

Embedded Systems Specifi cation
and Design Languages

Selected contributions from FDL’07

Lecture Notes in Electrical Engineering

Embedded Systems Specification and Design Languages
Villar, Eugenio (Ed.)
2008, Approx. 400 p., Hardcover
ISBN: 978-1-4020-8296-2, Vol. 10

Content Delivery Networks
Buyya, Rajkumar; Pathan, Mukaddim; Vakali, Athena (Eds.)
2008, Approx. 400 p., Hardcover
ISBN: 978-3-540-77886-8, Vol. 9

Unifying Perspectives in Computational and Robot Vision
Kragic, Danica; Kyrki, Ville (Eds.)
2008, 28 illus., Hardcover
ISBN: 978-0-387-75521-2, Vol. 8

Sensor and Ad-Hoc Networks
Makki, S.K.; Li, X.-Y.; Pissinou, N.; Makki, S.; Karimi, M.; Makki, K. (Eds.)
2008, Approx. 350 p. 20 illus., Hardcover
ISBN: 978-0-387-77319-3, Vol. 7

Trends in Intelligent Systems and Computer Engineering
Castillo, Oscar; Xu, Li; Ao, Sio-Iong (Eds.)
2008, Approx. 750 p., Hardcover
ISBN: 978-0-387-74934-1, Vol. 6

Advances in Industrial Engineering and Operations Research
Chan, Alan H.S.; Ao, Sio-Iong (Eds.)
2008, XXVIII, 500 p., Hardcover
ISBN: 978-0-387-74903-7, Vol. 5

Advances in Communication Systems and Electrical Engineering
Huang, Xu; Chen, Yuh-Shyan; Ao, Sio-Iong (Eds.)
2008, V, 615 p., Hardcover
ISBN: 978-0-387-74937-2, Vol. 4

Digital Noise Monitoring of Defect Origin
Aliev T.
2007, XIV, 223 p. 15 illus., Hardcover
ISBN: 978-0-387-71753-1, Vol. 2

Multi-Carrier Spread Spectrum 2007
Plass, S.; Dammann, A.; Kaiser, S.; Fazel, K. (Eds.)
2007, X, 106 p., Hardcover
ISBN: 978-1-4020-6128-8, Vol. 1

Eugenio Villar
Editor

Embedded Systems
Specifi cation and Design
Languages

Selected contributions from FDL’07

Editor
Prof. Eugenio Villar
University of Cantabria
Spain

ISBN 978-1-4020-8296-2 e-ISBN 978-1-4020-8297-9

Library of Congress Control Number: 2008921989

© 2008 Springer Science + Business Media, B.V.
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
 permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Series Editors
Sio-Iong Ao
IAENG Secretariat
37–39 Hung To Road
Unit 1, 1/F
Hong Kong
People’s Republic of China

Li Xu
Zhejiang University
College of Electrical Engineering
Department of Systems Science &

Engineering
Yu-Quan Campus
310027 Hangzhou
People’s Republic of China

Preface

FDL is the premier European forum to present research results, to exchange
 experiences, and to learn about new trends in the application of specification and
design languages as well as of associated design and modeling methods and tools
for complex, heterogeneous HW/SW embedded systems. Modeling and specification
concepts push the development of new methodologies for design and verification
to system level; thus providing the means for model driven design of complex
information processing systems in a variety of application domains. The aim of
FDL is to cover several related thematic areas and to give an opportunity to gain
up-to-date knowledge in this fast evolving, essential area in system design and
verification.

FDL’07 was the tenth of a series of successful events that were held in Lausanne,
Lyon, Tübingen, Marseille, Frankfurt am Main, Lille and Darmstad. FDL’07 was
held between September 18 and 20, 2007 at the ‘Casa de Convalescència’, the main
Congress facilities of the ‘Universitat Autònoma de Barcelona’ in the city center of
Barcelona, the capital city of Catalonia, Spain.

The high number of submissions to the conference this year allowed the Program
Committee to prepare a high quality conference program.

The book includes a selection of the most relevant contributions based on the
review made by the program committee members and the quality of the contents of
the presentation at the conference. The original content of each paper has been revised
and improved by the authors following the comments made by the reviewers.

FDL’07 was organized again around four thematic areas (TA) that cover
essential aspects of system-level design methods and tools. The book follows the
same structure:

Part I, C/C++ Based System Design, contains seven chapters covering a
comparison between Esterel and SystemC, modeling of asynchronous circuits,
TLM bus models, SystemC debugging, quality analysis of SystemC test
benches and SystemC simulation of a custom configurable architecture.

Part II, Analog, Mixed-Signal, and Heterogeneous System Design, includes
three chapters addressing heterogeneous, mixed-signal modeling, extensions to
VHDL-AMS for partial differential equations and modeling of configurable CMOS
transistors.

v

Part III, UML-Based System Specification and Design, presents six contributions
comparing AADL with MARTE, modeling real-time resources, proposing model trans-
formations to synchronous languages, mapping UML to SystemC, defining a SystemC
UML profile with dynamic features and generating SystemC from StateCharts.

Part IV, Formalisms for Property-Driven Design, is composed of three chapters
presenting methods for monitoring logical and temporal assertions, for transactor-
based formal verification and a case study in property-based synthesis.

The collection of contributions to the book provides an excellent overview of the
latest research contributions to the application of languages to the specification,
design and verification of complex Embedded Systems. The papers cover the most
important aspects in this essential area in Embedded Systems design.

I would like to take this opportunity to thank the member of the program com-
mittee who made a tremendous effort in revising and selecting the best papers
for the conference and the most outstanding among them for this book. Specially,
the four Topic Chairs, Frank Oppenheimer from OFFIS, responsible of C/C++
Based System Design, Sorin Huss from TU Darmstad, responsible of Analog,
Mixed-Signal, and Heterogeneous System Design, Pierre Boulet from Lille
University, responsible of UML-Based System Specification and Design and
Dominique Borrione from TIMA, responsible of Formalisms for Property-
Driven Design. I would like to thank also all the authors for the extra work made
in revising and improving their contributions to the book.

The objective of the book is to serve as a reference text for researchers and
designers interested in the extension and improvement of the application of design
and verification languages in the area of Embedded Systems.

Eugenio Villar
FDL’07 General Chair
University of Cantabria

vi Preface

Contents

Part I C/C++ Based System Design

1 How Different Are Esterel and SystemC . 3
Jens Brandt and Klaus Schneider

2 Timed Asynchronous Circuits Modeling and Validation
Using SystemC . 15
Cédric Koch-Hofer and Marc Renaudin

3 On Construction of Cycle Approximate Bus TLMs 31
Martin Radetzki and Rauf Salimi Khaligh

4 Combinatorial Dependencies in Transaction Level Models 45
Robert Guenzel, Wolfgang Klingauf, and James Aldis

5 An Integrated SystemC Debugging Environment 59
Frank Rogin, Christian Genz, Rolf Drechsler, and Steffen Rülke

6 Measuring the Quality of a SystemC Testbench
by Using Code Coverage Techniques . 73
Daniel Große, Hernan Peraza, Wolfgang Klingauf, and Rolf Drechsler

7 SystemC-Based Simulation of the MICAS Architecture 87
Dragos Truscan, Kim Sandström, Johan Lilius, and Ivan Porres

Part II Analog, Mixed-Signal, and Heterogeneous System Design

8 Heterogeneous Specifi cation with HetSC and SystemC-AMS:
Widening the Support of MoCs in SystemC . 107
F. Herrera, E. Villar, C. Grimm, M. Damm, and J. Haase

vii

 9 An Extension to VHDL-AMS for AMS Systems with Partial
Differential Equations . 123
Leran Wang, Chenxu Zhao, and Tom J. Kazmierski

10 Mixed-Level Modeling Using Confi gurable MOS
Transistor Models . 137
Jürgen Weber, Andreas Lemke, Andreas Lehmler, Mario Anton,
and Sorin A. Huss

Part III UML-Based System Specifi cation and Design

11 Modeling AADL Data Communications with UML MARTE 155
Charles André, Frédéric Mallet, and Robert de Simone

12 Software Real-Time Resource Modeling . 169
Frédéric Thomas, Sébastien Gérard, Jérôme Delatour,
and François Terrier

13 Model Transformations from a Data Parallel Formalism
Towards Synchronous Languages . 183
Huafeng Yu, Abdoulaye Gamatié, Eric Rutten, and Jean-Luc Dekeyser

14 UML and SystemC – A Comparison and Mapping Rules
for Automatic Code Generation . 199
Per Andersson and Martin Höst

15 An Enhanced SystemC UML Profi le for Modeling
at Transaction-Level . 211
S. Bocchio, E. Riccobene, A. Rosti, and P. Scandurra

16 SC2 StateCharts to SystemC: Automatic Executable
Models Generation . 227
Marcello Mura and Marco Paolieri

Part IV Formalisms for Property-Driven Design

17 Asynchronous On-Line Monitoring of Logical
and Temporal Assertions . 243
K. Morin-Allory, L. Fesquet, B. Roustan, and D. Borrione

viii Contents

18 Transactor-Based Formal Verifi cation of Real-Time
Embedded Systems . 255
D. Karlsson, P. Eles, and Z. Peng

19 A Case-Study in Property-Based Synthesis: Generating
a Cache Controller from a Property-Set . 271
Martin Schickel, Martin Oberkönig, Martin Schweikert,
and Hans Eveking

Contents ix

Part I
C/C++ Based System Design

Chapter 1
How Different Are Esterel and SystemC

Jens Brandt1 and Klaus Schneider2

Abstract In this paper, we compare the underlying models of computation of the
system description languages SystemC and Esterel. Although these languages have
a rather different origin, we show that the execution/simulation of programs written
in these languages consists of many corresponding computation steps. As a conse-
quence, we identify different classes of Esterel programs that can be easily translated
to SystemC processes and vice versa. Moreover, we identify concepts like preemp-
tion in Esterel that are difficult to implement in a structured way in SystemC.

Keywords Synchronous Languages, SystemC, Models of Computation

1.1 Introduction

System description languages like SystemC [11, 13] and synchronous languages
[1, 8] like Esterel [2, 4, 5, 12] are becoming more and more popular for the effi-
cient development of modern hardware-software systems. The common goal of
these languages is to establish a model-based design flow, where different design
tasks like simulation, verification and code generation (for both hardware and
software) can be performed on the basis of a single system description.

While the overall goal of SystemC and Esterel is therefore the same, there are
many differences between these languages. In particular, these languages have
 different underlying models of computation.

As a synchronous language, the execution of an Esterel program is divided into
macro steps that correspond with single reactions that are triggered by a common
clock of a hardware circuit. Each macro step is divided into finitely many micro-
steps that are all executed in zero time and within the same variable environment.

E. Villar (ed.) Embedded Systems Specification and Design Languages, 3
© Springer Science + Business Media B.V. 2008

1Embedded Systems Group, University of Kaiserslautern, Email: brandt@informatik.uni-kl.de

2Embedded Systems Group, University of Kaiserslautern,
Email: klaus.schneider@informatik.uni-kl.de

4 J. Brandt, K. Schneider

Hence, the execution of Esterel programs are driven in a cycle-based fashion. Due
to the instantaneous reaction of microsteps, causality problems may occur if actions
modify variables whose values are responsible for triggering the action. In order to
analyze the causality of programs, a fixpoint iteration may be performed to com-
pute the reaction of a macrostep. It is well-known that this fixpoint iteration is the
ternary simulation [6] of the corresponding hardware circuits. However, it has to be
remarked that Esterel compilers usually perform this fixpoint analysis at compile
time, so that (1) more efficient code is generated and (2) it is known at compile time
that the iteration finally terminates with known values.

SystemC follows the discrete-event semantics that are well-known from hard-
ware description languages like VHDL [9] and Verilog [10]. A SystemC program
consists of a set of processes that run in parallel. SystemC distinguishes thereby
between three classes of processes, namely ‘methods’, asynchronous processes and
synchronous processes. Methods are special cases of asynchronous processes that
do not have wait statements. Asynchronous processes are triggered by events, i.e.,
by changes of the variables on which the process depends, and they are executed as
long as variable changes are seen. For this reason, the execution of the asynchro-
nous processes is also a fixpoint computation that terminates as soon as a fixpoint
of the variables’ values is found. After this, the synchronous processes are executed
once to complete the simulation cycle.

As can already be seen from the above coarse description, the execution of syn-
chronous languages like Esterel and SystemC have more in common as may have
been expected if only their main paradigms were considered. Clearly, there are also
many differences between these languages:

● The semantics of Esterel is given in form of a very concise structural operational
semantics that can be directly used as specification of a simulator. In contrast,
the semantics of SystemC is only given in terms of natural language (except for
some attempts like [14, 15, 22]).

● In Esterel, most statements are reduced to a small core language for which hard-
ware and software generation is available. No significant blow-up is obtained by
this reduction (this is due to the so-called write-things-once-principle). In con-
trast, SystemC is an extension of C++ by constructs required to describe hard-
ware systems like built-in concurrency, wait/interrupt mechanisms, and special
data types like bitvectors. As a consequence, hardware synthesis is only availa-
ble for a rather small subset of SystemC.

● Esterel offers comfortable preemption statements for aborting or suspending
other statements. A first attempt towards preemption statements will be obtained
by SystemC’s watching statement, that does however not yet reach the power of
Esterel’s abortions.

● Esterel has special variables that model events. These variables take a default
value unless they are assigned another value in the current macrostep.

● Esterel has a fully orthogonal set of statements. In particular, concurrency is an
ordinary statement that can be combined with all other statements, while in
SystemC programs consist of a set of processes that implement sequential code.

1 How Different Are Esterel and SystemC 5

● SystemC offers different kinds of abstraction levels like ‘untimed functional’,
‘timed functional’, ‘bus cycle-accurate’, and ‘cycle-accurate’ modeling to support
refinements from transaction levels down to register-transfer level descriptions.

Hence, there are also many differences between these languages. Some of theses
difference may, however, only exist in the current versions of these languages and
may disappear in later versions.

In this paper, we outline the differences and similarities of synchronous
 languages like Esterel and SystemC. In particular, we define classes of systems that
can be easily described in both languages in a way that allows one to structurally
translate these descriptions into each other. This is the result of the similarities that
we have identified between the two languages. On the other hand, the differences
we will outline in the following may be interesting for those who work on later
versions of both languages. With this paper, we therefore hope to stimulate the
 discussion between the communities of SystemC and synchronous languages.

The rest of the paper is organized as follows: In the next section, we describe the
languages SystemC and Esterel in more detail. In Section 1.3, we compare the exe-
cution of Esterel and SystemC programs in more detail and show that there are
some correspondences. These correspondences give rise to define simple classes of
programs that can be easily translated between both languages. In addition to this,
we list differences between the two languages that lead to problems for the transla-
tion between the languages in Section 1.4. Finally, we conclude with a short
 summary in Section 1.5.

1.2 Esterel and SystemC

In this section, we give a rough overview of the main concepts and paradigms of
Esterel and SystemC. Section 1.3 outlines then some similarities between the lan-
guages, while Section 1.4 outlines some major differences.

1.2.1 Esterel

Esterel [2, 4, 5, 12] is a synchronous language [1, 8] that can be used both for hard-
ware and software synthesis. As usual for synchronous languages, the computation
of an Esterel program is divided into single reactions. Within each reaction, new
inputs are read and new outputs are generated for these inputs with respect to the
current state of the program. Moreover, the reaction determines the next state of the
program that is used in the next reaction step.

The state of the program is determined by the current values of the variables and the
current set of active control flow locations of the program. Control flow locations are
statements like the pause statement where the control flow may rest for one unit of time.

6 J. Brandt, K. Schneider

Since Esterel statements include the parallel statement S
1

�� S
2
, it may be the case that

the control flow may rest at several control points at the same point of time.
Besides the usual statements like assignments, conditionals, sequences and

loops, Esterel provides also many statements to implement complex concurrent
behaviours. In particular, there are four kinds of abortion statements that run some
Esterel code while observing an abortion condition in each macro step. If the condi-
tion holds, then the code is aborted and the abortion statement terminates. Other
preemptive statement are suspension statements that suspend the execution of an
Esterel statement if a given condition holds in a macro step.

It is very important that variables do not change during the macro step, i.e., all
microsteps are viewed to be executed in zero time. Therefore, all microsteps are
executed at the same point of time with the same variable environment. As a
 consequence, the values of the variables are uniquely defined in each macro step.

Due to the instantaneous reaction, synchronous programs may suffer from
 causality conflicts [3, 18, 19]. These causality conflicts occur if an assignment
modifies the value of a variable that is responsible for the execution of the assign-
ment. Compilers check the causality of a program at compile time with algorithms
that are essentially the same as those used for checking the speed independence of
asynchronous circuits via ternary simulation [6]. These algorithms essentially
 consist of a fixpoint computation that starts with unknown values for the output
variables, and successively replaces these unknown values by known ones. While
this analysis is usually done at compile time, we consider this fixpoint iteration in
the following as being part of the execution that is performed within a macro step.
This is done to outline similarities to the execution of SystemC programs.

Several generations of compilation techniques [7, 20, 24] have been developed for
Esterel that can be used to generate hardware circuits at the gate level as well as software
in sequential programming languages from the same Esterel program. Moreover,
some of these compilation techniques have already been formally verified [16, 17].

1.2.2 SystemC

SystemC is a language used for the simulation of complex hardware software sys-
tems. SystemC simulations may run up to 1,000 times faster than corresponding
descriptions given in hardware description languages like VHDL and Verilog due
to the higher level of abstraction that is used in SystemC. SystemC supports several
levels of abstractions, which allows one to describe completely untimed systems
down to cycle-accurate descriptions of hardware circuits at the gate level.

SystemC is not a self-contained language; instead, it is a class library for the well-
known C++ programming language [23]. SystemC extends C++ by typical data types
used for hardware circuits like bitvectors and arithmetic on binary numbers with a
specified bit-width. Moreover, SystemC offers concurrency in a similar way as hard-
ware description languages, i.e., SystemC programs consist of a set of concurrent
processes. To this end, SystemC features three different kinds of process types:

1 How Different Are Esterel and SystemC 7

● Methods are triggered by signal events. Methods are entirely executed in a single
simulation cycle and correspond to combinatorial circuits, i.e., their execution
does not take time.

● Asynchronous processes are also triggered by signal events, but they may not be
entirely executed within one simulation cycle. Instead, the control may stop at
wait statements and may rest there until it is triggered by a new event.

● Synchronous processes are triggered by clocks. Like asynchronous processes,
synchronous processes may not be entirely executed within one simulation
cycle, and the control may stop at wait statements of the process. In contrast to
asynchronous processes, the execution of synchronous processes is only trig-
gered by the next clock event.

Although SystemC shares with VHDL the discrete-event based semantics, it does not
have the possibility to assign signal assignments with delay. Hence, progress of time is
only driven by clocks. Between these simulation steps, the output signal updates that
are due to assignments of synchronous processes are not committed immediately.
Instead, they are deferred to the beginning of the next simulation step. In contrast to this,
local variables can always be modified, and the effect becomes visible without delay.

1.3 Similarities Between SystemC and Esterel

From a general point of view, SystemC and synchronous languages are based on
different models of computation: While SystemC has a discrete-event based seman-
tics, synchronous languages rely on a global clock triggering the overall execution,
i.e., a cycle-based semantics. However, a closer look to the features of each lan-
guage reveals that there are similarities that allow us to define a common core of
both languages. In particular, the integration of synchronous processes in SystemC
provides some hooks to establish links between both worlds.

First of all, consider when variables change. In Esterel, there are immediate and
delayed assignments that change the value of a variable immediately or only at the
next macrostep. Similarly, the asynchronous processes of SystemC immediately
update variable values, while the assignments of synchronous processes are com-
mitted only before the next simulation cycle.

However, synchronous languages follow the paradigm of perfect synchrony, i.e.
all variable assignments are made simultaneously in a macrostep. This has the con-
sequence that all variables can only have one value per clock cycle.

The perfect synchrony also has another consequence. Programs may not be
 executed in the order given by the programmer. Data dependencies of the program
may require to execute the statements in a completely different order than specified
by the programmer. Thus, the simulator does not simply execute the code of a
 synchronous program once, but it reiterates the execution and deduces from
iteration to iteration the value of more signals until no further values can be
deduced. As an example, consider a sequence in which the following operations are

8 J. Brandt, K. Schneider

 performed: assign a a value depending on b and c, then assign b a value depending
on c and finally assign c some constant value. Without reordering (which is gener-
ally not applicable), the simulator needs three iterations to compute all outputs.

Figure 1.1 compares the execution of a SystemC and an Esterel program. There
are apparent similarities in the execution of both types of programs: Both of them
start with the determination of the time of the next step. In SystemC, this is deter-
mined by the next changing clock signal, whereas the logical time of Esterel just
requires to wait for the next clock tick. Then, both simulators enter an iteration.
In SystemC, the methods and asynchronous processes are executed as long as some
signals change. In Esterel, there is a similar condition. The outputs are computed in
a fixpoint operation that incrementally computes all signals of the current step.
Subsequently, actions with immediate effects are executed, which are followed by
the updates caused by delayed actions. Both in SystemC and Esterel, these updates
stem from the previous clock cycle. If the iterative part of a step is finished, the
SystemC simulator executes the synchronous processes that have been scheduled in
the previous step. Similarly, the Esterel compiler executes the code at the currently
active control flow locations with the determined signal values. Both programs now
schedule processes and produce delayed actions for the next clock cycle.

This comparison shows that Esterel and the synchronous part of SystemC basi-
cally follow the same overall execution scheme. However, as already mentioned
above, the execution of the individual processes is generally different. SystemC
processes are sequential and thus, they are executed as specified by the program-
mer, while Esterel is inherently parallel, and its execution follows the data depend-
encies. Hence, a synchronous program cannot be directly translated to SystemC,
since causility problems must be considered.

function SystemCStep()
 // determine next changing clock signal

do
 // execute activated sc_methods and sc_threads
 // update outputs of sc_methods and sc_threads
 // update outputs of previous sc_threads

while (signals change);
 // execute scheduled sc_threads

function EsterelStep()
 // proceed to next macrostep

do
 // execution: determining current signals
 // update immediate outputs;
 // update delayed outputs of previous step

while (fixpoint not reached);
 // execution: prepare next macrostep

Fig. 1.1 Comparing the execution of SystemC and Esterel programs

1 How Different Are Esterel and SystemC 9

Nevertheless, for most programs that appear in real-world applications, the
 problems are not as difficult as outlined before. With restricting to a subclass of
synchronous programs that covers most important applications, a direct structural
mapping is possible. Basically, the following classes can be distinguished.

● Programs that contain only delayed action: No problems occur if programs
that solely contain delayed actions are translated. For this class of programs,
the iterative part is almost redundant: Only the outputs from the previous
step must be committed once. The fixpoint iteration can be completely omit-
ted, since no actions manipulate them in the course of the current step and
thus, they are all known in advance. The actual execution of the program
code is done after the loop, which is equivalent to SystemC synchronous
processes.

● Programs requiring only one fixpoint iteration: In principle, the condition for the
input set of programs does not have to be as strict as described above: The only
thing that must be guaranteed is that a single iteration of is enough to determine
the output values. In this case, the execution scheme is again analogous and a
directly translated program shows the same behavior. Hence, programs may
contain immediate actions which must be however set before their usage in the
step. In particular, the individual threads of a program have to be executed in the
right order that respects inter-thread data dependencies.

● All other programs: The set of programs for a translation does not need to
be restricted at all. The causality analysis of synchronous programs can be
 simulated in SystemC with the help of asynchronous processes. Each program
fragment (i.e. either equations or the result of the compilation method presented
in the next section) is wrapped in an asynchronous process that contains all used
variables in its sensitivity list. Like this, its execution is triggered each time a
value changes. Note that Esterel program that are not causally correct, may
result in SystemC programs that have a nonterminating simulation cycle:
Asynchronous processes may infinitely often trigger each other and thus,
 simulate an oscillating wire in the circuit design they represent.

1.4 Differences Between SystemC and Esterel

The previous section showed that synchronous processes in SystemC and Esterel
programs share a common core, which can comprehend many practical systems.
While most elements of SystemC can be mapped more or less directly to Esterel,
some problems arise for the other way around due to the rich set of control flow
statements Esterel provides.

First, problems occur due to the Esterel’s orthogonal use of parallelism. Since
parallel and sequential code can be arbitrarily mixed in Esterel but not in SystemC,
threads in synchronous programs must be reorganized. Second, there are many
preemption constructs in Esterel, which are all based on some primitive abortion

10 J. Brandt, K. Schneider

and suspension statements. As SystemC does not provide preemption, this part
must be also removed before a translation to SystemC code.

Recently, we developed a new compilation scheme for our Esterel-variant
Quartz, which compiles programs to an intermediate code, which represents a small
synchronous programming languages without complicated control flow statements
[20, 21]. The basic building block of this format is a job. Such a job J = (x,S

x
) is a

pair, where x is a label and S
x
 a code fragment. These jobs resemble synchronous

processes in SystemC. The overall idea of compilation is as follows: In a first step,
for each control flow location � of the program, a job (�,S

�
) is computed that has to

be executed if the control flow resumes the execution from location �.
Definition 1. [Job Code Statements] The following list contains the job code
statements. S, S

1
, and S

2
 are also job code statements, � is a location variable, x is

an event variable, y is a state variable, σ is a Boolean expression, and λ is a lock
variable:

● nothing (empty statement)
● y = τ and next(y) = τ (assignments)
● init(x) (initialize local variable)
● schedule(�) (resumption at next reaction)
● reset(λ) (reset a barrier variable)
● fork(λ) (immediately fork job λ)
● barrier(λ,c) (try to pass barrier λ)
● if(σ) S

1
else S

2
 (conditional)

● S
1
;S

2
 (sequence)

The atomic statements nothing, y = τ, and next(y) = τ have the same meaning as
in ordinary synchronous programs. The meaning of conditionals and sequences
is also the same. The statement init(x) replaces a local variable declaration. The
schedule(�) statement inserts the job corresponding to control flow location � to
the schedule of the next step. The statements reset(λ), fork(λ), and barrier(λ, c)
are used to implement concurrency based on barrier synchronization. The state-
ment barrier(λ,c) first increments the integer variable λ and then compares it
with the constant c. If λ ≥ c holds, it immediately terminates, so that a further
statement S can be executed in a sequence barrier(λ,c);S. If λ < c holds, the execution
fails, so that the code behind the barrier is not yet executed. Executing reset(λ)
simply resets λ = 0. The statement fork(λ) immediately executes the job �λ
that is associated with λ.

As explained in detail in [20], the compilation of preemption statements first
computes the normal execution that is performed when no abortion takes place.
Then, as a post-processing, the potential preemption behavior is added to all jobs.
To this end, each location ℓ inside the abort statement’s body the corresponding
job S

�
 is protected by the abortion and suspension guards so that the statements are

not executed if a preemption condition hols.
Figure 1.2 contains a small example that illustrates how Quartz code can be

translated to SystemC. The lower left part of the figure lists the job code of the
module and the right hand-side shows how it can be used for the translation to

1 How Different Are Esterel and SystemC 11

SystemC. The fine-grained parallelism used by the threads of �
a
 and �

b
 is mapped

to coarse-grained parallelism of SystemC.
Figure 1.3 shows another example, which extends the previous one. It illustrates

how preemption statements are removed by the compilation into JobCode. The
translation to SystemC is not affected by this part, as only additional conditional
statement are inserted, which do not pose significant problems.

Obviously, the various kinds of preemption statements in Esterel are powerful
and convenient components used to program complex concurrent behaviors. The
translation as performed by the Job code compilation is a solution, but it would be
better if SystemC could benefit from the same programming possibilities as imper-
ative synchronous languages. While the watching statement provides rudimentary
abortion functionality, a complete support of all abortion and suspension variants
would be desirable.

Moreover, fine-grained parallelism would be a second important extension
of SystemC, from which a translation of imperative synchronous programs
would benefit.

module Wait(event a, b, r, &o)
 loop{

�a : await(a); || �b : await(b);
 emit next(o);

�r : await(r);
 }

�0 : reset(λ1);
 schedule(�a);
 schedule(�b);
�a : if(¬a) schedule(�a) else fork(λ1);
�b : if(¬b) schedule(�b) else fork(λ1);
�r : if(r){
 reset(λ1);
 schedule(�a);
 schedule(�b);
 } else
 schedule(�r);
λ1 : barrier(λ1, 2);
 emit next(o);
 schedule(�r);

void Wait ::�0(){
 r.write(false);�a.write(true);�b.write(true);
}
void Wait ::�a(){
 while(true){
 wait_until(�a.delayed());
 wait_until(a.delayed());

�a.write(false);
 }}
void Wait ::�b(){
 while(true){
 wait_until(�b.delayed());
 wait_until(b.delayed());

�b.write(false);
 }}

void Wait ::�r(){
 wait_until(r.delayed());

�a.write(true);�b.write(true);
}
void Wait ::λ1(){
 wait_until(!�a.delayed()&&!�b.delayed());

r.write(true);
 wait();

r.write(false);
 �r();
}

Fig. 1.2 Module Wait in Quartz, Job Code (left) and SystemC (right)

12 J. Brandt, K. Schneider

1.5 Summary

In this paper, we identified similarities of the execution of SystemC and Esterel
programs. Despite their different paradigms, we identified a class of programs that
can be easily translated from one language to the other. Furthermore, we investi-
gated language features that cause problems in a transformation process: In particu-
lar, preemption and fine-grained parallelism as in Esterel programs were identified
as major differences, which might be interesting extensions of SystemC.

References

1. A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The syn-
chronous languages twelve years later. Proceedings of the IEEE, 91(1):64–83, 2003.

2. G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language
and Interaction: Essays in Honour of Robin Milner. MIT Press, Cambridge, USA 1998.

3. G. Berry. The constructive semantics of pure Esterel. http://www-sop.inria.fr/esterel.org/, July 1999.
4. G. Berry and L. Cosserat. The synchronous programming language Esterel and its mathematical

semantics. In S.D. Brookes, A.W. Roscoe, and G. Winskel, editors, Seminar on Concurrency,
volume 197 of LNCS, pages 389–448, Springer Pittsburgh, PA 1984.

module ABRO(event a,b,r,&o)
 loop{

 abort{
�a : await(a); || �b : await(b);

 emit next(o);
 } when(r);

�r : await(r);
 }

�0 : reset(λ1)
 schedule(�a);
 schedule(�b);
�r : if(¬r){
 reset(λ1);
 schedule(�a);
 schedule(�b);
 } else
 schedule(�r);
λ1 : barrier(λ1,2);
 emit next(o);
 schedule(�r);
�a : if(r){
 reset(�1);
 schedule(�a);
 schedule(�b);
 } else
 if(¬a) schedule(�a) else fork(�1);
�b : if(r){
 reset(�1);
 schedule(�a);
 schedule(�b);
 } else
 if(¬b) schedule(�b) else fork(�1);

Fig. 1.3 Module ABRO in Quartz and Job Code

1 How Different Are Esterel and SystemC 13

 5. G. Berry and R. de Simone. The Esterel language. Proceedings of the IEEE, 79:1293–1304,
1991.

 6. J.A. Brzozowski and C.-J.H. Seger. Asynchronous Circuits. Springer, New York 1995.
 7. S. Edwards. Compiling concurrent languages for sequential processors. ACM Transactions on

Design Automation of Electronic Systems (TODAES), 8(2):141–187, 2003.
 8. N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Dordrecht, 1993.
 9. IEEE Computer Society. IEEE Standard VHDL Language Reference Manual. New York,

2000. IEEE Std. 1076–2000.
10. IEEE Computer Society. IEEE Standard Hardware Description Language Based on the

Verilog Hardware Description Language. New York, 2001. IEEE Std. 1394–2001.
11. IEEE Computer Society. IEEE Standard SystemC Language Reference Manual. New York,

USA, December 2005. IEEE Std. 1666–2005.
12. IEEE Computer Society. IEEE Standard Esterel Language Reference Manual. New York,

USA, to appear 2007. IEEE Std. 1778.
13. Open SystemC Initiative. SystemC Version 2.1 User’s Guide, 2005.
14. W. Müller, J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, and W. Rosenstiel. The simulation

semantics of SystemC. In Design, Automation and Test in Europe (DATE), pages 64–70, IEEE
Computer Society Munich, Germany, 2001.

15. W. Müller, J. Ruf, and W. Rosenstiel. An ASM based SystemC simulation semantics. In W.
Müller, J. Ruf, and W. Rosenstiel, editors, SystemC – Methodologies and Applications, pages
97–126, Kluwer Dordrecht, 2003.

16. K. Schneider. Proving the equivalence of microstep and macrostep semantics. In V. Carreño,
C. Muñoz, and S. Tahar, editors, Theorem Proving in Higher Order Logic (TPHOL), volume
2410 of LNCS, pages 314–331, Springer Hampton, VA, 2002.

17. K. Schneider, J. Brandt, and T. Schuele. A verified compiler for synchronous programs with
local declarations. Electronic Notes in Theoretical Computer Science (ENTCS), 153(4):71–97,
2006.

18. K. Schneider, J. Brandt, T. Schuele, and T. Tuerk. Improving constructiveness in code genera-
tors. In Synchronous Languages, Applications, and Programming (SLAP), Edinburgh, 2005.

19. K. Schneider, J. Brandt, T. Schuele, and T. Tuerk. Maximal causality analysis. In Application
of Concurrency to System Design (ACSD), pages 106–115, IEEE Computer Society St. Malo,
France, 2005.

20. K. Schneider, J. Brandt, and E. Vecchié. Efficient code generation from synchronous programs.
In F. Brewer and J.C. Hoe editors, Formal Methods and Models for Codesign (MEMOCODE),
pages 165–174, IEEE Computer Society Napa Valley, CA, 2006.

21. K. Schneider, J. Brandt, and E. Vecchié. Modular compilation of synchronous programs. In
IFIP Conference on Distributed and Parallel Embedded Systems (DIPES), Springer Braga,
Portugal, 2006.

22. R.K. Shyamasundar, F. Doucet, R. Gupta, and I.H. Krüger. Compositional reactive semantics
of SystemC and verification in RuleBase. In Workshop on Next Generation Design and
Verification Methodologies for Distributed Embedded Control Systems, 2007.

23. B. Stroustrup. The C++ Programming Language. Series in Computer Science. Addison-
Wesley, Reading, MA, 1986.

24. J. Zeng, C. Soviani, and S.A. Edwards. Generating fast code from concurrent program
dependence graphs. In Languages, Compilers, and Tools for Embedded Systems (LCTES),
pages 175–181, ACM Washington, DC, 2004.

Chapter 2
Timed Asynchronous Circuits Modeling
and Validation Using SystemC

Cédric Koch-Hofer and Marc Renaudin

Abstract ASC is a SystemC library designed for modeling asynchronous circuits.
In order to respect the semantic of asynchronous circuits, the synchronization
primitives of ASC rely on SystemC immediate notification. In this paper we present
a time model which allows us to properly trace ASC processes activity. This time
model is not restricted to ASC and could be used to model asynchronous circuits
using a CSP based modeling language. Moreover, this time model can be used for
validating timed models of circuits mixing synchronous and asynchronous parts.
This time model is therefore used for designing the tracing facilities of ASC. This
paper also presents a patch of the OSCI SystemC simulator allowing to properly
validate ASC models. As relevant examples, two versions of the Octagon intercon-
nect are modeled and verified using the ASC library.

Keywords Asynchronous Circuits, SystemC, Time Model, Simulation and Validation

2.1 Introduction

With advances in digital VLSI technologies, asynchronous design styles are becom-
ing more and more popular. The intrinsic properties of asynchronous circuits are
well adapted to new interconnects paradigms like “Network on Chip” [1] (NoC).
An Asynchronous circuit [2] use a local handshaking protocol to synchronize data
transfers between its components. Therefore, there are no longer any problems with
NoC clock management, and the integration of cores with different clock frequen-
cies is properly managed [3]. Moreover, asynchronous NoCs take advantage of the
benefits of asynchronous circuits such as low power consumption, communication
robustness…

TIMA laboratory, 46 Av. Félix Viallet, 38031 Grenoble, France
Email: {cedric.koch-hofer, marc.renaudin}@imag.fr

E. Villar (ed.) Embedded Systems Specification and Design Languages, 15
© Springer Science + Business Media B.V. 2008

16 C. Koch-Hofer, M. Renaudin

Today, the lack of tools for the design of asynchronous circuits are the principal
inhibitors for their adoption [4]. Two families of tools are available. The first family
of tools uses graphical description as input. Examples of such tools are: Petrify [5],
minimalist [6], 3D [7]. These kinds of tools allow the production of very efficient
small circuits; nevertheless they can not be used for designing complex systems like
NoC. The second family of tools uses programming languages as input. Examples
of such languages are: CHP [8], Balsa [9] and Tangram [10]. These modeling lan-
guages do not support standard CAD tools and are not adequate to model synchro-
nous circuits. However, these facilities are required for the design of an
Asynchronous NoC interconnecting the synchronous components of a “Globally
Asynchronous Locally Synchronous” [11] (GALS) “System on Chip”
(SoC). Moreover, the design frameworks associated with these modeling languages
do not allow us to properly codesign the hardware and software part of a SoC.

