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Series Preface

With remarkable vision, Prof. Otto Hutzinger initiated The Handbook of Environ-
mental Chemistry in 1980 and became the founding Editor-in-Chief. At that time,
environmental chemistry was an emerging field, aiming at a complete description
of the Earth’s environment, encompassing the physical, chemical, biological, and
geological transformations of chemical substances occurring on a local as well as a
global scale. Environmental chemistry was intended to provide an account of the
impact of man’s activities on the natural environment by describing observed
changes.

While a considerable amount of knowledge has been accumulated over the last
three decades, as reflected in the more than 70 volumes of The Handbook of
Environmental Chemistry, there are still many scientific and policy challenges
ahead due to the complexity and interdisciplinary nature of the field. The series
will therefore continue to provide compilations of current knowledge. Contribu-
tions are written by leading experts with practical experience in their fields. The
Handbook of Environmental Chemistry grows with the increases in our scientific
understanding, and provides a valuable source not only for scientists but also for
environmental managers and decision-makers. Today, the series covers a broad
range of environmental topics from a chemical perspective, including methodolog-
ical advances in environmental analytical chemistry.

In recent years, there has been a growing tendency to include subject matter of
societal relevance in the broad view of environmental chemistry. Topics include
life cycle analysis, environmental management, sustainable development, and
socio-economic, legal and even political problems, among others. While these
topics are of great importance for the development and acceptance of The Hand-
book of Environmental Chemistry, the publisher and Editors-in-Chief have decided
to keep the handbook essentially a source of information on “hard sciences” with a
particular emphasis on chemistry, but also covering biology, geology, hydrology
and engineering as applied to environmental sciences.

The volumes of the series are written at an advanced level, addressing the needs
of both researchers and graduate students, as well as of people outside the field of
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X Series Preface

“pure” chemistry, including those in industry, business, government, research
establishments, and public interest groups. It would be very satisfying to see
these volumes used as a basis for graduate courses in environmental chemistry.
With its high standards of scientific quality and clarity, The Handbook of Envi-
ronmental Chemistry provides a solid basis from which scientists can share their
knowledge on the different aspects of environmental problems, presenting a wide
spectrum of viewpoints and approaches.

The Handbook of Environmental Chemistry is available both in print and online
via www.springerlink.com/content/110354/. Articles are published online as soon
as they have been approved for publication. Authors, Volume Editors and Editors-
in-Chief are rewarded by the broad acceptance of The Handbook of Environmental
Chemistry by the scientific community, from whom suggestions for new topics to
the Editors-in-Chief are always very welcome.

Damia Barceld
Andrey G. Kostianoy
Editors-in-Chief



Volume Preface

Nowadays major sources of water pollution are agricultural runoff and domestic
and industrial effluent discharges. Organic pollutants present can accumulate in
rivers and other water bodies and affect water quality and species survival. The
active ingredients used in personal care products are increasingly detected in the
environment and consist of a large group of chemicals with a wide range of
physicochemical properties, which make them to be present in solution, adsorbed
onto sediments and accumulated in biota. These substances are used in large
quantities in everyday life, being added in cosmetics and personal hygiene pro-
ducts, such as deodorant, after shave, shampoo, perfume and makeup.

This book on Personal Care Products in the Aquatic Environment contains
comprehensive information on the fate and removal strategies of the various
ingredients used as personal care products and the aquatic environment as well
as their impact on human health. Most of the published work so far deals with
the stability of the commercial products and issues related to skin penetration.
However, in the recent years, the general interests have shifted to know the
risk of this large and diverse chemical group of anthropogenic contaminants in
environment and humans. They can be considered part of the so-called emerging
contaminants that are present worldwide in the aquatic environment, from ground-
water to marine mussels. This book presents the latest developments as regards
their determination, spatial distribution, degradation and risk categorization in the
aquatic environment. This will be of great help to the reader to make a holistic
picture of the current environmental problems connected with the widespread use
of personal care products.

The book is structured in 14 chapters written by well-recognized experts in this
field. The various chapters cover occurrence in water, solid samples and biota,
advanced chemical analytical methods, non-conventional degradation technolo-
gies, (eco)toxicity and environmental and human risk assessment. The first chapter
of the book is devoted to a general introduction to personal care products. It covers
the key aspects of the diverse group of substances included in this category of
chemicals (UV filters, preservatives, fragrances, etc.), which may be of especial
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interest for newcomers and first-year Ph.D. students. The information provided
includes physicochemical characterization, regulatory frameworks and health
effects on biota and humans. In the final chapter, we discuss the major scientific
achievements and future research trends. Knowledge gaps are identified too as
regards the environmental and human issues associated to the daily use of personal
care products.

We expect that Personal Care Products in the Aquatic Environment will become
a useful book. The book is multidisciplinary, so it will attract experts from various
fields of expertise like analytical and environmental chemistry, toxicology and
environmental engineering. Since the book also covers not only continental but
also marine waters, it should be of interest to the researchers working in marine
pollution and related activities like aquaculture.

Finally, we would like to express our gratitude to all the contributing authors of
this book for their willingness, effort and time devoted to the preparation of their
respective piece of research.

Barcelona, Spain M. Silvia Diaz-Cruz
March 2015 Damia Barcel6
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Introduction: Personal Care Products
in the Aquatic Environment

Daniel Molins-Delgado, M. Silvia Diaz-Cruz, and Damia Barcel6

Abstract This chapter presents an overview of the main aspects relating to the
occurrence and impact of ingredients in personal care products to the aquatic
environment: methodologies of analysis, prevalence data, elimination processes,
threats to the aquatic ecosystem, effects on biota and legislation with a special focus
in European regulation. Water is a valuable resource for the environment as well as
for human activities. Although it covers most of the Earth’s surface, the amount of
usable water is finite. Since ancient times until now, the use of water in human
activities has been rapidly increasing along with the increase of the population,
producing a continuous release of pollutants into the aquatic environment. Personal
care products are a widely used group of substances that have been raising concerns
during the last decades due to its continuous release into the environment and its
proven effects (mostly on in vitro and in vivo assays) as a threat to all kinds of living
organisms. Recent studies suggest that its continuous application on the skin or the
intake of contaminated food may cause some concerning hazardous effects in
human beings. In order to ensure the protection of this key ecosystem, a series of
worldwide initiatives have been taking place during the last two decades, impelling
monitoring programmes and governmental regulations worldwide. The common
grounds of the European Union establish a series of regulations, such as the Water
Framework Directive or the Regulation on Cosmetic Products, to protect both the
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environment and the consumer with revisable lists of regulated hazardous
compounds.

Keywords Aquatic environment, Environmental legislation, Health risk, Personal
care products, Pollution sources
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4MBC 4-methylbenzylidiene camphor
AHTN Tonalide

BP3 Benzophenone 3

BP4 Benzophenone 4

DEET N,N-diethyl-meta-toluamide

EHMC  Ethylhexyl methoxycinnamate
EMEA European medicine evaluation agency

EPA Environmental protection agency

HHCB Galaxolide

INCI International nomenclature of cosmetic ingredients
Kow Octanol-water partition coefficient

NP Nonylphenol

NPEs Nonylphenol ethoxylates
ocC Octocrylene

OTNE Ethanone

PCPs Personal care products
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pPVC Polyvinyl chloride

REACH Registration, evaluation, authorisation and restrictions of chemicals
UV234  2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol
UV326  2-tert-buthyl-6-(5-chloro-2H-benzotriazol-2-yl)-4-methylphenol
UvPp 2-(2H-benzotriazol-2-yl)-p-cresol

WFD Water framework directive

WWF World water forum

WWTPs Wastewater treatment plant

1 Introduction

The aquatic environment as a system and resource. The quality of air, soil and water
is of immediate concern because we interact with these natural resources in a daily
basis, either personal, agricultural or industrial uses. Water is essential to sustain
life, and it is a critical resource on which all social and economic activities, as well
as the ecosystem functions, depend. Through history, the relation between human
civilisation and water has been very tight: ancient Mesopotamia grew around the
Tigris and Euphrates basins, ancient Egypt depended on the Nile, the Romans built
an extensive network of aqueducts in order to supply enough water to their cities
and commerce has been heavily carried out through navigable rivers, channels and
seas. Mankind not only requires water for drinking purposes or for transportations
of goods but for recreational activities, production of energy, agricultural purposes
and to keep industrial activities going. Managing well this resource is critical and
requires appropriate governance arrangements in order to protect it and to ensure
the viability of both, the economic welfare of human activities and the sustainability
of all the water-supported ecosystems, as water is not a commercial good, but a
common heritage that we must protect, defend and acknowledge [1].

Water covers more than 70% of the Earth’s surface. In land masses it appears
under the form of rivers, streams, lakes and wetlands, while close to the continents,
it takes the form of a few hundred deep shallow seas, estuaries, lagoons and bays,
and the form of deep oceans when away from continental land masses. As life
depends on water to survive, water bodies and water availability constitute the
central factor of all habitats. If we are to consider the habitable places on Earth and
the whole volume of water, it comprises nearly 99% of the Earth’s habitat, being
most of the vast water columns of the marine environment unobserved and mostly
unknown to human beings.

There is now much concern about the extent of human actions, their capabilities
to accelerate a climate change and what could be their possible outcomes. As
climates on Earth are phenomena in constant change, only the magnitude of the
rate at which it changes varies with time. For instance, temperature is the easiest
and familiar magnitude to monitor. While land and air temperatures can vary
dramatically, sea surface temperature changes are more subtle due to the high
volume and high latent heat of water, conferring water bodies a great buffering
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effect. When global temperatures rise, the melting of ice from the poles and the
thermal expansion make the sea level to rise, producing other environmental
changes. For instance, alterations on oceanic water bodies can induce important
changes in climate; a weakening of the Gulf current could potentially change
climate conditions and rainfall patterns.

Human population is mostly densely concentrated around water sources, partic-
ularly around rivers, mouths of estuaries and sheltered bays, being the focus of
intensive human activities. Human activities are able to modify the aquatic envi-
ronment through removal of biomass and habitats and via the addition of contam-
inants. Freshwater resources and population densities are unevenly distributed
worldwide. As a result, demands already exceed supplies in regions with more
than 40% of the world’s population [2]. And 70% of the world’s freshwater is
currently used for irrigation, accounting for more than 95% of the developed water
supply [3]. Sewage, agriculture and industrial pollution disrupt heavily the aquatic
environment, and coming to understand the ecological responses of aquatic organ-
isms is required in order to protect such an important source for life.

2 Anthropogenic Contamination as the Main Threat
to the Aquatic Environment

The dawn of industrialisation and the quick growth of urbanisation brought a
change into the social paradigm, transforming a predominantly rural planet into
an urban one [4], bringing with it an increase on industrial and municipal waste in
both garbage and sewage waste [5]. With it, new chemical compounds have been
developed in order to improve our quality of life, increasing the productivity of
activities of farms, ranches and forestry [5—7]. The quality of the aquatic environ-
ment depends deeply on both natural processes and anthropogenic activities
[8]. Problems like eutrophication of the marine environment, anoxia of water
bodies, loss of biodiversity, bioabsorption of pollutants and bioaccumulation pro-
cesses in aquatic organisms have been reported worldwide [9, 10]. Also, the
extreme changes in the weather due to climate change processes could be able to
magnify them.

When talking about sources of contamination, we must define point source and
nonpoint source of pollution. Point-source contaminants originate from a discrete
source of contamination whose inputs into the aquatic environment can be defined
through measurements of chemical residues in water, sediment or biota and/or
because of a series of other factors like varying incidences of morbidity or mortality
[11]. Examples of point source are municipal sewage treatment plants, industrial
effluents, resource extractions and land disposal sites. Freshwater pollution has as a
main source municipal wastewaters [12]. A huge volume of wastewater has been
increasing along with urbanisation and economic development [13, 14] and those
wastewaters are expected to grow [3]. There is a constant generation of new
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contaminants with unknown short-, medium- or long-term effects in human health
and biota whose maximum permissible concentrations have yet to be established.
Their continual discharge into the environment, their persistence and presence,
even at low concentrations, are causing major concern [15]. An increment in
wastewater disposals increases the chance of pollutants reaching groundwater
reservoirs [16-18]. Due to scarcity of freshwater resources, most small-scale
farmers in urban and peripheral areas already depend on wastewaters to irrigate
their crops [19, 20].

Nonpoint-source pollution is another source of pollution. Abuses in the use of
chemical compounds together with the change in land use and management of the
activities carried out in those lands can alter hydrological cycles and can lead to
storm water urban and agricultural run-offs [21-27] and the degradation of the
receiving waters [28]. It must be kept in mind that the distinction between a point
and nonpoint source of contamination is difficult to establish. A discharge of metals
to surface waters from mining operations may represent a point source of contam-
ination, but the same metals could occur in the environment as a result of a natural
process [29].

Polar contaminants will generally remain dissolved in water and are highly
mobile in the environment. They have a little tendency to bioaccumulate in living
organisms if there is not a chronic exposure to them, and they are rarely found in
elevated concentrations in the environment. In areas where a polar compound
occurs, it may be a common component of the influent wastewater at wastewater
treatment plants (WWTPs). On the other hand, mid-polar and nonpolar compounds
tend to be more likely associated with suspended particles or to accumulate on the
sediment, which act as environmental repositories for organic compounds, and
biota. Organic pollutants will then establish equilibrium between the sediment,
the particulate, the biota and the water, and depending on the physical chemical
properties of the medium, some contaminants could be mobilised and demobilised,
determining the bioavailability of the pollutants [30]. Toxic contaminants may be
deactivated due to the action of microbial, chemical and photolytic degradation in
both water and sediment matrices, but these processes could also increase the
hazardous potential of some of them, increasing their bioavailability [29]. The
primary route for exposure to lipophilic compounds for biota and humans is through
the diet.

Summarising, these pollutants follow two major pathways from human activities
to the aquatic environment: a direct entry through recreational activities like direct
bath in natural waters and an indirect entry through industrial discharges, run-offs
and domestic uses. They may be released to the wastewaters and end up in a WWTP
where they are relatively removed. Part of these compounds will be retained in the
sludge whereas another fraction will be released into the natural waters through the
effluent wastewater stream. Some contaminants may be retained in the sediments,
whereas some others can be bioaccumulated in biota. Moreover, the sludge pro-
duced at the WWTPs may end in a landfill or be used for agricultural purposes,
potentially polluting underground water reservoirs.



6 D. Molins-Delgado et al.
2.1 Behaviour of Organic Contaminants in Aquatic Biota

Emerging contaminants, including personal care products (PCPs), are mainly new
substances that have been released into the environment during the last decades due
to changes in the socio-economic structure of society. These compounds can be a
potential risk to the aquatic environment due to the high quantities routinely
released and their generally low biodegradability. Their monitoring is seldom
included into the different environmental legislations around the world, and their
fate is mostly unknown to most of them [31]. On the other side, food webs are,
jointly with biogeochemical cycles, closely tied to metabolic processes involving
the creation and use of organic matter, being able to quantify the individual
anabolic and catabolic processes of each organism into the total of the whole
ecosystem and representing the total organic matter production of an aquatic
environment. Measurements on this subject contribute to widen the knowledge
about changes in the biosphere. Nevertheless, the wide spread of mankind on Earth
has produced a series of perturbations on aquatic ecosystems which consequences
are hard to foresee [32]. One of these perturbations is the continuous release of
pollutants into the aquatic environment. The presence of a xenobiotic compound in
the aquatic environment does not immediately imply a risk to the environment by
itself, as connections must be done before internal tissue concentrations of the
pollutant and the early adverse effects may occur [33]. Some substances released
from a source of contamination are not only hydrophilic but also lipophilic com-
pounds, and they are able to suffer of a metabolic breakdown and rapid elimination,
being those very difficult to study the fate or to determine the accumulation rate
[34, 35]. Additionally, temperature variation may alter degradation processes and
environmental partitioning of contaminants into different phases, increasing the
availability of pollutants [36]. The term bioaccumulation is defined in many
different ways. It is the total uptake of a substance from the environment, or the
accumulation over time, or the retention of the substance [34]. Their factors can be
calculated as the ratio of the studied compound in a biota sample compared with the
one in the environment it lives in [37]. In order to assess this process, an accurate
determination of the properties of the organic compounds is essential to predict and
understand their hydrophobicity and thus their bioaccumulation potential, although
there are some key problems to confront when calculating the octanol-water
partition coefficient (Kow), such as poor and scarce data [38]. Therefore,
bioaccumulation models are hard to craft, and they do not exist for all chemical
compounds [31]. An associated process to bioaccumulation is biomagnification.
Biomagnification is the process in which a substance present in the environment is
transferred to the food web, from organism to organism, being the concentration of
that substance in an organism is higher to that in their food source. Longevity and
size of the organism are factors that could contribute to higher levels of chemicals
in higher trophic levels [39]. This phenomenon has already been described in some
hydrophobic and recalcitrant chemicals in fish [40, 41].
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Since the early 1960s of the last century, mankind has been aware of the
potential adverse effects that chemicals can generate for aquatic and terrestrial
ecosystems [33]. When an effect finally becomes clear, the damage produced to the
ecosystem may be beyond the point where remedial actions may not be enough to
reverse the situation. There is a sequential order of responses triggered by a
pollutant stress within a biological system; changes start from a molecular level,
to a subcellular level, to higher orders such as tissues and organs, affecting the
whole organism itself at last. This may produce changes in the population and the
communities of organisms that may lead to a wide ecosystem disturbance, as some
pollutants have been reported to affect the behaviour of organisms [42]. These
scenarios have triggered the research for early warning signals reflecting the
biological response towards aquatic pollutants. Biomarkers are any measurable
piece of evidence that reflects the interaction between an ecosystem and a potential
hazard, which may be chemical, physical or biological, which can be related to the
toxic effects of environmental pollutants [43]. A bioindicator is the extracted
information related from the interaction of an organism with its environment. A
change of behaviour of an organism or even its absence in an ecosystem works as an
indicator of quality of the environment the organism that acts as bioindicator lives
in [33]. In order to assess these changes in an ecosystem, a widespread organism
must be selected as control. Fishes can be found everywhere in the aquatic envi-
ronment and play a major role in it as carriers of energy from low trophic levels to
higher ones [44]. Because of that, fishes are considered the most feasible organisms
for water pollution monitoring. Larger and long-living organisms tend to show
higher pollutant concentrations in tissue than smaller or short-living species;
nevertheless, the estimation of both processes, bioaccumulation and biomagni-
fication, is really difficult as several parameters intervene, such as the compounds
lipophilicity, its degradation or transformation kinetics and the large variability of a
food web, which make difficult the prediction through mathematical models [45].

3 Main Ingredients in Personal Care Products

PCPs is a generic term that describes a group of organic chemicals included in
different products widely used in daily human life (such as toothpaste, shampoo,
cosmetics and even in food), being used in considerable quantities. After use, they
may be absorbed by the body and excreted or washed after its application
[46]. PCPs and their metabolites end up in WWTPs [47, 48]. There, they are
partially eliminated and either retained in the sludge or released to the aquatic
environment in the effluents [49]. In the last 20 years, the concern about the
potential hazardous risk associated to them and their by-products, which can be
more persistent and toxic [50], has been on the rise. According to their purpose,
ingredients in PCPs can be ordered in the following main categories: UF filters
(sunscreens), biocides (antimicrobials), preservatives, fragrances, insect repellents,
siloxanes and detergents. The International Nomenclature of Cosmetic Ingredients
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(INCI) is the official dictionary for cosmetic ingredients adopted by many countries
in the world since it was first established in the 1970s by the PCPs Council in the
USA. Many countries require manufacturers of PCPs to use the INCI nomenclature
and to submit all new ingredients for registration in the INCI.

In the following, the origin, use and fate of different hazardous compounds
involved in the PCPs formulation are described. Many of the considered com-
pounds have been used for decades worldwide, and there is not, in many cases,
reliable data about their production rates. Emission inventories are mostly collected
for scientific and administrative purposes, with great differences in their spatial and
temporal coverage. Scientific studies often require data on other features, and many
efforts have been undertaken to estimate source emission levels, environmental
occurrence and fate [S1-54]. Table 1 lists some of the most widely used PCPs, their
INCI name, function and maximum allowed levels for cosmetic use in the European
Union (EU). We have attempted to use both official and scientific sources when
existing, but it has to be kept in mind that these figures are only a rough estimation.

3.1 Biocide Compounds

Antiseptic and disinfectant compounds are extensively used in many activities such
as health care and hospitals for a variety of topical or hard-surface applications. A
wide variety of chemicals with biocide properties are found in all kind of products,
many of them known for hundreds of years, such as alcohols, iodine and chlorine,
demonstrating a wide range of antimicrobial activity. However, the current knowl-
edge about the processes that provide these active chemicals is really scarce. The
exposure through diverse goods to these widespread chemical compounds has
raised some speculation on the development of microbial resistance and on the
possibility of these compounds of being able to induce antibiotic resistance. In this
category, benzotriazole, triclosan and triclocarban are the most commonly used
compounds.

3.1.1 Benzotriazole

Benzotriazole (1-H-benzotriazole) is a very versatile compound widely used by
their anticorrosive, antifreeze, coolant, vapour phase inhibitor, photographic devel-
oper, drug precursor and biocide properties [55-57]. Its extensive use raises con-
cerns about its presence in the environment. Benzotriazole is a very polar substance,
and conventional wastewater treatment technologies are not efficient for its removal
[58]. As a consequence, these compounds if not efficiently eliminated reach the
aquatic environment and ultimately may reach the drinking water supply [59].
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3.1.2 Triclosan and Triclocarban

Triclosan and triclocarban are antimicrobial agents found in a wide range of
products, from soaps, deodorants, toothpastes and cosmetics to fabrics and plastics.
They were originally developed to serve as a surgical scrub for medical profes-
sionals, but their use has been extended to a broad range of applications in
consumer products in order to end all kinds of bacterial and fungal activity.
Triclosan is more widely used globally in a broad range of application in consumer
goods (0.3-1% of the total), whereas triclocarban is a high production volume
chemical in the USA with a production of 250-500 t per year [60]. During common
wastewater treatment, despite triclosan being found in effluent wastewaters [61],
the removal rates for triclosan and triclocarban from the aqueous phase are rela-
tively high due to their hydrophobic properties [62, 63] showing a small tendency to
accumulate in sludge and sediments, where they can persist [64, 65].

3.2 Preservatives

Synthetic preservatives are a wide family of compounds used to prevent bacterial
and fungal growth and oxidation and also inhibit natural ripening of fruits and
vegetables. Some authors also include bactericide agents in this group. They are
widely used in many goods (e.g. pharmaceuticals, soaps, gels, creams, food, etc.).
The most commonly used are parabens which are a family of compounds derived
from the parahydroxybenzoic acid. They are odourless and colourless and do not
cause discoloration or hardening. Their effectiveness as being antibacterial and
fungicidal jointly with its low production cost, their supposedly low toxicity and the
lack of a suitable alternative make them really ubiquitous. To date, only a handful
of studies have looked for paraben concentrations in WWTPs and surface water,
finding generally lower concentrations in effluent water [66—68]. They have been
also found in sediments, in sewage sludge [69] and in biota [70]. Amid their
extensive use worldwide, there is growing evidence stating that they might be
endocrine disruptors [71].

3.3 Fragrances

Fragrances are a group of compounds whose function is to offer a pleasant scent to
any manufactured good, having a wide use especially in PCPs. Fragrances have
been used since antiquity to improve attractiveness of people and items and
consisted in mostly floral and animal extracts. Around 1950, synthetic fragrances
became cheaper and their use increased considerably. These compounds are present
in surface water and groundwater located near wastewater discharge areas, with
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larger concentrations near effluent discharge points [72]. As fragrances are lipo-
philic, they have the tendency to get absorbed in sludge, sediments and biota
[73]. On the other side, as humans are in close skin contact with perfumed products,
their exposure is high.

3.3.1 Nitromusks

Nitromusks are a group of synthetic fragrances which rely heavily in the symmetry
of the nitro groups in order to perform a wide range of scents. It has been reported
that these compounds can be transformed into aniline transformation products both
through wastewater treatments of biologic metabolism [74]. These transformation
products, which could be more problematic than the actual compounds itself, are
the main reason why nitromusks have been withdrawn from the European market;
thus concentrations have been dropping significantly in the last years
[50]. Nitromusks are water soluble, but they also have high octanol-water partition
coefficients [72], having a great potential for bioaccumulation in aquatic biota
[54, 74].

3.3.2 Polycyclic Musks

Developed as an alternative to nitromusks, several polycyclic musks have been
introduced onto the market. However, HHCB and AHTN are the most used. HHCB
and AHTN, the two most used, have been detected in surface water and sediments
[75] and wastewater [61, 76]. Also, HHCB has shown to be highly sorptive to
sludge [77]. Due to their high lipophilicity, polycyclic musks tend to
bioaccumulate, affecting biota, especially at low trophic levels [73].

3.3.3 Macrocyclic Musks

Although not commonly used due to their synthesis process cost, macrocyclic
musks are getting more and more available along with the advances in their
synthesis methods over the last few years [78]. Compared to the polycyclic
musks, their scent is more intense; thus less mass is needed to gain the same
performance as the polycyclic ones and more easily degradable in the environment
[50]. Although they have been detected in wastewaters [79] and sludge [78], the
lack of available analytical methods to analyse them in other environmental matri-
ces makes it really difficult to understand their fate in the environment.
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3.4 Surfactants

Surfactants are a key group of chemicals in a large number of applications such as
in the manufacture of detergents, the formulation of herbicides, in textile industry
and as stabilising agent for fragrances in cosmetics. With a high production value
estimated over 18 million tons [80], their wide use generates the disposal of large
amounts of these compounds in WWTPs or improperly directly into the aquatic
environment without any kind of treatment. Their amphoteric character allows
them to be accumulated in sediments, sludge and biota, generating concern about
the potential related hazard to the environment [81].

3.4.1 Phthalates

Phthalates are present in many consumer products because of their property as
flexibiliser of rigid polymers such as PVC. They are used in the production of a
wide range of products such as food wrappings, medical devices, children’s toys,
wood finishers, paints and plastic products. Besides that, in cosmetic products,
phthalate esters are used as solvents or fragrances [82], suspension agents,
antifoaming agents, skin emollients, plasticisers in nail polishes and fingernail
elongators [83]. In 2002, a study found that 52 out of the 72 cosmetic products
investigated contained phthalates at concentrations ranging from 50 pg/g to nearly
3% of the product. Of the 52 cosmetics, none had the phthalates listed in their
product label [84]. Due to their extensive use and the wide range of applications,
phthalates are distributed along the aquatic environmental compartments being
reported in water [85], wastewater and sludge [86] and less commonly in
sediment [87].

3.4.2 Nonylphenol and Nonylphenol Ethoxylates

Nonylphenol (NP) and nonylphenol ethoxylates (NPEs) are the most widely used
compounds of the alkylphenol and alkylphenol ethoxylate family of nonionic
surfactants. NP is primarily used as an intermediate in the manufacture of NPEs,
whereas NPEs are surfactants that have been commercialised for over 50 years. The
wide range of products that can contain NPEs include fabrics, paper processing,
paints, resins and protective coatings. It is also widely used in loads of domestic
uses as a component in cleaning products, degreasers, detergents and cosmetics.
Despite being restricted in the EU as a hazard to human and environmental safety,
its regulated use it is still allowed in countries worldwide. Nonylphenol and its
ethoxylates have been detected on surface water [66], sediment [88], wastewater
[89] and sludge [90].
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3.5 Insect Repellents

Insect repellents are substances that discourage insects from approaching to an
applied surface [91]. As some insects act as vector for some diseases, using insect
repellents is critical when other forms of protection are not available. They are
widely used in tropical regions, being able to heavily influence the infection rates of
some pathogens [92]. There is little information about their long-term effects in the
aquatic environment; however, they have been detected worldwide in wastewaters,
groundwater, surface and drinking water [91, 93-95]. DEET (V,N-diethyl-meta-
toluamide) is a commonly used broad-range spectrum insect repellent [94]. It was
first formulated in 1946 and was registered for commercial use in 1957 [92]. It is
estimated that only in the USA one third of the population has used DEET
[96]. Although the actual repellent mechanism involved is not well understood,
DEET shows a high repellent potential against mites, tsetse flies, Aedes vigilax and
mosquitoes [97], being used in all kinds of insect repellent formulations worldwide.
Residues of DEET have been detected in effluent wastewater [61, 98] and surface
water [61, 91, 93, 99], being quite persistent in the aquatic environment [94].

3.6 UV Filters (Sunscreens)

UV filters, also known as sunscreen agents, have become very popular chemicals
since they were shown to have a protective role against photoaging, photocarci-
nogenesis and photo immunosuppression promoted by UV sun radiation
[100-102]. These compounds are not only extensively used in PCPs but also
commonly used in a wide variety of industrial goods as textiles, paints or plastics
to prevent photodegradation of polymers and pigments [103]. However, recent
concern has risen due to their potential for endocrine disruption and development
of toxicity [104—107]. UV filters enter the aquatic environment directly as a result
of recreational activities when they are washed off from the skin or indirectly
through wastewater resulting from the use of PCPs, washing clothes and industrial
discharges. Residues of more polar organic UV filters have been found in all kinds
of water matrices [108] including tap water [109]. Due to the high lipophilicity and
poor biodegradability of many UV filters, they end up in sewage sludge during
wastewater treatment [110] and accumulate in sediments [111, 112] and biota
[113, 114].

3.7 Siloxanes

Siloxanes are a relatively new group of PCPs, consisting of a polymeric organic
silicone that comprises a backbone of alternating silicon-oxygen units with an
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organic chain attached to every silicon atom, conferring them a low surface tension,
physiologic inertness, high thermal stability and a smooth texture [115]. Siloxanes
are used in a broad range of consumer products (antiperspirants, skin-care creams,
hair conditioners and colour cosmetics), as well as in industrial ones, such as
automotive polishes, fuel additives and antifoaming agents. They are considered
high production volume chemicals, having annual productions for some of them of
45-227 thousand tons worldwide; however, recent reports raise concern about the
potential toxic effects of cyclic siloxanes [116]. Siloxanes are likely to be
discharged into sewage systems through the use of “rinse-off” products and par-
tially adsorbed onto sludge in WWTPs due to their high Kow and released to the
aquatic environment through wastewater discharges [117-119], having also been
found in sewage sludge [115, 119] and sediment [119, 120]. The siloxane family
includes octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5),
dodecamethylcyclohexasiloxane (D6) and tetradecamethylcycloheptasiloxane
(D7) [118].

4 Health Effects of PCPs on Biota and Humans

The general lipophilic nature of organic chemicals makes them to tend to accumu-
late in sediment, suspended particulate and in the adipose tissue of living organ-
isms. Consumption of contaminated fish represents one of the pathways through
which pollutants can reach the human body [121]. Even though they are commonly
present at low concentration levels, the concern about the adverse effects of a
chronic exposure to them is rising. The main concern relies on the capability of
these contaminants to act as endocrine disruptors being able to interfere with the
reproductive system and the normal development of living organisms. This topic
will be deeply discussed in the next section.

There is limited data available about chronic and sub-chronic effects of PCPs in
biota. For instance, UV filters such as benzophenone 3 (BP3), benzophenone
4 (BP4) and ethylhexyl methoxycinnamate (EHMC) are able to alter the transcrip-
tion profile in fish, being able to alter genes related with the production of sexual
hormones, whereas octocrylene (OC) may interfere with haematopoiesis, blood
flow, blood vessel formation and organ development in adult and embryo zebrafish
[122-125]. Studying the dietary impact of triclocarban in rats, for instance, con-
centrations higher than 25 mg/kg body weight per day had some effect on anaemia
and body, liver and spleen weights in rats fed for 2 years [126]. Butyl and propyl
paraben were able to influence the sperm quality of juvenile rats [127]. Spongiform
myelinopathy has been reported in the brainstem of rats exposed to near-lethal
doses of DEET [128].

Data about possible risks to human health on PCPs exposure is even scarce.
Nevertheless, humans have a continuous and close contact to PCPs, and the effects
of such an exposure are mostly difficult to predict. PCPs have been reported to be
present in diverse human samples. For instance, fragrances have been reported to be
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at ng/g lipids in human breast milk [129, 130] and human adipose tissue [73];
triclosan has been reported at the ng/mL level in urine [131, 132] and at ng/g lipids
in adipose, liver and brain tissue [133]; parabens have been found at the same
concentrations in urine [131], breast tissue [134] and human milk [129]. Similarly,
UV filters have been determined in urine [131], human milk [129] and semen [135].
Triclosan is degraded to dioxins and is toxic to aquatic bacteria at levels found in
the environment [136]. There is also a general concern about the capabilities of
triclosan regarding the generation of antibiotic resistance. It is suggested that
triclosan and other antimicrobial compounds could cause bacterial resistance
against antibiotics [137] and may be related to allergic sensitisation in children
[138]. Triclocarban may be able to induce the production of methemoglobin
(an Fe™-based protein complex, similar to haemoglobin but unable to carry oxy-
gen) through the transformation by heat into a primary amine in the bloodstream
[139]. Exposure to fragrances has been associated with a wide range of health
effects, such as allergic contact dermatitis, asthma, headaches and mucosal symp-
toms [140, 141]. Although humans metabolise phthalates, easily excreting them in
2448 h through urine [142], the continuous exposure to it seems to be able to
interact with a nuclear receptor (peroxisome proliferator-activated receptors) that
has an important role in adipogenesis and lipid storage, disrupting homeostasis and
increasing the risk for obesity and, thus, increasing diabetes risk [143] as well as
immune and asthma responses [144]. Extensive topical application of DEET has
resulted in poisonings (with symptoms like tremor, restlessness, slurred speech,
seizures, impaired cognitive functions and coma) including deaths and being linked
to possible neurotoxic effects [145]. Phthalates have been linked to asthma and
allergies and behaviour changes [146, 147]. In addition, some compounds generate
a significant concern due to their carcinogenic potential. One study has tried to
correlate low levels of parabens with breast cancer tissue [134], and phthalates have
been related to hepatic and pancreatic cancer in mice and rats [148], and a survey in
Mexico reported a positive correlation between phthalate concentrations in urine
and the risk of developing breast cancer [149]. It seems clear that there is growing
concerns about the potential carcinogenicity of such widely used compounds.

4.1 PCPs as Endocrine Disruptors

There is not a general consensus about the correlation between human diseases and
exposure to organic contaminants, especially for new emerging contaminants at
low levels of concentration. Insufficient field studies, lack of data concerning
occurrence in human samples, ecological background and dose relationship and
contradictory results are listed as the main reasons about the lack of data on this
specific issue. Frequently, the main effects associated with emerging contaminants
and their transformation products is their potential to be able to act as endocrine-
like molecules and to interfere in the normal functions of the endocrine system, that
is, to be endocrine disruptors. The most common endocrine disrupting chemicals
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reported to be found in the aquatic environment as well as in wastewaters and
sludge include pesticides, steroids, surfactants and plasticisers [150, 151].

There is scarce data on the potential effects of biocides. Exposure to
benzotriazole may occur through ingestion or dermal contact. This compound has
been found to be able to interfere with the endocrine system through the expression
and inhibition of some genes in fish [152]. Concerns about the possible effects of
triclosan started due to the fact that triclosan has a similar structure to that of
polychlorinated biphenyls and polybrominated diphenyl ethers, and thus, it could
have a similar endocrine effect [153]. Although there are no extensive studies about
the effects of triclosan in humans, it has been reported to have endocrine effects in
rodents and in bullfrogs [153, 154]. It is involved in changes in fish length and sex
ratios and decreased sperm count in some species of fish [155]. There is no
information about the potential estrogenic effects of other related compounds
such as triclocarban and methyl triclosan [54].

Moreover, fragrances show estrogenic effects [156, 157]. The nitromusk fra-
grances musk ketone and musk xylene possess estrogenic activity in vitro
[156]. The same study reports that of the two polycyclic musks AHTN and HHCB;
the first was shown to be estrogenically active [158], being a partial agonist of the
oestrogen receptor and having threefolds more affinity to the oestrogen receptor than
musk xylene; however, its activity compared with that of the 17f-estradiol is rather
weak. The macrocyclic musks were found to be inactive [156].

Parabens are a group of PCPs that generate high concern about their potential
endocrine effects due to their ubiquity in all kind of goods as well as in the
environment. Therefore, the exposure to parabens occurs via ingestion, inhalation
and mostly via direct skin contact. A great number of studies have reported
agonistic androgen activity in both in vitro [134, 159-161] and in vivo [157,
162]. Thus, estrogenic activity seems to increase with the increase of the linear
alkyl branch from methyl paraben to 2-etylhexyl paraben [163]. In addition, the
most common transformation product of parabens, the p-hydroxybenzoic acid, also
possesses estrogenic activity in both in vitro and in vivo assays [162, 164].

Exposure to phthalates can be produced through ingestion, dermal absorption
and inhalation [144]. Among the estrogenically active compounds, phthalates are
the only group of chemicals in PCPs with clear supporting evidence of endocrine
effects in humans. Hormonal activity due to phthalates has been associated with
some adverse reproductive system malfunctions, such as reduction on semen
quality or alterations in the normal development of male genitals [142, 147, 165,
166].

Sunscreens enter the body mainly through skin penetration after dermal appli-
cation. There are a few studies in both in vitro and in vivo, in which UV filters have
been found to interfere in the normal reproductive process and the further devel-
opment in fish and rodents [104, 105, 157, 167]. At least nine UV filters of the
regulated compounds in the European cosmetic legislation have been found to
possess estrogenic activity. 4MBC, for instance, can induce effects similar to
those of the 17p-estradiol in mammal and amphibian cells, as well as EHMC, OC
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and BP3 and their related compounds. Other sunscreens such as UVP, UV234 and
UV326 have also been reported to display hormonal activity in vitro [106, 107].

As the group before, siloxanes enter the human body through dermal contact.
Studies in the literature reported that the siloxane D4 has intrinsic weak estrogenic
potential in both in vitro and in eutrophic in vivo models being able to interfere with
the female reproductive system [168—170]. EPA received a study by Dow Corning
Corporation about chronic and carcinogenic effects in rats reporting that siloxane
D5 may increase uterine cancer probability [171].

5 Legislative Framework and Water Awareness Initiatives

Toxic cationic metals and hazardous organic compounds have been reported in
natural waters worldwide. Due to this, increasing concern over the release of
hazardous chemicals into the aquatic environment demands additional water qual-
ity standards. Nevertheless, legislation frameworks are constantly put up to date in
order to assess the potential environmental and health risks of emerging contami-
nants. In this section we discuss some of the available legislative frameworks
concerning the aquatic environment and water quality standards, with special
focus on the European framework, as well as the diverse water awareness initiatives
taken during the last decades.

5.1 European Framework

European water legislation dates to the second half of the 1970s, when the first laws
concerning standards and targets for discharges of dangerous substances in drink-
ing, fishing, and bathing waters and groundwater were developed in order to protect
human health and the environment. A report done in 1988 reviewed and identified
some gaps that could represent a potential risk to the environment, leading to
further measures obliging Member States to control urban sewage (Urban Waste-
water Treatment Directive, 1991 [172]), nitrogen fertilisers (Nitrates Directive,
1991 [173]) and pollution derived from industrial activities (Directive for Inte-
grated Pollution and Prevention Control, 1996 [174]) and to set a quality standard
for drinking water (Drinking Water Directive, 1998 [175]). Nonetheless it became
clear that the EU needed a more specific approach about water policies. The
commission started a huge and complex process of consults, gathering information
and opinions from all levels of society, like the Member States, the European
Parliament and local and regional authorities, industry, experts in the matter and
non-governmental organisations. The Water Framework Directive 2000/60/EC
(WFD) [176] is the main integrated policy in the EU to ensure and promote a
sustainable use of water. The key strategy is to ensure long-term protection of
water sources by progressively decreasing the amount of contaminants released to
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the aquatic environment. The amended Decision 2455 of the WFD states water
quality standards are based on a list of priority pollutants, a list which was started
with a selection of candidate compounds based on previous official lists and
monitoring programmes obtained from the Member States. So far, this list includes
33 priority compounds and 9 hazardous substances which have been subject to the
emission control and included into the monitoring programmes. In addition, due to
their potential associated risks, other compounds have been included into the
review process for identification as priority or hazardous substances. This review
process consists mostly in environmental risk assessment studies carried out by the
European Research Area framework applied for new chemicals according to the
Directive 67/548/EEC [177] and the guidelines of the European Medicine Evalu-
ation Agency (EMEA), being both initiatives the basic pieces to assess the possible
adverse effects of pharmaceuticals and PCPs.

The Registration, Evaluation, Authorisation and Restriction of Chemicals
(REACH) regulation [178] is playing an important role globally with its intention
to reform the policy for the EU policy of chemicals, setting a wide framework for
regulating, allowing or restricting the use of chemicals in order to minimise the
environmental impacts caused during their life cycle. The prioritisation of sub-
stances is based on the high production rates and on the possible hazards associated.
REACH replaces other laws with the aim of achieving a sustainable development
policy, in terms of economic growth and society and environmental protection.
REACH also is intended to produce significant advances in the data availability and
consistency for the risk assessment of the chemicals used in Europe.

Additionally, in order to ensure that PCPs are not a risk for human health, the EU
adopted the regulation 1223/2009/EC [179] on cosmetic products in July 2013. This
regulation aims to reduce the administrative burden and the ambiguities relating to
cosmetic products as well as to strengthen some aspects of the regulatory frame-
work for cosmetics. It also aims to ensure a high level of protection of human
health. In addition, it establishes that a cosmetic product has to be traceable through
all the manufacturing processes and claims for consumer protection. The Annex II
of the regulation describes which compounds (more than 1,300) are prohibited in
cosmetic products, whereas Annex III describes, from a list of 256 compounds,
which ones must not be present in the final product or have restricted use,
establishing a maximum concentration allowed (Table 1). This regulation has
been continuously amended in order to update Annexes II and III as more infor-
mation regarding PCPs’ potential risks are known.

5.2 Other Frameworks

The main policy in the USA about water environment protection is the Clean Water
Act of 1972 [180]. This law requires the US states to establish water quality
standards for each specific use (such as bathing, fishing and industrial and munic-
ipal use) and to establish monitoring programmes to ensure the quality of water is
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kept. Its initial focus was to mitigate and monitor point sources of pollution,
originally with the objective of “zero discharge” of pollutants, an objective that
was scaled down due to its unattainable and unrealistic objectives in a posterior
amendment. During the 1990s, due to a series of lawsuits against the EPA, the focus
of the law was forced to include nonpoint sources of pollution, introducing the total
maximum daily load programme. This programme enters in action when water does
not achieve proper quality standards and establishes the quantity of pollutants
allowed in a water body based on the relationship between pollutant sources and
quality standards, as well as limits for individual discharges. In addition, the Safe
Drinking Water Act sets specific limits to the total amount of pollutants allowed in
drinking waters as well as to establish monitoring programmes to ensure the overall
quality of water to prevent potential risks for human health [181]. In total, the
cumulative concentration of 123 compounds is settled as the basic criteria for water
quality standards. For human use, PCPs are regulated under the Federal Food, Drug
and Cosmetics Act and Title 21 of the Code of Federal Regulations (21 CFR).
These regulations cover uses, labelling, public information and general warning
statements and prohibitions [182].

In Asia, the Basic Environment law by the Japanese Ministry of Environment,
jointly with the Water Pollution law, is the main framework to protect the aquatic
environment. The Basic Environment law establishes two kinds of standards for
protecting human health and the environment, establishing maximum levels of
contamination for some common pollutants. Twenty-six substances relating to
human health and 27 more are continuously reviewed due to their potential
concerning risks. In addition, the Water Pollution Law establishes the legal frame-
work to prevent pollution in natural waters due to human activities. Also, sub-
stances used in PCPs are regulated under the Pharmaceutical Affairs law and its
successive amendments, regulated by the Ministry of Health, Labour and Welfare
[183]. The South Korean government has settled its water quality standards through
the Environmental Pollution Prevention Act of 1971, the Environmental Pollution
Law of 1977 and the Water Quality Conservation law of 1990. These laws con-
template 17 substances that may pose risks for both human health and the environ-
ment [184]. For human use, allowed and prohibited PCPs are regulated under the
Korean Cosmetic Products Act [185]. In China, water quality, pollutant discharges,
monitoring and environmental studies are derived from the National Water Quality
Standard (GB383-2006), based on quality standards of countries all over the world
and without any specific protection objectives. Under this law, water quality is
classified into five grades depending on the usage given to natural waters, but due to
environmental pollution problems in wide areas of the country, the Sino-
Environmental Protection Agency jointly with the Ministry of Science and Tech-
nology has started a series of projects to assess the environmental impact of
pollution in China and to set a series of standards to ensure human health and
environmental sustainability [186]. The Chinese Government’s regulations for the
Cosmetic Hygiene Supervision of 1990 and the Cosmetic Hygiene Standards of
2007 establish the list of allowed and prohibited PCPs, as well as their labelling and
packaging [187].
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5.3 Water Awareness Initiatives

The United Nations (UN) System organised during the 1970s a series of global
conferences that aimed to discuss critical global issues at high decision-making
level. These conferences were about the environment (Stockholm, 1972), popula-
tion (Bucharest, 1974), food (Rome, 1974), women (Mexico City, 1975), human
settlements (Vancouver, 1976), water (Mar del Plata, 1977), desertification (Nai-
robi, 1977) and new and renewable sources of energy (Nairobi, 1979). Since then,
the only UN initiative referring to water has been the Mar del Plata conference. The
objective of the Mar del Plata conference was to promote national and international
levels of preparedness concerning water quality and responsible management in
order to meet the socio-economic needs of the ever-expanding population and to
avoid a global water crisis at the end of the twentieth century. The conference
approved a plan consisting of two parts, the first one being a compendium of
recommendations to ensure a minimum quality and sustainable management such
as assessment, use and efficiency, environment, health and pollution control;
policy, planning and management; natural hazards; public information, education,
training and research; and regional and international cooperation; and the second
one, 12 resolutions about a wide range of specific areas. The conference was
considered a milestone in water development and had a non-questionable impact
in diverse areas such as the generation of new knowledge and information, the
settlement of regional analysis and monitoring programmes, and it was the starter
for most water policies involving the management and conservation of the aquatic
environment. The conferences of Rio de Janeiro and Dublin, both in 1992, treated to
assess and debate the general world water situation and to revive the spirit and
success of the Mar del Plata conference, but the general outcome of these two
conferences resulted in not being as extensive as it was pretended [188]. In 1996,
the World Water Council was established. It was created to increase the awareness
on water problems and to promote initiatives to protect water and the environment.
Their most notable initiative was the establishment of the so-called World Water
Forums (WWF), a triennial non-governmental conference following the spirit of the
Mar del Plata conference. The first WWF (Marrakesh, 1997) laid the basis for the
development of a long-term “Vision for Water, Life and the Environment in the
Twenty-First Century”. In the year 2000, the report “A Water Secure World: Vision
for Water, Life and Environment” done by the Water Commission on Water for the
twenty-first century (established in partnership with the UN and the World Water
Council) was the next institutional initiative carried out. This report reviewed the
results of all previous consults, evaluating approaches in water management,
participatory institutional mechanisms, price of water, innovation and the sugges-
tion of creating new transparent regulatory frameworks for private uses of water,
and was heavily discussed in the second WWF of Hague (2000). The second WWF
focused on dealing with the state and ownership of water resources, their develop-
ment, management, their financial impact and the environment. The third WWF
(Japan, 2003) was focused in the debate of the goals at the Millennium Summit of
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the UN, the International Freshwater Conference and the World Summit on Sus-
tainable Development. The fourth WWF (Mexico City, 2006) gave a step onwards
establishing the Water Integrity Network, a network that enlightens corruption
around illicit water management. The fifth WWF (Istanbul, 2009) was the first
one that had a Heads of State meeting. The forum produced a series of recommen-
dations in order to adapt water infrastructures to emerging challenges such as
pollution, to ensure a good water quality and to protect the aquatic environment.
The last WWF to date was settled in Marseille (2012) and had its major focus on
promoting solutions and triggering or strengthening commitments [189].

These initiatives have served as reminders of the problems relating to
mismanagement of water and the aquatic environment and have served to launch
all kinds of posterior initiatives in order to achieve a better understanding and
control of such an important resource as water is. The diverse political initiatives, as
well as the creation of governmental and intergovernmental over-watch organisa-
tions (e.g. EU Water Initiative and Water Environment Partnership in Asia) and
private think tanks such as the World Water Council and the Global Water
Partnership, are direct outcomes from these assessing processes. Despite the initia-
tives taken and as the growing concerns over new pollutants arise, the general
concerns are focused on the presence of extensively studied pollutants. As the bulk
of information regarding the potential harmful effects of emerging contaminants, as
the PCPs, increases, it would be expected that new initiatives take place to include
them between the already ongoing monitoring programmes to improve the quality
of the aquatic environment worldwide.

6 Concluding Remarks

As world population increases, new technologies are needed to ensure a clean and
healthy environment for living beings. The chemical industry worldwide creates
tons of new and potentially hazardous chemical compounds every year in addition
to those already existing, designed for specific purposes and often without a
biological analogue. Nevertheless, the structure of some of the new synthetic
compounds has some degree of resemblance to biologically produced molecules
such as hormones. Water is a key resource for both the natural world and the socio-
economical human activity. As the general concern about the quality state of water
and to ensure the continuity and a good level of health of the aquatic environment, a
series of initiatives and policies are being taken action during the last decades. PCPs
are a wide group of chemicals with an extensive use in an even wider range of
applications. Generally poorly removed during wastewater treatment processes,
they tend to reach the aquatic environment. Data reported so far presented their
ubiquity in the different environmental compartments, with mainly unknown effect
in the living organisms. Further studies have to be conducted to assess the actual
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magnitude of their presence and their potential risks to wildlife and human health.
Besides that, improved and new wastewater treatment technologies have to be
developed in order to ensure an efficient removal of these groups of emerging
pollutants to avoid the persistence of such chemicals in the aquatic environment.
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Occurrence of Personal Care Products in
the Aquatic Environment: Case Studies



Occurrence of PCPs in Natural Waters from
Europe

Shivani Tanwar, Marina Di Carro, Carmela Ianni, and Emanuele Magi

Abstract In the framework of the study of emerging pollutants in the aquatic
environment, personal care products (PCPs) play a relevant role as they are used in
everyday life. They are continuously introduced into the natural water compart-
ment, mainly through treated and untreated sewage but also via different pathways.
This chapter describes the “state of the art” of the distribution and impact of PCPs
on European natural waters (rivers, lakes, groundwater, drinking water, etc.). An
extensive review of the recent literature has been carried out, gathering together the
most relevant studies and presenting the results in five sections: fragrances, UV
filters, detergents, preservatives, and repellents. In each section, data on the main
molecules employed in PCP formulations are reported and compared. The physi-
cochemical properties of many PCP compounds are summarized in the respective
tables along with an additional table listing the measured concentrations of all PCPs
detected in waters all over Europe.

Keywords Environmental analysis, European water monitoring, Natural water,
Personal care products
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1 Introduction

Environmental monitoring in water pollution control has been traditionally focused
on conventional priority pollutants, especially on those considered as persistent,
toxic, or bioaccumulative. In the past decade, there has been a growing interest in
the occurrence of emerging pollutants in the terrestrial and aquatic environment and
their environmental fate and potential toxicity. For this reason, the focus of research
has been partly shifted to the analysis of these compounds that are now widely used
in everyday urban activities. Many of these are not new chemicals, since they have
been present in wastewaters for decades, but are only now being recognized as
potentially significant water pollutants, even if largely unregulated. Their occur-
rence in the receiving waters is mainly due to the incomplete removal in sewage
treatment plants, which are designed principally to control suspended solids emis-
sions and oxygen demand of the final effluent [1-3].

Among these compounds, personal care products (PCPs) are a group of
chemicals used in daily products such as hair and skin products, soaps, lotions,
toothpaste, and perfumes. PCPs comprise fragrances, preservatives, detergents,
sunscreens, and household chemicals used to improve the quality of daily life.
While pharmaceuticals are intended for internal use, PCPs are for external use; thus,
they are not subjected to metabolic alterations: the regular usage of large quantities
led them to enter unchanged into the environment [4] mainly through the discharge
of untreated and treated sewage and also bathing or swimming. Their presence is
hence ubiquitous, and a regular monitoring of the environment is highly desirable.

The Global Beauty Market (GBM) is usually divided into five main business
sectors: skin care, hair care, color (makeup), fragrances, and toiletries. The
European market is the largest in the world for perfumery and cosmetics. Among
them, Germany is the hub of the cosmetic market, followed by France, the UK,
Italy, and Spain. These five countries are leaders in the number of new products
launched, volume of production, exports, and imports [5]. The annual production of
PCPs exceeded 550,000 metric tons for Germany alone in the early 1990s [2]. In the
period 1998-2010, total cosmetics sales (beauty and personal care products) dou-
bled, from 166.1 billion USD to 382.3 billion USD. Skin care was the most
significant sector throughout 2010 with 23% of the market share, its growth
propelled largely by the Asian market [6]. In the last decade, aging and
sun-protecting agents played a vital role in the growth of skin care segment.
According to Lopaciuk, GBM has grown by 4.5% a year on average in the past
20 years with annual growth rates ranging from around 3 to 5.5% [7]. The majority
of global premium cosmetics sales is concentrated within the developed markets
(mostly the USA, Japan, and France) [8].

Data reported on high production volume of PCPs highlights the need for the
monitoring of these compounds in the aquatic environment, where they are
discharged mainly through the sewage. Water is highly susceptible to pollutants,
and its contamination can cause severe health problems in countries where it is the
only source of drinking water. The potential sources of groundwater contamination
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are storage tanks, septic systems, uncontrolled hazardous waste, landfills,
chemicals, road salts and atmospheric contaminants that directly or indirectly end
up in the groundwater. Therefore, high-quality, safe, and sufficient drinking water is
vital for our everyday life, for drinking and food preparation, and also for cleaning,
hygiene, washing, and watering plants.

Groundwater comprises the largest pool of freshwater in the world, accounting
for over 97% of all freshwaters available on earth (excluding glaciers and ice caps),
while the remaining 3% is covered mainly by surface water (lakes, rivers, wetlands)
and soil moisture [9]. Groundwater is the main source of freshwater supplied as
drinking water for 75% of European Union (EU) and 50% of US population;
industries (e.g., cooling waters) and agriculture (irrigation) are also dependent on
groundwater for resource. As per EU directive, groundwater should not only be
considered as a water supply reservoir, but it should be protected for its own
environmental value. Many rivers across Europe bring 50% of the annual flow
from groundwater, reaching 90% in low-flow periods; therefore, deterioration of
groundwater quality may directly affect related surface water and terrestrial eco-
systems. Groundwater movement is very slow and the impact of anthropogenic
activities may last for a long time: pollution that occurred either by industrial,
agricultural, or human activities may still be menacing groundwater quality today
and in future years.

In the past two decades, the detection of trace amounts (<1 pg L") of organic
compounds in water matrices has been possible, especially thanks to improvements
in analytical instrumentation, which allowed very low limits of detection.
Buchberger wrote a review highlighting the current approaches to trace analysis
of personal care products in the environment [10].

Because of the elevated hydrophobicity of ingredients in PCPs, most of them
significantly sorb onto sludge and sediments. In a case study, polycyclic musks
were measured in streams of Hessen, Germany; data revealed 13,000 pg kg~ ! total
solids in suspended matter and 3,211 pg kg~ ' dry weight in sediments; however,
concentrations of few ng L~! could be measured in water [11].

In a recent study, Brausch et al. reviewed the environmental concentration of
personal care products in the aquatic environment and examined acute and chronic
toxicity data available for personal care products, highlighting the areas of concern
[12]. According to the toxicity studies reported so far, the authors concluded that
only triclosan and triclocarban have the potential to cause chronic effects, while for
other PCPs like paraben preservatives and UV filters there is evidence suggesting
endocrine effects in aquatic organisms. The other main concern of PCPs regards
their potential to bioaccumulate in aquatic organisms. UV filters, disinfectants, and
fragrances have all been shown to bioaccumulate in biota; thus, the potential for
biomagnification and for effects on higher-trophic-level organisms needs to be
investigated.

In this chapter, personal care products have been divided into five main classes:
fragrances, UV filters, phenolic compounds, preservatives, and repellents. A sub-
section has been dedicated to each class, where the literature related to the
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occurrence of PCPs in groundwater, surface water, and drinking water across
Europe has been reviewed and compared.

2 Fragrances

Fragrances are perhaps the most widely studied class of PCPs and are believed to be
ubiquitous contaminants in the environment. The most commonly used fragrances
are synthetic musks, which are present in a wide range of products including
household chemicals, soaps, and detergents, with high concentration especially in
perfumes, body lotions, and deodorants [13]. Synthetic musks comprise nitro
musks, which were introduced in the late 1800s, and polycyclic musks, introduced
in the 1950s. Nitro and polycyclic musks are water soluble, but high octanol/water
coefficients (log K, =3.8 for musk ketone and 5.4-5.9 for polycyclic musks)
[14, 15] indicate high potential for bioaccumulation in aquatic species [16, 17].
Due to the bioaccumulation potential in the aquatic environment and the incom-
plete information about their chronic toxicity and degradation, musk xylene and
musk ketone were included in 1997 in the EU third priority list (http://eur-lex.
europa.eu/legal-content/EN/TXT/?uri=0J:L:1997:025:TOC).

Among nitro musks, musk xylene, musk ketone, musk ambrette, musk moskene,
and musk tibetene are the most common fragrances in PCPs. HHCB (1,3,4,6,7,8-
hexahydro-4,6,6,7,8,8-hexa-methylcyclopenta-(g)-2-benzopyran;  trade name,
Galaxolide®) and AHTN (7-acetyl-1,1,3,4,4,6-hexa-methyl-1,2,3,4-tetrahydro-
naphthalene; trade name, Tonalide®) are the two most important compounds in
the group of polycyclic musks and essential ingredients of perfumery industries
[18, 19]. In Europe, the usage amount of these two chemicals exceeds 2,000 tons
per year [14]. OTNE ([1,2,3.4,5,6,7,8-octahydro-2,3,8,8-tetramethylnaphthalen-2yl]
ethan-1-one) is the major constituent of one of the most popular fragrance mixtures
in the last years, marketed as technical mixture Iso E Super® with 2,500-3,000 tons
annually and a “woody” sensory impression rather than “musky” [20]. Table 1
shows abbreviations, structures, and analytically relevant data of most relevant
fragrances dealt under this section.

Synthetic musks were identified in environmental samples nearly 30 years ago.
Yamagishi et al. performed in Japan the first comprehensive monitoring for musk
xylene and musk ketone in freshwater fish, marine shellfish, river water, and STW
wastewater [22, 23].

In Europe, Gatermann et al. performed one of the first studies about synthetic
fragrances, identifying nitroaromatic compounds such as musk xylene and musk
ketone in 30 out of 33 North Sea water samples in concentrations up to 0.17 and
0.08 ng L respectively [18].

Polycyclic musks were studied for the first time in the 1990s by Eschke et al.,
who measured average concentrations of 370 ng L™ 'of HHCB and 200 ng L™ 'of
AHTN in the Ruhr river [24, 25]. In the subsequent years, several data were
published regarding the occurrence of these analytes, especially in water matrices.



Occurrence of PCPs in Natural Waters from Europe 41

Table 1 Analyte abbreviations, structures, and analytically relevant data of fragrances

Abbreviation Trade name Structure Molecular formula Log Ko/w
HHCB Galaxolide C5H560 5.9*
(6]
AHTN Tonalide i i C 1 8H260 57“
(¢]
MX Musk xylene ojj@/\'\loz C14H,5sN30¢ 4.9%
NO,
MK Musk ketone C14H;sN205 4.3
O,N NO,
(e]
ADBI Celestolide / : Cy7H2,0 5.4°
o
AHMI Phantolide / C17H240 5.85°
(6}
AITI Traseolide o) C,gH,60 6.3°
OTNE Iso E Super® o C6Ha60 5.18°

“*Measured [15]
PEstimated (SRC [21])
“US EPA screening tool

HHCB, AHTN, and 4-acetyl-1,1-dimethyl-6-tert-butylindane (ADBI) were deter-
mined at concentrations up to 100 ng L™ "in the river Elbe, one of the major rivers of
central Europe and a main carrier of contaminants, near Torgau [26].

Bester et al. determined HHCB (0.09—4.8 ng L™ 'in the North Sea and 95 ng L™ 'in
the river Elbe estuary) and AHTN (0.08—-2.6 ng L™ 'in the North Sea and 67 ng L™ 'in
the river Elbe estuary) [27]. The values measured in water samples of the years
1990 and 1995 showed no statistically significant difference for AHTN, while
HHCB showed a trend toward higher concentrations in 1995 at some stations.
Musk ketone (2-10 ng L™"), HHCB (36152 ng L"), AHTN (24-88 ng L),
and low levels of ADBI (2—-8 ng L_l) were detected in water samples of river Elbe
in Magdeburg, Germany [16].
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Fig. 1 Galaxolide (HHCB) in surface water samples from lakes and rivers. Low, moderate, and
high relate to the proportion of sewage effluents in the aquatic system. Comparison with the results
of another group, which examined representative sites in Berlin waters [28], showed good
correlation with the contamination data presented, when considering only the results in identical
areas of water, despite the different methodology (solid-phase microextraction) (Picture taken
from [31] with permission)

Polycyclic musks and nitro musks were found as environmental pollutants in
screening analyses of 30 representative surface water samples collected from rivers,
lakes, and canals in Berlin [28]. In particular, HHCB, AHTN, and ADBI were
detected in all the analyzed samples up to the pg L™" level, with maximum values
of 12.5, 6.8, and 0.52 pg L', respectively. Musk ketone was the only nitro musk
found in many water samples, even if in low concentration. On average, HHCB,
AHTN, ADBI, and musk ketone were found with relative ratios of 20:10:1:1.

The occurrence of polycyclic musks [29] and musk xylene and musk ketone
amino metabolites [30] was reviewed in 1999, considering all data regarding their
monitoring in water, sediment and suspended particulate matter, sewage sludge,
and biota. The highest concentrations of polycyclic musks (HHCB and AHTN)
were found in water (max. concentration 6 pg L™ 'of HHCB and 4.4 pg L'
of AHTN).

Polycyclic musks (HHCB, AHTN, ADBI, AHMI, and ATII) within the frame-
work of an exposure-monitoring program (1996 and 1997) were determined in
102 surface water samples collected from rivers Spree, Dahme, and Havel in Berlin
[31]. HHCB was found at a mean concentration of 1.59 pg L™ 'in surface water of
areas strongly polluted with sewage, while a comparatively lower mean concentra-
tion of 0.07 pg L™ 'was found in surface water hardly contaminated with sewage
(Fig. 1). The median percentile proportion was 71% for HHCB and 22% for AHTN
in samples where all five polycyclics could be measured.
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AHTN has been detected in surface water at a concentration of 390 ng L~'28],
in the range of 20-470 ng L' [31] in Berlin, Germany, and 73 ng L™ "in river Elbe,
Germany [16].

Dsikowitzky et al. studied the occurrence and distribution of polycyclic musks in
the Lippe river (a tributary of the Rhine river, Germany) in order to investigate their
dynamic transport and partitioning between aqueous and particulate phases after
their discharge into the river by sewage effluents [32]. Nineteen water samples,
taken from a longitudinal section of the river, were analyzed to determine HHCB,
AHTN, ADBI, and 6-acetyl-1,1,2,3,3,5-hexamethylindane (AHMI) concentrations.
HHCB and AHTN were present in each water sample at concentrations ranging
from <10 to 180 ng L™ 'and <10 to 70 ng L™, respectively. The load of dissolved
HHCB and AHTN (calculated on the basis of compound concentrations in water
and the corresponding river runoff data) ranged from 3 to 293 g/day and from 1 to
108 g/day, respectively. Increasing loads of HHCB and AHTN along the river
indicated a high input of sewage effluents to the densely populated areas along the
central part of the river while decreasing loads at the lower reaches indicated that
the rate of removal of musks was higher than the rate of input in the corresponding
river sections.

Bester et al. measured concentrations of OTNE in the Ruhr river in the range 30—
100 ng L™' [33]. The authors employed the geo-referenced exposure model
GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European
Rivers) to simulate OTNE concentrations in the Ruhr river basin. According to this
model, around half of the total OTNE emissions into the Ruhr river are transferred
from surface water into the atmosphere and the sediment. Volatilization from lakes
was identified as the major removal process for OTNE. Water samples from the
Danube river (Hungary) were also analyzed. OTNE concentrations were present at
concentration levels of the same order of magnitude (29-810 ng L") of the Ruhr
river basin but exhibited higher spatial variability (Fig. 2).

Nontarget screening analysis for the identification of organic contaminants in
selected German and European rivers was carried out, and a number of PCPs (V,N,
N',N'-tetraacetylethylenediamine, —methoxycinnamic acid, 2-ethylhexylester,
drometrizole, HHCB, AHTN, ADBI, AHMI, oxoisophorone, lilial, viridine,
dihydromethyljasmonate, cineol, DEET) were measured during this study
[34]. Although no quantitative data were reported, this study demonstrated the
usefulness of screening analyses to enlarge the number of substances that are
detected during environmental monitoring. The synthetic musk fragrances HHCB
and AHTN were detected with mean concentrations of 141 and 46 ng L™", respec-
tively, in freshwater river systems in Hessen, Germany [35].

Goémez et al. carried out an extensive study regarding occurrence, fate, and
temporal and seasonal distribution of PCPs in Henares River basin (central
Spain), which is subjected to industrial, agricultural, and wastewater discharges
[36]. Data showed that PCPs were the most commonly detected compounds in both
treated wastewater and river waters. HHCB and AHTN were found in all the
analyzed samples. The highest mean and maximum concentrations were measured
for the fragrance HHCB in the WWTP effluents (above 10 pg L") and in the river
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Fig.2 Concentrations of synthetic fragrances (OTNE, HHCB, AHTN, and the metabolite HHCB-
lactone) in surface waters from the Ruhr river basin (7B tributary). Picture taken from [33] with
permission. The codes 611-633 represent location of sampling sites. OTNE concentrations in Ruhr
river water showed an increasing trend from approximately 10 ng L™' (upstream area) to
100 ng L! (mouth of Ruhr river), while concentrations in some of the tributaries were even
higher (e.g., Olbach, which is largely influenced by a major WWTP: 420 ng L™"). OTNE
concentrations in the Rhine river were lower (20 ng L") due to dilution as the wastewater fraction
in Rhine river is smaller than in Ruhr river

waters (above 100 ng L™ 'in the less contaminated sample). AHTN was the second
most concentrated compound after HHCB.

HHCB and AHTN were analyzed in remote and anthropogenically influenced
Swiss surface waters and in Mediterranean seawater [37]. The measured concen-
trations of HHCB and AHTN in lakes were <247 and 1-18 ng L™, respectively,
while in rivers and streams were 5-564 and 2.3—-186 ng L', respectively, with
highest concentrations in small rivers downstream of WWTP effluents. In seawater
samples collected in the south of Spain, both HHCB and AHTN were not detected.

A monitoring survey of wastewater and groundwater was undertaken at the
Llobregat delta, south of Barcelona (Spain), where pharmaceuticals, personal care
products, and heavy metals priority substances were investigated. In groundwater,
HHCB was detected in 98% of the samples with concentration ranging from 2 to
359 ng L™ 'and a mean value of 106.8 ng L' [38]. Jurado et al. reviewed in 2012
the presence of emerging organic contaminants in Spanish groundwaters, both in
rural and urban areas, evaluating the potential sources of contamination and the
occurrence and the fate of these compounds [39].

HHCB and AHTN were determined below 5 ng L™' in Seine River sample,
collected downstream of Paris in August 2003 [40].
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In Italy, Villa et al. investigated the occurrence of selected polycyclic musks
(HHCB, AHTN, and ADBI) in the Molgora River, Lombardia region, for the first
time [41]. The authors reported spatial and temporal profiles of contamination. The
results obtained were comparatively higher than monitoring data of other European
regions, which indicated a significant higher level of analyte pollution of the
Molgora River. Italy has the largest detergent consumption per capita in EU;
nevertheless, few data about the occurrence of fragrances in Italian waters are
available, urging the need to extend the monitoring to other Italian water frames,
in order to achieve a better knowledge of the levels of polycyclic musks contam-
ination in this country.

Terzic et al. determined fragrance compounds in municipal waters [42] of the
region of Western Balkan (Bosnia and Herzegovina, Croatia, and Serbia). The
concentrations measured ranged from 0.337 pg L~ for traseolide (TRA) to
16.7 pg L' for amberonne (AMB). Among polycyclic musks, HHCB was the
most abundant with average levels of 630 ng L™'. Other common fragrances
determined were AMB, acetyl cedrene (AC), and musk xylene (MX) with average
concentrations of 2.8, 1.6, and 0.13 pg L respectively. A lactone metabolite of
HHCB and AHTN was also detected in the samples.

The occurrence of seven synthetic musks (HHCB, AHTN, ADBI, AHMI, musk
ketone, musk xylene, and Pentadecanolide®) was assessed in surface waters
through an axial transect of the Tamar Estuary (UK) and the adjacent coastal
environment. Concentrations of HHCB (6-28 ng L") were higher than those of
AHTN (3-10 ng L™'); in general high concentrations reflect the inputs through
WWTP outfalls into the receiving waters, with similar trends for both compounds
along the estuary. Temporal variations in concentrations of HHCB and AHTN were
found between June and July 2007: concentrations of HHCB and AHTN are
approximately one order of magnitude lower at high tide than those at low tide in
the considered area [1]. Similar studies were carried out in surface water of
Denmark where five PCPs (cashmeran, methyl dihydrojasmonate, HHCB, and
AHTN) were detected in the concentration range of 40-250 ng L™" [43].

