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Preface

Over the last two decades, computational fluid dynamics (CFD) has established
itself to a point where it is widely accepted as an analysis and design tool
complementary to theoretical considerations and experimental investigations.
In aerospace, methods to solve the Navier-Stokes equations have matured from
specialized research techniques to practical engineering tools being used on a
routine basis in the industrial design process. Thus, numerical simulation has
become one of the driving technologies for both, scientific discovery and in-
dustrial product development. Continuous development of physical models and
numerical methods as well as the availability of increasingly powerful comput-
ers suggest using numerical simulation to a much greater extent than before,
radically changing the way aircraft will be designed in the future. In order to
meet the ambitious goals for air traffic of the next decades, however, significant
investment in enhancing the capabilities and tools of numerical simulations in
various aspects is required.

Within the 7th European Research Framework Programme, the collabora-
tive target research project IDIHOM was initiated. The overall objective of this
project was to enhance and mature adaptive high-order simulation capabilities
for large scale industrial applications. Compared to its low-order counterparts,
high-order methods have shown large potential to either increase the predictive
accuracy related to the discretization error at given costs or to significantly re-
duce computational expenses for a prescribed accuracy. The IDIHOM project
was driven by a top-down approach, in which dedicated enhancements and im-
provements of the complete high-order simulation framework, including grid gen-
eration, flow solver and visualization, were led by a suite of underlying and
challenging test cases. The project gathered 21 partners from industry, research
organizations and universities with well-proven expertise in high-order methods.
It started at the end of October 2010 and finished in March 2014.

After a general project overview (chapter 1), this volume compiles techni-
cal papers of the IDIHOM partners, in which the major research activities and
achievements are discussed (chapter 2). Research areas covered are the devel-
opment and improvement of high-order grid generation techniques, high-order
solution methods mainly based on continuous and discontinuous higher-order fi-
nite element methods and the extension of visualization techniques for high-order
solutions. The final chapter presents the assessment of the high-order simulation
capabilities developed within IDIHOM based on industrial application challenges
and underlying test cases.

The editors would like to express their particular thanks to Dr. D. Knörzer,
the European Commission’s scientific officer of the IDIHOM project, for his
constant technical interest and administrative help.
Thanks are due to all partners who have contributed in the context of the IDI-
HOM project in a very open and collaborative manner. The knowledge and
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engagement of each individual contributed to the success and world wide appre-
ciation of the IDIHOM project.
Finally, the editors would like to express gratitude to Dr. A. Michler for technical
support in compiling this book. Acknowledgements are due to Prof. Dr. W.
Schröder, the general editor of the Springer Series “Notes on Numerical Fluid
Mechanics and Multidisciplinary Design”, and to his colleague A. Hartmann for
their help and editorial advice.

August 2014 Norbert Kroll
Charles Hirsch

Francesco Bassi
Craig Johnston

Koen Hillewaert
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The IDIHOM Project



The IDIHOM Project - Objectives, Project
Structure and Research Activities

N. Kroll

German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology,
Lilienthalplatz 7, D-38108 Braunschweig, Germany

Norbert.Kroll@dlr.de

Abstract. In aeronautical industry numerical flow simulation has be-
come a key element in the aerodynamic design process. However, in order
to meet the ambitious goals for air traffic of the next decades, significant
investment in enhancing the capabilities and tools of numerical simula-
tions in various aspects is required. Within the 7th European Research
Framework Programme, the collaborative target research project IDI-
HOM was initiated. The overall objective of this project was to enhance
and mature adaptive high-order simulation methods for large scale ap-
plications. Compared to its low-order counterparts, high-order methods
have shown large potential to either increase the predictive accuracy re-
lated to the discretization error at given costs or to significantly reduce
computational expenses for a prescribed accuracy. The IDIHOM project
was driven by a top-down approach, in which dedicated enhancements
and improvements of the complete high-order simulation framework, in-
cluding grid generation, flow solver and visualization, were led by a suite
of underlying and challenging test cases. The project gathered 21 part-
ners from industry, research organizations and universities with well-
proven expertise in high-order methods. It started end October 2010
and finished March 2014.

1 Introduction

Over the last two decades, computational fluid dynamics (CFD) has established
itself to a point where it is widely accepted as an analysis and design tool
complementary to theoretical considerations and experimental investigations.
In aerospace, methods to solve the Navier-Stokes equations have matured from
specialized research techniques to practical engineering tools being used on a
routine basis in the industrial design process. Thus, numerical simulation has
become one of the driving technologies for both, scientific discovery and in-
dustrial product development. Continuous development of physical models and
numerical methods as well as the availability of increasingly powerful comput-
ers suggest using numerical simulation to a much greater extent than before,
radically changing the way aircraft will be designed in the future.

On the other hand, despite the progress made, large aerodynamic simulations
of viscous high Reynolds number flows around complex aircraft configurations

c© Springer International Publishing Switzerland 2015 3
N. Kroll et al. (eds.), IDIHOM: A Top-Down Approach, Notes on
Numerical Fluid Mechanics and Multidisciplinary Design 128, DOI: 10.1007/978-3-319-12886-3_1



4 N. Kroll

are still by far too expensive in terms of turn-around time and computational
resources. The requirement to achieve results at an engineering level of accu-
racy within wall-clock times that can be handled in the day-to-day procedure
poses severe constraints on the application of CFD to aerodynamic design and
data production. Improved flow physics modelling and the enormous increase
in computer power is only one part of the solution. The other part is evidently
dedicated to a necessary enhancement of the numerical methods themselves. The
development of advanced CFD algorithms and their integration in an industrial
environment to support multidisciplinary simulations and optimization proce-
dures and at the same time achieving high predictive accuracy will significantly
reduce design cycle and cost and is therefore indispensable for industry.

The majority of the aerodynamic simulation tools currently used in the aero-
nautical industry for routine applications are mainly based on finite volume
methods. Being bound in most of the cases to second order discretization of the
underlying governing equations, real-life applications require tens or hundreds
of million mesh points to enable accurate solutions and to provide deep insight
into complex flow features. In recent years there has been worldwide an ever in-
creasing effort in the development of high-order CFD methods because of their
potential in delivering either improved predictive accuracy or reduced computa-
tional cost compared to their low-order counterparts. Many different strategies
have been followed and their pros and cons have been evaluated for a diverse
range of academic problems ( [3], [4]).

In Europe, the specific target research project ADIGMA (Adaptive Higher-
Order Variational Methods for Aerodynamic Applications in Industry) was ini-
tiated within the 6th European Research Framework Programme [2], in order
to add a major step towards the development of next generation CFD tools
with significant improvements in accuracy and efficiency for turbulent aerody-
namic flows. The main objective of the ADIGMA project (2006-2009) was the
development of innovative high-order methods for the compressible flow equa-
tions in combination with reliable adaptive solution strategies, enabling mesh
independent numerical simulations for aerodynamic applications. The project
concentrated on technologies showing the highest potential for efficient high-
order discretization on unstructured meshes, namely the Discontinuous Galerkin
(DG) methods and the Continuous Residual Distribution (CRD) schemes. Al-
though significant progress has been made in ADIGMA, it was finally concluded
that many of the achievements in high-order simulation methods are still far
away from industrial maturity. In general, the high-order methods investigated
within ADIGMA demonstrated the potential for reducing the size of the discrete
system by a factor of about 5-10 for most of the considered aerodynamic test
cases, however, the gain could not fully transferred to increased runtime per-
formance as limited attention has been paid to efficient solvers for large scale
applications. On a given mesh, high-order discretization involves more floating
point operations than do their low-order counterparts. Strong, memory-efficient
solution algorithms are required to outperform well-tuned low-order methods.
Furthermore, the ability of generating coarse unstructured meshes suitable for
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high-order methods has been identified as a major bottleneck for industrial type
applications. At the end of the ADIGMA research project it was recommended
that further dedicated research effort is required to fully exploit the high-order
methods for routine applications in aerospace industry [2].

2 Objectives

In 2011 the follow-on project IDIHOM (Industrialization of High-Order Meth-
ods) was initiated within the 7th European Research Framework Programme. It
was motivated by the increasing demand of the European aerospace industries
to improve their CFD-aided design procedure and analysis by using accurate
and fast numerical methods. IDIHOM follows a top-down approach. A com-
prehensive suite of challenging application cases proposed by industry was set
up prior to the project to direct dedicated development and improvement of
high-order solvers at hand. The test case suite includes turbulent steady and
unsteady aerodynamic flows, covering external and internal aerodynamics as
well as aero-elastic and aero-acoustic applications. The complete process chain
of the high-order flow simulation capability was addressed, with focus on flow
solver efficiency and mesh generation capabilities, but including also visualiza-
tion and coupling of CFD to other disciplines for multi-disciplinary analysis. The
challenging application cases defined by the industry formed the basis for the
demonstration and assessment of the current status of high-order methods as
a workhorse for industrial applications. IDIHOM was assigned to help to close
the gap between current expectations of what high-order methods are capable of
and their strongly required use for industrial real-world applications - reaching
out for improved, more accurate and time-saving design processes.

The main objectives to be achieved by gathering expertise from European
experts in the field of numerical analysis in aerodynamics and their application to
the multidisciplinary designs in aero-elastics and aero-acoustics are summarized
as follows:

– Advance the maturity of current high-order methods, in particular Discontin-
uous Galerkin and Continuous Residual-Based approaches, and apply them
to complex flows which are of particular interest for the aeronautical indus-
try.

– Demonstrate the capabilities of high-order methods in solving industrially
relevant, challenging applications and achieving synergy effects by combining
requirements from external and internal aerodynamic flows. Aerodynamic
flows to be investigated will focus both on complex steady and unsteady
applications characterized by separation, wakes, and vortex interaction.

– Extend high-order methods to multi-disciplinary applications as there are
aero-acoustics and aero-elastics, improving future cost-effective industrial
designs.

– For the adaptive high-order methods employed, advance the Software Tech-
nology Readiness Level from about 3 (status at the end of the ADIGMA
project) to 5.
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– Facilitate co-operation between European industries, research establishments
and universities and foster co-operation between different industries as there
are airframe, turbo-engines, helicopters, and ground transportation.

Reaching these objectives will enable industry to use high-order methods in
their daily work. Improved accuracy coupled with a reduction of computation
and hence turn-around time is a pre-requisite for a routine employment of novel
methods in future aircraft design cycles.

3 Partner Consortium

The IDIHOM consortium was comprised of 21 organizations with well-proven ex-
pertise in higher-order methods or underlying technologies. The following part-
ners from European aircraft manufactures, small and medium enterprises, major
European research establishments and universities were involved: Dassault Avi-
ation (France), Airbus Defense and Space (Germany), CENAERO (Belgium),
NUMECA (Belgium), DLR (Germany), FOI (Sweden), INRIA (France), NLR
(The Netherlands), ONERA (France), TSAGI (Russia), VKI (Belgium), ARTS
(France), Imperial College London (United Kingdom), University of Bergamo
(Italy), University of Brescia (Italy), University of Stuttgart (Germany), Poznan
University of Technology (Poland), Warsaw University of Technology (Poland),
University of Linköping (Sweden), Université catholique de Louvain (Belgium).

The project was coordinated by the German Aerospace Center (DLR).

4 Project Structure and Main Activities

As mentioned already, the IDIHOM project followed a top-down approach to
enhance the maturity of current high-order methods for routine use in aeronau-
tical industry. Enhancement and improvement activities were identified which
enable a robust, efficient and accurate computation of the comprehensive set
of application challenges. The advancement of the complete set of the high-
order environment was addressed to fulfil the industrial requirements, including
mesh generation and adaptation, solver robustness and convergence accelera-
tion, parallelization strategies for advanced computer hardware as well as flow
visualization.

The technical work in IDIHOM was structured in three main work packages,
all of them split into specific work tasks. Figure 1 sketches the project structure
and exhibits the dependence of the project on the industrial test cases.

Work package 2 (WP2) was the key driver of the project, as it demonstrated
and steered the top-down approach of IDIHOM. In a first task the pre-selected
test cases were further specified in terms of geometry, flow and boundary condi-
tions. Reference solutions using second-order finite volume methods and baseline
solutions employing high-order methods available at project start were com-
puted. These results were then used in a second task for detailed comparisons
with solutions obtained with the improved high-order methodologies available at
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the end of the project. Common test case templates were defined and issued by
nominated test case coordinators, ensuring that reference, baseline and final re-
sults are properly compared, allowing a thorough assessment of the achievements
and advances gained through the IDIHOM project.

The objective of work package 3 (WP3) was to improve the high-order
solvers with regard to the IDIHOM application challenges and the underlying
test cases. After successful completion of the precursor project ADIGMA, focus
was not put on the general development of high-order approaches, but more
on the maturity of the implementation of codes at hand, thus extending the
available capabilities of the solvers both with respect to physical modelling and
the applicability to large-scale application cases. Five different areas for further
enhancement and improvement were identified.

The first task dealt with improved physical modelling capabilities in the frame-
work of high-order methods. The main aspect was not the development or as-
sessment of an accurate and well-behaving turbulence model itself but rather an
appropriate implementation of an explicit algebraic Reynolds stress turbulence
model (EARSM) model in the high-order context. Reynolds stress turbulence
models seem to be more reliable when being used for different applications, serv-
ing by this as a standard turbulence model. EARSMs were selected because of
the promising compromise between accurate modelling of turbulence and mod-
erate cost compared to both simpler models like Wilcox k−ω and more involved
ones like differential Reynolds stress models.

The second task addressed extensions and improvements of selected high-
order methods to unsteady turbulent flows guaranteeing both the accuracy and
the overall performance of the solver. In the third task the assessment of the
applicability of time accurate high-order methods in the context of scale resolving
simulations was addressed. A major interest was put on hybrid RANS/LES
methods which are seen to close the gap between RANS methods on one side and
still expensive large eddy simulations (LES) methods on the other side. The work
was based on results stemming from the European research project DESider [1],
which was dealing with hybrid RANS/LES approaches in detail. It was well
recognized that LES give rise to accurate simulation of vortical structures but
rely on well-defined computational meshes as well as low-dissipation and low-
dispersion schemes. High-order methods might be well suited for this type of
applications.

The objectives of the last two activities were related to the improvement
of solver efficiency for large-scale applications. At the beginning of IDIHOM,
most of the high-order codes were either extremely memory consuming or CPU
intensive. Thus activities were initiated to develop, implement and test various
solution strategies (i.e. implicit schemes with appropriate preconditioners, h- and
p-multigrid) that offer a reasonable compromise between reduced CPU usage and
memory efficiency, thus enabling to run industrially relevant complex application
cases on today’s computer hardware. This also involved the investigation and
implementation of parallelization strategies adapted to the specific features of
high-order methods.
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In work package 4 (WP4) the enhancement of underlying technologies of
high-order methods were addressed. Basically three aspects are of concern, in
which high-order methods have special requirements. These are mesh genera-
tion, mesh adaptation and flow visualization. As high-order methods use rela-
tively coarse meshes, straight-sided meshes, as typically used by second-order
methods, are no longer able to represent smooth surfaces and obviously lack
resolution of geometrical features. Therefore, high-order representation of the
geometrical boundaries is required. Furthermore, for stretched elements, often
encountered close to solid wall boundaries in aerospace applications, the volume
mesh needs to be considered as curvilinear as well, at least close to the curved
surface. For relevant aeronautical applications support for generation of high-
order meshes is limited or not available at all in commercial mesh generation
software. Therefore, specific development actions had been addressed, extending
existing grid generation systems to provide suitable high-order meshes for the
test cases considered in the project.

For high-order methods grid adaptation is an essential ingredient to become
competitive with standard solvers. In particular for finite element based meth-
ods there is a strong theoretical background which can be exploited in order
to derive local error estimates, which can in turn be used to drive a solution
dependent mesh adaptation algorithm. To properly exploit this feature, several
components have to be provided, among which are the provision of appropriate
error indicators, the implementation of element subdivision or mesh regenera-
tion for high-order meshes and the capability to recover the true geometry under
mesh refinement. Based on the achievements gained in the ADIGMA project [2],
necessary improvements were addressed to allow the final computations for some
of the application challenges on flow-adapted meshes.

Visualizing solutions obtained with high-order methods using curved meshes
is increasingly demanding, as the order of the local polynomial approximation
spaces increases beyond the simple linear case. Hence, in order to close the
process chain of high-order methods, limited effort was put on the investigations
of high-order visualization techniques.

Test Cases

The test case suite selected for the IDHOM project can be split into four applica-
tion areas: external and internal aerodynamics, aero-elastics and aero-acoustics.
Two different types of test cases were defined. So called application challenges
were mainly defined by industry and they are characterized by complex three-
dimensional flows around complex geometries. A few underlying test cases were
provided with moderate geometrical and/or flow complexity to speed-up the
process of method enhancement in the first part of the project.

The test case suite was selected prior to project start. During the course of the
project, some modifications and adaptations were made due to lack of reference
results and detailed geometry definitions. Figures 2 to 5 list the test cases used
in the IDIHOM project.
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Fig. 1. Work package structure of the IDIHOM project

(a) A.1 - Trans-
port aircraft in
cruise conditions
(CleanSky)

(b) A.2 - Fighter
configuration in
subsonic and
transonic flow

(c) A.3 - AIAA
high-lift prediction
workshop test case
(Trap wing)

(d) A.4 - Busi-
ness jet in tran-
sonic flow

(e) A.5 - High
speed train head

(f) U.1 - VFE-
2 delta wing, high
angle of attack

(g) U.2 - ONERA
M6 wing in sub-
sonic and transonic
flow

(h) U.3 - L1T2 2D
high-lift configura-
tion

Fig. 2. External aerodynamic test cases (A.x: challenging applications, U.x : underlying
test cases)
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(a) A.7 - NASA
rotor 37

(b) A.8 - Jean noz-
zle

(c) A.9 - MTU
cascade

(d) A.11 -
DESider bump

Fig. 3. Internal aerodynamic test cases

(a) A.12 - HART
II helicopter rotor

(b) A.13 - DLR-
F6 wing/body con-
figuration

(c) U.4 - LANN
wing

Fig. 4. Aero-elastic test cases

(a) A.14 - VAL-
LIANT wing/flap
interaction

(b) A.15 - M219
cavity

Fig. 5. Aero-acoustic test cases

5 Conclusion

Within the 7th European Framework Programme the collaborative research
project IDIHOM was set up to improve and demonstrate capabilities of high-
order methods for large-scale applications in aeronautical industry. It followed a
top-down approach, in which dedicated development and improvement activities
for adaptive high-order methods were led by a comprehensive set of challeng-
ing and underlying test cases relevant for aeronautical industry. The complete
process chain of the high-order flow simulation capability from grid generation,
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via flow solver to visualization was addressed. The project gathered 21 partners
from industry, research organizations and universities with well-proven expertise
in development and utilization of high-order methods. It started end of 2010 and
lasted 46 months.

In the following chapters of the book the developments and achievements
obtained by the individual partners are presented in detail. Furthermore, for
each IDIHOM test case the performance of the high-order methods is discussed.
A final assessment of the IDIHOM project is given at the end.
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Abstract. It is now well-known that a curvilinear discretization of the
geometry is most often required to benefit from the computational ef-
ficiency of high-order numerical schemes in simulations. In this article,
we explain how appropriate curvilinear meshes can be generated. We
pay particular attention to the problem of invalid (tangled) mesh parts
created by curving the domain boundaries. An efficient technique that
computes provable bounds on the element Jacobian determinant is used
to characterize the mesh validity, and we describe fast and robust tech-
niques to regularize the mesh. The methods presented in this article are
thoroughly discussed in Ref. [1, 2], and implemented in the free mesh
generation software Gmsh [4,12].

Keywords: High-order mesh, curvilinear mesh, geometry discretization,
mesh validity, element Jacobian.

1 Introduction

There is a growing consensus in the computational mechanics community that
state of the art solver technology requires, and will continue to require too ex-
tensive computational resources to provide the necessary resolution for a broad
range of demanding applications, even at the rate that computational power
increases. The requirement for high resolution naturally leads us to consider
methods which have a higher order of grid convergence than the classical (for-
mal) 2nd order provided by most industrial grade codes. This indicates that
higher-order discretization methods will replace at some point the current finite
volume and finite element solvers, at least for part of their applications.

The development of high-order numerical technologies for engineering analysis
has been underway for many years now. For example, Discontinuous Galerkin
methods (DGM) have been thoroughly studied in the literature, initially in a
theoretical context [5], and now from the application point of view [6]. In many
contributions, it is shown that the accuracy of the method strongly depends
on the accuracy of the geometrical discretization (see for instance Ref. [7]). It

c© Springer International Publishing Switzerland 2015 15
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is thus necessary to address the problem of generating high-order, curvilinear
meshes. This article focuses on unstructured meshes, that make it possible to
deal with the complex geometries involved industrial-grade problems. It is mainly
dedicated to the theoretical and practical aspects of high-order mesh generation
as they are implemented in the Gmsh mesh generator [4,12], that is distributed
as free software. An in-depth discussion of the techniques described hereafter, as
well as numerous examples and applications, can be found in Ref. [1, 2].

The rest of the article is organized as follows. Section 3 gives an overview
of high-order mesh generation methods available in the literature. In Section 3,
we describe how high-order nodes are created, ordered in elements and placed
on the curved boundaries. In Section 4, we address the topic of mesh validity
and the reliable evaluation of element Jacobian determinants. Section 5 details
the mesh regularization methods available in Gmsh. Finally, we shortly draw
conclusions in Section 5.

2 Overview of High-Order Mesh Generation Methods

Although high-order numerical schemes have been a subject of intense research
for many years, a comparatively small number of research groups have worked on
high-order mesh generation methods, despite the necessity pointed out above. So
far, efforts in this field have been focused on the problem of creating curvilinear
meshes (i.e. meshes that follow the curvature of the domain boundaries defined
by CAD models) that fulfill the validity requirements imposed by the dominant
numerical methods (namely finite volumes and finite elements).

Two approaches can be considered for the generation of high-order meshes [8]:
one can either try to create directly a valid high-order mesh through a high-order
version of a classical meshing algorithm, or generate a first-order (i.e. straight-
sided) mesh that is subsequently curved and regularized if invalidities are found.
Both approaches are actually related, as they share the necessity of detecting
and repairing the invalid parts of the mesh.

The procedures for detection and regularization of invalidities are much more
complex and computationally expensive in the high-order case than for usual
straight-sided meshes, but the curvilinear character of a high-order mesh is usu-
ally localized to the vicinity of curved boundaries. This is why the direct ap-
proach, that involves operations on high-order meshes in the whole domain, has
been disregarded by most if not all authors in favor of the indirect approach that
takes advantage of existing technologies.

2.1 Curving

After generation of the first-order mesh, the following step in the indirect ap-
proach is to curve the boundaries of the mesh according to the geometry of
the problem. Model entities like model faces or model edges are supposed to
be smooth manifolds that are defined through a parametrization. In engineering
applications, the geometry of model entities is most often defined by a CAD
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model, but discrete geometries that are common in biomedical applications can
also be smoothly parametrized.

The mesh elements (or cells in the finite volume terminology) are usually
defined in a Lagrangian manner by a set of nodes (or vertices). Thus, the curving
procedure normally comes down to placing the high-order nodes corresponding
to boundary edges and boundary faces on the exact geometry.

This part of the high-order mesh generation process is generally not considered
as a crucial point, and little information can be found about it in the literature.
Simple techniques for obtaining high-order boundary nodes include interpolating
them between the first-order boundary nodes in the parametrization describing
the corresponding CAD entity [8, 9] and projecting them on the geometry from
their location on the straight-sided element.

More sophisticated procedures have also been proposed. In Ref. [10], the high-
order nodes on boundary edges are interpolated in the physical space through a
numerical procedure involving either the CAD parametrization (in the case of a
mesh edge corresponding to an edge of the geometric model), or an approxima-
tion of the geodesic connecting the two first-order vertices (in the case of an edge
located on a 3D surface). Nodes located within surface elements are obtained
through a more sophisticated version of this procedure. Instead of interpolation,
Sherwin and Peiró [11] use a mechanical analogy with chains of springs in equi-
librium that yields the optimal node distribution along geometric curves and
geodesics for edge nodes. Two-dimensional nets of springs provide the optimal
distribution of surface element nodes.

These procedures generally aim to obtain a given node distribution on the
boundary of the computational domain. However, it may be more interesting
to search for the node locations that minimize the error in the approximation
of the exact geometric by the high-order mesh boundary, for instance in terms
of the Hausdorff distance. To our knowledge, this topic point has not yet been
explored in the context of high-order mesh generation for scientific computation.

The creation and placement of high-order nodes is treated in detail in Sec-
tion 3.

2.2 Detection of Invalidities

As illustrated in Section 3, curving the mesh boundaries while leaving other mesh
entities unchanged may result in an invalid mesh with tangled elements. From
the point of view of numerical schemes, a mesh is generally considered as valid
if it is possible to integrate a quantity over each element, and if elements do not
overlap. Both requirements can be evaluated through the Jacobian determinant
of a transformation between a canonical reference element and the actual element
of the mesh, as in the finite element framework (see Section 4.1). The validity
depends on the sign of the Jacobian.

In order to characterize the quality of a high-order mesh independently of the
size of its elements, authors have used different distortion measures based on the
Jacobian determinant. Most of them involve the ratio of minimum to maximum
Jacobian in each element [8, 10–14], the ratio of the minimum Jacobian to the
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Jacobian of the corresponding straight-sided element [1] or the integral of the
Jacobian divided by the Jacobian of the straight-sided element [15].

It is important to note that the Jacobian determinant of an element is a
higher-order polynomial of the coordinates in the reference space. As such, its
oscillatory nature makes it difficult to evaluate its extrema (and thus its sign)
by sampling. Several authors have developed procedures based on the convex
hull properties of Béziers polynomials for the reliable evaluation of Jacobian
bounds [1, 13, 16]. This point is the object of Section 4.

2.3 Regularization of Invalid Meshes

In case invalid elements are detected in a high-order mesh, a procedure to reg-
ularize the mesh (i.e. untangle the broken elements) has to be applied. This is
arguably the most important and problematic part of high-order mesh gener-
ation. On one hand, the procedure has to be robust, because a single invalid
element can make the mesh inappropriate for computation. On the other hand,
the regularization procedure shall not be much more computationally intensive
than the rest of the meshing process, in order to remain suitable for practical
applications. Several types of methodologies have been proposed in the litera-
ture.

A first possibility is to apply local refinement to the mesh in the regions
where the boundary curvature is considered as large enough to possibly create
invalid elements [11]. It has also been proposed to move the high-order nodes
along specific lines depending on geometric constraints and neighbouring ele-
ments [13]. More sophisticated methodologies combine a prescribed deformation
of elements near curved boundaries (by moving the control points of their Bézier
representation) with topological modifications in order to untangle all invalid
elements [8, 16, 17].

A second class of regularization methods are based on mechanical analogies:
the mesh is considered as embedded in an elastic medium, and the imposition
on the boundaries of a displacement corresponding to the curving results in a
problem that can be solved using finite elements. No topological modification
is made. The simple linear elastic analogy has been employed [10], but it may
prove unreliable. A more robust method may be obtained by using non-uniform
material properties, that is by using stiffer material in small elements near curved
boundaries. More successful strategies have been proposed, including a non-linear
mechanics formulation [14] and an iterative method working on the Bézier control
points of the elements instead of the Lagrangian nodes [12].

The last approach for regularization methods is based on optimization algo-
rithms. The point is then to find the mesh node locations which minimize an
objective function that characterizes the validity of the mesh, using the measures
described in Section 2.2. In Ref. [9], such a method is applied with a extended
distortion measure on triangular surface meshes. In a recent paper [2], we have
taken advantage of the control allowed by this approach on the validity of the
mesh to propose a robust untangling method, that is detailed in Section 5.2.
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3 Creation of High-Order Meshes

3.1 High-Order Elements

When dealing with high order elements, it is important to define how element
nodes are numbered for a given element shape and for a given order p. Our
convention is very general with respect to both those parameters. For all mesh
and post-processing purposes, reference elements are defined as in a classical
finite element framework.

We start by considering linear elements (lines, triangles, quads, tets, prisms,
hexes and pyramids), that contain only corner vertices. In 2D elements, the nodes
are numbered in such a way that each edge connects two consecutive nodes, the
normal to the oriented edge pointing outwards. In 3D elements, the edge-vertex
connectivity does not follow a general rule. Instead, the node ordering is such
that of the normal to each face of the element points outward.

The node ordering of a higher order (possibly curved) element is a generaliza-
tion of the one used in the first-order element. We number nodes in the following
order:

– the element corner vertices (i.e. the first-order vertices);
– the internal nodes for each edge;
– the internal nodes for each face;
– the volume internal nodes.

The numbering for internal nodes is recursive, ie. the numbering follows that of
the nodes of an embedded edge/face/volume of lower order. The higher order
nodes are assumed to be equispaced.

A visual description of the node ordering used in the Gmsh mesh generation
software can be found in its documentation [4].

3.2 Generating High Order Meshes Based on CAD Data

Modern mesh generation procedures take as input CAD models composed of
model entities : vertices G0

i , edges G1
i , faces G2

i or regions G3
i . Each model entity

Gd
i has a geometry (or shape) [12,18] for which solid modelers usually provide a

parametrization, that is, a mapping ξ ∈ Rd �→ x ∈ R3. There are also four kind
of mesh entities Md

i that are said to be classified on model entities. Each mesh
entity is classified on the model entity of the smallest dimension that contains
it. The way of building a high order mesh is to first generate a straight sided
mesh. Then, mesh entities (edges, faces and regions) are curved according to the
geometry of the CAD entity it is classified on.

In the p-version of finite elements, high order nodes are added to edges, faces
and regions of the element with the aim of creating curvilinear elements with
their shape based on high order (Lagrangian or not) polynomial bases (see Figure
1). Other authors [19, 20] would rather use the exact mappings of the geometry
and build a so-called isogeometric mesh.
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Model face G2
1

Mesh Curving

Model edge G1
1

Mesh edge M1
1 � G2

1

Mesh edge M1
2 � G1

1

Fig. 1. Straight sided mesh (left) and curvilinear (cubic) mesh (right)

The naive curving procedures described above does not ensure that all the
elements of the final curved mesh are valid. Figure 2 gives an illustration of
this important issue: some of the curved triangles are tangled after having been
curved. It is important to note that this problem is not related to the accuracy
of the geometrical discretization: in Figure 2, the mesh would not be valid in the
iso-geometric case i.e. if the curved edge was assigned the exact geometry (blue
curve).

First-order mesh High-order vertices Untangling

Fig. 2. Straight sided mesh (left) basic curvilinear (quadratic) mesh with tangled ele-
ments (center) and untangled mesh (right)

Gmsh implements the polynomial version of high order meshes. There, the
choice of the position of high order nodes is a crucial parameter for the validity
of the high order elements.

The position of high order nodes can be chosen by linear interpolation between
the first-order nodes in the parametric space provided by the solid modeler for
the corresponding model entity. This procedure has the advantage of being sim-
ple, fast and geometrically robust (no projection on surfaces is needed). Yet, ill
conditioned mappings are very common in CAD systems. Such a procedure will
generate very bad elements in the vicinity of singularities (e.g. the two poles of
a sphere described using spherical coordinates).
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Another option would be to place new nodes in such a way that the geometrical
error, i.e. the distance between the CAD model and the mesh, is minimized.
Note that the definition of such a distance is not trivial and that the non linear
procedure involved in such a minimization is time consuming.

The way Gmsh generates high order nodes (order p) on a mesh made of
simplices (triangles and tets) is the following one:

– For every model edge G1
i , add p−1 high order nodes on mesh edges M1

j that
are classified on G1

i ,
– For every model face G2

i , add p− 1 high order nodes on mesh edges M1
j that

are classified on G2
i ,

– For every model region G3
i , add p − 1 high order nodes on mesh edges M1

j

that are classified on G3
i ,

– For every model face G2
i , add (p− 1)× (p− 2)/2 high order nodes on mesh

faces M2
j that are classified on G2

i ,
– For every model region G3

i , add (p−1)× (p−2)/2 high order nodes on mesh
faces M2

j that are classified on G3
i ,

– For every model region G3
i , add (p−1)× (p−2)× (p−3)/6 high order nodes

on mesh regions M3
j that are classified on G3

i .

When an edge going from xa to xb is saturated with its p− 1 high order points
xi, those are initially placed on a straight line segment between xa and xb in
an equispaced manner. Then, points xi are orthogonally projected on the real
geometry, using the functions provided by CAD systems. When an internal edge
of a region is saturated with high order points, no projection is needed.

When high order points are added on mesh faces classified on model faces, a
different procedure is applied. An incomplete element that contains corner nodes
and edge nodes is constructed. Those elements are sometimes called serendipity
(or incomplete) elements [21]. Gmsh’s way of numbering nodes allows us to easily
generate such elements. Incomplete elements are not converging optimally to the
exact geometry when the mesh is refined. Internal nodes have to be added to
achieve optimal convergence. Shape functions of the incomplete elements are
used to place the internal nodes on the geometry of the curvilinear incomplete
element. Then, those nodes are projected on the model face. The same procedure
is used for inserting mesh vertices inside high order regions. Yet, no projection
is needed in this case. The use of incomplete elements to predict the position of
high order nodes before projection has experimentally given better results than
a simple projection. Yet, there is no guarantee that such a procedure produces
valid high order meshes.

4 Validity of High-Order Meshes

4.1 Curvilinear Meshes, Distortion and Bounds on Jacobian
Determinants

Let us consider a mesh that consists of a set of straight-sided elements of order
p. Each element is defined geometrically through its nodes xi, i = 1, . . . , Np and
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a set of Lagrange shape functions L(p)
i (ξ), i = 1, . . . , Np. The Lagrange shape

functions (of order p) are based on the nodes xi and allow to map a reference
unit element onto the real one:

x(ξ) =

Np∑

i=1

L(p)
i (ξ) xi. (1)

The mapping x(ξ) should be injective, which means that it should admit an
inverse. This implies that the Jacobian determinant detx,ξ has to be strictly
positive. In all what follows we will always assume that the straight-sided mesh is
composed of well-shaped elements, so that the positivity of detx,ξ is guaranteed.
This standard setting is presented on Figure 3 (left) for the quadratic triangle.

ξ1

x1

X3

X2

X1

x5

x6

x4

X5

X6

X4

Y

X

x(ξ) ξ3

ξ2

ξ5
ξ6

ξ4

ξ

η
X(ξ)

X(x)

x

y

x2

x3

Fig. 3. Reference unit triangle in local coordinates ξ = (ξ, η) and the mappings x(ξ),
X(ξ) and X(x)

Let us now consider a curved element obtained after application of the curvi-
linear meshing procedure, i.e., after moving some or all of the nodes of the
straight-sided element. The nodes of the deformed element are called Xi, i =
1 . . .Np, and we have

X(ξ) =

Np∑

i=1

L(p)
i (ξ) Xi. (2)

Again, the deformed element is assumed to be valid if and only if the Jacobian
determinant J(ξ) := detX,ξ is strictly positive everywhere over the ξ reference
domain. The Jacobian determinant J , however, is not constant over the reference
domain, and computing Jmin := minξ J(ξ) is necessary to ensure positivity.
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The approach that is commonly used is to sample the Jacobian determinant
on a very large number of points. Such a technique is however both expensive
and not fully robust since we only get a necessary condition.

It is possible to follow a different approach: because the Jacobian determinant
J is a polynomial in ξ, J can be interpolated exactly as a linear combination
of specific polynomial basis functions over the element. We would then like to
obtain provable bounds on Jmin by using the properties of these basis functions.

In addition to guaranteeing the geometrical validity of the curvilinear element,
we are also interested in quantifying its distortion, i.e., the deformation induced
by the curving. To this end, let us consider the transformation X(x) that maps
straight sided elements onto curvilinear elements (see Figure 1). It is possible to
write the determinant of this mapping in terms of the ξ coordinates as:

detX,x =
detX,ξ

detx,ξ
=

J(ξ)

detx,ξ
. (3)

We call X(x) the distortion mapping and its determinant δ(ξ) := detX,x the
distortion. The distortion δ should be as close to δ = 1 as possible in order not to
degrade the quality of the straight sided element. Elements that have negative
distortions are of course invalid but elements that have distortions δ � 1 or
δ � 1 lead to some alteration of the conditioning of the finite element problem.
In order to guarantee a reasonable distortion it is thus necessary to find a reliable
bound on Jmin and Jmax := maxξ J(ξ) over the whole element.

Note that many different quality measures can be defined based on the Jaco-
bian determinant J . For example, one could look at the Jacobian determinant
divided by its average over the element instead of looking at the distortion. Ob-
taining bounds on Jmin and Jmax is thus still the main underlying challenge.
Other interesting choices are presented and analyzed in [15].

4.2 Adaptive Bounds for Arbitrary Curvilinear Finite Elements

In order to explain the adaptive bound computation let us first focus on the
one-dimensional case, for “line” finite elements. Since Bézier functions can be
generated for all types of common elements (triangles, quadrangles, tetrahe-
dra, hexahedra and prisms), the generalization to 2D and 3D elements will be
straightforward.

The One-Dimensional Case. In 1D the Bézier functions are the Bernstein
polynomials:

B(n)
k (ξ) =

(
n

k

)
(1− ξ)n−k ξk (ξ ∈ [0, 1] ; k = 0, ..., n) (4)

where
(
n
k

)
= n!

n!(n−k)! is the binomial coefficient. The Bézier interpolation requires
n+ 1 control values bi. We have

J(ξ) =

Nn∑

k=0

B(n)
k (ξ) bk. (5)
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Bernstein-Bézier functions have the nice following properties : (i) they form a
partition of unity which means that

∑n
k=0 B

(n)
k (ξ) = 1 for all ξ ∈ [0, 1] and (ii)

they are positive which means that B(n)
k (ξ) ≥ 0 for all ξ ∈ [0, 1]. This leads to

the well known property of Bézier interpolations:

min
ξ∈[0,1]

J(ξ) ≥ bmin = min
i
bi and max

ξ∈[0,1]
J(ξ) ≤ bmax = max

i
bi. (6)

Moreover, the control values related to the corner nodes of the element are equal
to the values of the interpolated function. In what follows we assume that these
“corner” control values are always ordered at the Kf first indices. We then have

min
ξ∈[0,1]

J(ξ) ≤ min
i<Kf

bi and max
ξ∈[0,1]

J(ξ) ≥ max
i<Kf

bi. (7)

Since Lagrange and Bézier functions span the same function space, computa-
tion of the Bézier values bi from the nodal values Ji (and convertly) is done by a
transformation matrix. The tranformation matrix T

(n)
B→L, which computes nodal

values from control values, is created by evaluating Bézier functions at sampling
points:

T
(n)
B→L =

⎡

⎢⎢⎢⎢⎣

B(n)
0 (ξ0) . . . B(n)

n (ξ0)

B(n)
0 (ξ1) . . . B(n)

n (ξ1)
...

. . .
...

B(n)
0 (ξn) . . . B(n)

n (ξn)

⎤

⎥⎥⎥⎥⎦
.

Those sampling points are taken uniformly, i.e. at the location of the nodes of
the element of order n. The inverse transformation is T

(n)
L→B = T

(n)
B→L

−1
and

from the expression of the interpolation of the Jacobian determinant (5), we can
write

J = T
(n)
B→LB

B = T
(n)
L→B J , (8)

where B and J are the vectors containing respectively the bi’s and the Ji’s.

Adaptive Subdivision. Let us assume that the domain [0, 1] is subdivided into
Q parts. The interpolation J [q](ξ[q]) on the qth subdomain [a, b] (0 ≤ a < b ≤ 1)
must verify

J [q](ξ[q]) =

Nn∑

k=0

B(n)
k (ξ[q]) b

[q]
k =

Nn∑

k=0

B(n)
k (ξ(ξ[q])) bk (ξ[q] ∈ [0, 1]), (9)

with ξ(ξ[q]) = a+ (b− a) ξ[q].
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Considering the nodes ξ[q]k such that ξ[q]k = ξk (k = 0, . . . , n) (i.e., such that
they are ordered like the sampling points), the expression (9) reads

T
(n)
B→LB

[q] =

⎡

⎢⎢⎢⎢⎣

B(n)
0 (a+ (b − a) ξ0) . . . B(n)

n (a+ (b− a) ξ0)

B(n)
0 (a+ (b − a) ξ1) . . . B(n)

n (a+ (b− a) ξ1)
...

. . .
...

B(n)
0 (a+ (b − a) ξn) . . . B(n)

n (a+ (b− a) ξn)

⎤

⎥⎥⎥⎥⎦
B = T

(n)
B→L

[q]
B,

where B[q] is the vector containing the control values of the qth subdomain. This
implies that

B[q] =

[
T

(n)
L→B T

(n)
B→L

[q]
]
B = M[q]B. (10)

Each set of new control values bounds the Jacobian determinant on its own
subdomain and we have:

b′min = min
i,q

b
[q]
i ≤ Jmin ≤ min

i<Kf ,q
b
[q]
i (11)

and
max

i<Kf ,q
b
[q]
i ≤ Jmax ≤ b′max = max

i,q
b
[q]
i . (12)

If an estimate is not sufficiently sharp, we can thus simply subdivide the
appropriate parts of the element. This leads to a simple adaptive algorithm,
exemplified in Figure 4. In this particular case the original estimate (6)-(7) is not
sharp enough (Jmin ∈ [−3, 1]). After one subdivision, the Jacobian determinant
is proved to be positive on the second subdomain. The first subdomain is thus
subdivided once more, which proves the validity. In practice, a few levels of
refinement lead to the desired accuracy. The subdivision has quadratic speed of
convergence [22, 23].

Note that in a practical implementation (with finite precision arithmetic),
we must take care of a problematic situation. If the minimum of the Jacobian
determinant is too close to zero but positive, then the upper bound is positive
while the lower bound might never get positive. In order to avoid this situation,
we limit the number of consecutive subdivisions that can be applied. The unde-
termined elements are then considered as invalid. Another way of getting rid of
this issue is to relax the condition of rejection.

Extension to Higher Dimensions. The extension of the method to higher
dimensions is straightforward, provided that Bézier functions can be generated
and that a subdivision scheme is available. Jacobian determinants J are polyno-
mials of ξ, η in 2D and of ξ, η, ζ in 3D.

For high order triangles, the Bézier triangular polynomials are defined as

T (p)
i,j (ξ, η) =

(
p

i

)(
p− i

j

)
ξi ηj (1− ξ − η)p−i−j (i+ j ≤ p).
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Fig. 4. Top left: One-dimensional element mapping x(ξ). Top right: Exact Jacobian
determinant J(ξ) (black), control values on the original control points (green) and two
adaptive subdivisions (blue and red). Bottom: Estimates of Jmin at each step in the
adaptive subdivision process.

It is possible to interpolate any polynomial function of order at most p on the
unit triangle ξ > 0, η > 0, ξ + η < 1 as an expansion into Bézier triangular
polynomials. Recalling that, for a triangle at order p, its Jacobian determinant
J(ξ, η) is a polynomial in ξ and η at order at most n = 2(p− 1), we can write

J(ξ, η) =
∑

i+j≤n

bijT (n)
i,j (ξ, η).

It is also possible to compute J in terms of Lagrange polynomials

J(ξ, η) =
∑

i

JiL(n)
i (ξ, η)

where the Ji are the Jacobian determinants calculated at Lagrange points. It is
then easy to find a transformation matrix T n

LB such that

B = T n
LBJ,

where B and J are the vectors containing respectively the control values of the
Jacobian determinant bij and the Ji’s.

Other element shapes can be treated similarly. For quadrangles, tetrahedra,
prisms and hexahedra, the Bézier are functions respectively:

Q(p)
i,j (ξ, η) = B

(p)
i (ξ) B(p)

j (η) (i ≤ p, j ≤ p),
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T (p)
i,j,k(ξ, η, ζ) =

(
p

i

)(
p− i

j

)(
p− i− j

k

)
ξi ηj ζk (1 − ξ − η − ζ)p−i−j−k

(i + j + k ≤ p),

P(p)
i,j,k(ξ, η, ζ) = T

(p)
i,j (ξ, η) B(p)

k (ζ) (i+ j ≤ p, k ≤ p)

and

H(p)
i,j,k(ξ, η, ζ) = B

(p)
i (ξ) B(p)

j (η) B(p)
k (ζ) (i ≤ p, j ≤ p, k ≤ p).

Matrices of change of coordinates can then be computed inline for every polyno-
mial order, and bounds of Jacobian determinants computed accordingly. Table 1
summarizes the order of the Jacobian determinant and the number of coeffi-
cients in its expansion for all common element types. In all cases the subdivision
scheme works exactly in the same way as for lines. Figure 5 shows the first level
of subdivision for a third-order triangle.

Table 1. Order of the Jacobian determinant and number of coefficients in the expansion
for an element of order p

Order (n) of J Number of coefficients
Line p− 1 n+ 1

Triangle 2(p− 1) (n+ 1)(n+ 2)/2
Quadrangle 2p− 1 (n+ 1)2

Tetrahedron 3(p− 1) (n+ 1)(n+ 2)(n+ 3)/6
Prism 3p− 1 (n+ 1)2(n+ 2)/2

Hexahedron 3p− 1 (n+ 1)3

Implementation. As mentioned in Section 4.1, the bounds on the Jacobian
determinant can be used to either make the distinction between valid and invalid
elements with respect to a condition on Jmin, or to measure the quality of the
elements by systematically computing Jmin and Jmax with a prescribed accuracy.

In both cases the same operations are executed on each element. First, the
Jacobian determinant is sampled on a determined number of points Ns, equal to
the dimension of the Jacobian determinant space, and so to the number of Bézier
functions. Second, Bézier values are computed. Then adaptive subdivision is
executed if necessary. Algorithms 1 and 2 show in pseudo-code the algorithm used
to determine whether the Jacobian determinant of the element is everywhere
positive or not.

Algorithm 2 could be further improved by optimzing the loop on line 5, by
first selecting q for which we have the best chance to have a negative Jacobian
determinant (line 4, algo 2). In practice this improvement is not significant since
the only case for which we can save calculation is for invalid elements—and the
proportion of them which require subdivision in order to be detected is usually
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Fig. 5. Top: third-order planar triangle. Bottom left: exact Jacobian determinant and
control values (dots) on the original control points; the validity of the element cannot
be asserted. Bottom right: exact Jacobian determinant and control values (dots) after
one subdivision; the element is provably correct.

small. Note that we may also want to find, for example, all the elements for
which the Jacobian determinant is somewhere smaller than 20% of its average.
We then just have to compute this average and replace the related lines (4 and
7 for algorithm 1).

Another possible improvement is to relax the condition of rejection. We could
accept elements for which all control values are positive but reject an element
as soon as we find a Jacobian determinant smaller than a defined percent of the
average Jacobian determinant. The computational gain can be significant, since
elements that were classified as good and which needed a lot of subdivisions (and
have a Jacobian determinant close to zero) will be instead rapidly be detected
as invalid.

More interestingly, the computation of sampled Jacobian determinants and
the computation of Bézier control values in algorithm 1 can easily be executed
for a whole groups of elements at the same time. This allows to use efficient
BLAS 3 (matrix-matrix product) functions, which significantly speeds up the
computations.
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Algorithm 1. Check if an element is valid or invalid
Input: a pointer to an element.
Output: true if the element is valid, false if the element is invalid

1 set sampling points Pi, i = 1, . . . , Ns;
2 compute Jacobian determinants Ji at points Pi;
3 for i = 1 to Ns do
4 if Ji <= 0 then return false

5 compute Bézier coefficients bi, i = 1, . . . , Ns using (8);
6 i = 1;
7 while i ≤ Ns and bi > 0 do
8 i = i+ 1;

9 if i > Ns then return true

10 call algorithm 2 with bi as arguments and return output;

Algorithm 2. Compute the control values of the subdivisions
Input: Bézier coefficients bi, i = 1, . . . , Ns

Output: true if the Jacobian determinant on the domain is everywhere
positive, false if not

1 compute new Bézier coefficients b[q]i , q = 1, . . . , Q as in equation (10);
2 for q = 1 to Q do
3 for i = 1 to Kf do
4 if b[q]i <= 0 then return false

5 for q = 1 to Q do
6 i = 1;
7 while i ≤ Ns and b

[q]
i > 0 do

8 i = i+ 1;

9 if i ≤ Ns then
10 call algorithm 2 with b

[q]
i as arguments and store output;

11 if output = false then return false

12 return true;
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5 Untangling of High-Order Meshes

5.1 Strategy

Applying an untangling procedure to the entire mesh would result in a robust
methodology. In most practical cases however, it represents an unnecessary ex-
pense of computational resources. Indeed, only the vertices and elements in the
vicinity of the curved geometry really need to be modified in order to untan-
gle the mesh, while the mesh entities located far from the boundary remain
unchanged. In order to optimize the computational efficiency, the untangling
procedure can thus be applied locally. Subdomains are first defined around each
invalid element. Then, two strategies can be adopted in the framework of an
optimization procedure.

Primary Subdomains. The first step in the untangling procedure consists in
identifying all invalid elements in the mesh, for instance by means of the methods
described in Section 4. A subdomain of N layers of elements can then be built
around each of the invalid elements. Although these subdomains are usually
appropriate in isotropic meshes, they may not be adequate for boundary layer-
type meshes, where elements are highly anisotropic. In this case, the boundary
curvature responsible for the mesh tangling is typically large compared to the
normal size of the tangled element, but small compared to its tangential size (see
Figure 6). Thus, untangling such a mesh requires several layers to be curved in
the direction normal to the boundary, whereas there is no need to modify the
elements that are adjacent in the tangential direction. Therefore, a geometrical
criterion is introduced in the construction of the subdomains, as illustrated in
Figure 6: among the elements contained in the N layers surrounding the invalid
element, only those located within a certain distance are retained. This distance
is defined by multiplying the distance between the straight-sided and high-order
boundaries by a user-defined factor. The boundaries of the subdomain are fixed,
in order to ensure that elements lying outside do not get invalidated.

Fig. 6. Detail of a boundary-layer mesh on a curved geometry: tangled second-order
mesh (left), subdomain definition with a circle representing the geometrical criterion
(center), and untangled mesh (right)
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The optimal values for the number of layers N and the distance factor are
those that encompass the lowest number of elements while still leaving the un-
tangling procedure enough freedom to untangle the mesh (or reach a target value
for the Jacobian determinant). They are case-dependent. Note that in 3D, it is
desirable to make sure that the subdomain includes at least one layer of ele-
ments around all faces of the invalid element, because the latter is likely to have
tangled faces that cannot be repaired if they lie on the boundary of the subdo-
main. For the optimization procedure described in Section 5.2, a fair trade-off
between computation cost and robustness can be obtained with N = 6 layers of
quadrangles (or N = 12 layers of triangles) and a distance factor of 12 in many
applications involving boundary-layer meshes.

In complex cases, a unique value of these parameters for the whole mesh may
lead to subdomains that are too large for some invalid elements, but too small
for others. It is then beneficial to use the untangling procedure in an adaptive
loop where the subdomain size is progressively increased in case the procedure
fails to untangle the mesh.

Overlapping Subdomains. A potential problem with the subdomains created
as described above is that they may overlap. There is no guarantee that the
untangling procedure can be efficiently applied to each of these subdomains.
Let us consider the case of a subdomain built around an invalid element, that
contains another invalid element close to its boundary: this subdomain may not
provide the necessary degrees of freedom to fix the second invalid element, thus
the untangling procedure can fail in this subdomain. In order to avoid such
problems, two strategies can be applied:

Disjoint Subdomains. Overlapping subdomains are detected and merged.
This strategy ensures that each invalid element in a subdomain has enough
surrounding elements for the untangling procedure to be successful, provided
the primary subdomains are large enough. It is also well-suited for a parallel
setting in which each subdomain would be treated by a processor. However,
it may lead to large subdomains, which can prove inappropriate if the cost
of the untangling procedure does not scale well with the number of nodes
and elements involved.

“One-by-one” Strategy. The untangling procedure is applied sequentially to
each subdomain, with the objective of fixing only the invalid element around
which it is built, while allowing other invalid elements in the same subdomain
to remain broken. This strategy lets the untangling procedure work on small-
size subdomains, but is less appropriate for parallel operation at subdomain
level, because it is not possible to untangle concurrently subdomains that
overlap.

5.2 Untangling through Optimization

We chose to apply to each subdomain an untangling procedure that preserves
the mesh topology. Its role is to move the mesh vertices in such a way that the
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tangled elements become valid, while the other elements do not become invalid.
The measure of the scaled Jacobian determinant characterizes the element va-
lidity in a continuously derivable manner with respect to the position of the
vertices, which allows us to use an optimization algorithm. In this section, we
derive an appropriate objective function relying on the robust Jacobian evalua-
tion technique presented in Section 4, and explain how to efficiently compute its
gradient. We then describe the method used to solve the optimization problem.

Computation of Bézier Coefficients and Their Derivatives. The general
goal of our method is to untangle both surface and volume meshes. To this end,
we consider that all points have three-dimensional coordinates x = {x, y, z}.
We also use three local coordinates ξ = {ξ, η, ζ}. For surface meshes however,
where only two parametric coordinates are defined, we assume that the vector
n = ∂x/∂ζ is the constant unit normal vector to the straight sided element, with
the same orientation convention used for the low-order mesh. This assumption
makes it possible to compute the Jacobian determinant at every Lagrange node
ξk = (ξk, ηk, ζk) at order q:

Jk = J(ξk) =
∂x

∂ξ

∂y

∂η

∂z

∂ζ
+
∂z

∂ξ

∂x

∂η

∂y

∂ζ
+
∂y

∂ξ

∂z

∂η

∂x

∂ζ
−

∂z

∂ξ

∂y

∂η

∂x

∂ζ
− ∂x

∂ξ

∂z

∂η

∂y

∂ζ
− ∂y

∂ξ

∂x

∂η

∂z

∂ζ
. (13)

As

x =

Np∑

i=1

xeiL
(p)
i (ξk),

we can easily express the sensitivity ∂Jk/∂x
e
i of the Jacobian determinant at

point k with respect to xei . The quantities ∂Jk/∂yei and ∂Jk/∂z
e
i can be calcu-

lated in the same manner. In practice, we compute for each element e the matrix
J of size Nq × (3Np + 1) as:

J =

⎡

⎢⎢⎢⎣

∂J1

∂xe
1
. . . ∂J1

∂xe
Np

∂J1

∂ye
1
. . . ∂J1

∂ye
Np

∂J1

∂ze
1
. . . ∂J1

∂ze
Np

J1

...
...

...
...

...
...

...
∂JNq

∂xe
1
. . .

∂JNq

∂xe
Np

∂JNq

∂ye
1
. . .

∂JNq

∂ye
Np

∂JNq

∂ze
1
. . .

∂JNq

∂ze
Np

JNq

⎤

⎥⎥⎥⎦

Let B be the matrix

B =

⎡

⎢⎢⎢⎣

∂B1

∂xe
1
. . . ∂B1

∂xe
Np

∂B1

∂ye
1
. . . ∂B1

∂ye
Np

∂B1

∂ze
1
. . . ∂B1

∂ze
Np

B1

...
...

...
...

...
...

...
∂BNq

∂xe
1
. . .

∂BNq

∂xe
Np

∂BNq

∂ye
1
. . .

∂BNq

∂ye
Np

∂BNq

∂ze
1
. . .

∂BNq

∂ze
Np

BNq

⎤

⎥⎥⎥⎦ , (14)

that contains both the Bézier coefficients Bl as well as their gradients with
respect to the position of the nodes of element e. Defining the constant trans-
formation matrix T q

lk = B(q)
l (ξk) that gives the Bézier coefficients Bl from the
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Lagrange coefficients Jk, B can be calculated through a single matrix-matrix
product: Blj = T q

lkJkj .
We can then make use of the Bi’s and their gradients in a gradient-based op-

timization procedure. To this end, an objective function that allows us to control
the quality of elements based on the coefficients Bi needs to be constructed.

Objective Function. In what follows, we detail the objective function f(xe
i )

that is employed in an unconstrained optimization procedure to untangle invalid
curved elements. The function f = E + F is composed of two parts E and F .

The first part E is based on the assumption is that the method is provided with
a straight-sided mesh of high quality. This mesh has potentially been defined
to satisfy multiple criteria, such as a predetermined size field, or anisotropic
adaptation. The conversion such meshes to high order is expected to preserve as
much as possible all these features. Therefore, the nodes shall be kept as close
as possible to their initial location in the straight sided mesh.

To this end, we define the function E by analogy with an energy associated
with the displacement xe

i −Xe
i of the nodes, i.e. as a positive quadratic form

that is a measure of the distance between the straight sided nodes Xe
i and their

position xe
i in the curved mesh:

E(xi,K) =
1

2

∑

e

Np∑

i=1

Np∑

j=1

(xe
i −Xe

i )K
e
ij(x

e
j −Xe

j) ≥ 0 (15)

where K is a symmetric positive matrix of size 3nv × 3nv and Ke
ij is of size

3 × 3. Here, we define K as the diagonal matrix with entries we
i /L

2, where
we

i are user-defined weights used to set the balance between the two parts E
and F of the objective function f , and L is a length scale representative of
the problem. We choose L as the maximum distance, among all vertices of the
initial tangled mesh, between a node and its counterpart in the straight-sided
mesh. Regarding the non-dimensional weights we

i , we usually set we
i = 1000 if

the node i of element e lies on the boundary, and we
i = 1 otherwise. In practice,

we observe that the exact value of we
i has a limited influence on the convergence

of the optimization method. The part E in f prevents the problem from being
under-determined, and it steers the optimization procedure towards a solution
that preserves the features of the straight-sided mesh, but the term F dominates
for the most problematic (tangled) elements that drive the mesh deformation.

The second part F of the functional controls the positivity of the Jacobian
determinant. A log barrier [24] prevents Jacobians from becoming too small, and
a quadratic function is used to penalize Jacobians that are too large:

F(xi, ε) =

ne∑

e=1

Nq∑

l=1

F e
l (x

e
i , ε)

where

F e
l (x

e
i , ε) =

[
log

(
Be

l (x
e
i )− εJe

0

Je
0 − εJe

0

)]2
+

(
Be

l (x
e
i )

Je
0

− 1

)2

. (16)
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The function F is designed to blow up when Be
l = εJe

0 , but still vanishes when-
ever Be

l = Je
0 . Barrier methods are one of the most successful class of algorithms

used for general nonlinear optimization problems. These techniques are very ro-
bust with respect to the convexity characteristics of the objective function and
constraints [25], so they converge to at least a local minimum in most cases.
Figure 7 shows a plot of the barrier function in Equation (16) for ε = 0.2.

Be
l

Je
0

Fε(
Be

l

Je
0
)

Fε(x) = (x− 1)2 + log
(

x−ε
1−ε

)2

0

5

10

15

0 1 2 3ε

Fig. 7. Plot of the barrier function F (Je
l ) for ε = 0.2

As the objective function f is smooth, we can compute its gradient ∇f with
respect to the positions of the element vertices xe

i . This gradient can then be used
in a gradient-based optimization procedure. As explained in Section 3.2, each
vertex is classified on a given model entity, to which it is geometrically linked.
In order for the vertices to remain on their model entity, the sensitivity of f is
computed with respect to the location of vertices expressed in the parametric
space of the model entities rather than in the physical space.

A mesh vertex M0
i classified on a model edge G1

j can only be moved along
G1

j , i.e. its position only depends on one curve parameter t. The corresponding
component of the gradient will thus be computed as

df

dt
=

∂f

∂xe
i

· dx
e
i

dt

with dxe
i /dt the tangent vector to the curve at point t, that is obtained from the

CAD model.
A mesh vertex M0

i classified on a model face G2
j can only be moved along

the surface. Two parameters u and v are associated to such a vertex, and the
corresponding sensitivities ∂f/∂u and ∂f/∂v depend respectively on ∂xe

i /∂u
and ∂xe

i /∂v the two tangent vectors to the surface at point (u, v). Those can be
computed using the CAD model.

A vertex that is classified on a model region has complete freedom to move in
every direction of the 3D space, in which case the physical coordinates {x, y, z}
are used. Finally, a mesh vertex that is classified on a model vertex has no
freedom to move, it is thus excluded from the optimization problem.
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Optimization Method. The general optimization procedure, that involves a
moving barrier for the objective function, is detailed in Algorithm 3.

Algorithm 3. Optimization method
1 Define subdomains Bk, k = 1 . . .NB ;
2 for k = 1 to NB do
3 repeat
4 compute κ = mineminl

Be
l

Je
0
, e ∈ Bi, l ∈ [1, Nq];

5 if κ < ε̄ then
6 set ε = κ− 0.1 |κ|;
7 solve minxi f(xi,K, ε) for all elements of subdomain Bk;
8 recompute κ = mineminl

Be
l

Je
0
, e ∈ Bi, l ∈ [1, Nq];

9

10 until κ ≥ ε̄;

The untangling problem can be formally defined as

min
xi

f(xi,K, ε), i = 1, . . . , nv.

A broad range of methods can be used to solve such an unconstrained mini-
mization problem. We have tested several alternatives: interior point methods
implemented in the software package IPOPT [26], as well as L-BFGS [27] and
conjugate gradients [28] algorithms provided by ALGLIB [29]. In our experi-
ence, the use of conjugate gradients seems to be the best choice in terms of
computational efficiency.

A crucial aspect of the optimization procedure is the definition of an appro-
priate sequence of optimization problems. In a given subdomain, the value of the
barrier ε must be lower than the worst scaled Jacobian determinant among all
elements, so that the variables remain in the domain of definition of the barrier
function F . In particular, ε has to be negative for an initially tangled mesh.
Therefore, we compute a sequence of optimization problems with “moving barri-
ers”: ε is increased between each optimization problem, until the desired barrier
value ε̄ is reached. This procedure is illustrated in Figure 8.

In practical cases, it is most often necessary to apply preconditioning to the
optimization problem, because the scale of the parametric or physical coordinates
used for different mesh vertices can differ by orders of magnitude, depending on
the model entities on which they are classified. We found that a simple diagonal
preconditioner, based on the norm of the tangent vectors dxe

i/dt for vertices
classified on model edges (respectively ∂xe

i/∂u and ∂xe
i /∂v for vertices classified

on model faces), and unity for vertices classified on model regions, allows the
optimizer to converge in a fast and robust manner.
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Fig. 8. Optimization procedure: three successive series of (maximum) 30 conjugate
gradient iterations, with their respective log barriers

In practice, the value of Je
0 appearing in Algorithm 3 represents the Jacobian

determinant of the straight-sided version of element e in the original mesh. It
is computed at initialization and held constant during the optimization process,
which saves computational time and favors curved elements that resemble their
first-order counterpart in the original mesh. However, all vertices of element e
are allowed to move, so the value of Je

0 after optimization is different from the
original one. The measure of the minimum scaled Jacobian determinant in the
untangled mesh may thus yield a lower value than the barrier ε̄. Nevertheless,
the positivity of the Jacobian determinant is not threatened as long as the op-
timization procedure is successful.

5.3 Untangling through Analytical Methods

In boundary layers meshes used in CFD, where elements are highly stretched
along the boundary, it is relatively clear that the curvature should “propagate”
in the direction normal to the boundary in order to untangle the mesh. In this
case, it may be possible to apply simple techniques to determine in an analytical
fashion the displacement that high-order nodes shall undergo for the mesh to
become valid.

Such a method is illustrated in Figure 9. In a boundary layer mesh, the sub-
domains created following the methodology described in Section 5.1 typically
consist of a “stack” of elements above the tangled element. It is then possible
to define a “meta-element” that includes the whole subdomain under considera-
tion, based on the curved edge or face of the tangled mesh element. In 2D, the
meta-element is a quadrangle created from the curved boundary edge. In 3D,
the meta-element is either a prism created from a curved boundary triangle, or
an hexahedron created from a curved boundary quadrangle.
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Let us consider the mapping between the straight-sided version and the curved
version of the meta-element, as described in Section 4.1. If the meta-element is
sufficiently large in the direction normal to the boundary, its curved version is
valid in the sense of Section 4.1 and the mapping is injective. All mesh vertices in
the subdomain are located within the straight meta-element. We can then apply
the straight-to-curved meta-element mapping to them: their images are located
in the curved subdomain in a way that untangle the mesh by distributing the
element curvature along the direction normal to the boundary.

The straight-to-curved meta-element transformation is defined by the compo-
sition X ◦ x−1, following the notation of Section 4.1 illustrated in Figure 3. As
the straight-to-reference meta-element mapping x(ξ) is bilinear, its inversion is
computationally inexpensive. So is the forward high-order transformation X(ξ)
from the reference to the curved meta-element. This interpolation technique is
thus much more efficient than the iterative optimization procedure presented in
Section 5.2.

This method is particularly interesting in boundary layer-type meshes, where
most elements are created from columns of vertices that are aligned in the di-
rection normal to the boundary. In this case, the meta-element can be chosen
to have the same boundaries as the column of elements above the invalid one.
Thus, all the elements in the column undergo a consistent deformation, and the
untangling is successful as long as the meta-element is valid. When vertices are
not aligned, as in boundary layer meshes near complex geometric features or
fully unstructured meshes, different vertices of a same element can belong to dif-
ferent meta-elements, which may not lead to a valid element. Even then, it can
be beneficial to apply the analytical method to correct most invalid elements,
before using the optimization method described in Section 5.2 to untangle the
rest of the mesh in a robust manner.

Fig. 9. Illustration of the analytical curving technique: the “meta-element” is shown
with red lines and the high-order mesh nodes that are moved to untangle the mesh are
marked in red



38 C. Geuzaine et al.

6 Conclusion

The techniques presented in this article prove valuable for the creation, diag-
nostic and regularization of high-order meshes. They can be used as the basis
of a robust, efficient and versatile high-order mesh generation framework. They
have already been demonstrated to produce valid meshes of relatively high or-
der for a wide variety of industrial and scientific problems. For a more thorough
discussion of these methods and examples of applications, the reader is referred
to Ref. [1, 2]. An efficient and ready-to-use implementation can be found in the
free software Gmsh [4, 12].

Nevertheless, two topics have not been addressed in this article. The first
one is the geometrical accuracy of the curvilinear mesh: the quality of the ap-
proximation of the CAD geometry by the mesh depends on the location of the
high-order nodes on the boundary. The second one is the numerical properties
of high-order meshes beyond the mere validity: their curvilinear nature affects
numerical schemes in terms of interpolation properties and conditioning. These
aspects should ideally be taken into account in the mesh generation process, but
have been the subject of little interest from the scientific community so far. They
should be investigated more intensely in the future.
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Abstract. In this article, we give an overview of a new technique for
unstructured curvilinear boundary layer grid generation, which uses the
isoparametric mappings that define elements in an existing coarse pris-
matic grid to produce a refined mesh capable of resolving arbitrarily thin
boundary layers. We demonstrate that the technique always produces
valid grids given an initially valid coarse mesh, and additionally show
how this can be extended to convert hybrid meshes to meshes containing
only simplicial elements.

1 Introduction

As the popularity of high order methods continues to increase in academia and
industry alike, there is an increasing demand for new robust mesh generation
strategies which are capable of generating meshes for complex three dimensional
geometries. Industrial aeronautics applications, such as the test cases considered
in the IDIHOM project, are particularly demanding as they usually require the
generation of boundary layer grids, where the mesh is refined near walls in order
to adequately resolve high-shear regions of flow. The size of elements in the
wall-normal direction is dictated by a wall unit

y+ =
y

L
Re

√
Cf

2
,

where y dnotes the coordinate normal to the wall, Re is the Reynolds number, Cf

is the skin friction coefficient and L is a reference length. Industrial requirements
typically use very high Reynolds numbers and require meshes with a resolution of
y+ = 1 so that the flow in the viscous sublayer is adequately resolved. Since the
skin friction coefficient scales as O(Re−2) or O(Re−3) [17], at the high Reynolds
numbers which are required for aeronautical applications these grids are highly
stretched in the wall-normal direction, so as to produce meshes which strike a
balance between accuracy and computational efficiency. Such meshes typically
have elements possessing stretching ratios of 1:1000 or even lower.

Whilst there are many well-established methods for generating linear bound-
ary layer grids [8, 12, 15], the development of such techniques for unstructured
curvilinear meshes has been limited due to the relatively recent nature of high or-
der mesh generation strategies [2,19,19]. The most recent developments in curvi-
linear mesh generation methods rely on approaches that split a linear boundary
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conforming mesh into high-order straight-sided elements, project the bound-
ary nodes onto the curved surface and then deform the mesh to accommodate
them [14, 21] or alternatively undertake an optimization procedure to untangle
it [20]. Some work has been undertaken to investigate the applicability of these
methods to boundary layer meshes [4,16]. However, the expensive nature of these
techniques, particularly at high polynomial orders, and the uncertainty of the
resolution that can be obtained when the mesh is deformed, means that their
application to boundary layer grids remains to be investigated.

The common theme of these methods however is that they rely on the gener-
ation of a dense linear boundary layer grid, and then undertake an optimization
procedure in order to deform it. In this chapter, we given an overview of an alter-
native method proposed in [9,10] and developed during the IDIHOM project that
aims to address the problem of generating high-order meshes for high Reynolds
number flows. The method is conceptually simple, cheap to implement and does
not require a dense linear boundary-layer mesh. It is based on the use of an
isoparametric [22] or, in general, a transfinite interpolation [6] where a high-
order coarse boundary-layer mesh is subdivided using the same mapping that
define these high-order elements. The procedure is also very versatile as it per-
mits meshes with different distributions of y+ to be generated with ease and,
further, the validity of these meshes is guaranteed if the initial mesh is valid and
the polynomial space is chosen appropriately.

An overview of this process can be seen for a representative quadrilateral
element in figure 1, where we assume the bottom edge of the element is attached
to the wall, and therefore require extra resolution in the vertical direction. The
top row shows how the standard quadrilateral element Ωst is deformed under
the mapping χ to produce a curved element Ω. To refine the element in physical
space, we first split Ωst into a series of smaller elements as shown in bottom
left of the figure. Applying the mapping χ to these subelements of the standard
region leads to the production of curved subelements of the physical element as
desired.

This chapter is organized in three main sections. Section 2 describes the var-
ious procedures involved in generating arbitrarily high-order boundary layer
meshes suitable for these flows in three dimensions: a process for generating
the initial coarse mesh comprising of a prismatic boundary layer; the splitting of
the prismatic elements into finer prisms; and the spacing distributions used to
define the size of the finer subelements. We also demonstrate how the method
can be adapted to produce a curvilinear mesh containing only simplicial ele-
ments. The procedure for splitting the coarse boundary-layer mesh into a fine
prismatic mesh whilst ensuring its validity and the mathematical framework for
a generalisation of the method to other element types are described in section 3.
Section 4 presents examples of application of the methodology to the generation
of a high-order mesh for the ONERA M6 wing. A final section on conclusions
follows.
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χ

χ

refine

Ωst Ω

Fig. 1. Overview of boundary layer refinement technique

2 Mesh Generation Strategy

Generating meshes for simulations of turbulent viscous flows is very challenging
due to the presence of a extremely thin boundary layer close to walls. In these
regions the flow posses a high level of shear, and so the accurate representation
of flow features typically requires far greater mesh resolution than other areas
of the domain. However, since this level of accuracy is not usually required
in transverse directions, computational efficiency necessarily dictates the use
of elements possessing stretching ratios of the order of 1:1000 or below. This
resolution is of critical importance for turbulence simulations, as many of the
structures that lead to the development of turbulence form inside or near the
boundary layer. This section describes a method to generate high-order meshes
meeting this requirement. Given a high-order coarse mesh consisting of prisms
in the boundary layer and tetrahedra elsewhere, a finer mesh is obtained by
splitting the coarse prismatic elements (referred to in the following as ‘macro-
elements’) into finer elements, utilising the mapping that defines the high-order
prisms to insert the necessary curvature into subelements. The various steps
involved are described in the following sections.

2.1 Generation of the Coarse Hybrid Mesh

We begin by outlining a procedure for generating the coarse hybrid mesh. This
procedure is essentially the one presented in [19] and will be briefly summarized
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Fig. 2. High-order meshing strategy

here for completion. In broad terms, the high-order mesh generation steps are:
the definition of a CAD boundary representation (B-Rep) of the computational
domain; the generation of a hybrid mesh of linear prismatic and tetrahedral
elements; and finally, the subdivision of this mesh into a mesh of high-order
elements. The methodology is illustrated in figure 2. We emphasise however that
this method is not the only one for generating a coarse grid, and the method we
propose in the next section may equally well be applied to any valid coarse grid.

The geometry of the computational domain is represented by means of a CAD
spline curves and surfaces to obtain a boundary representation (B-Rep) of the
computational domain. The linear mesh is then generated using an implementa-
tion of the method of advancing normals [11] to generate a boundary-layer mesh
of triangular prisms near the walls in the computational domain. The advancing
front technique [13] is then used to generate a mesh of regular tetrahedra for the
rest of the domain.

The final step in the generation process is to insert high-order curvature in-
formation to produce the high-order mesh. This follows the method presented
in [19] where the generation of the additional degrees of freedom required to
obtain a high-order mesh proceeds in a bottom-up fashion, starting with the
edges, then the faces and finally the interior of the elements. One of the prin-
cipal contributions of [19] is the development of a method for calculating the
positions of the newly generated points by minimizing an energy of deformation
that accounts for anisometries in the CAD surface mapping. This is the most
troublesome aspect of the method as it could lead to the generation of invalid
elements in the concave regions of the boundary of the computational domain.
Figure 3 shows that when the prismatic boundary layer is generated using a fixed
width, some elements are not sufficiently large to prevent a self-intersection of
the element once curvature information is introduced to the element. In the
following section, we describe a strategy to palliate this problem.
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(a)

(b)

Fig. 3. Generation of invalid elements in concave regions of the computational domain.
(a) depicts a valid linear mesh and (b) shows the self-intersection that often occurs when
high-order information is introduced.

2.2 Determining a Suitable Height of the Macro-element

We use a criterion based on the curvature of the surface to determine a lower
bound for the boundary layer thickness that aims to prevent the intersection of
the element with the surface. The curvature of the surface is obtained through
interrogation of the B-Rep of the computational domain.

Following the notation of figure 4 and considering a two-dimensional domain,
we approximate a curve by its osculating circle [1]. Assuming that the radius
of the osculating circle is R, and the size of the element along the curve is
represented by the chord c, then the minimum length in the direction normal to
the curve required to obtain a valid prismatic element, represented by δ, is given
by

( c

2R

)2

+

(
R

R+ δ

)2

= 1 ⇒ δ ≥ −1 +
[
1−

( c

2R

)2
]− 1

2

.

If c� R, this requirement can be approximated by

δ

R
≥ c2

8R2
.
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Fig. 4. Notation used for the calculation of the minimum height δ of a valid prismatic
macro-element

To extend this method to surfaces in three dimensions, we simply interpret R
as the smallest of the two principal radii of curvature of the surface and use the
same criterion. In the following section, we describe how a prismatic boundary
layer mesh generated using this criterion is refined in an isoparametric sense.

2.3 The Isoparametric Approach

The main idea of the splitting method is to interpret the prismatic macro-element
as a mapping, χe : Ωst → Ωe, from a reference element Ωst to obtain the physical
element Ωe. This mapping is illustrated in figure 5.

There are many ways to define this mapping. Here we adopt an approach in
which χe isoparametrically projects coordinates ξ = (ξ1, ξ2, ξ3) in a reference
element Ωst = {(ξ1, ξ2, ξ3) | ξ1, ξ2 ∈ [−1, 1], ξ1 + ξ3 ≤ 1} onto the Cartesian
coordinates (x1, x2, x3) ∈ Ωe. Given polynomial orders P , Q and R for each
component ξi, we represent each component of χe = (χe

1, χ
e
2, χ

e
3) as a tensor

product expansion of one-dimensional hierarchical modal functions, so that

χe
i (ξ1, ξ2, ξ3) =

P∑

p=0

Q∑

q=0

R−p∑

r=0

(χ̂i)pqrψ
a
p(η1)ψ

a
q (ξ2)ψ

b
pr(η3). (1)

In this expansion we assume P ≤ R, and map the standard prism Ωst onto a
reference hexahedron through a collapsed coordinate system (η1, η3) ∈ [−1, 1]2
defined by

η1 = 2
1 + ξ1
1− ξ3

− 1, η3 = ξ3.

The use of the modified hierarchical expansion functions ψa and ψb, defined
in [7], is useful in the mesh generation process as it permits a decomposition of
the element into modes which have non-zero support only on designated vertices,
edges and faces of the element. If only edge-interior or face-interior curvature
is provided for an element, then upon a transformation from the coefficient
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ξ3

ξ1 ξ2

χe(ξ)

Fig. 5. High-order element mapping from a standard prism Ωst to a corresponding
prism Ωe in Cartesian space

space (χ̂i)pqr to an arbitrary set of quadrature points, the Cartesian positions
of any volume-interior (or face-interior) points are blended in a linear manner
from the curvature information that is supplied. Therefore, our existing mesh
generation methodology only derives face-interior curvature information on a
set of electrostatically-distributed triangular nodal points for faces of prisms
representing the geometric surface. We assume without loss of generality that
this face lies in the plane ξ2 = −1 with respect to Ωst. It should be noted
therefore that in the ξ2 direction, only a linear expansion is required so that
Q = 1 in (1). This curvature information is transformed to the coefficient space
through a Galerkin projection to obtain (χ̂i)pqr.

2.4 Splitting the Boundary-Layer Mesh

The goal of the splitting process is to refine each macro-element in the wall-
normal direction ξ2, so that at the wall surface, the flattest prism is correctly
sized to resolve a desired boundary layer thickness. Where the Reynolds number
is high, extremely thin elements are required in order to resolve the high shear of
the flow, and therefore the method must be capable of generating valid elements
of large aspect ratio, even where the curvature of the surface is large. To guar-
antee the validity of the refined elements, we pick a refinement strategy which
focuses on first splitting the standard prismatic element into a series of n smaller
elements distributed by a spacing Δk for 1 ≤ k ≤ n. We then utilise χe in order
to determine curvature information for each sub-element of the refinement. This
projects the subelements back to Cartesian space, thereby splitting the original
prism into curved prismatic subelements. This is depicted in figure 6.
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Δk

ξ3

ξ1 ξ2

χe(ξ)

Fig. 6. Splitting Ωst and applying the mapping χe to obtain a high-order layer of
prisms from the macro-element of figure 5

Assuming that we wish to produce n subelements for each boundary layer
prism, we select a partition of [−1, 1] defined as −1 = x0 < x1 < · · · < xn = 1,
for every element to be refined. This gives rise to a spacing distribution Δk =
xk − xk−1 which denotes the width of each sub-element in the reference element
as shown in figure 6. The spacing of these points is unimportant in the following
method. In order for the mesh to be conformal, we assume that n and Δk are
fixed across all of the prismatic macro-elements. We describe in more detail a
method for defining Δk in section 2.6, and how the distribution of points can be
varied between elements if we relax the guarantee of mesh conformity.

Each prism is split by iterating over the number of subelements and construct-
ing each one in a bottom-up fashion; that is, vertices are derived first, followed
by edge-interior points and finally face-interior points. We calculate the position
of these points inside Ωst, and then apply the mapping χe at each point in order
to compute the Cartesian coordinates. We note that edge and face interior points
are only calculated for the two triangular faces of the sub-element, since the use
of a linear expansion in the ξ2 direction of the original prism means high-order
information is not required.

If the high-order prismatic macro-element is valid, we can argue that the mesh
is also valid after subdivision as follows. We will assume that the sides of the
elements in the direction normal to the wall (ξ2) are straight lines. For prismatic
elements, the process of subdivision is thus equivalent to an affine transformation
that will preserve the sign of the Jacobian of the mapping and therefore the
validity of the mesh. Further, the subelements span the same polynomial space
as the original macro-element, therefore the use of the macro-element mapping
to define the sub-element mappings means they span an identical space and so
have identical properties to the original element.
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2.5 Fully Tetrahedral Meshes

Many solvers do not have the capability of producing solutions on hybrid meshes,
instead preferring to consider meshes containing only simplicial elements (i.e.
triangles and tetrahedra). This poses a considerable challenge for high-order
mesh generation, particularly when extremely fine boundary layer elements are
required.

One strategy is to adapt the prismatic boundary layer mesh by splitting each
prism into three tetrahedra. Techniques such as the one presented in [3] are
straightforward to implement and can be used to reliably split prismatic elements
in a conformal manner. However these techniques are designed for linear finite
element meshes. When curvature is introduced to the face of the tetrahedron
lying on the surface of the geometry, and the prismatic element is sufficiently
thin, then the lack of curvature on other faces causes the tetrahedron to self-
intersect. This is illustrated in the lower half of figure 7.

To bypass this problem, we demonstrate how the refinement in the section
above can be extended to introduce curvature into each of the tetrahedral ele-
ments in such a way that the elements are valid, as depicted in the upper half of
figure 7. We begin by constructing the mapping χe defined above for each prism
in the hybrid mesh. For the tetrahedral elements which are to be generated,
we define a reference tetrahedron Ωtet

st = {(ξ1, ξ2, ξ3) | ξ1 ∈ [−1, 1], ξ1 + ξ2 ≤
1, ξ1 + ξ2+ ξ3 ≤ 1} and a mapping ζe, which for each tetrahedron is represented
by an expansion of modal functions

ζei (ξ1, ξ2, ξ3) =

P∑

p=0

Q−p∑

q=0

R−p−q∑

r=0

(χ̂i)pqrψ
a
p(η1)ψ

b
pq(η2)ψ

c
pqr(η3), (2)

where P ≤ Q ≤ R. We again utilise a collapsed coordinate system (η1, η2, η3) ∈
[−1, 1]3 with

η1 =
−2(1 + ξ1)

ξ2 + ξ3
− 1, η2 =

2(1 + ξ2)

1− ξ3
− 1, η3 = ξ3,

and the additional modified hierarchical basis function ψc is defined in [7].
We then proceed in a similar fashion to the prismatic splitting algorithm by

first splitting the reference element of the prism, as opposed to the prism in
Cartesian space. For each prismatic element in the domain, which we assume
has been generated by the procedure in the previous section, we construct the
isoparametric mapping χe. Assuming that each vertex in the mesh has a unique
identifying number, we split Ωprism

st into three tetrahedra according to the cri-
terion defined in [3]. This ensures that where two prisms are connected by a
quadrilateral face, the face is split in a consistent manner and a conformal mesh
is produced. High-order information is then inserted into each tetrahedron in a
bottom-up fashion by evaluating χe at positions in the standard prismatic el-
ement which correspond to the edge- and face-interior points. The insertion of
this curvature information prevents each tetrahedron self-intersecting, leading
to the generation of a valid mesh.
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χ
e (ξ)

no mapping

Fig. 7. Splitting a valid prismatic element at polynomial order P = 20 into tetrahedra.
Applying the mapping χe leads to three valid tetrahedra (above), whereas preserving
curvature on only a single face can lead to self-intersection of one or more tetrahedra
(below).

An examination of the conditions under which the subdivision process pro-
duces valid elements, not only for the refinement procedure outlined here, but
for more generic transformations of the standard element is presented in Section
3.

2.6 Normal Mesh Spacing Following a Geometric Progression

In this section we describe the form of the spacing function which determines the
height Δk of each sub-element of the refined mesh. Recall that given a partition
−1 = x0 < · · · < xn = 1 of [−1, 1], we set Δk = xk − xk−1 for 1 ≤ k ≤ n. To
generate a spacing which gradually refines the elements towards the boundary
lying at ξ2 = −1, we utilise a geometric progression

xk = xk−1 + ark, a =
2(1− r)

1− rn+1

for 1 ≤ k < n with x0 = −1 and fix xn = 1. The parameter r controls the
relative sizes of elements, and Δ1 = ar − 1 is the height of the element closest
to the boundary. Since in this formulation a is a function of r, we note that
given a desired physical thickness (for example, a requirement for the element
closest to the wall to have a thickness corresponding to y+ = 1), one may derive
the necessary value of r given n or vice versa. Figure 8 illustrates a sequence of
meshes with various values of r (and thus y+) that can be obtained using this
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(a) (b)

(c) (d)

Fig. 8. A sequence of meshes obtained by splitting macro-elements into n = 8 elements
using a geometric progression and various values of r. (a) The macro-element mesh;
(b) r = 1; (c) r = 3

2
; (d) r = 2.

process. Additionally we note that if r = 1 as in figure 8(b), then a is ill-defined.
Since r = 1 corresponds to the case where all elements are of an equal size, we
assume a uniform spacing so that Δk = 1

n .
A further point to note is that a skin friction obtained from an empirical

relation Cf = F (Re) is usually derived using flat-plate calculations or regression
based on experimental measurements. However, for complex geometries, there is
usually no way to predetermine an exact value for Cf , and therefore a simulation
is required to calculate an accurate value. An empirical relation gives an estimate
for an initial simulation, and based on a series of experiments where the mesh is
further refined (or coarsened) an accurate value of Cf can be obtained.

In addition, one can also smoothly vary the geometric factor as a function
of spatial position so that different areas of the mesh receive varying levels of
refinement. For each macro-elementΩe, we consider an elementally-varying spac-
ing distribution Δe

k. In order for the mesh to be conformal, it is clear that the
splitting procedure must be altered slightly, so that the subelements which are
produced connect correctly through quadrilateral faces. We consider a simple
procedure where, for each of the three edges which connect the two triangular
faces of a prism, we arbitraily choose a spacing function from any of the pris-
matic macro-elements elements which share this edge. When each sub-element is
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Fig. 9. Example of spatially-varying distribution of ratio of element size, r, for a stag-
gered wing configuration

constructed, we use the distribution of points previously defined on these three
edges. The method then proceeds in an identical fashion. By adopting this simple
technique we assume that Δe

k varies smoothly so that the jump between differ-
ent spacing distributions is not ‘too large’, or else the addition of high-order
curvature may cause subelements to self-intersect.

We consider an example of this spatially-varying distribution in figure 9, which
depicts a staggered wing configuration. The thin trailing edge of each blade
dictates that extremely small elements are required. When the mesh is split
with a constant distribution of points, any solvers which have a CFL constraint
are therefore forced to use a prohibitively small timestep in order to maintain
a stable simulation. This problem can be solved without varying the spacing
distribution and by increasing the height δ of the macro-elements, but the close
proximity of the two wings can cause issues when generating the volume mesh
of tetrahedra in the space between the wings. In this case then, the use of a
spatially-varying height distribution is essential, and we smoothly vary the ratio
of element sizes so that at the leading edge r ≈ 2 whereas at the trailing edge
r ≈ 1.

3 Subdivision Strategies and Analysis of Element Validity

The purpose of this section is to frame the subdivision technique in the context
of a more general mathematical framework, to investigate the range of conditions
under which the resulting meshes are valid, and to demonstrate how it can be
utilised to subdivide a broader range of elemental types in both two and three
dimensions. We note that in general, the subdivision of elements in this manner
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often requires the enrichment of the polynomial space so that the subdivided
elements capture all curvature of the original element.

3.1 Mathematical Framework

We begin by considering a finite element Ωe, which in general belongs to a mesh
arising from the tesselation T (Θ) = {Ω1, . . . , ΩNel} of some domain Θ ⊂ R

n

with n = 2, 3 of Nel elements, so that

Θ =

Nel⋃

e=1

Ωe, Ωe ∩Ωf = ∅ if e �= f.

In two dimensions, we consider quadrilateral and triangular elements, and in
three dimensions tetrahedral, prismatic and hexahedral elements. In order to
introduce curvature into an element Ω (where we drop the superscript e for
convenience), we assume there exists a mapping χ : Ωst → Ω which projects
a canonical standard element Ωst into the Cartesian coordinates defining an
element. In this work we define reference elements to be

Ωquad
st = {(ξ1, ξ2) | − 1 ≤ ξ1, ξ2 ≤ 1},
Ωtri

st = {(ξ1, ξ2) | − 1 ≤ ξ1 + ξ2 ≤ 1},
Ωhex

st = {(ξ1, ξ2, ξ3) | − 1 ≤ ξ1, ξ2, ξ3 ≤ 1},
Ωpri

st = {(ξ1, ξ2, ξ3) | − 1 ≤ ξ1 + ξ3 ≤ 1,−1 ≤ ξ2 ≤ 1},
Ωtet

st = {(ξ1, ξ2, ξ3) | − 1 ≤ ξ1 + ξ2 + ξ3 ≤ 1},

respectively. Inside the standard elements we define a polynomial space in terms
of the reference coordinates ξ = (ξ1, ξ2, ξ3) from which an expansion basis is
selected. Assuming that we select a polynomial order P , Q and R for each
coordinate direction, the polynomial spaces take the form

P(Ωst) = span{ξp1ξ
q
2ξ

r
3 | (pqr) ∈ I}

where I represents an indexing set, defined for each element as

Iquad = {(pqr) | 0 ≤ p ≤ P, 0 ≤ q ≤ Q, r = 0}
Itri = {(pqr) | 0 ≤ p ≤ P, 0 ≤ p+ q ≤ Q, r = 0, P ≤ Q}
Ihex = {(pqr) | 0 ≤ p ≤ P, 0 ≤ q ≤ Q, 0 ≤ r ≤ R}
Ipri = {(pqr) | 0 ≤ p ≤ P, 0 ≤ q ≤ Q, 0 ≤ p+ r ≤ P, P ≤ R}
Itet = {(pqr) | 0 ≤ p ≤ P, 0 ≤ p+ q ≤ Q, 0 ≤ p+ q + r ≤ R, P ≤ Q ≤ R}
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In order to preserve the positivity of discretised spatial operators, we insist
that given the components of χ = (χ1, . . . , χn) the determinant of the Jacobian
matrix

[Jχ(ξ)]ij =
∂χi(ξ)

∂ξj
, i, j = 1, . . . , n

is positive for all ξ ∈ Ωst, so that χ preserves orientation and is invertible.
Furthermore we consider an isoparametric representation of χ in terms of a set
of shape functions φpqr , so that

χi(ξ) =
∑

(pqr)∈I
(χ̂i)pqrφpqr(ξ)

In the numerical examples below we consider an expansion in terms of a tensor
product of modified hierarchical modal functions which permits a boundary-
interior decomposition [7]. We note however that in this setting the choice of
shape function is relatively unimportant, so long as they span the polynomial
space of the element. However, as we will demonstrate later, this choice of basis is
useful for certain types of elemental subdivisions as it permits fewer restrictions
on the resulting subelement polynomial spaces.

3.2 Subdivision into the Same Element Type

In this section we demonstrate how the isoparametric mapping χ, which we
assume has positive Jacobian for all ξ ∈ Ωst, can be used to subdivide an element
into smaller elements of the same type. The goal of the subdivision process is to
obtain a mapping ζ : Ωst → Ω̃ where Ω̃ ⊂ Ω and detJζ(ξ) > 0 for all ξ ∈ Ωst.

In the isoparametric approach we adopt here, instead of attempting to deter-
mine the exact subdomain Ω̃ of the physical element Ω, we select a subdomain
of the standard region, Ω̃st, and construct an invertible mapping f : Ωst → Ω̃st

with detJf (ξ) > 0. Initially, we also assume that the polynomial expansion in
each direction is equal so that P = Q = R. Setting ζ as the composition χ ◦ f
we then obtain a subelement Ω̃ = ζ(Ωst).

The justification for the validity of ζ, and moreover the resulting element Ω̃
under the restriction of equal polynomial order is as follows. Firstly, it is clear
that the determinant of the Jacobian of ζ is positive for any ξ ∈ Ωst, since
through an application of the chain rule we have that

detJζ(ξ) = detJχ(f(ξ)) det Jf (ξ) > 0. (3)

Let us assume that each component of χ lies in the polynomial space P(Ωst). In
order for ζ to retain the isoparametric representation of the subelements, we note
in turn that each of its components must be defined in a polynomial space P ′(Ωst)
where in the most general case, P(Ωst) ⊂ P ′(Ωst). A consequence of subdivision
therefore is that the subdivided elements may have a higher polynomial order
than the parent element depending on the choice of f .
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χ

f ζ = χ ◦ f

Ωst Ω

Ωst

Ω̃st Ω̃

Fig. 10. Construction of the mapping ζ for the subdivision of a quadrilateral element

Figure 10 shows a simple application of this subdivision strategy for a quadri-
lateral element. Here we choose for example an affine mapping f(ξ1, ξ2) =
(ξ1, cξ2) for some c ∈ (0, 1) so that the standard element is scaled in the ξ2
direction. Applying the original χ mapping we obtain a new element Ω̃ which
is appropriately scaled, and naturally introduces curvature into the resulting
subelement. In this case, any polynomial term ξp1ξ

q
2 is mapped under f to the

term cqξp1ξ
q
2 which clearly lies in P(Ωquad

st ), and indeed it is clear that by equa-
tion 3 that detζ(ξ) is simply a scalar multiple of detχ(ξ). We may therefore
choose P ′(Ωst) = P(Ωst) and the order of the subelements may be the same as
the parent element.

Since the restriction of equal polynomial order is somewhat restrictive, we
now consider the case where the polynomial order in each direction is not equal.
Whilst a similar argument to the previous explanation can be used in this case,
more care must be taken either in the choice of the mapping f or in the order
of the resulting subelements to ensure that the polynomial space is correctly
spanned. For example, consider a quadrilateral element with expansion orders
P = 2 and Q = 1 which has corresponding polynomial space P , and suppose we
choose to produce a trivially subdivided element by applying the transformation
f(ξ1, ξ2) = (−ξ2, ξ1). This map has positive Jacobian determinant and indeed is
affine, as in the previous example. However, since ξ1 and ξ2 are permuted in the
composition with f , the expansion has polynomial terms which lie outside of P
leading to unpredictable element generation.
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There are two solutions in this case. Firstly we may choose to obey the general
condition P(Ωst) ⊂ P ′(Ωst), and enrich the polynomial order of the subelement
so that P = Q = 2. Alternatively however, we may permute the polynomial
orders of the resulting subelements, so that P = 1 and Q = 2, to form a space
Q. We see in this instance that the resulting subelement is still valid as all of the
terms of the original χ expansion are represented in ζ, but the previous condition
is not held since P �⊂ Q. We therefore note that P(Ωst) ⊂ P ′(Ωst) represents
a sufficient, but not necessary condition on the validity of subelements in this
case.

A similar warning also applies to the other element types, and in particular
triangles, prisms and tetrahedra since additional conditions are placed on the
summation of mode indices which must be observed. In the next section, we
discuss a similar enrichment strategy to permit the subdivision of elements into
different element types.

3.3 Subdivision into Different Element Types

Another possible strategy one may adopt when subdividing elements is to con-
sider their division into elements of a different type; for instance, we may sub-
divide a quadrilateral into triangles in two dimensions, or alternatively hexahe-
dra into prisms or prisms into tetrahedra in three dimensions. Such techniques
are well understood for linear finite elements [3] but for curvilinear elements
self-intersection may occur, as outlined in the previous section. In this section
we demonstrate how the technique introduced in the previous section can be
adapted in a more general way than simply prismatic to tetrahedral splitting in
order to introduce curvature into the subelements in such a way as to prevent
them becoming invalid.

We must adapt the previous argument above since now f : Ω′
st → Ω̃ where

Ω′
st � Ωst and so the polynomial spaces which span these standard elements

obey the relation P(Ω′
st) � P(Ωst). In the same way that the technique needs

an enrichment of the polynomial space if direction-dependent polynomial or-
ders are used, if we naively apply the method then the polynomial expansion χ
can contain terms which are not contained inside P(Ω′

st), and so the resulting
mapping ζ may not produce valid elements.

To demonstrate this point, we first examine the problem of figure 11, which
depicts an example where a quadrilateral is split along a diagonal edge in order
to obtain two triangles. We may again utilise an affine mapping f(ξ) = −ξ in
order to map Ωtri

st onto a subdomain Ω̃st of Ωquad
st . From our previous argument

we see that each component of ζ = χ ◦ f has degree 2P in general if the original
quadrilateral is of order P .

Since ζ ∈ [P(Ωtri
st )]

2 we must select a sufficiently large polynomial order for the
triangular space so that all terms of the expansion are represented in the resulting
expansion. To guarantee this for a general quadrilateral-to-triangle split, given a
quadrilateral of order P we must generate triangles of order 2P . Then the space
P(Ωquad

st ) ⊂ P(Ωtri
st ) and thus ζ captures all curvature of the original mapping.

For a visual illustration of this, we may represent the polynomial spaces of the
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χ

f ζ = χ ◦ f

Ωquad
st Ω

Ωtri
st

Ω̃st Ω̃

Fig. 11. Construction of the map ζ in the case of a quadrilateral being split into two
triangles

triangular and quadrilateral elements in the form of a Pascal’s triangle as shown
in figure 12.

Figure 13 illustrates the problem of using triangular elements which are not
sufficiently enriched. On the left, a second-order (P2) quadrilateral is split into
two second-order triangles. Splitting the quadrilateral into two P

2 triangles leads
to the generation of degenerate elements. In this case, the symmetry of the
deformed element coupled with the quadratic order of the triangles means that
the diagonal edge which bisects the quadrilateral is forced to remain straight
and thus causes a self-intersection. We note that in this example, the interior
quadrilateral mode ξ21ξ22 is not energised since curvature is only introduced in one
coordinate direction. We additionally note that this can be intuitively achieved
by the choice of a boundary-interior hierarchical expansion in which edge and
vertex degrees of freedom are decoupled from the interior. Other basis types, such
as a nodal Lagrange scheme, will not in general have this property, although the
use of the classical Gordon-Hall blending does have this property. Consulting the
Pascal triangle of polynomial spaces we therefore see that only a P

3 expansion
is required for the triangular elements.
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1

ξ1 ξ2

ξ21 ξ1ξ2 ξ22

ξ31 ξ21ξ2 ξ1ξ
2
2 ξ32

ξ41 ξ31ξ2 ξ21ξ
2
2 ξ1ξ

3
2 ξ42

ξ51 ξ41ξ2 ξ31ξ
2
2 ξ21ξ

3
2 ξ1ξ

4
2 ξ52

qp

Fig. 12. Pascal’s triangle representing the polynomial spaces of P
2 quadrilateral

(shaded grey) and P
4 triangular (black outline) elements. The triangle shows that

in order to split a general P2 quadrilateral we require P
4 triangles so that all terms can

be represented in the resulting mapping.

Fig. 13. Qualitative example of the necessary condition for subdivision. A P
2 quadri-

lateral is split into P
2 (left) and P

3 (right) triangles. Since a P
2 triangular expansion

does not capture some of the terms of the original mapping, an additional order is
required to produce valid elements.

The same logic can be used in the splitting of prismatic and hexahedra ele-
ments into tetrahedra. In general an order P prismatic or hexahedral element
also requires enrichment so that the resulting tetrahedra have order 2P and 3P
tetrahedra. However by applying the logic above, if curvature is introduced only
into the triangular faces of the prisms, then it is only necessary to produce order
P + 1 tetrahedra. Since visualisation of the Pascal’s triangle structure is more
difficult in three dimensions, this can alternatively be seen from a brief analysis
of the prismatic and tetrahedral spaces. If a linear expansion is used in the ho-
mogeneous direction of the prismatic element (i.e. Q = 1) and P = R then the
resulting polynomial space is

Ppri(Ωst) = {ξp1ξ
q
2ξ

r
3 | 0 ≤ p+ r ≤ P, q = 0, 1}.
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A tetrahedron with equal polynomial order P in each direction has the restriction
on a triple (pqr) that 0 ≤ p+ q + r ≤ P . If q = 1 then we obtain the restriction
0 ≤ p + r ≤ P − 1, and so the tetrahedral space at order P does not contain
the prismatic space, leading to possible invalid elements. In order to guarantee
validity of elements we therefore require tetrahedra of order P + 1.

In the following section, we give a demonstration of this prism-to-tetrahedron
splitting and also highlight the application of the refinement method in boundary-
layer problems.

4 Applications

This section demonstrates the usefulness of the subdivision method by showing
how it can be used to generate three-dimensional meshes for challenging appli-
cations. Firstly we consider the subdivision of a coarse prismatic boundary-layer
mesh into a series of progressively thinner elements as the distance to the wall
decreases. We then show how the prismatic elements can be subdivided to obtain
a boundary-layer mesh comprising only tetrahedra for use by solvers support-
ing only simplicial elements. Finally we produce boundary layer meshes for the
ONERA M6 wing in order to demonstrate the applicability of the technique in
aeronautical problems. For each case, we consider a high-order coarse discreti-
sation at polynomial orders of P ≥ 10 to show the viability of the method even
at very high polynomial orders.

4.1 Boundary Layer Mesh Generation

In order to generate a sequence of n subelements which gradually become more
slender towards the surface of the domain, we define a spacing distribution Δk

for 1 ≤ k ≤ n following the procedure described in Section 2.6. Under the
framework of section 3.1 then, we define a straightforward affine scaling function
similar to that used in figure 10 which obeys the necessary conditions in order
to generate valid subelements. We additionally note that as long as the same
spacing distribution is used for all prismatic elements, the resulting mesh is
conformal. One of the major advantages of this method for the generation of
boundary layer meshes is that the resulting subelements are guaranteed to be
valid, as shown in section 3.1, and thus we are able to produce boundary layers of
arbitrary thickness. Figure 14 shows how the subdivision technique can be used
to generate a boundary layer mesh for a simple geometry: a cylindrical duct.

Certain solvers only have support for meshes which are composed only of
simplicial elements. For problems where boundary layers are required, this poses
an additional problem for mesh generation software. In figure 14, we show how
the same method can be used to split the prismatic elements of figure 14 into
three tetrahedra. Firstly we note that in order for the resulting mesh to be
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(a) (b)

(c) (d)

Fig. 14. Duct geometry: (a) Initial coarse mixed mesh with prisms in the boundary
layer; (b) prism to tetrahedron split of the original mesh; (c) boundary layer refinement;
and (d) we apply the prism to tetrahedron splitting after the boundary layer refinement
has been performed.

conformal, we must employ a strategy so that the quadrilateral faces which
connect prismatic elements are split in a consistent fashion, such as the one
outlined by Dompierre et al. [3].

Once this strategy is applied, we may utilise the subdivision strategy to split
the standard prismatic element into three tetrahedra by using an affine trans-
formation similar to that used in figure 11. We note that in the specific case
of figure 14, since the curvature of the original prisms is only imposed on the
triangular surface, we may obtain valid tetrahedra by enriching the polynomial
space by one order.

An important point to note is that whilst the validity of the resulting tetra-
hedra is guaranteed through our previous arguments, this method may lead to
the production of tetrahedra which have suboptimal quality in terms of interior
angles, depending on the curvature of the original prismatic elements. However,
when tetrahedral boundary layers are required this is often unavoidable since
the elements exhibit a large stretching ratio. In the very worst cases, the use
of these meshes as a starting point for a mesh deformation procedure may lead
to better quality elements. We suggest that the validity of the meshes produced
here may lead to improved convergence speeds in such methods.
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Fig. 15. Boundary of the initial coarse straight-sided mesh with prisms in the boundary
layer (highlighted) and tetrahedra in the interior

4.2 ONERA M6 Wing

The ONERA M6 wing is a classic CFD validation case for external transonic
flow. The description of the geometry is given in [18]. Here we use this case
as an illustration of the methodology for generating high-order meshes for high
Reynolds number flows. In a typical simulation of transonic flow, the Reynolds
number has a value of around 105, and therefore an extremely thin boundary
layer is required in the wall-normal direction. However, in the transverse direc-
tions such high resolution is not necessarily required.

Figure 15 shows the initial coarse high-order surface mesh of the wing geom-
etry coupled with a symmetry plane. The intersection of the symmetry plane
with the boundary layer of the wing, composed of the prismatic macro-elements,
is highlighted, with the remainder of the mesh comprising tetrahedral elements.
In figure 16 we apply the splitting strategies from section 2 to obtain a mesh
with y+ ≈ 5 at Re = 105, where the skin friction Cf is approximated using the
Schlichting formula [17]

Cf ≈ (2 log(Re)− 0.65)−2.3 .

Figure 16(a) shows the hybrid prismatic-tetrahedral mesh that is obtained
after the splitting algorithm is applied. In figure 16(b) we apply the prism to
tetrahedron splitting technique of section 2.5 to obtain a fully tetrahedral mesh.
In all cases a valid mesh is generated, with no elements having negative Jacobian.



62 D. Moxey et al.

(a) (b)

Fig. 16. Enlargements of the initial coarse mesh demonstrating the splitting of the
boundary layer into (a) prismatic and (b) tetrahedral elements near the leading edge
at polynomial order P = 15. The lower picture highlights interior quadrature points of
the elements.

5 Conclusions

We have presented a technique for generating highly stretched high-order
boundary-layer meshes as required by current CFD solvers. The proposed tech-
nique is very effective and modular. Starting from a valid coarse prismatic
boundary-layer mesh, our isoparametric approach permits the generation of a
sequence of meshes with increased resolution with very little additional cost.
This should prove very valuable for mesh convergence studies at high Reynolds
numbers. We have established requirements of validity for modal elemental shape
functions, but the same arguments are also applicable to guarantee the validity
of the mesh when using nodal shape functions.

We have derived the mathematical conditions that are necessary for the sub-
division of high-order isoparametric elements, and show how this technique can
be applied to tackle challenges in high-order mesh generation. We posit that the
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simplicity of the method outlined here will prove to be a valuable tool in improv-
ing both the efficiency and robustness of curvilinear mesh generation software,
and particularly for the generation of meshes for high Reynolds number com-
putational fluid dynamics problems or high Peclet number advection-diffusion
problems.

The main limitation of the technique, as presented here, is the requirement
that the subdivision of the prismatic mesh should be accomplished without af-
fecting the rest of the mesh. Extending the method to other cases is not a difficult
technical issue, but it will require the use of transition elements, such as pyra-
mids. However, such implementation is beyond the scope of the work within the
IDIHOM project.
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Abstract. Within the IDIHOM project, ARA have worked to develop a
high-order grid generation capability that allows the generation of meshes
on three dimensional aircraft configurations typical of the complexity
currently used in industrial finite volume simulations. Details of this ca-
pability are provided alongside examples of meshes generated using it
and a discussion of its strengths and limitations. We conclude by consid-
ering the ways in which this existing capability may be further enhanced
to provide a fully industrialised capability.

1 Introduction

One of the key limiting factors preventing the uptake of high-order methods
by industry is the requirement to generate robustly quality boundary conform-
ing unstructured curvilinear grids on complex configurations. Such grids are re-
quired to allow a significantly reduced number of grid elements compared to those
used by industry standard (nominally) second-order accurate Reynolds-Averaged
Navier-Stokes (RANS) flow solvers, thereby allowing the computationally expen-
sive high-order simulations to be tenable. Equally importantly, however, there
is evidence that using straight sided boundaries in a high-order discontinuous
Galerkin simulation can yield physically incorrect results [1].

Although a number of promising tools for high-order grid generation already
exist, see for example [2], there is still a significant gap between their capabilities
and those of grid generators for producing finite volume RANS grids. In partic-
ular, there is a significant limitation in the ability of high-order grid generators
to produce a high quality boundary layer grid on all but the simplest of geome-
tries. Indeed, in most cases, they fail on complex configurations to even produce
a grid satisfying the minimum criteria for it to be usable, that is, a conformal
grid containing no elements with negative Jacobian or volume.

During IDIHOM, ARA have investigated one approach towards resolving the
problems relating to high-order grid generation on complex aeropace configura-
tions. This approach combines the well established linear mesh generator SO-
LAR [3–6] with an approach for generating curved elements developed in the
IDIHOM predecessor project ADIGMA [7] and detailed in [8]. In Sect. 2 we
briefly review the relevant aspects of the SOLAR grid generator and the work
in [8]. In Sects. 3 and 4 we provide details of the approach developed in IDIHOM
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and representative grids generated using this process. Finally in Sects. 5 and 6
we discuss the remaining issues still to be resolved and draw conclusions about
the future direction of this work.

2 Background

2.1 The SOLAR Mesh Generator

The high-order meshing capability developed at ARA within IDIHOM builds
upon the well-established SOLAR hybrid unstructured mesh generator which is
used as part of a standard computational fluid dynamics (CFD) toolset by sev-
eral major European aerospace manufactures, research institutes and academia.
This mesh generator has been developed for over a decade and is designed to
produce high-quality meshes for viscous finite volume flow simulations on com-
plex aeronautical configurations. The near-field boundary layer grid is created
using an advancing layer technique [9], illustrated in Fig. 1, to march away from
an unstructured quadrilateral-dominant base surface mesh. Edge-collapsing and
face-enrichment algorithms alter the topology of the layer to take into account
automatically the underlying curvature of the region being meshed, with the
rate of local layer growth being varied locally to achieve a smooth outer layer.
In three dimensions, the near-field layer mesh is then coupled to either a Carte-
sian far-field mesh that uses cut cells to avoid overlap of the near and far-field
meshes [3], or alternatively to a tetrahedral far-field mesh, generated using a De-
launay algorithm, via a buffer layer comprising pyramids and tetrahedra [5]. The
latter of these approaches has the key benefit of avoiding the arbitrary polyhedra
that are inevitably produced by a cut cell interface, instead generating a confor-
mal grid containing hexahedra, prisms, pyramids and tetrahedra. Our work in
IDIHOM uses meshes generated using this approach.

Fig. 1. Schematic illustration of the advancing-layer approach to grid generation. The
base surface is projected out into the flow domain to obtain the top surface of the layer.
The top surface is then used as the base surface for generation of the subsequent layer
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2.2 The ADIGMA High-Order Grid Generator

The approach for high-order grid generation developed by ARA within ADIGMA
was integrated fully within the SOLAR layer meshing code [8]. This was achieved
by following the basic algorithm, designed to simplify the implementation by
restricting the curved elements to the near-field buffer layer mesh, and illustrated
schematically in Figs. 2 and 3:

– use the existing surface meshing functionality to produce a coarse surface
mesh as an input to the main algorithm;

– use this mesh to provide the corner nodes defining the topology of the curvi-
linear boundary elements;

– use knowledge of the underlying CAD geometry plus the location of the
corner nodes to identify where the additional nodes on element edges and
faces should be inserted to obtain geometry conforming high-order boundary
elements (Fig. 2);

– use a minor modification to the existing layer meshing algorithms to position
the high order nodes on subsequent layers of the buffer layer mesh, a scaling
factor being applied to reduce the layer growth of the high-order nodes to
ensure a linear outer surface to the boundary layer mesh, enabling it to be
conformally interfaced to linear elements in the buffer layer (Fig. 3).

Fig. 2. Illustration of the process for generating a higher-order boundary representa-
tion. (a) illustrates the mesh that would be generated for use by a second order RANS
solver. To obtain the higher-order boundary representation, the coarser mesh in (b)
is first generated using the existing surface meshing process. This mesh contains the
corner nodes (in black) used to define the extent of the element. In (c) the higher-order
nodes (in gray) are then added to provide the higher-order boundary discretization

This approach was chosen since it required only relatively minor changes to
the existing software: enabling the volume meshing routines access to the CAD
geometry, previously used only by the surface mesher; adding code to insert
the additional high-order nodes and store them consistently; and implementing
export routines to allow the grid to be written in an appropriate format. Unfortu-
nately, however, the approach of integrating the prototype high-order capability
fully within SOLAR was found to be sub-optimal in terms of the future exten-
sibility of the capability, imposing unacceptably adverse effects upon memory
usage and run-time performance within the standard meshing process. In ad-
dition, inclusion of high-order elements prevented a number of the algorithms



68 C. Johnston and S. Barnes

Fig. 3. Propagation of boundary curvature through the boundary layer grid. (a) repre-
sents the input linear grid containing valid linear elments. (b) illustrates the problems
encountered at the outermost layer if a naive propagation approach is used. In this
case the curvature in the outer surface of the boundary layer cannot be conformally
interfaced to the linear buffer layer element. (c) illustrates the approach implemented
by our algorithm, where the displacement of the high-order nodes is decreased with
increasing distance from the wall, to obtain a linear element in the outer layer of the
near-field grid.

used by SOLAR to ensure the quality of mesh elements from being applied with-
out a significant effort in rewriting their implementation. Although in principle
all these issues could have been addressed by a re-engineering of the SOLAR
software architecture, within IDIHOM it was instead decided to decouple the
high-order capability into a stand-alone post-processing stage. This enables all
the capabilities of SOLAR to be fully utilised without constraint, enabling the
high-order capability to benefit immediately from any relevant enhancements
to SOLAR. Furthermore, it significantly simplifies the development of the code,
allowing optimisation to be performed without any need for consideration of
secondary impact elsewhere in the code base. Unlike the ADIGMA prototype,
which works on a surface grid, this code instead takes as input a coarse linear
volume grid, generated using SOLAR, and the CAD geometry used to generate
this. The algorithms developed in ADIGMA are then used to curve the boundary
and volume element using the steps described in Sect. 3.

3 High-Order Meshing Process

3.1 Basic Methodology

The basic algorithm developed for post processing an input linear grid to an
equivalent high-order grid takes the following steps:

1. Input a linear volume grid, M, that satisfies the necessary constraints for
the overall process. These constraints are discussed fully in Sect. 3.4.

2. Obtain the dual graph of this mesh, M∗.
3. Identify the set of surface elements within this mesh that lie on walls with a

viscous boundary condition, S.



High-Order Meshing for Industrial Aerospace Configurations 69

4. For each member of S:
(a) Use M∗ to identify the column (or stack) of hexahedral or prismatic

elements above it. This column is determined by the opposite faces of
the volume elements, and terminates when an element of different type is
found, for example a pyramid element on top of a column of hexahedra.

(b) Insert high-order nodes in the surface element in such a way that the
underlying CAD geometry is captured.

(c) Propagate the effects of curving the surface element through the column,
in such a way that the validity of the volume elements is ensured, and
the outermost element can be conformally matched to a linear element
in the buffer layer between the boundary-layer and far-field tetrahedral
grids.

5. Recombine the columns, buffer-layer and far-field grids to create the grid for
the whole volume.

6. Output the volume grid in an appropriate format.

By applying this process the input linear grid can be converted to a high-order
equivalent in the manner illustrated in Fig. 4. The key components of this process
lie in the curving of the boundary elements, and propagating the effect of this
through the near-field volume grid. These steps are considered in more detail in
Sects. 3.2 and 3.3. Throughout this work we have only considered second-order
(quadratic) elements, but there are no fundamental reasons why the approaches
described could not be used to obtain higher-order elements.

Fig. 4. Conversion of a coarse linear grid to high-order

3.2 Boundary Representation

In order to represent accurately the underlying CAD within the high-order grid
we need to transform the linear surface elements, 3 vertex triangles and 4 vertex
quadrilaterals, from the original grid into their high-order equivalents, 6 vertex
triangles and 9 vertex quadrilaterals. These additional vertices must be added
in such a way as to ensure an accurate capture of the underling CAD geometry.
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To achieve this, two approaches were implemented; a relatively simple approach
based upon edge subdivision and re-projection to the CAD surface; and an al-
ternative approach which also includes the surface curvature in an attempt to
capture better the underlying geometry. Regardless of which of these approaches
is used to obtain the intermediate edge nodes, the face nodes were found by ob-
taining the mean of the edge node locations, then projecting this mean position
onto the CAD surface.

In the first approach the intermediate high-order nodes on an edge are ob-
tained simply by applying a point distribution along the linear edge and then
projecting from these positions onto the CAD surface. In the current imple-
mentation a uniform point distribution is used, but there is no reason why an
alternative choice, such as a Chebyshev-Lobatto point distribution, could not be
used. The use of a uniform distribution is arguably not ideal, since it will fail
to provide a good approximation to the underlying geometry should there be a
significant change in curvature along the edge. In practice we have not found
this to be a significant problem in terms of obtaining a valid high-order grid.
The example grids shown in Sect. 4 were generated using this approach.

Our second approach to curving the boundary attempts to address some lim-
itations of our first implementation. To curve an edge E we first identify an
approximation to the geodesic between its two end points on the CAD. We
obtain this approximation thus:

1. Find the vector v that is the mean of the normal vectors on the two faces
adjacent to the edge.

2. Find the plane P containing the two end nodes of E that is parallel to v.
3. Find the curvature of the geometry in this plane at the location of the two

end nodes.
4. Use this curvature information and the locations of the end nodes to provide

the boundary conditions used to obtain the constants in the parametric curve

r = at3 + bt2 + ct+ d , (1)

where t = 0 and t = 1 correspond to the end nodes of the edge.

The position of the intermediate high-order nodes are then obtained by applying
the desired distribution to the parameterization, obtaining the physical location
of the corresponding point on the geodesic by substitution into (1) and then
projecting from this location onto the CAD surface.

3.3 Layer Mesh Modification

The approach to curving elements within the layer mesh closely follows the
algorithm developed in [8]. The intention here is to obtain columns that propa-
gate the curvature of the boundary away from the wall, preventing problems of
mesh cross over that could occur if the curved boundary representation is not
accounted for (see Fig. 5), whilst also ensuring that the outermost face of the
column is flat.
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Fig. 5. Illustration of mesh cross over in the wing-tip region of the ONERA M6 geom-
etry if the high-order boundary representation is not accounted for. The figure shows
the surface of the first layer of the boundary layer mesh, through which the surface
mesh can be seen to protrude.

As shown previously in Fig. 3, a naive algorithm for curving elements in a col-
umn would result in a non-conforming interface between near- and far-field, and
hence a non-conservative system. To avoid this issue, an approach is introduced,
by which the effect of wall curvature is systematically decreased with increasing
distance from the wall. This is achieved in two stages. First, the displacements
of the high-order nodes that would be used if the naive approach was followed
are calculated. These displacements are obtained for the surface nodes by calcu-
lating the displacement vector from where they would be positioned if inserted
parametrically on the corresponding edge in the linear grid. These surface node
displacements are then mapped and applied to the corresponding nodes imme-
diately above in the column, but scaled by a factor which reduces their effect as
the layer number increases. In principle, any scaling function satisfying

0 ≤ f(layer) ≤ 1 (2)

and
f(layer+ 1) ≤ f(layer) (3)

can be used for this purpose, but in practice, the sigmoid function used in [8]
was found to yield good results. This function takes the form illustrated in Fig.
6 and is described by the expression

f(x) =

{
1 + exp

(
(x−Np)

σ

)}−1

, (4)

where x defines the layer, N the total number of layers in the column, p controls
the location of the step down from 1 to 0 and σ controls the width of this step.
Since the height of layers in the near-field mesh is generally fixed for an initial
number of layers and then increased according to a power series, this function
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has the desired property of having minimal effect very near to the wall, only
scaling back the effects of curvature in the larger elements away from the wall.
Here the effect of this process upon element quality can be minimised. Other
formulae were considered for this purpose but were found to have no benefit
over (4). The developed capability allows for the user to change the values of the
parameters p and σ in (4), but in practice default values of p = 0.85 and σ = 1
were found to perform well.

Fig. 6. Form of the sigmoid function used to scale displacements and the effect of
varying the parameters

3.4 Constraints on the Input Grid

Although the capability developed at ARA takes as input a SOLAR grid, the
process detailed in Sects. 3.1 to 3.3 can in principle be used to curve an arbitrary
input grid, provided that it satisfies a number of necessary constraints. First, in
its current form there is an implicit assumption that the linear grid possesses
an O-type topology and that each of the columns are ultimately terminated by
an element of different type before the far-field is reached. This would prevent
application of the current algorithm to, for example, a block structured grid.
The second of these constraints would be relatively easy to remove, simply by
setting a maximum number of elements to grow away from the wall, but the
first would require amendment to the algorithm to allow for the scenario of an
element being the member of two columns when in a junction region.

Second, the input grid is required to be both conformal and contain no nega-
tive volume elements, since the algorithm performs no explicit checks regarding
this. The production of non-conformal elements was a significant limitation for
the process in [8] since existing post-processing tools that would remove such
issues are incompatible with high-order elements. Since these tools can now be
applied on the linear inputs to the process, this issue can be almost eliminated in
the current approach. If any issues do remain, the method for robust untangling
of curvilinear meshes developed by Remacle et al. [10] may provide a solution.
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Finally, a non-conformal high-order grid will be produced if the height, in
terms of element count, of neighbouring columns is inconsistent, a scenario that
is likely to occur within SOLAR on complex configurations, where layer growth
may be terminated in order to ensure mesh quality and validity. The reason
for this problem is illustrated schematically in Fig. 7. If a column is terminated
by a linear element and this is not reflected in neighbouring columns, then a
non-conformality between neighbouring faces is introduced. Within our imple-
mentation this issue is dealt with by first identifying the minimum height of any
column on a specific geometric entity and ensuring that any column grown from
a face on this entity has no high-order elements beyond this layer. If, however,
the number of high-order layers is too low, in the worst-case scenario it could be
zero, then the overall algorithm is likely to fail to produce a valid grid.

Fig. 7. Illustration of the issue encountered if the number of layers in the near-field
mesh differs between adjacent columns

4 Examples

The high-order mesh generation capability detailed here was been developed on
a variety of 3D geometries. For the purpose of illustration we concentrate here on
three specific test cases, the ONERA M6 wing [11], the NASA trap wing geom-
etry from the first American Institute of Aeronautics and Astronautics (AIAA)
CFD high-lift prediction workshop [12] and a configuration used within the Eu-
ropean Clean Sky programme [13], comprising a variant of the Airbus A340
aircraft with a modified outer wing to enable natural laminar flow conditions.
These configurations are labelled, respectively, the IDIHOM test cases U2, A3
and A1, and are representative of the outputs that can be generated with the
developed toolset. The grids generated for these test cases are illustrated in Figs.
8-10. For each of these, the input linear meshes were generated using SOLAR,
and the high-order grids were visualised using Gmsh [2]. Corresponding details
of grid sizes and timings for generation are given in Tables 1-3.
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Fig. 8. Quadratic grid generated on the ONERA M6 wing

Table 1. Vertex counts for the example test cases

ONERA M6 NASA HLPW Clean Sky

136704 3745601 16762238

Regarding the generated grids, those on the ONERA M6 and NASA HLPW
geometries were found to be valid according to the curved mesh analysis tools
provided by Gmsh [2], but the grid for the Clean Sky configuration contained
4185 invalid elements out of the total 4.12 million. These invalid elements, ap-
proximately 0.1% of the total number, are ultimately due to a failure of the
input mesh to satisfy fully the criteria detailed in Sect. 3.4 and are considered
further in Sect. 5.