In order to leverage these problems, we have developed ASC [12], an extension
of the SystemC [13] language for modeling asynchronous circuits. The semantic of
ASC is based on CSP [14]. Indeed, an ASC model is composed of a set of concur-
rent processes communicating via synchronous point-to-point channel. This
SystemC library also includes a set of operators and statements for accurately mod-
eling the basic components of an Asynchronous Network on Chip.

The standard tracing facilities defined by SystemC are based on changes of vari-
able values between different simulation times or between two different delta-
cycles [13]. By this way, it is not possible to trace several communications occurring
over an ASC channel if they happen in the same delta-cycle. For example, Fig. 2.1
illustrates what happens if standard tracing facilities of SystemC are used for
tracing the variable var. In this example the foo::process sends two chars to the
bar::process. Nevertheless, only the last change of value can be recorded by
the standard tracing facilities of SystemC. Indeed, the ASC channels use immediate
notification to synchronize their connected processes and therefore multiple com-
munications can be executed during a delta-cycle over the same channel. Thus,
standard SystemC tracing facilities only display the last change of value and can
not be used for validating ASC models.

Fig. 2.1 Trace with SystemC tracing facilities

2 Timed Asynchronous Circuits Modeling and Validation Using SystemC 17

An obvious solution resolving this problem could be adding latencies in ASC
channels. However, this solution adds extra dependencies on the order of execution
of the processes, not allowing proper ASC processes delay insensitivity checking
In fact, tracing activities of such a distributed system requires using a time model
not based on a single common clock.

The “Lamport clocks” [15] is a time model commonly used for synchronizing
activities of distributed systems. In this time model each process has its own local
clock. The messages exchanged by the processes are used for synchronizing their
local clocks. In this paper we present a time model, called AST (Asynchronous
SystemC Time), based on “Lamport clocks” allowing proper tracing of ASC proc-
esses activity. More generally, this time model can be used for tracing activities of
any models of asynchronous circuits specified with a modeling language based on
CSP.

Previous works [16–18] on timing models for asynchronous circuits use models
at the gate level. They are used to perform static analysis of latencies of the circuit
components. For example, they use min-max algorithm, Monte-Carlo simula-
tion… for checking that the delay limits are respected. Thus, these models manip-
ulate very low level abstraction entities like signals. These models of time are
therefore not suited to handle high level language constructs like processes,
channels…

A SystemC framework based on “Lamport clocks” time model is presented in
[19]. However, they do not use it for tracing activities of channels but for improving
simulation speed. Indeed, the “Lamport clocks” time model is used in this frame-
work to efficiently manage the execution of the SystemC processes on a distributed
simulation platform. The execution of these processes is synchronized according to
the time stamp of the packets received by the processes.

The ASC library enables us to model any class of asynchronous circuits (QDI
[20], micro-pipeline [21]…). Thus, we want to be able to validate any kind of asyn-
chronous circuits modeled using ASC. For properly checking the delay insensitivity
of an ASC model of a Delay Insensitive (DI) asynchronous circuit, all the valid
scheduling of the processes should be tested. Hopefully, the specification of the
SystemC scheduler [13] is non-deterministic. However, the system has to be simu-
lated with a particular implementation of the scheduler. For example, the SystemC
reference simulator [22] is deterministic. In order to leverage this problem, we have
developed a patch for this simulator allowing a non-deterministic scheduling of the
processes.

This paper also presents how the AST time model was used to define the tracing
facilities of ASC. To demonstrate the relevance of this approach, this paper finally
presents how ASC is used to model and validate two versions of an asynchronous
Octagon interconnect [23].

The organization of the paper is as follows. Section 2.2 presents the AST time
model. The ASC library is introduced in Section 2.3. As illustrative examples,
Section 2.4 describes the two ASC versions of Octagon interconnect. Finally, con-
clusions and future works on the ASC library are presented in Section 2.5.

18 C. Koch-Hofer, M. Renaudin

2.2 Time Model

A model of asynchronous circuits based on CSP is a set of processes which com-
municate with one another by exchanging messages via synchronous point-to-point
channels. In this kind of distributed system, all processes are running concurrently
and it is therefore difficult (even impossible) to say that one of two events occurred
first. As in [15], our goal is to adapt and extend the relation “happened before” in
order to define a partial ordering of the events happening in such a system. At the
end, we want to be able to assign a coherent time stamp to each event occurring in
this kind of system. For example, Fig. 2.2 shows different events occurring when
executing a CSP model of an asynchronous circuit composed of three processes (P

0
,

P
1
 and P

2
). Figure 2.2 also illustrates the time stamps associated to these events. The

different kind of events and their relationship are described formally in Sub-section
2.2.1. The rules for computing the time stamp of these events are presented in Sub-
section 2.2.2.

A nice property of this time model is that it can be easily extended. For example
in Sub-section 2.2.3 we present an extension of this time model allowing interfac-
ing these asynchronous clocks with the clock of a synchronous circuit.

2.2.1 Partial Ordering

In the AST time model, the execution of a CSP model of an asynchronous circuit
is represented by a set of processes P = {p

0
, p

1
…} and a set of channels CH = {ch

0
,

ch
1
…}. A process p

i
 is defined by the sequence of events p

i
 = (e

0
, e

1
…) occurring

in this process during its execution. The first event of a process p
i
 is its “initialization”

Fig. 2.2 Time stamping of CSP
processes’ events

2 Timed Asynchronous Circuits Modeling and Validation Using SystemC 19

init
i
. When a process p

i
 terminates, its last event is its “termination” end

i
. A channel

ch
k
 is specified by a couple ch

k
 = (p

i
, p

j
) where p

i
 and p

j
 are the processes using ch

k
.

p
i
 and p

j
 are connected to ch

k
 by an active port and by a passive port, respectively.

It can be noticed that in this time model the direction of the data communicated
through the channel is not relevant. A communication c = {sca

i
, scp

j
, ecp

j
, eca

i
}

between two processes p
i
 and p

j
 over a channel ch

k
 = (p

i
, p

j
) is defined by the fol-

lowing four events:

● sca
i
 and eca

i
: beginning and termination of the communication c for the process

p
i

● scp
j
 and ecp

j
: beginning and termination of the communication c for the process

p
j

A process p
j
 connected to a channel ch

k
 = (p

i
, p

j
) can probe it. The probing action

is atomic and generates one, and only one, of the two following events:

● pp
j
: this event, called a “positive probe”, happens if the process p

i
 has initiated a

communication on the channel ch
k
.

● np
j
: this event, called a “negative probe”, occurs if the process p

i
 does not initi-

ated a communication on the channel ch
k
.

In our formalism a task t
i,l
 is a sequence of instructions of a process p

i
. In standard

CSP, it is not possible to perform a set of tasks in parallel in the same process.
In order to leverage this restriction most of the modeling language for asynchronous
circuits based on CSP defines a parallel composition operator. This operator enables
concurrently execution of a set of tasks T

i
 = {t

i,0
, t

i,1
…} in the same process p

i
. Each

task t
i,l
 is concurrently executed by a sub-process p

m
. The main process p

i
 is blocked

until the termination of all these sub-processes. Execution of this composition
operator is characterized by the following two events:

● cti
i
: this event, called “concurrent tasks initialization”, occurs when a set of con-

current tasks are triggered by process p
i
.

● ctt
i
: this event, called “concurrent tasks termination”, happens when all the sub-

processes triggered by process p
i
 for executing a set of concurrent tasks have

terminated.

The sequence of events (e
i
, e

i
’…) defining a process p

i
 respects the order of occur-

rences of its events. We are assuming that two events in the same process can not
happen at the same time, and therefore the sequence of events (e

i
, e

i
’…) respects a

total ordering. However, our goal is to define an ordering relation on the set E = {e,
e’…} of all the events. For this purpose, we define the “happened before” relation
� : E Æ E. This relation is defined by the following conditions:

(C0) If e
i
 and e

i
’ are events in the same process, and e

i
 occurs before e

i
’, then

e
i
� e

i
’

(C1) ∀ e, e’, e”∈ E, (e � e’ ∧ e’ � e”) Þ e � e”
(C2) If {sca

i
, scp

j
, ecp

j
, eca

i
} is a communication between processes p

i
 and

p
j
, then sca

i
� ecp

j
, scp

j
� ecp

j
 and ecp

j
� eca

i

20 C. Koch-Hofer, M. Renaudin

(C3) If c = {sca
i
, scp

j
, ecp

j
, eca

i
} is a communication between processes p

i

and p
j
, and pp

j
 is a “positive probe” by the process p

j
 of the communi-

cation c, then sca
i
� pp

j
 and pp

j
� scp

j

(C4) If np
j
 is a “negative probe” done by the process p

j
 on the channel ch

k
 =

(p
i
, p

j
), and {sca

i
, scp

j
, ecp

j
, eca

i
} is a communication between proc-

esses p
i
 and p

j
 via the channel ch

k
, then ecp

j
� np

j
 or np

j
� sca

i

(C5) If init
m
 is the initialization event of a sub-process p

m
 created for per-

forming a concurrent task t
i,l
, and cti

i
 is the “concurrent task initializa-

tion” generated by the composition operator which triggered the
process p

m
, then cti

i
� init

m

(C6) If end
m
 is the termination event of a sub-process p

m
 created for perform-

ing a concurrent task t
i,l
, and ctt

i
 is the “concurrent task termination”

generated by the composition operator which triggered the process p
m
,

then end
m

� ctt
i

Obviously, in this kind of system an event can not occur before itself ∀ e Œ E, ¬(e �
e). Moreover, the asymmetric property of the relation � can be easily demonstrated.
Thus, the relation � defines a strict partial ordering of E.

2.2.2 Computing Time of Events

The AST time model associates a time stamp to each event. The value of this time
stamp is defined by a function clk : E → N respecting the strict partial ordering �.
This last function represents the logical time of the system and it is defined accord-
ing to the logical local time of each process. The logical time of a process p

p
 is

defined by a function clk
p
 : E

p
→ N where E

p
⊆ E is the set of all the events occur-

ring in p
p
. The time stamp clk(e

p
) = clk

p
(e

p
) of an event e

p
∈ E

p
 occurring in a proc-

ess p
p
 is computed with the help of the following computation rules:

(R0) If e
p
 = ∅ is an event which has never happened, then clk(∅) = 0

(R1) If e
p
 = init

i
 is the initialization of the process p

i
 and this process is not

a sub-process, then clk
i
(init

i
) = 0

(R2) If e
p
 = init

m
 is the initialization of the process p

m
, and this process is a

sub-process triggered by the event cti
i
 of the process p

i
, then clk

m
(init

m
)

= clk
i
(cti

i
) + 1

(R3) If e
p
 = end

i
 is the last event of the process p

i
, and le

i
 is the last event

occurring in p
i
 before end

i
, then clk

i
(end

i
) = clk

i
(le

i
) + 1

(R4) If e
p
 = sca

i
 is the beginning of a communication performed by a proc-

ess p
i
 over a channel ch

k
 = (p

i
, p

j
), and np

j
 is the last negative probe of

the process p
j
 of the channel ch

k
, and le

i
 is the last event occurring in p

i

before sca
i
, then clk

i
(sca

i
) = max(clk

i
(le

i
), clk

j
(np

j
)) + 1

(R5) If e
p
 = scp

j
 is the beginning of a communication performed by a proc-

ess p
j
 over a channel (p

i
, p

j
), and le

j
 is the last event occurring in p

j

before scp
j
, then clk

j
(scp

j
) = clk

j
(le

j
) + 1

2 Timed Asynchronous Circuits Modeling and Validation Using SystemC 21

(R6) If e
p
 = ecp

j
 is the end of a communication {sca

i
, scp

j
, ecp

j
, eca

i
} per-

formed by a process p
j
 over a channel (p

i
, p

j
), then clk

j
(ecp

j
) =

max(clk
i
(sca

i
), clk

j
(scp

j
)) + 1

(R7) If e
p
 = eca

i
 is the end of a communication {sca

i
, scp

j
, ecp

j
, eca

i
} performed

by a process p
i
 over a channel (p

i
, p

j
), then clk

i
(eca

i
) = clk

j
(ecp

j
) + 1

(R8) If e
p
 = pp

j
 is a positive probe of the communication {sca

i
, scp

j
, ecp

j
,

eca
i
} performed by a process p

j
, and le

j
 is the last event occurring in p

j

before pp
j
, then clk

j
(pp

j
) = max(clk

j
(le

j
), clk

i
(sca

i
)) + 1

(R9) If e
p
 = np

j
 is a negative probe performed by a process p

j
 of a channel

ch
k
 = (p

i
, p

j
), and {sca

i
, scp

j
, ecp

j
, eca

i
} is the last communication on

the channel ch
k
, and le

j
 is the last event occurring in p

j
 before np

j
, then

clk
j
(np

j
) = max(clk

j
(le

j
), clk

j
(ecp

j
)) + 1

(R10) If e
p
 = cti

i
 is the initialization of a composition operator, and le

i
 is the

last event occurring in p
i
 before cti

i
, then clk

i
(cti

i
) = clk

i
(le

i
) + 1

(R11) If e
p
 = ctt

i
 is the termination of a composition operator, and p

m
, p

m + 1
 …

are the sub-processes created by this composition operator, and end
m
,

end
m + 1

 … are the last events occurring in these sub-processes, then
clk

i
(ctt

i
) = max(clk

m
(end

m
), clk

m + 1
(end

m + 1
)…) + 1

As explained in [15], the function clk : E → N respects the strict partial ordering �
if the following condition is respected:

Clock Condition. ∀ e, e’ ∈ E, (e � e’ ⇒ clk(e) < clk(e’))

The lack of space does not allow us to give details of the proof of the clock condi-
tion. Briefly, this proof consists of proving that all the conditions defining the rela-
tion � are respected by the previous computation rules defining the function clk :
E → N.

2.2.3 Interfacing with Synchronous World

One of the goals on ASC is to model circuits composed of asynchronous and syn-
chronous components. For being able to trace activities of such system, our time
model must be able to take into account its synchronous time. In order to leverage
this problem, we extend the set of processes P of the AST time model with a new
process p∆ ∈ P. This process represents the system’s global clock of the synchro-
nous parts. Indeed, at the end of each global clock cycle, an event ge∆ occurs in the
process p∆.

To preserve the coherency of the � relation we extend it with the following
condition:

(C7) If e
i
 is an event occurring in p

i
 and ge∆ is an event occurring in p∆

before e
i
, then ge∆ � e

i

(C8) If ge∆ is an event occurring in p∆ and e
i
 is an event occurring in p

i

before ge∆, then e
i
� ge∆

22 C. Koch-Hofer, M. Renaudin

The computation rules of the time stamp also have to be updated. Firstly, we add
the following computation rule:

(R12) If e
p
 = ge∆ is the end of a clock cycle happening in the process p∆, and

le∆, le
0
, le

1
 … are the last event happening in processes p∆, p

0
, p

1
 … of

P = {p∆, p
0
, p

1
 …} before ge∆, then clk∆(ge∆) = max(clk∆(le∆), clk

0
(le

0
),

clk
1
(le

1
)…) + 1

Secondly, we update the rules (R2) to (R11) for taking into account the local time
of the process p∆. For example, for the rule (R2), if we take the same hypothesis and
if le∆ is the last event occurring in p∆ before init

m
, then clk

m
(init

m
) = max(clk

i
(cti

i
),

clk∆(le∆)) + 1. The other rules (R3) to (R11) are updated in the same way.

2.3 ASC Library

An ASC model is composed of a set of ASC modules interconnected via predefined
ASC ports and ASC channels. New methods and operators are also defined by
ASC enabling parallel communication and non-deterministic choice.

The ASC tracing facilities are composed of several functions. These functions are
used to trace communications and events happening in the ASC channels. The gener-
ated output trace file can not be directly used by the standard CAD tools, but it can be
converted in standard VCD trace file [24] with the ast2vcd tool we have developed.

For being able to properly validate an ASC model, we have developed a patch
of the OSCI SystemC simulator. The resulting simulator allows us testing different
interleaving of the processes execution.

2.3.1 ASC Modeling Language

ASC defines two different kinds of module. The container modules are used to
define the hierarchical structure of the system. They can contain other modules,
channels and ports. The ASC process modules specify the behavior and the concur-
rent aspects of an asynchronous circuit. The behavior of a process module is
defined by its process method.

The ports are the communication interfaces of ASC processes. An ASC port is
unidirectional (input or output) and can be connected to at most one ASC channel.
The emission of data through an output port is done with its send method. The
receive method of the input port connected to an output port allows to get the data
sent by an output port. A handshaking protocol is used to synchronize the commu-
nication between two ASC ports. They are two different kinds of port: active and
passive. An active port initiates the handshaking protocol and a passive port
acknowledges it. A passive port has a special method called probe allowing it to
check if its connected active port has initiated a communication or not.

2 Timed Asynchronous Circuits Modeling and Validation Using SystemC 23

The channels are the mediums used by the ASC processes to communicate and
synchronize their executions. A pull and a push channel interconnects an active
input port to a passive output port and an active output port to a passive input port,
respectively. These channels implement the communication and synchronization
primitives offered by the ASC ports. Indeed, the previous methods of these ports
(send, receive and probe) just forward their procedure call to the methods of their
connected channels.

To synchronize its execution, an ASC process can use its idle methods. A first
version of this method is used to wait until at least one of its passive ports is ready
to communicate. A second version is used to wait that a set of parallel communica-
tions have been completed. A parallel communication is triggered with the par_
receive or par_send methods of the ASC ports, and a set of parallel communications
is constructed with the overloaded operator //.

The two new statements as_choice_nd and as_guard are provided by the ASC
library. The as_choice_nd defines a non-deterministic choice over a set of guarded
commands. A guard of a non-deterministic choice is specified with the statement
as_guard.

2.3.2 Tracing Facilities

A trace file respecting the AST time model is created with the function as_create_
ast_trace_file. This function takes as a parameter the name of the output trace file
and returns a pointer on this trace file. This pointer can be used by the as_trace
function to define the ASC channels to trace. This pointer can also be used with
the as_set_time_unit function to set the time resolution used for performing
the simulation. Finally, a trace file shall be closed by calling the function
as_close_ast_trace_file.

An ASC channel has a template parameter defining the DATA carried out by this
channel. Any kind of channel can be traced with the as_trace function. Currently,
the value of a data transferred over a traced channel will be reported only if its type
belongs to one of the following C++ types: bool, char, short, int, long, long long,
unsigned char, unsigned short, unsigned int, unsigned long, unsigned long long,
float, double. However, ASC tracing facilities can be easily extended to handle
specific user data types. Indeed, the as_trace function can be overloaded in order
to handle any kind of data.

The ast2vcd takes as input an ASC trace file and produces a VCD output trace
file. For each traced ASC channel ch is defined the following VCD signals:

● Data: represents the data transferred during a communication.
● sca, scp, eca, ecp: represent the events defining a communication.
● p: the call to the probe method of the channel. The value of the channel is equal

to the result of the probe.

24 C. Koch-Hofer, M. Renaudin

Figure 2.3 shows the VCD and the AST traces generated by the simulation of the two
ASC processes p0 and p1. These two processes are connected via an ASC channel ch.
All the events represented in this figure, except sca’, happen at the simulation time 0
nanosecond (NS). However, in the resulting VCD, these events do not happen at 0
NS. Indeed, to represent the AST time stamp and make the trace readable, the events
occurring at the same SystemC simulation time, but at different AST times, are sepa-
rated by ε time steps. In order to know at which SystemC simulation time an AST
event occurs, the SystemC simulation clock is represented by the sc_clock signal. The
ε value is automatically computed by ast2vcd. It takes care that each AST event
occurs after its SystemC simulation time and before the next sc_clock signal.

2.3.3 ASC Simulator

Because DI asynchronous circuits are not sensitive to delays, the execution order of
the processes modeling such circuits should not have any impact on the correctness.
For checking this fundamental property of a DI asynchronous circuit, the selection
of a process to execute among the set of runnable processes should be
non-deterministic.

Fig. 2.3 Traces with ASC tracing facilities

2 Timed Asynchronous Circuits Modeling and Validation Using SystemC 25

The current implementation of the SystemC kernel simulator [22] uses two
pseudo-fifo lists for managing the set of runnable processes. The first one contains
the runnable sc_method and the second one the runnable sc_thread. These pseudo-
fifo are divided into two lists: get_list and push_list. The get_list is used by the
scheduler for selecting the new process to execute. The push_list is used for insert-
ing a new runnable process into the pseudo-fifo. During an evaluation phase, all the
processes which are in the get_list of the sc_method pseudo-fifo are firstly exe-
cuted. Secondly, all the processes which are in the get_list of the sc_thread pseudo-
fifo are executed. Finally, if the push_list are not empty, they are swapped with their
corresponding get_list. These three steps are repeated until the two get_list are
empty at the beginning of the first step. Thus, we can see that this scheduling algo-
rithm is deterministic and do not allow us to test different interleaving of processes
execution.

As illustrated in Fig. 2.4, the patch that we have defined merges the two pseudo-
fifos into one priority queue. We have also defined a new common class for the sc_
thread and the sc_method defining their priority of execution. When a process is
becoming runnable, a new priority is affected to this process and then it is inserted
into the priority queue. The priority value is computed by a pseudo random genera-
tor. In order to be able to replay a simulation, the seed of this pseudo random gen-
erator can easily be determined. When the active process execution finished, the
scheduler chooses the process in the priority queue with the lowest priority. By this
way, we are able to test different interleaving of processes execution.

Another promising solution for this problem is presented in [25]. It presents a
method and tools enabling to efficiently generating the different scheduling allowed
by the scheduler specification. They use dynamic partial-order reduction techniques
to avoid the generation of two schedulings that have the same effect on the system’s
behavior.

Fig. 2.4 SystemC simulator
scheduler

26 C. Koch-Hofer, M. Renaudin

2.4 Octagon NoC with ASC

The Octagon [23] interconnect was developed by STMicroelectronics to efficiently
interconnect eight CPUs on a single chip. This interconnect is composed of 8 nodes
and 20 bidirectional links. However, in our version of the Octagon, each bidirec-
tional link is replaced by two unidirectional links. The resulting configuration of the
system is illustrated in Fig. 2.5. In this figure, the integer associated to each node
is the address used by a CPU for sending a packet to another CPU. Each node uses
an algorithm based on the Octagon topology and on arithmetic properties to route
its incoming packets to the right output.

The first ASC version of the Octagon operates in packet switching mode. Figure
2.6 exhibits the ASC code of the nodes used in this version of the Octagon. These
nodes wait for a new packet on one of the four input ports. When at least one packet
is available, the nodes perform a non-deterministic choice over the set of input ports
ready to transmit a new packet. A packet is then received on the selected input port.
Finally, this packet is forwarded to an output port according to the routing Octagon
algorithm.

The second ASC version of the Octagon operates in circuit switching mode.
In this version there are two different kinds of packet: request packet and response
packet. The request packets are sent by a CPU which is willing to access a resource
of another CPU. When a request packet is received by a CPU, it sends a response packet
to the CPU which sent this request packet.

Fig. 2.5 Octagon NoC
confguration

2 Timed Asynchronous Circuits Modeling and Validation Using SystemC 27

The ASC code of the routers used in this version of the Octagon is summed up
in Fig. 2.7. When one of these nodes receives a new request packet, it stores which
input port (l_in_dir) transmitted the packet. As for the previous version, the packet
is then transmitted through the right output port. However, this time the node does
not restart to wait for a packet on all its input ports, but it waits on the input port
associated to the output port (l_out_dir) which was used to send the packet. In this
way the next packet received by this node can only be the response packet of the
previous request packet. When this last response packet is received, it is forwarded
through the output port corresponding to the input port which received the request
packet. Thus, in this mode, the entire path between the CPU which sends the
request and the CPU which receives it is reserved for the response packet.

In a first step, the ASC tracing facilities enabled us to validate the functional
behavior of the two versions of the Octagon. For example, they helped us to check
the behavior of the routers and to understand how dead-locks were happening in
such a NoC. To this end, we have replaced the CPUs with traffic generator proc-
esses and traffic consumer processes. In a second step, we added latencies to the

void node::process() {
 idle(in_ip | in_clk | in_cclk | in_frt);

 as_choice_nd(
 as_guard(in_ip.nb_probe(), IP),
 as_guard(in_clk.nb_probe(), CLK),
 as_guard(in_cclk.nb_probe(), CCLK),
 as_guard(in_frt.nb_probe(), FRT)))
 {
 case IP: in_ip.receive(pkt);
 case CLK: in_clk.receive(pkt);
 case CCLK: in_cclk.receive(pkt);
 case FRT: in_frt.receive(pkt);
 }

 switch((pkt.adr – this->adr) mod 8) {
 case 0: out_ip.send(pkt); break;
 case 1:
 case 2: out_clk.send(pkt); break;
 case 6:
 case 7: out_cclk.send(pkt); break;
 default: out_frt.send(pkt); break;
}}

Fig. 2.6 Packet switching
router

void node::process() {
 receive_req(l_pkt_req, l_in_dir);
 l_out_dir = route(l_pkt_req.adr_dest);
 forward_req(l_pkt_req, l_out_dir);
 receive_rsp(l_pkt_rsp, l_out_dir);
 forward_rsp(l_pkt_rsp, l_in_dir);
}Fig. 2.7 Circuit switching

router

28 C. Koch-Hofer, M. Renaudin

different components (consumers, producers and routers) and to the ASC channels.
By this way, we were able to analyze the congestions and latencies of the NoC
under different pattern of traffic (uniform, hot-spot and random).

2.5 Conclusion

This paper presented a time model which can be used to validate asynchronous cir-
cuit models using a language based on CSP. This time model was used to define the
tracing facilities of the ASC library. These tracing facilities produce traces of the
ASC process activities over their connected channels, which can then be used to
generate standard VCD. However, the VCD format is not really adapted to asyn-
chronous circuits. Thus, we are currently investigating other trace formats like SCV.
We are also evaluated the time model on complex multiple clock systems.

Finally, modeling and validating asynchronous logic with the ASC library is the
first step towards the synthesis. Our final goal is to be able to synthesize these
models with the TAST framework [26]. We are currently formally defining the
synthesis process of ASC based models to efficiently generate gate level asynchro-
nous circuits.

Acknowledgments The authors thank Y. Remond for initiating the research on this time model,
and K. Morin-Allory for reviewing initial versions of the document, and R. Solari for reviewing
final versions of the document. This work is partially supported by the French government in the
MEDEA + framework, through the 2A703 NEVA project (Networks on Chips Design Driven by
Video and Distributed Applications).

References

1. Jantsch A, Tenhunen H (2003) Networks on chip. Kluwer, Boston, MA
2. Sparsø J, Furber S (2001) Principles of asynchronous circuit design. Kluwer, Boston, MA
3. Nielsen SF, Sparsø J (2001) Analysis of low-power SoC interconnection networks. In: 19th

Norchip, pp 77–86
4. Edwards DA, Toms WB (2004) Design, Automation and Test for Asynchronous Circuits and

Systems. Technical Report IST-1999-29119, 3rd edn. Working Group on Asynchronous Circuit
Design (ACiD-WG). http://www.scism.sbu.ac.uk/ccsv/ACID-WG

5. Cortadella J, Kishinevsky M, Kondratyev A, Lavagno L, Yakovlev A (1997) Petrify: a tool for
manipulating concurrent specifications and synthesis of asynchronous controllers. In: IEICE
Trans Inf. and Syst, pp 315–325

6. Fuhrer RM, Nowick SM, Theobald M, Jha NK, Lin B, Plana L (1999) Minimalist: An Environment
for the Synthesis, Verification and Testability of Burst-Mode Asynchronous Machines. Technical
Report CUCS-020-9. Columbia University, Computer Science Department

7. Yun KY, Dill DL (1992) Automatic synthesis of 3D asynchronous state machines. In:
ICCAD92, pp 576–580. Santa Clara, CA

8. Martin AJ (1990) Programming in VLSI: from communicating processes to delay-insensitive
circuits. In: Developments in Concurrency and Communication, pp 1–64. Hoare CAR, UT Year
Programming Series

2 Timed Asynchronous Circuits Modeling and Validation Using SystemC 29

 9. Edwards D, Bardsley A (2002) Balsa: an asynchronous hardware synthesis language. In: The
Computer Journal, Volume 45, Issue 1, pp 12–18

10. Berkel KV (1993) Handshake circuits – an asynchronous architecture for VLSI programming.
Cambridge University Press, Cambridge

11. Quartana J, Fesquet L, Renaudin M (2005) Modular asynchronous Network-on-Chip: applica-
tion to GALS system rapid prototyping. In: Very Large Scale Integration Systems (VLSI-
SoC’05). Perth, Australia

12. Koch-Hofer C, Renaudin M, Thonnart Y, Vivet P (2007) ASC, a SystemC extension for mod-
eling asynchronous systems, and its application to an asynchronous NoC. In: 1st International
Symposium on Networks-on-Chip (NoC’07). Princeton, NJ

13. IEEE Std 1666–2005, SystemC Language Reference Manual (2005)
14. Hoare CAR (1978) Communicating Sequential Processes. In: Communications of the ACM,

Volume 21, Issue 8, pp 666–677
15. Lamport L (1978) Time, clocks, and the ordering of events in a distributed system. In:

Communications of the ACM, Volume 21, Issue 7, pp 558–565
16. Ashkinazy A, Edwards D, Fansworth C, Gendel G, Sikand S (1994) Tools for validating

asynchronous digital circuits. In: 1th International Symposium on Advanced Research in
Asynchronous Circuits and Systems (ASYNC’94), pp 12–21. Salt Lake City, UT

17. Chakraborty S, Dill DL, Yun KY, Chang KY (1997) Timing analysis for extended burst-mode
circuits. In: 3rd International Symposium on Advanced Research in Asynchronous Circuits
and Systems (ASYNC’97), pp 101–111. Eindhoven, The Netherlands

18. Karlsen PA, Røine PT (1999) A timing verifier and timing profiler for asynchronous circuits.
In: 5th International Symposium on Advanced Research in Asynchronous Circuits and
Systems (ASYNC’99), pp 13–23. Barcelona, Spain

19. Viaud E, Pêcheux F, Greiner A (2006) An efficient TLM/T modeling and simulation environ-
ment based on conservative parallel discrete event principles. In: Design, Automation and Test
in Europe (DATE’06). Munich, Germany

20. Martin AJ (1993) Synthesis of Asynchronous VLSI Circuits. Internal Report, Caltech-CS-TR-
93-28. Caltech Institute of Technology, Pasadena, CA.

21. Sutherland IE (1989) Micropipelines. In: Communication of the ACM, Volume 32, Issue 6,
pp 720–738

22. Open SystemC Initiative (2007) SystemC v2.2. http://www.systemc.org/
23. Karim F, Nguyen A, Dey S, Rao R (2001) On-chip communication architecture for OC-768

network processors. In: Design Automation Conference (DAC’01). Las Vegas, NV, pp
678–683

24. IEEE Std 1364-2001, Behavioural languages – Part 4: Verilog hardware description language
(2001) pp 349–374

25. Helmstetter C, Maraninchi F, Maillet-Contoz L, Moy M (2006) Automatic Generation of
Schedulings for Improving the Test Coverage of System-on-a-Chip. Verimag Research
Report, TR-2006-6

26. Renaudin M, Rigaud JB, Dinh Duc AV, Rezzag A, Sirianni A, Fragoso J (2002) TAST CAD
Tools. TIMA Research Report. TIMA–RR-02/04/01—FR

Chapter 3
On Construction of Cycle Approximate
Bus TLMs

Martin Radetzki and Rauf Salimi Khaligh

Abstract Transaction level models (TLMs) can be constructed at different levels
of abstraction, denoted as untimed (UT), cycle-approximate (CX), and cycle accu-
rate (CA) in this contribution. The choice of a level has an impact on simulation
accuracy and performance and makes a level suitable for specific use cases, e.g. vir-
tual prototyping, architectural exploration, and verification. Whereas the untimed
and cycle-accurate levels have a relatively precise definition, cycle-approximate
spans a wide space of modelling alternatives between UT and CA, which makes
it a class of levels rather than a single level. In this contribution we review these
modelling alternatives in the context of SystemC and with focus on bus models,
provide quantitative measurements on major alternatives, and propose a CX model-
ling level that allows to obtain almost cycle accuracy and a simulation performance
significantly above CA models.

Keywords Transaction-level modelling, SystemC, embedded systems

3.1 Introduction

Transaction level modelling has become a widely used technique in embedded systems
and system on chip design. A variety of system design languages such as SystemC [7]
and SpecC [5] can be used for modelling at transaction level. However, transactions
and many other typical elements of transaction level models (TLMs) are not available
as syntactic language features. The TLM creators instead have to create the transaction
level abstractions themselves, using language features such as channels and interfaces.
This is supported by mostly informal descriptions of the TLM methodology, e.g. [6],
and by methodology-specific libraries, e.g. the SystemC TLM library [10].

Institut für Technische Informatik, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Email: martin.radetzki@informatik.uni-stuttgart.de

E. Villar (ed.) Embedded Systems Specification and Design Languages, 31
© Springer Science + Business Media B.V. 2008

32 M. Radetzki, R. Salimi Khaligh

Methodologies and libraries leave degrees of freedom to implement TLMs in
different ways. This has the positive effect that the transaction level in fact spans
multiple (sub-)levels of abstraction, facilitating trade-offs between simulation accu-
racy and performance. However, these levels, subsequently denoted as untimed
(UT), cycle-approximate (CX) and cycle accurate (CA), are not formally defined
but rather characterized by model properties. The lack of a formal definition makes
it difficult to describe how to systematically construct TLMs at a given level.

Despite this drawback, there exist relatively precise and consistent characteriza-
tions of UT and CA, as we will show in Section 3.2. CX models, however, can
cover a wide range between UT and CA, and there appears to be no consensus on
the characteristics of a favourable CX model. We will attempt the definition of such
a model based on the consideration of modelling alternatives. For this purpose, we
use the following non-orthogonal criteria characterizing TLMs in addition to their
timing accuracy:

● The underlying communication mechanism, which can be a subprogram call
with transfer of control flow (blocking) or message passing with data flow
(potentially non-blocking).

● The use of concurrency in the model, namely the presence or absence of indi-
vidual threads in the modelled master, slave, and bus components. A component
with (without) a thread is called passive (active).

● The programming abstraction provided to the users of a bus model, including no
abstraction (direct access to port/channel), procedural application programming
interface (API), communication mechanisms that could be adopted from concur-
rent/distributed systems (e.g. RPC, CORBA).

● The bus features covered by the model, including single transfers, bursts, locked
transfers, split transfers, wait states (inserted by slave), busy cycles (inserted by
master), bus phases and pipelining, in-order or out-of-order completion of trans-
fers, and arbitration policy.

● The modelling mechanism used for arbitration, in particular the use of events to
trigger arbitration (no events, one event, multiple events).

● The use cases of a particular model, including verification, exploration, virtual
prototyping.

In the next section, we review the related work with respect to the above criteria.
Section 3.3 presents considerations and alternatives towards accurate CX models,
and Section 3.4 investigates their performance.

3.2 Related Work

Donlin [4] presents the transaction level terminology used by the SystemC TLM
working group. It includes a Programmer’s View (PV) characterized by untimed
communication and the use case of providing a functionally accurate representation
of hardware subsystems to software programmers. A Programmer’s View with

3 On Construction of Cycle Approximate Bus TLMs 33

Time (PV + T) results from annotating a PV model with time and approximate
arbitration. A Cycle Accurate (CA) view is characterized by fully bus protocol
compliant arbitration and timing accurate to the level of individual cycles.

In the OCP terminology [9], three TLM layers are defined: The Transfer Layer
(L-1) is characterized by cycle-true behaviour and use for verification and precise
simulation. At the Transaction Layer (L-2), modelling abstracts from the details of
a bus protocol but can take properties like split transactions and pipelining into
account. The Messaging Layer (L-3) is untimed and enables 1:1 connections
between initiators and targets, abstracting from bus address mapping.