3 UV Filters

Organic UV filters are substances with the capability to absorb UV radiation in
virtue of their large molar absorption coefficient in the UVA and UVB range and
are often added to cosmetics, to shield human skin from the harmful effects of solar
radiation [44]. These compounds are included in the formulation of many PCPs
(e.g., sunscreen creams, beauty cosmetics, shampoos, lipsticks, hair sprays, etc.) in
amounts between 0.1 and 10% [45]. UV filters can reach surface waters via release
from the skin during swimming and bathing or through wastewater. Most UV filters
are highly lipophilic (i.e., can bioaccumulate) and hardly degradable in sewage
treatment plants; moreover, recent studies have shown estrogenic and other endo-
crine effects for several UV filters with a special emphasis to humans [46-49]. Due
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Table 2 Analyte abbreviations, structures, and analytically relevant data of organic UV filters

Molecular Log

Abbreviation INCI name” Structure formula Komw
BP-3 Benzophenone-3 Q C4H,,05 3.8%
OD-PABA  Ethylhexyl dimethyl C7HyNO,  6.15
p-aminobenzoate O&;&
/N\
4-MBC 4-methylbenzylidene C3H»,0 5.1%
camphor 7
e}
EHMC/ 2-ethylhexyl-p- o C3H5605 5.8*
OMC methoxycinnamate /@A\)ko“@
~o
OCR Octocrylene O Co4Hy7NO,  6.9°
o
N o
o

4-HB 4-hydroxybenzophenone Cy3H,002 2.67¢
AT O

HMS Homosalate OH C6H5,05 6.16°

e
“EPIWIN v3.12 database

®Software calculated value, from SciFinder Scholar Database 2006: http://www.cas.org/products/
sfacad/

“Syracuse Research Corporation (SRC) database

IKOWWIN v1.67 estimate

“INCI (international nomenclature for cosmetic ingredient) elaborated by CTFA and COLIPA

to their increased use and presence in the aquatic environment, UV filters have been
included in the list of emerging contaminants [50], and various monitoring studies
have been carried out in Europe and published in the literature. The most commonly
studied compounds with their structures and acronyms are presented in Table 2.
One of the first reports on sunscreen residue measurement in water samples
appeared in the literature in 2002, when Lambropoulou et al. developed an SPME-
GC method for the determination of two UV-filter molecules BP-3 and OD-PABA,
commonly employed in commercial products. Data for water samples collected in
two swimming pools showed concentration values of 2.4-3.3 and 2.1 pg L™" for
BP-3 and OD-PABA, respectively, while shower water samples were in the range
8.2-9.9 and 5.3-6.2 pg L™, respectively [51]. Later on, Giokas et al. monitored
different natural water samples across Greece; they reported for the first time trace
levels of UV filters in coastal seawater, and, for example, they measured 1.8 ng L!
of BP-3 in Ionian sea and 6.5-8.2 ng L™" in other two touristic areas in Northwest-
ern Greece [52, 53]. Similar levels of BP-3, 4-methylbenzylidene camphor
(4-MBC), and hethylhexylmethoxycinnamate (OMC) were reported by these
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authors in other water matrices: swimming pool (4.2-6.9 ng L™ '), game pool (3.0—
5.7 ng L_l), and shower wastewater (3.8—10.0 ng L_l).

A new LC-MS method combined with stir bar sorptive extraction was developed
by Nguyen et al. for the determination of UV-filter compounds in seawater
[54]. The method was applied to investigate six UV filters in coastal seawater
samples from Liguria, Italy. Only BP-3 and EHMC were measured in the analyzed
samples (<LOQ-118 ng L"), although some of the remaining analytes were
detected below the limit of quantitation. The authors reported also results from
samples collected in a swimming pool where, not surprisingly, the analytes showed
higher values than in seawater (up to 216 ng L™ for BP-3).

Various authors considered the occurrence of these compounds in lakes and
rivers. Poiger et al. determined five UV-filter compounds (EHMC, BP-3, 4-MBC,
OC, and BM-DBM) in two Swiss lakes, Ziirich Lake and Hiittnersee Lake, where a
considerable direct input of UV filters was expected, due to recreational activities
[55]. All the considered compounds were detected at low concentrations with a
slightly higher contamination level revealed at Hiittnersee Lake, ranging between
<2 and 125 ng L', against <2-25 ng L' for Ziirich Lake. Concentrations
generally increased in summer, when direct input is expected due to bathing as
shown in Fig. 3. Anyway, measured concentrations in both lakes were considerably
lower than those predicted from estimates deriving from the number of visitors at
the lakes’ swimming areas and from a survey of the usage of sunscreens among
these visitors.

Balmer et al. investigated the occurrence of four important UV-filter compounds
(BP-3, 4-MBC, OMC, and OC) in wastewater and water and fish from various
Swiss lakes, by GC-MS [57]. As expected all four UV filters were present in
wastewater with a maximum concentration of 19 pg L™' for EHMC; a general
trend suggesting a seasonal variation was observed, with higher loads in the warmer
season. UV filters were also detected in Swiss midland lakes and the river Limmat
at low concentration levels (<2-35 ng L™"); no UV filters (<2 ng L) were
detected in a remote mountain lake. By interpreting results from passive sampling
(SPMDs), authors suggested some potential for accumulation of these compounds
in biota.

Cuderman et al. determined six UV filters in different recreational waters of
Slovenia, including rivers and lakes [58]. The most frequently detected compound
was BP-3 (32-400 ng L"), although most of the remaining analytes were mostly
below LOD probably because the employed method was not sensitive enough.
BP-3 was also measured in the range of 6-28 ng L' in the Spanish rivers Ebro, Ter,
and Llobregat [59].

PCPs and other chemicals (pharmaceuticals, endocrine disruptors, and illicit
drugs) were monitored in River Taff and River Ely, South Wales, UK. Regarding
UV filters, the authors stated that solely BP-4 was found at concentrations exceed-
ing 100 ng L™', similarly to three other PCPs namely, methylparaben,
4-chloroxylenol, and 4-tert-octylphenol [60].

Magi et al. monitored the Sturla River in Genoa, Italy, from April to August
2011; three UV-filter compounds (BP-3, OC, and EHMC) were measured in the
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Fig. 3 Vertical concentration profiles of organic UV filters at Hiittnersee in 1998. Note the
increased concentrations in July near the lake surface. Picture taken from [55] with permission.
The first profile, measured in April 1998, shows low concentrations (=3-20 ng L") and rather
uniform distribution over the whole water column. Concentrations of OC were not detected. The
second profile, taken in July 1998, shows increased concentrations of BP-3, MBC, and OC in the
surface layer of 80-125, 60-80, and 2227 ng L™, respectively. The concentration increases
correspond to total inputs of BP-3, MBC, and OC of approximately 45, 29, and 10 g, respectively,
to the epilimnion of Hiittnersee (depth, 2.5 m; volume, 4.13 x 10° m®) during the time between
April and July, and probably higher, if some elimination of the UV filters occurred during this
time. The third profile, measured in September 1998, again shows lower concentrations and
uniform distribution over the water column, indicating rapid removal of all three compounds
from the lake. While three compounds show significant seasonal variation of their concentrations
at this lake, one (EHMC) does not. There are indications that EHMC is biodegradable under
natural conditions in lakes [56] and degradation may well exceed input at lake Hiittnersee during
summer

range 3—112 ng L™ with the highest values detected in May, when an unusual hot
and dry climate was observed [61].

Rodil et al. proposed a new method for the determination of nine UV-filter
compounds in water by means of nonporous membrane-assisted liquid—liquid
extraction and LC-MS/MS [62]. The method was then applied to real waters; the
analysis of samples collected at the lake Cospuden (selected because of its inputs
from recreational activities) revealed the presence UV filters at concentrations
between 40 ng L! (BP-3) and 4,381 ng L~ ! (OC). Later on, the same research
group reported the results of a monitoring program on emerging pollutants, carried
out on different water matrices from the Galicia region, Spain [63]. Within several
PCPs, seven UV filter compounds were also measured in surface and tap water,
typically below the 10 ng L™" level. In particular, BP-4 was detected in 75% of
surface waters and PBSA and 4-MBC in about 30%, showing the highest levels at
the end of summer, probably due to recreational uses of water. These three
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compounds were also detected in several tap water samples at a very low level,
except BP-4, that was measured up to a maximum concentration of 62 ng L™
(Fig. 6). Accordingly, BP-4 resulted to be one of the main UV filter in surface
waters in the recent study of Gracia-Lor et al. on the determination of PCPs and
pharmaceuticals in environmental samples [64]. In fact, BP-4 was measured in 82%
of the surface water samples collected in the area of Valencia (Spain), with a
maximum concentration level of 952 ng L™' (the highest of all the considered
benzophenones).

4 Phenolic Chemicals and Detergents

In the present section, phenolic compounds (mainly alkylphenols and their carbox-
ylate and ethoxylate derivatives) and detergents are presented together; although
phenols are released into the environment by different sources, they are widely used
in the production of detergents. These are generally divided into four classes:
anionic, cationic, amphoteric, and nonionic detergents. The nonionic surfactants
are used extensively to produce detergents and cosmetics; some of these com-
pounds, like alkylphenols and their carboxylate and ethoxylate derivatives, are
known to exhibit endocrine-disrupting effects, similarly to many other nonsteroidal
anthropogenic chemicals. Table 3 shows abbreviations, structures, and analytically
relevant data of the most relevant phenolic compounds detected in Europe.

One of the first study on phenolic contaminants as a possible source of estrogenic
effects in the aquatic environment was carried out in Germany by Bolz
et al. [69]. They determined nine phenolic chemicals in various compartments,
and data from 23 water samples (five streams and rivers) showed the predominance
of 4-nonylphenol (4-NP), with concentration levels up to 458 ng L™ ".

In the same period, coastal waters and sediments of Spain were studied to obtain
information on occurrence and distribution of nonionic surfactants and their deg-
radation products [70]. Petrovic et al. collected 35 samples of coastal waters from
the Spanish coast, including the harbors of Tarragona, Almeria, and Barcelona, the
mouths of the Besos and Llobregat rivers, the Bay of Cadiz, and various yacht
harbors in the Mediterranean coast.

The analysis indicated the presence of considerably high concentrations of
nonylphenolethoxylates (NPEO) and NP near the points of wastewater discharges;
NP was found in 47% of seawater samples, ranging from 0.15 to 4.1 pug L™
Distributions of the nonionic surfactants in water are shown in Fig. 4. The authors
also measured linear alkylbenzenesulfonates (LAS), an important class of anionic
detergents, employed even in PCP formulations; LAS were found in relatively high
concentrations, with the highest values in water samples from the mouth of two
rivers in Barcelona (up to 92 pg L™"). Measured values were comparable with
levels previously reported for densely populated zones, which discharge urban
wastewaters directly into the sea. The same research group, during a study on
sewage treatment plants and receiving river waters over a 7-month period in two
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Table 3 Analyte abbreviations, structures, and analytically relevant data of phenols and
detergents

Molecular
Abbreviation Compound Structure Formula Log Komw
4-NP 4-nonylphenol OH C,sH»40 3.804.77%
CoHyg .
BPA BiSphenOl A HO O O OH C5H;60, 3.4
oP 4-tert-Octylphenol \/\/X@OH C4H,,0 4.12°¢
AEO Alcohol ethoxylates o 3.15-7.19
CnH2n+1 mOH

n=10-18, m=1-10

NPEO Nonylphenolethoxylates o\/\}OH 4.4
CgHig "

NPEC Nonylphenoxycarboxylates o oo
CgHyg
LAS Linear R ; 3.32 for
alkylbenzenesulfonates x+y = 8-10 Cl1.6
x;y=0-10

*[65]

°[66]

°[67]

‘1681

L omn ez om Flr
B3-E B3-wW A1 T3 T4

Fig. 4 Distributions of nonylphenolethoxylates (NPEO), nonylphenol (NP), alcohol ethoxylates
(AEOQ), and coconut diethanol amides (CDEA) in seawater during different periods (Picture taken
from [70] with permission)

tributaries of the Llobregat river, reported concentrations of up to 31 pg L™" for
NPEOs, 15 pg L™" for NP, and 35 pg L™ for nonylphenoxycarboxylate (NPE1C)
in river water downstream of sewage treatment plants.
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Results of a long-term survey from the Danish National Groundwater Monitor-
ing Program, focused on the evaluation of levels and impacts of micropollutants on
Denmark groundwater, were published in 2003 [71]. The comprehensive study
(7,671 groundwater samples from 1,115 screens in the period 1993 to 2001)
revealed the absence of nonylphenolethoxylates (NPEOs), while NPs were detected
at the maximum concentration of 4.2 ug L™ in eight of 705 screens.

Another monitoring study was carried out in Austria; Hohenblum analyzed
400 ground and surface water samples and reported the concentration levels of
various selected estrogenic compounds, including phenolic chemicals and their
metabolites [72]. Results related to surface water showed that nonylphenoxycar-
boxylates occur more frequently and in higher concentrations than nonylpheno-
lethoxylates; NP was measured in 138 out of 261 samples, with a maximum
concentration of 890 ng L', In groundwater NP was measured in about 50% of
samples, with a maximum concentration of 1,500 ng L' and a median of
35 ng L™'. It is worthy to mention here also the results on bisphenol A (BPA),
although this chemical is mainly employed as a plastic softener; in fact, BPA is
considered an endocrine disruptor and is often monitored with alkylphenols. In this
study BPA presented a maximum concentration of 930 ng L™" and a median of
24ng L7

According to the recent pan-European survey on the occurrence of selected polar
organic persistent pollutants in groundwater [73], BPA is one of the most relevant
compounds detected in European groundwaters, either in terms of frequency of
detection (40%) or maximum concentration level (2.3 pg L_l).

An evaluation of the contamination of surface and drinking waters around Lake
Maggiore, Italy, was reported by Loos et al. in 2007; together with other target
analytes, various PCPs were considered in lake, river, tap, and rain water samples.
In particular, nonylphenol was detected rarely at low very concentration, while its
carboxylate and ethoxylate derivatives were present almost in all the collected
samples with a maximum concentration in lakes of 307 ng L™'. Levels of these
compounds in drinking water produced from Lake Maggiore were similar to those
found in the lake itself, indicating a poor removal efficiency of the local
waterworks [74].

Further data on estrogenic phenols in Italy were obtained from surface and tap
water of the Liguria region; Magi et al. estimated the time weighted average (TWA)
concentration of contaminants in untreated drinking water, where BPA proved to
be the most abundant ranging from 17.0 to 56.4 ng L', while NP was in the range
2.4-9.9 ng L' [75]. The same research group employed the passive sampling
approach to monitor three Ligurian rivers (BPA was the most abundant, in the
range 185459 ng/sampler) and the influent/effluent of a drinking water treatment
plant in Liguria (in influent water, BPA was 453 ng/sampler after 2 weeks of
exposure; NP was measured at 25 ng/sampler only after 4 weeks of exposure)
[76, 77].
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5 Preservatives

Preservatives are substances used in foods, pharmaceuticals, paints, wood, and
PCPs to prevent deterioration of products whether from microbial growth or
undesirable chemical changes. Depending on their origin, they are categorized
into two classes: class I are naturally occurring, everyday substances, e.g., salt,
honey, and woodsmoke; class II are synthetically manufactured. Table 4 shows
abbreviations, structures, and physicochemical data of the most relevant preserva-
tives determined in Europe.

Triclosan (TCS) and triclocarban (TCC) are biphenyl ethers widely used as
antimicrobials in different types of PCPs (soaps, deodorants, skin creams, tooth-
paste) and in plastics [78]. TCS is an antimicrobial agent particularly used in many
hand soaps (0.1-0.3%) [79], as a preservative and disinfectant in medical skin
creams [80], and as a slow-release product in a wide variety of plastic products
[81]. Methyltriclosan (MTCS) is a degradation product of the biocide TCS, which is
formed in the wastewater in the treatment plant, and because of the incomplete
elimination from the treatment plant, it enters in surface waters. The half-life of
MTCS is longer than TCS as it degrades slowly, so it mainly exists in aquatic
environments. The study of TCS and MTCS became a major point of concern in
surface water because of their toxicity to certain algae species [80], and TCS is
considered as a priority substance at EU scale for routine monitoring programs
[82]. Bedoux et al. studied occurrence and toxicity of TCS and by-products in the
environment all around the world [83]. The occurrence of TCS in water was verified
in different European countries and often showed very low concentration levels: it
was reported to be not detected and below LOQ in surface and wastewater samples
collected from Germany [84] and Spain [59], below 10 ng L™' in European
groundwater samples [73] and surface water of Germany [85], and below
15 ng L' in lake and rivers in Italy [74]. Similarly, it was found below
60 ng L' in different rivers from South Wales [60], Spain [86], and Denmark
[43]. Relatively higher concentration levels of TCS (26—140 ng Lfl) [87, 88] and of
TCS and MTCS (21-300 ng L") [89] were reported for other Spanish rivers. TCS
was detected below 100 ng L~ ! in lake and river water of Switzerland [80, 90] and
in river water of the UK [91], Germany [92], and Slovenia [58]. Regarding the
degradation product MTCS, quite low levels were detected in the river of Switzer-
land (<0.4-2 ng Lfl) [90] and in the surface water of Germany (0.3—10 ng Lfl); as
shown in Fig. 5, taken from this latter study, MTCS concentrations were generally
lower than those of TCS, with few exceptions [85]. Rodil et al. analyzed TCS in
sewage, surface, and drinking water of Galicia (Spain); they found a median
concentration of 57 ng L™" in influent, 16 ng L™" in effluent, and 10 ng L™" in
surface water samples, while TCS was never detected in drinking water [63]
(Fig. 6).

Recently, Azzouz et al. studied the effect of seasonal climate variation on the
removal efficiency of PCPs in a drinking water treatment plant of Spain. TCS was
analyzed in water collected in different periods showing higher concentrations in
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Fig. 5 Monitoring of TCS and MTCS in surface waters (concentrations in ng L™"). B field blank,
R riverine samples, S STP effluents, STP sewage treatment plant, T tributaries. Picture taken from
[85] with permission. The concentrations of TCS ranged from <3 to 10 ng L™ in surface water,
whereas values up to 70 ng L™ were found for STP effluents such as Bochum—Olbachtal or
Menden. High values were also detected for the tributary Lenne, which is heavily influenced by
STP effluents. The concentrations of MTCS ranged from <0.3 to 5 ng L™ in surface water
samples, whereas they were up to 20 ng L™ in effluent samples

winter (89 ng L™') than in autumn (56 ng L") and the spring—summer period
(35 ng L") [93]. A similar trend was previously reported for Romanian river
water, where the autumn and spring—summer concentrations were in the range
38-57 ng L' [94].

Another important class of preservatives is parabens, the alkyl esters of
p-hydroxybenzoic acid, used since the 1930s as bactericidal and fungicidal
properties in drugs, cosmetics, and foods. Nowadays, parabens can be found in
makeup, soap, shampoos, shaving gels/creams, moisturizers, personal lubricants,
deodorants, and toothpaste. Parabens have been found in samples of tissue from
human breast tumors (an average of 20 ng g ' of tissue) and displayed also
estrogenic and other hormone-related activities [95]; nevertheless, no effective
direct link between parabens and cancer has been established yet [96]. Regarding
possible adverse effects of parabens on water aquatic organisms and their environ-
mental toxicity, few data are available [97].

Villaverde et al. analyzed river water in Spain and quantified different
parabens (methylparaben, ethylparaben, i-propylparaben, n-propylparaben (n-PrP),
i-butylparaben, n-butylparaben, benzyl esters of 4-hydroxybenzoic acid); the
concentration levels were in the range 0.8—-105 ng L' [88] with the highest
concentration obtained for n-PrP. Propylparaben and butylparaben were also
detected in river water below 55 ng L' [98]. Methylparaben, ethylparaben,
propylparaben, butylparaben, chloroxylenol, chlorophene, 3.4,5,6-tetrabromo-o-
cresol, and p-benzylphenol were detected in Rivers Taff and Ely, UK, in a wide
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Fig. 6 Box-and-Whisker plots representing the concentrations of PCPs. From left to right:
influent wastewater, effluent wastewater, surface water, and drinking water. Picture taken from
[63] with permission. DEET was detected below 20 ng L™" in both surface and tap water. The
figure also shows the concentration range of other PCPs (one preservative TCS and three UV filters
BP-3, BP-4, and 4-MBC)

concentration range (<0.3—400 ng L~') [60] with the highest concentration
obtained for methylparaben in the River Ely. A relatively high concentration of
methylparaben (208 ng L™ ") was detected in surface water of Spain [64]. During the
British Geological Survey [99], massive high concentrations of parabens were
frequently detected in UK groundwaters with a maximum concentration of
5,500 ng L™ for propylparaben, which was potentially proposed as a marker of
wastewater pollution in the freshwater environment. Very recently, during an
innovative monitoring study for the fingerprinting of micropollutants in UK
groundwater, Stuart et al. reported methylparaben and propylparaben below
100 ng L~! concentration levels [100].

6 Repellents

Repellents are intended to be applied to the skin or clothing and provide protection
against mosquito bites, tick bites, fleabites, chigger bites, and many other insect
bites. Structures, abbreviations, and physicochemical data of most relevant repel-
lents measured in Europe are presented in Table 4. N,N-diethyl-meta-toluamide
(DEET) is probably the most common active ingredient in insect repellents, and it
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acts by interfering with the orientation of insects. DEET has been associated with
neurotoxic symptoms known as the Gulf War syndrome [113] and detected in many
nontarget screenings in river water [114, 115] and in seawater [116]. DEET has
been detected in the North Sea at a concentration of 1.1 ng L' [105] and in the
concentration range of 0.4—13 ng L™ in seawater from Tromsg—Sound, Norway
[112]. In Germany, the concentrations of DEET have constantly decreased since
1999, when DEET was substituted by Bayrepel (l-piperidinecarboxylic acid,
2-(2-hydroxyethyl), 1-methylpropyl ester/Icaridin) in commercial insect repellent
formulations [103]. DEET (6.7 ug L™ ") and Bayrepel (2.2 pg L") were determined
in the samples from the eastern part of Croatia (Osijek and Belisce), which is known
to have problems with mosquitoes [42]. Later on, a major study on 164 individual
groundwater samples from 23 European countries was carried out for 59 selected
organic compounds; DEET was the most relevant compound in terms of frequency
of detection (84%) and maximum concentration (454 ng Lfl) [73].

Rodil et al. measured several PCPs in wastewater, surface water, and tap water,
including four insect repellents: DEET, Bayrepel, N-octylbicycloheptenedicar-
boximide (MGK264), and piperonylbutoxide (PBO) [63]. While MGK?264 could
not be detected in any sample, DEET, Bayrepel, and PBO were found in most
influent wastewaters. DEET was detected in all samples, also showing rather high
concentration, with a median value of 102 ng L~'; its removal rate was close to
60%, and it was measured in all effluents, with a median value of 25 ng L.
Removal efficiency for Bayrepel and PBO was higher, and they were detected only
in some effluents within the range LOQ-40 ng L™'. In surface and tap water, DEET
was found at comparatively lower levels (16 and 12 ng L™", respectively); PBO was
not found, while Bayrepel was detected in some tap waters below 10 ng L™'. A
graphical summary of these results on PCPs levels in all the considered water
matrices is shown in Fig. 6.

In the previous section on fragrances, we already discussed the nontarget
screening approach proposed by Schwarzbauer et al. for the monitoring of organic
contaminants in European rivers; in that study they also reported data on some
insect repellents, and in particular, most of the considered water samples were
positive to DEET [34]. Previously, during the qualitative characterization of
organic compounds in river water, the same research group detected DEET in the
two German rivers Rhine and Lippe [117, 118].

We also reported the monitoring study for the fingerprinting of micropollutants
in UK groundwater, in the section on preservatives; in this study Stuart
et al. measured concentration levels of DEET up to 300 ng L' during Oxford
Observatory (2011 and 2012) and 60 ng L' during Boxford Observatory
(2012) [100].
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64 S. Tanwar et al.
7 Concluding Remarks

The occurrence of personal care products in natural water across Europe has been
presented in this chapter; for each of the considered classes (fragrances, UV filters,
detergents, preservatives, and repellents), an extensive review of the recent litera-
ture has been considered, leading to a general picture of the European knowledge
about the distribution and impact of PCPs on the aquatic compartment.

Data available on the concentration levels of these compounds in Europe,
gathered and presented in Table 5, are not homogeneous, strongly depending on
the country and on the type of chemical. To achieve a more precise knowledge of
the situation, future monitoring studies should be carried out focusing on some key
compounds and following previously defined protocols, as suggested by the inte-
grated approach of the European Water Framework Directive to manage water
resources and improve water quality.
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Personal Care Products in the Aquatic
Environment in China

Qian Sun, Min Lv, Mingyue Li, and Chang-Ping Yu

Abstract Personal care products (PCPs) are a group of emerging contaminants
which showed potential adverse effect on the environment and human health. In
China, the production and consumption of PCPs continued a rapid growth because
of the rapid economic growth and prosperity, which might lead to large ranges and
quantities of PCPs releasing into the environment. Great concerns have been raised
on the PCPs in the aquatic environment in China. So far, existing field studies have
provided basic information on the occurrence and distribution of PCPs in the
surface water, sewage water, sludge, and sediment. This chapter summarizes four
major classes of PCPs in the aquatic environment in mainland China, including the
antimicrobial agents, synthetic musks, UV filters, and preservatives. Generally, the
PCP levels in China were comparable to the global levels. Seasonal and spatial
variation of PCPs in the aquatic environment was observed. There are clear regional
biases in the knowledge of PCPs in China. In the end, the limitations of the
investigation are discussed, and the implications for future studies are proposed.
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1 Introduction

Personal care products (PCPs) are a class of emerging contaminants which include
commonly used cosmetic, personal hygiene products, and household chemicals.
PCPs have been widely detected in the aquatic environment all over the world
[1, 2]. Great concerns have been raised about PCPs due to their potential adverse
impacts on the ecological safety and human health [3].

2 Production and Usage of PCPs in China

In the past few decades, China underwent a rapid economic growth and prosperity.
Because of the rising disposable incomes and the increased awareness of personal
hygiene and outer appearance, the consumption of PCPs continued its rapid growth
in China. For example, sales of shampoo products increased from 48,000 tons in
2000 to 387,000 tons in 2010 [4, 5]. In addition, the number of PCPs introduced into
China continues to increase [6]. Euromonitor International estimated that the total
sales of beauty and PCPs was US$24 billion in 2010, which was more than triple
compared to 2000 [7]. Euromonitor International expected that the absolute value
growth of beauty and PCPs reached over US$10 billion over 2010-2015 [7]. Due to
the increased consumption and productions of PCPs in China, the range and
quantities of PCPs released into the environment would inevitably increase.
There is a great need to understand the occurrence and fate of PCPs in the aquatic
environment in China.

3 Occurrence and Fate of PCPs in the Aquatic
Environment in China

3.1 Antimicrobial Agents

Triclosan (TCS) and triclocarban (TCC) are the two common antimicrobial agents
widely used in medical, household, and personal care products, such as soaps,
shampoos, toothpaste, cosmetics, and sanitation goods [8]. Great concerns about
TCS and TCC have been aroused in recent years, and the main reasons could be
summarized as follows: (1) large consumption worldwide [9], (2) incomplete
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removal in WWTPs [10, 11], (3) the endocrine-disrupting effect of TCS [12] and
the potential endocrine-disrupting property of TCC [13], (4) the accumulation in
organisms due to the high logKow [14, 15], and the inadequately explored envi-
ronmental impacts. So far, TCS and TCC have been widely detected in aquatic
environment in China, reaching several to thousands of nanograms per liter
(or gram). The removal efficiency for TCS and TCC in WWTPs showed big
difference in different studies. With logKow 4.7 and 4.9 for TCS and TCC,
respectively, these antimicrobial agents tended to accumulate in the sludge and
sediment [14], which may pose potential high risks to the environment. Therefore,
more studies should be carried out to investigate the efficient removal of TCS and
TCC in WWTPs and to comprehensively understand the behavior of TCS and TCC
in aquatic environment.

3.1.1 Antimicrobial Agents in Sewage and Sludge

Studies on the occurrence of antimicrobial agents in WWTPs in China showed a
strong regional bias, which were mainly conducted in Guangzhou in South China.
Zhao et al. investigated TCS and TCC in four WWTPs in Guangzhou urban area
during 2007 and 2008 [11]. TCS and TCC were detected in all effluents, with the
concentration range of 10.9-241 and 23.9-342 ng/L, respectively. Chen
et al. determined TCS and TCC in Zengcheng WWTP in Guangzhou City
[16]. The concentrations of TCS and TCC were 113 and 267 ng/L in influent,
18.9 and 32.6 ng/L in effluent, and 189 and 887 ng/g (dry weight, dw) in dewatered
sludge [16]. Yu et al. investigated TCS and TCC in the sewage from a WWTP in
Guangzhou in 2008 [17]. The concentration ranges of TCS and TCC were 1,217.4—
2,353.9 and 711.5-2,301.0 ng/L in the influent and 1,188 and 5,088 ng/g (dw) in the
dewatered sludge. In addition, the occurrence of antimicrobial agents was studied in
two WWTPs in Hangzhou City in East China in 2012 [18]. The concentrations of
TCC in the sewage were in the range of 8.4-43.7 ng/L, while the concentrations of
TCS were below the method detection limits (MDLs, 500 ng/L). High concentra-
tions of TCS and TCC were observed in the sludge, with concentration in the range
of below MDL (25 ng/g)-1,234 ng/g and 9,626-25,209 ng/g (dw) for TCS and
TCC, respectively. In a recent study, Sun et al. investigated the occurrence of
antimicrobial agents in a WWTP in Xiamen in Southeast China [2]. The concen-
trations of TCS and TCC were 35.1-108 and 5.04-67.4 ng/L in the influent and
were 33.9-129 and 2.66—-62.6 ng/L in the effluent, respectively. Results showed that
there was big difference of the antimicrobial agent concentrations in the sewage and
sludge among studies in China.

The antimicrobial agents could be partly removed from the sewage with removal
efficiencies varied in different WWTPs in China. The removal rates of TCC in
sewage could reach 80% in two WWTPs in Hangzhou [18]. The adsorption to
sludge contributed to most of the reduction of TCC [18]. The removal efficiencies
of TCS and TCC in the sewage in Guangzhou were 89.4-91.4 and 88.7-95.1%,
respectively [17]. Through mass balance, about 13.2 and 48.4% of TCS and TCC
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entering the WWTP finally adsorbed onto the dewatered sludge, indicating that
sorption onto sludge was an important process for the removal [17]. The strong
adsorption onto sludge for these antimicrobial agents was similar to the studies in
the USA [15] and Sweden [10]. However, the removal efficiencies were quite low
in the WWTP in Xiamen, with an average removal rate of 17.4% and —18.5% for
TCS and TCC, respectively [2]. Results from this study suggested that biodegra-
dation through activated sludge was not effective for the removal of the two
antimicrobial agents in the investigated WWTP; however, the reduction of triclosan
and triclocarban concentrations was observed during the disinfection process [2].

3.1.2 Antimicrobial Agents in Surface Water and Sediment

(1) Antimicrobial Agents in Surface Water The investigation of antimicrobial
agents in surface water in China was not started until 2005, and most studies were
focused on freshwater. The concentrations of TCS and TCC in surface waters in
China are summarized in Table 1. The most frequently studied area was the Pearl
River system in Southern China, including Pearl River [17, 22], Liuxi Reservoir
[16], Liuxi River [11, 16], Zhujiang River [9, 11], Shijing River [11], Dongjiang
River, [9] and the urban river of Guangzhou [19]. Other studied rivers included Liao
River [9, 20], Yellow River [9, 21], Hai River [9] in North China, and Jiulong River
[23] in Southeast China. In general, TCS and TCC were ubiquitous with the
detection frequencies mostly up to 100%, except the Liuxi Reservoir where TCS
and TCC had trace levels or even no detection [16]. The concentration ranges of
TCS and TCC in freshwater were <LOQ (limits of quantity)-1,023 ng/L. and
<LOQ-338 ng/L, which were comparable to those in the USA [1, 24] but higher
than those in Spain [25] and Germany [26]. So far, limited data was reported about
TCS and TCC in the seawater. In a recent study, we investigated the occurrence of
TCS and TCC in the estuary of Jiulong River [23]. TCS and TCC were both
detected with 100% frequencies, and the levels were 2.56-34.3 and 0.298-
5.76 ng/L, respectively, which were somewhat higher than the Hudson River
Estuary in the USA [27] and estuary and seawater in Portugal [28].

Seasonal variations were observed in both the detection frequencies and the
concentrations of the antimicrobial agents. The detection frequencies and the
concentrations were relatively higher in the dry season than the wet season. For
example, the detection frequencies and concentrations of TCS were 100% and
2.6-49.9 ng/L in the dry season (November 2008) and were 93% and <LOQ
(0.5)-5.5 ng/L in the wet season (May 2008) in the Yellow River [21]. The
concentrations of TCS and TCC Jiulong River were 8.65-53.5 and 1.84-13.7 ng/
L in the dry season (January 2013) and were 0.918-14.1 and 1.21-6.50 ng/L in the
wet season (June 2013), respectively [23]. The seasonal variations were mainly
attributed to the dilution of rainwater in the wet season.

Spatial variations were also observed. TCS and TCC were below LOQ (1.2 ng/L
for TCS and 3.9 ng/L for TCC) in Liuxi Reservoir due to little human activity,
increased toward the downstream of the Liuxi River near Guangzhou, and increased
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at the metropolitan sites in Zhujiang River and reached highest concentrations in
Shijing River where it received large amount of raw domestic wastewater
[11]. Zhao et al. (2013) investigated the occurrence of TCS and TCC in five rivers
and found that TCS and TCC in riverine environments at the river basin scale were
influenced by urban domestic sewage discharge and urban population [9]. The
results showed that the spatial variation of antimicrobial agents was mainly caused
by the anthropogenic activity.

(2) Antimicrobial Agents in Sediment As shown in Table 1, TCS concentrations
were consistently higher than TCC in the surface water but were lower than TCC in
the sediment. The detection frequencies of antimicrobial agents in the sediment
were as high as those in surface water. The maximum concentrations of TCS and
TCC were 1,329 ng/g (dw) [9, 11] and 2,723 ng/g (dw) [9], respectively. The high
concentrations and detection frequencies might be because of the tendency to
accumulate in the sediment due to the high logKow of TCC and TCS [14, 15].

Spatial variations of antimicrobial agents were observed in the sediment. Higher
levels of TCS and TCC were detected in the sediment of Pearl River [9, 11] than
those in the sediment of Liao River [9, 20], Yellow River [9, 21], and Hai River
[9]. The Yellow River showed the lowest levels of TCS and TCC in the sediment,
with the majority of samples below LOQs (1.58 ng/g for TCS and 0.39 ng/g for
TCC), which could be explained by the high sand contents and low total organic
carbon contents in the sediment [9]. Minor variations were also observed for the
sediment within a river. The concentrations of TCS and TCC in the sediment
increased from Liuxi Reservoir to the downstream of the Liuxi River, to the
metropolitan sites in Zhujiang River, and finally to the Shijing River [11]. Similar
trend was also observed in the surface water, indicating that sediment is a sink for
TCS and TCC and might further be a pollution source [11]. The mass inventories of
TCS and TCC were strongly correlated with urban population and total and
untreated urban sewage discharge amounts (R2 =0.526-0.994) [9].

3.2 Synthetic Musks

Synthetic musks have been widely used as fragrances in personal care and house-
hold products. With the dramatic increase in the industrial production and domestic
use, the release of the synthetic musks to the aquatic environmental caused a great
concern. The studies of the occurrence and distribution of synthetic musks in
WWTPs, surface water, and sediments have been carried out in China. The
galaxolide (HHCB) and tonalide (AHTN) were the predominant synthetic musks
with higher concentrations and detection frequencies. The synthetic musk levels in
WWTPs or the natural aquatic environment in China were in the same range or
lower than those in other countries. Seasonal and spatial variation of synthetic
musks in the aquatic environment was observed. High concentrations of synthetic
musks, especially HHCB and AHTN, were observed in the sediments of the urban
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area with a high population density. Thus, the synthetic musk level in the sediments
was proposed as the chemical tracer to indicate the impact of anthropogenic
activities and to assess the impact of domestic wastewater in the natural aquatic
system. In addition, there are clear regional biases in the knowledge of synthetic
musks in China. Therefore, more contamination information in different areas in
China, especially the natural aquatic environment, is needed.

3.2.1 Synthetic Musks in Sewage and Sludge

The concentrations of the synthetic musks in the influent and effluent of WWTPs in
China are summarized in Table 2. Eight targets, including HHCB, AHTN,
cashmeran (DPMI), celestolide (ADBI), phantolide (AHMI), traseolide (ATII),
musk ketone (MK), and musk xylene (MX), have been investigated. HHCB was
detected in all of the domestic WWTPs, with concentrations of 30.9-6,665 ng/L in
the influent and 22.6-3,065 ng/L in the effluent. AHTN also showed a relative high
detection frequency in the domestic WWTPs. The concentrations of AHTN in the
influent and effluent were 11.0-1,486 and 2.2-506 ng/L, respectively. In addition,
the concentrations of MK and MX in the influents of the domestic WWTPs were in
the range of 52-1,010 and 22-164 ng/L, respectively. However, ADBI, AHNI,
DPMLI, and ATII have not been detected in any samples from the domestic WWTPs
[30, 32-37]. In terms of HHCB and AHTN, which were the most frequently
detected targets, the highest level was observed in the WWTPs in Northeast
China [37], followed by the WWTPs in Shanghai and Beijing [30, 32-34]. The
HHCB and AHTN levels in Nanjing [36], Wuxi [36], and Xi’an [35] were relatively
low. The synthetic musk levels in China were in the same range [38, 39] or lower
[40, 41] than those in other countries. The synthetic musks could be partly removed
in WWTPs. The removal efficiencies of HHCB and AHTN were <14.3-98.0 and
<18.5-98.7%, respectively [32, 33, 35]. Most of the synthetic musks were adsorbed
to the sludge, which indicated that the waste sludge from WWTPs might be a
potential environmental pollution source [29]. The synthetic musks in the effluent
would lead to a higher concentration in the surface water at the downstream of
WWTPs.

The occurrence of synthetic musks in the sludge of WWTPs was investigated in
Beijing and Shanghai and summarized in Table 2. Zhou et al. collected samples
from three WWTPs in Beijing in 2007 and investigated HHCB and AHTN in the
sludge [33]. The concentrations of HHCB and AHTN were in the ranges of 2.5—
16.8 and 0.7-13.9 pg/g (dw), respectively. The results showed that HHCB and
AHTN tend to accumulate in the return activated sludge [33]. Hu et al. collected
samples from seven WWTPs in Beijing in 2008 and determined seven synthetic
musks in the sludges [32]. HHCB, AHTN, and MK were detected in all the samples,
with concentrations of 0.26-12.59, 0.01-2.56, and 0.13-0.53 pg/g (dw), respec-
tively. ATII and MX showed low detection frequencies and relatively low concen-
trations. However, AHMI and ADBI were not detected in any samples [32]. Lv
et al. investigated four synthetic musks in the WWTP in Shanghai in the four
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seasons during 2007 and 2008 [34]. HHCB and AHTN were the predominant
compounds in the sludge, with concentrations of 1.37-4.68 and 0.28-1.53 pg/g
(dw). The concentrations of MX and MK were in the range of N.D. (value was not
available)-0.007 and N.D. (value was not available)-0.03 pg/g (dw), respectively.

The synthetic musks in the industrial WWTPs which contained wastewater from
cosmetic plants were higher than those from domestic WWTPs. The concentrations
of HHCB, AHTN, DPMI, ADBI, and AHMI in the influents were 11,500-549,680,
890-64,600, 210-24,940, 6,540, and 470 ng/L, respectively. The synthetic musks
showed high concentrations even in the effluents. For example, the concentrations
of HHCB and AHTN in the effluent of a cosmetic plant were 32,060 and 5,410 ng/
L, respectively [31]. The results suggested that the wastewater from cosmetic plant
caused significant high load of synthetic musks to the domestic WWTPs and the
activated sludge treatment was insufficient to remove the synthetic musks [31]. In
addition, the synthetic musks in the sludge samples of a typical cosmetic plant in
Guangzhou were investigated [29]. The concentrations of DPMI, ADBI, AHMI,
HHCB, and AHTN in the sludge were in the ranges of 40.75-52.38, 1.46-4.01,
1.38-3.65, 479.73-601.27, and 49.69-107.61 pg/g (dw). The concentrations of the
synthetic musks increased from the primary sludge to the second sludge, indicating
that the synthetic musks accumulated in the sludge, which was supported by their
high logKow values [29].

Seasonal variations were observed in the occurrence and removal efficiency of
the synthetic musks [32, 34]. Significantly higher input loading of certain and total
synthetic musks were observed in summer (June and July 2008) compared to the
other seasons [34]. For example, the HHCB concentrations in a WWTP in Shanghai
were 1,478, 2,214, 2,170, and 1,841 ng/L in spring (March and April, 2008),
summer (June and July, 2008), autumn (October and November, 2007), and winter
(December 2007 and January 2008), and the input loading of HHCB were 79.8,
132.9, 119.4, and 84.7 g/day, respectively [34]. However, lower levels of HHCB
and AHTN in the influent and effluent of a WWTP in Beijing were observed in
warm season (May 2008) than in cold season (January 2008) [32]. Therefore,
further studies should be carried out to investigate the seasonal variation trend. In
addition, higher removal efficiencies of synthetic musks were observed in the warm
seasons (June and July 2008) compared to the other seasons in the anaerobic-
anoxic-oxic wastewater treatment process [34]. The higher temperature, the stron-
ger photodegradation, as well as the more abundant biomass and bioactivity in the
warm seasons might lead to the high removal efficiencies of synthetic musks [34].

The input loading of synthetic musks to the WWTP was investigated in Shang-
hai [30]. The concentrations of HHCB and AHTN were 1,467-3,430 and 435-
1,043 ng/L in the influent and 233-336 and 74-94 ng/L in the effluent, respectively.
Based on the concentrations of HHCB and AHTN, the amount of sewage in
Shanghai, and the average treatment rates of wastewater in Shanghai, 1.26 t
HHCB and 0.38 t AHTN were discharged into the aquatic environment in 2007.
In addition, based on the yearly input per inhabitant connected, the concentration of
HHCB and AHTN in the influent, the inhabitants that WWTP serves, and the
receiving capacity of WWTP, the yearly input per inhabitant into the WWTPs is
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estimated to be 0.2 g/capita per year for HHCB and 0.06 g/capita per year for
AHTN [30]. The yearly input per inhabitant was threefold lower than those in
Switzerland [42], indicating the low consumption rate of synthetic musks per
inhabitant in Shanghai compared to Switzerland.

3.2.2 Synthetic Musks in Surface Water and Sediment

(1) Synthetic Musks in Surface Water The occurrence and distribution of syn-
thetic musks has been investigated in three surface water areas in China. In Haihe
River in North China, the total concentrations of seven targets were in the range of
5.9-120.6 ng/L [43]. HHCB and AHTN showed high detected frequencies and were
observed in all the surface water samples. The concentrations of HHCB and AHTN
were in the range of 3.5-32.0 and 2.3-26.7 ng/L, respectively. MK, AHMI, and
ATII showed low detected frequencies. However, MX and ADBI were not detect-
able in any water samples [43]. In Suzhou Creek in Shanghai, the concentrations of
HHCB and AHTN were in the range of 20-93 and 8-20 ng/L, respectively
[30]. However, DPMI, AGMI, ADBI, ATII, MK, and MX were not detected. In
Songhua River in Northeast China, the concentrations of DPMI, ADBI, AHMI,
ATII, HHCB, and AHTN were in the range of N.D. (0.66)-6.80, N.D. (0.90)-3.22,
N.D. (0.15)-10.56, N.D. (1.29)-1.68, 28.55-195.38, and 9.99-87.53 ng/L, respec-
tively [37]. The synthetic musk levels in the surface water in China were in the
same range as those in the USA [44] and South Korea [45] but lower than those in
Germany [46] and Switzerland [47].

Seasonal variation of synthetic musks was observed in Songhua River [37]. The
concentrations of the total synthetic musks were higher in spring (April 2007 and
2009) and summer (August 2007 and 2009) compared to autumn (October 2006 and
November 2008). The precipitation might affect the seasonal variation [37].

Spatial variations of the synthetic musks have been observed. The synthetic
musks in the Haihe River showed higher concentrations in the urban area of Tianjin
City [43]. Similarly, HHCB concentrations of the Suzhou Creek were higher in the
urban areas in Shanghai [30]. In Songhua River, the synthetic musk levels were
higher in the downstream of the city with high population density [37].

(2) Synthetic Musks in Sediment In the Liangtan River near Chongqing in West
China, both HHCB and AHTN were frequently detected in the surface sediments
with concentrations of <LOQ (10)-268.49 and <LOQ (10)-99.75 ng/g (dw),
respectively [48]. MK was detected in 3 samples with concentrations of 15.80—
21.95 ng/g (dw). However, MX was not detected in any samples [48]. The concen-
trations of HHCB and AHTN in the sediments of Suzhou Creek near Shanghai in
East China were in the range of 3—78 and 2-31 ng/g (dw), respectively. However,
DPMI, AHMI, ADBI, ATII, MK and MX were not detected [30]. In the Haihe River
in North China, the concentrations of HHCB, AHTN, and total synthetic musks in
the surface sediments were in the ranges of 1.5-32.3, 2.0-21.9, and 1.7-58.8 ng/g
(dw), respectively [43]. In Songhua River in Northeast China, HHCB, AHTN,
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ADBI, and AHMI were detected in all the sediment samples, with concentrations of
2.47-8.30, 0.50—4.18, 0.52-8.30, and 0.25-1.90 ng/g (dw), respectively. The con-
centrations of ATII and DPMI were in the range of N.D. (value was not available)-
3.28 and N.D. (value was not available)-0.48 ng/g (dw) [37]. In addition, the total
concentrations of synthetic musks were in the range of 7.27-167.35 ng/g (dw) in the
sediment of Zhujiang River in South China [49]. Unlike in the surface water, the
concentrations of the synthetic musks in the sediments showed slightly difference
among different sampling seasons [37].

Spatial distribution was observed. High concentrations of synthetic musks,
especially HHCB and AHTN, were observed from the urban area with a high
population density [30, 37, 48, 49]. Therefore, the synthetic musk level in the
sediments was suggested to be used as the chemical tracer to indicate the impact
of anthropogenic activities and to assess the impact of domestic wastewater in the
natural aquatic system [30, 48, 49].

3.3 UV Filters and UV Stabilizers

UV filters are widely used in sunscreens, skin creams, cosmetics, hair sprays, body
lotions, and so on to protect from UV radiation. The usage of UV filters increased
due to the concerns over the effects of UV radiation in humans. UV filters can be
either organic (absorb UV radiation) or inorganic compounds (reflect UV radiation,
e.g., Ti0,). In this section, the occurrence of organic UV filters will be discussed. In
addition, the occurrence of UV stabilizers, which are used in the building materials,
automobile polymeric component, waxes, films, and so on to prevent degradation
reaction by UV radiation, will be included. The investigation of UV filters and UV
stabilizers in the aquatic environment in China was few. So far, the occurrence of
UV filters in the sewage of WWTPs in Tianjin and Xiamen was studied, in which
the concentrations showed big difference. The UV stabilizers were well investi-
gated among large scale in one study. In addition, the studies of UV filters in the
surface water and sediment were scarce. Further studies should be carried out to
understand the occurrence and environmental behavior of UV filters in the aquatic
environment in China.

3.3.1 UV Filters and UV Stabilizers in Sewage and Sludge

Li et al. investigated UV filters in a wastewater reclamation plant (WWRP) in
Tianjin, North China [50]. All the four UV filters, including benzophenone-3
(BP-3), 4-methylbenzylidene camphor (4-MBC), ethylhexyl methoxycinnamate
(EHMC), and octocrylene (OC), were detected in the influent, and the concentra-
tions were in the range of 34—2,128 ng/L. The occurrence and seasonal variations of
50 PPCPs, including two UV filters (BP-3 and OC), were investigated over four
seasons in a WWTP in Xiamen, Southeast China [2]. The average concentrations of
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BP-3 in the influent and effluent were 12.85 and 3.16 ng/L, respectively. However,
OC were not detected in any samples. Generally, the UV filters concentrations in
the wastewater in China were lower than those in Switzerland [51] and
Australia [52].

UV filters in the wastewater were season dependent. The concentrations were
higher in the hot season than those in the cool season in WWTPs in both Tianjin
(July 2005) [50] and Xiamen (August 2012) [2]. The increased concentration was
probably due to the more usage of sunscreens in summer. The total removal
efficiencies of UV filters in the WWTP were 28-43% in Tianjin [50]. The results
indicated that UV filters were incompletely removed and may be discharged to the
environment through treated WWTP effluent.

Zhang et al. investigated five benzophenone UV filters, two benzotriazole corro-
sion inhibitors, and four benzotriazole UV stabilizers in the sludge samples of five
WWTPs in Northeast China [53]. 2-hydroxy-4-methoxybenzophenone (20H-4MeO-
BP), 2,4-dihydroxybenzophenone (2,40H-BP), 4-hydroxybenzophenone (4OH-BP),
1H-benzotriazole (1H-BT), 5-methyl-1H-benzotriazole (SMe-1H-BT), 2-(3-#-butyl-
2-hydroxy-5-methylphenyl)-5-chlorobenzotriazole ~ (UV-326),  2,4-di-t-butyl-6-
(5-chloro-2H-benzotriazol-2-yl)-phenol (UV-327), 2-(2H-benzotriazol-2yl)-4,6-di-z-
pentylphenol (UV-328), and 2-(5-¢-butyl-2-hydroxyphenyl)benzotriazole (TBHPBT)
were detected, with concentrations in the range of 2.05-13.3, 4.41-91.6, 2.66-10.1,
17.2-198, 30.0-104, 23.3-136, 1.80-8.40, 40.6-5,920, and 0.730-1.18 ng/g (dw).
However, 2,2 4,4’ -tetrahydroxybenzophenone (2,2',4,4 OH-BP) and 2,2'-dihydroxy-
4-methoxybenzophenone (2,2’OH-4MeO-BP) were not detected in any sample
[53]. Ruan et al. investigated the occurrence and distribution of nine benzotriazole
UV stabilizers in the sludge samples from 60 WWTPs in 33 cities all over China
[54]. 2-[3,5-bis(1-methyl-1-phenylethyl)-2-hydroxyphenyl]-benzotriazole (UV-234)
was the most dominant analogue with a median concentration of 116 ng/g (dw),
which averagely accounted for 27.2% of total UV stabilizers. 2-(2-hydroxy-5--
octylphenyl)benzotriazole (UV-329), UV-326, UV-328, and 2-(2-hydroxy-5-
methylphenyl)benzotriazole (UV-P) showed high abundance in the sludge with the
median concentrations of 66.8, 67.8, 57.3, and 20.6 ng/g (dw), respectively. Signif-
icant correlations were found among the concentrations of benzotriazole UV stabi-
lizers with daily treatment volume of WWTPs or the total organic carbon (TOC) of
the sludge samples. There was no obvious geographic trend for the distribution
pattern of UV stabilizers, indicating the universality of usage and contamination in
China [54].

3.3.2 UV Filters and UV Stabilizers in Surface Water and Sediment

In a recent study, we investigated the seasonal and spatial variation of OC and BP-3
in Jiulong River and its estuary in Southeast China [23]. Both OC and BP-3 were
widespread in the surface water, with more than 80% detection frequencies. The
concentrations of OC and BP-3 were in the range of 0.12-1.94 and 0.25-37.2 ng/L
in the Jiulong River and were 0.4-96.7 and 0.6-547 ng/L in the estuary,
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respectively. The UV filters showed higher concentrations in the warm season (June
2012, and Sep 2012), since the consumption increased in the warm season. In
addition, BP-3 and OC showed significantly higher concentrations near Gulangyu
Island (a famous tourist resort) among the estuary samples in summer, which
indicated that the UV filter contamination in the surface water was related to the
tourists and high population density.

The occurrence of five benzophenones and six benzotriazoles was investigated
in the sediments in Songhua River in Northeast China [53]. The average concen-
trations of 1H-BT, 20H-4MeO-BP, UV-326, UV-327, and UV-328 were 0.385,
0.380, 1.86, 0.31, and 3.81 ng/g (dw), respectively. 5SMe-1H-BT, 2,2’,4,4’-OH-BP,
40H-BP, 2,40H-BP, 2,2’0H-4MeO-BP, and TBHPBT were not detected in the
sediments. Generally, the concentrations of UV filters or stabilizer in the sediments
of Songhua River were lower than those in Saginaw and Detroit River in the
USA [53].

3.4 Preservatives

Parabens are a class of chemicals widely used as preservatives in pharmaceuticals
and cosmetics. The commonly used parabens are methylparaben (MeP),
ethylparaben (EtP), propylparaben (PrP), butylparaben (BuP), and benzylparaben
(BzP). The investigation of preservatives in the aquatic environment in China was
mainly in South and Southeast China, including the surface water of Pearl River and
Jiulong River and its estuary and wastewater from WWTPs in Guangzhou and
Xiamen. However, to the best of our knowledge, the occurrence and distribution of
the preservatives in the solid samples in China have not been reported. Further
investigation should be carried out to understand the preservatives in the solid phase
and in other areas in China.

Peng et al. investigated the preservatives in the major Pearl River and three
urban streams at Guangzhou in 2005-2006 [19]. The concentrations of MeP and
PrP were in the range of <LOQ (0.5 ng/L)-1,062 and 82,142 ng/L in the low-flow
seasons (March, October, and December) and were <LOQ (0.5 ng/L)-213 and
<LOQ (0.1 ng/L)-480 ng/L in the high-flow seasons (April, May, and August),
respectively. However, BuP was not detected in any samples. Higher concentra-
tions of preservative were observed in the low-flow season, which was probably
attributed to the dilution effect caused by rainfall. Yu et al. investigated the
occurrence of preservative in Pearl River at Guangzhou by collecting thirteen
samples in March and May 2008 [17]. The concentrations of MeP, EtP, PrP, and
BuP were in the range of 0.9-66.1, 0.2-23.1, 1.2-86.0, and <0.1-5.3 ng/L, respec-
tively. In addition, four preservatives were detected in the WWTP in Guangzhou in
2008. The concentrations of MP, EP, PP, and BP were 1,194, 166, 500, and 27 ng/L
in the influent, while the concentrations were 5.1, 1.0, 7.2, and 0.3 ng/L in the
effluent, respectively [17]. Results showed that the preservatives could be well
removed in the WWTP.
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Sun et al. recently investigated the preservatives in a local WWTP in Xiamen,
China [2]. The concentrations of PrP, MeP, and BzP were in the range of 129-392,
140-274, and <LOQ (0.1 ng/L)-0.2 ng/L in the influent, respectively. The con-
centrations of PrP and MeP in the effluent were 0.6-72 and 1.3—101 ng/L, respec-
tively. However, the BzP was not detected in the effluent. PrP and MeP showed
higher concentrations in March 2013 compared to August and December 2012 and
May 2013. The lower dilution rate owing to the less water consumption might
contribute to the higher preservative concentrations. In a recent study, we investi-
gated the PrP and MeP in the Jiulong River and its estuary in Southeast China. The
concentrations of PrP were in the range of 0.69—16.4 ng/L in Jiulong River and 1.4—
128 ng/L in the estuary. The concentrations of MeP were in the range of 0.9—
20.6 ng/L in Jiulong River and 1.1-229 ng/L in the estuary [23].

Generally, the preservative concentrations in the Pearl River were comparable to
those in the Jiulong River. Higher concentrations of preservatives were observed in
the influent in the WWTP in Guangzhou compared to Xiamen. Further investiga-
tions in the other areas of China should be carried out to understand the preservative
occurrence and behavior in the aquatic environment.

4 Implication to Research

The production and consumption of PCPs continued to grow over the last few
decades in China. It can be predicted that the presence and contamination of PCPs
in the environment in China will arise. The occurrence and fate of PCPs in the
aquatic environment in China has been investigated. However, there are still
challenges in the future studies.

4.1 Improvement of the Monitoring Methods and Areas

So far, the investigation of the PCP occurrence only involved several PCP com-
pounds in each study, which made it difficult to understand the contamination of a
variety of PCPs. In addition, possible new PCPs and the transformation products of
PCPs in the environment should be identified and included in the monitoring list
because of their potential adverse effect. Therefore, the investigation involved in a
variety of PCPs should be carried out in the future. Furthermore, since PCPs could
show an environmental risk at the low levels, there is a need to develop more
sensitive and selective analytical methods which could detect PCPs at trace levels.

There are clear regional biases in the knowledge of PCPs in China. Most of the
investigation focused on the Beijing-Tianjin area, Yangtze River Delta, Pearl River
Delta, Southeast China area, etc. There is a severe lack of PCP contamination status
in China other than those hot spots [55], especially in the middle and west part of
China. Among the PCP contamination data in the aquatic environment, most
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studies investigated the PCPs in the WWTPs, including the wastewater and the
sludge. A few studies focused on the river pollution, including the surface water and
the sediment. However, the knowledge of PCPs in the groundwater, drinking water,
coastal water, and sediment was scarce. In addition, the large-scale monitoring of
PCPs in different regions of China in one study was lack, which made it difficult to
compare the pollution status of target PCPs among studied areas. Therefore, more
contamination information in different areas in China, especially the natural water-
shed, is needed.

Most studies were based on a single sampling or very short monitoring periods.
It was difficult to understand the occurrence and pollution status of PCPs over an
extended period. The occurrence and fate of PCPs in the WWTPs and natural
watershed could change with seasons. Therefore, it is necessary to monitor the
pollution status of PCPs over a long period.

4.2 Improvement of Control Strategies

The major source of PCPs to the environment is through the WWTPs [56]. The
conventional wastewater treatment processes (flocculation, sedimentation, and
activated sludge treatment) could partly remove the PCPs. However, the removal
efficiencies were limited [55]. PCPs remained in the sewage or sludge would cause
subsequent contamination to the receiving water bodies or soils. Considering the
increase of PCP consumption in China, the increased loads in the WWTPs would
lead to an environmental problem. Hence, the application of the innovative and
advanced wastewater treatment processes to improve the removal of PCPs is
necessary.

Due to the lack of financial support or incomplete sewer network, the conven-
tional wastewater treatment facilities are not available in some rural areas of China
[57]. The direct discharge of wastewater without any treatment might be the
potential cause of nonpoint source pollution of PCPs. Therefore, more wastewater
treatment facilities should be established to avoid the direct discharge of wastewa-
ter in the rural areas and to reduce PCP contamination. Finally, the regulations and
legislation should be established for PCP management in China in the future.

Conclusions

Studies have investigated the occurrence of PCPs in the aquatic environment
in China. The PCP levels were in the range of ng/L to pg/L in the surface
water and sewage while ng/g to pg/g (dw) in the sediment and sludge,
depending on the species of PCPs or the samples. Generally, the PCP levels,
including antimicrobial agents, synthetic musks, UV filters, and preservatives
in China, were comparable to the global levels. However, the concentrations

(continued)
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of synthetic musks and UV filters in China were somewhat lower than those
in the European countries. The investigation of PCPs in China showed strong
regional biases, which mainly focused on the developed area with high
population density. There is almost no information available for the areas
other than the hot spots. In addition, studies with large scales and extended
monitoring periods were still needed. Moreover, the environmental behavior,
including the transport and transformation of PCPs, in aquatic environment
was poorly understood. Considering the increasing consumption of PCP in
China, the increased loads would lead to a severe environmental problem.
Therefore, further studies are needed to get a better understanding of PCPs in
the aquatic environment in China.
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Survey of Personal Care Products
in the United States

Melody J. Bernot and James R. Justice

Abstract In 2013, the United States had a population of ~316 million people,
increasing 2.4% from 2010, with 13.7% of the population 65 years or older.
Coupled with population growth and an aging population is an increase in the
development and use of personal care products (PCPs). With 4.7% of global
freshwater resources in the United States, freshwater resources and services are
influenced by increasing abundance of PCPs which have been detected in freshwa-
ters throughout the United States. Though a majority of the studies on PCPs in
freshwaters globally have been conducted in the United States, a predictive under-
standing of PCP abundance and fate remains lacking. Compounds commonly
detected in US freshwaters at high detection frequencies (>50%) include antimi-
crobials, fragrances, insect repellants, and UV blockers.

Keywords Anthropogenic pollutants, Groundwater, Personal care products, Sur-
face waters, Trace organic contaminants, Wastewater
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1 Introduction

In 2013, the United States had a population of ~316 million people, increasing 2.4%
from 2010 [1]. Population growth has increased the development and use of
personal care products (PCPs), with the United States currently being the largest
market for PCP sales [2]. PCPs are generally defined as personal hygienic products
that are not prescribed or ingested. Rather, PCPs are commonly applied topically
and include, though are not limited to, fragrances, antimicrobial agents, and cos-
metics. Following use and disposal, PCPs with variable chemical and physical
properties ultimately emerge in natural ecosystems where PCP movement and
environmental fate are not well understood.

Because PCPs do not require a prescription and are generally used in larger
volumes than pharmaceuticals, PCPs are likely more abundant in ecosystems
relative to pharmaceutical contaminants. After topical application, PCPs can enter
water systems through loss on washing. Thus, a primary entry point into natural
ecosystems is through wastewater, and PCPs are more abundant in freshwater
ecosystems relative to other environments. The United States has 4.7% of global
freshwater resources housed in diverse lakes, streams, rivers, and wetlands (Fig. 1).
All of these freshwater resources, and the services they provide, may be threatened
by the increased PCP development and use. Some threats to freshwater ecosystems,
such as nutrient enrichment and acidification, have been well studied, yielding
predictive models that aid regulatory action. However, a predictive understanding
of PCP abundance and fate remains lacking with limited research to guide assess-
ments of regulatory need. Unlike some European countries, no PCP compounds are
currently federally regulated in the United States. Limited understanding of PCP
abundance is confounded by both the diversity of PCP compounds and the diversity
of freshwater ecosystems in the United States. Freshwater ecosystems in the United
States have variable geology, geography, surrounding vegetation, and land use in
the sub-watersheds (Fig. 1), all of which may influence PCP movement and
degradation within aquatic ecosystems.
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Fig. 1 Freshwater in the United States is influenced by variable vegetation and surrounding land
use

Though data on the environmental abundance and fate of PCPs in the United
States are limited relative to other contaminants (e.g., pharmaceuticals, nutrients,
pesticides), a majority of the studies on PCPs in freshwaters globally have been
conducted in the United States [3]. This limited research has focused on determin-
ing PCP abundance predominantly in urban watersheds, and data are further
skewed by geographic location. In 2011, only 22 US states (44%) had multiple
assessments of PCP abundance in aquatic ecosystems inclusive of both national
reconnaissance and regional studies [3]. Despite limited PCP research in the United
States, some general patterns have emerged. Specifically, PCP compound classes
commonly detected in surface water at high detection frequencies (>55%) include
antimicrobials, fragrances, ultraviolet (UV) light blockers, and insect repellents
with additional anthropogenic inputs of novel PCPs such as microplastics and
nanomaterials. Further, PCPs are consistently measured above detection limits
across the country in both urban and agriculturally influenced areas. However, the
specific compounds detected and the range in concentrations measured varies both
within and among previous studies (Table 1). Beyond commonly detected com-
pounds, few published syntheses or multidisciplinary studies are available to
elucidate predictive patterns.

Most research documenting abundance of PCPs in the United States has focused
on surface waters inclusive of streams and rivers with fewer studies in lakes. One of



M.J. Bernot and J.R. Justice

98

[81] Te 10 1opreydS S 9 | wnurxe 0z I0JEMPUNOID) | SIOSNYJBSSBIA
[L1] Te 32 soI1Q 08 UBOAl €1 ATensg oosoueRl] Ueg BIUIOJI[ED)
[91] ‘e 10 ssureg | 6v1 8¢ 00S°€l | wnuixepy Ly Iojepunolsy [euonjeN
[S1] e o1zeooq | '8 y1 WNWIXe]A YL I0JeMpUNoIs {9oelIng [euoneN

Ioyemolsem
[#1] 2A0131194 pue sureIo| 179 00€ BNl S ‘pauure[oalr ‘FuryuLIq BIUIOJI[ED)
[€1] ‘Te 10 opues 001> 08 | wnuirxe il 10JeMI)SEM (10JeMm d0BJING | BIOYR( INOS
[21] ‘Te 10 Iokowsse[n | 679 009°1 0oL 001‘C | wnuixep oF JUSNJO 19)eMm doeLING [euoneN
[11] e 10 udioyy | ¢e'¢ oyl| Lt 0¢l | wnwixep 9L €C 19JeM 93eJIng BMO]
[01] T80 29T | T'8|00€—88 | 6°€T | 000°Ly—LT oguey S9 paLeA BJOSaUUTA
[6] ‘T 15 projropue LT LE Ues] 8 I PEIN 9¥E] EPBASN
[8] Te 10 IreIg 8% WINUWITXR]A L JuanpJo SUeSIYIIA aye] UISUODSTA\
[L] 83nez pue yog | 9¢ 00% | 6'€T 0TI | wnuuxepy 9 sureang v13100D
[9] e 30 wrdjo3] | 9'L¢ 0€T| I'vL 001°T | WnWIXeA] 6¢l swesang [euoneN
[c] Terrourdg | LG 0ec| 0L 081 | wWnwixepn 081 I sureang euelpuy
[¢] youtog pue yoeap | I | TT-1'6 ¥9 06C—8 oguey 1 4 sureang euelpuy
SQOUAIRJY % 1/3u % 1/3u| odAy ereq | (#) soidwes | (#) SIS 90IN0S IAJB A\ uornes0]

UBSO[OLL], 134d

SoJeIS AU Y} UI (9) serouanbaly uondelep pue (/3u) SUOHEIIUIUOD D PAAJOSSIP Jo sarpmys paysiiqnd 109[0S | J[qe],



Survey of Personal Care Products in the United States 99

the first surface water reconnaissance efforts by the United States Geological
Survey (USGS) [6] at the national scale provided a broadscale baseline for which
subsequent regional scale studies have been able to compare PCP detection fre-
quencies and concentrations. In the 2002 national reconnaissance of 139 streams
across 30 states, Kolpin et al. [6] detected organic waste contaminants in 80% of
streams sampled. Of the PCPs analyzed, N,N-diethyltoluamide (DEET; insect
repellant), triclosan, and 4-nonylphenol (nonionic detergent metabolite) were the
most frequently detected with significant variation among sites. PCP compound
abundance on the national scale is variable by both PCP compound type and the
concentrations at which they occur. At local and regional scales, the range of
concentrations and compounds detected are muted relative to the national scale,
though can still vary by more than two orders of magnitude.

Nationally, groundwater provides drinking water for 40% of US residents as
well as natural baseflow to surface waters [19, 20]. However, groundwater may also
transport environmental contaminants, including PCP compounds, that can threaten
organismal and ecosystem health. It is unclear whether groundwater is serving as a
source of PCPs to surface waters or surface waters are serving as a source of PCPs
to groundwater though it is likely system and condition specific [16, 21]. A nation-
wide assessment of PCP concentrations in groundwater detected at least one
organic wastewater contaminant in 81% of groundwater sites surveyed in the Unites
States (susceptible sites selected for measurements) [16]. Across use categories,
plasticizers (39%) had the highest frequency of detection followed by insect
repellants (38%) and fire retardants (35%) [16]. Per unit concentration, plasticizers,
insect repellants, and detergent metabolites contributed 66% of the total PCP
concentration in groundwater (sum of all compound concentration) [16]. Despite
relatively high detection frequencies and concentrations, at the national scale
groundwater PCP detection frequencies and concentrations are lower relative to
surface waters, suggesting surface waters may generally serve as a source of PCPs
to groundwater [6, 16].

2 Antimicrobials and Disinfectants

Widely used and commonly detected antimicrobial agents in US freshwaters
include triclosan, triclocarban, and phenol with most studies focused on triclosan.
Triclosan has been used extensively for nearly 40 years in toothpastes, soaps, and
lotions resulting in triclosan (and its methyl derivative, methyl-triclosan) consis-
tently present in US surface waters (Table 1). A recent meta-analysis [22] of
triclosan in freshwater from data spanning 1999-2012 found 83% of effluent
samples had measurable concentrations of triclosan (mean
concentration =775 ng/L).
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2.1 Streams and Rivers

The first reconnaissance effort by the USGS [6] on the national scale detected
triclosan (median concentration = 140 ng/L, maximum = 2,300 ng/L) in 57.6% of
stream water samples. In a nationwide survey of streams receiving wastewater
effluent, triclosan was detected at a frequency of 62.5%, with median and maximum
concentrations of 120 and 1,600 ng/L, respectively [23]. Similarly, river water
samples collected near a wastewater outfall in Tennessee contained 171 ng/L
triclosan [24]. Under low flow conditions, triclosan was found in 10% of water
samples from Iowa streams, with a maximum concentration of 140 ng/L [11]. Sim-
ilar to streams across Iowa, Veach and Bernot [4] detected triclosan in 12% of
stream samples collected in Indiana (mean concentration = 22 ng/L).

Outside of Europe, few studies have quantified methyl-triclosan in streams, with
more studies in the United States needed. In Texas streams, Coogan and La Point
[25] detected a maximum methyl-triclosan concentration of 40 ng/L, with greater
detection frequency (100%, n=15) than previously reported triclosan parent-
compound detection frequencies.

Similar to triclosan, triclocarban has relatively high detection frequencies. For
example, 68% of Maryland streams sampled had triclocarban concentrations above
detection limits [26]. Across regions, triclocarban concentrations in US aquatic
ecosystems can vary by orders of magnitude. The maximum detected triclocarban
concentration from New York environmental samples was 6,750 ng/L [26], while
Kumar et al. [27] detected a maximum triclocarban concentration of just 49 ng/L in
water from the Vernon River in Georgia.

Phenol and 4-methyl phenol are disinfectants also found in US freshwaters,
typically at lower detection frequencies than triclosan and triclocarban as evidenced
by nationwide studies. Across 85 sites in the continental United States, phenol was
detected in 8.2% of samples (median concentration =700 ng/L) [6]. Further,
4-methyl phenol was detected in 24.7% of samples nationwide though with a
median concentration 14x lower than phenol (mean 4-methyl phenol =50 ng/L)
[6]. Glassmeyer et al. [23] detected phenol in 40% of stream waters receiving
effluent from ten locations across the United States. In contrast, phenol was
detected in 30% of Iowa streams with a maximum concentration of 1,200 ng/L
under low flow conditions, while 4-methyl phenol was not detected in any
samples [11].

