (a sensor) shows how a local variable is defined and synchronised:

instance variables
-— this value will be set through the co-simulation

protected val: real := 0;

-— local copy of the shared variable

protected local_val: real := 0;
operations

-— read the current value of this sensor

public Read: () ==> real

Read () == return local_val;

-—- read shared variable to local variable
public Sync: () ==> ()
Sync() == local_val :=
CountToDistance (1f reversed then -val else val);
\& J

Listing C.16 Synchronising a local variable in a sensor

The synchronisation in IOFactory is then done as in the following listing:

(public Sync: () ==> ()
Sync () == (
cycles (20) (

—— sync actuators
servolLeft.Sync();
servoRight.Sync () ;
-— sync sensors
encLeft.Sync () ;
encRight.Sync();

)
)i

(S

Listing C.17 Synchronising sensors and actuators

Finally, the Thread class initiates synchronisation before calling the Step
operation of the controller. Note that in this case the controller contains an operation

338 C. Gamble et al.

call IsFinished () that will return true if the simulation should end. After this,
no synchronisations will occur and the co-simulation will essentially be CT-only,
finishing very quickly:

Step: () ==> ()
Step() == (
if not controller.IsFinished() then (
io.Sync();
controller.Step ()
)
)i

Listing C.18 Bypassing synchronisation to finish a simulation quickly

C.2.4.5 Use in Examples

This pattern is used in the LineMeasurer2Sensor example.

C.2.5 Demux Pattern

C.2.5.1 Intent

To divide access to a composite shared variable among (sensor or actuator) objects
to maintain the object-oriented principle.

C.2.5.2 Motivation

Arrays and matrices (of real numbers) may be defined within a contract. These are
useful for describing groups of the same type of sensor or actuator. We advocate
having one object per sensor and actuator, therefore a composite shared variable
should be accessible by more than one object. The solution in this pattern is
to introduce an intermediate “demux” object to hold the reference to the shared
variable and permit access to the elements of the sequence.

C.2.5.3 Structure

A class and object diagram for this pattern is given in Fig. C.5. A Demux class is
used to hold the actual shared variable and provides access through an operation,
taking the index as a parameter. Each sensor object holds a reference to the demux
object, as well as the index it should access. These are set through the constructor.

C Design Patterns for Use in Co-modelling 339

Fig. C.5 Demux pattern

. | Sensor ! Demux
(class and object diagram) |
-demux : Demux | -values : seqofreal
-index:int | -index:int
+Read() : real | +GetValue(int) : real

sensi
demux
inclex 1\

5ens2

demux
demux
index 2 /ualues '-}—)l monitored array[3]:
N Y

sensd

demux ¢
index 3
—

C.2.5.4 Use in Examples

This pattern is used in the LineMeasurer2Sensor example.

C.2.6 Decorator Pattern (for Evolution)

C.2.6.1 Intent

Use the decorator pattern to maintain backwards compatibility (e.g., for regression
testing) during evolution by decorating simple objects with new features.

C.2.6.2 Motivation

As co-models evolve, components such as sensors can undergo changes such as
the addition of behaviours such as realistic or faulty behaviours. This can lead to
changes being required in classes, such as the addition of new operations, which in
turn can require changes to many other existing classes. If it is necessary to preserve
existing classes, the decorator pattern [39] can be applied. This involves the creation
of a new class that includes the new operations and holds a reference to an object of
the original, simpler class. This means that simple objects can be passed to the older,
legacy classes where necessary and the enhanced object passed to new classes.

C.2.6.3 Structure

A class and object diagram for this pattern is given in Fig.C.6. The original
structures before the evolution are the Controller, ISensorReal, and
Sensor classes on the left-hand side. The decoration occurs through the

340 C. Gamble et al.

Fig. C.6 Decorator pattern a m m r
Controller EnhancedController

for evolution (class and object - : f 1
. . -If : ISensorintd | - elf: IEnhancedSensor
dlagram). (a) Class dlagram. I +5top0 1 -:él_epu_ —

. . ep |
(b) Object diagram = T = C I
[.rSen.sorReaJ 1 [lEnhnncé«‘iS_msom’ent |
[+ Read|) : Int& [+ Read)) : real |
= T +Emor) : bool
Sensor | EnhancedSensor
-value : real -sens : [SensorReal
+Read{) : Intg it
. | +Read() : Int8
I l IfLeft
ctrl >
alue monitored real lfLeft
¥ .H n ored A e _I
FRight IfRight
lvalue o—}—)n| monitored real 1fRight |

| [monitored real errLeft |

IfLeft

value menitored real 1fLeft]

(Right)
/,Lualue -:'—){.mm:a_-ed real 1fRight |

—_){m:r.; tored real errleft |

elfLeft
elfRight

introduction of the TEnhancedSensorReal class that includes the operations
of the ISensorReal and new operations introduced in the evolution (in this
case, adding an error flag and associated operation). The enhanced sensors hold
a reference to the simple sensor, delegating to it for basic functionality. In this
structure, the simpler controller can still be instantiated for regression testing using
the undecorated Sensor class. The object diagram shows how the two “enhanced”
objects are now included and pointed to by the controller. Note how the original
object remains unchanged.

C.2.6.4 Application to DE Domain
The following code shows how the (concrete) decoration works in this pattern. The

enhanced sensor holds the new shared variable and a reference to the original sensor
object. Note how it delegates the old functionality to the original object in Read:

C.2.6.5 Use in Examples

This pattern was used in older versions of the LineMeasurer2Sensor; however, the
current version with the Crescendo tool has been refactored.

C Design Patterns for Use in Co-modelling 341

instance variables
val: real := 0;

operations
—-— read the current value
public Read: () ==> real
Read () == return val;

Listing C.19 Original sensor

~
instance variables

err: bool := false;
sens: ISensorReal;

operations
—— read the current value
public Read: () ==> real
Read () == return sens.Read();

-— true if the sensor is in an
—— error mode, false otherwise
public Error: () ==> bool

Error () == return err;
. J

Listing C.20 Enhanced sensor

C.3 Fault Patterns

C.3.1 Ether Pattern

C.3.1.1 Intent

To model realistic communications between controllers through networks by explic-
itly modelling a communications medium.

C.3.1.2 Motivation

Distributed controllers need to communicate with each other. In VDM, the built-in
concept of the CPU and BUS can be used to model this; however, these connections
are always ideal: no messages are ever lost, duplicated or corrupted. In order to
introduce realistic networked communications, this pattern introduces an explicit
model of an ether, which represents some medium that data must travel through.
This pattern can be applied to represent direct connections between controllers,
a connection through an ethernet or wireless communications. The implementation
of the ether can be tailored for specific applications, for example, different quality
of service levels guaranteed by the medium.

342 C. Gamble et al.

Fig. C.7 Ether pattern (class a
and object diagram). (a) Class Ether
diagram. (b) Object diagram Ist: map IListenerto DeltaQueue

IListener

rRegister: [Listener===>(} 0.' -lst [2

+Broadcast: Message === () +Receive(Message())
+Step:() ==> ()) Ili

+

DeltaQueue

+ Step()
+Receive(Messagel]) |

- enfries : map nat1 to Message

+Push(nat1, Message)
+Pop(): Message[]

b
| | {1,m1},{2.m2} " | {1.m1}, {2,m2} ||

/ X el T — ===
B || | vy (et I
1] st s ctri1 : : ether F
| | 9 ether || | ' I
| i | |] (. [|
! : Lo : I ' 1
RER—— W]

iy i L] ~ [t |
\ vepu IVBUSI cpur Il cpuz !
N el /s \ J \ 7

C.3.1.3 Structure

A class and object diagram for this pattern is given in Fig. C.7. In the object diagram,
it can be seen that the ether is deployed on the virtual CPU, with two controllers on
separate (real) CPUs. These are connected by a virtual bus. The controllers can send
messages to the ether, which in turn stores them in a (delta) queue. When enough
simulated time has passed, the ether passes the messages to the CPUs.

The IListener interface represents an object that is connected to the ether.
Classes that implement this interface (e.g. the controller) must give a definition
for the Receive operation, which is called when a message arrives from the
ether. The Ether class explicitly models a medium over which messages pass. All
devices connected to the ether must call the Register operation. Messages can
be sent using Broadcast (as an example) and the class handles the distribution
of messages. The ether class is active: it defines its own thread to actively send
messages. The DeltaQueue class is one way in which the ether could model
travel time (and delays) for messages. As messages are received, they are added
to the queue with a given delay. The ether class then periodically updates each
queue to indicate the passing of time and messages that have spent the correct
time in the queue are removed and passed to recipients. The Controller class
represents the DE controller. It maintains an instance variable of the ether allowing it
to send messages to the ether. The controller class must implement the IListener
interface in order to access the ether.

C Design Patterns for Use in Co-modelling 343

C.3.1.4 Use in Examples

The ether pattern is used in the chesswayDESTECS example.

C.3.2 Noise Pattern

C.3.2.1 Intent

To alter a component’s output signal from ideal to realistic.

C.3.2.2 Motivation

Many electrical components have their inputs in the analogue domain through either
measurement of some real-world property or receipt of an analogue signal. For such
a component to be used by a digital computer, there must be an element performing
analogue to digital (A/D) conversion. One point at which random noise can enter
the signal value is when the analogue signal is converted to a digital value. It is
this noise that this pattern attempts to simulate. The noise is assumed to be random
(Gaussian) with a magnitude defined by the number of bits in the output signal that
could be affected.

C.3.2.3 Structure

The general structure of the noise pattern is shown in Fig. C.8a, where the original
signal output by part of the model has noise added to become a noisy signal.

C.3.2.4 Application to CT Domain

Two implementations are presented that would allow this behaviour to be modelled
in the CT domain. The first implementation introduces the noise to the signal
before it enters the A/D block. In this implementation, the maximum magnitude
of the Gaussian noise must be calculated externally to the model and input into the
Gaussian block (see Fig. C.8b). The second implementation includes the generation
and addition of the noise within the A/D block, resulting in a noisy A/D block
(see Fig.C.8c). This block contains two parameters noiseLevelInBits and
gaussianNoiseSeed. The former dictates the maximum magnitude the noise
may take while the second allows the seed used to generate the Gaussian random
number stream to be changed. While this implementation is simpler to use, care
must be taken to ensure that code and parameters introducing the noise are only

344 C. Gamble et al.

a b

Original signal + Noisey signal T VU

E-0

GaussianNoise AD

Cc

parameters
real maxNoiselevel;

equations
output = input
+ (maxNoiseLevel * gauss (l,gaussianNoiseSeed));

Fig. C.8 Diagram showing the general structure of adding noise to a signal in 20-sim (a); mixing
a noisy signal (b); and simulating A/D noise (direct manipulation) (c)

used to influence the tolerances of a component specification and are not included
in its ideal design.

C.3.2.5 Application to DE Domain

An equivalent effect may be achieved in a the DE domain by using the rand ()
operation from the MATH library. The output from the rand () command may be
scaled and added to the original signal to produce a noisy signal.

C.3.2.6 Use in Examples

The noise pattern is used in the LineMeasurer2Sensor example.

C.3.3 Fault Injector Pattern

C.3.3.1 Intent

To allow the injection of specific fault behaviours into a nonfaulty component
model.

C Design Patterns for Use in Co-modelling 345

a b

Fault_Block ‘ Fault_Block

Fig. C.9 Faultinjector pattern. (a) Single component wrapped by fault block. (b) Two components
wrapped by a single fault block

O

Sample1 Quantize2 Gain2 integrate2

Fig. C.10 The original, ideal, encoder used in the PaperPinch model

C.3.3.2 Motivation

As our methods prescribe that fault behaviour should be separate to the normal
behaviour of a component, it is necessary to be able to intercept and alter the signals
passing between the elements of the normal component model to simulate faulty
behaviour.

C.3.3.3 Structure

Two example block diagrams are given in Fig. C.9. The first shows an example of a
component which is wrapped by a fault block (see Fig. C.9a). Here the component’s
input may be pre-processed by the fault block before being passed to the component,
then the output from the component may be processed before it is passed to the next
part of the model. If a component is modelled using more than one submodel, then
a fault block that intercepts the inputs and outputs of each submodel may be used
(see Fig. C.9b).

C.3.3.4 Application to CT Domain
Value Drifting Fault

An encoder can be modelled in 20-sim by integrating the velocity of an object
and then conditioning this value by including a gain to represent the number of
counts per unit of travel, and then quantising to the resolution of the A/D output
(see Fig. C.10).

As drift represents an incorrect view of the total distance travelled, this is
modelled here by scaling the speed value that is input to the integrator component.
Missed or added counts are faults and so should be modelled externally to the ideal

346 C. Gamble et al.

s
output-'—_}f - #_r"'j‘ K ¢ f ——4— input
Samplet Quantize2 Gain2 Integrate2
DRIFT
LatentFault
variables

boolean drifting;
real currentDriftRate;

initialequations
drifting = false;
currentDriftRate = 1;
equations
// input altered by drift rate
input_out = input_in * currentDriftRate;

// fault active, set error

if timeevent (fault_time) then
drifting = true;
currentDriftRate = 1.04;

end;
// integrate output unaffected
int_out = int_in;

(.

Fig. C.11 Graphical encoder block (fop) and code inside the drift fault block (bottom)

or realistic behaviour of the encoder, so the modification of the integrator input
signal is performed by a visually distinct block added on to the previous model
(Fig. C.11 (top)).