The SpecC related taxonomy from [3] takes into account the timing accuracy of
computation as orthogonal to the communication timing aspect and defines cycle-
timed, approximately-timed and untimed levels for both dimensions. Considering
the communication dimension only and focusing on TLM models, we can identify
an untimed component-assembly model (CAM) which models communication
between system components by message passing, a bus arbitration model (BAM)
with arbitration policy modelling that approximates timing by one wait statement
per transaction, and a cycle-timed bus-functional model (BFM).

The GreenBus approach [8] makes a significant step towards a constructive defi-
nition of transaction levels. It identifies three levels of granularity called transac-
tions, atoms, and quarks. A transaction is a sequence of uninterruptible phases
(atoms), and each atom is a collection of payload values (quarks). A PV model
approximates timing at transaction boundaries, a bus accurate (BA) model at atom
boundaries, and a cycle callable (CC) model must model all quark updates with
cycle accuracy. An untimed model is not defined.

From these considerations, it is apparent that there still exists no unified terminol-
ogy in the TLM field. Table 3.1 classifies the modelling levels described in the afore-
mentioned approaches with respect to their bus communication timing properties.

The UT approaches have in common the primary use case of virtual system pro-
totyping and that they result in a purely functional simulation. This limits the availa-
ble choices with respect to our characterization criteria as well as the impact of the
remaining choices on the simulation result. Subtle differences exist – for example,
the SpecC approach features message passing and active slaves at the CAM level
whereas SystemC PV uses function calls from masters into passive slaves – but these
should not have impact on the functional result of simulation nor the non-existent
timing (whereas an impact on simulation performance is likely). Another such dif-
ference is whether bus structure, addressing scheme, and approximate arbitration are
modelled (SystemC PV) or not (point-to-point connections in OCP L-3).

Table 3.1 Overview of transaction levels

Accuracy UT CX CA

SystemC TLM PV PV + T CA
OCP L-3 L-2 L-1
Cai/SpecC CAM BAM BFM
GreenBus – PV(+T), BA CC

34 M. Radetzki, R. Salimi Khaligh

A similar situation can be observed at the CA level. The primary use cases are
verification reference and precise performance analysis. The property of cycle
accuracy strongly restricts the modelling space. All bus features must be modelled,
communication is necessarily by non-blocking data flow between concurrent com-
ponents, and arbitration is typically performed in each cycle. A detailed investiga-
tion of CA model code often reveals that some interface abstraction is provided, but
“under the hood” the model implements communication at the level of the signals
used in the bus protocol, even if these are bundled in a TLM channel. For example,
Table 3.1 in [8] shows the direct correspondence between GreenBus quarks and
protocol signals. In the SystemC based AMBA cycle accurate simulation interface
(CASI) [2], the CA AHB channel uses a data structure whose attributes are identi-
cal to the AHB signals. A proposal for more abstract protocol modelling based on
hierarchical state machines has been made in [13].

At the CX level with the primary use case of system exploration and perform-
ance (bus throughput or latency) estimation, a much wider range of modelling
alternatives exist. Within the SystemC TLM and GreenBus PV + T models, timing
is approximated at the granularity of transactions, arbitration abstracts from the
precise bus arbitration policy, and transactions cannot be pre-empted. Thus, fea-
tures such as split transfers cannot be modelled. On the other hand, the SpecC BAM
and GreenBus BA models permit pre-emption of transactions and subsequent bus
re-arbitration. Thereby, more precise simulation can be obtained at the cost of lower
simulation performance compared to PV + T.

An interesting approach to CX modelling is presented in [14], where transac-
tions are simulated with the optimistic assumption of not being pre-empted. If this
assumption turns out to false at a later simulation time, the transaction duration is
extended by the duration of pre-empting transactions. This yields a 100% accurate
simulation with respect to the authors’ measure of timing accuracy. However, the
data of a burst transfer are transmitted in a single operation at the beginning of the
transaction modelling that transfer. This means that individual data transfers are not
cycle accurate and the interleaving of data from pre-empting transfers cannot be
simulated, which may affect data-dependent functionality.

In the remainder of this contribution, we investigate whether a CX model can be
designed to cover a maximum of bus features and to come as close as possible to
cycle accuracy, including accuracy of the data transfers. We will also investigate
modelling decisions that optimize simulation performance without impacting accu-
racy. The resulting model can provide rather accurate estimates for the purpose of
system exploration, complementing the significantly less accurate yet faster PV +
T models.

3.3 Modelling Alternatives and Decisions

Since we target a SystemC model implementation, we will use the SystemC TLM
terminology in the following but keep the term CX for our model.

3 On Construction of Cycle Approximate Bus TLMs 35

3.3.1 Concurrency

In most PV and PV + T models, slaves are passive and masters are active components.
This limits the achievable accuracy because master and slave cannot operate concur-
rently. For example, a master cannot prepare data for the next transaction while a slave
processes the master’s current transaction request. To avoid this possible deviation from
detailed system timing, we choose to make slaves active components in our CX model.

Another modelling alternative pertains to the modelling of the bus as an active
or passive component. This is closely related to arbitration modelling, discussed at
the end of Section 3.3.

3.3.2 Communication Mechanisms

PV and PV + T models typically employ transfer of control flow (blocking subprogram
calls) as a mechanism for communication between master and slave. This is in conflict
with the desired concurrency of master and slaves. Therefore, we use data flow to pass
messages between communicating blocks. However, for large message payloads such as
burst data, we use a shared memory implementation where only a pointer to the shared
data is passed as part of the message. Thereby, copying of the payload is avoided and
simulation performance increased. Access conflicts on the shared memory are avoided
by limiting access by the communication partners (master, slave, bus model) to disjoint
phases of the transaction. The dynamic memory management is handled by the master’s
port, hidden from the user, to avoid memory leaks and dangling pointers. Memory is
allocated upon start of a transaction and freed when the master has obtained the last data
of a transaction response according to the programming model (cf. next subsection).

We have tried to avoid a suspected overhead due to repeated creation and dele-
tion of memory blocks by reusing a pool of such blocks. This had no significant
impact on simulation speed; possibly because such optimization is already imple-
mented in the C++ runtime library’s heap management.

Another modelling choice must be made between use of standard TLM channels
(tlm_fifo) to connect masters and slaves with the bus model vs. direct connection
to interfaces exported by the bus. The latter option is likely to be more efficient
because it avoids the overhead of storing and retrieving messages in/from a tlm_
fifo. Moreover, the master’s interface method calls will go directly into the bus
model, enabling an implementation that reduces the number of context switches
during simulation. Both variants have been implemented and their resulting simula-
tion performance is compared in Section 3.4.

3.3.3 Programming Abstraction

In most PV and PV + T models, subprogram calls serve as a well-understood pro-
gramming abstraction of communication operations. However, subprogram calls

36 M. Radetzki, R. Salimi Khaligh

cannot be used between concurrent or distributed model objects. Remote procedure
calls (RPC) are a mechanism that could be adapted from distributed programming;
however, in the presence of return parameters, they would block the master which
would compromise the accuracy of our model. Mechanisms like CORBA enable
non-blocking communication, but they are too heavyweight for use in a fast trans-
action level simulation.

As a compromise, we have adapted for the purpose of TLM the active object
design pattern known from concurrent object-oriented programming, see Fig. 3.1.
A key concept of this pattern is the future object which is immediately returned as
result of a non-blocking subprogram call. In our adaptation, the call models a non-
blocking communication operation and the future object can later be used by the
master to obtain results from that operation (the transaction response) at its own
discretion. Beyond that, the future object is also used to allow the master to delay
the supply of values that belong to the transaction request to a time after request
initiation. Thereby we can accurately model that the master may supply (retrieve)
bus word number i up to (starting from) the i-th cycle after the start of a burst trans-
fer instead of providing or receiving all burst data at the beginning or at the end of
a transaction.

Another active object concept is the guard which can be defined individually per
operation at the slave side, cf. Fig. 3.1. We utilize the guard as a programming
abstraction of a bus feature that allows a slave to split a transfer that cannot be
served immediately, and to resume that transfer when appropriate. As an efficiency
improvement over [12], we have modelled an event-based resume mechanism to
avoid polling the guard in each cycle during which a transaction is split. Moreover,

Mi : Master Sj : Slave

put transaction get transaction

(SPLIT)

get

execute

false

f : Future tx : Transaction

value

guard?

read

value

B : Bus

statusset_

value

Fig. 3.1 Active object pattern for TLM

3 On Construction of Cycle Approximate Bus TLMs 37

the models presented in this contribution facilitate for the first time the splitting of
burst transfers at the granularity of the transaction that models the transfer rather
than single bus word transfers.

3.3.4 Bus Features

The most basic bus features are single bus word read and write transfers (single
transfers). Successive transfers to consecutive addresses can be combined into a
burst transfer. Burst transfers may have a fixed or user-defined length. They may
be pre-emptible or not (locked). The burst address sequence may wrap around at
block boundaries (wrapping burst) or not. We model all these transfers and their
properties in an object-oriented way as C++ transaction classes and attributes (data
members). Details about this modelling style can be found in [11].

Another feature found in most high performance buses is pipelining. To employ
pipelining, transfers are decomposed into phases, and different phases of subse-
quent transfers are allowed to execute in parallel. We model the phase as a state
attribute of a transaction which is controlled by the bus model. Pipelining can be
modelled in a cycle accurate way by introducing a number of stages into the bus
model as shown in [13]. Our CX model covers pipelining within a single transac-
tion (which is relevant for burst transactions), but neglects it at the boundary
between different transactions for performance reasons.

We model split transfers using the guard mechanism for abstraction as presented
in the previous subsection. The OCP L-2 model is the only other CX model known
to have built-in split transfers. An advantage of our model is that thanks to the pro-
gramming abstraction, the designer of a bus master model is relieved of taking care
of the split transfer handling.

3.3.5 Arbitration Modelling

This subsection is concerned with the mechanisms employed for modelling arbi-
tration; the discussion is largely independent of arbitration policy. In CA models,
a time or clock triggered arbitration process is executed once per cycle. An effi-
cient CX model can limit arbitration under the assumption of a time-invariant
arbitration protocol because the grant decision does not change unless the state of
the waiting and active transactions changes. Re-arbitration needs to be performed
only in simulation cycles in which a new transaction arrives to the bus or in which
the currently active transaction is finished or split (allowing a waiting transaction
to be granted the bus).

Re-arbitration can be modelled with one or a combination of the following meth-
ods: If the bus model exports an interface, the interface methods, executed with the
masters’ processes, may perform arbitration without the need for a simulation process

38 M. Radetzki, R. Salimi Khaligh

context switch. This comes at the cost of multiple re-arbitration if multiple masters
issue transactions in the same cycle, and it is not possible if communication is via
channels (e.g. tlm_fifo). In this case, the bus model needs a process that is triggered
by incoming transaction messages and performs arbitration actively (cf. M1, M2 in
Fig. 3.2). Since each channel has an event of its own, this requires the overhead of
creating or-event-lists to activate the arbitration process in SystemC. The number
of events can be reduced to one for all incoming transactions by implementing the
bus model itself as channel with interface methods that trigger an internal re-arbi-
tration event (cf. event in Fig. 3.2). Split or finished transactions can trigger the re-
arbitration event or an individual event.

3.4 Simulation Performance Results

The basic experimental setup used for performance evaluation of the bus models
includes two masters of different priority and one slave. The high priority master
issues transactions of increasing burst length that may be split by the slave, a RAM
model. The parameters of the bus model are chosen to reflect the cycle timing of
the AMBA AHB protocol [1], and priority based arbitration has been modelled. All
models have been compiled with the same options and have been simulated on a
computer with Pentium M 1.66 GHz.

With this setup, four different bus models have been simulated: A model CX1 at
the PV + T abstraction and a cycle-accurate model CA as reference points, and two
cycle-approximate versions, CX2 and CX3 using different choices of the identified
alternatives. CX2 is a model using tlm_fifos as channels while CX3 implements the
TLM interfaces by itself, using a single arbitration event.

3.4.1 Comparison of Different Models

Figure 3.3 shows the simulation performance, measured in the number of 32 bit bus
words whose transmission is simulated per second of CPU time, for the four models
and for bursts of different size. No transactions have been split in this simulation. All
models exhibit a performance that increases with the burst size due to less simulation

1 2 3 4 5 6 7 80

M1

M2
event

active waiting arbitration trigger

Fig. 3.2 Arbitration triggering mechanisms

3 On Construction of Cycle Approximate Bus TLMs 39

overhead for arbitration and switching between transactions per transmitted bus
word. We can see that the performance of the models CX2 and CX3 is consistently
higher (by an average factor of about 5) than CA, and that CX1 (PV + T) exceeds
CX2 and CX3 performance by an average factor of about 10. Only at very short
burst length CX3 performance exceeds CX1; the reason is that CX1 lacks some of
the optimizations that have been made in CX3.

At short burst length, model CX3 has a significant advantage over CX2, which
diminishes towards larger bursts. The reason for this model behaviour is that the CX3
optimization of avoiding tlm_fifos and using just a single event is more significant
when simulating short bursts requiring a higher rate of channel accesses and events.

3.4.2 Pre-emption Dependency

Different from PV + T, models CX2 and CX3 can simulate the pre-emption of
transactions. To measure the effect of pre-emption on simulation performance, we
have parameterized the slave model so that it randomly splits transactions. The
percentage of bus word transfers which are split (i.e., multiple splits of a single
transaction are possible) has been varied from 0% to 50%. Figure 3.4 shows the
resulting simulation performance for model CX2. Performance degrades with
increasing pre-emption ratio. It is reduced by a factor of up to 10 for long bursts
and 50% pre-emption, compared to the non-preemptive case. Performance degradation

100000

1e+06

1e+07

1 10 100

S
im

ul
at

io
n

pe
rf

or
m

an
ce

 [c
yc

le
s/

s]

Transfer size [words]

CX1
CX3
CX2
CA

Fig. 3.3 Performance of models at different levels

40 M. Radetzki, R. Salimi Khaligh

becomes less as transfer size decreases because re-arbitration due to a transfer split
more often coincides with re-arbitration due to a request by the other master. Since
the latter has to be simulated anyway, the split does not cause a simulation overhead
in this case.

The same measurement has been performed using model CX3, with results
shown in Fig. 3.5. Performance is generally higher compared to CX2, and the deg-
radation factor due to pre-emption of bursts is down to a maximum of about 3. This
is again due to the optimized implementation of model CX3, which also reduces
the overhead of performing re-arbitration in the case of transaction pre-emption and
completion.

3.4.3 Bus Component and Congestion Dependency

In order to evaluate simulation performance in the presence of more than two mas-
ters, model CX3 has been simulated in a setup with a number of masters varying
from 1 to 16. The number of slaves also varies; in each of the simulations performed
it corresponds to the number of masters so that n masters are simulated together with
n slaves and the bus model. The masters have different static priorities. In the simu-
lated scenario, the masters are synchronized so that for each simulated transfer size
in the range of 1 to 64 words, all masters can complete their transfers of a given
transfer size and then together move on to the next transfer size.

Figure 3.6 depicts the model’s simulation performance under the constraint that
the slaves do not split transfers. Generally, simulation performance decreases as the

100000

1e+06

1 10

S
im

ul
at

io
n

pe
rf

or
m

an
ce

 [c
yc

le
s/

s]

Transfer size [words]

 0% split
 5% split
10% split
15% split
20% split
30% split
50% split

Fig. 3.4 CX2 performance with pre-emption

3 On Construction of Cycle Approximate Bus TLMs 41

number of masters increases. This is due to an increased average overhead for arbi-
tration and due to the fact that in the presence of more masters, transfers of lower-
priority masters tend to be pre-empted more often by the higher priority masters. The
spread between the curves for 1 master and 16 masters is by a factor of about 2.

100000

1e+06

1 10

S
im

ul
at

io
n

pe
rf

or
m

an
ce

 [c
yc

le
s/

s]

Transfer size [words]

 0% split
 5% split
10% split
15% split
20% split
30% split
50% split

Fig. 3.5 CX3 performance with pre-emption

100000

1e+06

1 10

S
im

ul
at

io
n

pe
rf

or
m

an
ce

 [c
yc

le
s/

s]

Transfer size [words]

1 master
2 masters
4 masters
8 masters

16 masters

Fig. 3.6 CX3 performance for different numbers of masters (no split transfers)

42 M. Radetzki, R. Salimi Khaligh

Figure 3.7 shows simulation performance for a similar scenario but with 25% of
all transfers being split by a slave.

3.5 Conclusions

We have shown the design of a cycle-approximate model that covers all bus features
and represents bus transfers by abstract transactions in an almost cycle-accurate
way. The simulation performance of this model is between the performance of a
cycle-accurate model and the performance of a PV + T model that does not cover
transaction pre-emption. We argue that modelling at an accuracy level between PV
+ T and CA is useful for architectural exploration because it permits significantly
more precise estimation than PV + T. Therefore, a CX abstraction level should
complement the other levels instead of being dropped, which appears to have hap-
pened in SystemC TLM standardization.

References

1. ARM Ltd.: AMBA Specification (Revision 2.0). Document ID: ARM IHI 011A, www.arm.
com/products/solutions/AMBA_Spec.html, accessed 7.11.2006.

2. ARM Ltd.: Cycle Accurate Simulation Interface (CASI). www.arm.com/products/DevTools/
Real_ViewESLAPIs.html, accessed 11.10.2006.

100000

1e+06

1 10

S
im

ul
at

io
n

pe
rf

or
m

an
ce

 [c
yc

le
s/

s]

Transfer size [words]

1 master
2 masters
4 masters
8 masters

16 masters

Fig. 3.7 CX3 performance for different numbers of masters (25% split transfers)

3 On Construction of Cycle Approximate Bus TLMs 43

 3. L. Cai, D. Gajski: Transaction Level Modeling: An Overview. Proc. CODES + ISSS, 2003.
 4. A. Donlin: Transaction Level Modeling: Flows and Use Models. Proc. CODES + ISSS, 2004.
 5. R. Dömer, A. Gerstlauer, D. Gaijski: SpecC Language Reference Manual (Version 2.0).

University of California, Irvine, CA, www.ics.uci.edu/specc/reference/SpecC-LRM_20.pdf,
accessed 7.11.2006.

 6. F. Ghenassia (Ed.): Transaction-Level Modeling with SystemC – TLM Concepts and
Applications for Embedded Systems. Springer, Dordrecht, 2005.

 7. IEEE Standard 1666-2005: SystemC 2.1 Language Reference Manual. IEEE, 2005.
 8. W. Klingauf, R. Günzel, O. Bringmann, P. Parfuntseu, M. Burton: GreenBus – A Generic

Interconnect Fabric for Transaction Level Modelling. Proc. 43rd Design Automation
Conference (DAC). San Francisco, CA, 2006.

 9. OCP International Partnership: Open Core Protocol Specification (Release 2.1). www.ocpip.
org, 2006.

10. Open SystemC Initiative: TLM 1.0 API and Library. www.systemc.org, 2005.
11. M. Radetzki: Object-Oriented Transaction Level Modelling. In S. Huss (Ed.): Advances in

Design and Specification Languages for Embedded Systems. Springer, Dordrecht, 2007.
12. M. Radetzki: Modellierung mit Guarded Transactions zum robusten Entwurf von Hardware-

Software-Systemen in SystemC. Proc. 1. GMM/GI/ITG Fachtagung Zuverlässigkeit und
Entwurf, München, 2007.

13. R. Salimi Khaligh, M. Radetzki: Efficient and Extensible Transaction Level Modeling Based
on an Object-Oriented Model of Bus Transactions. Proc. Int’l Embedded Systems Symposium
(IESS). Irvine, CA, 2007.

14. G. Schirner, R. Dömer: Fast and Accurate Transaction Level Models using Result Oriented
Modeling. Proc. Int’l Conference on Computer Aided Design (ICCAD). San Jose, CA, 2006.

Chapter 4
Combinatorial Dependencies in Transaction
Level Models

Robert Guenzel1, Wolfgang Klingauf1, and James Aldis2

Abstract Transaction-level modeling (TLM) allows for the design of virtual
prototypes, providing considerably faster simulation speed than RTL models.
But combinatorial dependencies are often inexactly modeled in terms of cycle
accuracy, leading to imprecise simulation results. If, however, precise results are
desired, additional coding and simulation effort is required. As a result, simula-
tion performance drops down. This paper surveys the existing techniques to model
combinatorial dependencies in TLM and presents a novel approach based on
synchronization layers. Experimental results with SystemC prove our technique to
enable higher simulation speed than the surveyed approaches, without inheriting
their disadvantages.

Keywords Transaction-level modeling, SystemC, Combinatorial dependencies,
Cycle accuracy

4.1 Introduction

Transaction-level modeling (TLM) enables designers to raise the abstraction level
of system models, narrowing the productivity gap significantly [3, 5, 6]. With TLM,
hardware and software can be described in a variety of ways, ranging from untimed
models to cycle accurate models with the interfaces being just as abstract as the
model requires [4].

The scope of this paper is cycle accurate TLM (CATLM), which promises
busses and networks on chip to be simulated magnitudes faster than with RTL
models, while achieving the same accuracy of simulation results. To this end, it is
vital to fully take combinatorial dependencies into account, when extracting more
abstract CATLM models from RTL models.

1 Technical University of Braunschweig, Department E.I.S.

2 Texas Instruments, France

E. Villar (ed.) Embedded Systems Specification and Design Languages, 45
© Springer Science + Business Media B.V. 2008

46 R. Guenzel et al.

Most of the recent languages or language extensions supporting CATLM are
based on discrete event simulators (DES), like SystemVerilog, SpecC or SystemC.
DES use the concept of delta-cycles as infinitesimally small amounts of time.
A single simulation time step can consist of many delta-cycles, whose number
depends on the quantity of consecutive signal updates and event notifications during
a simulation time step.

A major problem in CATLM is combinatorial calculation, such as combinatorial
arbitration in busses.

In CATLM, modules are connected via channels as an abstraction of RTL wires.
Processes that read values from such TLM channels are not aware of the process
execution order, so that they cannot know whether modules that write to the chan-
nel are already executed at the current simulation time step. Thus, the reading
module cannot identify the value to be valid.

Figure 4.1a shows an example of combinatorial arbitration (IBM CoreConnect
OPB [7]) in RTL. All masters issue their requests at the same point of simulated
time but each in another delta-cycle, denoted as ∆. In RTL the grant signals get
re-evaluated with every change of one of the request signals and thus produce false
intermediate results.

A poor CATLM implementation of the OPB arbiter would equally grant each
incoming request, as it does not know whether higher priority request will arrive
during the same cycle (Fig. 4.1b). If one does, the new grant to the higher priority
master implies the removal of the grant to the lower priority one, which complicates
the code, rendering it less abstract as necessary. Ideally a grant call should only
appear once per cycle to obtain maximum simulation speed. To this end, the simula-
tion process that reads all the input channels, calculates the result of the arbitration,
and does the grant call, should only execute after all input channels carry a stable
request value for the recent cycle. So this process has to be synchronized with all
the input channels. In other words it must not be executed before all processes that
might request access to the bus have been executed (Fig.4.1c).

a b c

Fig. 4.1 OPB combinatorial arbitration

4 Combinatorial Dependencies in Transaction Level Models 47

In today’s system-level design languages, however, this kind of manually con-
trolled partial process execution order is not supported.

Section 4.2 will show how the problem is tackled throughout academia and
industry. In Section 4.3 we will introduce a novel solution for the synchronization
problem and finally Section 4.4 compares all the approaches and we conclude in
Section 4.5.

4.2 Known Solutions

In this section already existing solutions to the synchronization problem are
described and their advantages and disadvantages are discussed. Three important
terms that will be used throughout this section are alteration calls (AC), readout
calls (RC) and the length of a combinatorial chain. In CATLM interface method
calls (IMCs) can be classified as either calls that alter the state of the connected
channel (AC) or that read the state of the connected channel (RC).

A combinatorial chain is considered a sequence of combinatorial dependencies.
For example if a signal c is combinatorially calculated out of signals a and b, the
length of the chain from a to c is one. If there is also a signal d which gets calcu-
lated out of a signal e and the aforementioned signal c, the length of the chain from
a to d is two.

To simplify matters, we assume that there are events that get notified if a
CATLM channel changed its internal state, so the connected modules can react
to these changes. This assumption is true for many recent TLM frameworks
[8, 9, 11].

4.2.1 Explicit Retraction

The most naive way solving the synchronization problem is to implement a retrac-
tion just like in RTL simulations: Processes will always assume that RCs return
stable values and perform the corresponding ACs. Afterwards they will listen to an
event indicating a change of the channel state, and in case it occurs will redo the
AC with updated content or have to explicitly retract their previous AC (e.g. an
OPB arbiter would have to retract a grant call). Since ACs have an immediate influ-
ence on the module(s) connected to the channel, the modules have to be imple-
mented expecting multiple transfers over a channel during a single clock cycle.
This introduces a certain amount of implementation overhead and in case of large
or branching combinatorial chains the retraction can consume a severe amount of
simulation time, as it leads to many recalculations. Furthermore, explicit retraction
limits the way in which the CATLM module internal behavior can be more abstract
than the RTL module behavior, since they have to be able to handle glitch-like com-
munication, just as RTL modules do.

48 R. Guenzel et al.

4.2.2 Negative Edge Exploitation

As introduced in [6] the synchronization between combinatorially dependent mod-
ules can be done using the negative edge of the clock. Using this methodology, RCs
that are supposed to return stable values should be executed at the negative edge of
the clock used, since all connected channels will get updated at the rising edge
of the clock. This scheme works well in small systems and introduces close to no
implementation or simulation overhead, but absolutely fails when combinatorial
chains exceed the length of one, because the designer simply runs out of negative
edges.

4.2.3 Delta-Cycle Waiting

Another approach to synchronization is waiting until the value to be read by an RC
is known to be stable. Here we assume that all modules know for each of their input
ports the number of delta-cycle (after the clock edge has been seen) until the input
can be considered valid.

If this information is available as a number ranging from zero (the delta-cycle of
the clock edge) to infinity, each module can determine the maximum and minimum
of these numbers namely n

min
 and n

max
. Since in DES a single process cannot deter-

mine from which event it was started, a module process supposed to perform the
RCs and the resulting AC will start due to the occurrence of any one of the state
change events from one of its inputs and then wait for n

max
−n

min
 + 1 delta-cycles,

thereby ensuring that all the inputs are stable regardless which one started the proc-
ess. As a consequence, the delta-cycle in which the module will perform the AC
will occur n

max
 + 1 or n

max
−n

min
 + 1 + n

max
 delta-cycles after the clock edge or in

between those two values depending whether the process was started by the earli-
est, the latest or some other event. The uncertainty of the delta-cycle in which the
AC occurs is called delta-cycle jitter.

4.2.4 Time Waiting

These drawbacks of delta-cycle waiting were also identified by the OCP-IP
SLDWG [9] and were overcome by waiting for time instead of delta-cycles.

Here a module does not need to be aware of the delta-cycles after the clock edge
after which the inputs are stable, but the time at which inputs are stable. Thus,
inputs that are stable an arbitrary number of delta-cycles after the clock edge are
treated to be stable a small fraction of simulated time after the clock edge. That
means that ACs that originate in combinatorial modules occur a measurable time
after the clock edge. So again n

min
 and n

max
 can be identified and the time to wait

4 Combinatorial Dependencies in Transaction Level Models 49

after the occurrence of any input channel change event can be calculated as (n
max

−
n

min
 + 1)*(period fraction). As a result, the delta-cycle wait loops of the former

method can be replaced by single timed waits, reducing the simulation overhead
significantly.

The major drawback of this approach is, that now a delay that is not a multiple
of the clock period is introduced, which has no equivalent in the RTL model or even
silicon. These additionally added latencies complicate the comparison between
RTL and CATLM traces.

It is important to note that both the delta-cycle and the time waiting technique
rely on an information distribution mechanism that allows modules to receive and
send information when channels get stable values.

4.2.5 Always Transmitting

A fourth way of synchronizing is used by the cycle accurate simulation interface
(CASI) of ARM’s RealView ESL API [1]. In this approach every module performs
all its ACs during a clock cycle, either altering the state of the target channel or indi-
cating that nothing is to be changed. As a consequence, combinatorial modules can
simply wait for all input channels to be updated before issuing ACs themselves.
Of course this introduces a significant simulation overhead, especially when there
are only infrequent real updates to channels and therefore many ‘no-change’-calls.

4.2.6 Cycle Based Simulation

Cycle based RTL or gate level hardware simulators are able to reorder event and
process executions due to the known process execution dependencies based on sig-
nal sensitivities [10]. Thereby all simulation processes are executed at most once
per cycle. In other words all processes are synchronized to each other. However, in
CATLM the simulator cannot create such a static process execution order because
of the fact that a CATLM process can read channels without being directly or indi-
rectly sensitive to any of the channel’s events. Hence, the simulator does not know
which AC on a channel might affect a certain process without executing it.

4.2.7 Comparison

In conclusion, explicit retraction should be avoided as it prevents the designer to
raise the abstraction of the internal behavior sufficiently above RTL. Negative edge
exploitation is not an adequate generic approach as it limits combinatorial chains to
length one. The delta-cycle waiting approach produces correct results by a fair

50 R. Guenzel et al.

amount of code overhead but introduces an unacceptable simulation overhead,
while the time waiting approach requires only small code and simulation overhead
but produces undesirable delays. Finally the always transmitting technique provides
accurate simulation results and is well suited for designs in which each module
communicates intensively, but leads to significant simulation performance losses if
modules communicate only infrequently (see Section 4.4 for experimental
results).

Section 4.2.6 showed that knowledge about process execution dependencies
may also help solving the synchronization problem.

4.3 A Novel Synchronization Approach

The comparison of combinatorial calculation techniques in transaction-level mode-
ling points out, that all examined approaches either lack simulation performance or
introduce a considerable overhead in terms of development effort.

The most appealing approaches are the delta-cycle waiting and time waiting
techniques, as they introduced only a small implementation overhead. Both achieve
synchronization by moving the call of the RC to a delta-cycle in which it is known
that the RC will return a stable value. While delta-cycle waiting creates exact simu-
lation results, its major disadvantage is that the simulation overhead quickly
becomes significant.

An ideal solution should both provide the accuracy of the delta-cycle wait and
perform as fast as the timed wait.

In the following our approach based on synchronization layers is presented,
which meets these requirements and is based on process execution reordering simi-
lar to cycle based simulation.

4.3.1 Basic Definitions

Before we describe our approach in detail, some definitions are needed:
As stated in Section 4.2 for each channel ch in a CATLM system there is a set

of ACs denoted as AC(ch) and a set of RCs denoted as RC(ch). For each given chan-
nel in a CATLM model applies that a channel can be read and written:

 AC(ch) ≠ Ø & RC(ch) ≠ Ø. (4.1)

Furthermore for each c Œ AC(ch) there is a set of RCs whose return values get
altered by calling c, which is denoted as a(c, ch). There may be IMCs that are AC
as well as RC, which is only allowed if the call does not alter the value it returns,
in other words:

4 Combinatorial Dependencies in Transaction Level Models 51

 c Œ AC(ch) Ç RC(ch) fi c Ï α(c, ch) (4.2)

For each module m in a given CATLM model there is a set of ports that are owned
by this module, denoted as π(m).

Each p Œ π(m) is bound to exactly one channel ch, so that each IMC on p affects
ch. Function con(p) returns the channel which p is connected to, function par(p)
returns the module that owns the port p.

For each IMC c and channel ch, π(c, ch) returns all ports which are connected
to ch and may issue c. Because IMCs in CATLM have a mapping to RTL signals,
and RTL signals may not have more than one driver,

 c Œ AC(ch) fi p (c, ch) = 1. (4.3)

A combinatorial dependency between an RC and an AC in a module can be defined
as a pair of triples ((m,p,c),(m,q,d)) where m is a module, p Œ π(m) and c Œ
RC(con(p)) and c has to return a stable value before d Œ AC(con(q)) with q Œ π(m)
can be called.

In the following m, p, c, d and q are always defined as before if not stated
otherwise.

For each such triple t = (m,p,c) let t(t) be the set of all triples (m,q1,d1)…
(m,qn,dn) that fulfill the aforementioned property.

So t is basically the set of ACs that will be directly executed after the RC c on
port p of module m has been called.

The set of combinatorial modules in a given CATLM model mod is called
k(mod), and for each m Œ k(mod) there is at least one triple t = (m,p,c) such that:
t(t) Ï ∆.

4.3.2 Synchronization Layers

The novel synchronization approach will be based on synchronzation layers that
can be defined as a property of a triple (m,p,c) with m Œ κ(mod), p Œ π(m) and c Œ
AC(con(p)) È RC(con(p)). This property can be assigned to a triple t by SL(t,
newsl), where newsl is a non-negative integer and can be read from a triple t by
SL(t). If a synchronization layer of a triple is not assigned yet, SL(t) will return 0.

Figure 4.2 shows a simple system with two combinatorial arbiters. Masters issue
requests on their channels and arbiters combinatorially forward the higher priority
request to their outputs. The target will accept requests and signals this acceptance
within the same cycle. The target is implemented in a way that it only expects a
single request per cycle, which enables a high simulation performance as internal
housekeeping can be kept small. We assume that the masters and arbiters use an AC
named startReq to put a request on a channel. The target and the arbiters use an
RC named getReq to get a request from a channel. The numbers annotated on channels
and ports in Fig. 4.2 represent the desired execution sequence of those ACs and

52 R. Guenzel et al.

RCs. The numbers of the channels and output ports relate to ACs, while the num-
bers of the input ports relate to the RCs. The semantic is that a call with number x
has to be called before a call of number y > x, thereby ensuring that ACs on a chan-
nel are always called before RCs. We denote these numbers as synchronization
layers.

With the definitions from Section 4.3.1 the following functions can be defined:
function setSLp(p, c, newSL);
 p is port; c is RC; newSL is integer;

setSLm (par(p), p, c, newSL+1) ;
end;
function setSLm(m, p, c, newSL);
 m is module; p is port; c is RC; newSL is integer;

if (SL(m,p,c)<newSL)
SL((m,p,c), newSL);

for each (m,q,d) Î t(m,p,c) do
if (SL(m,q,d)<newSL)

setSLch(con(q), d, newSL);
SL((m,q,d), newSL);

end;
function setSLch(ch, c, newSL);
 ch is channel; c is AC; newSL is integer;

for each d Î a(c, ch) do
for each p Î p(d,ch) do

setSLp(p, d, newSL);
end;
The function setSLch informs all ports that are connected to a channel at which
synchronization layer the return values of RCs are updated, while the function setSLp
forwards this information from a port to the module that owns the port. The function
setSLm stores the provided synchronization layer information for a triple (m, p, c)
with m Î k(mod), p Î p(m) and c ÎRC(p) and assigns the synchronization layer to
all triples (m, q, d) Î t((m,p,c)) and also informs the channel that is connected to
q about the synchronization layer at which d will be called. Note that a synchroniza-
tion layer of a triple is only updated when the new value is larger than the old
value.

Fig. 4.2 Synchronization layer determination

4 Combinatorial Dependencies in Transaction Level Models 53

Given the functions setSLp, setSLm and setSLch, all synchronization layers can
be determined by calling setSLch(ch,c,0) for each AC c of each channel ch.

This will inform all channels that their ACs will occur on synchronization layer
0. In fact, this is only correct for channels whose ACs are not called due to combi-
natorial dependencies. So if the function selects a channel whose inputs get set due
to combinatorial dependencies first, false SL information will be distributed.
However, this false information will then be overridden by the correct information
as soon as the channel whose ACs are not called due to combinatorial dependencies
gets initialized with setSLch(ch,c,0). It is important to notice that the if-clause in
function setSLm prevents correct information to be overridden.

Thus, the numbers shown in Fig. 4.2 will be determined by applying
setSLch(ch,c,0) to each AC c of each channel ch in the model, provided that the sets
t and a are set up correctly in the arbiters and channels.

4.3.3 Use of Synchronization Layers

Now we can use the synchronization layer information as follows:
At start of simulation a global synchronization layer is set to zero. Whenever a

simulation process reaches a point at which it is about to do RCs followed by ACs
without simulation time passing in between (i.e. there exists a combinatorial
dependency between the RCs and the ACs), the process will check whether the
global synchronization layer is equal to or larger than the highest synchronization
layer of the RCs the module wants to perform. If the check fails, the process will
be suspended and the simulation continues with another runnable process. Now an
arbitrary number of delta-cycles may pass, in which other processes may become
runnable and will be executed. During this time other processes may also be sus-
pended because their synchronization layer check fails. When there are no more
processes ready to run (which is normally the point of time at which the simulation
time is increased), the global synchronization layer gets incremented. All sus-
pended processes related to the new synchronization layer number are now started
again. Due to these wake ups, other processes may get started, suspended due to the
synchronization layer checks, and again an arbitrary number of delta-cycles may
pass. When there are no more runnable processes, the synchronization layer gets
incremented again, which should wake up the processes that want to execute on this
new synchronization layer. This sequence is repeated until there are no more run-
nable processes and no more synchronization layer related suspended processes.
Then, and only then the synchronization layer is reset to zero and the simulation
time is advanced.