2.2 Lakes

Recent attention has been placed on PCPs in the Laurentian Great Lakes, where
greater water volume relative to streams was previously thought to minimize PCP
concentrations. However, recent studies suggest antimicrobial agents have become
increasingly ubiquitous in the Great Lakes. Several studies have assessed PCPs in
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the Great Lakes in both the United States and Canada [8, 28-32] with sampling
efforts primarily conducted near shore. Triclosan was detected in 74% of water
samples collected from seven Lake Michigan sites [8]. Near Milwaukee (Wiscon-
sin), mean triclosan concentrations were 2.7 ng/L (max =7.4 ng/L; 71.4% detec-
tion) at sites >3 km from effluent inputs [8]. In a Lake Ontario harbor, triclosan
concentrations were 20 ng/L. However, triclosan concentrations in Lake Ontario
open water were only 1 ng/L [33]. Ferguson et al. [3] detected triclocarban in 98%
of water samples collected in eight southern Lake Michigan sites (n=64) with
concentrations ranging from 2.5 to 14 ng/L. Overall, antimicrobial agents are
measured at higher concentrations in streams relative to large lakes where PCPs
are further diluted. Nevertheless, reported concentrations of antimicrobial agents in
the Great Lakes still indicate a potential threat to lake ecosystems and aquatic
organisms.

2.3 Marine Environments

Particularly in marine environments, abundance and ecological consequences of
PCPs are poorly understood. In the United States, few studies have quantified
estuarine and marine PCP abundance; further, confounding factors such as salinity
and tidal cycles likely influence PCPs differentially relative to inland freshwaters.
In Greenwich Bay (Rhode Island) [34], dissolved triclosan concentrations ranged
from 0.5 to 7.4 ng/L, an order of magnitude lower than measurements in land-based
surface waters (Table 1) but comparable to dissolved triclosan concentrations from
Charleston Harbor (South Carolina; max =1 ng/L) [35]. Greenwich Bay (Rhode
Island) sediment triclosan concentrations ranged from <1 to 32 ng/g [34]. Interest-
ingly, Katz et al. [34] found wastewater discharges in close proximity to sampling
sites did not predict spatial distribution of triclosan in estuaries. Therefore, sources
other than effluent discharge of PCPs to estuarine habitats should also be consid-
ered, such as atmospheric deposition and groundwater runoff of solid wastes.

2.4 Groundwater

Few studies have quantified PCPs from groundwater samples, with future research
needed. In a nationwide study, triclosan and phenol were measured from 47 ground-
water sites across 18 states [16]. Phenol was not detected at any site; however,
triclosan was detected in 14.9% of groundwater samples using a non-quantitative
detection method [16]. Detectable triclosan concentrations from groundwater wells
in west Texas ranged from 53 to 120 ng/L [36]. Interestingly, the overlying land in
west Texas from which these groundwater samples were collected had a history of
receiving biosolid application [36].
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2.5 Sediment and Biosolids

In contrast to studies measuring dissolved PCP concentrations, few national scale
assessments of sediment-bound PCP concentrations have been conducted to pro-
vide broad comparisons among studies. However, multiple regional studies have
measured dissolved and sediment-bound PCPs in concert. In general, dissolved
PCP concentrations tend to be higher relative to sediment concentrations though
this is compound specific. Triclosan has been detected in Mississippi River sedi-
ment (max = 14 ng/L) cores as far back as 1960 when triclosan was initially
produced [37]. In Lake Michigan, PCPs detected in water samples differed from
compounds measured in sediment samples though triclosan was measureable in
both matrices [8].

Miller et al. [38] examined the historic presence of triclosan and triclocarban in
estuarine sediment cores from Jamaica Bay (New York) and the Chesapeake Bay
(Maryland). Across both sample locations, triclocarban was detected at higher
concentrations than triclosan. Jamaica Bay sediment contained more triclocarban
(max = 24,000 ng/g) and triclosan (max =800 ng/g) than Chesapeake Bay sedi-
ment, which yielded a maximum triclocarban concentration of 3,600 ng/g with
triclosan below detection limits [38]. In the Puget Sound (Washington), more than a
third of the estuary sediment samples collected contained triclocarban, with a
maximum concentration of 16 ng/g [39].

Kumer et al. [27] detected a mean triclocarban concentration of 37 ng/g from
Vernon River (Georgia) sediment. Interestingly, triclocarban was not detected in
water samples from seven Lake Michigan sites near Milwaukee (Wisconsin)
[8]. However, underlying benthic sediment in Lake Michigan contained a mean
triclocarban concentration of 33 ng/g and a mean triclosan concentration of
26 ng/g [8].

Digested municipal sludge, produced in the United States at ~7 million dry tons
annually, is frequently applied to land, thereby providing a potential source of PCPs
to US freshwaters [40]. With over 3,000 wastewater application sites in the United
States, research has focused on the potential use of reclaimed wastewater to serve
increasing water demands [41, 42]. A nationwide mass balance modeled 5-15 tons
of PCPs annually are applied to US soils via biosolid application [43].

In a survey of biosolids across the United States, triclosan (mean = 12,600 ng/g)
and triclocarban (mean = 36,000 ng/g) were the most abundant analytes accounting
for 65% of the total PCP mass [40]. A 3-year mesocosm study of biosolids in
Maryland quantified the degradation of common PCPs. Interestingly, triclosan
(half-life = 187 = 6 days) was degraded over time, while triclocarban showed no
measurable degradation [44]. The results of the mesocosm study by Walters
et al. [44] may explain why agricultural soils in Michigan that had previously received
biosolid applications contained higher concentrations of triclocarban (range = 1.2—
6.5 ng/g) relative to triclosan (range = 0.16—1 ng/g). Further, direct analysis of the
biosolid prior to agricultural application revealed the biosolid contained much greater
amounts of triclocarban (9.28 pg/g) and triclosan (7.06 pg/g) relative to biosolid
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amended agricultural soils [45]. Given the nearly 3.5 million dry tons of biosolids
annually applied to land, antimicrobial agents are likely to be abundant downstream of
biosolid application sites.

2.6 Biota

In terrestrial ecosystems, triclosan has been measured in soybean root tissue
(16,900 ng/g) [41], presumably associated with biosolid application. Specifically
from biosolid application sites, triclosan and phenol have also been detected in
earthworms at concentrations of 1,830 and 2,610 ng/g, respectively [46].

In aquatic ecosystems, few studies have quantified PCPs in higher-trophic-level
species. However, blood plasma in wild bottlenose dolphins from South Carolina
and Florida had measureable triclosan ranging from 0.12 to 0.27 ng/g wet weight
with 23% of samples having detectable concentrations (detection limit = 0.005 ng/
g) [47]. Triclocarban was consistently measured at higher concentrations relative to
triclosan and methyl-triclosan in algae and snail tissue collected from an effluent-
receiving stream, Pecan Creek (Texas) [48]. Algal triclocarban ranged from 200 to
400 ng/g, while mean triclosan and methyl-triclosan concentrations were 125 and
70 ng/g, respectively [48]. Mean triclocarban concentration in snail tissue (caged
snails placed in Pecan Creek for 14 days) was 299 ng/g, while triclosan and methyl-
triclosan concentrations were 58.7 and 49.8 ng/g, respectively [48]. Leiker
et al. [49] detected methyl-triclosan in every carp sample (n =29) collected from
Lake Mead (Nevada), with a mean body concentration of 596 ng/g.

3 Fragrances

Fragrances have become ubiquitous within the environment, with the potential to be
toxic to organisms as well as bioaccumulate in tissues [50]. Fragrances were first
identified in environmental samples >30 years ago in Japanese rivers [51]. More
recently, fragrances have been detected in many European environmental samples
though less anthropogenic fragrance research has been conducted in the United
States. Synthetic musk fragrances, which are subclassified as either nitro musks or
polycyclic musks, are commonly used fragrances in many cosmetics, lotions, and
perfumes. Common nitro musks include musk xylene and musk ketone, while
common polycylic musks include celestolide, traseloide, toxalide, tonalide, and
galaxolide. Overall, polycyclic musks are used in greater quantities than nitro
musks [50, 52]. Additional fragrances of concern include acetophenone, ethyl
citrate, indole, isoborneol, and skatol. However, most of these compounds, except
acetophenone and ethyl citrate, are not typically detected in environmental samples.
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3.1 Streams and Rivers

Nationally, fragrances are likely to occur in lotic freshwaters throughout the United
States; however, national contaminant sampling efforts have focused minimally on
fragrances. Acetophenone was the only fragrance of 95 total organic contaminants
to be sampled by Koplin et al. [6] in a national trace organic reconnaissance effort.
Acetophenone occurred in 9.4% of stream water samples at a maximum concen-
tration of 410 ng/L [6]. In effluent-receiving streams across the United States, the
maximum acetophenone concentration was 780 ng/L (detection frequency = 7.5%)
[23]. Additional detected fragrances included ethyl citrate (detection
frequency = 72.5%, max =520 ng/L), galaxolide (detection frequency =57.5%,
max =530 ng/L), and tonalide (detection frequency =80%, max = 2,600 ng/L)
[23]. Future national reconnaissance efforts specifically focused on fragrances are
required to understand the distribution and abundance of these potentially toxic
compounds. Given the high detection frequencies and environmental concentra-
tions of certain fragrances identified in studies outside of the United States, fra-
grances may have adverse ecosystem-level effects on streams and rivers.
Regionally, in Iowa streams, commonly detected fragrances were comparable to
the national scale [11]. Tonalide was detected at the highest frequency and con-
centration (36.7%, max = 1,200 ng/L, respectively) with galaxolide occurring in
20.0% of stream samples (max =260 ng/L) [11]. Similar to the national scale,
acetophenone was the least detected fragrance in lowa streams (detection
frequency = 3.3%, max =220 ng/L) [11]. In contrast, fragrance concentrations in
the upper Hudson River (New York) were lower than measurements in Iowa
streams, though tonalide was consistently detected at higher concentrations than
galaxolide across most Hudson River sites [53]. Dissolved tonalide and galaxolide
concentration ranges in Hudson River were 5.09-22.8 and 3.95-25.8 ng/L, respec-
tively, with the highest fragrance concentrations occurring near Albany (New York)
[53]. Tonalide has also been detected in 60% of samples (n =35) and galaxolide in
57% of samples (n=7) within samples from the Potomac River basin
(Washington, D.C.), with a maximum galaxolide concentration of 27.0 ng/L
[54]. In US lotic ecosystems, few studies have documented abundance, behavior,
and fate of widely used fragrances, such as musk xylene, musk ketone, and
celestolide, leaving little knowledge available to aid regulations and policies.

3.2 Lakes

Similar to antimicrobials and disinfectants, most US research documenting fra-
grances in lentic ecosystems has been conducted in the Laurentian Great Lakes,
with lake research targeting more fragrance types relative to stream and river
research. The Great Lakes Water Institute has classified synthetic musk compounds
as an emerging contaminant threat to the Great Lakes, reporting musk compound
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concentrations in open lake water as high as 4.7 ng/L and higher concentrations in
main tributaries (41 ng/L) [55]. Maximum musk xylene (0.04 ng/L), musk ketone
(0.04 ng/L), galaxolide (2.0 ng/L), and tonalide (0.2 ng/L) concentrations in Lake
Ontario open water were between zero and four times less than fragrance concen-
trations in an adjacent harbor location [33]. Of eight fragrance compounds analyzed
in Lake Michigan, cashmeran was the only compound not detected, and musk
xylene was detected in 100% of Lake Michigan water samples (n=14) [56]. In
Lake Michigan, other frequently detected fragrance compounds were galaxolide
(92%), toxalide (92%), tonalide (85%), and traseloide (69%) [56]. Similar to
streams and rivers, galaxolide (mean =4.7 ng/L) and tonalide (mean = 1.0 ng/L)
in the Great Lakes are generally detected at higher concentrations than other
measured fragrances [56].

Contrary to Lake Michigan, musk xylene was not detected in any Lake Mead
(Nevada) water samples (n = 14), with Osemwengie and Gerstenberger [57] spec-
ulating that nitro musks may be absorbed to benthic sediment rather than remaining
in the water column. Galaxolide (Lake Mead mean = (.36 ng/L) was over an order
of magnitude lower in Lake Mead water relative to Lake Michigan [56, 57]. How-
ever, Lake Michigan tonalide concentration was over five times greater than
tonalide dissolved in Lake Mead (Lake Mead mean =0.19 ng/L). Similar to the
Great Lakes, Lake Mead water samples generally contained galaxolide and tonalide
at higher concentrations than all other fragrances [56, 57].

3.3 Marine Environments

The majority of research assessing fragrance compounds in marine environments
has been performed outside of the United States, with some trends emerging.
Generally, galaxolide and tonalide are dominant fragrance compounds in foreign
marine environments [58—60]. The abundance, distribution, and environmental fate
of fragrances in US marine environments remain largely unknown. Oros et al. [17]
analyzed a host of organic contaminates in the San Francisco Bay estuary (Cali-
fornia), with galaxolide and tonalide both occurring in 100% of water samples
across 13 sites. Galaxolide (range =3-131 ng/L) had a mean concentration of
43 ng/L, while tonalide (range = 1-8 ng/L) had a mean concentration of 3 ng/L
[17]. Maximum concentrations of galaxolide and tonalide were both detected at the
South Bay site of San Francisco Bay, suggesting anthropogenic inputs of waste-
water effluent [17]. Future research should examine the abundance and distribution
of increasingly ubiquitous fragrances in historically contaminated US estuaries
such as the Chesapeake Bay ecosystem and Mississippi River delta.
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3.4 Groundwater

National reconnaissance efforts comparing abundance of contaminants in ground-
water relative to surface water suggests fragrances have lower detection frequencies
and concentrations in groundwater than in surface water [15]. Focazio et al. [15]
sampled 12 fragrance compounds from 25 groundwater sites across the United
States, detecting at least one fragrance compound in 15% of groundwater samples.
Conversely, no fragrances were detected from 20 groundwater sites in Massachu-
setts [18]. In Texas, tonalide was detected at maximum concentrations of 72 and
56 ng/L from two groundwater sites underlying a biosolid-land application site
[61]. Galaxolide and celestolide were also detected at trace concentrations from the
same two groundwater sites, however at much lower concentrations (<5.0 ng/L)
than tonalide [61].

3.5 Sediments and Biosolids

Similar to surface waters, common fragrances in environmental sediments include
galaxolide and tonalide. Across three Hudson River sites, galaxolide and tonalide
were consistently detected between one and two orders of magnitude higher in
sediments than in water (388 and 113 ng/g, respectively) near Troy (New York)
[53]. Further downriver, tonalide sediment concentration was 544 ng/g near
Catskill (New York) [53]. Conversely, Koplin et al. [54] did not detect common
fragrances in Potomac River (Washington, D.C.) basin sediment even though
fragrances were detected in neighboring water samples.

Lake Ontario surface sediments had measurable concentrations of six fragrance
compounds with a mean galaxolide concentration (16 ng/g) at least ten times
greater than any other detected fragrance [62]. Other fragrances detected in Lake
Ontario sediments included tonalide (0.96 ng/g), traseloide (0.27 ng/g), and
celestolide (0.10 ng/g). Galaxolide was the only fragrance detected in Lake Erie
surface sediments, having a mean concentration of 3.2 ng/g [62]. Lake Mead
(Nevada) sediment contained more galaxolide (max=27 ng/L) than tonalide
(max =4.2 ng/L) [63]. A less commonly detected fragrance, acetophenone, was
also found in Lake Mead sediment at a maximum concentration of 25 ng/L [63].

Mean musk xylene concentrations in San Francisco Bay (California) sediments
were 0.034 ng/g with a similar mean musk ketone concentration of 0.038 ng/g
[64]. The highest nitro musk concentrations in San Francisco Bay sediment were
detected at the southernmost sampling site where Oros et al. [17] observed the
highest concentration of dissolved fragrances. Fragrance contamination in South
San Francisco Bay is likely the result of effluent but could also result from rainwater
runoff of biosolid applications or more directly from biosolid applications aimed at
combating erosion.
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Galaxolide concentrations in biosolids ranged between 1,100 and 1,790 ng/g,
and tonalide concentrations ranged between 400 and 900 ng/g across six biosolid
sources collected from five states in the United States [65]. Another biosolid survey
from nine sites across seven states also detected galaxolide (median = 3,900 ng/g of
organic carbon) and tonalide (median = 116,000 ng/g organic carbon) [66]. Kinney
et al. [66] detected galaxolide (mean = 427,000 ng/g) at higher concentrations than
tonalide (mean = 177,000 ng/g) in biosolid used for land applications in the Mid-
western United States. Acetophenone has also been detected in Midwestern US
biosolids with a mean concentration of 3,450 ng/g [66]. Soil from a Midwest site
receiving biosolid applications contained comparatively less fragrance concentra-
tions than the biosolid source. However, fragrance compounds were still detected at
concentrations higher than natural sediment, with galaxolide, tonalide, and
acetophenone having mean concentrations of 3,340, 279, and 110 ng/g,
respectively [66].

3.6 Biota

Kafferlein et al. [67] described in detail how musk fragrances have the potential to
be bioaccumulative. Musk fragrances have recently been detected in higher-
trophic-level organisms, including humans [68]. Specifically, fragrance body con-
tent was quantified from 49 humans living in New York City (New York). Females
generally contained higher fragrance body content than human males. Overall mean
galaxolide concentrations in human tissue was 96.9 ng/g, and mean tonalide
concentration was ~4x less at 22.8 ng/g. Human fragrance body content was
generally reported higher than any other large vertebrate species [68] as would be
expected based on human fragrance use.

Galaxolide is typically detected at greater concentrations than tonalide in higher-
trophic-level species [68]. Almost 40% of sea otter tissue samples off the California
coast contained galaxolide (range = <1-32 ng/g) and tonalide (mean = 1.1 ng/g)
[68]. Galaxolide and tonalide concentrations in waterfowl collected from New York
were comparable across four waterfowl species (common merganser, greater scaup,
lesser scaup, mallard) [68]. Both compounds were detected in 100% of waterfowl
with galaxolide ranging between 1.9 and 4.2 ng/g and tonalide ranging between
1 and 1.7 ng/g. The highest reported galaxolide concentrations in US mammals
were detected in striped dolphin tissue collected off the Florida coast
(mean = 14 ng/g; n=4). Interestingly, no fragrances were detected in the tissue
of Alaskan polar bears (n=35), suggesting organisms inhabiting undeveloped
regions of the United States are less exposed to fragrance compounds [68].

Galaxolide and tonalide have also been reported in carp (n = 84) tissue collected
from Lake Mead (Nevada) at mean concentrations of 3.0 and 2.4 ng/g, respectively
[57]. Many other fragrance compounds were also detected in Lake Mead carp
tissue, including toxalide (mean=1.1 ng/g), traseloide (mean=2.5 ng/g),
celestolide (mean = 1.0 ng/g), musk xylene (mean = 0.6 ng/g), and musk ketone
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(mean = 2.7 ng/g) [57]. In contrast, fragrance body composition in Hudson River
fishes was highly variable, dependent on both fish species and sample location
[53]. For example, channel catfish collected near Troy (New York) had a mean
body galaxolide concentration of 21.3 ng/g, while tissue from channel catfish
collected near Catskill (New York) had no detectable galaxolide. However, white
catfish collected near Catskill had a galaxolide body concentration of
5.79 ng/g [53].

Musk fragrances had up to 100% detection frequencies in oysters collected from
the San Francisco Bay estuary [69]. Galaxolide (median =246 ng/g) and tonalide
(median = 157 ng/g) were detected at concentrations higher than any other fra-
grances in oyster tissue. Celestolide, musk xylene, and musk ketone were also
reported in San Francisco Bay oysters at median concentrations between 2.1 and
16.7 ng/g with 60—80% detection frequencies [69]. Zebra mussels from the Hudson
River [53] contained less galaxolide (mean=13.1 ng/g) and tonalide
(mean = 55.6 ng/g) than San Francisco Bay oysters. Reducing future fragrance
inputs into the environment may be imperative, given the bioaccumulative nature
and current abundance of fragrance compounds in biota.

4 Insect Repellants

Of the many PCP compounds found in the environment, insect repellants can be
particularly toxic to organisms due to their modes of action. N,N-Diethyl-meta-
toluamide (DEET) has been identified specifically as a compound of concern due to
both the potential for toxicity as well as its recalcitrance in the environment [70,
71]. Further, DEET concentrations are highly variable. For example, variable water
sources across Minnesota (n = 65) yielded DEET concentrations ranging from 27 to
47,000 ng/L DEET (24% detection frequency; Table 1) [10]. 1,4-Dichlorobenzene
and naphthalene, both commonly used pesticides, have also been identified as
having potential for adverse environmental effects though have been less studied
in the United States.

4.1 Surface and Groundwaters

In a national reconnaissance of streams and rivers, DEET was measured in 74.1% of
streams with a maximum concentration 1,100 ng/L [6]. In contrast, a national
reconnaissance of streams receiving wastewater effluent measured DEET concen-
trations ~2-fold higher (maximum =2,100 ng/L) [23] but with similar detection
frequency (70%).

Regional studies have measured DEET concentrations in surface waters ranging
across several orders of magnitude. For example, in central Indiana streams, DEET
ranges from 8 to 290 ng/L (64—70% detection frequency) [4, 5]. In contrast, Georgia
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streams had lower detection frequency of DEET (24%) across streams sampled
(n=26) as well as lower concentrations (maximum = 120 ng/L) [7]. Towa and
South Dakota surface waters had even lower detection of DEET (3.7% samples;
n ="76) but comparable concentrations (Iowa maximum = 130 ng/L, South Dakota
maximum = 80 ng/L) [11] relative to samples measured in Georgia streams. In
Colorado stream and groundwater, maximum DEET concentrations measured in
urban streams (maximum = ~500 ng/L) were an order of magnitude higher relative
to forested streams (maximum = ~90 ng/L) [72].

Using passive samples to develop semiquantitative estimates in surface water
and wastewater effluent in Nebraska, DEET concentrations ranged from 7.3 to
1,616.5 ng/L across eight sites [73]. However, wastewater effluent discharges in
Iowa and Colorado metropolitan areas had DEET concentrations <100 ng/L,
though this was higher relative to the other >200 organic compounds measured
[74]. In Puget Sound (Washington), a west-coast estuarine community without
effluent point sources of pharmaceuticals but having ~10,000 septic systems, N,
N-diethyl-meta-toluamide (mean=2.7 ng/L) was detected in multiple
samples [75].

In the Mississippi River basin, DEET was found at trace concentrations across
26 main stem and tributary sites (range = 5-201 ng/L, 84.6% detection frequency)
[76]. In contrast, in the lower Clackamas River basin (Oregon) in the western
United States, pesticides were measured in 30 sites from 2000 to 2005 with only
7% detection frequency and a higher maximum concentration of 790 ng/L [77]. In
Massachusetts, DEET was measured in only 5% of groundwater samples with a
maximum concentration of 6 ng/L [18], lower than measurements in surface water.

In groundwater, DEET was measured at concentrations an order of magnitude
higher (maximum = 13,500 ng/L) but with lower detection frequency (34.8%)
relative to national reconnaissance efforts in surface water (Table 1) [6, 23]. Sim-
ilarly, in nationwide reconnaissance studies, 1,4-dichlorobenzene has been detected
in 25.9% of US surface waters (maximum = 90 ng/L) [6] and 6.4% groundwaters
(maximum = 1,170 ng/L) [16]. In the same studies, naphthalene was detected in
16.5% of surface waters (maximum =80 ng/L) [6] and 8.5% of groundwaters
(maximum = 1,510 ng/L) [16]. Few studies have quantified 1,4-dichlorobenzene
and naphthalene in regional assessments of US surface and groundwaters. Further,
studies quantifying insect repellants in sediments and biota in the United States are
limited. However, in West Virginia, naphthalene was detected in smallmouth bass
blood-plasma samples (maximum = 50.9 ng/g).

5 Organic Sunscreen Agents

The United States Food and Drug Administration (US FDA) approves the use of
17 different ultraviolet filters as active ingredients in over-the-counter sunscreen
products. Commonly used organic ultraviolet filters include avobenzone,
oxybenzone, and octinoxate. Commonly used inorganic ultraviolet blockers,
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which are further discussed as novel threats, include zinc oxide and titanium
dioxide [78]. No comprehensive surveillance efforts aimed at understanding the
environmental abundance and distribution of sunscreen agents have been conducted
in the United States. Further concern regarding environmental distribution of
sunscreen agents should be raised with concentrations of sunscreen (octinoxate)
exceeding 450 ng/L in finished drinking water [14]. Research quantifying environ-
mental sunscreen in the United States has focused on saltwater systems, with no
baseline data in US rivers and lakes to aid in predicting and regulating sunscreen
agents.

5.1 Marine Environments

Oros et al. [17] quantified octinoxate at five locations throughout the San Francisco
Bay ecosystem. Of the 20 contaminants analyzed, octinoxate was detected at a
higher concentration than any other analyte, more than doubling the concentration
of the second highest detected analyte. With a concentration range of 3-963 ng/L,
octinoxate was the only PCP to be detected at every sampling site. The higher
concentration of sunscreen in San Francisco Bay, relative to more widely studied
contaminants, including galaxolide, tonalide, and atrazine, highlights the need for
further sunscreen surveillance efforts in US ecosystems.

Bratkovics and Wirth [79] analyzed organic sunscreen compounds off the coasts
of the US Virgin Islands, Florida Keys, and South Carolina. Mean oxybenzone and
avobenzone surface water concentrations in samples collected from a remote water
reef system (US Virgin Islands) were 292 and 69 ng/L, respectively. From reef sites
in the Florida Keys, oxybenzone (mean =5 ng/L) was detected in 18% of surface
water samples, while the oxybenzone detection frequency near the US Virgin
Islands was 100%. In the Florida Keys, surface water concentrations of
avobenzone, octinoxate, and octocrylene were 60, 66, and 125 ng/L, respectively
[79]. Seawater samples from South Carolina beaches generally contained higher
concentrations of sunscreen agents than surface water samples from the Florida
Keys or US Virgin Islands. Oxybenzone (range = 10-1,221 ng/L), avobenzone
(range = 62-321 ng/L), octocrylene (range = <25-1,409 ng/L), and octinoxate
(range = <25-1,409 ng/L) were all sunscreen agents frequently detected in South
Carolina seawater. South Carolina and San Francisco Bay seawater contained
comparable amounts of octinoxate [17, 79]. Sulisobenzone and dioxybenzone are
also commonly used sunscreen agents; however they were not detected in any
South Carolina seawater samples. Oxybenzone and octocrylene detection frequen-
cies were both influenced by seasonal changes in South Carolina with detection
frequencies highest during summer sampling events, suggesting beach activity (i.e.,
sun-bathing, swimming) and concurrent sunscreen use increases sunscreen concen-
trations in waters adjacent to recreational beaches [79].
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6 Novel Threats

Though numerous PCP compounds have been described in US freshwaters, many
novel contaminants have yet to be assessed. Further, new PCPs are continuously
being developed with limited evaluation of environmental fate and potential for
adverse effects. Thus, novel threats may alter ecosystem processes, compounding
adverse effects of historic and well-documented contaminants. Recently character-
ized novel PCP contaminants include, but are not limited to, microbeads,
nanomaterials, and siloxanes. However, public concern over these compounds
persisting in the environment has rapidly grown in the United States over the last
decade. For example, in May 2014, Minnesota banned triclosan-containing prod-
ucts in the state with the law to go in effect January 2017. Additionally, in June
2014, Illinois became the first US state to ban microbeads in PCPs, with three other
states considering similar legislation.

Microbeads are primarily used in face and body soaps for skin exfoliation. Made
of polyethylene or polypropylene, microbeads are expected to float on the surface
of natural waterways following discharge through sewage effluent [80]. Microbeads
deposited in sewage sludge may be released into the environment following
biosolid applications [81]. Eriksen et al. [80] surveyed microplastics, including
microbeads, across three Great Lakes (Lake Superior, Lake Huron, Lake Erie). Of
all collected microplastics less than 1.0 mm in size (n = 736,749.6), over 58% were
considered to be pellet shaped and originating from PCPs. Mean microplastic
abundance (count/kmz) in Lake Superior, Lake Huron, and Lake Erie were
5,390.8, 2,779.4, and 105,502.6, respectively [80]. Mircoplastic abundance in a
river system near Chicago (Illinois) was found to be influenced by a local waste-
water treatment plant. Specifically, microplastics upstream of effluent were found at
~2 particles/m?; in contrast, microplastics increased by nearly an order of magni-
tude downstream of effluent [82]. Future research should assess degradation,
organismal ingestion, and microbial colonization of microplastics and microbeads.

Nanotechnology is a rapidly expanding field that produces engineered
nanomaterials with dimensions <100 nm for use in industrial and commercial
applications [83]. Nanomaterials may present future challenges to freshwater eco-
systems [84]. Zinc oxide nanoparticles (antimicrobial, UV blocker), titanium diox-
ide nanoparticles (UV blocker, pigment), and silver nanoparticles (antimicrobial)
are commonly used in PCPs and hypothesized to be discharged into aquatic
ecosystems, where their adverse effects remain unknown [85, 86]. Methods for
quantifying nanomaterials in situ remain difficult or unavailable to a majority of
researchers. Gottschalk et al. [87] modeled zinc oxide nanoparticle concentration in
US waters at 1 ng/L with much greater concentrations in sewage effluent (300 ng/L).
Modeled global concentration of titanium dioxide nanoparticles in aquatic ecosys-
tems is 700 ng/L, with high emission scenarios resulting in concentrations as high as
16,000 ng/L [87]. Global silver nanoparticle concentrations are modeled to approach
30 ng/L [88]. Further modeling efforts expect silver nanoparticle concentrations to be
greater in Europe than North America [87] suggesting environmental concentration
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of nanomaterials is dependent on human population density. Trace nanomaterial
concentrations in aquatic ecosystems may result in sublethal effects on microbes
and organisms. For example, environmentally relevant concentrations of silver
nanoparticles interfere with the ability of freshwater snails (Physa acuta) to sense
predation risk [89].

Siloxane compounds, used in a wide array of commercial applications, consist of
altering silicone-oxygen bonds. Siloxanes are used in PCPs, such as lotions, to
provide a smooth texture. Commonly used cyclic siloxanes in PCPs are octamethyl-
cyclotetrasiloxane (D), decamethylcyclopentasiloxane (Ds), and dodecamethylcy-
clohexasiloxane (De) [90], while octamethyltrisiloxane L),
decamethyltetrasiloxane (L), and dodecamethylpentasiloxane (Ls) are commonly
used linear siloxanes [91]. Despite their widespread use, environmental fate and
occurrence of siloxanes are not well understood [92]. Recent research has assessed
siloxane abundance in water, air, and biota in China and Scandinavia [93-96]. Sim-
ilar research focusing on the United States remains limited. Contrary to many
emerging PCP contaminants, siloxanes generally have high volatility and are
expected to persist in the atmosphere [97]. Genualdi et al. [91] measured air
concentration of linear and cyclic siloxanes across five US sites, producing some
general distribution and abundance trends. Sites near populated areas had higher
siloxane concentrations than a remote site in Borrow (Alaska). Further, cyclic
siloxanes were detected at higher concentrations than liner siloxanes across all
sites. No linear siloxanes were detected in Alaska, while cyclic siloxane concen-
trations in air ranged between 0.13 and 0.66 ng/m>. Hilo (Hawaii) is as geograph-
ically remote as Borrow, but more densely populated. Near Hilo, L; and L, were
both detected at a concentration of 0.19 ng/m3 , while L5 was not detected [91]. Con-
centrations of cyclic siloxanes at the same site ranged from 4.5 to 32 ng/m>. Air
samples near Point Reyes (California) contained linear siloxanes (range =0.011—
0.046 ng/m>) and cyclic siloxanes (range =0.57-6.5 ng/m’) at concentrations
comparative to Hilo, Hawaii. Overall, D5 was generally detected at the highest
concentration of any siloxane compound, with the highest concentration (96 ng/m?)
occurring in Groton (Connecticut) [91]. A separate study detected Ds in air samples
near Chicago at concentrations (mean =210 ng/m®) [98] much higher than those
reported by Genualdi et al. [91]. Given the environmental abundance of siloxanes
near urban areas, future regulation of siloxanes may be necessary to maintain air
quality and public respiratory health in populated areas.

7 Factors Controlling PCP Abundance

Some of the spatial variation in PCP concentrations among studies has been
attributed to site proximity to wastewater (i.e., effluent), though clear relationships
between wastewater and PCP abundance have not consistently been identified
across studies [4-6, 32, 99]. Thus, wastewater influences PCP concentrations
though direct relationships are confounded by other factors including water
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treatment methods, population density, and wastewater reuse strategies. For exam-
ple, in arid regions of California, where treated wastewater is regularly used for
irrigation, turfgrass has been shown to attenuate PCPs though there is variable
susceptibility among compounds [100].

Across the United States, research has highlighted that PCPs do not enter the
environment solely from point source wastewater effluent but also from diffuse
sources originating from septic systems and industrial activities. Thus, PCPs are
consistently above detection limits in rural as well as urbanized areas, and nonpoint
sources of PCPs, such as septic systems and industrial activities, are likely as
significant as point source wastewater input to PCP abundance in the environment.
In Massachusetts, groundwater PCP concentrations were correlated with the extent
of unsewered development [18]. In Indiana, agricultural streams had comparable
PCP concentrations relative to streams receiving combined sewer overflow (CSO)
and wastewater effluent [4, 5, 99]. In a Rhode Island estuary, wastewater treatment
plant proximity did not predict spatial distributions of triclosan [34]. Nevertheless,
PCP abundance has been correlated with wastewater effluent and urbanization in
some regional studies. For example, in the Pacific Northwest, PCP concentrations
were highest in industrial harbors and near major cities (Seattle) relative to more
remote areas [39]. Consistent with relationships between PCP concentrations and
wastewater, concentrations of compounds have also been related to usage rate with
more commonly used compounds more frequently detected and measured at higher
concentrations.

Studies have consistently demonstrated temporal trends, though predictive abil-
ity of peak PCP temporal abundance is still lacking as some studies highlight higher
PCP abundance in summer and others have found higher abundance of PCPs in
winter. In a Los Angeles (California) metropolitan wastewater facility, some
compounds (e.g., triclosan) also had distinct diurnal variability in effluent, while
others (e.g., triclocarban) remained consistent over a 24 h cycle [101].

In Lake Mead (Nevada), PCP concentrations were negatively related to water
volume [102] suggesting that drought and reduced flow may intensify PCP abun-
dance which has implications for how climate change may influence PCP abun-
dance. Discharge has also been related to PCP abundance in lotic ecosystems in
nationwide assessments [6], though regional-scale studies suggest discharge is not a
dominant control [4, 99].

8 Lessons Learned and Research Needs

The question is no longer whether PCPs are present in US ecosystems. Rather, the
questions that need to be addressed are how we can predict when and where PCPs
will be abundant and whether this affects water quality as resource use and
ecosystem function. Some studies suggest that PCPs are a minor concern to public
health supplies (resource use) but may be a more significant concern to ecosystem
function. A recent meta-analysis [22] of triclosan in freshwater from data spanning



114

M.J. Bernot and J.R. Justice

Table 2 Regional or local-scale studies on PCP abundance in freshwaters of the United States
listed by state. Nationwide reconnaissance studies excluded from counts

State Studies (#)| References

Alabama

Alaska

Arizona

Arkansas 1 Haggard et al. [105]

California 4 Bondarenko et al. [100]; Fram and Belitz [106]; Oros et al. [17];
Loraine and Pettigrove [14]

Colorado 3 Schultz et al. [107]; Yang and Carson [108]; Sprague and Battaglin
[72]

Connecticut

Delaware

Florida

Georgia 1 Frick and Zaugg [7]

Hawaii 1 Knee et al. [109]

Idaho

Illinois 1 Barber et al. [74]

Indiana 4 Bunch and Bernot [99]; Veach and Bernot [4]; Bernot et al. [5];
Ferguson et al. [32]

Towa 1 Schultz et al. [107]; Kolpin et al. [11]

Kansas

Kentucky 1 Loganathan et al. [110]

Louisiana

Maine

Maryland

Massachusetts | 3 Schaider et al. [18]; Rudel et al. [111]; Zimmerman et al. [112]

Michigan

Minnesota 1 Lee et al. [10]

Mississippi

Missouri 1 Wang et al. [113]

Montana

Nebraska

Nevada 1 Vanderford et al. [9]

New

Hampshire

New Jersey

New Mexico

New York 2 Reiner and Kannan [53]; Benotti et al. [102]

North 2 Giorgino et al. [114]; Ye et al. [115]

Carolina

North Dakota

Ohio 1 Wu et al. [29]

Oklahoma

(continued)
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Table 2 (continued)

State Studies (#)| References

Oregon 1 Rounds et al. [116]
Pennsylvania

Rhode Island 1 Katz et al. [34]
South 1 Hedgespeth et al. [117]
Carolina

South Dakota |1 Sando et al. [13]
Tennessee 1 Yu and Chu [24]
Texas

Utah

Vermont

Virginia

Washington 1 Dougherty et al. [75]
West Virginia

Wisconsin 1 Blair et al. [8]
Wyoming

1999-2012 found effluent waters had 83% detection of triclosan across studies
(mean =775 ng/L), though in finished drinking water triclosan was largely
undetected (1% detection frequency; mean =4 ng/L). PCP concentrations mea-
sured in the environment are generally below the US cutoff value for Tier II
Environmental Risk Assessment (ERA) at 1 pg/L. Thus, drinking water standards
do not exist for most organic compounds in the United States to put into the context
of human health. However, Gallagher et al. [103] suggested wastewater-impacted
drinking water was a risk factor for breast cancer in one region of Cape Cod
(Massachusetts).

Studies in the United States have consistently demonstrated that compounds
with the highest detection frequency are not necessarily among those with the
highest concentrations. Thus, it is critical that compounds are prioritized based on
the detection frequency as well as their concentration and toxicity. Some studies
have compared across continents to identify compounds of concern and research
needs [71, 104]. Kumar and Xagoraraki [104] developed a priority list of 100 phar-
maceuticals and PCPs in US stream water and finished drinking water. Notably,
priority lists for the two water types were statistically different indicating manage-
ment of finished drinking water and source waters must be independent. Regional
studies, where predictive variables are likely to be identified, have been conducted
in 23 out of 50 states (Table 2). However, nationwide reconnaissance efforts have
quantified PCPs from at least one sample in 47 states. National or regional studies
have predominantly focused on susceptible sites with more research needed in rural
areas. Further, research in the United States has focused on a limited number of PCP
compounds with additional research needed on both existing (e.g., UV blockers)
and emerging (e.g., siloxanes, nanomaterials) PCP compounds.
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Abstract Personal care products (PCPs) have been found in surface water, waste-
water, tap water, and swimming pool water. The chlorine used in the disinfection
process of water reacts with these compounds generating chlorinated byproducts
that may possess enhanced toxicity.

In the case of swimming pool water chlorine also reacts with organic material
released by swimmers such as amino acids and other nitrogen compounds yielding
chlorinated compounds. Besides this organic material, sunscreen cosmetics used by
swimmers are also released into pool water and react with chlorine. UV-Filters
2-ethylhexyl-p-dimethylaminobenzoate (EHDPABA), benzophenone-3 (BP-3), ben-
zophenone-4 (BP-4), 2-ethylhexyl-4-methoxycinnamate (EHMC), and 4-tert-butyl-
4'-methoxy-dibenzoylmethane (BDM) are known to suffer an electrophilic aromatic
substitution of one or two atoms of hydrogen per one or two chlorine atoms leading to
mono- and di-chlorinated byproducts. It has also been observed the presence of
halobenzoquinones (HBQs) in pool water that results from the chlorination of
UV-filters such as BDM, octocrylene, and terephthalilidene dicamphor sulfonic
acid. The chlorination of some parabens has also been studied. It is known that
some of the formed chlorinated byproducts are genotoxic. In this chapter we present
a review on the work done so far to determine the stability of PCPs in chlorinated
water and to identify the chlorinated byproducts.

Keywords Chlorinated byproducts, Chlorination, Personal care products, UV-filters

M.M. de Oliveira e Sa, M.S. Miranda, and J.C.G. Esteves da Silva (E<)

Department of Chemistry and Biochemistry, Faculty of Sciences, Centro de Investigacdo em
Quimica (CIQ), University of Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
e-mail: jesilva@fc.up.pt

M.S. Diaz-Cruz and D. Barcel6 (eds.), Personal Care Products in the Aquatic 123
Environment, Hdb Env Chem (2015) 36: 123-136, DOI 10.1007/698_2014_263,
© Springer International Publishing Switzerland 2014, Published online: 26 June 2014


mailto:jcsilva@fc.up.pt

124 M.M. de Oliveira e Sa et al.

Contents

) 110 oY 11T 4 o) s 124
Reaction with ChIOTINE .......vviiiiiii e eeeeeeaaaans 124
2.1 Chlorination of Organic Matter Present in Body Fluids ........................ ..., 124
2.2 Chlorination of Personal Care Products ...........coeeviiiiiiiiiiiiiiiiiiinnnnn. 126

3 Toxic Effects of UV-Filters and Its Chlorination Byproducts .......................o.oe. 132

4 Conclusions and Further Researches ............ccooiiiiiiiii i 133

S 531 1T 134

1 Introduction

Personal care products (PCPs) have been found in surface water such as lakes,
rivers, and sea, wastewater, and tap water [1-4]. The main reason for this is that
during the wastewater treatment, the parental compounds are not totally removed
and, in several cases, they also suffer biodegradation and biotransformation
[5]. Then, the release of these effluents in the environment leads to the occurrence
of PCPs and derivatives in the locations above mentioned. PCPs have been also
found in bathing waters and swimming pool water due to their use by swimmers [6]
by washing bath effect during bathing and swimming activities [7]. The problem is
that, as in drinking water, the chlorine used in the disinfection process reacts with
these compounds generating chlorinated byproducts that may possess enhanced
toxicity [6, 8, 9]. Also body fluids such as urine and sweat mainly constituted by
organic compounds can act as disinfection byproducts (DBPs) precursors
[10]. Urea, amino acids, uric acid, gluconic acid, and sodium chloride are the
major components of urine and sweat released by swimmers [11, 12]. However,
waters disinfection is essential to kill microbial pathogens [13] that are mostly
introduced into the water by humans [6].
In this chapter we present a review of reports on the chlorination of PCPs.

2 Reaction with Chlorine

2.1 Chlorination of Organic Matter Present in Body Fluids

In 2007, Li and Blatchley III [14] conducted a study to identify DBPs that result
from chlorination of organic-nitrogen compounds present in pool waters due to
urine and sweat released from human body. For instance, they verified that urea,
creatinine, L-histidine, and L-arginine are trichloramine precursors. A few years
later, Kanan and Karanfil [15] observed that some amino acids in urine, such as
histidine and aspartic acid, are responsible for high formation rates of haloacetic
acids (HAA), and that citric acid present both in urine and sweat is a chloroform
precursor, just like albumin. All these information is compiled in Table 1.
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Table 1 Disinfectant DBP Precursor Body fluid
byproducts (DBPs) and - - - ; -
corresponding precursors Haloacetic acids Aspartic acid Urine
present in body fluids Histidine Urine
Chloroform Albumin Urine, sweat
Citric acid Urine, sweat
Creatinine Urine, sweat
Urea Urine
Glucuronic acid Urine
Hippuric acid Urine
Lactic acid Urine
Uric acid Urine
Trichloramine Creatinine Urine, sweat
L-histidine Sweat
L-arginine Sweat
Urea Urine, sweat
Dichloromethylamine Creatinine Urine, sweat
Dichloroacetonitrile L-histidine Sweat
Based on [14, 15]
a CO0O COO o H,0 NH, 0
R*< HOCI " < \_/ “>: \—/ /L
> e NH —>
NH NHCI R 2 =
b CO,+ Cl HC1
CO0O 3 HOCI COO \—/ H \/
R{ _— R ‘< —_— >: NC] ——> R—C=N
NH NCl R

Fig. 1 Amino acid chlorination depending on chlorine dose: (a) formation of monochloramines
due to the reaction with one HOCI molecule and (b) formation of dichloroamines due to the
reaction with two HOCI molecules. Adapted from [13, 16]

Concerning amino acids chlorination, it begins with organic mono- or
dichloramines formation which depends on chlorine dose and is followed by
carbonyl or nitrile compounds production through decarboxylation and deamina-
tion (Fig. 1).

The chlorination of body fluids and other compounds is regulated by several
factors. The presence of ion bromide (Br™) influences the levels of halogenated
DBPs increasing them, because it is more reactive than chlorine in HAA formation.
Although its contribution for DBPs formation is complicated and without a defined
pattern, the pH also interferes in this reaction. In some situations, such as nitrile
formation, low pH acts favoring the DBPs formation [16] but, in another cases, it
does exactly the opposite [13]. Water temperature, total organic content, and
number of people in the water [6], dose and residual disinfectant available in the
water and contact time between reactants [7] also impact DBPs formation.
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2.2 Chlorination of Personal Care Products

On the other hand, pool water also contains PCPs. Inside this category are cosmetic
ingredients, food supplements and other products like shampoos, lotions, and
sunscreens cosmetics [17]. Sunscreens cosmetics are any cosmetic which contains
a UV filter in its formulation to protect human skin from the solar UV radiation
since they absorb, reflect and/or scatter UV radiation with a wavelength between
320 and 400 nm for UVA and between 290 and 320 for UVB [7, 18, 19]. There are
two types of UV-filters: the organic (or chemical) and the inorganic (or physical)
[19]. Inorganic UV-filters category only contains titanium dioxide (TiO,) and zinc
oxide (ZnO), which are known to reflect and scatter UV radiation. Regarding
organic UV-filters, there are several classes such as para-amino-benzoates,
cinnamates, benzophenones, dibenzoylmethanes, camphor derivates, and benz-
imidazoles and these compounds absorb the UV radiation [7]. There are many
UV-filters allowed for use but their maximum concentration depends on legislation.
Although European legislation differs from other countries legislation, like the
USA and Japan, the usual concentration of UV-filters in cosmetics is between 0.1
and 10% [19].

Most of the organic UV-filters are relatively lipophilic and their structures
contain aromatic rings, conjugated with carbon—carbon double bonds [18] and
one benzenic moiety (or more) which has an efficient electronic delocalization
due to the conjugation with electron releasing and electron acceptors groups located
in either ortho or para positions. It is this feature that provides a specific maximum
absorbance wavelength to the UV-filters [7].

UV-filters are known to react with chlorine leading to halomethanes, such as
chloroform, haloacids, halonitriles, haloaldeydes, haloketones, halonitromethanes,
haloamines, haloamides, and haloalcohols [17, 20] and also chlorinated UV-filter
structures [18].

2.2.1 UYV-Filters Chlorination

Few papers have been published in order to study both the UV-filters stability in
chlorinated waters and to identify the resulting DBPs. In Fig. 2 we represent the
UV-filters whose chlorination reaction was already studied.

In 2008, Negreira and co-workers [18] performed a study to assess the reactivity of
three UV-filters containing hydroxy or amino groups in chlorinated waters:
2-ethylhexyl salicylate (ES), 2-ethylhexyl-p-dimethylaminobenzoate (EHDPABA),
and benzophenone-3 (BP3). They found that the stability of these UV-filters is related
with the pH: EHDPABA is more stable at basic water and for BP3 it happens exactly
the opposite. ES showed a high stability independent of pH whereby ES halogenated
reactions were considered negligible in real-life situations, since in this case there are
several organic species competing for available chlorine. The following order of
stability for these UV-filters was observed to be: BP3<EHDPABA<ES. However,
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Fig. 2 Chemical structure of 2-ethylhexyl salicylate (ES), 2-ethylhexyl-p-dimethylamino-
benzoate (EHDPABA), benzophenone-3 (BP3), benzophenone-4 (BP4), benzophenone-8 (BPS),
2-ethylhexyl-4-methoxycinnamate (EHMC) and 4-fert-butyl-4’-methoxydibenzoylmethane
(BDM)

it was verified that bromide addition, even at low concentrations, reduces the
UV-filters stability, especially for EHDPABA. This occurs due to bromide formation
which largely reacts with aromatic compounds. Thus, differences among stabilities
show the effect of different organic groups on the activation or deactivation of the
phenolic ring towards electrophilic substitution reactions [7].

About DBPs, Negreira et al. [18] observed the formation of mono-halogenated
species resulting from EHDPABA chlorination and the formation of mono- and
di-substituted byproducts from BP3. These DBPs are formed by hydrogen replace-
ment per chlorine in the aromatic rings. Although it is not demonstrated, looking at
the parent species structure and considering the activation effects of the hydroxyl
and amino groups towards electrophilic substitution reactions, it can be assumed
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Substitution byproducts

Fig. 3 Degradation pathway for BP3 proposed by Negreira et al. [18]

that these replacements occurred at the carbons in ortho- to the amino moiety
(EHDPABA) and in ortho- and para- to the hydroxyl group (BP3).

Summarizing, EHDPABA has a relatively simple degradation pathway and the
same pattern was also verified for BP3 which resulted in mono- and dihalogenated
byproducts: CI-BP3 (2 isomers) and Cl,-BP3 (1 isomer). However, in the case of
BP3, another group of byproducts was detected. Negreira et al. [18] identified
halogenated forms of 3-methoxyphenol generated from cleavage of the carbonyl
bond between the two aromatic rings in the BP3 molecule followed by
methoxyphenol fragment halogenation. Moreover, mono- and dihalogenated BP3
substitution byproducts might also break down rendering different halogenated
methoxyphenols. Figure 3 represents the reaction pathway for BP3 proposed by
Negreira et al. [18]. All the DBPs of EHDPABA and BP3 showed a considerable
stability.

The degradation of EHDPABA was previously studied by Sakkas et al. [21] in
distilled, sea, and swimming pool water and the authors found one dichlorinated
byproduct of the UV-filter and also mono- and dichlorinated degradation products
of EHDPABA.

BP3 belongs to the benzophenones class of UV-filters approved by European
legislation, which contains only another filter: benzophenone-4 (BP4) (Fig. 2). The
stability of BP4 and its chlorination as well as its DBPs were also determined by
Negreira et al. [22]. BP4 shows a low stability which decreases even more with pH
increasing. As it happens with BP3, bromide addition decreases BP4 stability for
the same reason of the first one.
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The reaction between BP4 (C4H;,04S) and chlorine yields three DBPs desig-
nated as Bl (C4H;;04SCl), B2 (C4H;,0,SCl), and B3 (C4H,00;SCl,) by
Negreira et al. [22]. B1 results from an electrophilic substitution of hydrogen per
chlorine and this reaction is similar to the BP3 chlorination described above. The
difference between B1 and B2 is one atom of oxygen which occurs due to the
oxidation of the carbonyl group to an ester moiety (known as the Baeyer—Villiger
reaction) with loss of a benzoyl moiety and ester bond established between the
carbonyl group and the BP4 phenolic ring. Regarding B3, a dichlorinated
byproduct, it is formed when B2 suffers electrophilic substitution of hydrogen per
chlorine in carbon number 6 of the phenolic ring. Although the presence of
hydroxyl- and methoxyl-functionalities in carbons located in meta-position deacti-
vates this type of reaction, there exists an atom of oxygen in ortho- to carbon
number 6 due to the Baeyer—Villiger reaction, which increases the probability of a
electrophilic attack by chlorine [22].

Re-evaluating the BP3 chlorination with the methodology used in BP4 studies,
Negreira [22] observed two other BP3 byproducts which had empirical formula
Ci4HoCl,04 and C4H¢Cl30,4. The first one is formed when the UV-filter
undergoes its most important reaction pathway: two successive electrophilic sub-
stitutions of hydrogen per chlorine in carbons located at positions number 3 and 5 in
the phenolic ring [18] but only when chlorine level is 0.03 pg/mL and at long
reactions [22]. However, this byproduct is also compatible with oxidation of the
carbonyl bridge in the molecule of BP3 to an ester group but only after the first
reaction. The second byproduct (C;4HyCl30,) appears due to further electrophilic
substitution of hydrogen per chlorine in carbon number 6 of the C;4H;,Cl,0, at
chlorine concentrations above 2 pg/mL [22].

So, it can be said that the most favorable reaction pathway of both BP3 and BP4
with free chlorine consists of electrophilic substitutions of hydrogen per chlorine in
carbon numbers 3 and 5 (ortho- and para- to the 2-hydroxyl moiety). Only after this
reaction or when these carbons are already attached to other functionalities, the
carbonyl group is converted into an ester moiety which links the two aromatic rings
of these UV-filters. Finally, the aromatic ring bonded to the atom of oxygen in the
ester group might undergo a further electrophilic substitution reaction [22]. Figure 4
represents the reaction pathway of this BP4 with free chlorine proposed by Negreira
et al. [22].

Chloroform was also found as stable byproduct in the chlorination of BP3 and
another benzophenone: benzophenone-8 (BP8) (Fig. 2) [20]. Chloroform formation
is a function of pH and occurs in the presence of excess chlorine. However, BP3 and
BP8 exhibited different chloroform formation behavior depending on pH: for the
first one, chloroform formation decreases when pH increases from 6 to 10. This
behavior is generally not only due to the speciation of aqueous chlorine (HOCI to
CI7) but also due to the speciation of BP3 to the phenolate form, since chloroform/
phenol molar yields have pH 8 as average for phenols and substituted phenols.
Therefore, there is less HOCI to react with BP3. Concerning BP8, chloroform
formation increases as pH increases from 6 to 10, probably due to 3-methoxy and
the ortho- substituted phenolic moieties in BP8 molecular structure being less



130 M.M. de Oliveira e Sa et al.

o o " Ty
”o\}sf] =] m)\ s’?’, o
= Elestrophilic Dﬂq
Oxidation om _substitution & i
° L]
o o

Fig. 4 Chlorination reaction for BP4 proposed by Negreira et al. [22]
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reactive with aqueous chlorine than BP3. Despite all of this, 3-methoxyphenol
moiety appears to be the primary function group responsible for chloroform for-
mation for both UV-filters [20].

There are two other UV-filters which are typically together in many commercial
sunscreens:  2-ethylhexyl-4-methoxycinnamate (EHMC) and 4-fert-butyl-4'-
methoxydibenzoylmethane (BDM). The first one has absorption capacity in the
UVB range and the second one in UVA. Therefore, these two UV-filters combined
offer UV protection over a wider range of wavelengths. Although EHMC and BDM
are present in sunscreens as the isomer E for the first one and as enol form for the
second one, under irradiation EHMC suffers isomerization from E to Z form (Fig. 5a)
and BDM tautomerizes from enol to keto form (Fig. 5b) [7].

Santos et al. [23] observed six byproducts resulted from EHMC chlorination:
two of them are dichlorinated products (C;gH,403Cl,) and the rest of them are
monochlorinated byproducts (C,gH,505Cl). Both types of byproducts are probably
the result of hydrogen replacement by chlorine in the benzene ring of EHMC in the
same way already described above. Regarding BDM byproducts it was observed
one monochlorinated byproduct (Cy0H,;O3ClI) and one dichlorinated
(C50H,005Cl,). However, a similar reaction pattern is observed for these two
UV-filters because the substitution of hydrogen atoms by chlorine can only occur
in the benzene ring containing methoxy group, since chlorination in the benzene
ring containing the #-Bu group is highly prohibitive due to the large volume of this
group.

The reaction between chlorine and each of these UV-filters is regulated by some
factors, such as pH, chlorine concentration, temperature, dissolved organic matter
(DOM), and irradiation time. The principal factor affecting the EHMC chemical
transformation is pH since the lower is the pH, the higher is the transformation
percentages of EHMC. The explanation for this fact is that the main chlorine
species present at low pH is HOCI (in contrast with at higher pH, where the
hypochlorite anion (OCl™) is prevalent) which is more reactive towards EHMC,
resulting in higher degradation. Nevertheless, higher temperature values also lead
to higher transformation percentages and this is almost independent of the
pH. Concerning BDM, chlorine concentration is the principal factor affecting its
transformation percentage, since higher concentrations of chlorine will favor chlo-
rine attack and the incorporation of chlorine in the UV filter structure even at high
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Fig. 5 (a) Photoisomerization of the UV-filter 2-ethylhexyl-4-methoxycinnamate (EHMC);
(b) tautomerism of the UV-filter 4-tert-butyl-4’-methoxydibenzoylmethane (BDM)

pH values. However, in presence of DOM, transformation percentages of BDM are
low probably due a competition process between the UV-filter and DOM for the
available chlorine [23].

Halobenzoquinones Formation

It was also observed the presence of halobenzoquinones (HBQs) in pool water that
resulted from sunscreens chlorination. Aromatic structures in these PCPs such as
phenols and quinones are likely to be the precursors of HBQs as well as some
common ingredients of lotions, like benzyl alcohol, lecithin, parabens, and fra-
grances. UV-filters such as avobenzone, octocrylene (2-ethylhexyl-2-cyano-3,3-
diphenyl-2-propenoate, OCT), and terephthalilidene dicamphor sulfonic acid may
also be HBQ precursors [24]. Wang et al. [24] observed the formation of
2,6-dichloro-1,4-benzoquinone from the reaction between chlorine and four sun-
screens containing organic and inorganic UV-filters. Although warm water pro-
vides a comfortable environment for swimmers, this fact may accelerate the
chlorination reaction to produce more HBQs [24].

Besides 2,6-dichloro-1,4-benzoquinone, 2,6-dichloro-3-methyl-1,4-benzoqui-
none, 2,3,6-trichloro-1,4-benzoquinone, and 2,6-di-bromo-1,4-benzoquinone also
are common DBPs in chlorinated water [25].

2.2.2 Parabens Chlorination

Besides sunscreens, other PCPs such as parabens may also be present in pool water.
Parabens belong to a group of bactericides and preservative agents in PCPs and they
are continuously released in aquatic media through domestic wastewater and,
although they are almost completely removed during sewage water treatments,
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they have been detected in rivers at low ng L™ level. Considering the extensive
employment of the compounds in PCPs, activities like showering and bathing
constitute a source of dermal exposition to parabens DBPs [26]. The potential
degradation of four alkylated parabens (methyl, ethyl, propyl, and butyl paraben)
and the formation of DBPs were investigated by Canosa et al. [26]. Five transfor-
mation species were detected for each parent paraben corresponding to mono- and
dichlorinated compound. Similar to some UV-filters, they are formed by a substi-
tution of one or two atoms of hydrogen per chlorine in the aromatic ring and this
chlorination occurs in both carbons in ortho- to the phenolic group, since the para-
position is blocked with the ester moiety. In tap water, the chlorine content is
usually enough to produce significant amounts of these DBPs in few minutes.
However, the dichlorinated byproducts are rather resistant to undergo further
chlorine substitution reactions or cleavage of the aromatic ring, even in presence
of relatively high concentrations of chlorine. So, if they are generated in real-life
situation, their presence in the aquatic environment is feasible [26].

3 Toxic Effects of UV-Filters and Its Chlorination
Byproducts

It is known that byproducts formed from reaction between chlorine and natural
organic matter of water, such as chloroform as well other trihalomethanes, nitro-
samines, haloacetic acids, etc., have toxic effects like carcinogenic effects in
animals and human beings [27]. Now, it is mandatory to assess the toxicity of
DBPs formed from PCPs chlorination. The knowledge of this subject is still poor
but there are already a few papers published in order to study the toxicity of some of
these compounds.

Bladder cancer has been associated with exposure to chlorination byproducts in
drinking water, and experimental evidence suggests that exposure also occurs
through inhalation and dermal absorption during swimming in pools because
certain DBPs have high volatility and dermal permeability. Villanueva et al. [28]
observed that subjects who had ever swum in a pool showed an increased risk of
bladder cancer compared with those who had never swum in pools and former and
current smokers present an excess risk of bladder cancer. This study also revealed a
duration-response relation for cumulative time spent in swimming pools. To eval-
uate the genotoxicity of swimming pool water in swimmers, Kogevinas and
co-workers [29] examined some biomarkers of genotoxicity in an experimental
study in which adults swam for 40 min in a chlorinated, indoor swimming pool,
comparing the biomarker results with the concentrations of four THMs
(bromoform, bromodichloromethane, chloroform, and chlorodibromomethane) in
exhaled breath. It was observed increases in two biomarkers of genotoxicity
(micronuclei in peripheral blood lymphocytes and urinary mutagenicity). Although
only brominated THMs showed genotoxicity, all four are carcinogenic in rodents.
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It was also verified that recreational pool waters are more genotoxic [30] and
cytotoxic than tap water and this elevated genotoxicity and cytotoxicity are asso-
ciated with many classes of nitrogenous-DBPs (N-DBPs) [10]. The higher
genotoxicity of the recreational pools compared to the tap water source could
reflect prolonged disinfectant contact times [30].

Furniture conditions, such as illuminations condition, also affect the cytotoxicity
of pool water [10, 30]: The pool water under indoor conditions was more cytotoxic
(LCs9=24.2x) than when it was operated as an outdoor pool (LCsy=181.4x).
The outdoor pool exposed to sunlight featured lower cytotoxicity than the same
pool under indoor conditions which indicate that either the compounds responsible
for the cytotoxicity, or their precursors, may be photolabile [10] or have increased
volatilization [30]. Physical activity appears to enhance the absorption of
DBPs [31].

UV-filters have high lipophilicity (mostly with log K, 4-8) whereby they have
been shown to accumulate in the food chain and in human milk fat. However, at
present, there is a scarcity of data on environmental concentrations of UV-filters
[32, 33]. Moreover, concentrations reported fluctuate significantly as a function of
sample location, size of the system under study (e.g., lakes and swimming pools),
frequency and type of recreational activities, season of the year, and hour of the day.
Still, maximum concentrations reported have corresponded to mid-day on warm
summer days, as expected [33]. Among UV-filters, octocrylene is of great concern
since it has a high lipophilicity (K, 6.88). Actually, this UV-filter has already
detected in liver tissues of dolphins (Pontoporia blainvillei) with concentrations in
the range 89-782 ng/g Iw and there is evidence that maternal transfer may occur
trough placenta and likely also through breast milk [34].

4 Conclusions and Further Researches

Disinfection of drinking water is important for public health but many people are
exposed to chlorination byproducts not only through ingestion but also through
other activities such as showering, bathing, and swimming [35]. So, future studies
should evaluate more completely the uptake and potential effects of a range of
DBPs present in pool water [29]. Although the mixture of the byproducts may differ
by geographic area and time, studies are needed to examine the potential effects of
these mixtures [35]. Furthermore, it is important to examine the various exposure
pathways and routes other than ingestion in more detail.

Reports on the occurrence of sunscreen agents in natural waters have so far been
scarce and have mainly focused on bathing waters in closed systems (e.g., swim-
ming pools or small lakes). A great deal of additional data is needed to understand
the significance of UV-filters in the aquatic environment. It is also necessary to
increase knowledge of their bioaccumulation in humans and wildlife [33]. It is also
important that further researches take into account pool operation/maintenance.
Pool disinfection is essential to preventing exposure to pathogens; still, DBP
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formation can be reduced with proper disinfectant use along with known engineer-
ing solutions. Unhygienic practices enhance the amount of organic matter released
by swimmers through urine and other body fluids. So, substantial investments into
education and outreach will be necessary to affect these behaviors and practices. By
improving disinfection practices and reducing the input of contaminants both
chemical and biological, the goal of healthier pools and healthier people can be
achieved [6]. For example, showering and using toilet facilities, washing off
sunscreen lotions, and applying water-tight diapers can reduce the bather load
and help to reduce the potential for DBP formation [36]. If swimmers take showers
frequently, DBPs will be removed on skin preventing them from deeper
penetration [37].

Environmental chemistry studies should also focus on strategies to minimize the
formation of chlorinated byproducts of UV-filters by the development of new
sunscreen formulations that prevent the release of UV-filters into chlorinated
water [23].

Haloquinones have been proving to be more toxic than the regulated
halomethanes [25]. The potential toxic effects of these compounds warrant further
investigations into the occurrence, human exposure, and management of
haloquinones in chlorinated water [25].

Regarding other cosmetics ingredients further studies are needed to evaluate
potential human health risks and ecotoxicological effects of halogenated
byproducts and to know their fate in the environment [26, 27].
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Part 11
Toxicological Effects and Risk Assessment



Environmental Risk Assessment of Personal
Care Products

Babu Rajendran Ramaswamy

Abstract Extensive usage and continuous release of personal care products (PCPs)
lead to ubiquitous contamination of aquatic environment. As PCPs are mainly
intended for external use on the human body, they are not subjected to metabolic
alterations; therefore, large quantities enter the environment as such. Being biolog-
ically active and persistent, they are expected to pose a wide range of risks to
aquatic habitat. Although studies on environmental concentration and toxicity
endpoints are available for many PCPs, environmental risk assessment (ERA)
was scantily reported. It was observed that most of the ERAs were based on
hazard/risk quotient approach and not following three-tier approach due to lack
of sufficient toxicological data (i.e., long-term toxicity at environmentally relevant
(ppt—ppb) concentrations). From the ERA reports, it was understood that disinfec-
tants, triclosan and triclocarban, cause high risk to aquatic organisms. In case of
preservatives (parabens), the risk was low. Some fragrances (synthetic musks) and
UV filters were also shown to be toxic in the aquatic habitat; however, majority of
them are categorized as less risky. Other than the risk to macro forms, the
antibacterial PCPs are likely to affect the community structure of nontarget (non-
pathogenic) bacteria and may aid in developing (multidrug) resistance among
pathogenic and nonpathogenic species. Therefore, for better risk assessment, envi-
ronmentally relevant studies on nontarget organisms are to be given due impor-
tance, and it may include interactions of chemical mixture, degradation products,
and bioavailability criterion as well.
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1 Introduction

Chemical pollution by pesticides, biocides, pharmaceuticals and personal care
products, industrial chemicals, etc., poses a greater (cumulative) threat to environ-
ment. Personal care products are a varied group of compounds comprising pre-
servatives (e.g., parabens), disinfectants (e.g., triclosan), fragrances (e.g., musks),
UV filters/stabilizers (e.g., methylbenzylidene camphor, benzotriazoles), and insect
repellants (e.g., DEET). Millions of consumers use cosmetic/personal care products
and their ingredients on a daily basis to improve the quality of life. The unavoidable
growth in the use of cosmetics/PCPs burdens the environment with their residues.
The global production of personal care products is expected to reach 333 billion
dollars by 2015 [1].

Although PCPs provide various benefits to the quality of life of the consumer,
viz., soap, shower gels, toothpaste are to maintain hygiene and dental care, deodor-
ants prevent body odor, and sunscreens protect human skin against adverse effects
of UV light, they are generally excreted and emitted through the sewerage/waste-
water system after use and ultimately released into nearby terrestrial or aquatic
systems (Fig. 1).

Chemicals used in personal care products are biologically active compounds that
are designed to interact with specific pathways and processes in humans and
animals. A number of personal care products have been identified in environmental
matrices and drinking waters [3-7], and their concentrations in environmental
matrices are mostly in the range of ng—pg level. Many PCPs are environmentally
persistent and bioactive and have the bioaccumulation potential. Thus, humans and
terrestrial/aquatic ecosystems are greatly exposed to unknown cocktail of
chemicals of parent as well as transformed products. Environmental (chemical)
risk assessments of transformed products are rather complex than parent
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Fig. 1 Life cycle of PCPs in the environment with star (mark) showing the risk assessment
(Adapted with modification from [2])

compounds due to scarce or nonavailability of toxicity data. The safety of a
chemical in use is obviously based on a hypothetical zero-risk situation; however,
that does not exist/or possible in a real-world situation. This peculiar, albeit
unrealistic, aspect poses a major challenge for the risk assessment of chemicals
and their ingredients/metabolites.

There have been a number of publications since the past few decades reporting
on toxicity, fate, and transport of endocrine disrupting chemicals; nevertheless,
information on residue levels and environmental risk assessment (ERA) of PCPs is
scarce or nil until the end of the last century, and researchers started showing
interest on analytical methods, bioaccumulation, and risk evaluation of PCPs only
in the recent past.

Apart from the health risk to macroorganisms, the impact of PCPs on microbial
community is still a question with few key outcomes. As we are aware, the
prevalence of antibiotic-resistant bacteria in hospital, industrial [8], as well as
domestic wastewater [9] environment is not uncommon; nevertheless, increasing
use of antimicrobial compounds leads to similar problem of resistance in bacteria
from sewage and surface water, drinking water, etc. [10—12]. Bacterial resistance
for PCPs such as parabens in aquatic system is a growing environmental problem
[11]. Moreover, a number of pollutants (i.e., pesticides, pharmaceuticals, illicit
drugs, etc.) are continuously released into the environment, and their long-term
effects on the receiving ecosystems are relatively unknown. Furthermore, interac-
tions (synergistic/antagonistic) among the co-occurring compounds can also take
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place, complicating environmental assessment [13]. Considering the importance of
PCPs’ emerging threat, this paper summarizes their risk assessment in the
environment.

2 Pathways of Exposure and Uptake

The entry of PCPs into the aquatic environment includes direct disposal of domestic
sewage and wastewater from hospitals and manufacturing industries, also they enter
through wastewater treatment plant (WWTPs) effluents, leakage from septic tanks
or leaching of landfill sites, and surface water runoff. The effluent and sludge from
WWTPs and biosolids as manure shall be the prime source of PCPs in agriculture
soil. The exposure of PCPs by organisms in the environment varies depending on
the usage and resulting residual concentration/dilution in receiving waters, WWTP
efficacy, and other possible exposure pathways.

The uptake of PCPs in aquatic ecosystem is mainly via contaminated water and
secondarily by sediment. Some of the PCPs (e.g., triclosan) are ionizable sub-
stances, and the uptake of such ionizable substances depends on environmental
conditions such as pH and soil/sediment characteristics. Mostly, the studies con-
sider the bioavailability and uptake based on the properties such as octanol-water
partition coefficient, bioconcentration/biomagnification factor, etc. [14]. However,
no clear data on PCP uptake through food chain exists, so much research needs to be
imparted to understand the real scale of PCPs bioavailability ([5, 14, 15] and
references therein).

3 Methods of Risk Assessment

According to European commission [16], ERA is defined as an attempt to address
the concern for the potential impact of individual substances on the environment by
examining both exposures resulting from discharges and/or releases of chemicals
and the effects of such emissions on the structure and function of the ecosystem.
Risk assessment identifies potential hazardous consequences of anthropogenic
chemicals and determines the probability to occur in a specific environment (i.e.,
exposure assessment) and their severity (i.e., toxicity) [16]. Methods for assessing
the ecological risks of anthropogenic pollutants are ample, and the most followed is
the hazard quotient (HQ) approach [6, 16—18]. The quantitative approach to ERA
includes three main components, viz., exposure assessment (predicted environmen-
tal concentration in different compartments such as water, soil/sediment, etc.),
effect assessment (predicted no-effect concentration from dose-response relation-
ship), and the risk characterization (calculating HQ). The hazard quotient or risk
quotient (RQ) is calculated as the ratio between the predicted environmental
concentration (PEC) or measured environmental concentration (MEC) and the
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predicted no-effect concentration (PNEC) in organisms [17]. The HQ/RQ values
<0.1, 0.1-1, and >1 indicate low, medium, and high risks, respectively, of the
individual compound [4].