The drift fault block encapsulates the original integration block such that all
input to the integrator passes through the drift fault block and the output from the
integrator also passes through the fault block. This allows the drift fault block to
apply a multiplier to the speed value before it is integrated. A multiplier of more
than one model extra counts while less than one model missed counts. The code
within the drift fault block is shown in Fig. C.11 (bottom).

Bit Flip Fault

The result of a bit flip in the memory of an encoder is a sudden jump in the value
of the count output from that encoder. The implementation, shown in Fig.C.12
(bottom), simply adds a fixed error value to the output of the encoder. When this
fault implementation is selected, the graphical view will show the ref bit flip icon
as in Fig.C.12 (top). A more realistic implementation of this fault block would
consider the bit width of the encoders output, along with any scaling, and ensure
that the error value equated to the value of one of the bit positions in that number.

C Design Patterns for Use in Co-modelling

347

s,

output ol Hf"r‘ < K f +“— input
Sample1 Quantize2 Gain2 Integrate2
BIT FLIP
LatentFault
variables

boolean flip;
real error;

initialequations
flip = false;
error = 0;

equations

// input unaffected
input_out input_in;
// fault active,

end;

int_out

N

set error

if timeevent (fault_time)
flip = true;
error = int_in x 0.5;

// integrate is modified by error
int_in + error;

then

Fig. C.12 Graphical encoder block (fop) and code inside the bit flip fault block (bottom)

C.3.3.5 Use in Examples

The fault injector pattern is used in the PaperPinch and LineMeasurer2Sensor

examples.

C.4 Fault Tolerance Patterns

C.4.1 Voter Pattern

C4.1.1 Intent

To produce a single sensor reading from multiple (redundant or diverse) sensor

inputs.

C.4.1.2 Motivation

Where sensors can fail, multiple sensors can be introduced as a way to achieve
dependability. This can be done through replication (using copies of the same
sensor) or diversity (using different sensors). In order to gain a single value from

348 C. Gamble et al.

Fig. C.13 Voter pattern a <
(class and object diagram). , ComToner
(a) Class diagram. (b) Object josant - ISdrisoreal
diagram (L+Step0
+ GetUalue(): rsal
F
[) 1
Sensor Voter
~value real | -in: ISensorReal] _
+GetValue(): real +GetValue(): real =
b
)
sens1
controller
F T
— 5[voter /‘f value)
in[1] « (" sens2
in[2] L
in[3] : value
\ sens2
value

various inputs, a voter can be used. A simple voter could take the mean of the
incoming values or use a majority vote to ignore erroneous readings.

C.4.1.3 Structure

A class and object diagram for this pattern is given in Fig. C.13. In this pattern,
a Voter class is introduced that implements a sensor interface (ISensorReal).
The voter class also holds one or more sensor objects (aggregation). By implement-
ing the sensor interface, a voter object can be passed transparently to the controller
such that the controller does not need to be altered and provides a single value
from the multiple inputs. The voter pattern can be combined with the strategy
pattern [39] by describing the voting algorithm as an interface and providing
different implementations of this interface to explore alternative voting routines.

The object diagram in Fig. C.13b shows that the controller holds a reference
to the voter object, which then aggregates (in this case) three other sensor objects
(which represent distinct data sources). When the controller reads its sensor object,
the voter decides on the value that the controller receives. This pattern is similar in
structure to the filter pattern (see Pattern C.4.2).

C.4.1.4 Application to DE Domain

The Voter class shown in Listing C.21 implements the ISensorReal interface
and holds a reference to a sequence of ISensorReal objects (the sensors to be

C Design Patterns for Use in Co-modelling 349

voted on). In this case, the voter requires three sensors as inputs and uses a function
close to compare values (to avoid issues with comparing real values using the
equals operator). The voting occurs within the Read operation. First, the votes
between each pair of sensors is calculated: (1,2), (2,3), and (1,3). Then, those pairs
that agree are placed in the list agree. The length of this list determines how
the vote went. This simple scheme could be extended to work with any number
of sensors and made more complex to include weightings or majority votes. This
pattern could also be extended with the strategy pattern by wrapping the voting
operation in a class such that the voting algorithm can be selected by passing objects
to the constructor to easily test different schemes.

C.4.1.5 Use in Examples

The voter pattern is used in the PaperPinch example.

C.4.1.6 Related Patterns

Filter pattern (see Sect. C.4.2); strategy pattern [39].

C.4.2 Filter Pattern

C.4.2.1 Intent

To produce a sensor reading that has been processed (filtered) in some way,
particularly over multiple readings.

C.4.2.2 Motivation

A filter modifies a sensor signal either by processing or rejecting data. A filter might
maintain the ten latest sensor readings and produce a result based on the mean or
median, or ignore spikes in data. Low-pass filters are often used on sensor data from
accelerometers and high-pass filters on sensor data from gyroscopes.

C.4.2.3 Structure

A class and object diagram for this pattern is given in Fig.C.14. In this
pattern, a Filter class is introduced that implements the sensor interface
(IsensorReal). The filter class encapsulates a sensor object. By implementing
the sensor interface, a filter object can be passed transparently to the controller such

350 C. Gamble et al.

class Voter is subclass of ISensorReal

instance variables

sensors: seq of IsensorReal; -- aggregate sensors in a sequence

default: natl; -— default if no agreement

inv len sensors = 3; —— supports three sensors
operations

—-— constructor for Voter
public Voter: seq of IsensorReal x natl ==> Voter
Voter (ss,d) == (
sensors := ss;
default := d
)
pre len ss = 3 and d <= 3;

—-— get voted value
public Read: () ==> real
Read () == (

—-— calculate votes for each pair

dcl votes: map (natl x natl) to bool :=

{p |-> close(sensors(p.#1) .Read (), sensors (p.#2) .Read()) |
p in set PAIRS};
—— calculate paths that agree

dcl agree: seq of (natl % natl) := [];
for all p in set PAIRS do if votes (p)
then agree := agree = [p];

-— calculate vote

if len agree = 3 then (
—- unanimous
return sensors (1) .Read()

) else if len agree = 2 then (
-- two pailirs agree

dcl diffl: real := abs(sensors(agree(l).#1).Read() -
sensors (agree (1) .#2) .Read());
dcl diff2: real := abs(sensors(agree(2).#1).Read() -
sensors (agree (2) .#2) .Read ()) ;

if diffl < diff2 then return sensors (agree(l) .#1) .Read()
else return sensors(agree(2).#1) .Read()
) else if len agree = 1 then (

—-- one pailr agrees

return sensors (agree (1) .#1) .Read ()
) else (

—-- no agreement, use default

return sensors (default) .Read ()

functions
-— return true two values are close, false otherwise
private close: real x real -> bool

close(a,b) == abs(a-b) <= EPSILON
values

—-— constants for voting

PAIRS = {mk_(1,2),mk_(1,3),mk_(2,3)};

EPSILON = 0.01;

end Voter

Listing C.21 Voter class

C Design Patterns for Use in Co-modelling 351

Fig. C.14 Filter pattern a
(class and object diagram).
(a) Class diagram. (b) Object

Controlier
-sens: |SensorReal

+ Step()

diagram) T
+ GetValue() : real
Sensor Filter
-value: real -sens: ISensorReal
 eiromisiei oo 1 | T —
+GetValue() : real +GetValue(): real

b

controller
| filter

sens . rd sens
| sens
value

that the controller does not need to be altered and provides a filtered value of the
sensor input. Multiple filters can also be stacked or combined with other sensor
patterns, for example, the voter pattern (see Pattern C.4.1). The filter class could
maintain multiple readings in a list in order to maintain a number of samples to
implement a floating average, for example. The filter pattern could also be combined
with the strategy pattern [39] by describing the filter algorithm as an interface and
providing different implementations of this interface to explore alternative voting
routines.

The object diagram in Fig. C.14b shows that the controller holds a reference to
the filter object, which then encapsulates the underlying sensor object. When the
controller reads its sensor object, the filter decides on the value that the controller
receives. Filters could also be added to actuators where necessary (by implementing
an actuator interface). This pattern is similar in structure to the voter pattern (see
Pattern C.4.1).

C.4.2.4 Application to DE Domain

The example Filter class below implements an ISensorReal interface and
holds a reference to another ISensorReal object (the sensor to be filtered).
In this example, the filter takes a mean reading of up to ten values. Each time the
filter is read, a new reading is added to the sequence of samples. Note that this
implementation only samples at the speed it is read; it could however be extended to
define a periodic thread to sample at a steady rate. Extensions could include storing
the samples in sorted order and removing the top and bottom readings, which could
smooth out anomalous spikes; or more complex filtering routines such as high-
pass filters. Filter algorithms could also be encapsulated as objects by following
the strategy pattern [39].

352

C. Gamble et al.

class Filter is subclass of ISensorReal

instance variables
private sens: ISensorReal;
private samples: seq of real

operations
public Read:
Read () == (
if len samples < 10 then samples
else samples tl samples ~

==> real

0

return sum(samples) / len samples;

)

end Filter
\S

[sens.Read ()];

samples = [sens.Read()]

Listing C.22 Filter class

Low-Pass Filtel
BW 2 (Hz)

i

GaussianNoise LowPassFilter

SignalMonitor

Fig. C.15 A low-pass filter being used to attenuate the noise from a Gaussian noise source.

C.4.2.5 Application to CT Domain

In 20-sim, a the filter pattern is constructed by feeding the output signal of some
model into the input of a filter, as shown in Fig. C.15. A small number of band pass
filters that operate under the continuous time model are provided within the 20-sim

libraries.

If the signal is being processed in a discrete time part of a 20-sim model, then
same general structure as above still applies; however, there is no filter provided in
the libraries, so the user must construct their own. Figure C.16 shows a rate gyro
having its output filtered by a high-pass filter to reduce the effects of drift, which
is not uncommon with this type of sensor. The code in the bottom of the diagram
represents a high-pass filter, modelled under a discrete time assumption. To function
correctly, the engineer must tune the filter by adjusting the value of RC (resistor-

capacitor) to suit the sample time and desired cut-

off frequency.

For completeness, Fig. C.17 shows an accelerometer being filtered by a low-pass

filter to reduce the effects of sudden accelerations.

The rate gyro/high-pass filter and

accelerometer/low-pass filter may be combined to form part of a complementary

sensor system.

C Design Patterns for Use in Co-modelling 353

Sample Time RC_Hi_Pass
= =

m RateGyro Hi_Pass_Filter

AngularMotion

variables
real alpha;
real previousInput;
real previousOutput;
initialequations
previousInput = 0;
previousOutput = 0;
code
alpha = RC / (RC + sampleTime);
output = (alpha * previousOutput)
+ (alpha % (input - previousInput));
previousInput = input;
previousOutput = output;

=

Fig. C.16 Rate gyro component being high-pass filtered (fop) and associated code

Angularotion SampleTime RC_Lo_Pass

nA — —

=
- Accelerometer Lo_Pass_Filter_X AngleAccordingToX
HorizontalMotion
variables
real alpha;
real previousOutput;
initialequations
previousOutput = 0;
code
alpha = sampleTime / (RC + sampleTime);
output (alpha % input)
+ ((1 - alpha) * previousOutput);
previousOutput = output;
=

Fig. C.17 Accelerometer component being low-pass filtered (fop) and associated code (bottom)

354 C. Gamble et al.

C.4.2.6 Use in Examples

The filter pattern is used in the LineMeasurer2Sensor example.

C.4.2.7 Related Patterns

Voter pattern (see Pattern C.4.1); strategy pattern [39].

C.4.3 Kernel Pattern

C.4.3.1 Intent

A kernel is a small, verifiable component that guarantees some property of a system,
typically security or safety [85], by protecting the controller from making unsafe
control actions through interception.

C.4.3.2 Motivation

The kernel is modelled as a class that holds references to the actuators in the system.
All calls to the actuators from the controller pass through the kernel, which can
ignore them as necessary. In this way, the kernel guards access to the actuators, thus
preventing faults of commission [6].

C.4.3.3 Structure

A class and object diagram for this pattern is given in Fig. C.18. In this pattern,
a Kernel class is introduced that encapsulates an actuator and implements the
actuator interface (IActuatorReal). By implementing the interface, a kernel
object can be passed transparently to the controller (such that the controller does not
need to be altered) and can intercept all calls to the actuator, avoiding unsafe control
access when necessary. This structure is clearer in the object diagram, which shows
that the controller must access the actuator through the kernel (the variable value in
the pwm object is the shared variable).

The object diagram in Fig. C.18b shows that the controller holds a reference
to the kernel object, which in turn holds the actual actuator object and intercepts
calls to this actuator. This pattern is similar in intent to the monitor pattern (see
Pattern C.4.4).

C Design Patterns for Use in Co-modelling 355

a Controller
= act : lactuatorReal
+ Step()

| Actuator Kemel

! =value : real | -act: lactuatorReal

| el | Bgzinehs 1 -act
| +SefValue(real) +SefValue(real)

controller
| kemel
wm >
p | act

pwm

A 4

value

Fig. C.18 Kernel pattern (class and object diagram). (a) Class diagram. (b) Object diagram

PVOV f Actuator

Untrusted_Controlier Limnit

Fig. C.19 A limit function block being used to guarantee a signal will not move out of the range
acceptable to an actuator

C.4.3.4 Application to DE Domain

The example Kernel class below holds a reference to an TActuatorPWM object
that it will guard access to. In the example below, the Write operation of the class,
this kernel limits the absolute value of the actuator to the 1imit value passed to
the constructor.

C.4.3.5 Application to CT Domain

In 20-sim, a block may be used to limit the signal of a controller. This could be a
limit function block from the library or an equation block that uses the in-built limit
function. An example of the dedicated block is shown in Fig. C.19. A limit block

should be the last entity able to modify a signal before it is passed to its intended
recipient.