For example if the process of Arbiter2 in Fig. 4.2 wakes up because of the event
from ch4, which happens at synchronization layer zero, it does not know which
event started it. So it will check the global synchronization layer and find it zero. If
it wants to make sure that the value on channel 4 is stable, it will suspend and re-
awake at synchronization layer one. But since it knows it needs both a stable value

54 R. Guenzel et al.

from ch5 and ch4 to arbitrate correctly, it will not do this, but suspend and re-awake
at synchronization layer 2.

4.3.4 Incorporation into DES

To examine the concept of synchronization layers, it has to be used within a DES.
The following explanations refer to SystemC but can also be mapped onto other
DES.

SystemC and C++ offer simple means by which p, con and par (in all their varia-
tions) can be determined and so we implemented a set of small base classes for ports,
channels and modules from which the designer can derive its own modules, ports and
channels. Thereby the synchronization layer information distribution as described in
Section 4.3.2 gets enabled automatically. The information that must be added by the
designer is the definition of a and t and the synchronization layer checks, but the base
classes for the channels and modules offer simple APIs for that.

The SystemC kernel execution is shown in Fig. 4.3. The dark shaded boxes,
arrows and texts show the standard kernel execution according to [2], while the
light shaded box shows the necessary additions to use the synchronization layers.
We added those changes using a small kernel extension that only needs one addi-
tional line of code in the standard SystemC kernel, while the rest of the extension

Fig. 4.3 Extended SystemC kernel execution

4 Combinatorial Dependencies in Transaction Level Models 55

is kernel external. Note that the transition marked as 1. ends in Increase Time in the
standard execution.

Before sc_start() the synchronization layer information is distributed as
described in Section 4.3.2. During simulation and before simulation end the behav-
ior of the modified SystemC kernel matches the one described in Section 4.3.3.

4.4 Experimental Results

To verify the performance valuation mentioned in Section 4.2, we implemented a
simple, scalable test scenario. The test system comprises of an adjustable number
of arbiters, which combinatorially arbitrate between two masters, and are connected
as shown in Fig. 4.2. To increase the number of arbiters in the system of Fig. 4.2,
the output of arbiter 2 is connected to the first input of the first additional arbiter,
while its second input will be driven by a new master. The outputs of the new arbi-
ters are connected to further new arbiters or to the target module, thus extending the
arbiter chain shown in Fig. 4.2. This simple design is a worst case scenario for syn-
chronization, as the first input of each arbiter is always driven through the longest
possible combinatorial chain, while the other input is always driven directly by a
clocked process. The system was implemented using all but the negative edge
exploitation approach, because it does not support chain lengths longer than one.

Each master issues a request, waits for the acceptance of the request and then
waits a randomized number of clock cycles. This sequence is repeated until each
master has successfully sent out 100,000 requests.

So besides the adjustable number of arbiters and therefore an adjustable combi-
natorial chain length, the other test parameters where the size of the data within a
request and the average number of clock cycles to wait between consecutive requests
(denoted as the break in the following). The complete test comprised of about 3,000
different configurations, but due to space restriction we will show only the most
important ones here.

Figure 4.4 shows how simulation time changes with increasing length of the
combinatorial chain from master 1 to the target. For all measurements the average
latency between consecutive requests was 7.5 clock cycles and the data size was 64
bit. As stated in Section 4.2 the delta-cycle waiting approach leads to large simula-
tion times, when chain lengths exceed three stages.

So with short chains only, the difference between the approaches is minimal, but
gets significant as soon as there is at least a chain of length 4 or many parallel com-
binatorial modules in the system.

Figure 4.5 shows how simulation time depends on the length of the break
between consecutive requests. It can be seen, that the always transmitting technique
is strongly affected by that, while the other approaches are not. The reason is that
with increasing break length, the number of ‘no-change’ transfers increases, stress-
ing the simulation execution. On the other hand, in systems where each module

56 R. Guenzel et al.

communicates at nearly every clock edge always transmitting is an adequate alter-
native to timed waiting or synchronization layers.

Figure 4.6 shows the number of lines of code which were necessary to imple-
ment the behavioral parts of the modules and channels. By that we mean just the
code inside interface method calls and simulation processes, the rest of the code is
neglected. Explicit retraction introduces by far the most code overhead, while the

Fig. 4.4 Experiment: simulation time depending on combinatorial chain length

Fig. 4.5 Experiment: simulation time depending on break length

4 Combinatorial Dependencies in Transaction Level Models 57

other approaches all share about the same amount of code. The reason is that with
explicit retraction, a lot of effort has to be spend on being able to compensate tem-
poral mis-arbitration due to communication ‘glitches’.

In summary, always transmitting fails when module communication happens
only infrequently, delta cycle waiting fails with long combinatorial chains and
explicit retraction introduces a significant code overhead. The two techniques that
provided best performance, that scale best when combining chain length and break
lengths and that introduce only a small code overhead are therefore timed waiting
(as expected in Section 4.2) and our synchronization layer approach.

But since the timed waiting technique introduces undesirable simulated time
delays, we favor the use of synchronization layers, in case the system comprises of
many combinatorial modules.

4.5 Conclusion

In this paper we discussed the problem of modeling combinatorial dependencies
accurately at the transaction level. We described various solutions that have been
proposed and compared them to each other.

Out of this comparison came the idea for a novel approach, which we presented
and evaluated as the synchronization layer approach. Experiments showed that the

Fig. 4.6 Analysis: lines of behavioral code

58 R. Guenzel et al.

novel approach can compete with the best performing already existing solutions,
while avoiding their disadvantages.

References

 1. ARM Limited (2007) RealView ESL API. http://www.arm.com/products/DevTools/
RealViewESLAPIs.html. Accessed 02 February 2007

 2. Black DC, Donovan J (2004) SystemC: From the Ground Up. Kluwer, Dordrecht, The
Netherlands

 3. Burton M, Morawiec A (2006) Platform Based Design at the Electronic System Level.
Industry Perspectives and Experiences. Springer, Dordrecht, The Netherlands

 4. Cai L, Gajski D (2003) Transaction Level Modeling: An Overview. In: International
Conference on Hardware/Software Codesign and System Synthesis. Wiley-IEEE, Hoboken,
NJ

 5. Ghenassia F (2005) Transaction-Level Modelling with SystemC. Springer, Dordrecht, The
Netherlands

 6. Groetker T, Liao T, Martin S(2002) System Design with SystemC. Kluwer, Dordrecht, The
Netherlands

 7. IBM (2001) The CoreConnect Bus Architecture. http://www-01.ibm.com/chips/techlib/tech-
lib.nsf/productfamilies/CoreConnect_Bus_Architecture. Accessed 21 December 2006

 8. Klingauf W, Guenzel R, Bringmann O, Parfuntseu P, Burton M (2006) GreenBus – A Generic
Interconnect Fabric for TLM. In: Design Automation Conference, 2006 43rd ACM/IEEE.
ACM, New York

 9. OCP-IP (2006) A SystemC OCP Transaction Level Communication Channel r2.1.3. http://
www.ocpip.org/socket/systemc/. Accessed 03 December 2006

10. Palnitkar S, Parham D (1995) Cycle Simulation Techniques. In: Verilog HDL Conference,
1995. Proceedings. Wiley/IEEE Press, Hoboken, NJ

11. OSCI TLM WG (2007) TLM Transaction Level Modeling Library, Release 2.0 Draft 2. http://
www.systemc.org/downloads/drafts_review. Accessed 05 December 2007

Abbreviations

AC Alteration call
CASI Cycle accurate simulation interface
CATLM Cycle accurate transaction level modeling
DES Discrete event simulator(s)
IMC Interface method call
OCP-IP Open core protocol international partnership
OPB On-chip peripheral bus
RC Readout call
RTL Register transfer level
TLM Transaction level modeling
SLDWG System level design working group

Chapter 5
An Integrated SystemC Debugging
Environment*

Frank Rogin1, Christian Genz2, Rolf Drechsler2, and Steffen Rülke1

Abstract Since its first release the system level language SystemC had a signifi-
cant impact on various areas in VLSI-CAD. One remarkable benefit of SystemC
lies in the support of abstraction levels beyond RTL. But being able to implement
complex System-on-Chip (SoC) designs in SystemC raises the necessity of new
techniques to support debugging, system exploration, and verification.

We present an integrated debugging environment that facilitates designers in
simulating, debugging, and visualizing their SystemC models combining high-level
debugging with visualization features. Our work mainly focuses on developing an
easy to handle interface which supports debugging and system exploration of
SystemC designs.

Keywords High-level Debugging, SystemC, Graphical Debugging Environment,
System Level Design, System Exploration and Visualization

5.1 Introduction

SystemC is a C++ based system level description language that facilitates sys-
tem architects to specify their designs using a broader spectrum of abstraction
levels than traditional hardware description languages (HDL), like VHDL or

1 Fraunhofer Institute for Integrated Circuits, Division Design Automation, Zeunerstraße 38,
01069 Dresden, Germany; Email: {frank.rogin, steffen.ruelke}@eas.iis.fraunhofer.de

2 University of Bremen, Institute for Computer Science, Bibliothekstraße 1, 28359 Bremen,
Germany; Email: {genz, drechsle}@informatik.uni-bremen.de

* Partial funding provided by SAB-10563/1559 and European Regional Development Fund
(ERDF).

E. Villar (ed.) Embedded Systems Specification and Design Languages, 59
© Springer Science + Business Media B.V. 2008

60 F. Rogin et al.

Verilog, do. Equivalently to HDLs, cycle accurate operations as well as word
and bit level data types are supported. But also untimed algorithmic descriptions
can be included into a model raising the abstraction level, e.g. to transaction
level modelling (TLM). Thus, pure functional and even object-oriented code can
be used for specifications where the compiled model can be executed with
higher performance than an HDL simulation can do. All these features make
SystemC an excellent approach for modelling SoCs and allow implementing
HW/SW co-designs at various abstraction levels. For more details concerning
SystemC see [14].

Currently, the SystemC standard does not define a sophisticated debugging
interface, nor it provides any visualization support. Even though the simulation
kernel offers an interface to access signal values and interconnection structure,
a direct communication with the kernel requires additional C++ code in the
model. This forces a designer to gain advanced knowledge of many details
regarding the system and SystemC itself. Another point is that with growing
integration of SW components in HW designs, also size and complexity of the
considered system tend to increase. Thus it becomes less obvious where to start
and which blocks to observe in a debugging process. Furthermore, language
features such as multi-threading and event-based communication increase the
program complexity and introduce nondeterminism in the system behavior.
Consequently, many of the features mentioned above potentially complicate
debugging SystemC models.

In this paper we introduce an integrated debugging environment (IDE) for
SystemC. Besides simulation control and data hiding our approach extends the data
introspection capabilities of SystemC. It is non-intrusive and does not alter the
simulated model, nor the simulation kernel, or additional libraries (C++ STL,
SCV). Our solution supports SystemC aware debugging [15] with visualization
capabilities [9]. The user debugs and visualizes a design at arbitrary levels of
abstraction working at the functional level (e.g. finite-state machines, algorithms,
data-flow graphs) or the system level that means at the level of SystemC concepts
(e.g. signals, ports, events, processes, modules). The debugger kernel is based on
the Open Source debugger GDB [10] while the visualization makes use of the visu-
alization engine from Concept Engineering [4]. The visualization engine generates
different views of the model, supporting cross probing and annotation of the visual-
ized context. During a debug session the user has various possibilities to explore
dynamic and static debugging information, and to control the simulation. Thus, he
gets a fast and concise insight into the observed SystemC model which accelerates
and eases defect (also colloquial bug) detection, understanding, localization and
correction.

The rest of this chapter is organized as follows. Section 5.2 discusses related
approaches and tools which allow debugging SystemC designs. In Section 5.3 the
general architecture of our IDE is described in more detail while Section 5.4 con-
siders the provided debugging interface and the graphical frontend and its debug-
ging support. In Section 5.5 we illustrate some IDE features exemplarily and

5 An Integrated SystemC Debugging Environment 61

demonstrate their feasibility using a short example. Finally, Section 5.6 concludes
the paper and gives a perspective on future work.

5.2 Related Work

Debugging SystemC models requires hybrid techniques that grant access to
design components quickly but also allow evaluating ordinary C++ code.
Unfortunately, C++ fragments cannot be reached by using SystemC data intro-
spection techniques. And even though there are commercial and academical
tools, supporting SystemC debugging, only few of them offer an advanced visual
interface to the designer that has features like data hiding and cross probing to the
source code level.

RealView Debugger Suite [1] comprises a complete integrated development
suite that allows to implement, to simulate, to debug, and to analyze SystemC/C++
designs. It addresses architectural analysis as well as SystemC component debug-
ging at low level and at transactional level where especially the debugging of
embedded applications (running on remote targets such as ARM processors) is sup-
ported. Platform Architect [5] targets system-level design and verification based on
the Eclipse development framework [6]. It utilizes a native simulation environment
which is specially adopted to fit SystemC needs. The integrated debugger offers
specific commands supporting source-level and simulation breakpoints and
QThread debugging. Additionally, the user can initiate a graphical transaction trac-
ing of SystemC events, threads, and interface method calls activations. Contrary to
our approach both commercial solutions come with their own vendor-specific
SystemC kernel which prevents the easy integration into an already existing design
flow.

The GRACE++ system [16] uses SystemC simulation results to create Message
Sequence Charts in order to visualize and analyze inter-process communication.
Various filters help to reduce information complexity. The approach presented in
[3] applies the observer pattern [8] to connect external software to the SystemC
simulation kernel. This general method facilitates loose coupling but requires pos-
sibly undesired modifications of the kernel.

One of the first approaches accomplishing SystemC design visualization has
been introduced in [11]. The implementation uses the SystemC kernel to analyze
models during execution. An interactive graphical backend facilitates the design
visualization. Even though models can be specified using C++ features, but analy-
sis and visualization are limited to SystemC objects. Only the data flow can be
viewed, no behavioral information is available. Since this approach has to execute
the model without further information of declarations, it is not aware of detailed
positional information regarding the objects. Hence, cross probing facilities are
very restricted.

Another approach that facilitates designers in visualizing SystemC models is
[7]. Since it is based on data introspection too, it shares many restrictions with [11].

62 F. Rogin et al.

One major difference to [11] is the usage of an own graphical user interface that
has been especially designed for this approach but does not support features like
cross probing or path fragment navigation.

Contrary to the works described above, SystemCXML [2] and LusSy [12] do not
use data introspection for the purpose of analysis. While the extraction of the hierarchy
in SystemCXML is done via Doxygen, LusSy uses PINAPA [13]. The visualiza-
tion is realized as graph structures. But while LusSy generates a graphical output
showing the control flow graph of processes only, SystemCXML limits the visuali-
zation to data flow graphs.

None of the listed tools and approaches includes the following set of features:

● Work with the OSCI SystemC kernel
● Support high-level debugging
● Provide a highly developed visualization of SystemC designs

From this a small set of requirements can be derived, to support high-level SystemC
debugging:

● Non-intrusiveness to prevent the model, the SystemC kernel and additional
libraries from being altered

● Advanced commands implementing a high-level debugging interface
● Visualization that allows for abstraction, with direct linkage to all lower abstrac-

tion levels defined in the design

All mentioned works do not meet the requirements in terms of non-intrusive debug-
ging and visualization facilities.

5.3 Debugging Environment

Our IDE consists of three components. Each of these components realizes a partic-
ular task. As sketched in Fig. 5.1 our debugging flow starts at the original system
description which is being compiled to an executable.

Fig. 5.1 Architecture of the IDE

5 An Integrated SystemC Debugging Environment 63

The executable can be run in the debugger. In parallel the system description is
statically analyzed by the visualizer. The intermediate representation (IR) that is
generated after analysis can be used to render the model inside the graphical back-
end. RTLVision from Concept Engineering is used for this purpose. After passing
the SystemC elaboration phase successfully the debugger waits for user commands.
Those commands can be used to show or to hide details inside the visualization
back-end, as well as to control the simulation of the executed model. All commands
that influence the graphical view are directly propagated to the visualizer. Being
aware of the model structure the visualizer assembles commands and maps
SystemC components to the appropriate graphical symbols. Thus, RTLVision can
be instructed to switch to specific parts of the design and to update signal values
during execution.

The communication between the visualizer of our environment and RTLVision
is realized using TCP/IP. Thus a system engineer has a comfortable and secure way
sharing his knowledge with other colleagues far away. The exchange of data among
the visualizer and the debugger kernel is done using a protocol based on socket
communication.

5.4 Debugging Features

This section introduces the features our IDE offers for debugging SystemC applica-
tions. First, the debugging capabilities provided at system level are summarized.
Second, the visualization interface is detailed.

5.4.1 Debugging Interface

System level debugging requires various kinds of high-level information that
should be fast and easy retrievable. There, defects occur at different abstraction
levels that influence the appropriate debugging procedure and the used tools.

At functional level the defect is located at the source code level that means mainly
in low-level program details such as an erroneous implemented algorithm or a faulty
memory management. Because of SystemC C++ conformance due to a class library,
each standard C++ debugger can be applied at this level. For that reason, our debug-
ger kernel is based on the Open Source debugger GDB. GDB provides various fea-
tures which include for example stopping and continuing the simulation, or examining
the actual program stack, local variables, the memory, or source files.

At the more abstract system level the architecture and/or the interaction between
the different parts of a SystemC design are responsible for defects such as a wrong
communication between components (e.g. a specific protocol) or the faulty integra-
tion of an (third-party) IP block. C++ debugging features are not sufficient to retrieve
such defects quickly. Hence, the IDE enables the user to debug a SystemC design at

64 F. Rogin et al.

system level. Here, high-level breakpoints (e.g. breakpoints on events or processes),
the retrieval of static and dynamic simulation information (e.g. signal paths, or state
of scheduling queues), and the graphical design representation provide comprehen-
sive debugging support. A number of commands allow to interactively control the
visualization of a SystemC design and its simulation state. This additional abstraction
further simplifies and thus accelerates debugging. To explore the static system
 structure as well as the dynamic behavior, the IDE offers two command types:

● Examining commands. These commands allow getting a fast insight into the
parts of a design relevant for the actual debug session while non-relevant data
are explicitly excluded.

● Monitoring commands. Commands of this type support the user in obtaining
different data about the simulation state (such as signal values, or process activa-
tions) logged over a specified simulation time.

Examining and monitoring commands do not only have a direct impact on the exe-
cution of the model. They also alter the visualization of the design. The given set
of commands can be used to follow critical paths being observed for incorrect
behavior. But since these commands do not rely on the stimuli generated by a cer-
tain test bench, they can be used for system exploration as well. Table 5.1 assem-
bles a list of visualized high-level debugging commands.

An important requirement for all monitoring commands is a fast tracing of
requested values where the impact on the simulation performance should be mini-
mized. Retrieving current values directly by patching several SystemC kernel
methods would be the fastest, easiest, and most obvious approach. But to meet the
requirement of a non-intrusive solution, we use library interposition and preload a
shared library (libscpatch.so in Fig. 5.2). This library overwrites the corresponding
kernel methods with methods using callbacks to forward needed debugging infor-
mation. To activate preloading the LD_PRELOAD environment variable has to be
set. Thus, the dynamic linker is instructed to search our library first, thus using the
patched methods.

Table 5.1 Visualized debugging commands

Examining commands
vlsb Visualize the specified channel and all connected modules.
vlsio_rx Highlight I/O ports matching the given regular expression of the specified module.
vlsm Highlight all SystemC modules in the given hierarchy.
vzp Visualize the given process and all its driving and driven signals.

Monitoring commands
vlsv Label the specified signal or port with the current value that it holds at a specific

 time stamp.
vrmv Remove the label of the specified signal or port.
vtrace Trace the given signal or port and record its value at each simulation time step until

 the specified time is reached, then tracked values are attached as label.
vtrace_at Trace the given signal or port and record its value at the specified simulation time,

 then the tracked value is attached as label.
vpt Visualize the trigger events for the given process.

5 An Integrated SystemC Debugging Environment 65

5.4.2 Graphical Interface

The graphical interface for what RTLVision is used, bridges different abstraction
levels. Since our approach bases on the GDB debugger, text return messages pro-
posing changes regarding the system state can be very detailed. The graphical
interface bypasses this problem by rendering the structure of the simulated model
to three different views, as can be seen in Fig. 5.3. The schematic view shows
modules as functional blocks that can be collapsed and signals as interconnecting
wires. The cone view limits the set of currently displayed objects to a critical path.
Both views are bidirectionally connected to a source code view. The advantages of
these visualization features in our approach are:

● Annotation of SystemC names and declaration names
● Hierarchical visualization
● Cross probing
● Path fragment navigation
● Module exploration

All these features are controlled by the IDE observing the simulator that proposes
each state change to RTLVision. A state change alters the current display by:

● Highlighting signals, modules or ports
● Expanding or collapsing module hierarchies
● Annotating values to signals and ports

5.5 Practical Application

This section shows the practical application of our proposed debugging features. Some
provided features are highlighted in the first part of this section while the second part
demonstrates the successful and efficient debugging of a faulty RISC-CPU design.

5.5.1 Feature Illustration

To illustrate the utilization of our IDE we used the RISC-CPU design that is pro-
vided with the OSCI SystemC v2.0.1 library package [14]. Fig. 5.3 shows an
 example debug session simulating this design. The different views allow exploring

Fig. 5.2 Preloading kernel methods

66 F. Rogin et al.

the RISC-CPU design at various abstraction levels. Static and dynamic debugging
information are presented by different colorings, info boxes, labels, and dedicated
displays in the GUI, and as text output in the debugger console. Thus, the developer
gets a quick and concise insight into the overall CPU design structure and its
behavior.

The following two commands illustrate the provided visualized debugging func-
tionality exemplarily.

The vlsb command (Table 5.1) visualizes the specified channel and all con-
nected modules in the cone view of RTLVision. In case of a failure related to a
specific signal the user gets a quick overview about all its connections. Thus,
architects can focus on error search to the relevant modules only which helps
accelerating debugging. Fig. 5.4 sketches the visualization output after calling
vlsb with two signals of the RISC-CPU design in order to check their bindings to
the right ports:

(gdb) vlsb “ram_cs”
(gdb) vlsb “next_pc”

The vtrace_at command (Table 5.1) is a typical representative of the monitor-
ing command type. It traces the given signal or port and records the actu al value
at the specified simulation time stamp. The logged value is attached as label text

Fig. 5.3 Example debug session

5 An Integrated SystemC Debugging Environment 67

Fig. 5.4 Debug command vlsb

Fig. 5.5 Debug command vtrace_at

in RTLVision and can be displayed in an info box additionally. Monitoring dedi-
cated signal values during simulation is very helpful when the user does not
exactly know what is going wrong and when the defect infection occurs. Fig. 5.5
illustrates the visualized tracing of the top-level signal addr in the RISC-CPU
design at different time stamps to check whether the right addresses are for-
warded to the RAM:

(gdb) vtrace_at “addr” 42000
(gdb) vtrace_at “addr” 46000
(gdb) vtrace_at “addr” 50000
(gdb) c
…
(gdb) vlsb “addr”

Table 5.2 underlines the efficiency of our non-intrusive, patch-free approach
using library interposition (Section 5.4.1) while illustrating the performance of the
vtrace command (Table 5.1). So, the observation of 750,000 data sets over 125
signals leads to a slow down of factor 4 compared to a trace-free simulation while
the tracing of 50 signals increases the simulation time about 80%.

68 F. Rogin et al.

5.5.2 Example Debug Session

To show the efficiency and feasibility of our solution we want to investigate why a
small program works faulty on the RISC-CPU design. For this purpose, we use
several exploration and visualization features (Section 5.4.1) to locate the defect
quickly. First, the following program is simulated on the RISC-CPU which indi-
cates its incorrect processing.

1: ldpid 0
2: movi R5, 10
3: movi R6, 6
4: movi R7, 2
5: add R4, R5, R6
6: mul R4, R7, R4

After the initialization statement the three registers R5, R6, and R7 are loaded
with the integer values 10, 6, and 2, respectively. Then, R5 and R6 register contents
are added and the result is multiplied with the register content of R7, subsequently.
Thus, after program execution the value 32 has to be stored in register R4. Instead,
the register dump shows that R4 contains the value 8:

REG DUMP ==============================
R4(0x00000008) R5(0x0000000a)
R6(0x00000006) R7(0x00000002)

We start a debug session to find the failure cause. For simplification reasons we
suppose that the ALU works correctly. Furthermore, the right integer values seem
to be loaded into the registers, as seen in the register dump above. So, we assume
that the defect has to be searched in the controlling of the ALU where the ALU
is implemented by the module instance IEU. To get the right control signal the

Table 5.2 Exemplary performance slow down

 Slowdown over simulation time
 (# observed data sets)

of traced signals 1,000 ns 2,000 ns 3,000 ns

 0 1.0 1.0 1.0
 5 1.3 1.3 1.4
 (10,000) (20,000) (30,000)
 50 1.8 1.8 1.8
 (100,000) (200,000) (300,000)
 75 2.3 2.6 3.0
 (150,000) (300,000) (450,000)
100 3.0 3.2 3.6
 (200,000) (400,000) (600,000)
125 3.2 3.9 4.0
 (250,000) (500,000) (750,000)

5 An Integrated SystemC Debugging Environment 69

vlsio_rx command (Table 5.1) is applied at first. We suppose that the name of the
attached control port includes the string code:

(gdb) vlsio_rx “IEU” “code”
Using the path fragment navigation feature in RTLVision subsequently shows that
the only port reported by the vlsio_rx command is connected to the signal alu_op
(Fig. 5.6).

Fig. 5.6 Tracking down the op-code signal

Besides, we should trace the program counter represented by the signal
program_counter to observe the program execution. Consequently, we initiate a
monitoring of the two interesting signals using the vtrace command (Table 5.1) and
continue simulation:

(gdb) vtrace “program_counter” 110000
(gdb) vtrace “alu_op” 110000
(gdb) c
After simulation has stopped we investigate the traced behavior. To focus the error search
onto the relevant design parts only, the vlsb command (Table 5.1) is applied (Fig. 5.7):

(gdb) vlsb “program_counter”
(gdb) vlsb “alu_op”
Knowing that the reset phase ends after 30 ns the first operation code of interest is
transferred from the decoder unit (module instance IDU) to the ALU at 35.5 ns. The
reported value 0x0 corresponds to the ldpid command in our example program. From
49.5 ns till 91 ns the operation code holds 0x3. The traced values of the program coun-
ter indicate that this code corresponds to the three movi commands (line 2 to 4) load-
ing registers R5, R6, and R7 with integer values. The next operation code 0x4 is
transferred at 91.5 ns which should notify the add command. But as we know from the
processor specification the operation code for additions has to be indicated by 0x3.
Looking into the source code of the instruction decoder using the source code view in
RTLVision shows the wrong operation code in line 161 causing the error:

153 case 0x01: // add R1, R2, R3
…
161 alu_op.write(4); // WRONG CODE!
Fixing this statement and a subsequent simulation reports the correct result in
 register R4.

70 F. Rogin et al.

A conventional debug procedure would set several breakpoints on the right positions
into the instruction decoder and the ALU. On any stop of these breakpoints we then had
to print out the transferred operation code and the actual program counter. This can turn
out to be a time consuming task where the printed values are split over and merged with
the usual trace output in the debugger console. Thus, a fast and simple observation of
interesting program details is made very difficult which complicates debugging.

5.6 Conclusion

In this work we introduced an integrated debugging environment (IDE) where the
debugger kernel is based on the Open Source debugger GDB and the visual interface
utilizes an available visualization tool. The special feature of our environment is its
non-intrusive usability that means it does not alter any code (SystemC kernel, exist-
ing models, additional libraries) to enable using arbitrary SystemC designs in the
IDE. We demonstrated the advantages of our debugging features applying them to
the RISC-CPU design of the SystemC library.

Future work will improve the provided debugging and exploration functionality
especially regarding an explicit TLM support. One of the main goals is to fit the
debugging environment to the specific needs of the application being developed (e.g.
CPU design).

Acknowledgments We would like to thank Lothar Linhard and Gerhard Angst from Concept
Engineering, who supported this work.

Fig. 5.7 Exploring traced signals

5 An Integrated SystemC Debugging Environment 71

References

 1. ARM Ltd. MaxSim Developer. Home page: www.arm.com
 2. D. Berner, H. Patel, D. Mathaikutty, J.-P. Talpin, S. Shukla: SystemCXML: An extensible

SystemC front end using XML. Technical Report 06, FERMAT@Virginia Tech, Apr. 2005
 3. L. Charest, M. Reid, E. Aboulhamid, G. Bois: A methodology for interfacing open source

SystemC with a third party software. In Design, Automation and Test in Europe, Munich,
Germany, pp. 16–20, 2001

 4. Concept Engineering. Home page: www.concept.de
 5. CoWare Platform Architect. Home page: www.coware.com
 6. Eclipse Foundation. Project home page: www.eclipse.org
 7. C. Eibl, C. Albrecht, R. Hagenau: gSysC: A graphical front end for SystemC. In European

Conference on Modelling and Simulation, Riga, Latvia, pp. 257–262, 2005. Source available
at www.iti. uni-luebeck.de/albrecht/gSysC

 8. E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design pattern – elements of reusable object-
oriented software. In Addison-Wesley Professional Computing Series, 1999

 9. C. Genz, R. Drechsler, G. Angst, L. Linhard: Visualization of SystemC designs. In IEEE
International Symposium on Circuits and Systems, New Orleans, USA, pp. 413–416, 2007

10. GNU debugger. Home page: www.gnu.org/software/gdb
11. D. Große, R. Drechsler, L. Linhard, G. Angst: Efficient automatic visualization of SystemC

designs. In Forum on Specification and Design Languages, Frankfurt, Germany, pp. 646–657,
2003

12. M. Moy, F. Maraninchi, L. Maillet-Contoz : LusSy: A toolbox for the analysis of systems-on-
a-chip at the transactional level. In Fifth International Conference on Application of
Concurrency to System Design, St. Malo, Frankreich, pp. 26–35, 2005

13. M. Moy, F. Maraninchi, L. Maillet-Contoz : PINAPA: An extraction tool for SystemC descrip-
tions of systemson-a-chip. In ACM International Conference on Embedded Software
(EMSOFT’05), Jersey City, USA, pp. 317–324, 2005

14. OSCI. SystemC. Home page: www.systemc.org
15. F. Rogin, E. Fehlauer, S. Rülke, S. Ohnewald, T. Berndt: Non-intrusive high-level SystemC

debugging. In Advances in Design and Specification Languages for Embedded Systems.
Springer Netherlands, pp. 131–144, July 2007

16. A. Wieferink, M. Doerper, T. Kogel, G. Braun, A. Nohl, R. Leupers, G. Ascheid, H. Meyr: A
system level processor/communication co-exploration methodology for multi-processor sys-
tem-on-chip platforms. In IEE Proceedings: Computers & Digital Techniques, volume 152, pp.
3–11, Jan. 2005

Chapter 6
Measuring the Quality of a SystemC Testbench
by Using Code Coverage Techniques

Daniel Große1, Hernan Peraza1, Wolfgang Klingauf2, and Rolf Drechsler1

Abstract The system description language SystemC enables to quickly create
executable specifications at adequate levels of abstraction for both hardware/soft-
ware integration and fast design space exploration. Besides the modelling of a sys-
tem, verification has become a dominant factor in circuit and system design. Since
SystemC is a versatile language based on C++, testbenches at different abstraction
levels can easily be built. But the fault coverage of a manually developed testbench
is hard to quantify. In this paper, an approach for measuring the quality of SystemC
testbenches is presented. The approach is based on dedicated code coverage tech-
niques and identifies all the parts of a SystemC model that have not been tested.
Experimental results show the applicability of our methodology.

Keywords SystemC, Testbench Quaility, Coverage

6.1 Introduction

To cope with the design complexity of hardware/software systems that consist of
up to one billion transistors, raising the level of abstraction in modelling has been
exercised during the past years in the computer aided design community. In this
context, C/C++-based languages have found entrance into industry. Here, the sys-
tem description language SystemC is the de facto standard and was standardized by
the IEEE [13]. Additionally to the inherent SystemC feature of specifying hardware
and software in one language the concept of Transaction Level Modeling (TLM) [2]
is supported by SystemC. TLM allows describing the communication in a system
in terms of abstract operations (transactions).

1 Institute for Computer Science, University of Bremen, 28359 Bremen, Germany;
Email: {grosse, drechsle}@informatik.uni-bremen.de

2 Department E.I.S., Technical University of Braunschweig, 38106 Braunschweig, Germany;
Email: klingauf@eis.cs.tu-bs.de

E. Villar (ed.) Embedded Systems Specification and Design Languages, 73
© Springer Science + Business Media B.V. 2008

74 D. Große et al.

Besides the modelling aspect the verification – i.e. ensuring the correct func-
tional behaviour – is the most challenging problem. Since complete formal verifi-
cation methods are only applicable to medium sized designs, simulation-based
techniques are used most frequently [6, 17]. Here system level languages like
SystemC already offer some features for verification and are therefore superior to
traditional Hardware Description Languages (HDLs). For example, in SystemC
the testbench can easily be integrated as part of the model and all features of C++
can be used for the generation of tests. Also the result analyzer that is typically
build to check the response of the Device Under Verification (DUV) is a SystemC
module. As an add-on for SystemC the SystemC Verification (SCV) library has
been introduced [15]. Besides advanced verification features like data introspec-
tion and transaction recording the SCV library enables constraint-based
randomization.

However, all these verification features do not include a measure how thorough
the design was executed during the simulation. As the size of the testbench grows
the designer needs a reliable feedback about its quality.

In this paper, an approach for SystemC to measure the quality of the testbench
is presented. Our analysis is based on dedicated code coverage techniques that we
have developed for SystemC models. By exploiting automated code instrumenta-
tion based on a SystemC parser, for each test run a coverage report is generated that
presents the user all statements in the model that have not been executed during
simulation. The report is based on the analysis of the exercised control flow state-
ments. It includes exact source code references to unexecuted code blocks in com-
bination with SystemC specific information like process context and hierarchy
information.

The rest of this paper is structured as follows. Related work is described in the
next section. In Section 6.3 we present our approach. We start with the overall flow
and continue with a detailed description of the three phases of our approach. Along
the way we provide an example to show the effects of each phase. Case studies for
two SystemC designs are presented in Section 6.4. The first design is a RISC CPU
and the second design is a TLM-based video processor. Finally, in Section 6.5 the
paper is summarized.

6.2 Related Work

In software testing code coverage techniques have been used to measure the frac-
tion of code that has been exercised by a test case [1]. From this domain coverage
methods have been derived and extended for HDLs. For Verilog or VHDL several
approaches and tools exist (for an overview see e.g. [16]). However, to the best of
our knowledge no code coverage method to measure the quality of a SystemC test-
bench has been proposed. Note, that approaches based on standard C++ coverage
tools (like e.g. the GNU COVerage tool gcov [7]) have several drawbacks. On the
one hand the SystemC kernel is also included in the coverage analysis. On the other

6 Measuring the Quality of a SystemC Testbench by Using Code 75

hand SystemC specific data like e.g. context information or hierarchy information
is only implicitly available and has to be extracted manually.

In the following we present an approach to overcome such limits.

6.3 Measuring the Quality of a SystemC Testbench

In this section the code coverage-based approach for measuring the quality of the
testbench is introduced. Our approach consists of three phases: SystemC analysis,
code instrumentation and coverage analysis. Before the details on the three phases
are given the overall flow is presented. Throughout the description of the phases a
simple example is used to demonstrate the effects of each phase.

6.3.1 Overall Flow

The overall flow of our approach is depicted in Fig. 6.1. In the analysis phase the
SystemC code of the DUV is parsed, analyzed and transformed into an Abstract
Syntax Tree (AST) representation. This AST is traversed in the consecutive code
instrumentation phase. During the traversal the original SystemC DUV is aug-
mented with SystemC specific code that enables the collection of coverage infor-
mation during simulation. Then, the rewritten SystemC DUV, the coverage library
of our approach and the SystemC libraries are compiled into an executable. By run-
ning this executable simulation is performed and the data structures available
through our coverage library are filled.