The PEC for PCPs can be calculated based on multiple factors like type of
substance, sales, population density, and usage statistics, and it may vary for each
country and/or region. Nowadays, developed countries like the USA started using
computational models (e.g., E-FAST) to predict the flux of PCPs in waterways [19];
nevertheless, it is quite difficult to calculate for developing countries where sub-
stantial statistics on production, sale, exact population, effluent load, etc., are hard
to collect. In such condition, the relative MEC of specific compound is used instead
of PEC. For calculating PNEC, most of the studies rely on either short-term acute
toxicity (e.g., LC50, EC50, etc.) or long-term (sub-)chronic toxicity outcomes (e.g.,
no observed effective concentration (NOEC), lowest observed effective concentra-
tion (LOEC), etc.). Often, NOEC is calculated for individual organisms based on
their toxicity endpoints; however, single NOEC representing multiple organisms
(based on acute/chronic toxicity results) can be calculated by software such as
ecological structure activity relationships (ECOSAR) of United States Environ-
mental Protection Agency (USEPA). Indeed, for proper assessment, cumulative
effect (chronic toxicity: growth rate, fecundity, abnormalities, etc.) is always
preferred over one-time acute toxicity assay, because chronic data provides much
better idea for the “true” risk of chemicals or chemical group and significantly
lowers the use of uncertainty in risk assessment [20].

In risk calculation, an uncertainty/safety assessment factor (e.g., 10, 100, 1,000,
etc.) is applied to acute or chronic toxicity endpoints to arrive at the PNEC. This
application of uncertainty factor is based on the nature/form of toxicological data
for different classes of organisms in each level of hierarchy/food chain. Usually, a
safety factor of 1,000 is applied for acute toxicity endpoints, whereas safety factor
of 10 is applied for chronic toxicity [17]. In general, among PNECs the lowest value
for a specific taxonomic group was used to estimate the maximum risk posed by the
chemical of concern [20].

The conventional PNEC calculated for a compound or stressor may not represent
wider species assemblage or population (natural community). Therefore, to deter-
mine PNEC which is protective for most species/population/community, species
sensitivity distribution (SSD) approach is followed, which represents the cumula-
tive probability distributions of toxicity values from multiple species. Therefore,
SSD is used in many instances [15, 21, 22], rather than conventional (single
species) approach ([23] and references therein).

Jjemba [24] proposed an ecotoxicity potential (EP) to assess the extent of the risk
of pharmaceutical and personal care products (PPCPs) based on fate (i.e., degrad-
ability), exposure factor (i.e., bioavailability), and effect factor (i.e., susceptibility)
of the substance of concern.

EP = T/V(NOEC)

where T and V are the overall residence time and concentration of a substance in the
environment, respectively. It is obvious that the lower the degradability (or the
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higher the persistence) and/or the higher the bioavailability of a chemical to
nontarget organisms, the higher the magnitude of ecotoxicity potential.

Conventional HQ predicts risk based on MEC or PEC obtained from limited area
and may not necessarily reflect a risk for larger ecosystem (e.g., entire river stretch).
To fill the gap, environmental exposure models are developed to more precisely
determine (weigh) the nominal exposure, for large area, over a period of time. Apart
from PEC and MEC, exposure assessment models use variables such as the
pathways of contaminant, form of the chemical(s) released, and its fate in different
environmental compartments. Models like PAATE™ (Pharmaceutical Assessment
and Transport Evaluation) and GREAT-ER (Geo-referenced Regional Exposure
Assessment Tool for FEuropean Rivers) can be adopted for exposure
assessments [25].

Apart from toxicity studies, computational approaches are gaining importance to
replace/append the present risk prediction techniques (e.g., HQ), and one such
approach is QSAR (quantitative structure activity relationship). Garcia et al. [26]
performed the QSAR study using EPI Suite™ interface, to understand the possible
adverse effects of 96 PPCPs and metabolites with negligible experimental data and
established a ranking of concern based on persistence (P), bioaccumulation (B), and
toxicity (T) (extensive) of those PPCPs in Spanish aquatic environments. Their
findings revealed that higher number of metabolites has got ranking equal to or
greater than their parent compounds. Further, P, B, and T indexes are recommended
recently by the Registration, Evaluation, Authorization and Restriction of
Chemicals (REACH) regulation to estimate the potential negative impact of
chemicals on the environment [26].

Regarding PCPs, most of the studies either report the environmental concentra-
tion or its toxicological profile; however, only few studies were performed for risk
assessment. In the present review, literature-based risk assessments of PCPs
pertaining to HQ were primarily collected and grouped in Tables 1 and 2. The
worst-case scenario reported for organisms in each of the study was taken for
discussion. Further, the main purpose of the review was to collectively present
the available ERAs of PCPs.

4 Classification and Risk of PCPs

Regarding classification, each country adopts their own way of classification, e.g.,
sunscreens are cosmetics in the EU, whereas in the USA they are OTC drugs. Hair
dyes are cosmetics in the EU but quasi-drugs in Japan, and their safety would be
subjected to drug regulations necessitating drug-like safety dossiers [38]. Moreover,
the PCPs can be grouped into categories based on their application (Fig. 2) such as
antimicrobials (disinfecting agents and preservatives), insect repellants, fragrances
(musks), UV filters/stabilizers, and siloxanes.
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Disinfectants
(Triclosan, etc.)

HQ, RQ, PRA, SSD,

PSSD, E-FAST, QSAR, r \
ECOSAR, PhATE,
GREAT-ER Antimicrobials
(Parabens)

-

HQ, PRA, ECOSAR,

) QSAR
Preservatives

Antioxidants

Fragrances (BHA, BHT, etc.)
(Musks)
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QSAR

UV-filters/
Stablizers
(BPs,EHMC)

RQ, EP, ECOSAR,
QSAR

InsectRepellents
(DEET, etc.)

E-FAST

Emollients
(Siloxanes - cVMSs)

Fig. 2 Major classes of PCPs with examples in parentheses and available ERA

4.1 Disinfecting Agents

Disinfecting agents are antimicrobial compounds that are added as ingredients in
sanitizers, disinfectants, and sterilants to control, prevent, or destroy harmful
microorganisms (i.e., bacteria, viruses, or fungi). Since no single disinfectant is
adequate for all situations, multiple disinfecting compounds are added in the
formulations of PCPs [39].

Triclosan (TCS) (5-chloro-2-(2,4-dichlorophenoxy)phenol) and triclocarban
(TCC) (3,4,4 -trichlorocarbanilide) are broadly used as antimicrobial and antifungal
agents in household products of daily use (e.g., soaps, deodorants, skin creams,
toothpaste and plastics, antimicrobial sprays, etc.). Due to extensive and inadvertent
usage, residues of triclosan are ubiquitously found in surface water and sediment,
WWTP influent/effluent, and fish ([6, 40] and references therein). Occasionally,
fraction of TCS can occur as negative phenolate ion in environment due to its pKa
(~8) and pH of the environment, which is considered to cause lesser toxicity than
neutral (parent) form [41]. Further, Price et al. [41] opined that the risks of TCS
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calculated based on PEC/PNEC ratio will be an overestimate, so aquatic toxicity
evaluation based on speciation is warranted.

Both TCC and TCS, having a log Kow of 4.2-4.76, are highly expected to get
adsorbed onto solids and sediments and thus available for bioaccumulation [42—
44]. Bioaccumulation studies showed that higher pH in environment can favor TCS
bioaccumulation whereas lower pH could favor methyl-TCS to accumulate
more [5].

Ecological risk assessment based on acute and (sub-)chronic toxicity tests was
mostly available only for five antimicrobial agents in which TCS in river water
from various countries (Switzerland, Japan, the USA, Slovenia, Spain, the UK,
China, and India) showed high risk based on HQ for algae and most of the fishes and
medium risk for crustacean (C. dubia) [6, 27]. Zhao et al. [28] reported high risk of
TCS in Pearl River (Liuxi, Shijing, and Zhujiang rivers) water and sediment from
China with maximum HQ observed as 23.4 and 28.7, respectively. Aside from
rivers, Michigan lake and STP effluent in the USA were also found to contain the
TCS at high risk level based on ECOSAR PNEC [7]. In addition to surface water
samples, Kosma et al. [29] reported that TCS in WWTP effluents discharged into
the rivers in Greece (Kalamas, Arachthos, Acheloos, Grevenitis, and Aliakmonas)
may pose high risk to algae (HQ >100), fish (HQ >1), and invertebrates (HQ >1) in
outfall locations.

Similar to TCS, TCC was also found at alarming level in river water (the USA
and China), showing HQ >10 [27]. Zhao et al. [28] also indicated higher risk of
TCC in water (HQ =5.8) and sediment (HQ = 24.54) from the tributaries of Pearl
River in China. In Michigan lake water (in the USA), medium risk was reported for
TCC; however, effluent entering into the lake showed high risk (HQ >10) [7]. From
Table 1, it is prominent that most of the HQs obtained for TCS (15 results out of 18)
and TCC (6 results out of 7) were >1, pointing their risk in the aquatic environment
is more likely. Among other disinfectants, resorcinol showed low (algae,
P. subcapitata) and medium risk (C. dubia) for river water in Japan, whereas p-
thymol and phenoxyethanol were found with low risk for daphnia, algae, and fish.
This indicates that the risk from p-thymol and phenoxyethanol in Japanese rivers is
minimal, unlike TCS and TCC [27].

Apart from risk assessment based on individual MEC, Reiss et al. [45]
performed probabilistic exposure estimation based on transport and fate of TCS
in wastewater effluents in the USA by using a model. The study compared the
estimated exposure concentration with PNEC of most sensitive species of algae,
plant, fish, and invertebrates and reported that some sensitive algae and plants may
be at risk at effluent outfall with meager dilution. Further, the risk at downstream of
the river is considered less because of dissipation of triclosan. While HQ is mostly
derived from individual PNEC, some of the studies have generated common PNEC
by SSD. Capdevielle et al. [15] constructed SSD based on chronic toxicity values
for 14 aquatic species including fish, invertebrates, macrophytes, and algae and
predicted lower risk of TCS to pelagic species immediately downstream of waste-
water treatment plant discharge points in rivers of Europe (GREAT-ER model
based on Calder river) and the USA (PRATE™ model based on 11 catchment
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areas) by using a common PNEC of 1,550 ng/l. Further, Lyndall et al. [22] reported
that 95 percentiles of measured and predicted TCS levels for water, sediment, and
biota are consistently below the fifth percentile of the respective SSD, indicating no
adverse effect of TCS.

The application of biosolids and wastewater containing TCC, TCS, and drugs to
plant (soybean) showed higher accumulation of antimicrobials (at root tissue and
beans) rather than drugs [46]; further it was reported that antimicrobials are not
metabolized and thus accumulated whereas drugs can be eliminated/transformed by
plants’ metabolism. So similar bioconcentration condition may favor the
bioaccumulation of antimicrobials in aquatic food chain also. While there are
ample reports on fate and risks of parental compounds, investigation on risk
assessment of their derivatives/metabolites is scantily found. For instance,
methyltriclosan, having greater hydrophobicity and bioaccumulation potential
than triclosan, is less studied for its toxicity. Therefore, the environmental risk
assessment may not be complete unless data on major derivatives/metabolites are
also available.

4.2 Antimicrobial Preservatives

Among preservatives, parabens (alkyl esters of p-hydroxybenzoic acid) are widely
used as bacteriostatic and fungistatic agents in cosmetic (creams, skin lotions,
shampoos, soaps, toothpaste, etc.), pharmaceutical, and food industries [3, 31]. There
are seven different types of parabens currently in use (benzyl, butyl, ethyl, isobutyl,
isopropyl, methyl, and propyl). Although reports on environmental occurrence of
parabens are ample ([3] and references therein), environmental risk assessment was
scantily carried out [6, 30, 31].

Probabilistic risk assessment (PRA) of parabens in D. magna and fathead minnow
was performed by Dobbins et al. [30] based on acute and chronic toxicity data. The
observed HQs based on NOEC were much lower (7.8 x 10°°—-23x% 1074) than
1 (Table 1), which indicates no/little risk of parabens to fathead minnow and
D. magna in surface waters of developed countries such as Belgium, Canada, and
the UK [30]. Further, Yamamoto et al. [31] carried out an elaborate risk assessment
for seven parabens in Tokushima and Osaka rivers in Japan. Unlike other studies, the
NOEC values obtained from vitellogenin expression of fish were used, and the HQ
showed no risk to aquatic organisms (algae, daphnia, and medaka) with the highest
HQ obtained for n-propylparaben (0.01). Nevertheless, the sum of HQs of individual
parabens showed low risk (HQ =0.017) to those riverine organisms, and the PNEC
based on n-butylparaben equivalence-based approach also showed low risk, with a
maximum HQ of 0.018. They suggested that chronic tests at early life stages of fish are
important for less erroneous risk assessment. Among developing countries,
Ramaswamy et al. [6] evaluated the risk of four parabens in major rivers (Kaveri,
Vellar, and Tamiraparani) of southern India. The lowest and highest HQs were
observed for ethylparaben (8 x 10~®) and butylparaben (0.001) to fish, respectively.
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However, the calculated HQs for crustacean (D. magna) and fish (P. promelas) in all
the rivers for all the parabens were below low risk criteria of 0.01.

4.3 Antioxidant Preservatives

Antioxidants are chemical substances used to prolong the shelf life of food items.
Due to less stability of natural antioxidants, synthetic phenolic antioxidants (SPAs)
like butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) are
often preferred for their fat-soluble nature. The level of BHT was higher than
triclosan and parabens in the rinse-off and leave-on cosmetics, respectively
[47]. Their undisputed usage has resulted in trace quantities in food and environ-
mental samples [26, 47]. Although BHA and BHT were classified as
noncarcinogenic by the USEPA and safe food additives by the FDA and the EU,
they possess estrogenic properties [48, 49]. Further, there are no environmental risk
assessments available due to lack of toxicity data.

4.4 Insect Repellents

DEET (N,N-diethyl-meta-toluamide or N,N-diethyl-3-methylbenzamide), a broad-
spectrum repellent and the most common active ingredient in insect repellents, is
efficacious against mosquitoes and other insects of medical and veterinary impor-
tance. Till date, only few studies have reported acute toxicity in invertebrates, fish,
and algae with EC50/LC50 in the range of 71.3-388 mg/l [5, 50]. Costanzo
et al. [50] measured DEET residues in surface waters from Australia, Germany,
the Netherlands, and the USA at safer level (75,000 times lower than EC50/LC50)
for aquatic organisms such as algae (Chlorella prothecoides), water flea
(D. magna), scud (Gammarus fasciatus), and fishes (Pimephales promelas, Gam-
busia affinis, Oncorhynchus mykiss). Further, Aronson et al. [19] estimated the flux
of DEET in US rivers by iSTREEM (in-STREam Exposure Model) and E-FAST
(Exposure and Fate Assessment Screening Tool) and predicted that DEET level was
not expected to reach the lowest NOEC (521 mg/l) observed for algae, crustaceans,
and fishes, indicating no risk of DEET in riverine habitat. Another insect repellent,
4-dichlorobenzene showed short-term exposure toxicity among invertebrates,
fishes, and algae at lower concentration (1-60 mg/l) than DEET ([5] and references
therein). Although newer repellents such as icaridin (1-piperidinecarboxylic acid
2-(2-hydroxyethyl) 1-methylpropyl ester) [51] and m-toluamide (NV,N-diethyl-m-
methylbenzamide) [52] are reported in the environment, their toxicity and risk
assessment studies are not yet available.
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4.5 Fragrances

Fragrances, the most widely used PCPs, seem to be omnipresent in the environment
[3, 5]. Synthetic musks (SMs), being the most commonly used fragrances, are
present in a wide range of products comprising deodorants, soaps, and detergents.
Commonly used nitro musks are musk xylene (MX) and musk ketone (MK),
whereas musk ambrette (MA), musk moskene (MM), and musk tibetene (MT) are
used less frequently. In the case of polycyclic musks, celestolide (ABDI),
galaxolide (HHCB), and toxalide (AHTN) are used most frequently, and traseolide
(ATID), phantolide (AHMI), and cashmeran (DPMI) are used less often [3].

Although they are water-soluble compounds, due to high octanol-water partition
coefficient of MK (log Kow =3.8) and polycyclic musks (log Kow of 5.4-5.9),
potential accumulation is expected in aquatic organisms. Rather than biomagni-
fications, direct impact on organisms is often understood by deriving HQ. In
Nakdong River, South Korea, Lee et al. [32] reported low risk of toxalide and
medium risk of galaxolide and musk ketone to fish. Combined risk of total SMs
(Table 2) clearly indicates higher risk than individual, with higher contribution
from MK. Apart from species-specific PNEC, Balk and Ford [33] used common
PNEC to determine the risk of musks (AHTN and HHCB) in various environmental
matrices, and the obtained HQ was always <1 (either no or low or medium risk).
The risk characterized for AHTN based on NOEC for aquatic organism and fish-
eating predators showed low risk (0.01-0.08), whereas medium risk (HQ =0.44)
was ascertained for sediment-dwelling organisms. For, HHCB, aquatic and
sediment-bound organisms showed low risk, whereas no risk was determined for
fish-eating predators. Interestingly, no risk was observed for worm-eating predators
from HHCB (HQ =0.001), even though medium risk (HQ =0.1) was anticipated
for soil organisms. Earlier, Tas et al. [53] also performed environmental risk
assessment to understand the safety level of MK and MX in the Netherlands and
found HQ <O0.1 for both aquatic and sediment-dwelling organisms, while much
lower HQ (0.01) was observed for fish-eating predators. Nevertheless, higher HQs
were predicted for soil organisms with 0.5 for MK and 1.3 for MX, indicating
medium to high risk, respectively and elevated HQ obtained for soil organisms
implies the need for consideration of sludge being applied as fertilizer. Based on
collective toxicity data and MECs, Brausch and Rand [5] suggested that probable
risk for aquatic wildlife is more certain due to AHTN than other musks. However,
chronic toxicity data on algae and benthic invertebrates are still lacking for effec-
tive aquatic risk assessment [5]. Apart from SMs, fragrances such as acetophenone,
camphor, D-limonene, ethyl citrate, indole, isoborneol, isoquinolone, and skatole
were also reported in surface waters. However, no acute/chronic toxicity data is
available to evaluate their environmental risk [5].



Environmental Risk Assessment of Personal Care Products 155
4.6 UYV Filters and Stabilizers

UV filters and stabilizers are found mainly in cosmetics and to some extent included
in other personal care products, pharmaceuticals, food packaging, plastics, textiles,
and vehicle maintenance products. Among organic and inorganic (ZnO, TiO,)
variants, the organic forms are mainly used. Currently, 27 UV filters were desig-
nated for use in cosmetics, plastics, etc., and they are used in combinations (up to
eight compounds) ([5] and references therein). The common feature of organic UV
filters is the presence of an aromatic moiety with a side chain having different
degrees of unsaturation and forming benzophenones (BPs), 4-methyl-benzylidine-
camphor (4MBC), 3-benzylidine-camphor (3BC), homosalate (HMS), 2-ethyl-
hexyl-4-trimethoxycinnamate (EHMC), ethyl-PABA (E-PABA), etc. After usage
(showering, wash-off, laundering, automobile servicing, etc.), these chemicals
enter the aquatic system indirectly (major input) from wastewater treatment plants
and directly due to recreational activities such as bathing and swimming in lakes,
rivers, and coastal waters (beaches).

In the environment, they may stay for longer duration because of high
lipophilicity (log Kow 4-8) and poor biodegradability and eventually accumulate
in sediments and biota as well [5, 54]. Like many xenobiotics, sunscreens do cause
effects on aquatic animals [3, 55]. Danovaro et al. [56] reported that UV filters
(commercial sunscreens, MBC, ethylhexylmethoxycinnamate, octocrylene, BP3,
etc.) at very low concentrations cause rapid and complete bleaching of corals. The
BCF for 4-MBC in roach, Rutilus rutilus, was calculated (9,700-23,000) ten times
lower than methyltriclosan having similar log Kow (5) [55]. Due to potential
bioaccumulation and toxicity, use of sunscreen products is now banned in some
of the famous tourist destinations including marine ecoparks in Mexico ([56] and
references therein).

Several studies have reported degradation of UV filters by photolysis ([57] and
references therein), and the ecotoxicological data on parental compounds and their
degradation products is scarce. Even though little information is available on their
toxicity, environmental concentrations suggest low potential risk [58]. However,
Gago-Ferrero et al. [58] presumed long-term risk associated with its pseudo-
persistency in the environment. According to Diaz-Cruz and Barcelo [59], most
of the UV filters and their metabolites are found to elicit hormonal (estrogenic and
androgenic) activities based on bioassays (Fig. 3). Five compounds (including four
BPs) showed high estrogenic activity, whereas only two showed high androgenic
activity, and this indicates that UV filters possess endocrine disrupting potential.

Based on risk assessment of UV filters (Table 1), among benzophenones, BP1
and BP4 were found at levels to cause low risk (HQ >0.01) to fish and daphnia,
respectively. Another benzophenone (BP3) showed medium, low, medium, ow
risks to fishes, crustaceans, algae, and corals, respectively, indicating the variable
toxicity expected in aquatic community. For the same organisms, 4-methyl-
benzylidine-camphor showed low risk (HQ >0.01), except for algae with medium
risk (HQ >0.1). Similarly, EHMC also pose low to high risks over a range of
organisms; particularly, high risk was assumed for fishes. As reported by Fent
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Fig. 3 Endocrine disrupting potentials of UV filters based on hormonal bioassays (no: activity not
detected; low: submaximal dose—response curves with <30% efficacy; medium: submaximal
dose-response curves with >30% efficacy; max: response curves with >80% efficacy) (From [59])

et al. [35, 36], 3BC can cause serious risk to O. mykiss (HQ =2.73) and D. magna
(HQ=1.43), and EHMC too pose a risk to D. magna (HQ = 1.35). Among other
compounds, BP1 and E-PABA showed no risk, and BP2-4 showed low risk to
aquatic species. Fent et al. [36] suggested the consideration of additive interaction
of UV filters in mixtures for risk assessment; they investigated the acute (48 h) and
chronic (21 day) toxicities on D. magna and found that acute toxicity increased with
lipophilicity. In case of sea urchin (Paracentrotus lividus) and microalgae
(Isochrysis galbana), medium (EHMC) to high risk (BP3 and 4MCB) was observed
by Paredes et al. [37], and they opined that RQ is dependent on the selection of
assessment factor which is still a debatable topic indeed.

Apart from the above compounds, 2-hydroxyphenyl derivatives of
benzotriazoles (BTZs) are also one of the major groups of UV stabilizers reported
in surface waters and biota ([60, 61] and references therein). Regarding the toxi-
cological status, few studies are available based on acute studies which suggested
BTZs and their derivatives are nontoxic with NOEC at few pg/1 level for freshwater
and marine organisms [60] and suggested for more chronic toxicity data for the
organisms in different food chain for deriving any conclusion relevant to environ-
mental risk assessments.
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4.7 Siloxanes

Siloxanes used in many PCPs and industrial coatings are now ubiquitously reported
in freshwater and marine environment [62—64]. Mostly, cyclic volatile
methylsiloxanes (cVMSs), commonly called as cyclosiloxanes, are widely added
as carrier solvents and emollients in cosmetics and other PCP formulations. There-
fore, now the concern is about their potential toxicity, transport, and fate in the
environment [65]. So far, cVMSs have received very little attention in ecotoxico-
logical research, i.e., hazards and risks to aquatic biota. Wang et al. [63] reviewed
the toxicological properties of octamethylcyclotetrasiloxane (D4), decamethylcy-
clopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with their respec-
tive log Kow (4.45, 5.20, and 5.86) and suggested strong tendency of cVMSs to
bind organic matter in soil and sediment. Further, the BCF for D4, D5, and D6 were
reported in the range of 1,875-10,000, 3,362—13,300, and 1,600, respectively, with
most of the studies confirming the bioaccumulative (>2,000) and very
bioaccumulative (>5,000) criterion ([63] and references therein). Further, Wang
et al. [63] observed the most sensitive fish toxicity (acute/chronic) values for
cVMSs in the range of 4.4-69 pg/l; however, to our knowledge, no ERA has
been performed.

4.8 Antibacterial Resistance

Apart from the toxicity of antimicrobials to macro life forms, the more affected are
the nontargeted microbes in the environment. It may hamper the bacterial diversity
in environment, thereby affecting the community structure. Ricart et al. [66] dem-
onstrated that environmental concentration of TCS can eliminate 85% of bacterial
population at 500 pg/l level. Moreover, the biocidal effect [67] can trigger
antibacterial resistance among the bacterial community. Evidences are growing
on the prevalence of multidrug-resistant bacteria in the environment, drinking
water, and patients, especially in developing countries such as India [68, 69], and
the antibiotic-resistant genes (ARGs) have been isolated from the surface water,
sewage, and in hospital environment [10]. Such conditions lead to the emergence/
transmission of antibiotic resistance among bacteria in the environment
[68]. Although the contribution of antibacterials in antibiotic resistance or
multidrug resistance is largely unknown, the scientific committee on emerging
and newly identified health risks by the EU [70] pointed that antibacterial resistance
may develop rapidly when exposed to preservative(s). Therefore, uncontrolled and
continuous use of antimicrobial/preservative compounds (triclosan, triclocarban,
parabens, etc.) may lead to resistance in bacteria. Recent studies confirmed
antibacterial resistance of PCPs (parabens, triclosan) from wastewater and surface
water [11, 71]. Selvaraj et al. [11] reported bacterial resistance in common patho-
gens in effluents of sewage treatment plants in India for parabens and suggested the
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possible transfer of resistant genes to other pathogenic bacteria in natural waters
because of the release of untreated wastewaters directly into the environment.
Moreover, the resistant strains have the potency to modify PCPs into toxic com-
pounds [72] which may further affect the organisms.

S Present Risk and Future Prospective of PCPs
in the Environment

On comparing the risk levels of major PCPs (Fig. 4), it is understood that most of
the antimicrobials and UV filters showed medium to high risk whereas synthetic
musks pose high risk only on total concentrations. Further, it clearly demonstrates
that all the compounds within a group do not elicit similar toxicity but elicit
cumulative risk. Apart from these three classes as shown in Fig. 4, reports on
ERAs for antioxidants, fragrances, and siloxanes are lacking to be represented.

In most of the studies, ERAs were performed based on individual compound and
not for mixtures present in the environment; therefore, it is critical to assess and to
understand their activity in mixture (combinations). Further, for more appropriate
environmental risk assessment of PCPs, it appears essential to consider not only
mixtures of parent compounds but also degradation products (metabolites,
photodegradates, and chlorination by-products). This may pose an undefined
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Fig. 4 Aquatic health risk of PCPs based on literature data [6, 7, 27-37]
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ecotoxicological risk to resident organisms as well as a great challenge to
ecotoxicologists. Moreover, testing chemical mixtures for toxicity is not an easy
task due to the possible presence of thousands of organic and inorganic compounds
(pollutants) in the environment; however, integrated dose—response relationships
may be promising. In addition, the effect of individual components in the mixture
can be extrapolated to understand/predict the cumulative effect via in silico
approach, which can be further validated selectively through bioassays.

6 Conclusive Remarks

The impact of anthropogenic pollutants on the environment is severe and being
given priority to understand well in this century. Despite their occurrence at
submicrogram level in environment, the risk ascertained is quite high in many
parts of the world. Developed countries are reporting high removal efficacy of
WWTPs for few PCPs; however, higher risk is anticipated in developing countries
where no proper treatment facilities are available. The exponential growth of
population depletes freshwater resources and results in water shortage in this
twenty-first century and in future. To combat water scarcity, reuse of wastewater
is often advocated; such reuse has raised many questions with the occurrence of
PCPs and other emerging chemicals residues.

Current environmental risk assessment procedures are limited in their proven
ability to evaluate the combined effects of multiple xenoestrogens. Hence, ERA for
mixtures (various forms of chemicals and their environmental derivatives) based on
potential synergistic and/or antagonistic effects should be considered. As of the
present situation, wider chronic toxicity studies should be imparted for many PCPs.
Further, the effect of PCPs in the base of food chain may lead to adverse conse-
quences through food chain magnification and ultimately on ecosystem. However,
at present such scenario is entirely speculative and more appropriate studies to
probe for this outcome have not yet been conducted holistically. Apart from the risk
to aquatic organisms, some PCPs such as triclosan, parabens, etc., entering the
aquatic environment may reduce the bacterial diversity and also act as buffers for
the emergence of multidrug-resistant bacteria such as “superbug.” These concerns
also need to be addressed for the safety of future generation.
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Abstract Human exposure to major classes of personal care products (PCPs) that
include disinfectants (e.g. triclosan), fragrances (e.g. musks), insect repellents
(e.g. DEET), preservatives (e.g. parabens), and UV filters (e.g. benzophenones)
has been reviewed. Concentrations of these toxicants in human matrices (blood,
urine, or tissues) have been compiled, alongside with relevant health implications.
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1 Introduction

Personal care products (PCPs) contain a wide range of chemicals that are under
increasing scrutiny. Current knowledge about these contaminants in PCPs has
significant gaps with regard to their toxicity (towards humans), bioaccumulation,
exposure, doses in humans, and biotransformation products (metabolites). Some of
the contaminants in PCPs belong to chemical groups which have raised concerns
regarding endocrine disruption.

An average person is exposed to numerous chemicals from cosmetics, soaps,
moisturizing skin creams, lipsticks, makeup formulations, nail polishes, after-shave
lotions, or hair-care products in addition to a variety of other PCPs. PCPs are widely
used in our everyday life for personal hygiene and beautification purposes. Even
though consumers may assume that these products are safe, some of the ingredients
are untested for their safety and some are unregulated. Furthermore, ingredient
labels can be misleading about the safety of the products.

Human exposure doses and sequestration of these chemicals in human bodies are
key concerns for these chemicals due to their broad applications. Several ingredi-
ents of PCPs may be characterized as persistent, bioaccumulative, and toxic, while
others are associated with endocrine disruption. Human exposure to these
chemicals was not studied until recently. As the analytical methodologies advance,
sensitive methods have been applied in the detection of these chemicals in human
specimens. In this chapter, we systematically investigate the levels of selected PCPs
and their metabolites in human matrices and suggest health implications from such
exposures.

2 Xenobiotics: Biotransformation and Adjustment
of Urinary Concentrations

Once a xenobiotic compound enters the human body, it is transformed into its
metabolites by cytochrome P450 enzymes. The impact of each xenobiotic on
humans differs depending on its toxicity and route of elimination from the body.
Biotransformations occur mainly in the liver, lungs, intestines, and skin, and
xenobiotics are subject to phase I and phase II metabolism. In general, xenobiotics
are excreted as the parent compound and metabolites, and as free or conjugated
species (i.e. glucuronides and sulphates). Thus, the total concentration of a xeno-
biotic refers to its total sum concentration of free and conjugated species.

In recent years, biomonitoring techniques have been used in the assessment of
human exposure to environmental chemicals. In most biomonitoring studies, total
concentrations of xenobiotics are determined in human specimens such as blood or
urine. However, in the absence of analytical standards for conjugated species, a
back calculation method involving analysis of concentrations of free species and
“total” forms can provide information regarding the concentrations of conjugated
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fraction. For the determination of total concentrations, the samples are hydrolyzed
to free the conjugated fraction of the xenobiotic from the bound chemical groups
(i.e. glucuronic acid). Hydrolysis is performed through the addition of a strong acid
such as hydrochloric acid or through enzymatic methods. Without the hydrolysis
step, only the free fraction of the chemical can be determined. When enzymatic
hydrolysis is applied, the enzyme p-glucuronidase (mainly from Helix pomatia,
since it has also sulphatase activity) is mainly used.

Urine is a most commonly used human specimen in biomonitoring studies.
However, concentrations of xenobiotics in urine can vary depending on the volume
of urine excreted at the time of sampling. The effect of urinary dilution/volume can
be accounted for by determining the amount of the environmental chemical per
amount of urinary creatinine in a given volume of urine. In addition, there are a
number of normalization procedures, and the two most common ones are specific
gravity and creatinine correction. Nevertheless, there are some controversies with
regard to the correction of urinary concentrations of environmental chemicals to
creatinine levels. Urine’s specific gravity determines the content of various water-
soluble molecules excreted through the kidneys into urine. On the other hand,
creatinine is a by-product of skeletal muscle metabolism of creatine and is cleared
from the blood plasma into the kidney at an approximately constant rate. In this
chapter, unless mentioned otherwise, we report concentrations of PCPs on an
unadjusted basis.

3 Exposure to Disinfectants

Triclosan (TCS) and triclocarban (TCC) are known for their extensive use as
antimicrobials in PCPs [1]. They are used in PCPs, such as toothpaste, soap,
shampoo, deodorant, mouthwash, and cosmetics. They can also be found in kitchen
utensils, toys, and textiles. Thus, human exposure can occur through oral and
dermal contact [2, 3].

TCS and TCC have been determined in urine, serum, plasma, and human breast
milk. All levels are expressed in total concentrations (unconjugated and conjugated
species). Urine is the most common biological media for monitoring TCS and TCC
since urinary excretion is the major route of elimination [2-5] (Table 1).

Urinary TCS levels have revealed great differences in concentrations of up to
three orders of magnitude (Table 1). Moreover, the detection rate is high, with most
studies reporting a detection rate of >70 %. On the contrary, TCC levels, in most
cases, were less frequently detected and at lower concentrations than TCS.

A study from China demonstrated that females had statistically higher geometric
mean concentrations of TCS than males [13]. In contrast, Allmyr et al. [14] reported
higher levels of TCS in serum from males than in females, and 31-45-year-old
individuals had higher levels of TCS in comparison with the other age groups. TCS
was also found in human breast milk but at lower levels than in plasma [15]. Milk
samples from women who used TCS-containing PCPs had statistically significantly
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Table 1 Reported total concentrations (or mentioned otherwise; ng mL™") and frequency of
detection of triclosan (TCS) and triclocarban (TCC) in human urine

Human
matrix

Population
)

Origin of
samples
(country)

Target
chemicals

Concentration
ranges (and
max., median,
average or
geometric mean
if available)

Detection
rates (%)

References

Urine

506 (preg-
nant
women)

USA

TCS

19-44 ng mL™!
(mean:
29 ng mL ™)

100

(6]

Urine

46

(26 males
and

20 females;
average
age:

34.5 years
old)

Canada

Free TCS

Not detected—
20 ng mL™"
(median:

0.07 ng mL™")

95.7

TCS-
glucuronide

Not detected—
702 dg mL ™!

(median:

15 ng mL™)

97.8

TCS-
sulphate

Not detected—
0.09 ng mL~"
(median: below
detection limit)

21.7

TCS

Not detected—
703 ng mL™!
(median:

15ngmL™")

100

(7]

Urine

3,728

USA

TCS

105—

127 ng mL™"
(mean:

116 ngmL™")

100

(8]

Urine

1,870

Korea

TCS

1.5-1.9ngmL™"
(mean:
1.7ng mL™")

92.6

[9]

Urine

131

Belgium

TCS

Not detected—
599 ng mL™"
(geometric
mean:

3ng mL™")

74.6

[10]

Urine

4,037

USA

TCS

Not detected—
3,620 ng mL ™"
(median:

12ng mL™")

71.3

[11]

(continued)
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Table 1 (continued)

Concentration
ranges (and
max., median,
Origin of average or
Human | Population |samples | Target geometric mean | Detection
matrix (N) (country) |chemicals if available) rates (%) | References

Urine 100 Greece TCS Not detected— 71 [3]
2,583 ng mL ™"
(geometric
mean:

8 ng mL™)
TCC Not detected— 4
2 ng mL~!
(geometric
mean:

0.6 ng mL™h
Urine 105 (preg- Puerto TCS 25th percentile— | 79.0-88.9 |[12]
nant Rico max: 4—
women) 2,780 ng mL™!

Table 2 Estimated daily intake of TCS on the basis of biomonitoring data

Origin of | Estimated daily
Target samples intake (EDI) (pg/
chemicals | (country) |kg BW/day) Equation used References

TCS Greece 0.1-1,059 Estimated daily intake (EDI; pg/kg 3]

(median: 2.4) BW/day) = 15.8 x [X¢Parabens]
(pg/L) x 1.7 (L/day)/65.5 kg

—

higher levels of TCS compared to those women who did not use TCS-containing
PCPs [15]. Pycke et al. [16] measured total TCS, TCC, and the metabolites of TCC,
namely, 2’-OH-TCC, 3’-OH-TCC, and 3’-CI-TCC in human urine. 2'-OH-TCC was
present at higher detection rate amongst all three metabolites (27.1%), followed by
3’-OH-TCC (16.6%) and 3'-CI-TCC (12.7%) [16]. The concentration ranges of
2'-OH-TCC, 3’-OH-TCC, and 3'-CI-TCC were 0.02-0.5, 0.01-0.08, and ‘“not
detected” —0.02 ng mL~!, respectively, while the precursor compound, TCC,
was found at a concentration range of 37-151 ng mL ™" [16].

Based on the measured urinary concentrations of TCS and simple steady-state
toxicokinetic model, exposure dose to TCS was estimated by Asimakopoulos
et al. [3] (Table 2). It was reported that only 6.3% of TCS penetrates the human
skin after dermal application. Since the major exposure route of TCS is dermal
application of PCPs, a factor of 15.8 was applied in the estimation of the total intake
(6.3 x 15.8-100 %) of TCS (Table 2) [3].

In 2010, TCS was removed from the EU list of provisional additives for use in
plastic food-contact materials, since TCS is considered more toxic than many other
disinfectants [3]. TCS is potentially genotoxic in certain types of organisms and/or
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cell types [3]. Exposure to TCC was associated with methemoglobinemia in
humans [3].

4 Exposure to Fragrances

Synthetic musk fragrances are widely used in PCPs, such as laundry detergents,
softeners, soaps, antiperspirants, deodorants, and other cosmetics. Synthetic musks
are divided into two main groups, nitro and polycyclic musks. Amongst the nitro
musks, musk xylene (MX) and musk ketone (MK) are the most commonly used
chemicals, followed by ambrette (MA), musk moskene (MM), and musk tibetene
(MT). Amongst the polycyclic musks, celestolide (ADBI), galaxolide (HHCB), and
tonalide (AHTN) are the most commonly used followed by traseolide (ATII),
phantolide (AHMI), and cashmeran (DPMI). In recent years, polycyclic musks
are used in higher quantities than nitro musks. In addition, the polycyclic musks
are studied widely since they are suspected to act as endocrine disruptors [17]. Even
though it was thought that the most likely exposure pathway is dermal exposure and
absorption through the skin, research now focuses towards indoor air inhalation and
indoor dust ingestion as important sources for musk exposure due to their use in
diverse household products (e.g. air fresheners) and their high particle-binding
affinities. Even though the overall impact of synthetic musks on human health is
currently unknown, this is an active area of research [18].

Synthetic musks maintain a lipophilic nature and low biodegradability and have
been detected in human biological media (Table 3). HHCB is found at the highest
median concentration in human milk, followed by AHTN and MX. Concentrations
of MK were very low and often not detectable or not quantifiable (Table 3).

A downward trend in exposure to MX was observed by Covaci et al. [18], since
the industry voluntarily replaced the nitro- with polycyclic musks (Table 3). More-
over, HHCB is by far the most common polycyclic musk, as its production and use
increased at the same time as production and use of nitro musks decreased
[18]. Women with a high use of perfume during pregnancy had elevated concen-
trations of HHCB in their breast milk [25, 26]. In addition, elevated concentrations
of AHTN in women were observed when they reported using perfumed laundry
detergent [25, 26]. Hutter et al. [25] reported higher plasma concentrations of
HHCB in older individuals, and the finding was correlated to the higher use of
lotions and crémes for their skin. Polycyclic musk compounds are bioaccumulative
since they are found in human fat tissues and they are very stable chemicals.
However, even though humans are constantly exposed to musks, routine toxicology
screens have not shown any toxicity at low-dose exposures [27].
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5 Exposure to Preservatives

Parabens are the most commonly used preservatives found in PCPs, and in fact,
they are regarded as the most common ingredients in cosmetics. They are present in
approximately 80% of PCPs surveyed [28]. In a study conducted by Rastogi
et al. [29], parabens were found in approximately 80% of rinse-off and 100% of
leave-on cosmetics. Although commercially used parabens are of synthetic origin,
it is known that some organisms are able to produce them naturally [30]. An
acceptable daily intake (ADI) of <10 mg/kg-body weight (bw)/day was suggested
for methylparaben (MeP), ethylparaben (EtP), and propylparaben (PrP) by the Joint
Food and Agriculture Organization (FAQO) and World Health Organization (WHO)
Expert Committee on Food Additives (JECFA) [2, 3]. Estrogenic activities have
been reported in numerous bioassays for MeP, EtP, PrP, and butyl paraben (BuP)
[2, 3]. Recently, epidemiological studies showed an association between human
exposure to parabens and adverse health effects [31, 32]. In 2007, the ADI set for
PrP was withdrawn by JECFA, and in 2011, Denmark banned the use of PrP and
BuP in children’s cosmetic products [2, 3]. Other parabens that are applied in PCPs,
but less extensively, are benzylparaben (BzP) and heptylparaben (HeptP). Recently,
methyl-protocatechuate (OH-MeP) and ethyl-protocatechuate (OH-EtP) were
documented as novel metabolites of exposure to methyl- and ethyl-paraben, respec-
tively [33]. Following oral or dermal administration, parabens are rapidly hydro-
lyzed by non-specific esterases and widely distributed in the body (i.e. skin,
subcutaneous fat tissue, and digestive system). Several parabens end up in two
common metabolites, p-hydroxybenzoic acid (4-HB) and protocatechuic acid
(3,4-dihydroxybenzoic acid; 3,4-DHB) [33].

Parabens, once they enter into the bloodstream through oral or dermal appli-
cation, are excreted through urine, as free-form or glycine, glucuronide, or sul-
phate conjugates [30]. Therefore, parabens are mainly determined in human urine
and blood serum [30] (Table 4). In a biomonitoring study in Greece,
Asimakopoulos et al. [3] measured the total concentrations of parabens
(Z¢Parabens: [MeP] + [EtP] + [PrP] + [BuP] + [BzP] + [HeptP]) in urine from
100 individuals. Considerable differences in concentrations were revealed, rang-
ing from 2 to 1012 ng mL ™", with a geometrical mean value of 24 ng mL ™", All
parabens were found in urine, and the rank order of detection rate (DR) was MeP
(100%) > EtP (87%) > PrP (72%) > BuP (46 %) > BzP (6%) > HeptP (4%). This
pattern of detection rate of parabens is in accordance to previous studies on human
biologic media [3]. The distribution profiles of paraben concentrations in urine
followed the order of MeP >> PrP > EtP, which was also similar to those reported
in previous studies on human biologic media [3]. Moreover, MeP and PrP are used
in combination in many PCPs, and therefore, a significant correlation was found
between these two parabens in urine samples across a number of studies [45].

For the first time, alkyl protocatechuates were determined and quantified by
Wang and Kannan [33]. They found that in the urine of children, the concentrations
of OH-MeP were an order of magnitude lower than the concentrations of MeP,
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Table 5 Estimated daily intake of parabens through human biomonitoring studies
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Target
chemicals

Origin of
samples
(Country)

Estimated
daily intake
(EDD) (ng/kg
BW/day)

Equation used

References

Y¢Parabens

(IMeP] + [EtP]

+ [PrP] + [BuP]
+[BzP]
+ [HeptP])

Greece

2.1-1,313
(median: 23.8)

Estimated daily intake (EDI; pg/
kg BW/day) =50 x
[ZcParabens] (pg/L) x 1.7
(L/day)/65.5 kg

[3]

MeP, EtP, PrP,
YParabens
([MeP] + [EtP]
+[PrP])

China

MeP: geomet-
ric mean: 6.69
for males

Estimated daily intake (EDI; pg/
kg BW/day) =50 x Ci (pg/L) x
1.7 L (L/day) / BW

Geometric
mean: 15.9 for
females

EtP: geomet-
ric mean: 2.50
for males

Geometric
mean: 3.06
for females

PrP: geomet-
ric mean: 3.63
for males

Geometric
mean: 8.94
for females

Yparabens:
geometric
mean: 18.4
for males

Geometric
mean: 40.8
for females

(C; : measured urinary concen-
tration of individual parent
parabens; BW: 62.7 kg for
males and 54.8 kg for females)

[45]

whereas in the urine of adults, the total concentrations of OH-MeP were higher than
those of MeP, suggesting a potential difference in metabolism between these two
age groups [33]. Moreover, 4-HB and 3,4-DHB, two established endocrine-
disrupting compounds, were found to be predominant in the urine of children and

adults [33].

Based on the measured urinary concentrations of parabens and simple steady-
state toxicokinetic models, exposure to parabens was estimated by Asimakopoulos
et al. [3] and Ma et al. [45]. Higher concentrations of parabens in females than in
males have been associated with high use rates of PCPs by the former group

(Table 5) [45].
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6 Exposure to UV Filters

UV filters are used as sunscreen agents in PCPs for the protection of skin and hair
from UV irradiation [47]. Even though UV filters are designed for external appli-
cation on the skin or hair, some of them can be absorbed in the human body, further
metabolized, and eventually bioaccumulated and/or excreted. Thus, for adequate
consumers’ protection, the maximum allowed concentrations of UV filters have
been regulated worldwide by legislation. The absorption of these chemicals by the
human body is linked to various adverse health effects, such as allergic contact
dermatitis and endometriosis [47, 48]. Chisvert et al. [47] categorized the UV filters
into 9 classes:

1. p-Aminobenzoic acid (PABA) and derivatives (i.e. ethylhexyl dimethyl
p-aminobenzoic acid (EDP) and PEG-25 p-aminobenzoic acid (P25))

2. Benzimidazole derivatives (i.e. phenylbenzimidazole sulphonic acid (PBS) and
disodium phenyl dibenzimidazole tetrasulfonate (PDT))

3. Benzophenone derivatives (i.e. benzophenone-3 (BZ-3) and diethylamino
hydroxybenzoyl hexyl benzoate (DHHB))

4. Benzotriazole derivatives (drometrizole trisiloxane (DTR) and methylene
bis-benzotriazolyl tetramethylbutylphenol (MBT))

5. Camphor derivatives (3-benzyliden camphor (3BC), 4-methylbenzylidene cam-
phor (MBC), benzylidene camphor sulphonic acid (BCS) polyacrylamidomethyl
benzylidene camphor (PBC), camphor benzalkonium methosulfate (CBM), and
terephthalylidene dicamphor sulphonic acid (TDS))

6. Methoxycinnamates (ethylhexyl p-methoxycinnamate (EMC) and isoamyl
p-methoxycinnamate (IMC))

7. Salicylates (ethylhexyl salicylate (ES) and homosalate (HS))

8. Triazine derivatives (diethylhexyl butamido triazone (DBT), ethylhexyl triazone
(ET), and bis-ethylhexyloxyphenol methoxyphenyl triazine (EMT))

9. Other filters (butyl methoxydibenzoylmethane (BDM), octocrylene (OCR), and
polysilicone-15, P15)

For very few UV filters, BZ-3, MBC, EDP, and PABA, their metabolic pathways
are elucidated in vivo and/or in vitro studies [47]. BZ-3 is biotransformed amongst
others into  2,4-dihydroxybenzophenone (2,4-OH-BP; or BP-1), 2,2,
4,4'-tetrahydroxybenzophenone (2,2',4,4’-OH-BP or BP-2), 2,2'-dihydroxy-4-
methoxybenzophenone (2,2'-OH-4MeO-BP; or BP-8), 4-hydroxybenzophenone
(4-OH-BP), and 2,3,4-trihydroxybenzophenone (2,3,4-OH-BP) [2, 3]. MBC is
mainly biotransformed to 3-(4-carboxybenzylidene)camphor (CBC) and four iso-
mers of 3-(4-carboxybenzylidene)hydroxycamphor (CBC-OH)
(3-(4-carboxybenzylidene)-6-hydroxycamphor (CBC-60H) is the major one)
[47]. EDP is mainly biotransformed to N,N-dimethyl-p-aminobenzoic acid
(DMP) and N-monomethyl-p-aminobenzoic acid (MMP) [47], while PABA is
mainly biotransformed to p-aminohippuric acid (PAH), p-acetamidobenzoic acid
(PAcB), and p-acetamidohippuric acid (PAcH) [47].
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Table 7 Estimated daily intake of BP-UV filters through biomonitoring data

Estimated

Origin of | daily intake

samples | (EDI) (pg/kg
Target chemicals (country) | BW/day) Equation used References
X5 BP-UV filters Greece 0.6-1,458 Estimated daily intake (EDI; | [3]
([BP-1]+[BP-8] + (median: 5.8) | pg/kg BW/day) =50 x
[BP-2] +[2,3,4-OH- [X¢Parabens] (pg/L) x 1.7
BP] + [4OH-BP]) (L/day)/65.5 kg

The rank order of the studied human biological media for BP-UV filters in
descending order is urine >blood plasma or serum > faeces, breast milk, and
semen > tissues (liver, kidney, intestine, spleen, brain, heart, testes, placental,
skin, and adipose tissue). The most studied class of UV filters is the “benzophenone
derivatives” class, and the majority of studies by far are focused on BP-3 (and
metabolites) (Table 6).

Calafat et al. [52] determined the total concentrations of BP-3 in 2,517 urine
samples (between 2000 and 2004). The concentrations ranged from 0.4 to
21,700 ng mL ™!, with a mean value of 23 ng mL~!. Kunisue et al. [48] determined
the total concentrations of BP-3 in urine samples from 625 women in ranges from
<0.3 to 5,900 ng mL™". In a biomonitoring study in Greece, Asimakopoulos
et al. [3] measured the total concentrations of BP-UV filters (X£sBP-UV filters:
[BP-1] + [BP-2] +[2,3,4-OH-BP] + [BP-8] + [4OH-BP]) in urine from 100 individ-
uals and also revealed great differences in concentrations, ranging from 0.5 to
1,120 ng mL™", with a geometrical mean value of 4 ng mL~'. Moreover to our
knowledge, the study of Asimakopoulos et al. [3] is the first in which the concen-
trations of BP-UV filters are expressed on three different bases (volume-, specific
gravity-, and creatinine-adjusted bases).

The daily intake assessment of BP-UV filters is more complicated than the other
PCPs because of the lack of clear knowledge on metabolic pathways; for example,
BP-1 and BP-8 can be found in urine as parent compounds, as they are used directly
in sunscreens, but they can also be formed as metabolic products of BP-3 [3]. Thus,
taking into consideration that a maximum of 2 % of BP-3 applied on human skin
could reach the bloodstream, a factor of 50 was applied to estimate the total
exposure amount (50 x 2 =100 %) [3] (Table 7).

7 Exposure to Insect Repellents

N,N-diethyl-m-toluamide (DEET) is the most common active ingredient in insect
repellents, and is routinely detected in the environment. Because these insect
repellents are sprayed directly on the skin, human exposure is inevitable. DEET
is currently registered for use in 225 products in the USA, and it is estimated that the
annual usage exceeds 1.8 million kg [53]. DEET is metabolized in the human body
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and excreted in urine [54, 55]. Although DEET metabolism is not fully understood,
some dealkylated and oxidized metabolites have been reported [1]. The studies on
human biomonitoring of DEET are a few compared to the other PCPs. In a study on
the general population of the USA (2001-2002), urine samples from 2,535 indi-
viduals were analyzed and demonstrated a 95th percentile value of
0.18 ng mL™ " [1].

8 Concluding Remarks and Future Perspectives

On the basis of the information presented in this chapter, humans are exposed to a
range of chemicals present in PCPs. Toxicological significance of exposure to
complex mixture of these chemicals on human health is not known. More infor-
mation is needed, mostly regarding the importance of the exposure pathways and
the factors that affect these exposures. Linking adverse health effects to various
PCPs is a very difficult and complicated, and more epidemiological studies are
deemed necessary.
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Analytical Methodologies
for the Determination of Personal Care
Products in Water Samples

Alberto Chisvert and Amparo Salvador

Abstract Personal-care products (PCPs) could reach the aquatic environment and
cause a great impact in the aquatic ecosystem. In this sense, the monitoring of these
emerging pollutants in the environment yields valuable information. For this
reason, analytical methods to determine PCPs in environmental waters are needed.
Due to the low concentration of the PCPs, i.e. ng Lfl, sensitive methods are needed.
This required sensitivity can be achieved by using sensitive analytical techniques
during the measurement step, or by employing enrichment techniques during the
sample treatment step. Obviously, the combination of both sensitive analytical
techniques and extraction techniques considerably improves the quality of the
determination.

In this way, in the last years, different analytical methods have been developed
to determine PCPs in environmental waters from different origin, i.e., water from
sea, lake, river, influent and/or effluent wastewater treatment plant, swimming pool,
tap, and groundwater. The aim of this chapter is to compile and discuss the
analytical literature dealing with the development and validation of analytical
methods for determining PCPs in environmental water samples, emphasizing
both the employed sample treatment and the subsequent analytical technique.

Keywords Analytical methods, Insect repellents, Musk fragrances, Preservatives,
UV filters
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Abbreviations

ADBI Celestolide

AHMI Phantolide

AHTN Tonalide

APCI Atmospheric pressure chemical ionization

APPI Atmospheric pressure photoionization

ATIL Traseolide

BApE Bar adsorptive microextraction

BDM Butyl methoxydibenzoylmethane

BP Butylparaben

BZ Benzophenone

BZ1 Benzophenone-1

BZ10 Benzophenone-10

BZ2 Benzophenone-2

BZ3 Benzophenone-3

BZ4 Benzophenone-4

BZ6 benzophenone-6

BZS8 Benzophenone-8

BzP Benzylparaben

BzPh Benzylphenol

C18 Octadecyl functionalized silica

C8 Octyl functionalized silica

CAR Carboxen

CLP Chlorophene

CMI Chloromethylisothiazolinone

CPE Cloud-point extraction

CXL Chloroxylenol

DART Direct analysis in real time

DCMI Dichloromethylisothiazolinone

DEET N,N-diethyl-m-toluamide

DI Direct immersion

DLLME Dispersive liquid—liquid microextraction

DPMI Cashmeran

dSPE Dispersive solid phase extraction
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duSPE
ECD
EDP
EGS

El

EMC
EP

ES

ESI

EW
FID

GC
GCxGC
GW
HFLPME
HHCB
HMS
HS

ICA

IL

IMC
IPBC
W
KWLPME
LC
LDPE
LK
LLE
LVI
MA
MALLE
MBC
MCNPME
MEPS
MI

MK
MLOD
MM
MNPs
MP

MS
MS/MS
MSA
MT

MX

Dispersive microsolid phase extraction
Electronic capture detector

Ethylhexyl dimethyl PABA
Ethyleneglycol silicone

Electronic ionization

Ethylhexyl methoxycinnamate
Ethylparaben

Ethylhexyl salicylate

Electrospray ionization

Effluent wastewater

Flame ionization detector

Gas chromatography
Two-dimensional gas chromatography
Groundwater

Hollow-fiber liquid-phase microextraction
Galaxolide

Homosalate

Head-space

Icaridin

Tonic liquid

Isoamyl methoxycinnamate
Iodopropynyl butylcarbamate

Influent wastewater

Knitting wool liquid phase microextraction
Liquid chromatography

Low-density polyethylene

Lake

Liquid—liquid extraction

Large volume injection

Musk ambrette

Membrane-assisted liquid—liquid extraction
4-Methylbenzylidene camphor

Magnetically confined nanoparticle microextraction

Microextraction by packed sorbent
Methylisothiazolinone

Musk ketone

Method limit of detection
Musk moskene

Magnetic nanoparticles
Methylparaben

Mass spectrometry

Tandem mass spectrometry
Magnetically stirring assisted
Musk tibetene

Musk xylene
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NPCPs
OCR
PA

PBO
PBS
PCPs
PDMS
PER
PID
PMA

PP
PS-DVB
PS-DVB/MH

PS-DVB/MP

PVP-DVB
PVP-DVB/
MCX

RV

SBE
SBSE
SDME

Sp

SPE
SPME
SW

TBC

TC

TCC

TCS

TD

™W
UDSA
USA
USAEME
uv

VA
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Non-personal care products

Octocrylene

Polyacrylate

Piperonyl butoxide

Phenylbenzimidazole sulphonic acid

Personal care products

Polydimethylsiloxane

Permethrin

Photoionization detector

Polymethylmethacrylate

Propylparaben

Polystyrene divinylbenzene copolymer

Polystyrene divinylbenzene copolymer modified with hydroxyl
groups

Polystyrene divinylbenzene copolymer modified with pyrrolidone
groups

Polyvinylpyrrolidone divinylbenzene copolymer
Polyvinylpyrrolidone divinylbenzene copolymer modified with
cationic exchange groups

River

Solvent back extraction

Stir-bar sorptive extraction

Single-drop microextraction

Swimming pool

Solid-phase extraction

Solid-phase microextraction

Seawater

Tetrabromocresol

Temperature-controlled

Triclocarban

Triclosan

Thermal desorption

Tap water

Up-and-down shaker assisted

Ultrasounds assisted

Ultrasounds-assisted emulsification microextraction
Ultraviolet spectrometry

Vortex assisted

1 Introduction

Personal-care products (PCPs) could reach the aquatic environment through direct
and indirect sources [1]. Moreover, different studies evidence that some of them
present a great impact in the aquatic ecosystem, since some of them can alter the
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flora growth [2—4] or present endocrine-disrupting activity in the aquatic fauna [2,
5-9]. This topic was deeply described in a previous chapter.

For these reasons, there has been a growing concern about the quality of
environmental waters in the last years. In this sense, the monitoring of these
emerging pollutants in the environment yields valuable information. However,
there are no official analytical methods to cover this social demand, and then, the
development of reliable analytical methods to monitor the presence of these
emerging pollutants in the environment is needed. Fortunately, the analytical
chemistry community is aware of this situation and in the last two decades,
especially in the last five years, different analytical methods focused in the deter-
mination of different groups of PCPs (i.e., organic UV filters, musk fragrances,
preservatives, and insect repellents) in environmental waters have been published
[10-15]. This is an unequivocally reflection of the social concern about the need of
preserving the aquatic ecosystem.

Due to the different groups of PCPs and the high number of compounds under
each group, the published analytical methods usually focus on the determination of
a relatively high number of compounds belonging to a specific group. Moreover, in
some cases there are significant differences in the chemical nature of compounds of
the same group. Nevertheless, some authors have proposed multi-residue analytical
methods where different PCPs belonging to different families are jointly deter-
mined with the aim to cover the impact of these different families. However, they
do not cover a high number of compounds from the same group but they chose a
short representation of compounds from the different groups.

It should be emphasized that the determination of PCPs in environmental waters
entails an added drawback, since they appear at a very low concentration. Conse-
quently, sensitive analytical methods are needed. This can be achieved using
sensitive analytical techniques during the measurement step or employing enrich-
ment techniques during the sample treatment step. Obviously, the combination of
both sensitive analytical techniques and extraction techniques improves consider-
ably the quality of the determination.

Regarding sensitive analytical techniques, mass spectrometry (MS), or even MS
in tandem (MS/MS), coupled with either liquid chromatography (LC) or gas
chromatography (GC), depending on the physico-chemical properties of the target
compounds, shows higher sensitivity than other classical detectors like ultraviolet-
visible spectrometry (UV—-Vis) for LC or flame ionization detection (FID) for GC.

Regarding enrichment techniques, extraction techniques play a crucial role,
since they can be used not only for enrichment purposes but also for separating
the target compounds from potentially interfering compounds. In this sense, clas-
sical extraction techniques like liquid—liquid extraction (LLE) or solid-phase
extraction (SPE) have been used. Nevertheless, other more modern techniques
based on the ‘microextraction’ concept have been employed, either in solid or in
liquid phase. These techniques try to minimize the high volumes of the hazardous
organic solvents employed in both LLE and SPE, besides reducing the extraction
time and improving the enrichment factors.
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In this way, different analytical methods have been developed to determine
PCPs in environmental waters from different origin, i.e., water from sea, lake,
river, influent and/or effluent wastewater treatment plant, swimming pool, tap, and
groundwater. In general terms, water is sampled and collected in pre-rinsed glass
bottles, transferred to the laboratory and analyzed. However, in some cases, passive
samplers, such as semipermeable membrane devices (SPMD) that trap non-polar
compounds [16—-19] are left during large periods of time (i.e., days, weeks or even
months) in the desired aquatic ecosystem (lake, river, etc.) to monitor the amounts
of UV filters. These devices mimic the natural bioaccumulation in the fatty tissues
of aquatic organisms, allowing to estimate the exposure of these aquatic organisms
to the PCPs. Similarly, polar organic chemical integrative samplers (POCIS) that
trap hydrophilic compounds [20, 21] have also been used. These devices mimic the
respiratory exposure of aquatic organisms.

The aim of this chapter is to compile and discuss the analytical literature dealing
with the development and validation of analytical methods for determining PCPs in
environmental water samples, emphasizing both the employed sample treatment
and the subsequent analytical technique. Table 1 lists, in a chronological order,
those published papers dealing with UV filters. In the same way, Table 2 is devoted
to musk fragrances, Table 3 to preservatives, and finally Table 4 to insect repellents.
Those papers focused on the application of an analytical method to measure the
removal rate of PCPs in wastewater treatment plants or the occurrence of the PCPs
in waters are not considered here, but they are dealt in depth in [138-140],
respectively.

2 Extraction Techniques

Due to the complexity of the matrix, e.g., high organic matter in case of influent and
effluent wastewater, high salt content in case of seawater or high chlorine content in
case of water from swimming pool, it is usual to employ extraction techniques in
order to isolate the target compounds from the rest of the matrix, thus avoiding
interferences in the subsequent measurement including suppression or enhance-
ment in MS. Nevertheless, as mentioned previously, extraction techniques are also
employed to concentrate the target compounds and thus achieve the determination
at lower concentration levels.

In case of traditional extraction techniques, high enrichment factors are usually
obtained in both LLE and SPE. This is the result of employing high amounts of
sample (up to 1,000 mL). Although high amounts of extracting or eluting solvents,
respectively, are used, the obtained extracts are evaporated and the residues
reconstituted in less than 1 mL of a solvent compatible with the subsequent
analytical instrument. This means that if the extraction efficiency (i.e., the amount
extracted) was around 100%, an enrichment factor up to 1,000 would be achieved.
To increase the extraction efficiency and thus the enrichment factor, the nature of
the solvent (in both LLE and SPE) or the nature of the sorbent (in case of SPE) plays
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a key role depending on the nature of the target compounds. Different organic
solvents with different polarities such as methanol, dichloromethane, hexane, ethyl
acetate, acetone, etc. have been used. Regarding SPE sorbents, different types,
usually packed into cartridges, have been used. Some examples are: classical
octadecyl functionalized silica (C18) or polystyrene-divinylbenzene copolymer
(PS-DVB) based on non-polar interactions; polyvinylpyrrolidone-divinylbenzene
copolymer (PVP-DVB) based on both polar and non-polar interactions due to its
hydrophilic-lipophilic balance (HLB); polymethacrylate-divinylbenzene copoly-
mer (PMA-DVB) also based on both polar and non-polar interactions; polystyrene
divinylbenzene copolymer modified with either pyrrolidone groups (PS-DVB/MP)
or hydroxyl groups (PS-DVB/MH) exhibiting more polar interactions than
PVP-DVB; and polyvinylpyrrolidone-divinylbenzene copolymer modified with
cation-exchanger (PVP-DVB/MCX) or anion-exchanger (PVP-DVB/MAX)
groups.

On the contrary, when microextraction techniques are used, it is not usual to
achieve a high extraction efficiency. However the microextraction volume where
the analytes are collected is extremely low (just a few microliters). Therefore,
although the amount extracted is low, a high enrichment factor could be achieved.
Moreover, unlike LLE or SPE, the whole extract (and hence the entire amount
extracted) can be totally transferred to the analytical instrument, thus improving the
analytical signal. Regarding solid phase-based microextraction techniques, solid
phase microextraction (SPME), and stir bar sorptive extraction (SBSE) have been
extensively used to determine PCPs in environmental waters. Different available
commercial sorbents of different polarity, such as polydimethylsiloxane (PDMS),
polydimethylsiloxane-divinylbenzene =~ (PDMS-DVB), polyacrylate  (PA),
carbowax-divinylbenzene (CW-DVB) or carboxen-divinylbenze (CAR-DVB)
have been used in SPME, depending on the target compounds. With regard to
SBSE, PDMS is used in most of the cases, since no other coatings were available up
to a few years ago. Regarding liquid phase-based microextraction techniques,
single drop microextraction (SDME), hollow-fiber liquid-phase microextraction
(HFLPME), cloud-point extraction (CPE), and membrane-assisted liquid-liquid
extraction (MALLE) have been occasionally used for PCPs determination. How-
ever, it was not until the appearance of dispersive liquid-liquid microextraction
(DLLME), and its successive modifications, when liquid phase-based
microextraction techniques achieved to be competitive with solid phase-based
microextraction techniques. In general terms, solid phase-based microextraction
techniques are more time consuming than the liquid phase-based ones, since phases
contact, and thus mass transfer, is more hindered. Thus, as can be seen in Tables 1,
2,3, and 4, SPME, SBSE, and related techniques need extraction times of about one
hour or more and sometimes it is even necessary to leave than overnight (10-14 h).
High extraction times are also required in liquid phase-based microextraction
techniques when the extracting solvent remains static, such as SDME, HFLPME
or MALLE. However, very short extraction times are needed by means of DLLME
due to the contact between the donor and acceptor phases is infinitely large and the
equilibrium state is instantaneously achieved.



212 A. Chisvert and A. Salvador

Before describing the different extraction techniques employed for the determi-
nation of PCPs in water samples, it should be mentioned that no quantitative
extraction efficiencies are often obtained. This is especially relevant in those
microextraction techniques where the equilibrium state is not usually achieved,
such as SPME, SBSE, and SDME. In these cases, it is advisable to prepare the
standard solutions in water and subject them to the same extraction procedure than
samples, and then refer to the relative extraction efficiency instead of the absolute
extraction efficiency.

2.1 UV Filters

As can be seen in Table 1, traditional LLE has been used only few times for
determining UV filters [26, 39], whereas SPE has been extensively used. Different
sorbents have been used in SPE for UV filters determination in environmental
waters. Classical C18 [23, 58, 79] and polymeric PS-DVB [54, 73] sorbents based
on non-polar interactions have been scarcely used. However, PS-DVB/MP [27, 40,
50, 78], PS-DVB/MH [37] or PVP-DVB [32-34, 38, 43, 46, 57, 67, 82] are
preferred in some cases as there are some UV filters with more polar properties
(e.g., benzophenones). Pietrogrande et al. compared C18 with PS-DVB/MP
obtaining a better performance with the second one [40]. When compounds with
acidic properties (e.g., benzophenone-4 (BZ4) and phenylbenzymidazole sulfonic
acid (PBS)) are also pursued, PVP-DVB/MCX shows better performance compared
to PVP-DVB [28, 70], since the non-acidic compounds are well retained in the
PVP-DVB skeleton, whereas the acidic ones prefer the modified moieties.

On-line SPE has also been used in some cases [46, 73] in order to not only reduce
the amounts of organic solvents employed but also reduce the high handling of the
sample. Oliveira et al. used a multisyringe-lab-on-valve approach [46] and Gago-
Ferrero et al. employed a commercial on-line SPE device [73], in both cases
coupled to LC. Maijo et al. performed SPE in-line coupled to capillary electropho-
resis (CE) by inserting the SPE sorbent between two pieces of the capillary [70].

Another proposed approach is that proposed by Roman et al., who used disper-
sive SPE (dSPE) with oleic acid-coated cobalt ferrite magnetic nanoparticles
(CoFe O @oleic acid) [53].

In addition, microextraction techniques, either in the solid or liquid phase, have
also been employed. SPME usually in the direct immersion (DI) mode due to the
relatively low volatility of the UV filters has been used [22, 35, 49, 52, 60, 61,
74]. Nevertheless, Lambropoulou et al. compared both DI and head-space
(HS) strategies obtaining comparable results for the tested compounds [22]. How-
ever, Negreira et al. found a clear improvement when using DI compared to HS in
case of benzophenone-type UV filters [35]. Regarding the sorbents employed,
PDMS has been used in some cases [22, 49], providing the best extraction effi-
ciency for poorly polar compounds, but a low extraction efficiency for relatively
polar compounds such as hydroxylated benzophenones, which were better
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extracted with more polar sorbents like PDMS-DVB or PA [35, 60]. Nevertheless,
new home-made sorbents have been proposed as an alternative to commercial ones,
such as a graphene-based sol-gel coating [61] and a silver wire coated with a
dodecyl chain (C;,-Ag) [74], and even disposable silicone disks [52], obtaining
good analytical performances. With regard to the desorption step, thermal desorp-
tion (TD) is preferred [22, 35, 49, 60, 61] when GC is used, since all the retained
amount is transferred to the injection port. Consequently, sensitivity is higher than
if liquid desorption (LD) was used, since in this last approach an important part is
usually lost (i.e., not all the solution is injected). However, LD is mandatory [74] if
LC is going to be used. Microextraction by packed sorbent (MEPS) was also used
by Moeder et al. [44], followed by LD in 50 pL of ethyl acetate, which were all
injected into the GC system employing the large volume injection (LVI) approach
using a programmed temperature vaporizer (PTV) injector. SBSE constitutes
another solid phase-based microextraction technique commonly employed for UV
filters determination in environmental water samples [25, 30, 31, 41, 45, 55, 56, 65,
66, 68, 80]. In most of the cases non-polar PDMS stir bars are used since no other
coatings were available. This could jeopardize the extraction of relatively polar
compounds. Kawaguchi et al. proposed an in situ derivatization with anhydride
acetic to form the less polar acetylated derivatives [30]. Recently, Gilart
et al. compared the classical PDMS with two new commercially available sorbents
(i.e., polyacrylate-polyethyleneglycol (PA-PEG) and ethyleneglycol modified sili-
cone (EGS)) concluding that the new EGS enables better extraction of some polar
compounds as well as improves the extraction of apolar compounds [80]. More
recently, this lack of coatings encouraged Almeida et al. to employ an alternative
microextraction that had named bar adsorptive microextraction (BAPE) a few years
before, based on a polyethylene cylindrical tube covered by an adhesive tape where
a solid sorbent is pasted, affording the use of more sorbents. The extraction
principles are the same than in SBSE. They compared a PS-DVB, a modified
pyrrolidone, a ciano derivative, and five activated carbons of different surface
area, as sorbents [77], thus boasting that this novel microextraction technique
presents higher versatility than SBSE since allows to taylor-make the sorbent
manifold.