C.4.3.6 Use in Examples

The kernel pattern is used in the PaperPinch example.

356 C. Gamble et al.

class Kernel is subclass of IActuatorPWM

types
—-—- restricted between -1 and 1
public PWM = real
inv p == -1 <= p and p <= 1;

instance variables
—— actuator
pwm: IActuatorPWM;

-— limit of pwm value
limit: real;
inv limit > 0.0 and limit < 1.0

operations
—-—- constructor for Kernel
public Kernel: IActuatorPWM x real ==> Kernel
Kernel (p, 1) == (
pwm = p;
limit =1
)
pre 1 >= 0 and 1 < 1;

-—- set actuator value
public Write: PWM ==> ()
Write(v) == (
if abs(v) <= limit then (
pwm.Write(v); -- take no action
)
else (—- limit value
if v <0
then pwm.Write (-limit)
else pwm.Write (limit);

end Kernel

Listing C.23 Kernel class

C.4.3.7 Related Patterns

Monitor pattern (see Pattern C.4.4).

C.4.4 Monitor Pattern

C.4.4.1 Intent

A monitor (or watchdog) is a small, verifiable component that runs as separate
process. It monitors actions of the controller (or other components) and protects

C Design Patterns for Use in Co-modelling 357

Fig. C.20 Monitor pattern a

. . Controller
(class and object diagram). Monkor -
. . X -sens: [SensorReal
(a) Class diagram. (b) Object | o<t : Controller -act: ctuatorReal
. + Step() +Step()
diagram J o)
TActuatorReal ISensorReal
[+SetValusjreal) | +GeotValue) : real
P >~ 7
([momor)} |
I ! [
| | cul]
I ! i
I ! [
I ! |
I : 1
| | BUS1!
|\ cPUT] [

from unsafe situations by intervening and instructing the controller to stop the
unsafe action.

C.4.4.2 Motivation

The monitor is modelled as an object that holds a reference to the controller and
runs as a separate process on a different CPU. The monitor then checks the actions
of the controller and intervenes in some way—for example, by calling an operation
on controller that puts it in a safe mode. The monitor could also hold references
to other objects to monitor them as required, thereby typically limiting its scope to
keep it small (as with a kernel).

C.4.4.3 Structure

A class and object diagram for this pattern is given in Fig.C.20. In this pat-
tern, a Monitor class is created that holds a reference to the controller. The
Controller class provides an operation that the monitor can call if some fault
occurs (in this case, the controller will go into a safe mode).

The object diagram in Fig. C.20a shows that the monitor object holds a reference
to the controller object and runs on a separate CPU. It can then put the controller
into a safe mode if a fault is detected. This pattern is similar in intent to the kernel
pattern (see Pattern C.4.3).

C.4.44 Application to DE Domain

The example Monitor class below runs as a thread and simply checks if the
controller is being “safe” (or simply doing something it should not). In this example,

358 C. Gamble et al.

the decision as to whether the monitor should intervene is not specified. One option
is for the monitor to hold references to the actuators and intervene if the controller
sets an undesired actuator value; another is for the monitor to look at the sensor
readings to detect incorrect behaviour. An example Monitor class could be as
follows. In order to allow the monitor to intervene, the Controller class is
assumed to have a GoSafe operation.

-
class Monitor

instance variables
ctrl: Controller

operations
private Step: () ==> ()
Step() ==
if notsafe(ctrl) then ctrl.GoSafe ()

functions
private notsafe: Controller -> bool
notsafe(ctrl) == ...

thread
periodic (1E6,1,0,0) (Step); —-- 1kHz

end Monitor

Listing C.24 Monitor class

C.4.4.5 Usein Examples

The monitor pattern is used in the chesswayDESTECS example.

C.4.4.6 Related Patterns

Kernel pattern (see Pattern C.4.3).

Appendix D
Abstract Modelling of ChessWay Safety

Marcel Verhoef and Bert Bos

Probably the hardest part of any software design, in particular for novices, is
knowing where to begin. In particular, real-time systems are notoriously hard to
grasp and the essential properties are difficult to capture with techniques that
primary focus on software structure, such as UML. The VDM notation provides
a very rich feature set that allows to model a wide variety of application areas from
basically any viewpoint, so in principle it should be right for the job. But the basic
question remains the same: how do I start?

As with the mathematical model of the ChessWay physics, which was presented
in Sect. 7.3.2, the answer is in managing complexity by using abstraction. The core
mathematical model was identified by removing complexity and making explicit
assumptions about what was left out (e.g., the surface is perfectly horizontal and
energy transfer between wheel and surface is considered ideal). Confidence in these
initial models is usually gained easily as they are concise and simple to understand,
test or even formally verify. As Albert Einstein has put it: “Make things as simple
as possible, but not simpler”.

M. Verhoef (<)
Chess WISE, Haarlem, The Netherlands
e-mail: Marcel. Verhoef @chess.nl

B. Bos
Chess iX, Haarlem, The Netherlands
e-mail: bert.bos @chess-ix.com

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 359
DOI 10.1007/978-3-642-54118-6,
© Springer-Verlag Berlin Heidelberg 2014

mailto:Marcel.Verhoef@chess.nl
mailto:bert.bos@chess-ix.com

360 M. Verhoef and B. Bos

There are no rules to what the simplest model exactly constitutes, but when it is
easy to convince other stakeholders of (the properties of) your model, this is usually
an indication that you are on the right track. It usually takes a few iterations to
get right. However, product engineering requires that the assumptions made are
taken into account in the model, so we need to do more than just create an initial
model. Hence, assumptions are removed iteratively by model elaboration. Basically,
the model is extended to take a particular feature explicitly into account. This
stepwise approach allows to check whether all initial properties still hold after such
an elaboration step, which helps to build and maintain confidence in the overall
design. Of course, the complexity of the model will increase over time, but the
continuous improvement process typically leads to models that themselves are well
structured and maintainable. Insight gained usually leads to constant refactoring,
typically again using abstractions, which leads to models that even have a certain
level of implicit beauty.

VDM supports this interactive way of working by means of prototyping. A very
large part of the modelling language is executable, and an interpreter is available to
interact with the model. This can be used in the early stages of writing models
to validate assumptions, for example, by testing. Nevertheless, the tendency of
software engineers is usually to start with structuring or real-time aspects, but in
our experience, these are seldom the key design concerns. We propose an approach
whereby the powerful features of VDM are gradually introduced in the model to
address different design concerns in a stepwise approach:

1. Use basic VDM features such as values, types, instance variables, functions
and operations to create an abstract executable model that captures the key
design concerns. Typically, we abstract way from time altogether, we focus
on the principal (temporal) behaviour of the system and its interfaces to the
environment. Consistency requirements are modelled using invariants, pre- and
post-conditions.

2. Use VDM object-oriented features to structure the abstract model into several
components. These components can then be used to create a true software
architecture and design, possibly aligned with a UML representation.

3. Use VDM real-time and distributed architecture features to explore the impact of
time and deployment of software components on the overall system design.

This workflow is discussed in detail in [58, 96]. Steps 1 and 2 are covered
extensively in the available references [34, 36] respectively. Note that the models
resulting from step 3 are typically used for co-simulation and the majority of the
models presented in this book are at that level of competence and maturity. However,
for the convenience of the reader, we explore step 1 of the ChessWay case study here
a bit more in detail to illustrate the point about the use and power of abstract models.

This initial specification focuses on the overall safety of the ChessWay self-
balancing scooter. The approach taken here is to identify system interfaces and

D Abstract Modelling of ChessWay Safety 361

properties that affect safety directly. This will help us to partition the model
into elements belonging to the plant (the physics) and elements belonging to the
controller early on. At a later stage, this information will allow us to define the
co-simulation interface much more easily.

Two obvious candidate system interfaces that directly affect safety are the power
switch and the safety key. Note that the ChessWay device is in fact always turned
on, the power switch merely indicates that the driver wants to actively use the device
(soft power on). Two simple enumeration types are used to denote the current status
of the power switch and safety key of the ChessWay.

types
PowerSwitch = <ON> | <OFF>;
SafetyKey = <IN> | <OUT>

An important property of the device is the angle of the pole. In the initial
model, we focus on the property itself rather than the sensor used to acquire it.
Hence, a real valued number type PoleAngle is used to express the current angle
of the ChessWay pole, whereby zero denotes upright (vertical). An invariant is
used to express the maximum angles for which this model is sound. The function
exceedAngleLimit can be used to determine whether the ChessWay is within
the allowed user envelope, specified here as 15° from upright.

types PoleAngle = real

inv pa == pa >= -90 and pa <= 90

functions
exceedAnglelLimit: PoleAngle —> bool
exceedAnglelLimit (pa) == pa < -15 or pa > 15

The state of the physical world (plant) output interfaces, which we refer to as
monitored variables (denoted with a m-prefix here), inputs to the discrete controller,
can now be defined as follows:

instance variables
mPowerSwitch : PowerSwitch := <OFF>;
mSafetyKey : SafetyKey <OUT>;
mPoleAngle : PoleAngle = 90

362 M. Verhoef and B. Bos

Note that this model initially assumes the ChessWay is lying flat on the ground,
with power turned off and the safety key removed. One of the key purposes of the
controller is to operate the safety override switch. The SafetyOverride type is
introduced in order to distinguish actuated from free running wheels.

types
SafetyOverride = <FREERUNNING> | <ACTUATED>

instance variables
cSafetyOverride : SafetyOverride := <FREERUNNING>

The physical world (plant) input interface cSafetyOverride, which we refer
to as a controlled variable (denoted with a c-prefix here), is initially open to imply
undriven wheels. Note that, from the point of view of modelling device safety, it is
sufficient to keep the initial model of the wheel and motor control at this very high
level of abstraction. At the moment, we do not need to know how much power is
provided to the wheels, we merely need to know whether the wheels are actively
driven or not. Moreover, if we ignore steering and assume both wheels are identical,
it also suffices to consider just a single wheel.

The discrete controller observes the plant state, initiates actions according to any
perceived state changes and this process is continuously repeated, usually at some
fixed time interval. It is very important to realise that the plant state and the observed
controller state actually differ due to this sampling behaviour, the controller just
sees a snapshot from the continuous plant history. The designer of the discrete
control algorithm must therefore take great care to ensure that observation of the
plant state is done consistently, preferably only once per iteration, for example,
by implementing a sample-and-hold strategy: copying all relevant state variables
into local variables before interpreting and using the associated values. This simple
insight is typically intuitive for control engineers but foreign to software engineers.

There is no doubt that time is very relevant in control systems. But the tendency
of novice modellers is to focus on the real-time aspects while complexity usually
does not arise from timing, but rather from the order in which events happen.
Therefore, in initial models, we prefer to focus on the temporal behaviour of the
system first before we introduce timing aspects. Hence, we abstract away from
time altogether here and focus solely on the discrete controller step operation.
The discrete controller needs to maintain its own state, here identified with the
ctrl-prefix, and this notion of history allows decision making over consecutive
invocations of the step operation. These style of controllers are commonly
referred to as state machines. For the wheel controller, the following states can be
identified:

D Abstract Modelling of ChessWay Safety 363

types
OperatingMode = <IDLE> | <CHECK> | <DRIVE>

instance variables
ctrlOperatingMode : OperatingMode := <IDLE>

Operating mode <IDLE> is used as the initial state, while <CHECK> is used
whenever the user attempts to keep the ChessWay manually upright for several
seconds and finally <DRIVE> is used when the ChessWay is actuated. But how
do these controller states relate to device safety?

functions
safeChessWay: PowerSwitch * SafetyKey * PoleAngle -> bool
safeChessWay (pps, psk, ppa) ==
pps = <ON> and psk = <IN> and not exceedAngleLimit (ppa)

First, we define a function safeChessWay that determines whether the system
is safe to use. This implies the device is turned on, has the safety key inserted and
the pole of the ChessWay is within the specified user envelop of 15° from upright.
We can now define the step operation of the discrete controller.

operations
step: () ==> ()
step () ==
(del
—-— first obtain a local sample of the current plant state
lPowerSwitch : PowerSwitch := mPowerSwitch,
1SafetyKey : SafetyKey := mSafetyKey,
lPoleAngle : PoleAngle := mPoleAngle;

—-— 1is the ChessWay still safe?

if safeChessWay (lPowerSwitch, l1lSafetyKey, lPoleAngle)

then update (lPoleAngle)

else (—- reset the discrete controller state
ctrlOperatingMode := <IDLE>;
—-— reset the safety override switch (undriven wheel)
cSafetyOverride := <FREERUNNING>))

The step operation first obtains a snapshot of the plant by copying the current
state values into local variables, indicated by the /-prefix. Next, the operation checks
overall safety by calling the safeChessWay function. The safety override switch
is immediately opened and the controller state is reset to < IDLE> in case the device

364 M. Verhoef and B. Bos

is unsafe. The operation update is called to execute the state machine in case the
device is safe.