In terms of computational constraints, the implemented algorithm does how-
ever perform as hoped, the results illustrated in Table 3 showing only a marginal
increase in run-times for the high-order conversion compared to the initial gen-
eration of the linear grid. No performance optimisation has yet been attempted
on the conversion algorithm, so it is expected that the current measure of perfor-
mance could be significantly improved upon. In practice, however, when meshing
industrial configurations, the main time penalty lies in the upstream preparation
of the CAD and control inputs for the linear meshing stage. Since the current
performance of the high-order conversion appears to be adequate for our needs,
at present such performance optimisations are a relatively low priority.



High-Order Meshing for Industrial Aerospace Configurations 75

Fig. 9. Quadratic grid generated on the NASA high-lift workshop configuration

Fig. 10. Quadratic grid generated on the Clean Sky configuration
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Table 2. Element counts for the example test cases

ONERA M6 NASA HLPW Clean Sky

Linear Elements Quadrilaterals - 282 -
Triangles 3695 22005 16078
Hexahedra - 43039 -
Prisms - 880 -
Pyramids 626 21591 84483
Tetrahedra 96246 1930406 1881845

Quadratic elements Quadrilaterals 1176 282 94679
Triangles 79 22005 16078
Hexahedra 13772 43039 1998102
Prisms 1738 880 32506

117331 2460600 4123771

Table 3. Timings (in seconds) for the high-order mesh generation process

Test Case Linear mesh generation Quadratic conversion

ONERA M6 2 2
NASA HLPW 43 57
Clean Sky Configuration 174 178

5 Issues Encountered

Considering the grids illustrated in Sect. 4, the most obvious issue lies in the
failure to generate a valid high-order grid on the Clean Sky configuration, but
as indicated in Table 2, all three meshes also have a total element count greater
than would be ideal for use with high-order solvers. Both of these issues are
ultimately due to difficulties in generating a sufficiently coarse linear grid as
input. These difficulties arise as a result of design constraints imposed by the
main use of SOLAR, namely, the generation of meshes for use with second-
order finite volume flow-solvers. This imposes a requirement that the element
sizes are graded in a smooth manner, between regions where fine elements are
needed to capture accurately small-scale geometric features, and those where
large elements may be used. In contrast, for the purposes of high-order grid
generation a faster transition to coarse elements is desirable. As a result of this
smooth grading the valid meshes contain more elements than desirable, whilst
the invalid elements in the Clean Sky configuration grid are a result of difficulties
in achieving an appropriate degree of coarseness. Indeed, the invalid elements are
actually present in the linear mesh input to the high-order conversion process,
meaning that this grid fails to satisfy the criteria detailed in Sect. 3.4. In all the
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cases where we have successfully generated a linear input grid satisfying these
constraints we have also been able to generate a valid quadratic grid.

Investigations into how the standard best practice for SOLAR mesh genera-
tion may be modified to achieve the desired grading were performed but trials
were found to lack general robustness. This is unsurprising since we are, in fact,
attempting to use the code outside its original design criteria. To achieve the de-
sired coarsening, alternative algorithms will need to be added to SOLAR. Such
modifications were not achievable within the timeframe of IDIHOM, but will
form the immediate basis for future work on further industrialising the devel-
oped capability.

6 Conclusions

In the previous sections we have presented a new approach for obtaining high-
order grids on complex aeronautical configurations. The presented algorithm
appears to be fast and robust provided the inputs meet set requirements. The
main remaining issue is the question of how to generate an appropriately coarse
linear grid as input. Developing a capability to robustly generate such grids
should be the priority of any future work.

Beyond this primary issue there do, however, remain additional constraints,
namely a restriction of the current algorithm to meshes with an O-type topol-
ogy and a need to ensure that the height of neighbouring columns of near-field
elements are consistent with one another. These issues still need further inves-
tigation and would provide the secondary focus of activities once the issue of
coarse linear mesh generation is resolved. Although our work in IDIHOM has
provided definite progress towards the generation of an industrialised high-order
meshing capability, it is clear that further work in this area is still needed.
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Abstract. This paper considers a problem of generation of high-order
anisotropic hybrid grids to be used for simulation of high-Reynolds number
compressible turbulent flows around 3D geometries. The algorithm relies
on generating a curvilinear structural grid in the boundary layer region,
separately from the usual low-order unstructured grid in the rest of the
computational domain. A grid deformator based on an elastic analogy is
used in order to curved unstructured elements. The whole process is driven
by the global spacing described in a form of a metric field. The presented
method is verified for the Onera M6 wing and the L1T2 high lift testcases.

Keywords: CFD, high-order methods, anisotropic grid generation, high-
Reynolds number flows.

1 Introduction

The High-Order Methods (HOM) became recently one of the most promising and
dynamically developing branches of CFD. HOMs are considered an ideal candi-
dates for highly resolved and accurate simulation methods. However they require
a good quality High-Order (HO) curvilinear grids which conform to curvilinear
boundaries. Such grids are quite difficult to generate as in particular within the
boundary layer highly elongated curvilinear cells are very likely to appear. In case
of traditional linear grids a few validity criteria could be distinguished, e.g., the
positive volume, the limited ratio between radius of circumscribed sphere and the
maximum edge length, the prescribed aspect ratio [1], [2]. For the HO grids this
becomes much more complicated. The most commonly used criterion for the HO
grids is positivity of Jacobian transformation [3], [4]. However, even such simple
criterion is quite difficult even to check in the region of a boundary layer.

Typical strategies for generating a hybrid HO grid are based on modifica-
tion of a linear grid. Linear elements are enriched with collocation nodes and
subsequently curved using CAD description of the boundary. This method is
rather simple in implementation but can result with negative Jacobians in case
of thin elements. This problem could be avoided by applying a deformation only
for wheel-shaped elements, in case of hybrid grids and only for unstructured ele-
ments far from the viscous walls. Nevertheless, the BL grid needs to be generated
in the curvilinear form from the very beginning.
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In this paper the authors present, an algorithm which is based on this concept.
The BL grid is generated as HO and the deformation is applied only for the exter-
nal unstructured grid. The obtained generator is capable of generating high-order
hybrid grids which are suitable for simulation of high-Reynolds number flows.

1.1 Overview of the Implementation of the High-Order Hybrid
Grid Generator

The high-order hybrid grid generator consists of several separated modules:

– description of the geometry of the computational domain – this module (GeT)
provides full information on all surface patches forming the wall (with the pos-
sibility to calculate 1st and 2nd derivatives of the parametrised surface) as well
as the information about the connectivity of all the surface patches.

– description of the grid spacing (Control Space) – provides anisotropic spacing
at an arbitrary point of the domain.

– anisotropic unstructured grid generator – a backbone of the hybrid grid
generator which is able to form the complete unstructured grid in hierarchical
manner starting from the lowest dimension entities (nodes) and ending at
the 3D volume grid.

– boundary layer grid generator – used to form the thin grid necessary for
proper discretization of the boundary layer zone

– grid deformator – used for curving an unstructured grid. The deformation al-
gorithm is based on linear elastic analogy (with the assumption of small defor-
mations).

The generation process starts by setting up the description of the domain
by means of the GeT module. This allows to use the CAD model as an input
(taking advantage of the STEP-file exchange format). Such a model consist of
set of surface patches, which together form the closed boundary of the domain.

During the next step the surface grid for the boundary of the domain has to
be generated. This is done using unstructured grid generator. The surface grids
for the patches with the non-slip boundary condition, must be grouped into one
open surface grid.

In the next step the surface grid is transformed into the high-order form. Firstly
the collocation nodes are generated at each surface element. Subsequently these
nodes are projected onto the curvilinear boundary. It is done according to the
topological ownership, if the parent linear element is laying on the edge/face then
the new collocation nodes are projected on the corresponding curve/surface. This
high-order surface grid is used as a starting front in the boundary layer generator.

The generation of the boundary layer grid is based on the algebraic frontal
algorithm. The BL grid generated in such a way consists of prisms which can be
split into tetrahedra (if necessary). The generation of layers of the boundary grid
cells is terminated either after predefined number is reached or another stopping
criteria are met.

Once the BL grid is ready, the new boundary is extracted (of the domain not
yet filled with the grid). Such boundary is formed using the last front of the
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boundary layer as well as the surface grids of the remaining boundary patches.
Once the boundary is extracted, the unstructured volume grid generator is used
to fill the empty space with the linear elements (tetrahedra or triangles). In the
next step the collocation nodes are added to the unstructured elements. At this
point the unstructured grid does not fit the surface extracted from the last front
of the BL grid. In order to alleviate this problem the unstructured elements need
to be deformed.

After deformation is finalized, the BL grid and the unstructured grid are
merged together.

During all phases of the generation process the generator is using information
about the grid spacing provided by the Control Space. The Control Space can
either be defined as an output from an error estimator or can be predefined by
the user. Alternatively it can also be a mixture of both. Thanks to the fact that
the same type of grid spacing description is used throughout the whole process
of generation the continuity of the cell sizing is assured.

GeT
description of

the domain geometry

Surface Grid Generator
generates surface grid
for viscous boundaries

High-order converter
generates collocation nodes

for surface grid and
projects them on the curvilinear boundary

Boundary Layer Grid Generator
generates BL grid for viscous boundaries

using frontal algebraic method

Surface Grid Generator
generates surface grid for the other (slip) boundaries

Unstructured Volume Grid Generator
fills the remaining domain with an unstructured grid

High-order converter
generates collocation nodes for the unstructured grid and

converts the grid to a linear form

Deformator
deforms linear unstructured elements

to conform to BL elements

Merger
transforms the linear unstructured grid

back to HO form and merges it with the BL grid

Control Space
describes anisotropic grid

spacing at any point
of the domain

Fig. 1. Overview of the algorithm used in the high-order hybrid grid generator
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2 Boundary Layer Grid Generation Algorithm

Simulations of viscous flows highly depends on the discretization within the
boundary layer. Such grid is characterized by very thin and stretched cells. If
such cells are formed by an unstructured grid generator there is no control on
their shape. Especially the maximum dihedral angle for such cells can be very
large (close to 180) which may cause excessive growth of error during simulations.
Therefore, a much better choice is to use a specialized generator for boundary
layer grids. Furthermore, such generator can create structured cells (e.g., prisms)
which have much better properties from the point of view of the solver.

2.1 Overview of the Algorithm

The boundary layer grid generator is based on algebraic, frontal method [5], [6].
The grid is formed by extruding consecutive sublayers from the high-order sur-
face mesh. High-order elements are created by assembling the sufficient number
of sublayers (this number is determined by the predefined order of the mesh).

The height of the resulting elements is calculated according to the control
space definition. The Laplace smoothing (with weights) is used in order to im-
prove the quality of the final grid. The normal vectors in the proximity of sharp
edges can be frozen in order to avoid problems related to the possibility of gen-
eration of invalid (negative volume) elements.

The boundary layer grid generation algorithm is based on the algebraic, frontal
approach and consists of the following elements:

– The process of generation starts by taking the initial linear surface grid as
the initial front (see Fig. 3a).

– The linear surface grid is transformed to the high-order (see Fig. 3b).
– For every base node and for every collocation node in the front, the normal

vector as well as the cell height are calculated (see Fig. 2a).
– A single sublayer of the structured grid cells is generated and the front is

moved to the external boundary of the sublayer (see Fig. 2b, c).
– When sufficient number of sublayers is obtained, the high-order structural

elements are assembled from the sublayer slices (see Fig. 2d)
– The procedure is repeated until a stopping criterion is met.
– Once the generation is finished the remaining space is filled using the un-

structured grid generator.

2.2 Cell Height Calculation

The height of the elements can be determined in three different ways. The first
method is based on the user defined parameters such as the initial height and the
predefined growth factor (Fig. 4a). The initial height is applied to all elements
in the first layer and then the height of elements in every consecutive layer is
obtained by multiplying the height from the previous layer by the growth factor.
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a) b)

c) d)

Fig. 2. Boundary layer grid generation using the frontal method.
a) Setting up normal vectors for the initial surface grid, which defines a starting position
of the front
b) Creating a new sublayer by extruding grid cells along the normal vectors
c) Moving the front to the new position
d) Assembling high-order volume elements

a) b)

Fig. 3. Surface high-order transformation
a) Linear surface grid
b) Surface grid after the addition and projection step (of the collocation nodes on the
surface)

The second approach uses the control space which can provide the generator
with aniso-tropic spacing defined by a metric tensorM (Fig. 4b). For every node
of the front the height is defined as the spacing in the direction of the normal to
the front. Once the normal and the metric tensor M are known the height can
be obtained from the formula:

h(x) =
1√

nT · M(x) · n

where n denotes the normal vector while M(x) stands for the metric tensor at
a point x.

The last approach is a combination of the two. Firstly the height is calculated
using the control space, then this height is limited using values resulting from
the algebraic method (based on the user-defined growth factor). This approach
allows to avoid large changes in the neighboring elements, which are likely to
appear if solely the control space is used. The results of such limiting can be
observed in Fig. 4b, c near the leading edge.
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a)

b)

c)

Fig. 4. Height of the boundary grid cells - different approaches:
a) Based on the user-defined growth factor
b) Based on the metric field
c) Based on the metric field with additional limiting
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2.3 Normal Directions with Constrains

The generation of normal directions for the frontal nodes is one of the most
important elements for boundary layer grid generator. The algorithm to calculate
normal directions consists of several steps:

– The initial calculation of normal directions.
– Detection of possibly problematic regions, e.g., sharp edges/convex/concave

and the calculation of corresponding symmetry surfaces (for edges) or vectors
(for convex/concave).

– Projection onto symmetry surface/vector and freezing of normal vectors in
the sharp edges/convex/concave regions.

– Calculation of visibility cones.
– Checking the visibility cone criterion.
– Smoothing the normal vectors according to the visibility criterion.
– Projection of the corresponding normal vectors onto symmetry/inlet/outlet

boundary surfaces.

Initially for every frontal node, the normal vectors are calculated by averag-
ing normals from the corresponding manifold panels. Unfortunately the normal
directions obtained by this algorithm may result in negative volume elements.
This problem can become even more serious after smoothing.

The irregularities in the distribution of the nodes in the proximity of sharp
edges (e.g., trailing edges) could result in characteristic wavy shape of the ex-
truded edge (see Fig. 5a). The problem can be alleviated by calculating normal
vectors for the sharp-edge-nodes using geometry description of the joint surfaces
and then by freezing the normals for the whole generation process (see Fig. 5b).
This criterion can be weakened by calculating an average surface (from the ge-
ometry description of the joint surfaces) and allowing the normal vector to vary
only at this surface. This approach does not introduce excessive stiffness to the
system.

a) b)

Fig. 5. Freezing of normal vectors at trailing edge
a) Trailing edge region without freezing of normal directions
b) Trailing edge region with freezing of normal directions

Unfortunately this method does not guarantee a validity of the whole bound-
ary layer grid. In order to fulfill the validity criterion an additional restriction
for normal directions has to be introduced.
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One of the most frequently used methods for this purpose is the so called
visibility cone criterion (see Fig. 6). An algorithm is developed by the assumption
that every frontal node should be visible from the surrounding panels:

∀
Fj∈Mi

Ni ·NFj > 0

where Mi stands for the manifold panels corresponding to the node ni while Fj
denotes jth face of the manifold i.

The algorithm starts from finding a pair of facets (F1,F2) which create the
most acute angle:

∀
Fj,Fk∈Mi

j �=k

NF1 ·NF2 ≤ NFj ·NFk

In the next step a bisection plane of the facets F1,F2 is formed. An axis of
the unknown visibility cone lies on this plane. This feature implies that normal
vector maximizes the minimum angle between itself and normal vectors of all
faces from the manifold i. Moreover a half cone angle βi is obtained which is used
to form a validity criterion. Additionally with the normal vector Ni it defines a
region where node ni is visible for all surrounding nodes. After each modification
of the normal vector, a check operation can performed, according to the formula:

Ñi ·Ni ≤ cosβi

where: Ñi - is normal vector after modification
More details can be found in the paper of Kallinderis and Ward [7].

ni

Ni

i

F1

F2

Fj

NFj

FjFFF1

FF2FF

Fig. 6. The visibility cone formed for the for node ni

2.4 Smoothing

In order to improve the quality of the final grid, a simple Laplacian smoothing is
applied to the normal vectors as well as to the heights of the consecutive layers [5].
The normal vectors for every node in the front are calculated locally by averaging
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normals of neighbouring panels (frontal cells). This approach can result in strong
“discontinuity” of the normal directions especially in the proximity of the trailing
edges, be it either convex or concave as well as generally for each sharp edge of
the boundary surface (Fig. 7a). It can also result in highly deformed elements
and large differences in volume of the neighbouring elements. By applying simple
Laplacian smoothing this problems can be eliminated in most of cases (Fig. 7b,
c). Weights used in the smoothing process can be determined by, e.g., ratio
of area/volume of neighbouring elements. The smoothing algorithm respects a
visibility criterion and does not change normal directions for the frozen nodes.

The Laplacian smoothing of the normal vectors can be described as follows:

nn+1
i = (1− ω)nn

i + ω

∑
j w

n
j n

n
j∑

j w
n
j

where:
nn+1
i - the normal vector for the ith node

nn
i - the normal vector for the ith node from previous iteration

wn
j - the weight for the jth neighbour

ω - underrelaxation factor

a) b)

c)

Fig. 7. Laplacian smoothing applied to normal vectors - trailing edge region.
a) No smoothing
b) Five iteration of smoothing
c) Twenty iteration of smoothing

At the final stage all nodes laying on symmetry/inlet/outlet boundary surfaces
are projected on the normal direction (on the corresponding face). A complete
example of high-order boundary layer grid can be observed in Fig. 8.
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Fig. 8. P6 boundary layer grid for the Onera M6 wing

3 Anisotropic Unstructured Grid Generation Algorithm

The unstructured grid generator works in hierarchical manner. In order to gen-
erate 3D volume grid it is necessary to generate a grid on the boundary. Since
the boundary is typically composed of many surface patches connected together,
it means that the grid must be generated for every surface patch. This process
starts with generation of the surface patch boundary composed of edge grids [9].

Summarizing, the generation process starts with the definition of the domain
geometry and the corresponding topology. The generation of the 3D grid starts
with the 1D grid bounded by the 0D vertices (logically they can also be treated
as the 0D grids). Then the grid for each surface patch is created using the 1D
grids to form the given patch boundary. The grids for the surface patches are
used to form the 3D domain boundary and the volume generator can be used to
form the final grid.

This method of generation can be called hierarchical because it follows, from
the bottom to the top, following the hierarchy of the topological entities used
for the definition of the domain. This can be best presented for the grid for the
IRYDA testcase (see Fig. 9). Figure 9a shows the geometry of the boundary of
I-22 airplane split into many connected surface patches. Figure 9b presents the
first step where the 1D grids are generated for every 1D edge. These grids are
used as a boundary for the 2D faces where the 2D surface grids are formed. All
2D grids forming the boundary for the 3D volume grid are shown in Figure 9c.
Subsequently the volume grid generator is used in order to create the final 3D
grid (see Fig. 9d).

The grids are generated for every nD topological entity, in the paramet-
ric space of the corresponding geometrical entity using algorithm based on
anisotropic Delaunay triangulation with Boyer–Watson algorithm for incremen-
tal point insertion.
The general algorithm in nD (as used for 2D and 3D) can be summarized as
follows:

1. Create a (n − 1)D grid which bounds the region for which a grid must
be generated. Typically the bounding grid is composed using grids already
generated for (n− 1)D topological entities given surface patch in 2D or 3D
volume.
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a) b)

c) d)

Fig. 9. I-22 unstructured grid - example of the hierarchical generation process
a) Boundary split into many connected surface patches
b) The 1D grids generated for each topological edge
c) The 2D grids for each topological face (surface patch)
d) A cut through the final 3D volume grid

2. Create a quad (cube in 3D) which contains all boundary grid nodes.
3. Split the quad in 2 triangles (cube into 5 or 6 tetrahedra). This will define

initial Delauney triangulation.
4. Insert all boundary grid nodes into existing triangulation using the incre-

mental algorithm of Boyer-Watson.
5. Recover boundary grid cells into the existing triangulation. This step is rel-

atively easy in 2D however it poses quite a challenge in 3D especially for
highly stretched anisotropic elements. During this step it may be necessary
to introduce extra boundary points (Steiner points).

6. Flag all external cells. Thanks to the previous step there are no cells which
are crossing the boundary.

7. Fill the domain with the internal nodes. New nodes are generated such that
the grid spacing described by the Control Space is satisfied. The new points
are inserted into triangulation using anisotropic Boyer-Watson algorithm.

8. Remove all external cells.
9. Remove Steiner points added in step 5.

10. Perform the optimization by means of local topology operators, e.g., cell
swaps, node movement, etc.
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4 Unstructured Grid Deformation

The high-order elements introduced into the unstructured part of the grid are
created based on initially linear elements, generated by the standard volume grid
generator. Since elements are originally straight faced (low order) the resulting
high-order grid does not conform well to the curved geometries. It is therefore
necessary to relocate some of the nodes of the boundary elements.

A naive transition of the nodes to their desired positions is likely to produce ill
conditioned elements and result in the unusable grid. Such an effect is illustrated
in Fig.10.

Boundary layer
shape

Possibly
Ill conditioned

Element Boundary layer
shape

Fig. 10. Large nodal displacements result in generation of ill conditioned elements

To limit the generation of ill conditioned elements it is necessary to employ
some mesh moving technique. Application of a hypothetical mesh moving tech-
nique is illustrated in Fig. 11. A driving mechanism to implement the movement
of the internal nodes might be based on some grid optimization [3], smoothing,
or a deformation by means of elastic analogy [9], [10]. The latter approach is
used in the present work.

Boundary layer
shape

Boundary layer
shape

Deformed meshMesh prior to deformation

Fig. 11. Large nodal displacements are accommodated by appropriate relocation of
the internal nodes
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Due to the hybrid nature of the generation process the boundary layer is
generated in a separate step. Therefore, the mesh movement needs to be applied
only in the regions relatively far from boundaries. This greatly increases the
robustness of the algorithm, especially in the proximity of the boundary, where
elements are thin and highly stretched. Farther grid deformation is performed
using the linear grid resulting from disassembly of higher-order elements into the
linear ones.

4.1 High-Order Elements Splitting

Since the grid deformation module is capable to support only linear unstructured
grids (triangle or tetrahedral) the high-order elements need to be converted to
P1 form. In 2D a conversion is simple (see Fig. 12). Splitting is unique and
the number of the linear elements is equal to N2 where N denotes the order
of the base element. In 3D splitting becomes more complicated. However, sev-
eral characteristic patterns can be distinguished. The simplest splitting concerns
P2 tetrahedron. It could be easily divided into four P1 tetrahedrons and one
P1 octahedron (see. Fig. 13). Unfortunately there is no unique splitting of the
octahedron without introducing the additional node in the centre of the mass.
There are three different diagonal planes which can be used to construct pairs
of pyramid elements (see. Fig. 14). Then for each pair of pyramids there are two
different configurations of splitting into tetrahedrons defined by the diagonals
of the pyramid base. The actual algorithm performs a quality check of resulting
tetrahedrons and chooses a pattern which produces the best quality elements.

a) b)

c) d)
Fig. 12. The triangle element splitting schemes
a) Linear triangle
b) P2 triangle split into 4 P1 triangles
c) P3 triangle split into 9 P1 triangles
d) P4 triangle split into 16 P1 triangles
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For the higher-order (more then P2) tetrahedrons another characteristic pat-
tern can be observed. Fig. 15a shows a P3 tetrahedron which can be split into
P2 tetrahedron and a P3 triangle frustum. Since the algorithm for splitting
P2 tetrahedrons does not introduce any additional nodes, both figures can be
treated separately. For clarity reasons a frustum case is shown in Fig. 16a as an
equivalent 2D scheme. The presented scheme corresponds to the top view of the
frustum. Solid lines represent the upper base while dashed lines represents the
lower base. The P1 tetrahedrons can be formed by connecting a triangle from the
lower base with a single node from the upper base (Fig. 16c, d) or in reverse con-
ditions (Fig. 16e). The three hexagrams Fig. 16b (only upper hexagram is made
bold for clarity reasons) correspond to three octahedrons. These octahedrons
can be further split into the tetrahedrons according to the algorithm described
above. These two different patterns (the tetrahedron type and the octahedron
type) exhaust a collection of possible diagrams in a triangle frustum splitting.

Since the higher order tetrahedrons are formed with the consecutive triangle
frustums of the decreasing order, the algorithm could be used recursively to split
the tetrahedrons of any order.

a) b)

Fig. 13. Second order tetra splitting scheme
a) P2 tetra with division lines
b) P2 tetra after splitting

4.2 Elastic Analogy of Mesh Moving

The grid, undergoing movement of nodes, is treated as a solid body under de-
formation due to the external force F (r). External force corresponds to the dis-
placement of boundary nodes necessary for the grid to conform to the prescribed
geometry. This results in displacement of each grid node by ui, in agreement with
the force balance equation:

∇σ − F = 0 (1)
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Fig. 14. Octahedron splitting scheme

a) b)

Fig. 15. Third order tetra splitting scheme
a) P3 tetra with collocation nodes and splitting lines at faces
b) P3 tetra split into P2 tetra and third order triangle frustum

The constitutive relations connect stress tensor σ, present in the deformed
continuum, with the strain tensor ε. This work assumes an isotropic hetrogenic
material represented by two Lame parameters λ = λ(r) and μ = μ(r) with σ
depending on ε via:

σ = 2με+ λ tr(ε)I (2)

where I is identity matrix, and tr(ε) is a trace of ε.
In a general case the non-linear strain-deformation relationship can be used,

as deformation of grid elements might be large. This would result in compu-
tationally expensive non-linear problem to be solved. Following [9] the current
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a)

b) c)

d) e)

Fig. 16. Splitting patterns for p3 tetra slice
a) Top view, dashed lines - base P3 triangle, solid lines - P2 triangle
b) Octahedron type
c)-e) Tetrahedron type

approach disregards the non linear behaviour, in favour of a relatively inexpen-
sive linearised formulation. The rationale here is the fact that the accuracy of an
elastic computation is unimportant as long as boundary nodes conform to the
assumed shape while the grid does not contain degenerated elements. Therefore
the strain-deformation relation can be expressed in the form of linear relation:

ε =
1

2
(∇u+∇uT ) (3)

Finally to solve problem (1) the standard finite element approximation is used.
The problem is discretized with the first order polynomials over elements of the
grid being deformed. As a result the numerical problem reduces to the usual:
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Ku = f (4)

The solution of (4) yields nodal displacements, required for the grid to be ap-
propriately deformed. The stiffness matrix K is symmetric and positive definite,
u represents nodal displacement vector used for grid modification, while f is a
vector of external forces.

Figure 17 shows fragments of higher-order grids generated with the use of the
deformation algorithm for the Onera M6 wing geometry.

4.3 Robustness Issues

Since large nodal deformations are common, the robustness of the linearised
elastic approach might be insufficient. This is manifested by generation of de-
generated linear elements, and in consequence invalid HO grids.

To improve robustness of the deformation technique, some heuristic tech-
niques are used. First of all, some of the nonlinear behaviour is reintroduced
by performing the deformation as an iterative process. This results in smaller
deformations calculated in a single iteration.

Another measure can be obtained by manipulation of fictional material pa-
rameters λ and μ, governing the constitutive relation. To improve stability of the
method the values of these parameters are dependent on the element position,
orientation, shape and size. This allows for hardening of close-to-degeneration
elements, while relaxation of others. As a result the robustness of the method
significantly increases.

5 High-Order Grid Merging

In the final step of grid generation the unstructured grid is connected with the
boundary layer grid in order to produce the final hybrid grid. As an output the
grid deformator returns a linear unstructured grid which needs to be converted
back to high-order version prior to merging with the BL grid. The grid merger
stores an information about the old (not deformed) high-order unstructured
grid. Since the linearization and the deformation processes add no extra nodes
and do not change numbering of the existing nodes, a conversion to high-order
is very simple. It can be done through updating a position of every node in
the not deformed high-order unstructured grid by using an information from
the deformed linear unstructured grid. In the last step the algorithm deletes the
doubled nodes at the common surfaces between the BL grid and the unstructured
grid and renumbers the remaining nodes.

6 Numerical Results

6.1 High-Order Hybrid Grid for the L1T2 Profile

In this section the grid for the L1T2 high-lift testcase is presented [11]. The grids
were generated using a control space obtained from the second order adaptation
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linear unstructured grid linear grid

linear unstructured grid high-order BL grid, linear unstructured grid

high-order grid, before deformation high-order grid, before deformation

high-order grid, after deformation high-order grid, after deformation

Fig. 17. Deformation steps applied to the Onera M6 wing

process (more details can be found in [4]). All grids are fully hybrid (quads and
triangles). A general view of the example P4 grid is presented in Fig. 18. Details
of the grids for various orders are shown in Fig. 19.
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Fig. 18. The P4 grid generated from the metric field - details of the wake

P2 grid P2 grid zoom at slot

P7 grid P7 grid zoom at slot

Fig. 19. High-order hybrid grids for the L1T2 high lift testcase
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6.2 High-Order Hybrid Grid for Onera M6 Wing

For the Onera M6 wing [14] the grids were generated for the Euler solvers, with
purely tetrahedral elements (see. Fig. 20) and for the Navier-Stokes solvers, with
the mixed tetrahedral elements and prismatic elements in the BL region (see.
Fig. 21). The Control Space used in the generation process of the unstructured
grid was derived from the solution of simple Euler flow. The hight of the bound-
ary layer elements was driven by the user defined progression.

P3 surface grid P3 cut through volume grid

Fig. 20. High-order tetrahedral grids for the Onera M6 wing

P2 surface grid P2 cut through volume grid

P7 surface grid P6 cut through volume grid

Fig. 21. High-order hybrid grids for the Onera M6 wing
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7 Conclusions and the Future Work

In this paper the authors presented a pragmatic yet an effective solution for
the high-order grid generation problem. The generator is capable to create high-
order grids (no order limitation in theory) suitable for simulation of viscous
compressible hight-Reynolds number flows. The generator was tested for 2D and
3D testcases (L1T2 high-lift configuration, Onera M6 wing). The obtained grids
were checked for the validity of elements (positive volume and the Jacobian
criterion).

The investigation has identified the most critical elements of the generation
of the high-order grids especially for complex geometries. In particular such
elements are the algorithm to calculate the normal directions, as well as the
smoothing algorithm. Some elements of the algorithm require further work, in
particular the local optimization of elements, in order to obtain their better
quality.

Acknowledgments. The research presented here was done in the frame of
the IDIHOM project (Industrialisation of High-Order Methods - a Top-Down
Approach, FP7-AAT-2010-RTD-1, Grant agreement no.: 265780).
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Anisotropic Adaptation for Simulation
of High-Reynolds Number Flows Past Complex

3D Geometries
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Abstract. The paper presents the anisotropic adaptation algorithm ap-
plied to simulations of high-Reynolds turbulent compressible flows past
complex 3D geometries. The adaptive algorithm relies on anisotropic
grid-cell spacing definition provided by the error estimator in a form of a
metric field. The error estimator is based on the Hessian of the solution
with additional terms used to improve the grid spacing in the regions
of high viscous shear forces. The adaptive algorithm is used for the two
testcases the Onera M6 wing and the High Lift Prediction Workshop 1
trap wing.

Keywords: CFD, turbulence modeling, mesh adaptation, anisotropic
error estimation.

1 Introduction

The quality of the numerical simulations strongly depends on discretization of
the domain. The adaptive mesh refinement is a well-known strategy for mini-
mization of the computational costs while improving resolution of the solution
in critical regions. Additional gain can be obtained by using adaptation which
is based on anisotropic definition of the grid spacing. This approach allows for
generation of elongated cells with the shape conforming to the discretized phe-
nomena. In particular cells in a region of a shock-wave are thin in direction
normal to the shock-wave and relatively elongated in the tangent directions.
Thanks to this, in comparison to the isotropic approach, smaller number of cells
are needed to resolve the flow around the shock-wave.

The anisotropic adaptation approach has already been successfully applied for
flow simulations. However, the simulation of the viscous, turbulent 3D problems
still poses numerous challenges. The two main problems are: (i) grid genera-
tor/adapter should be robust enough in order to handle complex 3D domains
and (ii) the error estimator should be capable to resolve properly the shear lay-
ers, e.g., wake behind the wing. This paper will address the latter issue proposing
modifications, which should improve the quality of the grid. The results of the
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simulations using the developed adaptation technique will be presented for the
Onera M6 wing as well as for the HLPW-1 trap wing.

2 Adaptation Algorithm

The presented approach to adaptation relies on full grid regeneration. The grids
are generated according to the anisotropic spacing provided by the Control Space
(more details about the Control Space will be presented in Section 3). The Con-
trol Space is generated either by the user (e.g., for the initial grid) or by the error
estimator (in the process of adaptation). The new grid is used by the solver to
obtain the next generation flow solution. This sequence is executed a predefined
number of times or until some convergence criterion is reached. The adaptation
algorithm is shown in Figure 1.

Start

Initial Control-Space
definition of cell spacing

used for initial grid

Grid Generator
generates a new grid

according to the Control- Space

Solver
solves a given flow problem

Error Estimator
creates a new Control-Space

which should minimize
the estimated error of the solution

The End

Control Space
defines anisotropic grid
spacing at any point

of the domain

Fig. 1. Overview of the adaptation algorithm

This approach is quite challenging to the grid generator, which must be ca-
pable of producing anisotropic grid for complex 3D geometries refined according
to the error estimator, but also must take into account the spacing needed for
proper discretization of the boundary layer (the representative grids can be found
in Fig. 6 and 7).

3 Anisotropic Spacing and the Control-Space

The main element of the anisotropic adaptation algorithm is the definition of
grid spacing. If the grid is generated in a domain Ω, then at every point P ∈ Ω
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a preferred size of a cell must be known. This size is defined not by a scalar (as
in the isotropic approach) but by the metric tensorM which is used to calculate
distance between points of the domain.

The rank of the SPD tensorM must be equal to the dimension of the domain
Ω. The metric M can be decomposed as follows:

M = R ·
[
λ1 0

0 λ2

]
·R−1 = R ·

⎡

⎣
1
h2
1

0

0 1
h2
2

⎤

⎦ · R−1

where R is a matrix which columns define unit directions of ellipse main axes
and hi is the length of the i-th main axes (see Fig. 2). The preferred cell is then
such, that can be inscribed into the ellipse defined by M.

h1

h2

Fig. 2. Metric spacing definition presented as an ellipse

The size of the cells can depend on the user definition, error estimation or
properties of the domain Ω. Thus it is necessary to provide the grid generator
which uses this information in a consistent way. For this purpose the Control
Space (CS ) concept is used (see also [1]).

From the programming point of view, a continuous functions is needed which
provides a value of metric tensor M for every point P ∈ Ω.

4 Error Estimator

The detailed description of the standard approach to anisotropic error estimation
based on interpolation error can be found in [2], [3], [1], [4], [5]. The anisotropic
adaptation can also be extended to goal-oriented approach [6], [7]. The Hessian
based approach to error estimation works well for inviscid problems, however it
has limitation when applied directly to high Reynolds turbulent flow simulations.
The problem was already recognized by the authors within the ADIGMA project,
in which improvements were proposed and tested for 2D testcases [8], [9]. In the
frame of the IDIHOM project the estimator was further extended and applied
for fully turbulent complex 3D simulations.
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4.1 Calculation of the Metric - Hessian Based Approach

The Hessian based approach is based on error estimator which tries to minimize
the local interpolation error at the same time allowing to obtain information on
the anisotropy of the solution [2], [1], [4], [5], [6], [7]

Assume now that E denotes a grid cell inside which a function u is being
interpolated and xc is the center of E. Then after dropping terms of higher
order, the interpolation error for E can be estimated [1] as:

εE ≤ max
x∈E

(
x− xc)

T |H|(x − xc

)
(1)

where H is a Hessian of u:

H = ∇∇u = R · Λ ·R−1 (2)

The Hessian is symmetric, therefore it has real eigenvalues λ1, λ2 and λ3.
The matrix R consist of columns being right eigenvectors of H while Λ is a
diagonal matrix consisting of corresponding eigenvalues λi. Consequently |H|
can be defined as:

|H| = R · |Λ| · R−1 (3)

The interpolation error in a given direction defined by the unit vector w, is
proportional to a constant C calculated as follows:

C = h2 wT |H|w (4)

where h denotes a length of a cell in the direction of unit vector w. In the
present approach w becomes a direction of a given edge and h becomes an edge
length. The construction of an optimal grid is based on the equidistribution of
the interpolation error. This is equivalent to assuming that for every edge ei, the
constant Ci is equal to a global C. We can introduce now a scaled metric M:

M = C−1 |H| (5)

This approach works well for inviscid flow simulations, however when applied
directly to viscous (especially high Reynolds number) flows, it tends to under-
estimate viscous shear layers. This is understandable as in the regions of such
layers, the gradient of velocity is large while hessian is quite modest. The grid
obtained by this method will have unresolved regions close to the viscous walls
and in the middle of shear layers (e.g., wakes). This effect can be observed in the
Figure 3a. Additional modifications are necessary to alleviate such problems.

4.2 Calculation of the Metric - Gradient Based Approach

The first modification was already proposed by the authors within the ADIGMA
project [9] and this modification was relying on a metric tensor formed using
gradient of the magnitude of the fluid velocity u = |v|.

w = ∇u (6)
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M = w ⊗w (7)

M = R · Λ ·R−1 (8)

Λ = diag(w ·w, 0, 0) (9)
The gradient and the Hessian metrics were mixed using the metric intersection

approach (described in Section 4.4). Only then the adaptation algorithm was
capable to resolve both, the regions dominated by viscous stresses as well as the
regions indicated by the Hessian based estimation.

4.3 Calculation of the Metric - Viscous Stress Tensor Approach

Additional improvement of the anisotropic error estimator is proposed, which is
based directly on the velocity gradient decomposed into the rate of strain tensor
and the vorticity tensor.

Rate of Strain. The rate of strain tensor is used as the indicator of the shear
layers. The tensor is defined by:

TS =
(
∇v + (∇v)T

)
(10)

The tensor can also be defined as in the definition of the viscous stress tensor
for compressible flows:

TS =
(
∇v + (∇v)T

)
− I

2

3
∇ · v (11)

In order to obtain the estimation of the strength and the normal direction of
the shear layer (in a form of vector w) the tensor T should be multiplied by
normalized vector of the velocity.

w = TS ·
v

|v| (12)

The final metric can be assembled using (7). This metric is mixed with Hessian
metric as it was done for gradient based method.

Vorticity. The last possibility for modification of the metric tensor is based on
vorticity. This time the TΩ is used for detection of shear layer:

TΩ =
(
∇v − (∇v)T

)
(13)

Vector w is defined similarly to (12):

w = TΩ ·
v

|v| (14)

The final metric is evaluated using (7).
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4.4 Metric Intersection

During adaptive simulation the error estimator can be applied to different scalar
fields (e.g., velocity magnitude, Mach number, pressure, etc.). As a result, dif-
ferent metric fields are obtained. Additionally, for viscous simulations the metric
corresponding to the shear layer must also be taken into account. It is then neces-
sary to merge or blend all the metric fields in order to obtain a single metric field
which satisfies cell spacing requirements defined by all partial metric fields. This
process is done at every node of the background grid where all metric tensors
are defined. The new metric can be obtained by means of a metric intersection
(see [10] for the notation):

M =

n⋂

i=1

Mi (15)

The algorithm is based on the method which allows to find intersection of two
metrics and in order to obtain common metric for multiple partial metrics it must
be executed in an iterative manner. Since the algorithm is not commutative, it
is also important to apply it in an appropriate order, i.e., starting with Hessian
based metric and then adding components related to gradient based metric.

The detailed description of the algorithm used for finding metric intersection
can be found in [11], [12] and [10].

4.5 Metric Limiting

The process of limiting is necessary to avoid unrealistic shape/size of the grid
cells. Assuming that values of hmin and hmax (which are provided by the user)
define the maximum and minimum of the acceptable grid spacing the following
modification are introduced:

λ̂i = (max(hmin, min(hmax, hi ) ) )
−2 (16)

where hi = 1/
√
λi. The final metric is taken as:

M = R · Λ̂ · R−1

The metric M is subsequently calculated for every node of the old grid and
by means of interpolation is extended to form a continuous metric field. The new
grid is generated in the Riemann space defined by the metric field in such a way
that all edges have approximately unit length.

The final metric field can be further improved by using additional techniques
like smoothing, gradation control [13], etc.

5 Comparison of the Results by Different Error
Estimators

In order to compare all proposed modifications of the error estimator, the grids
were generated using the same solution (NACA-0012, M = 0.5, Re = 5000,
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a)

b)

c)

d)

Fig. 3. Comparison of two approaches to the anisotropic error estimation applied for
viscous flows (NACA-0012 in laminar flow: M = 0.5, Re = 5000, α = 2◦).
a) Hessian of velocity module
b) Hessian of velocity module with velocity gradient component
c) Hessian of velocity module with strain tensor component
d) Hessian of velocity module with vorticity tensor component
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a) b)

c) d)

Fig. 4. Comparison of two approaches to the anisotropic error estimation applied for
viscous flows. Details of the grid near the leadning edge. (NACA-0012 in laminar flow:
M = 0.5, Re = 5000, α = 2◦)
a) Hessian of velocity module
b) Hessian of velocity module with velocity gradient component
c) Hessian of velocity module with strain tensor component
d) Hessian of velocity module with vorticity tensor component

α = 2◦) as a base input. In this comparison the estimators were set in such a
way that all new grids had approximately the same number of nodes.

Figure 3a presents grids around the airfoil for all the methods. It can be clearly
seen that the grid generated for pure Hessian based estimator is not satisfactory
for viscous simulations. This method underestimates the area dominated with
high shear (e.g., near the viscous wall), which should be refined in order to
properly simulate viscous flows. The remaining three methods (Fig. 3b,c and
d) are generating much better results. The differences between them can be
established by inspecting the enlargement of the area of the upper surface near
the stagnation point (Fig. 4).

Figure 4a demonstrates that Hessian approach fails to properly detect de-
manded spacing near the viscous wall. The gradient approach (see Fig. 4b) is
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a) b)

c) d)

Fig. 5. Comparison of two approaches to the anisotropic error estimation applied for
viscous flows. Details of the grid in the region between the slat and the main body
(L1T2 in turbulent flow: M = 0.197, Re = 3.52× 106, α = 20.18◦)
a) Hessian of velocity module
b) Hessian of velocity module with velocity gradient component
c) Hessian of velocity module with strain tensor component
d) Hessian of velocity module with vorticity tensor component

much better, nevertheless in the region of maximum friction force the grid is still
too coarse. Both methods based on velocity tensor perform much better. The
comparison between the methods based on the rate of strain and the vorticity
shows that the first one (see Fig. 4c) refines also the region near the stagnation
point while the second one (see Fig. 4d) detects only shear layers.

Another comparison was done for the turbulent flow around the multi-element
airfoil L1T2. The enlargement of the area between slat and the main body for
grids generated for different methods is shown in the Fig. 5. Comparing the
grids for the last two methods one can find that the method based on the rate of
strain tensor (Fig 5c) is over-refining the grid in this area. The approach based
on vorticity tensor (Fig 5d) once again detects only strong shear layers and the
final grid seems to be the best of the four.
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6 Numerical Results

The anisotropic adaptation technique presented in this paper was used in sim-
ulations of two testcases. The first one is a transonic turbulent flow past On-
era M6 and the second one is a subsonic turbulent flow past HLPW-1 trap
wing. The numerical solution in both cases was computed using an in-house
solver RED developed at the Warsaw University of Technology. The solver is
based on Residual Distribution Scheme of second order with Spalart-Allmaras
turbulence model. The grid generator used in the adaptation loop was also
developed at the Warsaw University of Technology (description of the high-
order version of this generator can be found in the present book in the chapter
"High-order 3D anisotropic hybrid mesh generation for high-Reynolds number
flows").

6.1 Onera M6 Wing in Turbulent Transonic Flow (U.2 Testcase)

The geometry of the U.2 testcase is relatively simple, nevertheless, the simula-
tions are quite demanding due to the transonic regime of the flow. For such con-
ditions two shock-waves appear on the upper surface of the wing. After merging
into a single discontinuity, the shockwave is strong enough to induce a separation
bubble in the boundary layer.

The challenges posed to the numerical simulations can be summarized in
following points:

– the shock-waves must be properly resolved by the simulation - the grid must
be sufficiently fine.

– the boundary layer must be properly resolved - if no wall functions are used
the boundary layer grid must be adequately thin.

– separated flow around the wing tip must be properly resolved.
– the solver must be able to compute oscillation free solution in the vicinity

of the shock-waves.

The first three points are difficult to meet by a typical simulation without adap-
tation, if the number of nodes in the grid is kept at a reasonable level.

Summary of the Testcase. The details of the geometry of the wing can be
found in [14]. The flow conditions are: M = 0.8395, Re = 11.72 · 106, α = 3.06◦.
Four adaptation steps were executed. The grids used in the simulation were fully
tetrahedral. The structural grid for the turbulent boundary layer was created
using prismatic elements, which at the end of the generation process were split
into tetrahedra. The thickness of the first layer of cells in the boundary layer
grid and the growth ratio were defined by the user.

Grids used in the adaptation loop and the corresponding lift and drag force
coefficients:
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Adaptation step N nodes N cells CD CL

Initial 11104 60669 0.047331 0.27576
1st 143974 823667 0.022973 0.28342
2nd 280108 1618638 0.018840 0.28071
3rd 801498 4651212 0.018250 0.28023
4th 2690992 15820448 0.017486 0.28194

Comments on the Results. First, some details of the grid generated for the
4th adaptation step are shown in the Figures 6 and 7. Figure 6 presents details
of the grid at the leading edge where the aspect ratio of cells is high. This is
also true for the surface cells which typically can pose a substantial problem for
grid generator to deal with. As can be seen the hybrid generator of WUT is able
to form a valid grid for such conditions. This picture can also demonstrate the
advantage of anisotropic approach for 3D grids. If the cells were isotropic (aspect
ratio of 1) then in order to discretize the flow features with the same resolution
the grid would have to have much more grid nodes. Figure 7 shows the adapted
grid at the tip of the wing. The trace of the shock-wave and the separation at
the trailing edge can be easily found on the adapted grid.

Figure 8 shows for the selected slices the Mach number distrbution and the
comparison of the cp distribution of the adapted solution with the results of the
simulation using WIND solver [14]. The experimental results are also shown as
the reference. The plots show two adapted solutions: the first one is after 2nd

adaptation (the grid has 280108 nodes) and the second one is the final result
(the grid has 2690992 nodes).

The reference results from the WIND solver were computed on a structured
grid which had 316932 nodes. The WIND solver is based on node-centered finite
volume method with decoupled Spalart-Allmaras turbulence equation [15]. The
grid used by WIND solver has thickness of the first layer of the cells equivalent
to y+ = 30, thus the wall functions were used. The solver of WUT (used in
the adaptive simulations) does not take advantage of wall functions so the first
layer of cells in the grid must be sufficiently thin in order to resolve the viscous
sublayer. This significantly increases the number of grid nodes that are needed
for simulation.

Comparing the adapted results of WUT after the 2nd step of adaptation with
the WIND simulation (the grid of WUT is smaller than the one used by WIND)
the advantage of adaptation becomes evident. Especially, this is the case for
section y/b = 0.80 where the WIND solution cannot resolve both shockwaves
while the adapted solution of WUT can. Similarly for remaining sections the
WUT solution is of much better quality even though it is still of lower quality
than the solution after the final adaptation step.

The results of the last adaptation show good agreement with experiment.
Especially the last section y/b = 0.99 which typically causes most problems
here, thanks to adaptation, was resolved reasonably well. Some discrepancies in
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the sections near the symmetry plane are caused by the fact that in experiment
a finite plate was used to separate wing from the wall. It was not present in the
simulated geometry.

Fig. 6. The hybrid grid used for simulation in 4th adaptation step - details near the
leading edge

Fig. 7. The hybrid grid used for simulation in 4th adaptation step - details near the
wing tip
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y/b=0.44 y/b=0.44

y/b=0.80 y/b=0.8

y/b=0.95 y/b=0.95

y/b=0.99 y/b=0.99

Fig. 8. Mach number field and corresponding cp distribution Onera M6 wing
— 2nd adaptation, — 4th adaptation, — 3rd WIND, � - experiment
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6.2 High Lift Prediction Workshop 1 Trap Wing (A.3 Testcase)

The HLPW-1 testcase geometry is a wing-body with extended slat and defected
flap which, in comparison with Onera M6 wing is much more complicated. The
flow conditions at the high angle of attack pose further challenge to the simula-
tion process. In addition, a relatively small Mach number (0.2) can have adverse
influence on the quality of the results obtained with a compressible solver. Some
improvements for the force coefficients (especially for α = 28◦) can be achieved
by using the far field correction.

Summary of the Testcase. The testcase is defined in HLPW-1 [16] as a Trap
Wing Config 1 (Slat 30, Flap 25) with the following flow conditions: M = 0.2,
Re = 4.3 · 106. Simulations were carried out for two angles of attack: α = 13◦

roughly in the middle of the polar curve and α = 28◦, close to the maximum lift
conditions.

Three adaptation steps were executed for both cases. The structural cells in
the grid for boundary layer were split into tetrahedra to have fully tetrahedral
mesh. Thickness of the first layer of the cells in the boundary layer grid and the
growth ratio were defined by the user.
Grids generated and used in the adaptation loop:

Adaptation α = 13◦ α = 28◦

step N nodes N cells N nodes N cells

Initial 416963 2423746 416963 2423746
1st 1605833 9339125 3396003 19989680
2nd 3412794 20003949 5116431 30132718
3rd 6891914 40590444 11415558 67406180

The lift and drag force coefficients computed for consecutive adaptation steps:

Adaptation α = 13◦ α = 28◦

step CD CL CD CL

Initial 0.344649 1.99758 0.663004 2.85703
1st 0.326860 1.99497 0.661541 2.85379
2nd 0.323620 2.00434 0.661609 2.86373
3rd (prior to SOB) 0.324047 2.00905 0.665644 2.88021
3rd (after SOB) 0.318835 1.97697 - -
Experiment 0.3330 2.0468 0.6776 2.8952

Comments on the Results. Presentation of the results of the simulation starts
with Figures 9, 10 which show details of the 3rd adapted grid for α = 13◦ in the
region of the wake as well as around the the tip vortex over the flap. Figures 11
and 12 show grids for case α = 28◦ in the region of the wake as well as around
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the the tip vortex. The overview of the structure of the flow for both angles of
attack can be seen in the Figures 13 and 14. Interesting details of the flow near
the tip can be found in Figures 15 and 16. As can be seen the tip vortices and
their interaction has been well captured and resolved for both angles of attack.

Figures 17 and 18 show the pattern of surface streamtraces and surface cf
distribution. For both angles the pattern including the separation on the flap
is in good agreement with the experimental results. The results of simulation
after three adaptation steps for α = 13◦ show the separation on upper surface
of the flap at the Side Of the Body (SOB) (Fig. 17). The SOB separation exists
in the experimental results however during simulation an adverse influence on
lift and drag coefficients was observed. In order to present this effect the values
in the table have been tagged as "prior to SOB" and "after SOB". Comparing
with experimental values, both the lift and the drag coefficients are much better
predicted prior to development of SOB separation.

Figure 19 presents velocity field for the slice at y/b = 0.28 obtained on adapted
grid after 3 steps for α = 28◦. It shows that the wakes behind the slat, the main
body and the flap have been correctly resolved.

Figure 20 shows the evolution of the cp distribution for sections y/b = 0.41
and y/b = 0.98 for both angles of attack. Especially, y/b = 0.98 shows that
progressing adaptation improves the quality of the results.

Finally, we have compared the adaptive results of WUT with the results pub-
lished in the HLPW-1 [16]. In order to pick most relevant results only solvers
with Spalart-Allmaras turbulence model has been chosen for comparison. Ad-
ditionally, only solution on finest grid submitted to the workshop (and for the
geometry without brackets holding the flap) were taken into account. The de-
tails of the HLPW–1 simulations used for comparison are summarized in the
following Table:

Entry Participant Code name DOF (x106) Notes

005.01 Cessna FUN3D 32
005.02 Cessna NSU3D 11 thin-layer-like
008.01 DLR TAU 31
012.02 JAXA UPACS 124
015 NASA USM3D 63
017.03 NASA CFL3D 161 thin-layer

The number of Degrees of Freedom (DOF) of almost all HLPW-1 computa-
tions exceeds substantially the adaptive simulations of WUT. Only the compu-
tation 005.02 is close to the finest grid of WUT used for α = 28◦.

The comparison of the cp distribution between HLPW-1 results and the
obtained by the present adaptive method has been shown for the section at
y/b = 0.98, as this section is closest to the wing tip. In this region good agree-
ment with experiment is most difficult to obtain. The plot of cp is shown in
Figure 21 and the results of current adapted simulation are tagged with the
name of the solver RED. As can be seen, despite existing differences between
the simulation and the experiment, the results are better than the obtained in
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HLPW-1. It is also good to note that this result was obtained on much smaller
grids (e.g., for α = 13◦ the finest grid from HLPW-1 has more around 20 times
more DOFs than the finest grid of the presented adapted results).

Fig. 9. The grid after 3rd adaptation for α = 13◦ - cut through the boundary layer
and the volume grid

Fig. 10. The grid after 3rd adaptation for α = 13◦ - details of the volume grid in the
area of the wing tip vortex
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Fig. 11. The grid after 3rd adaptation for α = 28◦ - the wake

Fig. 12. The grid after 3rd adaptation for α = 28◦ - details of the volume grid in the
area of the wing tip vortex
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Fig. 13. Total pressure loss after 3rd adaptation ( α = 13◦ )

Fig. 14. Total pressure loss after 3rd adaptation ( α = 28◦ )



Anisotropic Adaptation for High-Reynolds Number Flows 119

Fig. 15. Total pressure loss after 3rd adaptation (α = 13◦) - details of the wing tip
vortices

Fig. 16. Total pressure loss after 3rd adaptation (α = 28◦) - details of the wing tip
vortices
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Fig. 17. Streamtraces and surface friction after 3rd adaptation (α = 13◦)

Fig. 18. Streamtraces and surface friction after 3rd adaptation (α = 28◦)
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Fig. 19. The velocity field at y/b = 0.28 for α = 28◦ (3rd adaptation)

α = 13◦ y/b=0.41 α = 13◦ y/b=0.98

α = 28◦ y/b=0.41 α = 28◦ y/b=0.98

Fig. 20. cp distribution for two chosen sections for A.3 (evolution during the adaptation
process)
— initial, — 1st adaptation, — 2nd adaptation, — 3rd adaptation, � - experiment
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α = 13◦

α = 28◦

Fig. 21. Comparison of the cp distribution with HLPW-1 results at y/b = 0.98 (RED
tags the present adaptive simulations)

7 Conclusions and Future Work

The authors has successfully applied the anisotropic adaptation for simulations
of turbulent high Reynolds number flows. The results of the simulations show
clear advantage of the anisotropic adaptation – the results are comparable or
even better than obtained on grids with much larger number of DOFs (e.g., see
Section 6.2 for comparison with the HLPW–1 results). Different modifications
added to the anisotropic error estimator improved capability of detection of flow
features including viscous shear layers.
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There are still few areas that can be addressed in order to further improve
the adaptive simulation. They can be summarized in following points:

– The hybrid anisotropic grid generator developed by WUT is still insuffi-
ciently robust. The generated grid could be substantially improved by apply-
ing better post-optimization. This optimization must be aware of anisotropy
of the grid cells which makes the algorithm quite challenging.

– The adaptation based on full remeshing is very demanding with respect
to the grid generator. Furthermore, in most simulations it is not necessary
to modify the whole grid while it is important to concentrate on relatively
small areas which need more attention (especially during the last steps of the
adaptation process). It seems therefore that some version of local adaptation
might prove advantageous. By using the local operators, the grid could be
adapted in anisotropic manner to the currently computed estimation of the
required cell spacing. Then the cumbersome process of generation of the full
new grid could be avoided while the adaptation could also become integrated
into the solver.

– The error estimator should be improved especially by using goal-oriented
anisotropic error estimator. Current implementation of the estimator works
well when local flow features have to be extracted, however, when inte-
gral data (e.g., lift and drag forces) are needed, the results are not fully
satisfactory.
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Abstract. The article presents elastic analogy approach of deformation
curvilinear meshes applied in aeroelastic simulations. The details of al-
gorithm used in developed software with the new metrics designated for
high-order mesh quality assessment are presented. The article ends the
example of LANN wing deformed by featured tool. Presented software
allows conducting the aeroelastic simulation based on CFD discontinuous
Galerkin High Order solver.
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1 Introduction

Computational aeroelasticity examines the way a stream of fluid interacts with a
deformable body immersed in that fluid [1]. If separate solvers are used for elas-
ticity (CSM) and fluid flow (CFD), usually both domains are discretized with
different, non-conforming meshes, which leads to the need of coupling of these
codes. Coupling tools are responsible for the exchange of variables, like forces/-
pressures and displacements/velocities, between the fluid and the structure [1].

Deformation is the last and one of the most significant parts in aeroelastic
simulation. It relies on the movement of the nodes inside the domain, based
on the displacement of the nodes on the surface. The main objectives state
that quality of the deformed mesh is sufficient for CFD solver in the next step
of aeroelastic loop. Considering the high order elements with curvilinear edges
make the whole process much more complicated.

Within IDIHOM project the aeroelastic system developed in TAURUS project
has been adapted for higher order methods. The most crucial stage was the
replacement of the CFD solver from TAU Code to PADGE Code. This step
resulted in the following changes, especially in interpolation and deformation
tools. This article is focused on the second one.

2 Overview of Mesh Deformation Techniques

The deformation of the structure results in the need of the modification of CFD
mesh such a way, that nodes on the CFD surface must follow the deformed object
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being flown around. On the same time, the quality of the CFD mesh should be
preserved.

Themostwidelyusedmethods ofmeshdeformationarebasedon the spring anal-
ogy, where elements of CFD mesh (tetrahedra, pyramids, prisms and hexahedra)
or their edges are replaced with spring elements. Among these methods, torsional
spring analogy [2] [2], semi-torsional spring analogy [3] [5], ortho-semi-torsional
(OST) spring analogy [6] and ball-vertex spring analogy [7] might be mentioned.

Another possibilities of mesh deformation include the use of beam elements
[1] that combines benefits of spring and torsional orthotropic spring analogy,
Kriging [9], Inverse Distance Weighting [10] or surface spline interpolation [11].

3 Deformation of Curvilinear Meshes

The tests, carried out on high order meshes using existing deformation tool from
TAURUS AE System (based on spring analogy) [1], failed. The new, developed
in IDIHOM Project, deformation tool base on elastic analogy with non-uniform
material properties. In this method it is assumed that CFD domain is considered
as the elastic body with clearly defined material of each cell. The nodal displace-
ments on the “wet” boundary surface (structure-fluid interface) obtained from
structural analysis are applied as kinematic loads. Static analysis of that pre-
pared case returns the displacement of all nodes in the domain. The advantage
of this method is that every cell in the mesh is considered as single continuous
element, not as a set of separate edges as in case of spring analogy. The main
challenges of this method are the preparation of metrics for the grid quality
evaluation and an algorithm controlling material change in the grid.

The CFD grids for PADGE Code are based on Lagrange element types, while
most of the CSM Solvers use Serendipity elements. Not many CSM Solvers
support higher order elements as well. The proposed solution of this problem is
the division of the high order Lagrange elements into first order ones. Therefore,
to solve static structural analysis the PUT In-house parallel CSM Solver is used.
The method of the element’s division is shown in table 1:

Table 1. Division of second order volume elements

2nd order element Equivalent 1st order elements

TETRA 10 8 x TETRA 4
PYRA 14 16 x TETRA 4
PRISM 18 8 x PRISM 6
HEXA 27 8 x HEXA 8

The deformation tool has been developed as iterative process. Assuming that
the quality of every element is sufficient for CFD Solver before deformation, it
is possible to deform grid obtaining quality not worse than original one. For
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this purpose, the only elements that might be deformed are the ones for which
there will be no deterioration in the quality. Controlling the material properties
in elements, it is possible to prevent the element’s degeneration, by applying
sufficiently rigid material. Then, elements with more flexible material will carry
the entire deformation. The main idea is to adjust material stiffness in every
iteration in element according to its quality.

Every iteration consists of 3 stages:

– Preprocessing - preparation of the task for solver including application of
boundary conditions, loads and materials and division of elements into first
order ones

– Solution using static state analysis
– Postprocessing - deformation of the mesh and evaluation of its quality

The first iteration differs from the next ones, because there is initializing mate-
rial process within it. This process is crucial for number of iterations. Predicting
which elements are sensitive for decreasing quality after deformation is the most
important in material initialization process. This group includes in particular
the elements from boundary layer (prisms and hexahedra) that have high ratio
between the longest and the shortest edge and elements with high degeneration
ratio of skewness. Moreover the elements from a region near surface which has
the highest deflection have to be inspected. The simplest method is to assign the
same material for all elements. There are also available other methods depending
on the kind of the mesh. For hybrid grids, it is easy to define boundary layer
elements. The assessment of undeformed mesh provides information about other
parameters like skewness, aspect ratio, etc., which ensure better assignment of
materials. In structured grids the definition of the element’s position in the grid
is easier than in unstructured grids. The assessment of flat elements is more diffi-
cult because they mostly occur not only in boundary layer but propagate to the
end of domain. Considering more metrics cause better material initialization.

Next step is the solution of the prepared case. In spite of larger number of first
order elements resulting from the division of high order elements, the time of
solving is relatively short. This is due to the use of MPI library and parallelization
of whole process.

The last step is postprocessing. First, the grid is deformed and then evaluated.
To ensure proper quality of the mesh for CFD Solver, all elements should have
positive Jacobian.

J =

⎡

⎢⎢⎢⎣

∂x
∂ξ1

∂x
∂ξ2

∂x
∂ξ3

∂y
∂ξ1

∂y
∂ξ2

∂y
∂ξ3

∂z
∂ξ1

∂z
∂ξ2

∂z
∂ξ3

⎤

⎥⎥⎥⎦ (1)

The equation (1) allows the calculation of the Jacobian’s value in every node,
but it is not sufficient for unambiguous assurance of correctness. A necessary re-
quirement is that Jacobian’s value is positive in whole element, not only in nodes.
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The metrics based on Bezier functions, developed by Université Catholique de
Louvain (UCL) [5] [6], determine the minimum value of Jacobian in the element.

B = TJ (2)

where T is transformation matrix
This concept allowed to implement these metrics in the deformation tool.

Checking the grid by this metric shows is the next iteration required. The pre-
processor in next iterations modifies existing material assignment instead of the

Fig. 1. Deformation of unstructured LANN wing grid

Fig. 2. Deformation of structured DLR-F6 wing-body configuration grid
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(a)

(b)

(c)

(d)

Fig. 3. Deformation process of LANN wing in the a) 1st, b) 2nd, c) 3rd, d) 7th,
iteration. Visualization of the boundary layer.
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creation of new materials. The deformation process is repeated till obtaining
correct mesh according to metrics based on Bezier functions.

Material properties changing in preprocessor part are chosen from material
base. Tests of CSM Solver used in deformation process allowed for defining ma-
terial base. The use of fixed material set prevents the application of two different
materials with to high spreading of stiffness and resulting problems with solver
convergence.

4 Testcases

The deformation tool is used in the aeroelastic (AE) system developed within
IDIHOM project. It enables proper deformation of grids in the testcases (LANN
wing [3] and DLR-F6 [4]) studied by PUT.

Further tests showed problems in the grid deformation at higher deflections
of flow around body. Even applying the most and the less stiff material, some
elements were still degenerated. In most cases these elements appear on the de-
formed surface (1st boundary layer). To prevent that occurrence, these elements
are treated as non-deformable, with the ability of rigid movement and rotation.
The deformations of CFD grid in aeroelastic testcases proposed in IDIHOM Por-
ject are relatively small. They have amounted to 1-2% of the wing span. To test
capabilities of the deformation tool, artificial data as the results from CSM solver
was prepared. The maximum deflection had value equal 10% of wing span. The
LANN wing mesh was deformed correctly (fig. 3).

More details on the aeroelastic analyses including the deformation described
above might be found in chapters describing aeroelastc testcases.

5 Summary

The deformation tool for high order grids has been developed. It is a key enabler
of aeroelastic analyses based on high-order methods and meshes. The testcases
proposed in IDIHOM project, LANN wing and DLR-F6 wing-body configura-
tion, have been successfully analyzed. Aeroelastic simulation required deforma-
tion of high-order CFD meshes, which was successfully achieved. The tests with
artificial large deflection of the wing have shown promising direction in the defor-
mation process, possible to be applied in industrial cases. Further development
of algorithm could reduce the computational time of deformation process.
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Abstract. In the development of the next generation of numerical meth-
ods for CFD, Discontinuous Galerkin methods are promising a substan-
tial increase in efficiency and accuracy. While the particular high order
methods can be very distinct, they have in common that they must rely
on a high-order approximation of curved geometries to maintain their
high-order of accuracy. The generation of curved meshes is thus a topic
whose importance cannot be overstated, if one truly wants to apply DG
methods to problems with industrial relevance. Especially aerospace ap-
plications heavily rely on complex geometries and pose high requirements
to the quality of geometry representation. In this work we present several
techniques to produce high order meshes, relying on linear meshes, which
can be generated by standard commercial mesh generation tools. We de-
scribe the generation of the curved surface meshes and curved volume
meshes, which can be particularly difficult for curved boundary layers.

Keywords: mesh generation, curvilinear meshes, inner-cell stretching,
grid deformation, elastic analogy, interpolation, normal vectors, unstruc-
tured grids.

1 Introduction

In industrial and especially aerospace applications, geometries are three-dimen-
sional and typically comprise curved surfaces, curved borders and sharp edges.
Here meshing itself becomes an issue and therefore, unstructured grids are needed.
Most of the unstructured grid generators provide high quality grids consisting
of hexahedra, prisms, tetrahedra and pyramids, whereas the element edges are
in general straight lines, at most having an additional mid-point (quadratic ele-
ments).

When using high order methods, wall boundary conditions need a high order
representation of the wall normal. Bassi and Rebay [2] showed, that in the case
of curved boundaries a high order DG discretization with straight-sided 2D ele-
ments yields low order accurate and even physically wrong results. To overcome
this issue, they propose to use at least elements with parabolic shaped sides on
the boundary.

Approaches for high order grids should use CAD definitions to guarantee a cor-
rect approximation of the geometry. As high order mesh generation is still a topic
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of ongoing research [11,12], CAD handling and modification as well as meshing of
complex geometries with unstructured hybrid meshes have not reached the level
of commercial grid generators. Therefore, our approach fully relies on commercial
grid generators because of their ability to work on CAD definitions and produce
high quality linear meshes, and use additional informations for the element curv-
ing.

Finding the curved element mapping is the key problem of the high order
grid generation. In this work, we present several strategies to produce high order
meshes, which are all implemented in a standalone preprocessing tool called the
preproctool. It fills the gap between the linear grid generation and the simulation
with the DG solver.

The paper is organized as follows: We introduce the high order element map-
ping in the section 2, followed by an an overview of the preproctool workflow in
section 3. The first step to construct curved meshes consists of the curving of
boundary faces of elements at curved surfaces, which is adressed in section 4.
In the case of a boundary layer mesh, for example, only curving the boundary
faces lead to invalid meshes. To overcome this problem, a mesh deformation
strategy is presented in section 5.1 to propagate the boundary curvature into
the mesh volume. Thereof independent is the strategy where block-structured
volume meshes are directly transformed to fully curved hexahedral meshes, de-
scribed in section 5.2.

2 Element Mapping

To be able to formulate the discontinuous Galerkin scheme on arbitrary elements,
we have to describe the element geometry. The geometry of linear or curved
elements is expressed by the mapping of an element between physical space X
and reference space ξ by

X(ξ) , (1)

with

X = (X1, X2, X3)
T = (X,Y, Z)T , ξ = (ξ1, ξ2, ξ3)T = (ξ, η, ζ)T . (2)

In practice, we represent the mapping by an interpolation polynomial

X(ξ) =

nIP∑

l=1

x̂lψl(ξ) , (3)

using a set of nIP interpolation nodes, with physical coordinates {x̂l}nIP
l=1 and

corresponding reference coordinates {ξ̂k}nIP
k=1, and the Lagrange basis functions

ψl(ξ) of polynomial degree Ng, having the cardinality property

ψl(ξ̂k) = δkl . (4)

The choice of the reference node positions is free, however, it is common
to include the boundaries of the element and to use an equidistant spacing.
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X(ξ)

⇒

Fig. 1. Mapping of a hexahedral element from physical to reference space

This choices guarantee that the basic linear mapping (Ng = 1), using only the
elements corner nodes, is included and also ensures that the transformation
remains linear if physical nodes are equidistant. In addition, these node positions
are very easy to implement for all element types.

As an example, the quadratic mapping (Ng = 2) of a curved hexahedra is
shown in Figure 1. The element has nIP = (Ng+1)3 interpolation nodes and the
reference domain is ξ ∈ [−1, 1]3. The reference node positions are equidistant

ξ̂ijk = (ξ̂i, ξ̂j , ξ̂k)
T ξ̂i = 2

(
i

Ng

)
− 1, i, j, k = 0, . . . , Ng , (5)

and the hexahedral element mapping reads as

X(ξ)(Hex) =

Ng∑

ijk=0

x̂ijk�i(ξ)�j(η)�k(ζ) , (6)

with a tensor-product polynomial basis consisting of 1D Lagrange basis functions
�i(ξ).

3 Overview

In Figure 2 a flowchart of the curved mesh generation process is shown. The
starting point is the linear unstructured mesh, created by the grid generator
of choice. The CGNS standard mesh format is commonly used as input. The
point-normals strategy uses normal vectors at the surface grid points of a given
linear mesh. Either they are found by analytical functions, specified by the user,
or for complex geometries directly from the CAD model via a CAD interface,
providing a list of surface grid points and their associated normal vectors, see
section 4.2 for details.

In this work, the commercial grid generators ANSAc©and ICEMc©were used to
generate linear unstructured meshes. The software generates meshes using the
original CAD geometry, and also provides CAD modifications, which are often
necessary to clean up the geometry. The ANSAc©mesh generator has a built-in
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Fig. 2. Flowchart of the curved mesh generation process

feature (called split) to subdivide surface meshes, and ICEMc©is able to extract
Chebychev-Lobatto interpolation points along the element edges (called spectral
elements). The points are again distributed along the original CAD surface,
which makes it possible to use these points to construct high order boundary
faces by simple interpolation, see section 4.4.

The ANSAc©subdivision directly produces curved boundary faces, whereas the
other two strategies only produce curved element edges, which are then blended
to a curved boundary face. The same blending is used for the inner faces sharing
edges with the curved boundary face, and finally the volume is again a blending
of its faces. The blending techniques are detailed in section 4.3.

The surface curving only provides curved elements in the first layer at the
boundary, and may lead to invalid element mappings, for example for boundary
layer meshes. In this case, the mesh deformation strategy, first introduced in [17],
is applied. Here, the mesh is modeled as a deformable solid, and the curved
boundary is imposed as displacement from the linear mesh. A high order Finite
Element Method solves for the deformed mesh, leading to a propagation of the
curvature into the mesh volume. More details are found in section 5.1. Finally,
a completely separated strategy is a simple agglomeration of block-structured
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grids, directly leading to fully curved hexahedra, where intermediate structured
points are used for interpolation of the element mapping, see section 5.2.

We introduce the surface mapping for the curved boundary faces

XS(ξ1, ξ2) =

ns
IP∑

j=1

x̂jψj(ξ1, ξ2) , (7)

being a polynomial representation of the curved triangle or quadrangle. Here,
(ξ1, ξ2) are the parameter directions, x̂j are the coordinates of the interpolation
points on the curved surface and ψj(ξ1, ξ2) are the corresponding Lagrange basis
functions. The definition of multivariate Lagrange basis functions are found for
the general case by using multi-variate modal basis functions, which are given
for all element types in the book of Karniadakis and Sherwin [15].

2

1

xy
z

x j

Fig. 3. Mapping from parameter space (ξ1, ξ2) to physical space using (7)

The number of interpolation points for triangles is ns
IP = 1

2 (Ng + 1)(Ng + 2)
and for quadrangles ns

IP = (Ng + 1)2, where Ng is the polynomial degree of the
mapping. In Figure 3 we show the mapping for a triangle and Ng = 3. We choose
a regular spaced node distribution in reference space to represent the polynomial
of the mapping. Regular spaced interpolation points in physical space are then
directly mapped. When using other point distributions or basis functions, like
a Bezier basis, polynomial coefficients are easily found by applying a Vander-
monde matrix. We want to point out that this is only a question of polynomial
representation and does not change the polynomial itself. The approximation
error will only depend on the type of surface data.

4 Generation of the Surface Meshes

4.1 Continuity-Based Approach

The basic idea when reconstructing a curve by a set of points with spline inter-
polation is to enforce continuity at the point positions. The most popular is the
cubic spline interpolation [9]. The curve is found by solving a tridiagonal linear
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equation system with a size of the number of interpolation points. In two dimen-
sions, it is a simple and robust technique to reconstruct the boundary curves.
The only way to extend this technique to three-dimensional boundary surfaces is
to use structured point distributions, which can be broken down into line-by-line
interpolations. However, for unstructured meshes, the number of interpolation
points increases significantly and in particular, a unique parametrization over
element edges is not possible. Thus a completely local approach is attractive,
using only the normal vectors at the element corner nodes. The surface elements
are then G1 continuous at the corner nodes. It is a so-called point-normal ap-
proach proposed in [9]. In Stiller [19], rational Bezier curves from point-normals
are constructed, being able to represent spheres, cylinders and cones exactly. In
contrast, we restrict ourselves to non-rational cubic polynomials.

Clearly, the most difficult part is to provide the normal vector. In the pre-
proctool, analytical expressions for simple geometric shapes are included, and it
is easy to add other user-defined functions. We also need to consider sharp edges
at the intersections of surfaces, where two point-normals are defined. To find
these edges, the user marks each curved boundary patch with a unique index,
as an additional information to the boundary conditions.

The point-normal assignment for complex geometries is realized via a CAD
interface, see section 4.2 for the details.

A cubic polynomial curve is defined by its end points (p1,p2) and two tan-
gential vectors (t1, t2), and reads in Bezier form as

Xb(t) =

3∑

i=0

biB
3
i (t) , BN

i (t) =

(
N

i

)
(1− t)N−iti , t ∈ [0; 1]

b0 = p1 , b1 = (p1 +
1

3
t1) , b2 = (p2 −

1

3
t2) , b3 = p2 .

(8)

The Lagrange interpolation points with regular point spacing along the curve
are simply found by interpolation of the Bezier curve.

p1

p2

n1

t 1

e

(a) 1 point-normal

p1

p2

n1

t 1

e
n2

(b) 2 points-normals

Fig. 4. Construction of tangential vectors (a) by projection and (a) by cross product

Assuming the point-normals are provided, the tangential vectors have to be
constructed. As shown in see Figure 4, the point-normal defines a tangential
plane, and the tangential vector is found by projection of the straight edge e
connecting the two edge points. If two point-normals are given, the direction of
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the tangential is found by a cross-product and its length again by projection
onto the straight edge.

e = p2 − p1 , t1 = e− (n · e)n , for 1 normal, (9)
t1 = ((n1 × n2) · e) (n1 × n2) , for 2 normals. (10)

As depicted in Figure 5, the tangential vectors are constructed for all element
edges and the interpolation points from the Bezier curve.

p2n1

t 1

p1

p2
n2

t 2

p1

p

Fig. 5. Sequence of constructing curved element edges from surface normals

4.2 CAD Interface

For a complex three-dimensional geometry, we want to use the CAD definitions
to find the exact normal vector at the grid points of the linear surface mesh. The
CAD interface was developed by Thomas Bolemann in his diploma thesis [5]
and is written in Visual Basic 8 and uses the Microsoft .Net 2.0 framework. It
is connected to CATIA via a scripting interface (CAA-API), thus commands to
load a model, do geometric operations and extract CAD definitions are made
directly accessible for the CAD tool.

The work-flow to assign the point-normals obtained form the CAD model is
shown in Figure 6. The CAD geometry is typically provided by a STEP file

Fig. 6. Flowchart of the CAD tool to assign normal vectors from CAD
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(’.stp’), a widely used standard exchange format. In general, grid generators are
able to import the STEP file and provide a mesh with straight-edged elements
and boundary conditions (BCs).

In a preliminary step, the CAD tool reads the 3D grid, and extracts all grid
points lying on boundaries, and even more important the connectivity of the
surface grid. Then the STEP file is loaded and the topology is analyzed, and
for each CAD surface, a bounding box is created. For each CAD surface, the
distance between the grid points and the CAD surface and its edges is measured
to decide whether or not the grid point lies on the surface or edge. To minimize
the computational effort, only grid points inside the bounding box are considered.
If the grid point lies on the surface (case I in Figure 6), one normal vector is
evaluated at the grid point. Multiple normals are found for CAD edges (case II)
or corners (case (III). A unique faceID is attached to every CAD surface, and each
normal vector carries the faceID as a tag. The connectivity of the surface grid
is important, because it helps to define local tolerances for the decision, wether
the point lies on a surface, edge or corner, but also helps to find compound CAD
faces, which were merged during mesh generation.

Finally, the output is a point-normal list, which includes the grid point index,
the position, the number of normals at this point and the faceID for each normal.
The data structure of the preproctoolmatches this format, where a flexible list
of normal vectors can be allocated for each grid point. The faceIDs are very
important, since they facilitate curved edge construction, especially at sharp
edges and corners.

4.3 Volume Mapping from Blending Curved Edges

The volume mapping is defined, following Figure 7, by including the surface
mapping of all element sides, and the surface mapping in turn is defined by
curved element edges.

Fig. 7. Construction of mappings: from curved element edges to surface and volume
mappings

1. All element edges lying on the curved boundary are uniquely defined by a
polynomial curve. The uniqueness of the edges guarantees C0 continuity of
the high order grid. The polynomial curve is represented by equally spaced
interpolation points and Lagrange basis functions. The inner edges remain
straight lines.

2. Triangle and quadrangle mappings are also defined by Lagrange polynomials.
The interpolation points on the edge remain the same, and inner points can
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be expressed in terms of the edge points using blending functions. This is
done for all element sides having at least one curved edge.

3. The volume mapping is a blending of all element sides. It is again a polyno-
mial, resulting in the full volume mapping X(ξ). The blending functions for
the standard volume elements can be constructured analogously by combi-
nations of curved faces, edges and the corner nodes.

For element sides having at least one curved edge, we use a blending function to
derive the curved element side. Blending three or four bounding curves yields to
the so called Coons patches [9,10]. The blending technique is shown in Figure 8.

X a X b X t
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Fig. 8. Blending of curved element edges to a curved element side

We define the curves C(u, v), representing the boundary curves of the ele-
ment, evaluated at the parameter value u, v ∈ [0; 1]. The triangular Coons patch
according to [9] is defined as

X(u, v) =
1

2
(Xa +Xb +Xc −Xt) , with

Xa =
u

u+ v
C(u + v, 0) +

v

u+ v
C(0, u+ v) ,

Xb =
1− u− v

1− v
C(0, v) +

u

1− v
C(1 − v, v) ,

Xc =
1− u− v

1− u
C(u, 0) +

v

1− u
C(u, 1− u) ,

Xt = (1− u− v)C(0, 0) + uC(1, 0) + vC(0, 1) ,

(11)

and the quadrangular Coons patch is a simple bilinear blending with

X(u, v) = Xa +Xb −Xt , with
Xa = (1− v)C(u, 0) + vC(u, 1) ,

Xb = (1− u)C(0, v) + uC(1, v) ,

Xt = (1− u)(1− v)C(0, 0) + u(1− v)C(1, 0)

+ (1− u)vC(0, 1) + uvC(1, 1) .

(12)
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Finally, to describe the surface with the polynomial (7), the unknown inner
interpolation points are found by evaluating the Coons surface X(u, v) at the
corresponding position in parameter space. Note that the formula of the trian-
gular coons patch can be evaluated at inner surface points only.

Elements are curved only when elements they are linked – e.g. sharing at
least one edge – with the curved wall boundary (’local curving’). If the elements
are highly stretched or skewed, additional curving of inner elements would be
required (’global curving’) to avoid negative or very small Jacobians, which will
be adressed in section 5.1. We found that using near-wall tetrahedra or pyramids
generally leads to much smaller Jacobians than using prismatic extrusions of the
surface grid, i.e. prisms and hexahedra.

4.4 Interpolation Approach

Assuming that we have access to a grid generator to create a mesh of a given
CAD model, the mesh and the CAD are internally connected to each other.
Once the mesh is exported, this information is typically lost and we are left
with a mesh with linear edges. The idea is now to extract additional informa-
tion using features of the grid generators to generate a refined surface grid and
use the additional grid points for interpolation. In [1], a high order hexahedral
grid with Chebychev-Lobatto (CL) point distribution is generated for a spectral
element method using ICEMc©. They started from a linear base mesh generated
in ICEMc©and were able to project CL point distributions of edges and surfaces
onto the CAD faces via projection libraries of the ICEMc©hexa module. Even
though the projection libraries are not accessible anymore, a so-called spectral
elements function is available to the curved boundary faces. One can export a
file containing CL points for each edge of the surface mesh. The number of points
can be chosen arbitrarily, two examples are shown in Figure 9. The file format
provides the edges’ end point node IDs and the additional point coordinates. We
can therefore associate the linear mesh edges with the curved edges, but, like for
the normal vector strategy, we need to blend the curved edges to find the curved
element faces, see section 4.3.

Another feature is surface mesh refinement. It is naturally supported by the
grid generator ANSAc©. In each splitting step, surface elements are isotropically
refined by a factor of two, and the new grid points are reprojected to the geom-
etry, keeping the original aspect ratio of the surface element. In Figure 10, the
original surface mesh and the refined mesh after two splitting steps are shown.
Triangles and quadrangles are treated equally. Note that original mesh points
remain unchanged. This property is important, since the preproctool applies a
point matching routine between the boundary faces of the original mesh and the
refined surface mesh.

Given the polynomial degree of the surface mapping (Ng = 2, 4, 8) corre-
sponding to the number of refinement steps, an algorithm finds the connection
between each boundary face and its refined surface elements by making use of
the connectivity information of the refined surface mesh. We want to point out
that any other grid generator which supports this type of isotropic surface mesh



Mesh Curving Techniques 143

Fig. 9. Additional CL points on curved edges for a very coarse mesh of a cylinder and
a sphere surface, generated with ICEMc©

Fig. 10. Surface mesh of the DLR-F6 body-wing intersection, after two steps of
isotropic refinement

refinement can be used for this strategy. For example, we note that the software
CUBIT [4] also provides this feature.

5 Generation of Curved Volume Meshes

5.1 Mesh Deformation

Boundary layer meshes typically have very high aspect ratios near the wall, and
if the wall is curved, a curved mesh generation based on linear meshes and sur-
face curving may lead to inverted elements, see Figure 11. A curved boundary
layer mesh is easy to construct with the agglomeration approach from section 5.2
and should always be considered if a structured mesh is available. Fairly complex
geometries are meshed nowadays with block-structured meshes, however struc-
tured meshing remains a time-consuming task, and geometric restrictions often
produce a large amount of additional elements. As the unstructured meshes avail-
able have only straight element edges, the surface curving must be propagated
into the domain.
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Fig. 11. The curved surface intersects the inner edges of a linear boundary layer mesh,
and inner elements must be curved for a valid mesh

Provided that near-wall elements are simple prismatic extrusions of the sur-
face mesh (prisms or hexahedra), a given stack of elements can be found from
the mesh connectivity information and curved via a transfinite interpolation be-
tween the lower and upper surface. However, complex meshes may involve non-
prismatic near-wall elements, thus a more general approach is needed. The mesh
deformation issue is not new, it is found in applications involving fluid-structure
interaction, where volumetric fluid meshes have to adapt to a deformation of the
boundary surface to guarantee a valid mesh. For linear unstructured meshes, dif-
ferent approaches are found in literature. For example radial basis functions [7]
or continuous approaches exploiting the internal mesh connectivity, from sim-
ple spring models [8] to Laplacian or biharmonic operators [3, 13] or solid body
elasticity. The latter considers the mesh as a deformable solid and therefore pre-
vents the elements to invert by construction. It was first applied successfully for
curving of high order meshes by Persson and Peraire [17], who formulate a high
order FE scheme with a non-linear material law to solve for the inner element
deformations. We will adopt the same strategy and describe the details in the
following.

We start with a second order system of equations

∇
X
·P (∇

X
u) = 0 , (13)

with the solution vector of the displacement u = (u1, u2, u3) and the second order
tensor P = (P1, P2, P3)

T with the components of each vector Pi = (pi1, pi2, pi3).
We also introduce the undeformed mesh position X, the displacement u and the
deformed mesh position x

x = X + u . (14)

Typically, the undeformed mesh position is the initial mesh with linear edges. We
assume that we already applied the surface curving. Hence, we choose Dirichlet
boundary conditions to impose the displacement as the difference between the
linear and the curved surface

u|∂Ω = xcurved|∂Ω −X|∂Ω . (15)
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Other non-curved boundaries are clamped by setting u|∂Ω = 0. The choice of the
second order tensor P will result in different models for the mesh deformation.
Equation (13) yields the Laplace equation when choosing

pij =
∂uj
∂Xi

, ⇒ Δ
X
U = 0. (16)

It is the simplest model and the equation is linear.
In non-linear continuum mechanics, the tensor P refers to the first Piola-

Kirchhoff stress tensor. The book by Bonet and Wood [6] describes several non-
linear material laws, one of them is the compressible neo-Hookean material,
which was used in [17] for the mesh deformation. The tensor writes as

P = (μ(F− F−T ) + λJFF
−T ) , (17)

where F denotes the deformation tensor

Fij =
∂xj
∂Xi

= δij +
∂uj
∂Xi

, (18)

and JF = det(F) is the determinant, μ is the shear modulus and λ Lamés first
parameter. They are related to Youngs modulus E and the Poisson ratio 0. <
ν < 0.5 by

μ = E
ν

(1 + ν)(1 − 2ν)
, λ = E

1

2(1 + ν)
. (19)

In fact, the only parameter changing the way the boundary deformation is prop-
agated is the Poisson ratio, since the Youngs modulus is simply a constant factor.
Persson and Peraire [17] choose ν = 0.4.

We solve the deformation equations using a high order Continuous Galerkin
spectral element method (CG-SEM), see Kopriva [16] for details. The non-linear
equation system can be solved via Newtons method, and in each Newton step,
we solve the linear equation system with a diagonal preconditioned conjugate
gradient method. The Laplace equation is linear and therefore the linear system
can be solved directly without Newtons method. In case of a non-linear material,
the deformation at the boundary cannot be applied at once but in load incre-
ments, so that elements remain valid after the initial boundary deformation. We
also recommend a transfinite interpolation of the initial deformation into the
first element layer to improve the convergence.

To show the applicability of the proposed method, we apply the mesh de-
formation to a sequence of boundary layer meshes of the NACA0012 airfoil, a
coarse mesh with ne = 4 elements along the chord and two refined levels by
doubling the number of elements in each direction (ne = 8, 16 elements). The
total number of elements is ne,total = 288, 1152, 4608, but we will refer to the
meshes with the number of elements along the chord. The initial linear deformed
meshes are depicted in Figure 12. The zoom into the boundary layer shows that
the curved surfaces lies within 2-3 boundary layer elements for all mesh levels.
The polynomial degree of the curved surface is Ng = 4 and it is convenient to
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Fig. 12. Curved boundary layer meshes after deformation with Laplace equation and
free corners. Initial linear mesh in red

choose the same polynomial degree for the solution of the mesh deformation.
The Dirichlet boundary condition for the displacement is applied discretely at
each interpolation node, as the vector between the linear and the curved nodes,
see Eq. (15).

In Figure 12 , we applied the Laplace equation to deform the mesh, which is
very fast, since we only need to solve the linear system once. The deformation
is perfectly propagated into the mesh volume. Note that the deformation also
pushes the element corners away from the boundary. This is typically not desired,
since the resolution at the boundary should be given by the linear mesh. In our
solver, we can easily clamp the element corners. There are two advantages, first
the solver converges much faster, and the deformation propagates further into
the domain yielding a better distribution of the curvature, see Figure 13.

In Figure 14, we show the effect of the material model. The non-linear neo-
Hookean material (17) shows a different propagation of the deformation. We

Fig. 13. Curved boundary layer meshes after deformation with Laplace equation and
clamped corners. Linear mesh shown in red.
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Fig. 14. Comparison of the material for the mesh deformation with clamped corners.
The Laplace equation (black lines) and the neo-Hookean material law with three values
of ν = 0.3, 0.4, 0.45 (red lines).

can increase the depth of the deformation propagation by increasing the Poisson
ratio ν → 0.5, and we recover the results of the Laplace equation for ν → 0.

A useful measure for quality and validity of a curved mesh is the normalized
or scaled Jacobian, and depends on the variation of the Jacobian J(ξ) inside an
element Q

Js =
minξ∈Q J(ξ)

maxξ∈Q |J(ξ)|
. (20)

For linear element mappings the Jacobian is constant the scaled Jacobian equals
1. The scaled Jacobians range from −1 to 1, but only elements with Jscaled > 0
are valid, quality increases with Jscaled → 1. Note that the criterion applies to the

Js

#e
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m
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

100

101

102

linear mesh +BC
final curved mesh

Fig. 15. Distribution of the scaled Jacobian, before and after the mesh deformation
with clamped corners, using the Laplace equation
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initial linear mesh, too, since Jacobians vary inside quadrangular or hexahedral
elements with non-parallel edges.

We plot distribution of the number of elements belonging to a range of the
scaled Jacobians (20) in Figure 15 for the coarse mesh ne = 4 and clamped
corners. There are 8 elements adjacent to the curved boundary, which are left
inverted by the initial transfinite interpolation of the boundary deformation. The
application of the mesh deformation pushes the elements back and yields positive
Jacobians of the whole mesh. For all meshes and all models, the mesh deforma-
tion produced positive Jacobians. We summarized the results for the coarse mesh
in Table 1 and look at the difference between the scaled Jacobian distribution of
the final curved and the initial linear mesh. The linear elements at the boundary
all have Js > 0.7. After the application of the boundary deformation, negative
Jacobians are found. The final deformed mesh pushes them back into the range
0.2 < Js < 0.9. The quality of the mesh increases for the neo-Hookean material
law compared to the Laplace equation. Also a higher Poisson ratio has an overall
positive effect and the mesh quality is higher if the element corners are clamped.

Table 1. Difference of the scaled Jacobian distributions between the final curved and
the initial linear mesh, for the coarsest mesh ne = 4 and different deformation models

Js > -1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Js ≤ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

linear mesh 0 0 2 0 0 38 30 22 22 28 146
only boundary +8 0 0 0 0 0 0 0 -2 0 -6
free corners
Laplace 0 0 0 +2 0 +2 0 +2 0 +6 -12
neo-H., ν = 0.3 0 0 0 0 +2 +2 0 0 0 +8 -12
neo-H., ν = 0.4 0 0 0 0 +2 0 +2 -2 +2 +6 -10
neo-H., ν = 0.45 0 0 0 0 0 +2 +2 -2 -1 +5 -6
clamped corners
Laplace 0 0 0 0 +2 +2 0 -2 +2 +4 -8
neo-H., ν = 0.3 0 0 0 0 +2 +2 0 -2 0 +4 -6
neo-H., ν = 0.4 0 0 0 0 0 +2 +2 -2 -2 +6 -6
neo-H., ν = 0.45 0 0 0 0 0 0 +4 -2 -2 +6 -6

In Table 2, the total number of iterations to solve the linear system with the
diagonal preconditioned conjugate gradient method is listed for the linear and
the non-linear material. In the non-linear case, we need to apply the deformation
in load increments and apply Newtons method. We choose 40 load increments
for all cases and the Newton solver converges within 3 steps. Hence, the cost for
the non-linear material compared to the Laplace equation is highly increased. In
addition, the Poisson ratio influences the stiffness of the equation system, and
the number of iterations increases for ν → 0.5. The clamping of the corner nodes
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always reduces the number of iterations, and the number of iterations decreases
slightly for the finer meshes, since deformations are smaller. The computational
cost for each iteration however scales with the number of elements. The CPU
time ranges between 1 − 8 seconds for the linear and between 5 − 65 seconds
for the non-linear material. To reduce the cost for a full 3D configuration, only
a certain amount of neighbors of the elements at the curved surfaces could be
chosen for the computations, leaving the outer elements undeformed.

Table 2. Total number of iterations of the conjugate gradient solver, ||R|| < 1.0E−04.
Non-linear system solved with 40 load increments and ≤ 3 Newton steps per increment.

ne = 4 ne = 8 ne = 16

corners: free clamped free clamped free clamped

Laplace 221 51 191 81 104 57
neo-H., ν = 0.3 5015 2374 5287 3389 2740 1995
neo-H., ν = 0.4 6468 2910 6737 4023 3304 2304
neo-H., ν = 0.45 8583 3776 8501 5139 4276 2735

As long as the equation represents a material law, negative Jacobians are
avoided by construction if the solution converges, and if the solver fails, the mesh
remains invalid. In addition, positivity is not a quality measure, and small scaled
Jacobians can lead to inferior solution approximation and smaller time steps. To
remedy this issue, the GMSH research group of J.F. Remacle recently published
in [18] a very promising multiple objective optimization strategy, where the pos-
itivity of the Jacobian and the timestep restriction are expressed as functionals
of the curved node positions.

5.2 Agglomeration

A simple idea to produce fully curved elements is super-sampling. Like the sur-
face refinement strategy for the surface curving, one could start from a refined
volume mesh and agglomerate the elements to get the coarse DG mesh. However,
the refinement process encounters the same problems as the curved mesh gener-
ation, since the meshes have to be adapted to curved geometry and inner volume
points need to be adjusted. For a general unstructured volume mesh, it is a cum-
bersome task. In contrast, it is very easy when working with block-structured
meshes, the number of points can be simply increased.

Assuming a 3D structured block of size (I, J,K) = ([1;E1], [1;E2], [1;E3])
elements, we refine the mesh by the factor Ng. The curved hexahedral mapping
of an element I, J,K, already introduced in Eq. (6) is found by interpolation

X(ξ)IJK(Hex) =

Ng∑

ijk=0

x̂IJK
ijk �i(ξ)�j(η)�k(ζ) , (21)
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where a regular point distribution in reference space is chosen (see Eq. (5)),
to guarantee that the mapping remains linear, if the physical node position is
regular, too. Given the grid points of the block, the mapping to the interpolation
points is simply

x̂IJK
ijk �→ xblock

mno ,

m = (I − 1)Ng + i , m = 0, . . . , E1Ng

n = (J − 1)Ng + i , n = 0, . . . , E2Ng

o = (K − 1)Ng + i , o = 0, . . . , E3Ng

. (22)

As an example, we show the curved mesh of the IDIHOM periodic hill test case
in Figure 16, generated with agglomeration with a polynomial degree of Ng = 4,
the initial structured mesh is shown in grey.

Fig. 16. Curved mesh of the periodic hill from an agglomerated structured grid (Ng =
4), 3D view (left) and front view (right) with initial grid lines shown in gray

Note if the mesh refinement is not possible, the structured point data still
is a valuable information. From the points of each line of a structured block,
we can compute a cubic spline interpolation curve to construct additional in-
terpolation points. Sequentially applied in each structured direction to all lines,
a fully curved mesh is generated. Two additional points inside each segment
are sufficient to exactly represent the cubic spline segment, which would yield a
polynomial degree of Ng = 3 for the element mapping.

In structured volume meshing, all blocks are connected, and therefore refine-
ment or coarsening of the mesh is mainly done by stretching the mesh. Also the
grid for a boundary layer is typically stretched. If we want to apply the agglom-
eration approach on a stretched grid, we have to be careful of the strength of the
stretching, since element mapping may deteriorate by the interpolation. In [14],
we conducted a simple accuracy analysis of the interpolation of a one-dimensional
stretched grid with a stretching of a constant growth rate f = Δxi+1/Δxi be-
tween adjacent elements. A very large growth rate would deteriorate the Jacobian
of the interpolated mapping. We found that for polynomial degrees of N = 2−11,
the maximum growth rate fmax of the fine grid should not exceed 2 for poly-
nomial degrees ranging between Ng = 3 − 11. In Table 3 the maximum growth
rates are listed for different approximation qualities of the stretched mapping.
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Table 3. Maximum growth rate fmax of the fine grid for increasing mapping quality
of the scaled Jacobian Js, normalized by Jexact

s = f−Ng

Js

Jexact
s

Ng = 2 3 4 5 6 7 8 9 10 11

< 0 3.00 4.79 2.62 3.36 2.46 2.92 2.37 2.70 2.31 2.57
±10% 1.75 1.71 1.91 1.93 1.99 2.00 2.02 2.03 2.04 2.04
±1% 1.31 1.30 1.53 1.57 1.67 1.71 1.76 1.79 1.82 1.84

6 Conclusions

In this work, we present the framework which was developed to generate high
order meshes. Due to the complexity of the mesh generation process, we rely
on existing commercial grid generators which basically produce volume meshes
with straight-edged elements. We developed a preprocessing tool filling the gap
between the linear mesh and the high order simulation. We described differ-
ent strategies to create additional information for the surface curving. The first
strategy is to construct exact normal vectors at the surface grid points using
the CAD model. In particular, sharp edges at the borders of CAD surfaces are
automatically detected by our CAD interface. Here, the initial volume grid can
be generated by nearly every mesh generator. The second strategy is an inter-
polation approach, which are however tailored to specific grid generators, using
ANSAc©for subdivision of the surface mesh or ICEMc©for high order edge data. In
some situations, like boundary layer meshes, the curving of element faces would
result in inverted element mappings, and the surface curving must be propa-
gated into the mesh domain to remove the problem. We confirm the findings
of Persson and Peraire [17] that the inverted elements can be eliminated by a
mesh deformation approach based on a high order solution of elliptic equations,
where the linear mesh is deformed by the curved boundary. The comparison
of the Laplace equation and the equation of non-linear solid mechanics reveals
that both models produce valid curved meshes. The mesh quality increases for
the non-linear material law, especially for high Poisson ratios, but also involves a
more expensive non-linear solution procedure compared to the Laplace equation.
We recommend to clamp the element corner nodes, since it improves the mesh
quality and speeds up the solution process. Finally, the use of block-structured
meshes enables the generation of fully three-dimensional curved boundary layer
elements by agglomeration of a specific block of elements, leading to a very
simple and robust curving technique.
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Abstract. In this chapter we collect results obtained within the IDIHOM
project on the development of Discontinuous Galerkin (DG) methods and
their application to aerodynamic flows. In particular, we present an appli-
cation of multigrid algorithms to a higher order DG discretization of the
Reynolds-averaged Navier–Stokes (RANS) equations in combination with
the Spalart-Allmaras as well as the Wilcox-kω turbulence model. Based
on either lower order discretizations or agglomerated coarse meshes the
resulting solver algorithms are characterized as p- or h-multigrid, respec-
tively. Linear and nonlinear multigrid algorithms are applied to IDIHOM
test cases, namely theL1T2 high lift configuration and the deltawing of the
second Vortex Flow Experiment (VFE-2) with rounded leading edge. All
presented algorithms are compared to a strongly implicit single grid solver
in terms of number of nonlinear iterations and computing time.
Furthermore, higher order DG methods are combined with adaptive mesh
refinement, in particular, with residual-based and adjoint-based mesh re-
finement. These adaptive methods are applied to a subsonic and transonic
flow around the VFE-2 delta wing.

Keywords: Discontinuous Galerkin methods, RANS equations,
p-multigrid, h-multigrid, adaptivity.

1 Introduction

The Reynolds-averaged Navier–Stokes (RANS) equations in combination with
suitable turbulence models such as the kω model of Wilcox [30] or the Spalart–
Allmaras model (SA) [23,25] can still be considered as state-of-the-art for many
applications in exterior aerodynamics. It has been shown that Discontinuous
Galerkin (DG) finite element methods are suitable for CFD application in the
area of compressible aerodynamic flows [3,6,13,18]. One of the main drawbacks
of DG methods is the relatively high computational cost per degree of freedom.
High Reynolds numbers, the associated highly stretched meshes typically used
for an optimal resolution of turbulent boundary layers, and source terms present
in the turbulence models all contribute to an increased stiffness of the resulting
algebraic system of equations that has to be solved. Implicit operators are gen-
erally accepted as key component for increased efficiency of iterative algorithms.
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Several authors suggested strongly implicit schemes that are close to Newton’s
method [3,13]. It is well-known that these implicit methods work best at the end
of the iterative procedure in the regime of asymptotic convergence. Employing
a mesh or order sequencing as start-up strategy helps to alleviate this problem
by providing a good initial guess. In this work the application of nonlinear h-
and p-multigrid algorithms are investigated as well as linear h- and p-multigrid
algorithms used as a preconditioner.

Discontinuous Galerkin methods allow high-order flow solutions on unstruc-
tured or locally refined meshes by increasing the polynomial degree and using
curvilinear instead of straight-sided mesh elements. Depending on the goal of the
computation the mesh refinement is driven by either adjoint-based or residual-
based indicators. While adjoint-based mesh refinement targets at efficiently and
accurately approximating specific integral quantities like the aerodynamic drag
or lift coefficients, the residual-based mesh refinement targets at resolving all
flow features and is particular well suited for resolving vortical systems.

This chapter is structured as follows: After shortly introducing the RANS
equations and the DG discretization in Section 2, Section 3 is devoted to the
description of the solver algorithms. In particular, here we introduce the non-
linear h- and p-multigrid solver algorithms, the Backward-Euler iteration used
as nonlinear smoother and the linear h- and p-multigrid algorithms used as a
preconditioner within a linear Krylov solver. Then, after recalling the adjoint-
based and residual-based mesh refinement in Section 4, the main Section 5 of
this work is devoted to the application of these algorithms to aerodynamic test
cases considered in the EU project IDIHOM. We note, that some of the results
presented have already been published previously. In particular, this applies to
some of the solver investigations on the VFE-2 delta wing in [27]. In addition,
here we present results applying the proposed solver algorithms on third and
fourth order RANS-SA solutions on an unstructured mesh around the L1T2
high lift configuration. Furthermore, in Section 5 we collect some results ob-
tained by combining a fourth order DG discretization with residual-based mesh
refinement and applying it to a subsonic and transonic flow around the VFE-2
delta wing with rounded leading edge (cf. [11] and [12], respectively). In addi-
tion, here we present results of a grid refinement study comparing third order
DG solutions on residual-based and adjoint-based refined meshes against third
order DG solutions on a hierarchy of nested block-structured meshes as well as
against DG solutions of various polynomial degrees (p-refinement) on a purely
tetrahedral mesh. Furthermore, the DG solutions are compared to Finite Volume
solutions (computed with the DLR-TAU code [19]) on a hierarchy of unstruc-
tured mixed-element meshes in terms of accuracy and computational cost. In
Section 4 we give some conclusions.

2 DG Discretization of the RANS Equations

In the following, we briefly introduce the DG discretization of the steady-state
RANS-kω [30,31] and RANS-SA [23,25] equations. These equations can be for-
mulated in conservative form based on convective fluxes Fc and viscous fluxes
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Fv, corresponding to first and second order derivatives, respectively, and addi-
tional source terms S(u,∇u), as follows

∇ · (Fc(u)−Fv(u,∇u)) = S(u,∇u). (1)

For the RANS-kω equations the vector of conservative variables is given by
u = (ρ, ρv1, . . . , ρvd, ρE, ρk, ρω)

T , where ρ denotes the density, v = (v1, . . . , vd)
T

the velocity vector in spatial dimension d and E the total energy. In this model
the eddy viscosity is given by μt = ρk

ω , where the turbulent kinetic energy k
and the specific turbulence dissipation rate ω are determined by two transport
equations. As suggested by Bassi et al. [3] the transformation ω̃ = ln(ω) is
employed. Furthermore, a limitation for ω̃ based on realizability constraints is
applied. Note, that the limitation on ω̃ avoids unphysical values and has been
found in [3, 8, 13] to have a stabilizing effect on the numerical scheme.

For the RANS-SA equations the vector of conservative variables is given by
u = (ρ, ρv1, . . . , ρvd, ρE, ρν̃)

T , where the SA working variable ν̃ is used to de-
termine the eddy viscosity in this one equation turbulence model. We use a
modification of the original Spalart–Allmaras turbulence model [25], in particu-
lar the negative Spalart–Allmaras turbulence model [23].

The DG discretization of (1) follows standard techniques. For the numerical
representation of the viscous fluxes Fv(u,∇u) we employ the second scheme of
Bassi and Rebay (BR2) [3,10]. For the numerical representation of the convective
flux Fc(u) the Roe flux [9] is used. Here, all equations are treated fully coupled,
i. e., there is a single flux Jacobian used in the eigenvalue decomposition [29].
Furthermore, an entropy fix is used in order to ensure non-vanishing dissipation.
The resulting discretization is given as follows: Find uh ∈ Vp

h such that

Nh(uh,vh) = 0 ∀vh ∈ Vp
h, (2)

where Vp
h is the discrete function space of vector-valued piecewise polynomial

functions of degree p and Nh(·, ·) : Vp
h × Vp

h → R is a semilinear form given
in detail in [15]. Furthermore, Vp

h is based on an ortho-normal non-parametric
formulation of the basis functions directly in the physical space. This is equiva-
lent to the choice of a Taylor basis [20]. This way, the local basis can be defined
independently from a specific reference element, which is necessary for the usage
of agglomerated meshes in an h-multigrid. The choice of this space in connec-
tion with the formulation of a DG method on agglomerated meshes has been
described in detail in [1,14]. By choosing an ortho-normal basis for the DG dis-
cretization the mass-matrix is the identity matrix on each mesh element and
globally over the whole mesh.

3 Solver Algorithms

In the following, we will present several strategies to exploit hierarchies of coarse
level problems in solver algorithms, including both level sequencing and linear as
well as nonlinear multigrid variations [26]. Given a hierarchy of discrete function
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spaces Vlmin ⊂ . . . ⊂ Vl ⊂ . . . ⊂ Vlmax ≡ Vp
h, where Vl for l < lmax rep-

resents either an agglomerated coarse mesh or a lower order discretization the
resulting algorithms can be characterized as h- or p-multigrid, respectively. The
only difference between these multigrid algorithms is the use of different coarse
level DG discretizations and, therefore, transfer operators. All other ingredi-
ents like smoothers, timestep control, usage of a Galerkin-transfer [26], start-up
strategy, etc. are the same for both kinds of multigrid algorithms. The restric-
tion transfer operator for both h- and p-multigrid algorithms of the nonlinear
state vector is given by an orthogonal L2-projection Î l−1

l : Vl → Vl−1 [4]. Fur-
thermore, the prolongation transfer operator is obtained via a natural injection
I ll−1 : Vl−1 → Vl and a restriction operator for the defect between the various
approximation levels is defined by I l−1

l := (I ll−1)
T . The Galerkin-transfer is de-

fined as Rl−1 = I l−1
l RlI

l
l−1 for a given matrix Rl which is a linear map in Vl.

Moreover the resulting matrix Rl−1 is a linear map in Vl−1. The actual form of
the block matrices defining the transfer operators depend on the choise of basis
functions. They take a particularly simple form if ortho-normal hierarchic basis
functions are used on each level. For instance, for a p-multigrid the prolongation
operator has the form of an identity matrix filled with additional zero rows at
the bottom.

Algorithm 1. Nonlinear Multigrid Algorithm NMG(fl,ul,m1, m2, l, lmin, τ )

1: if l = lmin then
2: Solve Llmin(ulmin) = flmin

3: Set Solution to ũlmin .
4: end if
5: if l > lmin then
6: for i = 1 to m1 do
7: ul := GLs

l (ul, fl) /* pre-smoothing */
8: end for
9: u0

l−1 := Î l−1
l ul

10: fl−1 := fl−1 + I l−1
l (fl − Ll(ul))−

(
fl−1 − Ll−1(u

0
l−1)

)

11: for k = 1 to τ do
12: uk

l−1 := NMG(fl−1,u
k−1
l−1 ,m1,m2, l − 1, lmin, τ)

13: end for
14: ũl := ul + I ll−1

(
uτ
l−1 − u0

l−1

)

15: for i = 1 to m2 do
16: ũl := GLs

l (ũl, fl) /* post-smoothing */
17: end for
18: end if
19: return ũl

The nonlinear multigrid (Algorithm 1) is defined recursively. For τ = 1 a V-
cycle is performed, whereas τ = 2 gives a W-cycle. The nonlinear problem on
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every level is defined as Ll(ul) = fl. For the nonlinear smoother GLs
l (ul, fl) we

employ as underlying relaxation scheme a linearized Backward-Euler approach
based on local pseudo-time steps that can be considered as a stabilized Newton’s
method and is also used predominantly as single-level solver [3, 13]. In Algo-
rithm 2, Rl :=

∂Ll(ul)
∂ul

is the fully implicit Jacobian matrix and M is the mass

Algorithm 2. Backward–Euler BWE(ul,i−1)

1: Solve
[
(αiΔt)

−1M + Rl

]
(ul,i − ul,i−1) = [fl − Ll(ul,i−1)] ,

2: return ul,i

matrix. In addition to that ul,j is a given state vector, with ul,j ∈ Vl ∀ j ∈ N.
This method is controlled by a pseudo-time stepping scheme (αiΔt), based on
local time steps computed from the local state and a given CFL number. The
pseudo-time step acts as a stabilizing mechanism and for CFL→ ∞ the New-
ton algorithm is recovered. Smaller time steps and accordingly CFL numbers
are required in the initial phase of the solution process when the current iterate
solution approximation is still too far from the converged solution. A switched
evolution relaxation (SER) [22] technique is employed to modify the CFL num-
ber during the solution process, enabling to recover the optimal behavior of the
Newton algorithm in the final phase of the solution process.

The resulting linear system is solved with a Krylov method, due to the non-
symmetric Jacobian GMRes is used. This method is preconditioned either by a
line-Jacobi [29] iterative scheme or a linear multigrid using the line-Jacobi scheme
as a smoother. This line-Jacobi scheme (Algorithm 3) is stated as follows: let
Ll,k(ul,k) = fl,k be the underlying linear problem on line k, where R−1

l,k is the

Algorithm 3. Line–Jacobi scheme LJ(ul,k,0, n)
1: for i = 1 to n do
2: δul,k,i := ul,k,i − ul,k,i−1 = R−1

l,k (fl,k − Ll,kul,k,i−1)
3: ul,k,i := ul,k,i−1 + δul,k,i
4: end for
5: return ul,k,n

inverse of the Jacobian matrix computed one line k in the mesh. We consider
lines of mesh elements, i. e., disjoint subsets of elements. In order to find suitable
lines a scalar advection-diffusion problem is defined and examined [10]. The
inversion on a line based system matrix which is a block-tridiagonal system can
be performed exactly.

The following choice of solver parameters is used in the numerical examples
in Section 5. For a nonlinear multigrid V-cycles are used with one pre- and
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post-smoothing step. On the lowest level one smoother step is done as well.
The smoother is a Backward-Euler with SER timestep control [22]. A linear
multigrid with four post-smoothing steps and no pre-smoothing steps is applied
as preconditioner in the GMRes linear solver. In the linear multigrid a line-
Jacobi scheme is used as a smoother. If no linear multigrid is used then four
line-Jacobi iterations are performed as a preconditioner. These choices result
from previous investigations [28]. For all computations a start-up strategy is
applied. The basic idea is to start the computation on the lowest level and
transfer the resulting solution to the next higher level to provide a suitable initial
solution. On every sublevel the start-up strategy produces converged solutions
according to a prescribed residual reduction tolerance. A p-start-up strategy
generates solutions on the same computational mesh for all discretizations from
pmin to pmax. Here, pmin = 1 is employed for the numerical examples. We do not
consider p = 0 discretizations, as they do not represent a consistent first order
discretization in the presence of viscous fluxes and source terms. The first order
discretization could be modified, but this is not done here. Thus, second order
(p = 1) is the lowest level considered in this work. For an h-start-up strategy
the initial fine mesh is coarsened in a way such that the resulting coarse meshes
build a hierarchy of nested meshes. The h-start-up strategy computes a solution
on the coarsest mesh and uses this as an initial solution for the next mesh in the
hierarchy until the algorithm gives a solution for the initial fine mesh. In every
h-start-up strategy a p-start-up algorithm is performed on the coarsest mesh.

For the h-version of the considered multigrid method and start-up strategy
an agglomeration of the underlying fine mesh is performed. A coarse level is con-
structed by connecting a certain number of fine mesh elements to form a single
agglomerate. No simplification of the resulting geometry is performed, but faces
between elements that are part of the same agglomerate can be ignored on coarse
levels. Coarser levels are obtained by recursive application of the described pro-
cedure, i. e., the second agglomeration is performed based on the first level of
agglomerates. Thus, a hierarchy of nested meshes is created which is appropri-
ate for the transfer operators. For the numerical examples, the agglomeration is
based on the MGridGen software, which employs graph-based algorithms to op-
timize the ratio of the agglomerate surface area to the agglomerate volume [21],
i. e., it aims at isotropic coarse meshes. An example for the agglomeration can
be seen in Fig. 1, which visualizes the mesh and agglomeration levels used in all
h-multigrid DG computations in Section 5.1.

4 Adaptive Mesh Refinement Algorithms

Important quantities in aerodynamic flow simulations are the aerodynamic force
coefficients like the pressure induced as well as the viscous stress induced drag, lift
and moment coefficients. Local mesh refinement is a key ingredient for obtaining
accurate results at reasonable cost in applications. The goal of the adaptive
refinement is either to compute these quantities as accurate as possible or to
resolve the overall flow field. Depending on this choice, either adjoint-based or
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residual-based indicators are used for identifying the mesh elements to be refined.
In the following, we present the associated mesh refinement algorithms.

Given a target quantity Jh(·) like an aerodynamic force coefficient and the
discretization (2) of the governing equations (1), the discretization error in the
computed target quantity Jh(uh), i.e. the difference of the exact (and unknown)
value, Jh(u), and the computed one, Jh(uh), can be approximated as follows

J(u)− Jh(uh) ≈ Rh(uh, z̄h), (3)

where Rh(uh, z) := −Nh(uh, z) includes the primal residuals multiplied by the
discrete adjoint solution z̄h which is the solution to following discrete adjoint
problem: Find z̄h ∈ V̄p

h such that

N ′
h[uh](wh, z̄h) = J ′

h[uh](wh) ∀wh ∈ V̄p
h. (4)

Here, N ′
h[uh] and J ′

h[uh] are the derivatives of Nh and Jh with respect to u
evaluated at the discrete solution uh. Note, that the discrete adjoint solution is
computed in a richer space V̄p

h ≡ Vp+1
h than the flow solution in order to avoid

a vanishing error estimate (3). This estimate can be localized

J(u)− Jh(uh) ≈ Rh(uh, z̄h) ≡
∑

κ∈Th

η̄κ, (5)

where |η̄κ| are the so-called adjoint-based indicators which include the primal lo-
cal residuals weighted with the discrete adjoint solution. The associated adjoint-
based mesh refinement algorithm (cf. Algorithm 4) is tailored to the accurate
and efficient approximation of the quantity Jh(u) of interest.

Algorithm 4. Adjoint-based mesh refinement algorithm
1: Construct an initial mesh Th.
2: Compute uh ∈ Vp

h, see (2), on the current mesh Th.
3: Compute z̄h ∈ V̄p

h = Vp+1
h , see (4), on the same mesh employed for uh.

4: Evaluate the approximate error representation Rh(uh, z̄h) =
∑

κ∈Th
η̄κ.

5: if |
∑

κ∈Th
η̄κ| ≤ TOL then

6: stop.
7: else
8: Refine and coarsen a fixed fraction of the total number of elements

according to the size of |η̄κ| and generate a new mesh Th; go to 2.
9: end if

Provided the adjoint solution related to an arbitrary target quantity is suf-
ficiently smooth the corresponding error representation can be bounded from
above by an error estimate as follows (cf. [15] for details)

|J(u)− Jh(uh)| ≤ C

(
∑

κ∈Th

(
η(res)κ

)2
)1/2

, (6)
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where the so-called residual-based indicators |η(res)κ | depend on the primal local
residuals but are independent of the adjoint problem. Being independent of a
specific target quantity the associated residual-based mesh refinement algorithm
(cf. Algorithm 5) targets at resolving all flow features. Numerical experiments

Algorithm 5. Residual-based mesh refinement algorithm
1: Construct an initial mesh Th.
2: for i = 1 to #steps do
3: Compute uh ∈ Vp

h, see (2), on the current mesh Th.
4: Evaluate the residual-based indicators |η(res)κ | for all κ ∈ Th
5: Refine and coarsen a fixed fraction of the total number of elements

according to the size of |η̄κ| and generate a new mesh Th
6: end for

(cf. Section 5.2) show that it is particularly well suited for the resolution of
vortical systems.

5 Numerical Results

In this section, we apply the solver algorithms and the mesh refinement algo-
rithms described in Sections 3 and 4 to the IDIHOM test cases U.3 and U.1.

5.1 U.3: Subsonic Turbulent Flow around L1T2 High Lift
Configuration

First we consider a subsonic fully turbulent flow around the L1T2 three element
high lift configuration at an angle of attack of 20.18◦, a Mach number of 0.197
and a Reynolds number of 3.52 × 106 [9]. Fig. 1 shows an unstructured mesh
(courtesy of Jerzy Majewski and Piotr Szałtys, Warsaw University of Technol-
ogy, WUT) with 25 757 curvilinear elements (quartic lines) together with two
levels of agglomeration. This mesh is a coarse high order version of an original
straight-sided mesh that has been created via anisotropic adaption to the solu-
tion of the RANS equations with the Spalart-Allmaras turbulence model using a
second order Residual Distribution scheme. Therefore, in the following, we show
Discontinuous Galerkin flow solutions for the same turbulence model. As an ex-
ample, Fig. 2 shows the Mach number distribution of a third order DG solution
on this mesh.

Within IDIHOM, reference solutions have been provided (courtesy of Axel
Schwöppe, DLR) with the DLR-TAU code [19], a second order unstructured
Finite Volume solver used in industry (e. g., by Airbus). Computations for the
RANS-SA model have been performed on a hierarchy of four structured meshes
from 4 268 elements up to 273 152 elements. Fig. 3 shows the second mesh in this
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Fig. 1. Unstructured mesh from WUT with 25 757 curvilinear elements (quartic lines)
around the L1T2 high lift configuration and two agglomeration levels

Fig. 2. L1T2 high lift configuration: Mach number distribution of a third order DG
solution on the WUT mesh shown in Fig. 1

hierarchy with 17 072 elements. Extrapolation of the computed force coefficients
according to the IDIHOM evaluation procedure yields asymptotic values of 4.051
for the lift and 0.0608 for the drag coefficient.

For the third order DG solution on the WUT mesh the lift and drag coeffi-
cients are 4.035 and 0.0612, respectively. These values are within the prescribed
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Fig. 3. L1T2 high lift configuration: second mesh in the multi-block structured mesh
hierarchy with 17 072 elements
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Fig. 4. L1T2 high lift configuration: Error in lift (left) and drag coefficients (right) for
the reference computations on a hierarchy of structured meshes in comparison to DG
results (of third and fourth order) on the unstructured mesh from WUT

tolerance band of the reference values, see Fig. 4. Here, the asymptotic values of
the Finite Volume computations have been used for computing the errors in the
DG case, as no mesh convergence study could be done on the adapted mesh. The
actual asymptotic values might be slightly off due to subtly differences in the
airfoil geometry approximation as well as the location and treatment of farfield
boundaries. The two dots for the DG results in Fig. 4 represent third (p=2) and
fourth (p=3) order solutions on the unstructured mesh from WUT.

Finally, Fig. 5 shows the computed pressure coefficient (cp) and skin friction
coefficient (cf ) distributions of the third order DG solution in comparison to
that of the FV reference solution. We see a very good agreement. In fact, the
only notable discrepancy is a pressure disturbance at the lower edge of the flap
cove for the third order computation which might be due to the mesh topology
in that region.

The DG results shown above can be obtained using various solver choices. For
h-multigrid algorithms 3 levels are employed whereas for p-multigrid algorithms
2 or 3 levels are employed, depending on the desired polynomial degree pmax = 2



Multigrid Solver Algorithms for DG Methods and Applications 163

x

c p

0 0.2 0.4 0.6 0.8 1 1.2

-15

-10

-5

0

x

c f

0 0.2 0.4 0.6 0.8 1 1.2
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Fig. 5. L1T2 high lift configuration: Comparison of the FV reference solution (red)
and the third order DG solution (blue) in terms of computed pressure coefficient (left)
and skin friction coefficient (right). Symbols indicate experimental data.

or pmax = 3. Found as best practice in [28], the Galerkin-transfer operator is em-
ployed in all multigrid computations. We note that the algorithmic development
presented in this work is targeted at solving the RANS-kω equations, which –
according to our experience – is a more demanding task than for the RANS-
SA case. Still, the immediate applicability to the RANS-SA case is a desirable
property of the proposed algorithms. However, further experiments not reported
here indicate that the use of a startup strategy is not as important for RANS-SA
as in the RANS-kω case. Thus, all multigrid variants use a single cycle only on
coarser levels before proceeding to finer levels in the startup phase.

The convergence history of the nonlinear residual for the different solver
choices is shown over the number of nonlinear iterations on the finest level and
over the normalized CPU time in Fig. 6. All computations shown in Fig. 6 yield
a p = 2 solution on the unstructured mesh from WUT with 25 757 elements.