Finally, in the coverage analysis phase the collected data is interpreted and the
coverage report is generated. By the report the verification engineer is informed
which statements have not been executed due to the tests defined in the testbench.
This information is presented with exact source code references to unexecuted

Kernel running

SystemC
source code

SystemC
libraries

gccInterpretation

Augmented
DUV

code generation

Output

Analysis

CompilationSimulationCoverage Analysis
Report

AST traversal

library
Cover

Instrumentation

Input

AST

Fig. 6.1 Overall flow of our approach

76 D. Große et al.

blocks in the original SystemC DUV including hierarchy. Furthermore the fre-
quency of the execution of statement blocks can be given for further analysis.

In the following we describe the three phases in more detail.

6.3.2 SystemC Analysis

For the transformation of the SystemC DUV into an AST the front-end from [5, 8]
is used that is part of the design environment SyCE [3]. The parser of the front-end
was build with PCCTS (Purdue Compiler Construction Tool Set) [14]. PCCTS
enables the description of the SystemC syntax in form of a grammar, provides
facilities for AST construction and finally generates a parser. Note that the front-
end has an exact source code reference including character positions of each token.
Therefore, a special C++ pre-processor has been implemented to allow for identifi-
cation of the SystemC macros before they are expanded. The correct source code
information annotated to each node in the AST is very important for our approach.
Without this information only a non-reliable feedback for the verification engineer
would be possible. In the following the analysis phase is demonstrated by an
example.

pcout

clock

en
reset

din

le

pcincPC

Fig. 6.2 Program counter

Example 1 Since we use a program counter of a RISC CPU also as example for
the other phases we give some details on this module. Fig. 6.2 shows the program
counter (PC) with all its inputs and outputs. In order to address the 2,048 entries
of the program memory, the PC has an 11 bit register which holds the address of
the current instruction. Output pcout holds this address. pcinc outputs the address
increased by one. An address can be loaded into the PC via the input din, if the
input le (load enable) is set to 1. Using the reset signal, the PC can be set to 0. On
every positive edge of the clock signal the current address is increased if the input
en (enable) is set to 1. In Fig. 6.3 the method that computes the next_state of the
PC is shown. This method is sensitive to the positive clock. pc is the internal regis-
ter of the PC module. Figure 6.4 depicts a sample of the AST of this method, which
has been generated by our tool. Please note that for each AST node only a fragment
of the available information is shown. The second number in each line corresponds
to the line number of the parsed element.

6 Measuring the Quality of a SystemC Testbench by Using Code 77

 9 void prog_count::next_state() {
10 if (reset.read()) {
11 pc = 0; //reset to adress 0
12 } else {
13 if (en.read()) {
14 if (le.read()) {
15 pc = din; //load address
16 } else {
17 // increase counter
18 pc = pc.read() + 1;
19 }
20 } else {
21 pc = pc.read();
22 }
23 }
24 }

Fig. 6.3 Parts of original SystemC DUV

 1 10 IF
 2 10 LPAREN
 3 10 ID == "reset"
 4 10 DOT
 5 10 ID == "read"
 6 10 LPAREN
 7 10 RPAREN
 8 10 RPAREN
 9 10 LCURLY
10 11 ASSIGNEQUAL
11 11 ID == "pc"
12 11 OCTALINT
13 11 SEMICOLON
14 12 RCURLY
15 12 ELSE
16 12 LCURLY
17 13 IF
18 13 LPAREN
19 13 ID == "en"
20 ...

Fig. 6.4 AST of next_state method

As can be seen, the structure of the SystemC program is reflected and this repre-
sentation is well suited for code instrumentation.

6.3.3 Code Instrumentation

In the code instrumentation phase the SystemC DUV is augmented with according
instructions to allow for coverage analysis. The main steps in this phase are
described in the following.

78 D. Große et al.

6.3.3.1 Coverage Library

First, the global variable cov is defined that holds an instance of our coverage class
COVER. This class provides data structures like hash tables for coverage statistics
as well as wrapper functions to take care of the control flow inside the methods of
the DUV. Furthermore, the class has methods to analyze the collected coverage data
and to generate the report for the user.

6.3.3.2 AST Traversal and Code Instrumentation

While traversing the AST, first the member functions that belong to a SystemC mod-
ule are identified. Then, in each function the conditions of the control flow statements
are substituted with wrapper functions. The idea is to perform a call-back during the
simulation and thereby notifying the coverage class which control branch has been
taken. The following control statements are distinguished: IF, IF/ELSE, SWITCH-
CASE, FOR loop, WHILE loop. Next, the wrapper functions are explained.

6.3.3.3 Wrapper Functions

For the IF, IF-ELSE, FOR loop and WHILE loop the condition of the control state-
ment is replaced by a wrapper function call. The arguments of the wrapper func-
tions are:

1. The condition of the control statement (as Boolean and string).
2. The type of control statement.
3. Start position and end position of the block(s) that are executed if the control

condition evaluates to true/false.
4. File name of the current method.
5. Class name if available.
6. Current method name.
7. This pointer, in case of a member function. The this pointer is used to distinguish

between several instances of the same module.

The following example demonstrates the application of a wrapper function for an
IF-ELSE control statement.

Example 2 Consider again the program counter in Fig. 6.3 and focus on the if
statement in line 10 and the corresponding else-branch starting in line 12. The
condition of the if statement is the expression reset.read(). This expression is
replaced by the wrapper function wrapperStatement(…). The instrumented code is
depicted in Fig. 6.5. The first and second arguments of this function hold the condi-
tion as a Boolean and as a string, respectively. The third argument reflects the type
of the condition statement – here tIFELSE. Then, the next four numbers mark the
if-block, i.e. the if-block starts in line 10 at the absolute character position 125 and
ends in line 12 at character position 203. The next two numbers give the same

6 Measuring the Quality of a SystemC Testbench by Using Code 79

information for the else-block, but only the end position of the else-block is used;
the else-block ends in line 22 at character position 419. Then, the file name where
the method is implemented (prog_count.cc), the class name (prog_count), the
method name (next_state) and the this pointer are given.

In a SWITCH-CASE statement at the beginning of each CASE-block we instru-
ment a wrapper function that has as additional argument the value of the current
case. After a SWITCH-CASE statement a wrapper function call is instrumented
that enables the propagation of all possible CASE values. Note that the approach is
able to handle also nested variants of all types of control statements.

In the next section the coverage analysis phase is explained.

6.3.4 Coverage Analysis

After the compilation of the instrumented SystemC code the coverage analysis is exe-
cuted during simulation. Based on the instrumented wrapper functions the instance of
the cover class collects all the coverage data. The main data structures in the cover
class are based on Standard Template Library (STL) maps. As unique keys the argu-
ments of the wrapper functions are transformed into a string representation. To each
coverage point we associate two counters to track the frequency of the evaluation of
the corresponding condition to true or false. For case statements obviously only one
counter is needed. Finally, in the coverage report that is started by a call from sc_main
after the end of the simulation, the coverage data is analyzed. For IF, IF/ELSE a warn-
ing is generated if the condition was always true/false and thus a block was never exe-
cuted. In case of FOR loops or WHILE loops we inform the user if the condition was
false all the time and therefore the loop body was skipped. For SWITCH-CASE state-
ments each case is identified that was never activated. In total this allows to argue about
the quality of the tests defined by the testbench. If blocks have been identified that have
been never executed these blocks are dead code or the testbench has to be improved.

 1 #include "cover.h"
 2 #include "label.h"
 3 extern COVER *cov;
 4
 5 #include "prog_count.h"
 6 ...
 7 void prog_count::next_state(){
 8 if (cov->WrapperStatement(reset.read(),

"reset.read()",tIFELSE,10,125,12,203,22,419,
"prog_count.cc", "prog_count", "next_state",
this)){

 9 pc = 0;
10 } else {
11 ...

Fig. 6.5 Instrumented code of the next state method

80 D. Große et al.

In the following example the results of the coverage analysis are shown for the
program counter.

Example 3 A testbench has been written for the program counter shown in Fig.
6.3. The testbench includes three tests. We applied our approach for this example. The
automatically generated coverage report is shown in Fig. 6.6. As can be seen the sce-
nario to load a value into the program counter by setting load enable to one was not
executed. We added another test for this behaviour and thereby closed this gap.

<< COVERAGE REPORT >>

IF-ELSE Statement: *IF-BLOCK NOT EXECUTED*
 File name: prog_count.cc
 Class: prog_count
 Instance: pc
 Func. Member: next_state
 Condition: le.read()
 IF start: line 14 pos 246
 IF end: line 16 pos 322
 count total: 87
 count TRUE: 0 count FALSE: 87

Fig. 6.6 Coverage report for program counter

6.4 Case Studies

In this section we apply the approach to two examples. The first example is a hard-
ware oriented model, a RISC CPU is considered. The second example is a system
for colour region recognition in video data.

6.4.1 Hardware Model: RISC CPU

Before we apply our method to the RISC CPU the basic data of the CPU is briefly
reviewed (see [9] for more details).

6.4.1.1 Specification

In Fig. 6.7 the components of the RISC CPU are shown. The CPU has been
designed as Harvard architecture. The data width of the program memory and the
data memory is 16 bit. The size of the program memory is 4 kB and the size of the
data memory is 128 kB. The length of an instruction is 16 bit. We briefly describe
the five different classes of instructions in the following: six load/store instructions,
eight arithmetic instructions, eight logic instructions, five jump instructions and
five other instructions. For the RISC CPU a compiler has been implemented which

6 Measuring the Quality of a SystemC Testbench by Using Code 81

generates object code from an assembler program. This object code runs on the
SystemC model, i.e. the model of the CPU executes an assembler program.

6.4.1.2 Testbench Quality

Based on successful simulation of each component the designer starts with the simu-
lation at the system level. For this purpose usually a high-level testbench is created
that enables a black-box test of the design. For the CPU such a testbench corre-
sponds to the execution of a set of assembler programs including the analysis of the
simulation results. In the following we describe how the high-level testbench was
created and how this process was improved by our approach. The SystemC model
of the RISC CPU was automatically instrumented with code to analyze coverage.
The following non-trivial assembler program was formulated to test the CPU.

Fig. 6.7 RISC CPU including data and program memory

82 D. Große et al.

Example 4 The assembler program shown in Fig. 6.8 converts a set of numbers
into gray-code. The gray code encodes numbers such that in the binary encoding
adjacent numbers have a hamming distance of 1. The number n of elements to be
converted is given in the data memory at address 0. After clearing the register R[6]
and R[2], n is loaded into register R[3]. Then, in the loop each single number is
converted. The idea is to invert each bit if the next higher bit of the input value (read
from the data memory into register R[4]) is set to one. Therefore the input is shifted
by one and a bitwise XOR operation is performed. The result R[6] of the conversion
is stored in the data memory to the same position as the input.

 1 LDL R[6], 0
 2 LDH R[6], 0
 3 LDL R[2], 0
 4 LDH R[2], 0
 5 LDD R[3],R[2]
 6 loop1:
 7 ADD R[2],R[2],R[1]
 8 LDD R[4],R[2]
 9 ADD R[5],R[4],R[0]
10 SHR R[5],R[5]
11 XOR R[6],R[4],R[5]
12 STO R[2],R[6]
13 SUB R[3],R[3],R[1]
14 JNZ loop1
15 HLT

Fig. 6.8 Assembler program for gray code

After simulation of the gray code program on the CPU our approach reported
unexecuted code fragments in the following modules: stack_point, mux4, mux5,
mux6, mux7 and alu. The handling for the cases of push and pop operations in the
stack_point module was not tested, since the inputs from the control unit to this
module have been zero during the complete simulation. To test this behaviour
another program that uses push and pop instructions has to be added.

For the multiplexor modules we found that in the method do_select which
describes the functionality of a multiplexor only the ELSE-block for the select
condition was simulated. For the CPU this observation corresponds to the fact that
the select inputs of the multiplexors have been zero all the time and thus only one
data input was routed to the multiplexor output. As can be seen in Fig. 6.7 all mul-
tiplexors belong to the data path of the CPU. To also test the effects on the CPU in
case of data coming through the other input, a different data path has to be acti-
vated. The multiplexor mux5 is part of the stack pointer data path and thus was
tested by using stack pointer operations (see above). For mux4 and mux6 the alter-
native data path is activated by adding a program that uses sub-routine calls. For
mux7 we set the select input to one by an additional program that uses I/O
instructions.

In case of the ALU several CASE statements of the main SWITCH statement
have not been executed since not all operations of the ALU are activated by the

6 Measuring the Quality of a SystemC Testbench by Using Code 83

considered assembler programs. Therefore we created another program to check to
remaining arithmetic operations.

In total by adding additional assembler programs to the testbench the quality of
the testbench was improved. Here our approach supported the verification engineer
by directly pointing to untested functionality of the RISC CPU.

6.4.2 High-Level Model: Colour Region Recognition

In the second example we applied our approach to a high-level SystemC model of
a video processor System-on-Chip. In contrast to the RISC CPU (which has been
implemented as an RTL design), this model resides at the transaction-level of
abstraction.

6.4.2.1 Specification

The configurable model EmVid consists of a set of SystemC cores that can be inte-
grated to build a video processor. For video input and output, abstract TLM channels
are used. The video processing IP cores use the SystemC High-level Interface
Protocol (SHIP) [10] for data exchange over these channels. Communication with
the main memory (DDR RAM) is established by ST’s TAC protocol [12]. In the fol-
lowing, we consider a System-on-Chip for colour region recognition that is based on
EmViD cores. The system processes video frames in real-time and draws rectangles
around detected regions. A high-level schematic of the system is shown in Fig. 6.9.
The system has been configured as a pipelined architecture and for the connection

Fig. 6.9 Colour region recognition schematic

84 D. Große et al.

of the DDR RAM an IBM CoreConnect On-Chip Peripheral Bus (OPB) is used. The
complete transaction-level interconnect (including an OPB simulation model) is set
up using the GreenBus TLM fabric [11]. EmViD can be found on [4].

The video processing starts by reading in an MPEG video as video input.
Then, dilation and erosion is performed. In the labelling stage the regions are
recognized and the rectangles are added. Afterwards the core outputs the image
to a display.

6.4.2.2 Testbench Quality

As a concrete application we decided to detect skins in the video data. We set the
colour range for the recognition accordingly. The system segmentates the processed
video data in the labelling phase. Therefore adjacent pixels are analyzed and the
image is partitioned into a set of regions using the defined colour information.

In the overall video processor system the high-level testbench consists of the
video data (coming from video files or a camera). We applied our approach to the
system. We simulated the system with different video files and observed that
depending on the video data different parts of the system have not been executed.
For example, in the morph_segm module (labelling phase) the segmentation algo-
rithm checks the minimum region size with an IF-condition. For video data that
contains no skins or very small areas no regions are detected. Here, our approach
presents directly the SystemC file with the exact source code position of the never
executed block(s). Note that this improves the debugging during the development
of such high-level models significantly.

Moreover, analyzing the results of nested control structures, our approach helps
the verification engineer to test the design thoroughly. To give an example, the seg-
mentation algorithm is realized as a state machine with 47 states, which are tra-
versed in different (partial) execution orders depending on the video input data.
With the output of the coverage analysis, untaken control paths can be discovered
and the stimulus video material can be adjusted accordingly.

6.4.2.3 Further Design Analysis

During the analysis of the video processor model, we also experimented with dif-
ferent communication architecture configurations for the design. As one might
expect, some architectures are better suited than others to meet efficiency require-
ments such as a given frame rate. In particular, when connecting all components to
a shared bus with fixed-priority scheduling (here, the OPB), the overall video
processing performance highly depends on the priority allocation.

We utilized the ability of our coverage analysis to count the number of execu-
tions for the various processes in the model in order to identify the location of
communication bottlenecks in design configurations with poor frame rates. Table 6.1
presents some results of the experiments.

6 Measuring the Quality of a SystemC Testbench by Using Code 85

The column “#ex video” shows the total number of video frames successfully
sent from the video input component (mpeg decoder) to the video output compo-
nent (display controller). The column “#ex detect.” shows the total number of video
frames processed by the region detection. From these numbers the overall frame
rates have been calculated (columns “FPS video” and “FPS detect.”).

Row 1 and row 2 show the frame rates we got with a bus-only model. While in row
1, the bus access priorities were assigned in ascending order according to the sequence
of video processing stages in the model, in row 2 we assigned a higher priority to the
region detection components than to the video display data path.
As expected, the frames per second processed for region detection goes up, but as an
unintentional side effect due to higher bus workload, the number of video frames dis-
played per second drops down. Rows 3 and 4 show the results we achieved with a
mixed bus/pipeline model as depicted in Fig. 6.9. Here, we could considerably increase
the video display frame rate by just swapping the bus access priorities of two compo-
nents. With this setup, ~25 frames per second full resolution live video display is
achieved while the region detection runs at the high rate of ~50 frames per second.

6.5 Conclusions

In this paper, we have presented an approach to measure the quality of a testbench
for a SystemC design. The approach is based on dedicated code coverage tech-
niques using a SystemC front-end. Thus, a reliable feedback for untested parts of
the design is presented to the user. This data includes exact source code information
in combination with SystemC specific information, like process context and mod-
ule hierarchy. In summary, our approach helps to create a high quality testbench.
The experiments showed that our approach is suitable for both RTL and TLM
designs. Moreover, the TLM example revealed that our analysis methodology also
can support design space exploration.

References

1. B. Beizer. Software Testing Techniques. Wiley, New York, 1990.
2. L. Cai and D. Gajski. Transaction level modeling: an overview. In CODES+ ISSS’03, pp. 19–

24, 2003.

Table 6.1 Video processor execution traces

 #ex #ex FPS FPS

Config video detect. video detect. Comment

Bus only model 1 500 500 24.98 24.98 Ascending priority
Bus only model 2 451 872 22.55 43.60 Higher detection priority
Mixed bus/pipeline model 1 500 500 24.98 24.98 Lower pipeline priority
Mixed bus/pipeline model 2 500 999 24.98 49.90 Higher pipeline priority

86 D. Große et al.

 3. R. Drechsler, G. Fey, C. Genz, and D. Große. SyCE: An integrated environment for system
design in SystemC. In IEEE International Workshop on Rapid System Prototyping, pp. 258–
260, 2005.

 4. EmViD: Embedded Video Detection. http://www.greensocs.com/GreenBench/EmViD.
 5. G. Fey, D. Große, T. Cassens, C. Genz, T. Warode, and R. Drechsler. ParSyC: An efficient

SystemC parser. In Workshop on Synthesis And System Integration of Mixed Information
technologies (SASIMI), pp. 148–154, 2004.

 6. R. S. French, M. S. Lam, J. R. Levitt, and K. Olukotun. A general method for compiling event-
driven simulations. In Design Automation Conference, pp. 151–156, 1995.

 7. http://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
 8. C. Genz and R. Drechsler. System exploration of SystemC designs. In IEEE Annual

Symposium on VLSI, pp. 335–340, 2006.
 9. D. Große, U. Kühne, and R. Drechsler. Hw/sw coverification of embedded systems using

bounded model checking. In Great Lakes Symp. VLSI, pp. 43–48, 2006.
10. W. Klingauf. Systematic transaction level modeling of embedded systems with SystemC. In

Design, Automation and Test in Europe, pp. 566–567, 2005.
11. W. Klingauf, R. Günzel, O. Bringmann, P. Parfuntseu, and M. Burton. Greenbus: A generic

interconnect fabric for transaction level modelling. In Design Automation Conference, pp.
905–910, 2006.

12. S. Microelectronics. TAC: Transaction Accurate Communication. http://www.greensocs.com/
TACPackage, 2005.

13. Open SystemC Initiative, http://www.systemc.org. SystemC 2.1 Language Reference Manual,
2005.

14. T. Parr. Language Translation using PCCTS and C++ : A Reference Guide. Automata
Publishing, San Jose, CA, 1997.

15. SystemC Verification Working Group, http://www.systemc.org. SystemC Verification Standard
Specification Version 1.0e.

16. S. Tasiran and K. Keutzer. Coverage metrics for functional validation of hardware designs. In
IEEE Design and Test of Computers, 18(4), pp. 36–45, 2001.

17. J. Yuan, C. Pixley, and A. Aziz. Constraint-based Verification. Springer, New York, 2006.

Chapter 7
SystemC-Based Simulation of the MICAS
Architecture

Dragos Truscan1, Kim Sandström2, Johan Lilius1, and Ivan Porres1

Abstract We present our approach in using SystemC for simulating a custom
configurable architecture, MICAS. However, there are certain aspects of the
architecture, like configuration specific information or programming interface,
which cannot be directly represented using SystemC concepts. Thus, we define a
C++-based specification language for MICAS that allows us to specify additional
properties of the architecture at simulation level and furthermore, to combine these
properties with the SystemC executable specification.

Keywords System-on-Chip (SoC), Service Oriented Architecture (SOA), SystemC
simulation, executable specification

7.1 Introduction

Due to the increasing complexity of system specifications simulation has become a
necessary tool for system designers. Simulation enables the evaluation of system
specifications against requirements, at early stages of the development, before pro-
ceeding to hardware implementation. The approach eliminates costs and shortens
the design life cycle of new products. According to Moretti [1], most of the inte-
grated circuits developed today require at least one return to early phases of the
development, due to errors.

In recent years, SystemC [3] has become one of the most popular languages for
system-level modeling and simulation. SystemC is an extension of C++, in which
the hardware components (i.e., modules) of the architecture are specified as C++
classes. A given architectural configuration is represented, at simulation level, as

1Åbo Akademi University, Joukahaisenkatu 35, FIN20500, Turku, Finland
Email: {Dragos.Truscan, Johan.Lilius, Ivan.Porres}@abo.fi

2Nokia Research Center, P.O. Box 407, FIN00045 Nokia Group, Finland;
Email: Kim.G.Sandstrom@nokia.com

E. Villar (ed.) Embedded Systems Specification and Design Languages, 87
© Springer Science + Business Media B.V. 2008

88 D. Truscan et al.

module instances interconnected at port level. SystemC advocates reuse at code and
component level, allowing the reuse of the developed components from one design
to another. The approach facilitates the use of component libraries for rapid creation
of new designs.

In our work, we have employed SystemC to provide executable specifications of
a configurable architecture, namely MICAS [4]. MICAS is configurable not only
because different hardware configurations can be built by adding new components,
but also because the programming interface of a given configuration can be custom-
ized, at design time, to facilitate the application mapping on the architecture. The
MICAS design flow uses a component library from which SystemC specifications
of MICAS resources can be instantiated at simulation time. However, there are cer-
tain aspects of MICAS that cannot be directly modeled in SystemC. For instance,
upon instantiation different modules added to a given MICAS configuration have to
be adorned with configuration specific information, like address spaces, IRQ num-
bers, etc. Such information is not typically stored in a component library in order to
increase the reusability of component specifications. Similarly, the programming
interface that is designed for a specific configuration cannot be stored in the compo-
nent library, but rather has to be generated for each configuration in part.

In order to integrate configuration specific information with the SystemC exe-
cutable specification of a given configuration, we define a C++-based specification
language for MICAS. This language enables us to express additional properties of
the architecture in an executable form, easy to integrate within the MICAS simula-
tion framework.

We proceed, in Section 7.2, with a general overview of the MICAS architecture
and of its design process. Then, we introduce, in Section 7.3, a C++-based specifi-
cation language for the MICAS architecture. In Section 7.4 we show how this lan-
guage is used to describe MICAS configurations and how the resulting specification
is integrated with the SystemC simulation framework of MICAS. We also discuss
the customizations applied to the MICAS Simulation library such that the simula-
tion model of a given configuration can be automatically generated. We conclude
with final remarks.

7.2 The MICAS Architecture

Microcode Architecture For a System On a Chip (SoC) (MICAS) [4] is a novel
concept developed at Nokia Research Center, Helsinki, Finland, which proposes
both a SoC architecture for sequential data streaming processing systems (e.g.,
multimedia applications, personal video recorders, media streaming applications,
etc.) and a method for controlling the hardware accelerators of such architectures.
Several goals are pursued in MICAS:

● Separation of the data- and control-flows of the architecture, by using dedicated
hardware units (HW processes) to assist data processing tasks and controllers to
drive the activity of these units.

7 SystemC-Based Simulation of the MICAS Architecture 89

● Decentralization of the control communication from the “main processor” of the
system, typically running a real-time operating system (RTOS), and the distri-
bution of this communication to dedicated controllers, which only control
“local” resources.

● The use of microcode (i.e., software running on controllers) to control the func-
tionality of the HW processes and of the data streaming between them. The
microcode provides a hardware abstraction layer (HAL) of the architecture,
which allows one to create data streams between HW processes and to invoke
the functionality of a given HW process using a standard interface.

7.2.1 Hardware Architecture

An overview of the MICAS architecture is given in Fig. 7.1. A MICAS configura-
tion comprises several domains. A domain represents a collection of hardware
processing elements situated on the same physical silicon chip and controlled by
the same controller. Domains provide fast processing speed for dedicated tasks.
They are interconnected by off-chip external networks using for instance, serial,
Bluetooth or WLAN technology.

Domain4
(slave)

cluster

Domain3
(master/slave)

cluster

Domain2
(slave)

cluster

Domain1
(master)

cluster

cluster

RTOS

network

network

controller

controller

controller

controller

module

module

module

module

module

module

module

module

module

module

bus

bus

bridge

socket

bus

bus

bussocket

socket

socket

socket

Fig. 7.1 Generic view of the MICAS architecture

90 D. Truscan et al.

The organization of domains is hierarchical, following a master-slave relationship.
Typically, one domain of a given MICAS configuration is connected to a general
purpose processor running an RTOS, like Symbian [2]. Such a domain is called mas-
ter domain. Domains connected to a master domain are regarded as slave domains.

Each MICAS domain may contain several programmable hardware components,
HW processes, which implement dedicated tasks in hardware. HW processes are
universally interconnected via buses and may be grouped into clusters. There may be
three types of HW processes inside a MICAS domain: bridges, sockets and modules.
Buses belonging to different clusters may be connected to each other through bridges.
Sockets mediate and transform the on-chip communication into off-chip communica-
tion, whereas modules implement dedicated processing tasks over streams of data.

7.2.2 Programming Interface

The MICAS programming interface defines a set of services that can be used to
invoke complex functionality of a given MICAS configuration. The services are
defined per domain and are implemented as a consistent combination of (data)
streams between HW processes. Domain controllers serve as a control interface to
any external entity (i.e., MICAS domain or RTOS). Any request for a service from
the external environment is handled by the controller, which implements the streams
of a given service by dispatching the corresponding microcommands to the appropri-
ate HW processes. The concept of subservice of a service is used in MICAS to
depict a service from a remote domain that is used by a service in a given domain.

7.2.3 The MICAS Design Process

An overview of the MICAS design process is given in Fig. 7.2. Starting from the
Application Requirements one identifies the services (i.e., Service List) that a
given MICAS configuration has to provide. These services represent the program-
ming interface of that particular configuration.

In the Service Specification phase, each service is specified in terms of data
streams. In turn, each stream is implemented as a combination of microcommands
used to program the corresponding HW processes. Based on the microcommands
required to implement the streams, HW processes are added to the domain under
design in the Hw Configuration phase.

Three artifacts are produced after the completion of the previous phases:

● Service Description – specification of the services of a given configuration, and
their implementation in terms of streams and microcommands;

● Structural Configuration – the hardware components of the configuration and
their interconnections;

● Functional Configuration – configuration specific properties (address spaces,
IRQs, etc.) of the selected hardware components.

7 SystemC-Based Simulation of the MICAS Architecture 91

All these three artifacts serve as input to the Simulation phase along with the
executable specifications of the selected hardware components. However, out of
these artifacts, only the Structural Configuration of the architecture can be
specified using SystemC, more specifically via the main.cpp file. A different
approach has to be employed for the remaining two artifacts in order to specify
them in an executable form, easy to integrate with the simulation environment. To
address this issue we define a C++-based specification language for the MICAS
architecture.

7.3 A C++-Based Specification Language for MICAS

The MICAS C++-based specification language models MICAS resources using
type definitions. A struct data type is used to define these resources, while
the fields of each struct type are used to represent their properties. The
approach allows the use of MICAS resources as properties of other MICAS
resources.

7.3.1 Specifying the Functional Configuration

At the highest level, a MICAS configuration is composed of several domains. Thus,
a Domain data type is defined as follows:

HW configuration

Service
Identification

Application
Implementation

Service List

Application
Requirements

Service
Specification

Hardware
Configuration

Architecture
Specification

Application
Code

Functional
Config.

Structural
Config.

Service
Description

Simulation

M
IC

A
S

S
im

ulation
Library

Fig. 7.2 MICAS design process

92 D. Truscan et al.

struct Domain {
 std::string name;
 unsigned int domain_id;
 Bus* busList[10];
 int b_no;
 Process* processList[10];
 int m_no;
 struct Process* master_domain_socket;
 struct Process* master_domain_ctrl_socket;
 struct Process* slave_domain_socket;
 struct Process* slave_domain_ctrl_socket;
 unsigned int DPRAM_int;
 unsigned int int_ctrl_reg_addr; };
A name and a numeric domain_id are used to identify the domain during the simu-
lation. The domain contains a number (m_no) of processes stored in the process-
List array, each of them being characterized in turn by specific information. In
addition, a number (b_no) of buses are present in each domain, and they are similarly
stored using a busList array. The external connections of the domain are modeled
directly by the sockets present in that domain, specifying whether these sockets are
connected to a master or to a slave domain. The socket description may be seen as a
“routing table” for the inter-domain communication. In our current MICAS implemen-
tation, we have assumed that a domain may have at most two sockets communicating
with its master or slave domains respectively, but a more general approach may be
followed. We recall that domains have a hierarchical relationship to each other, being
possible for each domain to have a master domain and, at the same time, being itself
master to another (slave) domain. Two sets of pointers are modeling this information.
The master_domain_socket and the master_domain_ctrl_socket are
used to indicate to the controller the socket through which the data and respectively,
the control communication with the master domain has to be directed. Similarly, a pair
slave_domain_socket – slave_domain_ctrl_socket indicates to the
controller the sockets through which the data and the control communication, respec-
tively, with the slave domain has to be forwarded. A null pointer in one of these
fields indicates that no master and respectively, no slave domain are connected to the
domain in question.

The processor running the RTOS is connected to the MICAS master domain
through a DPRAM module using an interrupt-based mechanism. We model it as
a separate entry (DPRAM_int), not only because this is a high-priority inter-
rupt, but also to allow specifying explicitly if an RTOS is connected to a
domain. A non-valid value assigned to this field indicates that no RTOS is con-
nected to the domain in question.

Finally, each controller has an interrupt controller, through which it communicates
via a control bus. When an interrupt is raised by any of the HW processes in the domain,
the corresponding interrupt number is passed to the controller via a control register,
whose address is modeled by the int_ctrl_reg_addr field.

7 SystemC-Based Simulation of the MICAS Architecture 93

Each HW process included in the processList of a given domain is char-
acterized by its own set of properties, as shown in the following type
definition:

struct Process{
 std::string name;
 enum micas_process_type type;
 unsigned int ctrl_reg_addr;
 unsigned int master_reg_addr;
 unsigned int slave_reg_addr;
 unsigned int irq;
 unsigned int slave_data_buffer;
 unsigned int master_data_buffer; };
The name is used during the simulation for debugging purposes, whereas a type
property specifies whether the HW process is a module, a bridge or a socket, based
on the definition of the micas_process_type enumeration, which we omit
here. Based on its placement relative to the other elements in a domain, a HW proc-
ess is characterized by other types of information, like address spaces used for
communication purposes. HW processes are controlled by the controller via a con-
trol bus, to which the HW process is connected by a control register. To be able to
uniquely identify each HW process on the bus, each control register is assigned a
unique identifier, the control_register_address. When the controller
issues a command to a given HW process, in fact it writes the command identifier
to the address of the control register.

The communication on the data bus between different HW processes is handled
in a similar fashion. Each HW process is connected to the bus through a master or
slave interface, and in addition, it has an unique identifier with respect to that bus.
Thus, two such identifiers are defined master_reg_addr and slave_reg_
addr, respectively. The communication between HW processes and the controller
is done via an interrupt-based mechanism. The domain controller uses an interrupt
controller for receiving interrupt signals from HW processes. Each module has a
unique identifier (i.e., irq) corresponding to the interrupt signal to which it is
assigned.

Similarly to HW processes, buses are stored in a busList, containing elements
with the following structure:

struct Bus {
std::string name;
unsigned int maxCap;
unsigned int avCap; };

Beside the name, the total capacity of the bus (maxCap) and the available capacity
at a given moment (avCap) are included as properties.

One decision that we took was to group all the generated information in a single
file, rather than create separate files for each domain description. Therefore, at

94 D. Truscan et al.

simulation time, the controllers of different domains will share this information
from the same file. We do not consider this to be an impediment, since the gener-
ated information is read only, and thus, it does not pose the problem of arbitrating
the access to it. As such, all the domain descriptions included in a given MICAS
configuration are grouped in a domainList array.

Domain* DomainList[];

7.3.2 Specifying Service Description

A service represents an atomic piece of functionality provided by a given MICAS
domain. Each domain provides its own service list (i.e., service-Table), in
which a number (s_no) of services are stored.

struct Domain {
 Service* serviceList[10]
 unsigned int s_no; };
The Service type is characterized by a name, a list of CompositeStreams
(i.e., consistent combinations of streams), a pointer to a subservice from a
remote domain, and an allocated flag to be used at run-time for keeping track
if the service is enabled at a given moment in time. The definition of the Service
is shown below.

struct Service {
 std::string name;
 struct Subservice *subservice;
 CompositeStream* compositeStreams[10];
 unsigned int allocated; };
In turn, the Subservice is characterized by the identifier (remote_
domain_id) of the remote domain from which it can be accessed and the
service identifier (remote_service_id) in that remote domain. In addition,
pointers to the local control sockets (local_ctrl_socket) are provided to
indicate to the controller where to “route” the commands for using a given sub-
service, and from or to what socket (local_socket) it can access or send the
data provided by the service. The Subservice definition is given in the
following.

struct Subservice {
 unsigned int remote_domain_id;
 unsigned int remote_service_id;
 Process* local_socket;
 Process* local_ctrl_socket; };

7 SystemC-Based Simulation of the MICAS Architecture 95

A service is supported by one or many composite streams depicting the data-flow
perspective of that service. In turn, each composite stream is implemented by a
number (b_no) of basic streams, included in the basicStreams array.

struct CompositeStream {
 std::string name;
 struct BasicStream* basicStreams[10];
 int b_no; };
Abasic stream (i.e., a data-flow between two HW processes) provides an intrinsic
perspective on the associated control-flow needed to setup these HW processes.
Thus, there is a need for thoroughly characterizing the properties of each basic
stream. As such, a basic stream is specified by a name, a category and a
capacity. In addition, each stream transfers data over a physical bus, between
a source HW process (src_process) and a destination HW process (dst_
process). The latter are represented as pointers to the corresponding elements.
From a control perspective, a basic stream is equivalent to one or many HW process
commands that trigger the data transfers over the bus. These commands are gath-
ered in the microcommands array and executed every time the basic stream is
triggered.

struct BasicStream {
 std::string name;
 enum category cat;
 unsigned int Capacity;
 struct Bus *bus;//pointer to the bus //transporting the
stream

 struct Process *src_process;
 struct Process *dst_process;
 Microcommand* microcommands[10];
 unsigned int m_no; };
The Microcommand is characterized by a name and an implementation (impl).
In turn, the implementation consists of a command identifier (command), which is
a numeric value to be written by the controller to the control register (master_
address) of the master HW process. The microcommand will also specify the
address (slave_address) of the slave HW process to which the master process
is to communicate over the bus.

struct Microcommand {
 std::string name;
 struct impl {
 unsigned int command;
 Module* slave_address;
 Module* master_address;
 } impl; };

96 D. Truscan et al.

We mention that these type definitions and their data structures are independent of
the specific configurations that can be created in MICAS. They are intended only
to provide a common framework to specify the MICAS architecture in C++. These
type definitions may be regarded as a textual language for specifying MICAS con-
figurations at simulation level.

7.4 Generating the Simulation Model

A graphical specification language [5] is used to create MICAS configurations and
to design the services provided by a given configuration. For instance, Fig. 7.3
presents the hardware configuration of an Audio domain, while Fig. 7.4 depicts the
stream definition of an encodeAudio service provided by this domain.

From the graphical specifications of MICAS configurations, the simulation code
is generated automatically using the C++-based specification language of MICAS.
See [5] for more details.

Interrupt controller
interrupt_controller

Bus1
bus

Interrupt SFR register
interrupt_SFR_register

SFR Bridge
sfr_bridge

SFR Register_SoundRecorder
module_SFR_register

SoundRecorder
soundRecorder

SFR Register_AudioEncoder
module_SFR_register

AudioEncoder
encoder

SFR Register_Socket3
module_SFR_register

Socket3
socketSlave

socket_control_sfr_reg
socket_control_SFR_register

MCU3
microcontroller

0

1

2

3

Fig. 7.3 MICAS domain model example

7 SystemC-Based Simulation of the MICAS Architecture 97

7.4.1 Specifying Functional Configuration and Service
Description

The generated code has two parts, declaration and initialization, similar to a C++
program. In the declaration part, the MICAS components of a given configuration
are instantiated using the C++ data types defined previously. The following code
represents the declaration of the domain shown in Fig. 7.3.