The implicit hierarchy between the step and update operations shown here
reflects our design decision to abstractly represent two semi-independent processes:
the safety monitor, effectively the step operation and the motor controller, repre-
sented by update. The hierarchy reflects the fact that the safety monitor overrules
the state machine behaviour of the motor controller. In the implementation, this
would probably be realised as independent processes, possibly running in their own
execution context, whereby the periodicity of step is an order of magnitude faster
than update.

functions
—— ChessWay within 5 degrees from upright?
upright: PoleAngle -> bool
upright (ppa) == ppa >= -5 and ppa <= 5

instance variables
—-— count how often we are in <CHECK> state
ctrlCheckCount : nat := 0

values
-— limit to move from <CHECK> to <DRIVE>
CheckCountLimit = 5

operations
update: PoleAngle ==> ()
update (ppa) == (
cases (ctrlOperatingMode) :

<IDLE> —->
if upright (ppa)
then (ctrlCheckCount := 0;
ctrlOperatingMode := <CHECK>),
<CHECK> ->
if upright (ppa)
then (ctrlCheckCount := ctrlCheckCount + 1;
if ctrlCheckCount >= CheckCountLimit
then (ctrlOperatingMode := <DRIVE>;
cSafetyOverride := <ACTUATED>))
else ctrlOperatingMode := <IDLE>,
<DRIVE> -> skip
end)

The update operation implements the discrete controller state machine, which
maintains its own history in the ctrlOperatingMode instance variable. In <IDLE>
mode, the controller checks if the ChessWay is held upright and if so, it resets
ctrlCheckCount and moves to the <CHECK> state. The CHECK state only

D Abstract Modelling of ChessWay Safety 365

moves to the <DRIVE> state if and only if the controller has observed that the
ChessWay has been kept upright for at least five consecutive iterations. In <DRIVE>
mode, the wheels are actively powered. The state machine is automatically reset to
<IDLE> if safeChessWay returns false inside the top-level step operation.

But how do we know that this model is fit for purpose? The tool suite provides a
range of analysis techniques to assess VDM models. In particular, the capability to
execute abstract models using the built-in interpreter allows for rapid prototyping
and structured testing, once they are shown to be syntax and type correct. This
enables early model validation by inspection at relatively low cost as it is very simple
to use. Structured testing is, for example, facilitated by the VDMUnit framework
and combinatorial testing [57].

However, a straightforward explicit testing approach is used here as we are still
in the exploratory phase of model development. Basically, functionality is added
to the specification which allows to feed usage scenarios into the state machine and
observe its behaviour. First, we define a type PlantAct ion to distinguish between
the different events that could be observed. The PlantBehavior is defined as the
sequence of those observed actions, occurring at a certain iteration, indicated by a
natural number. Note that an invariant is added to ensure that the sequence is sound,
meaning that the events are listed in a monotone increasing order.

-
types
PlantAction = PowerSwitch | SafetyKey | PoleAngle;

PlantBehavior = seq of (nat » PlantAction)

inv pb ==
forall i,j in set inds pb &
let mk_(pi, -) = pb(i), mk_(pj, -) = pb(J) in
i< 3 =>pi <= pj
\ J

The scenario can now be constructed by hand as a VDM value. First, we turn
the power on and insert the safety key at iteration 1 and 2, respectively. Then we
move the ChessWay gradually upright and the device should move to <ACTUATED >
mode at iteration 12 as we are within the safe operating and upright zones since
iteration 7. The handle bar is moved forward until it is beyond the safe operating
limit at iteration 16, at which the mode should become <FREERUNNING>. The
pole is moved back in the safe zone at iteration 17 and within the upright range
at iteration 19 which implies that the mode is again <ACTUATED> at iteration 24.
The safety key is removed at iteration 27, causing the mode once more to become
<FREERUNNING>. The safety key is inserted again at iteration 30, returning
to <ACTUATED> mode at iteration 35. Finally, the ChessWay is turned off at
iteration 40.

366 M. Verhoef and B. Bos

values
scenario : PlantBehavior = [
mk_ (1, <ON>), mk_ (2, <IN>), mk_(3, 60), mk_(4, 30),
mk_ (5, 15), mk_(6, 10), mk_(7, 4), mk_(12, 2),
mk_ (13, 8), mk_ (15, 15), mk_(16, 16), mk_ (17, 14),
mk_ (19, 4), mk_ (27, <OUT>), mk_ (30, <IN>),
-—- mk_ (32, 6), mk_(33,4),
mk_ (40, <OFF>)

The operation validate simply iterates over the scenario and executes
the actions as they are due according to the iteration counter. The step check
operation is called each iteration, which in turn calls the step operation from our
model under test and simply prints a diagnostic message containing an overview of
all relevant state variables.

operations

step_check: nat ==> ()

step_check (id) == (
-— execute the state machine
step () ;
-—- generate some diagnostic message
IO ‘println([id, mPowerSwitch, mSafetyKey, mPoleAngle,

ctrlOperatingMode, cSafetyOverridel])
)i

public validate: () ==> ()
validate () == (
-- maintain a sequence counter
decl cnt : nat := 0;

-— iterate over the scenario
for mk_ (when, action) in scenario do (
while cnt < when do (
—-— perform steps without action (state unchanged)
step_check (cnt) ;
cnt := cnt + 1
)i
-— take the action

if is_PowerSwitch (action) then mPowerSwitch := action;
if is_SafetyKey(action) then mSafetyKey := action;
if is_PoleAngle (action) then mPoleAngle := action;

) i
—-—- perform a final step to process last action
step_check (cnt)

The model can now be executed with the validate operation as the main entry
point, which results in the following output:

D Abstract Modelling of ChessWay Safety 367
[0, <OFF>, <OUT>, 90, <IDLE>, <FREERUNNING>]
[1, <ON>, <OUT>, 90, <IDLE>, <FREERUNNING>]
[2, <ON>, <IN>, 90, <IDLE>, <FREERUNNING>]
[3, <ON>, <IN>, 60, <IDLE>, <FREERUNNING>]
[4, <ON>, <IN>, 30, <IDLE>, <FREERUNNING>]
[5, <ON>, <IN>, 15, <IDLE>, <FREERUNNING>]
[6, <ON>, <IN>, 10, <IDLE>, <FREERUNNING>]
[7, <ON>, <IN>, 4, <CHECK>, <FREERUNNING>]
[8, <ON>, <IN>, 4, <CHECK>, <FREERUNNING>]
[9, <ON>, <IN>, 4, <CHECK>, <FREERUNNING>]
[10, <ON>, <IN>, 4, <CHECK>, <FREERUNNING>]
[11, <ON>, <IN>, 4, <CHECK>, <FREERUNNING>]
[12, <ON>, <IN>, 2, <DRIVE>, <ACTUATED>]
[13, <ON>, <IN>, 8, <DRIVE>, <ACTUATED>]
[14, <ON>, <IN>, 8, <DRIVE>, <ACTUATED>]
[15, <ON>, <IN>, 15, <DRIVE>, <ACTUATED>]
[16, <ON>, <IN>, 16, <IDLE>, <FREERUNNING>]
[17, <ON>, <IN>, 14, <IDLE>, <FREERUNNING>]
[18, <ON>, <IN>, 14, <IDLE>, <FREERUNNING>]
[19, <ON>, <IN>, 4, <CHECK>, <FREERUNNING>]
[20, <ON>, <IN>, 4, <CHECK>, <FREERUNNING>]
[21, <ON>, <IN>, 4, <CHECK>, <FREERUNNING>]
[22, <ON>, <IN>, 4, <CHECK>, <FREERUNNING>]
[23, <ON>, <IN>, 4, <CHECK>, <FREERUNNING>]
[24, <ON>, <IN>, 4, <DRIVE>, <ACTUATED>]
[25, <ON>, <IN>, 4, <DRIVE>, <ACTUATED>]
[26, <ON>, <IN>, 4, <DRIVE>, <ACTUATED>]
[27, <ON>, <OUT>, 4, <IDLE>, <FREERUNNING>]
[28, <ON>, <OUT>, 4, <IDLE>, <FREERUNNING>]
[29, <ON>, <OUT>, 4, <IDLE>, <FREERUNNING>]
[30, <ON>, <IN>, 4, <CHECK>, <FREERUNNING>]
[31, <ON>, <IN>, 4, <CHECK>, <FREERUNNING>]
[32, <ON>, <IN>, 4, <CHECK>, <FREERUNNING>]
[33, <ON>, <IN>, 4, <CHECK>, <FREERUNNING>]
[34, <ON>, <IN>, 4, <CHECK>, <FREERUNNING>]
[35, <ON>, <IN>, 4, <DRIVE>, <ACTUATED>]
[36, <ON>, <IN>, 4, <DRIVE>, <ACTUATED>]
[37, <ON>, <IN>, 4, <DRIVE>, <ACTUATED>]
[38, <ON>, <IN>, 4, <DRIVE>, <ACTUATED>]
[39, <ON>, <IN>, 4, <DRIVE>, <ACTUATED>]
[40, <OFF>, <IN>, 4, <IDLE>, <FREERUNNING>]

\. y

Inspection of the execution output is simple to perform, and the model indeed
seems to behave as expected. Of course, when complexity of the model grows, it
will also become increasingly more difficult to check these results by hand. This
is where VDMUnit and combinatorial testing come to the rescue. They provide
the automation required to manage the complexity of testing. In addition, it may
be worthwhile to build a simple user interface and connect that to the interpreter
executing the model in order to present the myriad of data in ways which are easier
to understand and inspect.

368 M. Verhoef and B. Bos

Function or operation | Coverage | Calls

exceedAngleLimit 100.0% 105
safeChessWay 100.0% 82
step 100.0% 82
step_check 100.0% 41
update 86.4% 62
upright 100.0% 44
validate 100.0% 1
ChessWay.vdmpp 97.5% 417

Fig. D.1 Execution coverage statistics

Testing is a great technique to gain confidence in the model produced, but it does
not provide any guarantees. For example, we should ask ourselves whether the test
suite is complete. Did we exercise the entire specification? This question can be
investigated by looking at the execution coverage statistics, as shown in Fig. D.1.

operations
update: PoleAngle ==> ()
update (ppa) == (
cases (ctrlOperatingMode) :
<IDLE> —>
if upright (ppa)
then (ctrlCheckCount := 0;
ctrlOperatingMode := <CHECK>),
<CHECK> —>
if upright (ppa)
then (ctrlCheckCount := ctrlCheckCount + 1;
if ctrlCheckCount >= CheckCountLimit
then (ctrlOperatingMode := <DRIVE>;
cSafetyOverride := <ACTUATED>))
H else ‘CtrlOperatingMode := <IDLE> |,
<DRIVE> -> skip
end)
-)

The coverage statistics table clearly show that the core operation of the state
machine, update, is only partly executed. The detailed overview shown above
indicates that the outermost else-branch in the <CHECK> state is missed.
This corresponds to the case whereby the ChessWay is kept upright, but not for
five iterations continuously. This can be fixed by adding, for example, mk_ (32, 6)
andmk_(33,4) tothe scenario.

Test coverage is a very good indicator whether every possible execution path in
the model is touched at least once by the test suite. However, it is not a completeness
proof as the state of the model is typically infinite, for example, due to the use
of real number variables and concurrency. More advanced techniques, such as
interactive proof and model checking, can be used to go beyond what is possible
with testing. But even these advanced techniques will never solve the problem of

D Abstract Modelling of ChessWay Safety 369

underspecification (what isn’t specified can’t be machine checked). Hence, a critical
attitude towards the model and the analysis results should always be maintained.
The pragmatic prototyping approach advocated here is usually instrumental in
maintaining a proper design dialogue because insight is gained quickly and results
can be communicated back immediately with all stakeholders involved through
“what-if ’-style interaction.

We have shown in this appendix how to create initial models using VDM and
how these models can be validated through testing. We have used abstraction to find
the essential elements of the real-world problem that are needed to describe the key
property of interest, in this case safety. This initial model can now be extended to
include new features, such as:

* Separate state machines for left- and right wheels

* Add gyroscope, accelerometer and PWM interfaces
* Add a direction switch and implement steering

* Include failure modes of all sensors and actuators

¢ Operate the ChessWay on a non-ideal surface

This stepwise and iterative approach helps to fight complexity and to maintain
overall model consistency. Similarly, real-time and distribution aspects can be
introduced gradually in the model.

References

10.

11.

12.

13.

. Alexander C, Ishikawa S, Silverstein M (1977) A pattern language: towns, buildings,

construction. Oxford University Press, New York

. Alur R, Courcoubetis C, Halbwachs N, Henzinger TA, Ho PH, Nicollin X, Olivero A,

Sifakis J, Yovine S (1995) The algorithmic analysis of hybrid systems. Theor Comput Sci
138:3-34

. Ambrosius F (2007) Modelling and distributed controller design of the BodeRC paper-path

setup. Master’s thesis, Department of Electrical Engineering, Mathematics and Computer
Science, University of Twente, appeared as Technical Report 003CE2007

. van Amerongen J (2010) Dynamical systems for creative technology. Controllab Products,

Enschede

. Ashenden PJ (2001) The designer’s guide to VHDL, 2nd edn. Morgan Kaufmann Publishers,

San Francisco

. Avizienis A, Laprie JC, Randell B, Landwehr C (2004) Basic concepts and taxonomy of

dependable and secure computing. IEEE Trans Dependable Secure Comput 1:11-33

. Bae K, Olveczky PC, Feng TH, Tripakis S (2009) Verifying ptolemy ii discrete-event models

using real-time maude. In: Proceedings of the 11th international conference on formal
engineering methods: formal methods and software engineering, ICFEM ’09. Springer,
Berlin, pp 717-736

. Baheti R, Gill H (2011) Cyber-physical systems. In: Samad T, Annaswamy A (eds)

The impact of control technology. IEEE Control Society, pp 161-166. Available at www.
ieeecss.org

. Baker RE (2005) An approach for dealing with dynamic multi-attribute decision problems.