The lines in Fig. 6 marked with a + represent computations where a linear
multigrid algorithm is applied. The lines marked with a × indicate the use
of a nonlinear multigrid algorithm with a Backward-Euler as smoother and a
line-Jacobi preconditioned GMRes method. Finally, the lines marked with a •
represent the combination of nonlinear and linear multigrid algorithms. Note,
that the cost per fine level iteration varies with the solver choice. The additional
work associated to (linear or nonlinear) coarse level iterations is included in
the CPU time in Fig. 6. Furthermore, for all computations in Fig. 6 the same
initial CFL number and overall time step control was chosen for comparability
reasons. Only for the single-level Backward–Euler solver (indicated with the solid
unmarked line −) the initial CFL number had to be reduced in order to obtain
a converged solution.

The dashed lines in Fig. 6 represent the p-multigrid algorithms. We see, that
the linear p-multigrid algorithm (marked with +) and the nonlinear p-multigrid
algorithm (×) show good results in terms of number of nonlinear iterations and
CPU time in comparison to a single-level Backward–Euler solver. In this case the
combination of both p-multigrid approaches (•) gives a further improvement in
the number of iterations, but the nonlinear multigrid alone is faster in terms of
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CPU time. This is in contrast to previous results in [27,28] where the combination
of both multigrid algorithms always gave the best results in terms of nonlinear
iterations and CPU time.

The solid marked lines in Fig. 6 represent the h-multigrid algorithms. First
of all, we see that all h-multigrid variants improve the solution process in com-
parison to the single-grid Backward–Euler solver. Furthermore, the nonlinear
h-multigrid computations (marked with ×), and the combination of nonlinear
and linear h-multigrid algorithms (•) are better in terms of nonlinear convergence
and overall CPU time than their respective p counterpart. While the nonlinear
multigrid algorithms are beneficial at the beginning of the computation on every
level, the linear multigrid algorithms are superior at the end of the iterative pro-
cedure in the regime of asymptotic convergence, where they yield an improved
rate of convergence. Therefore, the combination of a nonlinear and linear multi-
grid accomplishes the biggest reduction in nonlinear iterations for both the p-
and h-multigrid computations. Finally, the combination of nonlinear and linear
h-multigrid algorithms is superior in terms of normalized CPU time compared
to all other proposed algorithms.

After this detailed analyis for pmax = 2, Fig. 7 shows some of the proposed
solver choices for a pmax = 3 solution of this test case. Again, solver settings like
the initial CFL number and the overall time step control are chosen identical
for comparability reasons. In contrast to the pmax = 2 computations, here the
p-multigrid algorithms employ 3 levels just like the h-multigrid algorithms. The
results indicate that the convergence rate in the regime of asymptotic conver-
gence using the linear multigrid algorithm (lines marked with • and +) is better
than without linear multigrid algorithm. In terms of computational time the lin-
ear h-multigrid alone is too costly in comparison to the single grid computation.
Hence, the reduction in nonlinear iterations is not big enough to also achieve a
reduction in CPU time.

The computations where a nonlinear multigrid algorithm is applied (lines
marked with • and ×) seem to reduce the time after which the regime of asymp-
totic convergence is reached in comparison to the computations without nonlin-
ear multigrid. Again, the combination of both multigrid variants can benefit from
the improvements in both the initial and the asymptotic phase of convergence.
This is particularly true for the h-multigrid case. Overall the solver behavior in
the fourth order computations (cf. Fig. 7) is very similar to that in the third
order computations (cf. Fig. 6).

This behavior of the proposed solver algorithms is typical for many test cases
and will further be investigated in the next section. Similar results can be found
in [27, 28].

5.2 U.1: Turbulent Flow around the VFE-2 Delta Wing

In the following, we consider the 65◦ swept delta wing configuration with medium
rounded leading edge of the second Vortex Flow Experiment [16]. The geometry
of the VFE-2 configuration is shown in Fig. 8. We note, that the sting has been
extended in the geometry model to about 1.5 chord lengths behind the wing and
has a rounded trailing edge.
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Fig. 7. L1T2 high lift configuration: Nonlinear iteration (top) and run time (bottom)
comparison for the RANS-SA equations (p=3)
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Fig. 8. VFE-2 delta wing: Top and side view of the 65◦ swept delta wing with medium
rounded leading edge

An original multi-block structured mesh with 884 224 hexahedral elements
(courtesy of Simone Crippa [7]) has been agglomerated twice resulting in a coarse
mesh of 13 816 elements. The additional points of the original mesh have been
used to define 13 816 curvilinear elements, where the curved lines are represented
by polynomials of degree 4 and interpolate the original points. The surface mesh
of the coarse mesh with curvilinear elements is depicted on the wing and the
symmetry plane in Fig. 8. Figures 9(a) and (b) show the discrete representation
of the rounded leading edge close to the symmetry plane for the original straight-
sided mesh and the coarse curvilinear mesh, respectively. The original mesh
shows clear kinks in the approximation of the leading edge. In contrast to that,
the coarse mesh with curvilinear elements is smooth and approximates the curved
boundary very well. Furthermore we note that in order to avoid an intersection
of curved boundary faces with interior faces also interior faces in the coarse mesh
are curved.

(a) (b)

Fig. 9. VFE-2 delta wing: Zoom of the rounded leading edge close to the symmetry
plane for (a) the original straight-sided mesh, and (b) the coarse curvilinear mesh

U.1b: Subsonic Flow around the VFE-2 Configuration. In the following,
we consider a subsonic fully turbulent flow at a Mach number M = 0.4, a
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Reynolds number Re = 3× 106 and an angle of attack of α = 13.3◦ around the
VFE-2 configuration. While typically only one primary vortex is encountered
on flows around delta wings with sharp leading edges, the delta wing with a
rounded leading edge considered here creates two primary vortices which makes
the flow field particularly interesting and challenging for numerical simulation.

Solver algorithms The following results based on the RANS and kω-turbulence
model equations represent the first application of the solver algorithms described
in Section 3 in 3D and have previously been published in [27]. They do not
constitute an exhaustive investigation. Instead, they are used to identify areas
of future research for the extension of the algorithms from 2D to 3D.

Computations will be shown on the structured mesh with 13 816 curvilin-
ear elements described above and on a once globally refined mesh with 110 528
curvilinear elements. In the following, a third order accurate solution (p = 2)
is desired for all computations. Moreover, all multigrid algorithms use only two
levels.
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Fig. 10. VFE-2 delta wing: Computation of a p = 2 solution on the mesh with 13 816
elements using different multigrid algorithms [27]

Fig. 10 shows the nonlinear Backward-Euler iterations on the highest level
of the start-up strategies. The dashed lines in Fig. 10 are initialized with a
p = 1 solution on the same mesh to compute a p = 2 solution. All dashed line
computations use a p-start-up strategy with the same lower level computation
for p = 1. For all solid lines the h-start-up strategy is the same as well. Since we
use two level multigrid algorithms the initial solution for the solid lines in Fig. 10
is indeed the same. This results from the fact that on the agglomerated grid a
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p-start-up strategy is applied and after convergence of the p = 2 solution on the
agglomerated grid it is used as an initial solution for the p = 2 computations on
the mesh with 13 816 elements, as mentioned at the end of Section 3.

For comparability the timestep control for all computations shown in Fig. 10 is
the same, including the same initial CFL number on the top level of the start-up
strategies. For the solid and dashed unmarked lines a single-level Backward–
Euler solver is applied. Thus, the only difference between the solid and dashed
unmarked lines is the initial solution given on this level. In general our findings
are that an h-start-up is more favorable than a p-start-up, like seen in this case
for a single level solver.

Note, that the algorithms shown in Figures 10, 11 and 12 are indicated with
the same markings as in Section 5.1. Moreover the results in Fig. 10 are in
line with previous findings in Section 5.1. In addition to that the nonlinear p-
multigrid alone gives a small improvement over the p-single grid computation,
only. This supports our findings from [29].
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Fig. 11. VFE-2 delta wing: Computation of a p = 2 solution on the mesh with 13 816
elements with an h-start-up strategy [27]

Figures 11 and 12, which show the computing times of the computations,
indicate that the better algorithmic convergence carries over to an improved
runtime behavior.

In Fig. 11, most of the time is spent on the agglomerated mesh and thus on
a coarse level. In contrast to that, in Fig. 12 most of the time is used for the
p = 2 computation on the mesh with 13 816 elements and thus on the fine level.
Even with the increased time spent on the coarser level, the overall h-multigrid
p = 2 computations are slightly faster than their p counterparts with the same
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Fig. 12. VFE-2 delta wing: Computation of a p = 2 solution on the mesh with 13 816
elements with a p-start-up strategy [27]

solver settings. This results from the fact that fewer iterations are used on the
highest level, as seen in Fig. 10. This again confirms the findings in 2D where an
h-start-up strategy is more favorable than a p-start-up strategy in most cases.

Moreover, a beneficial run-time behavior of the multigrid algorithms can be
seen in comparison with a single grid solver (unmarked lines in Figures 10, 11,
12), even though additional work is done between the top-level Backward-Euler
smoother iterations in the multigrid algorithms.

Like in 2D test cases [28] also for the 3D test case considered here the combi-
nation of nonlinear and linear multigrid algorithms is more robust than the other
algorithms. In particular, for the combination of nonlinear and linear h-multigrid
algorithms a 3 times higher initial CFL number and for the p counterpart a five
times higher initial CFL number can be used. The single grid algorithms from
Fig. 10 do not converge for these increased initial CFL numbers. The combina-
tion of both multigrid algorithms is still the best algorithm in terms of CPU
time and nonlinear top level iterations. This indicates that the findings in terms
of robustness in 2D (cf. [28]) also hold in 3D. Moreover, with the reduced num-
ber of nonlinear top level iterations there is also an improvement in run-time.
In particular, the number of nonlinear top level iterations in the h-multigrid is
reduced from 30 to 24 which transfers to a reduction in normalized CPU time of
only 0.12 for the whole computation. In contrast to that, in the p-multigrid case
the nonlinear top level iterations are reduced from 58 to 32 which transfers to a
reduction in normalized CPU time of 0.46 for the whole computation. Note, that
the run time of this computation (not shown) including the start-up strategy is
used for the normalization of the CPU times to unity in Figures 11 and 12.
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The increased initial CFL number is beneficial at the beginning of the com-
putation on each multigrid level. Due to the SER timestep control [22] which
increases the CFL number at the end of the computation, with CFL→ ∞, the
asymptotic convergence rate remains unchanged. These results align with the
findings shown in Section 5.1 and other results published in [27, 28].
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Fig. 13. VFE-2 delta wing: p = 2 computations on the mesh with 13 816 elements
(lines with �) and on a globally refined mesh with 110 528 elements (unmarked lines)

Fig. 13 shows a comparsion of the nonlinear and linear p-multilevel algorithm
on two meshes, the coarse mesh with 13 816 element and the once globally refined
mesh with 110 528 elements. Here, exactly the same parameters are used on the
top level for both computations, the only difference is the underlying mesh.
The overall convergence behavior on the globally refined mesh is similar to that
on the coarse mesh, although some differences occur. In particular, the initial
convergence on the fine level is improved for the refined mesh, whereas the
asymptotic rate of convergence is inferior. This difference is due to the fact
that with exactly the same linear solver settings the linear problems are not as
accurately solved on the fine mesh as on the coarse one, since the size of the
coarsest level is increased significantly for the refined mesh.

Adaptive mesh refinement algorithms In the following, we present numerical
results obtained using the higher-order and adaptive discontinuous Galerkin flow
solver PADGE [14]. We note, that in contrast to the previous results on the
performance of the solver algorithms which are based on non-parametric basis
functions and the Roe flux, the following results are based on parametric basis
functions, the local Lax-Friedrichs flux and are solved with a fully implicit single
grid solver. Furthermore, note that some of the following results have previously
been published in [11].
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Fig. 14 shows a fourth order flow solution on a residual-based adapted mesh
with 84 348 curvilinear elements. The resulting cp-distribution on the upper side
of the wing is shown in the left part of Fig. 14(a) compared to pressure sen-
sitive paint (PSP) measurements [17] in the right part of Fig. 14(a). In the
measurements as well as in the fourth order flow solution on this rather coarse
mesh we recognize the suction trace of the stronger outer vortex as well as the
suction trace of the weaker inner vortex. Furthermore, Fig. 14(b) shows the cp-
distribution on the wing together with slices of the λ2-criterion. The two primary
vortices are clearly visible: the inner vortex that weakens and the outer vortex
that strengthens while being advected downstream.

(a) (b)

Fig. 14. Subsonic flow around the VFE-2 delta wing: Fourth order DG solution on
a residual-based adapted mesh with 84 348 curvilinear elements. (a) cp-distribution of
DG solution (left) in comparison to PSP measurements (right). (b) cp-distribution and
slices of the λ2-criterion of the DG solution [11].

In the following we perform a grid refinement study for this subsonic flow
around the VFE-2 delta wing. In particular, we compare the performance of the
DG flow solver PADGE in predicting the drag and lift coefficients Cd and Cl for
a third order DG solution

– under residual-based mesh refinement (cf. Algorithm 5),
– under adjoint-based mesh refinement (cf. Algorithm 4), and
– under global mesh refinement (h-refinement) of the hexahedral mesh,
– with global p-refinement on a tetrahedral mesh, and
– with the FV flow solver TAU on a sequence of mixed-element meshes.

Here, the hexahredral mesh refers to the curvilinear mesh (quartic lines) de-
picted in Figures 8 and 9(b). The tetrahedral mesh refers to a curvilinear mesh
(courtesy of Oubay Hassan [32]) consisting of 1 145 797 tetrahedral elements with
cubic lines shown in Fig. 16. Furthermore, Cassidian has generated a sequence
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Fig. 15. Subsonic flow around the VFE-2 delta wing: Mesh convergence of drag (left)
and lift (right) vs. degrees of freedom (top) and CPU time (bottom).

Fig. 16. Subsonic flow around the VFE-2 delta wing. Fourth order solution on an
unstructured grid (courtesy of Oubay Hassan [32]) of about 1.15 × 106 tetrahedral
elements with cubic lines: cp-distribution and slices of the λ2-criterion.



174 M. Wallraff, R. Hartmann, and T. Leicht

of unstructured mixed-element straight-sided meshes on which they applied the
DLR-TAU code. In the top part of Fig. 15 we see that the accuracy of the sec-
ond order DG solution on the tetrahedral mesh is lower than the second order
Finite Volume computations on the sequence of mixed-element meshes at simi-
lar degrees of freedom. While this is mainly attributed to different distributions
of points in the meshes compared, we see that under p-refinement, i. e., under
increasing the order from two to three and four, the DG solution becomes more
accurate (at least in Cd) on the tetrahedral mesh than the FV solution on finer
mixed-element meshes. This demonstrates the high order DG solutions give ac-
curate results even on purely tetrahedral meshes, while typically boundary layers
are meshed with prisms or hexahedra to increase the quality of the solution, in
particular for FV methods. Fig. 16 shows the cp-distribution and slices of the
λ2-criterion of the fourth order DG solution on this tetrahedral mesh.

The remaining lines in the top part of Fig. 15 are based on the hexahedral
mesh. Here, we see that global mesh refinement starting from the extremely
coarse initial mesh of 13 816 curvilinear elements (cf. Figures 8 and 9(b)) con-
verges very slowly and is thus not adequate for giving accurate results. The
point distribution in this coarse mesh is not well suited for a third-order DG
discretization. In contrast to that we see that the adjoint-based mesh refinement
leads to “grid converged“ force coefficients on significantly coarser meshes than
the global mesh refinement as well as the other computations. Even though the
timings in the bottom part of Fig. 15 of the adjoint-based mesh refinement in-
cludes the computational time of additional adjoint problems to be solved the
advantage in the number of iterations of adjoint-based mesh refinement over the
other computations seen in the top of Fig. 15 transfers to a similar (though
slightly reduced) advantage in computing time in the bottom of Fig. 15.

5.3 U.1c: Transonic Flow around the VFE-2 Configuration

In the following, we consider a transonic fully turbulent flow at a Mach number
M = 0.8, a Reynolds number Re = 2 × 106 and an angle of attack of α =
20.5◦ around the VFE-2 configuration. This vortex dominated flow features a
system of vortices and a shock. We note, that the following numerical results
have previously been published in [12].

Fig. 17 shows a fourth order flow solution on a 4 times residual-based adapted
mesh of 201 259 curvilinear elements. The resulting cp-distribution on the upper
side of the wing is shown in the left part of Fig. 17(a) compared to the pres-
sure sensitive paint measurements [17] in the right part of Fig. 17(a). In the
measurements as well as in the fourth order flow solution on this rather coarse
mesh we recognize the suction trace of the strong primary vortex and the weaker
secondary vortex. We note, however, that the suction trace of the computed pri-
mary vortex is slightly stronger than that in the measurements. Fig. 17(b) shows
the cp-distribution on the wing together with slices of the λ2-criterion. The pri-
mary and secondary vortices are clearly visible. The resolution of the numerical
solution is high enough such that some vorticity even at the position of a possi-
ble tertiary vortex can be recognized. At the symmetry plane the Mach number
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(a) (b)

Fig. 17. Transonic flow around the VFE-2 delta wing: fourth order DG solution on
a residual-based adapted mesh with 201 259 curvilinear elements. (a) cp-distribution
of DG solution (left) in comparison to PSP measurements (right). (b) cp-distribution
on the wing, Mach number distribution on the symmetry plane, and slices of the λ2-
criterion of the DG solution [12].

distribution is shown. Furthermore, on the symmetry plane and the wing the
isoline of the critical cp-value is shown. On the symmetry plane one clearly rec-
ognizes the region of supersonic flow over the wing which decelerates through a
shock. As the flow passes the front of the sting it accelerates again to supersonic
flow and then decelerates smoothly, i. e., without shock, to subsonic flow.

6 Conclusions

A flexible framework for h- and p-multigrid-based solver algorithms for high or-
der DG discretizations has been developed and applied to RANS computations
with both one and two-equation turbulence models. Results in 2D & 3D indicate
that the best performance in algorithmic convergence and run-time behavior is
achieved with a combination of a nonlinear multigrid with a Backward-Euler
smoother on each level, in which the resulting linear systems are solved with a
linear multigrid preconditioned GMRes method. The results also indicate that
the nonlinear multigrid algorithms are beneficial at the beginning of the com-
putation on every level and the linear multigrid algorithms are superior at the
end of the iterative procedure in the regime of asymptotic convergence. Thus,
the combination of a nonlinear and linear multigrid accomplishes the biggest
reduction in nonlinear iterations for both the p- and h-start-up computations.
The applicability of the algorithms to both unstructured mixed-element meshes
and higher than third order has been demonstrated, at least in 2D.

Fourth order Discontinuous Galerkin solutions have been computed on an
unstructured purely tetrahedral mesh as well as on locally refined purely hexa-
hedral meshes with hanging nodes around the VFE-2 delta wing with rounded
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leading edge at subsonic and transonic flow conditions. The results show that
residual-based mesh refinement is particularly well suited for resolving the vorti-
cal systems. Furthermore, adjoint-based mesh refinement has been shown to be
particularly well suited for accurately and efficiently approximating aerodynamic
force coefficients. In particular, a grid refinement study performed at subsonic
flow conditions revealed that a third order DG solution on an adjoint-based re-
fined mesh gives converged force coefficients with a significantly smaller number
of degrees of freedom and a by two orders of magnitude reduced computational
effort compared to second order Finite Volume solutions on a hierarchy of hybrid
meshes.

Future work will tackle the combination of a multigrid solver with mesh adap-
tation.
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Abstract. This chapter presents the high-order Discontinuous Galerkin
(DG) solver named MIGALE for the steady solution of the RANS and k-
ω turbulence model equations. During the IDIHOM project the MIGALE
features have been enhanced both in terms of the prediction capability
and solver efficiency, due to the implementation of an Explicit Algebraic
Reynolds Stress Model (EARSM) and of the h- and p-multigrid (MG),
respectively. algorithm. Several high-order DG results of 2D and 3D sub-
sonic/transonic turbulent test cases, proposed within the IDIHOM EU
project, demonstrated the capability of the method.

Keywords: Discontinuous Galerkin method, turbulence modeling,
multigrid, RANS, EARSM.

1 Introduction

In the scientific and industrial communities there is a growing concern that high-
order methods will become an essential tool in many technical areas, to achieve
the CFD accuracy expected by the design offices. Among high-order methods,
Discontinuous Galerkin (DG) methods turned out to be one of the most promis-
ing techniques for their great geometrical flexibility [1, 2], straightforward im-
plementation of h/p adaptive techniques [3, 4], and compact stencil, useful for
massively parallel computers platform. As demonstrated during the EU project
ADIGMA [19], the higher accuracy comes at an increased computational cost
with respect to standard finite volume (FV) methods, preventing a widespread

c© Springer International Publishing Switzerland 2015 179
N. Kroll et al. (eds.), IDIHOM: A Top-Down Approach, Notes on
Numerical Fluid Mechanics and Multidisciplinary Design 128, DOI: 10.1007/978-3-319-12886-3_10



180 F. Bassi et al.

application in industry. In order to overcome this limitation, a considerable re-
search effort has been recently devoted to devise more efficient computational
strategies, both for the construction of the DG space operator [5, 6] and for the
time integration [7–9].

In this chapter we summarized the progress on such topics, achieved within
the IDIHOM EU project and we assessed the capability of the high-order DG
code MIGALE in computing complex turbulent steady flows for aeronautical and
turbomachinery applications. The turbulent flow field was computed by means
of the Reynolds Averaged Navier-Stokes (RANS) equations with the closure pro-
vided by the high-Reynolds number k-ω̃ turbulence model, following the original
implementation proposed in [11], and by an Explicit Algebraic Reynolds Stress
Model (EARSM).

The shock-capturing technique presented and assessed in [2] was adopted.
We proposed a set of primitive variables based on the pressure and the tem-
perature logarithms to ensure the positivity of the thermodynamic unknowns.
Different time integration techniques were implemented: an implicit solver, a h-
and p-multigrid algorithm [28,31]. Several high-order DG results for 2D and 3D
subsonic/transonic turbulent test cases demonstrated the potential and capabil-
ity of the method.

The paper is organized as follows. Section 2 describes the governing equations.
In Section 3 the description of the DG discretization is given. Section 4 describes
the time integration techniques, while Section 5 is dedicated to the discussion of
the numerical results. Finally, Section 6 gives the concluding remarks.

2 Governing Equations

The complete set of RANS and k-ω̃ turbulence model equations can be written
as

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (1)

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = −

∂p

∂xi
+
∂τ̂ji
∂xj

, (2)

∂

∂t
(ρE) +

∂

∂xj
(ρujH) =

∂

∂xj
[uiτ̂ij − q̂j ]− τij

∂ui
∂xj

+ β∗ρkeω̃r , (3)

∂

∂t
(ρk) +

∂

∂xj
(ρujk) =

∂

∂xj

[
(μ+ σ∗μt)

∂k

∂xj

]
+ τij

∂ui
∂xj

− β∗ρkeω̃r , (4)

∂

∂t
(ρω̃) +

∂

∂xj
(ρujω̃) =

∂

∂xj

[
(μ+ σμt)

∂ω̃

∂xj

]
+
α

k
τij

∂ui
∂xj

− βρeω̃r+

+ (μ+ σμt)
∂ω̃

∂xk

∂ω̃

∂xk
,

(5)
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where the pressure, the turbulent and total stress tensors, the heat flux vector,
the eddy viscosity and the limited value of turbulent kinetic energy are given by

p = (γ − 1)ρ (E − ukuk/2) , (6)

τij = 2μt

[
Sij −

1

3

∂uk
∂xk

δij

]
− 2

3
ρkδij , (7)

τ̂ij = 2μ

[
Sij −

1

3

∂uk
∂xk

δij

]
+ τij , (8)

q̂j = −
(
μ

Pr
+
μt

Pr t

)
∂h

∂xj
, (9)

μt = α∗ρke−ω̃r , k = max (0, k) . (10)

Here γ is the ratio of gas specific heats, Pr and Prt are the molecular and
turbulent Prandtl numbers and

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)

is the mean strain-rate tensor. The closure parameters α, α∗, β, β∗, σ, σ∗ are
those of the high-Reynolds number k-ω model of Wilcox [58].

The turbulence k-ω̃ model given by Eqs. (11) and (12) is implemented as
presented in [11], where ω̃ = log(ω) is used in place of ω to obtain a better
behavior near solid wall and guarantees the positivity of this variable. Limited
values k and μt are used in Eqs. (10)–(12) to deal with possible negative value of
the turbulent kinetic energy. The variable ω̃ in the source terms and in the eddy
viscosity equation is replaced by ω̃r, indicating it has to fulfill suitably defined
“realizability” conditions, which set a lower bound on ω̃.

The “slightly-rough-wall” boundary condition is adopted to prescribe the value
of ω̃ at the wall. In particular the approach proposed by Menter [46] is modified
to introduce a dependence on the polynomial degree l of the solution. At the wall
the ω̃ value is defined as the Taylor series expansion of the near wall solutions
for ω̃ (with ω̃w →∞) around h, truncated to l terms

ω̃l
w = log

(
6νw

β (αlh)
2

)
, (11)

where
αl = e−

∑l
n=1

1
n . (12)

h is the distance from the wall of the element centroid next to the wall. Details
of the implementation can be found in [7].

2.1 Explicit Algebraic Reynolds Stress Model

The EARSM proposed by Wallin and Johanson [24] was implemented in the
MIGALE code. The constitutive relation for the turbulent stress tensor can be
written as
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τij

ρk
= −uiuj

k
= −α∗aij −

2

3
δij = α∗

(
2CμτSij − a

(ex)
ij

)
− 2

3
δij , (13)

where, for implementation convenience, the anisotropy tensor aij is split in a
linear part and a non-linear extra anisotropy contribution. The time scale τ and
the variable coefficient Cμ are given by

τ =
1

β∗eω̃
, Cμ = −1

2
(β1 + IIΩβ6) . (14)

The time scale τ does not include the near-wall lower bound, based on the
Kolmogorov time scale, usually employed in k-ε implementations of EARSM
since this limitation is provided by the finite value of ω set at the wall. The eddy
viscosity μt and the extra-anisotropy tensor a(ex)ij are given by

μt = α∗Cμτρk, (15)

a
(ex)
ij = β3τ

2

(
ΩikΩkj −

1

3
IIΩδij

)
+ β4τ

2 (SikΩkj −ΩikSkj) (16)

+ β6τ
3

(
SikΩklΩlj +ΩikΩklSlj − IIΩSij −

2

3
IV δij

)

+ β9τ
4 (ΩikSklΩlmΩmj +ΩikΩklSlmΩmj) ,

where the coefficients βi∈{1,3,4,6,9} are functions of the invariants IIS , IIΩ and
IV

IIS = tr{S2}, IIΩ = tr{Ω2}, IV = tr{SΩ2}. (17)

In the following sections, the notation EARSMx will indicate the EARSM model
including anisotropy terms up to the x -th degree.

3 DG Approximation of the RANS and k-ω EARSM
Equations

The system of governing equations can be written in compact form as

∂q

∂t
+∇ ·Fc (q) +∇ · Fv (q,∇q) + s (q,∇q) = 0, (18)

where q ∈ R
m is the unknown solution vector of the m variables, Fc ∈ R

m⊗R
d

and Fv ∈ R
m ⊗ R

d are the inviscid and viscous flux functions, s ∈ R
m the sum

of turbulence source and volume forces vectors and d the number of dimensions.
A particular set of primitive variables is adopted to ensure the positivity of

the thermodynamic unknowns, where p and T are replaced by their logarithms



DG Code MIGALE – Steady Problems 183

p̃ = log(p) and T̃ = log(T ). In fact, some flow configurations, e.g. abrupt ex-
pansions and strong shocks can produce numerical oscillations that can result in
negative values of the pressure or the temperature.

Let q = [ρ, ρu1, ρu2, ρu3, ρE, ρk, ρω̃]
T and w = [p̃, u1, u2, u3, T̃ , k, ω̃]

T be the
solution vector and the state vector in primitive variables based on logarithmic
thermodynamic proprieties, and P (w) = ∂q

∂w ∈ R
m ⊗ R

m the transformation
matrix. The system of governing equations (18) for the new set of variables is
rewritten as

P (w)
∂w

∂t
+∇ · Fc (w) +∇ · Fv (w,∇w) + s (w,∇w) = 0. (19)

Notice that, while the equation for ω is explicitly rewritten for its logarithm,
giving rise to an additional source term ∂ω̃

∂xk

∂ω̃
∂xk

, the logarithms of p and T is
introduced only in terms of the transformation matrix and their polynomial
representation.

3.1 Discontinuous Galerkin Space Discretization

In order to construct a DG discretization of the governing equations, the weak
formulation of Eq. 19 is obtained multiplying by an arbitrary smooth test func-
tion v = {v1, · · · , vm}, and integrating by parts

∫

Ω

v ·
(
P (w)

∂w

∂t

)
dΩ −

∫

Ω

∇v : (Fc (w) + Fv (w,∇w)) dΩ

+

∫

∂Ω

v ⊗ n : (Fc (w) + Fv (w,∇w)) dσ +

∫

Ω

v · s (w,∇w) dΩ = 0, (20)

where n is the unit normal vector to the boundary. The physical domain is
then approximated by a computational grid Th = {K} consisting of a set of
non-overlapping elements while a suitable discontinuous finite element space,
spanned by polynomial functions of degree at most l continuous only inside each
element K, is defined as follows

Vl
h

def
= [Pl

d(Th)]m, (21)

where
P
l
d(Th)

def
=

{
vh ∈ L2(Ωh) : vh|K ∈ P

l
d(K), ∀K ∈ Th

}
. (22)

Considering the weak form of system (19) over Th and using the finite space (21),
the solution w and the test function v are replaced with a finite element approx-
imation wh and vh respectively, belonging to the space Vl

h. As a satisfactory
basis for such space, orthogonal and hierarchical basis functions defined in the
physical reference frame were employed, see [14]. Any function vh can be re-
garded as a combination of the elements of the chosen basis. Let denote such
elements as φi where i ∈ {1, · · · , NK

DoF} and NK
DoF is the number of degrees

of freedom of the polynomial space local to a given element K. Accounting for



184 F. Bassi et al.

this aspect, the DG formulation of the compressible RANS and k-ω equations
consists in seeking the elements wh,1, · · · , wh,m of wh ∈ Vk

h such that

∑

K∈Th

∫

K

φiPj,k (wh)φl
dWk,l

dt
dΩ

−
∑

K∈Th

∫

K

∂φi
∂xk

(
F c
j,k (wh) + F v

j,k (wh,∇hwh + rg ([[wh]]))
)
dΩ

+
∑

f∈F

∫

f

[[φi]]k

(
F̂ c
j,k

(
w±

h

)
+ F̂ v

j,k

(
w±

h ,
(
∇hwh + ηfr

f ([[wh]])
)±))

dσ

+
∑

K∈Th

∫

K

φisj (wh,∇hwh + rg ([[wh]])) dΩ = 0,

∀i ∈ {1, · · · , NK
DoF}, (23)

where j = 1, · · · ,m and
wh,j = φlWj,l, (24)

denoting with W the global vector of unknown degrees of freedom (DoF).
In Eq. (42) F is the collection of all edges f and the functions rg and rf :

[L1(f)]m×d → [Pk
d (Th)]m×d are the global and local lifting operators used to

obtain a consistent, stable and accurate DG discretization of the viscous part of
the equations according to the BR2 scheme [15].

Being the functional approximation discontinuous, the flux is not uniquely
defined over the elements boundary, and thus a numerical flux vector is suitably
defined both for the inviscid F̂c and viscous F̂v part of the equations. In order
to ensure conservation and correctly account for wave propagation the former
is based on the Godunov flux computed with an exact Riemann solver [17] or
alternatively on the van Leer vector split flux as modified by Hänel [18], while
the latter is given by

F̂v
(
w±

h ,
(
∇hwh + ηfr

f ([[wh]])
)±) def

=
{
Fv

(
wh,∇hwh + ηfr

f ([[wh]])
)}
, (25)

where the stability parameter ηf was defined according to [2].
The shock-capturing technique employed in this work is based on the scheme

presented in [2]. The artificial diffusion is explicitly introduced within each ele-
ment K ∈ Th without using any shock sensor to detect the discontinuities loca-
tion. The shock-capturing term is always and everywhere active but introduces
numerical viscosity only where unphysical oscillations occur.

4 Time Integration: Implicit Solver

Assembling together all the elemental contributions, the discrete problem corre-
sponding to Eq. (42) can be written as

MP
dW

dt
+R (W) = 0, (26)



DG Code MIGALE – Steady Problems 185

where R is the residuals vector and MP is the global block diagonal matrix
arising from the discretization of the first integral of Eq. (42). Matrix MP cou-
ples the degrees of freedom of different variables within the element throug the
variable transformation matrix P.

Equation (44) defines a system of nonlinear ODEs which is solved by means
of a linearized backward Euler (LBE) scheme

[
Mn

P

Δt
+
∂R (Wn)

∂W

]
ΔW = −R (Wn) . (27)

The linear system arising at each time step n from Eq. (44), is solved using
the matrix-explicit or the matrix-free GMRES (Generalized Minimal RESidual)
algorithm, see [8]. System preconditioning is required to make the convergence
of the GMRES solver acceptable in problems of practical interest. The block Ja-
cobi method with one block per process ILU(0) or the additive Schwartz method
(ASM) are usually employed. The linear algebra and parallelization are handled
through the PETSc [20] library (Portable Extensible Toolkit for Scientific Com-
putations) and MPI, the standard for message-passing communication.

4.1 The Pseudo-Transient Continuation Strategy

The choice of the time step can significantly affect both the efficiency and the
robustness of the method. For steady computations we relied on the pseudo-
transient continuation strategy with the local time step given by

ΔtK = CFL
hK,CFL

cv + dv
,

where
cv = |v|+ a, dv = 2

μe + λe
hK

, hK,CFL = d
ΩK

SK
,

define convective and diffusive velocities and the reference dimension of the
generic element K, respectively. The coefficients μe and λe are the effective
dynamic viscosity and conductivity, while ΩK and SK denote the volume and
the surface of K. All quantities depending on wh in the above relations are
computed from mean values of wh. Devising an effective and robust strategy to
increase the CFL number as the residual decreases is not an easy task, especially
for turbulent computations. The CFL law proposed in this work is based on the
L∞ and the L2 norms of the residual and is defined as follows
⎧
⎪⎪⎨

⎪⎪⎩

CFL =
CFLmin

xα
if x ≤ 1

CFL = CFLexp + (CFLmin − CFLexp)e
α

CFLmin

CFLmin − CFLexp
(1−x)

if x > 1

(28)
where, denoting by xL2 =max (|Ri|L2/|Ri0|L2) and xL∞ =max (|Ri|L∞/|Ri0|L∞)
for i = 1, . . . ,m {

x = min (xL2 , 1) if xL∞ ≤ 1

x = xL∞ if xL∞ > 1,
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and CFLmin, CFLexp and α are the user-defined minimum CFL number, the
maximum CFL number of explicit schemes and the exponent (usually ≤ 1)
governing the growth rate of the CFL number, respectively.

5 Time Integration: Multigrid Solution Strategy

Standard iterative solvers show a slowdown of the convergence rate after few
iterations, being unable to effectively reduce the error. In fact the error is a
combination of “error modes”, and the smoothers can damp only a part of these
modes in the first iterations, thereby showing a stall in the convergence.

In order to remove all the error modes and increase the convergence rate,
multigrid (MG) strategies can be adopted, both in the h and/or p variant. In
h-MG methods, even if only a part of the modes is damped on each grid, the use
of a hierarchical set of nested grids allows to reduce the solution error over the
entire modes spectrum. In the p-MG context a sequence of progressively lower
order approximations on a single grid is considered as coarse levels.

The relaxation scheme must provide, at an arbitrary level, an effective damp-
ing of all the error modes which can not be represented on “coarser” levels, where
“coarse” represents an actual coarser grid in the h-multigrid case or a lower order
approximation in the p-multigrid case. In both cases the modes that need to be
damped at each level are called “oscillatory” modes, while the remaining modes
are referred to as “smooth” modes.

The various levels can be visited following different paths. In this work, the
commonly considered V-cycle was adopted. At each level, a number ν1 of pre-
smoothing iterations was performed prior to restricting the solution to the next
coarser level, while, on the way back to “finer” levels, a number ν2 of post-
smoothing iterations was performed after prolongation. As a further improve-
ment of the method, the full multigrid (FMG) algorithm was adopted, which
exploits the coarser level solutions to obtain a good initial guess to initialize
the computation of the finer levels. On each level before passing to the next
finer level it is not necessary to compute the fully converged solution, since the
discretization error on coarser levels can be relatively large. In the proposed al-
gorithm this issue was addressed by prolongating the solution to the next finer
level if a residual-based criterion was met, which is defined as:

if (max(||Rl||2) < 10−2) l −→ l+ 1, (29)

where ||Rl||2 is the L2 norm of the residual vector.
The nonlinear MG algorithm is briefly summarized in the following with ref-

erence to a generic nonlinear problem Al(Wl) = b, where the superscript l indi-
cates the level (the grid level h and the polynomial level p for the h- and p-MG
algorithm, respectively). If W̃l denotes the approximate solution of the nonlin-
ear problem during the iterative solution process and Rl(W̃l) = bl −Al(W̃l)

the residual vector, the basic multigrid update of W̃l is performed as described
in the Algorithms 1.
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Algorithm 1. Multigrid algorithm
if (Pre-smoothing) then

Compute Al
pre,b

l

W̃l = MGS(Al
pre,b

l, slpre,W̃
l, ν1)

W̃l−1
0 = Ĩl−1

l W̃l

Rl−1 = Il−1
l Rp(W̃l)

sl−1
pre = Al−1

pre (W̃
l−1
0 )−Rl−1

else if (Post-smoothing) then
el−1 = W̃l−1 − W̃l−1

0

W̃l = W̃l + Ĩll−1e
l−1

Al
pst = Al

pre

slpst = slpre
Compute bl

W̃l = MGS(Al
pst,b

l, slpst,W̃
l, ν2)

end if

In the Algorithm 1 MGS is the multigrid smoother, ν1 and ν2 the number of
pre and post iterations, s the forcing term, e the correction term, Ĩl−1

l and Il−1
l

the solution and the residual restriction operators, Ĩll−1 the error prolongation
operator. The matrix of the system Al

pre can be computed (i) on each level
or (ii) only on the finest level and projected on the other levels by means of
the operator Îl−1

l , the matrix restriction operator, depending on the adopted
smoother. The transfer operators for the p-MG algorithm are reported in [28],
while for the h-MG they are reported in [31, 32].

5.1 Smoothers

Three different smoothers were adopted:

1. a Line-Implicit RK (LIRK) scheme;
2. a Block-Implicit RK (BIRK) scheme;
3. an Implicit iterative smoother based on the linearized Backward Euler (LBE)

scheme, as defined in Eq.27.

The RK schemes are described and assessed in [28]. The Algorithm 2 shows
the LIRK scheme, where T(W0) is the block tridiagonal matrix associated to

a line. The matrix
[
MP

Δt
+ αmT(W0)

]
is computed only for the first stage of

the finest level at each MG cycle. The line smoother was employed only for the
finest level because, as demonstrated in [28], on coarser levels it has no effect on
convergence rate, while, on the other hand, it increases the computational cost.

The Algorithm 3 shows the BIRK scheme, where D(W0) is the block diagonal

part of the full Jacobian matrix. The matrix
[
MP

Δt
+ αmD

(
W0

)]
is computed
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Algorithm 2. The Line-Implicit Runge-Kutta (LIRK) scheme
1: W0 = Wn

2: for k = 1,m do

3:
[
MP

Δt
+ αmT

(
W0

)]
δWk = −αkR

(
Wk−1

)

4: Wk = Wk−1 + δWk

5: end for
6: un+1 = um

Algorithm 3. The Block-Implicit Runge-Kutta (BIRK) scheme
1: W0 = Wn

2: for k = 1,m do

3:
[
MP

Δt
+ αmD

(
W0

)]
δWk = −αkR

(
Wk−1

)

4: Wk = Wk−1 + δWk

5: end for
6: Wn+1 = Wm

only for the first stage if the smoother is used on the finest level, while, on coarser
levels, it is just projected from the finest level.

The Jacobian of the LBE was recomputed only for the first smoothing iter-
ation at each level and then was kept constant. Even if this choice decreased
the effectiveness of the implicit smoother, it improved the robustness of the MG
algorithms. The linear system was solved using the restarted GMRES algorithm
preconditioned with the block Jacobi method (one block per process) as available
in the PETSc library [20].

The time step for the LIRK/BIRK smoother was computed only on the finest
level, because in the intermediate levels it was included in the matrix restricted
from the finest level. The CFL law for the MG strategies is defined by the Eq.28.

6 Results

This section presents the results obtained in the computation of the compressible
turbulent flows for different testcases considered in the IDIHOM EU project [40]
with the solution strategies presented in the previous sections (implicit solver,
h- and p-multigrid).

The robustness and reliability of the implicit solver was assessed in the com-
putation of the subsonic/transonic turbulent flows around complex aeronautical
configurations and through the NASA Rotor 37 with the standard k-ω̃ model.
The influence of the different EARSM terms on the solution was also investi-
gated. In particular the standard k-ω̃ model was compared with the EARSM
in its linear and non-linear formulations for the computation of the subsonic
turbulent flow around a delta wing.
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The h- and p-multigrid algorithms were compared with the implicit solver,
showing for both cases a speed-up in terms of CPU time needed to reach a
converged solution. In particular the subsonic turbulent flow around a 2D multi-
element airfoil was computed by using the h-MG, while the subsonic turbulent
flow around a train-head and through a turbine cascade was computed by using
the p-MG. For these testcases the standard k-ω̃ model was used.

The grids were obtained by means of an in-house agglomeration tool starting
from fine linear grids.

The computing time is reported in the figures as a normalized value with
respect to the TauBenchmark [33] value, tTauBench, obtained on a full node of
the cluster used for the CFD simulation1. The normalized computing time is
measured in Work Units: WU = twall ∗Ncores/tTauBench.

6.1 Full Aircraft FA5

This test case is about the flow at a high angle of attack around a 1:15 model
of a delta-wing type generic fighter aircraft, dominated by strong vortices and
large-scale turbulent flow phenomena. The farfield conditions of this test case
were Mach number M∞ = 0.85, angle of attack α = 24◦ and Reynolds number
based on the mean aerodynamic chord Remac = 46.5×106. At the engine intake
a uniform pressure, p/p∞ = 1.2057 and a mass flow ratio MFR = 0.9 were set,
while at the engine exhaust free-stream conditions were imposed. The solution
was computed up to P

2 polynomial approximation on a grid consisting of 164636
hexahedral elements with quartic edges. The solver was not able to produce a
fully converged solution, probably due to strongly nonlinear effects induced by
the shock capturing approach implemented in the DG code MIGALE.

Figure 1 shows a detail of the surface grid and the surface pressure coefficient
contours of the P1 solution. Figure 2 compares the Cp contours of the higher order
P
2 solution with the results of a second-order finite volume computation on a

much finer grid. The improvement of the higher order solution is quite clear and
supports the potential of high-order methods for such complex configurations.
However, the comparison of P1, P2 and finite volume solutions seems to indicate
that the DG solution most likely needs further h- or p-refinement.

6.2 Hovering Helicopter Rotor (HOTIS)

The hovering helicopter rotor was proposed and investigated experimentally
within the HOTIS experiment in Braunschweig. The flow conditions were the
Mach number at blade tip Mtip = 0.633, the Reynolds number at the blade tip
Retip = 1.5×106, and the air speed va = 0.0 m/s. The farfield boundary condi-
tion was perturbed with a jet and a potential sink at each iteration. In particular
the velocity of the jet along the rotation axis is defined as:

uj = −2|vtip|
√
CT

2
,

1 -n 250000 -s 10 define the reference TauBench workload for the hardware benchmark.
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Fig. 1. FA5: grid consisting of 164636 hexahedral (quartic representation of the bound-
aries) elements (left) and surface pressure coefficient distribution for a P

1 (right)

Fig. 2. FA5: comparison of the surface pressure coefficient distribution for a P
2 solution

(left) and for the industrial baseline computation conducted by Airbus D& S (right)

where |vtip| is the velocity at the blade tip, and CT the actual thrust coefficient.
The velocity perturbation due to the potential sink is defined along the radial
direction as:

ur = −
|vtip|
4

√
CT

2

R

d

2

,

where R is the blade radius and d the distance of a generic farfield point from
the rotational axis. Simulations were performed exploiting the relative reference
frame formulation with a rotational speed ωy = 1042 r/min.

The solution was computed up to P
3 on a grid consisting of 50176 hexahedral

elements with quartic edges. Figure 3 shows a detail of the blade surface mesh
(top) and the pressure contour on a blade for a P

3 solution. Figure 4 shows a
comparison between P

1 and P
3 solution in terms of iso contours of Q coloured

with the vorticity magnitude. The computed thrust coefficient, CT (P
3) = 2.71×

10−3, is in good agreement with the experimental value, CT,exp = 2.76× 10−3.
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Fig. 3. HOTIS: surface grid of a blade (top) and pressure contour on a blade for a P
3

solution (bottom)

Fig. 4. HOTIS: iso contours of Q coloured with the vorticity magnitude for a P
1 (left)

and P
3 (right) solution

6.3 NASA Rotor 37

The NASA Rotor 37 was thoroughly investigated both numerically and experi-
mentally [2, 26].

Computations were performed up to P
3 solution on a coarse grid composed

of 20064 hexahedral elements with quartic polynomial functions for the repre-
sentation of the boundaries. Figure 5 shows the surface grid (left) and the mesh
details near the tip and the hub regions (right).

For this test case the governing equations have been written in a rotating
coordinate system and include the acceleration contributions due to the rotating
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Fig. 5. Rotor 37: Surface mesh (left) and grid details of the hub and tip region (right)

Fig. 6. Rotor 37: Relative Mach number (left) and pressure contours (right) at
midspan, P1→3 solutions

reference frame (ωy = 1800 rad/s). Blade walls and hub and tip surfaces were
considered adiabatic. At inlet, the total pressure, total temperature, inflow angle
α = 0◦ and turbulence intensity Tu1 = 0.03 were set. At outlet, the static
pressure was prescribed at midspan and the spanwise pressure distribution was
computed by means of a simplified radial equilibrium equation.

Figure 6 shows the main flow features at midspan. The shock wave originating
at leading edge moves through the passage to the adjacent blade suction side, in-
teracting with the boundary layer and entailing a flow separation which extends
to the trailing edge. The radial distribution of the total pressure ratio, total tem-
perature ratio and adiabatic efficiency at the outflow section are now considered
to investigate the influence of the polynomial order on the solution. In Figure 7
the radial distribution of the pitchwise mass averaged p0,2/p0,1 and T0,2/T0,1
at 98% of the choked mass flow (P1→3 solutions) are depicted and compared
with experimental data. Good agreement of the P

3 solution with experiments is
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observed both for the pressure and temperature ratio profiles, ranging from 10%
to about 90% of the span. Finally, the comparison of the overall performance
maps for P1→3 solutions with experimental data is shown in Figure 8. In partic-
ular, the pressure ratio (left) and the adiabatic efficiency (right) as functions of
the normalized mass flow are depicted. The pressure ratio p0,2/p0,1 distributions
indicate that for increasing polynomial orders, the computed results get closer
to experiments. The P

3 profile predicts fairly well the measured values, with a
relative error of −2.8% at choke condition and of −1.7% for the nearest point to
stall region, showing an overestimation of global losses. At choke condition the
maximum error for ηad is −5.5%, while in the stall region is about −4.7%.

(a) (b)
Fig. 7. Rotor 37: Pitch-wise total pressure ratio p0,2/p0,1 (left) and total temperature
ratio T0,2/T0,1 (right), P1→3 solution

(a) (b)

Fig. 8. Rotor 37: Total pressure ratio p0,2/p0,1 (left) and adiabatic efficiency ηad (right)
as a function of normalized mass flow, P1→3 results and experiments
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6.4 Delta Wing

The NASA 65◦ sweep delta wing was proposed and experimentally investigated
within the second international Vortex Flow Experiment VFE-2, see [35]. The
farfield conditions of this test case are M∞ = 0.4, α = 13.3◦ and Remac = 3×106.
Solutions were computed using the standard k-ω̃ model and EARSM1→3 up to
P
3 polynomial approximation on a grid consisting of 13816 hexahedral elements

with quadratic edges. The high-order grid was obtained by agglomerating a fine
linear finite volume grid generated by [30].

Figure 9 compares the computed pressure coefficient contours on the wing sur-
face with the experimental Pressure Sensitive Paint results reported in [29, 36].
The solution using the standard k-ω̃ model shows a delayed onset of the vortex
developing along the wing with respect to the experimental data. Using EARSM,

(a) (b)

(c) (d)

Fig. 9. VFE2: Pressure coefficient distribution, Cp. Left side: P
3 results – Right side:

Pressure Sensitive Paint, experimental data in [29]
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(a) (b)

Fig. 10. VFE2: Turbulence intensity contours, P3 solutions

in its linear and non-linear versions, the vortex moves towards the wing apex
showing also a sharper definition of turbulence intensity, as depicted in Fig-
ure 10. Overall, EARSM results appear to improve standard k-ω̃ predictions. In
particular, the EARSM1 results are surprisingly good, while EARSM2-3 results
are not as good. This behaviour needs further investigation, but we can already
observe that the discrepancy with respect to experimental data is mainly due to
an inaccurate prediction of the primary vortex origin. This issue requires closer
numerical investigation of the flow behaviour around the nose of the wing.

6.5 2D Multi-element Airfoil (L1T2)

The flow around the three elements airfoil L1T2 was computed with the h-MG
algorithm for a farfield Mach number M∞ = 0.197, an angle of attack α = 20.18◦

and chord-based Reynolds number Re∞ = 3.52×106. This test case was com-
puted on a hybrid mesh of 8969 elements with quadratic piecewise edges, gener-
ated with the high-order extension of an in-house mesh generator [34]. Three grid
levels were adopted with an agglomeration ratio equal to 2 (8969→4696→2447),
as depicted in Fig. 11.

The h-MG setting can be summarized as follows:

• p-sequencing on the coarsest mesh;
• LBE smoother on each level, GMRES method (15 iteration, no-restart) pre-

conditioned with ILU(0) on each block;
• l = hmin, νc = 2;
• l > hmin, ν1−2 = 1− 1.
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Fig. 11. L1T2: Three grid levels, agglomeration ratio equal 2, 8969 → 4696 → 2447
(left). Mach number and turbulence intensity contours for a P

2 solution (right)

Fig. 12. L1T2: convergence history (L2 norm of the residuals) in terms of iterations
(left) and normalized CPU time (right) needed to reach a converged solution for the
multigrid algorithm (MG 2L) and the implicit solver (SG), P2 soltuion

Figure 11 (right) shows the Mach number and turbulence intensity contours
for a P

2 solution. The comparison between the h-MG algorithm (MG 2L) and
the implicit solver (SG) in terms of the iterations and the normalized CPU time
(MG CPU time is the reference time) needed to reach a converged solution is
depicted in Fig. 12. It is evident a great reduction of the CPU time due to the
use of the h-MG strategy (around 66.6%) with respect to the implicit solver.
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6.6 Train Head

The flow around a simplified train (single car) with the wind velocity Uw =
70m/s and the Reynolds number based on the reference length Rel = 1.2× 106

was considered. Computations were performed for a yaw angle β = 10◦ on a grid
with 7776 hexahedral elements (quartic representation of the boundaries). The
linear structured grid used with the in-house agglomeration tool is generated
using the meshing software from GridPro [37]. As the quadrature cost can be
very expensive for a mesh with quartic edges, an error based adaptive procedure
for the reduction of the degree of exactness of the quadrature formulae was
used [31]. Figure 13 shows the surface mesh (left) and the streamline coloured
with the turbulence intensity (right) for a P

4 solution.

Fig. 13. Train: mesh (left) consisting of 7776 hexahedral elements with a quartic rep-
resentation of the boundary and streamline coloured with the turbulence intensity for
a P

4 solution

The effect of different smoothers on the p-MG performance was investigated
in this test case in terms of the memory usage (Mem) and the normalized CPU
time (Time) needed to reach a converged solution. In particular two different
sets of smoothers were considered: (i) the LIRK on the finest level, the LBE
(GMRES method, 120 iteration, no-restart, preconditioned with ILU(0) on each
block) on the coarsest level and the BIRK on the remaining levels, (ii) the LBE
on every level (GMRES method, 120 iteration, no-restart, preconditioned with
ILU(0) on each block).

The smoothing iterations adopted for the p-MG algorithm are as follows:

• l = pmin, νc = 5;
• l = pmax, νf,1−2 = 2− 2;
• pmin < l < pmax, ν1−2 = 3− 3.

Figure 14 shows the convergence history (L2 norm of the density residual) for the
p-MG with the two smoothers in terms of iterations (left) and non dimensional
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CPU time needed to reach a converged solution (right). Table 1 summarizes
performance for both strategies. The results show that the implicit smoother
outperforms the line-implicit smoother in terms of CPU time, showing an aver-
age time reduction around 80%. However there is also a boost in the memory
requirement, which increases with the polynomial order.

Table 1. Train: comparison of different smoothers for the p-MG algorithm. p-
MG(LBE) is based on an implicit smoother (LBE) for each level. p-MG(LIRK) is
based on the LIRK for the finest level, LBE for the coarsest level and the BIRK for
the remaining levels. Pk is the solution approximation, Mem the memory usage, ΔRAM

the memory requirement reduction due to the use of different solution strategies, Time
the normalized CPU time, ΔCPU the computational time reduction due to the use of
a different solution strategies (Memory usage and CPU time of the p-MG(LIRK) are
taken as reference)

Scheme P
k Mem [GB] ΔRAM Time [IU] ΔCPU

p-MG(LIRK) 2 4.1 - 20449 -
p-MG(LBE) 2 12 +292% 5047 −75.3%
p-MG(LIRK) 3 12 - 194647 -
p-MG(LBE) 3 37.4 +311% 30427 −84.3%
p-MG(LIRK) 4 32 - 899902 -
p-MG(LBE) 4 122.4 +382% 191512 −78.7%
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Fig. 14. Train: convergence history (L2 norm of the density residual) as a function of
the MG iterations (left) and of the normalized CPU time (right) for different polynomial
solution approximations and smoothers
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6.7 T106A Turbine Cascade

The T106A turbine cascade is a low-pressure turbine cascade designed by MTU
Aero Engines, which has been extensively investigated in experimental and com-
putational studies [21–23],

The computations were performed for a downstream isentropic Mach number
M2,is = 0.59, a Reynolds number based on the downstream isentropic conditions
and on the blade chord Re2,is = 0.5 × 106, an inlet turbulence intensity Tu1 =
4.0%, and an inlet angles α1 = 37.7◦. The grid used for the computations is
shown in Figure 15 (left), consisting of 43200 hexahedral elements with quadratic
edges.

The Mach number contours at midspan for different polynomial orders (P1→3)
are depicted in Figure 15 (right), while Figure 16 shows a comparison of the
computed pressure coefficient distribution on the blade with experimental data
for different polynomial approximations. On the pressure side all solutions are
in good agreement with the experimental data. On the accelerating part of the
suction side (right side of Figure 16) the experimental data are in good agreement
with the Cp curve provided by the P

3 solution, while the curve for the lower
polynomial approximation is oscillating. In the rear part of the suction side there
is a small laminar separation bubble, which is not captured by the turbulence
model.

Fig. 15. T106A: mesh consisting of 43200 hexahedral elements with a quadratic rep-
resentation of the boundary (left) and Mach number contours for different polynomial
orders (right)

The comparison between the p-MG algorithm with the implicit smoother, p-
MG(LBE), and the implicit solver, LBE, in terms of the memory usage (Mem)
and the normalized CPU time (Time) needed to reach a converged solution is
now described. The implicit smoother was chosen because as demonstrated for
the previous testcase it guarantees the best performance in terms CPU time
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Fig. 16. T106A: comparison of the computed pressure coefficient distribution, Cp, on
the blade for different solution approximations (P1→3) with experimental data (left).
Detail of the Cp distribution in the rear part of the suction side

needed to reach a converged solution. The p-MG setting can be summarized as
follows:

• LBE smoother on each level, GMRES method (120 iteration, no-restart)
preconditioned with ILU(0) on each block;

• l = pmin, νc = 5;
• l = pmax, νf,1−2 = 2− 2;
• pmin < l < pmax, ν1−2 = 3− 3.

Figure 17 (left) shows a comparison of the convergence history (L2 norm of the
density residual) for the p-MG and the implicit solver as a function of the non
dimensional CPU time needed to reach a converged solution. Table 2 summarizes
performance for both strategies. The results show that the p-MG algorithm
outperforms the implicit scheme for every solution approximation, both in terms
of CPU time needed to reach a converged solution and memory requirement.
However the different memory requirement is only due to a different setting of
the GMRES parameters (the p-MG employs a small number of iteration and a
higher tolerance). In particular the decrease in term of memory usage is around
−35%, while the CPU time has been reduced by 79% and 82% for a P

2 and a P
3

solution, respectively. Also in this case to study the asymptotic behaviour of the
density residual L2 norm, the FMG solution with the LBE smoother has been
computed for a P

2 and P
3 spatial discretization, as depicted in Figure 17 (right

side).



DG Code MIGALE – Steady Problems 201

Work Units

R
es

id
u

al
s

0 50000 100000 150000 200000

-12

-10

-8

-6

-4

-2

0
P2 - pMG(LBE)
P3 - pMG(LBE)
P2 - LBE
P3 - LBE

Iterations

R
es

id
u

al
s

0 5 10 15 20 25 30

-12

-10

-8

-6

-4

-2

0

P2 - pMG(LBE)
P3 - pMG(LBE)

Fig. 17. T106A: convergence history (L2 norm of the density residual) versus normal-
ized CPU time for different polynomial solution approximations and strategy (left).
Convergence history (L2 norm of the density residual) versus MG cycles for a P

2→3

approximation (right)

Table 2. T106A: comparison of p-MG and implicit strategies performance. Pk is the
solution approximation, Mem the memory usage, ΔRAM the memory requirement re-
duction due to the use of different solution strategies, Time the normalized CPU time,
ΔCPU the computational time reduction due to the use of a different solution strategies
(Memory usage and CPU time of the implicit scheme are taken as reference)

Scheme P
k Mem [GB] ΔRAM Time [IU] ΔCPU

LBE 2 63 - 29994 -
p-MG(LBE) 2 44 −30.1% 6218 −79.2%

LBE 3 244 - 223776 -
p-MG(LBE) 3 150 −38.5% 38915 −82.6%

7 Conclusions

In this chapter we demonstrated the capability of the DG code MIGALE to pro-
vide high-order solutions for complex subsonic/transonic turbulent flows. The
potential of the high-order solver in the computation of three subsonic/tran-
sonic testcases (FA5, HOTIS and Rotor37) with very coarse meshes was shown,
obtaining results in good agreement with reference solutions and experimental
data. The progresses in terms of prediction capabilities and time integration
techniques achieved within the IDIHOM project were also assessed. In particu-
lar the advantages of the EARSM in the prediction of the pressure coefficient
distribution around a delta wing were demonstrated. Finally the efficiency of the
h- and p-multigrid technique with respect to an implicit solver were shown in
the computation of 2D and 3D turbulent subsonic testcases (L1T2, train-head,
T106A).
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Abstract. This chapter presents recent developments of a high-order
Discontinuous Galerkin (DG) method to deal with unsteady simulation
of turbulent flows by using high-order implicit time integration schemes.
The approaches considered during the IDIHOM project were the Im-
plicit Large Eddy Simulation (ILES), where no explicit subgrid-scale
(SGS) model is included and the DG discretization itself acts like a SGS
model, and two hybrid approaches between Reynolds-averaged Navier-
Stokes (RANS) and Large Eddy Simulation (LES) models, namely the
Spalart-Allmaras Detached Eddy Simulation (SA-DES) and the eXtra-
Large Eddy Simulation (X-LES). Accurate time integration is based on
high-order linearly implicit Rosenbrock-type Runge-Kutta schemes, im-
plemented in the DG code MIGALE up to sixth-order accuracy. Several
high-order DG results of both incompressible and compressible 3D tur-
bulent test cases proposed within the IDIHOM project demonstrate the
capability of the method.

Keywords: Discontinuous Galerkin, unsteady flows, Rosenbrock-type
Runge–Kutta schemes, ILES, hybrid RANS-LES, SA-DES, X-LES.

1 Introduction

In recent years, several approaches to the underresolved simulation of turbulent
flows have been proposed to deal with high-fidelity simulations of flow condi-
tions, like massively separated flows, that are poorly predicted by the Reynolds-
averaged Navier-Stokes (RANS) equations with first-moment closures.
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For not-too-high Reynolds number flows, some recent papers have shown that
the Implicit Large Eddy Simulation (ILES) approach seems well suited for a Dis-
continuous Galerkin (DG) discretization, due to the favourable dissipation and
dispersion properties of this numerical method. Governing equations of ILES do
not include any explicit sub-grid scale (SGS) model for the non-resolved tur-
bulent scales. On the other hand, for those high Reynolds number flows where
RANS models suffer from severe modelling limitations and Large Eddy Simu-
lation (LES) is still too computationally expensive or even impossible, hybrid
approaches between RANS and LES can play a significant role. In hybrid RANS-
LES approaches the RANS model is used very close to solid walls, where LES
would be prohibitively costly, while LES is performed in regions of separated
flow where larger eddies are properly resolved by the numerical solution.

In this work we present the main features of the implementation in the
DG code MIGALE, [7], of two hybrid RANS-LES models, namely the Spalart-
Allmaras Detached Eddy Simulation (SA-DES) model of Spalart et al., [52], and
the eXtra-Large Eddy Simulation (X-LES) model of Kok et al., [42]. In the SA-
DES approach the simulation switches between RANS and LES modes by simply
replacing the wall-distance parameter of the model with the minimum between
this distance and a mesh size representative of the LES filter width. In the X-LES
approach a composition of the two-equation TNT k-ω turbulence model, [41],
and a k-equation SGS model is used. Among other hybrid approaches, X-LES
has two attractive characteristics, i.e., the use in LES mode of a clearly defined
SGS model based on the k-equation and the independence of the wall distance,
which is an ambiguous parameter for complex geometries.

A high-order implicit time integration approach seems well suited to be cou-
pled with high-order DG space discretizations of hybrid RANS-LES models equa-
tions. In fact implicit methods can be very efficient in near wall RANS regions,
characterized by highly-stretched grids, and, if accurate enough, they are also
able to capture fine details of unsteady motions in LES regions farther from
walls, even using large time steps. Here we focus on accurate time integration
by means of high-order linearly implicit Rosenbrock-type Runge-Kutta schemes,
implemented in the code MIGALE up to sixth-order accuracy. The main advan-
tages of Rosenbrock schemes are that they have excellent stability properties, are
self-starting and can use variable time steps, and the Jacobian matrix needs to be
assembled and factored only once per time step. Other approaches to high-order
implicit time integration, partially developed within the IDIHOM project, have
been implemented in the DG code MIGALE and presented elsewhere, [31,48,49].

The equations of all models implemented in the DG code MIGALE are
discretized to the same high-order accuracy, in the framework of a DG dis-
cretization for hybrid type elements, based on hierarchical and orthonormal
polynomial basis functions, local to each element and defined in the physical
space, [6]. All implementations employ analytically derived Jacobian matrices,
which take full account of the dependence of the residuals on the unknowns and
on their derivatives, including the implicit treatment of lifting operators and of
boundary conditions.
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This work summarizes the progress, achieved within the IDIHOM project,
[40], on improved physical models and accurate time integration schemes imple-
mented in the DG code MIGALE, and demonstrates the ability of the code to
compute high-order unsteady flow solutions of several challenging test cases.

2 Governing Equations

In this section we review some details of the SA-DES and X-LES models imple-
mentation. Currently, the SA-DES model has been implemented in the incom-
pressible DG code MIGALE, while the X-LES model has been implemented in
the compressible version of the code. In the following, the two sets of governing
equations are presented in turn.

2.1 SA-DES Equations

The incompressible flow equations of a hybrid SA-DES formulation can be writ-
ten as

∂ui
∂xi

= 0, (1)

∂ui
∂t

+
∂

∂xj
(ujui) = −

∂p

∂xi
+

∂

∂xj

[
(ν + νt)

(
∂ui
∂xj

+
∂uj
∂xi

)]
, (2)

∂ν̃

∂t
+

∂

∂xj
(uj ν̃) =

1

σ

∂

∂xj

(
ξ
∂ν̃

∂xj

)
+ s, (3)

where the following definitions

νt = fv1 max (0, ν̃) , (4)

ξ =

{
ν(1 + χ) if χ ≥ 0

ν if χ < 0
, (5)

s =

⎧
⎨

⎩
cb1S̃ν̃ − cw1fw

(
ν̃
d̃

)2

+ cb2
σ

∂ν̃
∂xi

∂ν̃
∂xi

if χ ≥ 0

0 if χ < 0
, (6)

take account of possibly negative values of ν̃ and of χ = ν̃/ν. The set of closure
functions is then completed by the following definitions

S̃ = S +
ν̃

κ2d̃2
fv2, S =

√
2ΩijΩij , Ωij =

1

2

(
∂ui
∂xj

− ∂uj
∂xi

)
,

fv1 =
χ3

χ3 + c3v1
, fv2 = 1− χ

1 + χfv1
, fw = g

(
1 + c6w3

g6 + c6w3

)1
6

,

g = rr + cw2

(
r6r − rr

)
, r =

ν̃

S̃(κd̃)2
, rr=

{
min (r, rmax) if r ≥ 0

rmax if r < 0
,
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and model constants

cb1 = 0.1355, cb2 = 0.622, cw1 =
cb1
κ2

+
1 + cb2
σ

,

cv1 = 7.1, cw2 = 0.3, cw3 = 2,

σ =
2

3
κ = 0.41, rmax = 10.

In [52] the authors replaced the distance d from the nearest wall, introduced in
the original formulation, [53], by a modified distance d̃, that involves the length
scale CdesΔ and allows for DES computations, given by

d̃ = min (d, CdesΔ) . (7)

Here Cdes is a model constant equal to 0.65 and Δ is the largest spacing in the
coordinate directions in each grid cell, given by Δ = max (Δx, Δy, Δz). With
this modification the model reduces to the SA closure of the RANS equations
when d� Δ and to a SGS model when Δ� d.

The limitation on ν̃ avoids numerical instabilities due to negative values of
ν̃ produced by higher-order solutions near the edge of boundary layers, where
the ν̃ profile displays a sharp transition to the freestream value of ν̃, usually
close to zero. Other forms of limitation have been proposed in the literature
to address the issue of negative ν̃ values, see, e.g., [50, 51]. The approach here
outlined is on the lines of an analogous modification for the k equation in the
DG implementation of the k-ω model introduced by Bassi et al. in [10].

The modified function r, denoted by rr, accounts for the “realizability” con-
dition introduced by Crivellini et al. in [20]. According to the original SA for-
mulation, the function r was defined as r = l2/(κd)2, where l, a mixing length
inspired by the algebraic models, should be strictly positive. However, writing
the original r formulation as

r =
χ

S(κd)2

ν + χfv2 (χ)
,

it turns out that the function r can take negative values even if χ is positive.
This happens when fv2 is negative, i.e., when 1.003 ≤ χ ≤ 18.4 and S(κd)2/ν ≤
6.088. The modified definition of r consists in limiting to a maximum value
rmax = 10 both negative and large, positive, values of r. The reason for setting
an upper bound on r can be understood considering that r becomes negative
passing through a singular point where r → ±∞. However, the upper bound
on r practically does not affect the model behaviour since it was observed by
Spalart et al. in [53] that r > 1 only occurs in adverse pressure gradient regions
and then rarely it goes beyond r = 1.1.
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2.2 X-LES Equations

The compressible flow equations of a hybrid X-LES formulation can be written
as

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (8)

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = −

∂p

∂xi
+
∂τ̂ji
∂xj

, (9)

∂

∂t
(ρE) +

∂

∂xj
(ρujH) =

∂

∂xj
(uiτ̂ij − q̂j)− Pk +Dk, (10)

∂

∂t
(ρk) +

∂

∂xj
(ρujk) =

∂

∂xj

[
(μ+ σ∗μt)

∂k

∂xj

]
+ Pk −Dk, (11)

∂

∂t
(ρω̃) +

∂

∂xj
(ρujω̃) =

∂

∂xj

[
(μ+ σμt)

∂ω̃

∂xj

]
+ (μ+ σμt)

∂ω̃

∂xk

∂ω̃

∂xk

+ Pω −Dω + CD,

(12)

where the pressure, the turbulent and total stress tensors, the heat flux vector
and the limited values of eddy viscosity and of turbulent kinetic energy are given
by

p = (γ − 1)ρ

(
E − 1

2
ukuk

)
, (13)

τij = 2μt

(
Sij −

1

3

∂uk
∂xk

δij

)
− 2

3
ρkδij , (14)

τ̂ij = 2μ

(
Sij −

1

3

∂uk
∂xk

δij

)
+ τij , (15)

q̂j = −
(
μ

Pr
+

μt

Prt

)
∂h

∂xj
, (16)

μt = α∗ ρk

ω̂
, k = max (0, k) . (17)

Here γ is the ratio of gas specific heats, Pr and Prt are the molecular and
turbulent Prandtl numbers and

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
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is the mean strain-rate tensor. The production, destruction and cross-diffusion
terms in Eqs. (10), (11) and (12) are given by

Pk = τij
∂ui
∂xj

, (18)

Dk = β∗ρkω̂, (19)

Pω = α

[
α∗ ρ

eω̃r

(
Sij −

1

3

∂uk
∂xk

δij

)
− 2

3
ρδij

]
∂ui
∂xj

(20)

Dω = βρkeω̃r , (21)

CD = σd
ρ

eω̃r
max

(
∂k

∂xk

∂ω̃

∂xk
, 0

)
, (22)

where the closure parameters α∗, β∗, σ∗, α, β, σ, σd are those of Kok’s TNT k-ω
model, [41]. The hybrid X-LES formulation is based on a composite length scale,
l̃, deriving from the lk-ω̃ and lsgs length scales of the k-ω̃ and SGS models, given
by

lk-ω̃ =

√
k

eω̃r
, lsgs = C1Δ, (23)

where Δ is the SGS filter width and C1 = 0.05. The composite length scale l̃ is
then defined as

l̃ = min (lk-ω̃, lsgs) =
√
k min

(
1

eω̃r
,
C1Δ√
k

)
. (24)

For implementation convenience, the composite length scale l̃ can be equivalently
replaced by a composite specific dissipation rate ω̂ given by

ω̂ =

√
k

l̃
= max

(
eω̃r ,

√
k

C1Δ

)
. (25)

The implementation of Eqs. (11) and (12) follows the approach presented in [10],
where ω̃ = log(ω) is used in place of ω to obtain a better behavior near solid
walls and to guarantee the positivity of ω. The limited value k is used to deal
with possibly negative values of the turbulent kinetic energy. Furthermore, the
use of ω̃r instead of ω̃ indicates that ω̃ must fulfill suitably defined “realizability”
conditions for the turbulent stresses, which set a lower bound on ω̃. According to
the “slightly-rough-wall” boundary condition of Wilcox, [58], or to the popular
formula proposed by Menter, [46], finite values of ω̃ are prescribed at solid walls.
Inspired by these approaches and accounting for the polynomial degree k of the
numerical solution, we set at the wall the value ω̃w defined by the first k terms
of the Taylor series expansion of the analytical near-wall solution of ω̃ (with
ω̃w →∞) around a distance h, i.e.,

ω̃k
w = log

(
6νw

β (αkh)
2

)
, (26)
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where
αk = e−

∑k
n=1

1
n . (27)

In Eq. (26) h is set equal to the distance from the wall of the first cell centroid.
More details on the implementation can be found in [7].

3 The DG Discrete Setting

Let Th = {K} denote a mesh of the domain Ω ∈ R
d, d ∈ {2, 3} consisting of

non-overlapping arbitrarily shaped elements K such that

Ωh =
⋃

K∈Th

K. (28)

Following the idea to define discrete polynomial spaces in physical coordinates,
see, e.g., [8, 13–15,24, 30], we consider DG approximations based on the space

P
k
d(Th)

def
=

{
vh ∈ L2(Ω) | vh|K ∈ P

k
d(K), ∀K ∈ Th

}
, (29)

where k is a non-negative integer and P
k
d(K) denotes the restriction to K of the

polynomial functions of d variables and total degree ≤ k. To build a satisfactory
basis for the space (29) we rely on the procedure presented in [55], see also [6,23],
allowing to obtain orthonormal and hierarchical basis functions by means of the
modified Gram-Schmidt (MGS) algorithm. The starting set of basis functions
for the MGS algorithm are the monomials defined over each elementary space
P
k
d(K), K ∈ Th, in a reference frame relocated in the element barycenter and

aligned with the principal axes of inertia of K. For the sake of presenting the DG
discretization, we introduce the set Fh of the mesh faces Fh

def
= F i

h ∪ Fb
h, where

Fb
h collects the faces located on the boundary of Ωh and for any F ∈ F i

h there
exist two elements K+,K− ∈ Th such that F ∈ ∂K+ ∩ ∂K−. Moreover, for all
F ∈ Fb

h, nF denotes the unit outward normal to Ωh, whereas, for all F ∈ F i
h,

n−
F and n+

F are the unit outward normals to K+ and K−, respectively.
Since a function vh ∈ P

k
d(Th) is double valued over an internal face F ∈ F i

h,
we introduce the jump [[·]] and average {·} trace operators, that is

[[vh]]
def
= vh|K+n+

F + vh|K−n−
F , {vh} def

=
vh|K+ + vh|K−

2
, (30)

and consider them to act componentwise when applied to vector functions.
Finally, the DG discretization of second-order viscous terms employs the lift-
ing operators rF and r. For all F ∈ Fh, we define the local lifting operator
rF :

[
L2(F )

]d → [Pk
d(Th)]d, such that, for all v ∈

[
L2 (F )

]d,
∫

Ω

rF (v) · τhdx = −
∫

F

{τh} · vdF ∀τh ∈ [Pk
d(Th)]d. (31)

The global lifting operator r is then defined as

r (v)
def
=

∑

F∈Fh

rF (v) . (32)
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3.1 DG Discretization of the RANS-LES Equations

The hybrid RANS-LES equations can be written in compact form as

P(w)
∂w

∂t
+∇ · Fc(w) +∇ ·Fv(w,∇w) + s(w,∇w) = 0, (33)

where w ∈ R
m is the unknown solution vector of the m variables, the tensors

Fc ∈ R
m ⊗ R

d and Fv ∈ R
m ⊗ R

d are the inviscid and viscous flux functions
and d the number of dimensions. A common choice for compressible flows is
the set of m = 4 + d conservative variables wc = [ρ, ρui, ρE, ρk, ρω̃]

T while for
incompressible flows the set of m = 2 + d primitive variables wp = [p, ui, ν̃t]

T

is usually employed. With these choices the matrix P (w) ∈ R
m ⊗ R

m does not
depend on w and reduces to the identity matrix P = I in case of compressible
flows and to the difference between the identity and a single-entry matrix P =
I− J11 for incompressible flows.

Alternatives to the set of conservative variables for compressible flows were
investigated by several authors in the past. In [37] the sets of entropy vari-
ables and primitive variables based on pressure were shown to be well defined in
the incompressible limit of compressible flows, unlike the commonly used con-
servative variables or the primitive variables based on density. The primitive
variables (p,u, T ) are often preferred for low Mach number flows, [11, 17, 57],
and are among the possible choices to design a numerical scheme suited for both
compressible and incompressible flows, [36].

A proper choice of the dependent variables can also somewhat simplify the
implicit implementation of a method. In particular, the contributions to the
Jacobian matrix of viscous terms discretization, including the implicit treatment
of boundary conditions, are easier to derive using the set of (p,u, T ) variables.

As a variant to (p, T ) variables, we propose to employ their logarithms p̃ =

log(p) and T̃ = log(T ) as working variables, thus ensuring, by design, the positiv-
ity of all thermodynamic variables at the discrete level. We remark that, unlike the
equation for ω̃, we do not transform the governing equations, we only substitute
the variables (p, T ) with (ep̃, e ˜T ) and use a polynomial approximation for p̃ and T̃
in the DG discretization. We also remark that this approach certainly adds to the
robustness of high-order simulations of transonic flows, but is not to be intended
as a substitute for shock-capturing techniques. The transformation matrix P (w)
then reads

w =
[
p̃, u1, u2, u3, T̃ , k, ω̃

]T
, (34)

P (w) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρp̃ 0 0 0 ρ
˜T 0 0

ρp̃u1 ρ 0 0 ρ
˜Tu1 0 0

ρp̃u2 0 ρ 0 ρ
˜Tu2 0 0

ρp̃u3 0 0 ρ ρ
˜Tu3 0 0

ρp̃H + ρhp̃ − ep̃ ρu1 ρu2 ρu3 ρ˜TH + ρh
˜T 0 0

ρp̃k 0 0 0 ρ
˜Tk ρ 0

ρp̃ω̃ 0 0 0 ρ
˜T ω̃ 0 ρ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (35)
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where

ρ = e(p̃−
˜T), ê =

e
˜T

γ − 1
, (36)

hp̃ =
∂h

∂p̃

∣∣∣∣
˜T

= êp̃ +
ep̃

ρ
− ρp̃
ρ2
ep̃, h

˜T =
∂h

∂T̃

∣∣∣∣
p̃

= ê
˜T −

ρ
˜T

ρ2
ep̃, (37)

and assuming an ideal gas

ρp̃ =
∂ρ

∂p̃

∣∣∣∣
˜T

= ρ, ρ
˜T =

∂ρ

∂T̃

∣∣∣∣
p̃

= −ρ, (38)

êp̃ =
∂ê

∂p̃

∣∣∣∣
˜T

= 0, ê
˜T =

∂ê

∂T̃

∣∣∣∣
p̃

= ê, (39)

hp̃ = 0, h
˜T = ê

˜T −
ep̃

ρ
. (40)

By multiplying Eq. (33) by an arbitrary smooth test function v={v1, . . . , vm},
and integrating by parts, we obtain the weak formulation

∫

Ω

v ·
(
P (w)

∂w

∂t

)
dx−

∫

Ω

∇v : F (w,∇w) dx

+

∫

∂Ω

v ⊗ n : F (w,∇w) dσ +

∫

Ω

v · s (w,∇w) dx = 0, (41)

where F is the sum of the inviscid and viscous flux functions and n is the unit
vector normal to the boundary.

To discretize Eq. (41) we replace the solution w and the test function v with
a finite element approximation wh and a discrete test function vh, respectively,
where wh and vh belong to the space Vh

def
= [Pk

d(Th)]m. For each of the m
equations of system (41), and without loss of generality, we choose the set of
test and shape functions in any element K coincident with the set {φ} of NK

dof

orthogonal and hierachical basis functions in that element. With this choice each
component wh,j , j = 1, . . . ,m, of wh ∈ Vh can be expressed, in terms of the
elements of the global vectorW of unknown degrees of freedom, as wh,j = φlWj,l,
l = 1, . . . , NK

dof , ∀K ∈ Th. Then, the DG discretization of the hybrid RANS-LES
equations consists in seeking, for j = 1, . . . ,m, the elements of W such that

∑

K∈Th

∫

K

φiPj,k (wh)φl
dWk,l

dt
dx−

∑

K∈Th

∫

K

∂φi
∂xn

Fj,n (wh,∇hwh + r ([[wh]])) dx

+
∑

F∈Fh

∫

F

[[φi]]n F̂j,n

(
w±

h , (∇hwh + ηF rF ([[wh]]))
±
)
dσ

+
∑

K∈Th

∫

K

φisj (wh,∇hwh + r ([[wh]])) dx = 0, (42)
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for i = 1, . . . , NK
dof . In Eq. (42) repeated indices imply summation over the

ranges k = 1, . . . ,m, l = 1, . . . , NK
dof , n = 1, . . . , d.

The DG discretization of the viscous fluxes is based on the BR2 scheme,
proposed in [14] and theoretically analyzed in [16] and [2]. According to this
scheme, the viscous numerical flux is given by

F̂v

(
w±

h , (∇hwh + ηF rF ([[wh]]))
±
)

def
= {Fv (wh,∇hwh + ηF rF ([[wh]]))} (43)

where the stability parameter ηF is defined according to [2].
The inviscid numerical flux is computed from the solution of local Riemann

problems in the normal direction at each integration point on elements faces.
For compressible flows, we use either the exact Riemann solver of Gottlieb and
Groth, [32], or, alternatively, the van Leer flux vector splitting method as mod-
ified by Hänel et al., [35]. For incompressible flows, we employ the approach
proposed in [8], whereby the inviscid numerical flux is computed from the exact
solution of local Riemann problems suitably modified by means of an artificial
compressibility perturbation. According to the results of numerical experiments
presented in [8] and [20], the value of the artificial compressibility parameter
can be chosen in the range [0.01, 100], without affecting the numerical accuracy.
For the incompressible flow computations presented in this work it has been set
equal to 1.

The DG discretization is best suited for a weak enforcement of boundary
conditions, see, e.g., [9, 14]. This can be easily achieved by properly defining
boundary states which, together with the internal states, allow to compute the
numerical fluxes and the lifting operators for all F ∈ Fb

h. The boundary states
and their derivatives must be defined according to the boundary types and,
together with the internal states, enter in the Riemann solvers and ensure that
the computed numerical fluxes are consistent with the physical ones.

3.2 Accurate Time Integration

Numerical integration of Eq. (42) by means of suitable Gauss quadrature rules
leads to a system of nonlinear ODEs (or DAEs, for incompressible flows) that
can be written as

MP (W)
dW

dt
+R (W) = 0, (44)

where R (W) is the vector of residuals and MP (W) is the global block diagonal
matrix arising from the discretization of the first integral in Eq. (42). For the
sets of variables wc and wp, and using the set of orthogonal basis functions
outlined above, MP reduces to the identity matrix for compressible flows and
to a modified identity matrix with zeros in the diagonal positions corresponding
to the pressure degrees of freedom for incompressible flows. However, for sets of
variables different than wc, the transformation matrix P couples the degrees of
freedom of the variables wh within each block of MP, so that this matrix can
not be diagonal, even using a set of orthogonal basis functions.
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Implicit and accurate time integration of Eq. (44) can be efficiently performed
by means of linearly implicit Rosenbrock-type Runge-Kutta schemes that can
be written as

Wn+1 = Wn +

s∑

j=1

bjKj , (45)

(
I

Δt
+ γJ̃

)n

Ki = −R̃

⎛

⎝Wn +
i−1∑

j=1

αijKj

⎞

⎠− J̃n
i−1∑

j=1

γijKj , i = 1, . . . , s,

(46)
where, omitting the dependence on W for notational convenience,

J =
∂R

∂W
, R̃ = M−1

P R, J̃ =
∂R̃

∂W
= M−1

P

(
J− ∂MP

∂W
R̃

)
, (47)

and bi, αij , γij are real coefficients. The Jacobian matrix J of the DG space
discretization is computed analytically and fully accounts for the dependence of
the residuals on the unknown vector and its derivatives including the implicit
treatment of lifting operators and of boundary conditions. A direct implementa-
tion of Eq. (46) entails a matrix-vector product J̃n

∑i−1
j=1 γijKj from the second

stage on. In practice this can be avoided by noting that Eq. (46) can be reduced
to the following equivalent formulation

Wn+1 = Wn +

s∑

j=1

mjYj , (48)

(
I

γΔt
+ J̃

)n

Yi = −R̃

⎛

⎝Wn +

i−1∑

j=1

aijYj

⎞

⎠+

i−1∑

j=1

cij
Δt

Yj , i = 1, . . . , s, (49)

where, for i = 1, . . . , s,

Ki =
1

γ
Yi −

i−1∑

j=1

cijYj . (50)

The coefficients of the transformed scheme are given by

(m1, . . . ,ms) = (b1, . . . , bs)Γ
−1, (aij) = (αij)Γ

−1, (cij) = γ−1Is − Γ−1,

where Γ−1 def
= (γij)

−1 denotes the inverse of the matrix formed with the co-
efficients (γij) of the schemes, see [34]. In this work we consider the second-
order two-stage scheme of Iannelli and Baker, [39], the third-order three-stage
ROS3P scheme of Lang and Verwer, [45], the fourth-order six-stage RODASP
scheme of Steinebach, [54], and the fifth-order eight-stage RODAS5(4) scheme of
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Di Marzo, [22]. Finally, in order to avoid the product M−1
P J in Eq. (47), the

actual implementation of Eq. (49) in the DG code MIGALE reads

(
MP

γΔt
+ J− ∂MP

∂W
R̃

)n

Yi =

−Mn
P

⎡

⎣R̃

⎛

⎝Wn +

i−1∑

j=1

aijYj

⎞

⎠−
i−1∑

j=1

cij
Δt

Yj

⎤

⎦ , i = 1, . . . , s. (51)

A matrix-explicit or a less memory-demanding matrix-free, [19], GMRES algo-
rithm can be used to actually solve Eq. (51) at each time step. In both cases
system preconditioning is required to make the convergence of the GMRES solver
acceptable in problems of practical interest. For this purpose, we usually employ
the block Jacobi method with one block per process, each of which is solved
with ILU(0), or the Additive Schwarz Method (ASM). In our codes we rely
on PETSc, [5], for the linear solvers and to manage distributed arrays and the
communication among them.

4 Numerical Results

The purpose of this section is to verify the design order of convergence of the
Rosenbrock time integration schemes considered in Sec. 3.2 and to present the
results of several unsteady turbulent flow computations obtained by using such
schemes coupled to the high-order DG space-discretized ILES, SA-DES and X-
LES models.

4.1 Convection of an Isentropic Vortex

The accuracy of the Rosenbrock time integration schemes was assessed on the
simple test case of an inviscid vortex transport by uniform flow, [38]. The isen-
tropic vortex is defined by velocity and temperature perturbations of a uniform
flow, with pressure, temperature and density equal to 1 and velocity components
equal to √γ, given by

δu1 = − α

2π
(y − y0) e

φ(1−r2), (52)

δu2 =
α

2π
(x− x0) e

φ(1−r2), (53)

δT = −α
2 (γ − 1)

16φγπ2
e2φ(1−r2), (54)

where γ = 1.4 is the ratio of specific heats, φ = 1
2 and α = 5 are parameters that

determine the vortex strength, r is the distance of point (x, y) from the vortex
center (x0, y0), placed at (5, 5) in a periodic domain [0, 10] × [0, 10] at time
t0 = 0. The exact solution, shown in Fig. 1 at t0 = 0, can be easily computed



Time Integration in Code MIGALE - Unsteady Problems 217

(a) Mach, t0 = 0 (b) pressure, t0 = 0

Fig. 1. Isentropic vortex - Initial flow field, Mach and pressure contours, P6 solution

(a) pressure error vs. time step (b) pressure error vs. WU

Fig. 2. Isentropic vortex - L2 pressure error norm vs. time step and Work Units (WU),
P
6 solution (solid lines Rosenbrock schemes, dashed lines BDF and MEBDF schemes).

Notations BDFx and MEBDFx denote schemes with x-th order of convergence.

by means of the perturbation functions of Eqs. (52–54) and assuming isentropic
flow conditions throughout the domain.

The design order of convergence was verified by integrating in time, with
smaller and smaller time steps, a very high-order DG space-discretized P

6 so-
lution defined on a uniform 50×50 quadrilateral grid. The results obtained by
using several Rosenbrock schemes were compared with those of the second-order
Backward Differentiation Formulae (BDF) and third- and fourth-order Modified
Extended BDF (MEBDF) schemes, [31, 49].
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The GMRES parameters used with the Rosenbrock schemes were nrst = 120,
nmax = 240, tolr = 10−14, where nrst is the number of Krylov subspace vectors,
nmax is the maximum number of iterations and tolr is the convergence tolerance
on the relative residual norm of the linear system. We did not attempt to opti-
mize the GMRES parameters, but, according to our experience on this test case,
we can say that tolr could have been safely set to higher values without affecting
the order of convergence, while significantly reducing the computational time.
Instead, the iterative solution strategy of the BDF and MEBDF schemes was
empirically optimized. For such schemes the convergence tolerance of the GM-
RES algorithm was set to a quite large value tolr = 10−2, while the convergence
tolerance of the nonlinear systems, to be solved at each time step by means of
the Newton method, was found to strongly affect the efficiency and accuracy of
the schemes and needed to be carefully adjusted to the time step size and to the
order of the schemes, [31, 49].

The L2 pressure error norm of the solutions computed with the various time
integration schemes is shown in Fig. 2a as a function of the time step and in
Fig. 2b as a function of the computational time measured in terms of Work
Units (WU), where WU = twallNcores/tTB, twall is the wall-clock time of a
simulation run on Ncores cores and tTB is the reference TauBenchmark time of
the hardware. Comparing schemes of the same order, the errors of Rosenbrock
schemes are lower, for a given time step size. Except for the third-order scheme,
Rosenbrock schemes are also faster, for a given error level.

The results of this test case show that higher-order time integration schemes
are much more efficient than lower-order ones if the required accuracy of time
integration is high. This makes such schemes preferable to address complex and
computationally demanding simulations of turbulent flows. Rosenbrock schemes
have been here preferred to BDF and MEBDF schemes due to their greater
flexibility, accuracy and efficiency. A thorough comparison of the schemes here
considered and also of other high-order time integration schemes is the subject
of ongoing work.

4.2 Transitional Flow around the SD7003 Airfoil

This test case is about the ILES of the transitional flow around the Selig-Donovan
(SD) 7003 airfoil, one of the test cases proposed within the “International Work-
shop on High-Order CFD Methods”, [56]. As ILES does not include any explicit
SGS model, the flow model equations are simply the compressible Navier-Stokes
equations, see [12].

The farfield conditions of this test case are M∞ = 0.1, α = 8◦ and Rec =
60000. The unsteady flow is characterized by laminar separation, the formation
of a transitional shear layer followed by turbulent reattachment on the suction
side of the airfoil. The computational grid was obtained by agglomerating the
hexahedral elements of a fine structured linear grid to form a mesh with 20064
50-node hexahedral elements and quartic edge representation and first cell height
y/c = 0.00029, see Fig. 3a.
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For this test case, the time integration scheme was the highly accurate fifth-
order eight-stage RODAS5(4) scheme of Di Marzo, [22]. Solutions were advanced
in time with a time step equal to a fraction f = 5×10−3 of the convective time,
i.e., Δt = f (c/U∞). A p-sequence of lower-order, not fully statistically converged
solutions was employed to initialize the P

3 simulation. Presenting the results of
this test case, by “mean” we mean “averaged both in time and spanwise direction”.

Fig. 4 displays the contours of mean pressure coefficientCp and of x-component
of velocity of the P4 solution. Mean skin friction cf and pressure coefficient distri-
butions on the airfoil are shown in Fig. 5, while the mean drag, lift and moment
coefficients of the airfoil, are reported in Table 1.

For the mean P
4 solution, the laminar separation bubble on the suction side

of the airfoil, along with the position of the separation and reattachment points,
are shown in Fig. 3b. The mean velocity profiles of Fig. 6 highlight the quite
important effect of increasing the accuracy of the DG space discretization and
suggest that a P

5 solution would be useful to corroborate the accuracy of the
averaged P

4 results.
For the P

4 solution the instantaneous Q = 500 isosurface of Q-criterion
and contours of the spanwise-averaged Reynolds stress <u′1u′1> are displayed
in Fig. 7. The results presented here are in reasonable agreement with those of
Garmann and Visbal, [29], obtained using sixth-order compact finite-differencing
and filtering.

Table 1. SD7003 - Mean aerodynamic coefficients

CD CL Cm

P
3 0.0423 0.9615 -0.0233

P
4 0.0454 0.9534 -0.0224

Fig. 3. SD7003 - Computational mesh with 20064 50-node hexahedral elements and
detail of the laminar separation bubble on the suction side of the airfoil, P4 solution
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Fig. 4. SD7003 - Contours of mean pressure coefficient and x-component of velocity,
P
4 solution

Fig. 5. SD7003 - Mean Cp and cf distributions, P3 and P
4 solutions

4.3 DESider Bump Water Tunnel Experiment (A.11a)

This test case is about the SA-DES of the water tunnel experiment known as
DESider bump, proposed in the framework of the DESider European Project
on hybrid RANS-LES modelling, [33]. The water tunnel experiment was car-
ried out at ONERA in order to investigate flow separation, reattachment and
post-reattachment recovery in a highly three-dimensional configuration, [4]. De-
tailed information about this configuration can be found in the DESider Project
website [21].

The test case conditions are defined by the Reynolds number ReL = 4×106,
based on a reference length L = 1m and a reference velocity U = 4m/s.
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Fig. 6. SD7003 - Profiles of mean x-component of velocity at chordwise locations x/c =
{0.1, . . . , 0.9}, P3 and P

4 solutions

Fig. 7. SD7003 - Instantaneous Q = 500 isosurface of Q-criterion and contours of
spanwise-averaged Reynolds stress <u′

1u
′
1>, P4 solution

The experimental velocity profile was prescribed at inflow and the average static
pressure at outlet. The high-order computational mesh, with 29700 20-node hex-
ahedral elements and quadratic edge representation, was obtained by agglom-
erating a linear block-structured grid provided by ONERA. The surface grid is
shown in Fig. 8a.

As a first step, the time integration scheme used here was the second-order,
two-stage scheme of Iannelli and Baker, [39], with a time step Δt = 10−3. This
scheme was used to advance in time the SA-DES P

3 solution, starting from a
fully converged RANS-SA P

3 steady solution. Fig. 9 shows the instantaneous and
steady velocity contours of the SA-DES and RANS-SA P

3 solutions, respectively.
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Figs. 8b and 10a display the pressure isosurfaces and a λ2-criterion isosurface
coloured with pressure, respectively. The time-averaged velocity profiles shown
in Fig. 10b indicate that the predicted separation region around x = 0.35m is
significantly smaller than in the experiments. This result, however, is in agree-
ment with the findings of the DESider project. Also a much more resolved X-LES
simulation by Kok et al., [44], performed on a structured grid with 647520 el-
ements using a fourth-order finite volume method, predicted similar velocity
profiles even if the turbulent structures were, of course, much finer than those
found here.

The main result of this test case was the demonstration of the hybrid SA-
DES approach in the framework of our DG method for incompressible flows.
More accurate, both in space and time, computations are clearly needed to
improve the resolution of the preliminary solutions presented here. Nevertheless,
the reasonably good agreement of the time-averaged velocity profiles with those
predicted by more resolved simulations is very promising.

(a) surface grid (b) pressure isosurfaces

Fig. 8. DESider bump - Surface grid and instantaneous pressure isosurfaces, P3 solution

Fig. 9. DESider bump - Instantaneous and steady velocity contours, SA-DES and
RANS-SA P

3 solutions
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(a) λ2 isosurface (b) time-averaged streamwise velocity

Fig. 10. DESider bump - Instantaneous λ2-criterion isosurface coloured with pressure
and time-averaged streamwise velocity profiles on the spanwise midplane at positions
x = {0, 0.15, 0.35, 0.925} along the channel, P3 solution

4.4 Vortical Flow over the VFE-2 Delta Wing (U.1a)

This test case deals with the X-LES of the flow around the VFE-2 (sharp edge)
delta wing geometry of Chu and Luckring, [18], thoroughly investigated exper-
imentally by Furman and Breitsamter, [25–28]. The farfield conditions of this
test case are M∞ = 0.07, α = 23◦ and Remac = 1000000, a flow regime for which
vortex breakdown occurs.

The high-order computational mesh, with 98049 50-node hexahedral elements
and quartic edge representation, was obtained by agglomerating a linear block-
structured grid provided by J. C. Kok from NLR. A detail of the wall surface
mesh is shown in Fig. 11a. The time integration scheme used here was the third-
order, three-stage ROS3P scheme of Lang and Verwer [45]. The high-order P

3

simulation was started from the last, not fully statistically converged, solution of
a p-sequence of lower-order solutions. A constant filter width Δ = 5×10−6 was
used in this simulation. According to the experience of other IDIHOM partners,
this is quite a small value, which was needed in order to ensure that most of the
flow field on the upper side of the wing were computed in LES mode.

Compared to the results, not shown here, of Kok et al., [43,47], the picture of
the downstream resolved turbulence looks reasonable and also the vortex break-
down seems to be captured by the simulation, see Figs. 12a and 13. However,
the picture of the flow near the apex of the wing is not fully satisfactory, as
the main vortex appears to start somewhat downstream of the apex along the
wing leading edge, see Fig. 11b. Close to the symmetry axis, a small vortex,
clearly visible in Fig. 12b, starts around x/cr = 0.2 and is responsible for the
large disagreement between computed and experimental Cp distributions shown
in Fig. 14.
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The time-averaged drag and lift coefficients (excluding the sting), CD =
0.3650 and CL = 0.9169, of our not fully statistically converged solution turned
out roughly 6% higher than those obtained by other IDIHOM partners, i.e., NLR
and CA, [1, 47]. Such discrepancies with respect to reference solutions certainly
need further investigation in order to understand the effect on the solution of
X-LES parameters like the filter width. Nevertheless we can state that, from
a numerical point of view, the proposed high-order implicit time integration
schemes coupled with a high-order DG space discretization are well suited to
the X-LES approach.

(a) surface mesh detail (b) time-averaged Cp

Fig. 11. VFE-2 - Wall surface mesh and time-averaged pressure coefficient contours,
P
3 solution

(a) instantaneous Q = 2.5 isosurface (b) time-averaged Q = 2.5 isosurface

Fig. 12. VFE-2 - Instantaneous and time-averaged Q = 2.5 isosurface of Q-criterion
coloured with vorticity magnitude. Values made dimensionless with the freestream
velocity and the mean aerodynamic chord, P3 solution.
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Fig. 13. VFE-2 - Resolved turbulent kinetic energy at different locations along the
root chord cr, P3 solution

4.5 Vortical Flow over the FA5 Model (A.2a)

This test case is about the flow around a 1:15 model of a delta-wing type generic
fighter aircraft, formerly considered in the DESider, [21], and ATAAC, [3], Euro-
pean research projects. The farfield conditions of this test case are M∞ = 0.125,
α = 15◦ and Reynolds number per meter Rem = 2.78×106. The engine in-
take and exhaust boundaries where treated as outflow and inflow boundaries,
respectively, with the prescribed pressure at outflow and the prescribed total
pressure and total temperature at inflow set equal to the freestream values. The
engine intake boundary condition corresponds to a flow-through condition with
MFR = 1.0.

The X-LES solution was computed up to P
3 polynomial approximation on a

grid with 164636 50-node hexahedral elements and quartic edge representation.
The time integration scheme used here was the third-order, three-stage ROS3P
scheme of Lang and Verwer, [45]. A constant filter width Δ = 5×10−6 was used
in this simulation.
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Fig. 14. VFE-2 - Time-averaged pressure coefficient distribution at different locations
along the root chord cr, P3 solution

Fig. 15. FA5 - Time-averaged Mach contours and time-averaged Q-criterion isosurface
coloured with Cp, P3 solution
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Fig. 15, showing the time-averaged Mach contours and a time-averaged Q-
criterion isosurface coloured with the pressure coefficient, appears to confirm
the potential of the proposed approach to a high-order X-LES on very com-
plex geometries. The solution could not be run until statistical convergence but,
again, the numerical approach turned out to be both robust and accurate even
advancing the solution in time with quite large time steps.

5 Conclusions

An implicit approach to high-order time integration, coupled with high-order DG
space discretization, seems to be well suited for the numerical solution of those
flow models that are currently receiving much attention by the CFD community
for the simulation of underresolved turbulent flows.

In this work we focused on high-order linearly implicit Rosenbrock-type Runge-
Kutta schemes, implemented in the code MIGALE up to sixth-order accuracy,
applied to the time-accurate integration of the DG space-discretized ILES, SA-
DES and X-LES models. The temporal order of accuracy of Rosenbrock schemes
was assessed on a simple test case, with the result of an increasingly higher effi-
ciency of higher order schemes for a given absolute error relative to the exact so-
lution. When applied to ILES, SA-DES and X-LES models, Rosenbrock schemes
proved to be numerically stable and accurate also for large time steps, providing
solutions that appear in general good agreement with reference results.

Ongoing work is devoted to a thorough validation of our high-order space- and
time-accurate DG method for ILES and RANS-LES computations of reference
test cases available in the literature.

Acknowledgements. This work was carried out within the EU FP7 IDIHOM
project. The authors thank Prof. Dr. Norbert Kroll for providing access to the
HPC facilities at DLR during IDIHOM project and Dr. Johan C. Kok for valu-
able comments and suggestions concerning X-LES validation and for providing
the VFE-2 computational grid.
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Abstract. Linear and non-linear Residual Distribution schemes for the
discretization of the RANS equations are presented. Non-linear schemes
are particularly suited for the discretization of transonic flows due to
their capacity to give a monotone approximation of discontinuous solu-
tions without the necessity to add artificial viscosity. A non-linear LU-
SGS solver is considered to construct a robust implicit solver for the
discretization of two and three-dimensional problems.

Keywords: Residual Distribution, turbulence modeling, implicit
scheme.

1 Introduction

Residual Distribution (RD) schemes have been used for long time for the dis-
cretization of advective problems, like the Euler equations for example. RD meth-
ods, being based on a continuous approximation of the solution, introduce less
degrees of freedom (DoFs) than high-order discontinuous methods. At the same
time, for a compact stencil, they easily give an optimal order of accuracy for the
advective terms. Furthermore, non-linear RD schemes are naturally able to give
a monotone approximation of discontinuous solutions without the necessity to
add artificial viscosity or using complex shock capturing approaches.

The extension of RD methods to advection-diffusion problems has always been
less clear. Recently, a generally strategy for an accurate discretization of diffusive
terms with the RD framework has been proposed [3, 7]. The approach relies on
an accurate reconstruction of the gradient of the numerical solution in order to
preserve the overall accuracy of the numerical scheme in advective and diffusive
limits, and for the whole spectrum in between.

In this work linear and non-linear RD schemes are applied to the discretization
of the steady RANS equations with the Spalart-Allmaras turbulence model at the
second and third order of accuracy. Numerical results clearly show the benefit of
using high-order approximation to get grid independent solutions with a smaller
number of DoFs than that required by second-order approximation.

c© Springer International Publishing Switzerland 2015 231
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2 Governing Equations

The compressible Reynolds Averaged Navier-Stokes equations coupled with the
one equation Spalar-Allmaras turbulence model read

∂u

∂t
+∇· fa(u)−∇· fv(u,∇u) = S(u,∇u) (1)

with the vectors of the conservative variables u, the advective and the diffusive
fluxes defined as follows

u =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

m

Et

μ�
t

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, fa(u) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m

m⊗m

ρ
+ P I

(
Et + P

)m
ρ

μ�
t

m

ρ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, fv(u,∇u) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

S

S · m
ρ
− q

η

σa
∇
(
μ�
t

ρ

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ρ, m, Et and μ�
t denote the density, momentum, total energy per unit

of volume and the turbulent working variable of the Spalar-Allmaras equation,
respectively. The pressure P and the temperature T are given by the equations
of state for the ideal gas. The stress tensor S is defined as follows

S = −2

3
(μ+ μt)(∇· v)I+ (μ+ μt)(∇Tv +∇v),

where v is the velocity vector, I is the identity matrix, μ and μt are the fluid
dynamic viscosity and the eddy viscosity, respectively. The laminar viscosity is
computed via the Sutherland law, while the eddy viscosity is computed according
to the Spalart-Allmaras model as μt = μ�

t fv1 where

fv1 =
χ3

χ3 + c3v1
, with χ =

μ�
t

μt
.

In the diffusive flux, the following definition has been used η = μ+ μ�
t .

The heat flux q is computed by the means of the Fourier law

q = −(κ+ κt)∇T

where κ, κt are, respectively, the laminar and the eddy thermal conductivity,
which are computed using the Prandtl law, namely

κ =
cpμ

Pr
and κt =

cpμt

Prt
,

where cp is the specific heat at constant pressure, Pr and Prt are the laminar
and the turbulent Prandtl numbers. They are set to be Pr = 0.72 and Prt = 0.9,
respectively.
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The source term of the RANS equations is defined as S(u,∇u)=(0,0, 0, SSA)
T,

with SSA the source term of the Spalart-Allmaras equation. In the actual im-
plementation of the Spalart-Allmaras equation, two modifications have been
adopted which have shown to be very effective in improving the robustness of
the numerical scheme. The first modification consists in replacing the variable χ
with the following function [8]

ψμ�
t
=

{
0.05 log

(
1 + e20χ

)
, χ ≤ 10,

χ, χ > 10,

it has the role to deactivate the production and the destruction terms of the
turbulence model equation when μ�

t becomes negative. The second modification
re-defines the source term as follows

SSA =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cb1ω̂μψμ�
t
− ρcw1fw

(
μψμ�

t

ρ dmin

)2

+
1

σSA
ρcb2

∥∥∥∥∇
(
μ�
t

ρ

)∥∥∥∥
2

, χ > 0,

cb1ω̂μψμ�
t
− ρcw1fw

(
μψμ�

t

ρ dmin

)2

χ ≤ 0,

(2)

and the different functions involved in the Spalart-Allmaras equation read

ω̂ =

⎧
⎪⎪⎨

⎪⎪⎩

‖ω‖+ ω̄, ω̄ > −cv2‖ω‖,

‖ω‖+
‖ω‖

(
c2v2‖ω‖+ cv3ω̄

)

(cv3 − 2cv2)‖ω‖ − ω̄
, ω̄ ≤ −cv2‖ω‖,

η = μ(1 + ψμ�
t
), ω̄ =

μψμ�
t
fv2

ρ k2 d2min

, fv1 =
ψ3
μ�
t

ψ3
μ�
t
+ c3v1

, fv2 = 1−
ψμ�

t

1 + ψμ�
t
fv1

,

fw = g

(
1 + c6w3

g6 + c6w3

)1
6

, g = r + cw2

(
r6 − r

)
, r =

μψμ�
t

ρ ω̂ k2 d2min

,

where ‖ω‖ is the magnitude of the vorticity vector, dmin is the distance to the
nearest wall, cb1 = 0.1355, σSA = 2/3, cb2 = 0.622, k = 0.41, cw1 =

cb1
k2

+

(1 + cb2)

σSA
, cw2 = 0.3, cw3 = 2, cv1 = 7.1.

Using the fact that the viscous flux is homogeneous with the respect of the
gradient of the conservative variables, it is useful to re-write the viscous flux as
follows

fv(u,∇u) = K(u)∇u.

3 RD Space Discretization

The computational domain Ω is discretized with Ne non-overlapping elements
with characteristic length h, the set of all the elements is denoted by Eh, the
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list of the DoFs is denoted by Nh, and the total number of DoFs is Ndof . The
solution is approximated on each element by k-th order polynomials which are
assumed to be continuous within the elements and on the faces of the elements.
If Lagrangian shape functions are used, the approximated solution uh can be
written as

uh(x) =
∑

i∈Nh

ψi(x) ui, x ∈ Ω,

with ui the numerical solution at the generic DoF i. The approximated solution,
will give rise to a residual on each element e, namely

Φe
(
uh,∇uh

)
=

∫

Ωe

(
∇· (fa(uh

)
− fv(uh,∇uh)

)
− S(uh,∇uh)

)
dΩ (3)

The integral quantity Φe
(
uh,∇uh

)
is called total residual of the element e. In

practice, the total residual is never computed as reported in Eq. (3), the volume
integral is transformed instead into a surface integral by the means of the diver-
gence theorem. This procedure is legitimate for the divergence of the advective
flux, since the numerical solution by definition is continuous across the face of
two neighbor elements, however, in handling the divergence of the viscous flux
one has to cope with the fact that the normal component of gradient of the
numerical solution is discontinuous across the face of two adjacent elements.
The continuity of the normal flux across the element boundary is one of the key
arguments in [6] to show the consistency of the numerical scheme with respect
to the original PDE. One way to overcome this difficulty would be to introduce
numerical flux for the viscous contribution, in the spirit of [2], leading to the
introduction of additional parameters that might be difficult to understand.

Suppose, now, that a unique value of the gradient of the numerical solution
is available at each DoF, the gradient can be interpolated with the same shape
functions used for the solution, and the total residual on the element can be
written as follows

Φe =

∮

∂Ωe

(
fa
(
uh
)
− fv(uh, ∇̃uh)

)
· n d∂Ω −

∫

Ωe

S(uh,∇uh) dΩ

=

∮

∂Ωe

(
fa
(
uh
)
−K

(
uh
)∇̃uh

)
· n d∂Ω −

∫

Ωe

S(uh,∇uh) dΩ,

(4)

where ∇̃uh is the interpolated gradient of the numerical solution, which is now
continuous on the faces of the elements. Recovering the gradients at each DoF,
with the same order of accuracy of the solution, is extremely important in order
to preserve the overall accuracy of the numerical scheme, as will be showed later.

In order to handle only nodal values, the total residual is first distributed, in
some way, to the DOFs of the element as follows

Φe
i = βe

i

(
uh
)
Φe

(
uh, ∇̃uh

)
, ∀i ∈ N e

h , (5)

where N e
h is the list of the DoFs of the element e and βe

i are the distribution
coefficients, which can be in general function of uh. To obtain an equation for



High-Order, Linear and Non-linear RD Schemes 235

each nodal value of the numerical solution, the following relations are written
for each DoF ∑

e∈Eh,i

Φe
i = 0, ∀i ∈ Nh, (6)

where Eh,i is the set of the elements which share the DoF i. The previous relations
define a set of non-linear equations that must be solved for the nodal values of
the solution [ui]i=1,..., Ndof

.

3.1 Linear and Non-linear Schemes

The linear scheme proposed in this work is the extension to the integral formu-
lation of the classical Ni’s Lax-Wendroff scheme [9]. The distributed residual, for
a generic DoF i of the element e, can be written as follows

Φe,LW
i =

Φe

Ne
dof

+

∫

Ωe

A · ∇ψiΞA · ∇uh dΩ, (7)

where Ξ is a scaling matrix which is taken as

Ξ =
1

2
|Ωe|

⎛

⎝
∑

i∈N e
i

Rni(ū)Λ
+
ni
(ū) Lni(ū)

⎞

⎠
−1

where ū is the arithmetic average of the conservative variables on the element,
Rn, Ln are respectively the matrices of the right and left eigenvectors along
the direction of the generic vector n, and Λn = diag(λn) is the corresponding
diagonal matrix of the eigenvalues. The operator (·)+ selects only the positive
values and sets the negative ones to zero. The vector ni is taken as follows

ni =
1

Ndim

∫

Ωe

∇ψi dΩ,

such that it has the dimensions of a length (surface) in two (three) spatial di-
mensions.

Non-linear schemes are needed to combine the non-oscillatory behavior with
the higher-order discretization. The basic idea to construct a non-linear scheme is
to start with a first-order, monotone scheme, and to map its distributed residuals
onto a set of positive and non-linear residuals [1]. To see in practice how to
construct a non-linear scheme, consider the first-order accurate and positive
Rusanov’ scheme (also know as Lax-Friedrichs scheme) defined as

Φe,Rv
i =

1

Ne
dof

Φe +
1

Ne
dof

αe
∑

j∈N e
h

j �=i

(ui − uj),

with αe taken as
αe = max

j∈N e
h

|λnj | > 0.



236 R. Abgrall and D. De Santis

In the next step, the distribution coefficients of the low-order scheme are mapped
into non-linear bounded distribution coefficients by the means of a non-linear
map. As described in [1], the mapping for a system of equations is constructed
in the characteristic space, consequently the distributed and the total residuals
are first rewritten as

Φe,�
i = LnΦ

e,Rv
i and Φe,� =

∑

i∈N e
h

Φe,�
i ,

where the mean fluid velocity vector on the element is used as direction vector for
the computation of the eigenvectors. The distributed high-order residuals are ob-
tained by applying a non-linear mapping to the original unbounded distribution
coefficients, βe,�

i = Φe,�
i /Φe,�. The map is constructed as follows

β̂e,�
i =

(
Φe,�

i

Φe,�

)+

∑

j∈N e
h

(
Φe,�

j

Φe,�

)+ ,

which corresponds to the scalar PSI limiter. The limited residual in the charac-
teristic space is firstly computed as follows

Φ̂e,�
i = β̂e,�

i Φe,�,

and finally, the high-order distributed residuals are projected back onto the phys-
ical space: Φ̂e

i = RnΦ̂
e,�
i .

The use of a central scheme, like the Rusanov’ scheme, in combination with
the limiting technique, produces undamped spurious modes and a poor iterative
convergence to the steady state solution [1], due to the fact that no upwind
mechanism is included. The cure to this problem consists in adding a filtering
term by means of a streamline dissipation term

Φ̂e,Rv
i = Φ̂e

i + ε e
h(uh)

∫

Ωe

A · ∇ψiΞA · ∇uh dΩ, (8)

where

Ξ =
1

2
|Ωe|

⎛

⎝
∑

i∈N e
h

Rni(ū)Λ
+
ni
(ū) Lni(ū)

⎞

⎠
−1

,

and ε e
h(uh) is a smoothness sensor which assures that the filtering term is added

only in the smooth regions of the solution, namely εeh(uh) ∼ 1 in smooth regions
and εeh(uh) ∼ 0 near discontinuities [5].
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As described in [4], an improved version of the previous scheme takes into
account the difference between the reconstructed and the internal gradient on
the element, namely

Φe,LW
i =

Φe

Ne
dof

+

∫

Ωe

A · ∇ψiΞ
(
A · ∇uh −∇· (K∇̃u

))
dΩ

+

∫

Ωe

K∇ψi ·
(
∇uh − ∇̃uh

)
dΩ

Φ̂e,Rv
i = Φ̂e

i + ε e
h(uh)

∫

Ωe

(
A · ∇ψi −K∇ψi

)
Ξ
(
A · ∇uh −∇· (K∇̃uh

))
dΩ

+

∫

Ωe

K∇ψi ·
(
∇uh − ∇̃uh

)
dΩ

3.2 Gradient Recovery Strategies

As explained in the previous Section, one has to assume that a continuous value
of the gradient of the numerical solution is available on the faces of the ele-
ments. The strategy adopted here to achieve this goal consists in recovering the
gradients at every DoF of the element, then the nodal values of gradients are
interpolated with the Lagrangian shape functions. It is evident that the gradient
reconstruction represents a key point to get a higher-order of accuracy; on the
other hand the computational effort in the gradient reconstruction should be as
limited as possible.

In reference [4] different reconstruction strategies were considered, and it was
found that the so-called Super-convergent Patch Recovery method proposed by
Zienkiewicz and Zhu [14, 15] (SPR-ZZ) offers the possibility to reconstruct the
gradients with the same order of accuracy of the solution, without spoiling the
compactness of the numerical scheme. For sake of clarity this method is briefly
recalled here.

Assume that uh is the piecewise continuous polynomial interpolation of the so-
lution of degree k. The aim is to reconstruct the gradient of the solution, ∇̃uh, at
the DoFs, with (k+ 1)-th order of accuracy. The components of the reconstructed
gradient, for each grid vertex, are written in a polynomial form as follows

∂̃uh
∂x

= pTax, and
∂̃uh
∂y

= pTay,

with pT(x) = (1, x, y, x2, . . . , xk, xk−1y, . . . , yk), ax = (ax1 , ax2 , . . . , axm) and
ay = (ay1 , ay2 , . . . , aym). Assuming that Nsi sampling points, xi,�, � = 1 . . .Nsi ,
are available for each vertex i, the values of the coefficients ax and ay are ob-
tained by minimizing, with respect to the polynomial coefficients, the functions

Fxi =

Nsi∑

k=1

(
∂uh
∂x

(xi,k)− pT
i,kaxi

)2

and Fyi =

Nsi∑

k=1

(
∂uh
∂y

(xi,k)− pT
i,kayi

)2

,
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with pi,k = p(xi,k). The minimization problems require, for each vertex i of the
grid, the solution of the following linear systems: Aiaxi = bhxi

, and Aiayi = bhyi
,

in a least-square sense, where

bhxi
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂uh
∂x

(xi,1)

∂uh
∂x

(xi,2)

...
∂uh
∂x

(xi,Nsi
)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, bhyi
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂uh
∂y

(xi,1)

∂uh
∂y

(xi,2)

...
∂uh
∂y

(xi,Nsi
)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ai =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 xi,1 yi,1 . . . yki,1

1 xi,2 yi,2 . . . yki,2
...

...
...

. . .
...

1 xi,Nsi
yi,Nsi

. . . yki,Nsi

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Once the vectors axi and ayi are known, the gradient ∇̃uh can be evaluated at
every point within the patch of vertex i. Since the matrix Ai depends only on
the geometry, it is computed and factorized only once.

The least-square problem is solved for each grid vertex, but not for the extra
nodes introduced by a higher-approximation of the solution. For these nodes, the
gradient is reconstructed by simply evaluating on the patch, at the coordinates
of the nodes, the polynomial function constructed for the nearest grid vertex.
Note that these node may belong to more than one patch, each of them is equally
valid to evaluate the gradient. An arithmetic average is used to uniquely define
the reconstructed gradient at these nodes.

The dimensions of the matrix Ai, for each vertex i, are determined by the
number of sampling points Nsi and by the degree of the polynomials used to
express the reconstructed gradient, that is Ai ∈ R

Nsi
×m, where m is the number

of the coefficients in the vectors axi and ayi . The problem admits a unique
solution if RankAi = m, which is always satisfied in the case in which Nsi ≥ m.

Generally, the number of elements contained in the patch is such that the con-
dition Nsi ≥ m is always satisfied, this means that the gradient reconstruction
is compact because it involves only the elements contained within the support
of a grid node. For the nodes belonging to the boundary, the condition Nsi ≥ m
might not be satisfied without enlarging the stencil, otherwise the problem is ill
conditioned. To avoid the use of larger stencils for boundary nodes, it is possible
to obtain the value of the reconstructed gradient at the boundary by evaluat-
ing, at the boundary node, the polynomial expansion already computed for the
nearest domain vertex, i.e., the interior patch is used to evaluate the gradient
at the boundary.
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(a) (b) (c) (d)

Fig. 1. Interior super-convergent patches for quadrilateral and triangular elements:
(a-b) linear elements, (c-d) quadratic elements. The symbols (◦) indicate the patch
assembly points, the symbols (•) indicate the points where the gradient is reconstructed
and the symbols (�) indicate the super-convergent sampling points.

4 Implicit Time Integration

Since high-order methods are generally less robust than standard low-order
methods, the construction of a reliable numerical scheme becomes crucial. In
fact, it has been observed in numerical simulations of turbulent flows at very
high Reynolds number, typical of aerodynamic applications, that the iterative
scheme is very prone to fail with a sudden breakdown of the solver or it stagnates
at high values of the residual.

For these reasons, instead of using a Newton Krylov method, a new strategy
has been adopted for the solution of the non-linear system obtained from the
discretization of the RANS equations. The new approach is based on the ma-
nipulation of the Gauss-Seidel method in order to avoid the calculation of the
off-diagonal elements in the Jacobian matrix.

Consider the use of the backward Euler method for the time integration solved
with a Newton’s approach, the resulting scheme can be written as

(
I

Δtn
+
∂R

∂u

)
Δunh = −R(unh).

The previous equation can be recasted in the following form
(

I

Δtn
+
∂Ri

∂ui

)
Δuni = −Ri(u

n)−
∑

j∈N i
h

j �=i

∂Ri

∂uj
Δunj , ∀ i ∈ Nh, (9)

with N i
h the set of the DoFs which belong to the stencil of the DoF i. By applying

a symmetric variation of the Gauss-Seidel method, in which the forward and
backward sweeps are applied alternatively, one obtains

(
I

Δtn
+
∂Ri

∂ui

)
Δu

(k+1)
i = −Ri(u

n)−
∑

j∈N i
h

j �=i

∂Ri

∂uj
Δu

(∗)
j , ∀ i ∈ Nh, (10)
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where k is an inner iteration index, the superscript (∗) indicates the most recently
updated solution, and Δu(0) = 0. At the end, un+1 = un +Δu(k+1).

The right-hand side of the previous equation can be further manipulated as
follows. Denoting the latest available solution as u(∗) = un +Δu(∗), it is possible
to linearize Ri

(
u(∗)

)
as

Ri

(
u(∗)

)
≈ Ri

(
un
)
+

∑

j∈N i
h

∂Ri

∂uj
Δu

(∗)
j

= Ri

(
un
)
+
∂Ri

∂ui
Δu

(∗)
i +

∑

j∈N i
h

j �=i

∂Ri

∂uj
Δu

(∗)
j ,

and the following relation is obtained

Ri

(
un
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∑
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∂uj
Δu

(∗)
j = Ri

(
u(∗)

)
− ∂Ri
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Δu

(∗)
i .

Substituting the previous relation in Eq. (10), one obtains the following scheme
[

I

Δtn
+
∂Ri

∂ui

]
Δu

(k+1)
i − ∂Ri

∂ui
Δu

(∗)
i = −Ri

(
u(∗)

)
,

which at last can be recasted as
[

I

Δtn
+
∂Ri

∂ui

] (
Δu

(k+1)
i −Δu

(∗)
i

)
= −Ri

(
u(∗)

)
+

Δu
(∗)
i

Δtn
. (11)

The Eq. (11) is solved with the forward and backward sweeps, and at the be-
ginning of each step the small diagonal blocks of the Jacobian matrix in the
left-hand side can be inverted using LU decomposition. Note that the right-
hand side of the previous equation is nothing but the residual evaluated with
the latest available solutions. The last term in the right hand side of the (11) is
usually dropped for steady simulations, in order to accelerate the convergence
rate. When the symmetric Gauss-Seidel converges, one is actually solving the
original equation

un+1
h − unh
Δn

= −R(un+1
h )

instead of the linearized version (9), for this reason the algorithm is called non-
linear LU-SGS [13].