Regarding liquid phase-based microextraction techniques, Giokas et al. used for
the first time this type of microextraction techniques for the determination of UV
filters in water samples. These authors employed CPE with the non-ionic surfactant
Triton X-114 to extract the target UV filters from water samples, which were back-
extracted into an appropriate solvent thus avoiding the entrance of the surfactant
rich phase into the further analytical system [24]. Later, both, Okanouchi et al. [29]
and Vidal et al. [42] employed SDME in the DI mode, by using conventional
solvents as extracting solvents in the first case and with ionic liquids (IL) in the
second case. Later, Ge and Lee used the (DI)HFLPME approach, where a drop of
the IL 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate was
supported inside and in the pores of a tubular and porous piece of polypropylene
[59]. The use of supporting membranes was also used by Rodil et al. in MALLE,
who employed a low density polyethylene (LDPE) membrane containing 100 pL of
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propanol [36]. More recently, Zhang and Lee used a polyester knitting wool as
holder of the extracting solvent [71]. However, as said before, it was not until the
appearance of dispersive DLLME when liquid phase-based microextraction tech-
niques competed with solid phase-based microextraction techniques. Thus,
Tarazona et al. [47], Negreira et al. [48] and later Benedé et al. [81], proposed
classical DLLME with organochlorine solvents and acetone as extracting and
disperser solvents, respectively. In order to increase the dispersion of the extracting
solvent into the aqueous samples, Wu et al. [75] proposed the use of ultrasounds to
produce finer extracting droplets in the so-called ultrasound-assisted DLLME
(USA-DLLME) approach. However, in order to avoid the presence of the disperser
solvent, which usually decreases the partition coefficient of the target compounds
into the extracting solvent, new approaches have been used. Thus, Zhang et al. [51]
and Zhang and Lee [63] proposed magnetic stirring and vortex mixing, respec-
tively, as disperser forces of the extracting solvent (i.e., magnetic-stirring-assisted
DLLME (MSA-DLLME) and vortex-assisted DLLME (VA-DLLME), respec-
tively). The use of IL as extracting solvents in DLLME has been also used obtaining
good analytical characteristics. However, due to the high viscosity of the IL,
different strategies have been used to disperse the IL into the water sample.
IL-based USA-DLLME (.e., IL-USA-DLLME) was first proposed by Zhang and
Lee [62] and later by Xue et al. [76]. Ku et al. [72] proposed to use an up-and-down
shaker instead of ultrasounds in their approach, that was termed IL-based up-and-
down shaker-assisted DLLME (IL-UDSA-DLLME). Ge and Lee [64] preferred to
avoid the disperser solvent without sacrificing the advantages of ultrasounds in the
so-called IL ultrasound-assisted emulsification microextraction (IL-USAEME).
Finally, it is worthy to mention the paper published by Zhang et al. [69], where
temperature is changed to solve and to disperse the IL and to form the cloudy
solution. This approach is known as IL-based temperature-controlled DLLME
(IL-TC-DLLME).

2.2 Musk Fragrances

In case of musk fragrances, the published methods are summarized in Table 2. As it
was described for UV filters, traditional LLE [39] and SPE [50, 84, 90, 99, 101]
have been used for the enrichment of musk fragrances. Non-polar sorbents like C18
[90] or PS-DVB [50] have been used. However, Osemwengie and Steinberg [84]
found that PMA-DVB with polar and non-polar properties showed better perfor-
mance than the non-polar PS-DVB for on-site SPE extraction of different nitro and
polycyclic musks. In the same way, Wang et al. [101] found better extraction yields
with PVP-DVB than with C18. Finally, it should be said that Lopez-Nogueroles
et al. [99] synthesized a molecularly imprinted sorbent based on silica, which
showed better extraction efficiency and selectivity compared with the conventional
PVP-DVB.

Microextraction techniques, both in the solid and in the liquid phase have been
also employed. In this sense, SPME, in both DI and HS modes, has been employed.
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Winkler et al. [83] observed the following tendency in the extraction efficiency for
DI(SPME) depending on different fibers tested: PDMS-
DVB > PA ~CAR >PDMS. Liu et al. [49] did not test the influence of the fiber
nature, but selected the PDMS based on the non-polar properties of the target
compounds. However, Basaglia and Pietrogrande [60] preferred to use a PA fiber,
justifying their choice in that PA has better resistance than PDMS for on-fiber
derivatization with BSTFA. However, Garcia-Jares et al. observed better perfor-
mance with (HS)SPME than with (DI)SPME for the extraction of polycyclic [85]
and nitro musks [86], respectively, by using either CAR-PDMS or PDMS-DVB
fibers. Wang et al. [88] used (HS)SPME for extracting polycyclic musk, using a
PDMS-DVB fiber based on the findings of Garcia-Jares et al. [85], and studied the
influence of heating the sample by microwave radiation during the extraction,
which resulted in a substantial decrease of the extraction time. MEPS was also
used in the determination of musk fragrances. It was used first by Moeder et al. [44],
and later by Cavalheiro et al. [100], in both cases injecting LVI into the GC system
by means of a PTV injector. It can be seen from Table 2 that SBSE with PDMS has
been also employed for the extraction of different nitro and polycyclic musks with
extremely high extraction times [56, 91-93, 96]. Finally, another solid phase-based
microextraction approach termed dispersive micro solid phase extraction (duSPE)
was proposed by Chung et al. [102] for polycyclic musks determination, in which
3.2 mg of a C18 sorbent was dispersed into an aliquot of the aqueous sample,
achieving the equilibrium in just 1 min.

Regarding liquid phase-based microextraction techniques, the most employed
liquid phase-based microextraction technique for the determination of musk com-
pounds has been DLLME, either in its classical mode [89, 94] or assisted by
ultrasounds (i.e., USA-DLLME) [95]. Similarly Regueriro et al. [87] used
USAEME by dispersing the extracting solvent by ultrasounds but avoiding the
use of a disperser solvent. Posada-ureta et al. [98] used MALLE with LDPE bags
filled with hexane; and Vallecillos et al. [97] used a fully automated manifold for
IL-based (HS)SDME.

2.3 Preservatives

The published analytical methods for the determination of preservatives are sum-
marized in Table 3. Just in one case no sample extraction was carried out and the
sample was directly injected into an LC system [121]. This is not the current trend
since concentration of the target compounds and removing of potentially interfering
compounds are needed.

Thus, traditional LLE have just been used once to determine different PCPs
including triclosan [39]. With regard to traditional SPE, different SPE sorbents
have been employed depending on the nature of the target compounds, due to the
different polarity when comparing triclosan, parabens or isothiazolinones. Thus,
non-polar C18 [79, 105, 122] is used in few cases for triclosan, while PS-DVB
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modified sorbents [27, 37, 50, 107] or PVP-DVB-based sorbents [28, 33, 43, 67,
110, 111, 115, 128] that promote polar and non-polar interactions are preferred
when more polar compounds like parabens, isothiazolinones or other PCPs are
determined, trying to cover a wide range of retention capacity. It should be
mentioned the paper published by Gorga et al. [131] who proposed on-line SPE
for the determination of different PCPs including some preservatives.

Regarding microextraction techniques, both solid phase-based and liquid phase-
based have been proposed. SPME, usually in DI injection mode, has been used for
the determination of triclosan [60, 103], parabens [104] and other preservatives
[60], using PA fibers in all the cases, since more non-polar sorbents like PDMS did
not exhibit good extraction efficiencies. However, Regueiro et al. [116] proposed
the HS mode instead of DI for the extraction of parabens and triclosan. They
performed in situ acetylation, converting the parent compounds into the more
volatile acetylated derivatives. Moreover, they found better results when using
PDMS-DVB or DVB-CAR-PDMS fibers compared to PA fibers, but it should be
taken into account that they extracted the acetylated derivatives instead of the more
polar underivatized ones as in the other papers. As can be seen in Table 3, SBSE has
been also extensively used in the determination of preservatives, exclusively [108,
109, 118, 123] or together with other PCPs [45, 56, 68, 80, 96] in environmental
waters. Due to the lack of commercially available sorbents, PDMS has been the
most used one, but recently Gilart et al. found that EGS exhibits better extraction
efficiency than PDMS for triclosan and triclocarban [80]. Another solid phase-
based microextraction techniques, such as MEPS was proposed by Gonzalez-
Marifio et al. [124] for the extraction of triclosan and parabens. Abbasghorbani
et al. [129] used dpSPE to determine different parabens by dispersing 5 mg of
Fe;04@aminopropyl MNPs into the water sample. Alcudia-Leon et al. [132] also
used MNPs as sorbent to extract different parabens. In this case they used
Fe;0,@Si0,@C18, but these MNPs were not dispersed but magnetically confined
in a holder, and therefore these authors termed this approach as magnetically
confined nanoparticle microextraction (i.e., MCNPME).

Regarding liquid phase-based microextraction techniques, as mentioned in the
case of UV filters and musk fragrances, DLLME has been the most commonly used.
In this sense, classical DLLME has been employed for triclosan and triclocarban
[113, 114, 119, 125] and parabens [126, 127, 133]. In just one case, the parabens
were previously derivatized, with anhydride acetic, to increase the extraction
efficiency [126]. Its variant USAEME was also applied [130] for extraction of
triclosan, or for the simultaneous acetylation and extraction of parabens
[117]. Other liquid phase-based microextraction techniques, such as SDME [112],
HFLPME [106], and MALLE [120] have been used in a much lesser extent.

2.4 Insect Repellents

Analytical methods for the determination of this group of compounds are relatively
scarce compared to the other ones. There are very few articles devoted to the
determination of insect repellents themselves. They are sometimes included in
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some methods focused in the determination of different families of PCPs. All of
them are listed in Table 4. Moreover, some of these compounds can be used as
pesticides, and appear in some publications devoted to the determination of pesti-
cides in water samples, but they have not been considered here since they are out of
the scope of this chapter.

The articles listed in Table 4, mainly dealing with the determination of N,N-
diethyl-m-toluamide (DEET) and icaridin (ICA), employ different extraction and
microextraction techniques, but it is noteworthy that all of them are based in the solid
phase approach. Thus, classical SPE [33, 128, 134, 135] and more modern SBSE
[68, 135, 136] techniques have been employed. Very recently, Almeida et al. [137]
have used BAUE as an alternative to SBSE, allowing the use of more sorbents.

3 Analytical Techniques

Separation techniques are generally needed in order to determine a mixture of the
target compounds. Moreover, it should be pointed out that despite an exhaustive
sample treatment is performed to remove potential interfering compounds from the
matrix, some of them could still be present in the extract and could interfere in the
subsequent measurement. In this sense, LC and GC have been, by far, the most
employed analytical techniques for PCPs determination in water samples. Besides,
CE has been occasionally used.

Highly sensitivity detectors are necessary to achieve the determination at the low
levels they are found in the environmental waters. Regarding LC, and despite the
performed enrichment step, method limits of detection (MLOD) of the order of pg L™
are generally obtained if a UV spectrometry detector is used, whereas MLOD of the
order of ng L ™" are generally obtained when an MS/MS detector is used.

However, LC-MS/MS is a sophisticated and expensive analytical instrumenta-
tion, often not available in many laboratories. In this sense, GC, instead of LC,
coupled to an MS detector is used, providing MLOD of the order of ng L™" if an
enrichment technique is carried out. Higher MLOD are obtained when other less
sensitive detectors, such as flame ionization detector (FID) are used.

3.1 UV Filters

Due to the physico-chemical properties of UV filters, LC is the most suitable
analytical technique, although GC has been also employed. As can be seen in Table 1,
UV spectrometry detectors are only used for LC in some cases [23, 24, 46, 54, 74, 77]
especially when low volatility solvents are used as extracting solvents, such as
octanol [51, 71] or IL [42, 59, 62, 64, 69, 72, 76]. On the contrary, MS detectors
are preferred. Therefore, LC-MS/MS is usually performed by a triple quadrupole
(QqQ) mass analyzer. Just in one case, a hybrid triple quadrupole linear ion trap mass
spectrometry (QqLIT-MS) was employed [73] showing very good analytical perfor-
mance. As can be seen in Table 1, electrospray ionization (ESI), either in positive or
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negative mode depending on the target compound, is preferred rather than atmo-
spheric pressure chemical ionization (APCI) as ionization mode. In fact Wick
et al. performed a comparison of both strategies obtaining better results in the former
[43], on the contrary than Nguyen et al. [55] who obtained better results with APCL
Nevertheless, Rodil et al. [34] compared ESI with APPI and concluded that this last
ionization mode was subjected to lesser matrix effects, causing suppression or
enhancement of the signal, than ESI, although the MLOD obtained were higher.
Regarding GC-MS, simple quadrupole analyzers (Q) are used in most of the
cases, whereas ionic tramps (IT) [75] and time-of-flight (TOF) analyzers [50, 56]
have been also used but in scarce occasions. In the case of TOF, it was coupled to
two-dimensional GC (i.e., GCxGC) [50, 56]. It should be emphasized that the use of
the more sophisticated GC-MS/MS has been used in just two cases [35, 78] by
means of IT in both cases. Nevertheless, in all the cases electronic ionization (EI) in
positive mode was used. The use of chemical ionization (CI) has never been used
for the UV filters determination in water samples. As can be seen in Table 1, LOD
in the low ng L' level are achieved in most of the cases. However, it should be
pointed out that some UV filters do not present enough volatility to be efficiently
determined by GC. In order to increase their volatility, they are sometimes
derivatized. Silylation, either with N-methyl-N-(trimethylsilyl)trifluoroacetamide
(MSTFA) [26, 27, 35, 82], N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) [47,
53, 60, 61, 63, 75] or N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide
(MTBSTFA) [68], is preferred in most of the cases in case of target compounds
presenting labile hydrogens, although acetylation with anhydride acetic has been
also used [30]. Oxime formation by means of reaction of carbonyl groups with O-
(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) has been proposed in the
case of target compounds without labile hydrogens [82]. The derivatization is
usually carried out after the extraction, by adding the derivatizing agent to the
extract. Nevertheless, on-fiber silylation has been proposed after SPME by expos-
ing the fiber to the vapors of the derivatizing agent [35, 60, 61]. Recently, Wu
et al. [75] performed an in situ silylation by adding the derivatizing agent at the
same time than the disperser and the extractant solvents in the DLLME, which
increases the reaction yield. As was said before, Kawaguchi et al. [30] performed an
in situ acetylation at the same time than SBSE, increasing the extraction yield since
the acetylated derivatives are more extractable than their parent compounds.
Capillary electrophoresis (CE) has been only used in one occasion [70]. Finally,
it should be commented the paper published by Haunschmidt et al. [41], who used
the direct analysis without using a separation technique. In this case, MS was
measured directly on a stir bar after SBSE by direct analysis in real-time (DART).

3.2 Musks Fragrances

Either nitro, polycyclic, or macrocyclic musks have enough volatility and stability
to be determined by GC, and therefore this has been the technique of choice, as can
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be seen in Table 2. No other analytical technique has been used for the determina-
tion of musks in environmental water samples. GC is coupled to a single quadrupole
MS in most of the cases. Other MS analyzers, such as IT [83, 102] or TOF [50, 56]
analyzers have been used in a few occasions. Besides, when MS/MS is performed,
it has been done by means of an IT [97] or a triple quadrupole (QqQ) [101]. In all
cases, EI in positive mode is used.

In addition, GC with an electronic capture detector (ECD) [86] was used once
for the determination of nitro musks taking advantage of the sensitivity and
selectivity that this detector presents to compounds with nitro moieties.

3.3 Preservatives

As can be seen in Table 3, both LC and GC have been used in most of the cases. CE
has been only used a couple of times [110, 111]. Nevertheless, due to the low
volatility of these compounds, the usual analytical technique for their determination
should be LC, preferably with MS/MS detection in order to increase the sensitivity
and the selectivity. However, UV detection has been used in some cases [108, 114,
127]. Regarding LC-MS/MS, it is used by means of QqQ analyzers and in the ESI
mode. Nevertheless, APCI was used in a few cases [43, 121]. In fact, Wick
et al. [43] compared both ionization modes and found that ESI provided a better
analytical performance than APCI when comparing sensitivity and it was less
affected by matrix effects.

Despite its low volatility, GC has been extensively used in the determination of
preservatives in waters, but in most of the cases a derivatization step was carried out
in order to increase their volatility. Thus, it is common to perform a silylation [27,
60, 103, 104, 112, 122, 133], generally after the extraction is accomplished, or
acetylation [96, 106, 116, 117, 120, 123, 129, 132], generally during the extraction
in order to increase both the extraction efficiency and volatility.

GC is mainly coupled to single quadrupole MS analyzers. In some cases IT is
used [103, 122], especially if MS/MS is performed [104, 105, 113, 116, 117,
119]. In all cases, the ionization is achieved in EI mode. Regarding the employment
of other detectors, FID and photoionization detector (PID) were used by Prichodko
et al. [126] and Abbasghorbani et al. [129], respectively, obtaining poor sensitivity
in the determination of parabens. However, Shih et al. [130] employed an ECD for
triclosan determination taking advantage of the good instrumental sensitivity that
the chlorine atoms of this compound have in this detector.

3.4 Insect Repellents

The few analytical methods used for the determination of insect repellents are based
on LC and GC, coupled in all the cases with MS detectors.

Knepper [134] used GC-MS for quantitative determination of ICA in river and
influent wastewater. Moreover, LC-MS with a single quadrupole and also with a TOF
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analyzer were used to characterize and to calculate the mass of this compound. Later,
Standler et al. [135] developed a GC-MS method for the determination of this same
compound in lake water samples. Rodil et al. proposed a GC-MS method to exclu-
sively determine eight insect repellents, including ICA and the highly used DEET
[136]. Later, the same research group proposed a multi-residue analytical method
based on LC-MS/MS for the determination of different PCPs including some insect
repellents [33], in the same way that Chen et al. [128] did a few years later. Recently,
both Pintado-Herrera et al. [68] and Almeida et al. [137] presented the determination
of different insect repellents by analytical methods based on GC-MS.

4 Matrix Effects

It is worth mentioning that despite the exhaustive sample treatment and the use of
selective analytical techniques, results are sometimes affected by the presence of
the so-called matrix effect. This effect causes no quantitative recoveries in samples
although standards were subjected to the same procedure than samples. This could
be due to a difference in the behavior of the target compound in the presence of the
sample matrix that can not only enhance or mitigate the signal in the analytical
instrument but also affect the extraction efficiency in the extraction step. This
phenomenon has been observed and reported by different authors in the determi-
nation of PCPs in water samples, especially in wastewater influents and effluents
that contain high contents of organic matter, or even in waters from rivers receiving
wastewater effluents. In addition, it has also been observed in seawaters, due to the
high saline content, or in swimming pool waters, due to the high chlorine content.
Different approaches have been used to correct this deleterious effect: (1) matrix-
matched calibration, i.e., the use of the same matrix (but free of analytes) to prepare
the standard calibration solutions; (2) standard addition calibration, i.e., to prepare
the standard solutions calibration into the sample itself; or (3) the use of surrogates,
i.e., internal standards included at the beginning of the process in order to correct
extraction and measurement differences.

Matrix-matched calibration is often nonvalid because the matrix effect is
sample-dependent, i.e., it has a different extent depending on the sample and thus
differences are observed for different samples. In this case, standard addition
calibration could be a useful approach, but it is time consuming. The use of
surrogates seems to be a good alternative, but however, it is difficult to find
compounds that have the same behavior than the target analytes. Isotopic labelled
standards of the target compounds represent a good choice, since they are expected
to have the same extraction and instrumental behavior than the non-labelled ones.
However, on the one hand there are not always isotopic labelled compounds for all
the target compounds, and on the other hand they are extremely expensive. Any-
way, all this should be taken into account in order to achieve reliable analytical
methods. The obtained recoveries for the described methods have also been
included in Tables 1, 2, 3, and 4 for information purposes.
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5 Conclusions and Further Research

After reviewing the analytical literature concerning the determination of PCPs in
environmental water samples, it should be pointed out that a large number of
analytical methods to control different families of PCPs in this type of samples
are nowadays available. These methods have been developed in the last two
decades as a consequence of the society’s demand to control the quality of the
aquatic ecosystem, given that different studies have shown that PCPs are causing a
negative impact in the environment.

These developed methods need, not only to be sensitive, in order to determine
the PCP in the ng L ™! range in which they appear in the environment, but also to be
selective in order to avoid interferences caused from the matrix. In this sense, the
developed methods tend to be based on separation techniques, especially in both
liquid and gas chromatography, coupled to mass spectrometry detectors, and
moreover, samples are subjected to an extraction treatment, thereby providing the
required sensitivity and selectivity. Moreover, in the last years, different multi-
residue methods have emerged trying to cover a wide range of PCPs.

The developed methods have been applied to water samples of different origin,
covering a wide range of the aquatic ecosystem (such as sea, rivers, lakes, tap,
influents and effluents of wastewater treatment plants, etc.), and they have been
appropriately validated.

To conclude, the analytical community is encouraged on working in the devel-
opment of highly sensitive and selective multi-residue analytical methods to mon-
itor present and future PCPs that could cause a negative impact in the environment.
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Analysis of Personal Care Products
in Sediments and Soils

Sarah Montesdeoca-Esponda, Tanausi Vega-Morales,
Zoraida Sosa-Ferrera, and José Juan Santana-Rodriguez

Abstract Sample extraction and preparation methods are described for the most
relevant groups of personal care products (PCPs) (disinfectants, fragrances, pre-
servatives, UV filters and stabilisers) in solid samples from aquatic environments.
The extraction methodologies have been separated into two groups, conventional
and novel procedures, to compare the improvements and advantages implemented
in recent years to produce more efficient and simple methods. The difficulties
related to the treatment of solid samples and to complex matrices are discussed in
depth. The analytical methods employed after the extraction procedures, all of
which are based on mass spectrometry detection, are also covered. Finally, an
overview of the measured concentration of these families of PCPs in the environ-
ment is provided, which can be useful in the establishment of future trends.

Keywords Extraction techniques, Gas chromatography, Liquid chromatography,
Personal care products, Solid samples
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IH-BT

2,244 OH-BP
2,2'OH-4MeO-
BP

2,4,6-TCP
2,4-DCP
2,40H-BP
20H-4MeO-BP
4-MBC
40H-BP
5Me-1H-BT
ABDI

AHMI

AHTN

Allyl-bzt
ATIIL
BH

BP
BP-3
BSTFA
BuP
BZP
BzP
BZS
DHB
DHMB
DPMI

EHMC

EHS
etocrylene; EC
EtP

HBP

HepP

HHCB

HMB
HMS
IAMC
iPrP
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1H benzotriazole
2,2 4 4'-Tetrahydroxybenzophenone
2,2'-Dihydroxy-4-methoxybenzophenone

2,4,6-Trichlorophenol

2,4-Dichlorophenol

2,4-Dihydroxybenzophenone
2-Hydroxy-4-methoxy-benzophenone
4-Methylbenzylidene camphor
4-Hydroxybenzophenone

5-Methyl-1H-benzotriazole

Celestolide or 4-acetyl-1,1-dimethyl-6-tert-butylindan
Phantolide or 6-acetyl-1,1,2,3,3,5-hexamethylindan
Tonalide or 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-
tetrahydronaphthalene
2-(2H-Benzotriazol-2-yl)-4-methyl-6-(2-propen- 1-yl)-phenol
Traseolide or 5-acetyl-1,1,2,6-tetramethyl-3-isopropylindan
Benzhydrol

Benzophenone

Benzophenone-3
N,O-bis(trimethylsilyl)trifluoroacetamide
Butylparaben

Benzophenone

Benzylparaben

2-Hydroxy-phenylmethyl ester benzoic acid
2,4-Dihydroxybenzophenone
2,2’-Dihydroxy-4-methoxybenzophenone

Cashmeran or 1,2,3,5,6,7-Hexahydro-1,1,2,3,3-pentamethyl-
4H-inden-4-one

Ethylhexyl methoxycinnamate

Ethylhexyl salicylate
Ethyl2-cyano-3,3-diphenylacrylate

Ethylparaben

4-Hydroxybenzophenone

Heptylparaben

Galaxolid or 1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-
hexamethylcyclopenta(g)-2-benzopyran
2-Hydroxy-4-methoxybenzophenone

Homosalate

Isoamyl methoxycinnamate

Isopropylparaben)
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MeP Methylparaben

MK Musk ketone or 4-tert-butyl-3,5-dinitro-2,6-
dimethylacetophenone

MTBSTFA N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide

MX Musk xylene or 1-tert-butyl-3,5-di-methyl-2,4,6-
trinitrobenzene

n-PrP n-Propylparaben

Octocrylene; OC
Octyl Salicylate;
oS

2'-Ehylhexyl2-cyano-3,3-diphenylacrylate
2-Ethylhexyl-2-hydroxybenzoate

ODPABA Ethylhexyldimethyl p-aminobenzoate

PrP Propylparaben

TBHPBT 2-(5-t-butyl-2-hydroxyphenyl) benzotriazole

THB 2,3,4-Trihydroxylbenzophenone

UV-120 2,4-Di-t-butylphenyl-3,5-Di-t-butyl-4-hydroxybenzoate

UV-1577 2-(4,6-Diphenyl-1,3,5-triazine-2-yl)-5-[(hexyl) oxy]-phenol

UVv-234 2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenyl-ethyl)
phenol

UV-320 2-(2H-benzotriazol-2-yl)-4,6-bis(1,1-dimethylethyl)-phenol

UV-326 2-(5-Chloro-2-benzotriazolyl)-6-tert-butyl-p-cresol

Uv-327 2,4-Di-t-butyl-6-(5-chloro-2H-benzotriazol-2-yl)phenol

UV-328 2-(2'-Hydroxy-3',5'-di-tert-amylphenyl) benzotriazole

UVv-329 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl) phenol

UV-360 2-(Benzotriazol-2-yl)-6-[[3-(benzotriazol-2-yl)-2-hydroxy-5-
(2,4 ,4-trimethylpentan-2-yl)phenyl]methyl]-4-(2,4,4-
trimethylpentan-2-yl)phenol

UV-571 2-(Benzotriazol-2-yl)-6-dodecyl-4-methylphenol

UV-p 2-(2-Hydroxy-5-methylphenyl)-benzotriazole

1 Introduction

Personal care products (PCPs) are a group of emerging contaminants that can be
persistent due to their continuous introduction in the environment. Unlike pharma-
ceuticals, which are intended for internal use, PCPs are used in an external way on
the human body and thus are not subjected to metabolic alterations; therefore, large
quantities of PCPs enter the environment unaltered [1].

Several PCPs (e.g., triclosan, triclocarban and most UV-filtering compounds)
show affinity to solid matrices due to their hydrophobicity. As a consequence, to
allow correct evaluation of the ecological impact of these substances, evaluation of
their prevalence in solid matrices is important [2].

For the determination of the most relevant PCPs in solid samples related to
aquatic environments, the biggest problem was the extraction and purification of the
complex environmental solid matrices, which is frequently tedious due to the large
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number of interferences and the strong interactions between the analytes and the
sample. Moreover, their analysis represents a difficult task because of the usually
low concentration at which the target compounds are present in such samples.
Therefore, one of the major trends in analytical chemistry is the development of
fast and efficient procedures for the extraction and preconcentration of trace
analytes in environmental matrices [3].

The most studied PCPs in the current literature are disinfectants, preservatives
(parabens), synthetic fragrances, UV filters and stabilisers (presented in Table 1).

Disinfectants or antimicrobials are mostly represented by triclosan (TCS) and
triclocarban (TCC), which are biphenyl ethers used in soaps, deodorants, skin
creams and toothpastes. TCS is known to undergo phototransformation in aqueous
solution to form 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD) [17]. Further, degrada-
tion products, such as methyl derivative methyl triclosan (M-TCS), are relatively
stable and lipophilic [18].

Synthetic fragrances are added to deodorants, shampoos, detergents, etc. and can
be classified into two groups. The first one includes the nitro musks: musk xylene
(MX), musk ketone (MK), musk ambrette (MA), musk moskene (MM) and musk
tibetene (MT). In the environment, their nitro substituents can be reduced to form
amino metabolites. The second one consists of the polycyclic musks, which were
developed after the nitro musks but currently are used in higher quantities
[7]. Celestolide (ABDI), galaxolide (HHCB) and tonalide (AHTN) are used most
commonly, whereas traseolide (ATII), phantolide (AHMI) and cashmeran (DPMI)
are used less often [18].

Although nitro and polycyclic musks are water soluble, they present high
octanol-water coefficients (log Kow =3.8 for MK and 5.4-5.9 for polycyclic
musks) [19, 20]. Because they may be quite hydrophobic, they tend to adsorb to
suspended particles in wastewater samples [21]. Other type of synthetic musks are
the macrocyclic musks, which present some advantages; for example, they seem to
have more intensive smells; thus, less mass is needed to gain the same performance
in perfumery, and they are more easily degradable in the environment, but they are
also more expensive [22]. Although they are being used more, to the best of our
knowledge, there are no reports on their presence in the environment.

Parabens (esters of the phydroxybenzoic acid) are the most common preserva-
tives and bactericides used in PCPs. Methylparaben (MeP) and propylparaben (PrP)
are the most widely used and are normally used together due to their synergistic
effects [23]. Benzyl, butyl, ethyl, isobutyl and isopropyl (BzP, BuP, EtP, iBuP and
iPrP, respectively) complete the list of the parabens that we can found in the
environment.

UV filters (UVF) and UV light stabilisers (UVLS) are used in sunscreens, skin
creams, lipsticks, and several personal care products. Twenty-seven organic com-
pounds have been approved in the European Union as UV filters, including benzo-
phenones, p-aminobenzoic acid and derivatives, salicylates, cinnamates, camphor
derivatives, triazines, benzotriazoles, benzimidazole derivatives, dibenzoyl meth-
ane derivatives and compounds, such as octocrylene and benzylidene malonate
polysiloxane [21]. Most of these compounds are lipophilic (log Kow 4-8) with
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conjugated aromatic rings and are relatively stable against biotic degradation
[24]. These compounds have been found in marine organisms, and it has been
suggested that they appear to be persistent and bioaccumulative in the aquatic food
chain [14].

2 Extraction Procedure

The analysis of PCPs in environmental samples is characterised by the difficulty in
the determination of low concentrations in complex matrices [25]. The extraction of
analytes from solid samples in environmental applications presents added compli-
cations because the solute—matrix interactions are very difficult to predict and
overcome [26].

Isolation and purification are necessary for three main reasons: to remove
interferences that would otherwise affect the determination of the analytes, to
enrich the target compounds to detectable concentrations and to perform solvent
switching to the desired solvent conditions used for instrumental detection [3]. All
of these steps are necessary to obtain high recoveries and minimise interference.
Therefore, sample preparation often represents the most tedious and time-
consuming part of the analytical process.

Ultrasonic extraction (USE) and Soxhlet extraction have been common methods
for the extraction of emerging contaminants from solid samples, although the use of
microwave-assisted extraction (MAE) or more advanced techniques, such as
pressurised liquid extraction (PLE) and supercritical fluid extraction (SFE), are
becoming important extraction methods for environmental samples [7]. Other
modern, but less used, sample-preparation techniques will also be discussed in
the following sections, including microextraction techniques designed originally
for liquid samples.

Usually the extraction step is not selective and a clean-up step is necessary; solid
phase extraction (SPE) is the most commonly used. In the case of PLE and Matrix
Solid Phase Dispersion (MSPD), the clean-up can be performed during the extrac-
tion, and thus, the laboriousness and time consumption of the methods are reduced.
However, this extraction plus clean-up combination is not always selective enough,
and a final clean-up is also necessary for some applications [27].

During the last decade, the most recent tendencies have been towards automa-
tion through the coupling of sample preparation units and detection systems [3],
such as On-line SPE coupled to chromatographic systems, which minimise the
sample loss and contamination during handling and improve repeatability [28].

2.1 Conventional Techniques

Classical methods have been widely employed for the extraction of PCPs from solid
samples and offer good results in terms of repeatability and recovery, but these
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traditional techniques are characterised by long analytical times, manual manipu-
lation of the extracts, large consumption of sample and reagents and generation of
large amounts of waste [27]. It should be highlighted that in most of the works that
use conventional extracted procedures two or three consecutive extractions were
performed. Table 1 shows some examples of PCPs extracted using conventional
methods.

2.1.1 Shaking

Extraction via shaking a sample in an organic solvent is the most simple and basic
preparation method and provides acceptable analytical parameters but requires
considerable time and large solvent volumes. Zhang et al. used 50 mL of
ethylacetate:dichloromethane (DCM) (1:1, v/v) for the analysis of sediment sam-
ples from the Songhua (China) and Detroit (USA) Rivers. They employed a simple
procedure based on shaking, centrifugation, evaporation, reconstitution and purifi-
cation by SPE. Recoveries over 70% were obtained for 13 different UV filters and
UV light stabilisers and several benzophenones and benzotriazoles were detected at
concentrations of several hundreds of nanograms-per-gram [15].

Another example of UV filter extraction using shaking was published by Jeon
et al. Sediments were collected in Korea and extracted using 20 mL of MeOH.
Then, 5 mL of ethylacetate was added, and the sample was placed in a freezer
(—30°C) for the separation of the organic layer. The high recoveries (60—125%) and
low RSD values (less than 17.2%) allowed for the quantification of four of the seven
target analytes at concentrations between 0.53 and 18.38 ng g~ ' [12].

This technique was also recently employed in the analysis of six parabens in surface
sediment (0—12 cm) and sediment core samples (up to 285 cm) collected from several
locations in the USA, Japan and Korea, including rivers and lakes. The extraction was
carried out three times using 5 mL of a solvent mixture of MeOH and water (5:3, v/v) in
an orbital shaker at 250 oscillations min~' for 60 min. The sample was purified by
passing through an Oasis MCX cartridge. All analysed samples contained at least one
of the six target parabens analysed, and the concentrations of parabens increased
gradually from the bottom to the surface layers of the sediment cores from the USA,
suggesting a recent increase in the influx of these compounds [11].

2.1.2 Ultrasonic Extraction (USE)

In this technique, the diffusion of analytes from the solid sample to the solvent is
facilitated by ultrasonic energy. Generally, USE requires less volume of organic
solvents than shaking, although sometimes high volumes are employed. For exam-
ple, Kameda et al. used 20 mL of DCM and 20 mL of acetone for the extraction of
UV filters and UV light stabilisers from Japanese rivers and lakes [14]. Their main
disadvantage is the poor reproducibility because of the lack of uniformity in the
distribution of ultrasound energy, as well as low selectivity and limited sample-
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enrichment capabilities. Moreover, USE is not easily automated and is not suitable
for volatile analytes. A risk in the application of USE is the potential degradation of
the organic analytes [3], as occurred in the shaking procedure, usually the extracts
from USE require sequential steps of centrifugation and concentration before
injection.

The presence of two commonly used antimicrobial agents, triclosan and
triclocarban was investigated in the Pearl River system in China (Zhujiang River,
Liuxi River and Shijing River) employing USE as the extraction technique [5]. Sur-
face sediment samples (0—10 cm) were collected from two positions (less polluted
sediments and heavily polluted sediments), which were 1020 m away from river
bank. The samples were extracted (repeated twice) using ethyl acetate and then
purified by passing through a silica gel column (1 g), and eluted with n-hexane,
ethyl acetate and MeOH in sequence. The final extracts were redissolved in 1 mL of
MeOH. TCS and TCC were found to be almost ubiquitous in sediments of the Pearl
River system, where municipal sewage was the original source of contamination.
The highest concentrations were found in the Shijing River, and relatively lower
concentrations were detected in the Zhujiang River and Liuxi River. No significant
temporal differences were observed. The accumulation of these analytes in the
sediments of the three rivers could be a sink but also a source for release back into
the surface water.

A complementary study was carried out in 2012 by the same authors in the Liuxi
Reservoir for a multiresidue screening, including four paraben preservatives
(methylparaben, ethylparaben, propylparaben and butylparaben) and the two disin-
fectants triclosan and triclocarban. In this case, the compounds were extracted from
the sediments using MeOH and then MeOH-0.1% (v/v) formic acid in Milli-Q water
(5:5, v/v). The supernatants were combined and diluted with Milli-Q water to reduce
the MeOH content to below 10%, which contributed to the retention of the target
compounds by the packing of the Oasis HLB SPE cartridge [6]. In this case, only
triclocarban was measured in sediment samples at a concentration of 1.2 ng gfl.

A modification of this technique is the Sonication-Assisted Extraction in Small
Columns (SAESC). Nuiiez et al. published two papers in 2008 and 2010 to determine
parabens in sediments obtained from the Manzanares River (Madrid, Spain), Ria
Arousa and Ria Pontevedra (Galicia, Spain) and from the Mediterranean Sea (Piles,
Valencia, Spain) using SAESC. In the first paper [9], polyethylene frits were placed at
the end of the glass column (10 X 2 ¢cm i.d.), and 10 g of the sample was added.
Subsequently, 7 mL of ACN was added, the columns were immersed in an ultrasonic
water bath, and two consecutive, 15-min extraction steps were carried out. After the
extraction, the columns were placed in a vacuum manifold, and the extracts were
collected in graduated tubes. Satisfactory recoveries were obtained ranging from 83%
to 110%, and some target analytes were measured between 0.18 and 6.35 ng g~ . In the
second work [10], a molecularly imprinted solid-phase extraction procedure (MISPE)
was incorporated into the analytical method. The extraction of the parabens was
performed as in the previous case but using 15 g of sample and 8 mL of ACN every
time. Then, MISPE was applied as clean-up step. Four different polymers were tested
combining the use of ACN or toluene as porogen, and 4-vinylpyridine (VP) or
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methacrylic acid (MAA) as monomer, using benzylparaben (BzP) as a template
molecule. Although all of the polymers were able to recognise the template in the
rebinding experiments, the molecularly imprinted polymer (MIP) prepared in toluene
using MAA showed better performance. This polymer was also able to recognise other
parabens (methyl, ethyl, isopropyl, propyl, isobutyl, butyl and benzyl paraben) allowing
for the development of an appropriate MISPE procedure for this family of compounds.
Despite the clean-up procedure, significantly better recoveries were not achieved in
comparison with the previous paper (from 86% to 89%). Higher levels, up to
11.5ng g~ ' in sea sediments, were found, and better sensitivity was obtained (0.04—
0.14 ng g~ without MISPE procedure and 0.16-0.27 ng g~ ' employing MISPE).

In another study published by the same research group, eight different UV filters
were extracted from river sediments (Manzanares, Jarama, Henares, Guadarrama
and Lozoya) and on the Mediterranean coast (Spain), the samples were extracted
with ethylacetate—MeOH (90:10, v/v) assisted by sonication, performing a simul-
taneous clean-up step [13]. These sediment sampling sites were selected because of
their location in areas of bathing or recreational activities. C;g was mixed with
anhydrous sodium sulphate and, to carry out the simultaneous extraction-clean-up
procedure, this mixture was transferred to a glass column (20 mL) containing two
filter paper circles with 2-cm diameters at the end. The sediment was placed in the
column, and the analytes were extracted twice using ethyl acetate-MeOH (90:10,
v/v). This combination of extraction and clean-up in a single step provided recov-
eries greater than 90%. The most frequently detected analytes in the studied marine
and fluvial sediments were EHS (3.5-20.0 ng g~') and DHDMB (1.2-6.1 ng g~ 1.

2.1.3 Soxhlet Extraction

In a Soxhlet system, the sample is repeatedly placed in contact with new portions of
organic solvent at an elevated temperature. Although Soxhlet is time consuming,
labour intensive and requires the use of large volumes of organic solvents, it has
been applied for organic compound extraction from solid matrices due to its high
extraction efficiency [27].

Sediments from the Dongjiang River and Xijiang River and from the coast of
Macao (China) were Soxhlet-extracted for 72 h using DCM to analyse polycyclic
musk. After a concentration procedure, the solvent extracts were exchanged into n-
hexane and cleaned on a silica/alumina column in three fractions: the first were
eluted with hexane, the second with hexane:DCM (3:1) and the third with DCM.
The last fraction contained the target analytes and was concentrated using a rotary
evaporator. The sample was further reduced to a volume of 0.5 mL under a gentle
stream of nitrogen. Two polycyclic musks, HHCB and AHTN, were the dominant
components in the sediment, and the concentrations of total polycyclic musks
ranged from 5.76 to 167 ng g~ [8].

A shorter extraction time (24 h) was employed by Peck et al. for the extraction of
polycyclic and nitro musk fragrances from sediments collected in Lake Ontario and
Lake Erie (U.S). DCM was employed for the extraction, and the samples were
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exchanged into hexane. The sulphur was removed from the resulting 4-mL hexane
extract via the addition of copper filings activated by concentrated hydrochloric acid.
Column chromatography was used to remove interferences, and three 50-mL eluent
fractions were collected in series: hexane, dichloromethane and MeOH. HHCB was
detected in Lake Erie, whereas six compounds were detected in Lake Ontario. The
authors concluded that the influx of these compounds into the lakes is increasing [29].
A similar study using Soxhlet extraction with DCM/hexane (8:1, v/v) was
carried out in sediments collected from the Ariake Sea, Japan for the analysis of
UV stabilisers. Some of them (UV 320, UV 326, UV 327 and UV-328) were
detected in all of the analysed samples at concentrations up to 320 ng g~ ' [16].

2.1.4 Sequential Dispersion Extraction

Another technique that can be considered conventional is the extraction carried out
by dispersing the samples in the solvent using a high-speed dispersion tool [30].

Methyl triclosan and different fragrances were extracted from river sediments by
sequential dispersion extraction with acetone and n-hexane [7]. Each extraction was
followed by centrifugation and decantation of the solvent and separated into six
fractions using liquid chromatography on silica gel using mixtures of pentane,
DCM and MeOH. Methyl triclosan and fragrances were measured at concentration
up to 450 and 90 ng g~ ', respectively [4].

2.2 Novel Techniques

During the last decade, alternative sample preparation methods have been devel-
oped to be more selective, faster and miniaturised, requiring less extraction solvent
and smaller samples. In addition, the automation of these techniques allows on-line
extraction, which increases the number of samples that can be processed and
reduces human errors by minimising operator intervention [31]. Table 2 shows
examples of extraction using novel techniques, which will be described below.

2.2.1 Pressurised Liquid Extraction (PLE)

In Pressurised Liquid Extraction the sample is in contact with a relatively small
amount of solvent inside a chamber with high pressure (1,500-2,000 psi) and
temperature (50-200°C), which facilitate the disruption of analyte—matrix interac-
tions. PLE allows for a reduction in the extraction time and solvent consumption
(15-30 mL) with a high level of automation and result in better recoveries than
those achieved using classical extraction techniques [44]. PLE provides cleaner
extracts than Soxhlet and ultrasonic extraction, which results in reduced back-
ground noise during the subsequent analyte determination, which is especially
important in LC-MS analysis due to ion-suppression/enhancement -effects
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[3]. The main limitations of PLE are that the selectivity towards the analytes during
extraction is not as high as might be desired and many interferences may be
coextracted, depending on the type of sample. Other disadvantages include dilution
of the analytes, especially when a large number of cycles are used [45] and, of
course, the high initial cost of the extraction system.

Burkhardt et al. have employed PLE coupled with solid-phase extraction (SPE) as
a clean-up process for the determination of a disinfectant (TCS), two fragrances
(AHTN, HHCB) and a UV filter (methyl salicylate) in a multiresidue study of
61 compounds, reducing the sample preparation time and the solvent consumption
to one-fifth of that required using Soxhlet extraction and minimising the background
interferences in the subsequent detection technique. The analytes were extracted first
with water:isopropanol (IPA) (1:1, v/v) at 1,240°C to obtain the majority of the polar
and heat susceptible compounds, and then with water/isopropanol (1:4, v/v) to obtain
the more hydrophobic compounds, which are generally more thermally stable. The
extracts were collected in vials containing 3 mL of pentane to provide a cooling effect
and an upper organic barrier to help prevent sample compound volatilisation losses
and provide a solvent for the hydrophobic compounds to determine their mixing into
the coextracted matrix material. Finally, a purification using Oasis HLB and Florisil
cartridges was carried out [37].

Another PLE procedure followed by SPE was developed for the extraction of
triclosan from marine sediment samples collected at the outflow of WWTPs to the
Almeria Sea (Spain). Before loading the samples in a PLE cell, a cellulose filter was
placed in the outlet, followed by a 1-g layer of hydromatrix to obtain cleaner extracts.
One cycle of extraction using DCM was carried out and then the extracts were
concentrated to a final volume of 5 mL. An additional clean-up was applied using
extraction cartridges packed with 1 g of silica. All of the analysed samples were found
to contain triclosan up to 130.7 ng g~ ' in marine sediments, offering a seasonal
dependence [32].

Rodil et al. also developed a method for the determination of UV filter com-
pounds by employing PLE in combination with the use of non-porous polymeric
membranes in sediment from lakes surrounding the city of Leipzig to cover inputs
from recreational activities (swimming/bathing). The authors claim that this com-
bination of PLE and clean-up into a single-step is efficient and easy, resulting in
recoveries higher than 73% and precisions with RSD < 19% [42].

2.2.2 Superheated Liquid Extraction (SHLE)

Similar to PLE, Superheated Liquid Extraction is a technique developed to reduce
the solvent consumption of classical extractions [46]. SHLE uses aqueous or
organic solvents at high temperature without reaching the critical point and pres-
sures high enough to maintain the liquid state of the target extractants. In addition to
reducing solvent usage, it is also able to reduce manipulation, improve selectivity
and increase automation [47]. In both techniques, PLE and SHLE, the high tem-
peratures enhance the solubility of analytes, the speed of diffusion rates, and the
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disruptive power of the strong solute—matrix interactions, thus improving the
penetration of the solvent into the matrix [46].

An example of SHLE applied to PCPs is the extraction of triclosan from marine
sediments [35], in which a sequential superheated fluid extraction with DCM where
water is removed. The sample was mixed with 3 g of sand as a dispersing agent and
placed in the extraction chamber for a dynamic extraction with DCM and water.
The organic and aqueous extracts are independently collected and treated by
evaporation and liquid—liquid extraction, respectively. This sequential extraction
with polar and low-polarity superheated liquids was necessary due to the wide
polarity range of the target analytes (the paper describes a multiresidue analysis for
pesticides, pharmaceuticals and personal care products). Using DCM as an
extractant, triclosan was found at 15.2 ng g~ in sediment samples collected at
the outflow of a WWTP to the sea.

2.2.3 Microwave-Assisted Extraction (MAE)

Microwave-assisted extraction is based on the application of microwave energy to a
ceramic vessel containing the sample, resulting in heating of only the sample. This
technique offers substantial improvements over other sample-preparation tech-
niques, such as short extraction times, use of small amounts of solvent and the
possibility of extracting multiple analytes simultaneously, without as high of an
initial investment as PLE or SHLE. However, additional clean-up of the extract of
the samples is generally necessary prior to analysis, and MAE is not amenable to
automation.

This procedure, followed by a clean-up step and based on on-line SPE, was
satisfactorily applied to seven UV benzotriazole stabilisers in two types of marine
sediments (beach sediments and sediments near an outfall of sewage waters) using
2 mL of a weak organic solvent, such as ACN, and applying 300 W of power for
5 min. The MAE extract was diluted with Milli-Q water to 20 mL and passed
through an on-line SPE system. Recoveries between 50.1 and 87.1% were obtained,
and concentrations in the range 0.18-24.0 ng g~ ' were measured in the sediments
near the outfall. These values were higher closer to the outfall, as expected [28].

Triclosan and musk ketone were analysed but not detected by an MAE proce-
dure in the surface sediment samples collected along the shore of Lake Erie
adjacent to the effluent pipe of a WWTP serving a town in upstate New York. A
preliminary study was completed to determine which extraction solvent resulted in
the greatest recovery; methylene chloride, MeOH, acetone and hexane were tested.
Finally, a mixture of methylene chloride and MeOH was selected. The temperature
was ramped from room temperature to 115°C over 8 min, and the final temperature
was held for 15 min [36].

Another procedure developed for the determination of triclosan allows for its
determination in river sediments in the North West of Spain at concentrations between
4.4 and 35.7 ng g~ ' [33]. In this case, the extraction was made using 30 mL of acetone:
MeOH (1:1, v/v) at 130°C for 20 min followed by an SPE procedure.
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A process using surfactants as extractants was employed by Delgado et al. The
procedure was developed for the determination of, among other compounds, one
paraben (butylparaben) from marine sediments. The sediments were extracted
using two ionic-liquid (IL)-based surfactants, 1-hexadecyl-3-methyl imidazolium
bromide (C;sMIm-Br) and 1-hexadecyl-3-butyl imidazolium bromide (C;5Cy4Im—
Br). The water-soluble IL that contained the extracted analytes from the sediments
was transferred to a water-insoluble IL (C;C4Im—NTf, or C;EMIm-NTY,) via a
simple metathesis reaction, and the extracted analytes experience an important
preconcentration in the water-insoluble IL, forming a microdroplet of a few
mL. Using this procedure, butylparabene was detected at 370 ng g~ ' in the marine
sediments [41].

A modification of the MAE procedure, the Focused Microwave-Assisted Soxhlet
Extraction (FMASE), was employed by Morales Muiioz et al. for the determination
of triclosan in marine sediments collected in Almeria (Spain). FMASE maintains
the advantages of conventional Soxhlet extraction and overcomes certain problems,
such as the long extraction time and non-quantitative extraction of strongly retained
analytes due to the easier cleavage of analyte—matrix bonds by interactions with
focused microwave energy power. Moreover, it is viable for automation and avoids
wasting large volumes of organic solvents [34]. The focused microwave-assisted
Soxhlet extractor operates similarly to conventional Soxhlet extraction, but the
sample receives microwave irradiation over a preset period when it is in contact
with the extractant. The total extraction time of this procedure was 75 min (which
corresponds with 25 min of DCM extraction and 50 min of water extraction), which
is a short time compared with conventional Soxhlet extractions. Mean recoveries of
96% for triclosan were obtained, and the measured concentrations were 9.5 and
5.9 ng g~ " using DCM and water as extractants, respectively [34].

2.2.4 Matrix Solid Phase Dispersion (MSPD)

In MSPD, the samples are dispersed with a suitable sorbent and then packed into a
polypropylene syringe that contains a clean-up sorbent to retain co-extracted
interfering species. Matrix solid-phase dispersion is a low-cost technique that
combines the limited consumption of organic solvents, the use of mild extraction
conditions and the potential for integrated extraction and purification [25].

This technique has been satisfactorily employed for the extraction of six
benzotriazole UV stabiliser compounds in coastal and river sediments with recov-
eries of 78—-110% [43]. Diatomaceous earth and silica, deactivated to 10%, were
used as inert dispersant and clean-up co-sorbents, respectively. Satisfactory recov-
eries were obtained for all of the compounds (between 78% and 110%), and the
levels of concentration reach a maximum of 56 ng g~ for UV 328.

Two disinfectants, triclosan and methyl triclosan, were also extracted using this
technique from river and marine sediment samples. As in the previous paper, the
samples were dispersed with diatomaceous earth. The obtained recoveries were
even better, ranging from 100% to 111%. Methyl triclosan was not detected in any
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analysed sediments, while triclosan was found in 50% of these samples in the range
8.6-201 ng g~ ' [39].

2.2.5 Microextraction Techniques

The demand to reduce the sample volumes and avoid the use of toxic organic
solvents has given rise to many microextraction methods in the last several decades,
which have led to simplifications in the extraction procedures. Some of these
procedures, originally developed for liquid samples, have been applied to the
extraction of PCPs from solid samples.

An example is the extraction carried out by Casas Ferreira et al. of several
parabens (methylparaben, isopropylparaben, n-propylparaben, butylparaben and
benzylparaben), and two disinfectants (triclosan and methyltriclosan) from river
sediment samples in Germany using Stir Bar Sorption Extraction (SBSE). SBSE
involves the extraction of the analytes from the matrix using a magnetic stir bar with a
coating of polydimethylsiloxane (PDMS), a nonpolar polymeric phase. Usually, their
use for solid samples requires a previous extraction step using another technique,
such as USE or PLE, and then, the extract, previously diluted in water, is subjected to
the SBSE procedure [38]. These authors have published one of the few references
available concerning the extraction of pollutants using the twister directly in the soil
sample, where the sample was placed in a headspace vial, and then, 5 mL of a 0.4-M
aqueous solution of NaHCO; was added, and the stir bar was inserted into the
mixture. The resulting recoveries were between 91% and 110%, and although
differences were observed in the behaviour between the parabens and the triclosan
and methyl triclosan, it was possible to determine all of these compounds in real
samples, choosing appropriate working conditions for a multicomponent protocol.
This approach provides important advantages, such as minimising the sampling
handling, completely eliminating the use of organic solvents and simplifying the
analytical procedure with reduced time consumption [38].

Solid-phase microextraction has also been applied as a solvent-free technique, in
this case for the determination of synthetic polycyclic musks in sediment samples.
The procedure is based on a one-step in situ Microwave-Assisted Headspace Solid-
Phase Microextraction (MA-HS-SPME). The dehydrated solid sample mixed with
20 mL of deionised water was extracted using a polydimethylsiloxane-
divinylbenzene (PDMS-DVB) fibre placed in the headspace when the extraction
slurry was microwave irradiated at 80 W for 5 min. The rapid microwave-assisted
heating provides better extraction efficiency and sample throughput than using
water-bath heating. Overall, the one-step in situ MA-HS-SPME appears to be a
good alternative extraction method for the determination of organic compounds in
environmental samples; it is a simple, effective, low-matrix-effect and eco-friendly
sample pretreatment method [40].
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3 Analysis

As previously stated, PCPs cover a large range of polarities and physico-chemical
properties. Obviously, this fact compromises not only the selection of a proper
extraction/pre-concentration technique (as discussed previously) but also the choice
of using a proper chromatographic and detection system. Moreover, PCPs are
usually found in highly complex environmental samples at low-ppt levels, which
means that both sensitive and selective analytical methods are required.

Currently, both gas chromatography (GC) and liquid chromatography
(LC) techniques, in conjunction with the sample preparation methodologies
described above, meet the analytical requirements for trace and ultra-trace deter-
mination over the entire range of PCPs in solid environmental matrices. The choice
of using GC or LC depends, once again, on the physico-chemical properties of the
target analytes.

As an example, highly volatile synthetic polycyclic musks can be easily deter-
mined in complex samples (e.g., sewage sludges/sediments [40] or river sediments
[8]) by GC without any further derivatisation steps, whereas other PCPs, such as
some organic UVFs [48] or parabens [38], need an initial derivatisation step if GC is
to be successfully employed; they are much more amenable to analysis using
LC-related techniques (e.g., [6, 11, 28]).

Within this field of environmental chemistry, we have observed some prominent
trends. The common use of GC allows for the separation of PCPs and has to a large
extent been replaced by LC [31]. This fact has been attributed to two main causes:
(1) the low volatility and/or thermal stability of many of the PCPS found in solid
environmental samples, and (2) the inclusion of some tedious sample preparation
steps (mainly sample derivatisation by methylation, sylation or pentafluoroben-
zylation) that increase the analysis time and the uncertainty in the analytical
measurements. Despite these limitations, GC has not been completely ruled out
because it is still the method of choice for separating some highly volatile and/or
hydrophobic PCPs that show poor ionisation in LC-MS analysis (e.g., fragrances
and benzotriazoles). However, alternative LC applications have also been reported
for most of these groups.

There is an important trend towards multiresidue and multi-class methods.
Current advances in instrumentation have allowed the simultaneous determination
of a large number of PCPs (including different families) within a single analytical
run [15, 31, 49]. The recent emergence of higher resolution LC equipments
enabling the use of sub-2-pm particle sizes and high backpressures (UHPLC), the
development of new column packages and the on-line coupling/automation of the
sample preparation steps and detection systems have also contributed to this trend,
allowing PCPs to be resolved more easily and in shorter analytical run times.

In the following sections, the intricacies of most of the analytical methodologies
employed for the determination of PCPs in solid environmental samples (sediments
and soils) are reviewed in detail. All of the reviewed techniques are based on LC
and GC separation systems using MS detection.
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3.1 Liquid Chromatography

While high-performance liquid chromatography (LC or HPLC) is a mature and
widely used analytical technique for the analysis of PCPs, the advent of ultra-high
performance liquid chromatography (UHPLC) has energised disciplines that
employ this technique extensively. In UHPLC, columns packed with sub-2-pm
particles are used, and when combined with elevated backpressures, result in a
significant reduction of the retention times and solvent consumption, which reduces
length of the chromatograms and the total times required for the determination of
the analytes.

In current UHPLC systems, the analysis times can be decreased by a factor of
9 when compared to LC analysis. This fact clearly enhances the throughput for
high-volume analyses and accelerates method development time cycles, which is
advantageous for experiments using various methods. Other advantages of UHPLC
include greater sensitivity because of the sharper peak profiles and better
reproducibility.

LC and UHPLC separation of PCPs presents some properties that complicate the
choice of an appropriate analytical column, the mode of separation, and the best
chromatographic conditions, especially when dealing with multiresidue analysis [50].

Given the hydrophobic nature of most of the PCPs found in solid environmental
samples, the stationary phases employed in the literature mainly consist of
reversed-phase (RP) packing materials with C;g as the most commonly employed
by a wide margin (e.g., [5, 6, 15]).

Almost as an exception to C;g columns, Nuifiez and co-workers [9, 10] opted for an
XDB-Cg HPLC column (150 x 4.6 mm, 5 pm) for the chromatographic separation of
several parabens (methyl, ethyl, isopropyl, propyl, benzyl and butylparaben) in solid
environmental samples. The less hydrophobic nature of Cg with respect to C;g columns
seems to not affect the retention of the selected parabens, and even the use of high
percentages of organic solvent was required to elute the analytes from the stationary
phase. Nevertheless, most of the authors still opt for classical C;g RP columns for this
family of preservatives: Delgado et al. [41] employed C;3 HPLC Column
(150 x 4.6 mm, 5 pm); Liao et al. [11] selected a C,g column (100 x 2.1 mm, 5 pm);
whereas Chen et al. [6] opted for SB-Cg (100 X 3 mm, 1.8 pm). MeOH, ACN and
Milli-Q water are the preferred solvents used for the gradient elution of parabens. Some
additives, such as formic acid and ammonium acetate, have been used to promote the
ionisation of the analytes into the MS interfaces.

In the particular case of parabens (log K., from 1.96 to 3.57 and pK, between
8.79 and 8.9), Angelov et al. [5S1] observed that the neutral forms of these analytes
occur at pH in the range of 3-6.5. At highly acid mobile phases compositions
(pH < 3), the protonated forms will exist, whereas at pH above 6.5 the
de-protonated ions will be formed. Thus, considering that the ionic forms are
usually poorly or even not retained when RP chromatography is employed, the
mobile phases should be prepared to favour the neutral forms of the selected
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preservatives (6.5 > pH > 3). However, this condition is not often taken into con-
sideration in the reviewed literature.

Disinfectants are another family of PCPs that have been traditionally determined
in solid samples using GC-related techniques (e.g., [33, 37]) but that have also been
gradually replaced by LC-based techniques. This fact could be attributed to the ease
with which the main disinfectants, triclosan, triclocarban and their derivatives, are
ionised at the current LC-MS interfaces. Once again, the hydrophobic nature of
both TCS and TCC (log K, of 4.7 and 4.9, respectively [5]), has led to the use of
RP columns as the primary stationary phase in their determination in solid matrices.

Zhao et al. [5] recently developed an analytical method based on the rapid
resolution of liquid chromatography-tandem mass spectrometry (RRLC-MS/MS)
with electrospray ionisation (ESI) to determine the levels of TCS and TCC in river
surface waters and sediments. The column employed was a SB C;g column
(100 x 3.0 mm, 1.8 pm), while the elution of the analytes was carried out using a
binary mixture of water and ACN as the mobile phase without any further additives.
The authors employed isotopically labelled internal standards ('*C;,-TCS for TCS
and TCC-d; for TCC) for quantification purposes and reported very low LODs
(0.6 ng g~ ' for both TCS and TCC) that allowed them to determine the presence of
both antimicrobial agents in real river sediment samples.

Agiiera et al. [32] reported a comparison of two chromatographic techniques for
the determination of TCS in marine sediments and urban wastewaters. The first one
was based on GC-negative chemical ionisation (NCI)-MS, whereas the second was
based on LC-ESI-MS/MS. These authors reported that, despite the higher LODs for
TCS using the LC-MS/MS technique, it allowed for the proper identification and
quantification of biphenylol, which was not possible to determine using
GC-NCI-MS. The LC separation of the analytes was achieved using an MS Cg
column (100 x 2.1 mm, 3.5 pm). A gradient elution was performed using ACN and
0.02% ammonium hydroxide in water (pH 10.5) as mobile phase solvents.

The last family of PCPs for which the LC-MS related techniques have been
gaining importance are the benzotriazole UV light stabilisers (BUVs). The highly
lipophilic behaviour of these compounds (K, between 3.0 and 10) [16] usually
requires the use of high percentages of organic solvents in the mobile phases when
working with reversed phase (RP) columns, which is the most widespread mode of
separation [25]. Among UVF and UVLS, BUVSs also show remarkably basic
behaviour (pK, > 7), which can also have an influence on the chromatographic
separation parameters (retention times, peak shape, tailing, etc.), especially for the
less lipophilic benzotriazoles.

Montesdeoca-Esponda et al. have developed and applied some analytical meth-
odologies based on octadecilsilica-based RP-UHPLC (100 x 2.1 mm, 1.7 pm)
coupled to an MS/MS detector [28, 52, 53] for the determination of benzotriazoles
in environmental samples. In all of their work, an isocratic elution based on 100%
MeOH for 1 min was sufficient to determine seven BUVSs; however, the co-elution
of three of them (UV 326, UV 327 and UV 328) was unavoidable. Ruan et al. [54]
reported the development and application of an analytical methodology based on
LC-MS/MS for the determination of 12 BUVSs in solid environmental samples.
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They employed a Cig column for chromatographic separation (150 x 4.6 mm,
5 pm). The gradient employed was MeOH:water (80:20, v/v) with a flow rate of
1 mL min~" and a linear increase to 100% MeOH over 20 min. The authors did not
report the retention times of the analytes or any related chromatograms. Neverthe-
less, considering the analytical conditions employed, co-elution of some of the
analytes is highly probable.

As stated before, multi-residual analysis of PCPs using LC-MS techniques has
gained importance during the recent years. As an example, Blair and colleagues
[55] developed a multiresidue LC-MS/MS methodology based upon US EPA [56],
for the trace determination of 54 PCPs (including some parabens, fungicides, sex
hormones, antibiotics, etc.) in water and sediment samples from Lake Michigan
(USA). They employed a MAX-RP (250 x 4.6 mm, 4 pm) column and a binary
gradient elution for the determination of the selected analytes. Similarly, Chen
et al. [6] optimised and applied a sensitive and robust method using SPE and USE
extraction followed by UHPLC-MS/MS for the determination of 19 biocides,
including four paraben preservatives (methylparaben, ethylparaben, propylparaben
and butylparaben) and two disinfectants (TCS and TCC), in surface water, waste-
water, sediment, sludge and soil samples. The employment of an SB-Cig
(100 x 3 mm, 1.8 pm) provides high retention, good reproducibility and excellent
resolution of the target compounds. To achieve this goal, they tested different
mobile phase compositions (MeOH, ACN, Milli-Q water, acetic acid, formic
acid, oxalic acid, and aqueous ammonia and ammonium acetate in different ratios
and different combinations). The authors also assessed the matrix effects by
comparing extracts of the matrix spiked with standard solutions with the
corresponding standard solution in the mobile phase solvent. They reported that
the target compounds in surface waters, sediments and soils were not significantly
affected by the matrix interferences (matrix effect within 70-120%), whereas
significant matrix effects were observed for wastewater and sludge samples for
almost all the analytes.

Generally, the co-elution of some of the PCPs reviewed here have been observed,
especially within the groups or families presenting very high lipophilicity, such as
BUVSs [25], which, in conjunction with the high complexity of the solid environ-
mental samples, could severely compromise the quantification of these analytes
because the response factors of each analyte can vary significantly (Fig. 1).
In addition, both facts also lead to competitive ionisation during the electrospray
processes [57], resulting in signal suppression/enhancement and impairing the proper
quantification of the analytes when MS detection systems are employed [58]. There-
fore, the appropriate separation and quantification of these pollutants continues to be
an exceptional chromatographic challenge considering the matrix effects associated
with complex materials, such as sediment and soil samples.

Based on these facts, we suggest that further investigation of different types of
column packages, sizes, or even combined separation mechanisms, such as mixed-
modes columns, e.g., based on both size exclusion and polarity retention [59], is
required to overcome the main drawbacks observed in current publications,
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Fig. 1 Total ion current chromatogram of (a) sediment sample and (b) sludge sample spiked with
BUVSs mixture (From [28])

including the use of high volumes of organic solvents and the co-elution of various
compounds during chromatographic separation.

3.1.1 Detection Systems

The application of advanced LC-MS technologies has become an important tool for
the identification and quantification of PCPs over the last decade. Particle beam
(PB) and thermospray (TSP) were the first interfaces employed in this combined
technique in the early 1990s (e.g., [60]). However, the recent interest of the
scientific community in these pollutants has led to the exclusive use of atmospheric
pressure interfaces (API) in the determination of PCPs. These types of interfaces
allow the successful elimination of the mobile phase from the column and provide
the proper ionisation of the analytes at the high vacuum conditions required for their
determination by MS.

Today, electrospray (ESI) and atmospheric pressure chemical ionisation (APCI)
interfaces are the most widely used interfaces for LC-MS and LC-MS/MS analyses
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of these emerging pollutants. Theoretically, both ESI and APCI interfaces offer a
soft ionisation mode compared to the previously mentioned PB, TSP or even
MALDI (Matrix-Assisted Laser Desorption Ionisation); thus, they are more appro-
priate for quantitative analysis in both single ion monitoring (SIM) and multiple
reaction monitoring (MRM) detection modes. It has been reported on countless
occasions that ESI provides better sensitivity for compounds over a wide range of
molecular weights and medium to high polarity, whereas APCI provides an opti-
mum interface for the ionisation of chemicals over a wide range of molecular
weights but primarily with medium to low polarity, which is the case of several
PCPs associated with solid environmental samples.

Regardless of ionisation technology employed, parabens and disinfectants are
usually determined in negative ion (NI) mode as (M-H) . In most studies, ESI has
been the unique interface employed for the LC-MS analysis of parabens and
disinfectants in sediment and soil samples to date [5, 6, 9-11, 32]. Ammonium
formate, ammonium acetate, ammonium hydroxide and formic acid have been
employed as mobile phase additives to promote the ionisation of these analytes in
the API chambers. These substances are amenable to fragmentation in the collision
cells of triple quadrupole mass spectrometers (TQDs), forming stable and repro-
ducible product ions. In this sense, their determination using MS/MS in MRM
mode is highly recommended. This acquisition mode allows more selective and
sensitive detection, resulting in limits of quantification (LOQs) that are far lower
than those reported using single-quadrupole detectors (QD) working in SIM mode,
regardless of whether LC, UHPLC or even GC is employed as the separation
technique (Table 3).

Among all of the UVFs and UVLs compounds, only BUVs and benzophenone
UVFs have been determined using LC-MS-related techniques in sediment and soil.
In contrast to parabens and disinfectants, these substances are mainly determined in
positive ion (PI) mode as (M-H) * and using both ESI and APCI interfaces.

Montesdeoca-Esponda et al. have developed an UHPLC-ESI-MS/MS method to
detect and quantify BUVSs in different types of samples, including marine sedi-
ments and sludges from WWTP Montesdeoca-Esponda et al. [28]. Ruan et al. [54]
employed an LC-MS/MS system for the determination of 12 BUVSs in sludge
samples using an APCI interface for the ionisation of the analytes. They also
determined BUVS under PI using nitrogen as the nebuliser and drying gas and
argon as the collision gas. Zhang and co-workers [15] developed another
LC-ESI-MS/MS method for the determination of two benzotriazole and five ben-
zophenone derivatives in sediment and sludge samples in which the negative ion
(M-H)~ was successfully employed, reporting LODs below 0.1 and 0.5 ng g~ for
sediment and sludge samples, respectively.

The main negative aspect of LC-MS analysis of PCPs in these types of environ-
mental samples has been clearly attributed to the occurrence of matrix effects. Due
to the co-extracted matrix constituents, the MS analysis may suffer from ionisation
suppression or enhancement in the API interfaces, thereby hindering the adequate
quantification [57]. In particular, it has been reported that ESI is much more
susceptible to this signal suppression/enhancement phenomena than APCI sources,
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which as mentioned before, have been used less often for PCPs because the
sensitivity is lower than ESI [61].

These matrix effects can be reduced by applying extensive and selective clean-
up procedures prior to LC-MS analysis, by improving the chromatographic sepa-
ration, and by diluting the final extract [48]. However, the most common and
effective technique consists of the use of isotope-labelled compounds or surrogate
standards, which allow us to compensate for the matrix effects of the analogous
native analytes throughout the entire analytical procedure. Although this approach
is a better solution than standard addition or matrix match calibration, which are
more time consuming and laborious, these isotopically isotope-labelled standards
can often be expensive or not commercially available.

Taking into consideration the physico-chemical properties and fragmentation
behaviour of the PCPs mentioned in this section, the use of other MS techniques,
such as ion trap (IT), time of flight (TOF), and even hybrid-MS systems like
quadrupole-time of flight (Q-TOF), quadrupole-ion trap (Q-IT) and Orbitrap-MS,
is also plausible. These detectors could offer additional and more versatile recog-
nition of degradation products and metabolites due to their highly accurate mass
measurements, low LODs, speed and sophisticated MS-scanning techniques.

Table 3 summarises the main characteristics of the LC-MS methods that have
been developed for the determination of PCPs in sediment and soil samples. This
table includes the type of column employed in each work, the mobile phase
compositions, MS-interfaces, detection mode and detector type.

3.2 Gas Chromatography

Gas chromatography (GC) coupled to mass spectrometry detectors (MS and
MS/MS) has been the major instrumental technique used for the environmental
analysis of PCPs in sediment and soil during the last decade, especially for those
with boiling points lower than 450°C (volatile and semi-volatile PCPs). However,
its application can be extended to “non-volatile” and polar compounds if a proper
derivatisation step is included during the analytical protocol. This procedure
enhances the volatility and thermal stability of the analysed species, which is still
the main drawback of GC analysis [23]. In this sense, derivatisation reactions must
allow the detection of the compounds containing polar functional groups with
adequate signal-to-noise (S/N) ratio, provide complete derivatisation (>90%) and
be time efficient [23].