Domain Audio;
Module Audio_Socket3;
Module Audio_socket_control_sfr_reg;
Module Audio_AudioEncoder;
BasicStream Audio_S11;
Microcommand mc_S11_Audio_record_sound_wav;
Microcommand mc_S11_Audio_transmit_data_to_domain;
BasicStream Audio_S13;
Microcommand mc_S13_Audio_encode_wav_2_mp3;
Microcommand mc_S13_Audio_transmit_data_to_domain;
CompositeStream Audio_encodedAudio;
Module Audio_SoundRecorder;
Bus Audio_Bus1;
BasicStream Audio_S12;
Microcommand mc_S12_Audio_record_sound_wav;
CompositeStream Audio_unencodedAudio;
Service Audio_encodeAudio;
Service Audio_plainAudio;
In the initialization part, the properties of each instantiated component are initial-
ized with data extracted from the MICAS models. Due to the large size of the gen-
erated code, we only show the properties of the Socket3 process, of the service
encodeAudio, and of the S13 basic stream.

Audio_Socket3.name = “Socket3”;
Audio_Socket3.master_ctrl_reg_addr = 10;
Audio_Socket3.slave_reg_addr = 1;
Audio_Socket3.slave_data_buffer = 32;

AudioEncoder
Encoder

SoundRecorder
SoundRecorder

Socket3
Socket

S13 : mp3S12 : wav

Fig. 7.4 Streams of the encodeAudio service

98 D. Truscan et al.

Audio_Socket3.master_data_buffer = 32;
Audio_Socket3.irq = 2;
Audio_Socket3.type = SOCKET;
……
Audio_encodedAudio.name = “encodedAudio”;
Audio_encodedAudio.basicStreams[0] = &Audio_S12;
Audio_encodedAudio.basicStreams[1] = &Audio_S13;
Audio_encodedAudio.b_no = 2;
……
Audio_S13.name = “S13”;
Audio_S13.bus = &Audio_Bus1;
Audio_S13.src_module = &Audio_AudioEncoder;
Audio_S13.dst_module = &Audio_Socket3;
Audio_S13.Capacity = 100;
Audio_S13.cat = MP3;
Audio_S13.microcommands[0] =
&mc_S13_Audio_encode_wav_2_mp3;

Audio_S13.microcommands[1] =
&mc_S13_Audio_transmit_data_to_domain;

Audio_S13.m_no = 2;

7.4.2 Specifying the Structural Configuration

As previously mentioned, the structural perspective of a given MICAS configura-
tion is modeled at simulation-level using the SystemC language. The MICAS
Simulation library is used for providing ready-built SystemC specifications of
MICAS resources. Following this approach, only the top-level configuration file of
the SystemC model has to be generated in order to obtain the hardware simulation
model of a given MICAS configuration.

In order to integrate, at run-time, the structural and functional information of the
configuration, the SystemC module specifications stored in the library have been cus-
tomized to also take into account, at initialization time, the functional configuration and
the service description of a given MICAS configuration.

7.4.2.1 Providing Reusable Module Specifications

SystemC promotes reuse of module specifications allowing the instantiation of the
same module for implementing (simulating) several hardware components in the
same configuration. However, each module instance has to be made “aware” of its
configuration settings in terms of assigned address spaces, IRQ numbers, parame-
ters, etc. This information has to be passed to instances at instantiation time, or fol-
lowing the SystemC terminology, at elaboration time.

7 SystemC-Based Simulation of the MICAS Architecture 99

Using the information provided by the functional configuration and by the serv-
ice description, respectively, we configure, at elaboration time, SystemC module
instances with specific information. The approach enables the reuse of the same
SystemC module specification in several architectural configurations. For instance,
if two MICAS modules VideoEncoder and AudioEncoder are used in a configura-
tion, each of them as part of a different MICAS domain, a generic SystemC
encoder module can be used to simulate both components. Thus, the encoder has
to be instantiated once for each of the two MICAS modules, and the functional
information specific to each MICAS module has to be passed to its corresponding
instance.

A couple of customizations have been applied to the components of the MICAS
Simulation library. Firstly, we have defined a mechanism that enables us to pass the
configuration properties to module instances at elaboration time. Secondly, the SystemC
processes implementing the module behavior have been customized to take the func-
tional configuration and the service description into account during simulation.

Passing information to module instances. As mentioned previously, each
SystemC module specification is basically a C++ class. As such, beside the
SystemC specific constructs, one can define additional properties of that class, like
attributes and methods.

In the previous section, we have declared several C++ data types (e.g., Domain,
Process, Bus, etc.), each of them specifying the functional properties of a spe-
cific type of MICAS hardware resource. We integrate each such data type with the
corresponding SystemC module by declaring a mymodule attribute of the module
class. For instance, classes specifying MICAS processes contain a Process
mymodule attribute, whereas classes specifying bus modules have a Bus
mymodule attribute. An example is given in the following:

SC_MODULE (socketMaster){
 SC_CTOR (socketMaster){
 ……
 }
 public:
 Process mymodule; };
During the elaboration phase, when modules are instantiated in the main.cpp
file, the information is passed to a given module instance in the following way:

socketMaster Socket1(“Master_Socket1”);
Socket1.mymodule = *this_domain->moduleList[Socket1_id];
We have followed a similar approach in case of the modules implementing MICAS
controllers, with the difference that the entire functional configuration of a domain
is passed to the controller (MCU1.mymodule = *this_domain;) as an
attribute. We have employed this approach since the domain controller manages the
resources of the entire MICAS domain and therefore, it requires access to the prop-
erties of all domain resources.

100 D. Truscan et al.

Customizing module behavior. Having configuration information passed to
SystemC modules also requires the customization of the SystemC processes that
are modeling the behavior of each module, such that they take into account the
fields of the mymodule data structure.

For instance, a socketMaster module uses two methods (transfer_
over_socket() and transfer_to_slave()) to specify its internal proc-
esses, as shown below:

void transfer_to_slave();
void transfer_over_socket ();
SC_CTOR (socketMaster){
 SC_METHOD (transfer_over_socket);
 sensitive_pos (Clk);
 SC_CTHREAD (transfer_to_slave, Clk.pos ()); }
The transfer_over_socket() method manages the data transfer from the
socket over the external socket network, while the transfer_to_slave()
method handles data transfers on the local bus.

Each process has a corresponding implementation, situated in the .cpp file of
the module specification. For the sake of example, an excerpt of the code imple-
menting the transfer_to_slave() process is shown below. The presented
code reads the control register address of a MICAS component (mymodule.
master_ctrl_reg_addr) and writes it to the M_MData port of the socket-
Master instance.

void socketMaster::transfer_to_slave() {….
 M_MData.write(mymodule.master_ctrl_reg_addr);
 …. }
Therefore, using the functional properties of the module as variables, instead of
having them hardcoded in the process specification, enables us to reuse the same
process in a generic manner.

7.4.3 The SystemC Top-Level File

Based on the previous customizations of the MICAS Simulation library, the proc-
ess of generating the SystemC top-level file for a given configuration is fully auto-
mated. The SystemC code corresponding to the MICAS domain presented in Fig.
7.3 is shown below:

 //main.cpp
 #include “microcontroller.h”
 #include “interrupt_SFR_register.h”
 #include “AHB_bus.h”
 #include “bus.h”
 #include “soundRecorder.h”

7 SystemC-Based Simulation of the MICAS Architecture 101

 #include “socketSlave.h”
 #include “encoder.h”
 #include “inverter.h”
 #include “interrupt_controller.h”
 #include “sfr_bridge.h”
 #include “module_SFR_register.h”
 #include “socket_control_SFR_register.h”
 #include “config1.h”

 namespace MicasSystem {
 namespace Audio {
 microcontroller MCU3(“Audio_MCU3”);
 socket_control_SFR_register
socket_control_sfr_reg(“Audio_socket_control_sfr_reg”);

 socketSlave Socket3(“Audio_Socket3”);
 interrupt_controller Interrupt_controller(
 “Audio_Interrupt_controller”);
 encoder AudioEncoder(“Audio_AudioEncoder”);
 soundRecorder SoundRecorder(“Audio_SoundRecorder”);
 sfr_bridge SFR_Bridge(“Audio_SFR_Bridge”);
 module_SFR_register SFR_Register_Socket3(
 “Audio_SFR_Register_Socket3”);
 module_SFR_register SFR_Register_SoundRecorder(
 “Audio_SFR_Register_SoundRecorder”);
 bus Bus1(“Audio_Bus1”);
 module_SFR_register SFR_Register_AudioEncoder(
 “Audio_SFR_Register_AudioEncoder”);
 interrupt_SFR_register Interrupt_SFR_register(
 “Audio_Interrupt_SFR_register”);
 } // Audio namespace end
} // MicasSystem namespace end

 int sc_main(int argc, char* argv[]) {
 sc_clock TestClk (“TestClock”, 10, SC_NS, 0.5);
 initialize();
 { using namespace MicasSystem::Audio;
 MCU3.Clk(TestClk);
 socket_control_sfr_reg.Clk(TestClk);
 Socket3.Clk(TestClk);
 Interrupt_controller.Clk(TestClk);
 AudioEncoder.Clk(TestClk);
 SoundRecorder.Clk(TestClk);
 SFR_Bridge.Clk(TestClk);
 SFR_Register_Socket3.Clk(TestClk);
 SFR_Register_SoundRecorder.Clk(TestClk);

102 D. Truscan et al.

 Bus1.Clk(TestClk);
 SFR_Register_AudioEncoder.Clk(TestClk);
 Interrupt_SFR_register.Clk(TestClk);
 Domain* this_domain = domain_list[Audio_id];
 MCU3.mydomain = *this_domain;

socket_control_sfr_reg.socket_ctrl_register_addr =
 this_domain->

 moduleList[socket_control_sfr_reg_id]->master_ctrl_reg_addr;
Socket3.mymodule = *this_domain->moduleList
 [Socket3_id];

 SFR_Register_Socket3.module_sfr_register_addr =
 this_domain->moduleList[Socket3_id]->master_ctrl_reg_addr;

AudioEncoder.mymodule =
 *this_domain->moduleList[AudioEncoder_id];

 SFR_Register_AudioEncoder.module_sfr_register_addr =
 this_domain->moduleList[AudioEncoder_id]
 ->master_ctrl_reg_addr;

SoundRecorder.mymodule =
 *this_domain->moduleList[SoundRecorder_id];

 SFR_Register_SoundRecorder.module_sfr_register_addr =
 this_domain->moduleList[SoundRecorder_id]
 ->master_ctrl_reg_addr;

 Interrupt_SFR_register.int_ctrl_SFR_
 register_addr =

 this_domain->int_ctrl_reg_addr;
 //connect ports
 …… }
 {//connect domains
 ……
 }//end ELABORATION PHASE
 int n = 600000000;
 if(argc > 1) std::stringstream(argv[1], std::
stringstream::in) >> n;

 sc_start (n); //START SIMULATION
 return 0; } // sc_main end

7.5 Conclusions

We have presented a C++-based specification language for the MICAS architecture
that is used to integrate, at simulation time, the configuration related properties with
the SystemC-based specification of the MICAS hardware. The approach favors the
use of simulation libraries and enhances support for automation.

7 SystemC-Based Simulation of the MICAS Architecture 103

We have shown how the defined language can be used to model various charac-
teristics of the MICAS configurations and how it can be integrated with the SystemC
specification of a given configuration. In addition, we have discussed the customiza-
tions applied to the components of the MICAS Simulation library, such that the
simulation model of a given MICAS configuration can be automatically generated.

We mention that although the process of upgrading the library required some addi-
tional effort, the benefit of the approach is twofold: (a) it enables for different instances
of the same module specification not only to be instantiated in several architectural
settings, but also to reuse the same module for implementing different MICAS com-
ponents; (b) it facilitates the automated generation of the simulation model.

References

1. G. Moretti. The search for the perfect language. EDN, Feb. 2004.
 Online at http://www.edn.com/article/CA376625.html. Last checked 10/12/2007.
2. Symbian OS. At http://www.symbian.com.
3. Open SystemC Initiative. SystemC Specification. At http://www.systemc.org.
4. K. Sandström. Microcode Architecture For A System On A Chip (SoC). Nokia Corporation

Patent NC37341, 872.0167.P1(US) (Filing Date: 07.10.2003), Oct. 2002.
5. D. Truscan. Model Driven Development of Programmable Architectures. Ph.D. thesis, Åbo

Akademi University, March 2007.

Part II
Analog, Mixed-Signal,

and Heterogeneous System Design

Chapter 8
Heterogeneous Specification with HetSC
and SystemC-AMS: Widening the Support
of MoCs in SystemC

F. Herrera1, E. Villar1, C. Grimm2, M. Damm2, and J. Haase2

Abstract This chapter provides a first general approach to the cooperation of
SystemC-AMS and HetSC (Heterogeneous SystemC) heterogeneous specification
methodologies. Their joint usage enables the development of SystemC specifica-
tions supporting a wide range of Models of Computation (MoCs). This is becoming
more and more necessary for building complete specifications of embedded sys-
tems, which are increasingly heterogeneous (they include the software control part,
digital hardware accelerators, the analog front-end, etc.). This chapter identifies
the syntactical and semantical issues involved in the specifications which include
facilities from both, SystemC-AMS and HetSC methodologies. This work, which
is an extension of the paper presented in FDL’07 [7], considers the availability and
suitability of the MoC interface facilities provided by both methodologies, espe-
cially those of SystemC-AMS, which will be proposed for future standardization.
Some practical aspects, such as the current set of MoCs covered by the methodologies
and the compatibility on the installation of their associated libraries are also cov-
ered by this chapter. A complete illustrative example is used to show HetSC and
SystemC-AMS cooperation.

Keywords Heterogeneity, Models of Computation, System-Level Design, SystemC.

8.1 Introduction

Support for heterogeneity has become an important feature for specification
methodologies that aim to cope with the current complexity of embedded systems.
In this context, heterogeneity is the ability of the specification methodology to
enable the building of models with parts specified under different MoCs [1].

1University of Cantabria, Spain

2Technical University of Vienna, Austria

E. Villar (ed.) Embedded Systems Specification and Design Languages, 107
© Springer Science + Business Media B.V. 2008

108 F. Herrera et al.

Each design domain adopts a specification methodology which usually corre-
sponds to a specific model of computation (MoC). One of the most characteristic
points associated with the MoC is the handling of time. For instance, analog models
(Continuous Time (CT) models [2] handle strict-time information, that is, specifi-
cation events have an associated time tag representing physical time and fixing
strict order relationships among them. In contrast, concurrent software models
often neglect such detail in the time domain and consider only partial order rela-
tionships among the events associated to the code.

The development of a system-level heterogeneous specification methodology is,
to a great extent, a unification work. Some works developed interfaces between
different languages, i.e., to connect hardware description languages (HDLs) with
high-level programming languages [3]. This enabled certain decoupling between
different design teams, which can fix the connection points and work separately.
However, a system-level specification methodology has to enable the generation,
understanding, edition and simulation of the specification of the whole system. This
is a unification work which involves finding common points for the specification
and simulation methodologies handled by the different design communities.

An effort to develop a common specification and simulation framework was
done. Relevant examples are Metropolis [4] and Ptolemy II [5]. These frameworks
enable specification under different MoCs, approaching the separation of computa-
tion and communication in different ways. Both provide support for graphical
specification, while Java adopts the role of underlying implementation language.

Up to now, the focus of this unifying work has tended to be the language itself.
The lack of a unified system specification language has been identified as one of
the main obstacles bedevilling SoC designers [6]. A common specification lan-
guage is a major aid in generating a specification methodology which aims to com-
bine and achieve coherence among traditionally different and separated design
approaches. SystemC has started to play a role as unifying system-level language
for embedded system design. Becoming an IEEE standard is a symptom of its
acceptance and of a stated syntax and unambiguous semantic for the language con-
structs which are used by SystemC-based methodologies.

In this context, several proposals have appeared for building heterogeneous specifi-
cations in SystemC. This chapter shows how two of them, HetSC and SystemC-AMS
can be jointly used to enable models based on the SystemC language and comprising
a wide spectrum of MoCs. This work is based on [7], which is improved and extended
here. After this introduction, Section 8.2 reviews previous work on heterogeneous
specification in SystemC. The main focus is on the HetSC and SystemC-AMS speci-
fication methodologies. Section 8.3 deals with general issues about the interoperability
of these methodologies. First, some practical issues concerning the installation and the
scope of the libraries are discussed. Then, how the SystemC-AMS and HetSC con-
structs are mixed in the same specification is explained. Reviewing and understanding
how the existing facilities provided by the two methodologies for MoC connection can
be used and combined serves later to propose improved connections. Section 8.4, pro-
vides an illustrative example of the previous concepts. Last section ends with the main
conclusions and advances further steps of the research on this topic.

8 Heterogeneous Specification with HetSC and SystemC-AMS 109

8.2 Heterogeneous Specification in SystemC

Although the SystemC core language supports hardware specification (RTL and
Behavioural) and a generic Discrete Event (DE) modelling, there is a set of MoCs
which are not sufficiently supported by the core language. Such support must
include new specification facilities, MoC rule checkers, report tools, etc. Several
works have attempted to cover such deficiencies. In the following subsections these
works are overviewed. Most of these methodologies are supported by an associated
library; however, they extend SystemC in different ways.

8.2.1 SystemC-AMS

SystemC-AMS [8] is a specification methodology developed by the OSCI
SystemC-AMS working group which provides support for analog and mixed-signal
specification. This involves supporting the Synchronous Dataflow (SDF), discrete-
time (DT) and continuous time (CT) MoCs. Among the CT MoCs, it is possible to
specify linear behavioral models by means of transfer functions (TF). Currently,
two views are supported for TFs: the numerator-denominator (ND) view and the
zero-pole (ZP) view. In addition, the specification of linear electrical networks
(LEN), which enable a circuit level description, is also supported.

SystemC-AMS is extensible by other models of computation through a synchro-
nization layer. Solvers for the MoCs supported are layered over the synchronization
layer. The design of the synchronization layer of SystemC-AMS and the MoCs
provided are oriented to a system-level modelling where simulation speed is a more
important factor than a very fine simulation accuracy.

The synchronization layer supports directed communication and only a simple syn-
chronization; on user specified events or in fixed time steps. In this way, the simulation
of linear networks with SystemC-AMS can be orders of magnitudes faster than the
more general numerical integration for non-linear networks [9]. From the specification
point of view, SystemC-AMS offers a new set of facilities, such as new kinds of mod-
ules (SCA_SDF_MODULE), ports (sca_sdf_in, sca_sdf_out, etc.), channels (sca_sdf_
signal), and other MoC specific facilities, such as the sca_elec_node, sca_elec_port,
etc. Linear behavioural models are embedded in SDF modules, while LENs are
enclosed in SystemC modules. SystemC-AMS provides converter ports and facilities to
enable different MoCs to communicate (i.e. DE with SDF, SDF with LEN, etc).

8.2.2 HetSC

HetSC [10] is a methodology for enabling heterogeneous specifications of complex
embedded systems in SystemC. MoCs supported include untimed MoCs, such as
Kahn Process Networks (KPN), its bounded fifo version (BKPN), Communicating

110 F. Herrera et al.

Sequential Processes (CSP) and Synchronous Dataflow (SDF). Synchronous
MoCs, such as Synchronous Reactive (SR) and Clocked Synchronous (CS) and the
timed MoCs already supported in SystemC are also included. HetSC aims at a
complete system-level HW/SW codesign flow. Indeed, the methodology has been
checked in terms of system-level profiling and software generation [11].

The HetSC methodology defines a set of specification rules and coding guide-
lines for each specific MoC, which makes the designer task more systematic. The
support of some specific MoC requires new specification facilities providing the
specific semantic content and abstraction level required by the corresponding
MoCs. The HetSC library, associated with the HetSC methodology, provides this
set of facilities to cover the deficiencies of the SystemC core language for hetero-
geneous specification. In addition, some facilities of the HetSC library help to
detect and locate MoC rule violations and assist the debugging of concurrent speci-
fications. One of the main contributions of HetSC is its efficient support of abstract
MoCs (untimed and synchronous). This is because they are directly supported over
the underlying discrete event (DE) strict-time simulation kernel of SystemC. New
abstract MoCs do not require additional solvers since the new MoC semantic is
embedded in the implementation of the new specification facilities (usually chan-
nels) related to the abstract MoC. When the new MoC can be abstracted from the
DE strict-time MoC, then, it is possible to find a mapping of internal events of the
new specification facility, i.e., a channel, over the strict-time axis of the DE base
MoC. This makes it feasible to write the implementation of such a channel by using
SystemC primitives, such as SystemC events, which control when things happen
within the channel and, therefore, in the processes related by the channel.

8.2.3 SystemC-H

SystemC-H [12] is a methodology that proposes a general extension of the SystemC
 kernel for the support of different MoCs. This methodology proposes the extension of the
SystemC kernel by including a solver for each MoC. The current scope of the SystemC-
H library covers the SDF and CSP untimed MoCs. For instance, SystemC-H provides a
solver for static scheduling of SDF graphs which enables schedulability analysis and
provides a 75% speed-up respect to DE [12]. However, this extension is not always
worthwhile. Indeed, the speed-up for some abstract MoCs can be negligible [13]. In addi-
tion, the effects of Amdahl law can make simulation speed-ups vanish. For instance, in
[12] the speed-up of a mixed DE-SDF example decreases to 13%. This suggests that
providing a specific solver for each MoC can be not always worthy. In cases like these,
it can be more efficient to let several MoCs to share the same simulation kernel. This is
the approach of HetSC, where similar speed-ups to those of [12] were reported for the
dynamic approach to SDF for large-grain SDF specifications [14]. Another problem of
this approach is that the way the extension is proposed requires modifying the standard
kernel of the library. In contrast, SystemC-AMS and HetSC methodological libraries rely
on the SystemC standard library, which remains untouched.

8 Heterogeneous Specification with HetSC and SystemC-AMS 111

8.2.4 SysteMoC

SysteMoC [15] focuses on providing a methodology with the ability to extract and
analyze the MoC employed in the SystemC design. This is understood to be a pre-
requisite for the rest of the design activities. In order to achieve this, the SysteMoC
library provides support for a basic MoC called Funstate. Specifications written
under this MoC express their communication behaviour under the finite state
machine (FSM) MoC. This enables the automatic extraction and analysis of the
MoC employed, only by analyzing communication FSMs together with the topol-
ogy of the specification.

8.3 HetSC/SystemC-AMS Interoperability

8.3.1 Installation and Scope

Figure 8.1 describes the installation requirements of the SystemC user. Apart from
the SystemC core library, the SystemC-AMS and HetSC libraries have to be
installed on top of the SystemC core library. There is flexibility with respect to the
development platform (i.e., Linux, Unix and Windows-Cygwin are supported).

There is no compatibility problem in the installation of HetSC and SystemC-
AMS libraries. In this work, the HetSC library is extended with some specific
facilities for enabling an easier connection of HetSC and SystemC-AMS parts.
These HetSC facilities use some SystemC-AMS facilities through forward declara-
tions. This prevents obliging an installation order between HetSC and SystemC-
AMS libraries, making the installation procedure easier. Once such an installation
has been done, the development system is ready for compiling and executing
SystemC specifications written under a wide range of MoCs. The user only has to
include the SystemC-AMS and HetSC libraries in the source code of the heteroge-
neous specification.

HetSC
Library

OSCI SystemC
Library

C++ Compiler

SystemC-AMS
Library

#include <systemc-ams.h>
#include “systemc.h”

int sc_main(..) {
…
}

Fig. 8.1 SystemC-AMS and HetSC libraries are installed over the SystemC library

112 F. Herrera et al.

Figure 8.2 shows the supported MoCs. The cooperation of SystemC-AMS and
HetSC provides a complementary MoC support. While SystemC-AMS provides
support for analog MoCs and static synchronous data flow, untimed and synchro-
nous MoCs are supported by HetSC and SystemC core facilities.

This is also an efficient configuration for the support of a wide spectrum of
MoCs. The reason is that specific solvers are provided only for a set of MoCs where
the simulation speed up is significant. This set corresponds to analog MoCs, where
the simulation speed ups can be of orders of magnitude. Bearing in mind the limited
speed-ups reported in [10, 12, 13], untimed and synchronous MoCs can be satisfac-
torily supported directly over the SystemC kernel. The exception would be fine
grain SDF specifications, where the speed up of a static SDF compared to a
dynamic SDF could be significant. Specifications without CT parts but with syn-
chronous hardware (RTL or behavioural) could also justify a cycle-accurate simula-
tor. However, the study of these exceptions is not in the scope of this work.

8.3.2 Syntactical and Semantical Issues

There are some basic issues to consider in a general discussion of the connection
between HetSC and SystemC-AMS. In terms of the resulting structure, two parts
can be distinguished in the specification. One corresponds to the AMS part, while
the other corresponds to the HetSC part.

From the syntactical point of view, the SystemC-AMS part will be identified by
SCA_SDF_MODULEs and/or SCA hierarchical modules. This part presents a hier-
archical heterogeneity where the underlying MoC is the static synchronous data-
flow (SDF) MoC. The HetSC part is characterized, in general, by an amorphous
heterogeneity. This means that the HetSC specification permits mixing MoC facili-
ties in a flat hierarchy. Nevertheless, the HetSC specifier will often make use of
module hierarchy for separating parts of the system under different MoCs. Thus, in
many cases, module partition will correspond with MoC boundaries.

From the semantical point of view, there is a basic consideration. While HetSC
directly relies on the DE strict-time simulation kernel, SystemC-AMS relies on a
synchronization layer, which provides support for the solvers. In SystemC-AMS,
CT descriptions are always embedded in dataflow clusters [8]. That is, the most

KPN
CSP

SR
CS

RTL
Beh.

PN

Synchronization Layer

ZPND Static

SDF
Dynamic

SDF

untimed synchronousanalog

LEN

LN solver

SystemC DE strict−time Simulation Kernel

Behavioral

Fig. 8.2 MoCs spectrum provided by the cooperation of SystemC-AMS and HetSC

8 Heterogeneous Specification with HetSC and SystemC-AMS 113

important solver is the SDF one which, from the point of view of time semantics,
is the basis for the analog MoCs. The time axis in SystemC-AMS is actually sliced
by each SDF cluster in strict-time delays called cluster periods (T

cluster
), which

depends on the sample period (T) and rates of the cluster SDF graph. Thus, with
respect to the premises of [14], the SDF approach of SystemC-AMS is not an
untimed SDF. Internally, modules of the cluster can be viewed as a strict-time timed
approach to the SDF MoC (denoted as T-SDF here), which enables a static execu-
tion of the AMS processes at each cluster period. More important for the purpose
of this work, from an external point of view, the cluster can be conceived as a
timed-clocked synchronous (CS) block which triggers at each cluster period. Thus,
the cluster period must be taken into account to synchronize the DE part with the
SystemC-AMS part.

Since every MoC supported by HetSC is abstracted over the DE strict-time sim-
ulation kernel and every SystemC-AMS MoC is clustered in the T-SDF MoC, the
problem is reduced to providing a SystemC/SystemC-AMS connection, which is
basically a DE/T-SDF connection. In SystemC-AMS, this connection is done by
means of SystemC signals (sc_signal channels) and a set of SystemC-AMS con-
nection facilities (sca_scsdf_in, sca_scsdf_out, sca_sc2v, sca_sc2r, etc.). Each of
these connection facilities are based on the sampling and/or update of a SystemC
signal at each cluster time. Therefore, an immediate conclusion is that these ele-
ments can be directly employed to combine HetSC and SystemC-AMS.

Such direct usage of the sc_signal and the DE/SystemC-AMS connection facili-
ties is immediate in some HetSC/SystemC-AMS connections. On the left hand side
of Fig. 8.3, a HetSC part under a synchronous reactive MoC (SR MoC) is repre-
sented. Both in Figs. 8.3 and 8.5 the graphical representation used in HetSC meth-
odology is employed. There is a simple reactive chain composed of a generator
process (GP) which triggers a reactive process (RP). This RP is also a border proc-
ess (BP), since it writes to a SystemC signal channel (sc_signal), which is con-
nected to a SystemC-AMS part. Its connection with the SystemC-AMS part by
means of a signal channel is syntactically and semantically compatible with the SR
MoC rules. These rules and, specifically, perfect synchrony, are respected since the
write access to the SystemC signal is non-blocking. This enables the reactive chain
to be computed consuming one or more simulation delta cycles, but without requir-
ing a SystemC time advance. This is the way in which perfect synchrony is imple-
mented in HetSC.

sc_signaluc_SR

BP SCA_SDF
_MODULE

sca_scsdf_in

GP RP

LEN
networksca_sc2r

Fig. 8.3 Connection of HetSC and SystemC-AMS parts by means of a border process

114 F. Herrera et al.

From the SystemC-AMS part, the connection is coherent too. In the connection to
a SCA_SDF_MODULE, the value of the sc_signal is read at each cluster time. This
value can be read as many times as necessary, as the consumption rate of the sca_
scsdf_in port determines. Another possibility is the connection to a linear electrical
network (LEN MoC of SystemC-AMS) by means of a converter facility, for instance,
a sca_sc2r in Fig. 8.3. This facility enables the update of its associated resistance
value whenever the sc_signal channel is written. Then, this updated resistance value
is employed by the LEN solver in the following cluster times to solve the differential
equation corresponding to the electrical network the converter facility belongs to.

The time stamp information of the HetSC SR slot is irrelevant to the effect of the
HetSC SR MoC itself (the only necessary condition is that each slot has to happen
at different time stamps). However, it is important to the effect of the (HetSC) SR
MoC/(SystemC-AMS) LEN MoC connection, since it tells when the differential
equation system is updated, before or after a given cluster time. For instance, in Fig.
8.4, the time stamps of the SystemC-AMS cluster computations are represented as
black dots. Their time stamps are equally spaced. The time stamps of the SR time
slots are represented as white dots. As mentioned, there is still consistency in the
SR part if slot time stamps are not equally separated. However, actual time stamps
of SR slots affect the relationship of the SR part with the timed SystemC-AMS part.
For example, the first two cluster computations, C1 and C2, use the signal value
updated in the slot S1, while the cluster computation C3 uses the signal value
updated in the slot S3. If the S2 slots moves to a time stamp before C2, then,
although this is no relevant to the effects of the SR part, it affects the SystemC-
AMS part, since C2 takes the value updated in S2.

The set of MoCs abstracted from the DE MoC and supported by HetSC is rich
enough to consider specific connections which cannot be directly handled by only
a SystemC signal plus SystemC-AMS connection facility. For instance, the connec-
tion of a KPN MoC with a LEN MoC involves fifo channel semantics on one side
and electrical nodes on the other side. It would be convenient to count on some
connection facility which enables such direct connection, without the explicit inter-
mediation of the SystemC signal (sc_signal).

In order to get such a direct connection, both in syntactical and semantical terms,
the SystemC signal-SystemC-AMS connection facility can be conveniently com-
plemented and wrapped by one of the basic concepts employed in HetSC for the
connection of MoCs, the border process. Externally, the connection facility can take

SystemC time stamp

HetSC SR slots

SystemC-AMS SDF Cluster Times

S1 S2 S3

C1 C2 C3

Tcluster Tcluster

Fig. 8.4 Strict time information in the HetSC/SystemC-AMS connection

8 Heterogeneous Specification with HetSC and SystemC-AMS 115

the shape of a HetSC border channel (BC). Figure 8.5 shows a border channel (uc_
inf_fifo_sca_sdf), which enables a direct connection between a KPN MoC and a
T-SDF MoC. It is built as a hierarchical channel which on the one hand exports the
write interface of an uc_inf_fifo channel, while on the other hand offers a T-SDF
port (sca_sdf_out) port. Internally, it uses a border process which consumes fifo
tokens, whose values are used to update the internal SystemC signal. The signal is
connected to a converter port (sca_scsdf_in) of an inner SystemC-AMS module. In
addition, BCs provide a scalable way to construct these direct connections since it
does not require the SystemC-AMS kernel to be changed.

BCs provides a semantical solution for the untimed/timed connection which
arises when untimed MoCs of HetSC are connected to SystemC-AMS MoCs. In the
(HetSC) SR-(SystemC-AMS) T-SDF example the solution was based on sampling
(read) and updating (write) signals and considering the relationship of the actual
time stamps of HetSC SR slots and the cluster period of the SystemC-AMS part.
The connection of SystemC-AMS with untimed HetSC MoCs is more complex
because of the differences in terms or communication semantics. HetSC untimed
MoCs handle a different behaviour in terms of the destructive and non-destructive
semantics of the write and read accesses.

For instance, a KPN part, expects that writing to a (fifo) channel provokes the
accumulation of tokens within the channel in case they cannot be immediately
transferred, thus they are never lost. This is a non-destructive write semantic. It also
expects to consume instead of peeking or sampling the data present in the channel,
that is, a destructive read. This communication semantic, typical from untimed
MoCs has to be coherently connected with the T-SDF part, which writes and reads
at a fixed pace (determined by the cluster period and port rates) with a non-accu-
mulative (destructive) write and sampling (non-destructive) read semantic. Then,
some kind of adaptation has to be introduced to convert consumption in sampling
(and vice versa) and production in writing (and vice versa). Actually, this type
of adaptation is not comprised by any of the SystemC-AMS connection facilities.
Such adaptation can be explicitly written, i.e. as a HetSC border process. The BC
enables the packaging of such adaptation in a specification primitive. For
instance, in the uc_inf_fifo_sca_sdf is a BC. In this BC, when to consume fifo
tokens is defined by means of a sampling period, which, in general, can be different
from the cluster period. The BC can also raise an error if the internal fifo gets empty
when a new sampling is given.

sc_signaluc_inf_fifo

uc_inf_fifo_sca_sdf<T>

cons_T

SDA_SDF
_MODULE

sca_sdf_out

sca_scsdf_in

Fig. 8.5 Structure of a uc_inf_fifo_sca_sdf channel

116 F. Herrera et al.

8.4 Example

In order to demonstrate the previous general concepts, an example has been developed.
This example is available in [16]. It consists of a soundboard, which is shown in
Fig. 8.6. The system has an audio input and an audio output. The audio input undergoes
three stage filtering. The first filter is a noise filter to remove any signal component
over 22 kHz. The second one is a 10-channel equalizer. The last one is an integrator,
which, at the same time, controls the general volume and filters the DC component of
the audio output. The system has other inputs, as well as the audio input. A dial enables
selection of the equalizer channel, while another dial tunes the gain of the selected
channel in dBs (in a [-10 dB, 10 dB] range). A state display shows the current state of
the equalization, while an edition display shows the currently selected channel and the
currently edited equalization profile. This profile is not applied till the set button is
pressed. Then, the state display changes to reflect this equalization profile. If the cancel
button is pressed instead, then the edition display and the edition equalization profile
return to the initial state (0 dB for every channels). Another dial controls the general
gain of the system (also in a [-10 dB, 10 dB] range). It does not depend on the set
button. That is, its change immediately updates the system gain.

Figure 8.7 depicts how this has been solved using HetSC and SystemC-AMS
together. The system is enclosed in a SystemC module (soundboard). This top
module contains another SystemC module (panel_control), which contains the

32Hz

−10dB

64 125 250 500 1K 2K 4K 8K 16K

0dB

+10dB

−10dB

0dB

+10dB

CH **

SETCANCEL

MODE

CH SELECTCH VOL

GEN VOL

EQ. EDITION DISPLAY

EQ. STATE DISPLAY

AIN AOUT

Fig. 8.6 Soundboard system

8 Heterogeneous Specification with HetSC and SystemC-AMS 117

HetSC part of the system and uses the HetSC library specification facilities. The
soundboard module also contains three modules which use SystemC-AMS facili-
ties. In this case, the testbench model (testbench module) is composed of four
modules which only use HetSC facilities. In another version, part of the testbench
(the audio input) was specified using SystemC-AMS specification facilities). In this
sense, several combinations were possible leading to the same result.