The expression (11) still requires the diagonal blocks of the Jacobian matrix,
in some works [10,13] the diagonal blocks of the Jacobian are approximated with
a finite difference method, however this strategy has been found unsatisfactory
for RANS simulations, thus diagonal blocks of the Jacobian matrix computed
analytically are used instead.
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5 Numerical-Results

5.1 RAE-2822 Airfoil

The first test case considered is the subsonic flow over a RAE2822 airfoil at angle
of incidence α = 2.79◦, the Mach number based on the free-stream conditions is
M = 0.4 and the Reynolds number based on the free-stream conditions and the
airfoil chord is Re = 6.5× 106.

The problem is solved, with the linear scheme and the SPR-ZZ method, on
a sequence of unstructured grids of triangles obtained with subsequent uniform
refinements of the coarsest grid, shown in Figure 2, which is made of 4 048
elements. As practice in this work, an iso-parametric representation is used for
the solution and the geometry. Due to the strong stretching of the boundary layer
elements, some of the quadratic elements have curved boundaries non only on
the airfoil wall but also at the interior. The solution is converged using the non-
linear LU-SGS method; solutions are considered to be at convergence when the
L2 norm of the residual of all the variables (mean flow and turbulence equation)
is reduced by ten orders of magnitude.

In Figure 3 are shown the pressure and friction coefficient along the airfoil
computed with linear and quadratic elements on two different grids, such that the
number of degrees of freedom of the two simulations is the same (Ndof = 32 784);
the respective iterative convergence histories are reported in Figure 4.

Y

Z

Y

Z XX

(a)

X

Y

Z X

Y

Z

(b)
Fig. 2. An example of coarse grid used for the numerical simulation of a turbulent flow
over the RAE2822 airfoil and a zoom of the mesh near the leading edge of the airfoil
to show the curvilinear elements

For completeness, in Figure 5 are reported the values of the lift and drag
coefficients computed on different grids with linear and quadratic elements. Note
how the use of quadratic elements allows a faster convergence with the mesh
refinement of the lift and drag coefficients to their respective asymptotic values.
In addition, Figure 6 reports the errors for the force coefficients; the error for the
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Fig. 3. Pressure (a) and friction (b) coefficient along the RAE2822 airfoil with linear
and quadratic elements on two different grids, such that Ndof = 32 784
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Fig. 4. Iterative convergence for the simulation of the subsonic flow over the RAE2822
airfoil with linear (a) and quadratic (b) elements on two different grids, such that
Ndof = 32 784

lift coefficient is computed as errCL = |cLh
− cLex |, where cLh

is the value of the
lift coefficient computed numerically and cLex is a reference value obtained with
a Richardson extrapolation [12] of the lift coefficients computed with quadratic
elements. The same procedure is also used to compute the error on the drag
coefficient. For the lift coefficient, it is clear the advantage of using a high-order
approximation over standard second-order schemes even for the simulations of
RANS equations. For the drag coefficient, the difference between second and
third-order schemes reduces but nevertheless the quadratic approximation of
the solutions gives a smaller error, for the same number of degrees of freedom.

In the next test case a transonic, turbulent flow over a RAE2822 airfoil is
considered. The free-stream Mach number is M = 0.734, the angle of incidence
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Fig. 5. Values of the lift (a) and drag (b) coefficients as function of the number of
the degrees of freedom, for the subsonic turbulent flow over the RAE2822 airfoil, with
linear and quadratic elements
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Fig. 6. Errors with linear and quadratic elements on the lift (a) and drag (b) coefficients
for the subsonic turbulent flow over the RAE222 airfoil

and the Reynolds number are the same of the previous test case, namely α =
2.79◦ and Re = 6.5 × 106. In these conditions, the upper surface of the airfoil
is characterized by the presence of a shock wave which impinges the boundary
layer, generating a small recirculation bubble behind the shock.

Due to the presence of the shock, the problem is discretized with the non-
linear scheme, and the SPR-ZZ method is used for the gradient reconstruction.
Furthermore, the solution is converged using the non-linear LU-SGS method;
the L2 norm of the residual of the mean flow and of the turbulent equation is
reduced at least by nine orders of magnitudes.

The same type of grids used in the previous test case is adopted and three
levels of refinement are considered; simulations have been performed in parallel
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on 8, 16 and 32 processors, respectively. In Figure 7 are reported the Mach num-
ber contours for the solution on the fine grid (64 768 elements) with quadratic
elements, together with the iterative convergence history. Note that the shock is
sharply captured, and the number of iterations to reach the steady state is much
higher compared to the subsonic test case, due to the presence of the shock and
also due to the use of the non-linear scheme.
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Fig. 7. Mach number contours (a) and iterative convergence history (b) for the tran-
sonic turbulent flow over a RAE2822 airfoil computed with quadratic elements

In Figure 8 are shown the pressure and the friction coefficients along the airfoil
with linear elements on a finer grid and quadratic elements on a coarse grid, such
that the number of degrees of freedom in the two cases is the same: 32 784. The
values of the computed pressure coefficient agree very well with the experimental
data, and with the quadratic discretization of the solution the agreement is even
improved. The shock is sharply captured and its position correctly predicted.
The leading edge suction peak of the pressure is slightly under-predicted by the
numerical simulations, due to the fact that the simulations have been performed
in a fully turbulent regime. Even the friction coefficient agrees well with the
experimental data. On the upper part of the airfoil, note the negative values
of the friction coefficient just behind the shock, obtained with the quadratic
approximation of the solution, that identify the separation bubble induced by
the shock.

Finally, in Figure 9 are reported the values of lift and drag coefficients for
linear and quadratic approximation of the solution with three levels of grid
refinement; the quadratic solution reaches much faster than the linear one the
reference value, for the same number of degrees of freedom.
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Fig. 8. Pressure (a) and friction (b) coefficients over the RAE2822 airfoil, for the
transonic turbulent flow computed with linear and quadratic elements on two grids,
such that Ndof = 32 784
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Fig. 9. Lift (a) and drag (b) coefficients on different grids, for the transonic turbulent
flow over the RAE2822 airfoil, with linear and quadratic elements

5.2 ONERA M6 Wing

The simulation of the transonic turbulent flow over the ONERA M6 wing is
performed. The free-stream Mach number is M = 0.8395, the angle of incidence
is α = 3.06◦ and the Reynolds number based of the free-stream values and the
mean aerodynamic chord is Re = 11.72× 106. The grid is composed by 123 444
tetrahedra, and the mean height of elements on the wing in dimensionless units
is approximately y+1 = 5. Far-field boundary conditions are applied on the outer
part of the domain, symmetry boundary conditions are applied on the vertical
plane that intersects the wing root and the wing surface is modeled as a non-slip
adiabatic wall. In Figure 10 are reported the grid used for the simulation, and
the pressure coefficient contours for the third-order simulation.
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Fig. 10. Computational mesh used for the simulation of the turbulent flow over the
M6 wing (a) and pressure coefficient contours (b) for the third-order simulation

The non-linear solver has been used to discretize the governing equations
with the SPR-ZZ gradient reconstruction method, and the non-linear LU-SGS
method has been used to make the scheme converge to the steady state solution.
Convergence is considered achieved when the L2 residual of all the equations
is dropped by eight orders of magnitude. Simulations have been performed in
parallel on 64 processors.

In figure Figure 11, the values of the pressure coefficient for the third-order
simulation at different stations along the span-wise direction of the wing are
compared against the experimental data. Despite the quite coarse mesh, a good
agreement with the experimental data is obtained and even the lambda shock
is well represented. However, a finer grid is required to better capture the shock
structure at wing tip and also to better resolve the complex shock-boundary
layer interaction occurring here. Finally, in Table 1 are reported the values of
lift and drag coefficients for the second and third-order simulations.

5.3 NASA Delta Wing

The simulation of the subsonic turbulent flow over the NASA 65◦ sweep delta
wing with a medium radius leading edge is now considered. The free-stream
Mach number is M = 0.4, the angle of attach is α = 13.3◦ and the Reynolds
number based on the free-stream conditions and the mean aerodynamic chord
is Re = 3 × 106. This test case has been computed with the linear scheme
using linear and quadratic approximation of the solution on a grid of 1 145 797
tetrahedra (Figure 12-a). Simulations has been performed in parallel using 96
cores. With linear elements the residual was reduced by 8 orders of magnitude,
while with quadratic elements the residual could not be reduced by more than
5 orders of magnitude.
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Fig. 11. Pressure coefficient distribution at different span-wise locations over the M6
wing, for the third-order simulation

Table 1. Lift and drag coefficients for the second and third-order turbulent simulations
over the M6 wing

N. DoF CL CD

P
1 22 276 0.268231 0.019002

P
2 170 751 0.270758 0.018554

In Figure 12-b are shown, for the solution with P2 elements, the contours of
the pressure coefficients and slices of the turbulent working variable at different
stations along and behind the wing. The comparison with the experimental re-
sults [11] is shown in Figure 13. The agreement between the numerical results
and the experimental data is mildly good considering the quite coarse mesh and
the simple turbulent model used.
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Fig. 12. 3D turbulent subsonic flow over a delta wing. Left: the mesh used, right pres-
sure coefficient contours and slices of the turbulent working variable, with P2 elements.
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Fig. 13. 3D turbulent subsonic flow over a delta wing. Pressure coefficients distribu-
tion at different wing sections. Comparison between the quadratic solution and the
experimental data.
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6 Conclusions

Flow computations with linear and non-linear RD method for compressible tur-
bulent flows on unstructured grids have been reported in this work. The solution
is approximated with linear and quadratic Lagrangian polynomials, and the one
equation Spalart-Allmaras turbulence model has been used. The non-linear LU-
SGS method has been used to construct a robust and efficient implicit scheme.

The benefit of using high-order approximation has been established with
smooth and shocked flows, in two and three spatial dimensions. Numerical
results confirm the benefit of using high-order approximation. In fact, it is
shown that with high-order methods grid independent quantities, e.g. force coef-
ficients, can be obtained with a reduced number of DoFs compared to lower-order
approximation.
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Parallel High-Order Solver for DNS and LES

of Industrial Flows
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Abstract. This work is part of the development of a new generation
CFD solver, Argo, based on the discontinuous Galerkin Method (DGM),
specifically targeted towards accurate, adaptive, reliable and fast DNS
and LES of industrial aerodynamic flows. Several aspects were investi-
gated in IDIHOM. A first activity was the optimisation of the parallel-
lisation strategy, resulting in highly efficient scaling, demonstrated on
some of the largest computers in Europe. A second activity concerned
the assessment and validation on several academic benchmark problems
of the capability of DGM to perform direct numerical simulation (DNS)
and (implicit) Large Eddy Simulation (iLES). Two moderately complex
flows are treated, namely the ILES of the transitional flow in the low
pressure turbine cascade T106C and the isothermal jet issueing from the
JEAN nozzle.

Keywords: Discontinuous Galerkin Method (DGM), High Performance
Computing (HPC), Direct Numerical Simulation (DNS), (implicit) Large
Eddy Simulation ((I)LES), Transitional flow, Industrial CFD.

1 Introduction

Computational Fluid Dynamics (CFD) has become an indispensable tool for
both academic and industrial aerodynamical studies. The increase of computa-
tional power combined to the industrialisation of the solvers opened the way to
the use of CFD in many sectors, such that it is now daily used for the design
of aircraft, cars, energy production units, production processes, buildings, ...
Nevertheless, a large gap still remains between the accuracy of the solvers used
in industry and those developed by the academic community, in particular as
far as the impact of turbulence is concerned. Indeed, the academic community
is primarily focused on fundamental aspects of turbulence or the development
of physical models, and therefore considers relatively simple setups on which
very accurate methods and very low turbulence modeling contributions can be
used. On the other hand, the industrial applications target a large range of flow
regimes in complex configurations. Therefore, the solvers used by the industry
often sacrifice accuracy for higher flexibility, robustness and a low computational
cost. As a consequence, less accurate numerical schemes together with significant

c© Springer International Publishing Switzerland 2015 251
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contributions of empirical turbulence models, mainly Reynolds averaged Navier
Stokes (RANS), are the current industrial standard. Indeed in most cases the
complexity of the geometry is such that only the averaged flow can be computed.

Due to the continuously increasing economical and environment constraints,
the current standard methods are no longer sufficient to answer the design re-
quirements of the industry, in particular when off-design performance, noise or
combustion needs to be predicted. A need for better accuracy, together with
smaller empirical turbulence modelling contributions, is required. In particular,
industry would like to use scale-resolving modeling approaches such as Direct
Numerical Simulation (DNS) or Large Eddy Simulation (LES), which respec-
tively represent all or the largest turbulent scales. This type of computation
requires very high resolution and accuracy, such that in academia high-accuracy
schemes tend to be used. In an industrial context it is commonly accepted that
computational codes need to be revised. Indeed, as scale-resolving simulations
require a nearly flawless representation of the turbulent scales, current industrial
solvers require huge computational resources to provide sufficient accuracy, and
hence, most computations appear to be under-resolved so far (see Tucker [35,36]
for a recent review in turbomachinery). In a first step, discretisation techniques
probably need to be changed to obtain higher order of accuracy. Furthermore,
codes need to be optimised to provide high efficiency and strong scalability, in
order to make computation time compatible with design lead times.

In the course of the last decade, CFD has seen the advent of new unstruc-
tured, finite element-like high order methods, such as the discontinuous Galerkin
method (DGM) [20], spectral element method (SEM) [17,27], flux reconstruction
(FR) [25] or spectral difference method (SDM) [33]. These methods appear to
provide a compromise between the flexibility of industrial finite volume meth-
ods (FVM) [34] and the accuracy of academic solvers, such as high order finite
difference methods (FDM) [37] or pseudo-spectral methods (PSM) [11]. Due to
their computational compacity, most of these methods - in particular those with
discontinuous interpolation - also provide an excellent serial and parallel com-
putational efficiency. In view of these advantages, the industrial need for scale-
resolving simulations and appropriate CFD codes, it is precisely in this domain
that new high-resolution methods offer the best perspectives.

One of those novel methods, the discontinuous Galerkin method with sym-
metric interior penalty (DGM/SIP) has been implemented in Argo, the multi-
physics platform of Cenaero, during the thesis of Koen Hillewaert [22], in close
collaboration with Prof. Remacle of the Université catholique de Louvain (UCL).
The solver has been subsequently applied on the scale-resolving simulations of
moderate Reynolds flows during the thesis of Corentin Carton de Wiart (Ce-
naero/UCL) [16].

Next to this introduction and the conclusions, this chapter comprises four
technical sections. Section 2 discusses briefly the main characteristics of the
DGM discretisation, whereas the second section 3 details the parallellisation
strategy and demonstrates the scalability of the solver. In section 4 the method
is assessed for DNS and LES on academic benchmarks. Finally, in section 5 the
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method is applied on three IDIHOM test cases: the benchmark computation of
the 2D periodic hill, and the semi-industrial configurations of the T106C turbine
blade and the JEAN nozzle.

2 Numerical Method

For compacity reasons, the compressible Navier-Stokes equations are written as
a set of generic convection-diffusion equations for the state vector w̃ containing
the conservative variables w̃ = [ρ ρu ρE]T defined on a domain Ω:

∂w̃m

∂t
+

∂

∂xk
Fk

m(w̃) +
∂

∂xk
Dk

m(w̃,∇w̃) = 0 , ∀m. (1)

Herem is the index running on the different variables in the state vector, whereas
F and D respectively denote the convective and diffusive fluxes. We furthermore
define the Jacobian of the diffusive fluxes with respect to the solution gradients
as the fourth order tensor Dkl

mn, such that we have:

Dk
m ≈ Dkl

mn(w̃)
∂w̃n

∂xl
. (2)

Appropriate Dirichlet, Neumann and Robin boundary conditions are defined on
the boundary ∂Ω.

The discontinuous Galerkin method [6,15] is a Galerkin finite element method
based on an interpolation space Φ, composed of functions v that are polynomials
of order p on each of the elements e in the mesh E , but not required to be
continuous across the interfaces f between the elements. Such an interpolant is
illustrated in Fig. 1. After choosing an appropriate set of basis functions φi for
the test space Φ, such that

Φ = span{φ0, . . . , φN},

DGM approximates the different components w̃m of w̃ by wm

wm =
∑

i

Wimφi (3)

x

y
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e1φ

φe2

φe3

φe1

Fig. 1. Artists impression of the DGM interpolation space
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As for any Galerkin method, the expansion weights Wim are found by requiring
that the residual of the model equations, evaluated with w, is orthogonal to any
function v ∈ Φ; as the φi form a basis for Φ, it is sufficient to check this orthog-
onality for each of the φi and each of the components m. A naive application of
the Galerkin principle not only leads to the typical volume contributions, but
additional interface terms. To stabilise the discretisation, these interface con-
tributions are replaced by consistent Dirichlet-like terms that enforce solution
continuity across the elements. For the convective contributions, this is done us-
ing an approximate Riemann solver (ARS) (here the Roe ARS is used), whilst
the diffusive terms are discretised according to the Symmetric Interior Penalty
(SIP) method [6], which can be derived from an application of penalty Dirichlet
contributions:

∀φi ∈ Φ , ∀m :
∑

e

∫

e

φi
∂wm

∂t
dV

︸ ︷︷ ︸
GI

−
∑

e

∫

e

∂φi
∂xk

(Fk
m +Dk

m) dV

︸ ︷︷ ︸
GV

+
∑

f

∫

f

[[φi]]
k
nk Hm

(
w−, w+,n

)
dS

︸ ︷︷ ︸
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+
∑

f

∫

f

[[φi]]
k

{
Dkl

mn

∂wn

∂xl

}
dS

︸ ︷︷ ︸
DI

+
∑

f

∫

f

[[wn]]
k

{
Dkl

nm ·
∂φi
∂xl

}
dS

︸ ︷︷ ︸
DS

+
∑

f

σ

∫

f

[[wm]]
k
[[φi]]

k
dS

︸ ︷︷ ︸
DP

= 0

(4)

Using + and − to indicate lower and upper values with respect to the face
normal n, we define n− = n and n+ = −n. The interface average {.} and jump
[[.]] operators are then defined as

{a} = (a+ + a−)

2
, [[a]] = a−n− + a+n+ . (5)

For the convective terms, the Riemann solver H assures the correct flux of
characteristics sent to, and received from, neighbouring cells, thus assuring cor-
rectly posed elementwise problems and global energy stability. For the diffusive
term, the method generalises a boundary penalty method to enforce weak cou-
pling at the interfaces. The penalty parameter σ must be chosen large enough
to guarantee stability, yet not too large. Sharp bounds for the value of σ have
been elaborated for simplices [32], and recently for hybrid meshes [22].

All Dirichlet boundary conditions, both for the convective and diffusive terms,
are imposed weakly by providing a fictitious exterior state for the convective
interface flux terms CI, the consistent diffusive flux DI, the symmetrising term
DS and the penalty term DP. Neumann boundary conditions for the diffusive
terms are enforced by modifying the consistent term DI and symmetrising term
DS on the concerned faces.

By choosing base functions φi that are supported on a single element, one
clearly identifies that this method boils down to a straightforward Galerkin
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discretisation of the problem, consisting of typical volume inertial GI and flux con-
servation contributions GV, complemented with weak Dirichlet conditions for the
convective CI and diffusive terms DI, DS and DP on the element boundary.

Both explicit and implicit temporal discretisations are available in Argo. The
explicit time-stepping can be achieved using several methods such as standard
Runge-Kutta schemes. The implicit method is performed using a second-order
accurate three-point backward difference scheme (BDF2) [7] which, for a con-
stant time step, is written as:

df

dt
=̂
3f(t)− 4f(t−Δt) + f(t− 2Δt)

2Δt
. (6)

At each time step, the non-linear problem resulting from the implicit integration
is solved through a Newton/GMRES method, preconditioned with elementwise
block-Jacobi, as described in [22]. This strategy allows for a very efficient paral-
lellisation, as described in the following section.

3 Large Scale Parallellisation

3.1 Parallellisation Strategy

Fig. 2 shows the elements at the interface (blue) between two partitions and the
quadrature points that contribute to the volume terms GI and GV (red), as
well as those used for the interface terms CI, DI, DT and DP (green). As a
consequence of the elementwise independent interpolation, one sees that the par-
allelism of the volume terms GI and GV in Eq. (4) is straightforward as it does
not require any communication between elements. Indeed, all the quadrature
points involved in the computation of the volume term are located within the
element, and therefore in the same partition. On the other hand, the interface

Fig. 2. Sketch of the volume term (red) and the interface term (green) with their
interaction with the quadrature points. The interface between the two partitions is
drawn in blue.
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Fig. 3. Point to point communication in the ghost cell approach. For each cell next
to the partition boundary (solid black line), a virtual cell (dashed) is provided which
copies solution from the cell on the other partition.

contributions need the solution of the neighbouring cells, and therefore require
communication between the MPI processes. Practically, this is implemented us-
ing ghost cells as illustrated shown in Fig. 3 Virtual neighbour cells are created
for interfaces on the partition boundary, in which the solution is copied from
the real cell on the other process using peer-to-peer communications. In this
way the interface terms at the partition boundary can be computed in exactly
the same way as at the interfaces internal to the domain. As the interface term
involves the solution and its spatial derivatives, all the interpolation points of
the neighbouring element are communicated to the ghost cell. Indeed, all the
interpolation points of the element are required to collocate the solution and its
gradients in the quadrature points of the interface.

Since the volume as well as the boundary term do not require the ghost cells,
non-blocking communications can be used to hide the point-to-point commu-
nication behind their computation, as proposed by Altmann et al. [4]. Thereto
send and reception operations for the ghost cells are initiated ahead of the evalu-
ation of volume and boundary terms, and finalised only just ahead the interface
term evaluation. This processus is illustrated in Fig. 4.

3.2 Scaling Tests

The weak and strong scalability of the code has been assessed on some of
the largest HPC infrastructures in Europe available at the time, namely the
BlueGene P machine JUGENE and its successor, the BlueGene/Q machine
JUQUEEN, at the Jülich Supercomputing Centre (JSC). Weak scalability char-
acterises the capacity of the code to tackle problems of growing size, typically
proportional to the number of processors. Strong scalability concerns the capa-
bility of a code of performing the same computation faster by distributing it on
growing numbers of processors.
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Time/Iteration loop

Update 

solution

Initiate non-blocking 

send and receive of the 

solution at partition 

boundary

Retrieve solution at 

partition boundary

Computation of the 

volume term

Computation of the 

interface term

Residual 

computation

Fig. 4. Schematic of the computation of the residual, including non-blocking commu-
nications

All the scaling tests have been performed using the fourth order version of
the solver with the time-implicit discretisation, as this is the standard setup of
Argo for LES of wall-bounded flow. The time-implicit method is a second order
backward differencing scheme, solved with a Newton method. The linear system
is solved using preconditioned GMRES. As GMRES requires a large number
of global communications, this iterative strategy is harder to parallellise than
an explicit strategy, where only point-to-point communications are required. A
second issue is that the domain decomposition method may degrade the itera-
tive convergence, due to its impact on the preconditioner efficiency. Therefore
a block-Jacobi preconditioner is used [22]. Even if the block-Jacobi features
low convergence rates than block-ILU for instance, it is deemed the best can-
didate for massive parallel computations. Indeed, since it does not take into
account inter-element dependencies, its iterative convergence is not impacted by
parallellisation.

Weak Scaling. The weak scaling was assessed on JUGENE, the former Blue
Gene/P machine at the Jülich Supercomputing Centre (JSC), during the PRACE
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Fig. 5. Weak MPI scaling obtained on JUGENE. Efficiency and scaling when using
from 512 to 16384 cores (i.e. 128 to 4096 nodes).

project noFUDGE. The BG/P architecture is specifically designed for very large
scale scientific computing computations using tens of thousands of cores. It con-
sists of a very large number of low memory, relatively slow processors in combina-
tion with a very efficient 3D toroidal interconnect, with an auxiliary network for
global communications. This configuration was designed to give a favorable ratio
between computational speed and communication efficiency. JUGENE was com-
posed of 73728 nodes, each node containing one PowerPC 450 CPU@850MHz
with 4-way SMP (294912 cores in total).

Fig. 5 shows the results of the weak scaling test performed on JUGENE. In
this test, the size of the problem is increased simultaneoously with the number of
processors. It gives a measure on how efficiently HPC infrastructure is used when
computing larger and larger problems. The test ranges from 128 to 4096 nodes
or alternatively from 512 to 16384 cores, using the full amount of the 2Gb of
memory available per nodes. A hybrid parallellisation strategy is used, in which
the work on a single node is distributed, using the OpenMP paradigm, over
the 4 cores which access the same shared memory. In between nodes, the MPI
paradigm is used to provide communication between the nodes. The efficiency
remains above 92% even when using more than 15k cores.

Strong Scaling. Later on, using a further optimised version of the code, strong
scaling tests were undertaken on the BlueGene/Q machine JUQUEEN at JSC.
Again a hybrid parallellisation strategy is used. JUQUEEN is composed of 28672
nodes, each nodes containing a 16-cores IBM PowerPC A2@1.6GHz (458752
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Fig. 6. Strong MPI scaling obtained on JUQUEEN when using the best configuration
(i.e. 2 MPI processes ans 16 OpenMP threads per node). Efficiency and scaling when
using from 4096 to 131072 cores (256 to 8192 nodes).

cores in total). Each core is capable of supporting 4 virtual threads, such that in
theory up to 64 threads can be run efficiently on a single node. The communica-
tion channels follow a 5D toroidal configuration, with again a dedicated network
for small size global communications.

On this machine, the choice of the hybrid parallellisation paradigm was not
immediately obvious, and therefore the efficiency was compared between differ-
ent configurations. Finally 2 MPI processes, each combining 16 shared memory
threads, are used per node. This configuration, although it does not use all of the
threads available, was found to provide the best computational efficiency. The
scaling tests were performed during the PRACE project PADDLES. The parallel
efficiency is presented in Fig. 6. An efficiency of slightly less than 90% is obtained
when using more than 130k cores (with the smallest number of partitions using
the full amount of the 16Gb of memory available per node). For the largest num-
ber of partitions, each partition contains only about hundred elements. A peak
of efficiency (around 110%) is obtained around 32k cores, probably due to cache
effects resulting from the continuous decrease in memory requirements. At larger
core counts, this effect is compensated by the growing cost of communication
with respect to computation. These results shows that the restitution time of
the solver can be decreased by a factor of 32 on this architecture, while keeping
a high efficiency.
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4 Validation on Academic Benchmarks

The main goal of this section is to assess a Computational Fluid Dynamics (CFD)
code Argo, based on the discontinuous Galerkin method with symmetric interior
penalty (DGM/SIP), for scale-resolving simulations of turbulent flows. Academic
test cases are considered, allowing to compare the accuracy of the method with
respect to state-of-the-art academic solvers.

The first test case concerns the DNS of the Taylor-Green vortex, representative
for free stream transition and turbulence. Its simplicity allows to get rid of
uncertainties on the setup, such as boundary conditions or initial condition, and
to focus the study on the effects of the numerical schemes only. The Taylor-Green
vortex has been investigated at the first and the second International Workshops
on High-Order CFD Methods [2,3,39], allowing to many participants to compare
their results and assess the convergence rate of their solvers. Results by Cenaero
are further detailed in [14].

A particular aspect is the use of an implicit LES (ILES) strategy, where the
inherent dissipation of the method is used to provide the destruction of the
smallest scale structures, which would give rise to the creation of sub resolution
structures. The approach is simple, since no tuning is required, and provides
by definition a smooth transition between DNS and LES resolution. The results
obtained on the Taylor-Green vortex provide an indication for the viability of the
ILES approach, since in underresolved computations, the numerical dissipation
is observed to compensate the deficit in resolved dissipation.

A second section looks into a more rigourous assessment of the ILES approach
on wall-bounded flows. It concerns the DNS and implicit LES of the well known
plane channel flow benchmark at different Reynolds numbers. The mesh for the
lowest Reynolds number case is designed with DNS criterion while for the higher
Reynolds number, LES criterion are chosen to assess the Implicit LES (ILES)
capabilities of the method.

4.1 Taylor-Green Vortex

This section presents the results obtained on the DNS of the Taylor-Green vortex
at Re = 1600. A detailed study is available in Carton de Wiart et al. [14].

The Taylor-Green vortex is a three-dimensional periodic and transitional
canonical flow defined by an analytic initial condition, given by

u = V0 sin
( x
L

)
cos

( y
L

)
cos

( z
L

)
, (7)

v = −V0 cos
( x
L

)
sin

( y
L

)
cos

( z
L

)
, (8)

w = 0 , (9)

p = p0 +
ρ0 V

2
0

16

(
cos

(
2x

L

)
+ cos

(
2y

L

))(
cos

(
2z

L

)
+ 2

)
. (10)

The characteristic convective time is defined as tc = L
V0

. This flow features
transition to anisotropic small-scale turbulence and subsequent decay, as il-
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(a) t/tc = 0 (b) t/tc = 10

Fig. 7. Taylor-Green vortex: volume rendering of the z-component of the vorticity.

lustrated in Fig. 7. The flow is computed within a periodic square box de-
fined as −πL ≤ x, y, z ≤ πL. The Reynolds number of the flow is defined as
Re = ρ0 V0 L

μ and is equal to 1600. The physical duration of the computation is
set to tfinal = 10 tc.

In the simulations using the compressible DGM code, the fluid is considered
to be a perfect gas with γ = cp/cv = 1.4 and Prandtl number Pr =

μ cp
λ =

0.71, where cp and cv are the heat capacities at constant pressure and volume
respectively, μ is the dynamic shear viscosity and λ is the heat conductivity. It
is furthermore assumed that the gas has zero bulk viscosity (μv = 0). The Mach
number is set to M0 = V0

c0
= 0.10 (with c0 the speed of sound corresponding

to the temperature T0 = p0

Rρ0
), which is indeed small enough that the solutions

obtained for the velocity and pressure fields are very close to those obtained
assuming an incompressible flow. The initial temperature field is taken uniform,
T = T0, and hence the initial density field is given by ρ = p

RT0
.

A grid convergence study is performed on four grids, and using third order
polynomial interpolants (p = 3), resulting in a fourth order of accuracy. The
number of cells of each computation, the number of numerical degrees of free-
dom (dof), as well as the number of cell subdivisions as defined by the high
order control nodes (here denoted as effective resolution), are given in Tab. 1. In
order to avoid confusion when comparing to other discretisations, the effective
resolution will be used throughout the study instead of the number of dof or
the number of elements. Indeed, the smallest wavelength that can be captured
depends directly on the number of potential zero crossings in an element. This
number is equal to the polynomial order p, such that this wavelength is 2h/p,
whereby h is the mesh size. Therefore the latter measure of effective resolution
is more appropriate than the number of dof. The time integration is based on a



262 C.C. de Wiart and K. Hillewaert

Table 1. Taylor-Green vortex: specifications for grid convergence study at p = 3

Elements dof Effective resolution
483 1923 1443

643 2563 1923

963 3843 2883

1283 5123 3843

standard explicit 4-stage Runge-Kutta integrator, whereas the time step corre-
sponds to at most a unitary acoustic CFL number. In terms of convective speed,
this corresponds to a maximum CFL number of 0.1, which results in negligible
temporal error.

The evolution of the global kinetic energy is presented in Fig. 8. As indicated
before, it is difficult to distinguish the computations on this criterion as differ-
ences are minimal. This first result shows that, despite the presence of dissipation
in the numerical scheme, DGM preserves the kinetic energy rather well, even at
the coarsest resolution.
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Fig. 8. Taylor-Green vortex: convergence of the temporal evolution of the kinetic
energy
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Fig. 9. Taylor-Green vortex: convergence of the temporal evolution of the dissipation
rate computed using the time derivative of the energy (measured) and the integral of
the enstrophy (resolved). See also zoom in Fig. 10.

The differences are much more pronounced when the dissipation rate is con-
sidered. For incompressible flow the theoretical dissipation rate is proportional
to the enstrophy E

−dEk

dt
= 2νE (11)

with the enstrophy the energy associated to the vorticity ω

E =
1

2

∫

V

ω · ωdV (12)

Figs. 9 and 10 (zoom) show that the measured (− dEk

dt ) and resolved or theoretical
dissipation rate based on enstrophy are not numerically equivalent. Typically, the
measured dissipation, which include numerical dissipation, is consistently larger
than the resolved dissipation. Although DGM is dissipative, this is not obvious
since dispersion errors will impact the temporal evolution of the dissipation. It is
clear that the measured dissipation rate, comprising both resolved and numerical
dissipation, converges faster to the reference results. Therefore, for this case and
at resolutions near DNS, the numerical dissipation could be considered to act
as a relatively accurate LES subgrid scale model, thereby indicating a potential
applicability of DGM for implicit LES.

The numerical dissipation of DGM is triggered by the jumps of the solution
across element interfaces when the resolution is insufficient to capture all of the
features of the flow. Its precise value depends obviously on the Riemann solver
in the convective interface flux CI and the penalty terms DT and DP . However
this is only for a fixed value of the jump, such that their precise impact is not
easy to predict. Further studies turbulence have indicated that neither may have
a significant impact for isotropic turbulence or channel flow [13].

Fig. 11 shows the resulting spectrum of each computation. In these figures, the
vertical lines show the respective cutoff wave number associated with the element
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size and the effective resolution. Each DGM computation captures correctly the
spectrum below the cut-off wave number corresponding to the element size and
progressively dissipates the energy when going towards the cut-off wave number
corresponding to the high-order nodes.

Both prismatic and tetrahedral meshes are also considered. They have the
same characteristic mesh size as the hexahedral mesh with 963 elements. The
prismatic mesh is created by extrusion of an unstructured triangular mesh on
one of the faces. The tetrahedral mesh is created directly from the 963 mesh
by a regular splitting of the hexahedral elements; this approach is indeed often
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Fig. 10. Taylor-Green vortex: convergence of the dissipation rate computed using the
time derivative of the energy (measured) and the integral of the enstrophy (resolved);
zoom at the peak.
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Fig. 11. Taylor-Green vortex: convergence of the energy spectrum at t = 9. The vertical
lines indicate the cut-off wave numbers corresponding to the mesh (h) and the effective
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Fig. 12. Taylor-Green vortex: prismatic mesh (left) and tetrahedral mesh (right). To
enable visualisation, a 63 times coarser resolution is shown.
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Fig. 13. Taylor-Green vortex: temporal evolution of the measured dissipation rate.
Comparison of DGM using tetrahedral, prismatic and hexahedral meshes to the pseudo-
spectral reference.

used by many large scale industrial meshers for regions that are far away from
boundaries. A fully unstructured tetrahedral mesh has not been considered due
to limitation on the stable time step, resulting from the presence of a small
number of very small elements. Fig. 12 shows the grid configurations. The pris-
matic mesh is composed of 2.34M prisms and the tetrahedral mesh of 5.31M
tetrahedra (corresponding to six tetrahedra per hexahedron). Fig. 13 compare
the computed dissipation rate to the reference results. All the computations
are very close to the pseudo-spectral reference: both prismatic and tetrahedral
meshes gives globally the same results as the hexahedral grid. The tetrahedral
mesh appears to be slightly less accurate than the hexahedral grid, whilst the
prismatic element mesh provides similar accuracy.
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Fig. 14. Taylor-Green vortex: energy spectrum at t = 9. Comparison between tetra-
hedral, prismatic and hexahedral meshes. The vertical lines indicate the cut-off wave
numbers corresponding to the mesh (h) and the effective resolution (h/p) respectively.

The kinetic energy spectrum is shown in Fig. 14. For wave numbers up to the
cut-off wave number corresponding to the grid size, the spectrum is perfectly
captured by all computations. However, kinetic energy appears to be accumu-
lated at higher wave numbers in the case of the tetrahedral mesh. The spectrum
obtained with prismatic elements is between that obtained with hexahedra and
tetrahedra. The dissipation of the method in the large wavenumbers is thus
highly dependent of the element type. This is also observed on more theoretical
studies, see for instance the analysis of DGM for wave propagation performed
by Hu et al. [24]. Hu shows that meshes composed of unstructured triangles can
engender less anisotropy compared to regular mesh composed of quadrangles.
The same analysis should be extended to three-dimensional meshes to measure
the true level of dissipation of each element type for complex turbulent flows
without predefined direction.

4.2 Periodic Channel Flow

This section summarises the results presented in Carton de Wiart et al. [13].
The wall-resolved LES of the fully developed turbulent flow between two paral-
lel walls separated by a distance 2δ in the y-direction is investigated. The flow
is assumed periodic in the streamwise (x) and the spanwise (z) direction. Four
Reynolds numbers are considered: Reτ = uτδ/ν = 180, 395, 590 and 950, with
uτ the friction velocity based on the wall shear stress uτ =

√
τw/ρ. The friction

Reynolds number is imposed through a constant forcing in the x-momentum
equation. This forcing is given by the pressure gradient dp

dx = − τw
δ . Here again, a

Mach number of 0.1 (based on the estimated bulk velocity) is chosen to approx-
imate the incompressible conditions of the reference DNS of Moser et al. [30]
(Reτ = 180, 395, 590) and Hoyas et al. [23] (Reτ = 950). The fourth order
version of the method is used (p = 3).



DGM for Industrial DNS and LES 267

Table 2. LES of the channel flow. Parameters of the simulations.

Reτ
Grid size Effective resolution

Δx+ ×Δy+ ×Δz+ Δt+
nx× ny × nz nx× ny × nz

180 42× 42× 42 126× 126× 126 17.95× 0.17× 8.96 1× 10−3

395 21× 16× 16 63× 48× 48 38.78× 2.45× 25.85 2× 10−3

590 32× 20× 32 96× 60× 96 38.61× 2.36× 19.3 1× 10−3

950 64× 32× 64 192× 96× 192 31.01× 1.52× 15.5 5× 10−4

The grid and time step parameters are summarised in Table 2, with Δt+ =
uτΔt/δ the dimensionless time step. On the Reτ = 180 case, a very high resolu-
tion is chosen, such that DNS can be assumed. At this Reynolds number, the level
of turbulence is assumed too low to perform a meaningful LES. The computa-
tional domain is the same for the LES (from Reτ = 395): 2πδ×2δ×πδ. According
to Moser et al. [30], a larger domain is chosen for the DNS (4πδ× 2δ× 4/3πδ) to
capture the low frequency phenomena. The grid is stretched in the wall normal
direction using the following cosine law transformation (for the semi-channel):

y(ξ)

δ
=

(
1− cos

(
πξ

2δ

))
, ξ ∈ [0, 1].

The grid points are taken at regular interval Δξ in the transformed coordinates.
Figs. 15 and 16 present instantaneous volume renderings of the obtained ve-

locity fields for all cases, showing the complex and intense turbulent structures
near the wall and the effects of the Reynolds number. Fig. 16 highlights the
elongated structures at the near wall, typical of the channel flow.
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Fig. 16. Channel flow at Reτ = 180 (DNS), 395, 590 and 950 (LES). Volume rendering
of the velocity field. Values from 75% of the velocity at the center of the channel are
transparent. Only a portion of the domain is shown for the Reτ = 180 case.
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Fig. 17. LES of the turbulent channel flow at Reτ = 180, 395, 590 and 950. Mean
velocity profiles

〈
u+

〉
. DGM/ILES (circle) compared to DNS (solid line) of Moser et

al. [30] (Reτ = 180, 395 and 590) and Hoyas et al. [23] (Reτ = 950). The curves were
shifted vertically by

〈
Δu+

〉
= 2 for clarity.

Fig. 17 shows the resulting time and spatially averaged profiles of the through-
flow velocity 〈u+〉 = 〈u〉 /uτ . Each point corresponds to a high-order interpo-
lation point, whereas the solution is averaged at the points located on element
interfaces. The notation 〈·〉 indicates values that have been averaged in time and
in both the x and z homogeneous directions. The curve of the DNS performed
at Reτ = 180 is perfectly superimposed with the DNS of Moser. Globally, the
LES results are also seen to be in very good agreement with the DNS of Moser
and Hoyas, especially for Reτ = 950. This might be due to the better resolution
of this computation, relative to that required for the DNS of Moser and Hoyas,
compared to those used for the lower Reynolds numbers. It is interesting to stress
that the LES results are obtained on a relatively coarse mesh in the near wall
region. Indeed, in these DGM computations, the first interpolation point (i.e. at
a distance h/p away from the wall is located at a wall distance y+ > 1.5 (and
even 2.5 for Reτ = 395 and 590); whereas, for most other discretisations (FDM,
FVM, PSM, etc.), one needs to stay below y+ = 1 to obtain satisfactory results.

Fig. 18 shows the components of the averaged turbulence intensity profiles.
According to [40], a fair comparison of the turbulent intensities between a DNS
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and LES computations can only be based on the traceless values, computed
as:

〈
u′+i

〉∗
rms

=

√

〈u′iu′i〉 − 1
3

3∑
k=1

〈u′ku′k〉

uτ
.

The DNS at Reτ = 180 captures almost perfectly the fluctuations. A fair agree-
ment is obtained for the LES, even if the fluctuations at the center of the channel
are slightly underpredicted, in particular at higher Reτ . The peak for 〈u′+〉rms

is also overpredicted for all Reynolds numbers. This behaviour is typical of LES
of channel flow and is observed for state-of-the-art LES codes and models (see,
for instance, Bricteux et al. [9]). This effect appears to be further reduced as
the Reynolds number increases. This might be due to the slightly better span-
wise resolution of the high Reynolds cases. Small oscillations can also be seen on
the profiles. Those oscillations, also observed in [28], follow the mesh pattern,
thereby reflecting the discontinuity of the DGM solution and the difference in
the numerical treatment at the interfaces. Nevertheless, this phenomenon does
not affect significantly the values.

Fig. 18. LES of the turbulent channel flow at Reτ = 180 (upper left), 395 (upper right),
590 (lower left) and 950 (lower right). RMS turbulent velocities:

〈
u′+〉∗

rms
(circle),〈

v′+
〉∗
rms

(square) and
〈
w′+〉∗

rms
(triangle) of DGM/ILES compared to DNS (solid

line) of Moser et al. (Reτ = 180, 395 and 590) and Hoyas et al. (Reτ = 950).
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Finally, the shear component −〈u′v′〉 /u2τ of the Reynolds stress is presented
in Fig. 19. Here also, the DNS at Reτ = 180 is in very good agreement with the

Fig. 19. LES of the turbulent channel flow at Reτ = 395, 590 and 950. Mean turbulent
shear stress profiles −〈u′v′〉+: DGM/ILES (circle) compared to DNS (solid line) of
Moser et al. [30] (Reτ = 395 and 590) and Hoyas et al. [23] (Reτ = 950).

reference. The LES results are also very close to those of the reference. Small
overpredictions can be observed at Reτ = 395 and 590 around the maximal
value. It can also be seen that the results of Hoyas et al. [23] have been obtained
at a slightly lower Reynolds number of 935 rather than the 950 announced.
Indeed, the curve intersects the zero value around y+ = 935. The DGM/ILES
result is correctly located at y+ = 950. The authors were not aware of this small
discrepancy at the time, and hence simulations was run at Reτ = 950 and not
935.

5 IDIHOM Test Cases

Finally, the method is applied to three IDIHOM test cases. The first is the
periodic flow over a 2D hill from the ERCOFTAC QNET CFD data base [1].
Subsequently, two semi-industrial cases are tackled, namely the LES of the tran-
sitional flow in the T106C turbine cascade and the LES of the turbulent jet flow
from the JEAN nozzle [26].

5.1 DNS and ILES of the Periodic Flow over a 2D Hill

The 2D periodic hill flow is a generic case of a flow separating from a smoothly
curved surface. The flow over periodically arranged hills features separation at
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the hill crest and reattachment downstream, creating a large recirculation bub-
ble. The flow conditions are determined by the Reynolds number Reb = ubh

ν
based upon the bulk velocity, evaluated at the crest

ub =
1

2.035h

∫ 3.035h

h

u(y)dy (13)

and the hill height h. The case has been studied numerically and experimentally,
from Reb = 100 to 37000, by numerous research groups. The major contribu-
tions have been performed experimentally in a water channel by Rapp et al. [31]
and targeted Reynolds numbers from Reb = 5600 to 37000. Numerical studies,
including DNS and LES, have been performed by Breuer et al. [8], Manhart
and Friedrich [29], Fröhlich et al. [18], amongst others. A detailed description
together with numerical and experimental reference results are available on the
ERCOFTAC QNET-CFD wiki [1]. It was also test case C3.6 of the second In-
ternational Workshop on high-order CFD methods [12].

The computational domain is periodic in both the stream- and spanwise di-
rection. The mass flow rate is ensured by the addition of a body force. This body
force is calibrated continuously in order to provide the correct mass flow rate,
using a procedure proposed by Benocci and Pinelli [10, 38], as mentioned in the
test case description on the ERCOFTAC QNET-CFD wiki [1].

Two flow conditions are considered, corresponding to Reb = 2800 and Reb =
10595. The low Reynolds number case is computed using DNS mesh criteria
and the high Reynolds number with LES mesh criteria. The Mach number is
set to 0.1 to approximate incompressible conditions. The size of the domain is
9h × 3.035h × 4.5h. Both Reynolds numbers are computed on a second order
curvilinear mesh, composed of 128× 64× 64 elements (see Fig. 20). Using fourth
order accurate interpolants (p = 3), this leads to more than 33M dof per equa-
tion. For the Reb = 10595 case, a coarser mesh is also considered to perform
a more challenging ILES. It is composed of 64 × 32 × 32 elements, leading to
slightly more than 4M (effective resolution of 1.4M).

Fig. 20. Second order curved mesh for the 2D periodic hill. For clarity, the mesh shown
is coarsened four times in each direction.
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Fig. 21 shows an instantaneous volume rendering of the vorticity field for the
Reb = 2800 case at t = 300tc, with tc the convective time scale, here defined as
tc = h/ub. It can be seen that the turbulence is fully established. Due to the
recycling of the flow, the shear layer emanating from the hill crest is turbulent
immediately, without a transitional region. Intense elongated structures are cre-
ated in the shear layer emanating from the hill crest. Due to the presence of
low frequency phenomena, the flow is averaged over a relatively long period (i.e.
150tc) and in the spanwise direction, such that fully converged statistics are ob-
tained. The averaged results are compared to those obtained by Breuer et al. on
a 48M dof DNS using the MGLET and the LESOCC finite volume solvers. The
mean velocity profiles u/ub and the turbulent intensity u′v′/u2b are presented in
Fig. 22. Some very small discrepancies can be observed on the vertical velocity
in the recirculation bubble but, globally, excellent agreement is found with the
reference results. The length of the recirculation bubble can be approximately
measured on the horizontal velocity profile, and is located just after x/h = 5.
The differences are slightly more pronounced when velocity fluctuations are con-
sidered, in particular in the shear layer. Nevertheless, these remain very small
and globally an excellent agreement is achieved, especially with MGLET.

Fig. 23 shows a snapshot of the volume rendering of the Q criterion for the
Reb = 10595 case. As expected, much smaller vortical structures are obtained,
even if the flow is computed on the same mesh as the lower Reynolds num-
ber. Fig. 24 shows the mean velocity profiles u/ub and the turbulent intensity
u′v′/u2b obtained on the baseline and the coarse mesh. At this Reynolds number
experimental results, obtained by Rapp et al., are available. The results are also
compared to those obtained by Breuer et al. using the LESOCC solver on a 13M
dof grid. Globally, a good agreement is obtained between the computations and
the experiment for the velocity profiles. The results obtained using Argo are
even slightly better than those obtained using the LESOCC solver. Unfortu-
nately, fully converged velocity fluctuations were not obtained for the baseline
mesh at the end of the study. Indeed, the flow has only been averaged on 20tc.
This short averaging period is responsible for the under-prediction of the fluctu-
ations. On the other hand, the solution on the coarse mesh is averaged on more
than 200tc. The results show a good agreement with the reference, considering
this coarseness of the resolution.
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5.2 ILES of the Transitional Flow in the T106C Cascade

This test case was included as C3.7 at the second International Workshop of High
Order Methods in CFD [3]. Experimental data were provided by Prof. Tony Arts
of the von Karman Institute for fluid dynamics. The results of Cenaero are the
subject of a paper at the ASME Turbo Expo 2014 [21].

The flow conditions are defined with respect to the isentropic exit conditions,
corresponding to the ratio of inlet total to exit static pressure, in particular
M2,is = 0.59 and Re2,is = 80.000. These conditions lead to a laminar separation,
followed by transition in the shear layer and reattachment zone. The boundary
conditions impose total pressure and temperature, as well as flow angle at the
inlet, while static pressure is imposed at the outlet. The flow is assumed to be
periodic in both the pitchwise and spanwise directions. The spanwise extent is
chosen to be 20 % of the axial chord Cax. The working fluid is air, assumed
to be a perfect gas with gas capacity ratio γ = 1.4, whereas dynamic viscosity
and conductivity are considered constant. Finally, in view of the low level of
turbulence in the wind tunnel, the inlet was assumed to be free of turbulence
The physical values of the measurement conditions are available from the test
case description of the workshop [3].

Figs 25 illustrates the computational domain and the mesh used for the com-
putations. It is obtained by extrusion of an curved two-dimensional unstructured
mesh on the periodic plane. This mesh has been generated by the open source
curved grid generator Gmsh [19]. The high-order DGM has shown to be able
to handle large transitions without loosing accuracy or robustness. Hence an
aggressive mesh refinement strategy has been used, resulting in large mesh size
transitions going out of the wake and the blade boundary layer. The mesh is
essentially refined on the second half of the blade. Additional refinements are in-
cluded to capture the turbulent structures originating from the separated shear
layer and the vortex shedding off the trailing edge. The two-dimensional mesh is
extruded on 20 regular layers, leading to 262k hexahedra. Using a fourth order
solution (p = 3), this gives 16.8M degrees of freedom (dof).

Fig. 25. Global view of the computational domain and mesh
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Fig. 26. Isentropic Mach number

Fig 26 shows the resulting averaged isentropic Mach number distribution along
the blade chord and the measurements performed at the VKI. Those results have
been presented at the second international workshop on high-order methods for
CFD [3], together with those of several other participants. It was seen that all
of the computations differ in the same way from the experiment at the front
suction side (see also the corresponding test case section further on). LES com-
putations, performed with a standard finite volume code at Cenaero and RANS
computations at VKI, showed a similar discrepancy. Based on the remarkable
consistency between the different computations and codes, it was conjectured
that there was potentially a small difference in the flow conditions and the cas-
cade geometry. This mismatch between the computational and the experimental
setup is currently investigated at the VKI in collaboration with Cenaero.

Fig. 28 shows typical snapshots of the Mach number field and the spanwise
components of the vorticity field. The transition in the shear layer and reat-
tachment zone of the separation bubble is clearly visible by the appearance of
in-plane vorticity components. It occurs near 80% of the axial chord Cax, whereas
the separation occurs already around 50% Cax.
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(a) Mach number (b) Spanwise vorticity

(c) Axial vorticity (d) Pitchwise vorticity

Fig. 27. Flow field near the the trailing edge
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5.3 ILES of the JEAN Nozzle

This test case consists of the LES of a turbulent isothermal and subsonic jet
exhausting from a nozzle. The exhaust Mach number corresponding to the isen-
tropic expansion from inlet total to free stream static pressure is Mis = 0.75.
Based on these isentropic conditions and exhaust diameter D, the Reynolds
number is ReD,is = 5 × 104. Experimental data have been obtained during the
research project JEAN [26], and consist of the variations of the velocity average
and fluctuations along the nozzle axis, and along radial profiles at three axial
positions x/D = 1, x/D = 2.5, and x/D = 5 from the jet exit. It should be noted
that the experimental data were obtained at a much higher Reynolds number of
ReD,is = 9× 105, assuming that the impact of the Reynolds number is already
negligeable for the computational conditions ReD,is = 5× 104.

The mesh is obtained by full rotational extrusion of a two-dimensional un-
structured mesh along an axi-radial cut across the domain, illustrated in Fig. 29.
Due to solver limitations, a structured region is used on the axis to avoid the
formation of pyramid elements. The mesh is composed of 582464 hexahedra and
23808 prisms. Using the fourth order interpolation (p = 3) roughly 38M dof
are used. The far-field boundaries of the domain are located far away from the
nozzle, i.e. at x/D = 300 and r/D = 100, and a very coarse mesh is used to
destroy turbulent flow structures before they can interact with the boundary.
Due to the rapid increase in mesh size, this large domain does not increase the
number of dof, and hence computational cost, significantly. The resolution near

Fig. 29. Section of the JEAN nozzle mesh. Global view.
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Fig. 30. JEAN nozzle. Volume rendering of the velocity.

the solid walls is fine enough to perform a wall-resolved ILES, as y+ < 4 every-
where (studies have shown that accurate results can be obtained with DGM for
y+ < 8). Therefore stick conditions were imposed on the nozzle walls.

The geometry of the nozzle and a volume rendering of the obtained velocity
are shown in Fig. 30 Fig. 31 shows a section of the mesh close to the jet exit.
The boundary layer mesh is prolonged into the domain at the exit of the nozzle
to capture the shear layers and the Kelvin-Helmholtz instabilities downstream.
Two refinement boxes are placed in the wake of the jet, allowing to capture the
complex turbulent interactions up to x/D = 14 downstream from the nozzle exit
(up to x/D = 5 for the finest refinement box).

Total pressure and temperature are imposed at the inlet of the nozzle, whilst
free stream boundaries are imposed elsewhere. The initial condition corresponds
to the freestream conditions. To prevent the creation of strong acoustic waves
during the transient phase, ramping functions are given at the inlet for the
total conditions. It is important to remark that due to lack of data, the total
pressure and temperature were assumed constant across the inlet surface, and
that therefore no boundary layer profile was therefore imposed. For the same
reasons, no inlet turbulence was imposed. The total values imposed at the inlet,
the ambient states imposed at the freestream boundaries and the other physical
parameters of the simulation were specified by Onera, and are summarized in
table 4. We should remark that in order to obtain the imposed Reynolds number,
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Fig. 31. Section of the JEAN nozzle mesh. Zoom on the nozzle exit.

Table 3. Physical parameters of the simulation

Ambient pressure p0 100380 [Pa]

Ambient temperature T0 283.15 [K]

Total pressure pT 144400 [Pa]

Total temperature TT 314.15 [K]

Exit Mach number Mis 0.74

Dynamic viscosity μ 3.12757× 10−4 [kg/m2s]

Conductivity κ 0.48 [W/mK]

Jet diameter D 0.05 [m]

Exit Reynolds number ReD,is 49272.44

the viscosity and conductivity were artificially increased with respect to standard
values for air.

The transient of the computation corresponding to the inlet profile ramping is
computed using third order accurate interpolants (p = 2). Using this relatively
modest resolution (∼ 16M dof), the flow is already fully turbulent featuring very
small vortical structures in the wake of the jet as seen in Fig. 32. Once the target
total conditions are reached in the nozzle, the computation is restarted using the
fourth order accurate interpolants (p = 3). After a short transient, typically a few
throughflow periods, a statistically stationary regime is obtained. The increased
resolution can clearly be seen in Fig 33, showing much smaller and stronger
turbulent structures.
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Fig. 34. JEAN Nozzle. Mean axial velocity along the nozzle axis. Experimental results
(black circle), LES of Andersson et al. [9] (black line) and the DGM/ILES computation
(red line).

Experimental data are available along the axis and at different axial posi-
tions as well as the LES results of Andersson et al. [9]. All the following results
are scaled with the obtained velocity at the centre of the nozzle exit. Fig. 34
shows the mean axial velocity ux(x) and the mean axial fluctuations u′rms(x)
along the nozzle axis. The results are close to the experiment, with the end of
the potential core located around x/D = 4. The drop of velocity in the wake
is also globally well represented. The absence of inlet turbulence is reflected
in the velocity fluctuations, resulting in an under-prediction at the nozzle exit
plane. Nevertheless, the computed fluctuations match the experimental values
well further downstream, and improve upon the results by Andersson et al. [9].

Fig. 35 shows the mean axial velocity and the mean axial RMS fluctuations
at the axial positions x/D = 1, x/D = 2.5, and x/D = 5. At each station, the
solution is also averaged in rotation to accelerate the convergence. It can be seen
that the diffusion of the jet is slightly more important in the computations, which
can be expected as they are performed at a relatively low Reynolds number
compared to the experiment. Especially for the fluctuations, a wider curve is
obtained together with a more pronounced peak at the first station. Again,
the effects of the inlet turbulence can clearly be seen at the first station where
the fluctuations in the core are three times more important in the experiment.
Qualitatively, these effects are in line with the results obtained by Andersson
et al. [9]. Globally the agreement with experiments is fair and improved with
respect to [9]. Further downstream oscillations of the average and correlations
are observed, showing that there more time would be required to fully converge
the statistics.
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Fig. 35. JEAN Nozzle. Mean axial velocity and mean axial RMS fluctuations at the
axial stations x/D = 1, x/D = 2.5, and x/D = 5. Experimental results (black circle),
LES of Andersson et al. [9] (black line) and DGM/ILES (red line). Curves are shifted
and scaled for clarity.

6 Conclusions

The potential of the DGM code Argo for industrial scale-resolving simulations
was demonstrated. DGM, from relatively low orders onward (p ≤ 3), provides
spatial accuracy comparable to state of the art academic solvers for DNS. Ex-
cellent strong scalability was obtained on world class HPC infrastructure, using
up to 130.000 cores. Finally, it was shown that the DGM/ILES provides a very
good level of accuracy on free and wall bounded flow benchmarks. The viability
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of the method was further demonstrated on more practical applications, namely
a subsonic isothermal jet and a transitional turbine cascade.

During the cascade computations it proved difficult to match computational
with experimental conditions, in all probability due to the extreme sensitivity
of transitional flows to the flow conditions. As the deviations are consistent
with computations performed by other institutes, amongst others during the
workshop on high order methods, it is presumed that the computational setup
does not reflect adequately the conditions in the wind tunnel. Further potential
discrepancies include lateral wall effects in the tunnel, or insufficient spanwise
extent of the computational grid. This issue will in all probability be a recurring
difficulty for spanwise periodic simulations of transitional cascade or wing flows.
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Abstract. Time-dependent vortex-dominated flows are computed ac-
curately with a high-order finite-volume method on structured grids. In
order to attain the required grid resolution in the vortex region, block-
wise local grid refinement is employed. A new topology-based block-
refinement algorithm allows the efficient generation of such block-wise
refined meshes. The high-order finite-volume method is extended with
high-order interpolation to deal with the partially continuous grids at
block interfaces that result from the refinement. Results are presented
for three applications: one time-accurate RANS computation of a heli-
copter flow case and two hybrid RANS–LES computations of strongly
separated flows.

Keywords: CFD, high-order method, finite-volume method, local grid
refinement.

1 Introduction

Boundary-conforming block-structured finite volume solvers have several advan-
tages. The block-structured mesh allows for accurate and efficient discretization
of the flow equations. In particular, high-order methods can be devised by en-
larging the stencil with only a moderate increase of computational effort. Using
a single boundary-conforming mesh obviates the need for three-dimensional in-
terpolation algorithms which are for instance necessary for Chimera methods.
These advantages come at a price, though, as on the one hand the grid genera-
tion process is not fully automated and on the other hand generating an efficient
grid in terms of number of grid cells is hampered by geometrical and topological
restrictions, especially for complex geometries.

For time-dependent vortex-dominated flows, for example, the mesh should be
as uniform as possible in the vortex regions. Within the multi-block structured
framework such grids are difficult or even impossible to generate, unless some
freedom in the grid structure is introduced. Here, this freedom consists of block-
wise refinement of the mesh, where the grid in a block may be refined in one
or more direction(s) by a factor 2n. This results in partially continuous grids at
block interfaces, where the ratio of mesh widths may be 2n:1. Block-wise refined
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meshes have the potential of attaining uniform grid spacing in the vortex regions.
To generate these block-wise refined meshes efficiently, a topology-based block-
refinement algorithm has been developed which refines the topology in such a
way that the resulting block-refined mesh is as uniform as possible in, and only
in, the vortex region.

The multi-block flow solver ENSOLV employs a low-dispersion symmetry-
preserving fourth-order finite-volume method [7, 10]. This allows the accurate
capturing of vortices, for example in helicopter rotor computations and in LES or
hybrid RANS–LES of turbulent flow. This high-order method must be extended
to deal with the partially continuous grids at block interfaces, resulting from the
block-wise grid refinement. A new algorithm has been developed that can be
both second-order and fourth-order accurate, and that can even be applied to
completely discontinuous grids. Here, this algorithm is described as applicable
to partially continuous grids. Furthermore, the algorithm is verified for a basic
test case, consisting of the convection of an isentropic vortex in a uniform flow.

This paper presents results for the application of local grid refinement to
both helicopter flow simulations and X-LES computations. The helicopter flow
concerns the baseline case of the HART-II experiment. The X-LES method [8,
10] is a DES-type [12] hybrid RANS–LES method. Two cases are considered:
the flow over a bump in a square duct and the flow over a delta wing at high
angle of attack. For both cases, due to the simple geometry, a baseline grid is
available that is practically uniform in the separated flow region where an LES
is performed. Therefore, local grid refinement is not needed to obtain the desired
grid resolution in the region of interest. Instead, the grid outside the regions of
interest is coarsened to investigate whether a reduction of computational costs
can be obtained in this way, without loss of accuracy.

2 Basic Method Description

The flow solver ENSOLV has the following capabilities which are relevant to the
subject of this paper.

A fourth-order, symmetry-preserving, low-dispersion finite-volume scheme [7]
is used to discretize convection. A central (instead of upwind) discretization is
used, so that the method contains no numerical dissipation. The finite-volume
method maintains its properties (fourth-order accurate, low numerical disper-
sion, no numerical dissipation) on non-uniform, curvilinear grids. On uniform,
Cartesian grids, it is equivalent to the DRP scheme of Tam and Webb [13]. An
important property of the symmetry-preserving finite-volume method is that it
ensures that kinetic energy is conserved by convection (see e.g. Verstappen and
Veldman [17]). This improves the stability properties of the scheme significantly,
requiring only a low level of artificial diffusion, if any at all. For compressible
flow, sixth-order artificial diffusion is added to the equations, maintaining the
fourth-order accuracy [10].

For aeroelastic simulations, the flow solver is coupled in a strong way (ex-
change at each time step) to a modal representation of the structural model. At
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each time step, the full 3D grid must be deformed in order to remain bound-
ary conforming with the aeroelastically deformed geometry. This is done using
a combination of a 3D volume spline (block vertices and edges) and transfinite
interpolation (block faces and interior). The fourth-order finite-volume method
has been extended to remain fourth-order accurate as well as fully conservative
on such deforming grids.

The X-LES method [8] is a DES-type hybrid RANS–LES method based on
the k–ω turbulence model. A single set of turbulence-model equations is used
to model both the Reynolds stresses in RANS zones and the subgrid stresses in
LES zones. The X-LES method in particular is based on the TNT k–ω model.
The method switches to LES when the RANS length scale (l =

√
k/ω) exceeds

the LES length scale (C1Δ, with Δ the filter width and C1 = 0.05). The RANS
length scale is then replaced by the LES length scale in the expression for the
eddy viscosity as well as in the expression for the dissipation of turbulent kinetic
energy. The filter width Δ is defined at each grid point as the maximum of the
mesh size in all directions.

To improve the capturing of free shear layers, two modifications have been
added to the X-LES method: a stochastic subgrid-scale (SGS) [9] model and a
high-pass filtered SGS model [10]. For the present computations, only the high-
pass filtered SGS model has been employed. In this SGS model, the SGS stresses
are computed from the velocity fluctuations instead of the instantaneous velocity,
where the velocity fluctuations are obtained by applying a temporal high-pass
filter to the velocity field.

To prevent the X-LES method from inadvertently switching to LES inside at-
tached boundary layers (resulting in so-called shear-stress depletion), the shield-
ing function of DDES [14] is included.

3 Block-Structured Local Grid Refinement

3.1 Algorithm

Block-wise refined meshes have the potential of attaining uniform grid spacing
in the vortex regions. However, the grids may not be that efficient, since the
grid resolution may be too small in some regions. This may happen inside the
vortex region for a block with significant stretching: if the coarse cells satisfy
the resolution requirement, the fine cells will be too small. It may also happen
outside the vortex region when the refined block is only partially contained in
the vortex region. These examples show that an efficient grid with block-wise
refinement can only be obtained if the topology of the mesh is modified.

The new topology-based local grid refinement algorithm is described briefly
below. The interested reader may find more details in Van der Ven et al. [15].
The algorithm consists of the following steps:

1. uniform refinement of the block topology, splitting all blocks into subblocks of
a fixed block size (measured as the number of cells within a block); typically
the target block size is 83 or 163;
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2. further topology-refinement of those blocks which are targeted for grid re-
finement; the subblock topology is such that each grid-refined subblock is as
close as possible to the fixed block size used in step 1;

3. based on the user-defined maximum refinement ratio (2:1, 4:1, etc.) blocks
bounding the refinement region are targeted for refinement, and step 2 is
repeated for those blocks;

4. generate the block grids within the refined topology.

In step 2 a refinement sensor is used which indicates how the grid within a
block should be refined. The sensor consists of two parts: 1) the target mesh
width; 2) the region where this mesh width should be attained. The target mesh
width should be attained for all cells within a block. The refinement region can
be specified in different ways: distance to a geometric object; specification of
specific blocks; or a region described by a simple geometric object such as a
sphere, cylinder, or cube. As the aim of the topology refinement is a uniform
mesh, the grid refinement within a block is allowed to be anisotropic.

The algorithm is demonstrated for the NACA0012 airfoil, using a refinement
region defined by the distance to a line segment. This example serves as an illus-
tration of the algorithm only; in the next section the algorithm will be applied
to the isolated HART II rotor.

The original mesh and topology is shown in Figure 1a. With a specified block
size of 82, the refined topology of step 1 of the algorithm is shown in Figure 1b.
The line segment used to define the refinement region is shown in Figure 1c. A
region at a distance of 10% chord to this segment is defined as the refinement
region. Within this region a mesh width of 0.001 chord should be attained. Fig-
ure 1d shows the refined topology which is the result of step 2 of the algorithm.
Note that at this stage the grid has not been refined yet and that some of the
blocks in the refined topology consist of a single cell of the original mesh. Subse-
quently, the user-defined refinement ratio is applied. Figure 1e shows the refined
topology based on a maximum ratio of 2:1. In the last step of the algorithm the
refined grid is generated, which is shown in Figure 1f.

It is worthy to note that the final topology consists of 982 blocks. Clearly, it
is unfeasible to expect from a user to generate such topologies by hand.

3.2 HART II Rotor

For rotor flows the convection of the tip vortices in the wake of the blades is
important to capture the blade-vortex interaction. As the vortices move through
the wake, the easiest way of obtaining a mesh with sufficient resolution in the
vortex regions is to uniformly refine the mesh in a cylinder around the rotor
blades. So the definition of the refinement region in this case is a cylinder centred
at the rotor hub with radius equal to the rotor radius and sufficient height to
contain the vortices.

The target mesh width is 0.01R, where R is the rotor radius. This corresponds
to 16% chord, which is a rather coarse resolution, but nevertheless leads to a
refined mesh of 26 million cells, whereas the original mesh had 13 million cells.
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(a) Original mesh and topology (b) Refined topology, result of step 1

(c) The sensor (d) Refined topology, result of step 2

(e) Refined topology, result of step 3 (f) Refined grid, result of step 4

Fig. 1. Illustration of the grid generation algorithm. Block boundaries are shown in
red; grid lines in black; the line segment used in the sensor is shown in blue.



298 J. Kok and H. van der Ven

Figure 2a shows a detail of the original mesh in a horizontal plane through the
hub. The same detail of the refined mesh is shown in Figure 2c. The uniform
resolution in the wake is clearly visible. The imposed refinement ratio of 2:1 is
also visible in the resolution outside the rotor disk. Figures 2b and 2d show the
refinement in a vertical plane through the hub bisecting the rotor disk between
two blades.

Figures 2e and 2f demonstrate that the target mesh width is actually obtained
in the specified refinement region. The figure shows the ratio of the maximum
mesh width in a cell over the target mesh width. As can be seen the ratio is less
than one in the refinement region, demonstrating the correct functioning of the
algorithm. The figure also shows that the algorithm is relatively efficient: the
region where the target mesh width is attained is not that much bigger than the
refinement region.

4 High-Order Method at Partially Continuous Grids

4.1 Algorithm

ENSOLV employs a cell-centred finite-volume method. For the second-order
scheme, a five-point stencil is used in each computational direction. For the
fourth-order scheme, a seven-point stencil is used. To couple the flow computa-
tions in different blocks of the multi-block grid, dummy cells are used. Consider-
ing the size of the stencil, the second-order scheme requires two rows of dummy
cells along each interface, and the fourth-order scheme requires three rows. The
flow solution at the cell-centres of the dummy cells are determined by interpo-
lating the conservative flow variables of the adjacent block. The interpolation
algorithm is described for the case of a 2:1 ratio in mesh size, both along and
normal to the interface.

A generic interpolation algorithm has been developed, applicable both to par-
tially continuous and full discontinuous grids. Main requirement has been that
the algorithm is robust and accurate for time-accurate computations, maintain-
ing the properties of the high-order finite-volume method as much as possible.
This was obtained by initially dropping the requirement that the scheme is
fully conservative at the interface. Future extension towards a fully conservative
scheme, however, is possible.

First, the second-order variant is described. In this case, the two rows of
dummy-cell values are obtained by linear interpolation in computational space,
which is second-order accurate. The interpolation is performed in each compu-
tational direction separately. A first option is to apply this interpolation only
along the interface, as shown in figure 3, ignoring the jump in mesh size in the
direction normal to the interface. This has as advantage that the symmetry of
the discretization normal to the interface is maintained, requiring two rows of
source cells on each side of the interface. Furthermore, this scheme is generic
enough to be applied to a fully discontinuous grid (with appropriately defined
interpolation coefficients). A second option is to interpolate the solution in the
normal direction as well (after first interpolating along the interface), as shown
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(a) Original mesh at horizontalplane (b) Original mesh at vertical plane

(c) Refined mesh at horizontalplane (d) Refined mesh at vertical plane

(e) Mest width ratio at horizontal plane (f) Mest width ratio at vertical plane

Fig. 2. Original and refined mesh for the HART II rotor at a horizontal and a vertical
plane through the hub; the border of the refinement region is shown in red. Ratio of
the maximum mesh width in a cell over the target mesh width in the same two planes;
the border of the refinement region is shown in black.



300 J. Kok and H. van der Ven

1/2

1/2

1/4

3/4

Fig. 3. Stencil to determine dummy-cell values using second-order interpolation along
interface only (solid symbols: source points (cell centres); open symbols: target points
(dummy cells))

1/2 1/2

1/4 3/4

Fig. 4. Stencil to determine dummy-cell values using second-order interpolation both
along and normal to interface (solid symbols: source points (cell centres); open black
symbols: intermediate points after interpolation along interface; open red symbols:
target points (dummy cells))

in figure 4. Note that this scheme is now asymmetric, requiring four instead of
two rows of source cells from the fine grid.

This generic algorithm can be readily extended to fourth-order accuracy by
increasing the order of the interpolation from second to fourth. This entails a
larger interpolation stencil. Furthermore, three rows of dummy cells are needed
for the fourth-order finite-volume method. Again, the first option consists of
interpolating along the interface only, as shown in figure 5, maintaining the
symmetry of the scheme normal to the interface. Now, three rows of source
cells are required on each side of the interface. The second option, consisting of
subsequently interpolating in normal direction as well, is shown in figure 6. This
algorithm requires seven rows of source cells of the fine grid. Thus, the fine-grid
block is required to have a minimum dimension of seven cells.

The second option is more accurate than the first, because it takes the jump
in mesh size in normal direction into account. It is less robust, however, due
to the loss of symmetry. This reduced robustness is felt the strongest when a
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Fig. 5. Stencil to determine dummy-cell values using fourth-order interpolation along
interface only (solid symbols: source points (cell centres); open symbols: target points
(dummy cells))

multi-grid scheme is applied to solve the non-linear system of equations (per
time step). Therefore, in the multi-grid scheme, the first option is applied on
the coarse grid levels and the second option on the finest level only. This has as
additional advantage that on the coarse levels, the blocks have a minimum grid
size of only three cells instead of seven cells.

4.2 Verification

In order to test the capability of the high-order finite-volume scheme to ac-
curately capture vortices without significant dissipation or dispersion on locally
refined grids, the convection of a 2D isentropic vortex in a uniform flow is consid-
ered. This test case has been used to verify to high accuracy of the low-dispersion
symmetry-preserving fourth-order finite-volume method on curvilinear grids [7].
Computations are performed on a 10 × 10 multi-block grid with local grid re-
finement in a checker-board pattern, as illustrated in figure 7. This figure also
shows the initial the downstream boundary. The number of cells in the coarse
blocks equals 20×20 and in the fine blocks 40×40. The equations are integrated
in time by a low-storage 4-stage Runge–Kutta scheme.

The interpolation algorithm at partially continuous grid interfaces is verified
for the fourth-order finite-volume method. Figure 8 shows the final temperature
field of the vortex with three approaches: using second-order interpolation along
the interface only, using fourth-order interpolation along the interface only, and
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Fig. 6. Stencil to determine dummy-cell values using fourth-order interpolation both
along and normal to interface (solid symbols: source points (cell centres); open black
symbols: intermediate points after interpolation along interface; open red symbols:
target points (dummy cells))

Fig. 7. Initial temperature field of strong isentropic vortex on locally refined grid
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using fourth-order interpolation both along and normal to the interface. First
of all, for all results the vortex is located in the correct position and only small
differences with the analytic solution can be seen. This was expected, as the
fourth-order finite-volume method was particularly designed to have low disper-
sion and dissipation in order to accurately capture vortices (and waves). The
differences between the first two approaches (with interpolation only along the
interface) are only small, both showing some small disturbances compared to the
analytic solution and a weak increase of the temperature in the vortex core. The
highest accuracy is obtained when the fourth-order interpolation is applied both
along and normal to the interface. In that case, the solution is practically iden-
tical to the analytic solution (the differences in the vortex core essentially due
to the limited accuracy of the plotting program). Note that these computations
are stable with a very low level of sixth-order artificial diffusion (k(6) = 1

8 ).

5 Applications

5.1 HART II Rotor

As a first application, simulations are performed for an isolated four-bladed
rotor in one of the flow conditions of the HART-II experiment. The HART-
II experiment is described in detail in Van der Wall et al. [16]. The chosen
flow condition is a slow descent flight where multiple BVI events take place
during a rotor revolution. The rotor radius of the windtunnel model is 2 meters.
Rotational frequency is 109.12 rad/s. Forward speed of the rotor is 32.9 m/s.
Effective shaft angle is 4.5 degrees (tilted backward).

The turbulent flow is modeled using the Reynolds-averaged Navier-Stokes
equations with the TNT k-ω turbulence model [6]. All simulations have been run
using the fourth-order accurate finite volume scheme. Simulations have been per-
formed on the original mesh of 13 million elements, and the locally refined mesh
of 26 million elements. The discretization algorithm on locally refined meshes
is described above, with second order interpolation at the partially continuous
grid interfaces. The time step corresponds to 0.5◦ azimuth for all simulations.

For the simulation on the original mesh, rigid blades are considered. For the
simulation on the refined mesh, both rigid and flexible blades are considered. In
all simulations the rotor is trimmed to the experimental time-averaged forces.
The aeroelastic simulation setup is described in detail in the chapter on aeroe-
lastic test cases in this book [11], pages 649–660. In the current paper the vortex
resolution of the two simulations is compared.

Figure 9a shows the instantaneous iso-contour of the Q-criterion for the orig-
inal mesh. The Q-criterion distinguishes flow under shear stress from rotational
flow, and is used here to focus on the tip vortices rather than on the boundary
layer vorticity. The value of Q is equal to 0.72(U∞/R)

2; the vorticity is scaled
with 2U∞/R. Figure 9b shows the instantaneous iso-contour of the Q-criterion
for the refined mesh at the same values of Q and vorticity. The increase in vortex
resolution is evident. Hence, the local grid refinement performs as expected.
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(a) Second-order interpolation along in-
terface only

(b) Fourth-order interpolation along in-
terface only

(c) Fourth-order interpolation along and
normal to interface

Fig. 8. Convection of strong isentropic vortex on locally refined grid with fourth-order
finite-volume method: final temperature field (dashed lines: analytic solution; solid
lines: computed solution)
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(a) Original mesh (b) Refined mesh

Fig. 9. Instantaneous iso-contour of the Q-criterion (blade at 0◦ azimuth) coloured
with vorticity magnitude. Advancing side of the rotor is on the top-left side of the
figures (positive y), retreating on the bottom-right side (negative y).

Continuing with the simulation using flexible blades, the instantaneous iso-
contour of the Q-criterion is shown on the refined mesh for the trimmed solution
in Figure 10. Compared to the simulation on the original grid, the lift of the
blades on the advancing side (azimuth angle between 90 and 180 degrees) is
smaller. Hence the strength of the tip vortex shed in this quadrant is less. In
order to visualise the vortex system the value of Q is reduced by a factor of two
with respect to the previous figures.

5.2 Results for Bump in Square Duct

As a second application, the turbulent, separated flow over a rounded bump in
a square duct is considered. Experiments have been performed within the EU-
project DESider by ONERA [1] in a hydraulic channel. The duct has a height
of 0.3 m, a width of 0.5 m, and a length of 2.367 m. The bump has a height of
0.138 m, starts at the inflow plane at x = -0.367 m, and ends at x = 0 m. At
the entrance, velocity profiles from the experiment are prescribed, which have a
centre velocity of approximately 7 m/s. Furthermore, water with a density of 997
kg/m3 and a dynamic viscosity of 0.89·10−3 Pa·s is considered. As a compressible
flow solver is used for solving this incompressible flow, an inflow Mach number
of M = 0.1 is chosen.

Computations have been performed on a baseline grid of 142 × 60 × 76 =
647,520 cells and on a grid with LGR (local grid refinement) with 355,560 cells,
see figure 11. To be more precise, the latter grid actually contains local grid
coarsening: the grid is coarsened by a factor 2 in all directions outside the flow
separation region where the computation is in LES mode (i.e., outside the red
surface in figure 11b), saving about 45% of grid points. A time step has been
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Fig. 10. Instantaneous iso-contour of the Q-criterion (blade at 0◦ azimuth) coloured
with vorticity magnitude for the refined mesh and flexible blades. Advancing side of
the rotor is on the top-left side of the figure (positive y), retreating on the bottom-right
side (negative y).

used equal to Δt = 1.89·10−4 s. A total of 50,000 time steps has been taken and
flow statistics have been computed over the last 45,000 steps.

Figure 12 gives an instantaneous impression of the flow in terms of the Q-
criterion, revealing the vortical structures in the separated flow region. For the
grid with LGR, the figure shows that the separated flow is mostly contained
within the fine-grid region, although occasionally a vortex may escape, in par-
ticular in the centre of the tunnel.

The mean pressure coefficient along the bottom wall is shown for three stations
in figure 13. Compared to the experiment, the separation region is too small: the
pressure recovers upstream of the experiment. This finding is consistent with the
DES results from the DESider project [5]. More important here is the comparison
between the computations on the baseline (BSL) grid and the grid with LGR.
They are found to lie close together, with the LGR computation having a slightly
smaller separation region.

The resolved turbulence level is compared on both grids in terms of the RMS
value of the x-component of velocity (figure 15). The level of resolved turbulence
in the shear layer is slightly lower on the grid with LGR. This may be related
to the slightly smaller separation region.

A possible explanation for the differences between the solutions on the base-
line grid and the grid with LGR is that the refined grid region has been defined
too narrow around the separated flow. Although for the time-averaged flow so-
lution, the separation region is well within the refined region, this is not the
case instantaneously. In particular, at the downstream boundary (large) vorti-
cal structure leave the refined region and are then suppressed on the coarser
grid. Occasionally, this may also happen at the downstream part of the upper
boundary of the refined region. This may reduce the level of resolved turbulence.
Furthermore, at the upstream boundary, the incoming, attached boundary layer
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(a) Baseline grid (142× 60× 76 cells) (b) Grid with LGR: coarsened outside red
surface, i.e., outside LES region

Fig. 11. Baseline grid and grid with LGR for bump in square duct

(a) Baseline grid (b) Grid with LGR

Fig. 12. Instantaneous isocontours of Q-criterion, coloured with vorticity magnitude
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Fig. 13. Mean pressure coefficient along bottom wall

is also represented on a coarser grid and this may affect the initial development
of the shear layer after separation.

5.3 Results for Delta Wing at High Angle of Attach

As a third application, the flow around a delta wing with a sharp leading edge at
high angle of attack and high Reynolds number is considered. This flow is char-
acterized by the main vortex developing above the wing. The vortex is formed
as the shear layer emanating from the leading edge rolls up, starting immedi-
ately at the apex. At high Reynolds numbers, the shear layer rapidly becomes
unstable and a turbulent vortex is formed. At a sufficiently high angle of attack,
the vortex breaks down: the high axial velocity in the vortex core drops rapidly
to a value close to zero.

The NASA delta wing geometry of Chu and Luckring [2] is considered, for
which experiments that include measurements of velocity fluctuations have been
performed by Furman and Breitsamter [3, 4]. Vortex breakdown occurs at the
flow conditions M = 0.07, Remac = 1·106, and α = 23◦ (with the Reynolds
number based on the mean aerodynamic chord cmac).

A baseline multi-block structured grid has been generated (within the ATAAC
project), consisting of 22 blocks and 6.3 million grid cells (figure 16a). The grid
has a conical structure over a large part of the wing: the grid covering the main
vortex is essentially isotropic at each chordwise station (outside the boundary
layer) and the mesh width grows in all directions (including the streamwise
direction) together with the main vortex, going from approximately 0.003cmac
to 0.011cmac. In other words, the grid resolution relative to the main vortex is
kept constant. Only in a small region near the apex, the conical structure is not
fully maintained, avoiding a grid singularity. The far-field boundary is located
at three root chord lengths from the wing. To study grid sensitivity, also a finer
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(a) Baseline grid

(b) Grid with LGR

Fig. 14. Mean x-component of velocity in plane z = 0

(a) Baseline grid

(b) Grid with LGR

Fig. 15. RMS of x-component of velocity in plane z = 0
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(a) Baseline grid (b) Grid with LGR

Fig. 16. Grids for VFE2 delta wing

(a) Baseline grid (b) Grid with LGR

Fig. 17. Instantaneous isocontours of Q-criterion, coloured with vorticity magnitude

grid with the mesh width reduced by a factor 2/3 in all directions (21.4 million
grid cells) has been generated.

As for the previous test case, an LGR grid with local coarsening is created
(figure 16b), containing 3.7 million grid cells (reduction of 41%). The refined
grid region contains the complete wing, including the boundary layers, as well
as the main vortices above the wing.

X-LES computations have been performed with a time step of 3.75·10−4 CTU
(convective time units: cmac/u∞) on the baseline and LGR grids and a time step
of 2.5·10−4 CTU on the fine grid. The flow statistics have been obtained by
averaging over 21 CTU for the baseline grid, 18 CTU for the LGR grid, and 8
CTU for the fine grid (after transients of about 6 CTU).

An impression of the instantaneous results is given in figure 17 in terms of
isocontours of the Q-criterion. Similar fine-scale turbulent structures can be ob-
served on the baseline and LGR grids.

The mean and RMS values of the pressure coefficient are given at two repre-
sentative chordwise station in figures 18 and 19. For the mean values, there are
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(a) x/c = 0.40 (b) x/c = 0.60

Fig. 18. Mean pressure coefficient at five chordwise stations

(a) x/c = 0.40 (b) x/c = 0.60

Fig. 19. RMS of pressure coefficient at five chordwise stations

no differences visible between the baseline and LGR grids, while there are only
small differences with the fine grid. Larger, but still relatively small, differences
are seen for the RMS values.

Finally, a comparison of the level of resolved turbulence is shown in figure 20
in terms of the resolved turbulent kinetic energy at a single station (40% root
chord). Practically the same levels of resolved turbulence are obtained on the
baseline and LGR grids, and also similar levels are seen on the fine grid and in
the experiment.

Thus, the impact of coarsening the grid away from the region of interest is
found to be small for this case; smaller than for the previous case. The main
reason is that it is easier to fully encompass the region of interest (i.e., the
separated flow captured with LES) in the refined grid region for an external flow
than for the internal flow of the previous case.
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(a) Experiment (b) Fine grid

(c) Baseline grid (d) Grid with LGR

Fig. 20. Resolved turbulent kinetic energy at chordwise station x/c = 0.4

6 Conclusions

An automatic topology-based grid refinement algorithm has been developed and
demonstrated with the specific aim of obtaining block-structured meshes with
uniform resolution in user-specified subdomains.

A generic algorithm has been developed to deal with partially continuous
grids in a fourth-order finite-volume method. The stability and accuracy of the
fourth-order finite-volume method have been verified for the convection of an
isentropic vortex on a locally refined grid. The highest accuracy is obtained
when the dummy-cell values are computed by fourth-order interpolation both
along and normal to the partially continuous grid interfaces.

The simulation of an isolated helicopter rotor in forward flight clearly demon-
strated improved vortex resolution on the locally refined mesh. This is essential
for capturing blade-vortex interaction.

X-LES computations were performed for two tests cases on grids using local
grid refinement (LGR). Compared to the baseline grids, the LGR grids were
coarsened away from the separated flow regions that were captured with LES,
saving 40 to 45% of the grid points. For the bump in a square duct, the results
on the LGR grid showed a slightly smaller separation region than on the baseline
grid. Possibly, the refined grid region was chosen too tightly around the region
of interest. For the delta wing, no significant differences were found between the
LGR and baseline grids. Thus, local grid refinement can be used to reduce the
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computational costs of X-LES computations, provided the grid is coarsened well
outside the region of interest, which is easier to achieve for external flows than
for internal flows.
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Abstract. This paper presents details of the solver Aghora for the simu-
lation of unsteady compressible turbulent flows. Different modelling lev-
els are used: Reynolds averaged Navier-Stokes equations coupled with
turbulence transport equations, variational multi-scale formulation of
large-eddy simulation, and direct numerical simulation. The space dis-
cretization is based on a high-order discontinuous Galerkin method with
representation of curved boundaries. High-order explicit and implicit
Runge-Kutta methods are used for the time integration. The perfor-
mance of the solver will be assessed in various examples of compressible
turbulent flow numerical simulation in three space dimensions.

Keywords: discontinuous Galerkin method, compressible flows, turbu-
lent flows, direct numerical simulation, large-eddy simulation, variational
multiscale method.

1 Introduction

Discontinuous Galerkin (DG) methods are high-order finite element discretiza-
tions which were introduced in the early 1970’s for the numerical simulation of
the first-order hyperbolic neutron transport equation [34, 41]. In recent years,
these methods have become very popular for the solution of nonlinear convec-
tion dominated flow problems [16, 17, 32]. The success of these methods lies in
their high-order of accuracy and flexibility thanks to their high degree of local-
ity. These properties make the DG method well suited to parallel computing [7],
hp-refinement [24], p-multigrid [38], unstructured meshes [1], the application of
boundary conditions, etc.

However, high-order DG methods also suffer from a number of drawbacks
which make their application to realistic engineering problems a challenging
task: robustness issues due to spurious oscillations in the vicinity of disconti-
nuities associated to Gibbs phenomenon [20]; time step restriction due to the
so-called Courant-Friedrichs-Levy (CFL) condition for stability of the numerical
scheme [3,15]; high computational cost and large memory requirements induced
by the large number of degrees of freedom (DOFs) in practical application; etc.
The European project IDIHOM aims at providing practical solutions to these
shortcomings and demonstrating the capabilities of general high-order methods
to solve a wide range of complex industrial flows. In this context, this paper

c© Springer International Publishing Switzerland 2015 315
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summarizes the contribution from Onera and demonstrates the capability of the
Aghora DG code to deal with a number of challenging applications.

The paper is organized as follows. Section 2 presents the model problem and
the numerical approach for the space-time discretization used in the Aghora
code. Domain decomposition strategies are introduced in § 2.5. The overall per-
formance of the method is assessed by several numerical experiments in § 3. Re-
sults are obtained for 3D steady and unsteady flow problems by solving the com-
pressible Navier-Stokes (N-S) equations with Reynolds averaged Navier-Stokes
(RANS), large-eddy simulation (LES) or direct numerical simulation (DNS)
modelling. Finally, the conclusions of this work are summarized in § 4.

2 Model Problem and Discretization

2.1 Compressible Navier-Stokes Equations

The discussion in this paper focuses on the discretization of the compressible
N-S equations for gas dynamics with a DG method. Let Ω ⊂ R

d be a bounded
domain where d = 3 is the space dimension and consider the following problem

∂tu+∇ · fc(u)−∇ · fv(u,∇u) = 0, in Ω × (0,∞), (1a)
u(·, 0) = u0(·), in Ω, (1b)

with appropriate boundary conditions prescribed on ∂Ω. The vector

u =

⎛

⎜⎝
ρ

ρv

ρE

⎞

⎟⎠ (2)

represents the conservative variables with ρ the density, v in R
d the velocity

vector and E = p/(γ − 1)ρ + ‖v‖22/2 the total specific energy where p denotes
the static pressure, γ = Cp/Cv > 1 is the ratio of specific heats, and ‖ · ‖2
denotes the Euclidean norm. The nonlinear convective and diffusive fluxes in (1)
are defined by

fc(u) =

⎛

⎜⎝
ρv�

ρvv� + pI

(ρE + p)v�

⎞

⎟⎠ , fv(u,∇u) =

⎛

⎜⎝
0

τ

v�τ − q�

⎞

⎟⎠ , (3)

where τ = μ(− 2
3 (∇·v)I+∇v+∇v�) denotes the viscous stress tensor with μ the

kinematic viscosity coefficient defined by the Sutherland’s law, and q = −k∇T
is the Fourier’s heat conduction law with k = μCp/Pr the thermal conductivity,
Pr = 0.72 the Prandtl number and T the temperature.

In this work, we will also consider the compressible RANS equations cou-
pled with two different turbulence models. Both the two-equation k − ω turbu-
lence model of Wilcox [51] and the one-equation turbulence model of Spalart-
Allmaras [8] are implemented in Aghora. Here, we only focus on the one-equation
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turbulence model of Spalart-Allmaras. In the RANS formulation, the transport
equations (2) are time-averaged and the viscous stress tensor and heat flux vec-
tor are supplemented with the Reynolds stress tensor and turbulent heat flux
vector. Using the Boussinesq assumption, we obtain

τ = (μ+ μt)
(
− 2

3
(∇ · v)I +∇v +∇v�

)
,

q = −
( μ

Pr
+

μt

Prt

)
Cp∇T,

where Prt = 0.9 is the turbulent Prandtl number and μt = ρν̃fv1 represents the
turbulent dynamic viscosity coefficient with

fv1 =
χ3

χ3 + c3v1
, χ =

ρν̃

μ
.

The working variable ν̃ is governed by

∂tρν̃+∇ · (ρν̃v)−
1

σ
∇ ·

(
(μ+ ρν̃)∇ν̃

)
= cb1S̃ν̃ +

cb2ρ

σ
∇ν̃ · ∇ν̃ − cw1fw

ρν̃2

η2
. (4)

Here S̃ = ‖∇×v‖2 +S, S = ν̃fv2/κ
2η2, η is the distance to the nearest wall,

and

fv2 = 1− χ

1 + χfv1
, fw = g

( 1 + c6w3

g6 + c6w3

)1/6

, g = r+cw2(r
6−r), r =

ν̃

S̃κ2η2
.

The reader is referred to [8] for details on the coefficients and values of the
constants involved in these expressions.

2.2 The DG-VMS Approach for Large-Eddy Simulation

Due to the wide range of length and time scales involved in turbulence, direct
numerical simulation of turbulent flows is computationally very expensive, and
is restricted to low-to-moderate Reynolds numbers. The LES technique has been
established as an alternative approach to DNS for high-Reynolds-number flows.
The ultimate goal of LES is to compute explicitly the large-scale motion, while
modelling the effect of the small scales on the coarse resolved field.

In this context, the DG method appears to have a number of advantages
over other approaches, such as the finite-difference (FD) and the finite-volume
(FV) methods, for the solution of problems of practical interest, which often
involve complex geometries and require the specification of realistic boundary
conditions.

The high order of accuracy provided by DG discretizations leads to an im-
portant reduction of the numerical dissipation and dispersion errors when the
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polynomial degree is sufficiently high, as shown by several authors (see e.g.
Ainsworth [2]). This property is of major importance in the simulation of un-
steady turbulence by means of DNS and LES, for which the presence of numerical
errors can have a detrimental effect on the solution [32].

Another attractive aspect of the DG method is the possibility to enforce
boundary conditions weakly, which was shown by Collis [18] to improve the
quality of the solution. Besides, the order of accuracy of the numerical scheme
is conserved at the boundary, in contrast to most FD and FV methods in which
the order of the numerical scheme has to be reduced when approaching the
boundary.

In order to obtain accurate solutions of the LES equations, it is essential to
develop modelling approaches able to capture the main features of the interscale
dynamics. Multilevel LES methods accomplish this by simulating the most rel-
evant part of these dynamics explicitly in the computational domain. They rely
on the decomposition of the flow into different frequency bands, each associated
with a particular range of length scales.

The Variational Multiscale (VMS) method was first proposed by Hughes in
1995 [25,26], in the general context of computational mechanics. The application
of VMS to the problem of turbulence was published a little later [27, 28].

It is based on variational projection instead of spatial filtering, as is done in
traditional LES. In VMS, the exact solution of the N-S equations, u, is decom-
posed into a large-scale, u, a small-scale, ũ, and an unresolved component, u′,
such that u = u + ũ + u′. The large and small scales combine to provide the
resolved scales, denoted by ũ. The solution space is thus partitioned as

V = V ⊕ Ṽ ⊕ V ′, (5)

and the weighting function space as

W =W ⊕ W̃ ⊕W ′. (6)

The scale separation is achieved by means of a variational or Galerkin pro-
jection of the N-S equations onto the solution space. This results in a system of
equations for the large and small scales in the space-time domain Ω, which can
be formally written as

V
(
φ, ũ

)

Ω
= M

(
φ, ũ

)

Ω
+ M̃

(
φ̃, ũ

)

Ω
, ∀φ ∈ W . (7)

where V
(
φ, ũ

)

Ω
denotes a variational form of the N-S equations with weighting

functions φ = φ+ φ̃+φ′. On the right-hand side of (7), M and M̃ represent the
model terms acting on the large and small scales, respectively.

In general M = 0, so that no direct modelling is involved in the large-scale
equations, while the small-scale equations usually entail very simple models such
as the Smagorinsky model [44] or the structure function model [36]. This choice
is based on the assumption that the spectral gap between the large and the
unresolved scales is wide enough so that the effects of the latter on the former
may be neglected.
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Few attempts to combine the VMS approach with a DG discretization have
been reported in the literature. Collis et al. [18] and Ramakrishnan et al. [40] are
among the first authors to use a DG-VMS approach to perform LES of the plane
channel flow configuration. In § 3.5, we present first results of the application of a
modal DG-VMS approach to the LES of the Taylor-Green vortex at Re = 3000.

2.3 Discontinuous Galerkin Formulation

The DG method consists in defining a discrete weak formulation of the problem
(1). The domain Ω is partitioned into a shape-regular mesh Ωh consisting of
non-overlapping and nonempty elements κ of characteristic size h. We further
define the sets Ei and Eb of interior and boundary faces in Ωh and set Eh = Ei∪Eb.

We look for approximate solutions in the function space of piecewise polyno-
mials Vp

h = {φ ∈ L2(Ωh) : φ|κ ◦ Fκ ∈ Pp(Id), ∀κ ∈ Ωh}, where Pp(Id) denotes
the space of functions formed by tensor products of polynomials and of either to-
tal or partial degree at most p on the master element Id where I = [−1, 1]. Each
physical element κ is the image of Id through the mapping Fκ. A Gram-Schmidt
orthonormalization procedure is used to construct the orthonormal basis from
an initial monomial basis in order to get a diagonal mass matrix for the explicit
time integration. We refer to [5,42] for details on this procedure. The numerical
integration is either performed in Id, or by using optimal quadratures specific
to each type of element [45].

The numerical solution of equation (1) or of equations (1) and (4) is sought
under the form

uh(x, t) =

Np∑

l=1

φlκ(x)U
l
κ(t), ∀x ∈ κ, κ ∈ Ωh, ∀t ≥ 0, (8)

where (Ul
κ)1≤l≤Np are the DOFs in the element κ. The subset (φ1κ, . . . , φ

Np
κ )

constitutes a hierarchical and orthonormal modal basis of Vp
h restricted onto the

element κ and Np is its dimension.
The semi-discrete form of system (1a) then reads: find uh in [Vp

h]
d+2 such that

for all vh in Vp
h we have

∫

Ωh

vh∂tuhdV + Lc(uh, vh) + Lv(uh, vh) = 0. (9)

Hereafter, we will use the notations {φ} = (φ+ + φ−)/2 and [[φ]] = φ+ − φ−

which denote the average and jump operators defined for a given interface e in
Ei. Here, φ+ and φ− are the traces of any quantity φ on the interface e taken
from within the interior of the element κ+ and the interior of the neighboring
element κ−, respectively (see Fig. 1).
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Fig. 1. Inner and exterior elements κ+ and κ− and definition of traces v±h on the
interface e and of the unit outward normal vector n

The discretization of the convective terms in equation (9) reads

Lc(uh, vh) = −
∫

Ωh

fc(uh) · ∇hvhdV

+

∫

Ei

[[vh]]hc(u
+
h ,u

−
h ,n)dS

+

∫

Eb

v+h fc
(
ub(u

+
h ,n)

)
· ndS,

where n denotes the unit outward normal vector to an element κ+ (see Fig. 1) and
ub is an appropriate operator which allows to impose the boundary conditions
on Eb. The numerical flux hc may be chosen to be any monotone Lipschitz
continuous function satisfying consistency and conservativity properties (see [17]
for instance). In numerical examples of § 3 we use the local Lax-Friedrichs flux
hc(u

+
h ,u

−
h ,n) = {fc(uh)}+α[[uh]]/2 with α = max{ρs

(
∇u(fc(u) ·n)

)
: u = u±

h }
where ∇u(fc · n) denotes the Jacobian matrix of the convective fluxes in the
direction n and ρs its spectral radius.

For the discretization of the diffusive terms in (9), we use the BR2 method of
Bassi and coworkers [11]:

Lv(uh, vh) =

∫

Ωh

fv(uh,∇huh +Rh) · ∇vhdV

−
∫

Ei

[[vh]]
{
fv
(
uh,∇huh + ηBR2r

e
h

)}
· ndS

−
∫

Eb

v+h fv
(
ub(u

+
h ,n),∇ub(u

+
h ,n) + ηBR2r

e
h

)
· ndS,

where Neumann boundary conditions are enforced in the expression of fv on
Eb through the operator ∇ub(u

+
h ,n) and ηBR2 is a user-defined parameter for

stabilization of the method. The so-called global lifting operator Rh is defined in
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a weak sense as the sum of local lifting operators reh: Rh =
∑

e∈Eh
reh, where reh

has a support on the elements adjacent to e in Ei and results from the solution
of the following problem defined on the internal faces: for all vh in Vp

h we have
∫

κ+∪κ−
vhr

e
hdV = −

∫

e

{vh}[[uh]]n
�dS.

A similar expression consistent with the boundary conditions of the problem
is used on Eb. We refer to [10, 11] for further details on this approach.

A similar method is used for the discretization of equation (4) for the turbulent
variable where a Roe flux is applied as approximate Riemann solver and the BR2
method is used for the discretization of viscous fluxes and source terms.

Finally, in the case of non-smooth solutions, a shock-capturing term is added
to the semi-discrete form of the equations (9). We use either the residual-based
methods from [22,23] or the entropy-based method from [21].

2.4 Time Discretization

The semi-discrete equation (9) is discretized in time by means of either explicit
or implicit integration. Strong stability preserving Runge-Kutta schemes [46,
49] are used for the explicit integration in time. Implicit time integration is
performed by either backward difference formulae or by explicit first stage, single
diagonal coefficient, diagonally implicit Runge-Kutta (ESDIRK) schemes [6,31].
The sparse structure of the implicit matrix and the large number of unknowns
motivate the choice of a Krylov subspace method to solve the linear system at
each time step. We use a restarted GMRES method [48] with block Jacobi or
block ILU(0) preconditioners for its resolution. For computational efficiency, we
use a Jacobian-free strategy where the matrix-vector product required by the
GMRES algorithm is approximated by finite differences. Then, an approximate
Jacobian based on mixed precision algorithm [4] is used as preconditioner to
reduce the strong computational cost and memory requirement associated to a
high-order DG method.

2.5 Hybrid Parallel Approaches

Domain decomposition methods based on an MPI strategy are usually applied
to deal with the large CPU time and memory requirements of the DG method.
However, such an approach may suffer from several limitations due to large
number of DOFs per element, high receive-send message frequencies, or the syn-
chronization problems at very large scale. The combination of two parallelization
paradigms, MPI and OpenMP, has a number of benefits with respect to MPI-
based strategies [29,33,35], such as memory savings, better load balancing, and
coarser granularity for a sustained parallel efficiency at large scale. On top of
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that, the flexibility of hybrid approaches leads to a better code adequacy to the
target architecture hardware specificities, such as non-uniform memory access
or heterogeneity (Nvidia GPU accelerators, Intel Xeon Phi coprocessors).

Relying on a classic domain decomposition method, a first parallel MPI strat-
egy executes two global operations for each global time step calculation
(MPI_Gather and MPI_Bcast). Five point-to-point operations are done per
time step or Runge-Kutta stage during the computations of fluxes (MPI_Issend,
MPI_Irecv, and MPI_Wait routines). Moreover, non-blocking synchronous send
mode overlaps communications with calculations.

Two hybrid MPI/OpenMP strategies are considered in this work. On the one
hand, a “Fine-Grained” approach consists in adding OpenMP work-sharing di-
rectives in a non-intrusive way at the level of loops. Nevertheless, this results
in non-negligible extra-costs in elapsed time as the threads are dynamically cre-
ated and destroyed in a fork-join pattern inside each loop. On the other hand,
a “Coarse-Grained” approach generates threads only once at the beginning of a
parallel region. The multithreading support level provided by the MPI library
offers the OpenMP threads the capability to call MPI in various different ways.
This last approach has been implemented into the Aghora code, where the par-
allel region succeeds now in encapsulating the whole iterative scheme. To achieve
interesting performances, a particular attention should be paid not only to the
workload sharing between threads, but also to the load-balancing and the syn-
chronizations between threads and processes.

The loops on the elements and the faces of the mesh applied in the implemen-
tation of the space discretization, as well as the data copy into send buffers and
from receive buffers, are parallelized using OpenMP. To avoid data race condi-
tions, extra arrays per element are allocated in order to ensure reproductibility
of the numerical results regardless of the number of threads.

3 Numerical Experiments

In this section we present numerical experiments for the N-S equations (1) and
RANS equations (1),(4) in three-space dimensions to illustrate the performance
of the method.

3.1 Three-Dimensional Transonic Channel

This test case has been first proposed in [12] for the analysis of shock wave
boundary layer interaction and consists in the flow induced by a swept bump
at the lower wall of a transonic channel (see Fig. 2a). Adiabatic wall conditions
are specified on the bottom and side walls and a symmetry condition is imposed
at the top of the channel. This latter boundary condition constitutes a slight
modification compared to the experimental set-up. The inflow is subsonic with
uniform distributions of total pressure pi,0 and total temperature Ti,0. At the
outlet, the static pressure is set to p/pi,0 = 0.64. The Reynolds number based
on the channel half-height and stagnation conditions is Re = 1.69 × 106. In
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(a) (b) p = 1

(c) p = 2 (d) p = 3

Fig. 2. Cut view and geometry definition of the 3D transonic channel (a); Mach number
and wall pressure distributions (b-d)

this configuration, a shock wave appears in the divergent part of the duct and
interacts with the fully turbulent boundary layers.

We use the RANS equations coupled with the Spalart-Allmaras turbulence
model. The domain is discretized with a mesh consisting of 46, 208 quadratic
hexahedra. The non-dimensional values of the first cell height is in the range
3 ≤ y+ ≤ 4 upstream of the flow separation (see Fig. 2a).

The Mach number contours and pressure distributions at the bottom wall
are displayed in Figs. 2(b-d) for approximation orders 1 ≤ p ≤ 3. The solution
is plotted by subdividing each element into eight subelements with values of
the solution reconstructed at the centres of the subelements. The results high-
light the lambda shock structure and the large region of separated flow induced
by the shock-boundary layer interaction. Note that the results obtained with
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third- and fourth-order numerical schemes are qualitatively similar and clearly
better compared to those obtained with the second-order scheme.

3.2 The NASA Rotor 37

The capability of performing a simulation in a rotating frame of reference has
been implemented into the Aghora DG solver. By considering a relative-frame
/ relative-variable formulation, this involves the addition of rotational source
terms to the momentum and energy equations as well as the ability to consider
rotational periodicity and adapted boundary conditions. These turbomachinery-
specific developments have been validated on a transonic axial compressor, the
NASA Rotor 37.

The NASA Rotor 37 was designed and studied experimentally at the NASA
Lewis Research Center (today NASA Glenn) in the late 1970’s [1]. Since then,
a great number of numerical studies on the NASA Rotor 37 have been reported
in the literature.

The rotor has a design pressure ratio of 2.106 at a mass flow of 20.19 kg/s.
The measured choking mass flow is of 20.93 kg/s. The design wheel speed is
17,188 rpm, which leads to a nominal tip speed of 454 m/s. The computations
are aimed at a point corresponding to 98% of the choking mass flow rate.

The inlet conditions are prescribed by specifying the absolute total pressure
pi,0, the absolute total temperature Ti,0, and the direction of the flow, which is
assumed to be axial. The inflow turbulence intensity is of 3% and the turbulent
to molecular viscosity ratio is of the order of 10. At the outlet a static pres-
sure profile satisfying the radial equilibrium condition is imposed. The walls are
assumed to be adiabatic.

Two grid sizes have been considered, a fine mesh consisting of 672,896 points
and a coarse mesh with half the number of points of the fine mesh in each
direction, with a total of 87,769 points. These grids are shown in Fig. 3. On each
grid, two different simulations have been performed with polynomial degrees
p = 1 and p = 2, respectively, using the Spalart-Allmaras RANS model and
the shock-capturing technique developed in [22]. The simulations are converged
until the relative error in the mass flow rate between the inlet and the outlet has
reached an acceptably low value of the order of 10−5.

Figure 4 shows the iso-contours of the Mach number and the static pressure
for the different computations on a plane located at mid-span. We can see from
these plots that as the polynomial degree is increased (p = 1 to p = 2) the flow
solution on the coarse mesh converges towards the second-order (p = 1) solution
on the fine mesh. It should be noted that these plots have been obtained on
the volume mesh (solution at the cell centres) which does not take into account
the high-order character of the solution. A high-order representation of these
iso-contours is expected to accentuate this trend.

Figure 5 presents the radial profiles of adiabatic efficiency, ηad, absolute total
pressure ratio, pi/pi,0, and absolute total temperature ratio, Ti/Ti,0, at a station
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(a) Coarse grid: 87,769 points. (b) Fine grid: 672,896 points.

Fig. 3. Computational grids used in NASA Rotor 37 computations

located at x = 0.1067m downstream of the blade. The adiabatic efficiency is
defined as

ηad =
(pi/pi,0)

γ−1
γ − 1

(Ti/Ti,0)
.

These profiles are obtained by averaging in the azimuthal direction (across
the annulus). Once more, we can see that the profiles provided by the 3rd-order
simulation (p = 2) on the coarse grid are very similar to those obtained from
the 2nd-order simulation (p = 1) on the fine grid. The gain in terms of DOFs is
over 50% when considering the p = 2 simulation on the coarse with respect to
the fine grid simulation p = 1.

The differences found between the simulation results and the experimental
data are in line with what is usually found in the literature. A detailed study
on the possible origins of these differences was done by the AGARD Working
Group 26 and can be found in [19].

3.3 Jean Nozzle

This test case is concerned with the flow induced by a turbulent isothermal and
subsonic jet exhausting from a nozzle and has been experimentally investigated
during the European project JEAN for prediction of noise by jet flows [30]. Fig-
ure 6 presents the geometry of the nozzle with curved inner walls. A close-up
view of the mesh in the nozzle region is also provided. This mesh was pro-
vided by UCL, it consists of 179, 180 quadratic prisms and hexahedra. The jet
is isothermal with a static temperature in the exit plane of Tj/Ti,0 = 1 where
Ti,0 is the total temperature of the jet. The Mach number, based on the jet
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(a) DG p = 1/p = 2 on coarse grid. (b) DG p = 1/p = 2 on fine grid.

(c) DG p = 1/p = 2 on coarse grid. (d) DG p = 1/p = 2 on fine grid.

Fig. 4. DG computations of the Rotor 37 test case. Iso-contours of the Mach number
(upper panels) and the static pressure (lower panels) at mid-span.

velocity and temperature on the exit plane, is M = uj/(γrTj)
1/2 = 0.75. The

Reynolds number, based on uj and the diameter of the nozzle at the exit, is set
to Re = ρjujD/μ(Tj) = 5 × 104. In these conditions, the flow is subsonic and
fully turbulent. We impose the total pressure, total temperature and velocity
direction at the inlet of the settling chamber. No-slip and adiabatic conditions
are applied at the walls, and non-reflecting boundary conditions are applied at
the free artificial boundaries. The RANS equations coupled with the Spalart-
Allmaras turbulence model are also used for this test case.

Figure 7 presents the iso-contours of the Mach number and μt/μ ratio on a
vertical plane crossing the jet axis obtained at the steady-state. We clearly see
the structure of the potential core of the jet and the development of turbulence in
the mixing layer downstream of the nozzle lips. Unfortunately, the mesh extent
is not large enough and spurious reflection may have affected the quality of the
results.
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(a)

(b) (c)

Fig. 5. DG computations of the Rotor 37 test case. Spanwise profiles of (a) the adia-
batic efficiency, (b) total pressure ratio and (c) total temperature ratio.

3.4 hp-Adaptive DNS of Plane Channel Flow

A remarkable property of DG approximations is that the spatial resolution can be
conveniently adapted, not only by local mesh refinement (h-refinement), but also
by locally increasing the polynomial degree within the elements (p-refinement).
Thanks to the compact character of the numerical scheme, DG methods can eas-
ily handle complex geometries and irregular meshes with hanging nodes, which
simplifies the implementation of h-refinement techniques. The overall flexibil-
ity provided by the DG approach therefore makes this type of discretization a
very appealing tool for the simulation of inhomogeneous turbulent flows using
multiscale methods.

This property is of great interest for the simulation of wall-bounded flows
for which the spatial resolution needs to be adapted in the proximity of the
wall in order to accurately capture the physics of the near-wall turbulence. As
an example, in the case of the turbulent plane channel flow at high Reynolds
numbers, it is well known that the size of the turbulent structures near the wall,
the so-called streaks, in the streamwise and spanwise directions is small with
respect to those developing in the external region. By varying the polynomial
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(a) (b)

Fig. 6. Mesh for the Jean nozzle test case: cut of the mesh in a vertical plane crossing
the jet axis (a) and zoom in the nozzle region (b)

Table 1. Resolution details for the computations of the turbulent channel flow at
Reτ = 590

Numerical
method

# DOFs # Integration points degree

DG 7.02× 105 1.12× 106 p = 4, 5, 7

Spectral 3.79× 107 1.28× 108 -

degree of the discretization in the direction normal to the wall, it is thus possible
to achieve an adequate resolution for the fine-scale structures while keeping the
number of DOFs low with respect to a non-adapted simulation.

In order to illustrate the flexibility of DG-based hp-adaptation to deal with
the physics of the turbulence, we have performed an hp-adapted DNS simulation
of the turbulent plane channel configuration at Reτ = 590.

Figure 8 shows the statistically-averaged profiles of the mean streamwise ve-
locity and the fluctuating velocity. We observe an excellent agreement with the
reference solution, despite the significant reduction in number of DOFs in the
DG simulation with respect to the reference DNS, as can be seen from Table 1.

3.5 VMS-LES of the Taylor-Green Vortex at Re = 3000

VMS-LES Results. The Taylor-Green vortex is a model problem for the study
of freely decaying turbulence in a periodic box. The physical characteristics of
the flow, such as the anisotropy of the Reynolds stresses and the transition from
a laminar to a turbulent state due to the presence of strong vortex stretching,
are representative of realistic turbulent flows. This configuration is therefore a
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(a) (b)

Fig. 7. Jean nozzle test case: Mach number (a) and μt/μ ratio (b) contours obtained
with a third-order approximation
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Fig. 8. Mean and fluctuating velocity profiles for the turbulent channel flow at Reτ =
590

good candidate for the assessment of the DG-VMS approach for the simulation of
turbulence. A detailed description of the TGV problem can be found in references
[8, 9, 50].

Here, we present the results from the application of a modal DG-VMS ap-
proach to LES of the TGV at Re = 3000. In particular, the evolution of the
mean statistical quantities and the turbulent kinetic energy spectra is studied.

As regards the choice of the model term in the small-scale equations, a small-
small approach is adopted in the structure function model [36], namely,

M̃
(
φ̃, ū, ũ, û

)
=
(
φ̃, 2νtS̃ij

)

Ω
, (10)

where the eddy viscosity is given by

νt = CSF Δ̃

√
F̃2(Δ̃), F̃2(Δ̃) = 〈‖ũ(x)− ũ(x − r)‖2〉, ‖r‖ = Δ̃.
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Table 2. Resolution details for the computations of the Taylor-Green vortex at Re =
3000

Numerical
method

# DOFs # Integration points # Elements / degree

DG 723 843 123 / p = 5

Spectral 3843 5763 -

The model parameters (the model constant CSF , and filter width, Δ̃) will
depend on the particular hp-discretization used. The evaluation of CSF Δ̃ is
based on the hypothesis that the cut-off wavenumber of the given discretization
is located in the inertial range and that the energy transfers are from the resolved
to the residual motions, being these transfers balanced by the dissipation (see
Pope [39]).

The DG solutions are compared with reference data generated using a Fourier
pseudo-spectral code [13]. In Fig. 9 we can observe the good correlation between
the modal DG-VMS and the Fourier pseudo-spectral (PS) reference DNS of the
Taylor-Green vortex at Re = 3000. The DG-VMS computation is based on a
polynomial degree p = 5 and a number of elements 123. This corresponds to
a number of DOFs of 723 with respect to 3843 in the reference DNS. Table 2
summarizes the resolution details of the these computations.

Fig. 9. Time evolutions of the enstrophy and kinetic energy for the Taylor-Green vortex
at Re=3000

Strong Scalability Analysis In order to compare the behaviour of the imple-
mented parallel strategies (see § 2.5), a strong scalability analysis is performed
by partitioning the original mesh in the three axis directions by a same factor.
This ensures that the amount of data exchanged by messages is identical in all
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directions for a given partition. For the MPI strategy, the partition leads to one
MPI process per core, whereas, in the hybrid strategy, the partition leads to one
MPI process per processor (eight-core pack). Each MPI process from the hybrid
approach relies on the multithreading support level 1 where only the thread
master can call the MPI library, and will deal with 8 times more elements than
in the MPI strategy.

Numerical experiments were performed on the Curie supercomputer into the
TGCC by CEA on nodes composed of two eight-core Intel Sandy Bridge E5-
2680 processors in the context of a PRACE project. The compilation environ-
ment relies on the Intel compiler Ifort (v11.1.072), with the Intel MPI distri-
bution (v4.1.0.030) or the Bull MPI distribution (v1.1.16.5). Different DNS of
the Taylor-Green vortex have been performed on a uniform mesh with 3363

hexahedra and different polynomial degree 1 ≤ p ≤ 4.
Figure 10 depicts the parallel behaviour of the initial MPI strategy. On 21, 952

cores, the receive-send message frequency is of about 14 messages per second for
p = 1. This means that the interconnection network strongly deteriorates the
performance. The frequency decreases to an average of 6 messages per second
for p = 2 and results in a good scalability at large scale as the time spent in the
computational phase becomes larger than the time spent in the communication
phase. Using p = 2 on 21, 952 cores, we observe from the comparison of obtained
and theoretical speedup that the MPI strategy offers an efficiency of about 88%.

Fig. 10. Effect of the polynomial degree p on the speedup using the MPI strategy

Figure 11 highlights the parallel behaviour of both strategies running a com-
putation involving a large number of computing nodes (Fig. 11a) and only one
computing node (Fig. 11b). For the intra-node case, hybrid results come from
one MPI process per processor with an increasing number of OpenMP threads
starting from 2 up to 8. The strong scaling curves are quite similar regardless
of the polynomial degree or the number of computing cores. First experiments
(results not shown here) demonstrate a gain in elapsed time for p = 4 with
the hybrid strategy of about 13% on 13, 824 computing cores and about 19%
on 21, 952 computing cores. A polynomial degree p = 4 leads to an increase of
the algorithmic complexity resulting in more floating point operations in shared
memory. The effect of different support levels of the MPI library on the perfor-
mances wiil be adressed in future investigations.
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(a) At large scale ; p = 1 (b) Intra-node ; p = 2

Fig. 11. Comparison of the parallel behaviour of the two strategies

4 Concluding Remarks

The present results obtained on three-dimensional and fully turbulent test cases
clearly demonstrate the ability of the DG Aghora code to produce very accurate
solutions with respect to low-order simulations such as standard second-order
finite volume methods. Important savings in terms of number of DOFs are also
gained for a comparable level of accuracy. The code allows different physical mod-
ellings from RANS equations with one-equation and two-equation turbulence
models to LES, VMS-LES and DNS approaches. This results in a wide range
of applications such as unsteady flows, transonic flow regime, turbomachinery
applications or complex geometries with high-order boundary representation.

So far, important developments have been successful in improving the effi-
ciency of the Aghora code. Local mesh and local order variations demonstrated
the flexibility of the method and subsequent CPU time savings. Likewise, do-
main decomposition strategies present strong potentiality of code scalability.
Among others, future work will consist in further enhancement of the code with
the objective of considering large-scale problems and taking benefits of today’s
computer architecture. Time implicit integration with efficient linear solvers of
reduced memory requirements and CPU time cost are currently under develop-
ment. Moreover, hp-adaptative methods for VMS-LES will enable high-accuracy
turbulence simulations of complex configurations at reasonable costs. A partic-
ular attention will also be paid to the implementation of the code adapted to
modern supercomputing plaforms in order to fully exploit all available compu-
tational ressources: multi-core processors, Nvidia GPU accelerators, Intel Xeon
Phi coprocessors, etc. Heterogeneous multi-core architectures indeed require spe-
cific adaptations of the programming models and it is thus crucial to develop
highly flexible parallel solutions. These enhancements will enable the accurate
description of complex large-scale turbulent flows of industrial relevance.
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Abstract. For solution of 3D stationary RANS equations, closed by
EARSM turbulence model, high order Discontinuous Galerkin method
(degree of basic polynomials K = 2, 3 with 1st order implicit smoother is
proposed. Modifications, which were introduced in the method to achieve
stability and fast convergence, are described. The method is enhanced
by the use of improved Gauss quadrature rules and of h-p multigrid
multigrid acceleration and is implemented into NUMECA FINETM/Hexa
code in version for massive parallel calculations. For solution of 3D non-
stationary Isentropic Linearized Euler Equations within the perturbation
approach in aeroacoustics, explicit high order Discontinuous Galerkin
method is implemented. Calculations of various tests, including U3, U2
and A14, demonstrate the efficiency of developed methods.
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1 Introduction

Recently, the interest of many investigators turns to high accuracy order methods
that permit to obtain good results for more rough calculation grids in comparison
with traditional finite-volume methods of the second accuracy order.

One of the most perspective approaches to high-accuracy approximation both
for structured and for non-structured grids is Galerkin’s method with discontinu-
ous basis functions (DG). This methods combines the advantages of finite-volume
methods (such as possibility to describe the conservation laws in a flow and tak-
ing into account the direction of information propagation) with advantages of
finite-element methods (such as independence upon quality of computational
grid and compact stencil). In addition, DG approach provides clear way to con-
struct compact numerical schemes of arbitrarily high accuracy order.

For the first time, this method has been proposed in [1] for solution of equa-
tion, which describes neutron transition, and its first analysis has been presented
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in the paper [2]. Numerical solution of 2D Euler and Navier-Stokes equations for
triangular non-structured grids using this method has been presented, for the
first time, in the papers [3,4]. The most full theoretical description of this method
with solution of 1D and 2D model problems is presented in the papers [5, 6].

The first 3D realizations of the method concern aeroacoustics problems, where
linearized Euler equations were solved [7–10]. Now, the number of 3D DG real-
izations for non-linear conservation laws isn’t too large. In published articles, one
can find an information only about some examples of successful realization of the
method. For example, DG using for tetrahedral grids has been described in the
paper [11]. In the case of structured hexahedral grids, 3D DG algorithm has been
realized in the papers [12,13]. One of the first successful DG implementation for
non-structured hexahedral grids is presented in the paper [14].

In our opinion, hexahedral grids have an advantage in comparison with tetra-
hedral grids because the first ones provide covering the computational domain
and have the lower number of inner sides. It diminishes the number of arithmetic
operations.

Practical DG realization for solution of Euler and Navier-Stokes nonlinear
equations meets many difficulties. Because of this reason, the method hasn’t
obtained wide propagation yet. Nevertheless, Discontinuous Galerkin in combi-
nation with such technologies as parallelization and h-p multigrid is considered
now as one of the most relevant high-order numerical methods capable both to in-
crease the predictive accuracy for flows exhibiting separation and re-attachment
and at the same time to diminish the computational cost.