Some of the PCPs included in this work (e.g., parabens and some UV filters) are
highly polar and/or thermally fragile compounds that require transformation into
more volatile compounds to make them suitable for GC analysis [7]. Silyl reagents
are the most commonly employed for PCP analysis by GC. They provide rapid and
quantitative reactions that yield stable products that can be easily separated on GC
columns. A large variety of silyl reagents, and also combinations of them, have
been used to produce different ether derivatives: N-z-butyldimethylsilyl-N-
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methyltrifluoroacetamide (MTBSTFA), N,O-bis(trimethylsilyl)trifluoroacetamide
(BSTFA), t-butyldimethylchlorosilane (TBDMSCI), N-Methyl-N-(trimethylsilyl)
trifluoroacetamide (MSTFA) or trimethylchlorosilane (TMCS) are among the
most employed (see Table 4).

Some pentafluoro reagents, such as pentafluoropropionic acid anhydride (PFPA)
and pentafluorobenzyl bromide (PFBBr), have also been employed for
derivatisation purposes in the GC analysis of several PCPs in environmental
samples. The most important advantage of pentafluoro reagents with respect to
silyl reagents is that they convert the analytes into highly electrophilic derivatives
due to the introduction of 5 or 10 fluorine atoms, which lead to a significant
improvement of the final sensitivity and selectivity of the MS detection [23]. Meth-
ylation is another derivatisation technique that has been employed to a lesser extent
to transform polar PCPs into methyl derivatives. Diazomethane has been employed
to reach this goal, however, it has been reported that this substance is poisonous,
carcinogenic and explosive, so its use is not recommended [23]. Casas-Ferreira
et al. [38] optimised an in situ derivatisation step based on the acetylation of
parabens, triclosan and methyl triclosan from soil, sediment and sludge samples
followed by the determination of the selected analytes via GC-MS. These authors
stated that a noticeable increase in the signals of the compounds was observed when
derivatisation took place, reporting LODs below ng g~ "

It is important to address the fact that derivatisation requires the optimisation of
several variables to perform correctly, including the derivatising agent,
derivatisation solvent, reaction temperature, duration of reaction, etc., which
could explain why many of the authors opt to determine some of the reviewed
PCPs without any derivatisation of the analytes, even in some cases where the
addition of a derivatisation reagent could improve the LODs of the analytical
method.

However, from the perspective of analytical chemistry, several PCPs are ame-
nable to gas GC-MS or even GC-MS/MS determination without any further
derivatisation. For example, to the best of our knowledge, BUVSs have exclusively
been determined using GC-MS related methodologies in solid environmental
samples without the derivatisation of the analytes (e.g., [14—16, 43]). Synthetic
musk fragrances (e.g., [4, 7, 8, 40]) and disinfectants (e.g., [32, 37]) are also usually
determined without any further derivatisation step.

Currently, there are many different types of GC columns commercially avail-
able. However, only a few of them, mainly based on fused silica-(5%-phenyl)-
methylpolysiloxane, have been used for PCPs. Helium is usually employed as the
carrier gas at constant flow rates between 1 and 1.5 mL/min. With respect to the
injection mode, the split-less mode is preferred by most researchers for the deter-
mination of these substances in soil and sediment samples.
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3.2.1 Detection Systems

Most of the published methods for PCP analysis in sediments and soils report GC
with single-quadrupole MS as the preferred detection system (Table 4). Full-scan
mode is usually employed for identification, whereas SIM mode is used for
quantification. However, GC-MS/MS has increasingly been applied in the deter-
mination of these contaminants due to the extremely high selectivity and sensitivity
of its MRM detection mode, as well as reduced matrix effects and interferences
[23]. Among all the ionisation sources employed in these hybrid techniques (e.g.,
electron-impact ionisation (EI), cold electron-impact ionisation (cold-EI), or chem-
ical ionisation (CI)), EI has been the most commonly employed [33, 38, 40]. With
respect to MS detectors, QD [12, 13, 36, 40], TQD [34, 35, 43] and ITs [33] have
been the only ones used to date.

More specifically, synthetic musk fragrances are commonly analysed using
GC-EI-MS, a technique that has been routinely used for detection of these substances,
due to their high volatility [22]. However, GC-NCI-MS is more sensitive to the nitro
musk fragrances [31]. As isotopically labelled standards are not commercially avail-
able, a variety of internal standards have been used instead for the analysis of these
substances, including deuterated PAHs and various labelled and unlabelled PCBs
[31]. High-resolution or tandem mass spectrometric techniques are rarely used
because the sensitivity of the low resolution mass spectrometers is usually enough
for the analysis of these substances [31]. Table 4 summarises the main characteristics
of some of the GC-MS-related techniques that have been employed for the determi-
nation of synthetic musk fragrances in solid environmental samples.

Disinfectants have also been traditionally determined using GC-EI-MS with
SIM as the monitoring mode for the qualitative and quantitative analysis of the
target analytes. All the authors employed electron-impact ionisation mode, usually
at 70 eV [32, 33, 37, 38]. Lower LODs can be achieved if a proper derivatisation
step is included during the analytical protocol (Table 4). Labelled '>C12 TCS and
3C12 methyl-TCS are currently available for use as recovery standards [31].

In the particular case of disinfectants, some authors opted for IT detectors for the
determination of both TCS and TCS and their derivatives instead of classical linear
quadrupole detectors [33-35]. IT detection offers some advantages over QD and
TQD detection. For example, it allows the possibility of working in MS" mode
without any additional cost. To achieve this goal, the selected precursor ion is
isolated in the trap, and once there, it can be fragmented several times (n) by
colliding it with helium molecules. Subsequently, the product ions obtained are
registered during each fragmentation stage (n), and therefore, more precise and
complete information regarding the chemical structures of the analysed compounds
can be obtained. However, ITs allow an instrumental technique that generally
results in a less linear response and higher limits of detection and quantification
compared with those obtained using TQD in MRM mode [25].

Due to the high polarity observed in some UV filters, such as benzophenone-type
compounds, the complete derivatisation of these analytes is required to increase
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their GC sensitivity. N-methyl-N-(trimethylsilyD)trifluoroethyl acetamide (MSTFA)
[12] and BSTFA with 1% TMCS [13] have been used to transform UV filters into
their trimethylsilylethers and improve the detection limits of the final methodolo-
gies. Classical GC stationary phases, such as 5% phenylpolysiloxane, are frequently
used for the separation of these compounds [12, 13, 42]. Once again, all the
mentioned authors opted for the split-less mode for sample injection, EI at 70 eV
for ionisation, and GC-MS working in SIM mode for the detection and quantifica-
tion of the analytes.

The analysis of BUVSs in complex environmental samples using GC-MS and
LC-MS/MS often reveals matrix effects mainly due to their hydrophobic nature
[25]. However, GC-MS/MS has increasingly been applied instead of GC-MS for
the determination of trace organic contaminants due to the extremely high selec-
tivity and sensitivity of its MRM mode and it has several advantages, such as
reduced matrix effects and interferences [25].

As an example, [43] [43] developed a novel and highly sensitive GC-MS/MS
method for benzotriazole UV absorbers in sediments. They used a GC-MS/MS
system with an IT mass spectrometer that was equipped with an EI ionisation
source to assess these compounds in river and marine sediments. In this work,
they reached LOQs between 3 and 15 ng g~ ' by combining the matrix solid-phase
dispersion technique developed for the extraction of the analytes and the GC-MS/
MS employed for the detection.

More details and examples regarding GC-MS and GC-MS/MS methodologies
for PCP analysis have been highlighted in Table 4.

4 Conclusions and Future Trends

We thoroughly reviewed the literature from the past decade on the determination of
the most relevant PCPs in solid matrices derived from aquatic environments.

Conventional methodologies, such as shaking, ultrasounds and Soxhlet, are still
used due to their simplicity and low cost. They provide acceptable extraction yields.
However, many disadvantages, such as long times and high consumption rates of the
sample and reagents, have led the increased use of novel techniques based on
increased automation (PLE, SHLE) or miniaturisation (SBSE, MA-HS-SPME).
The methodologies employed for the extraction, preconcentration and purification
of solid samples for the analysis of PCPs include both conventional and novel
procedures. Several examples have been found for the determination of the most
important groups (disinfectants, fragrances, preservatives and UV filters) in aquatic
environments. The measured concentrations were very low (between low ng kg~ ' to
high ng g~ ") and require further development of the methodologies to preconcentrate
and purify the analytes from complex matrices.

The current instrumental techniques employed for the determination of PCPs that
have been reported in the literature are based on LC, UHPLC and GC separation
techniques coupled with different mass spectrometry detectors (single quadrupole,
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triple quadrupole, and ion trap) for the chemical analysis of these pollutants in solid
environmental samples. Further investigation into liquid chromatography is required
to avoid the co-elution of other analytes and matrix interferences when the reversed-
phase separation mode is employed because co-elution clearly impairs the proper
quantification of PCPs in complex matrices when MS detection is used. Moreover,
the use of other MS techniques, such as ion trap, time of flight, or even novel hybrid-
MS systems, could offer additional and more versatile recognition of degradation
products and metabolites.

Given these facts, GC-MS and GC-MS/MS are still suitable techniques for the
determination of several volatile and semi-volatile PCPs in complex matrices
because they still offer reasonably good analytical performance and, for many
samples, derivatisation is not required. Moreover, gas chromatography-tandem
mass spectrometry has increasingly been applied to the determination of trace
organic contaminants, including UV filters and light stabilisers, due to its extremely
high selectivity and sensitivity in multiple reaction monitoring mode; GC-MS/MS
also has several advantages, such as reduced matrix effects and interferences,
compared to GC-MS and LC-MS/MS.
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Analysis and Occurrence of Personal Care
Products in Biota Samples

Pablo Gago-Ferrero, M.Silvia Diaz-Cruz, and Damia Barcel6

Abstract Personal care products (PCPs) constitute a large group of emerging
environmental pollutants, potentially hazardous compounds that have been receiv-
ing steadily growing attention over the last decade. Because of the lipophilic
properties of these substances, it is expected that they can reach and accumulate
in tissues of aquatic organisms in different trophic levels. Their continuous envi-
ronmental input may lead to a high long-term concentration and promote continual
but unnoticed adverse effects on aquatic and terrestrial organisms.

This chapter summarizes the developed analytical procedures for the analysis of
four important different families of PCPs: UV filters, synthetic musk fragrances,
antimicrobials, and parabens. Sampling extraction and preparation, instrumental
analysis, and method performance have been considered and discussed. The present
work also summarizes the available data on the presence of these substances in
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biota samples, providing ranges of concentration for the different compounds in the
species that have been evaluated in each study.

Keywords Analysis, Antimicrobials, Biota, Fragrances, Occurrence, Parabens,
Personal care products, UV filters
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BeP Benzyl paraben

BM-DBM Butyl methoxydibenzoylmethane

BP1 Benzophenone-1

BP2 Benzophenone-2

BP3 Benzophenone-3

BP4 Benzophenone-4

BuP Butyl paraben

CI Chemical ionization

d.w. Dry weight

DCM Dichloromethane
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dSPE
ECD
EHMC
EI

ESI
EtAc
EtP
Et-PABA
fow.

GC
GC-FID
GC-MS
GC-MS/
MS
GC-NCI-
MS

GPC
HHCB
HMS
TIAMC
IDM
Lw.

LC
LC-MS
LC-MS/
MS

MA
MAE
MeOH
MeP
MK
MLOD
MM
MSPD
MSTFA
MT
MTBE
MTCS
MX

oC
OD-PABA
oT

PCP
PLE

Dispersive solid-phase extraction

Electron capture detector

Ethylhexyl methoxycinnamate

Electron impact

Electrospray ionization

Ethyl acetate

Ethyl paraben

Ethylhexyl PABA

Fresh weight

Gas chromatography

Gas chromatography with a flame ionization detector
Gas chromatography coupled to mass spectrometry
Gas chromatography coupled to tandem mass spectrometry

Gas chromatography coupled to negative chemical ionization mass
spectrometry

Gel permeation chromatography

Galaxolide

Homosalate

Isoamyl p-methoxycinnamate

Isopropyl dibenzoylmethane

Lipid weight

Liquid chromatography

Liquid chromatography coupled to mass spectrometry

Liquid chromatography coupled to tandem mass spectrometry

Musk ambrette
Microwave-assisted extraction
Methanol

Methyl paraben

Musk ketone

Method limit of detection
Musk moskene

Matrix solid-phase dispersion
N-methyl-N-(trimethylsilyl)trifluoroacetamide
Musk tibetene

Methyl fert-butyl ether
Methyl-triclosan

Musk xylene

Octocrylene

Ethylhexyl dimethyl PABA
Octyl triazone

Personal care products
Pressurized liquid extraction
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PrP Propyl paraben
QuEChERS  Quick, easy, cheap, effective, rugged, and safe
RP-HPLC Reversed-phase high-performance liquid chromatography

SIM Selected ion monitoring

SRM Selected reaction monitoring

TCC Triclocarban

TCS Triclosan

UHPLC Ultrahigh performance liquid chromatography
UV-F UV filters

WWTP Wastewater treatment plant

1 Introduction

Personal care products (PCPs) constitute a large group of emerging environmental
pollutants, potentially hazardous compounds that have been receiving steadily
growing attention over the last decade. Several personal care product ingredients
are among the most commonly detected organic compounds in many relevant
studies, including in the seminal report on organic contaminants in US streams
[1]. These substances are extensively used and enter the aquatic environment
mainly via wastewater treatment plants (WWTPs). Many PCPs and metabolites
have become pseudo-persistent in the environment. Because of the lipophilic
properties of these substances, it is expected that they can reach and accumulate
in tissues of aquatic organisms in different trophic levels. Their continuous envi-
ronmental input may lead to a high long-term concentration and promote continual
but unnoticed adverse effects on aquatic and terrestrial organisms. Therefore,
effects can accumulate so slowly that changes remain undetected until they become
irreversible. However, there are scarce data about, and limited understanding of, the
environmental occurrence, fate, distribution, and effects of many PCPs and related
metabolites and other transformation products, despite their extensive use. The lack
of data is especially pronounced regarding on biota, since just few studies focus on
determining these compounds in such complex matrices.

One of the main reasons for the scarcity of data was the lack of suitable
analytical methods capable of detecting PCPs at trace level in biological tissues.
Due to the advances in analytical instruments, particularly by the use of gas and
liquid chromatography coupled to mass spectrometry (LC-MS), some sensitive and
selective analytical methodologies have been developed for the environmental
determination of PCPs in biota samples, and data on this topic is rapidly growing.

This chapter aims to summarize the existing information about the developed
analytical methods for the determination of four important families of PCPs
including UV filters (UV-F), synthetic musk fragrances, antimicrobials, and
parabens in biota samples. The chapter focuses on sample extraction and prepara-
tion, instrumental determination, and method performance. Other objective of the
present work is to summarize the existing data about the occurrence of the



Analysis and Occurrence of Personal Care Products in Biota Samples 267

mentioned families of PCPs in organisms, providing concentration ranges for the
compounds detected in the diverse species studied belonging to different levels of
the trophic web.

2 Analysis and Occurrence

2.1 General Comments on Analytical Methodologies
2.1.1 Sampling

PCPs have been analyzed in several organisms present in the aquatic environment.
Sampling procedures used for the analysis of PCP residues in aquatic biota mainly
involve traditional fishing, either by native fishers or by electric fishing (special
permissions are usually needed).

Biota sampling is generally more difficult than other kinds of matrices due to the
added difficulty of the availability of samples of the desired species, often
depending on external factors which are difficult to control. Other additional
problem may be the variability between individuals of the same species (size and
living cycle), which hinders comparison of results.

Most studies have focused on fish, a representative matrix of the aquatic
environment assumed to be able to retain and bioaccumulate PCPs due to the
lipophilic character of most of these substances. Studies have also been conducted
on algae, macrozoobenthos, bivalves, and birds. Collecting samples of marine
mammals is significantly more difficult. These samples were obtained in most
cases under the permission of appropriate agencies and normally from animals
that have been found dead, stranded along coasts or incidentally caught in fishing
nets. There are other particular ways of obtaining samples from exotic species. One
example can be found in the study carried out by Kannan et al. [2], where livers
from polar bears, originating from the coastal waters of Alaska, were collected from
native subsistence hunters.

The most usual type of tissue analyzed is muscle. This fact can probably be
explained by its low lipid content in comparison with other tissues and also because
it is part of the human diet. Other tissues, such as hepatic and hepatopancreatic
tissues, have also been used. It is also common to analyze the whole organism in the
case of small organisms (fish, mussels, or macrozoobenthos). Selected tissues are
homogenized by blending and often freeze-dried before extraction.

2.1.2 Sample Contamination Remarks
Due to the extended use of PCPs, background contamination was revealed as a

common problem in the determination of these compounds in biota at environmen-
tally relevant concentrations. In order to prevent this problem, basic precautions
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include avoiding the use of target PCPs and the use of gloves for sample handling.
All glassware used must be previously washed and heated overnight at 400°C and,
after this, sequentially rinsed with different organic solvents, such as acetone,
methanol (MeOH), dichloromethane (DCM), and HPLC grade water. High-purity
solvents should be used. In addition, a set of operational blanks should be processed
to monitor for contamination from the laboratory environment and any other
sources.

2.1.3 Instrumental Analysis/Extraction and Preparation Methods

The low concentration of PCPs in biota samples requires high sensitivity and
selectivity. Therefore, mass spectrometric (MS) detection is the most suitable
technique for the determination of these compounds in such complex matrices.

Determination of PCPs in the aqueous environment has been mainly performed
by gas chromatography coupled to mass spectrometry (GC-MS). Matrix effects are
not critical for the ionization modes typically used, and good method limits of
detection (MLODs) are achieved. However, these methods have some limitations.
They solely can be applied to substances that are volatile and of low polarity or can
be derivatized (where differences in matrix components may result in quite differ-
ent derivatization efficiencies which compromise precision and accuracy of the
analysis). If the objective is to perform the simultaneous determination of several
PCPs, with a wide range of physicochemical properties, liquid chromatography
(LC) offers better features than GC. LC allows the analysis of a wide range of
compounds and significantly increases the potential or the analysis of transforma-
tion products and metabolites, which are usually more hydrophilic than the parent
compounds, without the need of derivatization. Thus, LC coupled to tandem mass
spectrometry (LC-MS/MS) is the technique of choice for a multiclass PCP deter-
mination in environmental samples. For the ionization of the PCPs, three different
techniques have been applied, i.e., electrospray ionization (ESI) (which is by far the
most commonly used for trace analysis of these pollutants in environmental sam-
ples), atmospheric pressure chemical ionization (APCI), and atmospheric pressure
photoionization (APPI). ESI is the most used technique and offers good results for
the ionization of the analytes even though it is presumed to be susceptible to signal
suppression or signal enhancement due to the influence of sample matrix, as shown
by previous PCP studies carried out in complex matrices [3, 4].

2.2 UV Filters
2.2.1 Sample Extraction and Preparation

Different procedures have been used in the analysis of UV-F in biota samples.
Several of the sample preparation methods described here have been previously
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reviewed in detail [5]. The developed methodologies are summarized in Table 1.
Extraction of the target compounds has been achieved using several techniques
including conventional Soxhlet extraction (which has been a common method for
the extraction of environmental pollutants, but it has become less attractive because
of the time and solvent consumed) [6, 7], pressurized liquid extraction (PLE) [8, 9],
solid-liquid extraction [8, 10—13], microwave-assisted extraction (MAE) [14], and
matrix solid-phase dispersion (MSPD) [15]. These techniques lead to the
co-extraction of a lipid fraction that must be removed before determination of the
UV-Fs.

The cleanup of biota sample extracts is usually a two-stage process. Sample
extracts can first be subjected primarily to gel permeation chromatography (GPC)
to remove lipids followed by adsorption chromatography on silica or Florisil®
columns. Quite often, reversed-phase chromatography (RP-HPLC) has also been
used for extraction and purification. GPC or column purification with silica or
Florisil is useful whenever compounds of similar physicochemical properties are
separated from matrix interfering substances which are present in the sample. When
these methods are applied to a mixture of compounds with different physicochem-
ical properties, they become less effective. RP-HPLC proved to be a suitable
alternative when UV-Fs with a large range of physicochemical properties have to
be analyzed [5].

The first methodology on UV-F analysis in biota was presented by Nagtegaal
et al. [7]. Target analytes included benzophenone-3 (BP3), 4-methylbenzylidene
camphor (4MBC), homosalate (HMS), ethylhexyl methoxycinnamate (EHMC),
ethylhexyl dimethyl PABA (OD-PABA), Isopropyl dibenzoylmethane (IDM),
and Butyl methoxydibenzoylmethane (BM-DBM). UV-Fs were extracted from
fish tissue (homogenized and dried with sodium sulfate) using Soxhlet extraction,
with a mixture of petroleum ether/ethyl acetate (2:1, v/v). Lipids and other potential
matrix interferences were removed by GPC (BioBeads S-X3) with cyclohexane/
acetone (3:1, v/v) as mobile phase. In order to perform the analysis through GC—
MS, some compounds (IDM and BM-DBM) were derivatized by adding CH;l/
NaOH to half of the extract. Then, the two parts of the extract were purified with a
silica column separately, using hexane/ethyl acetate in different proportions.
Meinerling and Daniels [6] analyzed the UV-Fs 4MBC, BP3, EHMC, and OC in
fish muscle using a similar procedure based on Soxhlet extraction (using n-hexane/
acetone (9:1, v/v)) and followed by GPC (BioBeads S-X3) using cyclohexane/ethyl
acetate (1:1, v/v) as eluent. In a further cleanup step, a Florisil® column was used to
remove more polar compounds. Balmer et al. [8] presented an interesting method
for the analysis of 4MBC, BP3, EHMC, and OC, where the fish samples were
extracted with PLE using DCM/cyclohexane (1:1, v/v) and further purified by GPC,
using a BioBeads S-X3 column and DCM/cyclohexane (35:65, v/v) as eluent,
followed by silica purification. Buser et al. [10] extracted 4MBC and OC by
successive extractions using potassium oxalate, ethanol, diethyl ether, and
n-pentane and then a purification method similar to the one described by Balmer
et al. [8]. Zenker et al. [11] developed for the first time a methodology suitable for
the simultaneous determination of nine UV-Fs with different physicochemical
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properties. Mid-polar and lipophilic compounds were obtained from homogenized
tissue by solvent extraction using a mixture of ethyl acetate, n-heptane, and water
(1:1:1, v/v). The extracts were purified by RP-HPLC and further analyzed by GC—
MS. Polar and mid-polar UV-Fs were analyzed by HPLC-MS after the extraction
using a mixture of MeOH and acetonitrile (ACN). The same method proved to be
also suitable for the analysis of macrozoobenthos and bird samples. A methodology
based on the extraction by MAE, using a mixture of acetone/heptane (1:1, v/v), was
developed by Bachelot et al. [14] for the determination of EHMC, OC, and
OD-PABA in marine mussels. After the extraction, further purification was carried
out by RP-HPLC following a procedure adapted from a previous study [11]. A low
solvent consumption method for the determination of eight UV-Fs (with low and
medium polarities) in bivalve and fish samples was recently developed by Negreira
et al. [15]. Target compounds were extracted using MSPD. Extractions were
performed with 0.5 g of freeze-dried samples blended with 2 g of Florisil. After
thorough homogenization, the blend was transferred to a polypropylene syringe
containing C18 as cleanup sorbent for lipid retention. Recently, Gago-Ferrero
et al. [9] developed a new methodology for the simultaneous determination of
eight UV-Fs, including two transformation products with a wide range of physico-
chemical properties in fish based on PLE, using a mixture of AcEt/DCM (1:1, v/v)
with Florisil in-cell purification and further SPE extra purification using C18
cartridges, obtaining good results.

2.2.2 Instrumental Analysis and Method Performance

LC is the technique of choice for the analysis of UV-Fs in cosmetic products. In
contrast, GC is generally preferred for their environmental analysis. Nevertheless,
both techniques have been applied to the analysis of biological samples.

UV-Fs are amenable to GC with very few exceptions (e.g., octyl triazone (OT),
BM-DBM). Matrix effects are not critical for the ionization modes such as electron
impact (EI) or chemical ionization (CI) typically used in GC-MS. As a conse-
quence, method limits of detection (MLODs) are usually quite low [16]. On the
other hand, this technique can only be successfully applied to a limited number of
nonpolar and volatile compounds. LC-MS allows the analysis of a wider range of
compounds and significantly increases the potential of analyzing metabolites, as it
was previously mentioned. Some studies analyzing UV-Fs with a large range of
physicochemical properties used GC—EI-MS for the analysis of the most lipophilic
ones, while the more polar ones were detected by LC-MS. [11, 13]. Determination
of UV-F using GC-MS has been carried out in all cases using GC-EI-MS. Quan-
tification is achieved by operating in selected ion monitoring mode (SIM) (Table 1)
or selected reaction monitoring (SRM), which improves the selectivity and sensi-
tivity (Table 1). Substances used as surrogate standard in GC-MS UV-F analysis
include 13C12—PCB 77 [8], 15N3—musk xylene [10], benzophenone-d;, [11-13],
13 Cgp-n-nonylphenol [12], and chrysene-d;, [14].
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Moreover, the different chiral forms of 4MBC were separated and determined by
Buser et al. [10] using GC-MS-based enantioselective techniques.

Methods based on LC-MS normally deal with a higher range of physicochem-
ical properties and/or include metabolites. All the approaches for the LC-MS
determination of UV-Fs in biota employed ESI, which offers good results for the
ionization of the analytes even though this ionization mode is presumed to be
susceptible to strong matrix effects due to the influence of sample matrix.
Benzoic-ds was used by Zenker et al. [11], and recently Gago-Ferrero et al. used
deuterated BP3 (BP3ds) and 4AMBCd4 [9].

High recovery rates were achieved in all the methods reported, especially when
the lipid content of the biological sample analyzed was low. Most studies analyzing
lipophilic UV-Fs used solvent extraction and further cleanup by GPC and usually
achieved good recoveries. Approaches using PLE and further SPE purification or
MSPD also showed good method performances.

For biota samples, MLODs are in the sub ng g~ ' range, although authors
normalize to different parameters depending on the matrix and express the results
inng g~ ' lipid weight (.w.), ng g~ ' dry weight (d.w.), orng g~ ' fresh weight (f.w.).
Presence of UV-Fs in blanks is eventually reflected by higher MLODs. MLODs are
highly dependent on the analyzed matrix. Biological matrices may be quite differ-
ent depending on the selected organism, the species, and the chosen tissue, and even
so, still there exists great variability. As an example, Balmer et al. [8] obtained three
significantly different MLOD ranges for the analysis of four lipophilic UV-Fs as a
function of the fish species analyzed. Generally, MLODs are lower when analyzed
with GC-MS as the matrix effect has usually less effect, but the ones obtained in the
LC-MS/MS methodologies allow a reliable quantification of these compounds in
the studied matrices. Table 1 summarizes the recoveries and MLODs ranges
obtained in each study.

2.2.3 Occurrence in Biota

Bioaccumulation of UV-Fs in aquatic organisms of different trophic levels has been
studied, although data on this topic is still scarce. Several fish species, which are
important bioindicators of the occurrence of persistent lipophilic contaminants,
have been investigated together with mollusks, crustaceans, aquatic birds, and,
recently, marine mammals. Table 1 summarizes UV-F occurrence data in biota.
OC and EHMC were by far the most ubiquitous compounds and the ones
detected at higher concentrations, reflecting its high use in cosmetic products and
their low biodegradability. BP3, 4AMBC, and HMS were also detected in an appre-
ciable amount of samples at relevant concentrations. Values from 9 to
2400 ng g~ ' Lw. have been reported for UV-F in fish samples in a few studies
[6-11, 13], and concentrations over 7,000 ng gfl were detected in mussels [14, 15].
Fent et al. [13] detected EHMC in crustacean and mollusks in the range 22—
50ng g~ ' L.w. and in fish at values up to 337 ng g~ ' L.w. The higher concentration,
above 700 ng g~ ' L.w., was reported for fish-eating birds (Phalacrocorax sp.),
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which suggests that biomagnification occurs through the food web. High values of
OC (79-782 ng g ' L.w.) have been determined in Franciscana dolphins from
different areas of the Brazilian coast [17], which also suggest biomagnification
due to the fact that these organisms are in the top of the food web.

2.3 Synthetic Musk Fragrances
2.3.1 Sample Extraction and Preparation

Extraction procedures for synthetic musk fragrances from biota samples are similar
to those described previously for UV-F, being the most used Soxhlet extraction
[2, 18-23] and PLE [24-29]. Other approaches employed include matrix
dispersion-extraction [30] and solid-liquid extraction [12, 31]. The main parame-
ters of the developed methodologies are summarized in Table 2. The different
studies focused on the analysis of polycyclic musk fragrances, including galaxolide
(HHCB), tonalide (AHTN), traseolide (ATII), celestolide (ADBI), and phantolide
(AHMI), and nitro musk fragrances and metabolites, mainly musk xylene (MX),
musk ketone (MK), musk ambrette (MA), musk moskene (MM), musk tibetene
(MT), 2-amino musk xylene (2AMX), 4-amino musk xylene (4AMX), and 2-amino
musk ketone (2AMK).

Rimkus and Wolf [31] analyzed for the first time nitro musk fragrances in biota
samples, including fish, mussels, and shrimps. Target analytes were extracted from
the different tissues by solid-liquid extraction using the mixture water/acetone/
petroleum ether. After removal of the extractant, the lipid extracts were cleaned up
by GPC followed by silica gel adsorption chromatography for purification. Several
methodologies perform the extraction of both polycyclic musk fragrances and nitro
musk fragrances by mixing the tissues (fresh tissue or freeze-dried) with sodium
sulfate or other agents (alumina, diatomaceous earths) and then using Soxhlet or
PLE with a variety of solvent mixtures including hexane/EtAc [24-26], hexane/
acetone [18, 19, 23], EtAc/cyclohexane [19, 20], DCM/hexane [2, 21, 22], hexane
[27,28], or cyclohexane/AcEt [29]. In general, methodologies including nitro musk
fragrances and metabolites used solvent mixtures with higher polarities due to the
higher polarity of these compounds in comparison to polycyclic musk fragrances.
Generally, after the extraction steps, additional removal of lipids is necessary. In
most cases, lipids are removed from extracts using GPC. Lipids cannot be removed
destructively with sulfuric acid for the determination of these substances due to the
simultaneous destruction of the target compounds [32]. GPC phases used in the
developed methodologies for the analysis of synthetic musk fragrances in biota
samples include BioBeads S-X3 with different solvent mixtures (e.g., hexane/DCM
or cyclohexane/AcEt) and Envirogel and Phenogel guard column with DCM
[12, 22,23, 25-31]. Final extract purification was carried out using silica (mainly),
Florisil, Strata NH,, or alumina with a variety of eluents.
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2.3.2 Instrumental Analysis and Method Performance

Synthetic musk fragrances are semi-volatile organic compounds and highly lipo-
philic. Thus, the technique of choice for its analysis is GC-MS. Synthetic musk
fragrances are commonly analyzed by GC-EI-MS, but gas chromatography
coupled to negative chemical ionization mass spectrometry (GC-NCI-MS) is
more sensitive for nitro musk fragrances. Other techniques such as gas chromatog-
raphy with a flame ionization detector (GC-FID) or an electron capture detector
(GC-ECD) have been also used in the analysis of these substances. This information
is summarized in detail in Table 2. Detection is achieved operating mainly in SIM
mode and in some cases in SRM mode, for improved selectivity and sensitivity
(Table 2).

Due to the lack of isotopically labeled standards commercially available, a
variety of internal standards have been used instead for the analysis of musk
fragrances, including deuterated PAHs and various labeled and unlabeled PCBs,
among others. In the most recent studies deuterated AHTN (d;-AHTN) has been
used as surrogate standard [23, 28, 29].

The GC-MS-based methodologies described herein show good selectivity and
sensitivity. Recoveries obtained are mainly above 70% for all the studied com-
pounds. The obtained MLODs for biota samples were in the very low ng g~
f.w. range. These values are often expressed in ng g ' L.w. Table 2 summarizes
the recoveries and MLODs ranges obtained in the cited studies.

2.3.3 Occurrence in Biota

Musk fragrances have low vapor pressure and relatively high octanol/water parti-
tion coefficients. Nitro and polycyclic musk compounds are assumed to be
nonbiodegradable [32], although a larger fraction is eliminated during wastewater
treatment. These facts make them compounds with high potential for
bioaccumulation in aquatic species, as revealed by the bioconcentration and
bioaccumulation factors (BCF) determined in various studies [32, 33].
Bioaccumulation of these substances in aquatic organisms both from fresh- and
saltwater has been investigated in few studies. The high number of species analyzed
draws attention. The list includes several species of fish, bivalves, and birds but also
a great number of marine mammals, including dolphins, whales, and even polar
bears, among others. Relevant levels of synthetic musk fragrances were determined
in almost all the studied species, including dolphins and whales. An exception
would be the polar bears from the Alaskan Arctic, with no positive results [2].
Data obtained in the different studies revealed that significant concentrations
were determined for this family of substances. Concentration ranges for each
compound are summarized in detail in Table 2. HHCB and AHTN (the ones with
the highest BCF [32]) were by far the major musk fragrances in biota samples
among the polycyclic ones, whereas MK and MX were the most ubiquitous and
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concentrated substances among the nitro musk fragrances. These substances
reached in many cases concentrations above 1,000 ng g~ ' L.w.

Some authors claim that there are remarkable different patterns of concentration
of these substances depending on the continent (America, Europe, Asia (Japan))
[18, 21] due to differences in the consumption patterns of these products. In the case
of Europe, it can be observed that the highest levels for these compounds were
detected in the 1990s. In recent years, concentrations have decreased [27].

Fromme et al. [19] observed a clear relationship between the content of polycy-
clic musk fragrances in eel samples and the proportion of sewage water in the area
concerned, demonstrating the good indicator function of this substance class as
evidence of the degree of contamination of flowing waters by organic substances
entering from sewage works.

Regarding biomagnification, the available data is still scarce and somewhat
ambiguous. In general, no significant differences in the concentration levels were
observed between species of different trophic levels. Nakata et al. [22] demon-
strated biodilution for HHCB, whereas Zhang et al. [23] suggested biomagni-
fication for this compound and biodilution for AHTN taking place along the
freshwater food chain. Differences in this issue are probably due to differing
retention and metabolism of these compounds in different organisms [22].

2.4 Antimicrobials
2.4.1 Sample Extraction and Preparation

Methods for the extraction of triclosan (TCS), triclocarban (TCC), and the TCS
metabolite methyl-triclosan (MTCS) from biota samples are summarized in
Table 3.

Okumura and Nishikawa [34] developed a method for the analysis of TCS and
the compounds tetra(IT)closan, tetra(Ill)closan, and pentaclosan. In this method, the
extraction was carried out by centrifuging the homogenized sample with 50 ml of
ACN. The ACN phase was combined with 500 ml of water, 6 g of NaOH, and 25 g
of NaCl in a separation funnel and washed with 50 ml of n-hexane. The solution
was acidified with HCI and extracted twice with 50 ml of n-hexane and then the
methylation was performed. Finally, the extracts were purified with Florisil. In a
study carried out by Balmer et al. [35], MTCS was extracted from homogenized fish
mixed with sodium sulfate by mixing with cyclohexane/DCM or from homoge-
nized fish mixed with diatomaceous earth by PLE with cyclohexane/DCM. Extracts
from both methods were purified by GPC with an EnviroSep-ABC column and
DCM/hexane mobile phase or BioBeads S-X3 and DCM/cyclohexane mobile
phase. Extracts were then purified with deactivated silica. In the studies performed
by Coogan et al. [36, 37], different tissues including algae and snails were mixed
with anhydrous sodium sulfate and Soxhlet extracted with DCM. High molecular
weight lipids were removed by GPC with an ABC Laboratories (Columbia, MO,
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USA) Model SP-1000 GPC processor according to manufacturer’s recommended
procedures. TCS has also been extracted from fish through solid—liquid extraction
using acetone and, further, GPC and silica purification [12]. This compound was
extracted from the plasma of Atlantic bottlenose dolphins [38]. In this methodology
the plasma samples were acidified with HCI and denatured using isopropanol. After
extraction with methyl fert-butyl ether (MTBE)/hexane, the volume was reduced
and potassium hydroxide solution was used to partition the contaminants into two
fractions: neutral and phenolic. The neutral fraction containing MTCS was cleaned
on acidified silica. The phenolic fraction containing TCS was acidified with sulfuric
acid, re-extracted with MTBE/hexane, and dried over sodium sulfate. TCS and
TCC were extracted from freeze-dried fish muscle tissues by homogenizing with
anhydrous sodium sulfate and extracting with a mixture of hexane and acetone
using a high-speed solvent extractor [39, 40]. The extracts were further purified
with silica. Jakimska et al. [41] carried out a very interesting work where different
sample preparation methods were tested in order to select and optimize the most
suitable one for the determination of 19 endocrine disruptor compounds including
TCS in fish samples. The first extraction protocol was based on Huerta et al.’s [42]
method and consisted of PLE followed by GPC cleanup. The second extraction
method was a modification of a previous one, but in this case, PLE was followed by
Florisil cleanup. The third approach and the one which showed the better perfor-
mance was based on QUEChERS (quick, easy, cheap, effective, rugged, and safe;
QuEChERS Kits, Agilent Technologies) and involved two steps: extraction with
ACN in aqueous conditions followed by the application of specific salt (4 g MgSO,,
1 g NaCl) used for salting out of water from the sample and to induce liquid-liquid
partitioning and purification with dispersive solid-phase extraction (dSPE) using
sorbent mixture (900 mg MgSO,, 150 mg PSA (primary and secondary amine
exchange material), 150 mg C18).

2.4.2 Instrumental Analysis and Method Performance

Direct determination of the compounds TCS and TCC by GC is complex, so they
should be derivatized to more volatile analytes. The use of diazomethane to
derivatize this class of compounds in the extracts of biota samples has been reported
[34, 38]. However, due to its toxicity, its use in routine analysis is not recommended
[43]. The silylating reagent N-methyl-N-(trimethylsilyl)trifluoroacetamide
(MSTFA) has also been used with this purpose [12]. The concentration of TCS
can be overestimated with this method due to the fact that MTCS, which is also one
compound of interest, is the main transformation product of TCS. MTCS concen-
tration can be determined prior to methylation or in a different aliquot of the extract.

TCS, MTCS, and TCC have been analyzed by LC-MS/MS [39-42], LC-MS
(TCC) [36, 37], and GC-MS with or without derivatization [35-37]. TCC is best
analyzed by LC-based methods. SIM is the monitoring mode used for the qualita-
tive and quantitative analysis of the target analytes in single quadrupole
MS. Analysis by LC-MS/MS was carried out in SRM mode. The isotopically
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labeled compounds 13C12 TCS and 13C12 methyl-TCS and the deuterated TCC (d,
TCC) are currently available and are widely used for recovery evaluation and as
surrogate standards.

All the assessed methodologies provided good recovery rates for all compounds
and low MLODs (usually in the very low ng g~ range), which allow an accurate
quantification of the target analytes in the studied matrices. Lower detection limits
are achieved with derivatization using GC-MS. As expected, LC-MS/MS provided
higher sensitivity than LC-MS.

2.4.3 Occurrence in Biota

The presence of antimicrobials in biota samples has been assessed in a few studies.
These studies have been carried out mainly in fish samples. However, the
bioaccumulation of these substances in other organisms including algae [36],
gastropods [37], and even dolphin plasma [38] has also been reported.

In Sweden, high levels of TCS (240-4,400 ng g_1 f.w.) were determined in the
bile of fish living downstream of a WWTP discharge site [44]. Generally, TCS
degrades into MTCS, a primary degradation product in the environment. According
to Balmer et al. [35], MTCS is more persistent in the environment than the parent
compound (TCS) and has a higher potential to bioaccumulate due to its higher
lipophilicity. Concentrations of MTCS in the range 4-365 ng g ' Lw. were
determined in the muscle tissue of different fish species in Germany [8, 35]. Coogan
et al. [36] determined TCS, TCC, and MTCS in algae samples in a WWTP
receiving stream (values up to 400 ng g~ ' 1.w.), and Coogan and La Point [37]
reported higher concentrations for TCC (299 ng g ' L.w) than TCS (59 ng g ' L.w)
in snails from the same WWTP, located in Texas (USA). TCS was also determined
in the range 17-31 ng g~ ' f.w. by Mottaleb et al. [12] in bluegill fish samples from
Texas (USA).

TCS was detected in the blood plasma of wild Atlantic bottlenose dolphin
(Tursiops truncatus) from Florida (USA) (0.025-0.27 ng g{1 f.w.) by Fair
et al. [38]. This study indicates the possible accumulation of this compound in
biota inhabiting coastal ecosystems. No detectable levels of MTCS were found.
Ramaswamy et al. [40] performed a deep study analyzing samples of twenty fish
species from Manila Bay in the Philippines. In this study, concentrations of TCS
(0.021-507 ng g~ ' f.w.) were generally higher than TCC (0.004-157 ng g~ ' f.w.);
however, the median values of the two compounds were comparable. TCS
exhibited significantly lower values compared with the fish from Manila Bay, in
the range 0.62—17.4 ng g~ ' d.w., in samples corresponding to twelve different fish
species from four Spanish Mediterranean river basins [41].
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2.5 Parabens
2.5.1 Analysis of Parabens in Biota

Analysis of parabens in biota samples has not received much attention. There are
just a few methods published dealing with the analysis of these compounds in these
matrices which are summarized in Table 4. In all cases the described methodologies
were not developed exclusively for the analysis of parabens but were developed for
a wide range of contaminants including antimicrobials, stimulants, or flame retar-
dants, among others. The analysis of parabens is dominated by LC-MS/MS due to
the physicochemical properties of these compounds and the low levels of concen-
tration in the analyzed tissues.

Kimet et al. [39] developed a multi-residue methodology including four paraben
compounds: methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), and
butyl paraben (BuP). This method is based on high-speed solvent extraction
followed by silica gel cleanup, and the instrumental analysis is performed by
UHPLC-MS/MS. The method yielded good recovery rates (85-89%) and
MLODs below 15 pg g~ ' f.w. for all compounds. Renz et al. [45] developed
another methodology for analyzing the same compounds in fish brain tissue based
on solid-liquid extraction using first EtAc and then hexane. Derivatization by
dansyl chloride was required, and the extracts were analyzed by HPLC-MS. No
method performance parameters were reported.

Finally, Jakimska et al. [41] developed a sensitive and rapid method based on
QuEChERS approach followed by UHPLC-MS/MS analysis (explained in the
Sect. 2.4.1). The method was applied to the determination of nineteen endocrine
disruptors including four parabens: MeP, EtP, PrP, and for the first time benzyl
paraben (BeP). The procedure provided recoveries ranging from 40% to 113% and
low MLODs in the range 0.002-0.14 ng g~ ' d.w.

2.5.2 Occurrence in Biota

Data concerning parabens bioaccumulation is scarce. Kim et al. and Ramaswamy
et al. conducted studies and determined the compounds MeP, EtP, PrP, and BuP
with high frequency in samples of several fish species [39, 40]. Target compounds
were found in over 90 % of the analyzed samples, with the exception of EtP, which
was determined only in 70 % of the samples. MeP was the most ubiquitous
compound and also the one which showed the highest levels (up to 3,600 ng g~
f.w.). EtPB, PrPB, and BuPB concentrations reached values of 840 ng gfl f.w.,
1,100 ng g f.w., and 70 ng g~ ' f.w., respectively. The study carried out by
Ramaswamy et al. showed total parabens concentrations more than two times
higher in adult fish compared to juvenile fish, which may indicate growth-
dependent compound accumulation [40]. Recently, Jakimska et al. [41] determined
lower concentrations for four parabens (MeP, EtP, PrP, BeP). In this work, MeP
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was again the most ubiquitous and more concentrated preservative, with maximum
values of 84.9 ng g~ ' f.w. Levels for the other compounds were always below
74ngg " fw.

Renz et al. conducted a study analyzing parabens in fish tissue with no positive
results in any sample [45].

3 Conclusions and Future Trends

Advances in the analytical instrumentation, particularly the widespread use of triple
quadrupole analyzers, have led to the appearance of an increasing number of
methods for the analysis of PCPs in biota samples. These methods also include a
greater number of target compounds and reach lower MLODs, more suitable for the
expected levels in real samples. Regarding the sample treatment, the heterogeneity
of the studied matrices and the wide spectra of physicochemical properties of the
analytes hinder the development of standardized methods. However, the reliability
of the most usual procedures used for trace analysis of PCPs has been critically
checked and showed to be effective. All these developments have enabled the
emergence of the first data on the occurrence of PCPs in biota samples.

The studies reviewed in this chapter provide valuable data on the presence of
various types of PCPs in aquatic biota. However, data are sparse and too scarce to
draw solid conclusions about the distribution and behavior of these compounds in
the environment. More high-quality data are needed to obtain a realistic view of the
presence of PCPs in organisms and in the environment. In this regard, it seems also
necessary to improve the monitoring strategies, since many studies do not allow
conclusions beyond the occasional presence of certain substances in certain specific
organisms. However, other better-focused studies from this point of view showed
interesting trends in the distribution of some contaminants through the food chain,
allowing even the calculation of biomagnification factors. Therefore, a good mon-
itoring strategy is crucial to improve the quality of the obtained data.

An increase in collaboration between analytical chemists and toxicologists is
also necessary. In many cases we are facing the problem of having abundant data
about traces of PCPs and other pollutants in the environment without reaching final
conclusions about their (eco)toxicological relevance.

In the future, increased attention will have to be paid to transformation products.
Organisms can accumulate transformation products such as metabolites or biodeg-
radation by-products generated during wastewater treatment, among others. More-
over, these organisms can also accumulate and metabolize the parent PCPs. The
analysis of these substances may provide important clues about the behavior of
these pollutants and valuable ecotoxicological data. Identification and determina-
tion of transformation products is normally a hard process and requires more
advanced analytical instrumentation. Currently, recent advances in high-resolution
mass spectrometry (HRMS) have opened up new windows of opportunity in the
field of complex sample analysis. The use of these techniques allows the
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identification of suspect and even non-preselected pollutants, very useful for the
identification of metabolites. This approach allowed for the evaluation of the
presence of high amounts of substances without purchasing the standards for all
of them but only for which there was solid evidence that indeed they were present in
the samples, leading to considerable economic savings. A significant increase in the
development and use of methodologies using HRMS for the analysis of PCPs and
derivatives in biota can be expected.

Acknowledgments Authors acknowledge the Spanish Ministry of Economy and Competitive-
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Catalunya (Water and Soil Quality Research Group 2014 SGR 418).
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Part IV
Removal of Personal Care Products
Under Non-conventional Treatments



Fungal-Mediated Biodegradation
of Ingredients in Personal Care Products

M. Silvia Diaz-Cruz, Pablo Gago-Ferrero, Marina Badia-Fabregat,
Gloria Caminal, Teresa Vicent, and Damia Barcel6

Abstract Many efforts have been devoted in developing technologies to remove
emerging organic pollutants from freshwater systems. This chapter examined the
applications of the environmental friendly technology based on fungal-mediated
treatment for the degradation of ingredients in personal care products (PCPs),
which are frequently detected at relevant concentrations in the aquatic environment.
PCPs are daily-use products used in large quantity that includes several groups of
substances (UV filters, preservatives, fragrances, etc.). Removal efficiencies
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reported varied significantly among different experimental set-up, organic sub-
stance, and type of fungi. The mechanisms and factors governing the degradation
of PCPs by fungi, mainly white-rot fungi and their specific lignin-modifying
enzymes, are reviewed and discussed. Beyond, the identification of the intermediate
products and metabolites produced as well as the degradation pathways available
for some PCPs are presented.

Keywords Biocides, Biodegradation, Enzymes, Fragrances, Insect repellents,
Metabolites, Parabens, Personal care products, Redox mediators, Sewage sludge,
Triclosan, UV filters, Wastewater, White-rot fungi
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Abbreviations

I-HBT  1-Hydroxybenzotriazole

4DHB 4-Dihydroxybenzophenone

4-MBC  4-Methylbenzylidene camphor

ABTS 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid

AOPs Advanced oxidation processes

BP1 Benzophenone 1

BP3 Benzophenone 3

CAS Conventional activated sludge
CLEAs Cross-linking of enzyme aggregates
dw Dry weight

DEET  N,N-Diethyl-meta-toluamide

DMP 2,6-Dimethoxyphenol

EDC Endocrine-disrupting chemicals
FBR Fluidized bed reactor

GOD Glucose oxidase

Kn Michaelis—Menten constant

Kow Octanol—water partition coefficient
Lw. Lipid weight
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LIPs Lignin peroxidases

LMEs Lignin-modifying enzymes

MBR Membrane bioreactor

MnPs Manganese-dependent peroxidases
MS Mass spectrometry

MS/MS Tandem mass spectrometry
NCPA  N-(4-Cyanophenyl)acetohydroxamic acid
NHA N-Hydroxyacetanilide

ocC Octocrylene

PAHs Polycyclic aromatic hydrocarbons
PBR Packed bed reactor

PCBs Polychlorinated biphenyls

PCPs Personal care products

PEG Poly-(ethylene glycol)
POPs Persistent organic pollutants
TCS Triclosan

TNT Trinitrotoluene

TrOC Trace organic contaminant
UV-F UV filters

VP Versatile peroxidases

WRF White-rot fungi

1 Introduction

Anthropogenic trace organic contaminants (TrOCs) found in aquatic environments
have increasingly raised concern with regard to their uncertain environmental fate
and potentially adverse ecological and human effects. Emerging organic contam-
inants are a diverse and relatively new group of unregulated compounds of different
origin, mainly domestic and industrial, which include pharmaceuticals, personal
care products, pesticides, and industrial chemicals, among others. Many of these
pollutants have been identified as endocrine-disrupting chemicals (EDCs), mim-
icking hormones or interfering with the action of endogenous hormones by binding
to the estrogen receptor or suppressing a normal biological response [1-3]. These
emerging organic pollutants have been frequently detected in sewage-impacted
water resources worldwide at concentration levels from a few nanograms per liter
(ng/L) to several micrograms per liter (pg/L) [4]. Risk for chronic and acute
environmental toxicity has not been extensively investigated so far. However,
adverse toxicological effects of a number of TrOCs have been reported, such as
inhibition of growth in embryonic kidney cells cultured with a mixture of 13 phar-
maceuticals [5]. Regarding human health, reduction in mean birth weight and
neurotoxicity has been related with disinfection by-products [6].

Due to the limitations observed in the removal of many of these compounds by
current bacterial-driven conventional activated sludge (CAS) wastewater treatment
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processes [7-9], numerous efforts have been made to explore alternative treatments
for their improved removal. In the last decade, the development and implementa-
tion of advanced oxidation processes (AOPs), nitrifying-denitrifying treatments,
membrane technology, and adsorption on activated carbon have been applied to
improve the removal of recalcitrant emerging contaminants. For instance, Ternes
et al. showed that the ozone was efficient at removing pharmaceuticals, musk
fragrances, and estrogens [ 10]. Gago-Ferrero et al. also demonstrated that ozonation
and peroxone oxidation improved removal of benzophenone UV filters [11]. How-
ever, advanced treatment processes are still rather expensive to build and maintain
and require a high level of energy leading to economical limitation for the
feasibility of this technology. Besides that, the chemical quality of the water
obtained from these treatments is lower than that provided by the conventional
biological technologies currently applied. Membrane filtration and activated car-
bon demonstrated improved removal efficiencies for compounds including some
pharmaceuticals (sulfonamide antibiotics, ibuprofen, and naproxen) and industrial
chemicals (bisphenol A); however, degradation was still poor for other drugs and
personal care products, such as carbamazepine, diclofenac, and a number of
fragrances [12-16].

A scarcely explored biotechnology for the effective degradation of TrOCs
involves the application of fungi, particularly white-rot fungi (WRF) and their
ligninolytic enzymes. The concept of using WRF for the degradation of xenobiotics
appeared in the 1980s, as reviewed by Gao et al. [17]. Since then, the development
of biotechnologies using WRF has been developed to degrade a wide variety of
xenobiotics, mainly persistent organic pollutants (POPs), such as synthetic dyes,
PAHs, and PCBs [18-20]. More recently, research moved towards the application
of WRF to remove emerging pollutants. From these organic contaminants, EDCs
comprise the most studied group [21-27], followed by pharmaceutical compounds
[28-39]. In contrast, the degradation by WRF of personal care products has been
less studied. In this chapter, we will examine the capability of WRF and their
lignin-modifying enzymes (LMEs) to degrade personal care products as well as the
mechanisms involved and the metabolism products formed in the process.

2 White-Rot Fungi

WREF are a diverse group of fungi capable of extensive aerobic depolymerization
and mineralization of lignin, the natural polymer which forms the hard cover
protecting soft wood. WRF present an extracellular oxidative system employed in
the primary attack of lignin and its posterior mineralization in a nonspecific and
nonselective mechanism [40]. This enzymatic system includes one or more LMEs,
especially peroxidases and laccases, which are extracellular and metal-containing
oxidoreductases. The reactions they catalyze include lignin depolymerization
through demethoxylation, decarboxylation, hydroxylation, and breakdown of aro-
matic rings.
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Several features make WRF interesting agents for use in fungal remediation
applications: (1) the nonspecificity of their enzymatic system, providing them with
the ability to oxidize a wide range of pollutants and reducing the need to adaptation
at polluted sites or matrices; (2) most oxidative enzymes are extracellular, which
permits the degradation of low-solubility contaminants; (3) the wide distribution
and hyphae growth, facilitating the colonization and the access to pollutants;
(4) lignocellulosic wastes can be employed as substrate/carrier for growth/inocu-
lation of WREF, as they are also necessary as nutrient source during co-metabolic
removal of TrOC. Moreover, some of those enzymes are expressed under nutrient-
deficient conditions (mostly C or N) and can operate over wide ranges of pH and
temperature [41].

2.1 Enzymatic Systems
2.1.1 Lignin-Modifying Enzymes (LMEs)

The production of LMEs is responsible for the decomposition of lignin. WRF
secrete mainly three different classes of LMEs: lignin peroxidases (LIPs),
manganese-dependent peroxidases (MnPs), and laccase [42]. The main difference
is the electron acceptor, O, for laccases and H,O, for peroxidases. Besides the
fungal oxidative enzymes, the reactions of lignin breakdown also involve secreted
fungal mediators (phenolic and other aromatic compounds, peptides, organic acids,
lignocellulosic-derived compounds, and metal ions) which expand the range of
compounds they are able to degrade [41, 43].

The secretion pattern is species dependent; different WRF species produce
various combinations of the main lignin-degrading enzymes (LiP, MnP, and
laccase). A particular strain may not secrete all three of them. For instance,
although Trametes versicolor has been associated with all three enzymes [44, 45],
the strain ATCC 7731 secretes mostly laccase [46]. The secretion of specific
enzymes may also depend on culture conditions. According to their enzyme
production, WRF can be classified in three categories [47]: LiP-MnP group, like
Phanerochaete chrysosporium; MnP-laccase group, including T. versicolor,
Dichomitus squalens, Ceriporiopsis subvermispora, Pleurotus ostreatus, Lentinus
edodes, and Panus tigrinus; and LiP—laccase group, like Phlebia ochraceofulva.

Peroxidases

Peroxidases include LiP, MnP, and, a hybrid of both, the versatile peroxidases
(VP) [48]. All of these enzymes are extracellular and contain protoporphyrin IX
(heme) as prosthetic group. They use H,O, or organic hydroperoxides as electron-
accepting co-substrates during the oxidation of diverse TrOCs. LiP and MnP were
first isolated from the WRF P. chrysosporium [49].
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LiP also known as ligninase or diarylpropane oxygenase (E.C. 1.11.1.14) is the
most powerful fungal peroxidase. In the presence of H,O,, LiP catalyzes oxidation
of the endogenously generated redox mediator veratryl alcohol, which subsequently
generates aryl cation radicals through one-electron oxidations of non-phenolic
aromatic nuclei in lignin. These are then degraded to aromatic and aliphatic
products, which are mineralized intracellularly. The produced radicals can partic-
ipate in diverse reactions, including phenols oxidation, carbon—carbon bond cleav-
age, hydroxylation, phenol dimerization/polymerization, and demethylation
[40]. The substrate oxidation capacity of LiP includes depolymerization of syn-
thetic lignin and transformation of TrOCs such as PAHs, chlorophenols, and TNT
[50-52].

MnP (E.C. 1.11.1.13) catalyzes an H,O,-dependent oxidation of Mn** to Mn>*.
The catalytic cycle is initiated by binding of H,O, or an organic peroxide to the
native ferric enzyme and formation of an Fe—peroxide complex; the Mn’* ions
finally produced after subsequent electron transfers are stabilized via chelation with
organic acids like oxalate, malonate, malate, tartrate, or lactate [53]. The chelates of
Mn** with carboxylic acids cause one-electron oxidation of various substrates;
thus, chelates and carboxylic acids can react with each other to form alkyl radicals,
which after several reactions result in the production of other radicals. These final
radicals are the source of autocatalytically produced peroxides and are used by MnP
in the absence of H,O,.

VP (E.C. 1.11.1.16) was first described in Pleurotus eryngii [54] and
Bjerkandera sp. [55]. VP is a heme-containing structural hybrid between MnP
and LiP, as it is able to oxidize Mn**; veratryl alcohol; simple amines; phenolic,
non-phenolic, and high-molecular-weight aromatic compounds; and high-redox
potential dyes in reactions which are of Mn-independent character [56]. Therefore,
this enzyme has a wider catalytic versatility as compared to LiP and MnP.

Laccase

Laccases (benzenediol:oxygen oxidoreductase; E.C. 1.10.3.2) are enzymes that
contain four copper atoms, in different states of oxidation (I, II, and III)
[57]. They are not only restricted to WRF as they can be found also in plants and
some bacteria and recently reported in green algae too [58, 59]. Fungal laccases
oxidize a broad range of compounds such as phenols, polyphenols, methoxy-
substituted phenols, and amines [60] while reducing O, to H,O (four-electron
reduction). Other enzymatic reactions they catalyze include decarboxylations and
demethylations [40]. The redox potential of specific lacasses can vary depending on
the fungal strain and the isoenzyme.

The catalytic cycle of laccase includes several one-electron transfers between a
suitable substrate and the copper atoms, with the concomitant reduction of an
oxygen molecule to water during the sequential oxidation of four substrate mole-
cules [60]. With this mechanism, laccases generate phenoxyl radicals that undergo
nonenzymatic reactions [56]. Multiple reactions lead finally to polymerization,
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alkyl-aryl cleavage, quinone formation, C-oxidation, or demethoxylation of the
phenolic reductant [61].

Reported redox potentials of laccases are lower than those of non-phenolic
compounds, and therefore these enzymes cannot oxidize such substances
[62]. However, it has been observed that laccases are also able to oxidize
non-phenolic structures in the presence of molecules capable to act as electron
transfer mediators, such as N-hydroxyacetanilide (NHA), N-(4-cyanophenyl)
acetohydroxamic acid (NCPA), 3-hydroxyanthranilate, 2,2’-azino-bis(3-ethylben-
zothiazoline-6-sulfonic acid) (ABTS), and 2,6-dimethoxyphenol (DMP) [63—
65]. As part of their metabolism, WRF can produce several metabolites that play
this role of laccase mediators [66].

2.1.2 Cytochrome P450 System

The intracellular cytochrome P450 system exerts a leading role in the degradation
of xenobiotics in eukaryotic organisms. WRF are not an exception, and some
TrOCs, for instance, PAHs [67] and chlorinated hydrocarbons [68, 69], can be
transformed by fungal cytochrome P450. The cytochrome P450 system is
monooxygenases that catalyze a broad range of reactions, which include hydrox-
ylation, heteroatom oxygenation, dealkylation, epoxidation of C=C bonds and
hydroxylation, reduction, and dehalogenation [70].

3 Treatment Approaches for PCP Degradation

The utilization of WRF and their LMEs for the treatment of pollutants has been
widely reported [41, 71-74]. Several operational parameters, such as pH, temper-
ature, additives, and the presence of inorganic salts and heavy metals, have been
found to cause an impact on the WRF-mediated degradation of pollutants. These
parameters influence the enzymatic activity, stability, and substrate specificity of
the free LME or WRF strain employed. These features are important in the
bioprocess design and optimization of whole-cell or enzymatic treatment of wastes.
In general, tests were carried out in batch and preferably in aqueous media spiked
with the selected contaminants at a certain concentration.

3.1 Removal by Whole Cell WRF

As stated before, some studies have been carried out with whole-cell cultures of
several ligninolytic fungi strains. Most of the experiments have been carried out in
submerged cultures due to the easiness of contaminants’ quantification in compar-
ison with studies in solid phase. Table 1 summarized the different fungi tested for
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Table 1 Whole-cell WREF tested for the removal of PCPs in submerged cultures

Compound PCP class Fungus Reference
TCS Antimicrobial Irpex lacteus [45]
TCS Antimicrobial Bjerkandera adusta [45]
TCS Antimicrobial Phanerochaete chrysosporium [45]
TCS Antimicrobial Phanerochaete magnoliae [45]
TCS Antimicrobial Pleurotus ostreatus [45]
TCS Antimicrobial Trametes versicolor [45]
TCS Antimicrobial Pycnoporus cinnabarinus [45]
TCS Antimicrobial Dichomitus squalens [45]
TCS Antimicrobial Trametes versicolor [75]
BP1 UV filter Trametes versicolor [76, 77]
BP3 UV filter Trametes versicolor [75-77]
oC UV filter Trametes versicolor [75]
4-MBC UV filter Trametes versicolor [72, 73]
Iso-BP Antimicrobial Trametes versicolor [78]

the removal of selected PCPs in liquid cultures. Up to eight different fungi were
tested for the degradation of triclosan (TCS), i.e., Irpex lacteus, Bjerkandera
adusta, P. chrysosporium, Phanerochaete magnoliae, P. ostreatus, T. versicolor,
Pycnoporus cinnabarinus, and D. squalens. The results show that, under the applied
conditions, all the tested fungi, with exception of B. adusta, were able to degrade
the biocide within 14 days (d) of cultivation to 1-12% of the initial concentration
(2.5 mg/L) with a fungal concentration of 0.1-0.25 g dry weight (dw)/L [44].

T. versicolor was also selected for the degradation of two UV filters, namely,
benzophenone 3 (BP3) and octocrylene (OC), and TCS among other contaminants
in a mixture of 30 compounds [75]. In that experiment, initial concentration of fungi
and contaminants was 0.4 g dw/L and 50 pg/L, respectively, and removal only
achieved values below 50% but as high as 80% for TCS. This particularly high
removal for TCS is in agreement with the results reported by Kajthaml et al. (2009)
in the abovementioned work [70]. The same authors, in the attempt to attain an
efficient removal for recalcitrant contaminants under conventional biological treat-
ments, explored a combination of technologies. A T. versicolor-augmented mem-
brane bioreactor (MBR) was used for the biodegradation of the same contaminants
[79]. Two identical MBR systems, one inoculated with T. versicolor-augmented
sludge and the other with activated sludge, were operated for 110 days under the
same operational conditions. Each MBR comprised a 5.5 L glass reactor and housed
a PVDF hollow fiber membrane module, with a nominal pore size of 0.4 L m and a
total effective membrane surface area of 0.074 m> (Fig. 1a). The initial mixed
liquor suspended solid concentration in both MBRs was 3 g/L. Results from this
study revealed that a mixed culture of bacteria and a WRF in a fungus-augmented
MBR can achieve better removal for BP3, OC, and TCS (>80%) than a system
containing fungus or bacteria alone.
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Fig. 1 (a) Schematic diagram of the fungal MBR reactor employed in the [45] (Adapted from
Yang et al. (2012) [80]). (b) Schematic diagram of the fungal air-pulsed fluidized bioreactor
employed in Badia-Fabregat et al. [76] (Adapted from Blanquez et al. (2007) [81])

On the other hand, Gago-Ferrero et al. obtained almost total removal of
BP3 as well as for other UV filters (BP1 and 4-MBC) with a pure culture of
another strain of T. versicolor under sterile conditions at erlenmeyer scale but
also at 1.5 L bioreactor scale [76, 77]. In those studies, T. versicolor was inoculated
at 2-5 g dw/L in the form of pellets instead of free mycelia, in order to improve the
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fungal fluidization and to avoid the reactor clogging. The results at erlenmeyer scale
pointed out that 7. versicolor was able to completely degrade 4-MBC from an initial
concentration of 10 mg/L in less than 24 h of treatment. In the experimental bottles,
BP3 exhibited a high degree of elimination, reaching >99% removal rate between
6 and 24 h. Similarly, fungal degradation experiments were performed for BP1.
Results showed a similar but faster degradation profile to that of BP3. High
biodegradation rates were also observed in the bioreactors during 24 h batch
operating. For those experiments, a 1.5 L air-pulsed fluidized glass bioreactor
was used (Fig. 1b). Initial levels of BP3 (250 pg/L) dropped to non-detectable
levels in 8 h. In the case of BP1, about 95% of the initial concentration was removed
after 2 h of treatment and completely eliminated at 24 h.

Regarding the fungal degradation of certain commonly used parabens, Mizuno
et al. reported 100% removal of iso-butylparaben (iso-BP), initially added at
19.4 mg/L, after 2 days of treatment with T. versicolor [78]. Besides that, possible
future experiments for the evaluation of fungal degradation of fragrances should be
carefully designed, as an attempt to assess degradation of celestolide, tonalide, and
galaxolide in erlenmeyers found that removal was only due to volatilization [35].

Under the tested conditions in the literature, it appears that both degradation and
sorption to biomass can be the responsible mechanisms for contaminant removal.
To identify which one predominates, experiments with alive and inactivated fungi
were performed [76, 77, 79]. The removal observed for many compounds was
similar under both approaches when any extraction or solubilization step was
included in the protocol. Therefore, further tests were carried out to confirm the
fungal biodegradation of those compounds by means of including a solubilization
or extraction step [76, 77] or comparing the removal attained with the whole-cell
culture with that obtained with the crude enzyme extract [75]. In both cases,
biodegradation was confirmed as the main mechanism of removal even for the
very hydrophobic compounds, such as TCS and OC.

Degradation studies of several UV filters with T. versicolor in sterilized dry
sewage sludge have been reported as well [76]. Solid-phase systems containing
sterile sewage sludge and 38% (w/w, dry basis) T. versicolor inoculum (biopiles)
were incubated for up to 42 days at 25°C, periodically homogenized and moistur-
ized. The sterilization process consisted of autoclaving at 121°C for 30 min. It is
noteworthy that degradation was evaluated on the real concentrations of PCPs
found in the sludge. The removal observed for 4-MBC after solid-phase fungal
treatment was 87%, whereas complete elimination was observed for the phenolic
compounds BP3 and 4DHB. In the same study OC and EHMC were also tested,
showing quite high removal rates of 89 and 93%, respectively. Sewage sludge
treatment in bioslurry systems has been also evaluated, but removal efficiency was
much lower for the UV filters analyzed as well as for many other emerging
contaminants [82]. Based on those results, subsequent non-sterile biopiles treating
dry sewage sludge were performed [83]. 80% removal of UV filters was achieved
after 42 d of treatment with mycelia reinoculation at day 22.

Taking into account the good results of PCPs’ degradation by whole-cell cul-
tures of ligninolytic fungi, further studies under non-sterile conditions and real
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effluent concentrations should be performed, especially in liquid treatments, where
no data is available to date. That type of studies would represent a step forward in a
potential full-scale application of the fungal treatment technology.

3.2 Removal by Lignin-Modifying Enzymes

Besides the application of whole-cell fungus cultures, a suitable alternative which
decouples the fungal growth and chemical degradation stages is to use either the
different individual enzymes as such (crude enzymes) or the extracellular enzymes
previously purified or commercially available. However, it must be highlighted that
because of the combined effect of intracellular, mycelium-bound, and extracellular
enzymes as well as sorption of contaminants on the biomass, whole-cell fungal
treatment may cover a wider range of compounds compared with enzymatic
treatment.

The application of individual LMEs has been performed for the biodegradation
of some PCPs such as TCS. Table 2 reports the enzymes investigated to degrade
PCPs. A study involving the application of a laccase preparation extracted from the
WREF Coriolopsis polyzona revealed a quite satisfactory removal of the phenolic
biocide at pH 5 and 50°C [90]. TCS was degraded in a 65% after either 4 or 8 h
treatment, indicating that longer exposition does not render better removal rate.
Other two crude extracts from WRF T. versicolor and P. cinnabarinus were
investigated for the biodegradation of TCS. After 48 h treatment, TCS began to
disappear. Removal rates were not reported by the authors. Another study was
conducted on the ability of laccase from T. versicolor to catalyze the oxidation of
TCS [87]. Laccase was able to completely degrade the biocide under a variety of
experimental conditions, but the optimal pH was found to be 5. Treatment could be
achieved at elevated temperatures (optimum at 50°C), but at the expense of higher
rates of inactivation.

N,N-Diethyl-m-toluamide (DEET), the active ingredient in most commercial
insect repellent products against mosquitoes, ticks, flies, and other biting insects,
has been found to be biodegraded by T. versicolor laccase [89]. The extent of
degradation was medium dependent. In real wastewater, a higher degradation rate
for DEET was observed (55% removal) as compared to that in acetate buffered
solution (20% removal). This may be explained by the simultaneous presence of
other compounds (for instance, phenolic substances) that can eventually serve as
redox mediators in the degradation process. Anyway, these relatively low removal
efficiencies for DEET may be due to the presence of the relatively strong with-
drawing electron group (—CO-N [CH,—CH3],) in its chemical structure.