Ph.D. thesis, Department of Computer Science, University of York, UK

Banerjee A, Venkatasubramanian KK, Mukherjee T, Gupta SKS (2012) Ensuring safety,
security, and sustainability of mission-critical cyber-physical systems. Proc IEEE 100(1):283—
299. doi:10.1109/JPROC.2011.2165689

Banks J, Carson J, Nelson BL, Nicol D (2004) Discrete-event system simulation, 4th edn.
Prentice Hall, Upper Saddle River

Berkenkotter K, Bisanz S, Hannemann U, Peleska J (2004) Executable hybriduml and its
application to train control systems. In: Ehrig H, Damm W, Desel J, Grosse-Rhode M, Reif W,
Schnieder E, Westkdmper E (eds) SoftSpez Final Report. Lecture notes in computer science,
vol 3147. Springer, Berlin, pp 145-173

Blochwitz T, Otter M, Akesson J, Arnold M, Clauss C, Elmqvist H, Friedrich M, Junghanns
A, Mauss J, Neumerkel D, Olsson H, Viel A (2012) The functional mockup interface 2.0:
the standard for tool independent exchange of simulation models. In: Proceedings of the 9th
international Modelica conference, Munich

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 371
DOI 10.1007/978-3-642-54118-6,
© Springer-Verlag Berlin Heidelberg 2014

www.ieeecss.org
www.ieeecss.org

372

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

References

. Bonabeau E (2002) Agent-based modeling: methods and techniques for simulating human
systems. Proc Natl Acad Sci USA 99(Suppl 3):7280-7287. doi:10.1073/pnas.082080899
Booch G, Jacobson I, Rumbaugh J (1999) The unified modelling language user guide.
Addison-Wesley, Reading

Broenink JF (1997) Modelling, simulation and analysis with 20-Sim. J A Spec Issue CACSD
38(3):22-25

Broenink JF, Ni Y, Groothuis MA (2010) On model-driven design of robot software
using co-simulation. In: Menegatti E (ed) Proceedings of SIMPAR 2010 workshops inter-
national conference on simulation, modeling, and programming for autonomous robots.
TU Darmstadt, Darmstadt, pp 659—668

Broman D, Derler P, Eidson J (2013) Temporal issues in cyber-physical systems. J Indian Inst
Sci 93(3):389-402

Broy M, Cengarle MV, Geisberger E (2012) Cyber-physical systems: imminent challenges.
In: Calinescu R, Garlan D (eds) Large-scale complex IT systems. Development, operation
and management. Lecture notes in computer science, vol 7539. Springer, Berlin, pp 1-28.
doi:10.1007/978-3-642-34059-8

Bruun H, Damm F, Hansen BS (1991) An approach to the static semantics of VDM-
SL. In: VDM °91: formal software development methods, VDM Europe. Springer, Berlin,
pp 220-253

Cervin A, Henriksson D, Lincoln B, Eker J, Arzen K (2003) How does control timing affect
performance? Analysis and simulation of timing using jitterbug and truetime. IEEE Control
Syst 23(3):16-30. doi:10.1109/MCS.2003.1200240

Chiodo M, Giusto P, Jurecska A, Hsieh HC, Sangiovanni-Vincentelli A, Lavagno L (1994)
Hardware-software codesign of embedded systems. IEEE Micro 14:26-36

Christiansen MP, Larsen M, Jgrgensen RN (2013) Collaborative model based development of
adaptive controller settings for a load-carrying vehicle with changing loads. In: Bochtis DD,
Sgrensen CAG (eds) CIOSTA XXXV conference

Coleman JW, Lausdahl KG, Larsen PG (2012) D3.4b—co-simulation semantics. Tech. Rep.,
The DESTECS Project (CNECT-ICT-248134)

Corporaal H (2006) Embedded system design. In: Karelse F (ed) Progress White Papers 2006.
STW, Utrecht, pp 7-27

Coverity (2012) Coverity Scan: 2012 Open Source Report. Tech. Rep., Coverity

. Dawes J (1991) The VDM-SL reference guide. Pitman, London. ISBN 0-273-03151-1
DESTECSO09 (2009) DESTECS (Design support and tooling for embedded control software).
European Research Project

Eidson J, Lee E, Matic S, Seshia S, Zou J (2012) Distributed real-time software for cyber-
physical systems. Proc IEEE 100(1):45-59. doi:10.1109/JPROC.2011.2161237

Eker J, Janneck J, Lee E, Liu J, Liu X, Ludvig J, Neuendorffer S, Sachs S, Xiong Y (2003)
Taming heterogeneity—the ptolemy approach. Proc IEEE 91(1):127-144

European Cooperation for Space Standardization (ECSS) (2009) ECSS Std ECSS-E-ST-40C
Space engineering—software

European Cooperation for Space Standardization (ECSS) (2009) ECSS Std ECSS-Q-ST-80C
Space product assurance—software product assurance

Eveleens JL, Verhoef C (2010) The rise and fall of the chaos report figures. IEEE Software,
pp 30-36

Fitzgerald J, Larsen PG (1998) Modelling systems—practical tools and techniques in software
development. Cambridge University Press, Cambridge. ISBN 0-521-62348-0

Fitzgerald J, Larsen PG (2009) Modelling systems—practical tools and techniques in software
development, 2nd edn. Cambridge University Press, Cambridge. ISBN 0-521-62348-0
Fitzgerald J, Larsen PG, Mukherjee P, Plat N, Verhoef M (2005) Validated designs for object-
oriented systems. Springer, New York

Fitzgerald JS, Larsen PG, Verhoef M (2008) Vienna development method. In: Wah B (ed)
Wiley encyclopedia of computer science and engineering. Wiley, Chichester

References 373

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.
56.

57.

58.

59.

60.

Fritzson P, Engelson V (1998) Modelica—a unified object-oriented language for system
modelling and simulation. In: ECCOP ’98: proceedings of the 12th European conference
on object-oriented programming. Springer, Berlin, pp 67-90

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns. Elements of reusable
object-oriented software. Addison-Wesley professional computing series. Addison-Wesley,
Reading

Gupta SK, Mukherjee T, Varsamopoulos G, Banerjee A (2011) Research directions in energy-
sustainable cyber-physical systems. Sustain Comput Inform Syst 1(1):57-74

Hardebolle C, Boulanger F (2009) Exploring multi-paradigm modeling techniques. SIMU-
LATION Trans Soc Model Simul Int 85(11/12):688-708

Heemels M, Muller G (2007) Boderc: model-based design of high-tech systems, 2nd edn.
Embedded Systems Institute, Eindhoven

IEEE (2000) IEEE 100 the authoritative dictionary of IEEE standards terms, 7th edn. IEEE
Std 100-2000. doi:10.1109/IEEESTD.2000.322230

IEEE (2008) International Standard ISO/IEC 12207:2008(E), IEEE Std 12207-2008
(Revision of IEEE/EIA 12207.0-1996) Systems and software engineering—software life
cycle processes. ISO/IEC and IEEE Computer Society

IEEE (2008) International Standard ISO/IEC 15288:2008(E), IEEE Std 15288-2008 (Revi-
sion of IEEE Std 15288-2004) Systems and software engineering—system life cycle
processes. ISO/IEC and IEEE Computer Society

Jackson D (2009) A direct path to dependable software. Commun ACM 52(4):78-88.
doi:10.1145/1498765.1498787

Jensen J, Chang D, Lee E (2011) A model-based design methodology for cyber-physical sys-
tems. In: 2011 7th international wireless communications and mobile computing conference
(AWCMC), pp 1666-1671. doi:10.1109/TWCMC.2011.5982785

Johnson CW (2005) The natural history of bugs: using formal methods to analyse software
related failures in space missions. In: Fitzgerald J, Hayes 1J, Tarlecki A (eds) FM 2005: formal
methods. Lecture notes in computer science, vol 3582. Springer, Berlin, pp 9-25

Johnson J (2006) My life is failure. Standish Group International, co-author of the original
1994 CHAOS report

Jones CB (1990) Systematic software development using VDM, 2nd edn. Prentice-Hall
International, Englewood Cliffs. ISBN 0-13-880733-7

JPL Special Review Board (2000) Report on the loss of the Mars Polar Lander and Deep
Space 2 missions. Tech. Rep. JPL D-18709. Jet Propulsion Laboratory

Karnopp D, Rosenberg R (1968) Analysis and simulation of multiport systems: the bond
graph approach to physical system dynamic. MIT Press, Cambridge

Kleijn C (2009) 20-sim 4.1 reference manual, 1st edn. Controllab Products B.V., Enschede.
ISBN 978-90-79499-05-2

Kleijn C, Visser P, Groen F (2012) D3.5—extension to Matlab/Simulink. Tech. Rep., The
DESTECS Project (CNECT-ICT-248134)

Kopetz H, Bauer G (2003) The time-triggered architecture. Proc IEEE 91(1):112-126
Larsen PG, Battle N, Ferreira M, Fitzgerald J, Lausdahl K, Verhoef M (2010) The overture
initiative—integrating tools for VDM. SIGSOFT Softw Eng Notes 35(1):1-6

Larsen PG, Lausdahl K, Battle N (2010) Combinatorial testing for VDM. In: Proceedings
of the 2010 8th IEEE international conference on software engineering and formal methods,
SEFM ’10. IEEE Computer Society, Washington, pp 278-285. ISBN 978-0-7695-4153-2
Larsen PG, Wolft S, Battle N, Fitzgerald J, Pierce K (2010) Development process of
distributed embedded systems using vdm. Tech. Rep. TR-2010-02, The Overture Open Source
Initiative

Larsen PG, Lausdahl K, Battle N, Fitzgerald J, Wolff S, Sahara S (2013) VDM-10 language
manual. Tech. Rep. TR-001, The Overture Initiative

Larsen PG, Lausdahl K, Coleman J, Wolff S, Kleijn C, Groen F (2013) Crescendo tool
support: user manual. Tech. Rep. TR-001, The Crescendo Initiative

374

61

62.

63.

64.
65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

References

. Lausdahl K, Coleman JW, Larsen PG (2013) Semantics of the VDM real-time dialect. ECE-
TR-13, Aarhus University, Aarhus, April 2013

Lee E, Seshia S (2011) Introduction to embedded systems, a cyber-physical systems approach.
University of Berkeley, Berkeley. ISBN 978-0-557-70857-4

Lee EA (2008) Cyber physical systems: design challenges. Tech. Rep. UCB/EECS-2008-8,
EECS Department, University of California, Berkeley

Lee EA (2009) Computing needs time. Commun ACM 52(5):70-79

Lee EA (2010) CPS foundations. In: Proceedings of the 47th design automation conference,
DAC *10. ACM, New York, pp 737-742. doi:10.1145/1837274.1837462

Lee I, Sokolsky O, Chen S, Hatcliff J, Jee E, Kim B, King A, Mullen-Fortino M, Park S,
Roederer A, Venkatasubramanian K (2012) Challenges and research directions in medical
cyber-physical systems. Proc IEEE 100(1):75-90. doi:10.1109/JPROC.2011.2165270

Lions JL, Liibeck L, Fauquembergue JL, Kahn G, Kubbat W, Levedag S, Mazzini L, Merle
D, O’Halloran C (1996) ARIANE 5—Aflight 501 failure—report by the inquiry board. Tech.
Rep., European Space Agency

Liu J (1998) Continuous time and mixed-signal simulation in ptolemy ii. Tech. Rep.
UCB/ERL M98/74, EECS Department, University of California, Berkeley

Magureanu G, Gavrilescu M, Pescaru D (2013) Validation of static properties in unified
modeling language models for cyber physical systems. J Zhejiang Univ Sci C 14(5):332-346.
doi:10.1631/jzus.C1200263

Maier MW (1996) Architecting principles for systems-of-systems. In: Sixth international
symposium of the international council on systems engineering, INCOSE

Margaria T, Schitz B, Verhoef M (2006) Formal methods going mainstream: costs, benefits,
experiences. BCS-FACS FACTS 2006(2):34-38, report on the ForTIA Industry Day at FM’05
Marwedel P (2010) Embedded system design—embedded systems foundations of cyber-
physical systems. Springer, Berlin

Mazzara M, Bhattacharyya A (2010) On modelling and analysis of dynamic reconfiguration
of dependable real-time systems. In: 2010 third international conference on dependability
(DEPEND), pp 173-181. doi:10.1109/DEPEND.2010.33

Miclea L, Sanislav T (2011) About dependability in cyber-physical systems. In: Design test
symposium (EWDTS), 2011 9th East-West, pp 17-21. doi:10.1109/EWDTS.2011.6116428
Moore GE (1965) Cramming more components onto integrated circuits. Electronics
38(8):114-117

Nielsen CB (2010) Dynamic reconfiguration of distributed systems in VDM-RT. Master’s
thesis, Aarhus University

Plotkin GD (1981) A structural approach to operational semantics. Tech. Rep. DAIMI FN-19,
Aarhus University

Plotkin GD (2004) A structural approach to operational semantics. J Logic Algebraic Program
60-61:17-139

Ptolemaeus C (ed) (2014) System design, modeling, and simulation using ptolemy II.
Ptolemy.org

Pumfrey D (1999) The principled design of computer system safety analyses. Ph.D. thesis,
Department of Computer Science, University of York

Rajkumar R, Lee I, Sha L, Stankovic J (2010) Cyber-physical systems: the next computing
revolution. In: Design automation conference (DAC), 2010 47th ACM/IEEE, pp 731-736
Rational Software Corporation (1998) Rational unified process—best practices for software
development teams

Robinson S (2004) Simulation: the practice of model development and use. Wiley, New York
Romanovsky A, Thomas M (eds) (2013) Industrial deployment of system engineering
methods providing high dependability and productivity. Springer, Berlin. ISBN 978-3-642-
33169-5

Rushby J (1989) Kernels for safety? In: Safe and secure computing systems, Blackwell
Scientific Publications, Oxford, pp 210-220

References 375

86

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

. Safety and Health Council of the Chemical Industries Association Ltd (1977) A guide to
hazard and operability studies

Friedenthal S, Moore A, Steiner R (2011) A practical guide to SysML, 2nd edn. Morgan
Kaufmann OMG Press, Waltham. ISBN: 978-0-12-385206-9

Sangiovanni-Vincentelli A (2006) Successive refinements of communication functions and
architectures in system design. In: Design automation and test in Europe, hot topic session—
network the next “Big Idea” in design?