Within IDIHOM project, TsAGI has implemented high-order implicit Discon-
tinuous Galerkin method for solution of full 3D stationary Reynolds-averaged
Navier-Stokes equations (RANS), closed by an explicit algebraic Reynolds stress
model (EARSM), into the widely-known FINETM/Hexa code produced by NU-
MECA International. The method is applicable to stationary aerodynamics prob-
lems and designed to be unconditionally stable. The main specific feature of the
scheme is the use of first order implicit smoother in combination with high-order-
in-space approximation of the explicit operator. Optimized Gauss quadrature
rules are applied for the definition of volume and surface integrals with the aim
to reduce the number of arithmetic operations. The implemented method in-
cludes possibilities of using h-p multigrid approach and parallelized for massive
multiprocessor calculations. 3D hexahedral unstructured DG solver, which has
been developed by TsAGI in collaboration with NUMECA, may be disseminated
among NUMECA users in the nearest future. This solver has been validated on
the test problems characteristic for external aerodynamics, including test cases
U.2, U.3, and A.3.

Additionally, and again in collaboration with NUMECA, TsAGI has adapted
the previously developed high-order Linearized Euler Solver for solution of aeroa-
coustic problems and applied it for the calculation of test case A.14.

This paper describes the main ideas of the implemented high-order DG solvers
and also presents the most characteristic results of their validation.
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2 Equations of Discontinuous Galerkin Method

Systems of partial differential equations, which are used in aerodynamics and
aeroacoustics, can be represented in following general form:

Γ
∂Q

∂t
+∇ · F(Q,G) = S(Q,G). (1)

Let’s designate the dimension of this system (quantity of equations) by N . Ro-
man capital regular letters (e.g., Q) will designate vectors associated with the set
of variables vectors of N dimension), roman bold letters (e.g., F) will designate
the vectors with dimension 3 that are associated with 3 spatial directions x, y, z.
Elements of these vectors can be any objects – numbers, vectors, operators. In
the equation system (1), Q is the vector of primitive variables, Γ = ∂U/∂Q is
Jacobian of transformation from vector Q to the vector of conservative variables
U; F = [Fx; Fy; Fz ]

T is the set of fluxes of the vector U; S is a vector of source
terms; G ≡ ∇Q = [Gx; Gy; Gz]

T is the gradient of vector Q.
In DG method, numerical solution of system (1) in each cell of computational

grid is represented as a linear combination of local polynomial basis functions
ϕj(x):

Q =

Kf∑

j=1

qjϕj(x). (2)

Coefficients of this expansion, qj(t), are the main unknown values in DG
method. Each of them is vector of N dimension with components corresponding
to primitive variables.

The following set of basis functions is chosen: ϕj(x, y, z) = ξαjηβjζγj , where
ξ, η, ζ are coordinates in a local frame, connected with grid lines of a hexahedral
cell. Axes of this coordinate frame pass through the centers of the cell’s opposite
faces, and values of coordinates in these centers are ±1. Cartesian and local
coordinate frames are related by linear transformation

⎡

⎢⎣
ξ

η

ζ

⎤

⎥⎦ = J−1

⎡

⎢⎣
x− xc

y − yc

z − zc

⎤

⎥⎦ .

Here (xc, yc, zc) are coordinates of the cell center. Matrix J =
∂(x; y; z)/∂(ξ, η, ζ) is calculated once at the beginning of calculation and is stored
in the memory. Degree of polynomials (αj+βj+γj) is varied from 0 to K. Quan-
tity of basic functions Kf is related with maximal degree of basic polynomial K
by the formula Kf(K) = (K + 1)(K + 2)(K + 3)/6.

Representation of numerical solution in the form (2) may be treated as polyno-
mial reconstruction of the gas parameters distribution within the computational
cell. Theoretically, DG method based on polynomials of degree K should provide
solution of the system (1) with accuracy order (K + 1).
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To determine the dependence of coefficients qj upon time, each equation of
system (1) is multiplied by basis functions and is integrated over the cell volume
Ω:
∫

Ω

(
Γ
∂Q

∂t
+∇ · F(Q,G)

)
ϕi(x)dΩ =

∫

Ω

S(Q,G)ϕi(x)dΩ, i = 1, ...,Kf . (3)

Applying transformation (∇ ·F) ϕ = ∇ · (Fϕ) − F∇ϕ and using Gauss-
Ostrogradsky’s formula

∫

Ω

(∇ ·A) dΩ =
∮

Σ

(A · n) dΣ (Σ is the cell surface, n is

the outer unit normal to the surface element dΣ), one can rewrite (3) as follows:
∫

Ω

Γ
∂Q

∂t
ϕi(x)dΩ +

∮

Σ

Fn ϕi(x)dΣ =

∫

Ω

Fi dΩ +

∫

Ω

S ϕi(x)dΩ, (4)

where Fn = (F · n) = Fx nx + Fy ny + Fz nz, Fi ≡ (F · ∇ϕi(x)).
The first term in the left part of the equation (4) is connected with rate

of Q temporal change in the given cell. The second term in the left part is
connected with integration over the cell surface and describes the contribution of
Q fluxes through the cell side. The right part includes the terms connected with
integration over the cell volume. These terms can be named as source terms.
However, during the IDIHOM project the authors have found that the term∫

Ω

(F · ∇ϕi(x)) dΩ is better to be considered as a result of DG-approximation

of flux terms; so, it should be approximated using the same principles as the
flux term

∮

Σ

(F · n) ϕi(x)dΣ. The second term in the right part,
∫

Ω

Sϕi(x)dΩ, is

a classical source term, depending on the unknown function Q and producing
exponentially-varying modes in the solution of (4).

It is important to note that the choice of polynomials ϕj(x, y, z) = ξαjηβjζγj

as basis functions allows to avoid the stability problems in the strongly distorted
cells, because the mass matrix Mij =

∫
Ω

ϕiϕjdΩ (that arises after substitution

(2) into (4)) doesn’t degenerate in the distorted cells.

3 Optimization of Quadrature Rules for Integration in
DG Method

The traditional approach to calculate integrals in equations of DG method (4) is
based on the use of Gauss quadrature nodes. Summation of integrand function
values at these nodes with defined weights provides exact solution for polynomial
representation of integrand function. The higher polynomial order, the larger
number of Gauss nodes is to be used. As the DG method requires computation
both of volume and surface integrals, it is necessary to use extremely large num-
ber of the nodes, both on faces of control volume and within it. Determination of
formulas with given accuracy for integration with minimal number of quadrature
nodes is an actual mathematical problem. Its solution permits to diminish the
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calculation time. One of the methods to enhance solver performance is to find
an optimal distribution of quadrature nodes so it can be used simultaneously
in surface integrals computation and in control volume as well. Such approach
could permit to diminish total number of nodes for given integration accuracy
and, consequently, reduce number of arithmetic operations. For the first time
such approach has been presented in the paper [5] in the case of description
of DG algorithm for 2D grid with rectangular cells and for piecewise quadratic
approximation of solution.

Let’s consider a function f(x) that is continuous and integrable within the
region Θ ⊂ R

n (n = 2 for surface integrals and n = 3 for volume integrals).
Below we shall use the term quadrature rule for the following formula:

∫

Θ

f(x) dx ∼=
N∑

j=1

cjf(xj), i = 1, ...,Kf , (5)

where the points xj ⊂ Θ shall be called as Gauss nodes. Quadrature rule (5)
has m-property, if it gives exact value of integral for any f(x) that is polyno-
mial of degree not higher than m. This property is satisfied under the following
condition: ⎡

⎢⎣
xα1
1 ... xα1

N

· · · · · · · · ·
x
αψ

1 ... x
αψ

N

⎤

⎥⎦ ·

⎡

⎢⎣
c1

...

cN

⎤

⎥⎦ =

⎡

⎢⎣
f1

...

fψ

⎤

⎥⎦ , (6)

where fi =
∫

Θ

xαidx and α(1), ..., α(ψ) are all possible integer-valued vectors,

consisted of n non-negative components with sum not higher than m. Quantity
of such vectors is equal to ψ =M(n,m), where M(s, t) ≡ (s+t)!

s! · t! .
The task is to find the set of Gauss nodes and corresponding coefficients cj ,

which provide the m-property under the following additional requirements:

– integration domain is a cube (for n = 3) or square (n = 2) with sides [−1, 1];
– number of Gauss nodes should be as low as possible;
– volume and surface integrals for the computational cell should use as many

common Gauss nodes as possible.

The latter two requirements are explained by desire to minimize the quantity
of nodes, where it is necessary to calculate the integrands.

The review of existing rules may be found at site [15]. Sufficient theoretical
ideas for quadrature rule problem can be found in the books [16, 17]. Also, the
book [18] is of important applied significance. In particular, it is shown in [18]
that minimal quantity of Gauss nodes for quadrature formula with m-property
is equal to

Nmin = χ =M (n, k) , (7)

where k = [m/2]. Formula (7) means that quantity of Gauss points N may
be less than quantity of equations in system (6). In the same book, it is also
shown that quadrature rule with minimal quantity of Gauss nodes N = χ has
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(2k+1)-property, if and only if these points are common roots of all orthogonal
polynomials of degree (k + 1).

Some methods presented in [18] and [17] permit to obtain quadrature for-
mulas with the least number of nodes. One of such methods is connected with
transformation of rotation groups. Resulting formulas with minimal number of
nodes are presented in [18] and [15]. However, the quadrature rules with rota-
tional symmetry don’t seem optimal since one have to use separate nodes for
calculating volume and surface integrals. Therefore an attempt to construct new
rules was undertaken.

The following “straightforward" strategy was applied. Some quantity of Gauss
nodes N < ψ were taken in the volume and on the surface. Their coordinates xj
were substituted into system (6). If the system (6) had no solution, some new
nodes were added or removed until a solution is obtained or until the number of
nodes became too large. In the choice of Gauss nodes, the preference was given
to the common roots of all orthogonal polynomials of degree (k+1) and to points
on the cell surface (that may be used both for volume integrals and for surface
integrals). Considerations of symmetry and some additional intuitive ideas were
also applied.

As a result, in the case of K = 1, the quadrature rule for volume integral
with property m = 5 and with N = 15 nodes has been found. The combination
of this formula with formulas for all surface integrals of the cell uses 21 nodes.
This combination is essentially better than analogous formulas in the current
DG realization.

An attempt to find a new quadrature formulas for the cases K = 2 and
K = 3 has been performed. For that, orthogonal bases with polynomials of
higher degrees have been created. But a more efficient system of nodes hasn’t
been found. Detailed investigation of the already existing quadrature formulas
has permitted to find appropriate series of nodes for K = 2 and K = 3. Thus,
the following combinations of quadrature formulas have been proposed for use
in DG method:

For sides (Σ) n = 2 For volumes (Ω) n = 3

K = 1 m = 3, N = 5 m = 5, N = 15

K = 2 m = 5, N = 7 m = 7, N = 31

K = 3 m = 7, N = 14 m = 9, N = 57

As a test for comparison of working times of initial and modified programs,
a calculation of inviscid compressible subsonic flow around a sphere has been
chosen. Ambient flow velocity was constant and equal to 50 m/sec and it has been
directed along x axis. Pressure and temperature of ambient flow were equal to
105 Pa and 293 K, correspondingly. In accordance with these parameters, Mach
number of ambient flow was equal to 0.15 and gas density – to 11.9 kg/m3.
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Non-structured grids generated around a quarter of unit radius sphere have
been used for the calculations. Grids have been built using automatic mesh
generator NUMECA/HEXPRESS. Grid cells were hexahedrons. Symmetry con-
dition has been chosen at the block boundaries intersected the sphere. Nor-
mal velocity at the sphere surface was equal to zero. Ambient flow conditions
were given at outer boundaries. The calculation domain was a parallelepiped
[20, 20]× [0, 20]× [0, 20] and consisted of single block.

The calculations have been performed for K = 1, 2, 3. For each K, an indi-
vidual grid has been chosen to have approximately equal number of degrees of
freedom. Fragments of these free grids are presented in Figure 1.

Fig. 1. Grids around sphere for testing the efficiency of quadrature rules

Two approaches to improve the algorithm work efficiency have been consid-
ered: 1) diminishing the volume of calculations due to using alternative formulas
with lower number of Gauss nodes; 2) diminishing the calculations due to using
common nodes of quadrature formulas both for volume and for surface integrals
(so-called economy regime). It should be noted that economy regime has been
efficiently realized only for inner faces whereas outer sides are calculated without
economy.
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The obtained results for calculation times for fixed number of iterations (N =
2000) are presented in the following table.

polynomial degree K = 1K = 2K = 3K = 3*

calculation time, sec
initial quadrature formulas 2016 1758 2924 2859
new quadrature formulas 1991 1439 2436 2388

new formulas in economy regime 1985 – 2402 2420
acceleration due to lower number of quadrature nodes, % 1.2 18.1 16.7 15.3
acceleration due to using common quadrature nodes, % 0.3 – 1.1 1.2

total acceleration, % 1.5 18.1 17.8 16.5

It is obvious that the new formulas provides a reliable gain that more than
15%. The algorithm with using part of Gauss nodes for calculating of both
volume and surface integrals, doesn’t result in visible economy of arithmetic
operations.

4 Implicit Numerical Method for Solution of Stationary
RANS Equations

Within IDIHOM project, TsAGI has developed an implicit numerical method to
find stationary solutions of full 3D RANS equations, closed by non-Boussinesq
model of turbulence – EARSM model, based on [19]. Such turbulence models
provide good compromise between the calculation efficiency and its accuracy.
As well as in two-equation Boussinesq models, EARSM models use only two
additional differential equations, so that the memory requirements don’t grow
and the time of computation increases unessentially. But more general (than
in Boussinesq approach) epxressions for Reynolds stresses allow to represent
additional effects like the anisotropy of turbulent transport and the influence
of the streamline curvature. In particular, it can improve the description of
separation zones [19].

Additional differential equations of the chosen EARSM model are the equation
for the turbulence kinetic energy k and the equation for the natural logarithm
of characteristic frequency of turbulent fluctuations ω̃ = ln (ω/ω0). Lograithmic
formulation of the second equation allows to satisfy the condition ω > 0 and to
improve the quality of polynomial reconstruction in near-wall cells, where the
parameter ω varies by several orders of magnitude. Value of ω0 = 1 Hz was
chosen arbitrarily.

In the case of RANS equations closed by this EARSM model, system dimen-
sion N = 7, the vector of primitive variables Q = [ρ; u; v; w; p; k; ω̃]

T, and the
vector of conservative variables U = [ρ; ρ u; ρ v; ρw; ρE; ρ k; ρ ω̃]T. The vector
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Fk of fluxes along xk axis (x1 = x, x2 = y, x3 = z) and the vector of source
terms S (see (1)) have the following form:

Fk =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ρuk

ρuiuk + pδik + τik + ρRik

ρEuk + puk + (τik + ρRik)ui − ( μ
Pr +

μt
Prt

)cp
∂T
∂xk

ρkuk − (μ + σkμt)
∂k
∂xk

ρω̃uk − (μ + σωμt)
∂ω̃
∂xk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, S =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

ρk(P̃ − β∗ω0e
ω̃)

Dω + ρ(γP − βω0e
ω̃)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Here and below the rule about summation over repeating indices is used.
Closing relations and the values of constants:

p = ρRT, τij = −μ
(
∂ui
∂xj

+
∂uj
∂xi

− 2

3

∂um
∂xm

δij

)
, E = cvT +

ukuk
2

+ k,

R = 287
J

kg ·K , cp =
g

g − 1
R, cv =

1

g − 1
R, g = 1.4, Pr = 0.72, Prt = 0.9,

μ = μr

(
T

Tr

)3/2
Tr + Ts
T + Ts

, μr = 1.884 · 10−5 kg

m · s , Tr = 293 K, Ts = 110 K,

μt = max(ρ
k

ω0
e−ω̃, 0), P = −aij

∂ui
∂xj

, P̃ = min(P, 10β∗ω0e
ω̃), Rij = kaij , (8)

aij =
2

3
δij + β∗

1 S̃ij + β3(Ω̃ikΩ̃kj −
1

3
IIS̃δij) + β4(S̃ikΩ̃kj − Ω̃ikS̃kj)+

+ β6(S̃ikΩ̃klΩ̃lj + Ω̃ikΩ̃klS̃lj −
2

3
IV δij − IIΩ̃S̃ij), (9)

S̃ij =
τt
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, Ω̃ij =

τt
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, τt = max

(
e−ω̃

β∗ω0
, 6 ·

√
μe−ω̃

β∗ρkω0

)

,

(10)

IIS̃ = S̃ijS̃ji, IIΩ̃ = Ω̃ijΩ̃ji, IV = S̃ikΩ̃kjΩ̃ji, β1 = −N

Q
, β∗

1 = min(β1,−0.15),

β3 = − 2 · IV
N ·Q1

, β4 = − 1

Q
, β6 = − N

Q1
, Q =

N2 − 2IIΩ̃
A1

, Q1 =
Q

6
(2N2−IIΩ̃),

N = C′
1 +

9

4

√
2β∗IIS̃ , Dω = (μ+ σωμt)

∂ω̃

∂xk

∂ω̃

∂xk
, A1 = 1.245, C′

1 = 1.8,

σk = σω = 0.5, β = 0.075, β∗ = 0.09, γ =
β

β∗ −
σωκ

2

√
β∗ , κ = 0.41.

In comparison with [19], the described here turbulence model doesn’t include
the blending function for transition from near-wall turbulence to free turbulence,
because the considered flows are characterized by the dominance of near-wall
trubulence. On the same reason, the equation for ω̃ doesn’t contain the so-called
“cross diffusion” [20]. It was found that turning off the cross diffusion allows to
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smooth the k and ω̃ distributions at the outer boundaries of turbulent regions,
that improves the convergence of calculations. One more modification is omitting
the limiter of P in equation for ω̃; this modification increases the stability of
calculations. The fourth modification is the use of limiter for coefficient β1, that
allows the model to keep its diffusive properties in regions with non-equilibrium
turbulence, where the coefficient β1 can become too far from its equilibrium
value (−0.18).

To obtain stationary solutions of the RANS equations closed by EARSM
model, the implicit numerical method is applied. Let’s introduce the increment
operator for an arbitrary value b. This operator corresponds to transition from
the time layer n to the time layer (n + 1): Δb ≡ bn+1 − bn. Primitive variables
at the known time layer are represented as an expansion over basis functions

(3): Qn =
Kf∑
j=1

qnj ϕj(x), and primitive variables at an arbitrary moment t are

represented as Q(x, t) = Qn +ΔQ(x, t) , where

ΔQ(x,t) =

Kf∑

j=1

Δqj(t)ϕj(x). (11)

The coefficients Δqj are to be found from the solution of approximate analogue
of the equation system (4). The matrix Γ in non-stationary term of equation (4)
is taken from the known time layer and the time derivative is approximated with
the first accuracy order:

Γ
∂Q

∂t
≈ Γn · Q

n+1 −Qn

τ
= Γn · ΔQ

τ
. (12)

The fluxes through the cell face with the number s (that belongs to the
surface Σ) are approximated at the unknown time layer (n + 1). The fluxes
can be represented as a sum of convective and diffusive fluxes: Fn(Qs,Gs) =
Fconv
n (Qs) + Fdiff

n (Qs,Gs).
The following linearized representation is used for convective fluxes Fconv

n (Qs):

Fconv
n (Qn+1

s ) ≈ Fconv
n (Qn

s ) +

(
∂Fconv

n

∂U

)n(
∂U

∂Q

)n

ΔQs =

= Fconv
n (Qn

s ) +AnΓ
n
sΔQs, (13)

where An
def
= ∂Fconv

n

∂U (Qn
s) =

∂Fconv
x

∂U nx +
∂Fconv

y

∂U ny +
∂Fconv

z

∂U nz. It is a square matrix
of size N×N . This matrix is calculated using the parameters at the known time
layer n. The method to calculate both the values Fconv

n (Qn
s ) and AnΓ

n
sΔQs is

based on the solution of Riemann problem about decay of an arbitrary discon-
tinuity. Roe’s linearized solution [21] is used:

Fconv
n (Qn

s ) =
Fconv
n (Qn

L) + Fconv
n (Qn

R)

2
− |An|

U(Q
n
R)−U(Q

n
L)

2
, (14)
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where QL and QR are the gas parameters in the vicinity of Gauss node from
the two sides of the cell face. The matrix |An| = T |Λ|T−1, where the columns of
matrix T are the right eigenvectors of An, and |Λ| is diagonal matrix with the
modules of An eigenvalues on the diagonal. Components of the matrix An, and
accordingly components of T and |Λ|, are calculated at the known time layer n
using Roe averagings V̄i =

√
ρL·(Vi)L+

√
ρR·(Vi)R√

ρL+
√
ρR

, where Vi = {u, v, w, H, k, ω̃},
H = E + p/ρ. To understand the structure of the term Γn

sΔQs, let’s consider
Roe solution for the vector of conservative parameters U at the cell face:

Us =
U(QL) + U(QR)

2
− signAn

U(QR)−U(QL)

2
, (15)

where signAn = T ·signΛ·T−1 and signΛ is diagonal matrix containing the signs
of An eigenvalues. It is assumed that (15) is valid for each time moment within
one time step; but the matrix signAn is taken to be constant and is calculated
at the known time layer n. Then the term Γn

sΔQs can be represented as follows:

Γn
sΔQs ≈ ΔUs =

ΔUL +ΔUR

2
− signAn

ΔUR −ΔUL

2
≈

≈ I+n Γ(Qn
L)ΔQL + I−n Γ(Qn

R)ΔQR, (16)

where matrices I+n = I+signAn

2 and I−n = I−signAn

2 are introduced, I is a
unit matrix. Let’s substitute the expansions ΔQL and ΔQR by basis functions:

ΔQL =
Kf∑
j=1

ΔqjLϕjL(x) and ΔQR =
Kf∑
j=1

ΔqjRϕjR(x) into (16). Here ϕjL are

basis functions for the cell to the left from the given face and ϕjR are basis func-
tions for the cell to the right from the given face. One of these cells coincides
with the current cell and the other cell is neighboring one. Finally we get

Γn
sΔQs =

Kf∑

j=1

(
ϕjL(x)I

+
n Γ(Qn

L)ΔqjL + ϕjR(x)I
−
n Γ(Qn

R)ΔqjR
)
. (17)

So, the approximation of Fconv
n (Qn+1

s ) (see (13)) depends on the values of Δqj
in the current cell and in the neighboring cell from the other side of the face s.

Diffusive fluxes are also linearized:

Fdiff
n (Qn+1

s , Gn+1
s ) ≈ Fdiff

n (Qn
s , G

n
s ) + JnxΔ(Gx)s + JnyΔ(Gy)s + JnzΔ(Gz)s,

(18)
where Jnk =

(
∂Fdiff

n /∂Gk

)n
s
. Parameters at the cell face Qn

s appear in diffusive
fluxes (18) in expressions for coefficients of molecular and turbulent diffusion.
They are calculated using symmetric formula

Qn
s =

1

2
(Qn

L +Qn
R) . (19)

These “diffusive” values of parameters at the cell face differ from “convective”
values that may be extracted from (15). The use of two different approximations
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for parameters at the cell face corresponds to different nature of convection and
diffusion. Convective fluxes are connected with directional propagation of in-
formation (along characteristics) and are approximated by asymmetric formulas
like (15). Diffusive fluxes describe symmetric propagation of information and are
approximated by symmetric formulas like (19). It is important to note that the
term (τik + ρRik)ui in the energy equation is treated as diffusive flux, and ui in
this term are also averaged according to (19). Components of matrices Jnk (see
(18)) are also taken from (19).

Special feature of DG method is that gradients G cannot be calculated by
strict differentiation of the parameter distribution in the cells [22]. Discontinu-
ities of parameter distributions on the cell faces lead to local loss of gradients
approximation. For the determination of gradients with high order of accuracy,
several methods have been proposed [4, 23, 24]. Comparison of these methods
on the basis of scalar model equation [25] have shown the advantages of the
so-called BR2 method [23]. It is this method of gradients approximation that is
used here for G and ΔG. In this method, gradients are represented as follows:

G(x) =

Kf∑

j=1

qj∇ϕj(x) +
∑

s

Rs(x). (20)

The first term in (20) is obtained by strict differentiation of the parameter
distribution in the current cell. Rs(x) is a correction because of discontinuous
behavior of the function Q(x) at the face with the number s. Rs(x) is nullified at
all faces of the current cell except the face with the number s. The equation for
Rs(x) can be found in [23]; finally, Rs(x) depends on values of qj in the current
cell and in the neighboring cell from the other side of face s. For gradients at this
face at the known time layer n, Gn

s , and for their increments, ΔGs, symmetric
formulas are used:

Gn
s =

1

2
(Gn

L +Gn
R) , ΔGs =

1

2
(ΔGL +ΔGR) . (21)

GL and GR are calculated using (20). But due to nullification of the contri-
butions from all faces except the current face, Gs depends only on the values
of qj in the current cell and in the neighboring cell from the other side of the
face s. As a result, the approximation of Fdiff

n (Qn+1
s ) (see (18)) depends on the

values of Δqj in the current cell and in the neighboring cell from the other side
of the face s.

It is necessary to note that the h-p multigrid technology, which is used this
work, requires to perform some iterations with 1st order of accuracy (K = 0).
Original BR2 method looses approximation atK = 0 and gives two times smaller
values of gradients at cell faces. To repair these errors, BR2 gradients at the cell
faces were doubled. Gradients inside the cells (which are used in source terms of
turbulence model) were not modified.
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The fluxes that are appeared in the term
∫
Ω

Fi dΩ (see (4)) are also approxi-

mated at the unknown time layer n + 1. At that, the same principles are used
as in approximation of the term

∮

Σ

Fn ϕidΣ:

Fi(Q
n+1,Gn+1) ≈ Fconv

i (Qn) + Fdiff
i (Qn,Gn) +AiΓ

nΔQ+

+RixΔGx +RiyΔGy +RizΔGz, (22)

where Ai
def
= ∂Fconv

i

∂U (Q
n
s ) =

∂Fconv
x

∂U
∂ϕi

∂x +
∂Fconv

y

∂U
∂ϕi

∂y +
∂Fconv

z

∂U
∂ϕi

∂z , Rik =
(

∂Fdiff
i

∂Gk

)n

s
.

Contrary to the cell sides, distributions of parameters inside the cell is assumed
to be continuous. So, the values of Qn and components of matricesAi, Γn andRik

are taken from corresponding Gauss nodes at the known time layer n. Gradients
Gn and their increments ΔG are calculated using BR2 method [23]. According
to (20), they contain contributions from the current cell and from all adjacent
neighboring cells.

It is important to construct unconditionally stable approximation for the
source term

∫

Ω

Sϕi dΩ in (4). Let’s linearize the source terms near the known

time layer n. At that, gradients appearing in the source terms are fixed at the
known time layer:

S(Q,G) ≈ S(Q,Gn) ≈ S(Qn,Gn) + (∂S/∂Q)
n · (Q−Qn) , (23)

where ∂S/∂Q is Jacobian matrix of source terms. It is known [26] that source
terms, linearly depending upon U, cause exponentially time-varying solution
modes like exp (λi t), where λi are eigenvalues of ∂S/∂Q. Let’s rewrite (23) as
follows:

S(Q,G) ≈ S(Qn,Gn) + (∂S/∂Q)n · (Q −Qn) =

= S(Qn,Gn) + TΛT−1 · (Q−Qn) = S(Qn,Gn)+

+ TΛ+T−1 · (Q−Qn) + TΛ−T−1 · (Q−Qn) .

Diagonal matrix Λ consists of eigenvalues λi of the matrix (∂S/∂Q)
n. T is

the matrix, which columns are right eigenvectors of the matrix ∂S/∂Q. Diagonal
matrix Λ+ contains only positive eigenvalues λi; other eigenvalues are replaced
by zeroes; in diagonal matrix Λ− only negative eigenvalues λi are kept. Let’s
introduce the matrices J+

S = TΛ+T−1 and J−
S = TΛ−T−1. Then the source

term S−(Q) = J−
S · (Q−Qn) causes exponentially increasing solution modes

and the source term S−(Q) = J−
S · (Q−Qn) causes exponentially decreasing

solution modes.
The implicit approximation S−(Q) ≈ S−(Qn+1) is unconditionally stable for

description of the exponentially decreasing solution modes. On the contrary, the
explicit approximation S+(Q) ≈ S+(Qn) is unconditionally stable for description
of the exponentially increasing solution modes. Hence, if the matrix ∂S/∂Q has
both positive and negative eigenvalues, the following approximation is uncondi-
tionally stable:

S(Q,G) ≈ S(Qn,Gn) + J−
S ΔQ. (24)
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Finally, let’s substitute (12), (13), (18), (22), and (24) into (4). Using rep-
resentation of ΔQ in the form (11), we finally obtain the following system of
equations:

Kf∑

j=1

⎛

⎝
∫

Ω

Γn ϕi(x)ϕj(x)dΩ

⎞

⎠ Δqj
τ

+

+

⎧
⎨

⎩−
Kf∑

j=1

⎛

⎝
∫

Ω

AiΓ
n ϕj(x)dΩ +

∫

Ω

J−
S ϕi(x)ϕj(x)dΩ

⎞

⎠Δqj+

+

∮

Σ

AnΓ
n
sΔQs ϕi(x)dΣ −

∫

Ω

(RixΔGx +RiyΔGy +RizΔGz) dΩ+

+

∮

Σ

(
RnxΔ(Gx)s +RnyΔ(Gy)s +RnzΔ(Gz)s

)
ϕi(x)dΣ

⎫
⎬

⎭ =

=

∫

Ω

(Fi(Q
n,Gn) + S(Qn,Gn) ϕi(x)) dΩ−

∮

Σ

Fn(Q
n
s ,G

n
s )ϕi(x)dΣ. (25)

Let’s name as an implicit operator the terms in the left part of the equation
(25) that depend upon the parameter increments (between the known time layer
and the unknown time layer). Let’s name as an explicit operator the terms in the
right part of the equation (25) that depend upon the parameters at the known
time layer. If the implicit operator terms inside the braces are removed, then an
explicit scheme of the first accuracy order in time is obtained. This scheme is
stable in the case of restricted time steps τ only. The implicit operator terms
inside the braces are intended to provide unconditional stability of the scheme,
i.e. to smooth perturbations because of instability of explicit operator. So, these
terms (inside the braces) may be named as an implicit smoother.

In approaching the stationary solution, the implicit operator tends to zero.
Only the stationary solution, which is defined by the explicit operator, is practi-
cally interesting. Therefore, the explicit operator approximation has to provide
the given high accuracy order in space. The implicit operator has the first ac-
curacy order in time only and it has to vanish, when the stationary solution
is achieved. Therefore, all simplifications of implicit operator approximation are
admissible, including the simplifications that decrease the spatial accuracy order
of this operator.

The formula (25) is a system of linear algebraic equations for searching Δqj .
For each cell, (25) is a set of Kf ·N equations, because the vector Δqj consists
of N components, and because the equation (25) is obtained from (1) by mul-
tiplication by basis function ϕi (i = 1, ...,Kf) and by following integration over
the cell. Let’s introduce the vectors of size Kf ·N for each cell:

−→
Δq ≡

(
(Δq1)ρ; (Δq2)ρ; ...;

(
ΔqKf

)

ρ
; ...; (Δq1)ω̃; (Δq2)ω̃; ...;

(
ΔqKf

)

ω̃

)T

,
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−→
R ≡

(
(R1)ρ; (R2)ρ; ...;

(
RKf

)

ρ
;

(R1)u; (R2)u; ...;
(
RKf

)

u
; ...; (R1)ω̃; (R2)ω̃; ...;

(
RKf

)

ω̃

)T

,

where each component of the vector
−→
R is the right-hand side (explicit operator)

of corresponding equation in the set (25). After substituting the approximations
for Γn

sΔQs (17) and for Δ(Gk)s (see (21) and (20)) into (25), one may finally
reduce (25) to the following form:

D(c)
−→
Δq(c) +

∑

s

Hs(c)
−→
Δq (cs(c)) =

−→
R(c), (26)

where c is the current cell, cs(c) is the neighboring cell adjacent to the current
cell c from the other side of the face s. D(c) and Hs(c) are square matrices of
size (Kf ·N) × (Kf ·N) which are calculated using parameters at the known
time layer n.

Initially it was supposed to solve the equation system (26) using an itera-
tive blockwise Gauss-Seidel method [27]. According to TsAGI experience with
finite-volume methods, this method provides an acceptable convergence rate of
iterations at low CPU and memory costs per iteration.

5 Achievement of Stability and Fast Convergence of the
Implicit Method for Stationary RANS Equations

Essential efforts have been paid to provide stability and fast convergence of the
described above implicit DG method. Improvements, which have been introduced
into the code to achieve these results, may be subdivided into corrections of
turbulence model and modifications of numerical scheme.

The following corrections have been made in turbulence model to raise the
stability of calculations:

1. Turbulent time scale τt (9) can be rewritten as follows:

τt = max

(
e−ω̃

β∗ω0
, 6 ·

√
μe−ω̃

β∗ρkω0

)

=
e−ω̃

β∗ω0
·max (1, Cτ ) , Cτ = 6 ·

√
μeω̃β∗ω0

ρk
.

In calculation of τt the coefficient Cτ is replaced by 1000 · tanh(Cτ/1000),
so that its value is softly bounded by 1000. This trick smoothes the behavior
of source terms in the viscous sublayer of turbulent boundary layer.

2. Coefficients βi, i = 1, 3, 4, 6 (formula (10)) are replaced by 10 · tanh(βi/10),
so that their values are softly held within (−10, 10).

3. Components of undimensional tensors S̃ij and Ω̃ij are damped using the
smoothing factor Ds:

S̃ij = S̃ij ·DS , Ω̃ij = Ω̃ij ·DS, DS =
10√
IIS̃

tanh

(√
IIS̃
10

)
.
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4. In calculation of the Reynolds stress tensor components (8), value of k is
bounded from below by zero: Rij = max(k, 0) aij .

5. If in some Gauss point the conditions Sρk = ρk(P̃ − β∗ω0e
ω̃) < 0 and

k < 0 are satisfied simultaneously, then the source term in equation for
ρk is nullified. This correction prevents the following shift of k towards the
negative area.

Now let’s proceed to the modifications introduced in the numerical method.
Numerical effects connected with these modifications were studied in series of
inner tests, based on 2D flow with parameters p = 1 atm, T = 300 K, V = 270
m/s along the flat plate with length 1 m. Two computational grids, which were
used for these calculations, have been built using automatic mesh generator
NUMECA/HEXPRESS. They are shown in Figure 2. Upper picture show the
general view that was the same for both grids. The plate was placed at the
middle of the lower boundary; outer boundaries were placed at the distance
15 m from the plate. Below one may see the details of grids near the plate
leading edge. First grid was designed for calculations of laminar boundary layer
on the basis of Navier-Stokes equations. It consisted of 1239 cells; vertical size
of the smallest cells (near the plate) was equal to 2 · 10−3 m. Second grid was
designed for calculations of turbulent boundary layer on the basis of RANS
equations. It consisted of 5185 cells; vertical size of the smallest cells (near the
plate) was equal to 2 ·10−6 m. In addition, some calculations were performed on
the basis of Euler equations. In Euler tests, the first (“laminar”) grid was used;
slip boundary condition was imposed on the lower boundary. In Euler tests,
initial field contained Gauss-shaped perturbation of density with characteristic
radius 1.0 m and with amplitude 10% of the density of undisturbed flow (in
the center of computational domain). The task was to simulate the drift of this
perturbation with the flow. In Navier-Stokes and RANS tests, uniform initial
field was imposed, no-slip boundary condition was used on the lower boundary,
and the task was to obtain the stationary boundary layer on the plate. In RANS
tests, turbulence characteristics of the initial flow were equal to k = 11 m2/s2,
ω = 104 Hz.

Even in Euler tests it was found that system of linear algebraic equations (26)
cannot be solved by Gauss-Seidel method (residual either did not decrease or
even grown during iterations). Attempts to apply the blockwise Jacoby method
[27] lead to analogous results. To get the convergence, system (26) was modified
as follows:

D(c)
−→
Δq(c) + CH ·

∑

s

Hs(c)
−→
Δq (cs(c)) =

−→
R(c). (27)

It has been found that Gauss-Seidel iterations converge at CH � 0.8, and
Jacoby iterations converge up to CH � 0.99. But in the test about laminar
boundary layer the use of Gauss-Seidel method with CH � 0.8 did not allow
to get stationary flow (though the linear system (27) solved at each time step
with high accuracy). To the contrary, Jacoby method with CH � 0.99 converged
to stationary flow in several tens of time steps (in calculation with global time
stepping with Courant number CFL = 106). Dependence of the convergence rate
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Fig. 2. Grid for test calculations and its details around the plate leading edge

upon CH is shown in Figure 3. On the basis of these results, it has been decided
to use Jacoby method with CH = 0.99.

In the Euler tests with drift of Gauss-shaped perturbation of density, the anal-
ysis of the linear system solution convergence (within one time step) has also
been performed. It has been found that during several initial iterations the resid-
ual may grow strongly (more than 1000 times) with respect to its initial level, and
only after that it begins to diminish. This effect was found both for Gauss-Seidel
method and for Jacoby method – see Figure 4, a. This result means that restric-
tion of the linear system solver iterations by some constant small quantity (i.e. 6
iterations are widely used in practice with finite-volume methods) may result in
moving away from the linear system solution. Instead, it can be recommended to
continue iterations till the moment, when the residual will diminish by the given
value from initial level. This approach increases the necessary quantity of iter-
ations (up to several hundreds per time step), but guarantees the approaching
to solution of linear system. Experiments have shown that the reasonable choice
is stopping the iterations when the residual is diminished to 10−2 of its initial
value. Figure 4, b shows that following growth of the linear system solution accu-
racy doesn’t influence on the accuracy of global convergence to stationary flow,
but increases the time of computation.
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Fig. 3. Dependence of the convergence rate upon the damping coefficient CH

Following tests have been performed for the task of turbulent boundary layer
at the flat plate. Calculations appeared to be stable, but without convergence to
stationary state. To resolve this problem, another coefficient has been introduced
into the linear system (27). Let’s rewrite (27) in the following form:

((
D −Ddiff

)
+Ddiff

)
·−→Δq(c)+CH ·

∑

s

((
Hs −Hdiff

s

)
+Hdiff

s

) −→
Δq (cs(c)) =

−→
R(c).

Here the matrices Ddiff and Hdiff
s describe the contribution of diffusive (both

molecular and turbulent) fluxes in the matrices D(c) and Hs(c), accordingly.
It was found that convergence can be improved essentially by multiplying the
“diffusive” matrices by some coefficient Cvis > 1:

((
D −Ddiff

)
+ CvisD

diff
)
· −→Δq(c)+

+ CH ·
∑

s

((
Hs −Hdiff

s

)
+ CvisH

diff
s

) −→
Δq(cs(c)) =

−→
R(c). (28)

During the convergence, the increased diffusive fluxes provide additional
damping of perturbations. But if the stationary state is achieved (

−→
Δq = 0),

solution does not depend on Cvis. On the basis of experience, value Cvis = 3
may be recommended. At lower values of Cvis there is no convergence to station-
ary solution, and higher values of Cvis result in deceleration of the convergence
to stationary state – see Figure 5.
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Fig. 4. a) convergence of linear system solution, b) global convergence to stationary
flow

RANS calculations have also shown that it is impossible to obtain stationary
solution in the case of global time stepping with high values of Courant number
CFL. Analysis shows that instability is caused by source terms of the turbulence
model. The critical value of CFL is 1000. But such value of maximal Courant
number over the whole computational domain is insufficient for calculations of
flows with turbulent boundary layers, because in this case the local value of
CFL above the boundary layer appears to be about 10−3, and the flow devel-
ops too slowly. So, it has been decided to perform all calculations with local
time stepping, with local CFL 1000 in all cells. Experience have shown that the
convergence of calculation with local time stepping with CFL 1000 may be not
worse than the the convergence of calculation with global time stepping with
maximal CFL 106.

6 Multigrid Algorithm for DG Method

The used multigrid method is based on the well-known full approximation stor-
age multigrid scheme (see [28]). The main idea of classical multigrid method
(h-multigrid) consists in fast transmission of information between different parts
of computational domain. For this purpose, the equation solution is performed
using the set of sequentially refining grids. The solution for the coarsest grid
is used to solve the equation for the finer grid and vice versa the solution for
the finest grid is used as an initial approach to solve equations for the coarse
grid. At that, the equations for the coarse grid are modified to compensate the
approximation loss in large cells.
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Fig. 5. Dependence of the convergence rate upon the coefficient Cvis

The polynomial multigrid method (p-multigrid) is developed on the basis of
the paper [29]. Unlike h-multigrid, the equations are solved using the same level
of grid but with the most order of basis functions. The maximal orderK increases
or diminishes similarly to enlargement or reduction of cells in grids.

Let’s define a sequence of levels of a multigrid method l = 1, ..., L, such that
the level l+1 has a higher number of cells or a higher number of basis functions
(degrees of freedom) than the level l. At the highest (finest) level L, the equation
system (26), (27), (28) may be represented as follows:

MΔqL +RL (qL) = 0, (29)

where the vector Δq is join of vectors
−→
Δq for all cells of computational domain

and R is join of vectors
−→
R for all cells. Dimension of vectors Δq and R is Ncells ·

Kf · N . Matrix M has dimension (Ncells ·Kf ·N) × (Ncells ·Kf ·N). Equation
system (29) can be solved using the method described in the Section 4. The
implicit smoother provides correction of the solution at the highest level L:
q̃L = qL +ΔqL.

Let’s write the grid equations at the coarser (lower) multigrid level l = L− 1:

MΔql +Rl (ql) = Fl. (30)

The right-hand side appeared in this equation allows us to take into account
the error because of the approximation accuracy loss when passing to the lower
grid level, where the equations are written either on a coarser grid or using
polynomials of a lower degree. To determine the right-hand side, let’s consider



Implementation of High-Order Discontinuous Galerkin Method 357

this system of equations on two sequential levels: level l (the equation (30)) and
the upper level l+ 1:

MΔql+1 +Rl+1 (ql+1) = Fl+1. (31)

The iterative scheme must be organized to guarantee that the solution trans-
ferred from an upper level to a lower one, ql = I ll+1 [ql+1], is also a solution of
the equation (30) at the lower level:

MI ll+1 [ql+1] +Rl

(
I ll+1 [ql+1]

)
= Fl. (32)

Transferring the equation (31) to the lower level, we have:

I ll+1 [MΔql+1] + Ĩ ll+1 [Rl+1 (ql+1)] = Ĩ ll+1 [Fl+1] . (33)

Here I ll+1 [·] and Ĩ ll+1 [·] are the operators for transfer of solution and residual
from higher multigrid level to lower one. Algorithms for these operators are given
below.

Subtracting the equation (33) from (32), we obtain the recurrent formula for
the right-hand side:

Fl = Rl

(
I ll+1 [ql+1]

)
+ Ĩ ll+1 [Fl+1 −Rl+1 (ql+1)] . (34)

At the highest level Fl=L = 0. Low-frequency error on an upper multigrid
level is represented as high frequency error on an lower multigrid level and can
be easily eliminated by one of several smoothing iterations. As a result, we have
the following correction of solution: q̃l = q

(0)
l +Δql, where initial approximation

for solution at the coarser level is result of its transfer from the upper level:
q
(0)
l = I ll+1 [ql+1].
The equations (30) are repeatedly solved at each level including the lowest

one – the zero level at which the coarsest grid is used and the piecewise constant
reconstruction of the solution is performed (the single basis function, ϕ(x) ≡ 1,
is used). Then, on the basis of the obtained set of solutions, correction at higher
multigrid levels is performed in accordance with following rule:

q
(new)
l = q̃l + qcorr, (35)

where qcorr =
{
I ll−1

[
q̃l−1 − I l−1

l [q̃l]
]}

and I ll−1 [·] is operator of solution transfer
from the lower multigrid level to the higher one.

The expressions in the braces are averaged according to following rule:

{θ}i =

Nf∑
f=1

1
2 (θi + θn)Sf

Nf∑
f=1

Sf

,

where i is a cell index, n is an index of neighboring cell that is separated from
the cell i by the face f . The summation is performed over all faces of all cells.
Sf is the area of face f .
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The algorithm also involves the damping procedure for solution correction:

qcorr = qcorrD
|q̃l|

max
(
|q̃l| ,

∣∣I l−1
l [q̃l]

∣∣ , |q̃l−1| , ε
) ,

where D = 0.25...0.75, ε = 10−20.
When the solution is transferred from a finer grid to a coarser one (h-

multigrid), the following operators of solution and residual transfer are used:

I ll+1 [ql+1] =

∑
{ql+1}Ωl+1

∑
Ωl+1

, Ĩ ll+1 [Rl+1] =
∑

{Rl+1}.

Here the summation is performed over all the cells of level l + 1 that belong
to a large cell of level l and Ω is the cell volume. The back transfer of solution
from a coarser grid to a finer one is performed using the interpolation operator:

I l+1
l [ql] = ql.

The operators of the solution transfer between the levels with different
numbers of basis functions in the reconstructed solution (p-multigrid) are ob-
tained from the condition that the solutions ql and ql−1 should be equiva-
lent (in the framework of DG approach) in the considered cell. The number
of basis functions at these levels is determined by relations M = Kf

(
K l

)
,

m = Kf

(
K l−1

)
. The equivalence of solutions means that the following integral

conditions, which are obtained by multiplying the difference between solutions
by the basis functions ϕj of the level, where the solution is transferred, are
fulfilled:

∫

Ω

(ql − ql−1)ϕjdΩ = 0. Therefore, the operators I l+1
l and I ll+1 can be

represented as follows:

I l+1
l [ql] = [Mpp]

−1
Mpqql, I ll+1 [ql+1] = [Mqq]

−1
Mqpql+1, (36)

where components of mass matrices are calculated as follows:

Mi,j
qq =

∫

Ω

ϕl−1
i ϕl−1

j dΩ, Mi,j
pp =

∫

Ω

ϕl
iϕ

l
jdΩ,

Mi,j
qp =

∫

Ω

ϕl−1
i ϕl

jdΩ, Mi,j
pq =

∫

Ω

ϕl
iϕ

l−1
j dΩ.

The operator for transferring the residual in relation (34), generally speaking,
may differ from the operator (36):

Ĩ ll+1 [Rl+1] = Mqp[Mpp]
−1

Rl+1.

To demonstrate the efficiency of this multigrid method in combination with
the implicit method, described in Section 4, series of tasks about inviscid com-
pressible gas flow around sphere at M = 0.15 was calculated for sequence of
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enclosed grids using piecewise-linear, quadratic and cubical polynomial basis
functions. The cells of non-structured grids are hexahedrons. The calculations
with high accuracy order (quadratic and cubical polynomial basis functions) were
performed with taking into account the curvature of hexahedron sides adjacent
to the sphere.

Figure 6 presents a typical history of solution residual convergence in DG
scheme (K = 3) depending on time. Here, the calculation using h-p multigrid
scheme (6-level for sequence of 3 grids) with implicit smoother is drawn by the
red line. The history of solution residual convergence without multigrid method
is drawn by the blue line. It is obvious that multigrid algorithm with implicit
smoother removes oscillating character of convergence and essentially diminishes
the calculation time.

Fig. 6. DG scheme calculation (K = 3) of inviscid flow around the sphere (M = 0.15)

7 Parallel Implementation of 3D High-Order DG
Algorithm for RANS Equations

Parallel version of 3D High-Order DG code on the base of NUMECA FINETM/
Hexa [29,30] has been developed. It includes the implicit smoother (see Sections
4, 5), h-p multigrid (Section 6), and new Gauss quadrature rules (Section 3).

The initial implementation of multigrid method in the DG was significantly
different from that in NUMECA. This is due to the fact that DG is very sensitive
to the accuracy of geometrical parameters. Therefore, each face of merged cell is
considered as a sum of the appropriate faces in its parent cells. And, accordingly,
the fluxes of conservative parameters through the face of the combined cells are
calculated as the sum of fluxes through its constituent faces. Thus, multigrid in
DG needed to be developed on the base on own algorithm of parallelization. As
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mentioned above, due to restrictions in access to the code NUMECA, the direct
development of a parallel algorithm was not possible. So, the deep refactoring of
DG code was made with the aim to come as close to the available NUMECA code
as possible. The main efforts were aimed at modification of h-multigrid for the
DG to make it like NUMECA. Such changes have been made possible after the
decision was made to use only the first order method at coarse grid. As a result
of refactoring, parallelization of code is reduced to inserting barriers and block
exchanges between sub-domains [31]. Generally, it uses standard NUMECA calls.

Let’s consider a flow of the inviscid gas around a sphere at low Mach number.
The computational grid consists of 8980 cells. It is built using automatic mesh
generator NUMECA/HEXPRESS. Freestream parameters are following: p = 1
atm, T = 293 K, V = 50 m/sec (M ≈ 0.15). Parallel efficiency of DG with
implicit smoother in solution of this task on 4-cores i7 computer is demonstrated
in Figure 7. The ideal acceleration is equal to quantity of processors. One may
see the weak dependence of the efficiency on the accuracy order of the scheme.
This is due to the fact that calculation time per iteration of the implicit scheme is
essentially higher than the time of exchanges between subdomains. Accordingly,
in the case of running on multiple processors the losses depend only on differences
between sizes of subdomains.

Fig. 7. Parallelization efficiency for DG scheme with implicit smoother

8 Calculations of Tests U.3, U.3, and A.3 Using Implicit
DG Solver for RANS Equations

When the preliminary testing was finished, implicit DG solver for RANS equa-
tions has been applied to calculation of the IDIHOM project’s standard tests:
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U.3 (subsonic flow around three-element airfoil L1T2 [32] at high angle of at-
tack), U.2 (transonic flow around wing ONERA M6 [33]), and A.3 (subsonic
flow around three-element wing [34]). In these tests, accuracy order of numerical
method and the code performance (running speed) were estimated.

Geometry of high-lift airfoil L1T2 [32] may be seen in Figure 8. Flow with
following parameters was considered: Mach number M∞ = 0.197, angle of attack
α = 20.18◦, chord based Reynolds number Re = 3.52× 106. Turbulence param-
eters of the ambient flow: k∞ = 0.68 m2/s2 (Tu∞ =

√
2
3
k∞
V 2∞

× 100% = 1.0%),

ω∞ = 4.5× 104 Hz (at the chosen value of k∞, this value of Ω∞ corresponds to
μt∞ ≈ μ∞).

Fig. 8. General view of flow around airfoil L1T2 (test U.3)

A set of three unstructured hexahedral grids have been constructed:

– fine grid: 20854 cells, height of the first near-wall cell hmin ∼ 1.7× 10−5 m,
increment of cell size growth (geometric ratio) GR = 1.21;

– medium grid: 7432 cells, hmin ∼ 3.7× 10−5 m, GR = 1.46;
– coarse grid: 2836 cells, hmin ∼ 8.9× 10−5 m, GR = 2.14.

In the vicinity of solid surfaces, curvature of grid lines have been taken into
account [35]. Cell edges are considered as elements of parabolas. End points and
central points of the cell edges belong to solid surfaces.

Outer boundary of computational domain is placed at the distance of 10
chords from the airfoil, and boundary condition at this boundary is based on
analysis of Riemann invariants. To take into account the velocity circulation,
additional velocity field VΓ (r) is superimposed at the boundary point r:

VΓ (r) =
Γτ

2π |r − rc|
,
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where rc is the central point of the airfoil, τ is unit vector normal to r−rc, and
Γ is the prescribed circulation value.

Solid surfaces are treated as adiabatic no-slip walls.

To achieve fully-2D computation, set of 2D basis functions have been used.

Calculations were performed with local time stepping. Each computation
started from local Courant number CFL = 1. If after current iteration the new
flowfield appeared to be physical, CFL incremented 1.5 times; if it was non-
physical, the numerical solution was returned to state before the iteration, and
the iteration was repeated with 2− 10 times smaller value of CFL. In all calcu-
lations the maximal value of Courant number was restricted by the value 1000,
except the calculation with K = 3 on the fine grid, where CFL was restricted by
the value 100. In all calculations, deep convergence to stationary flow has been
achieved (residual has decreased by 8−15 orders of magnitude from initial level).
Calculations have been parallelized; from 4 to 48 processor cores were used.

The following table presents the obtained lift and drag coefficients CL and
CD, as well as characteristics of the code performance, including maximal RAM
storage, normalized run-time to converge variable CL within tolerance 0.04 and
variable CD within tolerance 0.001 – T̄run = Trun·NCPU

Tbench
and unit normalized run-

time ¯̄Trun = T̄run/NDOF. Here NCPU is quantity of processor cores, Tbench is
run-time for calculation of the benchmark test task using the benchmark code
(TauBench, based on the code Tau by DLR) on one core of the same computer,
and NDOF is number of degrees of freedom (quantity of cells multiplied by the
number of basis functions).

Grid DG NCPURAM, Gb
Results for CL Results for CD

CL T̄run
¯̄Trun CD T̄run

¯̄Trun

coarse K = 1 4a 0.1 3.0888 35 4.11× 10−3 0.1762 46 5.41× 10−3

coarse K = 2 4a) 0.2 3.4292 214 1.26× 10−2 0.0971 214 1.26× 10−2

coarse K = 3 12b) 0.5 3.5219 486 1.71× 10−2 0.1066 721 2.54× 10−2

medium K = 1 4a) 0.3 3.6475 126 5.65× 10−3 0.1323 179 8.03× 10−3

medium K = 2 12b) 0.6 3.9724 781 1.75× 10−2 0.0712 998 2.24× 10−2

medium K = 3 16b) 1.4 3.9455 3067 4.13× 10−2 0.0659 3670 4.94× 10−2

fine K = 1 4a) 0.6 3.8463 826 1.32× 10−2 0.1234 1079 1.72× 10−2

fine K = 2 8b) 1.5 3.9944 6590 5.27× 10−2 0.0681 8093 6.47× 10−2

fine K = 3 48b) 3.8 3.9844 152789 0.733 0.0641 196629 0.943
a) PC Intel Core i7-2600, 3.4-3.8 GHz
b) 4 nodes cluster (16 cores each) Intel Xeon E5-2670, 2.6-3.3 GHz, 1Gbit Ethernet
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Efficiency of high-order calculations is illustrated by Figure 9. Here one can
see that convergence to values of coefficients CL and CD to reference values,
obtained in fully-converged finite-volume calculations by DLR, is achieved more
quickly with K = 2, 3 than with K = 1. However, by now K = 3 is slower than
K = 2.

Fig. 9. Grid convergence as function of normalized run-time (test U.3)

Figure 10 shows grid convergence with the growth of NDOF. Along vertical
axes, error in determination of integral coefficients in comparison with asymptot-
ically derived values C∗

L and C∗
D is plotted. High-order methods (K = 2, 3) are

converged faster than low order (K = 1). For the drag coefficient, convergence
for K = 3 is faster than for K = 2.

Fig. 10. Grid convergence of lift and drag coefficients, as function of NDOF (test U.3)
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In the next table the convergence order, estimated on the basis of obtained
values of CL and CD, is shown.

K Convergence order based on
CL CD

1 2.2 3.4
2 6.7 4.4
3 5.0 6.5

Calculations of transonic flow around the wing ONERA M6 [33] have been
performed for the following flow regime (TEST 2308 from [33]): Mach num-
ber M∞ = 0.8395, angle of attack α = 3.06◦, mean aerodynamic chord-based
Reynolds number Re = 11.72 × 106, stagnation temperature T0 = 300 K.
Turbulence parameters of the ambient flow: k∞ = 10 m2/s2 (Tu∞ ≈ 1%),
ω∞ = 6.7× 105 Hz (at the chosen value of k∞, this value of ω∞ corresponds to
μt∞ ≈ μ∞).

A set of three unstructured hexahedral grids has been constructed:

– fine grid: 204062 cells, hmin ∼ 8× 10−5 m, GR = 2.0;
– medium grid: 75987 cells, hmin ∼ 1× 10−4 m, GR = 3.0;
– coarse grid: 38219 cells, hmin ∼ 3× 10−4 m, GR = 4.0.

In the vicinity of solid surfaces, curvature of grid lines have been taken into
account. The same boundary conditions, as in test for airfoil L1T2, were used.

This stage of testing is not completely finished yet. Some problems with sta-
bility are not resolved. In particular, only calculations with K = 1 and K = 2
have reached the convergence (with decrease of residual by 5− 6 orders of mag-
nitude from initial level), except the calculation with K = 2 on a medium grid,
where amplitude of CL and CD oscillations is about 3 − 4 counts. By now, we
have failed to achieve stable calculations with K = 3.

The following tables summarize current preliminary results for ONERA M6
wing:

Grid DG CL CD

coarse K = 1 0.26678 0.02090
medium K = 1 0.27952 0.01824

fine K = 1 0.28217 0.01634
coarse K = 2 0.24974 0.01699

medium K = 2 0.26619 0.01327
fine K = 2 0.27285 0.01260
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K Convergence order based on
CL CD

1 7.4 2.6
2 4.7 7.9

These results are illustrated by Figure 11. Efficiency of DG method (K =
1, 2) is compared with results obtained using 2nd accuracy finite-volume method
(calculations with NUMECA FINETM/Open 2.11 code with Spalart-Allmaras
turbulence model). Higher efficiency of finite-volume calculation in comparison
with DG K = 1 method may be explained by the fact that calculation with
the use of EARSM turbulence model is inevitably slower than calculation on
the basis of one-equation Boussinesq Spalart-Allmaras model. One may also see
that lower-order methods appear to be more efficient if low accuracy (error about
10−3) is acceptable. But if high accuracy (error lower than 10−4) is required, DG
K = 2 appears to be more efficient than low-order methods.

Fig. 11. Grid convergence of lift and drag coefficients, as function of normalized run-
time (test U.2)

A.3 subsonic high-lift external aerodynamics test case is based on the materials
from the first AIAA CFD High Lift Prediction Workshop (HLPW) [34]. The
configuration is taken from the NASA Trap Wing model, a three-element 3D
high lift configuration with slat, main wing and flap attached to a wind tunnel
body. In the present paper, the Configuration 1 is considered with slat at 30◦
and flap at 25◦ deflection.

Computations have been performed for the following flow regime: Mach num-
ber M∞ = 0.2, angle of attack α = 13◦, mean aerodynamic chord-based
Reynolds number Re = 4.3 × 106, stagnation temperature T0 = 300 K. Tur-
bulence parameters of the ambient flow: k∞ = 0.7 m2/s2 (Tu∞ = 1%),
ω∞ = 3.7× 104 Hz (at the chosen value of k∞, this value of ω∞ corresponds to
μt∞ ≈ μ∞).
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Both reference FV computations and high-order DG computations have been
performed on structured hexahedral multiblock grids. Using grid generator
ICEM CFD 14.0, a set of five grids has been constructed. Their characteris-
tics are presented in the following table:

Grid
ID

Number
of cells

Height of
the first near-wall

cell (m)

Increment of
cell size growth

1 32 771 1.0× 10−4 3.00
2 121 014 5.0× 10−5 2.10
3 262 168 3.0× 10−5 1.80
4 2 097 334 1.0× 10−5 1.30
5 16 778 752 6.0× 10−6 1.15

Grids #1 and #5 are presented in Figure 12. The extra coarse grid #1 near
the wing tip is shown in Figure 13. Outer boundary of computational domain is
placed at the distance of 124 chords from the model. There, boundary condition
is based on Riemann invariants analysis. Solid surfaces are treated as adiabatic
no-slip walls. For the reference computations, the EWT-ZEUS solver developed
in TsAGI has been used. The solver employs RANS equation system closed
by SST turbulence model. Implicit second-order FV method based on MUSCL
approach for convective fluxes has been applied. Integral characteristics of flow
(CL and CD) obtained on different grids are presented in Figure 14. Accuracy
order of this numerical scheme estimated based on the results of the finest three
grids is equal to 2.77 (based on CL) and 1.15 (based on CD).

Fig. 12. Grids for high-lift 3D test: a) grid #1 and b) grid #5
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Fig. 13. Cross-section of grid #5 for high-lift 3D test

Fig. 14. a) CL and b) CD characteristics of HLPW model vs. NDOF for FV and DG
computations

Unfortunately, we experienced convergence problems in DG computations of
this test case. After long initial period of convergence, instability started to
grow which finally led to computation crash. We believe these problems to be
associated with the presence of stretched and twisted hexahedral cells in the
grid emerged due to our efforts to generate extremely coarse grid around this
geometrically complex configuration. Using the non-orthogonal shape functions
defined in the physical space results in ill-conditioned mass matrices in such
highly distorted cells. It leads to errors accumulation by the numerical scheme,
which causes sudden divergence of solution. We plan to continue our research to
eliminate this source of errors by revising the local shape functions.

Despite the crash of all test runs, DG computations on extra coarse grid #1
with K = 1 and K = 2 and on medium grid #2 with K = 1 have rather long
convergence period so that the forces are almost stabilized. These results are also
presented in Figure 14. It is seen that with equivalent NDOFs, the accuracy of
DG results is higher than that obtained with the FV method. Figure 15 presents
the pressure distributions on the model surface obtained in second-order FV
computation on fine grid #5 and in third-order DG K = 2 computation on coarse
grid #1. It is clearly seen that despite the significant difference in the density
of the grids, the flow patterns are close to each other. Comparison of pressure
distributions (Figure 16) obtained in section z/b = 0.65 with experimental data
and with results of the reference computations shows that the data of DG K = 2
computations on coarse grid #1 approach the data of reference computation
(grid #5) closer than DG K = 1 computations on grids #1 and #2.
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Fig. 15. Pressure distributions on the model surface obtained in computations using
a) second-order FV approach on the finest grid #5 and b) third-order DG K = 2 on
coarse grid #1

Fig. 16. Pressure distributions in wing section of HLPW model

In the other computations (medium grid with K = 2, fine grid with K = 1
and K = 2), the divergence develops too fast thus not allowing to obtain any
results and to perform the assessment of accuracy order.

Results of these tests show that high-order methods (DG with K > 1) on
coarse grids allow to obtain solution of quality, comparable with quality of so-
lutions, obtained using low order method (DG with K = 1) on much finer grids
(with 10 or more higher quantity of cells). Differences between the expected and
obtained convergence orders are possibly can be explained by following effects: 1)
grids are still too coarse, and convergence rate is still far from asymptotic value;
2) nesting of cells on different grids is not good. Stability problems in transonic
calculation of flow around ONERA M6 wing are explained by the presence of
shock waves in flow. Authors has successful experience in calculation of low Mach
number flow around ONERA M6 wing. To stabilize calculation, it is necessary
to find appropriate monotonizing procedure; but such study was not performed
within IDIHOM project.
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9 Explicit Numerical Method for Solution of Isentropic
Linearized Euler Equations

Another direction of TsAGI activity withtin IDIHOM project was devoted to de-
velopment of DG solver for solution of tasks from aeroacoustics. Acoustic tasks
are characterized by the necessity to simulate propagation of very small pertur-
bations over non-uniform aerodynamic flowfields. This implies that numerical
method should handle multiscale tasks with low dispersion and low dissipation
errors for small scales. This requirement leads necessarily to high-order numerical
schemes. In addition, very detailed numerical grids and rather large computa-
tional domains should be considered to calculate accurately the near acoustic
field and to have possibility to impose correctly boundary conditions for cal-
culations of the far acoustic field. DG method suited well to solution of such
tasks, because it is numerical method of arbitrarily high accuracy order that is
practically independent upon grid quality and also highly parallelizable.

There are several approaches for solving acoustic tasks. The approach, which
was considered in this work, is known as “perturbation method” [36]. It requires
relatively not much computational costs and consists of three general steps.
At the first step a basic aerodynamic flowfield is calculated independently using
Reynolds averaged Navier-Stokes equations. Then near acoustic field is simulated
directly as generation and propagation of small acoustic perturbations over the
aerodynamic field. This direct numerical simulation of sound is performed on
the basis of linearized Euler equations. And finally far acoustic field is estimated
using special methods (Kirchhoff or Ffowcs-Williams Hawkings methods), which
consider radiation of sound by control surface over practically uniform aerody-
namic field. Acoustic characteristics of the control surface are taken from the
calculation of near acoustic field.

TsAGI work within IDIHOM project was concentrated on direct simulation
of sound propagation in near acoustic field. Theoretically, it is possible to ne-
glect the influence of viscosity on sound propagation and to consider this process
as adiabatic. To minimize essentially the quantity of arithmetic operations, it
was decided to calculate sound propagation on the basis of Isentropic Linearized
Euler Equations (ILEE). This equation system may be obtained from full lin-
earized Euler equations, if we replace the last differential equation (for energy)
by isentropic relation p′ = c2aρ

′.
In the case of ILEE equations, the system (1) dimension N = 4, primitive

variables Q = [ρ′; u′; v′; w′]
T (perturbations of density and velocity), and con-

servative variables U = [ρ′; ρau
′ + ρ′ua; ρav

′ + ρ′va; ρaw
′ + ρ′wa]

T (index a cor-
responds to basic aerodynamic field that is taken from RANS calculations). The
vector Fk of fluxes along xk axis (x1 = x, x2 = y, x3 = z) and the vector of
source terms S (see (1)) have the following form:

Fk =

[
U ′
k

U ′
iuak + ρauaiu

′
k + c2aU

′
1δik

]
, S =

[
0

0

]
.
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Because acoustic tasks have essentially non-stationary character, it was de-
cided to use explicit DG method. Using (2), one may rewrite (4) as follows:

Kf∑

j=1

⎛

⎝
∫

Ω

Γϕi(x)ϕj(x)dΩ

⎞

⎠ dqj
dt

+

∮

Σ

Fn ϕi(x)dΣ =

∫

Ω

Fi dΩ, i = 1, ...,Kf . (37)

Let’s introduce the vector of size Kf ·N for each cell:

−→q ≡
(
(q1)ρ; (q2)ρ; ...;

(
qKf

)
ρ
; (q1)u; (q2)u; ...;

(
qKf

)
u
; ...; (Δq1)w; (q2)w; ...;

(
qKf

)
w

)T

.

Then (37) may be rewritten in matrix form:

M
d−→q
dt

=
−→
b or

d−→q
dt

=
−→
R , (38)

where Ms·i, m·j =
∫

Ω

Γsm ϕi(x)ϕj(x)dΩ, (
−→
b )s·i =

∫

Ω

(Fi)s dΩ −
∮

Σ

(Fn)s ϕi(x)dΣ,
−→
R = M−1−→b . Matrix M has dimension (Kf ·N)×(Kf ·N) To get high accuracy
order in time, the time integration of differential equation (38) is performed by
the explicit m-stage Runge-Kutta (RK) method:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−→q (0)
= −→q n

,
−→q (1)

= −→q n
+ α1 τ R

(0),

. . .
−→q (m)

= −→q n
+ αm τ R(n−1),

−→q (n+1)
= −→q (m)

.

In the current work 4-stage RK method with the following coefficients is used:

α1 = 1/4 α2 = 1/3 α3 = 1/2 α4 = 1.

Fluxes Fn(Q
k
s) through the cell face s are determined using simplified algo-

rithm [37], based on Roe solution of the Riemann problem. Let’s designate states
of flow on the left and on the right of the cell face s by indices “L” and “R”. It will
be assumed that |QR

a −QL
a | � |Qa|. This assumption allows using two important

simplifications [37] in classical Roe method: 1) primitive variable approach and
2) use of approximate Roe matrix, which coincides with Jacobian of ILEE, com-
puted using arithmetic averages of aerodynamic flows from the left and from the
right of the cell boundary. So, the flux Fn(Q

n
s ) may be calculated using formula

Fn(Q
(k)
s ) =

Fn(Q
(k)
L ) + Fn(Q

(k)
R )

2
− d(k)n ,
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where the dissipative term d
(k)
n = T (k)|Λ(k)|

(
T (k)

)−1
Γ(k) Q

(k)
R −Q

(k)
L

2 . The
columns of matrix T are the right eigenvectors of An, |Λ| is diagonal matrix
with the modules of An eigenvalues on the diagonal. Components of the ma-
trix Γ = ∂U/∂Q, of the matrix An = ∂Fn/∂U, and accordingly components of
T and |Λ|, are calculated at the known time layer of RK procedure (k) using
arithmetic averagings V̄i = ((Vi)L + (Vi)R) /2, where Vi = {ua, va, wa, ca},
ca =

√
γ pa/ρa is speed of sound. Matrix An has the following form:

An =

⎡

⎢⎢⎢⎣

0 nx ny nz

−uaVan + c2anx uanx + Van uany uanz

−vaVan + c2any vanx vany + Van vanz

−waVan + c2anz wanx wany wanz + Van

⎤

⎥⎥⎥⎦ ,

where Van = uanx+vany+wanz. It worth to note that matrix T is not symmetric
with respect to nx, ny, nz and can degenerate, e.g. if one of these values is zero.
But the product dn = T |Λ|T−1QR−QL

2 is symmetric and does not degenerate
[37].

10 Calculations of Acoustic Tests Using Explicit DG
Solver for ILEE Equations

DG solver for ILEE equations, which have been created on the basis of the
explicit method from Section 9, has been verified on a series of inner tests: the
evolution of the Gaussian acoustic pulse in a uniform flow, the propagation of the
acoustic sine wave and signals with continuous Π-like spectrum over a uniform
flow. We shall consider only test about sine wave that is of major importance. It
allows to determine the grid spatial resolution necessary for accurate simulation
of small perturbations propagation.

Let’s consider a one-dimensional aerodynamic flow in a tube with smooth slip
walls. The tube length equals to L = 200 and the tube is located to the right
from the cross-section x = 0. The basic aerodynamic flow field is a stationary
uniform flow, defined as follows:

pa =
1

γ
, ρa = 1

(
⇒ ca =

√
γ
pa
ρa

= 1

)
, ua =Ma = 0.5, va = wa = 0.

The base field is disturbed by a sinusoidal perturbation of a small amplitude
and unit wavelength at the left boundary. Only Riemann invariant z3, that is
constant along the characteristic dx/dt = ua + ca, is perturbed. Consequently,
the exact solution exists as a sinusoidal perturbance that propagates along the
x axis with the constant velocity (ua + ca) without fading.
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Exact analytical solution for the whole flow (with acoustic disturbances):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρexact(x, t) =

[
1

γ z0(x, t)

(
γ − 1

4
(z+(x, t) − z−(x, t))

)2
] 1

γ−1

,

uexact(x, t) =
1

2
(z+(x, t) + z−(x, t)) ,

vexact(x, t) = wexact(x, t) = 0,

pexact(x, t) =
1

γ

(
γ − 1

4
(z+(x, t)− z−(x, t))

)2

ρexact(x, t).

(39)

where ε = 10−3 is amplitude of the sine wave. The fluctuations are defined as
follows: ρ′ = ρ− ρa, u′ = u− ua, v′ = v− va, w′ = w−wa. Both initial solution
and boundary conditions at each time moment are taken from the exact solution
(39).

Calculations are performed on grids with 3, 4, 6 and 8 cells per wave length
λ = 1 respectively. The results obtained on two equivalent grids (with the same
NDOF) at time t = 60 with K = 3, are compared in group and with the exact
solution. Courant number is 0.1 for all computations.

Usually in acoustics specially optimized dispersion-relation-preserving (DRP)
scheme of the 4th order in space in aggregate with low dissipative and dispersion
RK procedure developed by Tam et al. [39] is used. So, in our paper we also
provided comparison of the developed DG scheme with Tam scheme which uses
4-stage low-dispersion and dissipation RK procedure of the 2nd order in time.

The representative solution shape and its comparison with the exact solu-
tion are given in Figure 17, a. The numerical scheme dissipation monotoni-
cally attenuates the perturbation amplitude. The perturbation covers distance
(ua + ca)t = 1.5 · 60 = 90. Therefore, there is no boundary influence to the right
of x = 90 and the signal amplitude fades uniformly with x. In the region [0; 90]
one can observe the spatial sweep of signal fade-out.

Figure 17, b shows the results of solutions comparison. The solution envelopes
are shown. It is necessary to note that the exact solution oscillates in the range
[−0.0005; 0.0005]. The considered Tam scheme gives acceptable level of dissipa-
tion (decrease of the amplitude is not higher than 20%) on the grid with 16 cells
per wavelength. DG scheme with K = 2 gives better level of dissipation (less
than 10%) on the grid with 6 cells per wavelength, and DG scheme with K = 2
– even at 3 cells per wavelength! At that, DG scheme K = 3 with 4 cells per
wavelength and DG K = 2 with 8 cells per wavelength provide dissipation level
less than 2%. It is worth to add that the solutions obtained with DG scheme
give no visible displacement in phase.

For this 1D test, order of grid convergence of DG K = 3 solver has been esti-
mated. For this purpose, calculations have been performed on grids with 4, 8, 16,
32 and 64 cells per wavelength of the sine wave. In several control points, which
were placed along the computational domain with step Δx = 30, dependences
p(t) were registered. After the calculation, RMS value of pressure perturbations
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Fig. 17. Solution of task about 1D sine wave propagation at t = 60: a) shape of solu-
tion, obtained using DG scheme, vs. exact solution; b) solution envelopes for different
grids

over the predefined physical time period t ∈ [t0; t0 + T ] was determined accord-
ing to formula:

Σ ≡
√
p′2 =

√√√√√√
1

T

t0+T∫

t0

p2(t)dt −

⎛

⎝ 1

T

t0+T∫

t0

p(t)dt

⎞

⎠
2

. (40)

For this test, values t0 = 50, T = 10 have been chosen. The order of conver-
gence has been estimated using classical Richardson extrapolation that assumes
that the parameter Σ (40) depends on the cell size h in accordance with formula

Σ(h) = Σexact +Ahm, (41)

where Σexact is the exact solution, A is some constant and m is the convergence
order. Two approaches were considered. In the first approach, sequence of 3
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grids was used, and Richardson extrapolation was used to estimate both the
exact solution Σexact and the convergence order m. In the second approach,
exact value of RMS for the sine wave was used as Σexact, and the convergence
order m was estimated from the sequence if 2 grids. Results are presented in
the following table. Results for different control points have appeared to be
practically coinciding, so this table contains data only for each sequence of grids.

Grid sequence
(cells per 4/8/16 8/16/3216/32/64 4/8 8/1616/3232/64

wavelength)
order m undetermined 3.68 3.94 undetermined 3.70 3.84 2.91

One may see that the grid with 4 cells per wavelength appeared too coarse,
so that it is still impossible to neglect the contribution of higher degrees of h in
the dependence Σ(h). Results for other sequences of grids are pretty close to the
expected convergence order m = 4. The only exception is the sequence of two
finest grids – 32/64 cells per wavelength, where the convergence order appeared
to be close to 3. It is possible that at these grids the difference between Σ(h)
and Σexact becomes so small that the accuracy of the order m determination
degrades because of truncation errors.

Finally, let’s consider the results obtained for the standard test of IDIHOM
project – test A14. This test is based on experiment with propagation of sound
perturbations along the wing flap configuration, which was performed within
EU/FP7 VALIANT project (40). Geometry of wing and flap may be seen in
Figure 18. The following flow regime was considered: velocity u = 50 m/s, angle
of attack α = 0◦, temperature T = 298 K. Reynolds number based on the flap
chord was equal to 3.3×106. In the experiment, initial turbulence was generated
by turbulizing grid placed at the left boundary of the domain that is shown in
Figure 18.

Calculations of this test were performed in 2D (flat) formulation. 2D basis
functions were used in DG method. Initially, RANS calculation has been per-
formed on appropriate grid with detailed resolution of turbulent boundary layer
(for uniform inflow). The converged flowfield obtained in RANS calculation has
been used as basic (aerodynamic) flowfield.

Acoustic calculations have been performed using DG method K = 3 for four
quasi-uniform grids with quasi-quadratic cells with 4, 6, 9 and 14 cells per the
shortest wavelength of the incoming sound.

In the main series of calculations, stochastic perturbations were continuously
introduced from the inflow boundary. Stochastic perturbations with nearly
uniform flat distribution (in 1/3rd octave presentation) within the frequency
range 100 − 12000 Hz were used. Instant field of pressure perturbations in the
time moment t = 0.00615 sec is shown in Figure 19. A similar field for the case of
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Fig. 18. Geometry of computational domain and position of control points for test
A14

pulse propagation with the same frequency characteristics as in stochastic case
is shown in Figure 20. One may see that incoming sound waves propagate (prac-
tically without damping) along the computational domain. Their diffraction and
reflection from the flap tip may be seen.

After that, an attempt has been made to estimate the convergence order using
the same procedure as in test with 1D propagation of a shock pulse. Dependencies
p(t) were registered in six control points that are shown in Figure 18. RMS value
of pressure perturbations Σ was determined using (40). Using sequences of Σ for
3 grids, convergence order has been estimated. But this attempt has appeared
to be unsuccessful. In some points the convergence order was undetermined, in
other points it was far from the expected values, and in different points these
values were very different.

To understand this result, additional series of calculations have been per-
formed. Now the flat sine waves of maximal frequency (12000 Hz) were intro-
duced continuously through the left boundary. Maximal frequency was chosen to
have the maximal approximation errors and to avoid the influence of truncation
errors on the results of Richardson extrapolation.

Attempt to estimate the convergence order has been performed again. It ap-
peared to be unsuccessful, too – in spite of the fact than in the case with 1D
propagation of the same wave on comparable grids we had a success. Analysis of
the results allows to assume that the reason of the unsuccess in the test A14 is
the interference of the main flat waves (propagating to the left) with the waves,
reflected from the flap tip and from the upper on lower boundaries of computa-
tional domains. Even if all these waves have the same frequency, the behavior
of signal in control points depends not only upon the grid resolution but also
upon the phase shift between the interfering waves. As a result, formula (41) is
inapplicable.
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Fig. 19. Propagation of stochastic perturbations around the wing/flap configuration

Fig. 20. Propagation of a pulse around the wing/flap configuration

11 Conclusions

1. High-order Discontinuous Galerkin method (K = 2 − 3) with 1st order im-
plicit smoother is proposed for solution of stationary RANS equations, closed
by non-Boussinesq turbulence model of EARSM class. The method is en-
hanced by the use of improved Gauss quadrature rules and of h-p multi-
grid acceleration and is implemented into NUMECA FINETM/Hexa code
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in version for massive parallel calculations. Stable and efficient calculations
of fully-subsonic flows are achieved with local time stepping with Courant
number CFL ≤ 1000. Stability of the method in calculations of flows with
shock waves should be the subject of additional study. The use of h-p multi-
grid may diminish the calculation time by the order of magnitude. Parallel
efficiency of method is close to 75% of ideal value.

2. Explicit high-order Discontinuous Galerkin method (K = 2 − 3) is imple-
mented for solution of unsteady Isentropic Linearized Euler equations for
solution of aeroacoustical tasks. Method with K = 3 allows to calculate
propagation of sound waves on grids with only 3 cells per wavelength. Grid
convergence order of the method is close to the expected value m = 4, if
tasks without interference of waves with different frequency and phase shift
are considered. In task with interference of waves, standard approach to
determination of the convergence order seems to be inapplicable.
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Abstract. In the first part, an extension of upwind residual distribu-
tion schemes for high-order accurate solution of hyperbolic problems is
introduced, based on the use of spatially varying distribution matrices
. Following this, the application to adjoint-based error estimation for
steady compressible flow is presented. Finally the resolution of acoustic
wave propagation by a space-time residual distribution is discussed. The
accuracy of the methodology is demonstrated on several test cases.

Keywords: CFD, high-order, residual distribution, adjoint error.

1 Residual Distribution with Variable β-Coefficients

We propose a new formulation of the residual distribution (RD) method for
steady hyperbolic conservation laws. Traditionally, the residual is distributed
in parts to the degrees of freedom by means of piecewise-constant distribution
coefficients per element. To retain the upwind character of the scheme, the calcu-
lation of these distribution coefficients required a sub-division of the element for
high-order approximations. The sub-division of 3D or very high-order elements
[1,2] was an inefficient, complex and error-prone process.

In this new formulation, we avoid the sub-division by defining variable non-
linear distribution coefficients over the whole high-order element. These coeffi-
cients are anisotropic and depend on the hyperbolic operator. The new RD form
makes the extension to generic 2D and 3D high–order elements much simpler.
Moreover, it does not suffer from the undamped modes in k = 1 quadrilaterals,
as found in [3].

The RD variant proposed here is in fact a Petrov-Galerkin Finite Element
method. However, this method does retain many of the characteristics of the RD
framework: a globally continuous discrete solution defined on Lagrangian Pk ele-
ments; a residual computed by integration of the differential operator and a very
compact stencil; stabilization via a generalization of the RD multidimensional
upwinding.

c© Springer International Publishing Switzerland 2015 381
N. Kroll et al. (eds.), IDIHOM: A Top-Down Approach, Notes on
Numerical Fluid Mechanics and Multidisciplinary Design 128, DOI: 10.1007/978-3-319-12886-3_17
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1.1 Nomenclature

We seek the steady solution u of a system of hyperbolic conservation laws

∂u

∂t
+∇ ·F(u) = 0 (1)

in a domain Ω, where Ω ∈ R
d and d = 2 or d = 3. The symbol F denotes a

tensor of inviscid fluxes: F(u) = (F1(u),F2(u),F3(u)) in three dimensions. We
denote by T d

h,k a d-dimensional triangulation of the domain Ω, whereby each
element of the triangulation is a Lagrangian Pk Finite Element equipped with
N = (k+1)(k+2)

2 degrees of freedom in 2D and N = (k+1)(k+2)(k+3)
6 degrees of

freedom in 3D, respectively. In the following paragraphs, we will assume d =
2 and drop the superscript d as the description is identical in two and three
dimensions.

For any given function u(x, t),x ∈ Ω, we define the spatial Finite Element
approximation

uh,k(x, t) =
∑

i∈Th,k

ϕh,k
i (x)ui(t), (2)

where ui(t) is the value of u at node i, i.e. ui(t) = u(xi, t), while ϕh,k
i (x) denotes

the k-th order Lagrangian basis function of node i.
Since the system (1) is hyperbolic, an arbitrary linear combination of its flux

Jacobians can be decomposed as

∂F(u)

∂u
· c = c1

∂F1

∂u
+ c2

∂F2

∂u
= RΛR−1 ∀c = (c1, c2)

T ∈ R
2, (3)

where Λ is the diagonal matrix of eigenvalues of (∂F(u)/∂u · c) and R contains
its right eigenvectors. Using the notation above, we define the following matrices:

K+
c = RΛ+R−1 K−

c = RΛ−R−1 (4)

with Λ+
ii = max(0,Λii) and Λ−

ii = min(0,Λii). The subscript c stresses the fact
that the Jacobian was projected onto direction c.

1.2 Schemes

The standard multidimensional upwind scheme consists of three steps:

1. Compute the element residual:

φK =

∫

K

∇ ·F dx =

∮

∂K

F · n dl (5)

2. Compute the contribution of the residual to each element node by evaluating
the distribution matrices βK

i :

φK
i = βK

i φK , (6)
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where βK
i is a function of a suitable linearized state uh

∗ in the element. For
example, introducing upwind parameters

Knj =
1

2

∂F(uh
∗)

∂u
· nj , (nj is inward normal pointing towards node j)

we can write the distribution matrices for the LDA scheme as

βLDA
i = K+

ni
·
[∑

j∈K

K+
nj

]−1

(7)

3. Evolve uh in pseudo-time in order to solve the system until the steady state
is reached

∂uh
i

∂τ
+

∑

K,i∈K

φK
i = 0 (8)

The drawback of this approach is that for higher-order approximation, one is
forced to divide the element into linear sub-elements (triangles or tetrahedra in
3D) in order for the inward normals to be well defined. As the number of degrees
of freedom increases, so does the number of sub-elements, rendering the method
inefficient and complex to implement. Moreover, the definition of inward normals
on tensor product elements is not straightforward.

For this reason, the requirement on the distribution matrix β to be constant
per (sub-)element is relaxed and we consider the following RD prototype for
computation of nodal residual φK

i , instead of (6):

φK
i =

∫

K

βi(u
h,∇ϕ,x)(∇ ·F(uh)) dx (9)

On P1 elements, the matrices βK
i remain constant per element and the ’constant’

and ’variable distribution coefficient’ RD variants are equivalent under certain
additional assumptions.

• LDA
The distribution matrix for node i of element K is given by

βLDA
i (uh,∇ϕ,x) = K+

∇ϕi
·
[∑

j∈K

K+
∇ϕj

]−1

(10)

• SUPG
Let Dϕi denote a diagonal matrix with entries Dii = ϕi. Then the SUPG
system distribution matrix reads

βSUPG
i (uh,∇ϕ,x) = Dϕi +K∇ϕi ·

[∑

j∈K

K+
∇ϕj

]−1

(11)

Nodal residuals for the LDA and SUPG schemes are given by (9) with βi =
βLDA
i or βi = βSUPG

i , respectively.
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• N scheme

φN
i =

∫

K

K+
∇ϕi

(uh
i − uh

∗) dx (12)

and u∗ is defined by the identity

∇ ·F(u) =
∑

j∈K

K+
∇ϕj

(uh
j − uh

∗) (13)

The N scheme has positive coefficients and can be recast as LDA with a dis-
sipation term:

φN
i = φLDA

i +
∑

j∈K

∫

K

K+
∇ϕi

[∑

m∈K

K+
∇ϕm

]−1

K+
∇ϕj

(uh
i − uh

j ) dx (14)

• Nonlinear blended scheme
The amount of extra dissipation term in the N scheme can be controlled by
a nonlinear switch θ(u) ∈ [0, 1] which is activated around discontinuities:

φB
i = φLDA

i + θ(uh)
∑

j∈K

∫

K

K+
∇ϕi

[∑

m∈K

K+
∇ϕm

]−1

K+
∇ϕj

(uh
i − uh

j ) dx (15)

1.3 Boundary Conditions

We follow the approach of [4] to weakly impose boundary conditions. Integrating
(9) twice by parts (once forward and once backward) yields

φK
i =

∫

K

βi(u
h,x)(∇ ·F(uh)) dx +

∫

∂Ω

ϕi(F(ub)−F(uh)) · n dl (16)

The quantity ub is determined by boundary conditions. In the second integral,
the upwind test function β was replaced by standard Lagrange shape function in
order to distribute the flux correction F(ub)−F(u) in central manner. Practical
computer implementation proceeds as follows: first all nodal residuals in all mesh
elements are computed and distributed. In the second step, all elements K such
that their face Γ = K ∩ ∂Ω �= ∅, receive additional residuals

φΓ
i =

∫

Γ

ϕi(F(ub)−F(uh)) · n dl ∀i ∈ Γ (17)

The correction fluxes for typical boundary conditions are listed below.
• Wall

F(ub) · n = (0, pn, 0)T , where p is pressure on the wall (18)
• Subsonic inlet and outlet

(F(ub)−F(uh)) · n = K−
n (u

h)(ub − uh) (19)

For higher-order approximation, equal-order interpolation is used for both the
geometry and the solution. The geometry of a curvilinear element is defined by
an transformation to a parent element in ξ − η space.



High-Order RDM and Error Estimation 385

1.4 Applications

Figure 1 presents inviscid computation on P2 and P3 elements around the
NACA0012 airfoil at a freestream Mach number M = 0.5 and angle of attack
α = 2◦ and demonstrates the capability of the method to run on both unstruc-
tured simplex meshes and structured or hybrid meshes composed of Lagrangian
elements.

Figure 2 shows the inviscid transonic flow around the Onera M6 wing com-
puted on a mesh provided by Warsaw Institute of Technology. The solution was
obtained by the SUPG scheme on P2 elements.

Fig. 1. Subsonic flow around NACA 0012 - Mach isolines on P2 mesh with mixed
element types (left) and on P3 triangular mesh (right)

Fig. 2. Onera M6 test case (freestream Mach number M = 0.8395, angle of attack
α = 3.06) - P2 mesh and isolines of pressure coefficient
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2 A Posteriori Error Estimation

In many applications there is particular interest in specific quantities of the so-
lution. In aerodynamics, for example, these include physically relevant integral
quantities (like the drag or lift of an airfoil) or single density or pressure values
on the profile of the airfoil. Consequently, there is considerable interest in con-
structing a posteriori error estimates for such derived quantities so as to improve
the reliability and efficiency of numerical computations.

So, if we call define the quantity of interest as a functional J(u), then, given
a positive tolerance TOL, we consider the design of an adaptive algorithm with
the stopping criterion as follows

|J(u)− J(uh)| ≤ TOL. (20)

where J(uh) is the numerical evaluation of the target quantity. To this aim, we
purvey an a posteriori error bound, E(uh), controlling the numerical solution
measured in terms of the target functional, in order to be able to write

|J(u)− J(uh)| ≈ E(uh) ≤ TOL. (21)

This error estimation is obtained by using duality arguments and the corre-
sponding adjoint solution, z, that let us capture information about the local
error propagation. Here below, we will describe the error analysis and adaptiv-
ity based on a hyperbolic adjoint argument using the general approach developed
by Becker and Rannacher [5], later recalled in [7] and expanded in [9].

2.1 Adjoint-Based Error Estimation

We first introduce some notation about duality based a posteriori error estima-
tion for a given target quantity, see [6]. Consider the nonlinear problem

Nu = 0 inΩ Bu = 0 onΓ, (22)

where N is a nonlinear differential operator and B a boundary operator. We
define a nonlinear target functional

J(u) =

∫

Ω

jΩ(u) dx+

∫

Γ

jΓ (Cu) ds, (23)

where jΩ(·) and jΓ (·) may be nonlinear with derivatives j′Ω and j′Γ , respectively,
while C is a differential boundary operator on Γ with derivative C′. This target
functional (23) is call compatible with the primal problem (22) if the following
compatibility condition holds
(
N ′[u]w, z

)
Ω
+
(
B′[u]w, (C′[u])∗z

)
Γ
=
(
w, (N ′[u])∗z

)
Ω
+
(
C′[u]w, (B′[u])∗z)

)
Γ
,

(24)
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where (N ′[u])∗, (B′[u])∗ and (C′[u])∗ denote the adjoint operators with respect
to N ′[u], B′[u] and C′[u]. Hence, from (24), we can determine the continuous
adjoint problem associated to (22) and (23)

(N ′[u])∗z = j′Ω [u] inΩ (B′[u])∗z = j′Γ [Cu] onΓ. (25)

Therefore, through a suitable numerical discretisation based on the weak form,
we recover a semi-linear form, linear in the first argument and nonlinear in its
second argument, Nh(·, ·), such that the nonlinear problem (22) in discrete form
becomes

N (uh, ṽh) = 0 ∀ṽh ∈ Ṽh, (26)

where uh ∈ Vh is the numerical solution of u belonging to a given discrete space
and ṽh the test function of the numerical scheme defined over the space Ṽh.
By the compatibility condition (24) and using infinite-dimensional trial and test
spaces V , we introduce the corresponding linearized adjoint problem as follows

M(w, z) = J̄(w) ∀w ∈ V . (27)

where M(w, z) and J̄(w) stand for the mean-value linearisation of the nonlinear
operator N (u, v) and the target functional J(u), respectively.

We denote by z̃h the adjoint solution belonging to the test discrete space Ṽh,
used in the discrete primal problem. This solution may be computed directly by
an adjoint consistent discrete problem (27) or by any suitable projection operator
(i.e. interpolation, L2 projection) whose imagine belongs to Ṽh.

In the wake of [8], an exact error representation formula comes out as follows

J(u)− J(uh) = RΩ(uh, z − z̃h) ≡
∑

κ∈Kh

ηκ, (28)

where RΩ(uh, z − z̃h) = −N (uh, z − z̃h) and the local adjoint-based indicator

ηκ =

∫

κ

R(uh)(z − z̃h) dx+

∫

∂κ∩Γ

r(uh)(z − z̃h) ds, (29)

with the local residuals R(u) = −Nu and r(u) = −Bu. However, this error
representation formula does not indicate which elements in the mesh should
be refined to reduce the measured error in the functional. To do this, an error
localization procedure has to be defined to point out a local contribution of each
element to the functional error. By applying the triangle inequality, indeed, we
have ∣∣J(u)− J(uh)

∣∣ ≤ R|Ω|(uh, z − z̃h) ≡
∑

κ∈Kh

|ηκ|. (30)

Unfortunately, this estimation is not still computable because of the unknown
analytical solution, z. Thus, in order to finally make these error estimate com-
putable, z must be replaced by a suitable approximation which does not affect
negatively the quality of the error bound. The analytical adjoint solution must
then be numerically defined on a sequence of suitable adjoint finite element
spaces Vh, based on a finer adjoint partition Kh or an higher adjoint polynomial
p̄.
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Fig. 3. Ringleb problem for pointwise and wall force target: (a) initial mesh with 317
triangles, (b) residual-based adaptation with 6312 triangles and J(e) = 1.055 10−5 for
point target and J(e) = 8.481 10−6 for wall force target, (c) goal oriented adjoint-
based with 5192 triangles and J(e) = 7.600 10−6 for point target and (d) goal oriented
adjoint-based with 2853 triangles and J(e) = 8.366 10−6 for wall force

2.2 Numerical Example: Ringleb Problem

The Ringleb problem consists of a smooth transonic flow in a channel. The left
and right boundaries are considered as reflective walls while the bottom and
upper boundary are the inlet and outlet, respectively. This problem is one of the
few non-trivial examples of the Euler 2D equations where a smooth analytical
solution can be deduced. Hence, it becomes a interesting test to accurately prove
the sharpness of the error representation for the 2D Euler equations.
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Using the SUPG scheme, we choose two different target functionals, a point-
wise and an integral one and we compare adaptive mesh procedures based on the
residuals energy norm and on the adjoint solution. As first quantity of interest, we
choose the physical variable, ρ, at a given point, such that J(u) = ρ(−0.4, 2.0).
The corresponding adjoint solution will be a singularity driven backward by a
spike from that point to the inlet boundary. Figure 3 plots the final meshes driven
by a standard residual-based and with the adjoint-based error estimation. We
note that by the use of a goal-oriented refinement, we are able to reach a final
error 30% smaller with 20% less of degrees of freedom.

As a second test, we consider as a target quantity, the force magnitude applied
on the right wall of the channel, whose exact value is J(u) = 1.10567714227773.
The standard iterative procedure is not affected by the choice of the target
quantity and so, it generates the same meshes for any target considered. On
the other hand, by using the adjoint-based indicators and then a goal oriented
refinement, we are able to reach the same order of error magnitude, with a much
coarser mesh. Moreover, here the refinement is mainly focused along the right
side of the domain and in particular, where the curvature of the boundary is
higher as there, both error sensitivity and force contribution are higher.

3 Space-Time RD Method for Linearized Euler
Equations

For unsteady cases, such as acoustic wave propagation, the constant β Residual
Distribution Method [11] is considered in a space-time framework. This means
that time is handled as an additional space dimension. In this work the existing
P1 LEE solver was extended to be able to handle P2, quadratic elements. The
formulation used in the P2 case turned out to be very time consuming, therefore
a new formula for residual calculation has been implemented.

3.1 Extension of the Space-Time Framework to P2 Elements

Consider the Linearized Euler Equations (LEE) in a uniform flow without source
term:

∂u

∂t
+∇ ·F(u) = 0 (31)

This can be also be written as

∂u

∂t
+ A

∂u

∂x
+ B

∂u

∂y
= 0, (32)

where u = (ρ′, ρ0u
′, ρ0v

′, p′)T , the superscript (ρ′) denotes the perturbation
and the subscript (ρ0) refers to the value of mean flow. ρ is the density, (u, v)
represents the velocity components and p the pressure. Finally, c0 is the speed
of sound.
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We use the approach of Ricchiuto et al. [10], [11] to extend space-time schemes
to high order discretization. To provide high order accuracy both in space and
in time, we combine quadratic triangular elements in space with a quadratic dis-
cretization of time. This means that each triangular element in space is equipped
with 6 degrees of freedom. We split this triangle in four sub-elements {Ts}s=1,...,4

like on figure 4. This yields the new space-time prism of figure 5 which has three
levels in time. Within this prism, the solution is approximated by:

uh =
∑

l

H l(t)
∑

i∈τh

ψi(x, y)u
l
i (33)

Fig. 4. Quadratic elements in space Fig. 5. Quadratic space-time element

Where ul
i is the value of uh at node i and time tl : ul

i = uh(xi, yi, t
l) and

where ψi(x, y) denotes the (mesh dependent) quadratic continuous Lagrangian
basis function, and H l(t) is the 1D (time dependent) quadratic basis function.
We split this prism in sub-prisms based on the sub-elements of the quadratic
triangle (as illustrated on figure 5). In each of the sub-prisms we define the
space-time upwind parameters as:

k̂ni = Δt
2 ki −

|Ts|
3 ,

k̂n+1
i = Δt

2 ki +
|Ts|
3

i ∈ Ts (34)

Where ki is the spatial upwind parameter defined by:

ki = Anix + Bniy (35)

and where ni is the inward normal to the edge facing node i ∈ Ts, and scaled
with the length of the edge. At each time iteration un−1 and un are known and
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we want to compute un+1 using the usual steps. First, we compute the residual
on each sub-prism between tn+1 and tn:

φKs =

tn+1∫

tn

∫

Ts

(
∂u

∂t
+∇ · F(u)

)
dx dy dt (36)

Then, the residual is distributed to all the nodes of the sub-triangle Ts of the
level:

φn−1
i = 0

φn
i = 0

φn+1
i = βTs

i φKs

i

Finally, we assemble the nodal contributions and we use pseudo-time iterations
to solve the final system: (with Ci a CFL-dependent stability constant):

un+1,τ+1
i = un+1,τ

i +
Δτ

Ci

⎛

⎝
∑

Ts,i∈Ts

φKs

i

⎞

⎠
τ

(37)

3.2 High Order Discretization of Source Terms

In the following we will focus on the way to discretize the source terms. Let us
consider the complete LEE:

∂u

∂t
+ A

∂u

∂x
+ B

∂u

∂y
+H = S, (38)

H =

⎡

⎢⎢⎣

(ρ′u0 + ρ0u
′)∂u0

∂x + (ρ′v0 + ρ0v
′)∂u0

∂y

(ρ′u0 + ρ0u
′)∂v0∂x + (ρ′v0 + ρ0v

′)∂v0∂y

(γ − 1)p′
(

∂u0

∂y + ∂v0
∂x

)
− (γ − 1)

(
u′ ∂p0

∂x + v′ ∂p0

∂y

)

⎤

⎥⎥⎦ (39)

H represents the contribution due to non-uniformity in the mean flow, and S is
the acoustic source term such as monopole, dipole. . . They are both treated as
a combined source term Q = S−H and discretized by quadratic functions:

Qh =
∑

l

H l(t)
∑

i∈T

ψi(x, y)Q
l
i (40)

This source term is simply added in the computation of the residual as follows:

φKs =

tn+1∫

tn

∫

Ts

(
∂u

∂t
+∇ · F(u)− Sh(u)

)
dx dy dt (41)

Then, the residual is distributed and treated as usual.
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3.3 Comparison between 3rd and 2nd Order Schemes

Let us consider the propagation of a monopole in a uniform mean flow. The
domain extends from −100 ≤ x, y ≤ 100 and the mesh composed of 201 × 201
nodes. The monopole is implemented by using the following source vector:

S = f(x, y) sin(ωt)

⎡

⎢⎢⎢⎣

1

0

0

1

⎤

⎥⎥⎥⎦ f(x, y) = ε exp[−α((x− xs)
2 + (y − ys)

2)] (42)

We choose the Mach number equal to M = 0.5 and the source is located at
the center of the domain. The following parameters identify the source: the
amplitude is ε = 0.5, the width of the source is α = ln 2

2 and the angular
frequency is ω = 2π

30 . We use this test case to compare the performances of linear
(P1) and quadratic elements (P2). Figure 6a shows the iso-contours of pressure
perturbation obtained with a quadratic discretization of the solution. In the
profile we can observe two acoustic waves. The first is propagating upstream

(a) Iso-contours of
pressure with values
10−1, 10−2, 10−3, 10−4, 10−5

(b) Pressure profile along
the axis y = 0

(c) Zoom on on the upwind
wave

Fig. 6. Monopole source in a uniform subsonic flow (M=0.5) at t=270s

with a velocity of 1 −M and the wavelength is λup = (1 −M)λ. The second
wave is propagating downstream with a velocity of 1 +M and the wavelength
is λdown = (1 + M)λ. On Figure 6b and Figure 6c we compare the solutions
obtained with linear and quadratic elements at t = 270s with the exact solution
given in [12].We can see that the results of both discretizations are comparable.

Now, we want to study from the accuracy and CPU time point of view if the
P2 scheme is more efficient than the P1 one. To do this, we keep the same test
case and the same domain. We stop the simulation at t=80s and we compute
the L2-error:

ε =

√
∑

i

(
uh
i − u(xi, yi, 80)

)2

#DOF
(43)
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Table 1. Comparison of L2 error and CPU time on P1 and P2 mesh

h=2.4 h=2.0 h=1.4 h=1.2
Δt(P1) 0.48 0.38 0.29 0.22998
CPU time (P1) 1038s 2184s 4428s 9936s
ε(P1) 1.76086 e-2 1.72714 e-2 1.6673 e-2 1.6688 e-2
Δt(P2) 0.1 0.09 0.03 0.03
CPU time (P2) 18177s 32604s 174090s 256668s
ε(P2) 2.542 e-2 2.54619 e-2 2.5911 e-2 2.5809 e-2

In the table 1 are detailed the results obtained for mesh sizes of 2.4, 2.0, 1.4 and
1.0. We compare the error, CPU time and the time step used for both schemes
on the same number of degrees of freedom. The first important thing to notice is
that, usually, it is possible to use much bigger time steps with P1 elements. This
phenomenon is due to the fact that the P2 schemes lack of stability when the
mesh is not refined enough. Then, to be able to obtain a result it is necessary to
drastically reduce the time step which increases a lot the computational time.
Moreover, the error obtained is usually bigger with the P2 schemes than with P1

one.

3.4 Alternative Residual Calculation

Instead of using the quadrature rule to compute the residual over an element, a
faster but approximate way to calculate the cell residual is proposed here. The
cell residual, in absence of a source and diffusive term, is given by

φT =

∫

T

∇ ·F(u) dΩ (44)

and instead of transforming this integral into a surface integral and using a
quadrature rule, the flux is discretized using the FE-like discretization:

φT =

∫

T

∇ ·F(u) dΩ =

∫

T

∇ ·
∑

i∈T

F iψ
P1

i (x, y) dΩ (45)

Applying the gradient operator to the shape functions yields the scaled face
normals of the cells. Now, the cell residual can be rewritten as:

φT =

∫

T

∑

i∈T

F i
ni

2|T | dΩ

=
1

2

∑

i∈T

F ini

=
1

2

∑

i∈T

((fx)i · nx
i + (fy)i · ny

i )
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This result holds for the two-dimensional case. For the three-dimensional case,
the following expression for the cell residual is used:

φT =
1

3

∑

i∈T

[
(fx)i · nx

i + (fy)i · ny
i + (fz)i · nz

i

]

The derivation shown before suggests that for a linear advection case, the new
and the previous implementation of the cell residual calculation must give exactly
the same results. In order to check the implementation, a 3D linear advection
test case was run for the two different implementations and no difference in the
cell residuals was found.

Figure 7 presents the scaling of the run-time with the number of processors.
The numerical setup for this test is the fine grid having 16.7 M grid cells. The
simulation is run for 5 time steps, then an average of the run-time per time
step is taken. The results show that the approximate calculation with the new
method is 29% faster on average.

Fig. 7. Comparison of the simulation run-time for the standard and approximate cal-
culation of the cell residual

4 Conclusions

New developments have been discussed on how to extend residual distribution
schemes on P1 elements to higher-order Finite Elements. A goal oriented a pos-
teriori error estimation driving a mesh adaptation algorithm for the new class
of schemes has been introduced.

Finally, the Linearized Euler Equation solver of the COOLFluiD code via
space-time Residual Distribution Method was successfully extended to P2 ele-
ments both in space and time. It was found that the P2 method is not giving
significant improvements over the P1 implementation, but increases the simula-
tion time significantly.
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Abstract. Recent developments about the extension of high-order
Residual-Based Compact schemes to unsteady flows and complex con-
figurations are discussed, with application to scale-resolving simulations
and complex turbomachinery flows.
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1 Introduction

This paper summarizes recent developments of a family of high-order Residual-
Based Compact (RBC) schemes, initially proposed by [1, 2]. Differently from
standard numerical schemes that approximate space derivatives independently
in each space direction, RBC schemes seek for a compact approximation of the
complete residual r, i.e. the sum of all derivatives in the governing equations.
Because of this feature, RBC schemes belong to the group of so-called genuinely
multidimensional schemes such as the fluctuation splitting schemes or the Resid-
ual Distribution (RD) schemes (see, e.g. [3, 4]).

Major developments described in the following focus on the extension of RBC
schemes to unsteady flows and to complex geometries. Selected applications,
including two application challenges among those considered in the IDIHOM
project, are presented to assess the capabilities of the schemes, specifically for
scale-resolving simulations and complex transonic turbomachinery flows.

2 RBC Schemes

In this Section, we recall the design principles of RBC approximations of the
space derivatives for a hyperbolic system of conservation laws. For the sake of
brevity, we will focus on two-dimensional problems, but there is no restriction
to extend the analysis to multi-dimensional hyperbolic problems. At this stage,
we treat time derivatives exactly, i.e. we focus on semi-discrete approximations
in space.

c© Springer International Publishing Switzerland 2015 397
N. Kroll et al. (eds.), IDIHOM: A Top-Down Approach, Notes on
Numerical Fluid Mechanics and Multidisciplinary Design 128, DOI: 10.1007/978-3-319-12886-3_18
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2.1 High-Order RBC Schemes

Let us consider the hyperbolic system of conservation laws:

wt + fx + gy = 0 on R
2 × R

+ (1)

with initial conditions
w(x, y, 0) = w0(x, y)

where t is the time, x and y are Cartesian space coordinates, w is the state vector
and f = f(w), g = g(w) are flux components depending smoothly on w. The
Jacobian matrices of the flux are denoted A = df/dw and B = dg/dw. System
(1) is approximated in space on a uniform mesh (xj = jδx, yk = kδy), with steps
δx and δy of the same order of magnitude, say O(h), using the basic difference
and average operators:

(δ1v)j+ 1
2 ,k

= vj+1,k − vj,k (δ2v)j,k+ 1
2
= vj,k+1 − vj,k

(μ1v)j+ 1
2 ,k

=
1

2
(vj+1,k + vj,k) (μ2v)j,k+ 1

2
=

1

2
(vj,k+1 + vj,k)

where j and k are integers or half integers.
A residual-based scheme is expressed in terms of approximations of the exact

residual:
r := wt + fx + gy (2)

More precisely, such a scheme is of the form:

(r̃0)j,k = d̃j,k (3)

where r̃0 is a space-centered approximation of r called the main residual and d̃
is a residual-based dissipation term defined as:

d̃j,k =
1

2
[δ1(Φ1r̃1) + δ2(Φ2r̃2)]j,k (4)

where r̃1 and r̃2, respectively defined at j + 1
2 , k and j, k + 1

2 , are also space-
centered approximations of r called the mid-point residuals, and Φ1, Φ2 are
numerical viscosity matrices. These matrices depend only on the eigensystems
of the Jacobian matrices A and B and on the steps δx and δy. They are designed
once for all [5] and use no tuning parameters nor limiters. Since the matrices Φ1

and Φ2 remainO(1) as δx and δy tend to zero, the dissipation d̃ represents, to the
leading order, a numerical approximation of the second-order partial differential
term:

d =
δx

2
(Φ1r)x +

δy

2
(Φ2r)y (5)

This leading term of the expansion, that is only first order accurate, vanishes
for an exact solution (r = 0), so that d̃ is actually consistent with a high-order
dissipation term that will be discussed later.
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In the following, the residuals are discretized by using compact formulae such
that:

(r̃0)j,k = rj,k +O(h2p)
(r̃1)j+ 1

2 ,k
= rj+ 1

2 ,k
+O(h2p−2)

(r̃2)j,k+ 1
2
= rj,k+ 1

2
+O(h2p−2).

with p ≥ 2.
Thus, the dissipation term (4) satisfies:

d̃j,k = dj,k +O(h2p−1)

and the truncation error of the semi-discrete scheme (3) is

εj,k = rj,k +O(h2p)− dj,k +O(h2p−1).

Since the exact residual r and the leading term d of the residual-based dissipation
(5) are null for an exact unsteady solution, we finally obtain:

εj,k = O(h2p−1). (6)

In other terms, approximating the main residual at order 2p and the mid-point
residuals at order 2p − 2 leads to a Residual-Based Compact scheme of order
q = 2p− 1. Such a scheme is called RBCq. In the following, we focus on schemes
using 5 × 5-point stencils at most, which corresponds to p = 2, 3 and 4. More
precisely, RBC3 schemes can be constructed with 3 × 3 points only and RBC5
and RBC7 schemes with 5× 5 points.

2.2 Cauchy-Stable RBC Schemes for Unsteady Flows

The main residual r̃0 is approximated through a difference operator of the form:

(r̃0)j,k =

(
D1 D2wt +D2 N1

δ1μ1f

δx
+D1 N2

δ2μ2g

δy

)

j,k

(7)

with Dm and Nm (m = 1, 2) formal polynomials of the second difference operator
in the mth direction, of the form:

Nm = I + aδ2m, Dm = I + bδ2m + cδ4m, a, b, c ∈ R, (8)

where I is the identity operator and

(δpmf)j,k = δm(δm(...(δmf)))︸ ︷︷ ︸
p times

(9)

The degrees of the polynomials are chosen in such a way that the scheme stencil
is limited to 5×5 space points at most. Operator (7) is obtained by replacing
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space derivatives in each direction by Pade operators:

fx =(D1)
−1N1

δ1μ1f

δx
+O(δx2p)

gy =(D2)
−1N2

δ2μ2g

δy
+O(δy2p)

(10)

and subsequently applying the operator D1 D2 to the whole left-hand side of
the equation.

The truncation error of (7) is

εj,k =
[
I +O(h2)

] [
rj,k +O(h2p)

]
(11)

where the terms involving rj,k vanish for an exact unsteady solution. This rep-
resents a substantial difference of RBC schemes with respect to standard Pade
approximations and avoids the inversion of linear systems per each space direc-
tion if a suitable time-integration technique is selected [1, 2, 6].

An approximation of the main residual of order 2p = 4 on a 3× 3 stencil can
be obtained for the following choice of coefficients:

a = 0, b =
1

6
, c = 0. (12)

To achieve order 2p = 6, a 5 × 5 point stencil is required. Setting to zero trun-
cation error terms up to the 4th order, a one-parameter family of 6th-order
approximations is obtained. In the following, we retain the choice made in [5,7]:

a =
1

10
, b =

4

15
, c =

1

90
, (13)

which is more suitable for the extension to compressible Navier-Stokes equations.
Finally, the requirement of an order 2p = 8 on a 5 × 5-point stencil leads to

the unique solution

a =
5

42
, b =

2

7
, c =

1

70
. (14)

Note that, because we use purely centered operators, no damping effects are
introduced at this stage. Thus, the dissipation properties of RBC schemes are
actually governed by the right-hand side operator d̃ of Eq.(3).

As anticipated at the beginning of this Section, the dissipation operator d̃j,k
is given by Eq.(4), and involves mid-point residual approximations. Precisely,
the following difference operators are used:

(r̃1)j+ 1
2 ,k

=

[
Nμ

1 μ1

(
D2wt +N2

δ2μ2g

δy

)
+N δ

1D2
δ1f

δx

]

j+ 1
2 ,k

(r̃2)j,k+ 1
2
=

[
Nμ

2 μ2

(
D1wt +N1

δ1μ1f

δx

)
+N δ

2D1
δ2g

δy

]

j,k+ 1
2

(15)

based again on the use of formal polynomials of the difference operators:

N δ
m = I+aδδ2m , Nμ

m = I+aμδ2m , Nm = I+aδ2m , Dm = I+ bδ2m+ cδ4m (16)
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with m = 1, 2 , and aδ, aμ, a, b, c ∈ R

As mentioned previously, the residual-based dissipation d̃j,k is consistent with
a high-order dissipation term. This term has been identified in [8] for a RBCq
scheme of order q = 2p− 1 (p ≥ 2) as

dq = (−1)p−1κ{δx[Φ1(δx
q−1fqx+χδy

q−1gqy)]x+δy[Φ2(δy
q−1gqy+χδx

q−1fqx)]y},
(17)

dq = O(hq)

where (.)qx =
∂q(.)

∂xq
and (.)qx =

∂q(.)

∂xq
, and κ > 0 and χ depends only on the

polynomials coefficients in (16).
The expression (17) for the dissipation operator has been used to establish

a general condition for a RBCq scheme to be dissipative. This condition, called
the χ-criterion, is given in the following theorem.

Theorem 21 [8] The operator (17) is dissipative for any order q = 2p − 1
(p ≥ 2), any advection direction (A, B) and any functions Φ1, Φ2 satisfying the
conditions

Φ1A ≥ 0, Φ2B ≥ 0

with Φ1 = sgn(A)min
(
1, 1

α

)
, Φ2 = sgn(B)min (1, α) and α = δxB/(δyA), if

and only if χ = 0.

Taking into account the accuracy order and the conditions for the stencil to have
a minimal extent (3×3 points for RBC3 and 5×5 points for RBC5 and RBC7),
the χ-criterion leads to the following conclusions (see [8] for details). Dissipation
is ensured in any situation by:

- a unique set of coefficients for RBC3:

aμ = 0, aδ = 0, a = 0, b =
1

6
, c = 0. (18)

- a two-parameter family of coefficients for RBC5; this family contains the set
of coefficients used in [5, 7]:

aμ =
1

12
, aδ =

1

6
, a =

1

10
, b =

4

15
, c =

1

90
. (19)

- a unique set of coefficients for RBC7:

aμ =
1

10
, aδ =

11

60
, a =

5

42
, b =

2

7
, c =

1

70
. (20)

Note that coefficients for RBC3 and RBC7 are different from those given in
former works [5, 7], where their calculation was based on accuracy and minimal
complexity considerations only. In practice, the violation of the dissipation cri-
terion of theorem 21 by RBC3 or RBC7 leads to a weak numerical instability
for any choice of the time integration scheme.
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2.3 Spectral Properties

The spectral properties of RBC schemes of different orders, i.e. the dispersion
error and damping function for a given Fourier mode have been investigated
in [9]. Fig. 1a shows the phase errors (in log scale) for RBC schemes of different
orders as a function of the reduced wavenumber, for a linear advection problem
along a grid direction (1D case). Tab. 1 provides the wave number corresponding
to an error of 10−3. RBCq schemes of fifth- and seventh-order accuracy exhibit
a cut-off wave number ξc very close to π/2, the smallest resolvable wave number
being close to 2π/5 according to Nyquist criterion. Similarly, Fig. 1b provides the
damping function Dξ∗0 . As it can be seen in Tabs. 2, RBC5 and RBC7 exhibit a
damping function of less than 10−3 up to cut-off wave numbers of 1.03 and 1.24,
respectively, which raises sharply at higher wave numbers. This shows that the
intrinsic numerical dissipation of high-order RBCq schemes acts as a selective
filter with a sharp cut-off at high frequency: it efficiently damps out grid-to-grid
oscillations that can lead to numerical instabilities without affecting the resolved
wave numbers. Also note that, coherently with the truncation error analysis, the
resolvability limit of RBC schemes is essentially ruled by the dissipation and
not by the dispersion error, their leading-order error term being of dissipative
nature. The results summarized in Tab. 1 and 2 prove that RBC schemes of
order 5 and 7 can accurately resolve a given wavelength by means of less than 7
or 6 mesh cells respectively, whereas RBC3 requires approximately 9 mesh cells
to meet the prescribed accuracy requirements on dispersion errors and 16 mesh
points for dissipation errors. For comparison, typical second-order schemes used
in industrial codes have a resolvability of 20 to 30 points per wavelength.
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Fig. 1. 1D behavior of Pξ∗0 and Dξ∗0 for RBC schemes
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Table 1. Resolvability limit due to disper-
sion of RBC schemes

ξc λc/δx

RBC3 0.74 8.47

RBC5 1.39 4.53

RBC7 1.54 4.07

Table 2. Resolvability limit due to dissi-
pation of RBC schemes

ξc λc/δx

RBC3 0.40 15.56

RBC5 1.03 6.08

RBC7 1.24 5.06

Then, spectral properties of RBCq schemes were also investigated in the case
of multidimensional advection. An overview of the phase and damping error for
the range of advection directions, θ ∈ [0, π/2] is provided in Fig. 2, showing the
average value of Pξ∗

θ
and Dξ∗

θ
for ξ ∈ [−π/2, π/2]2. Thanks to their genuinely

multi-dimensional formulation, RBC schemes provide an almost constant error
level over the whole range of advection direction, with a maximum at θ = π/4
and a minimum at θ = 0 and θ = π/2. Furthermore, error levels decrease quickly
with the order of accuracy.

θ
10-4

10-3

10-2

10-1

RBC3
RBC5
RBC7

π/4 π/20

(a) mean
ξ∈[−π/2,π/2]2

(Pξ∗
θ
)

θ
10-4

10-3

10-2

10-1

RBC3
RBC5
RBC7

π/4 π/20
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ξ∈[−π/2,π/2]2
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θ
).

Fig. 2. Average of Pξ∗
θ

and Dξ∗
θ

over the interval ξ ∈ [−π/2, π/2]2 as a function of the
advection direction θ

3 Extension to Complex Geometries

RBC schemes, developed in a regular Cartesian grid framework by using finite-
difference approximation operators, are extended to general curvilnear grids by
means of a cell-centred finite volume formulation, such that the problem un-
knowns are the point-wise values of the conservative variables at cell centers. A
finite volume RBC scheme can be expressed again under the general form (3)
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with the dissipation operator (4), provided that the local residuals r are replaced
by integrated residuals R over the computational cell (for the main residual) or
over a shifted cell (for the mid-point residuals). Details can be found in [10]. For
such a straightforward FV extension the nominal order of accuracy is not pre-
served on non-uniform curvilinear meshes. Ref. [11] shows, in the framework of
non compact schemes, that nominal accuracy can still be preserved if the mesh
satisfies suitable regularity conditions. The higher the scheme accuracy, the more
stringent grid regularity requirements, so that nominal accuracy is generally lost
for cases of practical interest. In order to ensure high-accuracy on curvilinear
grids while avoiding expensive finite-element like reconstructions of the solution
over une cell, two strategies can be adopted. The first-one consists in developing
a high-accurate finite volume discretization making use of weighted discretiza-
tion operators to take into account mesh deformations while still taking benefit
of the structured grid formulation: specifically, this strategy has been used to
develop a curvilinear grid extension of the RBC scheme of nominal 3rd-order ac-
curacy. The second one consists in maximizing the regions of the computational
domain that are discretized with Cartesian grids: this is achieved by developing
an overset grid strategy using curvilinear grid blocks close to solid walls, while
covering the rest of the domain by means of Cartesian grid blocks. The main
features of both strategies are briefly described in the following.

3.1 High-Accurate Finite Volume Formulation

We consider a RBC finite volume scheme of the general form:

(R̃0)j,k,l = d̃j,k (21)

where R̃0, called the main residual, is a space-centered approximation of R and
d̃ is a residual-based dissipation term, introduced to ensure numerical stability,
defined in terms of first-order differences of the residual as:

d̃j,k =
1

2
[δ1(Φ1R̃1) + δ2(Φ2R̃2)]j,k (22)

where R̃1 and R̃2, respectively defined at (j+ 1
2 , k) and (j, k+ 1

2 ), are also space-
centered approximations of R on a suitably chosen shifted control volume, are
called the mid-point residuals, and Φ1, Φ2 are the previously defined dissipation
matrices.

In Ref. [10], compact approximations of the main and mid-point residuals
were constructed based on weighted approximation operators. With such an ap-
proach, it was possible to construct an RBC scheme of third-order accuracy on
Cartesian meshes and at of second-order accuracy at least on general deformed
meshes. We refer to [10] for details. Such an approach is more accurate than
the straightforward finite volume counterpart of RBC schemes, while introduc-
ing only a moderate overcost in terms of CPU time and memory requirements.
An analysis of the truncation error and spectral properties of this scheme, also
discussed in [10] shows that this scheme is slightly more dissipative than its
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finite-difference counterpart. Nevertheless, this (small) extra dissipation ensures
robusteness on strongly distorted grids and is compensated by the better overall
accuracy of the approximation.

3.2 Overset Grid Strategy

We define an overset mesh in D dimension(s) as a mesh composed of M ordered
component grids {Gm}m∈[1,M ] of the spatial domain Ω ⊂ R

D. The ordinal of
the grid defines its priority in the overset assembly algorithm. An assembly
algorithm is used to determine the connectivity (or localization) of points that
must exchange information between component grids. Considering a point P ∈
Gm, this step consist in finding whether or not P lies within grid Gm′ and, if so,
to find a base point Q ∈ Gm′ corresponding to the centroid of the cell of Gm′ in
which lies point P . A brute force search algorithm being too costly in terms of
computational effort, we apply several preconditioning steps, described in [12].

Once grid connectivities have been determined, the next step is to interpolate
the solution between overset grids. For this purpose, we use Lagrange interpola-
tion formulae based on polynomials of even order N = q + 1, with q the (odd)
order of accuracy of the inner-point scheme in use. To achieve such interpola-
tions, we use transfinite interpolation where the mesh is not too distorted and we
use the iso-parametric mapping method where the transfinite interpolation fails.
The iso-parametric mapping was introduced in Ref. [13], extended to high-order
in Ref. [14] and used for aeroacoustics simulations for instance in Ref. [15].

We refer to [12] for further details about the connectivity search algorithm
and Lagrange interpolation techniques.

4 Implementation Details

Finite volume extensions of RBC schemes up to fifth-order accuracy have been
implemented in the elsA code developed by ONERA. This code is used for the
turbomachinery applications shown in Section 5.3. We refer to the elsA user
manual for details about the code [17].