Removal of the antimicrobial preservatives iso-BP and n-butylparaben (n-BP)
by partially purified laccase from cultures of 7. versicolor achieved percentages
of only 15 and 5%, respectively, despite their phenolic structure [78] UV filters
BP3 and 4-MBC are also poorly removed by commercial laccase of T. versicolor
[76, 88].
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Table 2 Lignin-modifying enzymes (LMEs) tested for the removal of PCPs

Compound | PCP class LMEs Fungus Reference
TCS Antimicrobial | Crude laccase extract with ABTS, Coriolopsis [71]
and with 1-HBT polyzona
TCS Antimicrobial | Laccase Coriolopsis [71]
polyzona
TCS Antimicrobial | Crude extract Trametes [71]
versicolor
TCS Antimicrobial | Cross-linking of enzyme aggregates | Coriolopsis [71]
(CLEAsS) of lacasse polyzona
TCS Antimicrobial | Laccase immobilized on control Cerrena [84]
porosity carrier (CPC)-silica beads | unicolor
TCS Antimicrobial | Covalently immobilized lacasse ona | Coriolopsis [85]
solid diatomaceous earth support polyzona
TCS Antimicrobial | CLEAs of versatile peroxidase (VP) | Bjerkandera | [86]
adusta
TCS Antimicrobial | Glucose oxidase (GOD) Aspergillus [86]
niger
TCS Antimicrobial | Crude extract Pycnoporus | [87]
cinnabarinus
4-MBC UV filter Laccase Trametes [76]
versicolor
BP3 UV filter Laccase Trametes [88]
versicolor
BP3 UV filter Laccase Trametes [75]
versicolor
OoC UV filter Laccase Trametes [75]
versicolor
TCS Antimicrobial | Laccase Trametes [75]
versicolor
DEET Insect Laccase Trametes [89]
repellent versicolor
Iso-BP Antimicrobial | Partially purified laccase Trametes [78]
versicolor
n-BP Antimicrobial | Partially purified laccase Trametes [78]
versicolor

Despite the good performance of the use of free enzymes in some xenobiotics
degradation, their low stability, low activity, and inhibition by high concentrations
of substrates and products make this approach of little applicability in industrial
processes [91]. To overcome such disadvantages, the several efforts during the past
years have been made to design enzyme immobilization methods. Enzyme immo-
bilization generally results in catalyst stabilization against thermal and chemical
denaturation [92]. The most common procedures comprise the binding to a solid
support, encapsulation, and cross-linking. For instance, the degradation of TCS
with laccase immobilized on control porosity carrier (CPC)-silica beads (silica
carrier silane-coated) was recently investigated [84]. Results of time-course
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elimination experiments showed a gradual decrease of TCS of 50% initial concen-
tration after 1 h of treatment. Data showed that in comparative study between free
and immobilized laccase, the apparent Michaelis—Menten constant (K ,,) was higher
for the immobilized enzyme regardless the support used (3- to 19-fold). Carrier-free
immobilization strategies, cross-linking of enzyme aggregates (CLEAs), has been
proposed for the degradation of TCS. CLEAs of laccase from the WRF C. polyzona
were placed in a fluidized bed reactor (FBR) which operated at pH 5 and at room
temperature. After 50 min. treatment 90% TCS was eliminated. An additional
treatment of 100 min. increased the degradation rate only by 5%. A similar study
was conducted by the same authors using a packed bed reactor (PBR) filled with
covalently immobilized laccase on a solid diatomaceous earth support. In this case
after 200 min. treatment complete elimination of TCS was achieved [85]. Combined
CLEAs of VP from B. adusta and glucose oxidase (GOD) from Aspergillus niger
were tested to eliminate TCS [86]. A membrane reactor continuously operated with
the combined CLEAs removed 26% of TCS after 10 min. of treatment. In compar-
ative study with free VP (with H,O, as enzymatic substrate) and free VP-GOD, it
was proved that the combined CLEAS were not as effective as the free enzyme in
degrading the biocide; the free VP was able to remove 36% of TCS, whereas the
free VP with glucose oxidase achieved the highest removal rate, eliminating more
than 40% of TCS. These results may be explained by the in situ oxidation of glucose
which continuously produced H,0O, required by VP. However, glucose might not be
a suitable substrate for a wastewater treatment process as it might serve as an
unwanted growth substrate for microorganisms. Thus, further studies should be
focused on the production of combi-CLEAs using other H,O,-producing enzymes
with substrates that are more suitable in the scope of a water treatment process [93].

3.3 Redox Mediator-Catalyzed Removal

Many studies report on the application of low-molecular-weight oxidizable sub-
stances in the metabolic process to expand the activity of the fungi and enzymes,
i.e., laccase. This mediated oxidation involves two oxidative steps. First, the
enzyme oxidizes a primary substrate, the mediator, and this substance acts as an
electron-transferring compound. The mediator finally transfers the electron to the
substance of interest. In most studies, benzothiazoles and benzotriazoles are
selected as the mediator substance [88]. In an earlier study, Cabana
et al. compared [71] the ability of 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic
acid) (ABTS) and 1-hydroxybenzotriazole (1-HBT) to improve the elimination of
TCS by a crude laccase extract from C. polyzona. The performance of both
treatments was determined at 1 h treatment at 40°C, pH 4, enzyme preparation
containing 10 U/L of laccase and 10 pM of mediator. Under these experimental
conditions, ABTS allowed a total elimination for the chlorinated biocide. Treat-
ment efficiency and reaction rates of TCS removal can be substantially improved
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through the use of a protective additive, poly-(ethylene glycol) (PEG), and ABTS as
mediator, reaching 100% removal as well [87].

1-HBT was also used as mediator to improve the removal of UV filters (BP3 and
OC) as well as TCS [75]. A significantly improved degradation of BP3 with respect
to that by the crude enzyme extract (from 4 to >60%) was observed, in contrast
with the other substances for which removal did not improve or even decreased.
The better performance achieved may be explained by the role played by the
aminoxyl radical species generated from 1-HBT by laccase. As explained in a
previous section, this enzyme promotes the oxidation of phenols [94], and BP3 has
a phenolic structure. However, steric factors may hinder the approach of the
substrate to the active site of laccase and, as a consequence, inhibit the oxidation
of even phenolic substances. The aminoxyl radicals produced from HBT by
laccase, due to their small size, can abstract H-atom from the —OH group in the
phenolic moiety of the substrates forming the corresponding phenoxyl radicals
[95]. These phenoxyl radicals, in turn, react with the substrate via a radical
hydrogen atom transfer route [93] that improves the biodegradation potential. The
addition of the same redox mediator to the fungal-augmented MBR system
described in the previous section, however, did not provide any significant change
in the removal efficiency for the three UV filters and TCS [79]. Garcia
et al. performed a screening of mediators, and the best results were found for
ABTS, obtaining a total removal of BP3 at pH over 7 [88]. Moreover, ABTS and
1-HBT significantly enhanced laccase crude enzyme degradation of the insect
repellent DEET by two- and threefold, respectively. 1-HBT also allowed total
removal of iso-BP and »n-BP after 8 h of reaction [35]

The presence of ions including sulfite, sulfide, cyanide, chloride, Fe (II), and Cu
(IT) resulted in reduced treatment efficiency, likely due to the interruption caused by
these substances in the electron transport system of laccase [96].

Summarizing, the use of mediators usually increases the spectrum of compounds
that laccase can oxidize. However, the addition of extra molecules increases the
cost of the treatment. Moreover, toxicity of the effluents usually increases after the
treatment due to the toxicity of the mediators [87]. Therefore, alternatives to
synthetic mediators should be found.

4 Identification of Intermediate and Metabolization
Products

Few reports focused on the identification of intermediate and metabolization
products formed by the action of whole WRT or free enzymes on PCPs. Among
them TCS has been extensively investigated, as shown in Table 3. The production
of phenoxyl radicals by the MnP, laccase, or laccase/mediator systems appears to
result in coupling reactions. The polymerization products of TCS detected through
mass spectrometry (MS) and tandem-mass spectrometry (MS/MS) analyses were
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identified as dimers, trimers, and tetramers [71]. These high-molecular-weight
chemicals detected suggest a reaction pathway involving the oxidative coupling
of the primary oxidation product (formed by abstracting one electron from the OH
group of the original molecule). Furthermore, the intermediate product identified as
2,4-dichlorophenol during the treatment of TCS by T. versicolor [97] indicates that
the degradation of the biocide could occur in a manner similar to the bisphenol A
reaction following two mechanisms, (1) a condensation phase resulting in the
production of higher-molecular-weight metabolites and (2) a fragmentation phase
at the C-O level. Due to the lack of detailed information on the structure of the
oligomers formed, it was quite difficult to propose a precise transformation path-
way. In the same study, the hydroxyl group of TCS was found to be methylated
through the action of the fungus P. cinnabarinus, producing methyl-triclosan, a
derivative of the biocide frequently found in the environment [98].

The transformation products of the UV filters 4-MBC, BP3, and BP1 originated
through the action of T. versicolor were recently identified [77, 78]. The interme-
diate and transformation products of 4-MBC detected through MS/MS analyses
were identified as the result of an hydroxylation in the aromatic ring or the methyl
group next to the aromatic ring and, in lower amounts, a double hydroxylation
[77]. Also, in the first hours of treatment, a compound with a MS/MS fragmentation
pattern identical to that of 4-MBC was observed. This evidenced the transformation
of the commercially available 4-MBC (E) into its isomer, 4-MBC (Z). This
isomerization process was previously observed upon the action of other living
organisms [99]. However, the main metabolite of 4-MBC produced by the fungi
is the result of the conjugation of the mono-hydroxylated intermediate with a
molecule of pentose by a glycosidic bond. The pentose-conjugated derivative of
the di-hydroxylated intermediate was also identified, but to a lesser extent. In a
similar study, BP1, 4DHB, and 4HB were identified as metabolites produced during
the degradation experiments of BP3 with the fungus [78]. Further fungal degrada-
tion of BP1 resulted in the formation of 4HB and 4DHB, as in the case of BP3
metabolization. Similar to 4-MBC fungal degradation, the predominant metabolite
may be produced by the addition of one pentose molecule to BP3. However, in this
case the addition of one hexose molecule to BP3, likely glucose, via glycosidic
bond also occurs. As it was reported for BP3, the addition of one pentose molecule
to BP1 also produced the conjugated metabolite. On the other hand, the action of
laccase/mediator systems generate oxidative coupling reactions, leading to trans-
formation products of higher molecular weight than BP3 due to the coupling of BP3
to different oxidated forms of the mediators [88].

S5 Concluding Remarks

The elimination of ingredients in personal care products by WRF-mediated treat-
ments emerged as a promising environmental friendly degradation process. Com-
pounds with strong electron-donating groups such as hydroxyl and amines are well
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removed by WRF, whereas compounds with electron-withdrawing groups (e.g.,
halogen and nitro) are biodegraded mainly by WRF having all three major LME.
Whole-cell WRF appears to effectively treat a wider spectrum of PCPs than crude
cultures or purified enzymes, likely because of the combined effect of mycelium-
bound, extracellular, and intracellular enzymes (as it usually is a multienzymatic
process) and biosorption of the compound. Laccase has been the most studied LME
for the degradation of PCPs. In the enzymatic treatments, the addition of redox
mediators has been shown to be a good strategy to improve the degradation of
recalcitrant compounds, whereas in the fungal degradation they are not usually
needed because the fungus itself can generate radicals that act as natural mediators.
Thus, the possible toxicity of treated effluents due to the release of the artificial
mediators is avoided by the use of whole-cell fungal treatments. On the other hand,
an alternative to improve the removal of PCPs by WREF is the combined use of a
mixed culture of bacteria and WREF. This so-called fungus-augmented MBR proved
to achieve better removal rates for several PCPs than the conventional systems
using bacteria or a system containing the fungus (or the enzymes) alone.

So far, however, this innovative technology has not been tested in real waste-
water effluents and under non-sterile conditions for the degradation of PCPs,
neither in enzymatic nor in fungal reactors. From the few works dealing with
non-sterile effluents, and with other purposes than degrading PCPs, it can be
drawn that the main drawback of fungal reactors is the competition of the inocu-
lated fungus with the other microorganisms and the enzyme deactivation in the case
of enzymatic treatments. Thus, several factors need to be considered before their
application as suitable treatments for bioremediation or decontamination in real
situations can be done. Among them, the design of the bioreactor, the concentration
of the biocatalyst (biomass or enzyme), the life cycle of the biomass or the half-life
of the enzyme, the fermentation conditions, and the economic cost appear to be of
outmost importance. Another important limitation for continuous flow treatment is
to achieve and maintain the sufficient enzymatic activity inside the reactor for the
degradation of PCPs. This can be achieved in the fungal bioreactors by means of
adjusting the hydraulic and cellular residence times (HRT and CRT). In the
enzymatic reactors, suitable activity can be achieved by continuously adding the
enzyme or by means of an immobilization system. If mediators are needed, they
should be continuously added. Out of the operational and design parameters, other
issues need further research. In particular, the identification of the compounds
formed during the fungal metabolization is critical in order to improve the under-
standing of the degradation mechanisms and to evaluate the ecotoxicological risk
associated to the degradation process.
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Removal of Personal Care Products
in Constructed Wetlands

Paola Verlicchi, Elena Zambello, and Mustafa Al Aukidy

Abstract This chapter is an overview of the occurrence of common personal care
products in the influent and effluent of different types of constructed wetlands fed
with domestic wastewaters, acting as primary, secondary, or tertiary steps and the
corresponding removal efficiency achieved by these treatments. The reviewed
personal care products belong to eight different classes: 3 antioxidants, 2 antiseptics,
1 deodorant, 1 insect repellant, 1 plasticizer, 3 sunscreen products, 5 synthetic
musks, and 16 surfactants (seven anionic and nine nonionic).

Data are collated from 35 peer review papers, referring to investigations carried
out in Europe (66%), America (28%), and Asia (6%). Of the 87 treatment lines
reviewed, the most common constructed wetland type was the horizontal subsur-
face flow (49%) followed by the surface flow (38%) and, in a few cases, the vertical
subsurface flow. Removal was mainly influenced by redox potential, temperature,
hydraulic retention time, and influent concentration of the compound.

The highest values of removal were found for fragrances in secondary systems
and fragrances and triclosan in polishing systems.

Due to the different and simultaneous removal mechanisms occurring within
these systems and their buffer capacity, they might represent a reliable and feasible
treatment which is able to control and reduce the spread of personal care products in
the aquatic environment.
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1 Introduction

Every day we use products for our personal care and hygiene, in particular cos-
metics (skin care products, hair sprays, and sunscreens), toiletries (bath additives,
soaps, hair tonics, shampoos, oral hygiene products), and fragrances (perfumes,
aftershaves). These products, commonly called personal care products (PCPs),
contain synthetic organic chemicals with a specific function, the ingredients.
They may be antimicrobial disinfectants (triclosan, triclocarban), preservatives
(methylparaben, ethylparaben, butylparaben), or sunscreen agents (oxybenzone,
avobenzone). In addition, some of them may contain synthetic surfactants (gener-
ally anionic and nonionic compounds). These are substances widely used in the
formulation of many commercial PCPs not only for their wetting, cleaning,
foaming, and emollient properties but also as they can create dispersed systems
(suspension or emulsion), modify the cosmetic rheological properties, prolong the
durability of the product, and control the release of active ingredients [1] which
greatly improves the quality of the substance.

PCPs are used in the range of several thousand tons per year: parabens are used
in more than 22,000 cosmetic products [2], approximately 350 tons of triclosan are
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produced annually in Europe [3], and in 1998, 1,473 tons of galaxolide, 343 tons of
tonalide, and 18 tons of celestolide were consumed in Europe [4].

These products are disposed of or discharged into the environment on a contin-
uous basis via municipal/industrial sewage facilities and also directly by untreated
discharges [5—7]. This means that their exposure potential may reach critical level
for the environment, even for those compounds that might have a low persistence.

In recent years, increasing attention has been paid to the occurrence of some of
them in aquatic environments, also due to the finding that some PCPs can induce
known or suspected undesirable effects on humans and ecosystems (included
endocrine disruptions) [8].

Limits of concentrations have been set for surfactants with regard to wastewater
treatment plant discharges into surface water bodies or for the direct reuse of treated
effluents. However, limits do not exist for many other PCPs occurring in
wastewaters.

Environmental quality standards have also been set for some micropollutants in
surface water bodies within the European Union [9].

In the European Union, USA, and other countries, a debate is open regarding the
compilation of lists including priority compounds requiring monitoring in the
aquatic environment [9—12]. However, due to the lack of information on toxicity
and environmental impacts, a large number of contaminants, especially organic
compounds, are not included in these lists. The number of compounds which could
become priorities is therefore likely to grow.

Recent studies have remarked that due to the wide spectrum of characteristics of
emerging contaminants, including PCPs, it is quite difficult to find a treatment able
to remove most of them at a high percentage.

Recent studies [13, 14] pointed out that different groups of micropollutants can
be removed at a medium-high extent only in those treatment trains where different
removal mechanisms may occur. Multi-barrier treatment systems are necessary. As
highlighted in Verlicchi et al. [15], constructed wetlands (CWs) are systems where
oxic-anoxic-anaerobic environments may coexist, especially in subsurface flow
beds or in sequence of different kinds of CW types. In surface flow systems, solar
radiation may also contribute to the removal of micropollutants.

Increasing attention is being paid to the investigation of the occurrence and
removal of common PCPs from wastewater but only a few studies deal with CWs.
This chapter provides an overview of these issues, focusing on the different types of
CWs acting as primary, secondary, or tertiary steps. Influent and effluent concen-
trations for 32 PCPs, belonging to eight different classes, were collected and
discussed, along with their corresponding removal efficiencies achieved in the
investigated types of CWs. The chapter concludes with an analysis of the influence
of the main design parameters and operational and environmental conditions on the
removal of the reviewed compounds.
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2 Chapter Framework

This chapter is based on data collected from 35 peer reviewed papers published
between 2001 and 2014, referring to 32 PCPs. All compounds are listed in Table 1,
grouped according to their class. For each of them, chemical formula, CAS number
and molecular structure are reported together with the references of the investiga-
tions included in the review dealing with it. A focus on surfactant classes is
available in Table 2 where the nine most common ones are reported. Table 3 reports
the schematics to which the investigated wetlands refer (i.e., if they act as a
primary, secondary, or tertiary step) and Table 4 shows the CW types included.

The study continues with an analysis of the occurrence of the PCPs in the
influent and effluent of CW acting as a primary, secondary, and tertiary step and
a discussion of their removal achieved in the three steps distinguishing between the
CW types (Figs. 1,2,3,4,5,6,7,8, and 9). The characteristics and performance of
restoration wetlands are then discussed, and finally data referring to occurrence
(Figs. 10 and 11) and removal (Fig. 12) in hybrid systems complete the analysis of
the different reviewed configurations. The final part of the chapter discusses how
CW type, design parameters, and operational and environmental conditions influ-
ence the removal of investigated compounds on the basis of the collected literature
data.

3 Personal Care Products in the Environment
and Compounds Included in the Study

The chapter refers to 32 PCPs belonging to eight different classes: 3 antioxidants,
2 antiseptics, 1 deodorant, 1 insect repellant, 1 plasticizer, 3 sunscreen products,
5 synthetic musks, and 16 surfactants (seven anionic and nine nonionic ones).

Reviewed compounds are reported in Table 1 and classes of surfactants in
Table 2. Their molecular structure is particularly complex due to the presence of
aromatic and/or condensed rings, carboxylic and ketonic groups, double or triple
bonds, and, in the case of surfactants, long hydrocarbon chains.

In Italy, NP and p-dichlorobenzene have been included among the substances to
be monitored in the surface water [54]; in Switzerland, EDTA, NP, triclosan,
DEET, and bisphenol A are included in the list of relevant micropollutants in
wastewater, and they could be considered “target compounds” for which Swiss
WWTPs, with a high environmental impact, should guarantee desired removal
efficiencies [55]. At a European level, NP is included in the list of priority sub-
stances [9], requiring monitoring in water, and in the USA, BHA is included in the
contaminant candidate List 3 U.S.EPA 2009 [10].
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Table 3 Schematics of wastewater treatments including CWs in different configurations, with the
corresponding references

CW acting as Schematic References
Primary step inzz\glm Effluent [22, 23, 45, 46, 49, 51]
Secondary ste; Raw Prim. [31, 34-37, 39, 42, 44,
any P influent Effluent 48]
Tertiary step Raw Prim. Sec. [16, 17, 19, 20, 24, 25,
influent rreat. FEt | 2730, 38, 40, 41]
Restoration WWTP 2 [26, 33]

WWTP1  effluent

wetland effluent
WWTP n

effluent

infloent Effluent (18]
Hybrid system Raw Prim. [21, 32, 43, 47, 48, 50]
inﬂuent% Treat. Effluent

inzzvevnt% aw |>f ew |l ew | Erfluent [43]

[16, 17, 20, 21, 24, 25,
27,28,31,37,43,47,49]

Multistage step [32,43]

@ Sampling point

4 C(lassifications of Constructed Wetlands and Types
Included in the Chapter

The CWs have been classified according to the treatment step and the main flow
direction.

Depending on the treatment level, they have been divided into primary, second-
ary, or tertiary steps (Table 3). In cases where they were fed by a river whose water
flow is primarily made up of a wastewater treatment plant effluent or even untreated
wastewater, the system was called restoration wetland. If the treatment system
includes two or three steps relying on CWs, it is called hybrid plant.

Finally, a step may also include more than one stage, either of the same type
(monotypic) or of different types (polytypic), thus resulting in a multistage system.

Referring to the flow direction, CWs are classified in surface flow systems
(SF) and horizontal and vertical subsurface flow beds, H-SSF and V-SSF,
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Table 4 Classification of constructed wetlands and corresponding references

CW Type ‘ Schematic | References
Surface flow (SF):
Classic (161>, [1771°, [18]'*2,
schematic (191 [2117* [22]",
(A) [231', [247°, [257°,
‘ [26]° [271°, 28],
—= \K 1 b [297° [301°, [33]*".
S o~ [36]% [38]°, [40]°,
St [411' [42]7 431",
[43]1+2+3;2+3’ [47]2+3’
[48]24—3, [50] 2+3
Modified
schematic
(B)
—_— / . - i
St
Pk s A i
Horizontal [161° [211%" [317%,
subsurface [321%* [35]° [36]°.
flow [371% [391° [42]°
(H-SSF) (4317 [44]° [46]",
[47]2+3, [48]2
—_— — | [5017"
—_— _
Vertical 21177 [35]1% [417°.
subsurface [44]2, [47]2+3, (491"
flow
(V-SSF) . ‘
| 0 B i B 1

The numbers (1,2,3) reported as apex for each reference refer to the treatment steps of the

[Tet]

investigated plants while the letter “a” means restoration wetland

respectively (Table 4). In SF basins, the majority of flow occurs through a water
column overlying a benthic substrate, whereas the flow in H-SSF and V-SSF beds is
through a porous medium (generally gravel) and classified as either horizontal, if
the feed is from one side of the bed to the other part, or vertical, if the feed is spread
over the surface of the bed, crossing it from the top to the bottom. Additionally, in
H-SSF beds the feed is continuous, while in V-SSF beds it is intermittent. Surface
flow systems investigated also include a modified system, Hijosa-Valsero et al.
[36], where the effluent leaves the system after a passage through a stratum of
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Fig. 1 Occurrence of X SF O H-SSF
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investigated PCPs in the
effluent of CWs acting as a
primary step. Data from:
[18, 22, 43, 46, 51]
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- >
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NP1EO (-:6.9)
NP2EO (-:3.9)

Triclocarban (0.31:-)

Compound (avgr; avy.ssr)

materials at the bottom of the bed, resulting in a combination of surface and
subsurface flow systems (Table 4).

In addition, there are two systems which are considered nonconventional. They
are a pilot system fed by the secondary effluent of Empuriabrava WWTP, Spain,
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29, 30, 32, 38, 41, 43, 53]

which is operated in parallel with the full-scale reclamation plant consisting of
surface flow basins [27] and a sequence of SF and H-SSF cells [20].

4.1 Main Features of the Investigated Plants

The chapter is based on investigations of PCP occurrence and removal in CWs
carried out in Europe (64%: Spain, Denmark, England, and Czech Republic),
America (28%: USA, Canada, and Mexico), and Asia (8%: Korea and China).

In the 35 peer reviewed papers, 87 treatment lines were investigated. They
mainly include H-SSF beds (49%) and SF basins (38%) and in a few cases
V-SSF systems (10%). The types of CW are not well specified in only 3% of the
plants. Of the 87 treatment lines, 54 refer to pilot plants and 30 to full-scale plants,
while the remaining 3 refer to full-scale plants followed by a pilot plant. Moreover,
12 treatment lines refer to hybrid systems.

In nine lines the investigated CW acted as a primary step, in 42 as a secondary
step, in 15 as a tertiary one, and in nine to restoration wetlands.
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Fig. 8 PCP concentrations in the effluent of CWs acting as a polishing step. Data from: [17, 20,
26, 27, 29, 38, 41-43]

The feeding was always a real domestic wastewater, with a few cases where
domestic wastewater was injected with selected PCPs at the desired concentration
[21, 31, 32, 46] and one more where the influent contained a consistent percentage
of industrial wastewater [33]. Two studies [49, 50] investigated occurrence and
removal from grey water. All the treatment trains investigated were outdoor with
the sole exception of the one investigated by Belmont et al. [47]. In nearly all
studies, analyses were processed on grab samples of water.

5 Occurrence and Removal in the Different Treatments
Steps

Figures 1,2,3,4,5,6,7,8,9, 10, 11, and 12 report concentrations observed in the
influent and effluent of CWs acting as primary, secondary, and tertiary steps and in
the case of hybrid systems. They also report removal efficiencies for the investi-
gated compounds in the systems under study. In the X-axis of each graph, the
numbers in brackets after the PCP name correspond to the average values of the
collected data for each of the CW types considered.
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Finally, ranges of concentration data for groups or mixtures of surfactants
(MBAS, LAS, LAB, Triton X100; see Table 2) in the influent and effluent of
some plants were reported in the discussion.
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5.1 Primary Step: Occurrence and Removal of Selected PCPs

Only a few investigations reported PCP concentrations in the influent and effluent
of CWs acting as a primary step. These are reported in Figs. 1 and 2, which show ten
PCPs in the influent and eight in the effluent. The feeding was always only domestic
wastewaters, with the exception of Navarro et al. [33] where the influent was a river
receiving both untreated domestic as well as industrial wastewaters (see also
Sect. 5.4).

Belmont and Metcalfe [46] and Sima and Holcova [51] investigated subsurface
flow beds. All the other studies examined SF basins, which greatly differed for
influent flow rate, geometry and size, configuration, and environmental and oper-
ational conditions. Hydraulic retention time (HRT) varied between 0.4 days [43]
and 5 days [33].

The highest influent concentrations were found for the common nonionic sur-
factants NP1EO (289 pg/L), NP2EO (168 pg/L), and NP (41.5 pg/L), followed by
triclosan (5.44 pg/L). The highest concentrations in the effluent were found for LAS
C10 (195 pg/L), NP (28 pg/L), NP1EO (18 pg/L), and LAS C13 (15 pg/L). The
same compounds exhibited the highest average values.

Referring to NP, NP1EO, and NP2EO, the effluent concentration is always lower
than the corresponding influent one, but for NP the reduction is the smallest. This is
due to the fact that NP1EO and NP2EO may transform into NP during anaerobic
degradation throughout the system.

Classes of surfactants were found at very high concentrations both in the influent
and effluent of primary CWs: MBAS (methylene blue active substances) 1,390—
17,100 pg/L in the influent and 340-4,560 pg/L in the effluent [49], NP(1-3)EO
441 pg/L in the influent and 13 pg/L in the effluent [46], and Triton X100 978 pg/L
in the influent and 99 pg/L in the effluent [45, 51]. These data point out that
surfactants are present in a wide spectrum of substances commonly used in house-
holds, not only PCPs.

Removal — Figure 3 shows the observed removal efficiencies for selected PCPs
in SF basins as well as H-SSF beds. In SF systems, high removals were observed for
galaxolide and tonalide (both 99%, [23] and triclosan (98%, [18]), while these were
very poor for BHT (less than 30%).

In H-SSF beds, the removal efficiencies for the reviewed compounds were in
general lower than in SF systems and the best performances were found for LAS
C13 (92.9%) and LAS C12 and avobenzone (both at 83%).

For the five substances investigated in both systems, higher average removals
were observed in SF basins for HHCB and Surfynol 104, while avobenzone, BHT,
and MDH]J were removed well in H-SSF beds. APE, AP, and LAB were removed to
a greater extent in H-SSF beds than in SF systems [33], suggesting that removal was
mainly due to sorption mechanisms. Moreover, APEs exhibited higher removal
than APs, around 75 and 50%, respectively, which is correlated to the fact that APs
may form during the biodegradation of APEs [33].
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In H-SSF beds, nonionic surfactants were removed to a greater extent than
anionic ones [45] and also more quickly [56].

Studies of the occurrence and degradation of LAS and SPC in CWs remarked
that homologues with an alkyl chain shorter than C10 were rarely detected, as the
alkyl chain is first preferably oxidized to carboxylic acid and then it is
degraded [56].

5.2 Secondary Step: Occurrence and Removal
of Selected PCPs

Figures 4 and 5 show concentrations in the influent and effluent of CWs acting as a
secondary step and Fig. 6 shows the observed removal efficiencies for the reviewed
15 PCPs.

Synthetic musks were the most investigated in the influent, followed by sun-
screen products, while in the effluent the most studied were surfactants followed by
synthetic musks.

The highest influent concentrations were detected for the surfactants LAS C11
(2,123 pg/L), LAS C12 (990 pg/L), LAS C10 (350 pg/L), and SPC C10 (340 pg/L)
[44]. It is worth noting that all the investigated surfactants were found at concen-
trations greater than 100 pg/L (with the only exception of SPC C11). The other
PCPs were found below 45 pg/L (the highest values were due to hydrocinnamic
acid [35] followed by the musk MDHIJ (39 pg/L [39].

Regarding the effluent, the highest concentrations were detected for the same
surfactants mentioned for the influent: LAS C11 (1,774 pg/L), LAS C12 (731 pg/L),
SPC C10 (570 pg/L), and LAS C10 (264 pg/L) [44]. All the remaining investigated
compounds exhibited concentrations at least one order of magnitude below.

A rapid glance at Figs. 4 and 5 shows that for each LAS compound, average
effluent concentration is lower than the corresponding influent one, while this does
not occur for SPCs as they were formed during the biodegradation of LAS in the
system, and their formation was faster than their removal as pointed out in the work
by Huang et al. [44]. For all the other compounds, a reduction of the average
concentration was found from inlet to outlet of each type of CW.

Only for MDH] is it possible to compare performance of the three kinds of CW
on the basis of the measured concentrations. The lowest effluent concentrations
were found in V-SSF systems leading to the supposition that the aerobic conditions
of the bed favor its biodegradation [35].

Referring to oxybenzone and hydrocinnamic acid, similar performances were
observed in H-SSF and V-SSF beds [34].

As remarked for primary CWs, much higher concentrations were found for
classes of surfactants in the influent/effluent of secondary CWs: MBAS were
detected around 15,000/2,500 pg/L [48], LAS around 3,600/2,900 pg/L, and
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SPCs around 500/900 pg/L [44]. It is worth noting that only SPCs exhibited an
increment in the concentrations due to the biodegradation of LAS, resulting in a
formation of PCPs as discussed above.

Removals — Regarding collected removal efficiencies (Fig. 6), the most investi-
gated compounds were the three fragrances in the SF and H-SSF basins. They
exhibited a wide range of variability of removal values. This is also due to the fact
that these studies were carried out with the aim of analyzing the influence which
different factors have on PCP removal. These factors include design parameters
[36], hydraulic loading rates (HLRs) [34, 35], operational conditions [21, 37], and
environmental conditions [36, 42]. In addition, the investigated plants might have
different ages and different sizes (lab, pilot, or full scale), they may be planted or
unplanted, and they may also be affected by clogging, leading to a reduction in the
HRT. These factors may greatly influence the removal of PCPs within the system,
as discussed in Sect. 6.

All the investigated compounds were removed up to 95% with the only excep-
tions of the antiseptics triclosan and triclocarban and the surfactants.

In SF CWs, the best removals were achieved for the three fragrances. This
occurred in the modified SF type reported in Table 4 [36], where the passage of
the water through the filling media before discharge into the environment allowed
the (lipophilic) pollutants to sorb onto filling materials.

In H-SSF beds, the highest average removals were found for hydrocinnamic acid
(99%), oxybenzone (94%), and bisphenol A (92%) and also for fragrances, while
surfactants generally exhibited lower removal levels.

In V-SSF beds the best performances were observed for MHDJ (95%), HHCB
(89%), and AHTN (79%), suggesting that the intermittent feeding and the aerobic
environment are beneficial to the removal of these micropollutants.

Figure 6 does not include negative removal values. These were rarely found,
were limited to fragrances and SPCs, and were due to the internal generation of
some compounds following the biodegradation of others (SPCs as intermediates of
biodegradation of LAS or longer SPCs, Huang et al. [44]), release phenomena of
selected compounds (HHTN and AHTN), and clogging conditions, resulting in
HRT reduction and malfunctions including the release of compounds that could not
be removed from the bed due to lack of time (i.e., MDHJ) [42]. Peculiar situations
were reported in literature. Huang et al. [44], for example, found that in warm
periods, suspended solids containing LAS retained within the bed quickly
decomposed, resulting in a much higher quantity of SPCs generated compared to
cold periods. In contrast, Reyes-Contreras et al. [42] found release phenomena for
the three fragrances in winter in H-SSF beds but not in summer, perhaps due to an
inhibition of the biological activity at low temperatures and a release of the biofilm
within the system where fragrance molecules could be present.
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5.3 Tertiary Step: Occurrence and Removal of Selected PCPs

Figures 7 and 8 refer to the concentrations of PCPs detected in the influent and
effluent of CWs acting as a tertiary step, while Fig. 9 shows the removal efficiencies
reported by the different authors in the polishing CWs. Nineteen PCPs were
monitored in the influent and twenty compounds in the effluent (the same as the
influent plus the fragrance celestolide), and removal values are available for
seventeen compounds.

SF systems were the most studied CW type, followed by H-SSF beds. Different
authors analyzed multistage polishing systems (see also Table 3). The investigated
systems consisted of series of SF basins, with the exception of those studied by
Reyes-Contreras et al. [16] and Hijosa-Valsero et al. [43], which were sequences of
SF and H-SSF CWs. In addition, the multistage polishing plant investigated by Zhu
and Chen [20] included 30 cells between SF and H-SSF types; this plant was
classified as a nonconventional CW in Figs. 7, 8, and 9.

The highest influent concentration was detected for EDTA (310 pg/L [17]). This
surprisingly high value is in accordance with those found in literature in the effluent
of secondary WWTPs as reported by Kase et al. [55]. The second highest concen-
trations were for NP2EC with 160 pg/L and NP1EC with 150 pg/L. All the other
PCPs exhibited influent concentrations of two orders of magnitude lower, the
highest values being for MDHJ (3.7 pg/L) and galaxolide (2.9 pg/L).

The highest average influent concentrations were found for EDTA (275 pg/L),
NP2EC (155 pg/L), NP1EC (145 pg/L), oxybenzone (1.6 pug/L), NP1EO (1.5 pg/L),
and AHTN (1.23 pg/L). For the remaining investigated compounds, average values
were always less than 1 pg/L.

Referring to CW effluent, the highest effluent concentrations were found for
NP2EC (135 pg/L), NP1EC (97.5 pg/L), and EDTA (87 pg/L) [17], followed by
MDHJ (2.2 pg/L) [43].

A comparison between Figs. 7 and 8 highlights that a general decrement in the
concentrations occurs from influent to effluent.

Referring to cashmeran, average influent concentration is lower than that of the
effluent, but an analysis of the investigations dealing with it reveals that some of the
reviewed studies only provided effluent values and removal efficiencies, and in all
of them a removal was always observed, as reported in Fig. 9, and no release
occurred.

Only DEET exhibited a slight increase in the passage through the polishing
system investigated by Zhu and Chen [20], but there is still little available data and
it is not possible to conclude that a release would occur.

The only PCP investigated in surface and subsurface flow systems is AHTN — for
this all three CW types showed a removal ability.

Removals — In SF systems, the highest values were found for triclosan (99.99%,
[28]) and HHCB (99%, [24, 25]), AHTN and oxybenzone (both 98% [25]),
celestolide (97% [25]), and cashmeran (95% [24]). All refer to two-stage systems.
The high attenuation of EDTA (on average 75%) should be due to photolytic
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reactions as the compound is quite resistant to biodegradation and has a low affinity
for sorption [17]. Finally, very low removals are observed for NPs and
NPnECs [17].

Modest removal values were observed in the V-SSF beds. Based on data
reported by Reif et al. [41], they ranged between 65% (HHCB) and 0% (AHTN).
The removals found in H-SSF beds are even poorer: Reyes-Contreras et al. [16]
always found them to be less than 20% for triclosan, HHCB, MDHJ, AHTN, BHA,
and BHT.

An interesting investigation was carried out by Sacco et al. [52] into the removal
of the mixture of nonionic surfactants Triton X-100 dosed at 30 and 300 mg/L in the
pilot H-SSF bed. Their mixture contained up to 13 EO groups in different percent-
ages. They found that in the first 40 cm of the bed, OP and its monoethoxylate
(EO =1) had the biggest increment. The decrease (sometimes also the disappear-
ance) in certain octylphenol ethoxylate (OPEO) oligomers seems to be correlated to
increases in others (characterized by a shorter EO chain), and the biodegradation
rate of those oligomers with a number of EO greater than 3 is higher than those
observed for compounds with shorter chains.

Promising results were observed in the (nonconventional) biologically based
filtration water reclamation plant investigated by Matamoros et al. [27] for
oxybenzone, AHTN, HHCB, triclosan, and cashmeran, especially in summer
time. MDHJ exhibited very high removal in summer (>96%), while in winter the
removal was nearly absent.

In the multistage (SF+H-SSF) systems by Reyes-Contreras et al. [16], a con-
sistent increment in the removal efficiencies of MDHJ, triclosan, AHTN, HHCB,
and BHT was observed during the summer season with respect to the winter one
(about 2—8 times higher).

The results obtained by Matamoros et al. [25] are quite interesting. They
compared the removal for a group of PCPs in a tertiary pond and in a conventional
tertiary treatment by UV radiation and chlorine disinfection. They found that solar
radiation can degrade parental compounds in their intermediates both in the UV
reactor and the pond. In most cases these reaction products are more toxic than the
parental ones. However, in pond systems other mechanisms including biodegrada-
tion, sorption onto solids and sediments, and plant uptake may reduce their
concentration.

5.4 Restoration Wetlands

Two restoration wetlands were included in this study. The first one, described in
Matamoros et al. [26], is located in Denmark and is fed by two rivers — Aarhus
(watershed 120 km?) and Lyngbygaards (watershed 132 km?) — which are impacted
by urban sewage and agricultural runoff. The wetland is interconnected to a lake
whose effluent discharges into the sea. The lake is used for recreational purposes
and near it there are some of the city’s water supply wells. The wetland was created
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in 2003 to reduce the nutrient concentrations discharged into the lake and then into
the sea and to preserve the downstream water environment conditions. It covers an
area of 100 ha and consists of a surface flow basin with an average water depth of
0.5 m and a maximum depth of 2 m, an HRT ranging between 3 and 20 days, on
average 7 days. Based on a mass balance between influent and effluent streams to
the wetland, a consistent reduction was found in the effluent concentration (miti-
gation effect passing through the wetland) for most of the investigated PCPs (for
triclosan, cashmeran, MDHJ, HHCB, AHTN, and bisphenol A, it was >40%). In
winter, due to the low sunlight exposure and cold temperatures, bio- and
photodegradation processes were limited. It is important to highlight that in the
wetland outlet, the concentrations of all the investigated PCPs kept quite constant,
although the influent values exhibited a wide variability confirming wetland buffer
capacity.

The second restoration wetland is a pilot plant fed with the water of the Sordo
River (in southeastern Mexico) which receives untreated urban sewage and indus-
trial wastewaters [33]. The CWs consist of 8 cells: four are SF type (substrate
upland soils, 0.4 m deep, free water surface flow column, 10 cm high) and four are
H-SSF type (filled with 0.4 m of volcanic gravel, water flow 10 cm below the
surface). Each of them has an HRT of 5 days. A high attenuation was found for
galaxolide, MDHJ, parasol, and APE.

5.5 Hpybrid Systems: Occurrence and Removal
of Selected PCPs

Nine compounds were monitored in the influent (Fig. 10) and effluent (Fig. 11) of
different types of hybrid systems, and data on observed removal efficiencies were
provided for six of them (Fig. 12).

The most adopted CW type in the hybrid systems was SF basins, followed by
H-SSF beds, and the most investigated sequences included SF+ H-SSF systems
[43, 50] and only H-SSF ones [32]. All three types were investigated in the hybrid
systems by Avila et al. [21] and Belmont et al. [47].

A rapid glance at Figs. 10 and 11 highlights that for each substance a reduction
was observed. The same was observed for classes of surfactants in the hybrid
systems (steps 2 + 3) investigated by Conte et al. [48] and Jokerst et al. [50]. The
first found that MBAS decreased from 3,200 and 16,000 pg/L in the influent to
2,000-2,500 pg/L in the effluent and the second that AES decreased from 50—
16,500 pg/L in the influent to 15-50 pg/L in the effluent.

Avila et al. [21] investigated a hybrid system (V-SSF as secondary step and
H-SSF + SF as tertiary step) fed by municipal wastewater where PCPs were injected
at the desired concentrations. Their investigation also analyzed the operational
characteristics inside the tank, in particular redox potential which resulted in the



344 P. Verlicchi et al.

range 110+ 128 mV in the V-SSF bed, in the range from —59 to —115 mV in the
H-SSF bed, and between 156 and 171 mV in the SF basin.

Their investigation pointed out that the first stage, a V-SSF bed, was responsible
for most of the removal of the selected PCPs, and the following polishing treatment
contributed to the removal but to a smaller extent. In particular the effect of the SF
stage on the removal of these compounds was quite negligible.

The highest removal efficiencies were found for triclosan in series of aerated
lagoons (on average 97%, [18]) and in a hybrid-polytypic system (V-SSF acting as
a secondary step followed by H-SSF + SF as a tertiary step); average removal 91%,
Avila et al. [21], for MDHIJ (97%) in the sequence SF + H-SSF beds [43], and for
oxybenzone (97%) in the sequence of H-SSF beds by Reyes-Contreras et al. [42].

For triclosan, photodegradation greatly contributes to its removal followed by
biodegradation, while for MDHJ photolysis is less important than biodecom-
position. This fact is confirmed by the lower removal (81%) found by the same
authors for MDHJ in a series of ponds (steps 1+ 2+ 3). Oxybenzone, instead, is
mainly removed by biodegradation and then by sorption.

Many investigations confirmed that most of the removal of PCPs occurs in the
first step. The comparison provided by Avila et al. [21] of the contributions in the
accumulated average removal efficiencies achieved in each unit of the hybrid
system for AHTN, oxybenzone, triclosan, and bisphenol A is quite interesting.

Referring to bisphenol A, the main removal mechanism is biodegradation and
the lowest removal efficiencies (about 65%) were observed at the lowest redox
values (anaerobic conditions in H-SSF beds by Avila et al. [32]).

6 Discussion of the Influence of the Main Design
Parameters and Operational Conditions of PCP Removal
Efficiencies

As already mentioned, for many reviewed compounds, the removal achieved in
CWs exhibited a wide range of variability. In fact, in many cases the studies
investigated the influence of some operational conditions (mainly HLR and tem-
perature) and all the removal values observed were reported. As a consequence, the
lowest values do not necessarily mean that these systems are not appropriate. In
addition, removals are correlated to the influent concentrations. As will be
discussed later, higher concentrations generally correspond to higher removal
efficiencies.

The following paragraphs analyze the influence of the main design parameters as
well as the operational and environmental conditions on the removal of the selected
compounds.
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6.1 Variation in the Influent Concentrations of PCPs

Higher influent concentrations often correspond to higher removal efficiencies, as
reported by some authors (among them [24, 27, 40]). Variations in the influent
could be attributed to a different consumption of the compound, infiltration in the
sewage network by seawater [27] or groundwater, a malfunction in the upstream
treatments (if CW acts as a secondary or a tertiary step) [24], or in the treatment
itself.

Reyes-Contreras et al. [16] found a seasonal variation in the concentrations of
the two fragrances: AHTN and HHCB occurred at concentrations three times higher
in summer than in winter (tonalide: 1.5 pg/L against 0.44 pg/L and galaxolide
1.2 pg/L against 0.45 pg/L), and their removals were more than twice higher in
summer than in winter.

6.2 Primary Treatment

The influence of two primary treatments — a septic tank and an anaerobic hydrolysis
upflow sludge bed (HUSB) — on the removal of PCPs in the following H-SSF bed
was compared by Hijosa-Valsero et al. [37]. The former produces an effluent of
more constant quality during the year and therefore the effluent of a CW fed by a
septic tank is slightly better than the effluent produced by a CW fed by a HUSB
system.

Surfactants were removed at a consistent fraction in pretreatments. MBAS, for
instance, was removed up to 20% in screens, horizontal sand traps, and sedimen-
tation basins [51, 56].

6.3 HLR and HRT

A variation in the influent flow rate may be caused by a different wastewater flow,
rainwater, snow melting, and seawater and groundwater infiltration. The main and
most frequent disturbance is an increment of the HLR resulting in a shortening of
HRT, with respect to the corresponding design values. Prolonged rain events
(together with cleanup or reconstruction of the wetlands) may lead to a pulsed,
albeit delayed release of the accumulated PCPs due to desorption.

Many studies agree with the fact that whatever the CW step, the higher the HRT,
the higher the removal efficiencies achieved by the system for the investigated
PCPs in wastewater (i.e., [40]).

Avila et al. [21] investigated ability in removing a selected group of PCPs
(AHTN, oxybenzone, triclosan, and bisphenol A) at the three different HLRs
(0.06, 0.13, and 0.18 m/day) in their treatment line, consisting of a V-SSF bed,
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followed by an H-SSF bed and an SF basin as a polishing step. They found that the
removal of triclosan decreased with the increase of HLR, while no clear patterns
were found for AHTN, bisphenol A, and oxybenzone. The same increment of HLR
applied to the H-SSF bed only affected the removal of AHTN that decreased, while
for bisphenol A, oxybenzone, and triclosan, no correlation was found between HLR
and observed removal.

In V-SSF beds an increment in the HLR (13—70 mm/day) did not result in a
decrement of the removal of MDHJ, hydrocinnamic acid, oxybenzone, HHCB, and
AHTN [34], while in SF basins, it resulted in a decrement in the removal efficien-
cies for oxybenzone and MDHJ [34] and in H-SSF beds for anionic [53] and
nonionic surfactants [51].

6.4 Aging of the CW

The age of the CW may influence the removal of PCPs. In SF basins, biomass
growth causes shading of the upper water layer resulting in a reduction of
photodegradation processes. Moreover, clogging, matrix saturation, and hydraulic
conductivity losses may be detrimental for removal mechanisms in (H- and V-) SSF
beds, as found by Matamoros et al. [39] for MDHJ, HHCB, and AHTN. An H-SSF
bed could work closer to as a SF basin if surface and volume clogging phenomena
occur. In fact they may lead to a flooding of the bed, with a higher oxygen transfer
from the air and a lower HRT, as remarked by Matamoros et al. [35] and Reyes-
Contreras et al. [42]. Removal efficiencies are then affected by these phenomena
and organic matter could be mainly removed by aerobic reactions.

6.5 Biomass Acclimatization

Some long experimental investigations on surfactant removal in H-SSF beds
highlighted that microbial flora requires a period of time to adapt itself to the
type of pollutant load. Sacco et al. [52] reported that in their pilot, H-SSF bed
removal of Triton X 100 changed along the 12-month period of observation. A
development of new bacteria strains appeared and others increased during the
dosage of the mixture, suggesting that these bacteria were adapting to the presence
of these surfactants and/or they used them as a source of nourishment.

6.6 Redox Conditions

The three types of CW differ not only in the main flow direction but also in their
operational conditions. Avila et al. [21] reported the values of redox potential
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measured in the three types of systems, confirming aerobic conditions in V-SSF
beds and SF basins and anaerobic conditions in H-SSF beds. Hijosa-Valsero
et al. [37] analyzed the seasonality variation of redox potential in H-SSF beds,
and they found that in summer time redox may increase up to positive values,
promoting the development of different microbial communities.

Redox potential within a system may vary during the life of the wetland, due to
its aging and clogging phenomena and changes in the influent quality. It mostly
influences the removal of PCPs as well as surfactants. Avila et al. [32], Navarro
et al. [33], and Conkle et al. [57] remarked that higher redox values promote PCP
removal with the exceptions of BHT and AP.

Huang et al. [44] and Sima et al. [45] agreed that anionic and nonionic surfac-
tants can be degraded in a wide range of redox values. Referring to LAS, more
oxidized conditions improve their removal, and in deeper SSF beds where the
environment is characterized by sulfate-reducing methanogenic conditions, low
LAS removals were observed [44].

In addition, redox conditions can also influence the degradation of PCPs
bioaccumulated in sediments or gravel of a wetland. This influence was investi-
gated by Conkle et al. [57] who found that DEET is appreciably degraded under
aerobic sediments, while in anaerobic conditions this does not occur.

6.7 Removal Processes Along the System

Most of the removal occurs in the first meters of the system for many of the
investigated compounds. The fragrances AHTN and HHCB mainly accumulated
in the first section of the H-SSF bed investigated by Matamoros and Bayona [39]
and a large fraction of nonionic surfactants (about 80%) and anionic ones (about
50%) degrade in the first meter of the H-SSF beds investigated by Sima and
Holcova [51] and Sima et al. [53], respectively. The same profile was confirmed
by the investigation of Zarate et al. [19] into the accumulation of triclosan and
triclocarban on the sediments of a polishing SF basin.

Avila et al. [31] and Hijosa-Valsero et al. [37] investigated the removal of
AHTN, HHCB, MDHJ, and bisphenol A in secondary multistage CWs consisting
of two H-SSF beds in series.

They found that for AHTN, HHCB, and bisphenol A, most removal occurred in
the first stage and near the inlet zone, probably due to the detention of most of the
particulate matter with which all these compounds are associated. A different
removal pattern was found for MDHJ as its main removal mechanism is biodegra-
dation favored at high temperature.
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6.8 H-SSF Bed Depth

Shallow H-SSF beds (0.3 m water depth) were found to be more efficient than
deeper ones (0.5 m) in the removal of LAS due to differently oxidized conditions
occurring on the two kinds of wetlands [44]. In the first, in fact, denitrification,
sulfate reduction and methanogenesis occurred simultaneously, while in the second,
the prevailing reactions were sulfate reduction and methanogenesis and denitrifi-
cation is insignificant.

The effect of the depth of V-SSF beds on the removal of anionic surfactants was
investigated by Kadewa et al. [49]. They found that in an acclimatized and
vegetated 0.7 m-deep V-SSF bed, anionic surfactant removal was in the range of
76-85%, while in a cascade of three still-ripening and unplanted 0.2 m V-SSF beds,
it was less, between 37 and 74%. These findings could be attributed to a more
developed microbial community in the ripe higher V-SSF bed which could guar-
antee a complete biodegradation of the different surfactants, while in the cascade of
shallow V-SSF beds, the more oxidized conditions promoted the alkyl chain
shortening of the surfactants, but not their complete degradation.

Sima et al. [53] found that the removal of anionic surfactants in an H-SSF bed
was faster in the upper 10 cm. At lower depths, anaerobic degradation of LAS
occurs where sulfates were shown to be reduced. On the contrary, studies of
nonionic surfactants showed that they can be effectively degraded at both depths,
independent of aerobic or anaerobic conditions [51].

6.9 Filling Material in SSF Beds

Lower effluent concentrations were detected for LAS and SPCs in beds filled with
finer gravel (Dgo=3.5 mm, C,=1.7) than in those containing coarse gravel
(Dgp=10 mm, C,=1.6) [44].

6.10 Seasonality and Effect of Temperature

A seasonal variation was found for the removal efficiency of many compounds, but
not for their occurrence. As a rule of thumb, removal efficiencies for dissolved-
phase compounds are greatly influenced by temperature as biodegradation is their
main removal mechanism, while depletion referring to compounds associated with
particulate matter does not exhibit such a pronounced temperature variation since
their removals are mainly due to physical mechanisms (sedimentation and
adsorption).

For compounds such as MDHJ and oxybenzone, whose main removal mecha-
nism is biodegradation, low temperatures directly reduce the physiological
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activities of the microorganisms themselves, resulting in a slowing down of the
degradation reactions that may occur [27, 42].

In H-SSF beds, summer removals were generally found to be very high (often
greater than 80%) for HHCB, AHTN, and MDHIJ, with a few exceptions related to
unplanted H-SSF beds, where HHCB and AHTN were not removed at all, while
MDH]J had variable removal efficiencies. The first two fragrances present a similar
removal pattern as they have a great sorption potential due to their lipophilic
properties, while MDHJ is mainly removed by biodegradation. The seasonality
variation found in the removal of the investigated hydrophobic compounds can be
explained by the release of these compounds in winter and accumulation in
summer, when biofilm and plants are more active [37].

In SF basins, HHCB and AHTN exhibited the same (high) removal efficiencies
in both seasons at around 85-90% [40].

For photodegradable compounds such as triclosan and cashmeran, lower values
in their removal observed in SF basins in winter could also be due to lower levels of
sunlight exposure [27].

6.11 Vegetation

Vegetation can insulate wetland surfaces and thus contribute to maintaining micro-
bial activity; roots provide a surface for the development of microbial colonies and
contribute to the creation of aerobic microenvironments within the bed, thus
favoring biodegradation. Moreover, vegetation can contribute to the removal of
micropollutants by plant uptake.

Higher removal levels of anionic surfactants were observed in planted and
acclimatized V-SSF beds with respect to unplanted and non-acclimatized ones
[49]. In SF basins covered by Lemna minor, the removal efficiencies of the
photodegradable triclosan were found to be lower than in control unplanted SF
wetlands [24].

Young CWs are more efficient when they are planted. When CWs get older, the
efficiency of planted and unplanted systems is similar as many disturbing factors
may occur (clogging, shading) causing a performance decrease in the planted CWs.

Reinhold et al. [58] found in their flask scale plants that duckweed can contribute
to removing triclosan, while it is not efficient with respect to DEET. Zarate
et al. [19] investigated bioconcentration patterns of triclosan and triclocarban
among three different macrophytes (Typha latifolia, Pontederia cordata, Sagittaria
graminea) and their concentrations in different sites of the investigated surface flow
basin. They found that concentrations of the two analytes were higher in roots rather
than in shoots and tended to decrease from the inflow to the outflow.

To complete this brief discussion, attempts to correlate observed removal effi-
ciencies of the different PCPs with their LogK,,, LogD,, and pK, were carried by
different authors (among them [28, 30]) but unfortunately no significant correla-
tions were found.



350 P. Verlicchi et al.

Referring to surfactants, Sima and Holcova [51] found similar removal efficien-
cies for BODj5 and nonionic surfactants.

7 Conclusions

It is well known that CWs, if well designed, exhibit a good ability in removing
common conventional pollutants. Their potential in removing emerging organic
contaminants is, however, still under discussion. This chapter focuses on the ability
of CWs in removing common PCPs, substances frequently used worldwide and
with increasing levels of consumption. They are quite complex molecules, with
different chemical and physical properties and are, in many cases, quite persistent
to biodegradation.

On the basis of the collated data, in general a removal was observed for each
reviewed compound with very few exceptions, mainly referring to groups of
surfactants, such as SPCs, as their formation due to LAS degradation is faster
than their removal.

The highest removal levels were found for the fragrances in all three treatment
steps. These compounds were the most studied, while for many others there is still
little data, and further investigations of their removal in the different types of CWs
are necessary.

The coexistence of different microenvironments within each type of CW which
guarantee different redox conditions and the simultaneous occurrence of biological,
physical, and chemical removal mechanisms make CWs a potentially adequate
system for the removal of PCPs, with limited operational costs.

The main weaknesses are the wide footprint of these systems — resulting in high
investment costs — and the extremely long time required to reactivate the processes
within them in the case of malfunctions which are mainly due to clogging phenom-
ena and an influent which accidentally becomes highly polluted. These weaknesses
lead to long rest periods (in the first case) or expensive maintenance interventions
(in the second).

However, CWs, due to their buffer capacity, could represent a barrier to reducing
the spread of these types of PCPs into the aquatic environment.
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Removal of Personal Care Products Through
Ferrate(VI) Oxidation Treatment

Bin Yang and Guang-Guo Ying

Abstract Personal care products (PCPs) have been widely used in daily life and
continually introduced to the aquatic environment, posing potential risks to the
aquatic ecosystem and human health. Due to incomplete removal of PCPs in
traditional wastewater and water treatment systems, advanced oxidation technolo-
gies can be applied to increase the removal efficiency of those PCPs. As a powerful
oxidant, ferrate(VI) (Fe(VI)) has a great potential for removal of PCPs during water
treatment. In this chapter, we firstly introduced the aqueous chemistry of Fe(VI);
then critically reviewed the reaction mechanisms of Fe(VI) with typical PCPs by
using removal rates, reaction kinetics, linear free-energy relationships, products
identification, and toxicity evaluation; and finally discussed the removal of PCPs
during water treatment by Fe(VI). Published phenolic and nitrogen-containing
PCPs can be completely removed by Fe(VI) oxidation treatment except
triclocarban. The reactions between the PCPs and Fe(VI) follows second-order
reaction kinetics with the apparent second-order rate constants (k,pp) ranging from
7to 1,111 M tstat pH 7.0. The reactivity of Fe(VI) species with the PCPs has the
following decreasing order of H,FeO, > HFeO, > FeO427, through the electro-
philic oxidation mechanism. The phenolic PCPs can be transformed by Fe
(VI) oxidation based on phenoxyl radical reaction, degradation, and coupling
reaction. More importantly, the oxidation of each phenolic PCPs by Fe(VI) leads
to the loss of its corresponding toxicity. The coexisting constituents present in
source water have significant effects on PCP removal during Fe(VI) oxidation
treatment. In practical applications, in situ production of Fe(VI) solution appears
to be a promising technology for removal of PCPs during pilot and full-scale water
treatment.
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1 Introduction

Personal care products (PCPs), including moisturizers, lipsticks, and fragrances to
sunscreens, soaps, and anticavity toothpastes, make billions of people around the
world to live a better and healthier lifestyle. These products are commonly used in
large quantities, and after use, they are discharged directly or indirectly into
receiving aquatic environments. Due to limited capacity for removal of these
chemicals, environmental contamination by these chemicals has been reported
[1-3]. Some of them were found to be environmentally persistent, bioactive, and
bioaccumulative [4]. Moreover, some chemicals exhibited endocrine disruptive
effects in vitro and in vivo and they have the potential to interfere with natural
hormones, causing problems in the nervous and reproductive systems [5]. PCPs
have received an increasing attention in recent years and they have been regarded as
emerging contaminants. Therefore, it is necessary to remove PCPs from traditional
water treatment effluents by using advanced oxidation technology.

Ferrate(VI) (Fe(VI)) is a powerful oxidant and its decomposition product is
nontoxic ferric hydroxide (Fe(Ill)). Thus, Fe(VI) is regarded as an environmentally
friendly oxidant in water treatment process [6—8]. Fe(VI) has been widely used to
remove emerging organic contaminants [9—12], heavy metals [13, 14], and patho-
gens [15-18] during water treatment processes. Fe(VI) selectively reacts with
electron-rich organic moieties of emerging organic contaminants, such as phenols,
anilines, amines, and olefins through electrophilic oxidation mechanism [9, 10, 12,
19, 20]. The corresponding apparent second-order reaction rate constants range
from >1 to 10° M~' s™' in aqueous solution [9, 12]. Besides, the coexisting
constituents present in source water are also responsible for a rapid Fe
(VI) consumption, which determine its ability to remove emerging organic
contaminants.

This chapter aims to firstly introduce the aqueous chemistry of Fe(VI), then
assess the potential for removal of typical PCPs during Fe(VI) treatment by
chemical reaction kinetics, propose the reaction pathway of phenolic PCPs by Fe
(VI) oxidation based on products identification, evaluate the safety of above
treatment processes by toxicity tests, and finally clarify the impact of coexisting
constituents in the source water on the removal processes. This chapter will provide
a scientific basis for the removal of PCPs through ferrate(VI) oxidation treatment.

2 Aqueous Chemistry of Fe(VI)

Ferrate(VI) (K,FeQy, Fe(VI)) is a black-purple crystalline compound in which iron
is in the +6 oxidation state. There are three main approaches for preparation of Fe
(VI): wet oxidation, dry thermal, and electrochemical synthesis [6—8]. The concen-
tration of Fe(VI) in aqueous solution can be determined by volumetric (chromite
and arsenite), electrochemical (cyclic voltammetry and potentiometry), as well as
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Fig. 1 Speciation of Fe(VI) in aqueous solution

spectrophotometric methods (FTIR, Mossbauer, UV—vis (direct 510 nm, iodide
(I7); 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS)), and fluores-
cence) [21]. For water treatment research, direct 510 nm (€519pm = 1,150 M! cm_l)
and ABTS methods (g45,m = 34,000 M! cmfl) are the most suitable techniques
for studying the reaction kinetics of Fe(VI) in aqueous solution [22-25]. Besides,
phosphate buffer has been widely used as the reaction solution since not only it
reacts very slowly with Fe(VI) but also it can prevent the precipitation of generated
ferric ion from Fe(VI) decomposition which causes interference for optical moni-
toring of Fe(VI) concentration [8].

The rates of decay and changes in spectral features of Fe(VI) solution as a
function of pH can be utilized to estimate the values of the acid dissociation
constants (pK,) [26]. Three pK, values of Fe(VI) in aqueous solution of 1.6, 3.5,
and 7.2 suggest the presence of four Fe(VI) species in the entire pH range, such as
H;FeO,*, H,FeO,, HFeO,, and FeO42_ (Fig. 1). Therefore, HFeO,  and FeO42_
are the predominant species in neutral and alkaline pH solution. Fe(VI) ion
(FeO,7) has tetrahedral structure, with four equivalent oxygen atoms covalently
bonded to central iron atom [27].

Fe(VI) is the most powerful oxidant at acidic pH condition with the redox
potential of 2.20 V (Table 1), but it becomes a relatively mild oxidant (0.57 V) at
alkaline pH condition [6, 8, 20]. Due to its strong oxidizing property, Fe
(VI) undergoes a rapid decomposition according to Eq. (1) in the presence of
water, leading to the formation of molecular oxygen and a nontoxic by-product
ferric hydroxide (Fe(III)), which makes Fe(VI) an environmentally friendly oxidant
for water treatment. Additionally, the generated Fe(IIl) can act as an effective
coagulant/precipitant during water treatment:
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Table 1 Redox potential for the oxidants used in water treatment

Disinfectant/oxidant Reaction EO(V)
Ferrate(VI) FeO,> +8H"+3e < Fe’* +4H,0 2.20
FeO,>~ +4H,0 +3¢~ < Fe(OH); + 50H~ 0.70
Chlorine Cly(g)+2e < 2C1° 1.36
CIO” +H,O+2e” < Cl” +20H™ 0.84
Hypochlorite HCIO+H" +2¢~ < CI™ +H,0 1.48
ClIO™ +H,O+2¢” < Cl” +20H™ 0.84
Chlorine dioxide ClOy(aq) +e < ClO,~ 0.95
Perchlorate ClO,~ +8H"+8e~ < Cl™ +4H,0 1.39
Ozone 03+2H"+2¢” < 0,+H,0 2.08
03;+H,0+2¢” < 0,+20H" 1.24
Hydrogen peroxide H,0, +2H" +2¢~ < 2H,0 1.78
H,O0,+2¢” < 20H™ 0.88
Dissolved oxygen 0, +4H" +4¢~ < 2H,0 1.23
Permanganate MnO,  +4H"+3e™ < MnO, +2H,0 1.68
MnO,~ +8H" +5¢~ < Mn** +4H,0 1.51
MnO, +2H,0 +3e”~ < MnO,+40H™ 0.59

4K,FeQ4 + 10H, O — 4Fe(OH)3 430, T +8KOH. (1)

The decomposition of Fe(VI) in Eq. (1) is strongly dependent on the pH values
of reaction solution, initial Fe(VI) concentration, temperature, and coexisting ions.
The decomposition of Fe(VI) in solution follows the second-order kinetics with
respect to its concentration. The decomposition rate of Fe(VI) dramatically
decreases with the increasing pH, ranging from 10° M~' s™' (pH 1) to
<1 M~ "' s™" (pH 8.2), indicating Fe(VI) has higher oxidation power at acidic pH
conditions [8, 13]. The lowest rate of Fe(VI) decomposition occurs at pH 9.4-9.7.
Besides, diluted Fe(VI) solutions are reported to be more stable than the concen-
trated ones. Increasing temperature would decrease the concentration of Fe(VI) in
solution. The addition of KCl or KNOj as an impurity in solution accelerated the
initial decomposition of the Fe(VI) but had the effect of stabilizing a small quantity
of Fe(VI). NaCl and FeOOH as impurities caused complete decomposition of Fe
(VI) in solution at a rapid rate [28].

3 Oxidation of Personal Care Products by Ferrate(VI)

3.1 Removal Rates

Removal of some PCPs by Fe(VI) has been investigated in the laboratory [29-31].
Figure 2 demonstrates the removal of eight typical PCPs by Fe(VI) oxidation
individually under different molar ratios in buffered Milli-Q water at pH 7.0 or
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Fig. 2 Removal of typical PCPs by Fe(VI) oxidation in 10 mM phosphate buffer solution.
Experimental conditions: [TCS/TCCly=2 pM, [BP-3]p=1 pM, [BTs]p=10 pM, V=25 mL,
T=2441°C, and contact time 3 h. The reaction of TCS and TCC was performed in pH 7.0
solution, and BP-3 and BTs in pH 8.0 solution

8.0 and 24 + 1°C. The eight studied PCPs include antimicrobial triclosan (TCS) and
triclocarban (TCC), UV filter benzophenone-3 (BP-3), and anticorrosion agents
benzotriazoles (BTs; BT, 1H-benzotriazole; SMBT, 5-methyl-1H-benzotriazole;
DMBT, 5,6-dimethyl-1H-benzotriazole hydrate; 5CBT, 5-chloro-1H-
benzotriazole; HBT, 1-hydroxybenzotriazole). With the dosage of Fe
(VD) increasing, the concentration of each PCPs gradually decreased. However,
TCC did not react with Fe(VI) at pH 7.0. When the molar ratio of Fe(VI) with PCPs
increasing up to 30:1, the removal rate of each PCPs reached about >95% except
TCC. Besides, the dosed amounts of Fe(VI) for complete removal of PCPs had the
following increasing order: TCS < BP-3 < BTs << TCC, which illustrates the eas-
ier oxidation of TCS and BP-3 molecules than BTs and TCC by Fe(VI). Thus, the
selected phenolic PCPs have higher reactivity with Fe(VI) than those nitrogen-
containing PCPs.

Since Fe(VI) has been known to react with electron-rich organic moieties, such
as phenols, anilines, amines, olefins, and organosulfur [9, 10, 12, 20], the reactivity
of other categories of PCPs with Fe(VI) can be tentatively deduced as follows.
Preservatives p-hydroxybenzoic esters (parabens) with the phenol moieties may be
easily removed by Fe(VI) oxidation, but synthetic polycyclic musks (AHTN
(7-acetyl-1,1,3,4,4,6-hexamethyl-tetralin) and HHCB (1,3,4,6,7,8-hexahydro-
4,6,6,7,8,8-hexamethylcyclopenta-y-2-benzopyrane)) may not react with Fe(VI).
The detailed removal of above PCPs by Fe(VI) oxidation still needs to be further
confirmed.
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3.2 Reaction Kinetics

Second-order reaction rate equation (Eq. (2)) is commonly used to describe the Fe
(VI) oxidation of PCPs in phosphate buffer solutions. Kinetic experiments are
conducted under pseudo-first-order conditions with either Fe(VI) or the PCPs in
excess. For those with Fe(VI) in excess to PCPs, the decrease in concentrations for
Fe(VI) and PCPs is measured as a function of the reaction time. The apparent
second-order rate constants (k,pp) are calculated by plotting the natural logarithm of
the PCP concentrations with the Fe(VI) exposure (Fe(VI) concentration integrated
over time, ff)[Fe(VI)]dt), as shown in Eq. (3). For those with PCPs in excess to Fe
(VD), Eq. (2) can be rewritten as Eq. (4). The values of k,p, are then determined from
the variation in k” as a function of PCP concentrations. The obtained values of rate
constants k,pp, for the reaction of Fe(VI) with PCPs as a function of pH (6.0-10.0)
are presented in Fig. 3 and Table 2 [29-31]. The determined k,,;, values range from
7M s (5CBT) to 1,111 M~ ' s~! (TCS) at pH 7.0 and 24 + 1°C with the half-
life (#1,2) ranging from 1,917 s to 12 s at a Fe(VI) concentration of 10 mg L' The
kapp values of TCS and BP-3 reaction with Fe(VI) are greater than those of BTs,
which is consistent with the results of removal rates. Besides, the k., of the
reaction decreased with increasing pH values (Fig. 3). These pH-dependent varia-
tions in k,p, could be explained by species-specific reactions between Fe
(VI) species (HFeO; < H' + FeOﬁ =, PK. Hreo4 = 7.23 [26]), and acid—base species
of an ionizable PCP species (PCPs < H*+PCPs ™, pK, pcps) by Egs. (5)—(11):

—d[PCPs]/dr = kypp[Fe(VI)][PCPs], )
In([PCPs]/[PCPs],) = —kappjt [Fe(VI)]dt, (3)
0

—d[Fe(VI)]/dt = K'[Fe(VI)] where k" = kypp[PCPs], (4)
kapp [Fe(VI)]tol [P CPS]tot = Z kii(xi Bj [FC(VI)]tot [PCPS]tot’ (5)

=1,2,3

=1,2

[H2Feo4} /[Fe(V )Lm [H+] /T, (6)
o = [HFeO4] [Fe(VD)] ., Ko more04/T, ™)
oz = [FeO; | /[Fe(VD)] , = Ka,HZFeO4Ka,HFeO47/ T, (8)
T = [H+]2 + [H"]Ka m2reos + Ka m2re04Ka, HRe0s— 9)
B, = [PCPs]/[PCPs], = [H"]/([H"] + Kapces), (10)
B, = [PCPs~]/[PCPs],,, = Ka pcps/((H"] + Ka, pcps), (11)

where [Fe(VD)];o; = [H,FeOy4] + [HFeO; ] + [FeO3 7], [PCPs],o; = [PCPs] +
[PCPs™]. o; and f; represent the respective species distribution coefficients for



362 B. Yang and G.-G. Ying

TCS
BP-3
BT
5MBT |
DMBT |
5CBT

HBT

1000 4

PEALAXEDO

100 4

kM s

10+

r r r - 1 *r I~ 1 t° L T L Y L
60 65 70 75 80 85 90 95 100 105 110
pH

Fig. 3 Apparent second-order rate constants and associated model simulation for the reactions of
PCPs with Fe(VI) as a function of pH (6.0-10.0) at the room temperature (24 & 1°C)

Fe(VI) and PCPs; i and j represent each of the three Fe(VI) species and PCP species,
respectively; and k;; represents the species-specific second-order rate constant for
the reaction between the Fe(VI) species i with the PCP species j. Consequently, the
k;; is calculated from least-squares nonlinear regressions of the experimental k,p,
data by using SigmaPlot 10.0 (Systat Software Inc.). Table 2 summarizes the
determined ki,, k>, and k,, values for each PCPs. The k,, was magnitude higher
than k,; because the deprotonated species are better electron donors. Thus, the
reaction between HFeO, and the dissociated PCPs controls the overall reaction of
Fe(VI) with PCPs. Besides, the k5 is 10* times higher than k,, for HBT, which
indicates HyFeO,4 has a higher reactivity than HFeO, . However, reactions of the
deprotonated Fe(VI) species (FeO427) with PCP species have a low contribution to
the overall reactivity. Moreover, density functional theory (DFT) calculations have
shown that the protonated species of Fe(VI) has a larger spin density on the oxo
ligands than the deprotonated species of Fe(VI), which increases the oxidation
ability of protonated Fe(VI) [32]. Above results demonstrate that the order of
oxidizing power of Fe(VI) species for PCPs in aqueous solution is following
H,FeO, > HFeO, > FeO,*".