Sanwal M, Hasan O (2013) Formal verification of cyber-physical systems: coping with
continuous elements. In: Murgante B, Misra S, Carlini M, Torre C, Nguyen HQ, Taniar
D, Apduhan B, Gervasi O (eds) Computational science and its applications—ICCSA 2013.
Lecture notes in computer science, vol 7971. Springer, Berlin, pp 358-371. doi:10.1007/978-
3-642-39637-39

Schirner G, Erdogmus D, Chowdhury K, Padir T (2013) The future of human-in-the-loop
cyber-physical systems. Computer 46(1):36-45

Sztipanovits J, Koutsoukos X, Karsai G, Kottenstette N, Antsaklis P, Gupta V, Goodwine B,
Baras J, Wang S (2012) Toward a science of cyber-physical system integration. Proc IEEE
100(1):29-44. doi:10.1109/JPROC.2011.2161529

Taguchi G (1987) System of experimental design, vols 1 and 2. UNIPUB/Krass International
Publications, New York

Thomas D, Moorby P (2008) The Verilog hardware description language, 5th edn. Springer,
Berlin

Trapp M, Schneider D, Liggesmeyer P (2013) A safety roadmap to cyber-physical systems.
In: Miinch J, Schmid K (eds) Perspectives on the future of software engineering. Springer,
Berlin, pp 81-94. doi:10.1007/978-3-642-37395-4¢

Vangheluwe HL, de Lara J, Mosterman PJ (2002) An introduction to multi-paradigm
modelling and simulation. In: Barros F, Giambiasi N (eds) Proceedings of the AIS’2002
conference (Al, Simulation and Planning in High Autonomy Systems), Lisboa, Portugal, pp
9-20

Verhoef M (2009) Modeling and validating distributed embedded real-time control systems.
Ph.D. thesis, Radboud University Nijmegen

Verhoef M, Bos B, van Eijk P, Remijnse J, Visser E, De Paepe M, De Witte Y, Rombaut K,
Van Lembergen R (2012) Industrial case studies—final report. DESTECS Deliverable D4.3,
The DESTECS Project (CNECT-ICT-248134)

Wan K, Hughes D, Man KL, Krilavicius T (2010) Composition challenges and approaches
for cyber physical systems. In: 2010 IEEE international conference on networked embedded
systems for enterprise applications (NESEA), pp 1-7. doi:10.1109/NESEA.2010.5678065
Wang G, Liu Q, Wu J (2010) Hierarchical attribute-based encryption for fine-grained access
control in cloud storage services. In: Proceedings of the 17th ACM conference on computer
and communications security. ACM, New York, pp 735-737

Woodcock J, Larsen PG, Bicarregui J, Fitzgerald J (2009) Formal methods: practice and
experience. ACM Comput Surv 41(4):1-36

Glossary

abstract class (In object-oriented programming) A class where one or more meth-
ods are defined abstractly using the text is subclass responsibility
as their body.

actuator A component that produces a physical output in response to a signal [43].

aggregate (In object-oriented programming) The act of bringing together several
objects into a single whole.

automated co-model analysis Tool support for the selection of a single design
from a set of design alternatives (including definition of scenarios, execution of
co-simulations, and visualisation and analysis of co-simulation results).

automated co-model execution As automated co-model analysis except that it
does not perform any analysis of the test results produced by the simulations

bond (In bond graphs) A directed point-to-point connection between power ports
on submodels. Represents the sharing of both flow and effort by those ports.

bond graph A domain-independent idealised physical model based on the repre-
senting energy and its exchange between submodels.

causality (In bond graphs) Dictates which variable of a power port is the input
(cause) for submodel’s equations and which is the output (effect).

class (In object-oriented programming) The definition of the data field and methods
an object of that class will contain.

code generation The process of implementing a system controller by automati-
cally translating a model into a representation (in some programming language)
which can then be executed on the real hardware of the system.

co-model A model comprising two constituent models (a DE submodel and a CT
submodel) and a contract describing the communication between them.

consistency A co-model is consistent if the constituent models are both syntacti-
cally and semantically consistent.

constituent model One of the two submodels in a co-model.

continuous-time simulation A form of simulation where “the state of the system
changes continuously through time” [83, p. 15].

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 377
DOI 10.1007/978-3-642-54118-6,
© Springer-Verlag Berlin Heidelberg 2014

378 Glossary

contract A description of the communication between the constituent models of
a co-model, given in terms of shared design parameters, shared variables and
common events.

controlled variable A variable that a controller changes in order to perform control
actions.

controller The part of the system that controls the plant.

controller architecture The allocation of software processes to CPUs and the
configuration of those CPUs over a communications infrastructure.

co-sim launch The type of debug configuration used in the Crescendo tool to
define and launch a single scenario.

co-simulation baseline The set of elements (co-model, scenario, test results, etc.)
required to reproduce a specific co-simulation.

co-simulation engine A program that supervises a co-simulation.

co-simulation The simulation of a co-model.

cost function A function which calculates the “cost” of a design.

debug config (Eclipse term) The place in Eclipse where a simulation scenario is
defined.

design alternatives Where two or more co-models represent different possible
solutions to the same problem.

design parameter A property of a model which affects its behaviour, but which
remains constant during a given simulation.

design pattern Is a general reusable solution to a commonly occurring problem
within a given context (in this book in a co-modelling setting).

design space exploration The (iterative) process of constructing co-models, per-
forming co-simulations and evaluating the results in order to select co-models
for the next iteration.

design step A co-model which is considered to be a significant evolution of a
previous co-model.

discrete-event simulation A form of simulation where “only the points in time at
which the state of the system changes are represented” [83, p. 15].

disturbance A stimulus that tends to deflect the plant from desired behaviour.

edges (In bond graphs) See bond.

effort (In bond graphs) One of the variables exposed by a power port. Represents
physical concepts such as electrical voltage, mechanical force or hydraulic
pressure.

environment Everything that is outside of a given system.

error Part of the system state that may lead to a failure [6].

event An action that is initiated in one constituent model of a co-model, which
leads to an action in the other constituent model.

executable model A model that can be simulated.

failure A system’s delivered service deviates from specification [6].

fault injection The act of triggering faulty behaviour during simulation.

fault modelling The act of extending a model to encompass faulty behaviours.

fault The adjudged or hypothesised cause of an error [6].

Glossary 379

fault behaviour A model of a component’s behaviour when a fault has been
triggered and emerges as a failure to adhere to the component’s specification.

fault-like phenomena Any behaviour that can be modelled like a fault (e.g.
disturbance).

flow (In bond graphs) One of the variables exposed by a power port. Represents
physical concepts such as electrical current, mechanical velocity, fluid flow.

ideal behaviour A model of a component that does not account for disturbances.

inheritance (Inobject-oriented programming) The mechanism by which a subclass
contains all public and protected data fields and methods of its superclass.

input A signal provided to a model.

interface (In object-oriented programming) A class which defines the signatures
of but no bodies for any of its methods. Should not be instantiated.

junction (In bond graphs) A point in a bond graph where the sum of flow (1-
junction) or effort (0-junction) of all bonds to that point is zero.

log Data written to a file during a simulation.

metadata Information that is associated with, and gives information about, a piece
of data.

model base The collection of artefacts gathered during a development (including
various models and co-models; scenarios and test results; and documentation).

model management The activity of organising co-models within a model base.

model structuring The activity of organising elements within a model.

model synthesis See code generation.

model A more or less abstract representation of a system or component of interest.

modelling The activity of creating models.

monitored variable A variable that a controller observes in order to inform control
actions.

object (In object-oriented programming) An instantiation of a class, contains data
fields and methods.

objective function See cost function.

operation (In object-oriented programming) Defines an operation that an object
may perform on some data. Operations may be private, public or protected.

output The states of a model as observed during (and after) simulation.

non-normative behaviour Behaviour that is judged to deviate from specification.

pattern (In VDM) Are like empty shells that have a meaning only once they are
matched against a concrete value.

physical concept (In bond graphs) A class of component or phenomena that could
exist or be observed in the real world, e.g. an electrical resistor or mechanical
friction.

plant The part of the system which is to be controlled [43].

power port (In bond graphs) The port type connected in a bond graph. Contains
two variables, effort and flow. A power port exchanges energy with its connected
models.

private (In object-oriented programming, VDM) The method or data field may
only be accessed from within the containing class.

380 Glossary

protected (In object-oriented programming, VDM) The method or data field may
only be accessed by its containing class or any of its subclasses.

public (In object-oriented programming, VDM) The method or data field may be
accessed by any other class.

ranking function A function that assigns a value to a design based on its ability to
meet requirements defined by the engineer.

realistic behaviour A model of a component which includes disturbances defined
by the tolerances associated with that component.

response A change in the state of a system as a consequence of a stimulus.

scenario Test of a co-model.

signal domain Where models share a single value or array at each uni-directional
port, unlike bond graphs where the ports are bi-directional.

sensor A component whose input is a physical phenomenon and whose output is a
quantitative measure of the phenomenon.

shared design parameter A design parameter that appears in both constituent
models of a co-model.

shared variable A variable that appears in and can be accessed from both con-
stituent models of a co-model.

simulation Symbolic execution of a model.

semantically consistent The state when the constituent models of a co-model
agree on the semantics of the variables, parameters and events they share. The
nature of these semantics is not yet described.

static analysis A method for checking some property of a model without executing
that model.

state event An event triggered by a change within a model.

stimulus A phenomenon that effects a change in the state of a system.

subclass (In object-oriented programming) A class that is defined as extending
another class. The other class becomes its superclass. The subclass inherits all
non-private data fields and methods.

submodel A distinct part of a larger model.

superclass (In object-oriented programming) The class from which a subclass is
defined.

system boundary The common frontier between a system and its environment.

System Under Test (SUT) The part of a model that represents the system we wish
to build as opposed to parts of the model which are not part of this system.

system An entity that interacts with other entities, including hardware, software,
humans and the physical world [6].

test result A record of the output from a simulation of a model (see also log).

time event An expected event that occurs at a predetermined time.

variable Part of a model that may change during a given simulation.

vertices (In bond graphs) The joining points of bonds. May be manifested as either
a junction or a submodel.

Index

The bold entries refer to defining occurrences of indexed terms, while the normal
entries refer to normal occurrences of the indexed terms.

actuator, 16, 47, 57, 85, 121, 147, 163, 164,
175, 228, 236, 258, 377

aggregate, 348, 348, 349, 377

algebraic loop, 29, 150, 308

and, 66, 67, 80, 130, 313

approximation, 17, 134, 150, 171, 174-177,
244

argument, 68, 90, 246

association, 88, 91, 159

assumption, 8, 12, 134, 144, 240, 252, 352, 359

asynec, 95, 247, 249, 250

automated co-model analysis, 21, 199, 200,
202, 377

folder launch configuration, 210, 213

behaviour

faulty, 186, 192, 195, 344, 379

ideal, 24, 186, 191, 379

realistic, 186, 192, 380
binding, 77, 83, 84, 319
bond graph, 17, 37, 37-48, 58, 165-167, 169,

240, 241, 306, 377

bool, 66, 66, 67, 70, 108, 109, 313, 315
BUS, 93, 94, 179, 195, 300, 319, 341
button

debug, 104, 105, 108, 210

pause, 106

play, 106

stop, 106

capacitor, 30, 32
card, 76, 80, 313

causal conflict, 45, 377
causal constraint, 41, 377
causal relation diagram, 27, 377
causal stroke, 39, 377
char, 73, 176, 320
ChessWay, 145, 145-148, 151, 153, 177-181,
194-196, 223, 225, 253, 263-265,
270, 359
class, 87
abstract, 117, 117, 118, 120, 123, 128, 377
diagram, 88, 124, 125, 128, 163, 180, 190,
192, 194, 195, 229, 321, 348, 349,
354
class, 87, 92, 118-120, 125, 135, 179, 181,
320, 349, 351, 355, 358
code, 104
code generation, 17, 310, 377
comment, 64, 99
co-model, 17, 203, 219, 269, 294, 377
boundary, 132, 133, 137
contract, 18, 19, 98, 155, 172, 182, 378
competent model, 16, 37, 148, 157, 166, 297
compliance, 29, 30
component, 28, 34, 42, 46
cong, 315
concurrency, 87, 91, 126
configuration, 279, 280
constructor, 90, 95, 176, 179, 246, 319, 349,
355
continuous-time system, 51
contract, 18, 19, 98, 378
contract-first, 25, 155, 182
controlled variable, 65, 163, 164, 274, 305, 378