On the other hand, finite volume RBC schemes up to 7th-order accuracy
in conjunction with the overset grid strategy have been implemented in a in-
house code, named DynHoLab [16]. DynHoLab can handle different governing
equations both in two and three dimensions of space. At the present stage of
development, the code uses a finite volume methodology on multi-block struc-
tured meshes. DynHoLab is coded using a combination of a compiled and type-
safe language (FORTRAN) with an interpreted and dynamically typed language
(Python [18]). Thanks to this, it benefits from the fast and safe execution of the
first one, along with easy and fast development capabilities thanks to the second
one. The data-structure chosen for DynHoLab is a CGNS-tree [19] which pro-
vides a full hierarchical structure to store the data. The code framework handle
parallel computations through an MPI implementation which is based on the
intrinsic multi-block architecture of DynHoLab. Thus, it is possible to manage
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structured as well as unstructured tessellations of the computational domain.
Figure 3 illustrates the weak and strong scalability properties of the code. This
is led with the cheapest scheme implemented (among high-order schemes) which
correspond to the worst case for a scalability study. The code appears to be
scalable up to one thousand cores using blocks of 503 cells. On the other hand,
the code exhibit an efficiency close to 0.9 up to 2048 cores.
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Fig. 3. Scalability of DynHoLab

In both elsA and DynHOLab codes, the RBC schemes are used in conjunction
with nominally second-order accurate approximations of the viscous terms and
of the boundary conditions. The last choice is expected to have an impact on the
overall convergence order of the simulations and will be improved in the future.

For steady problems, the solution is advanced through a time marching pro-
cedure. The equations are discretized in time by means of the robust first-order
Euler method. To reduce computational costs and preserving code modularity,
deferred-correction strategy based the Roe-Harten first-order upwind implicit
operator is adopted, which is solved by means of L-U factorization. For un-
steady problems, the time derivative is approximated through the second-order
accurate backward linear multistep scheme (Gear’s scheme). The resulting non-
linear system of equations is then solved through Newton-subiterations. The
number of subiterations is such that the residual converges by at least 3 orders
of magnitude at each time step.

5 Numerical Applications

In the first part of this Section, RBC schemes are applied to selected test cases.
The first one is a simple inviscid transonic flow over an NACA0012 airfoil. This
test case, proposed in the 1st and 2nd workshop on high-order methods [20,21],
is used for a preliminary validation of the proposed schemes and of the overset
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grid strategy. Then, RBC schemes are applied to scale-resolving simulations, to
demonstrate the excellent resolvability properties of these schemes. Finally, we
demonstrate the robustness and the accuracy of RBC schemes for some chal-
lenging transonic turbomachinery configurations.

5.1 Preliminary Validation: Inviscid Flow over an NACA0012
Airfoil

The first test-case is the inviscid two-dimensional flows over a NACA0012 at
transonic conditions M = 0.8 and α = 2.250. The simulations are carried out
using an overset grid composed by a combination of Cartesian and curvilinear
grids (see Fig. 4). Precisely, the grid results from the superposition of four Carte-
sian grids of 200×90, 140×140, 140×140, and 140×140 cells, an O-shaped body
grid of 500× 20 cells, and a background polar grid of 200× 36 cells. A blanking
algorithm is used to remove from the computation cells that are overlapped by
grids with a higher priority level, so that in practice the solution is computed
by using 75647 degrees of freedom. In the following, the overset grid solution is
compared to that obtained on a single-block O-shaped grid made of 601 × 147
grid points (88347 degrees of freedom)

Figure 5a illustrates the computed isolines of the Mach number using an RBC
scheme of 3rd-order accuracy. Shocks are captured in a sharp and almost non-
oscillatory way. Present results are found to be in general good agrement with
those collected at the first international workshop on High-Order Methods [20],
and are superposed to those obtained for a single-block computation. This is
confirmed by inspection of the Mach number distribution along the airfoil wall
(see Fig. 5b) and of the aerodynamic coefficients, equal to Cl = 0.3519 and
Cd = 0.2265 × 10−1 respectively. Compared to single block computations, the
overlapping strategy allows a more efficient distribution of the degress of freedom,
and thus a better overall accuracy.

Fig. 4. Detail of the overset grid used to compute transonic flow over a NACA0012



408 P. Cinnella et al.

X

m
ac

h

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

overset mesh
single bloc

(a) (b)

Fig. 5. Transonic flow over a NACA0012: comparison of an overset grid and a single-
block grid solution. a) Mach isolines; b) wall distributions of the Mach number.

5.2 Scale-Resolving Flow Simulations

Taylor-Green Vortex. The second application, also taken from the 2nd In-
ternational Workshop on High-Order CFD Methods [20,21], is used to study the
resolvability properties of high-order schemes in view of subsequent application
to fine-scale turbulence simulations. A three-dimensional vortex is set as an ini-
tial condition for 3D-computation in a periodic box [0, 2π]3, then it breaks down,
giving origin to smaller and smaller structures. Hereafter we carry out a series of
Implicit Large Eddy Simulations (ILES) where the main role of the SGS model,
i.e. energy drain at small scales, is taken by the numerical dissipation of RBC
schemes.

Fig. 6 shows the evolution of an isosurface of the Q criterion at different
times. The vortex is initially deformed through vortex stretching and vortex
tilting mechanics, that vortex filaments blow up and the flow transitions to the
turbulent regime. Finally, turbulence decays.

The initial conditions of the computation are:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u(x, y, z, 0) = sin(x) cos(y) cos(z)

v(x, y, z, 0) = − cos(x) sin(y) cos(z)

w(x, y, z, 0) = 0

ρ(x, y, z, 0) = 1

p(x, y, z, 0) = p0 +
ρ

16
(cos(2z) + 2)(cos(2x) + cos(2y))

Where we choose p0 = 100, a Mach number M0 = 0.1, a Reynolds number
Re = 1600 and a Prandlt number Pr = 0.71. For these conditions, previously
computed by Brachet [22] using a spectral method, a recent reference DNS ob-
tained on a mesh of 5123 cells with a pseudo-spectral code over a quite long
interation time is available [21].
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(a) Iso surface Q=0 at t = 0. (b) Iso surface Q=0 at t = 4.

(c) Iso surface Q=3 at t = 8. (d) Iso surface Q=3 at t = 12.

Fig. 6. Iso surface of the Q criterion colored by k (computed with RBC5 on the 1283

mesh). The figure show phases of the vortex break-up.

Solutions are computed on a series of structured meshes of 643, 1283, 2563
and 3843 cells, respectively. The time step selected for each grid is such that the
CFL number is approximately equal to 5, which is slightly smaller than typical
CFL numbers used for industrial LES.

The absence of external forcing implies that the kinetic energy is only decaying
during the computation. In the following, we look at the time derivative of the
kinetic energy integrated on the whole computational domain, −dK/dt, i.e. the
kinetic energy dissipation rate, and at the integrated enstrophy Ω. Figure 7a
shows mesh convergence for RBC5. For these scheme the solution is already in
reasonable agreement with the reference one when using a grid with 643 DOF.
Note that, even if the energetically relevant scales are well captured by the
simulation, the solution is still far from a converged DNS: this is illustrated by
Fig. 7b, which shows the time evolution of the integrated enstrophy for the RBC5
scheme. Enstrophy is more difficult to match than the dissipation rate of the
kinetic energy since it requires capturing accurately not only the velocity field but
also its gradients [29] up to small flow scales. Note that, for high grid resolutions,
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mesh convergence of RBC5 is slown down by numerical errors introduced by the
time integration scheme. This will be improved in the next future.
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right). RBC5 scheme.
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Fig. 8. Time evolution of the total energy for different RBC schemes, 1283 grid (left).
Comparison of the resolvability properties of RBC3 and RBC5 (left).

Figure 8a compares solutions provided by RBC schemes of different orders
on the 1283 grid. The relatively small differences between RBC5 and RBC7 are
due to the fact that, for sufficiently high spatial resolution, numerical errors are
essentially due to the second-order time discretization scheme in use, which is
the same for all computations. On the other hand, RBC5 overperforms RBC3,
providing the same or better accuracy on a grid of 643 DOF only (Fig. 8b).
Even if RBC5 is about 3.25 more expensive than RBC3 (mainly due to the
higher level of convergence of the residuals required at each time step), it allows
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a reduction by a factor 16 of the DOF in time and space required to achieve
a given resolution, leadingin turn to a reduction by roughly a factor 4 of the
computational effort required to achieve a given accuracy.

2D Periodic Hill. A very large implicit large eddy simulation (ILES) of the
flow over a periodic 2D-Hill was carried out using the RBC scheme of 3rd-order
accuracy. The computations were conducted for an average Mach number of 0.1
and an average Reynolds number of 10595. The flow is driven by a forcing term
counteracting the drag force exerted on the channel walls. The forcing term is
updated at each time step as a function of the instantaneous space-averaged
mass flow. The wall temperature is imposed.

The calculations were carried out on a structured grid made of 64 × 32 × 32
cells, corresponding to the coarsest linear grid used for the 2nd workshop on
High-Order Methods [21]

The calculations were initialized with a uniform field. The simulation took
about 50 convective periods (based on the streamwise length L of the compu-
tational domain and the bulk velocity at the throat section Ub, a convective
period being given by T = L/Ub) to reach a statistically steady state. Then,
statistics were collected over 9 additional periods. Calculations were carried out
by using a constant time step, taken equal to 10−2T . Fig. 9 shows the averaged
fields of the streamwise velocity < u >, as well as mean streamlines. Figs 10 and
11 display the average streamwise velocity and shear Reynolds stress profiles
at different streamwise locations. Present results are compared to the reference
LES of Breuer et al. [23], obtained on a grid of about 13 million cells by us-
ing a second-order centred finite volume scheme, to the experimental data by
Rapp [23] and to results obtained by using a second-order accurate central dif-
ference scheme with second-order filtering (denoted FDo2-SFo2). Present results
show that RBC scheme provides results in reasonably good agreement with the
reference data, at least for first-order statistics, despite the extremely coarse grid
in use. The RBC solution represents a dramatic improvement over the solution
provided by the standard second-order scheme, which does not even capture the
correct trends, since numerical errors introduced by the filter tend to laminarize
the flow. This is confimed by the fact that Reynolds stresses for this scheme are
virtually null, so that they are not represented on Fig. 11.

5.3 RANS Simulations of Complex Turbomachinery Configurations

The applications discussed in this section aim at illustrating the capabilities of
RBC schemes for the numerical simulation of industrially relevant configura-
tions in turbomachinery, with focus on transonic turbomachinery with strong
shock waves. The numerical simulations were carried out by using RBC schemes
implemented in ONERA’s code elsA.

Rotor37. The NASA Rotor 37 is an isolated transonic axial flow compressor
rotor with 36 blades. Extensive experimental data have been collected for this
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Fig. 9. ILES of the flow over a periodi 2D Hill. Mean steamwise velocity contours and
mean streamlines

case with the aim of validating the predictive capabilities of numerical simula-
tion codes and models ( [24, 25]). Numerical studies available in the litterature
focus mainly on the assessment of turbulence models for the Reynolds-Averaged
Navier–Stokes (RANS) equations and Large Eddy Simulations (LES). RANS
simulations often fail to predict the global and local flow properties of NASA
Rotor 37, due to the complex physical phenomena taking place in this configu-
ration (shocks, shock/boundary layer interactions, separation, shock/tip leakage
vortex interactions). If the impact of physical models on numerical predictions of
the Rotor 37 flow has been extensively studied, the effect of numerical discretiza-
tions has been paid much less attention (an exception is represented by [26]),
especially for orders of accuracy greater than two, also because of the difficulty of
achieving a robust behaviour of higher-order schemes for this kind of challenging
configurations.

In the following, we focus on numerical simulations of the Rotor37 configura-
tion for operating conditions corresponding to the design rotational speed and
to a mass flow rate equal to 98% of the choke conditions. We solve the steady
Reynolds-Averaged Navier-Stokes (RANS) equations supplemented by the one-
equation Spalart-Allmaras turbulence model. Numerical computations were run
using a series of three meshes made up by six structured blocks with conformal
joins. The finest grid is clustered enough close to the walls so to be relevant for
low-Reynolds computations. The coarsest grid uses values of y+ greater than 10.
The main properties of these meshes are given in Tab. 3. The medium and coarse
grids are obtained through successive agglomerations of neighbouring cells (eight
by eight) of the finest one.

Boundary conditions based on local 1D Riemann invariants are used at inlet
and outlet boundaries. At the inlet, total pressure and temperature, as well as
flow direction are imposed. At the outlet, the static pressure distribution is im-
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Fig. 10. ILES of the flow over a periodi 2D Hill. Mean steamwise velocity profiles

posed and iteratively adjusted in order to achieve a prescribed target mass flow.
The walls are assumed to be adiabatic. Numerical computations were carried
out with a CFL number equal to 5 for all cases. Computations were stopped
once the relative variation in mass flow rate was lower than 0.5%.
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Fig. 11. ILES of the flow over a periodi 2D Hill. Reynolds shear stress profiles

Figure 12 provides an overall view of the computed flow field provided by the
RBC3 scheme on the finest grid. The flow field is characterised by a bow shock
upstream of the blade, as well as a passage shock leading to boundary layer
separation. A complex shock structure is also present in the tip clearance. Shock
sharpness and size of the separation bubble vary according to the scheme in use:
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Table 3. Computational grids

Grid Cell count Cell layers in the tip clearance y+

Fine 1 480 704 24 2
Medium 185 088 12 5
Coarse 23 136 6 15

the sharpest shock and the greatest separation bubble are provided by RBC3.
results are compared with those provided by the classical Jameson’s scheme,
the baseline solver in elsA. The latter tends to smear shocks and leads to a
smaller separation bubble. Note also that the high-accurate scheme predicts a
higher maximum value of the Mach number in the computational field: precisely,
maximum values of 1.907, 1.844, and 1.828, are obtained for RBC3, RBC2, and
Jameson’s scheme, respectively. RBC3 and RBC2 give quite similar results, the
shock at the suction side being captured slightly more sharply by RBC3.

Figure 13 displays the radial distributions of rotor performance at an axial
station located 10.67 cm downstream of the blade leading edge. For this station,
experimental measurements of the radial distributions of total pressure ratio,
total temperature ratio, and adiabatic efficiency are available. Results provided
by RBC schemes of 2nd and 3rd order accuracy are in reasonably good agree-
ment with the experiments already on the medium grid, whereas a finer grid is
necessary to obtain similar accuracy with Jameson’s scheme. This is better seen
in Fig. 14, which compares the radial pressure ratio distributions obtained with
the three schemes on the two finer grids.

To complete the discussion, the computational cost of RBC schemes is
compared to the cost of Jameson’s scheme. The present computations were run
on a PC using X5660 Xeon exacore processors with a clock frequency of 2.8Ghz.
Computations run with the elsA code were parallelized on two cores using MPI.
With this configuration, the computational cost per iteration and per point was
of about 0.0125 sec using Jameson’s scheme. The global computational cost is
the CPU time required to achieve an almost converged mass flow. All of the
schemes achieve the required tolerance level within almost the same number
of iterations (about 3000). RBC schemes are more expensive than Jameson’s
scheme in terms of operation count: precisely, the computational costs per
iteration and per point of RBC2 and RBC3 are about 1.8 and 2.2 times greater,
respectively. Nevertheless, RBC schemes are clearly more accurate, since they
provide almost grid-converged solutions using about 1/8 of the mesh cells
required by the baseline scheme. RBC3 is slightly more expensive than RBC2,
mainly because of the computation of weighting coefficients, but the extra cost
is compensated by a somewhat better accuracy. It is concluded that, for this
steady RANS case, using a well-designed, low dissipative scheme has a stronger
effect in terms of improved accuracy of the solution than increasing the formal
order of accuracy, so that satisfactory results can be obtained already for a RBC
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scheme of 2nd-order accuracy. Conclusions are likely to be different unsteady
RANS and LES computations. Further research will focus on the application of
high-order RBC schemes to scale-resolving unsteady simulations.

X

Y

Z

Fig. 12. Overall view of the flow field (98% choke conditions). Mach number distribu-
tion at midplane, and stream ribbons colored by the Mach number. RBC3 scheme.

High-Pressure BRITE Turbine Stage. As a final application, the RBCi
scheme is used to compute the BRITE HP turbine stage experimentally tested
in the compression tube facility CT3 of the Von Karman Institute [27] at high
vane exit Mach number (pressure ratio 5.11). This case is computed in order to
demonstrate the applicability of the proposed methodology to complex unsteady
3D cases, like a realistic turbine configuration including tip clearance.

The computational grid contains approximately 3 millions of cells and is com-
posed by twelve blocks: both the rotor and the stator are discretised by an
O-shaped grid around the blades and three H-shaped blocks for inlet, outlet,
and inter-blade regions; the tip clearance is also discretized with an O-shaped
and three H-shaped grids. Unsteady computations are initialised with steady
results obtained by imposing a mixing-plane inter-stage condition. The use of
chorochronic periodic boundary conditions [28] allows simulating just one blade
per row. The flow is modelled through the RANS equations completed by the
Spalart-Allmaras transport-equation model for turbulence. The governing equa-
tions are advanced in time via a dual-time stepping technique: the physical time
step is approximately 1/100 of the rotation period and about 30 sub-iterations
per time step were used to converge the solution in pseudo-time.

RBCi allows sharp capturing of shock waves and von Karman vortices in the
blade wakes (see 15, Fig. 17. Fig. 15 shows a snapshot of the 3D vortex structures
within the geometry with an isosurface of the Q-criterion colored by the entropy
showing the 3D nature of the flow field.
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Fig. 13. Radial performance distributions for several schemes and grid resolutions.
Mesh convergence study.

Fig. 14. Radial pressure ratio distributions for several schemes and grid resolutions.
Comparisons among different schemes on the medium (left) and finer (right) grids.
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Fig. 15. VKI BRITE HP turbine: snapshot of Q criterion isosurface, Q=0.001, colored
by the entropy
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(c) Rotor outlet.

Fig. 16. VKI BRITE HP turbine:: mass flow frenquency spectrum

The complex unsteadiness of the flow with rotor/stator interaction is also
captured. Fig. 16 provides the Fourier spectra of of the normalized mass flows
at stator outlet, rotor inlet and rotor outlet. The main frenquency at the stator
outlet corresponds to the adimensional passage frequency of rotor blades with
regard to the stator, frotor = 0.016, with its first harmonic confirming that
the rotor/stator interaction is taken into account. Similarly the main frequency
observed on rotor mass flows at inlet and outlet is the adimensioned frequency
of passage of stator blades with regard to the rotor, fstator = 0.011, with its
first harmonics. The high frequency peak of low magnitude at fvort = 0.116 in
the stator spectrum is likely to correspond to the vortex shedding at the trailing
edge of the stator blades since it does not match the frequency of an harmonic
and its magnitude is too high. This frequency is seen by the rotor at a slightly
different frequency probably because of the chorochronic periodicity conditions
applied between the rotor and the stator, which filter the signal.
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(a) Slice near the hub. (b) Slice at mid span of the
blades.

(c) Slice near the rotor
housing.

Fig. 17. VKI BRITE HP turbine: slices of the solution at different spanwise locations;
isobar lines and entropy contours

Fig. 17 provides a snapshot of three slices of the configuration located near the
hub, at mid span of the blades and near the rotor housing. The slices represent
entropy contours along with isobars. Strong shocks are created at the trailing
edge of the stator and rotor blades near the hub. Morover the differences between
these three slices confirm that this case is highly three-dimensional with a major
impact of the tip clearance on the wake of the rotor blades.

6 Conclusions

A family of high-order Residual-Based compact schemes has been extended to
unsteady flows and complex geometries. Unsteady RBC schemes of highest order
(5 and 7) exhibit excellent resolvability properties, since their genuinely multi-
dimensional numerical dissipation acts as a sharp cutoff filter close to the grid
resolvability limit. In practice, very encouraging results were obtained for a very
coarse implicit large eddy simulation of the separated flow over a periodic 2D
hill by using an RBC scheme of 3rd-order accuracy. RBC schemes, developed
in a finite difference framework, were extended to geometrically complex con-
figurations by means of a robust and accurate finite volume formulation and
an overset grid strategy. Applications to severe transonic turbomachinery flows
prove the robustness of the proposed approach and show that significant gains,
both in terms of degrees of freedom and workunits required to achieve a given
numerical error level, can be obtained with respect to traditional finite volume
schemes in use in industry.
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Abstract. In this article a non-conservative Chimera method for the
Euler and Navier-Stokes equations is introduced. The CFD solver for
the Chimera method is based on a high-order Discontinuous Galerkin
formulation and employs modal basis functions. As the method features
at least two different grids, interpolation operators have to be defined
between the two grids which is achieved by a discrete projection. A de-
tailed description of the adaption of the temporal integration schemes is
given and their implementation is validated for the explicit and implicit
schemes against results using only a single grid.

Keywords: Discontinuous Galerkin, Chimera method.

1 Introduction

The Chimera method was first introduced for the Euler equations by Benek et al.
[1]. Since then the method has been applied to many problems in fluid mechanics.
It has basically two advantages compared to a single grid approach. The separate
creation of a body-fitted grid and the background grid allows a meshing process,
which would be more complicated with a single mesh or even impossible for
some geometries, e.g. when using a structured solver. Additionally the Chimera
method allows the modeling of structures with motion or relative motion between
two structures as e.g. the varying pitch angles during the rotation of the blades
of a helicopter. The Discontinuous Galerkin (DG) method was first used by Reed
& Hill [2] for neutron transport and it was first applied for conservation laws by
Cockburn and Shu [3]. In recent years the method was extended by Bassi et al. for
the Navier-Stokes equations [4] and RANS equations [5]. A first implementation
of the Chimera method for the DG method was done by Galbraith et al. for
inviscid [6] and viscous flow [7].

c© Springer International Publishing Switzerland 2015 423
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2 Governing Equations

The governing equations in this study are the compressible Navier-Stokes equa-
tions which can be written in the following compact form

∂u
∂t

+∇ · (Fi(u)−Fv(u,∇u)) = 0. (1)

where U is the vector of the conservative variables (ρ, ρu, ρv, ρw, ρE). The invis-
cid fluxes Fi are given then by
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and the viscous fluxes Fv are given by
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with τ as the viscous stress tensor and q as the heat flux vector.

3 Discontinuous Galerkin Discretisation

3.1 Spatial Discretisation

The Navier-Stokes equations (1) are discretised with a standard Discontinuous
Galerkin method. The weak form of the Navier-Stokes equation can be obtained
by multiplying the equation with an arbitrary test function v, integrating over
the domain Ω and integrating by parts of the divergence term:

∫

Ω

vh ·
∂uh

∂t
dΩ +

∮

∂Ω

vh (Fi(uh)−Fv(uh,∇uh)) · n dσ

−
∫

Ω

∇vh · (Fi(uh)−Fv(uh,∇uh)) dΩ = 0. (4)

As the solution is double valued at faces, the Riemann problem in the face
integral is solved with a HLL Riemann solver [8] or a Roe Riemann solver [9] for
the inviscid fluxes. For the gradients in the viscous flux terms the BR2 scheme
is applied [10].
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3.2 Temporal Discretisation

The temporal discretisation can be done explicitly or implicitly. In this paper we
choose standard explicit Runge-Kutta schemes up to 4th-order for the unsteady
cases. For steady solutions we use an implicit Euler Backward scheme. The DG
discretisation in equation (4) can be written in a compact form

M
dU
dt

= R(U), (5)

with U as the global solution vector and M as the global mass matrix. Discretis-
ing this with an Euler backward scheme leads to:

M
Un+1 −Un+1

Δt
= R(Un+1). (6)

For the solution of the nonlinear system we linearise the system with a Newton
method with only one Newton iteration per time-step:

(
M
Δt
− ∂R(Un)

∂U

)
ΔU = AΔU = R(Un). (7)

The linearisation of the residual R is done analytically and the resulting linear
system is solved with a GMRES solver preconditioned with an ILU(0) method.
For steady computations the time step is adapted in each step according to

tn+1 = t0
R(Un+1)

R(U0)
. (8)

4 Chimera Method for the DG Discretisation

4.1 Basic Scheme

In the following the basic Chimera scheme is explained on the example of a
two-dimensional cylinder in figure 1. In general, there are three different kind of
cells in the background grid and the Chimera grid. They are distinguished with
an additional vector IBlank which has the size of the number of cells. First of
all, there are these cells which do not lie in the overlapping region of the two
grids. They are called active cells and the vector IBlank will have a value of
one for these cells (green cells in figure 1). The second kind of cells are in the
background mesh in the area where the body lies (blue cells). These cells are
identified within the process of hole cutting. The process can be very critical
for a successful Chimera method. For simulations with a movement of the body
the hole cutting has to be done in every time step and should be obviously
implemented efficiently. For the stationary, static case which is treated here, we
choose simple geometric forms as circles and rectangles for the form of the hole.
The cells inside the hole are inactive cells and the vector IBlank equals zero. The
third kind of cells are the interpolation cells (red cells). They are important for
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Fig. 1. Example of a Chimera grid for the Gauss pulse simulations

the coupling of both grids and can be found in the background as well as the
Chimera grid. In the background grid they are the cells which are positioned
next to the hole cells, and in the Chimera grid they are the cells at the outer
boundary of the cells. It is important that both lines of interpolation cells form a
closed loop without gaps, which e.g. for the background grid would mean that it
is possible that fluid flows into the hole or vice versa. As the BR2 scheme needs
one neighbour cell for the calculation of gradients, one row of interpolation cells
is enough, leading also to a compact Chimera stencil compared to high-order
finite difference or finite volume schemes. As interpolation cells are excluded
from the actual temporal integration they will have an IBlank value of zero.
The cells between the interpolations cells in the background and the Chimera
grid are active cells. In the small overlap region of active cells the flow solution
will be double valued. However, this area is commonly well enough resolved in
simulations so the differences should be small.

4.2 Definition of Interpolation Operators

For the coupling of the two grids we use a discrete L2 projection to determine
the modal coefficients of the basis functions. The L2 has the advantage that
by definition the error at the approximation becomes minimal in the L2 sense.
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The modal coefficients a can be obtained with the following definition of the L2

projection
Ma = b (9)

with M as the mass matrix of the interpolated cell. The rows of the vector b are
defined by

bi =

∫

Ω

φi u dΩ =

nGP∑

k=1

φi(xk)u(xk)ωk. (10)

That means, that the solution u has to be evaluated at all Gauss points xk

X

Y

PGP, Chimera

PBackground

Chimera grid

Background grid

Fig. 2. Example of a Chimera grid for the Gauss pulse simulations

for the basis function φi. However, in the present Chimera method the solution
u is not evaluated at the Gauss points of the interpolated cell: the solution is
obtained from identical points from the corresponding grid. This can be seen in
figure 2 for a generic case: For the Gauss points (black points) in the Chimera
grid exist points in the background grid (grey points). In general, these points
do not lie in one cell in the background grid but are spread over several cells.
Additionally, it is not sufficient to find the correct partner cell, we also have to
find the local coordinates (ξ, η) in the unit element to evaluate the solution in
the background grid as our basis functions are defined in a unit element. The
transformation is usually given as x = x(ξ, η). However, we need the inverse
transformation. As this is sometimes difficult to get analytically (e.g. for curved
elements), we use a Newton method to find the unit coordinates after we have
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identified the right cell for the interpolation. As long as the Jacobian of the
transformation stays positive, which is neccessary anyway, the Newton iteration
will converge, usually in very few steps.

4.3 Modification to the Time Integration

For explicit time integration the modification is quite straightforward: in active
cells the update of the solution should be prevented. Basically for each time step
or Runge-Kutta step the solution update in each cell has to be multiplied with
the value of IBlank in the cell:

Un+1 = Un + IBlank ·ΔU. (11)

For the implicit time integration (see equation (7)) the right hand side is also
multiplied with IBlank:

AmodΔU = IBlankR(Un). (12)

Additionally the matrix A has to be modified for each cell with IBlank = 0: the
modified matrix Amod is the unit matrix in these cells to get no update to the
solution inside the cell and no interference with regular active cells. The projec-
tion is done for both the Chimera and the background grid with the solution
vector Un. However, also for those cells a solution at tn+1 has to be determined
which means that additional iterations over the Newton algorithm have to be
performed until the solution at the interpolation cells does not change anymore.

5 Results

5.1 Gauss Pulse in Density

To validate the presented Chimera method and to show that the high-order
accuracy is still achieved, a convected Gauss pulse in density is calculated on a
rectangular domain with the Euler equations. The size of the domain is 1x0.5
with the pulse given by:

ρ = ρ0 + a exp

[
2
(x− x0)

2

σ2

]
,

ρu = ρu0,

ρv = 0,

ρE =
p0

κ− 1
+

(ρu0)
2

2ρ
(13)

where ρ0 = 1, u0 = 0.25, p0 = 1, x0 = (0.25, 0.25, a = 1 and σ = 0.05. The final
position of the vortex is xf = (0.75, 0.25). The simulation is carried out on a
sequence of grids for different orders for the Roe Riemann solver and the HLL
Riemann solver and the error is measured with the L2 norm. In all simulations
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Fig. 3. Example of a Chimera grid for the Gauss pulse simulations

the temporal discretisation is carried out with an explicit Runge-Kutta method
whose order equals the spatial order. Both single grids as well as Chimera grids
are used. An example of the employed Chimera grids is found in figure 3. It
can be seen that the Chimera grid has an overlap of two grids from x = 0.4
to x = 0.6. As the pulse is convected from the left side to the right side of
the domain two Chimera interpolations will take place. The resulting errors are
plotted in figure 4a for the HLL flux and in figure 4b for the Roe flux. Using the
Chimera grid leads to almost the same errors as the single grid approach. The
small visible gap between the two lines is partly a consequence of the evaluation
of the error. It is not evaluated in the inactive interpolation cells, of course, but in
the overlap region between the two grids it is evaluated twice, leading to a higher
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Fig. 4. Error of the Gauss pulse for a) the HLL numerical flux and b) the Roe numerical
flux for different order P0,..,P3 using a single grid or a Chimera approach
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Fig. 5. Density distribution for the Euler simulation for P4, position of chimera inter-
polation cells marked in blue, hole interpolation cells in red

error. However, the difference should be small compared to the overall error as
the pulse should be entirely in the right grid at the end of the simulations. While
evaluating the error it was noticed that the error in the left grid is about 10%
of the error in the right grid, almost independently from the polynomial order
or grid resolution.

5.2 Two-Dimensional Cylinder

Euler Simulation. The inviscid simulation is carried out at Ma=0.2 assuring
that the flow is subsonic in the whole computational domain with a size of 20x20
cylinder diameters d. Both a single grid and a Chimera grid simulation were run.
The mesh for the Chimera simulation consisted of 560 cells in the Chimera grid
and 3600 cells in the background grid, while the single grid consisted of 1520 cells.
The more cells in the Chimera simulation were necessary to achieve a similar
same grid resolution in the interpolation region. However, the near wall region
has the same resolution, as the Chimera grid was used as a starting point in the
meshing of the single grid version. The elements close to the wall of the cylinder
were curved with a third-order polynomial obtained from the face normals [11].
In figure 5 the density distribution is plotted. The contour lines have no jumps
between the two grids, leading to a smooth solution. Additionally, the position
of both interpolation cells is marked showing that they are positioned in close to
the wall of the cylinder. A comparison between the single grid and the Chimera
grid is seen in the distribution of the pressure coeffiecient in figure 6a for P2 and
in figure 6b for P4. The differences here are negligible.
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Fig. 6. Pressure coefficient on the surface of the cylinder for a) P2 and b) P4

Newton step

re
si

d
u

al

100 200 300 400
10-11

10-9

10-7

10-5

10-3

10-1

(a) Chimera

Newton step

re
si

d
u

al

100 200 300 400
10-11

10-9

10-7

10-5

10-3

10-1

(b) Single grid

Fig. 7. Convergence for P0,..,P4 for a) Chimera grid simulation and b) single grid
simulation

Laminar Simulation. The laminar simulation of the two-dimensional cylinder
was carried out with a Reynolds number Re=40 (based on the cylinder diameter
d) at Ma=0.1. The flow at this Reynolds number is steady and does not develop
a von Karman vortex street. The computational domain has a size of 200x200
d. The grid for the Chimera simulation consists of 800 cells in the Chimera grid
and 3600 cells in the background grid, while the single grid consists of 1480.
Both simulation were carried out with an order sequencing, that means that we
started with a P0 computation and used each low-order solution as a starting
point for the next higher order. The convergence history of the simulations can
be seen in figure 7a for the Chimera simulation and in figure 7b for the single
grid. It shows that using the Chimera method in this case does not lead to a
higher-amount of Newton steps. In figure 8 the separation bubble behind the
cylinder is visualized with streamlines. The separation bubble is symmetric as
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expected. Again the contour plot has no jumps between the two grids, leading
to a smooth solution. A quantitative comparison can be seen in table 1 and 2
where the drag coefficient and the separation bubble length for the two grids
and at different orders is compared to the numerical results of Sen et al. [12]. By
increasing the order of the simulation both values approach each other for the
different grids and converge to the numerical reference values.

Table 1. Results for the drag coefficient cd for different orders for the single grid and
the Chimera grid compared to the reference value of Sen et al. [12]

P0 P1 P2 P3 P4
single grid 10.8605 1.58886 1.51231 1.50946 1.50932
Chimera grid 10.2909 1.56467 1.50851 1.50955 1.50950
Sen et al. 1.5093

Table 2. Results for the separation bubble length for different orders for the single
grid and the Chimera grid compared to the reference value of Sen et al. [12]

P0 P1 P2 P3 P4
single grid - 1.76937 2.30983 2.25654 2.25443
Chimera grid - 1.78099 2.27476 2.25497 2.25421
Sen et al. 2.247
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6 Conclusions

The feasibility of the Chimera method for inviscid and laminar two-dimensional
flows has been shown. The paper explains the process of the Chimera technique
and explains the necessary adjustments to the temporal integration schemes. The
accuracy of the method was validated with the simulation of a Gauss pulse in
density asserting almost the same errors as the single grid version. The simulation
of an inviscid and a laminar cylinder revealed no differences concerning the
amount of Newton steps or integral values. In the future the method will be
extended for RANS simulations and three-dimensional flows.
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Abstract. In this article, we describe the capabilities of high order dis-
continuous Galerkin methods at the Institute for Aerodynamics and Gas-
dynamics for the Large-Eddy Simulation of wall-bounded flows at mod-
erate Reynolds numbers. In these scenarios, the prediction of laminar
regions, flow transition and developed turbulence poses a great chal-
lenge to the numerical scheme, as overprediction of numerical dissipation
can significantly influence the accuracy of the integral quantities. While
this increases the burden on the numerical scheme and the LES subgrid
model, the moderate Reynolds numbers prevent the occurrence of thin
wall boundary layers and allows the resolution of the boundary layer
without the need for wall modelling strategies. We take full advantage
of the low numerical errors and associated superior scale resolving capa-
bilities of high order spectral approximations by using high order ansatz
functions up to 12th order, which allows us to resolve the significant fea-
tures of these flows at a very low number of degrees of freedom. Without
the need for any additional filtering, explicit or implicit modelling or ar-
tificial dissipation, the high order scheme capture the turbulent flow at
the considered Reynolds number range very well.

We apply our approach to standard benchmark test cases for transi-
tional and turbulent flows in internal and external aerodynamics: A well
investigated square duct channel at Reτ = 395, a closed channel configu-
ration with streamwise periodic hills at Reh = 10, 595, a circular cylinder
flow at ReD = 3900 and a transitional airfoil test case at Re = 60, 000.
We focus on a comparison with established schemes of lower order with
explicitly or implicitly added subgrid scale models, while using fewer or
approximately the same number of degrees of freedom. We demonstrate
that for all computations, we achieve an equal or better match to Direct
Numerical Simulation and experimental results, while retaining perfect
parallel scaling and achieving very low computing times.

Keywords: Discontinuous Galerkin, Large-Eddy Simulation,
transitional and detached flows, polynomial dealiasing.
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1 Introduction

The initial introduction of the discontinuous Galerkin (DG) method in the 1970s
by Reed and Hill [21] and Lesaint and Raviart [33] was followed by extensive ef-
forts to extend its theoretical and practical aspects for the simulation of evolution
equations of fluid mechanics by a number of researchers, e.g. [1, 3, 6, 10, 13–15].
Beyond applications in inviscid or laminar problems (e.g. [4, 36]), there is a
strong interest in extending DG to time-averaged turbulent flows in the form of
the Reynolds Averaged Navier Stokes equations (RANS). A number of success-
ful high Reynolds number RANS simulations with DG have been reported in
literature, e.g. [9, 19, 39, 45, 51].

In contrast to these efforts, few Large-Eddy Simulation (LES) or Direct Nu-
merical Simulation (DNS) results have been reported. This is somewhat coun-
terintuitive, as the low dispersion and dissipation errors of high order methods
combined with the excellent parallel scaling and geometric flexibility make it an
attractive candidate for baseline LES and DNS schemes. In 2002, Collis [17] was
among the first to use high order DG methods for the DNS of compressible flows,
and he applied a Smagorinsky eddy viscosity model to the small scales via the
Variational Multiscale method in a LES simulation [18]. More recently, Uranga
et al. [49] reported a DG simulation of a transitional flow over an airfoil, taking
advantage of the numerical dissipation to account for the damping action of the
unresolved scales, yielding an implicit LES approach. A similar investigation was
carried out by Carton de Wiart and Hillewaert [11]. The accuracy of discontin-
uous Galerkin methods for high Reynolds number vortical flows for N = 3 was
investigated in [12]. For higher orders (N = 7...15), Gassner and Beck [8] showed
that de-aliased discontinuous Galerkin schemes applied to under-resolved simu-
lations of isotropic turbulence compare very well with low order finite volume
schemes on fine grids with explicit or implicit subgrid scale models. In terms
of computational efficiency, it was shown in [50] that high order DG schemes
compete well with finite difference and finite volume formulations for turbulent
flows in a LES setting.

In this paper, we present a systematic study of high order discontinuous
Galerkin schemes applied to transitional and turbulent flows a moderate Reynolds
numbers. Of particular interest will be the evaluation of our “no model” simula-
tions against established explicit and implicit LES modelling techniques for the
same number of degrees of freedom.

This paper is organized as follows: We start by describing our discontinuous
Galerkin Spectral Element Method (DGSEM) in Sec. 2. In Sec. 3, we report our
results for external flows: The circular cylinder flow at ReD = 3900, where the
transition occurs in the detached shear layer in Sec. 3.1, followed by a transi-
tional flow past and airfoil at Re = 60, 000 with a laminar separation bubble,
re-attachment and transition in Sec. 3.2. We then continue with a discussion in-
ternal flows in Sec. 4. In Sec. 4.1, we investigate the square channel at Reτ = 395,
where the high order method allows us to resolve the essential features in the
turbulent boundary layer. The final, most complex test case is presented in
Sec. 4.2, where we show the results for the IDIHOM periodic hill Reh = 10, 595
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computations. At the end of the paper we give a brief overview and a conclusive
assessment of our results in Sec. 5.

2 Discontinuous Galerkin Spectral Element Method

In this section we derive the Discontinuous Galerkin Spectral Element (DGSEM)
method. We start with the three-dimensional compressible Navier-Stokes equa-
tions expressed in conservation form

Ut +∇x · F (U,∇xU) = 0, (1)

where U denotes the vector of conserved quantities U = (ρ, ρv1, ρv2, ρv3, ρe)
T ,

with ρ, v1, v2, v3, e being the density, velocity components and specific total en-
ergy respectively. The subscript t denotes the time derivative and ∇x the gradi-
ent operator in physical space. The flux is given by F = F a(U)− F v(U,∇xU),
where F a denotes the advective and F v the viscous part.

In order to solve the system of equations, the computational domain is
subdivided into non-overlapping hexahedral elements, which we allow to be con-
nected in a fully unstructured, but conforming way. In a first step, the Navier-
Stokes equations are transformed to a reference element E ∈ [−1, 1]3. The asso-
ciated mapping function x(ξ) from physical to reference space (x1, x2, x3)T →
(ξ1, ξ2, ξ3)T is used to calculate the Jacobian J(ξ) = ∂x

∂ξ and the metric terms
Jai, which are constructed following Kopriva [29] to ensure the free-stream pre-
serving property:

Jai =
∂x

∂ξj
× ∂x

∂ξk
, with (i, j, k) cyclic (2)

Applying the transformation to Eq. (1) leads to

J(ξ)Ut +∇ξ ·F(U,∇xU) = J(ξ)Ut +∇ξ · (Fa(U)−Fv(U,∇xU)) = 0, (3)

with the transformed fluxes F i = Jai · F .
For our scheme we employ a tensor product of 1-D Lagrange polynomials �N

of degree N to express the discrete approximate solution vector as

U(ξ, t) =

N∑

i,j,k=0

Ûijk(t)ψ
N
ijk(ξ) , ψN

ijk(ξ) = �Ni (ξ1)�Nj (ξ2)�Nk (ξ3) , (4)

where Ûijk(t) are time dependent nodal degrees of freedom. Following Kopriva
[30], N +1 Gauss points {ξi}Ni=0 are chosen as interpolation nodes. The discrete
transformed flux F is non-linearly dependent on the solution and is at most a
polynomial of degree 3N for compressible flows. It is thus evaluated on M + 1
Gauss-Legendre quadrature points, with M ≥ N to allow for polynomial de-
aliasing of the non linear fluxes [28], which reads as

F l(U(ξ),∇xU(ξ)) ≈
M∑

i,j,k=0

F̂ l
ijkψ

M
ijk(ξ), l = 1, 2, 3 (5)
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with ψM
ijk(ξ) = �Mi (ξ1)�Mj (ξ2)�Mk (ξ3). Multiplying Eq. (3) by the test function

φ(ξ) and integrating over the reference element leads to
∫

E

(JUt +∇ξ ·F(U,∇xU))φ(ξ) dξ = 0. (6)

We apply the Galerkin approach and thus choose the test functions to be iden-
tical to the basis functions in Eq. (4). With a spatial integration by parts we
obtain the weak formulation

∂

∂t

∫

E

JUφdξ +

∮

∂E

(Fa∗
n −Fv∗

n )φds−
∫

E

F(U,∇xU) ·∇ξ φdξ = 0, (7)

where Fa∗
n denotes the surface normal numerical flux function for the inviscid

terms, given by Fa∗
n := F∗

n(U
+, U−). The superscripts ± denote the values at

the grid cell interface from the neighbor and the local grid cell, respectively.
For the computation of the inviscid numerical flux a variety of state-of-the art
flux functions are available. In this work we apply the local Lax-Friedrichs, a
HLL-type and Roe’s approximate Riemann solver. For a detailed description we
refer to the textbook by Toro [48]. Fv∗

n denotes the numerical flux function for
the viscous term, resulting from the viscous flux Fv in Eq. (3). The solution
gradient ∇xU required to compute the viscous fluxes for both the surface and
volume part is obtained by applying the BR1 method by Bassi and Rebay [1]

We approximate the integral containing the volume flux contribution from
Eq. (7) using a tensor product of one-dimensional Gauss quadratures
∫

E

F l(U,∇xU)
∂φ(ξ)

∂ξl
dξ ≈

M∑

p,q,r=0

M∑

i,j,k=0

F̂ l
ijkψ

M
ijk(ξ

M
pqr)

∂φ(ξ)

∂ξl

∣∣∣∣
ξ=ξpqr

ωM
p ωM

q ωM
r

=

M∑

p,q,r=0

F̂ l
pqr

∂

∂ξl
φ(ξ)

∣∣∣∣
ξ=ξpqr

ωM
p ωM

q ωM
r , l = 1, 2, 3

(8)

where we apply (M+1)3 integration points (ξMpqr) and weights (ωM
p , ωM

q , ωM
r ). As

already mentioned before the discrete flux is at most a polynomial of degree 3N
for compressible and 2N for incompressible flows. Thus, a collocation of the flux
F l on (N + 1)3 points ξNijk introduces an error in the interpolant (Eq. (5)) and
subsequently in the associated integration. However, the integral can be solved
exactly using a sufficient number of quadrature points M . Kirby and Karniadakis
showed in [28] that de-aliasing for polynomial spectral methods can be achieved
by choosing sufficient integration precision. From the exactness of the quadrature
rule, M is found to be 2N for cubic and 3

2N for quadratic non-linear integrands.
Consequently, an inexact integration of these terms, i.e. an insufficient choice of
M , results in an approximation error often termed “aliasing”.

After evaluating the integrals from Eq. (7) numerically, we obtain a semi-
discrete form. The time integration is then finally performed using the explicit
low-storage Runge-Kutta scheme proposed by Carpenter and Kennedy [10].
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While aliasing is one of the effects of under-resolution, another is the lack
of subgrid scales, which would provide physical dissipation. In a classical LES
strategy, the dissipation is provided by explicit or implicit subgrid models. Unlike
this traditional approach, we do not add any type of model, filter or adapted
numerics. Instead we rely on the combination of two properties of the high order
schemes: The wide bandwidth of resolved scales, which carry a non-negligible
physical dissipation, and a spectral cut-off like dissipation character of the DG
operator with increasing polynomial degree. Gassner and Kopriva [9] showed
that with increasing polynomial degree the onset of dissipation errors due to
insufficient resolution is pushed towards higher wavenumbers. The potential of
high order schemes for under-resolved flows has been studied for the example
of the Taylor-Green-Vortex flow by Gassner and Beck in [8], showing that the
solution accuracy is strongly enhanced by applying high order methods, while
leaving the total number of degrees of freedom (DOF) constant. It was pointed
out that this effect is caused by the discussed low dissipation and dispersion
error for a wide range of resolved scales.

3 External Aerodynamics

As a showcase for applications in external aerodynamics we use the flow past
a cylinder at ReD = 3900, which is extensively described in literature, and the
flow around the SD7003 airfoil at Rec = 60, 000.

3.1 Cylinder Flow

The flow past a cylinder with circular cross section at ReD = 3900 based on
the diameter D, freestream velocity U∞ and density ρ∞ is a well-established
test case for the evaluation of implicit and explicit LES modelling approaches
and has been extensively investigated by a large number of researchers [6, 20,
22, 31, 35, 38, 41]. At the given flow conditions, the boundary layer remains la-
minar until the separation point, where the shear layer is shed periodically. The
ensuing transition to turbulence occurs very close to the geometry in the wake,
and interacts with the resulting reverse flow region. Due to this complex flow
situation, this test case proves challenging for the LES methods, which explains
the considerable spread in reported results. Tab. 1 collects the integral quantities
of LES and DNS simulations of this flow from literature.

In our computations, the flow domain in a plane perpendicular to the cylinder
axis (x−y plane) is circular, with the origin located at the center of the geometry
and a radial extension of r = 20D. We set a spanwise extension Δz of 4D,
following [38], which is discretized by an equidistant mesh. In the axial and
tangential direction (x − y plane), we choose an exponential stretching in the
radial and a Gaussian stretching in the circumferential direction to cluster the
grid points towards the geometry and in the wake, as shown in Fig. 1. Using
again the reported data in Tab. 1 as a reference, we limit the number of degrees
of freedom per conservative variable of our computations to a maximum of 1.2
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Table 1. Integral quantities and simulation parameters for ReD = 3900 cylinder flow

Author CpBaseStr CD Lr/D Scheme LES DOF

Kravchenko et al.
[31]

-0.94 0.210 1.04 1.35 B-Spline
SEM

Smag. 1-2 M

Blackburn et al.
[6]

-0.93 0.218 1.01 1.63 GL-SEM Smag. 1.5 M

Meyer et al. [38] -0.92 0.210 1.05 1.38 FV ALDM 6.0 M
Fröhlich et al. [22] -1.03 0.216 1.08 1.09 FV Smag. 1.4 M
Ouvrard et al.
[41]

-0.81 0.226 0.93 1.68 FV/FE-
VMS

Smag 1.5 M

Franke et al. [20] -0.85 0.209 0.98 1.64 FV Yoshizawa1.2 M

Ma et al. (I) [35] -0.96 0.203 0.96 1.12 h/p-FEM DNS 24 M
Ma et al. (II) [35] -0.84 0.219 0.96 1.59 h/p-FEM DNS 12 M

Current: N = 11 -1.00 0.212 1.09 1.26 DGSEM - 0.5 M
Current: N = 7 -0.90 0.208 1.02 1.50 DGSEM - 1.2 M

CpBase : pressure coefficient at the downstream position x = D/2, y = 0, Str:
Strouhal number of the lift coefficient fLiftD/u∞, CD: drag coefficient, Lr:

length of separation bubble

million. We choose two high order discretizations: Firstly, an N = 7 setup,
leading to (N + 1)3 = 512 degrees of freedom per element and a total of 1.2 M
DOF on a grid of 16× 12× 12 elements in circumferential, radial and spanwise
direction, respectively. The second discretization consists of an ansatz of N = 11
polynomials, yielding a total of only 0.5 M on a 8× 6× 6 grid. A close-up view
of both grids and the resulting time- and spanwise-averaged streamwise velocity
distribution is shown in Fig. 1. We use Roe’s approximate Riemann solver for the
convective fluxes, and Bassi and Rebays first method BR1 for the computation
of gradients for the viscous contributions.

For comparison with incompressible data, we set the flow Mach number to
Ma = 0.1 and ReD = (u∞ρ∞D)/μ = 3900. In the spanwise direction, periodic
boundary conditions are chosen, while the remaining domain boundaries are set
to Dirichlet free stream conditions, except for the isothermal wall conditions on
the cylinder surface.

The collection of the time-averaged data was started after the establishment of
stable vortex shedding and continued for 40 shedding cycles. In a post-processing
step, the gathered time-averaged fields were averaged in the spanwise direction.

Along with the data reported for LES with implicit and explicit modelling
and DNS results, Tab. 1 lists the results for the integral flow quantities of our
high order computations. We compare the base pressure CpBase , computed as
(p−p∞)/(0.5ρ∞u

2
∞), the Strouhal number of the lift force from fLiftD

u∞ , the drag
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Fig. 1. Time- and spanwise-averaged streamwise velocity component 〈u〉/U normal-
ized by the freestream velocity and grid. left: N = 11 grid with 8 × 6 × 6 elements
(circumferential, radial and spanwise), right: N = 7 grid with 16× 12× 12 elements.

coefficient CD (computed from the streamwise force and with the projected
cylinder surface in that direction) and the normalized length of the recirculation
bubble Lr/D. In general, our integral quantities agree well with the published
data, while the match for N = 11 case is the weaker of the two. This can be
attributed to the very low total number of degrees of freedom and the insufficient
wall resolution. Still, even for this severely under-resolved situation, the results
are in reasonable agreement.

In Fig. 2, we show the time- and spanwise-averaged streamwise velocities 〈u〉,
normalized by the freestream velocity, at different locations downstream of the
geometry. We compare our profiles with experimentally determined values from
Parnaudeau et al. [42], and two LES computations: An implicit approach through
an approximate deconvolution method used in conjunction with a low order finite
volume formulation presented in [38] and a high order B-Spline based Galerkin
projection method with explicitly added Smagorinsky model [31]. The evolution
of the wake profile is of particular interest, as the mixing and recovery of the
velocity deficit is governed by viscous action, and therefore by the combination
of resolved and numerical dissipation. A high viscosity generally leads to a fast
interchange of momentum through shear and thus to a less pronounced, but
longer wake.

The agreement of the current results for the streamwise velocity 〈u〉 (Fig. 2) is
very good for all locations in the wake and for both the N = 11 and N = 7 case.
In particular, for the farthest location x/D = 2.02, the N = 7 results continue to
match the experimental data very well, while the published LES results show a
slight upward drift on the centerline, suggesting a higher dissipation and mixing
in that region. For the N = 11 case, the match with the experimental data at this
location is worse (but very good for the LES results), suggesting the presence of
insufficient dissipation due to the notably reduced spatial resolution.
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Fig. 2. Mean streamwise velocity at different downstream locations in the wake of
the circular cylinder flow at ReD = 3900. left: N = 11 computation, right: N = 7
computation. Solid lines: present DG result, dashed lines: computational LES results
from [38], open squares: computational LES results from [31], filled circles: experimental
results from [42].

Focusing now on the efficiency of the solver, Tab. 2 lists the computational
details for our runs. All computations were conducted on the largest number of
cores possible, given by the number of elements in the mesh and the MPI paralle-
lization of our scheme. To facilitate comparisons between different computing
architectures and between different runs of the same system, we compute the
performance index PID as

PID :=
TCPU

nDOF × nΔt
=
TRun · ncores

nDOF × nΔt
[s], (9)

where nΔt denotes the number of explicit time steps and the total CPU time
TCPU is computed as the product of the number of computing cores ncores and
the simulation wall clock time TRun. The number of spatial degrees of freedom
per state vector component nDOF is given by the product of the number of grid
cells ncells and the collocation points per element (N + 1)3. While the absolute
value of the PID is strongly dependent on the computing systems, its relative
changes within a single system allow us to find the optimal configuration in
terms of processor load for a given system.

The total CPU time per convective time unit TCPU/T
∗ and the associated

wall clock time per convective unit TRun/T
∗ in minutes are also listed. Due to

the efficient parallelization of our scheme, we are able to compute a LES and
gather meaningful statistics for this case in a matter of hours.

Summarizing the results, our discontinuous Galerkin computations show a
very good agreement with published data. We employ high order schemes with
near spectral cut-off dissipation behavior without LES modelling to compute
these flows with a low number of degrees of freedom. The N = 7 computations
at 1.2 M DOF show excellent matches with experimental results and are able to
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Table 2. Computational cost for the cylinder flow computations

Case DOF cells cores Δt/T ∗ PID [μs] TCPU/T
∗[h] TRun/T

∗[min]

N = 7 1.180 M 2304 2304 1.3E − 3 13 102 2.7
N = 11 0.498 M 288 288 1.7E − 3 19 80 16.7

recover the shape of the near wake almost perfectly. The results of the N = 11
computations are also in very good agreement with reference data, but shows
signs of underresolution, attributed to the very low number of 0.5 M DOF com-
bined with the high polynomial degree and associated low inherent numerical
dissipation.

3.2 Airfoil Flow

The prediction of flows at low to medium Reynolds numbers (104 to 106) gains
rising attention in applications such as micro-aerial and unmanned vehicles.
As these flows exhibit substantial laminar regions, a laminar separation bubble
(LSB) is likely to form even at modest angles of attack, followed by transition
in the separated shear layer and subsequent reattachment. The concurrent, cou-
pled occurance of those three different flow regimes makes this type of flow very
hard to predict when solving the Reynolds Averaged Navier Stokes equations.
On the other hand, the computational cost of Direct Numerical Simulations in
this Reynolds number regime is still very high. This leaves LES as the main
candidate for the prediction of this type of flow.

We present the simulation around a Selig-Donavan (SD) 7003 airfoil at
Rec = 60, 000 and angle of attack of α = 8◦. This airfoil has been sub-
ject of experimental [40, 46] and some computational investigations in the last
years [7, 14, 23], most of them using implicit or explicit LES approaches. This
setup features a LSB at the leading edge, a rapidly growing Kelvin-Helmholtz
instability leading to transition to turbulence and subsequent reattachment at
approximately the first third of the chord.

Following the instructions from the 2nd International Workshop on High-
Order CFD Methods (2013), we run this case at Ma = 0.1 and employ isother-
mal walls with Twall/T∞ = 1.002. We discretize this domain with unstructured
hexahedra, which allows a very efficient and coarse resolution of the farfield. To
account for the airfoil curvature, the geometry is represented through a mapping
with polynomial degree NGeo = 4 within the wall-adjacent cells. The spanwise
extent is 20% of the chord lengths C and periodic boundary conditions are em-
ployed at the spanwise boundaries. Two different simulations with polynomial
degrees N = 3 and N = 7 are performed on two different meshes, keeping the
number of degrees of freedom approximately constant. The resulting mesh for
the N = 7 case is significantly coarser. Details on the two calculations are listed
in Tab. 3.
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Table 3. Degrees of freedom and resolution details of the SD7003 airfoil flow simula-
tions

Case DOF cells cells spanwise y+x=0.8 N M

N = 3 4.26 M 66, 500 12 1.65 3 4

N = 7 4.55 M 8, 900 6 1.10 7 9

To give an impression of the general flow behavior as well as the used mesh,
vortex structures are visualized in Fig. 3 along with a cut of the computational
grid. The build-up of spanwise Kelvin-Helmholtz and subsequent secondary in-
stabilities are visible, as well as the immediate breakdown to turbulence.

Fig. 3. Isosurfaces of the Q-criterion (Q = 500) colored with contours of instantaneous
velocity magnitude

The aerodynamic loads as well as separation and reattachment positions pre-
dicted by our computations are compared to other published computational
results and the experimental data of Selig et al. [46] in Tab 4. The current re-
sults, in particular the N = 3 case, agree well with the results of other groups.
Compared to the results of Galbraith and Visbal [23] and Boom and Zingg [7],
separation occurs earlier and reattachment later, a trend which intensifies for
the higher order case N = 7. While the experimental lift coefficient is predicted
reasonably, the drag is underpredicted by all computations. The pressure coef-
ficient distributions are shown in Fig. 4, demonstrating fair agreement with all
computations but the one of Boom and Zingg, where the LSB is shifted towards
the leading edge. For the remainder of the references, good agreement is also
found for the skin friction distribution until x ≈ 0.2 and from x ≈ 0.5.

Details on the computational cost of the two cases are listed in Tab 5. Note
that the PID for the N = 7 case is even lower than for the N = 3 case, showing
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Table 4. Mean aerodynamic loads and separation (xs) and reattachment (xr) locations
and computational details of the SD7003 airfoil case

Author CL CD xs xr Scheme DOF

Galbraith & Visbal [23] ≈ 0.91 ≈ 0.043 0.040 0.280 O(6) Comp. FD 5.70 M
Catalano & Tognaccini [14] ≈ 0.94 ≈ 0.044 0.030 0.290 O(2) FD & dyn. Smag. 8.63 M
Boom & Zingg [7] 0.968 0.034 0.037 0.200 O(4) SBP-SAT 4.48 M

Selig et al (exp.) [46] ≈ 0.92 ≈ 0.029 – – – –

Current: N = 3 0.923 0.045 0.027 0.310 DGSEM 4.26 M
Current: N = 7 0.932 0.050 0.030 0.336 DGSEM 4.55 M
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Fig. 4. Pressure coefficient for suction and pressure side (left) and skin friction coeffi-
cient for the suction side (right), SD7003 airfoil

that the high order operator is not necessarily more expensive. The increased
CPU time stems mostly from a slightly lower time step.

In summary, the transitional SD7003 airfoil flow computations show mostly
good agreement with published results in integral quantities and pressure and
skin friction coefficient distributions. However, especially in the skin friction
coefficient, spread among the available references and our results is present. For
the high angle of attack of α = 8◦, the LSB is relatively short and the complex
transition and reattachment processes occur on a very small portion of the airfoil.
The distance to the farfield boundaries strongly affects the properties of the LSB,
which presumably causes part of the spread. The complex physics renders this
setup a good LES test case, but the creation of a DNS reference database to
evaluate the quality of the LES results is highly desirable.
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Table 5. Computational cost for the SD7003 airfoil computations

Case DOF cores Δt/T ∗ cells/core PID [μs] TCPU/T
∗ [h] TRun/T

∗ [min]

N = 3 4.26 mio 5548 9.7E − 6 12 13.4 3200 34.8

N = 7 4.55 mio 4443 7.3E − 6 2 12.5 4220 57

4 Internal Aerodynamics

Internal aerodynamics often centers on the accurate resolution of pressure-
driven, wall-bounded flows, where wall-induced effects dominate the flow field.
We have performed simulations of two well-established incompressible channel
flow test cases and compare our results against reference DNS results from lit-
erature. The first case is a plain square duct channel at Reτ = 395, which is
described extensively in literature [11, 32, 43]. Here we thoroughly investigate
the behaviour of the numerical method on pure wall-bounded turbulence by
the means of a direct numerical simulation. The second more complex case is a
closed channel with streamwise periodic hills, a frequently used benchmark case
for turbulence modelling [8,21,37,47]. Here we perform three LES computations
for Reh = 10, 595 on the same mesh, which range from very coarse to DNS-like
resolution by steadily increasing the polynomial degree. In contrast to the square
duct flows, it covers physical phenomena like flow separation, reattachment and,
depending on the Reynolds number, turbulent transition and relaminarization.

As the channels are chosen to be periodic in stream- and spanwise direction,
we have to consider a streamwise pressure gradient dp

dx for driving the flow. The
pressure gradient is computed identically for both cases and is implemented as
a spatially constant volume forcing term. We measure the mass flow rate ṁ at
some specified locations in the domain and continuously adjust the forcing to
match it with a prescribed reference mass flow rate ṁref corresponding to the
specific Reynolds number. The forcing itself is implemented by using a procedure
which has been originally proposed by Benocci et al. [5]

dp

dx

n+1

=
dp

dx

n

+
α

AΔt
(ṁref − 2ṁn + ṁn−1) , (10)

where α is weighting factor, Aref the reference area and Δt, n the time step and
time level. We found the above method to be sufficiently robust and accurate
for a wide range of time steps. One remaining choice is the plane at which the
mass flow rate ṁ is evaluated. Although it is commonly measured at stream-
or spanwise planes through the domain, we use the mass flux averaged over the
whole domain, which to our experience reduces unwanted temporal oscillations
of the forcing term.

4.1 Square Channel Flow

A Direct Numerical Simulation was performed for a fully developed two-dimen-
sional turbulent channel flow at Reτ = 395. The Reynolds number (dependent
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on the friction velocity uτ which is linked to the averaged wall shear stress
uτ =

√
Tw/ρ) and the Mach number of 0.1 are selected according to the reference

of Moser et al. [43]. The two no-slip walls of the channel are separated by a
distance of 2δ. The region of interest is periodic in streamwise and spanwise
direction and the size of the computational domain is 2πδ × 2δ × πδ. Details of
the grid and geometry parameters are listed in the Tab. 6. The flow is forced by
a streamwise pressure gradient dp/dx to maintain a constant mass flux through
channel as discussed above.

Table 6. Grid and geometry parameters for direct numerical simulation of a plane
channel. Here Δy+

c gives the y-resolution at the center line.

Reτ Lx Ly Lz Cells : Nx × Ny × Nz Δx+ Δy+c Δz+

395 2πδ 2δ πδ 86 × 66 × 64 4.70 3.82 3.12

An impression of wall-bounded turbulence is given in Fig.5, where we visualize
the coherent structures using the λ2 vortex detection criterion.

Fig. 5. Isosurfaces of the λ2 = −5 criterion colored by contours of instantaneous
streamwise velocity

Fig. 6 shows the averaged velocity profile normalized by the friction veloc-
ity in wall-coordinates u+ = 〈U〉/uτ and y+ = y uτ/ν. The results obtained
by DGSEM are in very good agreement with the reference DNS. The velocity
variance 〈u1u1〉 shows a slight difference above y+ = 75, as presented in Fig.
7 (left). A possible cause for this deviation may be an insufficient time aver-
aging period. On the other hand, the velocity variance 〈u2u2〉 and covariance



448 T. Bolemann et al.

y+

<U
+ >

10-1 100 101 1020

2

4

6

8

10

12

14

16

18

20

DG_N5
DNS_Moser

Fig. 6. Time- and spanwise-averaged velocity profile in wall units

Reynolds shear stress 〈u1u2〉 are almost perfectly superimposed on the reference
data. Further expected characteristic of a wall bounded flow is that the produc-
tion and dissipation of turbulent kinetic energy will be approximately in balance
in the logarithmic region. However the results also confirm the observation by
Moser et al. [43] that the ratio is slowly increasing over the log range, as shown
this in Fig. 7 (right). Despite the small oscillations in the balance region, the
profile is well captured. Details of computational cost of the DNS are summa-
rized in Tab. 7. Here, the characteristic time T ∗ = δ/UBulk is related to the
characteristic length scale δ and the streamwise bulk velocity UBulk.

Table 7. Computational cost for the plane channel computations

Case DOFs cores cells/core PID [μs] Δt/T ∗ TCPU/T
∗[h] Trun/T ∗[min]

N = 5 83.1 · 106 8196 47 12.3 3.1 · 10−4 702 5.2

4.2 Periodic Hill Channel Flow

The setup of the periodic hill has been proposed by Mellen et al. [37], based on
similar experimental considerations. The channel length is Lx = 9h and corre-
sponds to the distance between the two hills with h denoting the hill height.
The channel height is Ly = 3.035h and the spanwise extent is Lz = 4.5h. The
Reynolds number of Reh = 10, 595 is based on the bulk velocity ub at the hill
crest. We are again using Ma = 0.1 to avoid compressibility effects. We apply
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isothermal no-slip boundary conditions at the lower and upper walls with a non-
dimensional temperature of 1, all other boundaries being periodic. For a more
detailed description of the setup we refer to the ERCOFTAC database1. First
thorough DNS and LES computations have been performed by Temmerman et
al. [47] and Fröhlich et al. [21]. Numerical DNS and LES investigations com-
paring two FV codes have been carried out by Breuer et al. [8] also including
experimental PIV-measurements. These DNS results cover Reynolds numbers
from 100 to 10,595 and serve as an ERCOFTAC reference.
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Fig. 8. Streamlines of the time- and spanwise-averaged flow

Our computational mesh is very coarse, consisting of only 8192 grid cells.
To ensure an accurate representation of the geometry, we use a curved mesh
with a polynomial degree of NGeo = 4. We employ curved elements not only
at the boundaries, but inside the whole domain, using an inner cell stretching
1 http://uriah.dedi.melbourne.co.uk/w/index.php/UFR_3-30

http://uriah.dedi.melbourne.co.uk/w/index.php/UFR_3-30
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Table 8. Simulation parameters for the Reh = 10, 595 periodic hill channel flow

Author Scheme Solver DOF Δt/10−4 De-aliasing

Breuer et al. [8] FV Incompressible 13.1 M 18 -
Breuer et al. [8] FV-IB Incompressible 4.1 M 10 -

Current: N = 4 DGSEM Compressible 1.02 M 6.1 M = 5

Current: N = 6 DGSEM Compressible 2.81 M 3.2 M = 8

Current: N = 9 DGSEM Compressible 8.19 M 1.9 M = 12

approach as described by Hindenlang et al. [27]. By distributing the scheme’s
sub-cell resolution inside the cell, we improve the boundary layer resolution.

We perform three computations, listed in Tab. 8, with an increasing the poly-
nomial degree. We apply incomplete de-aliasing and keep the amount of de-
aliased modes approximately the same for all computations with M = 1.2−1.3N .

The time-averaged streamlines in Fig. 8 give a general impression of the flow
field at Reh = 10, 595. All time-averaged data was collected over 56 convective
times T ∗ = Lx/ub. The flow separates roughly at x ≈ 0.2 on the lower wall,
which is an effect of the high curvature of the descending hill, and reattaches at
x ≈ 5. The recirculation bubble inbetween is known to be strongly dependent
on separation effects [47]. Breuer et al. [8] report a small recirculation region at
the beginning of the second hill, which was confirmed by our computations.

The wall friction shown in Fig. 9 converges rapidly with increasing resolution
near the walls, as the N = 6 and N = 9 nearly coincide. As expected, the skin
friction rises significantly at the onset of the downstream hill, with its peak on
the second plateau, where the biggest friction is expected to occur. The wall
friction is negative in the region of the recirculation bubble and defines the size
of the region. On the upper wall we see a constant decrease of the friction until
the middle of the channel. This corresponds to the decrease of the velocity caused
by the widening of the flow field as the normal extent of the recirculation bubble
decreases.

For a detailed flow analysis, we pick the recirculation zone as a showcase,
shown in Fig. 10. For the time-averaged velocities and Reynolds stresses there
are no major discrepancies between our simulations and the references. The flow
parameters above the crest meet the results better, as the resolution is higher
at this point and there are less complex phenomena.

The results indicate that the N = 4 computation suffers from a lack of reso-
lution; noticeable differences occur especially at x = 2.0. While the streamwise
velocity 〈u〉/ub and Reynolds stresses 〈u′u′〉/ub are in good agreement with the
ERCOFTAC references, there are major differences in the normal velocities and
stresses, the latter being very sensitive to the amount of resolution. Oscillations
near the peak can be observed for all stresses and turbulent kinetic energy. The
time averaging intervall for N = 4 has been extended to 100 convective times
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lower and upper wall, N = 4 , N = 6 and N = 9 DGSEM computations

to eliminate the risk of the oscillations stemming from a too short averaging
period. We thus suspect that the oscillations indicate slight instabilities. Never-
theless the overall impression is still good, considering that barely 1.0 M degrees
of freedom have been used.

Both the N = 6 and the N = 9 computations show a very good agreement
with the references. While the N = 6 tends to have slightly lower peaks than
the reference, e.g. in the normal components of the stresses 〈u′u′〉/u2b , the N = 9
slightly overshoots the published data. We note that while all three cases do
well for the streamwise velocities, the improvements due to additional accuracy
become apparent for the spanwise components and stresses.

For the periodic hill testcase we achieve a PID in the region of 12μs. We
observe a drop of the PID between N = 4 and N = 6, which is due to the caching
effects of an optimal load per core. The N = 9 computation demonstrates that
we are able to use only one single element per core for a high number of cores
(8192) and still achieve a reasonable PID. All computations have been performed
within wall-clock times ranging from a couple of hours to two days.

Table 9. Computational cost for the periodic hill computations

Case DOFs cores cells/core PID [μs] Δt/T ∗ TCPU/T
∗ [h] Trun/T ∗ [min]

N = 4 1.02 · 106 640 8 13.9 6.1 · 10−4 121 11.4

N = 6 2.81 · 106 2048 4 12.1 3.2 · 10−4 748 15.8

N = 9 8.19 · 106 8192 1 17.1 1.9 · 10−4 5782 41.9

As a summary of the results obtained from the three computations, we see
that they are in close accordance with the reference data. We demonstrate that
high-order schemes with incomplete de-aliasing can achieve accurate results for
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Fig. 10. Spatial- and time-averaged streamwise velocity 〈u〉/ub, normal velocity 〈v〉/ub,
spanwise velocity, the Reynolds stresses 〈u′u′〉/u2
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b , 〈u′v′〉/u2

b and the turbu-
lent kinetic energy in the separation region (x = 2.0)

this case with considerably less degrees of freedom than reported in literature. A
good example is the N = 4 computation with 1.0 M degrees of freedom. Though
it has a factor of 4, respectively a factor of 13 less degrees of freedom than the
two reference FV solvers, the results still agree very well with the published data.
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On the other hand, the N = 6 and N = 9 computations match very well with
the reference results with negligible differences while still having less degrees of
freedom.

5 Conclusion

Most of the recent work in the field of DG methods for fluid dynamics was
centered around solving the RANS equations, also being the main motivation of
the IDIHOM project. While efforts towards their industrial application on LES
were not as pronounced, we demonstrate in this work that high order DG schemes
have high potential in this field. We have performed DNS and LES computations
for four well-established test cases from internal and external aerodynamics with
low to moderate Reynolds numbers. We have employed a DGSEM scheme with
high order to very high order approximations and used a higher quadrature
rule for de-aliasing. All presented results are in good agreement with published
reference data, though requiring considerably less degrees of freedom.

We point out that so far no additional explicit or implicit subgrid scale mod-
elling terms or artificial viscosity have been applied for these results. For flows
at higher Reynolds numbers, pure de-aliasing is no longer sufficient and sub-grid
scale modeling becomes necessary. Due to their spectral cut-off character and
the de-aliasing the DG schemes guarantee low dissipation and dispersion errors,
which, combined with a high resolution per degree of freedom, overall minimizes
the approximation errors. This is especially beneficial in an LES setup, where
high order DG methods can be used as a clean numerical basis to build new
LES models upon, as they reduce cross-influences between the numerics and the
model.

While standard schemes featuring high accuracy are based on finite differences
and thus support only structured meshes, the DG scheme is capable of handling
complex geometries using unstructured meshes maintaining high order accuracy,
which is relevant for industrial applications. However, in an industrial setup, not
only accuracy but also the computation times play a major role. We have shown
that large scale computations with a high number of degrees of freedom can be
carried out within a few hours to days. This is due to excellent scalability of our
codes down to a single element per core even on thousands of cores.

In summary we have demonstrated that transitional and turbulent flows can
be treated accurately and efficiently using high order discontinuous Galerkin
methods, without the need for additional modelling terms. Furthermore we
showed that these methods fit well into an industrial setup, as they are highly
scalable and are well fitted to LES applications, as they provide a clean numerical
basis for future LES modelling.
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Abstract. Article presents the development process of aeroelastic sys-
tem basing on finite volume CFD solver for higher order methods. The
main aspect is interpolation tools which allows application of Discontin-
uous Galerkin solution of CFD solver. There is also described the elastic
analogy deformation tool for curvilinear mesh. To summarize, the two
testcases of wing and wing-body configuration aircraft are presented.
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1 Introduction

The concepts of CFD solutions, formulated already many years ago are becoming
present in industrial practice. Finite Element Method, Discontinuous Galerkin
Method, High Order Methods, Adjoint Mesh Refinement are confronted with
traditional, second order Finite Volume Solvers. This transition in technology has
to be accompanied in complete revision of CFD tools and methods, ranging from
curvilinear grid generation to visualization of high order discontinuous results.

Significant participation of the CFD solver in aeroelastic simulations enforce
the major changes in remaining parts of the system. Consequently, the develop-
ment of interpolation tool between CFD and CSM domains, grid deformation
tool is necessary. The replacement of CFD solver was possible because the AE
System was primarily projected based on loosely coupling technique - two inde-
pendent solvers are connected by external interface tools [1].

2 Aeroelastic System Development

Within IDIHOM project existing aeroelastic system, destined to full scale air-
craft flutter simulations and based on second order CFD solver was adopted to
the novel demands of high order, curvilinear grids and discontinuous Galerkin,
Finite Element formulation. The new CFD solver - PADGE Code, delivered by
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DLR, has replaced TAU Code in existing aeroelastic system. In the case of aeroe-
lastic simulations [1], the use of high-order meshes leads to additional challenges
in the AE coupling tools. One of them is mesh deformation, where existing de-
formation tools fail according to second-order grid tests, resulting in errors like
concave elements or crossing edges. Another problem exists in interpolation tools
where pressure distribution from CFD simulation is not continuous in case of
Discontinuous Galerkin formulation.

Fig. 1. Aeroelastic steady state loop developed in TAURUS project based on second
order FV TAU Code solver

Simulations conducted on the aeroelastic system developed in TAURUS
project (fig. 1) base on linear grids. The results from presented system (TAU-
RUS AE System) are treated as a reference for IDIHOM AE System (fig. 2). The
main aim of PUT in IDIHOM project was the implementation new CFD solver
and adaptation other parts of the existing system. The CSM part of the system
remained unchanged, while all the tools responsible for exchanging information
between fluid and structure domains have been developed.

3 Interface for Discontinuous Solution

The first step in aeroelastic loop is to solve the problem of fluid flow. There are
crucial differences between the solvers. TAU Code returns the force vectors in
every node of the linear grid, while the result of PADGE Code-based simulation
is discontinuous pressure distribution. Every node belonging to n elements has
n values of pressure. That output from PADGE Code is not suitable for interpo-
lation tools. Assuming the use of existing algorithm, PUT developed method to
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Fig. 2. Aeroelastic steady state loop developed in IDIHOM project based on high order
Discontinuous Galerkin PADGE Code

calculate equivalent solution to the one from PADGE Code, in the format suit-
able for existing tool. It is required to preserve the conservation of the exchanged
quantity.

Another aspect, which should be taken into consideration is number of degrees
of freedom of CFD grid. High-order meshes are characterized in that the same
geometry is mapped by much smaller number of nodes and elements than linear
ones. Application averaging force vectors only from CFD grid nodal points might
be insufficient for proper calculation of the structure’s deflection. Moreover, the
average of all values in the node does not guarantee preservation of conservation.
The idea which allows to preserve the conservation and ensure accurate transfer
the continuous load (pressure) is based on the division of the elements to fine-
enough pieces with constant load.

On the surface where the data is interpolated, there are only triangular and
quadrilateral elements. Every second-order element contains tree nodes on each
edge. These nodes allow the division of triangle onto four first-order triangles. By
inserting one node on each edge of first-order triangle, the second-order triangle
is created. This procedure can be repeated - after the next division the number
of first-order triangles created from one second-order triangle will be 4n, where
n is number of divisions (tab.1). The idea of division is presented on (fig.3).

The second-order quad element is divided onto four first-order quads. Similarly
to triangles, one node is inserted on each of the edges an additional one in the
middle of first-order quad. As a result, the second-order quad is created. Again,
this procedure can be repeated, leading to 4n first-order quads created from
single second-order quad (where n is number of divisions). At the end every
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Table 1. Division of second order triangle elements

Division No of first-order tri No of extra nodes

1 4 0
2 16 9
3 64 39
4 256 147

(a) Second order
TRI 6

(b) 1stdivision (c) First order tri
after 1stdivision

(d) 2nddivision (e) First order tri
after 2nddivision

(f) 3rddivision (g) First order tri
after 3rddivision

Fig. 3. Process of division of second-order triangle

first-order quad is divided into two triangles, hence the number of first-order
triangles will be 2 · 4n (tab.2).

Coordinates of every extra added node, as well as the value of the pressure
in this node, are calculated from shape functions of the primary element. Then
the area and center of gravity are computed. The procedure integrating pressure
over the surface of the triangle returns value of the force. The direction of the
force vector is taken as the normal direction to the surface. The resulting pairs:
coordinates of middle points from triangles and force vector correspond to the
ones generated by TAU Code. Due to compatible format generated pairs, tools
from existing AE System can be used. Thus, all the further steps: from providing
the information from CFD solver to calculating deformations on the CFD surface
nodes remain the same in both systems. Finally, CFD grid deformation is ran.

The number of applied division procedures is set by test procedure which
calculates the convergence. Test procedure computes the sum of vector forces
after first, second and next divisions, for the specific grid. Then, the convergence
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Table 2. Division of second order quadrilateral elements

Division No of first-order tri No of extra nodes

1 8 0
2 32 16
3 128 72
4 512 280

Fig. 4. Sum of force vectors (left) and percentual change between two consecutive
divisions (right) for selected element depending on the number of divisions

of the results is calculated and sufficiently accurate division is chosen for the
grid. For the rest of aeroelastic simulation this division is applied. The chart
of example convergence for number of divisions is presented in (fig.4). The first
chart shows the sum of vector forces on one element depending on from number
of applied division procedures. Next one presents the percent of the change in
force between actual and previous division.

4 Deformation of CFD Grid

The deformation of the CFD grid is the last stage in aeroelastic loop. The nodal
values of displacement, calculated by CSM solver, are interpolated on the surface
of CFD grid. The deformation is a process of moving the nodes inside CFD grid,
basing on the displacement of surface nodes. The examples of such deformation,
based on spring analogy, might be found in [2] and [3].

In the present study, novel approach of the mesh deformation for high-order
methods and meshes is proposed. It is based on elastic analogy where CFD grid
is treated as elastic body and displacement on surface is treated as kinematic
load.

In iterative process, the material is associated for each cell of the grid. After
solving steady state simulation of the structure, the mesh quality is checked.
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Grid quality is crucial for aeroelastic simulation and especially for the CFD
solution and its estimation is the basis for the decision of further iterations. In
case of insufficient grid quality, the fictitious materials of grid are changed until
the established quality is obtained.

As the metrics of the mesh quality, Jacobian values have been used so far,
but the use of curvilinear meshes led to the need of new mesh quality metrics.
These metrics, developed by Université catholique de Louvain (UCL) [5] [6],
base on Bezier functions and allow assessment of the Jacobian in whole element,
not only in nodal points. Cooperation with the partners from UCL allowed the
implementation of these metrics in the PUT’s deformation tool.

The details of deformation process are described in article: "Deformation of
curvilinear meshes far aeroelastic analysis".

5 Testcases

The developed AE system has been tested on two testcases: LANN wing [3] and
DLR-F6 wing-body configuration [4]. The LANN wing was underling testcase
while the DLR-F6 was a challenge one. The simulation conducted in TAURUS
AE System is treated as a reference solution and it was compared with IDIHOM
AE System results.

5.1 LANN Wing

LANN wing is underlying testcase proposed for testing developed AE System.
CAD Geometry has been delivered by Aircraft Research Association (ARA). The
model has been used as a coupling surface for exchanging information between
CFD and CSM models.

(a) linear (b) curvilinear

Fig. 5. LANN grids

The wing has a semispan 1m in length, a planform area of 0.25m2, a root
chord of 0.361m, a tip chord of 0,144m, has a 1/4-chord sweep angle of 25◦

and a linear twist from root to tip of 4.8◦. The CFD simulation has been pre-
pared with flow parameters: Ma = 0.4, Re = 4.9 · 106 and angle of attack equal
2.56◦.
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The linear mesh (fig.5a) is unstructured hybrid grid with prism elements in
boundary layer. The curvilinear grid (fig.5b) for high-order computations con-
sists of prism, pyramid, hexahedral and tetrahedral elements. The detaild of
both meshes are given in tab.3.

Table 3. Grids details

Grid linear curvilinear

No of nodes 2.6M 98 469
No of elements 10.5M 19 981

- prism 2.5M 432
- pyramid 17k 673
- tetrahedral 7.5M 5 762
- hexahedral 0 12 114

The convergence of aeroelastic steady state computations is obtained after
five iterations (fig. 6, 7).

Fig. 6. Aeroelastic steady state LANN wing deformation computed using first order
(TAURUS) AE System and high order (IDIHOM) AE System

The deformation computed using High-Order methods is 0.942mm. Compar-
ing to the reference solution, where the deformation is 0.980mm, the difference
is 3.96%.
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(a) (b)

Fig. 7. Deformed wing: grey - non-deformed structural model, blue - deformed model
calculated in TAURUS AE System, red - deformed model calculated in IDIHOM AE
System

5.2 DLR-F6 Wing-Body Configuration

DLR-F6 wing-body configuration has been the second testcase. In this case,
for high order computations structured grid has been was used. In the reference
computation, similarly as LANN wing, hybrid grid has been used. Both the grids
are depicted in the fig. 8 and described in tab. 4.

(a) linear (b) curvilinear

Fig. 8. DLR-F6 grids

Again, the aeroelastic steady state computations converge after five iterations
(fig. 9).

This time, the difference between reference solution (deformation: 1.733mm)
and High-Order solution (deformation: 1.619mm) is 6.58% (fig. 10).
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Table 4. Grids details

Grid linear curvilinear

No of nodes 4.0M 3.3M
No of elements 10.2M 50 618

- prism 6.1M 0
- pyramid 11k 0
- tetrahedral 5.1M 0
- hexahedral 0 50 618

Fig. 9. Aeroelastic steady stare DLR-F6 aircraft deformation

(a) (b)

Fig. 10. Deformed aircraft: grey - non-deformed structural model; blue - deformed
model calculated in TAURUS AE System; red - deformed model calculated in IDIHOM
AE System
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More details about testcases are presented in article: "Aeroelastic testcases".

6 Summary

In the present paper, aeroelastic system using high-order methods and high-
order, curvilinear meshes has been described. The details of the necessary
changes have been given. These changes include the interpolation of pres-
sures/displacements between two problem domains, handling the data from
discontinuous-Galerkin CFD solver and the deformation of curvilinear meshes
preserving the quality. The last task required the implementation of new quality
metrics. The new AE System has been compared with the reference AE System
basing on FV CFD Solver.

References

1. Kamakoti, R.: Computational Aeroelasticity Using a Pressure-Based Solver. PhD
thesis, University of Florida (2004)

2. Degand, C., Farhat, C.: A three-dimensional torsional spring analogy method for
unstructured dynamic meshes. Comput. Struct. 80, 305 (2002)

3. Bloom, F.J.: Consideration on the spring analogy. Int. J. Numer. Methods Flu-
ids 32, 647–668 (2000)

4. Roszak, R., Posadzy, P., Stankiewicz, W., Morzyski, M.: Fluid-structure interaction
for large scale complex geometry and non-linear properties of structure. Archives
of Mechanics 61(1), 3–27 (2009)

5. Geuzaine, C., Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with
built-in pre-and post-processing facilities. International Journal for umerical Meth-
ods in Engineering 79(11), 1309–1331 (2009)

6. Toulorge, T., Geuzaine, C., Remacle, J.-F., Lambrechts, J.: Robust untangling of
curvilinear meshes. Journal of Computational Physics 254, 8–26 (2013)

7. Ruo, S.Y., Malone, J.B., Horsten, J.J., Houwink, R.: The LANN programan ex-
perimental and theoretical study of steady and unsteady transonic airloads on a
supercritical wing. AIAA Paper 1983-1686

8. Brodersen, O., Strmer, A.: Drag Prediction of EngineAirframe Interference Effects
using Unstructured Navier-Stokes Calculations. In: 19th AIAA Applied Aerody-
namics Conference, Anaheim, CA, USA, June 11-14. AIAA Paper 2001-2414 (2001)



New Developments for Increased Performance
of the SBP-SAT Finite Difference Technique

J. Nordström1 and P. Eliasson2

1 Department of Mathematics, Computational Mathematics, University of Linköping,
SE-581 83 Linköping, Sweden

jan.nordstrom@liu.se
2 Department of Aeronautics and Autonomous Systems, FOI,

The Swedish Defense Research Agency, SE-164 90 Stockholm, Sweden
peter.eliasson@foi.se

Abstract. In this article, recent developments for increased performance
of the high order and stable SBP-SAT finite difference technique is
described. In particularwediscuss the use ofweak boundary conditions and
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1 Introduction

We briefly describe two different new contributions to the theory for high order
stable SBP-SAT finite difference schemes. The complete description of the weak
boundary procedures for convergence to steady state is given in [1] while the
development of dual consistence schemes is presented in [2], [3], [4]. The reader
is referred to articles mentioned above for potentially missing details.

2 Weak Solid Wall Boundary Conditions
and Steady State

The formulations of solid wall boundary conditions for the Navier-Stokes equa-
tions and the related slip condition for the Euler equations are well known.
Less well known is the relation between these two formulations with a weak
implementation. One of the more striking features is the fact that with a weak
implementation of the boundary condition, the velocity at the wall becomes zero
only for very fine meshes.

The main reason to use weak boundary procedures stems from the fact that to-
gether with summation-by-parts operators they lead to provable stable schemes.
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For application of this technique to finite difference methods, node-centered fi-
nite volume methods, spectral domain methods and various hybrid methods see
the references in the original article [1] In this section we will consider a new
effect of using weak boundary procedures, namely that it in many cases (all that
we tried) speeds up the convergence to steady-state.

Most of the work on convergence acceleration to steady-state is done for the
discrete problem. Techniques such as local time-stepping, multigrid, residual
smoothing, etc are used to enhance the convergence to steady-state. In the ma-
jority of the investigations, the discrete problem including boundary conditions,
is formulated first, and the numerical convergence acceleration technique is more
or less independently added on afterwards. We will not consider this type of
numerical convergence acceleration techniques but rather focus on more funda-
mental aspects related directly to the governing equations and the numerical
scheme.

We will consider the basic requirement for convergence to steady-state, namely
the position of the eigenvalues (the spectrum) of the Initial Boundary Value
Problem (IBVP). The eigenvalues of the corresponding semi-discrete Initial
Value Problem (IVP) problem obtained by using the method of lines are equally
important and will also be discussed. We start by formulating the relevant IBVP
and the data requirements for the existence of a steady-state solution. Next we
make sure that we have a well posed procedure (such that it is possible to reach
the steady-state) and finally quantify the speed of convergence using the utmost
right lying eigenvalue in the spectrum. That is repeated with minor technical
modifications (such as replacing the concept well-posedness by stability, investi-
gating numerical eigenvalues, etc.) for the IVP.

Finally we apply the general theory to the specific case of solid wall boundary
conditions. Our basic theoretical tools will be the classical ones, namely the en-
ergy method, the Laplace transform technique and the matrix exponential. Our
basic computational tool is a node vertex edge based flow solver for unstructured
grids, the Edge code developed by FOI.

2.1 The Formulation of the IBVP for Steady-State Calculations

Consider the following time-dependent one-dimensional model problem.

ut +Au = F (x, t), x ≥ 0, t ≥ 0

Lu = g(t), x = 0, t ≥ 0

u = f(x), x ≥ 0, t = 0,

(1)

where u(x, t) = (u1, u2, .., um)T is the solution vector with m components, and
A = A(∂/∂x) is the differential operator. The forcing function F , the boundary
data g and the initial function f are the data of the problem. For simplicity we
disregard the influence of the right boundary.
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Assume now that we want to use (1) and compute a steady solution v that
satisfies

Av = F̃ (x), x ≥ 0

Lv = g̃, x = 0.
(2)

The difference problem that describes the possible convergence to steady-state is
obtained by subtracting (2) from (1). The deviation e = u− v from steady-state
satisfies

et +Ae = dF (x, t), x ≥ 0, t ≥ 0

Le = dg(t), x = 0, t ≥ 0

e = df(x), x ≥ 0, t = 0,

(3)

where dF (x, t) = F − F̃ , dg(t) = g − g̃ and df(x) = f − v. Note that we have
used the fact that vt = 0 to arrive at (3).

For a steady-state solution to exist, no time-dependent data are allowed. This
means that dF and dg must vanish as t→∞. Furthermore, we cannot expect to
be able to guess the initial condition that makes df = 0. The task is therefore to
develop techniques for the IBVP (3) with zero forcing function, zero boundary
data and non-zero initial function such that e→ 0 as t→∞.

For later reference, the final version of the steady-state problem under inves-
tigation is

et +Ae = 0, x ≥ 0, t ≥ 0

Le = 0, x = 0, t ≥ 0

e = f, x ≥ 0, t = 0.

(4)

Our ambition is to reduce e from its initial value f and reach zero fast.

2.2 Convergence to Steady-State of Solutions to the IBVP

We discuss the requirements for obtaining steady-state solutions (e = 0) in (4).
In almost all practical cases, the spatial operator A is given. The speed at which
e→ 0, the convergence rate to steady-state, can therefore only be manipulated
by the boundary condition Le = 0. Different choices of the boundary operator
L leads to different convergence rates.

The Laplace-Transform Method for the Convergence Rate. The conver-
gence rate will be obtained by using the so called Laplace-transform technique,
see the references in [1]. Assume that a suitable boundary operator L has been
determined. The Laplace transformed version of (4) is

(sI +A)ê = f, x ≥ 0

Lê = 0, x = 0,
(5)

where s = η + iξ is the dual variable to time and

ê(x, s) = Le =
∫ ∞

0

e(x, t) exp (−st)dt. (6)
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The integral in (6) is well defined if the time-growth of the solution e in (4) is
bounded, i.e. if (4) is well posed and η is sufficiently large and positive.

To solve (5) we make the ansatz êh = ψ exp (κx) for the homogeneous solution.
The particular solution êp which depends on the initial data f is assumed known.
That leads to a generalized eigenvalue problem for κ(s) of the form

(sI +A(κ))ψ = 0, |sI +A(κ)| = 0. (7)

The first equation in (7) has a non-trivial solution ψ �= 0 if and only if there are κ
such that the second relation is satisfied. A(κ) is a polynomial in κ with matrix
coefficients. As an example, A = A∂/∂x+B∂2/∂x2 leads to A(κ) = Aκ+ Bκ2

where A and B are matrices. Note that ψ = ψ(κ(s), s).
The homogeneous solution in the absence of multiple generalized eigenvalues

κ, is
êh =

∑

i

σiψi exp (κix). = ΨX̄(x)σ, (8)

where X̄(x) = diag[eκ1x, eκ2x, ...], X̄(x) = diag[eκ1x, eκ2x, ...], Ψ = [ψ1, ψ2, ...]
and σ = [σ1, σ2, ...]

T . The coefficients σi will be determined by the boundary
conditions. The total solution is given by ê = êh + êp. The boundary conditions
in (5) lead to Lêh = ĝ where ĝ = −Lêp. By using (8), the final equation for the
coefficients σi becomes

E(s)σ = ĝ, E(s) = LΨX̄(0). (9)

E(s) is a matrix with the structure given by the boundary operator L, the
eigenvectors ψi and the generalized eigenvalues κi. The right-hand side ĝ is
known and depend on the particular solution and it’s gradients on the boundary.

A unique solution σ is obtained if E in (9) is non-singular. With s such that
η > η∗ where all the possible singularities (or eigenvalues) in E lies to the left
in the complex plane, we can solve for σ and formally transform back to time
domain by

e(x, t) = L−1ê = exp (η∗t)

(
1

2π

∫ +∞

−∞
ê(x, η∗ + iξ) exp (iξt)dξ

)
. (10)

Convergence to steady-state is obtained if η∗ < 0. The way to increase the
convergence rate (η∗) to steady-state is to choose the boundary operator L such
that η∗ lies as far as possible to the left in the complex plane. For later reference
we denote η∗ = the continuous decay rate.

Remark: With multiple roots κ to the first equation in (7), the ansatz êh =
ψ exp (κx) must be reformulated. Instead of a constant vector, ψ is now of the
form ψ = ψ0 +xψ1...+ xnψn, where n+1 is the multiplicity of the root κ. That
complicates the derivation above technically, but in principle it remains the same.
Also the conclusion that we have convergence to steady-state for η∗ < 0 remains
the same.
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The Energy Method for Deriving Boundary Conditions. In the dis-
cussion above, the boundary operator was assumed given. To derive suitable
boundary operators L such that e→ 0 fast as t→∞ we use the energy method.
By choosing dissipative boundary operators L we hope to push the spectrum
(the utmost right lying eigenvalues) as far left as possible in the left half plane.
Multiply (4) with eT , add the transpose of the equation, and integrate over the
domain. That leads to

‖e‖2t = −
∫ ∞

0

eT (A+AT )edx = BT (e, ex)x=0 −
∫ ∞

0

R(e, ex)dx. (11)

For (11) to be well posed, the right-hand side (RHS) in (11) must be bounded
by const.‖e‖2.
Remark: In (11) we have assumed that the operator A may include second
derivatives (integration-by-parts yield boundary and volume terms with first
derivatives). All important hyperbolic (Euler, Maxwells, wave equations) and
parabolic (heat, stress equations) as well as incompletely parabolic problems
(Navier-Stokes equations) are thereby included.

For fast energy decay, the RHS in (11) should be made as negative as possible.
In almost all practical cases, the spatial operator A is given and hence also the
original form of the RHS. There is no possibility to modify the volume term R
(which must be negative semi-definite). The rate at which the norm is decreasing
(or increasing) can only be manipulated by the boundary condition Le = 0.
Different choices of L leads to different sizes and signs of BT (e, ex)x=0 and
different convergence rates.

Remark: No direct method for constructing boundary conditions that lead to
fast convergence to steady-state exist. In this paper we assume that forcing the
energy to decay fast, will lead to fast (a negative η∗ with large magnitude)
convergence to steady-state.

2.3 The Formulation of the IVP for Steady-State Calculations

We discretize the IBVP (4) in space and leave time continuous, i.e. use the
method of lines. The focus is on the matrix properties of the resulting system of
ordinary differential equations. The semi-discrete version of (4) can formally be
written

et + Āe = 0, t ≥ 0

e = f, t = 0.
(12)

where e = (e0, e1, .., eN )T , ej = (e1, e2, .., em)Tj is the discrete version of the
deviation e from steady-state. Ā = A−Σ is a modified version of A, where A is
the (N + 1)m× (N + 1)m discretization matrix approximating the operator A
and N +1 is the number of grid points. When the scheme is adjusted to include
the numerical treatment of the boundary conditions (Σ) we obtain Ā.

There are two distinctly different ways to prescribe boundary conditions for
node vertex solvers where the unknowns are located on the boundary. One can
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use a weak or a strong boundary procedure. In a weak boundary procedure, the
quantities at the boundaries, even though they are known, are updated in time.
The boundary value typically deviates slightly from the prescribed value but the
deviation is reduced as the grid is refined. With a strong boundary procedure,
on the other hand, the specified boundary value is injected into the dependent
variable on the boundary. The boundary quantity is no longer an unknown, and
there is hence no need for an update.

In the case of a weak boundary procedure we have Ā = A−Σ where the matrix
A correspond to the internal discretization (often on so called summation-by-
parts (SBP) form). The incorporation of the continuous boundary conditions
Le = 0 is done weakly by using the penalty term Σe. The form of the penalty
matrix Σ depend on the boundary operator L, i.e. Σ = Σ(L). Roughly speaking,
the penalty term must be accurate and lead to stability.

A strong implementation of the continuous boundary conditions is not clearly
separable from the internal discretization (as is the weak boundary procedure). It
essentially amounts to modifying the internal operator A directly in the bound-
ary region and turn it into Ā. To facilitate the comparison with weak boundary
conditions we reformulate the strong implementation such that it directly mimics
the weak one. That means that we add and subtract terms to obtain the matrix
relation Ā = A − Σ where A is the same for both weak and strong boundary
procedures.

2.4 Convergence to Steady-State of Solutions to the IVP

We discuss the requirements for obtaining steady-state solutions e = 0 in (12).
The sign and size of the real part of the eigenvalues to Ā is the crucial factor
and they depend on the discretization of the spatial operator as well as on the
boundary procedure. We will focus on the influence of the boundary procedure
and keep the discretization of the spatial operator fixed.

The Matrix Exponential Method for Obtaining the Convergence Rate.
Once we have the IVP on the form (12) we can write down the solution as

e = exp (−Āt)f, t ≥ 0, (13)

using the definition of the matrix exponential. Next we assume that Ā is diago-
nalizable (the algebraic multiplicity of the eigenvalues λi is equal to the geometric
multiplicity) such that Ā = XΛX−1 where Λ = diag(λi). That leads to

e = X exp (−Λt)X−1f, t ≥ 0, (14)

and convergence to steady-state if all �(λi) > 0. The way to increase the conver-
gence rate (mini �(λi)) to steady-state is to choose a boundary procedure such
that mini�(λi) lies as far as possible to the right in the complex plane. The sign
convention is such that mini�(λi)→ −η∗ as the mesh is refined.

Remark: If there are multiple roots λi such that Ā is not diagonalizable (the
algebraic multiplicity of the eigenvalues λi is larger than the geometric multi-
plicity), then we can use the Jordan decomposition of Ā. The derivation above
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remains almost the same and the conclusion that we have convergence to steady-
state for mini�(λi) > 0 remains exactly the same.

The Energy Method for Deriving Boundary Procedures. To derive a
suitable discretization, i.e. a matrix Ā with eigenvalues such that e → 0 as
t → ∞ as was discussed above, we use the energy method. Multiply (12) with
eT P̄ from the left, where P̄ ≡ (P ⊗ Im). Im is the m ×m identity matrix and
the (N + 1) × (N + 1) matrix P is symmetric and positive definite. The same
holds for P̄ , which thus is a valid norm ‖e‖2

P̄
= eT P̄e. This leads to

(‖e‖2P̄ )t = −e
T (P̄ Ā+ (P̄ Ā)T )e. (15)

Recall that Ā includes both the interior approximation and the boundary proce-
dure. For (15) to be energy stable, the right-hand side (RHS) must be bounded
by const.(‖e‖2

P̄
).

For a steady state to exist, we know from the previous section that the eigen-
values of Ā must have strictly positive real parts. We also know that if mini�(λi)
is large, the convergence will be fast. To manipulate the eigenvalues of Ā directly
is almost impossible. However, by using the energy method, see (15), we can
modify the matrix (P̄ Ā)S = (P̄ Ā + (P̄ Ā)T )/2 in such a way that it modifies Ā
and most likely enhances the convergence rate.

In most cases, the internal part of the discretization (A) is given by the class
of method chosen. The choice of boundary approximation (Σ), on the other hand
is crucial and will be considered in detail. As was mentioned above (Σ = Σ(L))
and it is therefore highly dependent on the boundary conditions in (4) but also
on the specific numerical implementation technique. In this paper we focus on
the latter.

Let us assume that we have chosen a particular boundary approximation such
that (P̄ Ā)S is positive definite and leads to an energy decay in (15). Let λ and
x be an eigenvalue and eigenvector to Ā. By multiplying the relation Āx = λx
from the left with x∗P̄ and rearranging we get

λ = �(λ) + i�(λ), �(λ) = x∗(P̄ Ā)Sx

x∗P̄ x
, �(λ) = x∗(P̄ Ā)ASx

x∗P̄x
, (16)

where (P̄ Ā)AS = (P̄ Ā−(P̄ Ā)T )/2. Consequently, we can guarantee convergence
to steady-state if we have an energy decay in (15). We can also see from (16) that
by making (P̄ Ā)S = (P̄ Ā+(P̄ Ā)T )/2 more positive definite, there is a possibility
that we can increase the convergence rate mini �(λi). For later reference we
denote mini�(λi) = the discrete decay rate.

The strategy in this paper for studying the influence of weak and strong
solid wall boundary procedures can be summarized as follows. First we make
sure that the continuous solid wall boundary conditions are well posed and lead
to convergence to steady-state (otherwise further investigation is meaningless).
Next we discretize and derive the different forms of Ā = A−Σ. The inner scheme
A is the same for all cases but Σ varies depending on the form of boundary
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implementation we use. We will study three types, the weak, the strong and an
intermediate form of implementation. After that we use the energy method and
try to determine if the schemes are stable. Finally we compute the eigenvalues
of Ā and see which procedure yields the largest value of mini�(λi).

2.5 Numerical Results Using a Fully Nonlinear Finite Volume
Solver

The analysis of our model problem, see details in the full article [1], indicate that
the weak scheme lead to faster convergence to steady-state. To investigate if this
result carries over to the fully nonlinear Navier-Stokes equations, we use the fi-
nite volume solver Edge, which is applicable on both structured and unstructured
grids. The governing equations are integrated explicitly with a multistage local
time-stepping Runge-Kutta scheme to steady-state and acceleration by FAS ag-
glomeration multigrid can be used. There are numerous boundary conditions in
Edge for walls, external boundaries and periodic boundaries. In all calculations
we have used the same boundary conditions on all boundaries that are not solid
walls. These boundary conditions are imposed weakly.

Remark: The eigenvalues must be located in the right-half plane also for local
time-stepping schemes. Consider an IVP on the form Vt+ĀV = F . Diagonalizing
the IVP yields a system of scalar equations of the form (wj)t + λjwj = f̃j . The
scalar equations all require eigenvalues λj with positive real part in order not to
grow. This requirement is independent of whether one uses a time-accurate or
local time-stepping scheme.

The flow conditions for the NACA0012 airfoil are as follows: Mach number
M = 0.8, Reynolds number Re = 500 and α = 0◦ as the angle of attack. These
parameters yield a subsonic, low Reynolds flow which is assumed laminar.

Figure 1 displays the convergence to steady-state using the density residual.
A 3-stage first order accurate Runge-Kutta time integrator with CFL=1.25 is
used in combination with local time steps. No artificial dissipation is used. The
weak solution converges faster than the solutions obtained by the other two
schemes. The difference is more pronounced for the coarsest grid, which is what
is expected from the linear results. Next we investigate the flow over a flat plate.
For x < 0, where no plate exist, a symmetry condition is used, and for x ≥ 0
the no-slip solid wall condition is imposed. The flat plate is 7 m long and has
a Reynolds number of 10.5 × 106 based on that length. The flow is modelled
as fully turbulent with an Explicit Algebraic Reynolds Stress Model (EARSM)
formulation based on a two-equation κ− ω model.

The convergence of the density residual is shown in Figure 2. The weak scheme
converges slightly faster than the mixed scheme, while the strong scheme does
not converge at all. This behavior is also consistent with the linear analysis which
shoved that the strong scheme had an eigenvalue passing zero for the coarsestmesh.

Next we investigate the influence of solid wall boundary procedures on the
multigrid acceleration technique. We consider the same flow field (the flat plate)
again. Now neither the mixed nor the strong boundary procedure converges, see
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Fig. 1. The convergence of the density residual. NACA0012 at Mach number M = 0.8,
Reynolds number Re = 500 and α = 0◦ as the angle of attack.

0 50000 1e+05 1.5e+05
Iter

-10

-8

-6

-4

-2

0

Res

Weak-weak
Weak-strong
Strong-strong

(a) Coarsest grid

0 50000 1e+05 1.5e+05 2e+05
Iter

-10

-8

-6

-4

-2

0

Res

Weak-weak
Weak-strong
Strong-strong

(b) Medium grid

0 1e+05 2e+05 3e+05 4e+05
Iter

-10

-8

-6

-4

-2

0

Res

Weak-weak
Weak-strong
Strong-strong

(c) Finest grid

Fig. 2. The convergence of the density residual. Flat plate at Mach number M = 0.07
and Reynolds number Re = 10.5 · 106. Single grid calculation.

Figure 3. This is probably due to the fact that eigenvalues close to or equal to zero
(for our analogous linear problem in the full article) gives a non-decaying energy.

Remark: The differences in steady state convergence between the boundary
conditions are most evident without numerical dissipation. In other calculations
the differences are smaller but still in favour of the weak boundary conditions.
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Fig. 3. The convergence of the density residual. Flat plate, M = 0.07, Reynolds number
Re = 10.5 · 106. Multigrid with three grid levels.

3 Functionals and Dual Problems

The solution of the governing equations might not be the output of primary
interest in many CFD applications. Of equal, or even greater, importance is
the computation of functionals from the solution. In general, a functional is
defined as any map from a vector space V into the underlying scalar field K.
Every vector space has an associated vector space called its dual (or adjoint)
space. The dual space is denoted by V ∗ and is defined as the space of all linear
functionals V → K.

The adjoint, or dual, operator L∗ of a linear operator L is the (unique) oper-
ator satisfying

(v, Lu)V = (L∗v, u)V , (17)

where (., .)V denotes the inner product on the space V . The study of linear
functionals and dual spaces is the topic of functional analysis and additional
preliminaries can be found in any functional analysis textbook.

In this section, we consider initial boundary value problems of the form

ut + L(u) = F, x ∈ Ω,
B(u) = gΓ , x ∈ Γ ⊆ ∂Ω,

u = f, t = 0.

(18)

For applications in CFD, a linear functional of interest usually represents the
lift or drag on a solid body in a fluid, which is computed in terms of an integral
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of the solution of (18). The functional can be represented in terms of an integral
inner product as

J(u) = (g, u) =

∫

Ω

gTudΩ, (19)

where g is a weight function. A main complication in CFD is that no physically
relevant solutions have compact support in the computational domain. The dual
operator is obtained through integration by parts which will introduce boundary
terms that must be removed. The dual PDE has thus to be supplied with dual
boundary conditions to close the system.

The associated dual problem has been extensively studied and used in the
context of error control and adaptive mesh refinement as well as within opti-
mization and control problems. In error control and mesh adaptation, the dual
problem is derived and treated as a variational problem. In optimization and
control problems, the dual problem is derived and treated as a sensitivity prob-
lem with respect to design parameters. In the end, the two different formulations
yield the same dual problem. A similarity for the different areas of applications
is that most of them are based on unstructured methods.

3.1 Quadrature Accuracy

Only recently was the study of duality introduced to structured methods, such as
the SBP-SAT technique. Recall that the SBP operator was constructed to satisfy

(vh, D1uh)h = uTh (EN − E0)vh − (D1vh, uh)h, (20)

which mimics an integration property, rather than a differentiation property.
While the differentiation properties of the SBP operator has been extensively stud-
ied and used, the integration properties of the matrix P have been much less ex-
plored. The integration properties ofP was thoroughly investigated by Hicken and
Zingg [5]. It was shown that the requirements onP to obtain an accurate SBP oper-
ator include, and extend, the Gregory formulas for quadrature rules using equidis-
tant points. Two main results were proven and are restated here for convenience.
The first theorem establishes the accuracy of P as an integration operator;

Theorem 1. Let P be a full, restricted-full, or diagonal mass matrix from an
SBP first-derivative operator D1 = P−1Q, which is a 2p-order accurate approxi-
mation to the first derivative in the interior. Then the mass matrix P constitutes
a 2p-order accurate quadrature for integrands u ∈ C2p(Ω).

The second theorem extends the results to include discrete integrands computed
from an SBP differentiation;

Theorem 2. Let D1 = P−1Q be a an SBP first derivative operator with a
diagonal mass matrix P and 2p-order interior accuracy. Then (vh, D1uh)h is a
2p-order accurate approximation of (v, ux).

These theorems proved in summary that it is possible to retain the full order
of accuracy when computing integrals from an SBP discretization, even with a
diagonal P .
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3.2 Dual Consistency

For initial boundary value problems (IBVPs), it is not sufficient to integrate the
solution obtained by an SBP-SAT discretization using P to obtain a functional
of 2p-order accuracy. It was shown in [6] that an additional property of the
discretization was required—the so called dual consistency property. The main
result in [6] extends the results in [5] to include SBP-SAT solutions to IBVPs.
Even though the solution uh to an IBVP using SBP-SAT is accurate of order
p+ 1 when using a diagonal P , any linear functional of uh is accurate of order
2p when integrated using P , if the discretization is dual consistent.

As suggested by the name, dual consistency requires that the discretization
of the primal problem is also a consistent approximation of the dual problem. In
order to construct a dual consistent discretization, one first have to derive the
dual problem and work with both the primal and dual problems simultaneously.
To obtain the dual differential operator we consider the linear, or linearized,
Cauchy problem,

ut + Lu = f, x ∈ Ω,
u = 0, t = 0,

J(u) = (g, u)

(21)

where J(u) is a linear functional of interest. We seek a function θ, in some
appropriate function space, such that

T∫

0

J(u)dt =

T∫

0

(θ, f)dt. (22)

Using integration by parts, we can write

T∫
0

J(u)dt =
T∫
0

J(u)dt−
T∫
0

(θ, ut + Lu− f)dt

=
T∫
0

(θt − L∗θ + g, u)dt− [(θ, u)]t=T +
T∫
0

(θ, f)dt

(23)

and it is clear that θ = 0 at t = T is needed, and that θ has to satisfy the dual
equation −θt + L∗θ = g. The time transform τ = T − t is usually introduced,
and the dual Cauchy problem becomes

θτ + L∗θ = g, x ∈ Ω,
θ = 0, τ = 0.

(24)

The situation is more complicated for IBVPs. Since the primal equation does
not have compact support in general, the boundary terms resulting from the
integration by parts procedure has to be properly taken care of by the homo-
geneous primal boundary conditions. The dual boundary conditions are defined
as the minimal set of homogeneous conditions such that the boundary terms
vanish after the homogeneous primal boundary conditions have been applied.
Still, one needs to investigate the well-posedness of the dual equation with the
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resulting dual boundary conditions. A well-posed set of boundary conditions for
the primal problem does not necessary lead to a well-posed dual problem.

A discretization of a problem with a functional of interest can be written as
d
dtuh + Lhuh = f,

Jh(uh) = (g, uh)h,
(25)

where the entire spatial discretization, including the boundary conditions, has
been collected into the discrete operator Lh. Recall that the inner product is
defined as

(vh, uh)h = vTh Puh (26)

in an SBP-SAT framework. The discrete adjoint operator L∗
h is defined, analo-

gously to (17), as the unique operator satisfying

(vh, Lhuh)h = (L∗
hvh, uh)h. (27)

The discrete adjoint operator can hence be explicitly computed, using (26)
and (27), as

L∗
h = P−1LT

hP. (28)

Thediscrete dual problem is obtained analogously to the continuous case byfinding
θh such that

∫ T

0
Jh(uh)dt =

∫ T

0
(θh, f)dt. Integration by parts and (28) gives

T∫
0

Jh(uh)dt =
T∫
0

(g, uh)hdt−
T∫
0

(θh,
d
dtuh + Lhuh − f)hdt

=
T∫
0

( d
dtθh − L∗

hθh + g, uh)hdt− [(θh, uh)h]t=T +
T∫
0

(θh, f)hdt

(29)

and hence the θh has to satisfy the discrete dual problem

d
dτ θh + L∗

hθh = g,

θh = 0, τ = 0,
(30)

where τ = T − t. Dual consistency can now be defined in terms of L∗
h and L∗;

Definition 1. A discretization is called dual consistent if L∗
h is a consistent

approximation of L∗ and the continuous dual boundary conditions.

The above definition is not specific for SBP-SAT discretizations. Any discretiza-
tion which can be written in the form (25) is applicable. The SBP-SAT technique
is particularly well-suited for this framework because of the well-defined inner
product and operator form.

It is common, in optimization for example, that continuous and discrete ad-
joint methods are distinguished. This is because the discrete adjoint operator
does not approximate the continuous adjoint operator and boundary conditions
in general. In the SBP-SAT framework, the dual consistency property can al-
low for very efficient use of adjoint based techniques due to the unification of
the continuous and discrete adjoints. SBP-SAT is not the only method which
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offers consistency with the dual equations. It was shown that, for example, the
discontinuous Galerkin method can also exhibit this property.

Thedual consistencyproperty canbe easily exemplifiedusing themodel problem
(31). Dual consistency does not depend on any data of the problem but only the
differential operator and the form of the boundary conditions. We hence consider
the inhomogeneous problem with homogeneous boundary and initial conditions,

ut + ūux = f, 0 ≤ x ≤ 1

u(0, t) = 0,

u(x, 0) = 0,

J(u) = (g, u)

(31)

where J(u) is a linear functional of interest. We seek a function θ so that∫ T

0 J(u)dt =
∫ T

0 (θ, f)dt and integration by parts gives

T∫
0

J(u)dt =
T∫
0

J(u)dt−
T∫
0

(θ, ut + ūux − f)dt

=
T∫
0

(θt + ūθx + g, u)dt−
1∫
0

[θu]t=Tdx−
T∫
0

[ūθu]x=1dt+
T∫
0

(θ, f)dt.

(32)

It is clear that θ has to satisfy the dual problem
θτ − ūθx = g, 0 ≤ x ≤ 1,

θ(1, τ) = 0,

θ(x, 0) = 0,

(33)

where we have introduced the time transform τ = T − t.
The model problem (31) can be discretized as

d
dtuh + ūD1uh = σP−1(eT0 uh − 0)e0 + f,

Jh(uh) = (g, uh)h,
(34)

and the parameter σ has to be determined so that the scheme is not only stable,
but also a consistent approximation of the dual problem (33). It is convenient
to rewrite (34) in operator form as

d

dt
uh + Lhuh = f, (35)

where the spatial discretization, including the boundary condition, is included
in the operator

Lh = ūD1 − σP−1E0. (36)

The discrete dual operator can be directly computed as

L∗
h = P−1LT

hP = −ūD1 + ūP−1EN − (σ + ū)P−1E0, (37)

and it is seen that L∗
h imposes a boundary condition at x = 0, due to the last

term in (37), unless σ = −ū. With σ = −ū, the discrete dual problem becomes
d

dτ
θh − ūD1θh = −ūP−1ENθh + g, (38)
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Table 1. Convergence rates q, and functional errors for the dual inconsistent and
consistent schemes

5th-order (2p = 8)
σ = −1/2 σ = −1

N q(uh) q(Jh(uh)) Error q(uh) q(Jh(uh)) Error
96 4.58 4.51 1.87e-05 5.14 8.20 7.54e-09
128 4.87 4.80 3.02e-06 5.34 7.96 2.71e-10
160 4.97 4.91 7.58e-07 5.41 8.02 2.74e-11
192 5.02 4.97 2.53e-07 5.44 8.06 4.58e-12
224 5.05 5.01 1.02e-07 5.46 8.21 1.05e-12
256 5.06 5.04 4.72e-08 5.46 8.62 2.97e-13

which is a consistent approximation of the dual problem (33). Since σ = −ū does
not contradict the stability condition (σ ≤ −ū/2), the scheme is both stable and
dual consistent. In Table 1 we show the convergence rates q for the solution and
the functionals, together with the functional error, using the dual inconsistent
and consistent schemes. As we can see from Table 1, the convergence rate for
the linear functional increases from p + 1 to 2p when using the dual consistent
discretization. Also notice that dual consistency is merely a choice of parameters.
The solution of the dual problem is never required and hence the increased rate
of convergence for linear functionals comes at no extra computational cost.

3.3 Boundary Conditions

The theory of dual consistency is not only useful for deriving schemes with
superconvergent integral functionals. By simultaneously considering the primal
and dual equals, new boundary conditions can be derived. As an example, we
will consider the linearized and symmetrized compressible Navier–Stokes and
Euler equals in two space dimensions:

Ut +AUx +BUy = ε((C11Ux + C12Uy)x + (C21Ux + C22Uy)y). (39)

The Euler equations are obtained by setting ε = 0. This seemingly small change,
to have ε = 0 or not, have a huge impact on the boundary conditions. Lets
consider the unit square for simplicity.

A commonly used far-field boundary condition is of the form

HWU − ε(C11Ux + C12Uy) = 0, HEU + ε(C11Ux + C12Uy) = 0,

HSU − ε(C21Ux + C22Uy) = 0, HNU + ε(C21Ux + C22Uy) = 0,
(40)

where the matrices HW,E,S,N (W,E,S,N refers to the west, east, south, and north
boundaries, respectively) have to be construed for well-posedness. A well-known
problem is that for subsonic outflow boundaries, matrices that give a well-posed
problem for one of the equations, give an ill-posed problem for the other. One
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can hence not switch between the Navier–Stokes and Euler equations by simply
putting ε = 0 or not. When attempting to remedy this problem, one has to put
up general matrices with general coefficients and try to determine them to get
the properties one wants. In two dimensions, the matrices are 4×4, each with 16
undetermined coefficients, and the parameter space simply becomes too large.

More equations are needed to deal with the amount of undetermined param-
eters. By considering not only well-posedness of the primal equations, but also
of the dual equations, we get exactly what we need. To derive the dual Navier–
Stokes equations we consider (39) in the form

Ut + LU = F, (x, y) ∈ Ω,
BU = 0, (x, y) ∈ Γ ⊆ ∂Ω,

U = 0, t = 0,

J(U) = (G,U).

(41)

In (41), J(U) is a linear integral functional with a weight function G and B
implements the boundary conditions in (40). The right-hand side F may be
identically zero, but a symbol is needed to perform integration by parts when
deriving the dual problem. The differential operator L is given by

L = A
∂

∂x
+B

∂

∂y
−ε

((
C11

∂

∂x
+ C12

∂

∂y

)
∂

∂x
+

(
C21

∂

∂x
+ C22

∂

∂y

)
∂

∂y

)
. (42)

We seek a function Θ = [θ1, θ2, θ3, θ4]
T such that

T∫
0

J(U)dt =
T∫
0

(Θ,F ), and we

get by the Gauss–Green formula

T∫
0

J(U)dt =
T∫
0

(G,U)−
T∫
0

(Θ,Ut + LU − F )dt

=
T∫
0

(Θ,F )dt+
T∫
0

(Θt − L∗Θ +G,U)dt

+
T∫
0

∫

W

ΘT (AU − ε(C11Ux + C12Uy)dydt+ ε
T∫
0

∫

W

(ΘT
xC11 +ΘT

y C12)Udydt

−
T∫
0

∫
E

ΘT (AU − ε(C11Ux + C12Uy)dydt− ε
T∫
0

∫
E

(ΘT
xC11 +ΘT

y C12)Udydt

+
T∫
0

∫

S

ΘT (BU − ε(C21Ux + C22Uy)dxdt + ε
T∫
0

∫

S

(ΘT
xC21 +ΘT

y C22)Udxdt

−
T∫
0

∫

N

ΘT (BU − ε(C21Ux + C22Uy)dxdt − ε
T∫
0

∫

N

(ΘT
xC21 +ΘT

y C22)Udxdt

−
∫

Ω

[ΘTU ]t=T dΩ,

(43)
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where
∫
W,E,S,N

denotes integration over the west, east, south, and north bound-
ary, respectively. The dual operator, L∗, is given by

L∗ = −A ∂

∂x
−B

∂

∂y
− ε

((
C11

∂

∂x
+ C12

∂

∂y

)
∂

∂x
+

(
C21

∂

∂x
+ C22

∂

∂y

)
∂

∂y

)
,

(44)
and we obtain the dual boundary conditions by applying the homogeneous primal
boundary conditions to the boundary integral terms.

By using (40), we can write (43) as

T∫
0

J(U)dt =
T∫
0

(Θ,F )dt+
T∫
0

(Θt − L∗Θ +G,U)dt

+
T∫
0

∫

W

UT ((A −HT
W )Θ + ε(C11Θx + C12Θy))dydt

−
T∫
0

∫
E

UT ((A +HT
E )Θ + ε(C11Θx + C12Θy))dydt

+
T∫
0

∫

S

UT ((B −HT
S )Θ + ε(C21Θx + C22Θy))dxdt

−
T∫
0

∫

N

UT ((B +HT
N )Θ + ε(C21Θx + C22Θy))dxdt.

(45)

We introduce the dual time variable, τ = T − t, and the function Θ has to satisfy
the dual Navier–Stokes equations

Θτ −AΘx −BΘy = ε((C11Θx + C12Θy)x + (C21Θx + C22Θy)y) +G (46)

with the dual boundary conditions

(A−HT
W )Θ + ε(C11Θx + C12Θy) = 0, (A+HT

E )Θ + ε(C11Θx + C12Θy) = 0,

(B −HT
S )Θ + ε(C21Θx + C22Θy) = 0, (B +HT

N )Θ + ε(C21Θx + C22Θy) = 0,

(47)
together with a homogeneous initial condition at τ = 0.

An interesting property is that the primal equations (39) with the primal
boundary conditions (40), and the dual equations (46) with the dual boundary
conditions (47), share the same energy estimate. Let Φ be either the primal
variable U or the dual variable Θ. Then

||Φ||2t,τ + 2ε
∫

Ω

(∇ΦT )C(∇Φ)T dΩ =

−
∫

W

ΦT (−A+HW +HT
W )Φdy −

∫

E

ΦT (A+HE +HT
E )Φdy

−
∫

S

ΦT (−B +HS +HT
S )Φdx−

∫

N

ΦT (B +HN +HT
N )Φdx,

(48)

where C is a positive semi-definite matrix. It is clear that HW,E,S,N must be
chosen such that

−A+HW +HT
W ≥ 0, A+HE +HT

E ≥ 0,

−B +HS +HT
S ≥ 0, B +HN +HT

N ≥ 0,
(49)
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in order to obtain a bounded energy growth and hence an energy estimate for
both the primal and dual Navier–Stokes and Euler equations. Energy estimates
are, however, not sufficient. It is also required that the correct number of bound-
ary conditions are imposed to get well-posed problems, see Table 2. An operator
which have an energy estimate with a minimal number of boundary conditions,
such that existence is guaranteed, is called maximally semi-bounded and leads
directly to well-posedness.