3.3 Linear Free-Energy Relationships

Linear free-energy relationships have been widely used in oxidation/disinfection
reaction for the understanding of the reaction mechanisms and prediction of
reaction rates [12, 22, 23, 25, 33, 34]. The Hammett-type correlations between
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the k;; of the above PCP reaction with Fe(VI) and free-energy descriptors (c,," or 6,,)
have been successfully established according to the relationship log(k;;)) = yo + po as
shown in Egs. (12)—(15) [30]. A negative Hammett slope (p) illustrated the elec-
trophilic oxidation mechanism for Fe(VI) reaction with PCPs. The Hammett-type
relationships of substituted phenols for TCS (Eqgs. (12) and (13)) verify the depen-
dence of TCS and Fe(VI) reaction kinetics on phenol substituent effects, illustrating
the Fe(VI) reacts initially with TCS by electrophilic attack at the latter’s phenol
moiety. Similarly, 1,2,3-triazole moiety of BT can be initially electrophilic attacked
by Fe(VI) (Egs. (14) and (15)), but the initial attack site of HBT may be at the
N-OH bond by Fe(VI).
Substituted phenols for TCS:

log(ky1) = 2.30(+0.08) — 2.20(+0.26)6," R> =091, n =8,  (12)
log(kpy) = 4.42(+0.04) — 3.13(£0.13)6," R>=0.99, n=8.  (13)

BTs:

log(kyi) = 1.00(+0.08) — 2.86(+0.38)5, R> =095 n=4,  (14)
log(ky) = 2.27(+0.02) — 1.94(40.10)5, R>=0.99, n=4.  (15)

3.4 Products Identification

During Fe(VI) oxidation treatment, numerous transformation products may be
formed and persist even after the parent compound has been fully removed
[35-39]. Thus, the oxidation products of some PCPs (i.e., TCS, BP-3, and BTs)
reaction with Fe(VI) were tentatively identified by gas chromatography—mass
spectrometry (GC-MS) and rapid resolution liquid chromatography—tandem mass
spectrometry (RRLC-MS/MS) techniques [29-31]. For the reaction between
Fe(VI) and TCS, four products of chlorophenol, 2-chlorobenzoquinone,
2.4-dichlorophenol, and 2-chloro-5-(2,4-dichlorophenoxy)benzene-1,4-diol were
identified in the reaction solution by GC—-MS and RRLC-MS/MS. In addition,
the dimerization of some TCS degradation products, such as 5-chloro-3-(chlorohy-
droquinone)phenol, 4,6-dichloro-2-(2,4-dichlorophenoxy)phenol, and 3-chloro-2-
(2,3-dichlorophenoxy)-6-(2,4-dichlorophenoxy)phenol, was also identified by
RRLC-MS/MS. But, only two reaction products of 4-methoxybenzophenone and
4-methoxybenzoyl cation were found during Fe(VI) degradation of BP-3. However,
no obvious transformation products were found in the Fe(VI) reaction with BTs.
According to the kinetic information, products identification, and the mechanism
of Fe(VI) reaction with phenols [36, 40, 41], a plausible reaction scheme for Fe
(VD) oxidation of phenolic PCPs (TCS and BP-3) is proposed in Fig. 4. Initially, the
reaction mixture of Fe(VI) with phenol moiety of TCS and BP-3 may proceed
through an associative type of mechanism and involve hydrogen bond formation in the
activated complex accompanied by intermolecular electron transfer. Consequently,
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Fe(VI) oxidizes the phenol moiety by one electron transfer generating corresponding
phenoxyl radical and Fe(V) as the first step. For TCS, the phenoxyl radical transferred
to the para-position of TCS molecule and reacts with ferrates (Fe(VI) and Fe(V))
generating  2-chloro-5-(2,4-dichlodichlorophenoxy)-[1,4] benzoquinone through
two-electron oxidation. It can be converted into 2-chloro-5-(2,4-dichlorophenoxy)
benzene-1,4-diol. Fe(VI) then goes on to break C—O bond leading to the formation
of chlorophenol, 2.4-dichlorophenol, chlorocatechol, and 2-chlorobenzoquinone. Cou-
pling reaction may also occur during Fe(VI) oxidation of TCS. This is especially likely
given the large excess of phenol in the reaction mixture. Phenoxyl radical of 2,4-
dichlorophenol reacted with another triclosan and 2,4-dichlorophenol forming products
3-chloro-2-(2,3-dichlorophenoxy)-6-(2,4-dichlorophenoxy) and 4,6-dichloro-2-(24-
dichlorophenoxy)phenol. Phenoxyl radical of 2-chlorocatechol and m-chlorophenol
produced 5-chloro-3-(chlorohydroquinone)phenol. For BP-3, the activated electron in
phenoxyl radical could be transferred to the oxygen atom of phenyl methanone moiety.
Ferrates (Fe(VI) or Fe(V)) then break C—O bond of phenol or eliminate benzene of
BP-3 leading to the formation of 4-methoxybenzophenone and 4-methoxybenzoyl
cation. But, coupling reaction of BP-3 products has not been found in the reaction
solutions. Overall, transformation products could undergo further oxidation reactions
with Fe(VI), yielding low molecular weight organic products.

3.5 Toxicity Evaluation

The Fe(VI) oxidation process will undoubtedly render the transformation products
a different biological binding property [35, 37, 42]. For example, the antibacterial
activity of the TCS molecule is derived primarily from its phenol ring, via van der
Waals and hydrogen-bonding interactions with the bacterial enoyl-acyl carrier
protein reductase enzyme [43]. Thus, oxidation of the TCS molecule by Fe
(VD) leads to the breakage of C—O bond or phenol ring changing, which is consid-
ered to reduce or eliminate its toxicity. Using algae growth inhibition tests of TCS
and its products to Pseudokirchneriella subcapitata, Yang et al. [29] demonstrated
that the dose—response relationships of the Fe(VI) treated TCS samples and TCS
standards are almost the same, indicating that the generated oxidation products of
TCS did not exhibit any appreciable degree of inhibitory effect, only relative to
TCS itself. Moreover, the Fe(VI) dosage used in this study did not appear to inhibit
green algae growth, which reconfirms previous assumption that Fe(VI) can be an
“environmentally friendly” oxidant for water treatment applications.

Similarly, the UV filter of BP-3 is an important representative hydroxylated
benzophenone derivative which has potential endocrine-disrupting effects such
as estrogenic and antiandrogenic activities [44—46]. However, the oxidation
product of 4-methoxybenzophenone has been manifested to possess no estrogenic
activity [47]. Thus, Fe(VI) oxidation treatment not only removes hydroxylated
benzophenone derivatives in water but also produces by-products that are expected
to have less endocrine-disrupting effects.
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4 Removal of Personal Care Products During Water
Treatment with Ferrate(VI)

4.1 Influence of Coexisting Constituents on PCP Removal

PCPs containing the electron-rich organic moieties mentioned above can be poten-
tially removed during water treatment by Fe(VI) oxidation. Moreover, the
coexisting constituents present in source water are also responsible for a rapid Fe
(VI) consumption, which determine its ability to remove PCPs. The influence of
coexisting constituents such as dissolved organic matter (humic acid (HA)), inor-
ganic ions (Br~, NH4*, and NO; "), metal cations (Cu”*, Mn**, Fe**, and Fe**), or
ionic strength (NaCl) on PCP removal during Fe(VI) treatment is discussed in the
following with BP-3 as an example [31].

4.1.1 Dissolved Organic Matter

Humic substances are the principal component of dissolved organic matter in
aquatic systems. HA can decrease the removal efficiency of BP-3 during Fe
(VI) treatment [31]. When the spiked concentration of HA reached 15 mg L™,
the removal efficiency of BP-3 reduced from 60% to 31% and 17% at pH 7.0 and
8.0, respectively. The significant consumption of Fe(VI) and the competition
reaction with BP-3 by HA may be responsible for remarkably decreased removal
efficiency. Besides, Lee and von Gunten [48] suggested that the competition can
disappear rapidly after the electron-rich organic moieties present in effluent organic
matter are consumed during Fe(VI) treatment.

4.1.2 Inorganic Ions

Selected Br—, NH,", and NOz ™~ are important inorganic species in aquatic systems.
The effect of Br~ on the Fe(VI) removal of BP-3 is related to the pH of the reaction
solution [31]. When the reaction solution was at pH 7.0, Br™ significantly enhanced
the removal efficiency of BP-3, from 58% to 84% at 100 pM of Br ™, but it showed
no effect at pH 8.0. Besides, BP-3 removal is not affected by the presence of NH,*
and NO; ™. This may be due to the low reactivity of Fe(VI) with NH," and NO;~
[48, 49].

4.1.3 Metal Cations
The removal efficiency of BP-3 is slightly enhanced by the presence of Cu®*

[31]. At the Cu®* concentration of 20 pM, the removal efficiency of BP-3 was
increased from 60% to 83% and 79% at pH 7.0 and pH 8.0, respectively. However,
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Mn?* significantly decreases the removal efficiency of BP-3. This may be due to the
reducing state of the manganese ion under the alkaline condition [50], which may
accelerate the decomposition of Fe(VI). Besides, Fe>* and Fe>* have little effects on
BP-3 removal.

4.1.4 Ionic Strength

NaCl is ordinarily used to adjust the ionic strength of aqueous solutions. NaCl only
have a small effect on the removal efficiency of BP-3 during Fe(VI) treatment
[31]. Even when the concentration of NaCl increased to 35 g L™, the removal
efficiency of BP-3 decreased from 60% to 33% and 43% at pH 7.0 and 8.0,
respectively. An explanation may be that the pH values of the reaction solution
were decreased with the increasing NaCl which consumed more amount of Fe(VI),
resulting in the decreased removal of BP-3.

The removal of BP-3 spiked in the natural water (groundwater, river water, and
wastewater) during Fe(VI) treatment was also conducted in Fe(VI) excess to
confirm the effects of coexisting constituents as shown in Fig. 5 [31]. With the
increasing reaction times, the residual concentrations of BP-3 gradually decreased
in all the natural water samples. Before complete removal of BP-3, the residual
concentrations follow the decreasing order of wastewater > groundwater-1 > river
water > groundwater-2, which is in accordance with the trends of dissolved organic

2.0 + —a— Ground water-1
—e— Ground water-2
—a&— River water

15 - —v— Waste water
s
@ 1.0 4
o
(ia]
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Fig. 5 Oxidation removal of BP-3 by Fe(VI) during the treatment of groundwater, river water,
and wastewater. Experimental conditions: [BP-3]o =2 pM, [Fe(VI)]o = 100 pM, pH 8.0 (20 mM
borate buffer), T=24 4+ 1°C
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carbon (DOC) values: 2.51 mg L™" (wastewater) >0.78 mg L™" (river water) >
0.24 mg L' (ground water). The residual concentrations of BP-3 in groundwater-1
are higher than in river water; this is because groundwater-1 has higher conductivity
of 183.8 puS/cm than that of river water (49.4 pS/cm). So, the differences of water
quality parameters caused mainly by the presence of coexisting constituents can
significantly influence the removal efficiencies of BP-3 during Fe(VI) treatment.
However, BP-3 can achieve complete removal in all natural water samples after
300 s (Fig. 5), indicating complete removal of BP-3 can be achieved by dosing more
Fe(VI) in order to reduce the effects of coexisting constituents present in natural
waters.

4.2 In Situ Production of Fe(VI) Solution for PCP Removal

The exploration of the use of Fe(VI) for removal of typical PCPs spiked in a natural
water matrix has been well addressed in the laboratory studies. However, chal-
lenges still exist for the implementation of Fe(VI) oxidation treatment in a pilot or
full-scale application for PCP removal during water treatment due to the instability
of a Fe(VI) solution or high production cost of solid Fe(VI) products. Up to now,
one promising approach is the in situ production of Fe(VI) in solution and its direct
use in water treatment.

The Ferrator®, invented by Ferrate Treatment Technologies, LLC (FTT,
Orlando, Florida), is a commercial reactor to synthesize liquid Fe(VI) in situ in
bulk quantities for broad industrial use [51]. The Fe(VI) solution is synthesized
based on wet oxidation method from commodity feedstocks such as alkali hydrox-
ide, hypochlorite, and ferric chloride. Ferrator®™ reduces the production steps from
23 to 5 by eliminating the storage, handling, and transportation overheads required
for a prepackaged product. Thus, the costs of production can be cut by 85% than
traditional Fe(VI) deployment. But the disadvantage of this strategy is that addition
of a sufficient amount of Fe(VI) solution leads to strong alkalization of the treated
water to a pH of about 12; it has to utilize the ferric chloride, sulfuric acid, or CO,
for adjusting the pH of treated water in actual applications.

Electrochemical Fe(VI) synthesis may be the most promising and economically
competitive process on an industrial scale for the purpose of water treatment. Licht
and Yu [24] proposed a schematic of online electrochemical Fe(VI) water purifi-
cation system. Fe(VI) solution can be electrochemically prepared with a coiled iron
wire anode immersed in 40 mL of 10 M NaOH at a constant oxidative current
applied by Pine AFRDES bipotentiostat. The generated Fe(VI) was separated from
the cathode by a Nafion 350 alkali-resistant, anion-impermeable membrane and
then dosed into a continuous flow of effluent. This process also causes the strong
alkalization of the treated water, but recent studies of pilot and full-scale trials
demonstrated that with the use of highly concentrated NaOH, high current density,
and anodic surface cleaning procedures, the yield efficiency of the in situ-generated
Fe(VI) was up to 70%, and the concentration of the resulting Fe(VI) solution was as
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highas9 g L~! [52-54]. Thus, very low volume dose of Fe(VI) solution is required
for water treatment and the final pH value of treated water can be controlled
below 9.

In summary, several attempts have been made to commercialize in situ Fe
(VI) synthesis, but in situ production of Fe(VI) solution for removal of PCPs during
water treatment needs to be further validated.

Conclusions

Fe(VI) has been demonstrated to have remarkable performance in the oxida-
tive removal of PCPs in water. By Fe(V]) treatment, phenolic PCPs are more
easily oxidized than those nitrogen-containing PCPs. The reactions between
Fe(VI) and the above PCPs follow second-order reaction kinetics, with the
determined k,p, values ranging from 7 M !s! (5CBT) to 1,111 M !s!
(TCS) at pH 7.0. The reactivity of Fe(VI) species with PCPs is following the
decreasing order of H,FeO, > HFeO, ™ >Fe0,”". Hammett-type relation-
ships illustrate the electrophilic oxidation mechanism of the above reactions.
Fe(VI) can transform the phenolic PCP molecules through phenoxyl radical
reaction, degradation, and coupling reaction. More importantly, the oxidation
of each phenolic PCPs by Fe(VI) leads to the loss of its corresponding
toxicity. However, the coexisting constituents present in source water could
have significant effects on PCP removal during Fe(VI) oxidation treatment. In
situ production of Fe(VI) solution appears to be a promising technology for
removal of PCPs during pilot and full-scale water treatment. The potential
future research directions are proposed as follows:

1. The removal of other categories of PCPs through Fe(VI) oxidation treat-
ment should be carried out in batch experiments, since the numerous PCPs
ubiquitous in aquatic environment have different reaction mechanisms
with Fe(VI).

2. The information on radical formation and valence of iron intermediates
should be studied by the application of electron paramagnetic resonance
spectroscopy and Mossbauer spectroscopic techniques, to advance our
understanding of the oxidative chemistry of Fe(VI) with PCPs.

3. The potential transformation products of PCP reaction with Fe(VI) should
be identified by GC-MS and LC-MS/MS techniques, and the toxicity of
transformation products should be evaluated by using various bioassays.

4. The in situ production of Fe(VI) solution for PCP removal should be
conducted in pilot and full-scale trials to validate the treatment perfor-
mance obtained in the laboratory studies and evaluate economic suitability
of using Fe(VI) oxidation treatment.
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Ozonation as an Advanced Treatment
Technique for the Degradation of Personal
Care Products in Water
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Abstract Water is the most essential element to life on Earth. However, the
availability and quality of the global water resources are at risk because many
stressors of human origin are putting pressure on it. The contamination of water
bodies (lakes, rivers, aquifers and oceans) occurs when man-made chemicals are
directly or indirectly discharged into water bodies without adequate treatment to
remove harmful compounds, affecting organisms living in these aquatic ecosys-
tems. As new compounds are produced and ultimately detected in the environment,
improved water treatment techniques have to be available for their elimination. For
the degradation of a wide range of emerging organic micropollutants, last year’s
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advanced oxidation techniques have proven to be quite effective. In this chapter, we
focus on the capabilities of ozonation to eliminate personal care products (PCPs)
from water. Fundamentals and major mechanisms of ozonation are presented, along
with an overview of its main application for the removal of several PCPs, with a
more detailed section on benzophenone-3 degradation and by-products. Finally,
some considerations as regards the economic cost of implementing tertiary treat-
ment techniques like ozonation in wastewater treatment plants are pointed out.

Keywords Advanced oxidation processes (AOPs), Benzophenones, By-products,
Ozonation, Personal care products (PCPs)
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1 Introduction

Access to clean water is one of human’s first needs and a prerequisite for a healthy
life. However, increased population and anthropogenic activities put a growing
pressure on both the availability and quality of the global water resources. Although
legislative frameworks, such as the European Water Framework Directive 2000/60/
EC (WFD), have been developed to protect water bodies against pollution caused
by a list of priority substances, a decade of advances in environmental analysis has
resulted in the discovery and increased awareness of emerging, not-regulated
anthropogenic organic micropollutants in the urban water cycle [1, 2]. These
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include polar pesticides, pharmaceutical residues and drugs of abuse, personal care
products, hormones and other endocrine disrupting compounds (EDCs), bromi-
nated and organophosphate flame retardants, perfluorinated compounds, plasti-
cizers, surfactants, artificial sweeteners, algal and cyanobacterial toxins,
disinfection by-products, etc., dispersed in the aquatic environment at very low
concentrations (microgram down to nanogram per litre). Their continuous intro-
duction into the environment, pseudo-persistence and intrinsic ability to interfere
with organisms concern the scientific and public community because their potential
toxic effects can threaten the good ecological status of water bodies as well as
human health [3].

Commonly used municipal wastewater treatment plants (WWTPs), primarily
operating through biological processes, were developed and designed to protect
natural aquatic systems and water resources mainly by removing loads of carbon,
nitrogen and phosphorous, present in the influent in the mg L™" range [4, 5]. The
increased detection of a wide range of organic micropollutants in the aquatic
environment shows the limitations of conventional WWTPs in removing these
often biorecalcitrant compounds. Since more than 90% of the wastewater is treated
in centralized WWTPs in industrialized countries, they represent a major pathway
through which micropollutants enter our water resources [6]. Therefore, the water
industry is currently evaluating the need for upgraded WWTPs [7], necessitating
the development, optimization and implementation of improved water treatment
techniques.

In this context, advanced oxidation processes (AOPs) encompassing a number of
physical-chemical techniques such as ozonation, UV/H,O, processes, vacuum UV
irradiation, heterogeneous photocatalysis and (photo-)Fenton and electrochemical
processes are nowadays of main interest [5, 8—16]. Through different kinds of
mechanisms, they all involve the production of highly reactive and non-selective
hydroxyl radicals, being very strong oxidants transforming refractory (micro)pol-
lutants into less complex compounds aiming at reducing toxicity and/or increasing
biodegradability. According to Joss et al. [17], AOPs are a promising tool for the
removal of recalcitrant organic pollutants at an acceptable cost (0.05-0.20 € per m*
for ozonation). Among the different AOPs, ozonation is one of the most intensively
investigated and most promising techniques [8, 18, 19].

Ozonation of drinking water and wastewater for disinfection purposes has a long
tradition [4, 20]. In recent years, it has also come into picture because of its benefits
as an advanced wastewater treatment technology in laboratory-, pilot- and some
full-scale studies for micropollutant removal [21]. The results show that ozonation
of various secondary wastewater effluents from Australia, Europe, Japan and the
United States can achieve significant elimination (i.e. >80%) of many
micropollutants at reasonable ozone doses (e.g. at mass-based ozone to dissolved
organic carbon ratios of 0.6-1.0 g O3g~' DOC). In conjunction with in vitro and
in vivo test batteries, the toxicity of these wastewater effluents was also found to be
significantly reduced after ozonation or ozonation followed by biological filtration
[4]. With few exceptions, it can also be expected that municipal wastewater
ozonation generally yields sufficient structural modifications of antibacterial
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molecules to eliminate their antibacterial activity and oestrogenicity [11, 22,
23]. Overall, recent studies demonstrate that ozonation can be a useful, economi-
cally feasible polishing treatment to improve the quality of municipal wastewater
effluents [7].

In this chapter, the goal is to provide the reader of this book with some data on
the electronic structure and physical-chemical characteristics of ozone, as well as
with some fundamentals and mechanisms taking place during ozonation reactions
in (waste)water. In a second part, a rather comprehensive and broad overview is
given of recent studies published in the open literature dealing with ozonation as an
advanced oxidation technique to remove personal care products (PCPs) from water.
Next, a more detailed case study is briefly presented in which the ozonation of the
UV filter and model PCP compound benzophenone-3 (BP3) is studied with partic-
ular focus on the effect of operational variables and the identification of BP3
ozonation products. Finally, some economic considerations and conclusive com-
ments are presented.

2 Ozonation: Fundamentals and Mechanisms

2.1 The Ozone Molecule and Its Reactivity

The ozone molecule, consisting of three oxygen atoms, exists as a hybrid of four
possible resonance structures (Fig. 1), providing the molecule some degree of
polarity.

Although the dipolar momentum of ozone is rather weak (0.53 D), different
properties of the molecule — such as solubility and type of reactivity of bonds — are
due to its polarity. Important for its application in AOP techniques is the fact that
ozone is a very powerful oxidizing agent, with a standard redox potential of 2.07 V.
The high reactivity can be attributed to the electron configuration of the molecule.
Due to the absence of electrons at one part of the molecule and the excess at another
part, ozone has an electrophilic as well as a nucleophilic character [24].
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In aqueous medium, the ozone molecule is unstable, and autocatalytic decom-
position occurs, giving rise to the formation of numerous free radical species,
among which is the hydroxyl radical (HO"), being even a stronger (redox potential
of 2.80 V) and much less selective oxidant than ozone. In fact, ozone reacts
selectively with organic molecules at rate constants (kos) ranging between
<0.1 M~ ' s7"and about 10" M~' s, It is particularly reactive towards functional
groups with high electron density such as double bonds, activated aromatic systems,
non-protonated secondary and tertiary amines and reduced sulphur species [4], but
not towards aromatic rings with ethinyl, amide or carboxyl groups [25]. Hydroxyl
radicals react unselectively via radical addition, hydrogen abstraction or electron
transfer mechanisms at higher rate constants (kyo.) varying over four orders of
magnitude with the major part being about 10° M~' s~ [23, 26]. Therefore,
hydroxyl radicals can contribute to the oxidation of ozone-recalcitrant compounds.

As a result, ozone may degrade organic micropollutants like PCPs in (waste)
water by either of two oxidation mechanisms: direct (Sect. 2.2) or indirect
(Sect. 2.3) ozonation reactions. In the presence of dissolved organic matter
(DOM), the formation of hydroxyl radicals is enhanced compared to in pure
water, which makes the indirect mechanism being the most prevalent in ozonation
of highly loaded (DOM) (waste)waters [27]. Dodd et al. [28] suggest that com-
pounds with ko3/kpo. ratios less than 10° will generally be transformed to a large
extent by HO® radicals rather than by molecular ozone during wastewater ozona-
tion. Unfortunately, despite kinetic data are essential to evaluate the removal
efficiencies of micropollutants from water during ozonation and AOPs, reaction
rate constants are still unavailable for many emerging micropollutants like
PCPs [29].

2.2 Direct Ozonation Reactions

Due to its electronic structure, ozone can react with aqueous compounds through
mainly three different reaction mechanisms: (i) oxidation—reduction reactions,
(ii) dipolar cycloaddition reactions and (iii) electrophilic substitution reactions.
Oxidation—reduction reactions are characterized by the transfer of electrons from
one species (reductor) to another (oxidant). Because of its high standard redox
potential, the ozone molecule has a high capacity to react with numerous com-
pounds by means of this reaction mechanism. Nevertheless, this type of reactivity is
particularly important for some inorganic species such as Fe** or I [24]. Oxidation
of organic compounds in wastewater is typically associated with the formation of
more oxygen-rich moieties (rather than their complete oxidation to produce inor-
ganic carbon dioxide and water). These organic transformation products are typi-
cally more polar and biodegradable than the parent compounds [27, 30]. In case of
olefinic compounds, having one or more carbon double bonds, cycloaddition
reactions may occur. The general reaction pathway here is called the Criegee
mechanism, where a primary unstable cyclic ozonide (1,2,3-trioxolane) is formed
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which decomposes into a carbonyl compound and a carbonyl oxide. The latter
undergoes further reaction with possible formation of a secondary ozonide (1,2,4-
trioxolane), (hydro)peroxides and carbonyl compounds (ketones, aldehydes and
carbonic acids). Also aromatic compounds can react with ozone through
1,3-cycloaddition leading to the break-up of the aromatic ring. However, because
of the stability of the aromatic ring, the electrophilic attack of one terminal oxygen
of the ozone molecule on any nucleophilic centre of the aromatic compound is more
probable, resulting in the substitution of one part of the molecule. Whereas the
cycloaddition reaction leads to the loss of aromaticity, the electrophilic substitution
reaction retains the aromatic ring. An important consideration is the presence of
substituting groups such as HO™, NO,, Cl™, etc. in the aromatic molecule, since
they can strongly affect (activate or deactivate) the reactivity of the aromatic ring
with electrophilic agents, because of their increasing or decreasing effect on the
stability of the carbocation involved during electrophilic substitution [24].

2.3 Indirect Ozonation Reactions

Indirect ozonation reactions are those between HO" or other free radicals, formed
through the decomposition of ozone or from other direct ozonation reactions, and
compounds present in water.

The mechanism of Staehelin, Hoigné and Biihler (SHB model) is generally
accepted for ozone decomposition in water at neutral pH conditions, whereas an
alternative model is proposed by Tomiyasu, Fukutomi and Gordon (TFG) at rather
alkaline pH [24]. Figure 2 gives a simplified representation of main reactions
involved in the SHB model. Next to direct reactions of ozone with organic mole-
cules (Sect. 2.2), ozone decomposition may be induced by OH™, HO, ™ or other
initiators. This will lead to HO" through formation of O3~ and HO5". Hydrogen
peroxide (H,0,) may be an important promotor for ozone decomposition. In the
peroxone process, it is applied as reagent to enhance radical concentrations. It can
also be formed through reactions between ozone and hydroxyl anions or between
two hydroperoxyl radicals and/or during ozonation of organic impurities. H,O, also
acts as a HO" scavenger. Buxton et al. [31] reported reaction constants of 7.5 x 10°
and 2.7 x 10’ M~ s7! between hydroxyl radicals and HO,~ and H,0O,, respec-
tively. Therefore, H,0,/O;5 ratios for hydroxyl radical formation reveal an opti-
mum, typically around 0.5 mol mol " [32].

In natural and wastewaters, the reaction system becomes even more complex
than in pure water. Radical promotion as well as radical scavenging occurs.
Carbonate ions are important radical scavengers since HCO;~ and CO5*>~ have
reaction constants with hydroxyl radicals of 8.5 x 10° and 4.2 x 10 M~! s,
respectively [24]. Also DOM may act as a scavenger, although reactions between
ozone and DOM are highly complex and affect ozone stability in several ways.
Some DOM moieties directly react with ozone, and part of these reactions can give
rise to superoxide radical anions or ozone radicals. As such, they initiate the chain
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Fig. 2 Simplified scheme of reactions of ozone in water loaded with dissolved organic matter
(DOM), according to the SHB model

reaction [26, 33]. DOM also indirectly affects ozone decomposition by interacting
with HO". This can have an inhibiting effect by terminating the radical chain
mechanism, or it can promote the mechanism by peroxide formation. Part of
these reactions lead to carbon-centred radicals which subsequently react with
dissolved oxygen to finally produce superoxide radical anions. These radicals
significantly promote ozone decomposition. Examples of compounds that produce
superoxide radical anions upon reaction with ozone are phenols and secondary
amines.

3 Ozonation and Ozone-Based Advanced Oxidation
of PCPs

Ozonation studies of emerging organic micropollutants most often focus on phar-
maceuticals (e.g. antibiotics, p-blockers, antineoplastic agents, etc.) and hormones
(e.g. oestrone, oestradiol, diethylstilbestrol), while data on the ozonation of per-
sonal care products is relatively limited [34, 35]. Most of the studies dealing with
ozonation or ozone-based advanced oxidation of PCPs do not particularly focus on
this group of emerging contaminants, but include some PCPs in a mixture of a large
number of other types of micropollutants. The main results obtained during ozon-
ation of different types of PCPs are briefly summarized in Sects. 3.1-3.5.
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3.1 Triclosan: A Widely Used Antimicrobial

Triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether) is used as an antimicrobial
agent in a large number of medical and personal care products (e.g. liquid soaps,
deodorants, toothpaste, mouthwash) and in functional clothing, textiles and plastics
(e.g. sportswear, bedclothes, shoes, carpets) to control the growth of disease- or
odour-causing bacteria. It is also used as a stabilizing agent in a multitude of
detergents and cosmetics [36-38]. Discharges of triclosan residues into surface
water are undesirable because of toxic effects towards aquatic organisms (e.g. algae
and fish), risks for unanticipated alterations in microbial communities, evolution of
bacterial resistance and formation of 2,8-dichlorodibenzo-p-dioxin during triclosan
photolysis in surface waters [36].

Although ozonation of organic pollutants in wastewater has been investigated in
numerous studies, data on the removal of triclosan and eventual formation of
by-products are scarce and incomplete [37]. In a dedicated study by Suarez
et al. [36], reaction rate constants for each of triclosan’s acid—base species with
O; have been determined. Anionic triclosan was found to be highly reactive
towards Os, with a species-specific rate constant of 5.1 x 10° M~! s™', while
neutral triclosan reacts with a species-specific rate constant of 1.3 x 10° M~' s,
As a consequence, triclosan (pKa=8.1) is oxidized quite rapidly at circumneutral
pH, with an apparent second-order rate constant of ko3 =3.8 x 10’ M~' s™! at
pH 7. A 10 times lower kg3 value (2.5 x 10° M~ ! s71) was experimentally deter-
mined by Jin et al. [29]. The relatively high reactivity of triclosan with ozone can be
explained by the donation of an electron by the hydroxyl group to the benzene ring,
activating the aromatic system and thus facilitating the oxidative attack by
ozone [25].

Biological assays of Oj-treated triclosan solutions indicate that ozonation yields
efficient elimination of triclosan’s antibacterial activity, which can be explained by
the fact that Oj reacts with triclosan by direct electrophilic attack of the phenol
moiety, which is of primarily importance for the antibacterial activity of the
molecule [36]. Chen et al. [37] identified 2,4-dichlorophenol, chlorocatechol,
monohydroxy-triclosan and dihydroxy-triclosan as the main transformation prod-
ucts during triclosan ozonation at pH 7. The results of their study also indicate a
reduced genotoxicity through transformation of triclosan into 2,4-dichlorophenol,
although this latter compound (which has also been identified by Wu et al. [38] as
the main oxidation product of triclosan during permanganate oxidation) is priori-
tized under the EU Council Directive 76/464/EEC on pollution caused by certain
dangerous substances discharged into the aquatic environment and is classified to
be harmful to aquatic organisms. Biological assessment data for the other transfor-
mation products are not provided.

During ozonation of effluent samples from two conventional WWTPs, nearly
100% triclosan (150 pg L™") removal was achieved with a 4 mg L' O dose
applied to a wastewater containing 7.5 mg L™ of DOC, while removal efficiencies
(RE) amounted to 58% for an ozone dosage of 6 mg L' to a wastewater with
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12.4 mg L' of DOC [36]. At much lower concentrations, i.e. 48 ng L™ of triclosan
in aerobically treated grey water, Hernandez-Leal et al. [34] obtained RE >87% at
an ozone dose of 10 mg L', being similar to the results obtained by Snyder
et al. [39], Nakada et al. [25] and Rosal et al. [40]. Also Wert et al. [41] report
RE >95% independent of the wastewater effluent quality. Less efficient ozonation
of triclosan is reported by Giri et al. [19], who obtained better results with UV
photolysis, HO,/UV, TiO,/UV and TiO,/UV/Oj3 processes. At O3 doses larger than
1 mg L~ !, Suarez et al. [36] found that HO" reactions accounted for less than 35% of
the observed triclosan degradation in wastewaters (kyo. = 5-10 x 10°M s 7,
29]), supporting the importance of the direct Os/triclosan reaction. As a possible
strategy to reduce the O; dose without significantly decreasing the O3 and HO’
exposures, Wert et al. [42] suggested an enhanced coagulation pretreatment, able to
reduce the DOC content of the wastewater and thus the O3 dose (the O3/DOC ratio
was maintained at 1) by 10-47%. At all conditions applied in this study, triclosan
(68—170 ng L") which was one of the 13 targeted micropollutants, was eliminated
to concentrations below 25 ng L' (method reporting limit).

3.2 Parabens

Parabens (4-hydroxy-benzoate esters) and their salts are the most commonly used
antimicrobial agents, antifungicidal agents and antioxidants in the cosmetic and
pharmaceutical industries. These additives used in food, pharmaceuticals and PCPs
have recently been demonstrated to have oestrogenic and anti-androgenic proper-
ties [43, 44]. Moreover, there seems to be a potential relationship between breast
cancer and prolonged dermal exposure to paraben-containing products, since these
compounds have been found in breast tumours [45]. Unfortunately, not much
research has been carried out on the removal of parabens from aqueous solution
[35, 46].

Tay et al. [46] investigated the degradation kinetics of a paraben mixture,
containing methyl-, ethyl-, propyl-, butyl- and benzylparaben, using ozonation at
different conditions of ozone dose, pH, initial concentration and temperature. Both
pH and ozone dose favoured paraben removal, and the optimum temperature was
35°C. Second-order reaction rate constants of parabens with HO® (6.8—
92x 10 M™! sfl) and ozone (102—109 M~! sfl) show a higher reactivity at
increasing alkyl chain length [35]. Moreover, the rate constants for the reaction
of ozone with dissociated parabens (order of 10° M~' s™'; pH 12) were found to be
10* times higher than those of undissociated parabens (pH 6), and 10 times higher
than with the protonated parabens (pH 2), explaining the observed pH effect on the
degradation rate [47]. The results also indicate that the formed ozonation
by-products, which were identified to be mainly aromatic ring and ester chain
hydroxylated parabens [47], are more resistant to further ozonation than the parent
compounds. The same authors report a complete paraben removal from natural
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water (pH 7) at ozone dosages of about 1 mg L', Since, at this pH, their
transformation is almost completely (>93%) due to direct reaction with ozone
instead of indirect HO" reactions, the ozonation performance is not much suscep-
tible to the organic matter load in the aqueous matrix [35]. More recently,
Hernandez-Leal et al. [34] noticed a complete removal (>99%) of four parabens
after 15 min of ozonation (total ozone consumption of 8.3 mg L™') in
demineralized water, spiked at concentrations of about 1.5 mg L™".

3.3 Synthetic Musk Fragrances

Synthetic musk fragrances are commonly used in perfumery, shampoos, lotions and
cleaning products [8]. They are of concern because of toxicity reasons and since
they have been proven to cause anti-androgenic effects during in vitro and in vivo
tests [48].

Data on their behaviour during ozonation processes are scarce. During treatment
of aerobically treated grey water at an ozone dose of 15 mg L™ [34], the polycyclic
musk fragrances galaxolide (HHCB, 4,6,6,7,8,8-hexamethyl-1,3,4,6,7,8-
hexahydrocyclopenta[g]isochromene) and tonalide (AHTN, 6-acetyl-1,1,2,4,4,7
hexamethyltetraline) were removed to below their limits of quantification
(91 ng L™ " and 40 ng L™, respectively), yielding REs of at least 87% (galaxolide)
and 79% (tonalide). These RE values fall in the range of removal previously shown
by Rosal et al. [40], who report at similar conditions lower REs for two nitro-musk
compounds, i.e. musk xylene (no removal) and musk ketone (RE =38%). In a study
by Molinos-Senante et al. [49], ozonation of galaxolide and tonalide in the perme-
ate of a membrane bioreactor was slow and did, in contrast to some pharmaceuticals
(e.g. diclofenac and sulfamethoxazole), not result in their complete removal within
10 min. Janzen et al. [50] found several stable transformation products during
ozonation of polycyclic musk fragrances (no removal of musk xylene and musk
ketone was obtained) and indicated that contact times of more than 15 min would be
required to remove at least some of these transformation products. Accompanying
analysis during an ozonation study by vom Eyser et al. [51], focusing on galaxolide
and tonalide next to five pharmaceuticals, showed no genotoxic, cytotoxic or
oestrogenic potential for the investigated compounds after oxidative treatment
(ozonation, UV and UV/H,O, treatment) of real wastewaters, indicating no haz-
ardous impact of by-product formation from ozonation and other AOPs. Margot
et al. [3] reported no removal of galaxolidone, a fragrance metabolite, during the
ozonation of a WWTP effluent.

Overall, the ozonation efficiency towards this class of emerging organic
micropollutants tends to be relatively low, which is in agreement with their low
kos values, being 8—10 M~' s~ for tonalide and 67-140 M~' s~ for galaxolide
[50, 52].
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3.4 The Insect Repellent DEET

N,N-Diethyl-meta-toluamide (DEET) is a common active compound in insect
repellents. It functions as a block to the insect’s chemoreceptor that senses carbon
dioxide and lactic acid in locating their host. The reported adverse effects of DEET
to humans include seizures, brain damage and dermal toxicity [35]. Just like
triclosan, DEET belongs to the 30 most frequently detected organic wastewater
contaminants, as reported by the US Geological Survey [53]. Although DEET is
readily biodegradable [54], concentrations in biologically treated wastewaters are
ranging up to several hundreds of ng L' [55]. Also in drinking water, it is a
commonly found micropollutant. Padhye et al. [56] report that the median concen-
trations of most detected pharmaceuticals, PCPs and EDCs during a year-long study
of an urban drinking water treatment plant (DWTP) were below 5 ng L™, except
for DEET and nonylphenol, which were at 12 and 20 ng L™, respectively. During
the pre-ozonation step in the studied DWTP, the authors found that DEET was
removed by only <30% at applied ozone dosages between 0.4 and 1.1 mgL™" and a
contact time of 3—4 min. During the same treatment, triclosan was removed by
about 40%. During subsequent intermediate ozonation, a higher DEET removal
(RE = 63%) was obtained at similar ozone dosages but at 5—10 times longer contact
times.

In an operating WWTP, Nakada et al. [25] investigated the removal of 24 phar-
maceuticals and PCPs during activated sludge treatment followed by sand filtration
and ozonation (3 mg O;L~", 27 min contact time) as posttreatment steps. They
report efficient removal (>80%) of all the target compounds, except carbamazepine
and DEET. The ozonation step contributed only to a very limited extent (<5%) to
the overall DEET removal. At an ozone dosage of 5 mg L™" and a contact time of
15 min, Sui et al. [55] obtained 50-80% DEET removal in secondary WWTP
effluent. A somewhat lower removal (RE =48%) has been obtained by Margot
et al. [3]. During a 12-month evaluation of the removal of 19 pharmaceuticals and
PCPs in a multi-treatment WWTP using primary clarification, activated sludge
biological treatment, membrane filtration, granular media filtration, granular acti-
vated carbon (GAC) adsorption and ozonation, Yang et al. [54] found that ozona-
tion oxidized most of the remaining compounds by >60%, except for primidone
and DEET. The insect repellent was one of the four compounds that were frequently
detected in the final effluent at concentrations in the order of <10-30ng L™". Its RE
during ozonation varied between 0% and 50% which might be attributable to
variations in the ozone dose (ranging from 0.75 to 2.0 mg L™" with an average
value of 1 mg L™") or to variations in the influent water quality to the ozonation
chamber.

The rather poor removal of DEET during ozonation, compared to many other
organic micropollutants, is because of its low reactivity towards ozone (second-
order reaction rate constant kgz = 5,2 M st ; [35]), which can be explained by the
electron-drawing nature of its amide function [3]. Therefore, DEET removal is
mainly induced by HO" reactions (kgo. = 5,0 x 10° M~ ' s™) [7, 35, 42, 54], which
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makes it also dependent on the aqueous total organic carbon (TOC) concentration.
For example, at an ozone dosage of 2 mg L~', DEET removal efficiencies
amounted to 98%, 96% and 86% in river water, secondary effluent and lake water
having a TOC content of 13, 16 and 22 mg L™, respectively [35]. Lee et al. [7]
showed that the elimination of ozone-refractory micropollutants like DEET can be
well predicted by measuring the HO® exposure via the decrease of the probe
compound p-chlorobenzoic acid. On the basis of their results, a DOC-normalized
ozone dose, the rate constants koz and kyo. and the measurement of the HO®
exposure are proposed as key parameters for the prediction of the elimination
efficiency of micropollutants during ozonation of municipal wastewater effluents
with varying water quality.

3.5 UV Filters (Sunscreen Agents)

UV filters are used in personal care products such as cosmetics, beauty creams,
lotions and shampoos or as an additive in polymeric materials that have to be
protected from sunlight-initiated disruption [57, 58]. Recent studies [59, 60] indi-
cate that these sunscreen agents are persistent, bioaccumulative compounds that
show oestrogen-like activity in in vitro and in vivo assays [61-63]. Dermal and oral
administration of benzophenone-3 (BP3), one of the most commonly used UV filter
compounds, to rats and mice have shown alterations in liver, kidney and reproduc-
tive organs [62]. A recent study by Kunisue et al. [64] indicates that exposure to
elevated levels of benzophenone-type UV filter compounds may be associated with
oestrogen-dependent diseases such as endometriosis.

The feasibility of ozonation to remove UV filter compounds from sewage or
treated grey water has been demonstrated in a few studies, but a detailed insight in
the mechanisms is still lacking for most of these compounds, and also the data
reported on removal efficiency are somewhat ambiguous. For example, Li
et al. [65] and Rosal et al. [40] did not detect any or only a limited (RE <30%
after 15—180 min) elimination during ozonation (ozone dosages of 5-16 mg L™ ') of
the UV filters BP3, EHMC (ethylhexyl methoxycinnamate), octocrylene and
4-MBC (4-methylbenzylidene-camphor). In other work, however, much higher
REs (from 65 up to 98%) were obtained for the same compounds at similar
concentrations (order of ng Lfl), ozone doses and treatment times [3, 34, 39]. In
a comparative study with benzophenone, spiked (10 mg L") as a model compound
in distilled water, Yan-jun et al. [66] noticed that the addition of Mn-Fe-K-
modified ceramic honeycombs as a catalyst during ozonation may increase the
removal rate of both benzophenone and the TOC content, which has been attributed
to a larger HO® generation. A more detailed study on the ozonation of BP3 is
presented as a case study in Sect. 5.
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4 A Point of Attention: Ozonation By-Product Formation

A concern related to the application of ozonation in water treatment is linked to the
formation of potentially carcinogenic and/or toxic oxidation by-products from
matrix components and transformation products from micropollutants [42,
67]. Recent research indicates that products of ozonation exhibit less oestrogenic
activity than the original compounds, but toxicity assessment using bioassays
indicates that in some cases the toxicity of the ozonated wastewater is increased,
although this can be solved by a biological posttreatment [27, 68]. The formation of
bromate can be relevant if bromide occurs in high concentrations, and also
N-nitrosodimethylamine (NDMA) formation is reported during ozonation. In par-
ticular, quaternary amine-containing micro- and macroconstituents of PCPs
(e.g. shampoos) have been suggested as contributors to NDMA formation
[69]. Hollender et al. [4] detected NDMA (<14 ng Lfl) and bromate
(<10 pg L™") during ozonation (0.6 g Os;g~' DOC) of a municipal WWTP
secondary effluent containing 55 micropollutants (>15 ng L™'), among which
were some PCPs like galaxolidone (RE=63%), DEET (RE=62%) and BP3
(RE > 84%). However, their concentrations were below or in the range of the
drinking water standards, and subsequent biological sand filtration showed to be
an efficient additional technique for the elimination of biodegradable ozonation
products such as NDMA. According to Kim et al. [70], O3/UV and H,0,/UV
processes might be a good solution to suppress or avoid bromate formation. For
sure, the formation and mitigation of oxidation by-products have to be a point of
attention in the further assessment of the full application potential of ozonation and
related AOPs [7].

5 Benzophenone-3 Ozonation in Water: A Case Study
for Benzophenone-Type Sunscreens

In order to gain better insight into the factors influencing PCPs’ degradation during
ozonation and peroxone (O3/H,0,) oxidation, along with the identification of
transformation products, Gago-Ferrero et al. [71] performed a detailed and partic-
ular study dealing with BP3 as a model compound for benzophenone-type UV
filters. The ozonation experiments were conducted in a temperature-controlled
bubble column. Ozone was generated in dry air and after flow adjustment dosed
through a sintered glass plate at the bottom of the reactor. The reaction solution
consisted of a saturated BP3 aqueous solution (dissolved concentration
50 mg L'). At the initial conditions, the ozone inlet concentration was
85.7 pmol Lga;', the gas flow rate 120 mL min~' and the reactor temperature
25°C. The experimentally estimated ozone mass transfer coefficient (k;a) in the
column was 5.5 h™! [72]. The water was buffered by a 10.12 mM phosphate buffer
(pH 3 and 7) or a 2.5 mM borax buffer (pH 10).
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At pH 7, BP3 showed a half-life time (t;;) of 12.6 min and a 95% removal after
40-50 min, indicating a good BP3 degradability by ozonation. Based on BP3
aqueous concentration data up to 5% of the initial BP3 concentration, a pseudo-
first-order rate constant (k; gp3) of 0.056 min~! was determined. From the ozone
consumption profile (i.e. the ozone inlet minus the ozone outlet gas concentration as
a function of time), it was estimated that 0.57 mmol of ozone was consumed after
60 min of ozonation, approximately a factor of 2 higher than in the absence of BP3.

5.1 Effect of the Ozone Inlet Concentration on BP3
Degradation

The effect of the ozone inlet concentration on the degradation of aqueous BP3 was
investigated at ozone concentrations in the range 32.6—151 pmol Lgagf1 (ozone load
1.63-7.55 pmol min~' Lyge ). Other operational parameters, including the initial
BP3 concentration (22.3 pmol LY, pH (buffered at 7) and temperature (25°C),
were kept constant. The experimental results revealed a faster BP3 removal at
higher inlet ozone gas concentrations, with k; gp3 values increasing from 0.023 to
0.12 min~" (Fig. 3). This can be explained by an increased ozone concentration in
the aqueous phase. Since BP3 is a non-volatile compound, reactions in the gas
phase are negligible. After the mass transfer of ozone from gas to liquid phase,
however, it may either directly react with BP3 or decompose to produce other
reactive species which in turn react with BP3.

As Fig. 3 shows, a rather linear increase in the ozone consumption was observed
after 60 min of ozonation, suggesting that within the concentration interval studied
the ozone consumption is first order in the ozone inlet concentration. This increase
might be explained not only by a faster BP3 degradation but also by the formed
reactive species and BP3 degradation products.
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5.2 Effect of Temperature on BP3 Degradation

Ozonation processes might be influenced by reaction temperature in two aspects.
On the one hand, Henry’s law coefficient of ozone increases by more than a factor
of 2 at higher temperature within the applied working range (25-65°C) [73],
limiting the mass transfer from gas to liquid phase and thus negatively affecting
the BP3 degradation efficiency. On the other hand, higher temperature may increase
both the instability of ozone itself and the activation of the reactive species leading
to the enhancement of the BP3 degradation rate [74]. The BP3 rate constants
increased from 0.056 to 0.091 min~' when increasing the temperature, whereas
no significant effect in the consumption of ozone was observed. At these conditions,
it appears that the second effect predominates. As at higher temperature the amount
of ozone dissolved in the water phase is smaller, and the consumed amount of ozone
is almost independent of temperature. This indicates a more efficient use of the
aqueous ozone for BP3 degradation.

5.3 pH Effect on BP3 Degradation

Ozonation of BP3 at acid, neutral and alkaline conditions was investigated consid-
ering that pH may affect both the ozonation kinetics and mechanistic pathways of
organic micropollutants [75]. Results show an increase of the BP3 removal rate at
higher pH, especially between pH 7 and pH 10 (Fig. 4). This can be explained by
the higher rate of ozone decomposition at higher pH as the hydroxyl ions catalyse
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the decay of ozone to form hydroxyl radicals serving as reactive species [76]. At
acidic conditions, when no hydroxyl radical formation is expected and molecular
ozone is presumed to be the most important reactive species, the decomposition of
BP3 is slower than at neutral and basic conditions. At pH 10, the BP3 decomposi-
tion rate is more than twofold higher than at acid pH, showing the importance of the
formed hydroxyl radicals. The reactivity of BP3 with HO" is significantly higher
than with ozone in aqueous phase, as is the case with most organic pollutants
[77]. Furthermore, since BP3 has a pK, of 8.06, it is mainly dissociated at higher
pH, which might result into an enhancement of the reaction rate since ozone is an
electrophilic reagent.

The important role of hydroxyl radicals during BP3 ozonation was confirmed by
the increase in BP3 half-life time if t-butanol (TBU) was added as a strong hydroxyl
radical scavenger. Whereas the effect was relatively small (10-16%) at pH 3 and
pH 7, the BP3 half-life time increased from 5 to 8 min when TBU was added at pH
10, when the hydroxyl radical concentration is higher.

5.4 BP3 Oxidation by the Peroxone Process

Taking into account the significant contribution of hydroxyl radicals during BP3
ozonation, peroxone experiments were conducted. Various H,O, dosages (10—
600 pmol L") were added in the aqueous phase as a source for HO" radicals.
The degradation of BP3 by using O3/H,O, still followed the pseudo-first-order
decay. As a result of a promoted HO" radical formation [78], an increment of the
BP3 degradation rate is observed as the H,O, concentration increases, to reach a
maximum (k; gpz =0.091 min~') at 100 pmol L' H,0,, being 64% higher than
without H,O, (Fig. 4). At higher H,O, dosages, however, the BP3 degradation rate
decreased, showing similar values at 10 and 600 pmol L™' H,O,. This inhibiting
effect on the oxidation of BP3 may be explained by the scavenging behaviour of
H,O, towards hydroxyl radicals [79]. The ozone consumption as a function of H,O,
concentration followed an opposite trend to that of the BP3 degradation rate. The
lowest ozone consumption was measured at 100 pmol L~' H,0,, i.e. at the
maximum BP3 removal rate. This fact may be attributed to the higher concentration
of radicals present in the aqueous phase, reducing the ozone consumption due to
direct reaction with BP3.

Peroxone experiments at different pH values revealed an opposite H,O, effect at
acid and neutral conditions than at alkaline conditions (Fig. 4). Adding
50 pmol L™ H,0, in the aqueous solution did increase the BP3 removal rate by
47% at pH 3, which is completely in line with the results obtained at neutral pH. In
contrast, the BP3 degradation at pH 10 was almost 20% slower when H,O, was
added. Since in this case high concentrations of hydroxyl radicals and H,O, are
present simultaneously, the observed rate retardation most probably results from the
consumption/scavenging of hydroxyl radicals by H,O,, yielding less reactive
radicals (such as HO,") in the solution [80].
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5.5 BP3 Ozonation By-Product Identification

HPLC-MS/MS data revealed that apart from BP3, several other chromatographic
peaks were observed during full scan analysis with electrospray ionization in
positive mode (ESI+) of samples collected during the first 25 min of BP3 ozonation.
For four of the detected peaks, a molecular ion [M+H]" 245 was observed.
Considering that the mass of these compounds is shifted 16 Da upwards relative
to that of BP3, hydroxylation by HO" attack is the most plausible explanation.
Based on their identical fragmentation pattern with clear similarities with the
MS/MS spectra obtained for BP3, three peaks represent the ortho- (confirmed by
the analysis of a standard of 2,2’-dihydroxy-4-methoxybenzophenone, DHMB),
meta- and para-hydroxylated forms. The fourth peak results from the hydroxylation
of BP3 at the other moiety of the molecule. Next to hydroxylation, demethylation is
suggested as a second BP3 degradation pathway, considering the spectral data on a
peak with molecular ion [M+H]* 215. As confirmed by the analysis of the
standard, this molecule corresponds to benzophenone-1 (BP1), which is also a
commonly used UV filter. Although the detected concentrations of BP1 are rela-
tively low compared to the initial BP3 concentration, its formation should be taken
into account when considering the application of ozonation for BP3 removal from
wastewater. A supporting experiment investigating BP1 ozonation revealed that
BP1 degradation is slower than that of BP3, supporting its temporally accumulation
during BP3 ozonation. Since yeast-based bioassay (ER-RYA) analysis showed that
BP1 is about 200 times more oestrogenic than its parent compound BP3 [81], the
ozonation time should be long enough in order to remove both BP3 and BP1 from
the reaction medium. After 15 min of BP3 ozonation, another peak corresponding
to the molecular ion [M + H]* 259 occurred with spectral information indicating the
oxidation of the methyl group in one of the previously produced hydroxylated
intermediates transforming the compound in an aldehyde derivative.

The analysis by HPLC-MS/MS with electrospray ionization in negative mode
(ESI-) confirmed the detection of some by-products already identified in ESI+ mode
and yielded also additional information. A group of peaks corresponding to the
molecular ion [M-H]™ 259 were observed, all showing the same fragmentation
pattern from which it was deduced that another non-specific HO" oxidation of
already hydroxylated reaction products is the most probable explanation. Finally,
after 20 min of ozonation, three chromatographic peaks were observed related to
the molecular ion [M-H]™ 229. Due to the fact that this mass is 16 Da upwards
relative to BP1 and since the obtained spectra are very similar, the peaks are
representing the ortho-, meta- and para-hydroxylation products of BP1, resulting
from a HO" attack in the non-hydroxylated moiety of the molecule. The identity of
the ortho-isomer was confirmed as 2,3,4-trihydroxybenzophenone (THB) by ana-
lytical standard analysis.
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6 Economic Considerations

As long as there is no stringent legislation forcing the reduction of PCPs’ concen-
trations to a predefined level during (waste)water treatment, economic consider-
ations might be a hampering factor in extensively implementing tertiary treatment
techniques like ozonation in WWTPs. While technical aspects about the removal of
micropollutants from wastewater have been widely studied, the truth is that the
assessment of the economics has been more limited [49]. The energy requirement
for an additional post-ozonation step has been estimated to be about 0.035—
0.09 kWh m 3 [4, 70, 82], being much more cost-effective than other AOPs such
as O3/UV (1.1 kWh m_3) and H,O,/UV (0.54 kWh m_3), and corresponding to
ca. 12% of a typical medium-sized nutrient removal plant (5 g DOC m )
[4]. According to Molinos-Senante et al. [49], it is however not only important to
evaluate the costs of the posttreatment, but also the environmental benefits should
be quantified. Therefore, these authors calculated for the first time the shadow
prices of three pharmaceuticals (ethinyl oestradiol, sulfamethoxazole, diclofenac)
and two PCPs (tonalide and galaxolide) by treating effluent using a pilot-scale
ozonation reactor. These shadow prices are to be interpreted as a proxy for the
economic value of the environmental benefits for avoiding the discharge of con-
taminants into water bodies. For both PCPs, they ranged between —8 and —14
€kg !, being 3-10 times lower than that of the studied pharmaceuticals.

7 Conclusions and Perspectives

Although ozonation has become a widely applied technique for disinfection of
drinking water and wastewater, its potential as a tertiary treatment to remove
biorecalcitrant micropollutants has been recognized only much more recently.
Among the studies dealing with the advanced oxidation of (emerging) organic
micropollutants, most focus is put on pharmaceuticals and hormones, while the
feasibility of ozonation and related AOPs for the removal of personal care products
has only been demonstrated in a few studies, with most of them not particularly
focusing on this class of recently considered contaminants. Depending on the nature
of the PCP compound and the study considered, quite a large variability in removal
efficiencies is reported which can be explained by differences in (i) treated water
quality, (ii) conditions applied during ozonation and (iii) reactivity of the PCPs
towards ozone. The main parameters affecting the ozonation performance show to
be the ozone dose, temperature and pH. The latter parameter is particularly impor-
tant for ionizable compounds since their dissociation state may affect their reactiv-
ity towards ozone. Higher pH also results into a faster ozone decomposition as
hydroxyl ions catalyse the decay of ozone to form hydroxyl radicals, being stronger
and less selective oxidants than ozone.
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It is clear that certainly more research is needed to fully understand the mech-
anisms and to optimize the applicability of ozonation for PCPs’ removal in full-
scale applications. More dedicated research is required to investigate the ozonation
or advanced oxidation of (mixtures of) PCPs at real conditions and to look for the
best integration of these techniques in a complete treatment chain taking into
account biodegradability and toxicity issues. In particular, the formation and
mitigation of oxidation by-products have to be a point of attention in the further
assessment of the full application potential of ozonation and related AOPs. Apart
from the technical aspects, further research is also needed to estimate the economics
taking into account the calculation of shadow prices of PCPs and other
micropollutants to better assess the true environmental benefits of implementing
tertiary treatments.
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Concluding Remarks and Future Research
Needs

M. Silvia Diaz-Cruz and Damia Barcel6

Abstract This chapter summarizes the main concluding remarks on analysis, fate,
occurrence, and risk to the environment and to humans of personal care products. In
addition removal technologies using different nonconventional wastewater treat-
ment processes are being evaluated too. Finally, future research needs in this field
will be summarized.
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Abbreviations

BAF Bioaccumulation factor

BMF Biomagnification factor

GC-MS: Gas chromatography coupled to mass spectrometry

HPLC-MS  High-performance liquid chromatography coupled to mass
spectrometry

HRMS High-resolution mass spectrometry

Kow Octanol-water partition coefficient

PCPs Personal care products

UHPLC- Ultrahigh-performance liquid chromatography coupled to mass

MS spectrometry

WRF White-rot fungi

WWTPs Wastewater treatment plant

1 General Remarks

This final chapter presents an overview of analytical methodologies, occurrence
data, effects on biota and humans, and removal technologies concerning personal
care products (PCPs) in the aquatic environment. So far, many studies have focused
on PCPs; however, likely because of the high number and diversity of substances
included in such group or due to the limitations of the analytical capabilities
(chemical and toxicological analysis), there are still many knowledge gaps that
certainly need to be addressed to fully understand the fate and behavior of PCPs in
the aquatic environment.

Chemicals used in PCPs comprise a diverse group of substances used in high
proportion in daily use products. Many PCPs are bioactive, most are lipophilic, and
all, when present in the environment, occur usually at trace concentrations
(nanogram-microgram per liter, nanogram-microgram per gram). A number of
them are persistent, bioaccumulative, and toxic, whereas others elicit endocrine
disruption activity. This group of substances is considered a new class of emerging
contaminants that have raised great concern in the last years. As far as we are aware,
no PCP ingredients are yet considered in any priority contaminant list worldwide.

Considering the emerging risks posed by PCPs, we believe that this book will be
a useful tool to encourage further research on the fate, risks, and mitigation of PCPs
in the aquatic environment.
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2 Occurrence

In this book we have made a picture of the current PCP distribution in the aquatic
environment across the most industrialized areas of the planet: the USA, China, and
Europe. Different regulatory frameworks and lifestyle are, therefore, included.

Most of the published literature on PCPs residues in aquatic ecosystems
addressed the contamination of fresh surface water and wastewater. Nevertheless,
to perform any sound survey on the impact of PCP contamination in the water
cycle, groundwater, coastal waters, sediments, soils, and biota should also be
included.

There is also a lack of studies concerning the formation of transformation
products in the aquatic habitats following natural biotic and abiotic degradation
as well as water treatment processes. There is documented evidence that the
generated derivatives may pose enhanced toxicity to the ecosystem than the parent
compound. Chlorine is essential in the disinfection process of water to prevent the
exposure to pathogens, from tap water to swimming pool water. Chlorinated
by-products are the most investigated PCP derivatives in the aquatic environment,
but research on toxicity is still needed. In this respect, few of them were found to be
genotoxic.

Given the temporal variability of a number of PCPs, surveys considering sea-
sonal distribution are of outmost importance. Moreover, some PCPs, as observed in
the Los Angeles (California) WWTP, have diurnal variability, such as triclosan.
Different spatial patterns were also noticed; however, a large-scale distribution map
is not yet possible because solely data from some hotspots in different countries is
so far available. In particular, in China, where a dramatic difference between urban
and rural areas is observed, data on PCPs pollution is really scattered.

We should realize that as the diversity and quantity of personal care products in
use will be continuously increasing, the release of PCPs into the environment will
be higher too.

3 Eco(toxicity) and Risk Assessment

The widespread occurrence of PCP residues in the environment is becoming of
increasing concern, and improving their ecosystem and human risk assessment
constitute a challenge for the scientific community. Still nowadays the majority
of (eco)toxicological testing is done using acute toxicity assays. However, as it was
demonstrated by other emerging contaminants, pharmaceuticals, for instance, acute
toxicity cannot necessarily serve as a reliable substitute for chronic toxicity effects.
It is well known that certain substances may elicit adverse effects even following
exposure. Consequently, chronic exposure assessment should be promoted as part
of overall planning of the proper (eco)toxicological characterization of PCPs.
Another gap of knowledge relates to the (eco)toxicity assessment not only of single
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substances but also of complex mixtures, how they are found in the environment. In
particular, mixtures of PCPs are of concern as usually many of them are simulta-
neously added to the same formulation. UV filters is a typical example, where up to
more than 8 sunscreen agents are mixed together to guarantee the protection within
both the UVA and UVB radiation regions. Furthermore, for a more appropriate
hazard characterization of PCPs, degradation products will need to be added too.

Another area where improvements are required is the bioavailability assessment
of PCP residues by organisms. Generally, the n-octanol/water partition coefficient
(Kow) or bioaccumulation (BAF) and biomagnification (BMF) factors are evalu-
ated. However, no direct data on PCP uptake through the food web exist. Hydro-
phobicity, as measured by the log Kow, was found to be an important descriptor of
toxicity, but more research is needed to get deeply insight into the toxicity mech-
anisms for a correct assessment of the potential ecological risk of PCPs.

Toxicity data, such as ECs( values, are typically obtained from the experimental
tests using standardized protocols. However, due to cost and time limitations, it is
unrealistic to identify all of the potentially harmful PCPs using the standardized
animal test protocols. In such cases, the development of computational predictive
models offers a good opportunity to fill gaps in data related to environmental risk
assessments and regulatory concerns [1]. Additionally, predictive modeling cir-
cumvents the need to utilize animal models and thus ethical obligations [2] and has
been proven to be an efficient tool for predicting the potentially adverse effects of
other chemicals in terms of risk assessment, chemical screening, and priority setting
[3-4].

Human exposure to PCPs only has been conducted from recently, in part thanks
to the advance in the analytical methodologies. Urine is the most common sample
of human origin analyzed, where not only parent but also metabolites have been
assessed. Other biological fluids and tissues, breast milk, plasma, serum, placenta,
amniotic fluid, and breast tumors have also been analyzed, but to a lesser extent.
Epidemiological studies, therefore, appear to be necessary to find potential links
between adverse health effects and bioaccumulation of PCPs in humans. Further-
more, information of exposure pathways and the factors affecting these exposures
are still lacking.

4 Chemical Analysis

Currently, water analysis of PCPs is not a complex task; however, the preparation
and analysis of solid samples is still a challenge. Among solid samples, sewage
sludge and biota show the highest difficulty and are, thus, scarcely addressed. Most
studies on aquatic biota have focused on fish and some on bivalves. Another
relevant issue is the lack of reference materials for methods’ validation, which
hinders the development of new protocols. Besides, there are not always isotopic
labeled compounds for use as surrogates/internal standards for all the target com-
pounds, and those commercially available are rather expensive. Even more
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complex is the analytical determination of transformation products. Nevertheless,
there have been notorious efforts to identify and characterize derivative substances
with the support of powerful high-resolution mass spectrometric (HRMS)
techniques.

Over recent years, a number of methodologies for the analysis of chemicals used
in PCPs have been developed. Some generic protocols have been described which
permit the simultaneous determination of parent compounds and few transforma-
tion products. The latest trend has been the shift toward analysis automation
through the coupling of sample preparation units and separation-detection plat-
forms, such as online SPE coupled to chromatographic-MS systems, which mini-
mize the sample volume, loss, and contamination during handling and improve
repeatability and sensitivity.

The ingredients present in PCPs cover a wide range of physicochemical prop-
erties. Consequently, this fact involves both the selection of the proper extraction/
purification techniques and the choice of the most suitable chromatographic and
detection system. As already stated, PCPs generally appear in the environment at
trace level, suggesting that sensitive and selective analytical methods are required
for their reliable determination. Despite the analysis of PCPs, using both GC-MS
and HPLC- or UHPLC-MS techniques are generally applied. The latest has gained
relevance during the last years, when polar metabolites and other transformation
products need to be determined. In this respect, matrix effects are relevant and can
be a drawback for their quantitative determination. As for the analysis of other
emerging contaminants, complex environmental matrices lead to the occurrence of
interferences caused by the matrix components. For PCPs, in addition to the typical
problems of signal enhancement or suppression observed when analyzing waste-
water, sludge, etc, other complex matrices gain importance as a consequence of the
use of PCPs. Among these environmental samples stand out seawater, due to the
high saline content, and swimming pool waters, due to the high chlorine content.

In the future, bioaccumulation/biomagnification-focused studies should be care-
fully programmed in order to improve the quality and dimension of the obtained
data for getting a more holistic picture of the distribution trends of the PCPs in the
aquatic food web.

5 Removal Technologies

Removal efficiencies for organic pollutants in conventional wastewater treatment
processes are limited. Considering the increasing use of PCPs and since it is
commonly accepted that the major source of PCPs to the environment is
WWTPs’ effluents, improved elimination rates through the application of more
efficient wastewater treatment technologies are urgently needed to avoid severe
environmental problems. A number of new technologies to remove emerging
pollutants have recently appeared in the wastewater treatment scene, showing the
significant improvements achieved in this area in the last years. Among these
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technologies, in this book we present some of the most promising ones for the
elimination of PCPs.

Biologically based water treatment systems are considered a sustainable, cost-
effective alternative to conventional wastewater treatment systems. In particular,
constructed wetlands have revealed as a successful alternative solution for the
removal of many PCPs from contaminated waters in small communities. However,
to scale up wetland systems to big cities appears to be mostly impractical due to the
large space requirements. Wherever possible, the easy landscape integration and
low energy consumption constitute important advantages for decision-makers to
take into consideration constructed wetlands, which make these systems competi-
tive with other water treatment technologies for many specific applications. Nev-
ertheless, systems’ maintenance can become expensive if the influent wastewater is
highly polluted. Other scarcely explored biologically based technology for the
effective degradation of organic pollutants, despite being developed in the 1980s,
involves the application of fungi, particularly white-rot fungi (WRF) and their
ligninolytic enzymes. However, it has not been tested for the degradation of PCPs
in real wastewater effluents and under non-sterile conditions. Several factors need
to be considered before the application of this biotechnology as suitable treatments
for decontamination in real situations can be done. Major issues involve the design
of the bioreactor, the concentration of the biomass (or enzyme), the life cycle of the
biomass (or the half-life of the enzyme), the fermentation conditions, and the
economic cost. Besides them and as in previous many other technologies, the
identification of the compounds formed during the fungal decontamination is
critical. The unequivocal identification of these degradation products will improve
the understanding of the degradation mechanisms as well as it will be a valuable
tool for an improved ecological risk assessment.

Ozonation and advanced oxidation processes have found their place as a feasible
replacement for the tertiary step in conventional wastewater treatments for the
removal of emerging pollutants. Among them, however, few studies focused on
PCPs. The promising results provided by ozonation point out that certainly more
research is needed to fully understand the mechanisms and to optimize the major
parameters affecting the ozonation performance (T?, pH, and ozone concentration)
for PCP removal in full-scale applications. The treatment using Fe (VI), also a
powerful oxidant, has been shown a great potential for PCP removal, especially, for
those compounds containing phenol and nitrogen. In the particular case of phenolic
compounds, the oxidation by-products formed are no or less toxic than the parent
substance, which constitutes a big advantage of this oxidation treatment toward
ozonation, for instance. Furthermore, the ferric hydroxide (Fe(OH);) produced
during the treatment is not toxic, contributing to the environmentally friendly
characterization of this technology, extensively used in the degradation of other
categories of emerging contaminants [5]. However, more research is expected for
expanding the Fe (VI) oxidation treatment to the wide diversity of PCPs. Taking
into account biodegradability and toxicity issues, the formation and elimination of
oxidation by-products of PCPs is regarded as an issue of concern that has to be
integrated in the safety evaluation of these technologies for their fully commercial
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application as aforementioned for the other removal technologies. Economic suit-
ability is other key aspect to be examined. Advanced treatment processes are still
quite expensive to build and maintain and require a high level of energy.
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