In Fig. 8.7, the correspondence with the MoCs employed is depicted with dashed
lines. In the testbench module, two processes (left_hand and right_hand) model the
handling of dials and buttons of the soundboard. The two processes are synchro-
nized through a rendezvous channel, to ensure the left hand edits the equalizer pro-
file before the right hand pushes the set button and raises the general volume.
Because of this, this part is a CSP network. In addition, each of the processes is an
autonomous process generating a SR reactive chain. Dial turn and button press are
modelled as writes to uc_SR channels. The reactive chain which controls the gen-
eral volume is pure in that it is composed only of generator and reactive SR proc-
esses. The reactive process converts the dial events (turning left or right), which
mean plus 1 dB or minus 1 dB, considering the bounds of the [-10 dB, 10 dB] range,
in a control SystemC signal which affects the value of a resistor composing the
integrator module. A similar thing happens with the channel equalization control.
However, here there is not a pure reactive chain, since the two reactive processes
are border processes, as they also write to infinite fifo HetSC channels (uc_inf_fifo),
proper of the KPN MoC. For instance, one is used to pass the new equalization
profile to the state display when the set button is pressed.

(LEN)

equalizer_array

(LN-TF)

noise_filter integrator

(T-SDF)

sin src

SystemC-AMS (ANALOG)

control_panel

state_display

edition
_display

soundboard

soundboard user
testbench

Rch_ctrl Rgen_ctrl

s_in

HetSC

SR

KPN

CSP

Fig. 8.7 SystemC-AMS-HetSC specification

118 F. Herrera et al.

In the analog part, the noise filter is modelled through a SystemC-AMS SDF mod-
ule (noise_ filter). This module has an input port, to read the s_in external signal which
provides the audio samples. It is designed as a second order Butterworth low pass filter
with a cut frequency of 22 kHz, which is modelled under the LN-TF MoC of SystemC-
AMS, using the ND view. The other two blocks are modelled at a circuit level, under
the LEN MoC. The equalizer_array module encloses an array of ten equalizer cells.
Each of them is an active band pass filter centred at the channel frequency. This filter
is described as a circuit with three resistors, two capacitors and a model of operational
amplifier (OA) which considers the gain, the input and output resistance. Each equal-
izer cell is instantiated taking the capacitor values as the parameter for centring each
filter at the channel frequency (32 Hz for channel 0, 64 Hz for channel 1 and so on till
16 kHz for channel 9). The output of each equalizer cell is connected to a resistor
instance of type sca_sc2r, controlled by one of the signals of the Rch_ctrl signal array.
These resistors are connected to the same electrical output node, where the contribu-
tion of each equalizer cell is added. This node is used as input to the integrator module.
This module is also described as a circuit which also instantiates the previously men-
tioned OA model, a capacitor, and a resistor controlled by the Rgen_ctrl signal, to
control the gain of the integrator and, thus, of the whole system.

In both, the HetSC and SystemC-AMS parts, elements are employed to connect
MoCs. For instance, BPs connect KPN and SR MoCs in the HetSC part, and a
sca_sdf2v instance connects the noise filter to the equalizer array. In Fig. 8.7, the
connections between the HetSC and the SystemC-AMS part have been highlighted
with thicker arrows. Specifically, the audio input samples are transferred to the
soundboard module through an instance of the uc_inf_fifo_sca_sdf channel intro-
duced in the previous section. This border channel enables a direct connection
between the untimed part, which generates the samples, and the SystemC-AMS
input converter port of the noise filter. The connection of the SR reactive chains to
the LEN part of the model is placed between the lower part of the control_panel
module and the equalizer_array and integrator analog modules. For instance, the
reactive process triggered by the turn events of the general volume dial is indeed a
border process which writes the Rgen_ctrl SystemC signal. A similar thing happens
with the non pure reactive chain, which drives an array of ten signals (each one for
its corresponding equalizer channel). Each of these signals controls the value of a
SystemC-AMS sca_sc2r primitive.

A time domain simulation and two frequency analyses have been performed. The
time domain simulation is dumped to data and waveform files. The first frequency
analysis is done in the middle of the time domain simulation. At this time, the sound-
board response corresponds to that of the initial state (0 dB gain for every channel
and for the general volume). The second frequency analysis is done at the end of the
time domain simulation, once a manual configuration has been performed and the
set button pressed. Additional results of the simulation are two data files, with the
frequency response of the equalizer (thus, the equalization profile) at different points
of the simulation time. The result has been post-processed with Octave specification
execution, just to reflect the change on the equalization profile (Fig. 8.8). Other out-
puts of the system are two log files which reflect the activity of the displays.

8 Heterogeneous Specification with HetSC and SystemC-AMS 119

This specification took around 2,500 SystemC code lines including test bench
modules and around 30 man-hours (ignoring learning time). The simulation time
was less than 53 s in an Intel PIV 2.8 GHz, Linux 2.6.3 development platform. This
illustrates how fast the system-level specification and analysis of such heterogene-
ous system can be done using HetSC and SystemC-AMS. The example has been
checked for three configurations of development platforms, reflected in Table 8.1.

8.5 Conclusions and Future Work

This work addresses how the HetSC and SystemC-AMS specification methodolo-
gies can be used together. With their cooperation, a wide range of MoCs, from
untimed to analog ones, are efficiently covered. This is a key feature in enabling the
early system-level specification of embedded systems. The installation and compat-
ibility of the HetSC and SystemC-AMS libraries has been checked. Furthermore,

Initial and Edited frequency response.

initial
edited

dB
20

0

−20

−40

−60

−80

−100

−120
1 10 1000

Hz
10000 100000 1e+06100

Fig. 8.8 Initial and edited frequency spectrum

Table 8.1 Host configurations where the example has been compiled and executed

OS GCC SystemC SystemC-AMS HetSC

Linux 2.6.3/32 bits 3.3.2 2.1v1 0.15RC1/RC2 1.2
Linux 2.6.3/32 bits 4.0.0 2.2.0 0.15RC4 1.2
Linux 2.6.3.2/64 bits 4.1.2 2.2.0 0.15RC4 1.2

120 F. Herrera et al.

the syntactical and semantical issues related to the connection have been discussed.
SystemC-AMS is based on a timed SDF MoC, where AMS clusters can be concep-
tually seen as timed-clocked synchronous blocks from the DE part. SystemC-AMS
provides facilities for this AMS/DE connection which are based on the sampling
and update of the SystemC signal. Since HetSC MoCs are abstracted from the
underlying DE strict-time MoC, the connection of any HetSC MoC with any
System-AMS MoC can be reduced to a SystemC DE/SystemC-AMS connection.
Thus, SystemC-AMS facilities for the DE/AMS connection can be used. Moreover,
the HetSC border channel can be conveniently used to provide direct connections
among specific untimed and synchronous (HetSC) MoCs and analog (SystemC-
AMS) MoCs, hiding the intermediation of DE signals in the connection of MoCs
that do not employ such specification primitives and encapsulating the detection of
error situations which consider the cluster period, the time conditions of HetSC
part, etc. The immediate evolution of this work can be found [17], where converter
channels are introduced. These channels incorporate concepts of polymorphic sig-
nals [18], releasing from any manual engagement in the system refinement. As well
as adaptations on the time and communication domain, converter channels also
introduce adaptations at the data type domain. Finally, this work implicitly states
the need for a formal environment in order to obtain a common understanding of
the interoperation of this kind of methodologies.

Acknowledgments Work supported by the FP6-2005-IST-5 European project.

References

 1. E.A. Lee and A. Sangiovanni-Vincentelli. A Framework for Comparing Models of
Computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 17(12), December 1998.

 2. A. Jantsch. Modelling Embedded Systems and SoCs. Morgan Kaufmann, San Francisco, CA,
June 2003. Morgan Kaufmann Publishers An imprint of Elsevier Science 340 Pine Street,
Sixth Floor San Francisco, California 94104-3205 www.mkp.com

 3 R. Gupta. HDL/C Interface Exploration. Tech. Report, ICS Dpt., University of California,
California, 2002.

 4. A. Davare et al. A Next-Generation Design Framework for Platform-Based Design. In DVCon
2007, San Jose, CA, USA, February 2007.

 5. C. Brooks et al. Ptolemy II: Heterogeneous Concurrent Modeling and Design in Java. Tech.
Report, University of California, Berkeley, CA, July 2005.

 6. L. Geppert. Electronic Design Automation. IEEE Spectrum, 37(1), January 2000.
 7. F. Herrera, E. Villar, C. Grimm, M. Damm and J. Haase. A General Approach to the

Interoperability of HetSC and SystemC-AMS. In Proceedings of the Forum of Design
Languages 2007. FDL’07, Barcelona, Spain, 2007.

 8. A. Vachoux, C. Grimm, and K. Einwich. Towards Analog and Mixed-Signal SoC Design with
SystemC-AMS. In IEEE DELTA’04, Perth, Australia, 2004.

 9. A. Herrholz et al. ANDRES – Analysis and Design of Runtime Reconfigurable Heterogeneous
Systems. In Proceedings of DATE’07, Nice, France, April 2007.

8 Heterogeneous Specification with HetSC and SystemC-AMS 121

10. F. Herrera and E. Villar. A Framework for Embedded System Specification Under Different
 Mod els of Computation in SystemC. In Proceedings of DAC’06, San Francisco, CA, July 2006.

11. H. Posadas, F. Herrera, V. Fernandez, P. Sanchez, and E. Villar. Single Source Design
Environment for Embedded Systems Based on SystemC. Transactions on Design Automation
of Electronic Embedded Systems, 9(4):293–312, December 2004.

12. H.D. Patel and S.K. Shukla. SystemC Kernel Extensions for Heterogeneous System Modeling:
A Framework for Multi-MoC Modeling. Springer, July 2004.

13. H.D. Patel, D. Mathaikutty, and S.K. Shukla. Implementing Multi-Moc Extensions for
SystemC: Adding CSP and FSM Kernels for Heterogeneous Modelling. Tech. Report,
FERMAT, Virginia Tech., June 2004.

14. E.A. Lee and D.G. Messerschmitt. Static Scheduling of Synchronous Data Flow Programs for
Digital Signal Processing. IEEE Trans. on Computers, C-36(1):24–35, 1987.

15. J. Falk, C. Haubelt, and J. Teich. Efficient Representation and Simulation of Model Based
Designs in SystemC. In Proceedings of FDL’06, Darmstad, Germany, September 2006.

16. http://www.teisa.unican.es/HetSC/downloads.html
17. J. Haase, M. Damm, C. Grimm, F. Herrera, E. Villar. Using Converter Channels within a Top-

Down Design Flow in SystemC. The 15th Austrian Workhop on Microelectronics, Graz,
Austria, October, 2007.

18. R. Schroll, C. Grimm, and Waldschmidt K. Verfeinerung von Mixed-Signal Systemen Mit
Polymorphen Signalen. In Analog’05. VDE-Verlag, Berlin, Germany, 2005.

Chapter 9
An Extension to VHDL-AMS for AMS Systems
with Partial Differential Equations

Leran Wang, Chenxu Zhao, and Tom J. Kazmierski

School of Electronics and Computer Science, University of Southampton, UK
Email: {lw04r, cz05r, tjk}@ecs.soton.ac.uk

Abstract This paper proposes VHDL-AMS syntax extensions that enable descrip-
tions of AMS systems with partial differential equations. We named the extended
language VHDL-AMSP. An important specific need for such extensions arises
from the well known MEMS modelling difficulties where complex digital and
analogue electronics interfaces with distributed mechanical systems. The new
syntax allows descriptions of new VHDL-AMS objects, such as partial quantities,
spatial coordinates and boundary conditions. Pending the development of a new
standard, a suitable pre-processor has been developed to convert VHDL-AMSP
into the existing VHDL-AMS 1076.1 standard automatically. The pre-processor
allows development of models with partial differential equations using currently
available simulators. As an example, a VHDL-AMSP description for the sensing
element of a MEMS accelerometer is presented, converted to VHDL-AMS 1076.1
and simulated in SystemVision.

Keywords Hardware description language, VHDL-AMS, mixed-technology model-

ling, partial differential equations, MEMS

9.1 Introduction

VHDL-AMS is a hardware description language designed to support modelling at
various abstraction levels in mixed, electrical and non-electrical physical domains
as well as mixed, digital and analogue components [1]. These features make it
straightforward for VHDL-AMS to be used as the modelling language in MEMS
design. Since MEMS systems are combinations of subsystems from both the elec-
trical and mechanical domains, the field of MEMS design is interdisciplinary in
nature. Several VHDL-AMS based MEMS models have already been reported in
literature, such as a yaw rate sensor [2] and a vibration sensor array [3].

E. Villar (ed.) Embedded Systems Specification and Design Languages, 123
© Springer Science + Business Media B.V. 2008

124 L.Wang et al.

Although VHDL-AMS is a very powerful and flexible mixed physical domain
modelling tool, it faces a challenge in MEMS related applications. The current
VHDL-AMS (IEEE 1076.1) can only describe the continuous parts of a system by
using differential and algebraic equations (DAEs). Support for partial differential
equations (PDEs) was intentionally left out in the development of VHDL-AMS
standard due to the complexity [4]. This limits accurate modelling of system blocks
that include distributed physical effects [5]. However, simulation of single-domain
characteristics of micro devices is usually performed by solving PDEs with
geometry-related boundary conditions [6]. Such blocks are currently modelled in
VHDL-AMS mainly by reduced-order models (ROMs) [2, 3]. Because of the size
of a MEMS device, distributed effects are not negligible and may even play vital
roles, for which reduced-order MEMS models are often not accurate enough. Thus
an implementation of PDEs in VHDL-AMS is in demand. Suggestions have been
made to extend other AMS-HDLs, such as Modelica [7] and Verilog-AMS [8], to
add PDE support.

Some attempts have already been made to implement PDEs within the existing
limits of VHDL-AMS. A transmission line example [5] and a system with electro-
thermal coupling [9] are modelled using VHDL-AMS 1076.1. The way is to
 discretize the equations with respect to spatial variables and leave the time deriva-
tives to be handled by VHDL-AMS [5]. The problem with this approach is that the
discretization is done manually. When some modifications are made to the system,
a series of equations have to be rewritten which makes the modelling very
 inefficient. New language extensions for PDE support have also been raised [5, 9]
but currently no simulator can handle the new operators.

The work presented in this paper implements PDEs in VHDL-AMS in such a
way that pending the development of a corresponding standard, PDEs can be writ-
ten directly but no new simulators are needed. Necessary language constructs have
been adopted from previous work [5, 9] and some improvements have been made.
A translation pre-processor has been developed to convert the extended language
(VHDL-AMSP) into VHDL-AMS 1076.1 automatically so that models with PDEs
can be simulated using currently available simulators. Using this new method
VHDL-AMS models that describe systems with distributed physical effects can
now be built and simulated more efficiently.

The proposed methodology is expected to have particular advantages in mixed
mechanical-electrical systems with tight control feedback loops, of which the MEMS
block is an integral part. For example, the work presented in a recent paper [10]
intends to develop new and innovative control and interface systems, technologies
and circuits for MEMS physical sensors. The primary methodology is based on the
incorporation of micro-mechanical sensing elements (e.g. for accelerometers and
gyroscopes) in high-order Σ∆ modulator (SDM) loops. The loop filter consists of
mechanical and electronic integrators; the former is constituted by the micromachined
sensing element which is, to a first order approximation, a second order transfer func-
tion. The tools currently used for simulating such a complex and highly coupled
system are primarily system level tools, such as Matlab/Simulink. The lumped
parameter model of the sensing element captures only the first mechanical mode.

9 An Extension to VHDL-AMS for AMS Systems 125

However, when designing higher-order electro-mechanical SDM loops, higher
order mechanical modes may well be of considerable significance for the stability
and performance of the control loop. Consequently, having a distributed mechani-
cal model using partial differential equations would be a significant breakthrough
for the design of such devices. To demonstrate the efficiency of our approach, the
sensing element of such a MEMS accelerometer in SDM loop has been modelled
in VHDL-AMSP, translated to VHDL-AMS 1076.1 and simulated. Simulation
results show that high-order behaviour of the cantilever beam has been captured,
which is not possible in conventional methodologies.

9.2 VHDL-AMS Extensions for PDE Support

The extensions outlined below support equations that may contain high-order
 partial derivatives describing systems in a multidimensional space.

9.2.1 Partial Quantity

With the keyword partial, a partial quantity is defined as a physical variable which
has a continuous value not only over a period of time but also over a hypercube in
a multidimensional space. It is declared as:

partial quantity q : real;

The corresponding BNF (Backus-Naur Form) notation is:

partial_quantity_declaration ::=
partial quantity identifi er_list : subtype_indication;

Partial quantities may act as interfaces between entities as well as appear in archi-
tecture bodies.

9.2.2 Spatial Coordinate

With the keyword coordinate, spatial coordinate is declared over which a partial
quantity is distributed. Multiple coordinate declarations will form a hypercube in
space. The declaration can define a range in space and the discretization step size.

126 L.Wang et al.

The range is obligatory as it defines the hypercube, but the step size is optional. It
is up to the designer to decide whether to use default step size or to give a fixed
value. The following is an example of a spatial coordinate declaration:

coordinate x : real range 0.0 to 10.0 step 0.1;

Two new grammar productions have been added to the language BNF:

coordinate_declaration ::= coordinate identifi er_list : subtype_indication;
step_size ::= step simple_expression

The existing range construct is extended by the new step construction as:

range ::= range_attribute_name [step_size]
| simple_expression direction simple_expression [step_size]

9.2.3 Partial Derivatives

As suggested in the papers by Nikitin et al. [5, 9], a new language attribute name is
introduced as ′dot(x). If q is a partial quantity and x is a coordinate, q′dot(x) represents
the derivative of q with respect to x. Unlike the example given in the paper [9] where
a high-order derivative is represented by multiple ticks, e.g. q″ dot(x) for the second
order, VHDL-AMSP uses the same notation as VHDL-AMS, namely q′dot(x)′dot(x).
This kind of representation is in the spirit of the existing VHDL-AMS 1076.1 standard
and q′dot(x) as a whole is still a partial quantity. A partial quantity can also have a
derivative with respect to time, using the attribute ′dot, so items like q′dot(x)′dot are
valid. Multidimensional derivatives are supported, such as q′dot(x)′dot(y) where x and y
are two coordinates. Since there is no predefined attribute name and attribute designator
in VHDL-AMS, this extension does not affect the language BNF.

9.2.4 Simultaneous Statement with Partial Derivatives

A simple example is:

q′dot(x) == A * q′dot;

9 An Extension to VHDL-AMS for AMS Systems 127

which represents
∂
∂

=
∂
∂

q

x

q
A

t
.

Partial differential equations can also appear in simultaneous if or case state-
ments. High-order derivatives or derivatives of more than one spatial coordinate can
also be described in a simultaneous statement.

9.2.5 Boundary Conditions

A boundary condition is defined as a special simultaneous statement as shown
below. The expression after the keyword at specifies the spatial boundary where the
conditions should apply. Conditions are written in the form of simultaneous state-
ments. An example is:

boundary x at 0.0 is
begin
q == 0.0;
q′dot(x) == 0.0;
end BOUNDARY;

The corresponding production in the language BNF is:

simultaneous_boundary_statement ::=
 [boundary_label:]

boundary coordinate_name at simple_expression is begin
 simultaneous_statement {simultaneous_statement}

end boundary [boundary_label];

9.3 Translation to VHDL-AMS 1076.1

We have developed a translation pre-processor to automatically convert VHDL-
AMSP models into VHDL-AMS 1076.1. The pre-processor can be used as a tenta-
tive measure to implement PDEs in VHDL-AMS pending the development of an
appropriate standard. The translation pre-processor uses a modified version of a
VHDL-AMS parser [11] where the modifications incorporate the new syntax into
the parser and allow syntax analysis by recursive scanning of the parse tree. During
the scanning, new language constructs can be identified and replaced by necessary
VHDL-AMS 1076.1 constructs. How the new constructs are converted into existing
constructs is demonstrated below, using the examples from Section 9.2.

128 L.Wang et al.

In the declaration part of the model, a partial quantity is converted into a quantity
vector by the same name. The vector size is determined by the coordinate’s range
and step, i.e. range/step. The coordinate won’t appear in the output file but a differ-
ential coefficient (dx in the example) will be declared as a constant, which has the
value of the step size. The declaration part will therefore contain:

quantity q : real_vector (0 to 100);
constant dx : real:=0.1

In the architecture part, a PDE will be replaced by a series of DAEs. Finite differ-
ence approach [12] is used as the discretization method. Note that the discretization
only applies to the middle part of a hypercube space while the borders will be
described by boundary conditions. The PDE in Section 9.2.4 will be discretized as:

(q(2)-q(1))/dx == A*q(1)′dot;
(q(3)-q(2))/dx == A*q(2)′dot;
(q(4)-q(3))/dx == A*q(3)′dot;
…

The boundary statements in Section 9.2.5 are translated into simple simultaneous
statements:

q(0) == 0.0;
(q(1)-q(0))/dx == 0.0;

These DAEs are solvable by a VHDL-AMS 1076.1 simulator.

9.4 MEMS Accelerometer in a SD Control Loop

Figure 9.1 shows the block diagram of a MEMS accelerometer in fifth-order SDM
control loop [10]. Like most conventional modelling approaches, the micro-
 mechanical sensing element is modelled as a second-order spring damping system:

Mz t Cz t Kz t F t�� �() () () ()+ + = (9.1)

where M is the proof mass, C and K are effective damping and spring factor respec-
tively, z(t) is the relative displacement and F(t) is the feedback force. The frequency
response of the lumped model is shown in Fig. 9.2.

9 An Extension to VHDL-AMS for AMS Systems 129

Fig. 9.1 MEMS accelerometer in SDM loop

Fig. 9.2 Frequency response of the lumped model

The proof-mass displacement is converted to electronic signal by differential
capacitive position sensing. The electronic signal is then passed through a third-
order low-pass filter, which is implemented with distributed feedback structure.
The filtered signal is digitized by a 1-bit quantizer and the output is the digital
 signal. The electrostatic feedback force is generated by a DAC. Such a SDM
 control loop has the advantages of increased dynamic range, linearity and band-
width [10] thus it has attracted great research interests.

In actual situation, the sensing element consists of a MEMS cantilever beam
located between two plate electrodes (Fig. 9.3). Instead of moving as a lumped
mass, the cantilever beam itself vibrates and has higher frequency modes. It has

130 L.Wang et al.

been proved that higher-order resonant frequencies can affect the performance of
an SDM loop [13]. However, as shown in Fig. 9.2, such behaviour cannot be
 captured by the conventional lumped model.

9.5 VHDL-AMSP Model of the Sensing Element

9.5.1 Model Description

Figure 9.3 shows the sensing element of an accelerometer in SDM control loops.
The feedback force is acting on the base of the cantilever (non-collocated dynamics)
[13] and the cantilever beam is only deformed by distributed electrostatic force. The
governing equation of this model is:

EI
y x t

x
c

y x t

x t

y x t

t
F x tD e

�

�

�

� �

�

�

4 5 2

24 4

(,) (,) (,)
(,)+ + =rS (9.2)

where y(x,t) is the relative displacement at position x and time t, E is the Young’s
modulus, I is the moment of inertia, c

D
 is the damping factor, r is the material’s

density, S is the cross sectional area and F
e
(x,t) is the electrostatic force.

The boundary conditions at the clamped end and the free end are shown in Eqs.
9.3 and 9.4 respectively [14],

y t z t

y t

x

(,) ()

(,)

0

0
0

=

=q =
�

�

 (9.3)

Fig. 9.3 MEMS cantilever beam as the sensing element

9 An Extension to VHDL-AMS for AMS Systems 131

M EI
y L t

x

Q EI
y L t

x

= − =

= − =

�

�

�

�

2

2

3

3

0

0

(,)

(,)
 (9.4)

where q, M and Q denote the slope angle, the bending moment and the shear force
respectively, L is the length of the beam.

The initial condition is simply:

y(x,0)=0 (9.5)

The electrostatic force F
e
(x, t) is given by:

F x t A
V

d y x t

V

d y x te (,)
((,)) ((,))

=
−

−
+

⎡

⎣
⎢

⎤

⎦
⎥

1

2
0
2

0
2

0
2

0
2

e (9.6)

where e is the permittivity of the gap, A is the area of the electrode, d
0
 is the spacing

between the beam and the electrode and V
0
 is the amplitude of the applied AC

voltage.
The distributed capacitance between the cantilever and the electrode is given by:

C
A

d y x t
C

A

d y x ts s1
0

2
0

=
−

=
+

e e
(,)

,
(,)

 (9.7)

The output voltage can be calculated as:

V t
C C

C C
Vout

s s

s s

() sin()=
−
+

1 2

1 2
0 wt (9.8)

For small displacement cases, it can be assumed that y2<< d2
0
. The above equation

could be simplified as:

V t
y t

d
V tout ()

()
sin()= −

0
0 w (9.9)

where y (t) is the average beam position.

9.5.2 VHDL-AMSP Code

The VHDL-AMSP model of the cantilever beam presented below provides an
example of how the elements discussed in Section 9.2 are implemented. y is the
partial quantity which represents the deflection of the beam and FE is also a par-
tial quantity which represents the electrostatic force. x is the spatial coordinate.

132 L.Wang et al.

Boundary conditions have been applied and typical values are used for the
constants.

library IEEE;
use IEEE.ENERGY_SYSTEMS.all;
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MECHANICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;
entity COMB_DRIVE is
 generic(E:real; –-Young’s modulus
 I:real; –-moment of inertia
 rou:real; –-densigy
 L:real; –-length of beam
 d0:real; –-gap spacing
 K:STIFFNESS; –-effective spring stiffness
 D:DAMPING; –-effective damping
 S:real; –-cross sectional area
 C:real; –-cantilever damping
 A:real; –-electrode area
 ep0:real; –-permittivity
 M:MASS);
 port(terminal PROOF_MASS:TRANSLATIONAL);
end entity COMB_DRIVE;
architecture BCR of COMB DRIVE is
 constant N:real:=5.0;
 partial quantity y:real;
 partial quantity FE:real;
 coordinate x:real range 0.0 to L step L/N;
 quantity z across F0 through PROOF_MASS to TRANS-
LATIONAL_REF;
begin
 M*z’DOT’DOT+D*z’DOT+K*z==F0;
 –-movement of proof mass
 E*I*y’dot(x)’dot(x)’dot(x)’dot(x)+ROU*S*y’dot’dot
 +C*y’dot(x)’dot(x)’dot(x)’dot(x)’dot==FE;
 –-dynamics of cantilever
 FE==0.5*ep0*A*(1.0/((d0-y)**2)-1.0/((d0+y)**2));
 –-electrostatic force
 BOUNDARY x at 0.0 is
 begin
 y==z;
 y’dot(x)==0.0;
 end BOUNDARY;

9 An Extension to VHDL-AMS for AMS Systems 133

 –-boundary condition at clamped end
 BOUNDARY x at L is
 begin
 y’dot(x)’dot(x)==0.0;
 y’dot(x)’dot(x)’dot(x)==0.0;
 end BOUNDARY;
 –-boundary condition at free end
end architecture BCR;

9.5.3 Output from the Translation Pre-Processor –VHDL-AMS
1076.1 Code

In the output from the translator shown below, partial quantity y and FE each has
been replaced by a quantity vector. The beam is discretized into five sections where
the number of sections is calculated as range/step. The differential coefficient dx
represents the step size. From the PDE and the boundary conditions, two sets of six
DAEs are created to describe the distributed behaviour of the beam. The comments
in the code below were added manually for clarity.

library IEEE;
use IEEE.ENERGY_SYSTEMS.all;
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MECHANICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;
entity COMB_DRIVE is
 generic(…);
 port(terminal PROOF_MASS:TRANSLATIONAL);
end entity COMB_DRIVE;
architecture BCR of COMB DRIVE is
 constant N:real:=5.0;
 constant dx:real:=L/N;
 quantity y:real vector(0 to 5):=(others=>0.0);
 quantity FE:real vector(0 to 5):=(others=>0.0);
 quantity z across F0 through PROOF_MASS to TRANS-
LATIONAL_REF;
begin
 M*z’DOT’DOT+D*z’DOT+K*z==F0;
 –-movement of proof mass
 FE(0)==0.5*ep0*A*(1.0/((d0-y(0))**2)-
1.0/((d0+y(0))**2));

134 L.Wang et al.

 –-electrostatic force for clamped end
 FE(1)==0.5*ep0*A*(1.0/((d0-y(1))**2)
-1.0/((d0+y(1))**2));
 –-electrostatic force for section 1
 FE(2)==0.5*ep0*A*(1.0/((d0-y(2))**2)
-1.0/((d0+y(2))**2));
 –-electrostatic force for section 2
 FE(3)==0.5*ep0*A*(1.0/((d0-y(3))**2)
-1.0/((d0+y(3))**2));
 –-electrostatic force for section 3
 FE(4)==0.5*ep0*A*(1.0/((d0-y(4))**2)
-1.0/((d0+y(4))**2));
 –-electrostatic force for section 4
 FE(5)==0.5*ep0*A*(1.0/((d0-y(5))**2)
-1.0/((d0+y(5))**2));
 –-electrostatic force for section 5
 y(0)==z;
 –-dynamics of clamped end
 E*I*(y(3)-4.0*y(2)+6.0*y(1)-3.0*y(0))/dx**4
 +ROU*S*y(1)’DOT’DOT+C*(y(3)’DOT-4.0*y(2)’DOT
 +6.0*y(1)’DOT-3.0*y(0)’DOT)/dx**4==FE(1);
 –-dynamics of section 1
 E*I*(y(4)-4.0*y(3)+6.0*y(2)-4.0*y(1)+y(0))/dx**4
 +ROU*S*y(2)’DOT’DOT+C*(y(4)’DOT-4.0*y(3)’DOT
 +6.0*y(2)’DOT-4.0*y(1)’DOT+y(0)’DOT)/
dx**4==FE(2);
 –-dynamics of section 2
 E*I*(y(5)-4.0*y(4)+6.0*y(3)-4.0*y(2)+y(1))/dx**4
 +ROU*S*y(3)’DOT’DOT+C*(y(5)’DOT-4.0*y(4)’DOT
 +6.0*y(3)’DOT-4.0*y(2)’DOT+y(1)’DOT)/
dx**4==FE(3);
 –-dynamics of section 3
 E*I*(-2.0*y(5)+5.0*y(4)-4.0*y(3)+y(2))/dx**4
 +ROU*S*y(4)’DOT’DOT+C*(-2.0*y(5)’DOT+5.0*y(4)
’DOT
 -4.0*y(3)’DOT+y(2)’DOT)/dx**4==FE(4);
 –-dynamics of section 4
 E*I*(y(5)-2.0*y(4)+y(3))/dx**4+ROU*S*y(5)’DOT’DOT
 +C*(y(5)’DOT-2.0*y(4)’DOT+y(3)’DOT)/
dx**4==FE(5);
 –-dynamics of section 5
end architecture BCR;

9 An Extension to VHDL-AMS for AMS Systems 135

9.5.4 Simulation Results

The VHDL-AMS 1076.1 description generated by the translation pre-processor has
been simulated by SystemVision from Mentor Graphics [15] and simulation results
showing the frequency response of average beam position are presented in Fig. 9.4.
It is clear that higher-order resonant modes have been captured.

9.6 Conclusion

This paper proposes extensions to efficiently implement general partial differential
equations in VHDL-AMS. The current version of VHDL-AMS (IEEE 1076.1) can
only support ordinary derivatives with respect to time and faces difficulties when
applied to the modelling of distributed systems. In the proposed VHDL-AMSP
language, new constructs are introduced to describe PDEs in a direct form. A trans-
lation pre-processor has been developed to convert VHDL-AMSP models into
VHDL-AMS 1076.1 automatically, such that models with PDEs can be simulated
using currently available simulators. The added PDE support enhances the ability

Fig. 9.4 Frequency response of the distributed beam model

136 L.Wang et al.

of VHDL-AMS to model MEMS systems where distributed behaviour is essential.
The efficiency of this new approach has been investigated by VHDL-AMSP based
modelling and simulation of the sensing element of a MEMS accelerometer in
high-order SDM loop. Simulation results show that VHDL-AMSP model could
describe the distributed behaviour of a system which is not possible in current
VHDL-AMS 1076.1 language.

References

 1. Christen E and Bakalar K (1999) VHDL-AMS–a hardware description language for analog
and mixed signal applications. Circuits and Systems II: Analog and Digital Signal Processing,
IEEE Transactions on, 46(10):1263–1272

 2. Mahne T, Kehr K, Franke A, Hauer J, and Schmidt B (2005) Creating virtual prototypes of
complex micro-electro-mechanical transducers using reduced order modelling methods and
VHDL-AMS. In Forum on Specification and Design Languages, Proceedings, pages 27–30

 3. Schlegel M, Bennini F, Mehner JE, Herrmann G, Muller D, and Dotzel W (2005) Analyzing
and simulation of MEMS in VHDL-AMS based on reduced-order FE models. Sensors
Journal, IEEE, 5(5):1019–1026

 4. Shi C-J and Vachoux A (1995) VHDL-AMS design objectives and rationale. Current Issues
in Electronic Modeling, Kluwer Academic Publishers, 2:1–30

 5. Nikitin PV, Shi CR, and Wan B (2003) Modeling partial differential equations in VHDL-AMS.
In Systems-on-Chip Conference, 2003. Proceedings. IEEE International, pages 345–348

 6. Bushyager N, Tentzeris MM, Gatewood L, and DeNatale J (2001) A novel adaptive approach
to modeling MEMS tunable capacitors using MRTD and FDTD techniques. In Microwave
Symposium Digest, 2001 IEEE MTT-S International, volume 3, pages 2003–2006

 7. Saldamli L, Fritzson P, and Bachmann B (2002) Extending Modelica for partial differential
equations. In 2nd International Modelica Conference, proceedings, pages 307–314

 8. Proposed Verilog-A language extensions for compact modeling (2004) http://www.eda.org/
verilogams/htmlpages/compact.html

 9. Nikitin PV, Normark E, and Shi C-JR (2003) Distributed electrothermal modeling in VHDL-
AMS. In Behavioral Modeling and Simulation, 2003. BMAS 2003. Proceedings of the 2003
International Workshop on, pages 128–133

10. Dong Y, Kraft M, Gollasch C, and Redman-White W (2005) A high-performance accelerometer with
a fifth-order sigma-delta modulator. Journal of Micromechanics and Microengineering, 15:1–8

11. Southampton VHDL-AMS Validation Suite (2007) http://www.syssim.ecs.soton.ac.uk/
12. Evans G, Blackledge J, and Yardley P (1999) Numerical methods for partial differential equa-

tions. Springer, London
13. Seeger JI, Xuesong J, Kraft M, and Boser BE (2000) Sense finger dynamics in a SD force feed-

back gyroscope. In Tech. Digest of Solid State Sensor and Actuator Workshop, pages 296–299
14. Liu Y, Liew KM, Hon YC, and Zhang X (2005) Numerical simulation and analysis of an electroac-

tuated beam using a radial basis function. Smart Materials and Structures, 14(6):1163–1171
15. Mentor Graphics Corporation (2004) SystemVision User’s Manual. Version 3.2, Release 2004.3

Chapter 10
Mixed-Level Modeling Using Configurable
MOS Transistor Models

Jürgen Weber1, Andreas Lemke1, Andreas Lehmler1, Mario Anton1,
and Sorin A. Huss2

Abstract This contribution presents an approach to mixed-level modeling using
configurable MOS transistor models as part of a behavioral model. All effects
of the complete MOS transistor model can be specifically enabled or disabled in
the configurable model. By activating only the effects required for the behavioral
model, simulation times can be reduced significantly with very little effort. The
new method is demonstrated by partitioning the MOS level-1 transistor model
according to effects and implementing a configurable MOS level-1 transistor model
in Verilog-A. Several examples of use will show the reduction in simulation time.
The proposed approach can be used with any type of transistor model and is easily
integrated in circuit simulators such as SPICE.

Keywords mixed-level modeling, Verilog-A, behavioral model, configurable, MOS
transistor, virtual test

10.1 Introduction

The generation of behavioral models [1] is becoming more and more significant in
the development of integrated circuits. In modern mixed-signal system design
flows, a top-down design methodology followed by bottom-up verification [6, 3] is
used. In the bottom-up method, the specific transistor level components of the
entire design will be realized first, after that the components will be connected to
larger units, and finally verified by simulation. In integrated circuit design, behavioral
models are needed in different applications. Since no unified modeling strategies
that cover all application ranges (executable specifications, top-down and bottom-up
methodology, customer models and virtual tests [7, 5]) have been established yet,
custom-designed solutions with the largest coverage of the different requirements
must be used. The component based mixed-level modeling approach [8] is an efficient

1 Atmel Germany GmbH, Heilbronn

2 Integrated Circuits and Systems, Department of Computer Science, TU Darmstadt

E. Villar (ed.) Embedded Systems Specification and Design Languages, 137
© Springer Science + Business Media B.V. 2008

138 J. Weber et al.

modeling method. It applies the concept of mixed-level simulations also at the
component level. Thus it is possible to describe the circuit behavior at required
points with the highest precision but with the additional advantage of substantially
decreasing the simulation time, with specific simplifications. In transistor models,
which are used in this method, properties which are redundant for behavioral models
are included. These are realized with BSIM, EKV, or other higher SPICE or
SPECTRE level models, which use different regions of operation that are described
using equations within the model. For example, in virtual tests the full description
of the primitives is not necessary in most cases.