Table 2. Number of boundary conditions required for the primal and dual
Navier–Stokes and Euler equations under subsonic conditions with positive velocity
components

Number of b.c.
Boundary West East South North
Primal Navier–Stokes 4 3 4 3
Dual Navier–Stokes 3 4 3 4
Primal Euler 3 1 3 1
Dual Euler 1 3 1 3

For subsonic outflow boundaries, we chose to construct HE such that the
pressure is specified for the primal Euler equations. In this case, HE has to
satisfy:

1. The top row of HE is zero
2. The top row of A+HT

E is non-zero
3. rank(HE) = 1
4. rank(A+HT

E ) = 3
5. A+HE +HT

E ≥ 0

Requirements (1) and (2) set the correct number of boundary conditions for
the primal and dual Navier-Stokes equations, requirements (3) and (4) set the
correct number of boundary conditions for the primal and dual Euler equa-
tions, and requirement (5) gives energy estimates of both the primal and dual
Navier-Stokes and Euler equations, respectively. The above requirements make
the matrix HE uniquely determined. From potentially 16 undetermined param-
eters, the requirements of primal and dual well-posedness gives unique solutions
to all parameters. The result is summarized in

Theorem 3. Let the matrix HE be given by

HE =
ū2 − c̄2

c̄
√
γ

⎡

⎢⎢⎢⎣

0 0 0 0

1 0 0
√
γ − 1

0 0 0 0

0 0 0 0

⎤

⎥⎥⎥⎦ . (50)
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Then the boundary conditions

HEΦ+ ε(C11Φx + C12Φy) = 0 (51)

are well-posed subsonic outflow conditions for the primal and dual Navier–Stokes
and, for ε = 0, the primal and dual Euler equations.

The details of the proof, and the remaining boundaries together with the dual
consistent SBP-SAT discretizations, can be found in [4].

4 Multigrid for Higher Order Accurate Finite Difference
Schemes

Multigrid is well established for industrial second order accurate CFD codes
like Edge and other codes for structured grids [7]. For higher order accurate
finite difference CFD codes, however, multigrid has so far not been used for
convergence acceleration. We have taken the first steps towards using multigrid in
a higher order accurate finite difference solver. We have analyzed the eigenvalues
to the iteration matrix using multigrid for a model problem of the linearized
one-dimensional Navier-Stokes equations. The spatial operators considered are
exactly the operators based on the SBP-SAT technique.

The Navier-Stokes equations in one dimension can be written as

ut + Fx = 0; F = F I − εFV (52)

where superscripts I, V denotes the inviscid and viscous fluxes, respectively and u
is the vector of the three conservative variables. In order to study the eigenvalues
of the spectra we consider the non-dimensional and linearized Navier-Stokes
equations

wt +Awwx −Bwxx = 0 (53)

where w contains the primitive variables. Matrices Aw, B are constant matrices
and contain averaged values from which the linearization is made.

Multigrid is applied to accelerate the convergence to steady state of a linear
problem formulated as

wt + Lw = 0 (54)

where the spatial operator L contains the entire discretization in one space di-
mension x including boundary conditions,

L(w) = (ξx ⊗ I3) ((Dξ ⊗Aw)w + (Dξ ⊗ I3)(ξx ⊗ I3)(Dξ ⊗B)w − Pen) , (55)

where ξx is the metric operator, I3 is a 3× 3 identify matrix, Dξ = P−1Q is the
first difference SBP operator and Pen contains the boundary penalty terms.

In non-linear multigrid the same equations are solved and iterated on coarser
grids but with a forcing term on the right hand side. We assume Ngrid ≥ 1
multigrid levels and introduce index l to denote the current grid level and denote
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l = 1 the finest level with the original grid and l = Ngrid the coarsest grid. Then
the following equations are solved on the different grid levels:

Level 1 : wlt + Llwl = 0

Level l, 1 < l ≤ Ngrid : wlt + Llwl = Fl = Llr
l
l−1wl−1 − rll−1Ll−1wl−1

(56)

where Fl is the forcing function and is constant when iterating on the coarse
grids. rll−1 is the restriction operator used to transfer information from fine to
coarse grid between levels l − 1, l. The coarse grid solution is iterated one time
level after which the solution difference is interpolated, or prolongated, back to
the finer level using a prolongation operator pl−1

l .
The solution is iterated in time using a time integrator which is denoted a

smoother. Here we consider an explicit m-stage Runge-Kutta time integrator
which integrates (54) as

w0
l = wn

l

w1
l = w0

l − α1Δt(Llw
0
l − Fl)

...
wm

l = w0
l − αmΔt(Llw

m−1
l − Fl)

wn+1
l = wm

l

(57)

where F1 = 0 and Δt the time step. The smoother Sl can then be formulated as

wn+1
l = Slw

n
l + (I − Sl)L

−1
l Fl (58)

where wn
l , wn+1

l are the solution vectors at two consecutive time levels n, n+ 1
and where

Sl = I + β1ΔtLl + β2Δt
2L2

l ++β3Δt
3L3

l + . . . (59)

and (β1, β2, β3, . . . ) = (αm, αmαm−1, αmαm−1αm−2, . . . ).
We want to compare the eigenvalues of the fine grid iteration matrix M1,

sometimes denoted amplification matrix, where

wn+1
1 = M1w

n
1 . (60)

Stability requires that all eigenvalues satisfy | M1 |≤ 1 . The iteration matrix
for multigrid can be written as

Level l, 1 ≤ l < Ngrid : Ml = Sν1
l

(
I − pll+1(I −Ml+1)L

−1
l+1r

l+1
l

)
Sν2
l

Level Ngrid : MNgrid
= SNgrid

(61)

where ν1, ν2 are the number of pre- and post smoothing steps. A single smoothing
step is performed on the coarsest grid.

In the example below we apply wall boundary conditions at one end (x = 0)
and characteristic outflow conditions at the other end (x = 1) with corresponding
penalty terms with stable values of penalty parameters. We use a first order
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accurate 3-stage Runge-Kutta time integrator with (α1, α2, α3) = (2/3, 2/3, 1),
and we choose inviscid flow conditions, ε = 0, at a low Mach number M∞ = 0.1.
The grid is stretched towards the wall reflected in the metric operator ξx in (55).

In Figures 4 and 5 the eigenvalues corresponding to a second and third or-
der (fourth order in the interior and second order on the boundaries) accurate
discretization are shown using 1 − 3 grid levels. The eigenvalues are within the
stability limits with both discretizations. The stability depends on the choice
of grid transfer operators (restriction and prolongation) though which requires
further analysis investigations.

(a) Ngrid = 1 (b) Ngrid = 2 (c) Ngrid = 3

Fig. 4. Eigenvalues of iteration matrix M1 using a second order SBP discretization

(a) Ngrid = 1 (b) Ngrid = 2 (c) Ngrid = 3

Fig. 5. Eigenvalues of iteration matrix M1 using a third order SBP discretization

5 Conclusions

Two completely new developments for increased performance of the high order
and stable SBP-SAT finite difference technique has been described. The use of
weak boundary conditions leads to increased convergence rate to steady state
both for single and multigrid calculations. Dual consistent schemes produces
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superconvergent functionals such as lift and drag and increases accuracy. The
dual consistency comes at no extra cost.

The first steps have been taken to introduce multigrid in a higher order accu-
rate finite difference scheme by analyzing eigenvalues of a one-dimensional model
problem of the linearized Euler equations. The results look promising and there
is no indication that multigrid should not work as convergence accelerator in a
higher order accurate finite difference code, further investigations are required.

Finally we mention that the obvious benefits shown in this chapter of using
weak boundary procedures and dual consistent schemes are also valid for other
computational techniques techniques such discontinuous Galerkin, finite contin-
uous finite elements, spectral elements etc. Only technical implementation issues
differ, but not the fundamental gains that can be obtained.
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Abstract. This chapter describes the contribution of Dassault Aviation
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cally on industrial RANS and DES applications.
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1 Introduction

Although Dassault Aviation (also referred to as DASSAV) started from the be-
ginning with unstructured meshes and a Navier-Stokes code based on a finite
element formulation, the claim that finite elements can fairly effortlessly and in
a straightforward manner go high in order was never fully exploited. Linear ele-
ments which yield second-order accuracy are still currently used for all industrial
Navier-Stokes calculations [4], [8], [9].

The ADIGMA Project was a first step towards the use of higher-order methods
[11]. The participation of Dassault Aviation concentrated on the assessment of
higher-order stabilized finite elements with 2-D test cases which covered a broad
range of flow regimes.

The European project IDIHOM (Industrialisation of High-Order Methods –
A Top-Down Approach) aimed at bringing the higher-order capability to more
industrial applications. Contrary to most partners in the Project, Dassault Avia-
tion uses a stabilized finite element formulation based on continuous shape func-
tions. It is more related to residual distribution schemes, although the method
has a pure finite element foundation. We focused on its extension to higher-order
elements and more specifically on industrial RANS and DES applications.

2 Higher-Order Stabilized Finite Element Schemes for
the RANS Equations

We present our numerical method in the following sections and highlight the
adjustments required by higher-order elements.

c© Springer International Publishing Switzerland 2015 489
N. Kroll et al. (eds.), IDIHOM: A Top-Down Approach, Notes on
Numerical Fluid Mechanics and Multidisciplinary Design 128, DOI: 10.1007/978-3-319-12886-3_23
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2.1 General Description of Our Flow Solver

Dassault Aviation’s Navier-Stokes code, called AeTher, uses a finite element ap-
proach, based on a symmetric form of the equations written in terms of entropy
variables. The advantages of this change of variables are numerous: in addition
to the strong mathematical and numerical coherence they provide (dimension-
ally correct dot product, symmetric operators with positivity properties, effi-
cient preconditioning), entropy variables yield further improvements over the
usual conservation variables, in particular in the context of chemically reacting
flows [3], [4].

The code can handle the unstructured mixture of numerous types of elements
(triangles and quadrilaterals in 2-D; tetrahedra, bricks, and prisms in 3-D). In
practice mostly linear triangular and tetrahedral meshes are used.

Different one- and two-equation Reynolds-averaged turbulence models are
available: Spalart-Allmaras, K-ε, K-ω, K-�, K-KL. . . These models are either
integrated down to the wall, use a two-layer approach with a low-Reynolds mod-
eling of the near wall region, or adopt a wall function treatment of the boundary
layer. More advanced RANS models, such as EARSM and RSM, and extensions
to LES and DES are also available (see [6], [7], [9], and [10]).

Convergence to steady state of the compressible Navier-Stokes equations is
achieved through a fully-implicit iterative time-marching procedure based on
the GMRES algorithm with nodal block-diagonal or incomplete LDU precondi-
tioning [21].

The code has been successfully ported on many computer architectures. It is
fully vectorized and parallelized using the MPI message passing library [5].

2.2 The Symmetric Navier-Stokes Equations

As a starting point, we consider the compressible Navier-Stokes equations written
in conservative form:

U,t + F adv
i,i = F diff

i,i (1)

where U is the vector of conservative variables; F adv
i and F diff

i are, respectively,
the advective and the diffusive fluxes in the ith-direction. Inferior commas denote
partial differentiation and repeated indices indicate summation.

Equation (1) can be rewritten in quasi-linear form:

U,t +AiU,i = (KijU,j),i (2)

where Ai = F adv
i,U is the ith advective Jacobian matrix, and K = [Kij ] is the

diffusivity matrix, defined by F diff
i = KijU,j . The Ai’s and K do not possess

any particular property of symmetry or positiveness.
We now introduce a new set of variables,

V T =
∂H
∂U
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where H is the generalized entropy function given by

H = H(U) = −ρs

and s is the thermodynamic entropy per unit mass. Under the change of variables
U �→ V , (2) becomes:

Ã0V,t + ÃiV,i = (K̃ijV,j),i (3)

where

Ã0 = U,V

Ãi = AiÃ0

K̃ij = KijÃ0.

The Riemannian metric tensor Ã0 is symmetric positive-definite; the Ãi’s are
symmetric; and K̃ = [K̃ij ] is symmetric positive-semidefinite. In view of these
properties, (3) is referred to as a symmetric advective-diffusive system.

For a general divariant gas, the vector of so-called (physical) entropy variables,
V , reads

V =
1

T

⎧
⎪⎨

⎪⎩

μ− |u|2/2
u

−1

⎫
⎪⎬

⎪⎭

where μ = e + pv − Ts is the chemical potential per unit mass; v = 1/ρ is the
specific volume. More complex equations of state are treated in [2]. We would
like to stress the formal similarity between the conservation variables U and
the entropy variables V , which can be made more apparent if we write the
conservation variables in the following form:

U =
1

v

⎧
⎪⎨

⎪⎩

1

u

e+ |u|2/2

⎫
⎪⎬

⎪⎭

where v = 1/ρ is the specific volume.
Taking the dot product of (3) with the vector V yields the Clausius-Duhem

inequality, which constitutes the basic nonlinear stability condition for the so-
lutions of (3). This fundamental property is inherited by appropriately defined
finite element methods, such as the one described in the next section.

2.3 The Galerkin/Least-Squares Formulation

Originally introduced by Hughes and Johnson, the Galerkin/least-squares (GLS)
formulation is a full space-time finite element technique employing the discon-
tinuous Galerkin method in time [1], [22]. The least-squares operator ensures
good stability characteristics while retaining a high level of accuracy. The local
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control of the solution in the vicinity of sharp gradients is further enhanced by
the use of a nonlinear discontinuity-capturing operator.

Let Ω be the spatial domain of interest and Γ its boundary. The semi-discrete
Galerkin/least-squares variational problem can be stated as:

Find V h ∈ Sh (trial function space), such that for all W h ∈ Vh (weighting
function space), the following equation holds:

∫

Ω

(
Wh ·U,t(V

h) −W h
,i · F adv

i (V h) +W h
,i · K̃ijV

h
,j

)
dΩ

+

nel∑

e=1

∫

Ωe

(
LW h

)
· τ

(
LV h

)
dΩ

+

nel∑

e=1

∫

Ωe

νhgijW h
,i · Ã0V

h
,j dΩ

=

∫

Γ

W h ·
(
− F adv

i (V h) + F diff
i (V h)

)
ni dΓ. (4)

The first and last integrals of (4) represent the Galerkin formulation written
in integrated-by-parts form to ensure conservation under reduced quadrature
integration.

The second integral constitutes the least-squares operator where L is defined
as

L = Ã0
∂

∂t
+ Ãi

∂

∂xi
− ∂

∂xi
(K̃ij

∂

∂xj
). (5)

τ is a symmetric time-scale matrix for which definitions can be found in [22].
The third integral is the nonlinear discontinuity-capturing operator, which is

designed to control oscillations about discontinuities, without upsetting higher-
order accuracy in smooth regions. gij is the contravariant metric tensor defined
by

[gij ] = [ξ,i · ξ,j ]−1

where ξ = ξ(x) is the inverse isoparametric element mapping and νh is a scalar-
valued homogeneous function of the residual LV h. The discontinuity capturing
factor νh used for linear elements is an extension of that introduced by Hughes,
Mallet, and Shakib [17], [22].

A key ingredient to the formulation is its consistency: the exact solution of (1)
satisfies the variational formulation (4). This constitutes an essential property
in order to attain higher-order spatial convergence.

2.4 Extension to Higher-Order Elements

In principle everything is contained in the weighted residual given by Eq. (4).
There is no new term to code, no interpolation technique specific to higher order
to derive: everything is already there. We just have to compute the integrals of
(4), taking into account the new higher-order shape functions.



Higher-Order RANS and DES 493

The volume and surface integrals are numerically evaluated with quadrature
rules. All is needed is the values of the shape functions (and their gradients) at the
integration points. Higher-order functions only require more precise integration
rules. In 3-D, we use 4-, 10-, and 24-point rules, respectively for linear, quadratic,
and cubic tets.

For a given number of degrees of freedom, higher-order meshes contain much
fewer elements than P1 meshes. In 3-D the ratio is 1/8th for quadratic triangles,
and 1/27th for cubic. Although more integration points are required, the higher-
order computation of (4) is actually cheaper. The extra cost comes from the
implicit linear system which possesses a much larger bandwidth.

In fact, one single term in the weighted residual must be specially treated
in the context of higher-order elements for the Navier-Stokes equations. The
last term in (5) vanishes to zero for linear elements. It appears in the second
integral of (4). This term must be computed with higher-degree shape and test
functions in order to preserve consistency. In practice, it is evaluated using an
L2-projection.

One-dimensional studies showed that there was no significant differences be-
tween SUPG and Galerkin/least-squares. We have chosen to concentrate solely
on SUPG which is easier to implement.

As a final remark, we want to stress the fact that whatever the order of the
elements, all operations remain local (viz. at the element level). Consequently
higher-order elements engender no implicitation nor parallelization issue [5].

2.5 Isoparametric Meshes with Curved Boundaries

Since ADIGMA, we have made the seemingly obvious choice of higher-order
isoparametric elements [11]. One of the advantages of these elements, besides
the higher-order shape functions, is the use of higher-order polynomials to rep-
resent curved boundaries. They only ensure C0 continuity across elements, but
locate all the nodes on the actual surface.

All our higher-order meshes are obtained by adding nodes to a coarse initial
P1 mesh. Higher-order degrees of freedom are added regularly on the faces, edges
and possibly inside each P1 coarse element. This is illustrated for 2-D P1 and
P2 elements in Figure 1. The coarse P1 “skeleton” mesh is at the top; the P2
and the corresponding nested P1 meshes are respectively in the right and left
columns. The “natural” option is presented in the second line. All additional
degrees of freedom are located in the middle of the edges. This configuration
does not preserve the geometric progression of points in the boundary layer, but
all edges remain straight lines. Three alternatives are presented next: they all
preserve the progression in the layers and straight edges, but display uneven
distributions of points that any experienced CFD user would reject. A fourth
choice is discussed in Section 4.
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Fig. 1. Different options to add higher-order degrees of freedom to a coarse P1 mesh
with a boundary layer stretching

3 Overview of Main ADIGMA Two-Dimensional Results

During the ADIGMA Project, Dassault Aviation computed four of the two-
dimensional Mandatory Test Cases which covered a wide range of flow condi-
tions: inviscid subsonic and transonic for MTC’s 1 and 2, laminar Navier-Stokes
for MTC 3, and transonic turbulent for MTC 5. All four test cases were run with
the baseline second-order version of Dassault Aviation’s industrial Navier-Stokes
code AeTher and with its third and fourth order extension. We highlight here
the most spectacular and significant results. The reader is referred to [11] for the
complete description of these test cases.

In the inviscid subsonic MTC 1 test case (see Figure 2), the spurious en-
tropy layer generated at the stagnation point is much reduced with quadratic
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P1 (4336 nodes) P2 (4336 nodes)

P1 (9690 nodes) P3 (9690 nodes)

Fig. 2. ADIGMA MTC 1: NACA0012, M = 0.50, α = 2◦, inviscid. Mach number
contours on matching P1 iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

elements and virtually disappears with cubic elements. This directly impacts the
Mach number contours which traditionally present kinks near the wall on coarse
P1 meshes. These kinks are removed from higher-order calculations, which also
present much cleaner contours for the same number of degrees of freedom. This
test case is iconic in the sense that the benefit from higher-order elements is
intriguingly visual and graphic. We wish the assessment of higher order were
always so blatant; unfortunately, this is not the case most of the time and the
added value is often extremely subtle, especially if we look at more complex and
industrial test cases.

The inviscid transonic MTC 2 test case (not shown) came somehow as a
surprise, revealing that shock waves are in fact not an issue even with continuous
higher-order shape functions. In many instances, shocks can actually be sharper
than in the corresponding second order solutions.

For the laminar MTC 3 test case, we have to look at the convergence of force
coefficients presented in Figure 3. Pressure drag and lift converge faster with
quadratic elements; cubic elements yield values close to the asymptotic limit for
every computed grid, even the coarser ones. Unexpectedly viscous fluxes appear
as a real challenge for this laminar test case. Second order viscous drag is still
not converged for the finest mesh which contains over 1.5 million nodes: the
asymptotic value is provided by the quadratic results. Linear elements have a
hard time getting within one drag count of the asymptotic value of the friction
drag, whereas all higher-order results are within half of the same margin. Heat
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flux convergence (plotted in log scale) shows the substantial advantage of higher-
order elements. The error in heat flux (which should be zero for an adiabatic
wall condition) can be reduced by several orders of magnitude.
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Fig. 3. ADIGMA MTC 3: NACA0012, M = 0.50, α = 2◦, Re = 5, 000. Convergence
of force and heat flux coefficients for P1, P2, and P3 elements.

Although a Navier-Stokes test case, MTC 3 is still far from a concrete indus-
trial application. It exemplifies the difficulty of getting converged Navier-Stokes
solutions. One can anticipate an even greater challenge with complex 3-D RANS
computations.

Finally, MTC 5 deals with a transonic high Reynolds number RANS problem.
The convergence plot of the viscous drag coefficient is presented in Figure 4
together with typical Mach number contours. There is no real distinction between
the P1, P2, and P3 schemes. They converge at the same rate towards the same
asymptotic values.
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P2 (10,546 nodes)
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Fig. 4. ADIGMA MTC 5: RAE2822, M = 0.734, α = 2.79◦, Re = 6, 500, 000. Mach
number contours on P2 grid and convergence of viscous drag coefficient.

4 Beyond ADIGMA: Towards Industrial Higher-Order
RANS Computations

At the beginning of IDIHOM, Dassault Aviation brought higher-order capability
to the latest version of its Navier-Stokes code AeTher: up to P4 elements in 2-D
and up to P3 in 3-D, with corresponding richer integration rules (up to 12 points
for triangles and 24 points for tetrahedra).

In the numerical method described in Section 2.1, the turbulence equations are
solved in a staggered manner, with a second-order residual distribution scheme,
and are weakly coupled to the Navier-Stokes field through the turbulent viscosity
μt. As a first step, for higher-order calculations, RANS turbulent equations were
solved on an underlying P1 mesh, and thus remained second-order accurate.

Fig. 5. Best option to add higher-order degrees of freedom to a coarse P1 mesh with
a boundary layer stretching
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MTC 5 of ADIGMA (RAE2822 airfoil) was revisited with the higher-order
residual distribution schemes of [19]. Results were disappointingly similar to
those obtained during ADIGMA and showed no particular advantage of higher-
order elements (in this case quadratic) over standard linear 2nd order elements.
This may be due to our weakly coupled approach. We also computed the case
on a P2 grid which was curved and optimized by UCL with a similar outcome.

Following the discussion in Section 2.5, a new set of meshes with additional
constraints on the growth rate of layers close to the airfoil was designed. They
are sketched in Figure 5. Interestingly, these meshes exhibit curved edges even
for flat surfaces. Moreover they demonstrate a different behavior, with higher-
order elements converging faster to the asymptotic solution, especially with the
coarser meshes (see Figure 6). This once again draws attention to the importance
of mesh generation to extract all the benefits from higher-order elements.
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Fig. 6. ADIGMA MTC 5: RAE2822, M = 0.734, α = 2.79◦, Re = 6, 500, 000. Conver-
gence of viscous drag coefficient for P1, P2, and P3 elements.

5 Test Case A.04: Falcon Aircraft

The selected test case to assess higher-order RANS capability on industrial con-
figurations is a Falcon business jet including all its geometrical details. Two
versions of this test case were considered labeled A.04a and A.04b.

Test Case A.04a is a first test of higher-order 3-D computation on an industrial
configuration. It was performed at the very end of the ADIGMA Project and
serves as a baseline higher-order solution for the IDIHOM Project. This test case
has many limitations: the mesh is too fine, not curved, and most of all, as a real
Falcon geometry, it could not be made open to other partners.
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Consequently, the Generic Falcon Test Case A.04b was designed in order to
give access to a complex aircraft configuration to IDIHOM partners in addition
to Dassault Aviation. It includes all geometrical details of a real aircraft, except
for the engines which are represented by flow-through nacelles.

5.1 Reference and Baseline Results for Test Case A.04a:
Falcon 900EX

At the end of ADIGMA, since all the ingredients were there (we had checked the
higher-order three-dimensional capability of the code on simple test cases such
as an inviscid subsonic sphere and the ONERA M6 wing), it felt very tempting
to test a real 3-D industrial geometry. We were only missing a higher-order 3-D
mesh. We looked for the coarsest full aircraft mesh available. We found a Falcon
900EX design mesh dating from a few years, complete with vertical tail and
empennage, pylons, nacelles and S-duct. It contains “only” 2,512,073 nodes. A
cut through this mesh downstream of the wings, at the level of the engines is
presented in Figure 8 in blue. One must note that this mesh is not adjusted for
drag prediction with no specific refinement in the wake regions.

We built two grids based on this reference mesh: one linear P1 iso-P2 grid,
and one quadratic P2 grid both containing 19,905,887 nodes. A cut through the
linear refined tetrahedral mesh can be see in red in Figure 8.

Fig. 7. A.04a: Falcon 900EX, M = 0.80, α = 2.0◦, Re = 14, 500, 000. Pressure contours
on the aircraft surface, entropy in the wake; linear (left) and quadratic elements (right)
on the same 19,905,887-node mesh.
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The exercise has a few limitations. First the additional body nodes were not
projected on the actual surface of the aircraft: all the elements have straight
edges and sub-parametric coordinate transformations are used (although every-
thing is coded with isoparametric transformations). As described in section 4,
all computations were performed using a second-order scheme for the turbulence
equations. Only quadratic elements were tested and on a single mesh size.

Fig. 8. A.04a: Falcon 900EX, M = 0.80, α = 2.0◦, Re = 14, 500, 000. Clockwise from
top left: cut through original 2,512,073-node P1 mesh (right) and corresponding uni-
formly refined 19,905,887-node P1 iso-P2 mesh (left); entropy contours for the original
P1 mesh (right) and the uniformly refined P1 iso-P2 mesh (left); entropy contours for
the P2 mesh (right) and the uniformly refined P1 iso-P2 mesh (left).

We used respectively a 1-point integration rule for linear tetrahedra and an
8-point rule for quadratic ones. The ratio between the number of elements of a
P1 and a P2 tetrahedron mesh with the same number of nodes is 8. Consequently
in principle the cost of a residual evaluation should be similar on the P1 and
P2 meshes. Due to the higher-order coupling between degrees of freedom, the
implicit Jacobian is roughly twice as big for P2 elements. This yields an extra cost
when generating the operator and during the actual linear solve. Globally, the
third-order computation is 68% more expensive than the second-order one, using
the same CFL setting. This could be reduced for instance if the implicit operator
is not updated at each time step or if the original P1 matrix is used (possibly
at the cost of reduced robustness). The memory requirement is increased by
61%. Convergence is similar between P1 and P2 calculations with the same CFL



Higher-Order RANS and DES 501

settings. Computations were done in parallel on an IBM Blue Gene/P using 1024
tasks.

Figure 8 presents entropy contours in vertical cuts through the aft part of
the aircraft, in the engine region, downstream of the wing. The wake of the
wing is slightly more defined in the 20-million-node P1 mesh in comparison with
the original 2.5-million-node mesh. The third order result displays a much more
detailed wake and a stronger tip vortex. This is also exemplified in Figure 7 which
shows a more persistent and stronger wake in the quadratic element result.

It is common to see discrepancies between near-field and far-field drag analy-
ses [14], [24]. The difference between these two drag evaluations is known as “spu-
rious drag.” In the reference 2.5-million-node P1 computation, the spurious drag
amounts to 33 drag counts (10−4). With the uniformly refined 20-million-node
P1 mesh, it drops to 8 counts which is pretty good. Drag analysis performed on
the third-order solution (with standard linear tools) indicates that the spurious
drag is further reduced to just 1 count! This preliminary drag analysis suggests
that spurious drag virtually disappears with increased order of accuracy.

5.2 Reference and Higher-Order Results for Test Case A.04b:
Generic Falcon

The configuration of the Generic Falcon Test Case A.04b is presented in Figure 9.
It is a twin-engine Falcon-like aircraft with flow-through nacelles. A CAD file was
produced for this test case and released to participating Partners (namely IN-
RIA, NUMECA, and VKI), instead of a triangular surface mesh, as initially
planned. The flow conditions are: M∞ = 0.80, α = 2.0◦, alt = 40, 000 ft,
which corresponds to Re = 14, 512, 000 based on the mean aerodynamic chord
(2.888 m). The reference area is 49 m2.

Reference Computation. A state-of-the-art Reference P1 mesh, according to
current industrial standards, was generated for Test Case 1.04b. It is presented
in Figure 10. It contains 8.4 million grid points.

Reference 2nd-order computations were performed by DASSAV with its indus-
trial NS code AeTher. Different turbulence models were used. Figure 16 presents
pressure coefficient plots along the wing at eight stations every meter from 2 to
9 m along the wing span. Reference results appear in black for the K − ε tur-
bulence model. Results obtained with the Spalart-Allmaras model are presented
and further discussed in [5]; they are compared with the solutions obtained by
other partners in the Project.

Higher-Order Mesh Generation and Curving. In order to build on the ex-
perience of Test Case A.04a, the objective was to construct higher-order meshes
that would contain fewer degrees of freedom than the Reference P1 mesh and
take advantage of higher-degree polynomials to represent curved regions of the
model with fewer elements, typically the leading edges of the aerodynamic sur-
faces and the nacelle lips. A first attempt at building such a P2 mesh is presented
in Figure 11.
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We recall that the present higher-order meshing strategy is to add higher-order
degrees of freedom to a coarse P1 “skeleton” mesh. The extra degrees of freedom
are added on the edges, sides, and in the interior of the P1 linear elements. The
resulting higher-order mesh requires “curving”. This is performed in two steps:
first the surface mesh is projected onto the CAD definition of the geometry;
then the displacement is pushed into the volume mesh with some deformation
technique to make the higher-order mesh valid.

The “skeleton” surface mesh consists of 17,460 P1 triangular elements and 8880
nodes. The leading edges were purposely undermeshed in order to evaluate the
ability of higher-order elements to accurately represent the flow field in curved
regions. For instance, only 4 elements are placed along the leading edge of the
main wing and the lips of the nacelle are described with an uneven distribution
of fairly large elements (see Figure 11 top line).

A first set of “skeleton” volume meshes were built from this surface mesh using
the same parameters as the Reference mesh (10 μm for the height of the first
element and a growing ratio of 1.152 in the boundary layer). The set contains
meshes with first element height corresponding to y+ of 2, 4, and 10. The finest
mesh (y+ = 2) contains 310,000 grid points. A set of P2 meshes was built from
this set of P1 “skeleton” meshes corresponding to y+’s of the first element of 1, 2,
and 5. The finest P2 mesh (y+ = 1) contains 2,500,000 grid points. Both coarser
grids (y+ = 2 and 5) do not save many degrees of freedom, since only a couple
of element layers next to the aircraft surface are removed. In the light of the

Fig. 9. A.04b: Generic Falcon, M = 0.80, α = 2.0◦, Re = 14, 500, 000. Test case
definition.
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Fig. 10. A.04b: Generic Falcon, M = 0.80, α = 2.0◦, Re = 14, 500, 000. Views of the
Reference P1 surface mesh.

Fig. 11. A.04b: Generic Falcon, M = 0.80, α = 2.0◦, Re = 14, 500, 000. Views of the
uncurved P2 meshes: initial P2 mesh (top); P2 mesh refined along the leading edges.

2-D study performed on the RAE2822 test case (see section 4), it was concluded
that these first P2 meshes were too fine to make a valid assessment.

A new coarser “skeleton” mesh was generated with a y+ = 2 for the first
element layer, but a much more aggressive progression in the boundary layer,
resulting in only 250,000 grid points. P2 and P3 grids (and the corresponding
nested P1 grids) were buit based on this “skeleton” mesh. The P2 mesh contains
just under 2,000,000 degrees of freedom (the P3, 6,750,000).
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Computations were performed on the P2 and the nested P1 meshes, before
any attempt at curving them. Surface pressures are compared with the Reference
computation in Figure 12. The 3rd-order P2 computation shows qualitatively
a better agreement with the Reference computation, especially on the leading
edge of the wing, with 4 times fewer degrees of freedom. These computations are
further discussed in the next section.

Fig. 12. A.04b: Generic Falcon, M = 0.80, α = 2.0◦, Re = 14, 500, 000. Pressure
contours: comparison of Reference P1 computation with P1 and P2 results on nested
uncurved meshes.

After projection of the higher-degrees of freedom onto the CAD, the curving
technique used so far was based on a Laplacian mesh deformation applied to the
P1 nested mesh. It worked very well on ADIGMA on 2-D test cases. Unfortu-
nately it was shown in [19] that a priori splitting of 3-D higher-order elements
into P1 elements could induce mesh locking and prevent mesh deformation. Go-
ing from a Laplacian operator to full elasticity does not help.

Several alternate curving methods were investigated: 1) analytical, which tries
to reproduce the effect of a direct curved mesh generation in propagating the sur-
face displacement into the volume (this works fairly well in the quasi-structured
mesh in the boundary layer, but it is more difficult to apply the idea in very
unstructured regions of the mesh. The idea is to stop the propagation once it has
reached an element which is big enough to handle the deformation on a single
face without the need of any further propagation. The algorithm, although
promising, reveals extremely difficult to implement in practice in real unstruc-
tured industrial meshes); 2) Radial Basis Functions (RBF), which only use the
displacement of the surface nodes to compute the displacement in the volume; 3)
higher-order elasticity, which intrinsically does not require the a priori splitting
of elements into P1 elements and focuses on the global validity of higher-order
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elements, not just their individual P1 components; 4) and the higher-order mesh
optimization tools available in Gmsh (see [16], [23], and [20] in Chapter II.1).
All failed to a certain degree.

Fig. 13. A.04b: Generic Falcon, M = 0.80, α = 2.0◦, Re = 14, 500, 000. Visualization
of P2 invalid tets with Gmsh.

We found out though that Gmsh could be of a great help in analyzing 3-
D higher-order grids. First of all, it can display curved elements. Areas where
higher-order degrees of freedom are not exactly projected onto the CAD defini-
tion can easily be detected. It was also discovered that invalid (or very close to
invalid) elements could be generated on the surface, for instance at the junction
between the wing and the fuselage (see Figures 11 and 13). Surface elements
with too sharp angles on the fuselage could produce curved elements with angles
going to zero (and consequently Jacobians) when the leading edge is curved. In
addition, Gmsh can visualize invalid 3-D elements in the volume: they appear
in red in Figure 13. Most are localized in highly-curved regions, e.g. the lead-
ing edges, in corners where condensation of grid points occur during the mesh
generation process, and in rare occasions in the volume.

Analytical curving yields a mesh with 1600 invalid elements (they may have a
positive volume, but their Jacobian can go to zero or negative somewhere inside
the element) over a total of 1,450,000 P2 elements. Two passes of optimization
with Gmsh can reduce this number to 381. Direct optimization with Gmsh pro-
duces 1773 invalid elements, starting with 17,500 invalid elements at the surface
of the aircraft. It appears that Gmsh has a better time with invalid elements
somewhere inside the volume, rather than next to the wall with extremely high
aspect ratios.

With the P2 elastic deformation, the number of invalid elements is reduced
to 807, although all with a globally positive volume. Further optimization with
Gmsh can reach 444 invalid elements. It seems that higher-order elasticity in
combination with Gmsh works best at producing valid curved higher-order
meshes.

A new version of Gmsh, tuned and parametrized by UCL, was able to reduce
the number of invalid elements to just 11, starting with the mesh obtained after
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an analytical deformation and two passes of optimization with the standard
version of Gmsh.

It is quite possible that the right combination of curving techniques could
render this P2 mesh valid. Nevertheless, it was decided to refine the surface
mesh in highly curved regions, viz. along the leading edges of the wing (4×), the
empennage (2×), and the nacelle pylons (2×). The leading edge of the vertical
tail and the lips of the nacelle were not modified. Elements connected to regions
were curving occur were also modified in order to avoid the small angle issue
described earlier. The new surface “skeleton” P1 mesh can be seen in Figure 11
(lower part). It contains 9503 nodes and 18,708 elements. The refined P2 3-D
mesh is only slightly bigger than the original one with 75,000 additional degrees
of freedom.

Fig. 14. A.04b: Generic Falcon, M = 0.80, α = 2.0◦, Re = 14, 500, 000. Views of P2
mesh, curved and optimized with Gmsh.

The best combination of curving techniques was applied (P2 elastic deforma-
tion followed with an optimization with the tuned version of Gmsh): only 250
invalid elements were obtained after elastic deformation and Gmsh was able to
produce a valid mesh in less than a minute. The minimum Jacobian is 0.09. The
P2 surface mesh after curving with Gmsh can be seen in Figure 57. Note that
the nacelle lips, although not refined, are particularly well represented with P2
curved elements. Numerical results are presented in the next section.

Higher-Order Computations. The valid curved P2 mesh produced in inter-
action with UCL was computed with the K-ε model. The solution is compared
with the Reference solution in Figure 15. The acceleration of the flow over the
leading edge of the wing is much better represented than in the solution ob-
tained on the uncurved mesh (see Figure 12). We anticipate that this is due to
the curving, rather than to the mesh refinement of the leading edge.

Pressure plots at different stations along the wing span obtained by different
computations during the IDIHOM Project are gathered in Figure 16. The solu-
tions computed with the K-ε turbulence model appear with a solid line, those
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Fig. 15. A.04b: Generic Falcon, M = 0.80, α = 2.0◦, Re = 14, 500, 000. Pressure
contours: comparison of Reference P1 computation with P2 result on curved mesh.

computed with the Spalart-Allmaras model with a dashed line. The Reference
solution is represented with a solid black line. It must be compared with the so-
lutions obtained on the uncurved meshes described in the preceding section: 2nd
order P1 in red, 3rd order P2 in blue, and 4th order P3 in green. Except for the
P2 all were computed with the K-ε turbulence model. Even on uncurved grids,
P2 solutions are much closer in terms of pressure distribution to the Reference
computation than the P1 solution with the same number of degrees of freedom.
It is even more so with the Spalart-Allmaras turbulence model. On the other
hand, the 4th order P3 solution is at best as good as the P2 solution in terms
of shock location and present many pressure oscillations in smooth regions of
the flow. This is probably due to the increased accuracy of the scheme and the
greater sensitivity to curvature discontinuities of the surface which are magnified
with uncurved P3 elements.

Table 1. A.04b: Generic Falcon, M = 0.80, α = 2.0◦, Re = 14, 500, 000. Spurious drag
for the different computed grids.

mesh element type grid size spurious drag (×10−4)
Reference P1 8.37× 106 7.81
“skeleton” P1 0.25× 106 149.61
uncurved linear P1 1.96× 106 89.79
uncurved quadratic P2 1.96× 106 18.54
curved quadratic P2 2.04× 106 5.96

The P2 solution obtained on the curved mesh is plotted in pink. In order to
better compare this last solution with the Reference one, both are shown again
in Figure 17. The agreement between the two solutions is remarkable although
the 3rd-order P2 solution was obtained with 4 times fewer degrees of freedom
(2 vs 8.4 million), at a similar CPU cost and with a reduced memory imprint
(-62%).
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Fig. 16. A.04b: Generic Falcon, M = 0.80, α = 2.0◦, Re = 14, 500, 000. Comparison
of Cp plots at different stations along the wing span.

Field drag integration was used for Test Case A.04a. Although the quadratic
mesh was too fine and not curved, it revealed as a discriminating tool to assess
the rewards of higher-order elements. The evaluations of spurious drag for the
different grids used for Test Case A.04b are gathered in Table 1.
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Fig. 17. A.04b: Generic Falcon, M = 0.80, α = 2.0◦, Re = 14, 500, 000. Comparison
of Cp plots at different stations along the wing span between the Reference P1 and the
curved P2 computations.
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Going from 2nd to 3rd order with the uncurved grids reduces the spurious
drag by a factor of 5 (from 89.79 to 18.54), to a value which is still higher than
the Reference of 7.81 drag counts. With the curved P2 mesh with refined leading
edges, the level of spurious drag drops to less than 6 drag counts which is 25%
lower than the Reference 2nd order computation with 4 times fewer degrees of
freedom.

6 Extension to Unsteady Flows and LES/DES

DASSAV worked on the extension to higher order of the DES/LES models within
its stabilized finite element code AeTher: accurate time integration for unsteady
flows; adapt the element size evaluation to higher-order unstructured meshes for
the DES switch calculation; extend the “probe nodes” (were pressure signal is
recorded at every time step) to higher-order meshes.

For unsteady calculations fully implicit time integration with dual time step-
ping is performed based on the standard second-order Gear’s scheme. Third
order calculation may suffer from a time integration which is only second order
accurate. Nevertheless, keeping everything equal, including the time integration
scheme, enables a fair comparison between 2nd and 3rd order spatial accuracy.

6.1 Assessment of Space Accuracy for Unsteady Flows

In order to assess the increase in space resolution brought by higher-order ele-
ments for LES/DES calculations and adjust the mesh requirements accordingly,
a simple unsteady wave propagation problem was set up: a vibrating membrane
in a 2-D nacelle-like geometry would propagate a plane wave into an open do-
main at different frequencies. The unsteady problem was solved with a deforming
mesh in Arbitrary Lagragian/Eulerian formulation (ALE) with polynomial or-
ders up to P4. The influence of the integration rule and the interaction between
the time accuracy and the space stabilization were studied. The outcome was
that 9 points per wave length are required with the reference 2nd order code.
This figure can be reduced to respectively 6 or even 5 points with quadratic (3rd
order) or quartic (5th order) elements.

The impact of the limited second order time accuracy was evaluated in com-
paring the unsteady results with those obtained with the linearized in the fre-
quency domain option of the code, which can be brought to higher-order fairly
transparently once the higher-order capability exists in the nonlinear code. Un-
steady and linearized results compare favorably. The more complex 3-D test
case of a generic nozzle provided by Rolls-Royce Deutschland is presented in
Figure 18.

At 700 Hz on the same mesh which corresponds to 16 degrees of freedom per
wave length, P1 and P2 results are very similar. On the contrary, at 2000 Hz the
number of grid points per wave length drops to 5.5 and the increased accuracy
of the P2 solution becomes more obvious. Higher-order elements open up a fre-
quency range for aeroacoustic applications that was unattainable before. They
should bring a similar advantage to LES and DES.
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Fig. 18. Comparisons of P1 and P2 linearized Navier-Stokes results on a RRD generic
nozzle test case for two different plane mode frequencies 700 and 2000 Hz

7 Test Case A.15: M219 Cavity

This test case was selected for two main reasons: first of all to try and assess
the advantage of higher-order element in the context of unsteady flows and more
specifically LES/DES; second, to conduct this assessment serenely, without any
second thoughts about higher-order mesh generation. This is enabled by the
simplicity of the geometry which only contains flat surfaces and thus does not
require any mesh curving. The details about the geometry and the experimental
set-up can be found in [15]. The flow conditions are M∞ = 0.85 and Re =
6.8× 106, based on the cavity length (20 in).

7.1 Computational Domain and Grids

DASSAV has computed the M219 cavity in a configuration close to its original
experimental set-up, as can be seen in Figure 19.

The Reference linear mesh is an unstructured tetrahedral mesh build on top
of a triangular surface mesh with a characteristic edge size of 2 mm. In the
boundary layer, the mesh is constructed with a first layer of elements of 10 μm
height and a growing ratio of 1.25. In the mixing layer, an unstructured block of
tetrahedra with edge lengths of 2 mm in the x and y directions and 2.5 mm in
the z direction is inserted. The grid contains slightly less than 3.4 million grid
points. Higher order grids are generated by adding degrees of freedom to a coarse
P1 grid. The difficulty is to build a “skeleton” grid which is coarse enough to yield
higher-order grids with a controlled number of grid points and still preserve the
qualities in geometric representation, point density, and element distortion of the
original reference grid. Fortunately for this test case, all surfaces of the model
are flat which alleviates the issue of curving the elements in the volume. With
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Fig. 19. A.15: M219 Cavity. Configuration and surface view of the P2 mesh.

these constraints, the skeleton P1 mesh built on a different surface grid with a
characteristic edge size of 4 mm could not be made coarser than about 450,000
grid points; consequently the corresponding P2 grid (and the matching P1 grid)
contains 3.5 million grid points. Coarsening techniques developed later on for the
A.04 Falcon test case could probably have been similarly applied to the cavity
to produce yet coarser higher-order grids (see section 5.2).

7.2 Reference and Higher-Order Results

For all simulations, the flow field is initialized with a steady RANS computations
using the Spalart-Allmaras turbulence model. The computation is pursued in a
unsteady mode with a Zonal DES approach [11]. The same time step of 1.5 ×
10−5 s (that is 121 time steps per through flow over the cavity length) is used
for all computations whatever the order of the space integration. After a settling
time of 195 ms, unsteady data is acquired for another 225 ms, which accounts
for a total simulation time of 420 ms (i.e., 230 through flows). 186 ms are post-
processed to produce the energy spectra and the OASPL curves. For a better
comparison, especially at low frequencies, the experimental pressure history is
post-processed over the same time interval. All calculations were performed on
1024 cores of an IBM BlueGene/P.

In Figure 20, isovalues of the Q-criterion colored by the Mach number are
presented for the 2nd-order linear P1 and the 3rd-order quadratic P2 solutions
computed on nested grids and thus containing the same number of degrees of
freedom. The higher-order simulation transitions sooner to full 3-D turbulence
and contains much finer turbulent structures.

A typical SPL frequency spectrum corresponding to Kulite #21 is displayed in
Figure 21a. It shows a reasonable agreement between the experiment (in red) and
the different simulations both in terms of Rossiter peak locations and amplitude.
One must note that the higher-order solution (in blue) exhibits more energy in
the higher part of the spectrum.

In Figure 21b, OASPL plots corresponding to different realizations of the sim-
ulation are presented. The red and green curves represent respectively the Refer-
ence solution and the P1 solution computed with the same degrees of freedom
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Fig. 20. A.15: M219 Cavity. Turbulent structures in the QinetiQ M219 cavity: standard
2nd-order linear P1 elements (left) vs. 3rd-order quadratic P2 elements (right).

as the higher-order solutions. Both solutions are quite similar and are in good
agreement with the experiment shown in black (a few tenth of a dB on the av-
erage). Note that the Reference solution corresponds to a longer simulation time
of 350 ms. This confirms that the statistics are converged for the newer computa-
tions which account for simulations times of 225 ms. The P2 third-order solution
is plotted in blue. It shows a drop in OASPL 1 to 2 dB below the experiment.

Two additional curves are presented in Figure 21b. For the sake of simplicity,
earlier higher-order computations were carried out with the same sampling rou-
tine as P1 computations, that is the pressure signal was linearly interpolated at
the location of the experimental Kulites. The effect of the actual higher-order
interpolation is shown in the pink curve. Depending on the pressure tap, an

(a) SPL at Kulite K21, x/L = 15%
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Fig. 21. A.15: M219 Cavity. Local and Overall Sound Pressure Levels.
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Fig. 22. A.15: M219 Cavity. Band-integrated Sound Pressure Levels.

increase of up to 1 dB is observed in OASPL, bringing the higher-order P2 re-
sults very close to the refined mesh P1 results. This stresses the importance
of post-processing higher-order solutions with adapted higher-order techniques.
This remark is also valid for line and contour plots. The orange curve in Fig-
ure 21b represents the effect of the second order Navier-Stokes derivatives in the
SUPG/GLS stabilization term of DASSAV residual-based stabilized finite ele-
ment code. The last term in eq. (5) is zero for P1 elements and was dropped so-
far from the stabilization operator (second line in (4)) for higher-order computa-
tions. The effect is not so sensitive on OASPL’s but is more significant at certain
frequencies as can be seen in the band-integrated SPL’s in Figure 22. Frequency
bands are defined for this test case according to the analysis of Larchevêque [12].
Again, the difference in SPL with respect to the original P2 solution is significant,
and the experimental level can even be retrieved for the higher frequency band.
Unfortunately, the combination of both higher-order interpolation for pressure
probes and of the higher-order term in the stabilization could not be tested
during the duration of the project.

Regarding computational cost, DASSAV 3rd-order P2 simulations last about
2.5 times as long as a standard 2nd-order P1 simulation (6 days compared to
2.5 days on 1024 cores of an IBM BlueGene/P). Higher-order computations use
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10 integration points per tetrahedron, whereas a single point is used for 2nd-
order runs. It is quite possible that on this configuration where all elements have
uncurved edges, a four-point integration rule would suffice, further reducing the
cost of the higher-order simulation.

7.3 Effect of Mesh Refinement, Subgrid-Scale Model and Time-Step

We believe that the more precise P2 computation reveals some of the limitations
of the underlying Smagorinsky subgrid scale model in the DES. A finer P1 sim-
ulation, shown in a green dashed line in Figure 23, exhibits the same tendency
of decreased OASPL’s. The corresponding mesh is similar to the P1 and P2
meshes, except in the cavity region where the typical grid size has been reduced
from 2 to 1 mm; this mesh contains close to 3.9 million grid points.
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Fig. 23. A.15: M219 Cavity. Overall Sound Pressure Levels.

The effect of the subgrid scale model is studied next. The P1, P2, and refined
P1 meshes were recomputed using a selective model, where the subgrid scale
model is only active in regions of the flow where 3-D turbulent structures are
present [6] [7]. The selective DES results are shown with red symbols in Fig-
ures 23 and 24. As could have been anticipated, the 2nd order solutions do not
show much sensitivity to the subgrid scale model, especially for OASPL’s. This
is unexpectedly also the case on the fine grid. On the other hand, 3rd order
results display a greater response to the model, but unfortunately the OASPL’s
go further away from the experimental values.

A time step reduction (×0.5) was also applied to the P2 selective simulation.
It appears that the combination of a more precise spatial discretization (P2)
with a less dissipative model (selective) could beneficiate from a more precise
time integration scheme.

The band-integrated sound pressure levels (SPL’s) in Figures 22 and 24, plot-
ted in the same colors as the OASPL’s, show that the main physics is captured in
all simulations over the complete range of frequencies. As could be anticipated,
higher frequencies are better captured on P1 refined meshes and higher-order
solutions with the best numerical ingredients. It would be of interest to run a P2
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Fig. 24. A.15: M219 Cavity. Band-integrated Sound Pressure Levels.
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Fig. 25. A.15: M219 Cavity. Integration of kinetic energy over 2000–6000 Hz band.

simulation with the higher-order term in the stabilization and a reduced time
step possibly in combination with the selective model, as this could not be done
during the Project.

Although not very conclusive in view of the SPL’s, the effect of the selective
model is more obvious if we have a look at the kinetic energy spectrum (instead
of pressure) sampled along a line in the mixing layer. It is presented integrated
over the 2000-6000 Hz band in Figure 25. All the different ingredients (mesh
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refinement/order, subgrid scale model and time step size) add up in a natural
way to bring more energy in the fine structures of the flow. Unfortunately, there
are no experimental values to validate the computed levels.

8 Conclusions

The work of Dassault Aviation during the IDIHOM Project covered two aspects
of the industrialization of higher-order methods for CFD. It applied its stabilized
finite element code to a generic Falcon test case and to the aeroacoustic test case
of an open cavity, respectively computed with a RANS turbulence model and a
DES approach.

DASSAV obtained 3rd (K-ε and SA) and 4th order (K-ε) solutions on un-
curved higher-order meshes for the A.04b Generic Falcon test case. A 3rd order
solution on a curved mesh (which was produced in interaction with UCL) was
also obtained for this test case. The 3rd order solution on the curved mesh
shows a remarkable agreement with the reference solution for pressure distribu-
tion along the wing span with 4x fewer degrees of freedom. It also confirms the
important reduction in spurious drag observed on much finer higher-order grids
at the end of ADIGMA.

A lot of effort was put into the higher-order mesh generation activity, es-
pecially to obtain a valid higher-order curved mesh for Test Case A.04b with
a moderate number of degrees of freedom. Higher-order meshes are currently
built by adding degrees of freedom to a coarse “skeleton” P1 grid. They need
to be curved thereafter. The best option so far is a combination of higher-order
elastic deformation and mesh optimization with Gmsh in interaction with UCL.
In the long run, we should look at a dedicated way to generate directly curved
higher-order meshes. This seems the best option to make it industrially viable.

In the mean time, higher-order elements might show a unique potential for
Large Eddy Simulations. DASSAV obtained 3rd order DES solutions for the
A.15 M219 Cavity test case. These solutions show reasonable SPL frequency
spectra, but are not as good as the reference P1 solution in terms of OASPL
(1-2dB below experiment). Higher-order solutions go into the direction of mesh
refinement for linear solutions. Sensitivities to subgrid scale model (ZDES and
selective), time step size, higher-order probes and higher-order viscous term in
the stabilization operator were also studied. Band integration shows that the
main physics is captured. In addition to higher-order linearized Navier-Stokes in
the frequency domain, higher-order stabilized finite elements show a tremendous
potential for industrial aeroacoustic applications in the very near future.
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Abstract. Accurate visualization of high-order meshes and flow fields is
a fundamental tool for the verification, validation, analysis and interpre-
tation of high-order flow simulations. Standard visualization tools based
on piecewise linear approximations can be used for the display of high-
order fields but their accuracy is restricted by computer memory and
processing time. More often than not, the accurate visualization of com-
plex flows using this strategy requires computational resources beyond
the reach of most users. This chapter describes ElVis, a truly high-order
and interactive visualization system created for the accurate and inter-
active visualization of scalar fields produced by high-order spectral/hp
finite element simulations. We show some examples that motivate the
need for such a visualization system and illustrate some of its features
for the display and analysis of simulation data.

1 Introduction

High-order simulations are now becoming increasingly common and codes for
producing high-order solutions are advancing at a rapid rate but the tools which
scientists and engineers use to visualise both their solution data and the underly-
ing high-order geometry on which the problem is solved are still firmly embedded
in the world of traditional linear finite elements. Whereas high-order methods
typically utilise non-linear polynomials (or other similar non-linear functions)
to represent the solution which has been obtained on a given element, the vast
majority of visualization software assumes that the data are provided in a linear
format, and therefore a conversion is necessary before the data can be viewed.

At worst this poses a major challenge for the adoption of high-order methods
and at best does not show the full potential of such methods, for both the
developers and end-users of high-order software. From the perspective of a user,
whilst it is certainly possible to obtain a visualization of a given simulation, the
error that is present when the solution is interpolated to a set of linear functions
may yield visualization artifacts which may or may not be present in the actual
solution field. For developers this may result in an additional level of debugging
which must be undertaken, since it is not always clear whether these errors occur
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from the numerical properties of a given scheme or indeed from a mistake within
the code itself.

Additionally, from the perspective of mesh generation, it is clear that high-
order meshes are not just desirable but necessary in order to obtain accurate
and meaningful solutions. However, without the means of visualising the ‘true’
surface of a mesh and not its linear interpolation, it is either very difficult or
impossible to predict where simulations may encounter issues when considering
complex geometries.

Solutions to this problem do already exist. A naive solution is to simply
oversample a mesh, using a large number of linear functions to represent the
high-order data. This approach may also be considered in combination with an
adaptive technique where the mesh is subdivided until a tolerance between the
linear interpolation and high-order data is achieved. However, such approaches
are expensive in terms of computational time meaning that they may not be
interactive with the user, and additionally require large amounts of storage and
memory in which to operate.

The purpose of this chapter is to give a brief overview of the Element Visu-
aliser (ElVis) [18], which aims to address these issues through a novel approach
that provides interactive and accurate visualization of high-order simulations1.
The simulations are represented by spectral/hp finite element fields that are pro-
duced by the continuous or discontinuous Galerkin methods. ElVis was originally
created by B.W. Nelson, as part of his PhD at the University of Utah [3]. Cur-
rently ElVis is actively maintained by R.M. Kirby at the University of Utah and
R. Haimes at MIT, and has been the focus of our development efforts on high-
order visualization throughout the course of IDIHOM. We outline the features
of ElVis and give examples which demonstrate its advantages over traditional
linear visualization software.

2 The Importance of Visualization Accuracy

The main reason for the development of an accurate high-order visualizer is that
linear approximations where high-order data is sampled onto linear primitives for
visualization does not represent high-order data well and results in visualization
errors. We illustrate this with two examples where we compare high-order and
linear visualizations2.

2.1 Visualization Errors or Artifacts?

We consider the simulation of the compressible viscous flow past a half delta-
wing geometry with a symmetry plane running down the centre chord-line of the

1 The program is accessible at www.sci.utah.edu/download/elvis
2 All the linear visualizations in this chapter have been performed with the code Visual

3 which is available at raphael.mit.edu/visual3

www.sci.utah.edu/download/elvis
raphael.mit.edu/visual3
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wing. The delta-wing geometry is linear and the computational mesh consists of
19410 quadratic tetrahedral elements with straight edges. The numerical solution
has been obtained via a discontinuous Galerkin solver3. Figure 1 depicts a linear
visualization of the solution on a plane cut located at the trailing edge of the
wing. The two insets in the figure highlight areas where visualization errors
or artifacts might be present. To determine the nature of these visual features
requires an increase of the accuracy of the visualization.

Fig. 1. Cut-surface at the trailing edge of a delta wing simulation displayed using a
piecewise linear approximation. The two inset figures show enlargements of the areas
where visualization errors or artifacts might have occurred.

Focusing in the area near the edge of the wing, Figure 2 depicts a comparison
of the linear visualization with a pixel exact display of the solution using ElVis
which shows that the visual effect of the linear visualization is due to a lack of
resolution of the boundary layer.

On the other hand, the comparison of linear and high-order visualizations
in Figure 3 illustrate that the sharp changes observed in both are due to the
discontinuous Galerkin approximation employed by the solver.

3 Numerical solution computed by the Project X code:
raphael.mit.edu/projectx.html

raphael.mit.edu/projectx.html
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Linear ElVis

Fig. 2. Visualization errors: the linear visualization (left) shows apparent under-
resolution of the boundary layer, whereas in reality the boundary layer is clearly present
(right)

Linear ElVis

Fig. 3. The sharp changes observed in both the linear visualization (left) and the high-
order visualization (right) are part of the piecewise discontinuous approximation of the
solution

2.2 Visualization for Code Debugging

Visualization tools can play a role in detecting bugs and errors within the solver.
Figure 4 shows several visualizations of isocontours of the distance function d(x),
a scalar function which defines the minimum distance between a point x and
a surface S. This is an important function used in, for example, turbulence
models which rely on this quantity to in order to estimate stresses on the flow
due to viscous effects near walls. Errors in this function may, in the worst cases,
substantially affect physical observations or indeed prevent the simulation from
converging; in other cases however the effect can be minimal or non-existent.

Figure 4 shows how the use of linear visualization tools can prevent the detec-
tion of bugs in distance calculation routines. The top row shows results with a
code which has a bug in its distance calculation routine, and the bottom where
the offending bug has been fixed. On the left-hand side we see that the visual-
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Fig. 4. Visualizations indicating a bug relating to the distance function. The top row
shows a version of the code where the bug is present, and the bottom where the bug
is fixed. From left-to-right: linear interpolation of elements, linear interpolation with
one level of refinement, ElVis. Note that the linearly interpolated elements without
refinement appear identical.

ization is sufficiently coarse that no problem is detected even after the bug has
been fixed. When the linear mesh is refined (middle), shows a small protrusion –
however, the shape can still be inferred to be reasonable given the original linear
image. ElVis on the other hand shows an obvious protrusion from an otherwise
smooth surface. This example clearly demonstrates how using only linear tools
to visualise data can lead to issues not being detected.

3 ElVis and Its Main Features

The previous examples have shown that linear visualization tools operating on
high-order data can introduce errors. The main motivation for the development
of a truly high-order visualizer is the realization that these errors can be mini-
mized if we take into account our knowledge of the data. In recent years, a series
of tools have been developed in an attempt to address the lack of appropriate vi-
sualization software for high-order data. A key issue with these tools is that they
have been developed with the presumption of a single type of basis function to
be used in each element. Whilst a conversion of high-order data may be possible
from one data format to another if each tool assumes a polynomial expansion,
the wide variety of non-linear basis functions that can be employed in high-order
methods means that this is not always possible, and indeed for users can be a
time-consuming task.

A further issue with existing visualization software is that if often comes with
the drawback of high computational cost. Whilst it is clear that high-order visu-
alization demands additional processing when compared to linear interpolation,
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existing software can require the use of expensive custom-made hardware in
order to produce visualizations in reasonable amounts of time for users, partic-
ularly for large three-dimensional problems. Since interactivity is a key part of
the visualization process, this is a significant problem which must be overcome.

Fig. 5. ElVis’ graphical user interface, with a visualization of density on an ONERA
M6 wing

ElVis has been designed to address each of these issues. Firstly, its design
is deliberately modular, with the intention that the code responsible for visu-
alization should be separated from the implementation and definition of the
high-order basis functions. The way that this is achieved is through the use
of an extensible plugin architecture that provides a simplified interface to the
high-order data which exposes a minimal amount of functionality required to
generate a visualization. This makes ElVis broadly applicable to a wide range of
tasks in high-order visualization. The main modules of ElVis are: a Plugin Mod-
ule that handles communication between ElVis and the simulation package, a
Visualization Module that performs the visualization of the high-order data and
a Data Exploration Module that gives users the ability to interactively explore
the high-order data. The graphical user interface for the visualization and data
exploration modules of ElVis is shown in Figure 5.

In order to realise the goal of performance and interactivity, ElVis utilises
NVIDIA GPU hardware in combination with CUDA and the OptiX ray-tracing
engine in order to provide real-time visualizations. Once data is available within
ElVis, either through a data conversion or runtime plugin, selected GPU algo-
rithms for the most common tasks of cut-surfaces/contour lines, volume render-
ing and isosurface generation have been generated in such a way as to obtain
the required visualization accuracy from the underlying high-order data.
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3.1 High-Order Elements

The numerical solution in ElVis is represented by high-order spectral/hp finite
element approximations via continuous or discontinuous Galerkin methods. For
these methods, the computational domain is tessellated into elements. The four
basic element types are the hexahedron, prism, tetrahedron, and pyramid. These
elements are defined through a mapping, T : R3 → R3, between a standard
reference element, the cube Ωst : [−1,+1]3, in a reference space and the high-
order element, Ωe, in a physical space as illustrated in Figure 6.

Prism

Hexahedron

Tetrahedron

Pyramid
T

Cube: [-1,+1] 3

Reference space Physical space

Ωst

Ωe

Fig. 6. Notation used for spectral/hp finite elements in ElVis

The high-order representation of the solution within the finite element is a
polynomial function evaluated in tensor-product fashion in the reference ele-
ment. The expressions for the nodal and modal expansions used to approximate
the solution within the elements are given in [1]4. If the high-order elements
employed by the flow solver have different polynomial basis functions then a
data conversion process can be performed to the set of spectral/hp standard
basis functions. This minimises the amount of coding required. Otherwise, more
complex functions can be implemented directly as a runtime plugin.

ElVis uses the representation of the flow field via the spectral/hp basis func-
tions and applies ray-tracing ideas to achieve a pixel-exact images in which
the visualization algorithm is applied to each pixel. An overview of how ElVis
achieves pixel-exact images is given in the following sections.

3.2 Isosurfaces

Perhaps one of the most often used visualizations of a data set is the isosurfaces
or contour lines which depict where a given field attains a particular value. ElVis
adopts an elemental approach to isosurface rendering [2, 5], whereby the field is

4 These are implemented in the open-source code Nektar++ available at
www.nektar.info

www.nektar.info
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projected onto a polynomial as a ray passes through the volume so that finding
the isosurface becomes a root finding problem. This is illustrated in Figure 7.

The solution along the ray, assumed to be smooth within the element in the
physical space, is approximated by a Legendre polynomial of order M . Given
the entry and exit points of the ray within the element, a set of Legendre-Gauss-
Lobatto quadrature points is located along the ray. The number of quadrature
points is a function of the approximating polynomial order and it is chosen so
that inner products of polynomials of degree M are within round-off error. The
high-order finite element function is evaluated at the quadrature points along
the ray and these values are used to interpolate a polynomial. The roots of this
polynomial which correspond to the sought values of the isosurface are evaluated
using the QR root-finding algorithm. This type of projection introduces error,
but it converges to the field as we increase the order, so we can increase the order
until we achieve pixel-exact images. A more detail description of the algorithm
and analysis of the associated errors in given in [5].

Fig. 7. Isosurface evaluation within an element in ElVis. A projected polynomial is
formed along the ray, the scalar field within the element is sampled along the ray to
interpolate a polynomial and its roots give the values of the isocontour sought.

One of the advantage of this method over more traditional isosurface ren-
dering techniques such as the marching cubes algorithm is that it permits the
visualization of discontinuities within the isosurfaces across element boundaries
if this is present in the underlying formulation. An example of this can be seen
in Figure 8 where the inset figure shows the discontinuities in the numerical
solution.

ElVis also supports the rendering of contour lines, as shown in figure 9. We
again see that linear elements, even when heavily subdivided, do not yield the
same quality of visualization, and indeed do not accurately depict the true reg-
ularity of the solution field.

3.3 Surface and Cut-Surface Visualizations

Possibly the most widely used visualization tool is that of a surface rendering,
where the solution field is restricted to a particular surface or cut-surface and
a colour map is applied to show variation in the solution. Surfaces are simple
to visualise and offer a clear indication of how the solution field is behaving at
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Fig. 8. Isosurfaces of the Mach number of a delta wing simulation. Cracks are visi-
ble within the surface of this isocontour due to the use of a discontinuous Galerkin
formulation which are accurately rendered by ElVis.

Linear
0 Refinements

Linear
64 subdivisions/element ElVis

Fig. 9. Contour plots demonstrating the apparent discontinuity and lack of regularity
that linearly interpolated visualization shows in the solution field

specific points in the domain. ElVis supports the use of multiple cut planes,
as well as the visualization of solution fields on curvilinear mesh surfaces (as
depicted later).

The algorithm that renders each surface is again based on ray-tracing. The
first step is to calculate the intersection of the ray with the cut-surface which
might be defined as an implicit or a parametric surface. Apart from simple cases
such as a plane, finding the location of the intersection point is a non-linear
problem that must be solved via iteration. Once an intersection point is located,
the element containing the point is found and the solution field evaluated using
the element basis functions at the corresponding coordinates in the reference
space. It is worth noting that finding the coordinates in the reference space for
curved elements is a non-linear problem that requires an iterative method. A
more detailed description of the algorithms involved in this process is given in
reference [4].
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Figure 10 shows the effect that high-order rendering using ElVis has on the vi-
sualizations for a delta wing mesh. We see that the linearly interpolated solutions
in Figures 10(a) and 10(b) present an unclear rendering of the flow characteris-
tics, and in particular the boundary layer is nearly impossible to detect, which
may lead one to believe that the simulation is under-resolved. In Figure 10(c)
however, ElVis gives a clearer picture of the flow behaviour, and the boundary
layer is clearly identifiable.

(a) (b)

(c)

Fig. 10. Linear versus high-order visualization of planar cuts: (a) Linear visualization
without subdivision; (b) linear visualization with subdivision; (c) high-order visualiza-
tion

3.4 Volume Rendering

It is often the case that the visualization of noisy data, as arises in for example
turbulence simulations, can be difficult. When this occurs, it can be useful to
instead consider a volume rendering which can visualise the isocontours in a way
that is easier to interpret. Volume rendering in ElVis is based on the emission-
absorption optical model [6] in which the irradiance is evaluated along rays
through the integral

∫ b

a

κ(t) τ(t)e−I(t) dt ; I(t) =

∫ t

a

τ(u)du (1)

where [a, b] is denotes a parametric interval along the ray and κ(t) and τ(t) are
the colour and density transfer functions, respectively.

The evaluation of the integrals in equation (1) is performed element by el-
ement. This requires a traversal of the mesh and the calculation of all the in-
tersections of the ray with the boundary of the elements to determine the ray
segments contained within the element. This operation is complicated by the
presence of curved element since a ray might intersect a curved element face
several times. For a ray segment, the colour and density transfer function falls
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into one of three categories: empty, smooth and piecewise smooth. The evalua-
tion of the volume rendering integral (1) is handled on a case-by-case basis and
appropriate quadrature rules are use for each of these categories. One down-
side of integrating functions that are piece-wise smooth is that the best order of
convergence that can be achieved is second order.

An example of a typical volume rendering produced by ElVis can be seen in
figure 11. This figure also illustrates the importance of selecting an appropriate
quadrature for the evaluation of both integrals in equation (1).

(a)

(b)

Fig. 11. Effect of quadrature on the accuracy of volume rendering: (a) Riemann inte-
gration and (b) high-order integration, both with 60 million samples

A more detail description of the algorithms and their performance is given in
reference [6].

3.5 Mesh Visualization

The generation of curvilinear meshes for high-order simulations is a challenging
and difficult issue. However, this problem is made more difficult by the fact
that it is often impossible, extremely difficult, or computationally prohibitive to
accurately visualise the surface of a curvilinear mesh. Whilst linearly interpolated
visualizations may give an overall idea of the mesh surface, small oscillations may
remain hidden, as the example of Section 2.2 (and figure 4) demonstrate.

One of the core capabilities of ElVis is to assist in the visualization of curvi-
linear meshes. Figure 12 shows a curvilinear hemisphere mesh in combination
with a cut-plane, which also demonstrates the use of several simultaneous vi-
sualization techniques. We clearly see that the introduction of curvature yields
two very different images. Additionally, we note that even when subdivision or
refinement is used to more clearly visualise curvature using linear visualization
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Linear ElVis

Fig. 12. A visualization of a curvilinear hemisphere using linearly interpolated elements
(left) and ElVis (right)

software, this usually causes confusion in determining where the high-order el-
emental boundaries lie, since additional faces are drawn wherever refinement
occurs. ElVis therefore gives an accurate representation of the features of the
numerical discretisation.

Self-intersecting Element Invalid region highlighted

Fig. 13. Visualization of a self-intersecting tetrahedron, where on the right ElVis is
used to highlight areas where the element is invalid

We conclude with a final observation regarding mesh generation and how
visualization tools such as ElVis provide a valuable debugging tool. Curvature
in an element Ωe is usually imposed through the use of a mapping T from a
reference element Ωst, which is necessarily required to be invertible and preserve
orientation so that the determinant of the Jacobian of T is positive at all points
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within Ωst. However, it is often the case that when curvature is imposed in
the mesh generation procedure, self-intersection can occur, causing the resulting
mesh to be invalid and be unsuitable for simulations. For linear finite elements,
detecting invalid elements is an easy task – however at higher polynomial orders,
the task turns into a multi-dimensional root finding problem which is extremely
costly.

An alternative approach is to select a distribution of nodal points at which
the Jacobian determinant is evaluated and is confirmed to be positive. However,
this does not give a guarantee that the element is valid. High-order visualization
tools such as ElVis are therefore a powerful tool if it is suspected that the mesh
may contain negative Jacobians. Figure 13 shows how the Jacobian function can
be visualised to highlight areas in elements which are invalid.

4 Conclusions

We have given an overview of the various capabilities and features of the Ele-
ment Visualizer ElVis, an integrated visualization system designed specifically
for high-order finite element solutions. ElVis has an extensible architecture that
supports data originating from arbitrary simulation systems and its visualization
algorithms are decoupled from the data representation. This provides accurate
visualization and avoids introducing error into the final image by operating on
the high-order data directly. ElVis also uses the parallel processing capabilities
of recent Graphics Processing Units (GPU) to provide interactive visualizations
on desktop computers.

We have shown that high-order visualization is not only desirable, but nec-
essary in order to truly appreciate the solution data that high-order methods
produce, and indeed to visualise the geometry on which such methods are used.
Furthermore, these techniques are crucial not only to visualise solution data but
can play a crucial role in diagnosing problems and also in the mesh generation
process. It is clear that if high-order methods are to be more widely adopted
amongst industry, the development of tools such as ElVis is essential.
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Abstract. High order methods are regarded as a primary means to sig-
nificantly improve the efficiency of numerical techniques. While the par-
ticular high order methods can be very distinct, most have in common
that their solution is represented by piecewise polynomials. However,
since high order methods evolved only recently, most of the present visu-
alization techniques are not suited for the needs of resulting simulation
data; they are predominantly based on tensor product linear interpola-
tion and applying them to high order data is nowadays accomplished by
static resampling, involving prohibitive storage and computation costs,
and providing at most sufficient results. In this paper, we describe two
of our existing visualization approaches and discuss some of the involved
problems and concepts, and exemplify them using different high order
simulation results.

Keywords: High order methods, direct volume rendering, GPU-based
visualization, piecewise polynomial data, unstructured grids, parallel
rendering.

1 Introduction

In the development of the next generation of numerical methods for fluid dy-
namics, the main goals are to reduce computational cost significantly and to
offer a higher accuracy—in short, to generally raise the efficiency of the method
over today’s second order finite volume schemes. Schemes with a high order
of accuracy, amongst those the herein presented discontinuous Galerkin (DG)
schemes, are commonly regarded as a promising way to achieve these goals. Ini-
tially introduced by Reed and Hill [21], a considerable amount of research has
been carried out to lay the theoretical groundwork for the method and drive it
towards industrial applicability [1, 3, 6, 14]. While current DG implementations
are already very mature, major tasks remain in the field of mesh generation and
post-processing. An issue, which has not yet been sufficiently addressed in the
past, is the visualization of data generated by DG codes. There, the DG solution
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is represented as a piecewise polynomial, continuous inside the cell, but discon-
tinuous at its boundaries. Today’s visualization tools, however, mostly rely on
tensor product linear interpolation, and are thus not directly applicable to DG
solutions. A common way to visualize these data is therefore to resample them
and to apply those visualization tools to the resampled approximation. However,
due to the high variation of high order data, a conservative resampling would
involve prohibitive cost in storage and computation, and therefore in practice the
overall approach leads to severe deterioration of the original data. Some existing
approaches in the field of visualization of high order data are the Gmsh frame-
work [12,22], relying on an error-adaptive resampling of the high order solution
and the ElVis framework [18]. In this paper, we report on two of our techniques
for high order visualization: direct volume rendering [24] and isosurface extrac-
tion [20]. Further examples for high order visualization techniques include the
extraction of ridge lines and vortex core lines [19], and direct visualization of
Particle-Partition of Unity data [25].

We demonstrate the capabilities and the flexibility of our visualization ap-
proaches on three typical benchmark cases from fluid dynamics, where we an-
alyze high order datasets, obtained from two different discontinuous Galerkin
CFD codes. The first benchmark case is a laminar flow around a sphere. This is
clearly the most demanding dataset regarding the visualization, as it has been
computed on an unstructured curved mesh with 30, 000 elements containing
hanging nodes. Furthermore, p-adaptivity has been applied during the simula-
tion, resulting in a polynomial degree varying throughout the domain in a range
from p = 2 to p = 6.

In the second test case, a Large Eddy Simulation of a round jet is analyzed,
which is a shear layer flow covering a broad range of turbulent scales [5]. The
results have been computed at a Mach number of Ma = 0.9 and Re = 5, 000
using a hexahedral mesh with 70, 000 elements and a polynomial degree of p = 5,
which results in 13.0 mio degrees of freedom. Due to the high Mach number the
simulation has been stabilized using a Smagorinsky model.

For the third example, we selected the Taylor-Green vortex, which is a com-
monly used benchmark problem for turbulence investigations [8]. It features a
turbulent energy cascade, which is used to study the effects of turbulent tran-
sition and decay. While the mesh consists of only 512 elements, we employed a
very high order of O(16), resulting in 2.1 mio degrees of freedom.

The computations have been performed with two distinct inhouse DG frame-
works. The flow around a sphere has been computed using the HALO frame-
work [10, 11], the round jet and the Taylor-Green vortex using the Flexi frame-
work [9, 13].

2 Discontinuous Galerkin Schemes

In this section, we give a brief overview over the DG schemes, which were used
to compute the results presented in this work, and describe the fundamental
challenges they pose to the visualization. The first DG framework HALO is based
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on a mixed nodal/modal formulation by Gassner et al. [11]. It supports fully
unstructured hybrid meshes and utilizes acceleration techniques like adaptive
mesh refinement (h) and polynomial adaptivity (p), both termed hp-adaptivity.
Mesh adaptation is a very complex task, as modifications are required to be
as local as possible, the code is thus capable of handling meshes with hanging
nodes. It furthermore uses an explicit local time-stepping approach to reduce
computation times.

The second framework Flexi is based on a discontinuous Galerkin Spectral
Element (DGSEM) formulation by Kopriva and Gassner [9], which uses a col-
location of solution points and integration points. Due to its formulation, it is
limited to hexahedral elements, but can use unstructured meshes with hanging
nodes. It has been designed for massively parallel computations and supports
very high polynomial orders, e.g., as the aforementioned O(16) computations of
the Taylor-Green vortex.

To illustrate the basic ideas, we derive a DG scheme for the mixed nodal/-
modal approach for a scalar nonlinear conservation law

ut +∇x · f(u) = 0, (1)

where u is the conserved variable, f(u) the flux function and the subscripts x
and t denote the spatial and temporal derivatives. We approximate our solution
within a grid cell Q by a polynomial

u(x, t) =
N∑

i=1

ûi(t)ϕi(x), (2)

where ûi(t) denote the degrees of freedom and N is the dimension of the polyno-
mial space with N = (p+d)!

p!d! , where p is the polynomial degree and d the spatial
dimension. In case of the HALO code, we use orthonormal modal basis functions
ϕ(x) to represent the solution, which possess the property

∫

Q

ϕi(x)ϕj(x) dx = δij . (3)

As a next step, we derive the weak formulation for a cell and therefore multiply
the conservation law with a test function φ(x), integrate over Q, and perform
integration by parts

∫

Q

utφ(x) dx +

∫

∂Q

f∗(u+, u−)φ(x) ds−
∫

Q

f(u) · ∇φ(x) dx = 0. (4)

f∗(u+, u−) denotes the numerical flux function normal to the cell boundary,
depending on the two distinct states u− inside the local grid cell and u+ of the
adjacent cell. Following the Galerkin approach, we choose the test function φ(x)
identical to the basis function ϕ(x). We evaluate the integrals using a Gauss
quadrature rule and therefore have to evaluate the modal representation of the
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solution at nodal points. In contrast to this approach, the DGSEM scheme relies
on a purely nodal representation of the solution throughout the scheme and
collocates solution points and quadrature points, thus being simpler and more
efficient.

During the simulation, we benefit from the fact that all operations are per-
formed on a static set of points and thus many operations can be saved by
precomputing data at the beginning of the computation. For the visualization
process however, the solution has to be evaluated at arbitrary points, depending
on the viewpoint. It is therefore preferable to use another set of basis functions
for interactive visualization. As numerical inaccuracies are negligible in the vi-
sualization process, the presented tools use monomial basis functions defined in
the barycenter. Prior to the visualization process the solution data is converted
into this form.

A further characteristic of DG methods in general is their requirement for
a high order geometry representation, to retain their high order accuracy near
curved boundaries [2]. This requirement effectively leads to grid cells that can
be arbitrarily curved and can be present not only along curved boundaries, but
throughout the computational domain, posing further challenges on the visual-
ization side. We see, that aside from the pure polynomial representation of the
solution, many other aspects have to be considered, making the visualization of
data generated by advanced discontinuous Galerkin codes a nontrivial task.

3 Visualization

Traditional visualization techniques are based on tensor product linear inter-
polation, i.e., bilinear in 2D and trilinear in 3D. Although this approach has
proven successful in a wide area of research and applications, direct visualiza-
tion of high order simulation results is not amenable by these techniques. Hence,
it has been practice to resample the high order data, typically on regular grids,
and to subsequently apply those traditional techniques for visualization of the
resampled data. This, however, introduces manifold drawbacks, especially with
respect to accuracy, memory consumption, and speed. In particular, there is the
problem that the fine structure is typically missed due to the difficulty of finding
an appropriate sampling that captures all detail at sub-cell resolution.

The building blocks for high order visualization include direct evaluation of
the high order data within the complete visualization pipeline. Because this
is computationally demanding, graphics hardware is employed for evaluation.
Hence, one needs to transfer the piecewise polynomial data to the graphics card
in an appropriate representation, evaluate them, and construct the visualization
representation and visualize these, all on graphics hardware.

Scientific visualization offers a multitude of different techniques for the anal-
ysis of simulation results. Most common is the extraction of a subset of the 3D
domain as a geometric representation, e.g., cutting planes, and the subsequent
rendering of the geometry using one or more attributes of the field solution for
color mapping. Such traditional geometric methods are mostly limited to lin-
ear, or low order interpolation. However, there has been some effort to enable
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Fig. 1. Distributed raycasting of an unstructured grid with holes. Here, the domain is
partitioned into three convex regions. The workload is distributed by assigning each
region to one GPU, e.g., GPU 0 raycasts segment [t0, tp] and GPU 1 raycasts segment
[tp, te] of ray xi(t). A spatial acceleration datastructure, depicted as the blue regular
grid, enables efficient detection of the grid entry cells (light green) and the re-entry
cells (dark green) after holes.

the visualization of high order field solutions on geometric representations [17].
In our work, we concentrate on high order visualization using other techniques:
direct volume rendering with raycasting (Section 3.1) and feature extraction
(Section 3.2).

3.1 Direct Volume Rendering

The rendering of field data given on a 3D domain inherently has to deal with oc-
clusion issues due to the mapping of the 3D field to the 2D image representation
displayed on the screen. A set of isocontours, for example, usually captures only
a subset of the domain. This subset gets denser with an increasing number of
isolevels, however, simultaneously, visual clutter and occlusion become a limiting
factor. Additionally, extracting and storing the geometry of a large number of
isocontours may be computationally too costly. Direct volume rendering (DVR),
in contrast, enables a direct dense visualization of volumetric field data by vi-
sualizing the volumetric field in a semi-transparent manner. It enables the user
to highlight interesting features of the data set by directly mapping their values
to opaque color and still allows to display the spatial context of the features by
using more transparency for their vicinity. The color mapping is established by
the transfer function, which maps field values f(x) at a sample location x to
color c and opacity τ , offering the user an intuitive interface for defining the
desired exploration task.

Splatting is one example for an object-based DVR technique. It employs the
representation of the volume data by means of 3D interpolation kernels by
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projecting these kernels to the 2D image plane on which the color and opac-
ity contribution of the 3D data set is accumulated in a 2D convolution process.
Volume rendering often employs a physically motivated light emission and ab-
sorption model, given as the rendering integral:

I =

∫ te

t0

c(f(x(t)))τ(f(x(t)))e
−

∫ t
t0

τ(f(x(t′))) dt′
dt, (5)

with x(t) being a ray shot through the volume. With this volume rendering model
the cells have to be projected in visibility order, requiring a costly sorting, e.g.,
in curvilinear or unstructured grids.

Raycasting is an image-based DVR technique, which typically approximates
(5) with a Riemann sum. Viewing rays are shot from a virtual camera through
the pixels of the image plane, entering the simulation domain at x(t0) and leav-
ing it at x(te), see Figure 1. Along those rays, the field solution f is sampled,
the transfer function is applied to each field sample, and finally, the color con-
tribution I is accumulated. This approach naturally ensures a front-to-back or
back-to-front ordering of the samples.

Traditional volume raycasters for grid-based simulation data [7] employ lin-
ear interpolation techniques to reconstruct a dense representation of the field
solution. This enables interactive display rates of large volume data sets with
modern multi-core compute hardware (e.g., GPUs [23]). The development of our
interactive raycaster for hp-adaptive simulation data with curved elements and
a polynomial field solution of high order [24] involved multiple challenges:

1. The computational effort of evaluating the field polynomials increases with
the order of the solution. Additionally, a very large number of samples, at
locations depending on the camera setup, need to be evaluated along the
rays. Thus, an appropriate polynomial representation has to be chosen, fitting
the time-critical evaluation scheme of the raycaster.

2. Efficiency is also critical during the traversal of the grid. The lookup of the
grid cell containing the location of a field sample has to be efficient.

3. The placement of the field samples along the rays is also critical. Due to
performance reasons, a brute-force regular sampling with a very fine step
size would be prohibitive.

Our raycaster addresses the performance challenge by employing paralleliza-
tion on multiple levels. Firstly, the raycasting is implemented in CUDA, a lan-
guage for programming the massively parallel GPU architecture. Our CUDA
raycasting code performs the sampling of the volume along distinct rays in par-
allel, as rays xi and xi+n in Figure 1 can be computed independently from each
other. Additionally, as illustrated in the figure, the raycaster is designed for the
parallel execution on a GPU compute cluster. Therefore, the simulation domain
is partitioned, with each compute node raycasting a small convex subset of the
field. A dynamic load balancing strategy tries to ensure an even load when using
a larger number of compute nodes. The convex partitions have to be sorted in
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Fig. 2. Direct volume renderings of the density field of the hp-adaptive laminar flow
around a sphere
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Fig. 3. Density levels of a computation of a turbulent jet with p = 5, visualized with
high order volume rendering

visibility order and their image results can then be blended appropriately to
obtain the final image.

With the monomial field representation, described in Section 2, an efficient it-
erative evaluation of the field solution along the rays becomes possible. Thereby,
the basis functions do not need to be stored explicitly for the monomial represen-
tation. This is advantageous with respect to compact storage and the upload of
the field solution to the GPU. Additionally, by representing the solution polyno-
mials in physical space, the costly inversion of the geometry mapping is avoided
during the time-critical raycasting stage.

Spatial acceleration data structures (Figure 1) are used to ensure efficient
traversal and partitioning of the complex grids. The GPU grid data structure
additionally contains grid topology information, to be able to efficiently detect
the neighbor cells of a face when traversing the domain along the rays.

A very effective acceleration approach is the reduction of the number of
samples taken along the rays. Our raycaster employs an adaptive sampling
strategy which adjusts the sampling step size to the complexity of the underlying
color function [4]. In a preprocessing step, for each cell a rough approximation
of the bounds of the field values [fmin, fmax] and the maximum gradient magni-
tude ‖∇f‖max is determined within its cover. During runtime, we compute the
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Fig. 4. Direct volume rendering of the density field of the turbulent jet flow, simulated
with p = 5. Selective visualization up to specified polynomial degree pvis = 2 (top) and
pvis = 3 (bottom) provides a qualitative notion of the impact of the polynomial order
on the simulation result.
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Fig. 5. Single hexahedral element with 5-th order scalar field. High order volume ren-
dering (left) provides its true structure, in contrast to high order volume rendering of
its approximation by trilinear interpolation (right). Both results were obtained without
supersampling.

highest frequency νTF of the transfer function within the range [fmin, fmax] for
each cell. Then, a conservative approximation of the band-limiting frequency

νc = νTF‖∇f‖max (6)

of the cell’s color function cτ is computed, and, from this, an appropriate sam-
pling step size is derived for the cell.

Figure 2 shows results for the laminar flow around a sphere. Our raycaster
employs the Blinn-Phong shading model, using the field gradient ∇f(x) as the
normal at sample location x. This considerably improves the visualization of
isosurface features contained within the data. Note, the monomial representation
of f has the advantage that the computation of ∇f at the sampling locations
introduces virtually no extra cost.

Volume renderings of the turbulent jet flow are given in Figures 3 and 4, while
Figure 5 illustrates the superior quality of the high order rendering approach,
compared to trilinearly supersampled data. It is apparent that the presented
technique appropriately resolves fine detail of the high order data. Figure 6 shows
two visualizations of a Taylor-Green vortex computation. One can observe fine
details and at the same time the volume rendering provides context of the overall
organization of the vortical flow.

In contrast to established visualization techniques, the presented approach
also allows for a selective visualization of the single polynomial modes, to evalu-
ate the influence of the polynomial degree on the solution. Visualization of two
different polynomial degrees for the same dataset is provided at the example of
the turbulent jet in Figure 4. One can clearly see that there is a quality jump
between the two result images. The magnitude of the high modes is frequently
used as a resolution indicator, especially for turbulent flows, thus selective visu-
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Fig. 6. Volume renderings of the Taylor-Green vortex computation with polynomial
order p = 9
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(a) (b) (c) (d)

Fig. 7. First phase of isosurface extraction in high order fields (from [20]). (a) Dis-
tribute points uniformly within cell. (b) Move points toward aimed isosurface (red)
by streamline integration in gradient field. (c) Fit points to isosurface by directional
Newton-Raphson iteration. (d) Generate surface-tangent patch centered at each point.

alization allows one to easily identify underresolved regions in the domain. On
the other hand, the ability to visualize lower polynomial degrees can be advan-
tageous especially for very large datasets, if compuational resources are limited
or if only a global overview is required.

3.2 Feature Extraction

Although many common problems are absent in volume rendering, its flexibility
and generality involves other difficulties. On the one hand, transfer functions
offer great flexibility for visualization but at the same time transfer function
design is a demanding task. On the other hand, the integrative visualization ef-
fect of semitransparent rendering is a powerful approach to provide overall data
context but at the cost of reduced depth perception and difficulty of perceiv-
ing individual features. Although it is possible to utilize volume rendering for
extracting isosurfaces, there are approaches that are better suited for this task.

Isosurface extraction from discretized data, based on trilinear interpolation,
is nowadays commonly achieved by the Marching Cubes (MC) family of algo-
rithms [15]. The power of this approach relies on its assumption of tensor product
linear variation of the field within a cell. Since these interpolations exhibit linear
data variation along cell edges, the MC algorithms assume that a cell edge is
intersected by an isosurface no more than once. This property allows the 3D al-
gorithm to rely on only 256 possible configurations of isosurface patches within
a cell. By constructing a lookup table for these cases and by marching, i.e.,
traversing, the data cell by cell, MC achieves superior performance at compara-
bly low algorithmic complexity. Unfortunately, in the high order data domain,
such assumptions cannot be made, necessitating alternative approaches.

Since construction of surface meshes from the typically highly variable isocon-
tours in polynomial data represents a difficult undertaking, a possible approach
is the extraction of point-based isosurface representations [16]. Point-based sur-
faces avoid the explicit representation of connectivity; the surfaces are defined
by points scattered along the intended manifold, each of them supplied with a
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(a) (b)

Fig. 8. Second phase of isosurface extraction in high order fields (from [20]). (a) Ras-
terize quads in image space. (b) Move fragments to isosurface by directional Newton-
Raphson. Finally, fragments are shaded using ∇f as surface normal.

radius and a surface normal. It is the subsequent rendering step that employs
appropriate blending to close the gaps, resulting in smoothly shaded surfaces
similar to the results based on triangle meshes. A concern is thereby, however,
the appropriate distribution of the sample points, e.g., with respect to surface
curvature. Our technique [20] is located between these approaches: it employs
a first phase where points (Figure 7a) are distributed onto the aimed isosurface
by moving them along the field lines of the scalar field’s gradient (Figure 7b),
with subsequent Newton-Raphson refinement (Figure 7c), and generation of a
patch centered at each point and aligned perpendicular to ∇f (Figure 7d). In a
second phase, the surface patches are rasterized into fragments (Figure 8a), and
each fragment is moved along the line of sight onto the isosurface with Newton-
Raphson refinement (Figure 8b). The main reason for this two-phase approach is
the difficulty of root finding in polynomial multivariate data. Along each viewing
ray of the resulting image, we need to place the fragment onto the isosurface,
i.e., at the intersection of the isosurface with the viewing ray. However, there are
typically many intersections along the rays—and although only the one closest
to the virtual camera is of interest (the others are occluded by it and hence one
does not need to determine them), it is a nontrivial undertaking to find that
first intersection along a ray. Due to the implicit formulation of an isosurface,
numerical methods are typically employed. We apply Newton-Raphson itera-
tions directed along the ray, involving the problem that these iterations tend to
diverge from the aimed solution if the chosen starting point is not sufficiently
close. This is the motivation for the first phase of our algorithm: it allows us
to obtain initial estimates that are sufficiently close to the aimed solution. The
second phase then necessitates only comparably few Newton-Raphson iterations
to make the point converge toward the desired isosurface. Figure 9 provides a
result for the density field of the laminar flow around a sphere. It is appar-
ent that our technique correctly represents the discontinuities, i.e., cracks, at
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the cell boundaries—in contrast to traditional resampling-based isosurface ex-
traction. Although such cracks can involve perception issues, they represent the
true shape of isosurfaces and can thus serve for validation and adjustment of
hp-adaptivity.

Fig. 9. Density isosurface extracted from laminar flow around sphere (from [20]). The
discontinuities at the cell boundaries of the simulation are apparent and can serve for
validation of simulation quality.

4 Conclusion

Discontinuous Galerkin codes have seen a considerable amount of new develop-
ments in the last years and can be regarded as mature from a numerical point
of view. However, one remaining task is the efficient visualization of the piece-
wise polynomial data generated by these codes, as most widespread visualization
tools can only handle tensor product linear data. Appropriate visualization of
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high order data is a nontrivial task, as the difficulties are not only with respect
to the polynomial representation. Beyond that, the techniques have to account
for advanced features of modern DG codes, like curved elements, mesh and poly-
nomial adaptivity, hanging nodes, very high polynomial degrees, and very large
data sizes.

In this paper, we reported on two of our existing high order visualization
techniques—direct volume rendering and isosurface extraction, and evaluated
them using different simulation data. To this end, we conducted simulations on
three well-investigated benchmark problems: the flow around a sphere, featuring
a complex curved geometry, a round jet with a high number of degrees of free-
dom, and an isentropic vortex flow computed at O(16). We demonstrated the
advantages and limitations of our approaches using these cases and discussed
their application in the overall high order CFD process. As future work, we plan
to integrate our approaches into a single framework to make them more widely
available.
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Abstract. In this chapter the testcases in the IDIHOM project treating
external aerodynamic flow are subjected to an industrial assessment. The
chapter serves to illustrate the level of complexity that can be presently
handled using higher order discretization methods. In addition, a dis-
cussion on the efficiency and robustness of the codes compared with the
current state of the art is included.

Keywords: CFD, industrial assessment, higher order discretization,
external aerodynamics.

1 Introduction

The main bulk of testcases considered in IDIHOM are in the scope of external
aerodynamics. Since a central goal of the project is the industrialization of higher
order approaches, most of the cases considered are of a relatively high level of
complexity. In addition, simpler testcases have been included as a testbed for
the new approaches as well as allowing for more detailed, quantitative, analyses
normally too expensive for industrial cases.

An important part of the project has been comparing the new approaches
to a well–defined industrial reference. The approach used is similar to what
was attempted in the ADIGMA project [1], incorporating asymptotic analyses
on mesh cascades, resulting in machine–independent performance data. Also
considered are other aspects of importance for industry, such as robustness, ease
of use and memory usage. Some of the testcases are of a complexity not often
attempted with higher order schemes. For such cases, the successful generation
of plausible data in itself represents progress in the field of higher order
solvers.
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N. Kroll et al. (eds.), IDIHOM: A Top-Down Approach, Notes on
Numerical Fluid Mechanics and Multidisciplinary Design 128, DOI: 10.1007/978-3-319-12886-3_26



554 K.A. Sørensen et al.

The asymptotic convergence analysis planned for the testcases is based on the
assumption that the numerical error for an integral value can be expressed in
the following form:

E = kN−α
DOF (1)

where NDOF , α and k are the number of degrees of freedom per equation, the
(dimensionally dependent) order and a constant, respectively. Ideally, a mesh
cascade of at least three nested meshes of sufficient resolution is available for
the analysis, allowing for the determination of the order, the constant k and
the asymptotic value of the integral coefficient. The creation of higher order
mesh cascades, particularly for unstructured meshes, unfortunately turned out
to be a major challenge for the geometries considered in the project. Simplified
approaches were therefore frequently necessary to enable a quantitative state-
ment to be made. One approach used was determining the coefficient asymptotic
value through curve–fitting of results of different discretization order, then as-
suming the discretization order to equal the nominal scheme value and finally
determining the constant k for the error for each computation. These additional
assumptions are likely to significantly affect the accuracy of the analysis. It was
however hoped that enough data would become available for the identification
of general trends of the scheme performance. For platform–independent compar-
isons of wall–clock time required for convergence, a normalized time-unit was
introduced, based on a benchmark code available to all partners [2]. For the ma-
jority of the cases considered, it was however discovered that any form of formal
evaluation of the efficiency of the schemes would exceed the available resources.
These cases are however still important in obtaining a picture of the applicability
and robustness of higher order methods in their current form.

2 Testcases

Higher order computations of eight external aerodynamic test cases were per-
formed within the project. Three of these testcases are termed underlying as they
involve geometries and physics that are not considered of industrial complexity.
The remaining testcases consist of aircraft geometries at design point and high
angle of attack/high lift conditions as well as a train configuration and a rotor
case. For each testcase, a document was created at the beginning of the project
and continuously updated, in which the convergence definitions, the available
meshes and current status of the case was described.

2.1 Case U.1: VFE2 Delta Wing

This underlying testcase was coordinated by Airbus D&S and is considered to
be important since it is often stated that higher order methods are particu-
larly advantageous for rotating flows. If this could be shown, the higher order
discretizations could constitute a large improvement compared with the second
order FV methods presently in use, known to require very fine meshes in order
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to reduce vortex dissipation below an acceptable level. Three subcases were de-
fined for the delta wing. The U.1a testcase consists of the VFE2 geometry with
sharp leading edge, M = 0.07, α = 23◦ and Re = 1 · 106. This case was to be
computed using hybrid RANS/LES methods. For U.1b and U.1c, the geometry
with the medium radius leading edge is considered. For U.1b, the flow condi-
tions are M = 0.4, α = 13.3◦, Re = 3.0 · 106, and for U.1c, M = 0.8, α = 20.5◦

and Re = 2.0 · 106. In addition to integral forces and surface pressure measure-
ments [3], DLR has conducted PSP and PIV measurements [4] and TUM has
conducted hot wire anemometry measurements for U.1a, yielding high frequency
velocity data [5].

The industrial reference was provided by Airbus D&S, employing the DLR
Tau code [6] and NLR, using the ENFLOW [7] code. For U.1a, no mesh conver-
gence study was attempted. Instead, the solution quality considered state of the
art was indicated. For U.1b, an asymptotic convergence study was conducted, in-
dicating the current cost in obtaining a solution of engineering accuracy, defined
as a discretization error in the lift and pitching moment coefficients below 0.005,
and below 0.001 for the drag coefficient. The industrial reference was found to
be dominated by the drag convergence, requiring 1.1e7 time units for conver-
gence. The lift and pitching moment convergence require 1.5 · 105 and 1.9 · 105
time units respectively. The mesh sizes required for convergence of the discrete
systems are 5.8 · 106, 1.3 · 108 and 7.0 · 106 DOFs per equation (mesh nodes)
for lift, drag and pitching moment respectively. The memory requirements for
the drag-converged mesh is 190 Gb. The same analysis was attempted for the
transonic case U.1c, unfortunately without conclusive results, showing irregular
asymptotic behavior. From experience with second order finite volume solvers, it
is however reasonable to assume that the transonic mesh convergence has similar
characteristics to the subsonic case.

Higher order inputs for this testcase were supplied by DLR, UNIBG and NLR.
Unfortunately, the higher order unstructured meshes that were planned to be
supplied by ARA were, due to technical difficulties, not completed during the
project. A workaround to this major problem was found by acquiring a higher or-
der unstructured mesh from professor O. Hassan, University of Wales, Swansea,
who, not being part of IDIHOM, graciously supplied the grid without remuner-
ation, Figure 1. Two higher order structured meshes were generated by UNIBG
through agglomeration of linear meshes for their computations, Figures 2, 3.
DLR also used structured higher order meshes created by agglomeration, based
on the same meshes as UNIBG. NLR employed a linear, structured, mesh for
their XLES simulation. Since proper higher order mesh cascades were not avail-
able for this testcase, the simplified asymptotic analysis had to be used.

For the subsonic DLR computations of case U.1b, it is seen that the p = 1
results fit reasonably well with the (second order) industrial baseline data,
Table 1, both for mesh size and convergence time. It is also observed that increas-
ing p significantly reduces the mesh size required, thus showing improvement



556 K.A. Sørensen et al.

compared with the current industrial state of the art. The computational cost is
however similar to industrial solvers. The memory usage is on the other hand an
order of magnitude higher than the industrial reference. Also observed is that
the efficiency improvement resulting from increasing p from 1 to 2 is considerably
larger than a subsequent increase in p from 2 to 3; in computational time this
last increase does not seem to bring improvement for this case.

The subsonic UNIBG computations were originally performed on a very
coarse, highly regular structured mesh, Figure 2. The, DOF based, drag con-
vergence data for these computations are consistently two orders of magnitude
better than the unstructured computations described above, Table 2. The com-
putations thus show an impressive efficiency increase of around three orders of
magnitude compared with the industrial baseline. The higher order solver seems
to reach the industrial reference convergence rate for this very small discrete sys-
tem, resulting in a three orders of magnitude improvement also in computational
time. As seen for the unstructured computations, the increase to p = 2 shows the
largest gains and this discretization order appears to be optimal for this case.
The memory usage per degree of freedom is still very high, but due to the very
small meshes needed for convergence, it is smaller than the industrial baseline.
To confirm these results, a convergence analysis of the lift and drag coefficients
was also attempted. For these integral values the p-convergence was however
not monotone. By taking the p = 4 values as asymptotic values, the convergence
data was approximated, Tables 3 and 4. It is observed that the analysis yields ir-
regular results, except for p = 3, where the convergence is dominated by the drag
values, as for the industrial reference. These truly excellent improvements for the
higher order solver have not been observed for other testcases. Even though the
analysis is based on a very coarse mesh, the asymptotic values found are almost
identical to the unstructured higher order computations and the industrial ref-
erence, except for the asymptotic drag coefficient which is found to be around
4% higher than the DLR unstructured result but very close to the industrial
reference. It is also unclear why for p = 1 the discrete system size is two orders
smaller than the unstructured DLR computations and the industrial baseline. To
clarify these results, the testcase was repeated by UNIBG for a finer structured
mesh, Figure 3. These computations resulted in a completely different picture,
showing irregular asymptotic behavior with increasing scheme order. Generally
it can however be observed that the convergence of the integral coefficients is
much slower on this mesh. The drag coefficient also appears to converge towards
a value closer to the unstructured DLR results. The stellar performance result-
ing from the coarse mesh analysis could thus unfortunately not be confirmed
and it seems reasonable to assume that the coarse mesh UNIBG behavior is not
representative for the higher order codes on this problem.

For the transonic case, U.1c, results from UNIBG are available, Summarized
in Table 3 as well as incomplete data from DLR, Table 4. For these computations,
the finer structured mesh Figure 3, was used. Even though industrial baseline
data are not available for this testcase, it is reasonable to assume that the 2.
order FV behavior is of the same order of magnitude as for case U.1b. This would
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thus indicate around a one order of magnitude improvement in discrete system
size for the higher order approach. It is however observed that the computational
time required for convergence does not improve with the scheme order, indicating
a less efficient solver for higher polynomial representations for transonic cases.

Also demonstrated for case U.1b by DLR is the usage of adjoint adaptation for
higher order methods. In Figures 4 and 5 the improvement in mesh convergence
is shown. A reduction in discrete system size significantly higher than one order
of magnitude compared with the industrial reference is achieved. In Figures 6
and 7, the reduction in computational time is observed to also reach more than
an order of magnitude compared with the reference. The comparison with a
similar adaptive scheme based on 2nd order finite volume solvers has not been
performed in the project.

NLR demonstrated the usage of their 4th order finite volume solver for case
U.1a, showing good correlation with the experimental data, Figures 8, 9. The
accuracy obtained is stated to be similar to that found for the baseline compu-
tations, but with a reduction of around 40% of the grid points due to the, in
IDIHOM implemented, hanging–node capability of the code. This testcase was
also simulated by UNIBG using the X-LES approach, Figures 10,11. UNIBG have
also achieved progress in the higher-order discretization of turbulence models,
obtaining results for U.1b using the EARSM method, Figure 12. Similar prob-
lems regarding stability as can often be observed for industrial codes are also
reported for the higher order implementation, there are however indications of
improved solution quality for the VFE2.

In general is appears that progress has been made in the robustness of higher
order codes and achieving well converged results has become routine for this
case. This has also been confirmed by Airbus D&S using the DLR PADGE code
for various angles of attack and (subsonic) Mach numbers showing, in general,
stable properties for low and medium Mach numbers.

Table 1. Asymptotic convergence analysis for the U.1b test case based on DLR
PADGE coefficients on an unstructured higher order mesh. For the lift and pitching
moment coefficients the p–convergence displayed irregular behavior, the asymptotic
coefficient was therefore approximated by the third order value.

p NDOF Time [ts] Memory [Gb]

Cl Cd Cm Cl Cd Cm Cl Cd Cm

1 2.6 · 107 3.9 · 108 2.4 · 107 9.1 · 105 1.4 · 107 8.6 · 105 1.1 · 103 1.6 · 104 9.8 · 102

2 1.0 · 106 6.7 · 107 4.6 · 106 7.3 · 105 5.2 · 106 3.4 · 105 7.5 · 101 5.0 · 103 3.4 · 102

3 – 4.3 · 107 – – 5.2 · 106 – – 4.6 · 103 –
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Table 2. Asymptotic convergence analysis for the U.1b test case based on UNIBG
MIGALE coefficients on a structured higher order mesh. For the lift and pitching mo-
ment coefficients the p–convergence was not monotone, the asymptotic coefficient was
therefore approximated by the fourth order value. The excellent performance obtained
for this mesh could not be reproduced when applying the same solver on finer meshes
of similar quality and is thus not considered representative for the higher order solvers.

p NDOF Time [ts] Memory [Gb]

Cl Cd Cm Cl Cd Cm Cl Cd Cm

1 3.6 · 104 1.4 · 106 9.9 · 104 1.3 · 103 5.1 · 104 3.7 · 103 2.0 · 100 9.0 · 101 6.0 · 100

2 2.0 · 105 1.3 · 105 2.2 · 106 1.0 · 104 7.0 · 103 1.1 · 105 1.9 · 101 1.0 · 101 2.0 · 102

3 2.9 · 104 2.1 · 105 5.7 · 104 1.7 · 103 1.9 · 104 1.1 · 104 5.0 · 100 3.0 · 101 9.0 · 100

4 – 2.4 · 105 – – 5.1 · 104 – – 6.0 · 101 –

Table 3. Asymptotic convergence analysis for the U.1c test case based on UNIBG
MIGALE coefficients on a structured higher order mesh

p NDOF Time [ts] Memory [Gb]

Cl Cd Cm Cl Cd Cm Cl Cd Cm

1 4.5 · 107 1.1 · 108 5.8 · 107 3.8 · 106 9.6 · 106 5.0 · 106 2.9 · 103 7.0 · 103 3.7 · 103

2 7.6 · 106 1.5 · 107 1.0 · 107 5.7 · 106 1.1 · 107 7.6 · 106 6.1 · 102 1.2 · 103 8.0 · 102

3 4.9 · 106 8.3 · 106 6.4 · 106 7.5 · 106 1.3 · 107 1.0 · 107 7.1 · 102 1.2 · 103 9.3 · 102

Table 4. Asymptotic mesh convergence analysis for the U.1c test case based on DLR
PADGE coefficients on a structured higher order mesh. The data is very similar to the
UNBG results.

p Cl Cd

1 3.8 · 107 8.8 · 107

2 8.5 · 106 1.6 · 107

3 6.0 · 106 9.7 · 106
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Fig. 1. Unstructured higher order mesh used for the U.1 case. The mesh consists of
1.1 · 106 tetrahedral elements and was supplied to the project by the University of
Wales, Swansea.

Fig. 2. Structured higher order mesh used for the U.1 case, consisting of 1.4 · 104
elements
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Fig. 3. Structured higher order mesh used for the U.1 case, consisting of 1.1 · 105
elements

Fig. 4. Convergence plots of the computed lift coefficient vs. number of degrees of
freedom for case U.1c as computed by DLR. Shown are the results for the higher order
scheme on a cascade of structured meshes, the convergence of sequences of meshes
generated by residual–based and adjoint–based adaptation, p–convergence on the un-
structured higher order simplex mesh as well as the industrial baseline.
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Fig. 5. Convergence plots of the computed drag coefficient vs. number of degrees of
freedom for case U.1c as computed by DLR. Shown are the results for the higher order
scheme on a cascade of structured meshes, the convergence of sequences of meshes
generated by residual–based and adjoint–based adaptation, p–convergence on the un-
structured higher order simplex mesh as well as the industrial baseline.

Fig. 6. Convergence plots of the computed lift coefficient vs. normalized CPU time
for case U.1c as computed by DLR. Shown are the results for the higher order scheme
on a cascade of structured meshes, the convergence of sequences of meshes generated
by residual–based and adjoint–based adaptation, p–convergence on the unstructured
higher order simplex mesh as well as the industrial baseline.
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Fig. 7. Convergence plots of the computed drag coefficient vs. normalized CPU time
for case U.1c as computed by DLR. Shown are the results for the higher order scheme
on a cascade of structured meshes, the convergence of sequences of meshes generated
by residual–based and adjoint–based adaptation, p–convergence on the unstructured
higher order simplex mesh as well as the industrial baseline.

Fig. 8. Instantaneous iso–contour of Q–criterion colored with vorticity magnitude for
the U.1a NLR computation
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Fig. 9. Comparison between the computed and measured surface time–averaged pres-
sure coefficients for the U.1a NLR computations on three different grids on station
0.4

Fig. 10. Surface pressure plot of the U.1a UNIBG X–LES computation
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Fig. 11. Comparison between the computed and measured surface pressure coefficients
for the U.1a UNIBG X–LES computation at station 0.6

Fig. 12. Comparison of surface pressure plots between UNIBG EARSM computations
and PSP measurements for the U.1b testcase
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2.2 Case U2: M6 Wing

This underlying testcase was coordinated by ARA and was envisaged to serve
as basis for typical transport configurations at cruise. Involved in the testcase
were TsAGI, INRIA, WUT, ARTS, NUMECA, ICL and ARA. Available for this
testcase are surface pressure profiles [8] which have been extensively used in the
code comparisons. The flow conditions considered were M = 0.8395, α = 3.06◦

and Re = 1.172 · 107.
Four separate grid families were generated for this testcase. NUMECA pro-

duced a set of unstructured P2 hexahedral meshes with hanging nodes at three
resolution levels, Figure 13. ICL produced two unstructured tetrahedral meshes
for the case, Figure 14. WUT created a series of grids through their h-adaptation
code, Figure 15. ARTS used a series of structured linear meshes, generated by
coarsening a C–topology grid acquired from the NASA Validation website [9],
Figure 16.

Unfortunately, for this testcase very little data was produced on which a quan-
titative study can be based. The evaluation of the various schemes is therefore
only based on comparisons with experimental data, for which it is known that
industrial codes correlate strongly. In Figures 17 to 24 the results obtained by
the various partners are given. The TsAGI results are shown to converge towards
the experimental and second order FV results with increasing discrete system
size. No significant reduction in DOFs for the same level of accuracy is however
observed for the higher order scheme. The ARTS results also show convergence
towards experiments, where only the finest mesh applied correlates well for the
RBC schemes, as well as the industrial baseline code. Again, no improvement
for the higher order methods with respect to DOF convergence is observed. The
results from WUT’s adaptive simulations are undoubtedly the best, displaying
good capture of shock strength and location at all stations, these results were
however obtained by a second order scheme and are thus not higher order ac-
cording to the IDIHOM definition. Considering the mesh size resulting from
the adaptation, the results are believed to be comparable in efficiency with the
industrial codes as reported by ARTS.

Viewed simply as a validation testcase, all the solvers considered produce
solutions aligned with experiment, provided a sufficiently high number of DOF
is used. The underlying flow physics thus appear to be captured by the higher
order schemes. However, carrying out comparisons between the higher order
methods and those from the Finite–Volume reference simulations, it is difficult
to ascertain any clear advantage of the new approaches for this particular case,
there being little, if any, improvement in accuracy over the reference with a
similar number of DOF. This may at least partially be caused by the shock
system dominating this particular case.
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Fig. 13. NUMECA meshes for testcase U2. The three mesh levels consist of 3.8 · 104,
7.6 · 104 and 2.0 · 105 P2 hexahedral elements.

Fig. 14. ICL mesh for testcase U2. Two mesh levels were generated, consisting of
1.2·105 and 1.4·105 P2 tetrahedral elements. The first of these meshes were constructed
with an initial layer height of y+ ∼ 6, the second with y+ ∼ 1.
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Fig. 15. WUT meshes for testcase U2. The meshes consist of linear tetrahedra and
contain 1.1 · 104, 1.4 · 105, 2.8 · 105, 8.0 · 105 and 2.7 · 106 nodes.

Fig. 16. Mesh used by ARTS for testcase U2. Three meshes were created, consisting
of 4.6 · 103, 3.7 · 104, and 2.9 · 105 linear hexahedra.
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Fig. 17. TsAGI computation of case U2, showing pressure on the wing surface and
Mach distribution on the symmetry plane

Fig. 18. Comparison between experiment, finite volume and different higher order
solutions as reported by TsAGI for testcase U2
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Fig. 19. INRIA pressure field computed for case U2

Fig. 20. Comparison between experiment and the P2 solution computed by INRIA for
testcase U2
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Fig. 21. WUT pressure distribution for Grid 5, testcase U2

Fig. 22. ARTS pressure distribution for the RBC3 scheme, testcase U2
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Fig. 23. Comparison between experiment, reference and the WUT results for testcase
U2
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Fig. 24. ARTS results for testcase U2. Shown are surface pressure coefficients at sta-
tions 0.2 and 0.8. From top to bottom: RBS3, RBC2, Jameson and Roe. Jameson and
Roe results are computed using the industrial code elsA.
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2.3 Case U3: L1T2 Multi Component Airfoil

This testcase was coordinated by DLR. It features a simple three element high
lift airfoil and thus serves as underlying case to the application challenge A.3,
which can be considered a 3D version of this simpler 2D case. The L1T2 airfoil
is a well documented case with experimental results and has often been used to
verify and validate numerical results.

The flow conditions considered are M = 0.197, α = 20.18◦ and Re = 3.52·106.
Engineering accuracy is defined as reducing the error below 0.04 and 0.001 for
the lift and drag coefficients respectively.

Two families of nested multi-block structured grids have been generated and
provided by DLR for this testcase. The finer grid levels can be exploited to deliver
interpolation points for high order meshes, such that the resulting meshes are
high order curvilinear. DLR has created meshes with quartic mappings out of
mesh family A and offered them to the consortium. The meshes are available
with 4 268, 17 072, 68 288, and 273 152 elements. UNIBG has used a similar
approach to convert meshes from family B to high order. Here, mesh resolutions
of 1 185, 4 740, and 18 960 elements have been produced. TsAGI has used its own
sequence of unstructured purely hexahedral hanging node meshes generated with
NUMECA’s mesh generator HEXPRESS. The meshes are treated as curvilinear
based on a reconstruction within the solver. Figure 25 visualizes the three mesh
levels with 2 836, 7 432, and 20 854 elements, respectively. While the refinement
can be seen, it is also clear that these three meshes do not constitute a nested
hierarchy of meshes and do not necessary belong to the same “family of meshes”.

DLR has provided reference solutions with the unstructured node-centered
Finite Volume code TAU [6] for the Spalart-Allmaras turbulence model on all
four meshes from family A. Only the straight-sided meshes have been employed.
The proposed evaluation procedure on the three finest meshes yields asymptotic
values of 4.051 for the lift and 0.0608 for the drag coefficient. The observed orders
of accuracy are 2.3 and 2.6 for lift and drag, respectively. While this is slightly
larger than the expected order of two, the results seem plausible.

UNIBG and DLR have provided baseline computations with their respective
DG codes on families A and B of the structured meshes using the Wilcox-kω
turbulence model at various solution orders. Asymptotic grid converged values
have been obtained via extrapolation of high order results. For the lift coefficient,
asymptotic values of 4.000 and 4.003 have been obtained by DLR and UNIBG,
respectively, while the reference value for the drag coefficient is determined as
0.0670 and 0.0666, respectively. These values agree well with one another and
their difference is well below the tolerance used for evaluating efficiency. Figure 26
illustrates the behavior of the error between the computed baseline results and
the respective mesh converged values versus both degrees of freedom and CPU
time (measured in IDIHOM work units). The reference results are plotted along
with the baseline computations.
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Some deviations from an ideal behavior can be observed, in particular the re-
sults from UNIBG do not follow a straight line in the log-log-plot for all design
orders, which should be the case for any constant observed order of convergence.
Probably the initial mesh is too coarse to be within the asymptotic range of con-
vergence. However, in general the values converge well with both mesh and order
refinement. The tolerance for lift is easily achieved by several of the computa-
tions, while the accuracy in drag is only sufficient for some of the computations.
As expected, the advantages of very high order solutions are more pronounced
when comparing degrees of freedom, while very high order is less important in
terms of CPU time required to obtained values within the tolerance band. How-
ever, computations of order three and higher are clearly superior to second order
results, when comparing only within the DG results.

The reference Finite Volume results are the fastest to achieve the tolerance in
lift, and only a single third order computation of DLR is faster to achieve the
tolerance in drag. This outcome might be due to several effects. The TAU code is
a well optimized industrial code, whereas both DG codes should be considered as
research codes with a lower amount of performance optimization. Furthermore,
it is well known that the Spalart-Allmaras turbulence model is more likely to
yield favorable solver behavior than two-equation turbulence models.

WUT has successfully applied the developed mesh adaptation strategy to this
case. The obtained results based on the Spalart-Allmaras turbulence model are
in good agreement with both experimental data and Finite Volume reference
results. Figure 27 illustrates the transition from an initial mesh to the flow-
adapted final mesh after seven adaptation cycles. Figure 28 plots the pressure
coefficient over the airfoil computed on the final adapted mesh with VKI’s second
order solver Thor [10], which is also employed to drive the adaptation. The
agreement with experimental data is excellent, the difference in pressure level on
the slat is observed in all numerical computations. Finally, Figure 29 illustrates
the error in lift and drag over the sequence of adapted meshes. While the overall
error level is larger than for the reference solution at same degrees of freedom,
the effectivity of the procedure can be seen in the considerable drop of error
in both lift and drag between the last two adaptation cycles with a minimal
increase in mesh size. Furthermore, the absolute level of error is also strongly
influenced by the flow solver, not only by the mesh itself.

UNIBG and TsAGI have supplied results for their new implementations of
an Explicit Algebraic Reynolds Stress Model (EARSM). An EARSM has been
implemented in the k-log(ω) model of the UNIBG’s DG code MIGALE, using
the 1988 (and 2006) Wilcox’s model constants. Completeness and correctness
of EARSM analytic contributions to the residual Jacobian matrix have been
thoroughly assessed. Despite the careful implementation, which resulted in a
very small computational overhead, the results of the U.3 test case did not show
any improvement over the standard k-log(ω) model. UNIBG experience using
EARSM is that convergence to steady state solutions is often quite difficult, if
possible at all. For the U.3 test case, instability of the shear layer enclosing the
flow in the cove region of the main profile prevented convergence of higher-order
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(orders six and seven) DG solutions. An accurate numerical investigation on
basic flat plate and shear flow configurations revealed that EARSM, as other
non-linear eddy viscosity models, under-predicts the spreading rate of shear lay-
ers. Numerical experiments, modifying the model constants and details of its
implementation, showed that it is, in fact, possible to improve EARSM predic-
tion of such basic flows. How these modifications affect force coefficients of the
U.3 test could not be deeply investigated. Some of the results of UNIBG are
illustrated in Figure 30, which demonstrates the low level of difference between
the kω and EARSM results.

In Figure 31, the results from all the computations performed for the test-
case are presented. Under mesh refinement, the TsAGI computations converge
towards values similar to the reference for both lift and drag, at least for orders
three and four. For the second order results, the meshes are probably still too
coarse to obtain good results in the integral coefficients. This effect can also be
seen in the extrapolated mesh asymptotic values per order of the DG method.
The lift and drag values behave monotonically (per order) for the results of
TsAGI. The extrapolation to an asymptotic value was conducted in two differ-
ent ways; by using three meshes for a given scheme order or by using the two
finest mesh results and assuming the nominal scheme order. The results obtained
for both methods are summarized in Table 5 for lift and Table 6 for drag. The
observed orders of accuracy are unrealistically large for polynomial degrees two
and three, this may be caused by the non–nested meshes used. However, the
associated asymptotic values stemming from the two approaches used are very
similar for a given order. Moreover, the obtained third and fourth order results
are reasonably close to each other, and also compare well with the results from
other partners. The remaining difference could be due to the use of a different tur-
bulence model variant. In Figure 31, the TsAGI results are related to an optimal
reference value found by averaging the asymptotic values obtained via the two
extrapolation values. In general, two main effects can be observed. Firstly, the
higher order solvers are rarely capable of improving the efficiency, measured in
computational effort, of the of the reference computations. Secondly, the largest
improvement for the DG schemes is obtained by increasing the nominal scheme
order from second to third order, the fourth order results are less efficient for
this testcase.

In previous work, UNIBG has presented a formulation of the high order DG
method on agglomerated meshes with arbitrary element shapes. Based on this
formulation, DLR has developed an h-multigrid formulation in which such ag-
glomerated meshes are exploited in order to accelerate the solution on the orig-
inal mesh. A similar procedure has later also been implemented by UNIBG.

The proposed procedures have been applied to this case. Figure 32 compares
UNIBG results on the performance of the single–grid implicit solver with a vari-
ant of multigrid for a third order computation on the unstructured mesh gener-
ated by UNIBG. Both solvers use the same linearized Backward-Euler smoother
with ILU(0) preconditioner and a maximum of 15 steps within the GMRes linear
solver. The multigrid variant uses an FAS approach on two additional coarser
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levels, with an agglomeration ratio of two. Due to the increased cost per cycle
the advantages of multigrid are reduced when measured w. r. t. CPU time, but
they are still considerable in this case. Figure 33 illustrates the original mesh
and the two agglomerated coarse levels used by UNIBG.

DLR has computed the same case on the same mesh. While the underlying
smoother and the number of GMRes iterations is the same, DLR has used other
settings according to its best practice. Again, a total of three levels is used, but
with an agglomeration ratio of four. Although a non-linear FAS multigrid for-
mulation is used, the preconditioner in the GMRes linear solver on each level is
a linear multigrid algorithm on the same mesh sequence, which employs an iter-
ative line-based smoother. The convergence obtained is illustrated in Figure 34,
which shows the behavior of all residual components on all levels of the full
multigrid procedure. While the number of multigrid cycles (on the fine mesh) is
considerably lower than for UNIBG, each of these is more expensive.