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems, 381

DOI 10.1007/978-3-642-54118-6,
© Springer-Verlag Berlin Heidelberg 2014

382

controller, 16, 28, 47, 48, 49, 49-54, 56, 57,
72,88, 113, 143,172, 181, 194, 196,
214, 228, 234, 236, 258, 355, 378
feedback, 49
feedforward, 49
loop, 50, 57, 58, 63, 133, 171, 245, 246
mode, 194, 194, 331
sequence, 57, 171, 245, 249
supervisory, 57, 245, 250
converter, 51, 51, 52, 55, 57, 190, 192
co-simulation, 17, 19, 58, 104, 111, 131, 233,
256, 281, 283, 299, 310, 378
CPU, 93, 94, 179, 195, 201, 228, 300, 319, 341
CT-first, 25, 154, 164, 167
CT-only simulation, 133, 377
cyber-physical system, 132, 293, 295, 297
cycles, 95,299

damper, 29, 30
debug configuration, 104, 200, 378
DE-first, 25, 154, 171, 244, 253
DE-only simulation, 131, 134, 136, 137, 378
design
alternative, 21, 166, 199, 206, 207, 215,
268, 294, 297, 378
parameter, 17, 378
pattern, 116, 121, 189, 190, 195, 323, 378
space, 21, 199, 212
space exploration, 21, 166, 199, 236, 378
DESTECS, 310
differential equation, 36, 46, 149, 228
dinter, 313
discrete-time system, 51
document handling, 223, 238, 265
dredging excavator, 223, 225, 264
dunion, 313
duration, 94, 134, 299
duty cycle, 48
dynamic equilibrium, 35

editor, 98, 308
effort variable, 38, 378
elementary DC-motor, 42
elementary model, 28, 46
elems, 78, 315
embedded system, 3, 4, 6-10, 13-17, 293-296,
301-303
environment, 16, 160, 171, 174, 176, 378
equations, 227, 305, 307, 347
equilibrium
dynamic, 35
static, 35

Index

error, 185, 378
event, 18, 56, 98, 378
state, 18, 56
time, 18, 56, 380
exists, 319
experiment, 166, 203, 207, 211, 213, 216, 233,
234
fractional factorial, 208, 218
iterative approach, 215
orthogonal matrix, 209, 213
result, 107, 202, 217, 218
screening, 208
space filling search, 210
explorer, 98
export, 103, 171, 310
externals, 103

failure, 185, 378
fault, 185, 378
activation, 185
block, 189
identification, 186
injection, 185, 283, 345, 378
modelling, 185, 188, 253, 378
selection, 188
simulation, 185
tolerance, 10, 12, 185, 253, 347
coverage, 190
fixed effort-out causality, 40
fixed flow-out causality, 40
flow variable, 38, 379
fluid storage, 31
FMEA, 188
forall, 80, 84, 248, 319, 365
function, 68, 68, 318, 360, 361

global, 103, 103, 171
guideword, 186, 190, 194
late, 195
less, 187
more, 187
gyrator, 42, 43

hard real time, 54

HAZOP, 186

hd, 78, 315

Hooke’s law, 29, 30

hydraulic resistance, 31, 237, 306, 378

iconic diagram, 34, 306
ideal physical model, 28, 34, 46, 165

Index

implementation edit, 133

import, 98, 103, 171, 310

inds, 78, 80, 315

inductance, 30, 110, 144, 242

inertia, 30, 33, 4246, 110, 144, 227, 228, 234,
242

inference rule, 281

inheritance, 117, 118, 125, 189, 379

in set, 77,313

instance variable, 64, 64, 68, 70-72, 74, 83, 85,
87, 88,91, 117-120, 124-131, 135,
136, 320, 342, 349, 351, 355, 358,
360

int, 63, 313, 320

integration method, 17, 21, 173, 175, 309

inter, 77, 313

interface, 46, 57, 87, 103, 116, 119, 120-124,
126, 131, 132, 135, 136, 379

inverse, 315

is subclass of, 120, 125, 135

is subclass responsibility, 117,
175

jitter, 55, 91, 126, 127, 148
junction, 38, 379

launch configuration, 104, 210, 378
len, 78, 315
let expression, 69, 83, 317

mapping, 81
comprehension, 317
distributed merge, 315
domain

restriction, 315

subtraction, 315
empty, 81, 315
enumeration, 315
inverse, 315
maplet, 315
override, 315
range, 315

restriction, 315

subtraction, 315
type, 177, 315
union, 315

map to, 176, 315, 320, 349

mass, 29, 144, 148, 149, 161

mass-spring-damper system, 34

matlab/simulink, 296

matrix, 99

383

merge, 315
model, 16
competent, 16, 37, 148, 157, 166, 297
consistency, 18, 377
constituent, 17, 377
continuous time, 17, 28
discrete event, 17, 62
executable, 16, 378
model, 102
modelica, 296
modulated voltage source, 47, 49
monitored variable, 63, 64, 163, 164
motor constant, 42, 110, 111, 144
munion, 315
mutex, 92, 247

nat, 63,313, 315

natl, 63,313, 315

new, 89, 119, 320

Newton’s law, 29, 30, 161

nil, 91, 118, 130, 136, 249, 250
not, 66, 313

not in set, 313

object diagram, 123, 124, 125, 180, 190, 195,
321, 348, 349, 354, 357

Ohm’s law, 31

once, 108, 288

operation, 70
asynchronous, 95, 176, 247, 249, 250
override, 117, 189, 197

or, 66, 313

outline, 98

output, 102, 103

parameter, 53, 54, 110, 111, 114, 202, 205,
206, 208, 210, 212, 214, 219, 251
continuous, 206
design, 206
discrete, 207
parameters, 103, 307
pattern
decorator, 122, 124
ether, 195, 300, 341
fault injector, 189, 344, 345
filter, 194, 349
kernel, 354
matching, 83, 316, 365, 379
monitor, 357
noise, 343
voter, 190, 191, 347

384

periodic, 72, 82, 90, 91, 126, 127, 177,
247,319, 358

permission predicate, 87, 91, 93, 319

PID, 51, 52, 71, 118, 124, 130, 132, 134, 160,
305

plant, 16, 134, 171, 246, 379

post-condition, 79, 117

power, 33

bond, 37
port, 42, 379

power, 313

pre-condition, 70, 79, 84, 117, 248, 249, 349

predicate, 66, 77, 81, 319

preferred effort-out causality, 39

preferred flow out causality, 39

private, 89, 89, 118, 127, 176, 177, 179,
189, 246-248, 349, 351, 358, 379

protected, 118, 118, 119, 126, 128, 130,
134, 181, 189, 320, 380

psubset, 313

ptolemy, 296

public, 89, 90, 92, 95, 118-120, 125, 130,
131, 136, 137, 246-250, 320, 380

purpose, 16, 62, 75, 157, 177, 206, 207, 254

PWM, 48, 134, 226, 239, 242, 246

quantifier, 84, 248, 318, 365
quote value, 74, 74, 136, 361, 362, 366

ranking, 204, 216, 219, 222, 380
enumeration and scoring, 217, 220
weighted additive method, 217, 220

real, 63, 313

record type, 75, 76, 316

recursion, 285, 318, 318

resistance, 31, 110, 144, 242

resistor, 31, 142, 207, 379

RESULT, 80, 320

rng, 315

R2-G2P, 142, 153, 190, 194, 202, 219

rule schemata, 279

safety, 84, 85, 92, 146, 147, 229, 232, 235,
254, 256, 258, 302, 358, 361-363,
365, 369

sampling, 52, 55, 55, 56

scenario, 19, 20, 104, 108, 114, 148, 172, 177,
178, 202, 380

script, 20, 108, 172, 202

self, 178, 320, 334

semantic constraint, 275

Index

sensor, 16, 28, 47, 57, 120, 147, 148, 151, 163,
164, 169, 175, 177, 179, 190, 191,
194, 203, 219, 228, 258, 349, 380
sequence, 77
comprehension, 78, 317
concatenation, 78, 78, 315
distributed, 315
elements, 78, 315
empty, 77, 85, 285, 313
head, 78, 315
indices, 80, 315
length, 78, 315
tail, 78, 315
value, 77, 248
set, 76
cardinality, 76, 313
comprehension, 77, 317
difference, 313
distributed union, 313
empty, 76, 84, 313
intersection, 77, 313
distributed, 313
membership, 77, 313
power set, 313
proper subset, 313
subset, 313
type, 76, 79, 84
union, 77, 313
distributed, 313
setpoint, 49, 51, 53, 53, 57, 69, 70, 75, 76, 78,
79, 81-83, 246
setpoint profile, 245, 247, 248, 249
setting, 20, 104, 107, 202
SHARD, 186, 190, 194
shared design parameter, 18, 98, 102, 201, 203,
380
shared variable, 17, 380
soft real time, 54
software development standard, 23, 212
spring, 29, 30
spring constant, 29, 30
start, 92,178, 319
statement, 70
assignment, 71, 72, 82, 85, 90, 118,
126-128, 130, 131, 134, 137, 363,
364, 366
block, 71, 72, 90, 92, 127, 128, 130, 131,
134, 246, 249, 363, 364, 366
cases, 136, 179, 316, 364, 368
loop, 317, 320
return, 71, 71, 119, 136, 179, 232, 248
skip, 93, 128, 134, 320, 364, 368
static, 89, 94, 136, 179, 326, 329
static equilibrium, 35

Index

stimuli, 16, 134, 171
structural operational semantics, 278
subclass, 117, 135, 189, 196, 321, 351, 380
submodel, 34, 170, 202, 228, 241, 307, 380
subset, 313
superclass, 117, 189, 380
sweep, 201, 203, 210, 215
synchronisation, 91, 92, 117
SysML, 157, 298
activity diagram, 23, 163
block definition diagram, 159, 298
constraint block, 161
flow port, 160
internal block diagram, 160, 298
parametric diagram, 161
requirements diagram, 159
sequence diagram, 163
state machine, 163, 362
use case, 23, 157
system, 3, 12, 15, 380
boundary, 16, 116, 131, 380
embedded, 3, 4, 6-10, 15, 17, 293-296,
301-303
under test, 185, 380
system, 93, 102, 179, 319

test, 14, 116, 119, 133, 134, 154, 156, 157,
165, 167, 168, 170-172, 174, 175,
182, 185, 189, 206-208, 226, 237,
253, 256, 258, 265-271, 299-301
acceptance, 155, 182
coverage, 114, 368
regression, 131
result, 21, 21, 380
thread, 91, 117, 126, 319
periodic, 91, 126, 127, 177, 247, 358
time, 83,94, 108, 134, 177, 250

385

tl,78, 315

T1X Tractor, 211

transition
CT, 282
DE, 281
relation, 279, 279, 281
rule, 278

truetime, 296

type, 63
boolean, 66, 66, 67, 70, 315
invariant, 67, 81, 355, 360, 361, 365
mapping, 81, 177
optional, 91, 136
quote, 74, 74, 361, 362
record, 75, 116, 316
sequence, 73, 77
set, 76, 79, 84
union, 74, 365

union, 77, 313

values, 64, 113, 176, 360
variable
controlled, 18, 20, 48, 63, 65, 98, 163, 164,
274, 305, 378, 380
monitored, 18, 20, 48, 63, 64, 98, 101, 102,
163, 164, 171, 379, 380
variables, 307
VDM, 17, 61, 313
VDM link file, 101
verification, 264-266, 301
viscous friction, 29, 30

when, 108

	Foreword
	Preface
	Structure of the Text
	Using the Book
	Accompanying Web Site
	Acknowledgments

	List of Acronyms
	Contents
	List of Contributors
	Part I Co-modelling and Co-simulation: The Technical Basis
	Chapter
1 Collaborative Development of Embedded Systems
	1.1 Introduction
	1.2 Setting the Scene
	1.3 The Embedded Systems Design Challenge
	1.4 Embedded Systems Design: An Illustrative Story
	1.4.1 The Control Engineers' Perspective
	1.4.2 The Software Designers' Perspective
	1.4.3 The Case for Collaborative Development

	1.5 A Solution: The Crescendo Approach
	1.6 Conclusion

	Chapter
2 Co-modelling and Co-simulation in Embedded Systems Design
	2.1 Introduction
	2.2 Systems and System Boundaries
	2.3 Models
	2.4 Co-models
	2.5 Co-simulation
	2.5.1 The Co-simulation Engine
	2.5.2 Scenarios

	2.6 DSE and Automated Co-model Analysis
	2.7 Co-simulation in Practice
	2.7.1 Where Does Co-simulation Fit with Existing Practice?
	2.7.2 Developer Background and Legacy Models
	2.7.3 Paths to Co-modelling

	2.8 Conclusion

	Chapter
3 Continuous-Time Modelling in 20-sim
	3.1 Introduction
	3.2 Physical Systems
	3.2.1 Mechanical Systems (Translations)
	3.2.2 Mechanical Systems (Rotations)
	3.2.3 Electrical Systems
	3.2.4 Hydraulic Systems
	3.2.5 Equations in Integral Form
	3.2.6 Power

	3.3 Icons and Iconic Diagrams
	3.4 A Domain-Independent Description: Bond Graphs
	3.4.1 Example
	3.4.2 Models in Different Domains

	3.5 Simulating Physical Systems with 20-sim
	3.5.1 Sensors and Actuators
	3.5.2 A Brief Introduction to Pulse Width Modulation

	3.6 Control Systems
	3.6.1 Digital Control Systems
	3.6.2 PID Control
	3.6.3 DE Systems
	3.6.4 Sampling
	3.6.5 Events
	3.6.6 Controller Architecture
	3.6.7 Co-simulation

	3.7 A Small Note on Notation
	3.8 Conclusion

	Chapter
4 Discrete-Event Modelling in VDM
	4.1 Introduction
	4.2 Basic Elements: Data and Functionality
	4.2.1 Data
	4.2.1.1 Expressions
	4.2.1.2 Data Types and Invariants

	4.2.2 Functionality
	4.2.2.1 Function Definitions
	4.2.2.2 Operation Definitions

	4.3 Example: A Basic Controller Model
	4.4 Modelling with Structured Data
	4.4.1 Nonnumeric Data
	4.4.1.1 Characters
	4.4.1.2 Union Types and Quote Types

	4.4.2 Structured Collections: Records, Sets, Sequences and Mappings
	4.4.2.1 Records
	4.4.2.2 Sets
	4.4.2.3 Sequences
	4.4.2.4 Mappings

	4.5 Example: Supervisory Control
	4.6 Example: Controlling for Safety
	4.7 Object-Oriented Structuring
	4.7.1 Structure of the TorsionBarBaseline Model
	4.7.2 Instances of Classes and Constructors
	4.7.3 Optional Types and Association Multiplicities

	4.8 Concurrency
	4.8.1 Threads in VDM
	4.8.2 Synchronisation of Threads in VDM

	4.9 Modelling Systems
	4.10 Conclusion

	Chapter
5 Support for Co-modelling and Co-simulation: The Crescendo Tool
	5.1 Introduction
	5.2 Importing the Torsion Bar Co-model
	5.3 Crescendo Contracts
	5.3.1 Introduction to the VDM Link File
	5.3.2 Global Variables in the CT Model

	5.4 Starting a Co-simulation
	5.5 Using Scripts and SDPs
	5.6 Changing the Torsion Bar Model
	5.6.1 Adjusting the CT Model
	5.6.2 Adjusting the DE Model

	5.7 Conclusion

	Chapter
6 Co-model Structuring and Design Patterns
	6.1 Introduction
	6.2 Object-Orientation and Inheritance
	6.3 Interfaces for Sensors and Actuators
	6.4 Design Patterns
	6.4.1 The Decorator Pattern
	6.4.2 Application of the Decorator Pattern

	6.5 Using Inheritance for Threads
	6.5.1 An Abstract Thread Class
	6.5.2 Using the Abstract Thread Class

	6.6 Structuring Constituent Models for Flexible Simulation
	6.6.1 Co-model Boundaries
	6.6.2 Structuring CT Models for Flexible Simulation
	6.6.3 Structuring DE Models for Flexible Simulation
	6.6.3.1 Environment Models
	6.6.3.2 IO Factories

	6.7 Conclusion

	Part II Methods and Applications: The Pragmatics of Co-modelling and Co-simulation
	Chapter
7 Case Studies in Co-modelling and Co-simulation
	7.1 Introduction
	7.2 The R2-G2P Line-Following Robot
	7.2.1 Line-Following
	7.2.2 Line-Measuring Extension
	7.2.3 Assumptions and Robot Dimensions

	7.3 The ChessWay Self-balancing Scooter
	7.3.1 Robustness: A Key Design Challenge
	7.3.2 The ChessWay Control Problem

	7.4 Conclusion

	Chapter
8 Methods for Creating Co-models of Embedded Systems
	8.1 Introduction
	8.2 Paths to Co-models
	8.2.1 When to Use DE-first
	8.2.2 When to Use CT-first
	8.2.3 When to Use Contract-first
	8.2.4 When to Define the Contract
	8.2.5 Alternate Exploratory Paths to Initial Co-models

	8.3 Using SysML Initially
	8.3.1 Purpose Modelling
	8.3.2 System Decomposition
	8.3.2.1 CT Constructs
	8.3.2.2 DE Constructs
	8.3.2.3 Co-simulation Contract

	8.4 The CT-first Approach
	8.4.1 Preparation
	8.4.2 Plant Modelling
	8.4.3 CT-first Modelling of the Line-Following Robot
	8.4.3.1 Robot Body
	8.4.3.2 Wheels and Servos
	8.4.3.3 Sensors

	8.4.4 Transition to Co-model

	8.5 The DE-first Approach
	8.5.1 Preparation
	8.5.2 Environment
	8.5.2.1 Data-Driven
	8.5.2.2 Basic Integration

	8.5.3 Sensors and Actuators
	8.5.4 DE-first Modelling of the ChessWay Self-balancing Scooter
	8.5.4.1 The Environment Class
	8.5.4.2 The World Class
	8.5.4.3 Sensors and Actuators
	8.5.4.4 The ChessWay System
	8.5.4.5 The Controller Class

	8.5.5 Transition to Co-model

	8.6 The Contract-first Approach
	8.7 Conclusion

	Chapter
9 Co-modelling of Faults and Fault Tolerance Mechanisms
	9.1 Introduction
	9.2 Fault Identification
	9.3 Fault Selection
	9.4 Fault Modelling
	9.5 Fault Tolerance Coverage
	9.6 Fault Tolerance Modelling
	9.7 An Example Using the Line-Following Robot
	9.8 An Example Using the ChessWay
	9.9 Conclusion

	Chapter
10 Design Space Exploration for Embedded Systems Using Co-simulation
	10.1 Introduction
	10.2 Using ACA
	10.2.1 How ACA Works
	10.2.2 Configuring an ACA Launch

	10.3 An Example Using the Line-Following Robot
	10.4 Candidate Parameters
	10.4.1 Design or Environmental Parameters
	10.4.1.1 Design Parameters
	10.4.1.2 Environmental/Uncontrollable Factors

	10.4.2 Nature of the Parameters
	10.4.2.1 Continuous Parameters
	10.4.2.2 Parameters with Discrete Values/Design Alternatives

	10.5 Experimental Design
	10.5.1 Screening Experiments
	10.5.2 Fractional Factorial Experiments
	10.5.2.1 Orthogonal Matrices (Taguchi Methods)
	10.5.2.2 Space-Filling Search
	10.5.2.3 Parameter Sweeping

	10.6 Using Folder Launch Configuration
	10.7 An Example Using the T1X Tractor
	10.7.1 An Iterative Approach

	10.8 Ranking of Results
	10.8.1 Simple Equation
	10.8.2 Weighted Additive Method
	10.8.3 Enumeration and Scoring
	10.8.4 Analysis of Results

	10.9 An Example Using the Line-Measuring Robot
	10.10 Conclusion

	Chapter
11 Industrial Application of Co-modellingand Co-simulation Technology
	11.1 Introduction
	11.2 A Dredging Excavator
	11.2.1 Case Description and Main Challenges
	11.2.2 The Continuous Time Model
	11.2.3 The Discrete Event Model
	11.2.3.1 Operator
	11.2.3.2 Controller
	11.2.3.3 Safety Unit
	11.2.3.4 Controller States
	11.2.3.5 Modes of Operation

	11.2.4 Co-simulation Analysis
	11.2.4.1 Ground Model
	11.2.4.2 Overload
	11.2.4.3 Endstop Protection
	11.2.4.4 Emergency Switch

	11.2.5 Key Results and Observations

	11.3 A Document Handling System
	11.3.1 Case Description and Main Challenges
	11.3.2 The Continuous Time Model
	11.3.3 The Discrete Event Model
	11.3.3.1 The Loop Controller
	11.3.3.2 The Setpoint Profile
	11.3.3.3 The Sequence Controller
	11.3.3.4 The Supervisory Controller

	11.3.4 Co-simulation Analysis
	11.3.5 Key Results and Observations

	11.4 The ChessWay Self-balancing Scooter
	11.4.1 Case Description and Main Challenges
	11.4.2 The Continuous Time Model
	11.4.3 The Discrete Event Model
	11.4.4 Co-simulation Analysis
	11.4.5 Key Results and Observations

	11.5 Conclusion

	Part III Advanced Topics
	Chapter
12 Deploying Co-modelling in Commercial Practice
	12.1 Introduction
	12.2 Company Introductions
	12.3 Traditional Development
	12.4 Integrating Co-modelling and Co-simulation with Existing Processes
	12.5 Resources
	12.6 Challenges Encountered
	12.7 Key Benefits
	12.8 The Future of Co-modelling
	12.9 Conclusion

	Chapter
13 Semantics of Co-simulation
	13.1 Introduction
	13.2 Structure of Co-simulation
	13.2.1 Common Semantic Constraints
	13.2.2 Continuous-Time Simulation Semantics
	13.2.3 Discrete-Event Simulation Semantics

	13.3 Co-simulation Semantics
	13.3.1 Structural Operational Semantics
	13.3.2 Co-simulation Static State
	13.3.3 Co-simulation Behaviour
	13.3.4 Simulator Properties and Their Transition Relations

	13.4 Adding Fault Injection Semantics to the Co-simulation
	13.5 Semantics of the CSL
	13.5.1 Top-Level CSL Structures
	13.5.2 CSL Statement and Expression Semantics
	13.5.2.1 Structure
	13.5.2.2 Statement Rules
	13.5.2.3 Expression Evaluation

	13.6 Conclusion

	Chapter
14 From Embedded to Cyber-Physical Systems:Challenges and Future Directions
	14.1 Introduction
	14.2 The Co-modelling and Co-simulation Landscape
	14.3 Co-modelling in the CPS Design Flow
	14.4 Enabling Collections of DE and CT Models to Be Combined
	14.5 Open Co-simulation
	14.6 Ubiquitous and Distributed Computing
	14.7 An Open and Lively Research Field
	14.8 Conclusion

	Appendix
A 20-sim Summary
	A.1 Introduction
	A.2 Overview
	A.3 Graphical Models
	A.4 Equation Models
	A.5 Modelling Tools
	A.6 Simulation
	A.7 Analysis
	A.8 Scripting
	A.9 Co-simulation
	A.10 Code Generation

	Appendix
B VDM-RT Language Summary
	B.1 Operators for Basic Types
	B.2 Operators for Set Types
	B.3 Operators for Sequence Types
	B.4 Operators for Mapping Types
	B.5 Record Types and Values in VDM
	B.6 Small VDM-RT Examples
	B.6.1 General
	B.6.2 Comprehensions (Structure to Structure)
	B.6.3 From Structure to Arbitrary Value
	B.6.4 From Structure to Single Value
	B.6.5 From Structure to Single Boolean

	B.7 Threads and Synchronisation in VDM
	B.8 The System Class Concept in VDM-RT
	B.9 Example of Classes
	B.10 UML Diagrams

	Appendix
C Design Patterns for Use in Co-modelling
	C.1 Introduction
	C.2 Controller Patterns
	C.2.1 Minimal Controller Pattern
	C.2.1.1 Intent
	C.2.1.2 Motivation
	C.2.1.3 Structure
	C.2.1.4 Application to DE Domain

	C.2.2 Object-Oriented Controller Pattern
	C.2.2.1 Intent
	C.2.2.2 Motivation
	C.2.2.3 Structure
	C.2.2.4 Application to DE Domain

	C.2.3 Modal Controller Pattern
	C.2.3.1 Intent
	C.2.3.2 Motivation
	C.2.3.3 Structure
	C.2.3.4 Application to DE Domain
	C.2.3.5 Use in Examples
	C.2.3.6 Related Patterns

	C.2.4 IO Synchronisation Pattern
	C.2.4.1 Intent
	C.2.4.2 Motivation
	C.2.4.3 Structure
	C.2.4.4 Application to DE Domain
	C.2.4.5 Use in Examples

	C.2.5 Demux Pattern
	C.2.5.1 Intent
	C.2.5.2 Motivation
	C.2.5.3 Structure
	C.2.5.4 Use in Examples

	C.2.6 Decorator Pattern (for Evolution)
	C.2.6.1 Intent
	C.2.6.2 Motivation
	C.2.6.3 Structure
	C.2.6.4 Application to DE Domain
	C.2.6.5 Use in Examples

	C.3 Fault Patterns
	C.3.1 Ether Pattern
	C.3.1.1 Intent
	C.3.1.2 Motivation
	C.3.1.3 Structure
	C.3.1.4 Use in Examples

	C.3.2 Noise Pattern
	C.3.2.1 Intent
	C.3.2.2 Motivation
	C.3.2.3 Structure
	C.3.2.4 Application to CT Domain
	C.3.2.5 Application to DE Domain
	C.3.2.6 Use in Examples

	C.3.3 Fault Injector Pattern
	C.3.3.1 Intent
	C.3.3.2 Motivation
	C.3.3.3 Structure
	C.3.3.4 Application to CT Domain
	C.3.3.5 Use in Examples

	C.4 Fault Tolerance Patterns
	C.4.1 Voter Pattern
	C.4.1.1 Intent
	C.4.1.2 Motivation
	C.4.1.3 Structure
	C.4.1.4 Application to DE Domain
	C.4.1.5 Use in Examples
	C.4.1.6 Related Patterns

	C.4.2 Filter Pattern
	C.4.2.1 Intent
	C.4.2.2 Motivation
	C.4.2.3 Structure
	C.4.2.4 Application to DE Domain
	C.4.2.5 Application to CT Domain
	C.4.2.6 Use in Examples
	C.4.2.7 Related Patterns

	C.4.3 Kernel Pattern
	C.4.3.1 Intent
	C.4.3.2 Motivation
	C.4.3.3 Structure
	C.4.3.4 Application to DE Domain
	C.4.3.5 Application to CT Domain
	C.4.3.6 Use in Examples
	C.4.3.7 Related Patterns

	C.4.4 Monitor Pattern
	C.4.4.1 Intent
	C.4.4.2 Motivation
	C.4.4.3 Structure
	C.4.4.4 Application to DE Domain
	C.4.4.5 Use in Examples
	C.4.4.6 Related Patterns

	Appendix
D Abstract Modelling of ChessWay Safety
	References
	Glossary
	Index