Overall, similar CPU times have been obtained by UNIBG and DLR, see Ta-
ble 7. It should be noted that UNIBG has implemented the multigrid algorithm
in its standard DG code MIGALE, whereas DLR’s implementation has been
done as prototype separate from the standard DG code PADGE.

DLR has computed a DG solution on the adapted high order mesh generated
by WUT. As the adaptation was done based on a solution for the Spalart-
Allmaras turbulence model, the same model has been applied in the DG com-
putations. Figure 35 gives an impression of the mesh and the Mach number
distribution computed with a third order DG method.

Figure 36 illustrates the error in lift and drag computed for a third and fourth
order solution on this mesh in comparison with the Finite Volume reference
data. The asymptotic value of the Finite Volume data has been used for the
computation of errors in the DG case, as no mesh convergence study could be
done on the adapted mesh. The actual asymptotic values might be slightly off
due to subtle differences in the airfoil geometry approximation as well as the
location and treatment of far-field boundaries.

The large variety of meshes generated for this testcase, in particular, unstruc-
tured mixed–element curvilinear meshes, represents progress in the higher–order
mesh generation capabilities, it however remains unclear whether the progress is
transferable to 3D. Already the baseline results, computed in the beginning of
the project, demonstrated the applicability of the higher order methods to this
high lift configuration. For the DG methods, order three is essential to reduce
the required discrete system size, it is however not clear whether improvements
can be made in the computational time for this testcase. The final higher order
results from UNIBG, DLR and TsAGI are in good agreement and new develop-
ments in flow solver technologies have been successfully demonstrated for this
testcase. This includes the usage of agglomerated multigrid iterative solver al-
gorithms as well as the use of enhanced turbulence models.
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Table 5. Extrapolation of asymptotic reference values for the lift coefficient for the
results of TsAGI for testcase U.3

using two meshes using three meshes
polynomial theoretical asymptotic observed asymptotic

degree order value order value
1 2 3.956 2.2 3.939
2 3 4.000 6.7 3.995
3 4 3.990 5.0 3.988

Table 6. Extrapolation of asymptotic reference values for the drag coefficient for the
results of TsAGI for testcase U.3

using two meshes using three meshes
polynomial theoretical asymptotic observed asymptotic

degree order value order value
1 2 0.1185 3.4 0.1215
2 3 0.0673 4.4 0.0678
3 4 0.0638 6.5 0.0640

Table 7. Comparison of single-grid and multigrid CPU times (in IDIHOM work units)
for results of UNIBG and DLR at order three on the same mesh for testcase U.3

time to converge
partner algorithm CL CD

UNIBG single-grid 2 894
UNIBG multigrid 866
DLR multigrid 757 809
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(a) (b)

(c) (d)

(e) (f)

Fig. 25. Unstructured meshes generated by TsAGI from coarse (top) to fine (bottom):
overall view of the airfoil (left) and details at the slat (right)
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Fig. 26. Baseline asymptotic convergence plots for case U.3. Shown are higher order
results from DLR and UNIBG as well as the industrial reference.

(a) (b)

Fig. 27. Initial mesh (left) used in the adaptive procedure of WUT and final flow
adapted mesh after seven adaptation cycles (right) for testcase U.3
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Fig. 28. Computed pressure coefficient distribution (red line) over the airfoil for final
adapted mesh of WUT in comparison to experimental data (blue symbols)

Fig. 29. Comparison between mesh convergence for the WUT adaptation computations
and reference results for testcase U.3

Fig. 30. UNIBG mesh convergence comparisons between kω and EARSM turbulence
models for the U.3 testcase
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Fig. 31. Mesh convergence of error in lift and drag coefficients for reference, baseline
and high order computations w.r.t. degrees of freedom and computational time, testcase
U.3

(a) (b)

Fig. 32. Comparison on UNIBG’s h-multigrid (red line) performance with a single-grid
solver (black line) w. r. t. non-linear iterations (left) and CPU time (right), testcase U.3
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Fig. 33. Unstructured mesh of UNIBG and two agglomeration levels (left), as well as
details of the two agglomerated meshes in the slat region (right), testcase U.3

Fig. 34. Iterative convergence of third order computation on UNIBG mesh for DLR’s
h–multigrid algorithm on testcase U.3
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Fig. 35. High order mesh of WUT (top) and Mach number distribution computed by
DLR with a third order DG method (bottom), testcase U.3

Fig. 36. DLR higher order results for testcase U.3 computed on a WUT adapted mesh,
compared with industrial reference data

Fig. 37. Reference computation using a standard FV approach for the A1 testcase
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Fig. 38. Higher order surface mesh generated by ARA for the A1 testcase

2.4 Case A1: Clean Sky Aircraft

This application testcase was coordinated by DLR. The geometry considered is
the Airbus laminar wing testcase, consisting of a modified A340 aircraft with a
reduced–sweep outer wing section, Figure 37. Even though the case was given
priority both by industry and the project reviewers, a higher order unstructured
mesh could not be produced and thus no computations could be performed in
IDIHOM for this configuration. Some illustrations of the higher order surface
mesh generated during the project are shown in Figure 38.

2.5 Case A2: FA5 Aircraft

This application testcase was coordinated by Airbus D&S. The configuration
considered is a delta–wing fighter aircraft with a complex geometry and flow
topology. Two subcases were defined; case A2a is a subsonic testcase for which
hot wire anemometry measurements have been conducted [11], and the transonic
high angle of attack case A.2b, representing a flow condition of importance to
industry. A thorough quantitative analysis into the improvements obtainable
by higher order discretization was not expected; rather this testcase serves as
an indication of the robustness and modeling accuracy currently obtainable by
higher order implementations.

For case A.2a the flow condition M = 0.125, α = 15◦ and Re = 2.78 ·
106 is considered, while for A.2b M = 0.85, α = 24◦ and Re = 4.65 · 107.
The industrial reference was provided by Airbus D&S, employing the DLR Tau
code on unstructured meshes, The higher order unstructured meshes, originally
planned to be provided by ARA, were, due to technical difficulties, not made
available during the project. The higher order computations were thus conducted
on a structured mesh provided by Airbus D&S, converted into a curvilinear mesh
using an agglomeration algorithm developed by UNIBG, Figure 39.
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For the A.2a case, UNIBG have conducted preliminary X–LES computations,
Figure 40. UNIBG have also provided results for the A.2b case, compared with
the industrial reference in Figure 41. Some convergence problems caused by
shocks were reported. The surface pressure plots are comparable to the industrial
baseline for this very coarse mesh, indicating the potential of higher order solvers.
The capability of solving complicated flows was also demonstrated even though
the robustness of the new solvers have not yet reached an industrial level for this
testcase.

Fig. 39. Agglomerated structured higher order mesh used for the A2 case, consisting
of 1.6 · 105 50–node hexahedral elements.

Fig. 40. Illustration of the A2a testcase, as computed by UNIBG
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Fig. 41. Surface pressure plots for the A.2b testcase. From top to bottom: Airbus D&S
Tau reference computation, UNIBG p=1 computation, UNIBG p=2 computation.
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2.6 Case A3: High Lift Prediction Workshop Case 1

This application testcase features the NASA trapezoidal wing (trap wing) under
high lift conditions. The same case has also been considered in the First AIAA
CFD High Lift Prediction Workshop and involves a simplified geometry consist-
ing of just a slat, a main wing and a flap attached to a body-type wind tunnel
mounting without modeling of brackets between the elements.

This case uses the geometry and flow conditions defined as configuration 1
for the First AIAA CFD High Lift Prediction Workshop. Detailed information
is well documented on the corresponding web site [12]. The flow is treated as
symmetric, thus a half model is applied. Two subcases are considered, where the
relevant flow parameters for subcase A are M = 0.2, α = 13◦ and Re = 4.3 ·106,
and M = 0.2, α = 28◦ and Re = 4.3 ·106 for subcase B. The cases are treated as
fully turbulent. The turbulence model to be used for the computations was not
specified. WUT used Spalart–Allmaras, whereas DLR and UNIBG employed the
Wilcox-kω model. TsAGI performed computations with their EARSM model.

Multi-block structured grids generated by Boeing are available from the orig-
inal workshop web site. Due to embedded structured coarse levels, the baseline
grid can further be coarsened up to a coarse mesh of just 93 088 elements. The
finer grid levels can be exploited to deliver interpolation points for high order
meshes, see Figure 42.

DLR created meshes at various resolution levels with quartic edge mappings
and offered them to the consortium, in particular ONERA received the meshes.
UNIBS used a similar approach to create meshes based on a quadratic mapping.
TsAGI created multi-block structured linear meshes at different resolution levels,
Figure 43.

The coarse and medium mesh were used with the DG code, while the extra
fine mesh is used for a reference computation with a finite volume code. ARA
worked on the mesh generation for this case and has seen some issues when
creating a high-order volume mesh, while a surface mesh could be created. Due
to a shift in priorities, the volume mesh was not completed. ICL has tried to
extend the high order meshing capabilities from the single wing ONERA-M6
case to this multi element wing case. The creation of a linear volume mesh was
not successful, thus the high order mesh could not be delivered.

A finite volume reference solution on a fine mesh has been performed by
TsAGI. DLR provided baseline solutions on the coarsest structured mesh at
second and third order with DLR’s DG code. Figures 44 and 45 illustrate the
results obtained. In particular, the topology of the flow in the symmetry plane
behind the body changes considerably between second and third order.

WUT successfully applied the developed mesh adaptation strategy to both
sub-cases A and B. The obtained results are in very good agreement with both
experimental data and finite volume results from the workshop. At 6.8 and 11.4
million degrees of freedom for the linear regime and maximum lift case, respec-
tively, the associated final adapted meshes are quite coarse for a second order
flow solver. Figure 46 shows details of the adapted mesh for case A, while Fig-
ure 47 illustrates the quality of the results. The deviation between computational
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results and experimental data for the pressure distribution is similar to what is
observed for the high order results. Unfortunately, coarse curvilinear versions of
the adapted meshes were not generated. Thus, they could not be used together
with high order flow solvers.

Figure 48 illustrates the results that TsAGI obtained with second order DG
on the coarse and medium mesh and with third order DG on the coarse mesh
in comparison with the finite volume reference data. Even though the degree
of freedom count is lower for the third order computation on the coarse mesh
compared to the second order computation on the medium mesh, the solution
is visually superior, compared to the finite volume reference. However, all three
high order computations suffer from too little resolution and are far from mesh
convergent. Computations on finer meshes or with higher order did not converge.

The pressure distribution in a cut at 95 % span is compared against the refer-
ence and against experimental data in Figure 49, which also illustrates the third
order results from UNIBS on a globally refined level of the coarse workshop
mesh. The reference finite volume solution shows a reasonable agreement with
experimental data, although some clear differences can be observed. TsAGI’s DG
results approach the reference solution for increasing mesh density and increas-
ing scheme order. The fact that the third order computation on the coarse mesh
is more accurate than the second order result on the medium mesh is verified.

With over 7.4 million degrees of freedom at third order the computation of
UNIBS is much better resolved than the third order DG result of TsAGI by
a factor of more than 20 in degrees of freedom. Correspondingly, the overall
agreement with experimental data is much better for the UNIBS results. In fact,
the overall agreement seems even better than for the reference solution. However,
some spurious local oscillations present in the refined mesh results indicate the
need for further mesh (or order) refinement. For this outboard section of the
wing it is difficult to obtain good agreement between experiments and numerical
solutions. For all computations, the results are much closer in other sections, as
illustrated in Figure 50.

The lift and drag coefficient values of the high order results are plotted vs.
degrees of freedom for the results from TsAGI and UNIBS (second to fourth
order) in Figure 51. The lift seems to converge towards the experimental value
under mesh or order refinement, but the absolute error is still considerable. It
is interesting to see that the results from UNIBS show a greater deviation from
the experimental value than those of TsAGI, while the corresponding pressure
distribution has been found to be in better agreement. This further illustrates
the need for better resolution.

The situation is not as clear for drag. While the results of UNIBS seem to
converge towards a lower value than the experiments, no clear convergence of
the drag coefficient can be observed for the results from TsAGI. The genera-
tion of high order unstructured meshes seems to be rather difficult already for
the relatively moderate geometrical complexity of this case. The exploitation of
multi-block structured meshes may still be considered state-of-the-art for this
type of application.
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Fig. 42. Coarse structured workshop mesh for NASA trap wing (testcase A3): linear
(left) and quartic mapping (right)

Fig. 43. Structured meshes of TsAGI used for testcase A3: coarse mesh with 32 771
elements (left), medium mesh with 121 014 elements (middle) and extra fine mesh with
2 097 344 elements (right)

Concerning the flow solver side, this case was originally defined as a detailed
comparison case. However, all partners (TsAGI, DLR and UNIBS) have encoun-
tered convergence problems. The best DG results from UNIBS are still quite far
from the experimental integral values. No mesh convergence study is available.
Thus, no detailed analysis is possible. Still, the general applicability of the de-
veloped high order flow solvers to this application challenge of a 3D high lift
configuration has been demonstrated with the presented results. Unfortunately,
all results are for the lower angle of attack in the linear regime of the lift polar
whereas no high order results have been presented for the angle of attack close
to maximum lift.
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Fig. 44. Baseline results for testcase A3: Mach number in the symmetry plane and
pressure coefficient on the wing and body at second (left) and third order (right)

Fig. 45. Baseline results for testcase A3: Streamlines in the symmetry plane behind
the body at second (left) and third order (right)
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Fig. 46. Final adapted mesh of WUT for testcase A3, A: surface mesh (upper left),
details of the mesh in the main wing / slat region (lower left) and the wake (lower right),
as well as computed pressure distribution (upper right)

Fig. 47. Second order results on the adapted meshes of WUT for testcase A3: pressure
coefficient in a cut at 95% span for case A (left) and results for cases A and B compared
to the experimental polar (right). Results on the final adapted mesh are represented
by black lines and red boxes, respectively, while experimental results are represented
by black boxes.
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Fig. 48. Pressure distribution results from TsAGI: second order on coarse (upper left)
and medium mesh (upper right) as well as third order solution on coarse mesh (lower
left) and finite volume reference solution on extra fine mesh (lower right)
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Fig. 49. Comparison of pressure coefficients for testcase A3, showing various compu-
tations and experimental results in a cut at 95 % span: results from TsAGI (top) and
UNIBS
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Fig. 50. Comparison of pressure coefficients for testcase A3, showing various compu-
tations and experimental results in mid-wing sections: a) cut at 28 % span with results
from WUT (upper left) and TsAGI (lower left), b) cut at 50% span with results from
WUT (upper right) and UNIBS (lower right)

Fig. 51. Lift and drag mesh convergence results for testcase A3
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2.7 Case A4: Generic Falcon Aircraft

The Generic Falcon Test Case A.4b was designed in order to give access to
a complex aircraft configuration to IDIHOM partners in addition to Dassault
Aviation. Originally four partners intended to compute the test case. Unfortu-
nately, only two partners were able to produce reference results for this test
case (DASSAV and NUMECA), and a single partner (DASSAV) was able to
produce higher-order results. The configuration is presented in Figure 52. It is a
twin-engine Falcon-like aircraft with flow-through nacelles. The flow conditions
considered were: M∞ = 0.80, α = 2.0◦, alt = 40, 000 ft, which corresponds to
Re = 14, 512, 000 based on the mean aerodynamic chord.

Reference meshes were generated by NUMECA using their automatic hexa-
hedric unstructured mesh tool HexpressTM. Four meshes were created; coarse,
fine and their optimized versions. Surface views of the optimized coarse mesh are
presented in Figure 53. These meshes were further refined in the wake with identi-
cal refinement for the coarse and the fine grids. The coarse and fine meshes, opti-
mized for orthogonality, respectively contained 13, 015, 824 and 51, 256, 490 cells.
Reference computations were performed by NUMECA using the FINE/OpenTM

code with the Spalart-Allmaras turbulence model (extended wall functions and
a y+ = 50 for the first cell), central second order scheme, and 4 levels multigrid.

DASSAV generated a state-of-the-art reference tetrahedral P1 mesh, accord-
ing to current industrial standards, containing 8.4 million grid points, Figure 54.
For all computations, Dassault Aviation used its industrial stabilized finite ele-
ment code AeTher. It relies on continuous isoparametric Lagrange polynomials
of any order computed on unstructured grids as finite element shape and trial
function spaces (solutions are C0 continuous and the same degree of interpo-
lation is used for both the solution variables and the space coordinates). So
far, only tetrahedral elements have been implemented in 3-D up to P3. Refer-
ence 2nd-order computations were performed by DASSAV using the K − ε and
Spalart-Allmaras turbulence models.

Figure 55 presents pressure coefficient plots along the wing at eight stations
along the wing span. It is observed that DASSAV K − ε and Spalart-Allmaras
computations are virtually undistinguishable. The reference computation by NU-
MECA shows some differences, especially in the midsection of the wing. This
may be due to the use of wall functions and a Parasolid tesselation, consisting
of 1.6 million triangles, to represent the geometry.

In order to build higher-order grids, the current strategy at Dassault Aviation
is to add higher-order degrees of freedom to a coarse P1 “skeleton” mesh. The
idea is to make this “skeleton” grid coarse enough, so that the higher-order mesh
would contain fewer degrees of freedom than the reference P1 mesh and take
advantage of higher-degree polynomials to represent curved regions of the model
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with fewer elements, typically the leading edges of the aerodynamic surfaces and
the nacelle lips. A “skeleton” mesh was generated with a y+ = 2 for the first
element layer and an aggressive growing ratio in the boundary layer, resulting
in only 250,000 grid points. P2 and P3 grids (and the corresponding nested P1
grids) were built based on this “skeleton” mesh. The P2 mesh contains just below
2,000,000 degrees of freedom, Figure 56.

The resulting higher-order mesh requires “curving”. This is performed in two
steps: first the surface mesh is projected onto the CAD definition of the geom-
etry; then the displacement is pushed into the volume mesh with some defor-
mation technique to make the higher-order mesh valid. All tested deformation
techniques failed and it was decided to refine the surface mesh in highly curved
regions, viz. along the leading edges of the wing (4×), the empennage (2×), and
the nacelle pylons (2×). The leading edge of the vertical tail and the lips of the
nacelle were not modified. The refined P2 3-D mesh is only slightly bigger than
the original, containing 75,000 additional degrees of freedom. The best combina-
tion of curving techniques was applied (P2 elastic deformation followed with an
optimization with the UCL Gmsh code) yielding a valid mesh. The P2 surface
mesh after curving with Gmsh can be seen in Figure 57. It can be observed that
the nacelle lips, although not refined, are particularly well represented with P2
curved elements.

Computations were performed on the uncurved P1, P2 and P3 meshes, and the
valid curved P2 mesh produced in interaction with UCL. The latter is compared
with the reference solution in Figure 58. The acceleration of the flow over the
leading edge of the wing is much better represented than in the solution obtained

Fig. 52. Case A.4b. Test case geometry
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on the uncurved mesh. It is anticipated that this is due to the curving, rather
than to the mesh refinement of the leading edge.

Pressure plots for the reference and higher-order solutions at different stations
along the wing span are compared in Figure 59. Although on an uncurved grid,
the P2 solution is much closer in terms of pressure distribution to the reference
computations than the P1 solution with the same number of degrees of freedom.
The agreement with the reference solution provided by DASSAV is remarkable,
although the 3rd-order P2 solution was obtained with 4 times fewer degrees of
freedom (2 vs 8.4 million).

Fig. 53. Case A.4b. NUMECA mesh

Fig. 54. Case A.4b. Views of the reference P1 surface mesh used by DASSAV
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Fig. 55. Case A.4b. Comparison of Cp plots of the reference solutions at different
stations along the wing span
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Fig. 56. Case A.4b. Views of the uncurved P2 mesh used by DASSAV

Fig. 57. Case A.4b. Views of P2 mesh used by DASSAV, refined alond the leading
edges, curved and optimized with Gmsh

Fig. 58. Case A.4b. Pressure contours: comparison of reference P1 computation with
P2 result on curved mesh
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Fig. 59. Case A.4b. Comparison of Cp plots at different stations along the wing span
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2.8 Case A6: Train Head

This application testcase was coordinated by UNIBG. The geometry under
consideration is the Bombardier Aerodynamic Train Model (ATM). UBS and
UNIBG contributed to the testcase, focusing on assessing the benefits of us-
ing the EARSM turbulence model for the simulation of vortical flow structures
around the body and on comparing the computational efficiency of the Lin-
earized Backward Euler (LBE) and p-multigrid (p-MG) solvers in terms of CPU
time and memory usage.

The freestream flow conditions of the test case are wind velocity Uw = 70m/s
and Reynolds number based on the reference length ReL = 1.2 · 106. The ef-
fectiveness of EARSM compared to the linear k − ω model was assessed by
computing the flow field at three different yaw angles, β = 5◦, 10◦, 15◦. No ex-
perimental data have been made available for this geometry. UNIBG generated

Fig. 60. Turbulence intensity contour k − ω and EARSM1-3, β = 15◦, p = 3 solution
for the A6 testcase
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fine (linear) structured grids suitable to produce high-order grids by means of
an in-house agglomeration software. The high-order results presented in this
report were computed on an agglomerated grid with 7776 50-node hexahedral
serendipity elements (quartic edges).

EARSM solutions with different contributions to the anisotropy tensor were
produced and compared with the results of the k − ω model, Figure 60, where
it is seen that the EARSM computation exhibits a sharper definition of the
vortices flowing on the ground, next to and behind the train. The LBE (UNIBG)
and p-MG (UNIBS) solvers have been compared in terms of IDIHOM work
units and memory requirements needed to compute the β = 10◦ case using the
k − ω model. Both solvers have been implemented using the same multilevel
data structure developed on top of the DG code MIGALE. In Figure 61 the
convergence behavior of the LBE and p-MG(LBE) solvers is shown. For this case,
p-MG converged about 10 to 14% faster than LBE at the cost of an additional
19 to 39% memory usage.

Fig. 61. LBE vs. p-MG(LBE), convergence history (L2 norm of the density residual)
in terms of Newton steps or p-MG cycles (left) and non-dimensional CPU time (right),
p = 3 and 4 solutions for the A6 testcase

2.9 Case A12: HART–II Rotorcraft

This application testcase was coordinated by USTUTT and consists of two sub-
cases; hover and forward flight. The testcase was originally planned to demon-
strate the implementation of aeroelastic higher order computations. However, the
majority of the computations performed in the project were conducted for rigid
blades, these purely aerodynamic computations are thus presented in this chap-
ter. The rotational speed for both hover and forward flight is set to 1042 min−1.
The forward flight speed is set to 32.9 m/s.
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Fig. 62. Illustration of the USTUTT Chimera implementation used for the A12 hover
case

Fig. 63. Results from the NLR A12 forward flight baseline computation

Reference solutions were generated outside of the project using the DLR
FLOWer solver for both hover and forward flight cases. The higher order com-
putations however proved to be a challenge. USTUTT performed hover compu-
tations using a chimera approach, Figure 62. In Figures 63 and 64, the results of
the NLR computations for second and fourth order can be compared, illustrating
the reduced dissipation obtained by the higher order computation. In Figure 65,
a comparison of the vertical force coefficient between baseline and higher order
is shown.
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Fig. 64. Results from the NLR A12 forward flight fourth order computation

Fig. 65. Comparison between vertical force coefficients for the baseline and higher
order computations for the NLR A12 simulations

3 Conclusions

A significant number of external–aerodynamic testcases have been computed in
the project, some yielding insight into the improvement potential of higher order
solvers for industrial applications. Also demonstrated are however the current
limitations and problems associated with the higher order schemes. A major issue
turned out to be the generation of unstructured higher order meshes, necessary
for the efficient treatment of many problems of industrial complexity. This seri-
ously hampered the planned activities concerning mesh cascade based efficiency
analysis of the new approaches compared with the industrial reference. Nonethe-
less, by introducing further assumptions on the scheme behavior, some of the
data gathered could be used for quantitative statements. In general, there are
strong indications that higher order schemes have the potential to reduce the
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discrete system size required to converge within industrial accuracy for many
cases. This reduction seems to typically reach around one order of magnitude. It
appears that such improvements are more likely for smooth flowfields devoid of
shocks, but also transonic cases have shown reductions in the number of DOFs
required for convergence. This reduction in problem size does however not trans-
late to a reduced computational time for most cases, typically showing that the
higher order solvers require at least one order of magnitude more computational
resources per DOF to converge. This may indicate that the increased stiffness
of higher order discrete systems is a major hindrance to the attractiveness of
higher order approaches. A more optimistic interpretation is that the relatively
low maturity level of the higher order solvers has not yet allowed for the devel-
opment of efficient solvers. Which of these is true is not clear, the substantial
amount of effort in the project invested into improving solver performance has
however not resulted in algorithms competitive to the industrial reference on a
discrete system size basis.

A frequently stated argument promoting DG methods is the locality of the
discretization, allowing for a very efficient parallelization of the approach, also
demonstrated in the project. The importance of this for external aerodynamic
computations in industry is however not necessarily high. The bulk of aerody-
namic work involves the computation of a large number of flow solutions for a
given configuration, allowing for several runs to be performed in parallel and
thus permitting the efficient usage of the hardware without requiring extreme
levels of scalability. For single–point designs, more common in internal aerody-
namics, the reduction of wall clock time required for a single computation may
however be of importance. Future computer hardware developments may also
increase the attractiveness of extreme parallelization for external aerodynamics.

Another selling point of the higher order approaches is the possibility of ef-
ficient implementation of adjoint adaptation, also demonstrated in IDIHOM.
The efficiency improvement shown easily exceeds one order of magnitude in wall
clock time compared with second order finite volume computations not applying
adaptation. These approaches should however be compared with similar schemes
applied on industrial–type methods to enable a clear statement of the advantages
of the higher order methods in this context.

Regarding robustness of the codes, progress has been made, allowing for the
routine computation of many complex flow cases within the pre–defined appli-
cation areas of the codes. Some problems are however still remaining for issues
such as shock capturing, and for the most complex cases attempted, convergence
and stability problems were reported. The applicability of the higher order ap-
proaches have thus not yet reached the level of the industrial codes, there are
however no indications that an industrial stability level of the codes is unobtain-
able.
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Abstract. This section gathers the descriptions of all test cases con-
cerning internal flows, as well as the most important results obtained
by the participants in the IDIHOM project. The test cases comprise a
transonic compressor (NASA Rotor 37), a subsonic nozzle (JEAN), low
pressure turbine cascades in turbulent (T106A) and transitional condi-
tions (T106C) and finally 2 validation cases, namely a bump flow from
the DESIDER project, and the periodic flow over a 2D hill from the
ERCOFTAC QNET CFD database. Depending on the test case, RANS,
LES and even DNS computations were performed.

Keywords: Internal flows, RANS, LES, DNS, Compressor, Turbine,
Nozzle.

1 NASA Rotor 37

The NASA Rotor 37 is a highly loaded transonic compressor. It was designed
and studied experimentally at the NASA Lewis Research Center (now NASA
Glenn) [1]. The rotor was tested in isolation with a circumferentially uniform
inlet flow so as to provide steady flow in the rotor relative frame. This test case
was used as a CFD test case at the 1994 ASME Gas Turbine Conference [2] and
the AGARD Working Group 26 [4].

1.1 Conditions

The performance characteristic gives a measuring choking flow of 20.93 Kg/s,
and calculations are aimed at a point corresponding to 98% of this flow rate.

The inlet conditions specify total pressure pt and temperature Tt profiles,
together with the absolute flow direction, which is assumed axial. The operating
points are hence defined by the downstream static pressure p2. The turbulent

c© Springer International Publishing Switzerland 2015 607
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quantities at the entrance are defined in order to have a 3% turbulence intensity
and a turbulent to molecular viscosity ratio of the order of 10. Thus, the values
of the turbulent kinetic energy and dissipation rate are k = 44 m2/s2 and ε =
106m2/s3, respectively. The walls are assumed adiabatic, with only a small part
of the hub up- and downstream of the rotor rotating.

1.2 Grids and Computations

ARTS have performed simulations on three different grids, using three different
schemes, namely the Residual Based Compact schemes of orders of convergence
2 and 3, as well as Jameson’s scheme. The finest mesh has 1,480,704 cells; the
medium and coarse meshes are obtained through successive agglomeration of
neighbouring cells (eight by eight) of the finest one, resulting in 185,088 and
23,136 cells respectively. The coarsest grid is depicted in Figure 1.

Fig. 1. RANS of the NASA Rotor 37: coarsest mesh used by ARTS, comprising 23,136
cells

NUMECA has only been able to obtain converged solutions for this case with
interpolation order p=1, due to the lack of a shock capturing tool in its DG code.
Two different grids have been generated, consisting of 641,524 and 79,092 cells,

(a) Medium - 79,092 cells (b) Fine - 641,524 cells

Fig. 2. RANS of the NASA Rotor 37: grids used by NUMECA
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where the second is obtained halving the number of points of the first mesh in
each direction. These grids are shown in figure 2.
ONERA has performed four simulations on two different grids, namely a fine
mesh consisting of 644,096 cells, and a coarse mesh with half the number of
points in each direction, with a total of 80,512 cells. A modal DG scheme was
used with interpolation orders 1 and 2, corresponding respectively to second and
third order of accuracy. The grids are depicted in Figure 3.

(a) Coarse - 80,512 cells (b) Fine - 644,096 cells

Fig. 3. RANS of the NASA Rotor 37: grids used by ONERA

The university of Brescia (UNIBS) has performed five simulations on two
different grids, a fine mesh consisting of 160,512 cells, and a coarse mesh with
half the number of points in each direction, with a total of 20,064 cells. A DG
scheme with interpolation orders 1 through 3 was used, corresponding to second
through fourth order of accuracy. The grids are shown in Figure 4.

1.3 Reference Solution

The solutions have been compared to experimental data available from NASA.
These correspond to performance curves and spanwise distributions at a given
axial station of the rotor. These should be obtained at an operation point of 98%
of the choking mass flow rate. Furthermore, the blade-to-blade Mach number
distributions is compared at 30%, 50% and 70% of the blade span.

1.4 Assessment of High-Order Solutions

Details of the solvers used by the different participants are summarized in Table
1. Figures 5-8 compare the flow fields, in casu Mach number and static pressure
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(a) Coarse - 20,064 cells (b) Fine - 160,512 cells

Fig. 4. RANS of the NASA Rotor 37: grids used by the university of Brescia

Table 1. RANS of the NASA Rotor 37: solver specifications

Discretisation Iterative Turbulence model

ARTS RBC3 Spalart-Allmaras
RBC2 (baseline) Spalart-Allmaras

NUMECA DG(p=1), Roe, BR2 RK hpMG EARSM
ONERA DG(p=1,2), Lax-Friedrichs, BR2 Spalart-Allmaras
UNIBS DG(p=1-3), Riemann solver, BR2 implicit Wilcox k − ω

at three different spanwise sections. From those figures, we can see that partners
ARTS, ONERA, and UNIBS have provided very similar high-order solutions. In
particular NUMECA suffered from severe instabilities due to the shocks present
in the flow domain, which prevented from obtaining converged solution for in-
terpolation order p > 1, as no shock capturing strategy has been implemented.

Looking at the iso-contour plots, we see that high-order solutions on the coarse
mesh converge, as the order p is increased, to the solutions on the fine mesh.
It should be noted that these plots have been obtained on the volume mesh
(solution at the cell centres) which does not take into account the high-order
character of the solution. A high-order representation of these iso-contours is
expected to accentuate this trend. This demonstrates that high-order methods
on coarse grids have the potential to provide a solution that is as accurate as
the one obtained by widespread used second order finite volume methods on fine
grids. Of course, a certain level of h-refinement will always be required in order
to exploit the nominal high-order of the method, and not to pollute the solution
with inaccuracies due to insufficient geometry representation.
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(a) ARTS, RBC2/3 2nd and 3rd order accuracy

(b) NUMECA, DG(p=1), 2nd order accurate

(c) ONERA, DG(p=1-2), 2nd to 3rd order accurate

(d) UNIBS, DG(p=1-3), 2nd to 4th order accurate

Fig. 5. RANS of the NASA Rotor 37: Mach number contours obtained on the coarse
mesh
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(a) ARTS, RBC2/3 2nd and 3rd order accuracy

(b) NUMECA, DG(p=1), 2nd order accurate

(c) ONERA, DG(p=1-2), 2nd to 3rd order accurate

(d) UNIBS, DG(p=1-3), 2nd to 4th order accurate

Fig. 6. RANS of the NASA Rotor 37: pressure contours obtained on the coarse mesh



Internal Aerodynamic Test Cases 613

(a) ARTS, RBC2/3 2nd and 3rd order accuracy

(b) NUMECA, DG(p=1), 2nd order accurate

(c) ONERA, DG(p=1-2), 2nd to 3rd order accurate

(d) UNIBS, DG(p=1-3), 2nd to 4th order accurate

Fig. 7. RANS of the NASA Rotor 37: Mach number contours obtained on the fine
mesh
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(a) ARTS, RBC2/3 2nd and 3rd order accuracy

(b) NUMECA, DG(p=1), 2nd order accurate

(c) ONERA, DG(p=1-2), 2nd to 3rd order accurate

(d) UNIBS, DG(p=1-3), 2nd to 4th order accurate

Fig. 8. RANS of the NASA Rotor 37: pressure contours obtained on the fine mesh
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(a) ARTS

(b) NUMECA

(c) UNIBS

Fig. 9. RANS of the NASA Rotor 37: global isentropic efficiency (left) and total pres-
sure (right) characteristics
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(a) ARTS

(b) NUMECA

(c) ONERA

(d) UNIBS

Fig. 10. RANS of the NASA Rotor 37: radial variation of isentropic efficiency (left),
total pressure (middle) and total temperature ratio (right)

The same conclusions can be deduced from the figures 9 which show the
computed performance characteristics, and Figures 10 which show the radial
profiles of isentropic efficiency, total pressure and total temperature. We can see
from ARTS and UNIBS results how the high-order solutions on the coarse grids
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seem to converge to the same profiles, as the interpolation order is increased.
From ONERA’s results we can see that the profiles provided by the 3rd-order
simulation (DG-p2) on the coarse grid are very similar to those obtained from
the 2nd-order simulation (DG-p1) on the fine grid. The gain in terms of degrees
of freedom is over 50% when considering the DG-p2 simulation on the coarse
with respect to the fine grid simulation DG-p1.

The differences with the experimental data can be attributed to the flow
model/insufficient resolution. For instance, it is known that the flow solution is
very sensitive to the correct representation of the gap between the blade and the
shroud (see Shabhir et al. [3]).

ARTS has performed a comparison of the grid convergence of its high-order
RBC scheme, to that of a reference second order finite volume solver based on
the Jameson scheme. These are shown in Figure 11. The computational times
for ARTS are indicated in Table 2, whereas those for the DG method of UNIBS
are given in Table 3. The main conclusion from ARTS is that, although RBC
schemes are more expensive per degree of freedom than Jameson’s scheme, they
are definitely more accurate, since they provide almost grid converged solutions
using about 1/8 of the DOF required by Jameson’s scheme. Also RBC3 is slightly
more expensive than RBC2, but this extra cost is compensated by a somewhat
better accuracy.

(a) RBC2 (b) RBC3 (c) Jameson

Fig. 11. RANS of the NASA Rotor 37: grid convergence of the radial profile of total
pressure ratio for different schemes. (ARTS)

Finally, looking at the skin friction lines computed by UNIBS in Figure 12, we
see how a third and fourth order solution on a coarse grid provides a very similar
solution as a second order solution on a fine mesh, which has approximately 8
times as many cells.
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(a) Coarse mesh, p=1,2,3

(b) Fine mesh, p=1,2

Fig. 12. RANS of the NASA Rotor 37: UNIBS. Skin friction lines on the suction side.

Table 2. RANS of the NASA Rotor 37: CPU times for ARTS

Fine grid Medium grid Coarse grid
Scheme Total CPU CPU/dof Total CPU CPU/dof Total CPU CPU/dof
RBC3 4531 0.00306 566 0.00306 70.8 0.00306
RBC2 3720 0.00251 465 0.00251 58.1 0.00251
Jameson 2054 0.00139 257 0.00139 32.1 0.00139

1.5 Conclusions

ARTS, ONERA and UNIBS have successfully obtained high-order solutions for
this complex case, with a good agreement with the experimental data. NUMECA
had serious stability issues for this case, due to shocks. This demonstrates the
need of developing shock treatment tools for DG methods.

Mesh convergence is observed for high-order solutions. For UNIBS we see
that the fourth order solution on the coarse mesh gives very similar solution as a
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Table 3. RANS of the NASA Rotor 37: CPU/DOF in work units (taub bench) for
UNIBS

Coarse grid Fine grid
p=1 p=2 p=3 p=1 p=2
0.119 0.423 11.15 0.689 1.868

second order solution on the fine mesh (which has 8 times more cells). A certain
mesh resolution is always needed, supporting the need of hp-refinement.

ONERA’s results equally show that by increasing the polynomial order it is
possible to have important savings in terms of number of degrees of freedom with
respect to a low-order simulation for a comparable level of accuracy. Indeed, the
results obtained from the 3rd-order computation on the coarse grid are very close
to those obtained from the 2nd-order computation on the fine grid.

The comparison of ARTS high-order solution with the reference Jameson’s
scheme demonstrates that low dissipative scheme developed in IDIHOM do rep-
resent a significant improvement over the state of the art.

2 JEAN Nozzle

This test case concerns the flow of a turbulent isothermal and subsonic jet ex-
hausting from a nozzle, as shown in Figure 13. The test case has been first
defined in the European project JEAN (Jet Exhaust Aerodynamics and Noise)
for prediction of noise by jet flows [5, 6]. The jet is isothermal with a static
temperature in the nozzle exit Tj = T0 where T0 is the ambient temperature.
The Mach number and Reynolds number, based on isentropic conditions, in
particular velocity uj, at the nozzle exit and the diameter D are respectively
M = uj/

√
γRTj = 0.75 and Re = ρjujD/μ(Tj) = 5× 104. In these conditions,

the flow is subsonic and fully turbulent. The total values imposed at the inlet,
the ambient states imposed at the freestream boundaries and the other physical
parameters of the simulation are presented in Tab. 4.

2.1 Geometry

Figure 14 presents the geometry of the test case. Contraction and nozzle geome-
tries are given by analytical (cubic) laws. Each part of the convergent is given
by two cubic functions

f1(x) = a1X
3 + b1X

2 + c1X + d1, for X ≤ X1,

f2(x) = a2X
3 + b2X

2 + c2X + d2, for X > X1,

where X = x − x0 and x0 is the longitudinal axial position of the left side of
either the convergent or the nozzle; X1 represents the abscissa of the common
inflexion point for both functions f1 and f2 (see Fig. 14). Table 5 gives the values
of the numerical parameters.
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Fig. 13. JEAN nozzle: geometry, potential core and mixing layer of the jet and axial
location of the measurement planes

Table 4. JEAN nozzle: physical parameters of the simulation

Ambient pressure p0 100380.0 Pa

Ambient temperature T0 283.15 K

Nozzle inlet total pressure pti 144400 Pa

Nozzle inlet total temperature T t
i 314.15 K

Dynamic viscosity at the jet μ(Tj) 3.12757× 10−4 kg/m2s

Nozzle inlet diameter Di 0.2 m

Nozzle outlet diameter Dj 0.05 m

2.2 Reference Results

Experimental data have been obtained by Jordan et al. [7] during the JEAN
project. Both axial and radial profiles at at three axial positions: i.e. at x/D = 1,
x/D = 2.5, and x/D = 5 of the average axial velocity and its auto-correlation
are provided. The data have been obtained at a much higher Reynolds number
of ReD,is = 9×105. It is thereby assumed that the Reynolds number dependence
at ReD,is = 5× 104 sufficiently weak.

2.3 Meshes

Two meshes were provided by UCL. One was used by Onera for RANS compu-
tations, the other was used by Cenaero for LES computations. The first mesh
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Fig. 14. JEAN nozzle: geometry of the nozzle walls (coloured lines) and analytical laws
for the definition of convergent geometry (black lines)

Table 5. JEAN nozzle: parameters of the functions f1 and f2 describing the analytical
geometry

convergent nozzle
X0 0.45 0.82
X1 0.06 0.0625
a1 22.2800925925926 7.168
b1 -6.30208333333334 -2.12
c1 0 0
d1 0.1 0.045
a2 -3.18287037037035 -1.024
b2 2.86458333333332 0.96
c2 -0.825 -0.288
d2 0.122 0.053

consists of 179, 180 quadratic prisms and hexahedra. The second one contains
572, 096 quadratic elements (also prisms and hexahedra) and was refined from
RANS results obtained on the first mesh. The meshes are detailed in the sections
specific to both computations.
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2.4 RANS Results

RANS results were obtained with the Aghora code from Onera, based on the
discontinuous Galerkin discretisation (DGM), with the one equation turbulence
model from Spalart-Allmaras [8]. Two orders of accuracy have been used, namely
p=1 (2nd order accurate) and p=2 (3rd order accurate).

Meshes. The RANS mesh consists of 179, 180 quadratic prisms and hexahedra,
and is illustrated in Fig. 15, together with the distributions of non-dimensional
first cell height y+, verifying y+ < 3 at the inner wall and y+ < 6 at the outer
wall.

Boundary Conditions. Total pressure, total temperature and velocity direc-
tion are imposed at the inlet of the settling chamber. No-slip and adiabatic
conditions are applied at the walls, and non-reflecting boundary conditions are
applied at the free artificial boundaries.

Mean Flow Field. Figure 16 presents the Mach number and turbulent variable
contours in a vertical plane crossing the jet axis obtained at steady-state. We
clearly see the structure of the potential core of the jet and the development
of turbulence in the mixing layer downstream of the nozzle lips. The turbu-
lence intensity is stronger with the third-order discretization indicating a lower
diffusion of the turbulence transport in the flow. Figure 17 compares the distri-
butions of the mean values of the axial velocity component with experimental
data obtained by LEA Poitiers during the JEAN project [7]. We observe a good
agreement between numerical and experimental results in the potential core and
velocity around the jet axis.

Nevertheless, the potential core length is underpredicted and discrepencies
occur for the radial distribution away from the axis. We attribute most of these
differences to the very low mesh density in the mixing layer region (see Fig.
15) which prevents the correct capture of mass transfer associated to the global
conservation of momentum in the jet flow. Some of these differences could also be
attributed to a small remaining dependence on the Reynolds number, which is
about 20 times smaller in the computations. However, results should be improved
using the second, more refined mesh.

2.5 LES Results

Mesh Definition. The computation is performed on a mesh composed of
582, 464 hexahedra and 23, 808 prisms using the compressible DGM solver Argo.
With a fourth order solution (p = 3), this leads to 38M of dof per equation.
The resolution of the mesh is considered fine enough to perform a wall-resolved
ILES with a y+ < 4 everywhere (studies have shown that accurate results can be
obtained with DGM for y+ < 8). As the mesh is constructed by the rotational
extrusion of a two-dimensional mesh composed of quadrangles, all the prisms
are located on the jet axis. To avoid reflections, the boundaries of the domain
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(a) Farfield mesh (b) Nozzle mesh

(c) Extrusion plane - global (d) Extrusion plane - zoom

(e) Internal wall resolution (f) External wall resolution

Fig. 15. JEAN nozzle, RANS computations: views of the mesh
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(a) (b)

(c) (d)

Fig. 16. JEAN nozzle, RANS computations: Mach number (top) and ratio of turbulent
to dynamic viscosity coefficients μt/μ (bottom) contours for second- (left) and third-
order (right) approximations

are located far away from the nozzle, i.e. at x/D = 300 and r/D = 100. As
a very coarse mesh is used in the far field, this large domain does not increase
significantly the size of the problem. Figure 18 shows a section of the extruded
mesh close to the jet exit. The boundary layer mesh is prolonged into the domain
at the exit of the nozzle to capture the shear layers and the Kelvin-Helmholtz
instabilities downstream. Two refinement boxes are placed in the wake of the
jet, allowing to capture the complex turbulent interactions up to x/D = 14
downstream from the nozzle exit (up to x/D = 5 for the finest refinement box).

Results. Instantaneous flow fields computed with the fourth order accurate ver-
sion of Argo DGM are shown in Fig. 19. The flow is fully turbulent downstream
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(a) (b)

Fig. 17. JEAN nozzle, RANS computations: mean axial velocity component along the
jet axis (a) and at axial stations x/D = 1 and x/D = 5 for second- and third-order
approximations

Fig. 18. JEAN nozzle, LES computations: section of the mesh, and zoom on the nozzle
exit

of the nozzle. Small Kelvin-Helmholtz instabilities can clearly be observed at
the nozzle exit. Those Kelvin-Helmholtz instabilities rapidly transition to tur-
bulence, creating very small vortical structures downstream.
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Experimental data are available along the axis and at different axial positions
as well as the LES results of Andersson et al. [9]. All the following results are
scaled with the obtained velocity at the centre of the nozzle exit. Figure 20 shows
the mean axial velocity ux(x) and the mean axial fluctuations u′rms(x) along
the nozzle axis. The overall behaviour of the computation is close to that of the
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Fig. 20. JEAN nozzle, LES computations: mean axial velocity along the nozzle axis.
Experimental results (black circle), LES of Andersson et al. [9] (black line) and the
DGM/ILES computation (red line).

experiment with the end of the potential core located around x/D = 4. The drop
of velocity in the wake is also globally well represented. On the fluctuations, the
effect of the absence of inlet turbulence can clearly be seen, resulting in an under-
prediction of the fluctuations at the nozzle exit. Nevertheless, the fluctuations
matches well those of the experiment downstream the potential core, i.e. after
x/D = 4. The results improve on earlier LES by Andersson et al. [9].

Figure 21 shows the mean axial velocity and the mean axial RMS fluctuations
at the axial positions x/D = 1, x/D = 2.5, and x/D = 5. At each station, the
solution is also averaged in rotation to accelerate the convergence. It can be seen
that the diffusion of the jet is slightly more important in the computation, as the
computation is performed at a relatively low Reynolds number compared to the
experiment. For the fluctuations, a wider curve is obtained together with a more
pronounced peak at the first station. Nevertheless, a fair agreement is obtained
between the computation and the experiment. The widening of the shear layer is
furthermore in good qualitative agreement with the results obtained by Anderson
et al. [9].
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Fig. 21. JEAN nozzle, LES computations: Mean axial velocity and mean axial RMS
fluctuations at the axial stations x/D = 1, x/D = 2.5, and x/D = 5. Experimental
results (black circle), LES of Andersson et al. [9] (black line) and DGM/ILES (red
line). Curves are shifted and scaled for clarity.

Further downstream, some discrepancies can be observed, together with few
oscillations due to the solution jumps at the interface. It also shows that more
time would be required to fully converge the statistics. Here again, the effects of
the inlet turbulence can clearly be seen at the first station where the fluctuations
in the core are three times more important in the experiment.

2.6 Conclusion

The present results constitute preliminary results on the compressible flow of a
Mach 0.75 jet at Reynolds number 5×104. The results demonstrate the potential
interest in using high-order DG methods for both RANS and LES modelling of
this kind of test-case exhibiting complex flow features such as vortical structures,
turbulent patches, etc. Nevertheless, the trend highlighted in this study need to
be confirmed by an in-depth analysis with hp-refinement in order to achieve or
ascertain grid convergence on results. This would allow to quantify the impact
of the RANS turbulence model and the remaining dependence on the Reynolds
number for the LES.

3 Turbulent Flow in the T106A Cascade

The MTU Cascade T106A is representative of low pressure turbine blades. The
flow conditions are chosen such that fully turbulent flow is obtained, such that
this test case is used as a benchmark for the implementation and convergence
of RANS model with high order methods. This test case has been computed by
Numeca and the university of Brescia.
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3.1 Conditions

The inlet conditions are prescribed as constant, with stagnation pressure P t
1 =

126562 Pa and temperature T t
1 = 306.2 K and inlet flow angle α1 = 127.7◦. The

imposed outlet static pressure is p2 = 100000 Pa. These conditions correspond
to an isentropic exit Mach number M2,is = 0.59, and a corresponding Reynolds
number of Re2,is = 500000 approximately. The flow is assumed fully turbulent.

3.2 Grids and Discretisation

NUMECA. DGM simulations of 2nd to 4th order of accuracy have been per-
formed on two different grids, generated by NUMECA, and curved accordingly
by means of the in-house tool implemented in its DG solver. The finest mesh
has 223745 cells. The coarse one is obtained by agglomeration of four-by-four
neighbouring cells of the fine mesh in the blade to blade plane whereas the res-
olution in the spanwise direction is kept, resulting in 55170 cells. Both meshes
are shown in figure 22.

(a) Coarse - 55170 cells (b) Fine - 223745 cells

Fig. 22. RANS of the turbulent flow in the T106A cascade: grids used by Numeca

University of Brescia. Five DGM simulations, with 3rd and 4th order of
accuracy, have been performed on two different grids, respectively of 77300 and
43000 cells, respectively. As example the coarsest grid is shown in Figure 23.
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(a) Global view (b) Close up near the blade root

Fig. 23. RANS of the turbulent flow in the T106A cascade: coarse grid used by the
University of Brescia

3.3 Reference Results

The high-order solutions obtained by each partner have been validated by ex-
perimental data available from MTU, corresponding to the pressure coefficient
distribution on the surface of the blade.

3.4 Assessment of the High Order Methods

The solver specifications are given in table 6.

Table 6. RANS of the turbulent flow in the T106A cascade: high order solver specifi-
cations

Partner Discretisation Iterative Method Model
NUMECA DG, Roe/BR2 explicit hp-MG EARSM
University of Brescia DG, exact Riemann solver/BR2 implicit EARSM
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(a) Numeca, coarse (left) and fine mesh (right), orders p=1 to 3 (top to bottom)

(b) University of Brescia, p=2 (left) and p=3 (right)

Fig. 24. RANS of the turbulent flow in the T106A cascade: computed Mach number
contours
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(a) Numeca, coarse (left) and fine mesh (right), orders p=1 to 3 (top to bottom)

(b) University of Brescia, p=2 (left) and p=3 (right)

Fig. 25. RANS of the turbulent flow in the T106A cascade: computed static pressure
contours
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Fig. 26. RANS of the turbulent flow in the T106A cascade: streamlines and skin friction
computed by the university of Brescia using 4th order accurate DGM

The computed flow fields, respectively Mach number and static pressure, are
shown in the figures 24 and 25. Figure 26 shows the stream traces and skin fric-
tion lines, computed by the university of Brescia. Quantitative results, namely
the pressure coefficient distribution and the loss distribution in the wake, are
shown respectively in figure 27. It can be seen that both NUMECA and UNIBS
have obtained very similar solutions. In fact, the agreement with the experi-
mental data provided for the pressure coefficient is esentially perfect, for all
orders p=1,2,3, even on the coarse mesh. Thus, the mesh convergence can be
asserted. For orders p=1, 2, 3, the distributions of pressure coefficient and pres-
sure loss essentially match each other, even on the coarsest mesh, indicating grid
convergence. Both partners have obtained very accurate high-order solutions,
essentially equal to each other.

Relatively few convergence issues were met. A comparison of the computa-
tion times has not been performed, due to the very different iterative methods,
NUMECA’s code being based on explicit hp-multigrid, whereas UNIBS‘s solver
is based on implicit iterations.

3.5 Conclusions

This flow case turned out to be straightforward for DG methods. High-order
curved meshes were also relatively easy to generate, even by in-house algorithms
from NUMECA and UNIBS. This allows to perform computations with very
high order p on very coarse meshes.
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(a) Numeca, coarse (top) and fine mesh (bottom), interpolation orders p = 0 . . . 3

(b) University of Brescia, p=2 (left) and p=3 (right)

Fig. 27. RANS of the turbulent flow in the T106A cascade: computed pressure coeffi-
cient (left) and wake loss (right) distributions
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4 Transitional Flow in the T106C Cascade

This test case was also included as C3.7 at the second International Workshop
for High Order Methods in CFD [12]. Experimental data were provided by Prof.
Arts of the von Karman Institute.

The flow conditions are defined with respect to the isentropic exit conditions,
corresponding to the ratio of inlet total to exit static pressure, and correspond to
M2,is = 0.59 and Re2,is = 80.000. These conditions lead to laminar separation,
followed by transition in the shear layer and reattachment zone. The boundary
conditions impose total pressure and temperature, as well as flow angle at the
inlet, while static pressure is imposed at the outlet. The flow is assumed to be
periodic in both the pitch- and spanwise directions, with the latter correspond-
ing to 20 % of the axial chord Cax. The air is furthermore assumed to behave as
an ideal gas, and dynamic viscosity and conductivity are fixed to the values eval-
uated by Sutherland’s law at exit isentropic conditions. The inlet was assumed
to be free of turbulence, as natural transition is expected.

Cenaero was the only to compute this test case, with results published in the
proceedings of the ASME Turbo Expo 2014 [11]. Fig. 28 illustrates the compu-
tational domain and the mesh, generated by Gmsh [10]. This two-dimensional
mesh is extruded on 20 regular layers, leading to 262k hexahedra. Using a fourth
order solution (p = 3), this gives 16.8M degrees of freedom (dof).

Fig. 28. ILES of the transitional flow in the T106C cascade: global view of the com-
putational domain and mesh

Fig. 29 shows snapshots of the Mach number field and the spanwise com-
ponents of the vorticity field. One sees that the flow field downstream of the
separation point, located at x/Cax ≈ 0.5Cax, is highly intermittent, alternat-
ing burst regions with calm flow. The width of the wake is firstly determined
by these bursts, and evolves only slowly downstream. Transition occurs about
30%Cax downstream of the separation point in the recirculation bubble and
reattachment region.



636 K. Hillewaert et al.

(a
)

M
ac

h
nu

m
be

r
(b

)
Sp

an
w

is
e

vo
rt

ic
it
y

F
ig
.2

9.
IL

E
S

of
th

e
tr

an
si

ti
on

al
flo

w
in

th
e

T
10

6C
ca

sc
ad

e:
gl

ob
al

ov
er

vi
ew

of
th

e
flo

w
fie

ld
on

th
e

sp
an

w
is
e

pe
ri
od

ic
pl

an
e.

T
he

pa
ss

ag
e

ha
s

be
en

du
pl

ic
at

ed
fo

r
cl

ar
it
y.



Internal Aerodynamic Test Cases 637

0.0 0.2 0.4 0.6 0.8 1.0
x/c

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
M

is

Verheylewegen Argo_DG(3)

YiLu FR(1)

YiLu FR(1)_ext

YiLu FR(2)

YiLu FR(2)_ext

VKI

Fig. 30. ILES of the transitional flow in the T106C cascade: computed chordwise
distribution of the isentropic Mach number

Fig 30 shows the resulting averaged isentropic Mach number distribution along
the blade together with the results of the participants of the workshop [12] and
the experimental data provided by the VKI. It is seen that all computations
have a consistent difference with the experiment at the front suction side. Fur-
ther LES computations, performed with a standard FVM code at Cenaero and
RANS computations at VKI, showed a similar trend. Based on this consistency
between the different computations and codes, it was conjectured that there
was potentially a small difference in the flow conditions or the cascade geome-
try. This mismatch between computational and experimental setup is currently
investigated at the VKI in collaboration with Cenaero.

5 Bump in a Square Duct

This test case was proposed in the framework of the European research project
DESider, dealing with hybrid RANS-LES modelling [13]. It corresponds to a
water tunnel experiment carried out by ONERA/Toulouse [14] in order to inves-
tigate flow separation, reattachment and post-reattachment recovery in a highly
three-dimensional configuration. More detailed information about this configu-
ration can be found in the DESider Project website [15].

5.1 Test Case Description

The geometry of ONERA’s water tunnel is shown in Fig. 31. The channel has
a length L = 2.367m and a cross-sectional area of 0.5m× 0.162m (W ×Hc) at
the inlet and 0.5m× 0.3m (W ×H) at the outlet. The shape of the bump was
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chosen so that flow separation takes place in the middle region of the tunnel,
independent of the geometry of the bump. The bump has a height Hb = 0.138m
at x = −0.367m, and ends at x = 0 (Lb = 0.367). At the inlet, the velocity
profiles from the experiment are prescribed, which have a centreline velocity
of approximately 7m/s. Furthermore, water with a density of 997kg/m3 and
a dynamic viscosity of 0.89 × 103Pa is considered. In case a compressible flow
solver is used for solving this incompressible flow, an inflow Mach number of
M = 0.1 is chosen.

Fig. 31. Hybrid RANS-LES of the DESider bump: geometric configuration of the water
tunnel

5.2 Grids

Two types of grids were used. NLR used a baseline structured grid of 142×60×76
(647,520) cells and a grid with local grid refinement (LGR) and 355,560 cells.
Compared to the baseline structured grid, the LGR grid is coarsened away from
the separated flow region that is captured with LES, saving 40 to 45% of the
grid points. UNIBG used a grid with curved cells (quartic edges) suitable for
high-order methods, which was obtained by means of an in-house agglomera-
tion software. The original linear mesh is a block-structured grid provided by
ONERA, a different spacing has been used along the span wise direction. The
resulting high-order DG mesh is made of 29,700 50-node hexahedral elements.

5.3 Baseline Solutions

As baseline solution, NLR performed an X-LES computation with its fourth-
order finite-volume method (FVM) on the baseline structured grid. The obtained
result is consistent with the results found in the DESider project, where a smaller
flow separation region was found compared to the experiment.

5.4 Assessment of High-Order Solutions

NLR successfully performed X-LES computations with its fourth-order finite-
volume method on the LGR grid, maintaining stability and accuracy compared
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(a) X-LES on baseline grid (b) X-LES on LGR grid (c) SA-DES on DG grid

Fig. 32. Hybrid RANS-LES of the DESider bump: instantaneous solution of DES-type
computations with high-order methods. Figures (a) and (b): iso-contours of Q-criterion
coloured by the vorticity magnitude. Figure (c) iso-contours of λ2-criterion coloured
by the pressure.

(a) X-LES with 4th-order FVM (b) SA-DES with DG-p3 method (red
- computation; black - experiment)

Fig. 33. Hybrid RANS-LES of the DESider bump: mean velocity profile at four stations
in the span-wise centre plane (z = 0)

to the baseline computations. UNIBG successfully performed SA-DES computa-
tions for the first time using a discontinuous Galerkin (DG) fourth-order method
(DG-p3) on the high-order grid. Instantaneous solutions are compared in Fig. 32.
The NLR X-LES results show substantially finer turbulent structures than the
UNIBG SA-DES results. Considering the number of degrees of freedom, which
is of the same order for both approaches, one would expect a similar fineness of
the turbulent structures. The UNIBG results are typical for first-time DES-type
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computations - too large turbulent structures are found possibly due to some
source of dissipation (e.g., too large filter width). As expected, more work will
be needed to improve these results further. Nevertheless, being able to perform
DES-type computations with a high-order DG method is already a success in
itself.

The mean velocity profiles at four stations are shown in Fig. 33 . As men-
tioned above, the computations predict a significantly smaller separation region
than the experiment. Compared to the experiment, all computations are com-
paratively close to each other, predicting reattachment at around x = 0.35m.
Thus, despite the clear differences in terms of resolved structures, the mean flow
does not appear to be strongly affected.

5.5 Conclusions

For the fourth-order FVM, stable and accurate X-LES computations have been
performed on a grid with block-wise LGR. The solution is comparable to the
baseline solution, although the separation region is slightly smaller. For the DG-
p3 method, stable SA-DES computations have been performed. Although the
resolved structures are clearly coarser than the baseline computation, similar
mean velocity profiles are obtained.

6 Periodic Flow over a 2D Hill

This test case was proposed in an ERCOFTAC/IAHR Workshop in 1995 [16].
This configuration represents the flow over periodically arranged hills. As

shown in Fig. 34, the flow presents separation from the curved surface, reat-
tachment, and post-reattachment recovery. This test case is of interest for the
evaluation of high-order methods in the context of DNS and LES, due to the
periodic boundary conditions and the 2D character of the geometry which sig-
nificantly reduces the computational costs.

Most of the technical information supplied here has been extracted from the
references provided, and in particular from [26].

The geometry of the channel is shown in Fig. 35. This geometry was introduced
by Mellen et al. [23] and is a modification of the geometry studied experimentally
by Almeida et al. [16]. Denoting by h the hill height, the channel length is
Lx = 9h (inter-hill distance), the height is Ly = 3.035h and the spanwise extent
of the computational domain is Lz = 4.5h. The analytical shape of the 3.857h
long 2D hill can be found in [26].

Experimental and numerical reference data are available at the following spa-
tial locations: x/h = 0.05, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 8.0.

In [17] the authors used an incompressible second-order Finite Volume (FV)
solver, LESOCC, on a curvilinear grid composed of 13.1 million points to perform
a DNS at Re = 2, 800, as well as an LES at Re = 10, 595. These results will be
used as reference for the cross-comparison of results presented in Sections 6.1
and 6.2. Results from LES simulations at Re = 10, 595 have also been reported
in the literature by Frölich et al. [21] and Chaouat et al. [19, 20].
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Fig. 34. DNS and LES of the periodic flow over a 2D hill: streamlines of the time-
averaged flow field. Figure reproduced from the test case description on the QNET-
CFD wiki [26]

Fig. 35. DNS and LES of the periodic flow over a 2D hill: geometric configuration
of the channel. Figure reproduced from the test case description on the QNET-CFD
wiki [26]

Required Grid Resolution. This benchmark was proposed as test case C3.6
in the framework of 2nd International Workshop on High-Order CFD Methods
(see test-case summary in [22]). Two computations were proposed, namely DNS
at Reb = 2800 and LES at Reb = 10595, both at the same equivalent spatial
resolution, compensated for the subcell resolution of polynomial methods such
as DGM, RDS or SDM. A series of second-order hexahedral grids were proposed,
obtained by successive coarsening of a reference straight mesh with resolution of
512×256×256. Figure 36 shows the coarsest curved mesh proposed in this work-
shop consisting of 32× 16× 16 elements, used for DGM(p=4). The simulations
in the IDIHOM project have followed the same specifications.

Flow Conditions and Forcing Term. The Reynolds number Reb is defined
based on the bulk velocity ub and on the hill height at the crest h, namely

Reb =
ubh

ν
ub =

1

2.035

∫ 3.035h

h

u(y)dy (1)
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Fig. 36. DNS and LES of the periodic flow over a 2D hill: second-order mesh used in
the 2nd International Workshop on High-Order CFD Methods

As for the turbulent plane channel flow configuration, a forcing term is added
to the streamwise momentum and the energy equations. This body force fp(t)
therefore drives the flow and represents a pressure gradient in the streamwise
direction. Following the approach proposed in [18], also described in [22], this
source term is updated at each time step as

fn+1
p (t+Δt) = fn

p (t)−
1

Δt

(
Q0 − 2Qn +Qn−1

)
(2)

where Qn is the mass flow rate per unit surface computed at each time step
t + nΔt and Q0 its target value. The forcing term also appears in the energy
equation as ufp.

In the case a compressible flow solver is used it is necessary to specify a low
value for the Mach number (e.g. M0 = 0.1 − 0.2) so that the flow regime is
quasi-incompressible. The temperature at the wall Tw is therefore computed as,

Tw =
u2b

γRM2
0

(3)

in which γ = 1.4 is the isentropic coefficient and R the gas constant.
The flow is periodic in the streamwise and spanwise directions, and isothermal

no-slip boundary conditions are imposed on the lower and upper walls.

6.1 Comparison of DNS Results at Re = 2, 800

Three IDIHOM partners have reported results for this test case: Cenaero,
ICL and USTUTT. As mentioned above, the results are compared against the
DNS simulation performed by Breuer et al. [17] using the 2nd-order FV solver
LESOCC. For completeness, the results obtained by H. Lüdeke (DLR) using a
4th-order Finite Difference (FD) code, presented in the 2nd International Work-
shop on High-order CFD methods, have also been included for completeness.
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Table 7. DNS and LES of the periodic flow over a 2D hill: summary of the DNS
computations at Re = 2, 800. DG-pN stands for Discontinuous Galerkin method with
polynomial order p=N. SEM/PS denotes the use of a spectral element method in
the streamwise and vertical directions and a pseudo-spectral Fourier method in the
spanwise direction.

Author Num. Method Solver DOF Δt/10−3 Tavg

Breuer et al. [17] 2nd-order FVM Incomp. 13.1 M 2.0 1249
Exp. RK3

Cenaero DG-p3 Comp. 33.5 M 10. 150
Imp. 3BDF

ICL 6th-order SEM/PS Incomp. 20.9 M 1. 512
Exp./Impl.

USTUTT DGSEM-p9 Comp. 8.2 M 0.134 500
Exp. RK4

Lüdeke (DLR) 4th-order FD Comp. 4.1 M 0.05 270
Exp. RK4

Table 8. DNS and LES of the periodic flow over a 2D hill: summary of grid resolutions
used for the DNS and the LES computations

Author Grid resolution # Elements Grid order

Breuer et al. [17] - 12.4 M 1
ARTS 64×32×32 65,536 4

Cenaero 128×64×64 524,288 2

ICL 74 ×49×160 3626 × 160 Fourier 6

USTUTT 32 ×16×16 8192 4

Lüdeke (DLR) 256 ×128×128 4.19M 1

Table 7 summarises the basic properties of the simulations being compared
as well as the specific numerical method employed. For further details on the
discretisations, the reader is referred to the individual partner contributions. The
grid resolutions used in these simulations are ment to provide DNS resolution
and are compiled in Table 8.

Figures 37 show the profiles of mean streamwise and vertical velocity and
velocity correlations. As to be expected, very good results have been obtained
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Fig. 37. DNS and LES of the periodic flow over a 2D hill: comparison of the computed
profiles of the mean velocity and Reynolds stress components for the DNS computations
at Re = 2, 800. The dashed black lines correspond to the reference results of Breuer et
al. The solid lines correspond to the results from the different codes : Cenaero, ICL,
USTUTT, Lüdeke.
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on all quantities. USTUTT has performed additional, less resolved computations,
also leading to a good correspondence to reference results. Details can be found
in the individual contribution in chapter 2.

6.2 Comparison of LES Results at Re = 10, 595

ARTS, USTUTT and Cenaero have provided results for this configuration. The
computational setup is given in Tab. 9. The mesh resolutions are again found in
Tab. 8. Additional computations are described in the partner-specific sections in
chapter 2.

Table 9. DNS and LES of the periodic flow over a 2D hill: summary of the LES
computations at Re = 10, 595. DG-pN stands for Discontinuous Galerkin method with
polynomial order p=N.

Author Num. Method Solver DOF LES strategy

Breuer et al. [17] 2nd-order FVM Incomp. 13.1 M Smagorinsky
Exp. RK3 Van Driest wall damping

ARTS RBC3 Comp. 65,536 No model
Imp. Gear (2nd)

Cenaero DG-p3 Comp. 33.5 M No model
Imp. 3BDF

USTUTT DGSEM-p9 Comp. 8.2M Overintegration
Exp. RK4

The comparison of these results with the reference simulation of Breuer et al.
and with the available experimental data [17,24] is shown in Fig. 38. Overall, very
good correspondence between computations and reference results is found for the
time-averaged velocities for both USTUTT and Cenaero, usually providing a bet-
ter match with the reference computations. In spite of the very coarse resolution,
the results of ARTS are still surprisingly fair. For the Reynolds stresses good
results were only obtained by USTUTT; however, it should be noted that at
the time of the writing Cenaero had not yet obtained statistical convergence for
these quantities. Both Cenaero and USTUTT performed further coarser compu-
tations, which are detailed in their individual contributions in chapter 2. These
resulted in an almost as good correspondence with the reference results as shown
here. For Cenaero this includes a much better match for the correlations due to
the longer averaging time.
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Fig. 38. DNS and LES of the periodic flow over a 2D hill: comparison of the computed
profiles of the mean velocity and Reynold stress components for the LES computations
at Re = 10, 595. Dashed black lines correspond to the reference results of Breuer et
al. and circles to experimental data. Solid lines correspond to the results of Cenaero,
ARTS, USTUTT. Cenaero’s Reynolds stresses have not yet fully converged statistically.
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Abstract. In the IDIHOM Project three aeroelastic testcases have been
calculated. Two of them - LANN Wing and DLR-F6 wing-body configu-
ration - have been conducted by PUT. The last one, the HART II rotor
has been prepared by NLR. Each partner has used different technology
and software tools, hence each of the testcases describes the results of
the simulation and technology which has been used.

Keywords: Aeroelasticisty, high order, CFD.

1 Introduction

With the development of new techniques in CFD like Finite Element Method,
Discontinuous Galerkin Method, High Order Methods, Adjoint Mesh Refinement
also they find use in aeroelastic systems. This transition in technology has to
be accompanied in complete revision of CFD tools and methods, ranging from
curvilinear grid generation to visualization of high order discontinuous results.

The new developed systems and tools require to be validated using common
and well known testcases. In the IDIHOM Project three aeroelastic testcases
have been calculated. Two of them - LANN Wing and DLR-F6 wing-body con-
figuration - have been conducted by PUT. The last one, the HART II rotor -
example of rotating geometry has been prepared by NLR.

2 LANN Wing

One of the most widely used examples used in CFD is, for many years, LANN
wing proposed by AGARD group [2]. The wing has a semispan 1m in length, a
planform area of 0.25m2, a root chord of 0.361m, a tip chord of 0,144m, has a
1/4-chord sweep angle of 25◦ and a linear twist from root to tip of 4.8◦. The CFD
simulation has been prepared with flow parameters: Ma = 0.4, Re = 4.9 · 106
and angle of attack equal 2.56◦ [3].

The calculation has been conducted on the Aeroelastic System developed
within IDIHOM Project Aeroelastic System (IDIHOM AE System). The loosely

c© Springer International Publishing Switzerland 2015 649
N. Kroll et al. (eds.), IDIHOM: A Top-Down Approach, Notes on
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coupled technique bases on PADGE Code - Discontinuous Galerkin High Or-
der CFD Solver delivered by DLR. The CSM part has been solved using modal
approach. Other tools for interpolation data between models, deformation CFD
grid and interface for discontinuous solution have been developed by PUT and
are described in previous chapters. The results have been compared with the ref-
erence one obtained from TAURUS AE System [1]. TAURUS AE System bases
on TAU Code which is second order FV CFD solver. In TAURUS AE System
the linear CFD mesh has been used, unlike to DIHOM AE System.

2.1 Grids

CAD Geometry has been delivered by Aircraft Research Association (ARA). The
model has been used as a coupling surface for exchanging information between
CFD and CSM models.

The linear mesh (fig.1a) is unstructured hybrid grid with prism elements in
boundary layer. The curvilinear grid (fig.1b) for high-order computations con-
sists of prism, pyramid, hexahedral and tetrahedral elements. The details of both
meshes are given in tab.1.

(a) linear (b) curvilinear

Fig. 1. LANN grids

Table 1. Grids details

Grid linear curvilinear

No of nodes 2.6M 98 469
No of elements 10.5M 19 981

- prism 2.5M 432
- pyramid 17k 673
- tetrahedral 7.5M 5 762
- hexahedral 0 12 114
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2.2 Solution

The convergence of aeroelastic steady state computations is obtained after five
iterations (fig. 2, 3). There is a good agreement between the results of first-order
(TAURUS) and high-order (IDIHOM) AE systems.

Fig. 2. Aeroelastic steady state LANN wing deformation computed using first order
(TAURUS) AE System and high order (IDIHOM) AE System

The deformation computed using High-Order methods is 0.942mm. Compar-
ing to the reference solution, where the deformation is 0.980mm, the difference
is 3.96%.

Fig. 3. Deformed wing: grey - non-deformed structural model, blue - deformed model
calculated in TAURUS AE System, red - deformed model calculated in IDIHOM AE
System
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3 DLR-F6 Wing-Body Configuration

The second testcase was chosen the DLR-F6 wing body configuration as the full-
scale industrial testcase. [4]. In this case, for high order computations structured
grid has been used. In the reference computation, similarly as LANN wing,
hybrid grid has been used. Both the grids are depicted in the fig.4 and described
in tab.2.

(a) linear (b) curvilinear

Fig. 4. DLR-F6 grids

Table 2. Grids details

Grid linear curvilinear

No of nodes 4.0M 3.3M
No of elements 10.2M 50 618

- prism 6.1M 0
- pyramid 11k 0
- tetrahedral 5.1M 0
- hexahedral 0 50 618

Again, the aeroelastic steady state computations converge after five iterations
(fig.5).
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Fig. 5. Aeroelastic steady stare DLR-F6 aircraft deformation

Fig. 6. Deformed aircraft: grey - non-deformed structural model; blue - deformed model
calculated in TAURUS AE System; red - deformed model calculated in IDIHOM AE
System

This time, the difference between reference solution (deformation: 1.733mm)
and High-Order solution (deformation: 1.619mm) is 6.58% (fig.6).

More details about the technology used for the aeroelastic simulations are
presented in article: "Aeroelastic system for large scale computations with High
Order Discontinuous Galerkin Flow Solver"
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4 HART II Rotor - Trimmed Aeroelastic Simulation

In this chapter, aeroelastic simulations are performed for an isolated four-bladed
rotor in one of the flow conditions of the HART-II experiment. The HART-
II experiment is described in detail in Van der Wall et al. [10]. The chosen
flow condition is a slow descent flight where multiple BVI events take place
during a rotor revolution. The rotor radius of the windtunnel model is 2 meters.
Rotational frequency is 109.12 rad/s. Forward speed of the rotor is 32.9 m/s.
Effective shaft angle is 4.5 degrees (tilted backward).

4.1 Grid

For rotor flows the convection of the tip vortices in the wake of the blades is
important for the capture of the blade-vortex interaction. As the vortices move
through the wake, the easiest way of obtaining a mesh with sufficient resolution
in the vortex regions is to uniformly refine the mesh in a cylinder around the
rotor blades. So the definition of the refinement region in this case is a cylinder
centred at the rotor hub with radius equal to the rotor radius and sufficient
height to contain the vortices.

The target mesh width is 0.01R, where R is the rotor radius. This corresponds
to 16% chord, which is a rather coarse resolution. The original mesh has 13
million cells, the refined mesh has 26 million cells. Details of the mesh can be
found in Kok et al. [8].

4.2 Rigid-Blade Trim

As a pre-cursor computation the rotor is trimmed with rigid blades. The rotor
has been trimmed to the experimental values of thrust, rolling moment, and
pitching moment. The trim results are tabulated in Table 3.

4.3 Aeroelastic Trim

To account for the effects of blade flexibility to the trim, mutual interaction
between blade aerodynamics and structural dynamics is modelled by solving the
aeroelastic equations in modal space. The aeroelastic deformations are expressed
in a limited degrees-of-freedom model built upon the vibration modes of the
rotating blade. The required modal data, that is, the natural frequencies and
vibrations modes, are computed with respect to the deformed shape due to
centrifugal loads. This means that the deformation is linearized around this
deformed shape, see Figure 7.

The structural dynamics of the blade is represented using a finite element
modelling. A NASTRAN model of the blade is generated based on the avail-
able elasto-mechanical properties reported in the documentation of the HARTII
experiment [10]. First, static deformation of the blade is determined using a
nonlinear approach. Subsequently normal mode analysis is carried out starting
from this deformed shape, taking into account the effects of the centrifugal force
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in the stiffness matrix. The natural frequencies of the blade at various rotational
speeds are shown in Figure 8. Measured frequencies at zero rotational speed and
computed frequencies using CAMRAD at the reference rotational speed are also
presented. Good agreement with both data is observed. Hence, no attempts have
been made to improve the correlation by model-updating.

During the simulations on the original grid it became clear that the response
of the first lead-lag mode (at a frequency of 0.64/rev) was hardly damped by
the aerodynamic forces. As the corresponding period of the mode is almost one-
and-a-half revolution, the coupled fluid-structure problem displayed a period of
three revolutions. From period to period the response was damped a little bit, as
can be seen in the first eight revolutions of the response plotted in Figure 9. To
resolve the issue, this mode was damped in the structural model, and a periodic
solution of the fluid-structure problem was quickly obtained (see the next four
revolutions in Figure 9). The trim values are tabulated in Table 3.

Subsequently the flow results were interpolated onto the refined mesh and the
simulation continued with the same trim settings. As can be seen from the next
five revolutions in Figure 9, the structural response did not change significantly.
The aerodynamic forces, however, deviated from the experimental values. Hence,
the rotor was retrimmed, to the control angles shown in Table 3 in order to
obtain the correct aerodynamic forces. As can be seen in the last five revolutions
in Figure 9, the response from the first flap mode changed significantly, and
obviously this can have a definite impact on the miss distance between blades
and vortices.

Fig. 7. Overview of the initial grid of the blade and deformed grid due to centrifugal
force, about which the linearisation of the deformation is defined

4.4 Flow Results

The turbulent flow is modeled using the Reynolds-averaged Navier-Stokes equa-
tions with the TNT k-ω turbulence model [6]. All simulations have been run using
the fourth-order accurate finite volume scheme [7]. Simulations have been per-
formed on the original mesh of 13 million elements, and the locally refined mesh
of 26 million elements. The discretization algorithm on locally refined meshes
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Fig. 8. Campbell diagram of the blade showing the influence of the rotational speed
to the natural frequencies of the blade (lines with square symbols). The normalised
rotational speed on the horizontal axis is normalised by the rotational speed of the
HART-II experiment. Measured frequencies at zero rotational speed (GVT; circles with
black outline) and computed frequencies using CAMRAD (DLR-CAMRAD; diamonds
with black outline) at the reference rotational speed are taken from [10].

Table 3. Trim values for the simulations. The pitch angle θ of the blade is computed
as θ = θ0 + θ1c cos(ψ) + θ1s sin(ψ) where ψ is the azimuth angle.

roll mom- pitch mom-
model grid θ0 θ1c θ1s thrust [N] ent [Nm] ent [Nm]
experiment – 3.8◦ 1.94◦ −1.34◦ 3300 20 -20
rigid blades original 3.07◦ 1.92◦ −1.61◦ 3630 30 -6
flexible blades original 4.9◦ 1.7◦ −0.15◦ 3350 42 -24
flexible blades refined 4.4◦ 1.3◦ −0.15◦ 3265 4 -14

is described in [8]. In the current simulations a second order interpolation algo-
rithm is applied, rather than the fourth-order algorithm described in [8]. The
time step corresponds to 0.5◦ azimuth for all simulations. An impression of the
vortex signature in the simulation is given in [8].

The sectional vertical force coefficient at 87% for the two simulations with
flexible blades is shown in Figure 10.
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Fig. 9. The response of the first three modes for the simulations on original and refined
meshes

First, the global behaviour of the force history is discussed. The simulation
on the original grid generally agrees with the experiment on the retreating
side (azimuth angles greater than 200 degrees). On the advancing side the
agreement is less than satisfactory. The retrim on the refined mesh improves the
agreement with experiment for azimuth angles greater than 120 degrees, but for
smaller angles no improvement is seen. This suggests that the (controlled) blade
motion in the simulation is different from the experiment, especially since the
control angles of simulation and experiment are different (see Table 3). However,
comparing the simulation results with the results of Jayaraman et al. [5] suggests
otherwise. Figure 11 shows their results combined with the results of the current
paper. The control angles in the simulations of Jayaraman match very well
with the experimental values. The global behaviour of the sectional lift for all
simulations (current and Jayaraman’s) is generally the same, especially for the
BVI regions on both advancing and retreating side. One of the conclusions of
the HART-II workshop (Smith et al. [9]) is that the BVI events at the advancing
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Fig. 10. Vertical force coefficient at 87% span for the simulations with flexible blades.
Black line with symbols: experiment; dotted line: original grid; black line: refined grid.

side are influenced by the fuselage, which is not taken into account in the current
simulation.

Second, the prediction of BVI is discussed. Comparing the results for the
original and refined grid, the increase in vortex resolution on the refined grid is
evident from several blade-vortex interactions on the retreating blade. Compar-
ing the refined grid simulation with the experiment, the number of BVI on the
retreating side are the same for simulation and experiment. The amplitude of
the interactions in the simulation is only half that of the experiment. Comparing
with the simulation of Jayaraman in Figure 11 the phase of the BVI are remark-
ably the same. On the advancing side the current simulation shows almost no
evidence of BVI. The simulation of Jayaraman do exhibit BVI on the advancing
side. As their mesh has a background resolution of 10% chord, the most plausible
explanation of the lack of BVI on the advancing side in the current simulations
is lack of resolution.
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Fig. 11. Vertical force coefficient at 87% span for the simulations with flexible blades.
Black line with symbols: experiment; black line: refined grid; red line: results from
Jayaraman et al. [5], Figure 6b, fine grid results.

4.5 Conclusions

The uniform resolution of the refined mesh in the rotor wake improves the resolu-
tion of the tip vortices. As a consequence, the prediction of the BVI phenomenon
on the retreating side has improved, compared to the simulation on the unrefined
mesh. On the advancing side the resolution of the mesh is insufficient to capture
BVI.

5 Summary

In the article, three aeroelastic testcases results with High-Order CFD solvers
analyzed by two different AE Systems have been presented. The LANN wing
has been prepared for developed by PUT Aeroelastic System verification while
the DLR-F6 is generic aircraft configuration. The last testcase is HART-II rotor
aeroelastic simulation prepared by NLR. The all testcases prove readiness of
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the developed systems for aeroelastic simulation of full configuration high scale
industrial cases.

The presented testcase are the result of development of the necessary software
for aeroelastic simulation using high-order curvilinear grids such as parallelized
deformation grid tool. Also the tool responsible for interpretation results from
Discontinuous Galerkin CFD Solvers. The adaptation tool for high order tools
significantly have increased the accuracy of the results.

Developed by PUT in IDIHOM project Aeroelastic System base on loosely-
coupled technique. This solution and developed software responsible for exchang-
ing information between independent solvers allow for applying any CFD high
order solver.
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Abstract. In this article, the results of aeroacoustic cases obtained by
high-order methods are presented. One internal and one external case are
considered. The internal case is a transonic cavity. It has been computed
by three parters, namely FOI-LiU (Linköping University), University of
Stuttgart (USTUTT) and Dassault Aviation (DASSAV). FOI-LiU has
computed with their higher order accurate finite difference solver us-
ing a block structured grid. Comparisons are made to reference calcula-
tions using an unstructured grid with Edge. USTUTT uses a high order
discontinuous Galerkin spectral element code for the final high-order
computations and a mixed modal/nodal DG code for the baseline com-
putations. Dassault Aviation uses their in-house stabilized finite element
code Aether, both for the reference and the higher-order computations.
In both instances unstructured tetrehedral grids are used. The external
case is a quasi-two dimensional generic wing and flap configuration de-
fined in the VALIANT FP7 project. Two institutions were involved in the
high-order simulation of this low-Mach number test case, M = 0.15, Cen-
tral Institute of Aero- and Hydrodynamics, TsAGI, and the von Karman
Institute, VKI. In the following, the acoustic predictions corresponding
to the two test cases will be described.

Keywords: CFD, CAA, hybrid method, higher order.

1 Introduction

Flows over an open cavity may arise over the under-carriage wheel well and over
an embedded weapon bay during the store release operation of a military air-
craft. The acoustic tones for open cavity flows are interpreted as a consequence
of the interaction between the shear layer that bridges the cavity and the aft

c© Springer International Publishing Switzerland 2015 661
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cavity wall on which the shear layer impinges. A better understanding and pre-
diction capability of this type of flow is of practical importance to improve the
design methodology and to avoid possible flow-induced operation problems in
aeronautic applications. Three partners consider the test case with turbulent
flow over a rectangular cavity. FOI and USTUTT are performing hybrid RAN-
S/LES calculations without a subgrid-scale model. Dassault Aviation is using a
zonal DES (ZDES) approach.

During aircraft approach and landing, a significant portion of noise is gen-
erated by the high-lift devices. Reducing the noise during landing is very im-
portant for the comfort of the residents living nearby an airport. The airframe
noise during take-off maneuver is less important, since the slope of the take-off
is much steeper, and the engines are in full trust, louder than any other compo-
nent. Among the various noise sources during approach and landing, the landing
gear, leading-edge slat and the side edges of the flap where identified as the
main airframe noise sources. The current test case considering a generic wing
and flap, more precisely the noise propagation around such geometry. Two part-
ners, namely TsAGI and VKI were contributiong to this industrial demonstrator
test case. VKI used the Large-Eddy Simulation performed within the VALIANT
project as noise sources while TsAGI injected stochastic perturbations in order
to represent the effect of the turbulent flow.

2 Transonic Cavity Case

The test case is denoted Test Case A15 within IDIHOM and is a test case
with transonic flow over a rectangular cavity; it is also known as M219 in the
literature. This test case is suitable for LES or hybrid RANS/LES calculations
due to the turbulent fluctuations over the cavity. Experimental, time dependent
data exist on the cavity walls and ceiling and are available for IDIHOM. This test
case has been measured and computed in the past with many references available,
e.g. [1]– [3]. Several different cavity geometries exist; the one used in IDIHOM
is the cavity with 5:1:1 length-to-depth-to-width relation. The geometry as well
as the locations of the pressure probes are reproduced here in Figure 1.

The free stream values are

M∞ = 0.85; Re = 6.8× 106 (1)

where the Reynolds number is based on the cavity length (20 inches).

2.1 Computational Domains and Grids

FOI-LiU. For the higher order calculations with the finite difference solver Es-
sense, calculations were carried out on a flat plate where the cavity is embedded
on the flat plate. A two block structured grid was created for these calculations
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Fig. 1. Cavity geometry, experimental setup and location of the pressure probes record-
ing unsteady pressure fluctuations

where one block is located inside the cavity. To have a single boundary condition
per block side, the block on top of the cavity block was split up resulting in 10
blocks all together. For the reference calculations with Edge [4], FOI-LiU has
computed on two different grids, one hybrid unstructured grid that has been
generated by EADS and contains a grid over the cavity, the device on which the
cavity is integrated and the entire test section of the wind tunnel. The other grid
is a structured grid generated by FOI-LiU over the cavity and a limited domain
of the flat plate outside of the cavity, very similar to the structured grid. The
structured grid is displayed in Figure 2 and the main data are summarized in
Table 1.

Table 1. Details of FOI-LiU computational grids for A15 Cavity

Grid Solver # vol. nodes # boundary # volume Near wall
nodes in cavity nodes in cavity distance

Structured Essense 2.6× 106 41× 103 0.73× 106 1.2× 10−5 m
EADS grid Edge 6.2× 106 77× 103 2.0× 106 4.0× 10−6 m
FOI grid Edge 1.2× 106 16× 103 0.5× 106 4.0× 10−6 m

USTUTT. The mesh used for the cavity computations by the University of
Stuttgart is a modified version of the mesh provided by FOI. The mesh contains
about 62, 000 elements, of which about 50% are placed either inside the cavity or
at a distance of less then 0.2D to the cavity. In the flat plate region the effective
y+, (y+ = y+1 /(P+1)) has been chosen to be 10, considering the schemes sub cell
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Fig. 2. Mesh of the cavity test case by FOI-LiU using Essense

resolution. Here y+1 denotes the height of the first grid cell and P the polynomial
degree. The magnitude of y+ could be confirmed by the computations. The mesh
is displayed in Figure 3.

Fig. 3. Cavity mesh used by USTUTT, cut at plane through the right wall

DASSAV. Contrary to the other two contributors, Dassault Aviation has com-
puted the M219 cavity in a configuration close to its original experimental setup,
as can be seen in Figure 4. The Reference linear mesh used by Dassault Aviation
is an unstructured tetrahedral mesh build on top of a triangular surface mesh
with a characteristic edge size of 2 mm. In the boundary layer, the mesh is con-
structed with a first layer of elements of 10 μm height and a growing ratio of
1.25. In the mixing layer, an unstructured block of tetrahedra with edge lengths
od 2 mm in the x and y directions and 2.5 mm in the z direction is inserted. The
grid contains slightly less than 3.4 million grid points. Higher order grids are
generated by adding degrees of freedom to a coarse P1 grid. The difficulty is to
build a “skeleton” grid which is coarse enough to yield higher-order grids with a
controlled number of grid points and still preserve the qualities in geometric rep-
resentation, point density, and element distorsion of the original reference grid.
Fortunately for this test case, all surfaces of the model are flat which alleviates
the issue of curving the elements in the volume. A discussion about this aspect
of higher-order grid generation can be found in the A04 Generic Falcon Test
Case in the External Aerodynamic Test Case section [5] and also in Chapter II.2
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in the section dedicated to the numerical method developed by DASSAV [6].
With these constraints, the skeleton P1 mesh built on a different surface grid
with a characteristic edge size of 4 mm could not be made coarser than about
450,000 grid points; consequently the corresponding P2 grid (and the matching
P1 grid) contains 3.5 million grid points. Coarsening techniques developed later
on for the A04 Falcon test case could probably have been similarly applied to
the cavity to produce yet coarser higher-order grids [5].

Fig. 4. Configuration and surface view of the P2 mesh used by DASSAV

2.2 Numerical Methods, Reference and Higher-Order Solutions

FOI-LiU. For the higher order accurate calculations FOI-LiU use the finite
difference solver Essense that has been further developed and validated within
IDIHOM. The higher order code is based on Summation By Parts (SBP) com-
bined with Simultaneous Approximation Term (SAT) approach with penalty
terms that guarantee accuracy and stability [7], [8]. The code is able to handle
arbitrary order of spatial accuracy, currently limited to 5th order. The code uses
explicit time stepping with a 4th order accurate additive Runge-Kutta scheme.

The unsteady calculations were initiated from poorly converged steady state
calculation with local time steps. The intention was to use the same hybrid
RANS/LES model as in Edge. For this purpose this algebraic model has been
implemented in Essense. In the calculations, however, the model imposed a se-
vere restriction on the time step due to small cells away from the wall caused by
the H-topology of the employed mesh. This model was therefore abandoned and
the calculations presented here have been computed without a model. Only one
calculation was completed during IDIHOM. This calculations employs a scheme
that is 4th order accurate in the interior, 2nd order accurate at the boundaries
making it globally 3rd order accurate. Adiabatic weak wall boundary conditions
were used inside the cavity and on the flat plate. Far field characteristic bound-
ary conditions were used elsewhere. The higher order calculation progress for
about 60 through flows, the solutions from last 40 through flow are used for the
statistics.

The reference calculations for this test cases were carried out some time ago
and have been repeated for IDIHOM. The 2nd order backward difference implicit
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method is used in time which is A-stable, i.e. stable for all sizes of physical
time step. In dual time multigrid with 3 levels accelerate the convergence. The
calculations progress for about 120 through flows, i.e. L/U∞, where L is the
cavity length and U∞ is the free stream velocity. Some computational parameters
are given in Table 2.

Table 2. Sizes of time steps and number of inner iterations for the reference cavity
calculations

Grid Solver Δt Δt per T N inner iterations
Structured Essense 1.0× 10−8 182× 103 1
EADS grid Edge 2.0× 10−5 91 32
FOI grid Edge 1.0× 10−5 182 40

In Figure 5 the overall the sound pressure level (SPL) and the overall sound
pressure level (OASPL) are displayed and compared to experimental values. The
higher order results compare reasonably well to the experimental values of SPL.
The main tonal peaks are captured. The higher order results have a tendency to
have somewhat larger amplitudes of the oscillations compared to the reference
results. This may be due to the lack of RANS/LES model for the higher order
calculations or possibly a too short and coarse sampling interval. The OASPL
is obtained by integrating SPL for all frequencies. The computed OASPL from
the higher order scheme and from the reference calculations with the EADS
grid agree best with the experimental values, the over prediction of OASPL is
common.

(a) SPL at kulits k21, x/L = 15% (b) OASPL

Fig. 5. Local and Overall Sound Pressure Level by FOI-LiU

USTUTT. USTUTT computed baseline higher order computations for the
cavity testcase within the ADIGMA project [9] computed with USTUTTs mixed
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modal/nodal hp-adaptive DG code HALO. The calculations were carried out for
a different Reynolds number (Re=2× 105) and have hence been left out here.

The cavity computations have been performed using the high order discontin-
uous Galerkin spectral element code Flexi developed by the Numerical Research
Group (NRG) at the University of Stuttgart [10]. A polynomial degree of P = 4
has been chosen for the computations. For the computation a model-free ap-
proach has been chosen, however an incomplete polynomial de-aliasing has been
applied using over integration. The de-aliasing reduces unphysical oscillations of
the solution and thus provides ’clean numerics’ and in our case also significantly
reduces destabilizing effects caused by the high Reynolds and Mach number. For
the overintegration a polynomial degree of POver = 6 has been chosen, which was
regarded as a good compromise between speed and accuracy, where full overinte-
gration would require POver = 9. During the computation occasionally occurring
shocklets have been observed, therefore a low amount of artificial viscosity has
been used to provide additional stability. The amount of artificial viscosity has
been controlled by a Persson-type modal pressure indicator. Compared to the
baseline results, only 20% of the amount of artificial viscosity was sufficient for
this computation.

For the time discretization USTUTT has employed a 4th order explicit Runge-
Kutta scheme. The average time step of the simulation was typically in the range
between Δt = 1.4 × 10−7 − 1.6 × 10−7. The data at the Kulites was collected
every 4th time step, resulting in a very high sampling rate of about 1.6 Mhz.
From t = 0.0s−0.035s the polynomial degree has been gradually increased from
P = 2 with an increased amount of artificial viscosity to the final simulation
setup with P = 4. The collection of the data started at t=0.05s, which equals to
27 through-flows. The total averaging time was 0.11s being about 60 through-
flows.

The domain has been chosen to be periodic in spanwise direction. For the
flat plate and the cavity itself adiabatic no-slip boundary conditions have been
applied. At the inflow and the top characteristic conditions have been used,
producing a boundary layer thickness of 0.1D at the cavity leading edge, to have
comparable results to the which is identical to the results by Chen et al. [1]. At
the outflow characteristic non-reflecting boundary conditions have been applied.

The overall computation contains 7.7×106 DOFs, with an additional 13.4×106
DOFs used for the de-aliasing. The simulation has been carried out on the Cray
XE6 cluster Hermit at HLRS in Stuttgart with on 4096 cores. The number
of DOFs/core was about twice the number of which the code reaches its peak
efficiency (2000-3000 DOFs/core), more cores could not be used for availability
reasons on the cluster.

For the evaluation of our computations we compare the sound pressure level
spectra and the overall sound pressure level along the Kulites K20-K29 placed
equidistantly in streamwise direction on the cavity ceiling, the results on one of
the Kulites is displayed in Figure 6.

The plots of the sound pressure level reveal that all cavity modes are predicted
slightly too high in frequency, while the amplitude prediction differs somewhat
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Fig. 6. Local and Overall Sound Pressure Level by USTUTT

between the Kulites. It is clearly visible, that the 3rd and 4th mode are predicted
best by the LES computation, with respect to both frequency and amplitude.
Even some of the higher modes are well resolved, which can be best seen at
Kulite 23. The predictions for the first mode suffer from the relatively short av-
eraging time compared to the experiment. To fully capture this mode a largely
longer averaging time would be required. Nevertheless both amplitude and fre-
quency prediction are in an acceptable region. The SPL for the 2nd mode can
be regarded too low for some Kulites, for others the 2nd mode is nearly missing.
While the reason for this behaviour is unknown, many simulations from litera-
ture suffer from the same problem e.g. [2]. The SPL prediction at Kulites 20-23
at the beginning of the cavity matches the experimental results somewhat bet-
ter, compared to the Kulites at the end. In an overall view the mode prediction
is satisfying, with exception of the 2nd mode.

Table 3. Modal frequency and amplitude at K29, results from USTUTT

Mode 1 2 3 4 5
Rossiter 159 Hz 371 Hz 582 Hz 794 Hz 1005 Hz

Experiment 150 Hz 350 Hz 590 Hz 810 Hz 991 Hz
142 dB 153 dB 146 dB 135 dB 129 dB

LES-N4 190 Hz 380 Hz 623 Hz 840 Hz 1010 Hz
140 dB 140 dB 145 dB 137 dB 127 dB

Regarding the overall sound pressure level the computations do in general
match the experimental results very well as displayed in Figure 6. Especially in
the first 3rd of the cavity the OASPL is nearly identical to the measured results.
In the region near x/L = 0.4 where the pressure oscillations caused by the shear
layer reach their maximum the results start to slightly diverge up to a maximum
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difference of 3 dB, which then decreases again to 1-2 dB difference till the end
of the cavity.

DASSAV. For all computations, Dassault Aviation used its industrial stabi-
lized finite element code Aether. It relies on continuous isoparametric Lagrange
polynomials of any order computed on unstructured grids as finite element shape
and trial function spaces (solutions are C0 continuous and the same degree of
interpolation is used for both the solution variables and the space coordinates).
So far, only tetrahedral elements have been implemented in 3-D up to P3. More
details about the numerical method and its higher-order implementation can be
found in [6].

Fig. 7. Turbulent structures in the QinetiQ M219 cavity computed by DASSAV: stan-
dard 2nd-order linear P1 elements (left) vs. 3rd-order quadratic P2 elements (right).

For unsteady calculations fully implicit time integration with dual time step-
ping is performed based on the standard second-order Gear’s scheme. The same
time step of 1.5× 10−5 s (that is 121 time steps per through flow over the cavity
length) is used for all computations whatever the order of the space integration.
Third order calculation may suffer from a time integration which is only second
order accurate. Our experience with DES calculations and in particular with this
test case tells that time accuracy should be sufficient with such a time step. The
effect of a time step reduction is shown in section [6]. Nevertheless, keeping ev-
erything equal, including the time integration scheme, enables a fair comparison
between 2nd and 3rd order spatial accuracy.

For all simulations, the flowfield is initialized with a steady RANS computa-
tions using the Spalart-Allmaras turbulence model. The computation is pursued
in a unsteady mode with a Zonal DES approach [11]. After a settling time of
195 ms, unsteady data is acquired for another 225 ms, which accounts for a total
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simuation time of 420 ms (i.e., 230 through flows). 186 ms are post-processed
to produce the energy spectra and the OASPL curves. For a better comparison,
especially at low frequencies, the experimental pressure history is post-processed
over the same time interval. All calculations were performed on 1024 cores of an
IBM BlueGene/P.

In Figure 7, isovalues of the Q-criterion colored by the Mach number are
presented for the 2nd-order linear P1 and the 3rd-order quadratic P2 solutions
computed on nested grids and thus containing the same number of degrees of
freedom. The higher-order simulation transitions sooner to full 3-D turbulence
and contains much finer turbulent structures.

(a) SPL at Kulite K21, x/L = 15%
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Fig. 8. Local and Overall Sound Pressure Level by DASSAV

A typical SPL frequency spectrum corresponding to Kulite #21 is displayed in
Figure 8a. It shows a reasonable agreement between the experiment (in red) and
the different simulations both in terms of Rossiter peak locations and amplitude.
One must note that the higher-order solution (in blue) exhibits more energy in
the higher part of the spectrum.

In Figure 8b, OASPL plots corresponding to different realizations of the sim-
ulation are presented. The red and green curves represent respectively the Ref-
erence solution and the P1 solution computed with the same degrees of freedom
as the higher-order solutions. Both solutions are quite similar and are in good
agreement with the experiment shown in black (a few tenth of a dB on the av-
erage, see Table 4). Note that the Reference solution corresponds to a longer
simulation time of 350 ms. This confirms that the statistics are converged for
the newer computations which account for simulations times of 225 ms. The P2
third-order solution is plotted in blue. It shows a drop in OASPL 1 to 2 dB
below the experiment. We believe that the more precise P2 computation reveals
some of the limitations of the underlying Smagorinsky subgrid scale model in
the DES. A finer P1 simulation, shown in a green dashed line, exhibits the same
tendency of decreased OASPL’s; the corresponding mesh is the same as the P1
and P2 meshes, except in the cavity region where the typical grid size has been
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(a) Band 1: 75–175 Hz

x/L

S
P

L
 (

d
B

)

0 0.2 0.4 0.6 0.8 1
138

140

142

144

146

148

150

152

154

156

158

160

162
experiment
P1 reference
P1
P1 fine
P2
P2 (probes P2)
P2 (projc)

(b) Band 2: 300–400 Hz
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(c) Band 3: 550–650 Hz
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(d) Band 4: 750–850 Hz

Fig. 9. Band-integrated Sound Pressure Levels by DASSAV

reduced from 2 to 1 mm; this mesh contains close to 3.9 million grid points.
A more detailed discussion about the effects of mesh refinement, subgrid scale
model, time step and scheme order can be found in [6].

Finally, two additional curves are presented in Figure 8b. For the sake of
simplicity, earlier higher-order computations were carried out with the same
sampling routine as P1 computations, that is the pressure signal was linearly
interpolated at the location of the experimental Kulites. The effect of the actual
higher-order interpolation is shown in the pink curve. Depending on the pressure
tap, an increase of up to 1 dB is observed in OASPL, bringing the higher-
order P2 results very close to the refined mesh P1 results. This stresses the
importance of postprocessing higher-order solutions with adapted higher-order
techniques. This remark is also valid for line and contour plots. The orange curve
in Figure 8b represents the effect of the second order Navier-Stokes derivatives
in the SUPG/GLS stabilization term of DASSAV residual-based stabilized finite
element code. This term is zero for 2nd-order linear solutions and was dropped
so-far for higher-order computations. The effet is not so sensitive on OASPL’s but
is more significant at certain frequencies as can be seen in the band-integrated
SPL’s in Figure 9. Frequency bands are defined for this test case according to
the analysis of Larchevêque [12]. Again, the difference in SPL with respect to
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the orginal P2 solution is significant, and the experimental level can even be
retrieved for the higher frequency band. Unfortunately, the combination of both
higher-order interpolation for pressure probes and of the higher-order term in
the stabilization could not be tested during the duration of the project.

The band-integrated sound pressure levels (SPL’s) in Figure 9, plotted in
the same colors as the OASPL’s, show that the main physics is captured in
all simulations over the complete range of frequencies. As could be anticipated,
higher frequencies are better captured on P1 refined meshes and higher-order
solutions with the best numerical ingredients. More on that aspect can be found
in [6].

2.3 Assessment of High-Order Solutions

In an attempt to quantify the deviation from the experimental OASPL and
to make a cross comparison between partners results we define the normalized
deviation D as

D =
‖ OCFD −Oexp − δO ‖2

Oexp

=

√
1
N

N∑
i=1

(Oi,CFD −Oi,exp − δO)2

Oexp

(2)

δO =
1

N

N∑

i=1

(Oi,CFD −Oi,exp) (3)

and where Oexp = 159.2dB;N = 10. The intention with the derived formula
for the deviation is to define a measure that gives a zero value if the shape of
OASPL is identical to the shape of the experimental OASPL. It allows for a shift
in absolute level though.

In Figure 10 the OASPL by FOI-LiU, USTUTT, and DASSAV using HOM are
displayed. In Table 4 below we give the deviation for the different calculations.
The deviation obtained by FOI-LiU between the higher order and reference re-
sults is very similar indicating that the two solutions follow experimental OASPL
equally well. The slightly higher deviation obtained by USTUTT is due to the

Table 4. Computed deviation to experimental values

Partner Solution D δO (dB)
FOI-LiU Reference EADS grid, 2nd order 3.0× 10−3 2.480
FOI-LiU HOM, 3rd order 3.0× 10−3 2.077
USTUTT Flexi, 5th order 5.4× 10−3 -1.027
DASSAV Aether, Reference, 2nd order 3.1× 10−3 0.200
DASSAV Aether, 2nd order 3.0× 10−3 -0.074
DASSAV Aether, 3rd order 2.7× 10−3 -1.936
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fact that their shape deviates somewhat more from the shape of the experimen-
tal results although there is a very good experimental match upstream in the
cavity. In the case of DASSAV, both 2nd-order solutions present similar devia-
tions; the 3rd-order simulation produces however a slightly lower deviation, but
at the price of a larger shift (-2 dB), as previously mentioned.
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Fig. 10. Overall Sound Pressure Level (OASPL) using higher order methods (HO) by
FOI-LiU, USTUTT, and DASSAV on the cavity ceiling (Kulites k20 - k29)

Next is a summary of the computational resources required to obtain the
considered solutions. The reference calculation on the FOI grid has been left out.
It should be noted that the simulation time is different for the calculations. The
higher order simulation by FOI-LiU is obviously more than an order of magnitude
more expensive than the FOI-LiU reference calculation. This is mainly due to
small time steps and the lack of convergence acceleration in ESSENSE. The
higher order calculation by USTUTT is more efficient and comparable to the
reference solution by FOI. It is to be noted, that while the effective NDOF

is 7.7 × 106, the overall NDOF including overintegration is about three times
higher. DASSAV 3rd-order P2 simulations last about 2.5 times as long as a
standard 2nd-order P1 simulation (6 days compared to 2.5 days on 1024 cores
of an IBM BlueGene/P). Higher-order computations use 10 integration points
per tetrahedron, whereas a single point is used for 2nd-order runs. It is quite
possible that on this configuration where all elements have uncurved edges, a
four-point integration rule would suffice, further reducing the cost of the higher-
order simulation.

3 VALIANT Flap Case

The VALIANT flap testcase represents a wing+flap configuration in approach
condition. This case is a generic geometry defined in the FP7 VALIANT project.
The flap is placed under the wing with a bit of overlap. This configuration was
installed in the anechoic wind tunnel of Ecole Central de Lyon and both flow and
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Table 5. Computational information about the cavity test case

Partner/ Simulation NDOF NCPU Twall Tbench Twall ×NCPU/
case time (Tbench ×NDOF )

FOI-LIU HO 0.080 s 2.6× 106 300 7.70× 106s 16.0 s 56.00
FOI-LIU Ref. 0.200 s 6.2× 106 64 2.44× 106s 16.0 s 1.60
USTUTT HO 0.110 s 7.7× 106 4096 1.75× 105s 15.1 s 6.10
DASSAV Ref. 0.225 s 3.5× 106 1024 2.12× 105s 131.5 s 0.47
DASSAV HO 0.225 s 3.5× 106 1024 5.48× 105s 131.5 s 1.20

acoustic measurements were performed in the framework of VALIANT (VAL-
idation and Improvement of Airframe Noise prediction Tools) FP-7 European
project [13]. The main characteristics defining the flow are the free-stream ve-
locity Uinf = 51m/s , which corresponds to approach condition with Ma = 0.15.
The resulting Reynolds number, Re = 1.36× 106, is approximately one order of
magnitude less than the Reynolds numbers corresponds to a real aircraft wing
during approach. Roughness elements (sandpaper ISO P150) were placed on both
sides of the wing in order to trigger an established incoming turbulent bound-
ary layer. The experimental database obtained by ECL includes the following
data: time-dependent microphone signals, time-dependent wall pressure signals,
time-dependent series of the velocities acquired from hot wire measurements [14].

3.1 Computational Domains and Grids

As a first step towards the characterization of the noise propagation from this
generic wing flap configuration, the computational domain of the LES simulation
was extended for the LEE simulation. Acoustic measurement data are available
2 meters above the wing trailing edge, so this point was considered in the LEE
domain to be resolved. The boundary of the computational domain, therefore,
was truncated a bit further above this measurement point in order to limit
the reflections arising due to this artificial domain restriction. The computa-
tional domain can be seen in Figure 11. This 2D mesh consists of 36k triangular
elements, heavily clustered in the noise production region in order to have a
good representation of the reconstructed source terms transferred from the LES
simulation.

The maximum mesh size was determined based on the maximum frequency
resolution we intended to achieve. Previous investigations showed that with P1
representation, the LDA scheme needs 10 points per wavelength. The maximum
frequency resolution we can have from the LES source data can be computed as:

f = 1/ΔtLES = 1/10−6 = 103kHz (4)

Due to the space-time discretization, we need ten points in time, as well,
to resolve the waves in time, giving the maximum assessable frequency of
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(a) Computational domain of VKI (b) Measurement setup

Fig. 11. Quasi-2D wing and flap configuration

fmax = 102kHz. This frequency is still far above the maximum frequency of
the measurements ( 20kHz), so we decided to limit the maximum frequency
resolution to this value, giving the maximum cell size:

Δx =
λ

100
= 0.1

c

f
= 2mm (5)

TsAGI performed calculations of this test as well in 2D (flat) formulation. 2D
basis functions were used in DG method. Initially, RANS calculation has been
performed on appropriate grid with detailed resolution of turbulent boundary
layer (for uniform inflow). The converged flowfield, obtained in RANS calcula-
tion, have been used as basic (aerodynamic) flowfield.

Fig. 12. Geometry of computational domain and position of control points for test
A14 by TsAGI

Acoustic calculations have been performed using DG method K = 3 for four
quasi-uniform grids with quasi-quadratic cells, with 4, 6, 9 and 14 cells per the
shortest wavelength in the incoming sound. TsAGI used a smaller domain in
order to be able to perform parametric studies and grid convergence.
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3.2 Numerical Methods and Baseline Solutions

The von Karman Institute used their second- and third-order Residual Distribu-
tion solver to deal with this noise propagation problem. The Residual Distribu-
tion or Fluctuation Splitting Method is somewhere between the Finite Element
and Finite Volume Methods. The idea was introduced in 1982 by P.L. Roe and
later extended for the solution of conservation laws on unstructured meshes. In
the last decades several multidimensional upwind schemes have been developed,
and proved to be accurate and robust. A new strategy in the computation of
the residuals has been designed involving contour integrations and leading to
conservative discretization even for problems where it is not possible to linearize
the system of equations. Thanks to this improvement the application of RDS to
high order discretisation was possible. In our case, since we want to distribute
to the downwind nodes it is necessary to split the high order elements in linear
elements where we know how to use a multidimensional upwind distribution.
Several methods have been developed to solve unsteady problems. In this work
we used the space-time method, where the time is considered as a third di-
mension yielding a space-time element and was first presented by Ricchiuto et
al. [15]

In the present work we consider the Linearized Euler Equations (LEE) in
two spatial directions, as derived by Bailly et al. for inhomogeneous mean flow,
written in conservative variables. At the boundaries non-reflective boundary con-
ditions are used. This boundary treatment relies on the characteristic theory. It
is well known that the number of physical conditions which has to be prescribed
at the boundary depends on the sign of the eigenvalues of the characteristic
system. Only the information coming from outside has to be imposed, all the
others are provided naturally by the inner domain. In case of acoustic problems
the first difficulty arising is to know what kind of conditions should be fixed. In
the present Linearized Euler Equations, the solution variables are the fluctua-
tions of density, velocity and pressure. At an inflow boundary condition three
of them should be given, for an outflow just one. But none of the conservative
variables are known, in general. It is much easier acting on the waves themselves.

In order to perform noise propagation simulation with the help of Linearized
Euler Equations, the background flow (time-averaged) needs to be provided to
the solver. VKI was using the time-averaged mean flow provided by the LES, ex-
trapolated to the regions, what the LES domain do not cover. The non-uniform
mean flow expected to effect the noise propagation, therefore its correct repre-
sentation is an important step of the current procedure. The noise production
calculation of the generic wing and flap configuration was set up and validated
within the FP7 VALIANT project. This simulation was continued to collect
equivalent noise sources for the LEE solver used for noise propagation simula-
tion. The noise sources produced by the open source OpenFOAM solver were
collected for a time span of T = 0.04s and saved to be able to transfer them
to our in house code COOLFluiD. In order to reduce the data amount of these
volumetric sources, only the mid-span averaged data was extracted in every
time-step.
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Based on the incompressible flow quantities, equivalent acoustic sources were
reconstructed as:

S =

⎡

⎢⎣
0

Si − S̄i

0

⎤

⎥⎦ (6)

where Si = −
∂ρ0u

′
iu

′
j

∂xj
. These source terms were directly used as volumetric source

terms, but the source domain was truncated to a disk of 10cm around the wing
trailing edge, where the dominant source terms are located, in order to reduce
the numerical noise due to interpolation of the sources from the fine LES mesh
to the coarser LEE mesh.

In the previously discussed manner the reconstructed sources from the LES
simulation were introduced in the LEE simulation. A total simulation time of
T = 0.04s was covered by the propagation simulation limiting the statistically
converged low frequency resolution to f = 6kHz. The effect of the non uniform
flow is clearly visible in Figure 13, where the instantaneous divergence of velocity
is plotted.

Fig. 13. Contours of divergence of velocity indicating the noise propagation pattern

In the present simulation, only spanwise averaged data were stored and a 2D
propagation simulation was performed. According to Manoha et al. [16] only the
zeroth spanwise wavenumber of the spanwise, Fourier-transformed source needs
to be considered. Based on this observation Ewert et al. [17] used a reduced 2D
source in a pure 2D acoustic simulation to correct the sound pressure levels from
2D to 3D. In the present case the method suggested by Ewert et al. is followed.

The integral length scale of the acoustic source in the spanwise direction is
small compared to the acoustic wavelength for low Mach numbers, so the source
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is compact in this direction. Therefore, an acoustic simulation with a spanwise
extension Lz and periodic boundary conditions is equivalent to a 2D acoustic
simulation with a spanwise averaged acoustic source [17]:

ŝx =
1

Lz

∫ Lz/2

−Lz/2

sxdz (7)

If these averaged source terms are used in a 2D acoustic simulation, the sound-
pressure correction form 2D to 3D becomes:

p̂(0, R, θ, ω) � p̂(R, θ, ω)
1− ı

2

√
kΔ2

πR
(8)

where p̂(0, R, θ, ω) denotes the 3D, p̂(R, θ, ω) the 2D , frequency-related Fourier
transform of the sound pressure, ω is the angular frequency and k = ω/c0 is
the wavenumber. This correction affects the final SPL distribution, but has no
impact on the θ-dependent directivity. The SPL correction based on Equation 8
is:

SPL3D,Lz = SPL2D + 10log

(
fΔ2

Rc0

)
(9)

So, the 2D sound-pressure spectrum is shifted 3 dB/octave towards the higher
frequencies by the correction. The SPL3D,Lz is the sound radiated by the slice
of airfoil simulated by LES. For a finite spanwise extension Lspan an additional
correction is needed:

SPL3D,Lspan = SPL3D,Lz + 10log

(
Lspan

Δ

)
(10)

This correction is based on the assumption that all slices of Lz along the
wingspan are uncorrelated, whereas the spanwise extension is small compared
to the distance between the source and the listener (R).

There are several approaches for solving acoustic tasks. The approach, which
was considered by TsAGI, is known as “perturbation method” [18]. It requires
relatively not much computational costs and consists of three general steps.
At the first step a basic aerodynamic flowfield is calculated independently using
Reynolds averaged Navier-Stokes equations. Then near acoustic field is simulated
directly as generation and propagation of small acoustic perturbations over the
aerodynamic field. This direct numerical simulation of sound is performed on
the basis of linearized Euler equations. And finally far acoustic field is estimated
using special methods (Kirchhoff or Ffowcs-Williams Hawkings methods), which
consider radiation of sound by control surface over practically uniform aerody-
namic field. Acoustic characteristics of the control surface are taken from the
calculation of near acoustic field. TsAGI work within IDIHOM project was con-
centrated on direct simulation of sound propagation in near acoustic field. Theo-
retically, it is possible to neglect the influence of viscosity on sound propagation
and to consider this process as adiabatic. To minimize essentially the quantity of
arithmetic operations, it was decided to calculate sound propagation on the basis
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of Isentropic Linearized Euler Equations (ILEE). This equation system may be
obtained from full linearized Euler equations, if we replace the last differential
equation (for energy) by isentropic relation p′ = c2aρ

′, where c is speed of sound
and index a corresponds to basic (aerodynamic) flow.

ILEE equation system may be represented in the following form:

∂U ′

∂t
+
∂F ′

i (U
′, Ua)

∂xi
= 0,

where

U ′ =
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⎟
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⎟
⎠

.

Here Cartesian coordinates x1 = x, x2 = y, x3 = z; velocity components of
basic (aerodynamic) flow u1a = ua, u2a = va, u3a = wa; velocity perturbations
u′1 = u′, u′2 = v′, u′3 = w′.

To construct DG method, the vector of primitive variablesQ′ = [ρ′;u′; v′;w′]
T

in each cell of computational grid is represented as a linear combination of local
polynomial basis functions ϕj(x):

Q′ =

Kf∑

j=1

qj(t)ϕj(x),

Polynomial basis functions with maximal degree K provide (theoretically) the
accuracy order K + 1 in space.

Coefficients of this expansion, qj(t), are the main unknown values in DG
method. Equation system for the determination of qj(t) may be represented as
follows:

Kf∑

j=1

⎛

⎝
∫

Ω

Γϕi(x)ϕj(x)dΩ

⎞

⎠ dqj
dt

+

∮

Σ

F ′
knkϕi(x)dΣ =

∫

Ω

F ′
k
∂ϕi

∂xk
dΩ, i = 1, . . . ,Kf .

Here Ω is volume of computational grid, Σ is its surface, n = [n1;n2;n3]
T is

unit outer normal vector to the surface element dΣ, Γ = ∂U ′/∂Q′. This set of
ordinary differential equations is solved using explicit four-stage Runge-Kutta
method that can be described by Butcher tableau

Fluxes at the cell faces F ′
k are calculated using Roe linearized solution of

Riemann problem about the decay of discontinuity between two flows adjoining
to current point of cell surface. Approximate Roe matrix is used; it coincides
with Jacobian of ILEE, computed using arithmetic averages of aerodynamic
flows from two sides of the cell face.

Numerical experiments with 1D propagation of sine wave show that DG
method with K = 3 allows to calculate propagation of sound waves on grids
with only 3 cells per wavelength.
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3.3 Assessment of High-Order Solutions

The final comparison with the measurements in the measurement location 2m
above the wing trailing edge can be seen in Figure 4. Both P1 and P2 results
are represented in this graph. The comparison shows a good agreement both for
P1 and P2 discretization. In our RDS code the P2 discretozation was not giving
significant improvement, but increased the simulation time. Thanks to the good
performance of the P1 element (10 point/wavelength) the P2 discretization do
not have a lot of room of improvement. Though, it must be stressed, that the
P2 discretization can catch the wave propagation speed a bit better, since it
introduces less dispersion error, than the P1 element.

Fig. 14. LEE simulation compared with experimental data

In the main series of calculations by TsAGI, stochastic perturbations were con-
tinuously introduced from the inflow boundary. Stochastic perturbations with
nearly uniform flat distribution (in 1/3rd octave presentation) within the fre-
quency range 100-12000 Hz were used. Instant field of pressure perturbations in
the time moment t = 0.00615s is shown in Figure 15. One may see that incoming
sound waves propagate (practically without damping) along the computational
domain. Their diffraction and reflection from the flap tip may be seen.
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Fig. 15. Instant field of pressure fluctuations in the case of stochastic perturbations at
the inflow

After that, an attempt has been made to estimate the convergence order using
the same procedure as in test with 1D propagation of a sine wave. Dependen-
cies were registered in six control points that are shown in Figure 12. RMS
value of pressure perturbations was determined. Using sequences of for 3 grids,
convergence order has been estimated. But this attempt has appeared to be
unsuccessful. In some points the convergence order was undetermined, in other
points it was far from the expected values, and in different points these values
were very different.

To understand this result, additional series of calculation have been per-
formed. Now the flat sine waves of maximal frequency (12000 Hz) were intro-
duced continuously through the left boundary. Maximal frequency was chosen
to have the maximal approximation errors and to avoid the influence of trunca-
tion errors on the results of Richardson extrapolation. Instant field of pressure
perturbations in the same time moment is shown in Figure 16. Attempt to es-
timate the convergence order has been performed again. And it appeared to be
unsuccessful, too. Analysis of Figure 6 allows to assume that the reason of the
unsuccess in the convergence order determination is the interference of the main
flat waves (propagating to the left) with the waves, reflected from the flap tip
and from the upper or lower boundaries of computational domain. Even if all

Fig. 16. Instant field of pressure fluctuations in the case of monochrome sinusoidal
perturbations at the inflow
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these waves have the same frequency, the behavior of signal in control points
depends not only upon the grid resolution but also upon the phase shift between
the interfering waves. It is important to note that in a test with 1D propagation
of the same sine wave on comparable grids the convergence order is determined
successfully; it appears to be close to the expected value −4.

4 Conclusion

For the cavity test case higher order accurate solutions over the cavity have been
provided by FOI-LIU, USTUTT, and DASSAV. The quality of the solutions is
good in terms of SPL and OASPL with similar quality as obtained by a reference
solution with about the same number of degrees of freedom. The flow physics
are well captured in both the reference and higher order accurate solutions. The
computational costs for the higher order results are somewhat higher than those
of the reference solution. Further calculations and comparisons on somewhat
coarser grids would be needed to judge if the higher order computations pay off
compared to a reference solution.

The baseline simulation of the VALIANT testcase showed the potential of hy-
brid LES/LEE method for noise propagation. The procedure starts with a high
fidelity Large-Eddy Simulation in the noise propagation region. After statisti-
cal convergence is reached, instantaneous volumetric/spanwise averaged noise
sources can be extracted. These sources then introduced to the Linearized Euler
Equation solver in order to simulate noise propagation for larger distances. With
a high fidelity computation this would be impossible due to the associated high
computational cost.

The bottleneck of the procedure is the data transfer between the two solvers.
This requires a huge amount of data to be written by the LES solver and read
by the LEE solver. Even in the case of the 3D LES to 2D LEE it meant several
Gb storage and file I/O. In order to overcome this limitation, it is recommended
that the two set of equations are solved simultaneously and the source terms are
transferred directly between the solvers.

It was shown that in case of our Residual Distribution solver, the P1 and
P2 discretization gave the same quality in terms of noise prediction. For this
study two meshes with approximately the same degree of freedom was generated.
Though, the P2 simulation took 6 times longer than the P1 (48 CPU hour /
0.001s simulation time for the P1). As a onclusion, the higher order method we
are using clearly has higher accuracy for academic cases, but is not justifiable
for industrial usage.

Explicit high-order Discontinuous Galerkin method (K=2-3) is implemented
for solution of unsteady Isentropic Linearized Euler equations for solution of
aeroacoustical tasks by TsAGI. Method with K=3 allows to calculate propaga-
tion of sound waves on grids with only 3 cells per wavelength. Grid convergence
order of the method is close to the expected value , if tasks without interference
of waves with different frequency and phase shift are considered. In task with
interference of waves, standard approach to determination of the convergence
order seems to be inapplicable.
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