In this article, a method will be introduced which describes how transistor
models can be partitioned and characteristics can be activated or deactivated with
the goal of reducing the number of equations used, thus achieving better performance.
Furthermore, MOSFET-HDL models which can be universally implemented in a
multitude of modelling applications, for example in the development process (top-
down methodology) or in the virtual test, can be generated.

To demonstrate this method, a boost converter, which is realized with mixed-
level modelling, is used. In practical applications, low-level MOSFET models are
rarely used. In the majority of cases BSIM or EKV are established here. The dem-
onstrator, which is introduced in this article, is based on EKV models. Because of
its complexity, level-1 models are used to demonstrate the new method instead.
This MOSFET behavioural model is realized in Verilog-A and then simulated
using CADENCE SPECTRE. The basics of a level-1 model are defined Section 10.2.
In Section 10.3, the realisation of the MOSFET behavioral models in Verilog-A is
introduced, with a demonstration of this method in Section 10.4.

10.2 MOSFET Level-1 Model

In the MOSFET level-1 model three regions of operation are defined according to
the voltage differences between the gate, source, and drain terminals. These regions
are listed in Table 10.1.

If the gate-source voltage V
GS

 is less than the threshold voltage V
th
, no conduct-

ing channel can exist. In that case the transistor is in the cut-off region, where for
the drain current I

D
� 0 holds independent of the drain-source voltage V

DS
. If V

GS

exceeds the threshold voltage V
th
, a channel is formed and current can flow. The

resulting current I
D
 is approximately proportional to V

DS
 (for small V

DS
). Thus, this

region is called the linear region. If V
DS

 is increased beyond V
DS,sat

= V
DS

 – V
th
, the

channel is pinched off at the drain side and I
D
 rises only slowly. The transistor is in

the saturation region. Assuming an ideal charge distribution in the channel, the
drain current can be approximated using Sah’s Model [2].

Table 10.1 Regions of operation in the MOSFET level-1 model

Cut-off region V
GS

 < V
th

Linear region V
GS

≥ V
th

∧ 0 ≤ V
DS

 < V
DS,sat

Saturation region V
GS

≥ V
th

∧ V
DS

≥ V
DS,sat

10 Mixed-Level Modeling Using Configurable MOS 139

The slow rising of I
DS

 in the saturation region is caused by channel length modu-
lation. This is described in the Shichman-Hodges model [2]. The equations for an
NMOSFET in its different regions of operation can now be stated as follows:

I KnW

L
V V V V V

KnW

L
V V V

D
DS GS th

DS
DS

GS th DS

=
− −

−

+

+

⎧

⎨

0

2
1

2
12

()()

() ()

l

l

⎪⎪
⎪⎪

⎩

⎪
⎪
⎪

<

<

V V

V V

V V

V V

V V

GS th

GS th

DS DS Sat

GS th

DS DS Sat

�

�

�

�

�

�
0 ,

,

 (10.1)

Figure 10.1 shows the equivalent circuit of the MOSFET level-1 model.
In addition to the drain current source I

D
 according to Eq. 10.1, series resist-

ances, capacitances and bulk diodes are included. The threshold voltage is a func-
tion of the source-bulk voltage V

SB
. This behavior is called body effect and

described by the following equation in the level-1 model:

V VT Vth BS= + − −0 g(| |Φ Φ) (10.2)

In modern technologies the short channel effect shifts the threshold voltage of MOS
transistors with short channel lengths [2]. This effect is not included in the original
MOSFET level-1 model. For the model presented in Section 10.3 the short channel
effect was added to Eq. 10.1 using the factor

... (()∗
Φ ∗

Φ ∗
∗1

1
+

+
l

L

L

eff

eff
VDS (10.3)

as proposed in [2].

ID

D

S

BG

CBDCGD

CBS

CGS

CGB

RG RB

RS

RD

Fig. 10.1 MOSFET level-1 model equivalent circuit

140 J. Weber et al.

10.3 Variable MOSFET HDL Model

In this section a configurable Verilog-A transistor model is developed from the
level-1 MOSFET model. In a configurable model the various effects of the model
can be enabled as needed with all others being disabled. Thus, the size of the Jacobian
matrix is minimized and the computational effort reduced. Based on the level-1
model, the calculation of the drain current, the body effect, and the presence of the
capacitors, resistors, and diodes of Fig. 10.1 are made configurable. The variants
for the drain current calculation are listed in Table 10.2.

Furthermore, the components of the MOSFET behavioral model given in Table
10.3 can be selected.

In the following, three versions of the configurable level-1 model are presented:
a static model using preprocessor statements that disable parts of the source code
before compilation, a static model using parameters, and a dynamic model that can
be reconfigured during runtime.

10.3.1 Static MOSFET Model Using Preprocessor Statements

Preprocessor statements such as ifdef [9] are used to select sections of the source
code of the model. The advantage of this is having only these selected sections in
the compiled model. However, the selection has to be made before compilation and
it is global for all instances of the transistor. The following source code illustrates
this approach:

‘ifdef res_nodal
 - With series resistances

Table 10.2 Drain current calculation in the Verilog-A model

Variant Description

0 Voltage controlled resistance
1 Without channel length
2 Modulation
3 With channel length modulation
 With short channel effect

Table 10.3 Selectable components of the MOSFET Verilog-A model

Component Description

res_nodal Series resistances
cap_gate Gate capacitances
cap_sub Junction capacitances
dio_sub Substrate diodes
threshold Body effect

10 Mixed-Level Modeling Using Configurable MOS 141

‘else
 - No series resistances
‘endif

An additional advantage of this approach is the changing of the circuit topology by
adding or removing internal nodes of the transistor. An example of this is the series
resistances component of the model. The series resistances require introducing
internal nodes into the model. Only with preprocessor statements is it possible to
have their declaration electrical Bi, Di, Si, Gi; optional. In the remaining source
code the internal nodes (Si, Di, etc.) and the pins (D, S, etc.) are used,
respectively.

‘ifdef res_nodal
vds = V(Di, Si);

‘else
vds = V(D, S);

‘endif

10.3.2 Regions of Operation

To switch between the different regions of operation of the transistor, the variable
region is introduced.

if ((vgs <= vtho) || (vds <= 0))
region = 1;

else if ((vds < (vgs-vtho)) && (vgs>vtho))
region = 2;

else
region = 3;

10.3.3 Calculation of the Drain Current

In the behavioral model, four methods of calculating the drain current (cf. Table
10.2) are available. The most simple variant (var = 0) assumes that the transistor
operates in the linear region only. The drain current is calculated as I

D
� β * ((V

GS
-

V
th
) * V

DS
). This corresponds to a voltage controlled resistor with

R
V V

K

Lth
DS

GS

n
=

−
1

b
b =

∗
∗ω

()
, (10.4)

Another variant (var = 1) is the calculation based on the assumption of an ideal charge
distribution in the channel (Sah’s Model). Channel length modulation is taken into
account with var = 2 and calculated according to Eq. 10.1 (Shichman-Hodge model).

142 J. Weber et al.

This effect is controlled by the parameter λ. The final variant (var = 3) adds
the short channel effect as given in Eq. 10.3. The following source code shows the
implementation of the variants of the drain current calculation in Verilog-A:

if (var == 0) begin
case(region)

1: id = ‘ids;
2: id = beta * (vgs - vtho) *vds;
3: id = beta * (vgs - vtho) *vds;
default: id = ‘ids;

endcase
end
if (var == 1) begin

case(region)
1: id = ‘ids;
2: id = beta*((vgs-vtho)-(vds/2))*vds;
3: id = (beta/2)*(pow((vgs-vtho),2));
default: id =‘ids;

endcase
end
if (var == 2) begin
early_effect = 1 + lambda * vds;

case(region)
1: id = ‘ids;
2: id = beta*((vgs-vtho-(vds/2))*vds*early_effect;
3: id = (beta/2)*(pow((vgs-vtho),2))*early_effect;
default: id = ‘ids;

endcase
end
if (var == 3) begin

case(region)
1: id = ‘ids;
2: id = beta *((vgs-vtho)-(vds/2))*vds *(1+lambda*((1/(2e5*Leff))+1)*vds);
3: id = (beta / 2)*(pow((vgs-vtho), 2)) *(1+lambda*((1/(2e5*Leff))+1)*vds);
default: id = ‘ids;

endcase
end

10.3.4 Drain Current Assignment

If the series resistances component of the model is used, the drain current is
assigned to the internal nodes Di and Si. Otherwise it is assigned to the external
nodes D and S.

10 Mixed-Level Modeling Using Configurable MOS 143

‘ifdef res_nodal
I(Di,Si)<+ id;

‘else
I(D,S)<+ id;

‘endif

10.3.5 Series Resistances

The series resistances connect the external nodes to the internal nodes. The model
uses the effective resistances of the drain R

D
 and the source R

S
. The resistances of

the bulk and the gate are not taken into account.

‘ifdef res_nodal
V(S, Si) <+ I(S, Si) *RS;
V(D, Di) <+ I(D, Di) *RD;

‘endif

10.3.6 Gate Capacitances

Gate capacitances are calculated in the three regions of operation depending on C
ox

and the terminal voltages as described in [2]. Overlap capacitances are included as
well. Switching the capacitances between the regions of operation can cause con-
vergence difficulty in the simulation. This problem is solved using the transition
statement that provides smooth switching but also increases the computational
effort.

‘ifdef cap_gate
if (region == 1) begin

cgsk=0; cgdk=0; cgbk=cox;
end
if (region == 2) begin

cgsk=((2*cox)/3)*(1-pow(((vgs-vtho-vds) / (2* (vgs-vtho)-vds)),2));
cgdk=((2*cox)/3)*(1-pow(((vgs-vtho) / (2* (vgs-vtho)-vds)),2));
cgbk=0;

end
if (region == 3) begin

cgsk=(2*cox)/3; cgdk=0; cgbk=0;
end

qgs = (transition(cgsk)+ ‘cgso*W)* vgs;
qgd = (transition(cgdk)+ ‘cgdo*W)* vgd;
qgb = (transition(cgbk)+ ‘cgbo*L)* vgb;

‘ifdef res_nodal

144 J. Weber et al.

I(Gi,Di) <+ ddt(qgd);
I(Gi,Si) <+ ddt(qgs);
I(Gi,Bi) <+ ddt(qgb);

‘else
I(G,D) <+ ddt(qgd);
I(G,S) <+ ddt(qgs);
I(G,B) <+ ddt(qgb);

‘endif
‘endif

10.3.7 Junction Capacitances

Junction capacitances arise from the pn junctions at the interfaces from source and
drain to substrate. These capacitances are voltage dependent, cf. [2].
‘ifdef cap_sub

fbp =‘FC*‘mj;
if (vbd <= fbp)

cbd=‘cj*‘Abd *(1-(vbd*1/‘PB));
else

cbd=((‘cj*‘Abd)/pow((1-‘FC),1+‘mj)) *(1-(1+‘mj)*‘FC+‘mj*vbd/‘PB);
if (vbs <= fbp)

cbs =‘cj*‘Abs*(1-(vbs*1/‘PB));
else

cbs=((‘cj*‘Abs)/pow((1-‘FC),1+‘mj))*(1-(1+‘mj)*‘FC+‘mj* vbs/‘PB);
‘ifdef res_nodal

I(Bi,Si) <+ ddt(cbs * vbs);
I(Bi,Di) <+ ddt(cbs * vbs);

‘else
I(B,S) <+ ddt(cbs * vbs);

I(B,D) <+ ddt(cbs * vbs);
‘endif

‘endif

10.3.8 Substrate Diodes

Substrate diodes are located between the internal nodes of bulk and drain and
source, respectively. By using $vt, the temperature voltage calculated by the simu-
lator is accessed. The reverse saturation current ‘is is used for both I

S,S
 and I

S,D
.

‘ifdef dio_sub
ibd = ‘is*(limexp(vbd /$vt)-1.0);
ibs = ‘is*(limexp(vbs /$vt)-1.0);

10 Mixed-Level Modeling Using Configurable MOS 145

‘ifdef res_nodal
I(Bi,Di) <+ ibd ;
I(Bi,Si) <+ ibs ;

‘else
I(B,D) <+ ibd ;
I(B,S) <+ ibs ;

‘endif
‘endif

10.3.9 Body Effect

The threshold voltage is mainly dependent on the bulk-source voltage (body effect).
As a model parameter the zero-bias threshold voltage vt0 is passed.

‘ifdef threshold
vtho = vt0+(gamma*((sqrt(abs(phi-vbs)))-(sqrt(phi))));

‘else
vtho = vt0;

‘endif

10.3.10 Static MOSFET Model Using Instance Parameters

In the static MOSFET model using instance parameters, the if-else statement is used
instead of preprocessor statements. The individual functions of the model are enabled
and disabled by instance parameters so that each transistor instance is configured indi-
vidually. This is an advantage of this method as opposed to preprocessor statements.
As a disadvantage, the computational effort increases slightly in the simulation.

parameter integer res_nodal = 0;
if (res_nodal == 1)
 - With series resistances
else
 - No series resistances
end

10.3.11 Dynamic MOSFET Model

In some applications such as the virtual test, several tests are grouped and must
be simulated in one simulation run. Thus, a MOSFET model is required that can be
reconfigured dynamically during runtime. This is implemented by replacing the
parameters of the static model with variables.

146 J. Weber et al.

integer res_nodal;
if (res_nodal == 1)
 - With series resistances
else
 - No series resistances
end

These variables can be switched individually for each instance by the test bench.
The following source code shows an example of a test bench that activates the
series resistances of an instance after 10,000 units of time.

I_top.I_inv.I_NMOS1.res_nodal = 0;
10000
I_top.I_inv.I_NMOS1.res_nodal = 1;

end

Currently, AMS-Designer and Spectre do not support analog statements in Verilog-
A that use variables inside of if clauses. Therefore, these statements, e.g. to calcu-
late currents of capacitances using ddt or currents of diodes using limexp, have to
be kept outside of if clauses. Thus, the maximum possible reduction in simulation
time cannot be achieved with the dynamic models. For that reason, in the following
section the static model using instance parameters is used.

10.4 Results

In this section, the use of configurable MOSFET behavioral models within mixed-
level modeling is demonstrated on a boost converter and the results are discussed.

10.4.1 DC Behaviour with a Configurable MOSFET Model

Figure 10.2 shows the simulated output characteristic of the NMOS with varied
settings for the configurable MOSFET behavioral model.

The capacitances (gate and junction capacitances) do not influence the DC
behaviour. The same applies to the substrate effect, because bulk and source are
connected together.

10.4.2 Implementation of the Configurable MOSFET Model

The following aspects have to be considered during the configuration of the config-
urable MOSFET behavioral model:

10 Mixed-Level Modeling Using Configurable MOS 147

Application of the circuit (testbench), operation point of the circuit and the tran-
sistor, respectively, simulation type (DC, transient, etc.), required accuracy of the
simulation, purpose of the simulation (virtual test, development phase, system sim-
ulation, etc.). To choose the correct settings, circuitry knowledge is necessary. The
settings are made directly at the transistor symbol in the schematic editor, as shown
in Fig. 10.3.

The following examples show the proceeding for various simulation tasks.

10.4.3 Boost Converter

In the following example, a boost converter is introduced. The circuit was taken
from an antenna driver IC for passive-entry-go systems. This type of circuit
presents a problem for system simulations because of its complexity it requires a

0

MOS−Model var=3

MOS−Model var=2

complete MOS−Model with var=2

MOS−Model with Rs and Rd and var=2

MOS−Model var=0

MOS−Model var=1

.0

Id
 (

m
A

)

3.02.0 4.01.0

1.25

1.0

.700

.500

.250

vdrain ()

NMOS DC−Characteristic HDL−Model

Fig. 10.2 MOSFET characteristic of varied settings for the variable MOSFET HDL model

MN2

var = 2
cap_sub = 1
cap_gate = 1
dio_sub = 1
res_nodal = 1
threshold = 1

Fig. 10.3 Configuration of the behavioural model at the symbol

148 J. Weber et al.

lot of processing and thus, substantially increases the simulation time. The behavioral
description of the converter was generated for two different abstraction levels:
firstly, a simplified model created by applying meet-in-the-middle design method-
ology [4] and, secondly, a complex HDL model created using bottom-up
strategies. Both behavioral models include a driver stage, which is implemented at
transistor level with configurable MOSFET HDL models. In Fig. 10.4, a block
diagram of the simplified HDL model of the boost converter is shown.

A simplified model for the gate control of the output driver with an over current
detection, a voltage divider, control logic and the driving stage are implemented
in this block diagram. Conversely, in the complex HDL model all sub-blocks of
the transistor circuit are included. This includes, for example, the error amplifier,
the compensation stage, the ramp generator, the over current detection, the voltage
divider, the control logic, and the driver stages. The block diagram is shown in
Fig. 10.5.

This type of model is optimal for the development of transistor models, since the
complete control loop is mapped in the model. Analysis of stability and compensa-
tion of the control loop, respectively, are now possible.

The driver stage consists of four buffers, which are used for the gate control of
the four output transistors and a sensor transistor, which is responsible for the over
current detection (see Fig. 10.6). The performance benefit and the model difference
of the HDL models in comparison to the original transistor circuit are shown in
Table 10.4.

Here the run-up, as can be seen in the simulation results in Fig. 10.7, was tested.
In the driving stages all functions of the variable MOSFET HDL models were

enabled during simulation. The model difference was calculated using the Euclidean
distance. Within the circuit design, the complex behavioral model was used which
allows the user, for example, to optimize/stabilize the compensations of the circuit.
With suitable settings of the MOSFET HDL model functions, only a limited
performance benefit is achieved. This is because the simulation activities occur
mostly in the control loop instead of the driving stage.

Fig. 10.4 Block diagram simplified model

Control-
Logic

over-
current
detec-
tion

driver

VCC

clk
por

en

VN

OUTVB

oc

gate

10 Mixed-Level Modeling Using Configurable MOS 149

compensation

Control-
Logic

over-
current
detec-
tion

overcurrent

comparator

error amp.

overvoltage
divider

VCC

clk
por
en

VBG

OUTVB

VN

ramp

driver

Fig. 10.5 Block diagram complex model

OUT
VCC

IN

VN

MP1MP2

MN1MN2

MP5MP6

MN5MN6

MP3MP4

MN3MN4

MP7MP8

MN7MN8

HV1

HV2

HV3

HV4

HV5

buf

SENS

EN

Fig. 10.6 Block diagram boost driver

150 J. Weber et al.

The components of the control loop, such as the error amplifier, are partly
described with Laplace functions in Verilog-A. Table 10.5 shows the results in
comparison to the original transistor circuit. During a system simulation and a test
simulation, respectively, the simple behavioral models which include the primary
functions like current and voltage switch-off as well as all digital control functions
to switch on and off the stage are often used. In the following example, a simulation
task checks the current switch-off of the converter. Here the converter must be regu-
lated first to the steady-state voltage and then the threshold of the current switch-off
can be determined by allowing the load current to rise slowly.

Here, as opposed to the complex behavioral models, a higher performance ben-
efit is achieved since most of the simulation activities occur in the driver stage (see
Table 10.6)

Table 10.4 Performance and accuracy of the boost converter models

Model level Performance Difference

Complex model 92 × 7.2%
 181 × 13.4%
Simplified model

complex model simplified model original

100.0 200.0 300.0 400.0

35.0

30.0

25.0

20.0

15.0

V
 (

V
)

simplified modelsimplified modelsimplified model

simplified model

complex modelcomplex modelcomplex modelcomplex modelcomplex model

originaloriginaloriginal original

time (us)

Fig. 10.7 Simulation results boost converter (simplified, complex, original)

Table 10.5 Results of the complex boost converter models
with suitable settings of the MOSFET-HDL model function

Model level Performance Difference

Complex model 123 × 9.4%

10 Mixed-Level Modeling Using Configurable MOS 151

10.5 Conclusions

In this article, a method was discussed detailing how to partition MOSFET models.
It also demonstrated how to activate or deactivate their characteristics, with the goal
of achieving an improved performance. This method was demonstrated using
MOSFET behavioral models which were implemented on the basis of level-1
MOSFET calculations. Additionally, the models have to offer selectable options
such as short channel effect or simplifications which allow use of the transistor as
a voltage-controlled resistor. The model characteristics, which can be activated or
deactivated, were described individually in the source code. The model was created
using Verilog-A and simulated with SPECTRE (CADENCE). Three different sce-
narios, and the pros and cons found for each, were used to demonstrate the correct
selection of the MOSFET model characteristics. In conclusion, the configurable
MOSFET HDL models were applied in a simulation example. For this example, the
simulation time and the model error rate were determined using various simulation
tasks. An improved simulation time by a factor of 719 and an error rate of 16.1%
was achieved. A disadvantage was detected with convergence problems appearing
several times. However, this problem was corrected by choosing suitable simulator
settings.

It is a well known fact that using original simulator transistors (e.g. EKV, BSIM)
is faster than adopting the most complex stage of expansion for MOSFET HDL
models. To counteract this, CADENCE implemented a C-Compiler for Verilog-A
in its latest simulator version. However, it is seen that improved simulation time
occurs using the optimal MOSFET HDL models rather the original EKV transis-
tors. To achieve improved performance it is desired to include the models, which
are described in this article, in the simulator. In this article, a MOS HDL model
based on the level-1 model was realized, but this just serves to demonstrate the
method. It would make sense to use such a method in all MOSFET model types.
Circuitry knowledge is required of the modeler to be able to determine the optimal
settings needed for the model characteristics.

Acknowledgments This work has been carried out within the BMBF project “Verification of
analog circuits” (VeronA).

Table 10.6 MOSFET-HDL models configurations

Variante M × 1,3,5,7 M × 2,4,6,8 HV1,2,3,4,5

var 1 1 2
res_nodal No No Yes
cap_gate No No Yes
cap_sub No No Yes
dio_sub No No Yes
threshold No No Yes

152 J. Weber et al.

References

1. Abidi A A (2001) Behavioral Modeling of Analog and Mixed Signal IC’sv. IEEE International
Conference, 06–09 May 2001, Pages 443–450

2. Chen W (1999) The VLSI Handbook. CRC Press LLC, Boca Raton, FL, December 1999
3. Enright D, Mack R J, Massara R E (2003) Mixed-Level hierarchical analogue modelling.

Circuits, Devices and Systems; IEE Proceedings, Volume 150; February 2003, Pages 78–84
4. Eschermann B, Dai W M, Kuh E S, Pedram M (1988) Hierarchical Placement for Macromodels:

A Meet-In-The-Middle Approach. IEEE International Conference, 07–10 November 1988,
Pages 460–463

5. Miegler M, Wolz W (1996) Development of Test Programs in a Virtual Test Environment.
IEEE, VLSI Test Symposium, Pages 99–102

6. Sommer R, Rugen-Herzig I et al. (2002) From System Specification to Layout: Seamless
Topdown Design Methods for Analog and Mixed-Signal Applications. DATE 02, Paris, March
4–8, ISBN 0-7695-1471-5

7. Weber J, Anton M, Huss S A (2003) Verhaltensmodellierung von Ein- und Ausgangsstufen für
den Virtuellen Test von Mixed-Signal Automotive Schaltkreisen. Analog 2003, Heilbronn,
10–12 September, Pages 91–96

8. Weber J, Anton M, Huss S A (2005) Effiziente Mixed-Level Modellierung integrierter Mixed-
Signal Automotive Schaltkreise. Analog 2005, Hannover, 16–18 March, Pages 217–222

9. Accellera Verilog Analog Mixed-Signal Group (2004) Verilog-AMS Language Reference
Manual. Version 2.2, November 2004.

Part III
UML-Based System Specification

and Design

Chapter 11
Modeling AADL Data Communications
with UML MARTE

Charles André, Frédéric Mallet, and Robert de Simone

Abstract The emerging OMG UML Profile for Modeling and Analysis of Real-
Time Embedded systems (MARTE) aims, amongst other things, at providing a
referential Time Model subprofile where semantic issues can be explicitly and
formally described. As a full-size exercise we deal here with the modeling of imme-
diate and delayed data communications in AADL. It actually reflects an important
issue in RT/E model semantics: a propagation of immediate communications may
result in a combinatorial loop, with ill-defined behavior; introduction of delays may
introduce races, which have to be controlled. We describe here the abilities of the
MARTE time model in this respect.

Keywords MARTE, UML, AADL, Timed MoCC

11.1 Introduction

The modeling phase in Real-Time Embedded design is increasingly required to
support various types of timing analysis prior to final code production and testing.
AADL [7] and MARTE [5] are two such modeling formalisms, in part similar in
their objectives. They both provide independent descriptions of the functional
applications and the execution platforms, and the possible allocation of the former
onto the latter. They also support the description of both the structural organization
of systems, and to some extent of their dynamic behaviors.

Our belief here is that AADL relies on a number of assumptions that make the
definition of dynamic behaviors visibly simple, but largely implicit and informal –
with the risk of ambiguity or misdesign, which various analysis tools then try to spot
and identify. Conversely, MARTE explicit Time model with powerful logical time

I3S, Université de Nice-Sophia Antipolis, CNRS, F-06903 Sophia Antipolis, Inria, F-06902
Email: {candre,fmallet,rs}@sophia.inria.fr

E. Villar (ed.) Embedded Systems Specification and Design Languages, 155
© Springer Science + Business Media B.V. 2008

156 C. André et al.

constraints allows precise specification of the scheduling aspects of application elements.
Multiform logical time supported by MARTE, is inspired from the theory of tag
systems [1]. Time relations and constraints between various “clocks” can be stated so
as to represent the time activations of concurrent tasks. Clock constraints can thus be
viewed in a way similar to the Object Constraint Language [6], as providing fancy
particular constructions of Timed Models of Computations and Communications
(MoCC). These MoCC are to be defined by a model architect and should be transpar-
ently used by the end-user of the modeling framework. Synchronous, time-triggered
or purely asynchronous formalisms are simple – and extreme – examples of that.

In this paper, we use MARTE to make explicit part of the MoCC underlying
AADL. AADL applications comprise threads, often of periodic nature – with dis-
tinct periods – connected through event or data ports. As can be seen here, the same
model provides structural information – the thread connections – together with a
crude abstraction of behaviors usually needed for schedulability analysis – the
relative speeds of threads. AADL thread modeling thus requires the conjunct of two
MARTE models – one behavioral and one structural – with the relevant logical
clocks defining the relative ordering of dispatch events for the threads according to
the desired semantics.

Data communications can be immediate or delayed. Delayed communications
are needed in particular to break down cycle propagation of data. They implicitly
impose a partial order on how various threads – and their containing processes –
can be executed/simulated in a simultaneous step. The issues of priority inversion
involved here are dealt with in [4].

When the flow contains data-port, the communication essentially amounts to
sampled production/consumption of a data value shared between two tasks.
Operations are performed at the pace of the – often periodic – tasks, and the scheme
is event-less. In particular, data can be written or read several times if ever the rela-
tive speeds of the tasks demand it. Such a communication pattern is not readily
present in UML – and thus MARTE. Modeling AADL data-port communications in
MARTE is the prime goal of this paper. The operational semantics is made explicit,
and the various protocols – immediate/delayed – can be constructed in a formal way.
The hope is that such construction can then allow, by analytic techniques, to prevent
non-determinism and pathological priority inversions to occur, in a way that is pre-
dicted and guaranteed rather than monitored by non-exhaustive model simulations.

11.2 Background

11.2.1 Time in MARTE

The metamodel for time and time-related concepts is described in the “Time mode-
ling” chapter of the UML profile for MARTE, available at the OMG site. The time
chapter is briefly described in another paper [2].

11 Modeling AADL Data Communications with UML MARTE 157

In MARTE, Time can be physical, and considered as continuous or discretized,
but it can also be logical, and related to user-defined clocks. Time may even be
multiform, allowing different times to progress in a non-uniform fashion, and pos-
sibly independently to any (direct) reference to physical time. The time structure
is defined by a set of clocks and relations on these clocks. Here clock is not a
device used to measure the progress of physical time. It is rather a mathematical
object lending itself to formal processing. A clock that refers to physical time is
called a chronometric clock. A distinguished chronometric clock called idealClk is
provided in the MARTE time library. This clock represents the “ideal” physical
time used, for instance, in physical and mechanics laws. At the design level most
of the clocks are logical ones.

The mathematical model for a clock is a 5-tuple (I,�,D,l,u) where I is a set of
instants,� is an order relation on I, D is a set of labels, l :I→D is a labeling func-
tion, u is a symbol, standing for a unit. For a chronometric clock, the unit can be
the SI time unit s (second) or one of its derived units (ms, µs …). The usual unit
for logical clocks is tick, but clockCycle, executionStep may be chosen
as well. Since instants of a clock are fully ordered, (I, ≺) is an ordered set.

Clock are a priori independent. They become dependent when their instants are
linked by instant relations imposing either coincidence between instants (coinci-
dence relation ≡) or precedence (precedence relation �). Clock relations are a
convenient way to impose many – often infinitely many – instant relations.
Examples of clock relations are given in Section 11.3.2.

A Time Structure is a 4-tuple (C, R, D, l) where C is a set of clocks, R is a
relation on ∪

a, b∈C, a π b (Ia
 × I

b
), D is a set of labels, l :I

C
→ D is a labeling function.

I
C
 is the set of the instants of a time structure. I

C
 is not simply the union of the sets

of instants of all the clocks; it is the quotient of this set by the coincidence relation
induced by the time structure relations represented by R. A time structure specifies
a poset (I

C
, �

C
).

During a design we introduce several (logical) clocks that are progressively
constrained. This causes strengthening of the ordering relation of the application
time structure.

11.2.2 AADL Inter-Thread Communications

As a demonstration of the expressiveness of MARTE, we take as an example the
inter-thread data communication semantics of AADL.

In AADL, the communications can be immediate (Fig. 11.1a) or delayed
(Fig. 11.1b). The threads are concurrent schedulable units of sequential execu-
tions. Several properties can be assigned to threads; the one of concern here is
the dispatch protocol. We actually consider only periodic threads, associated
with a period and a deadline, specified as chronometric time expressions (e.g.,
period = 50 ms or frequency = 20 Hz). By default, when the deadline is not
specified it equals the period.

158 C. André et al.

11.3 The Explicit Modeling of AADL Communication Aspects

11.3.1 Application and Clock Refinement

A first difference with AADL is that MARTE differentiates the algorithm from the
underlying structure. The algorithm is represented as an activity diagram (Fig. 11.2, left-
most part). The structure is modeled as a composite structure diagram (Fig. 11.2,
right-most part). Each part has its own causality constraints. MARTE refinement
mechanism, and its associated clock constraints, allows for making explicit relations
amongst the clocks of both parts. In MARTE, activation conditions of all application
model elements are represented by clocks identified with the appropriate stereotypes,
for instance TimedProcessing. As a starting point, we consider the clocks of
each element as independent, and then the context (dependencies and refinement)
constrains these clocks. Finally, a timing analysis tool may resolve the constraints to
determine a (family of) possible schedule. We strive to avoid over-specification
and keep the model as generic as possible, adding only required constraints.
From the algorithmic point of view, the actions read_data and control are
CallBehaviorAction that execute a given behavior repetitively according to
their activation condition (clocks ^d and ^c respectively).

11.3.2 Introducing Clock Constraints

From the structural point of view, the threads t1 and t2 are also associated with
clocks (^t1 and ^t2 respectively). These purely logical clocks represent the
 dispatches of the threads. In AADL, the period of a thread is expressed as a
chronometric time expression and therefore, at some point, we need to establish
relations between these clocks and chronometric clocks. This aspect is addressed
in Section 11.3.5, but we need to set up some causality relations first.

Thread

Component property
(e.g., frequency,

subprogram...)

immediate connection

delayed connection

Legendt1
fd

a Immediate b Delayed

read_data

t1
fd

read_data

t2
fc

control

t2
fc

control

Fig. 11.1 AADL inter-thread data communication

11 Modeling AADL Data Communications with UML MARTE 159

Deciding that a given behavior (e.g., read_data) is executed by a periodic
thread (e.g., t1) implies that each thread dispatch (modeled by clock ^t1) causes
and therefore precedes a new execution of subprogram read_data, and that this
execution must complete before the deadline (the next dispatch by default). In
MARTE, we differentiate atomic behaviors, for which the execution time is con-
sidered negligible as compared to the period, from non-atomic ones. If we consider
the behaviors as atomic, the association of a behavior with a thread is simply
expressed with the constraint given by Eq. 11.1. Note that this constraint is not
symmetrical since t1 may cause d, but not the converse.

^t1 alternatesWith ^d (11.1)

If the execution time is not negligible, each action can be represented by two events,
the start (e.g., ds for d, cs for c) and the finish (e.g., df for d, cf for c), and a
duration. In this case, we need three constraints to express that the behavior read_
data is repetitively executed on thread t1 (Eqs. 11.2–11.4).

^t1 alternatesWith ^ds (11.2)

^t1 alternatesWith ^df (11.3)

^ds isFasterThan ^df (11.4)

The first two constraints express that the behavior starts and finishes between two
consecutive dispatches of thread t1. The last constraint, which reads clock ^ds is

Fig. 11.2 Application/execution platform in MARTE

160 C. André et al.

faster than clock ^df, specifies that the action read_data starts before it finishes;
it is sufficient to impose that it finishes within the same cycle of execution.

The next constraint comes from the communication itself. We use a UML data
store to mean that the action read_data can overwrite the existing value (in the
object node) without generating a new token and this very same value can be read
several times by the action control (non depleting read). In UML, there must be
at least one writing before any reading (Eq. 11.5).

^d[1] precedes ^c[1] (11.5)

Let ^wr be the (logical) clock for significant writings in the data store. There could
be several consecutive writings in the datastore before one reading. In that case, only
the last one is considered significant. Let ^rd be the corresponding (logical) clock for
significant readings from the data store. When the same value is read several times,
only the first reading is considered to be significant. Furthermore, AADL assumes that
communicating threads must have common dispatches. A simple way to achieve that
is if all threads start their execution at the same time (they are in phase). The AADL
standard considers three cases: synchronous threads with the same period,
oversampling (the period of control is evenly divided by the period of read_
data), undersampling (the period of read_data is evenly divided by the period
of control). Let q1 and q2 be natural numbers such that fd/fc = q1/q2. They
represent the relative periods of read_data and control. Section 11.3.6 discusses
how to compute q1 and q2 in the general case. When the threads are synchronous
(Eq. 11.6), q1 = q2 = 1. When oversampling (Eq. 11.7), q1 = 1 and q2 > 1. When
undersampling (Eq. 11.8), q1 > 1 and q2 = 1. max(q1,q2) is called the hyper-
period. In Eq. 11.7 (resp. Eq. 11.8), the binary word [3] following the keyword
filteredBy expresses that each instant of ^t1 (resp. ^t2) is synchronous with
every q2th (resp. q1th) instant of ^t2 (resp. ^t1).

^t1 ≡ ^t2 (11.6)

^t1 ≡ ^t2 filteredBy (1.0q2-1) (11.7)

^t2 ≡ ^t1 filteredBy (1.0q1-1) (11.8)

Selecting the significant writings and readings consists in choosing one every q1th

instant of ^d (Eq. 11.9) and one every q2th instant of ^c (Eq. 11.10).
Additionally, Eq. 11.11 states that each significant writing must precede its

related significant reading.

^wr isPeriodicOn ^d period q1 (11.9)

^rd isPeriodicOn ^c period q2 (11.10)

^wr alternatesWith ^rd (11.11)

11 Modeling AADL Data Communications with UML MARTE 161

We restrict our comparison to the three cases considered by the AADL standard.
However, in Subsection 11.3.6 we elaborate on the general case.

We have defined all general constraints. In particular, note that contrary to Eqs.
11.7–11.10 do not specify which instant is chosen as a significant writing or reading.
The actual instant depends on the semantics of the communication. The following
two subsections study the three different cases (synchronous, oversampling, under-
sampling) with both an immediate and a delayed communication, each subsection
gives stronger constraints compatible with Eqs. 11.9–11.11.

11.3.3 Immediate Communication

An immediate communication means that the result of the sending thread (here
read_data) is immediately available to the receiving thread (here control).
When threads are synchronous (Fig. 11.3a), this is denoted by ^wr ≡ ^d and ^rd
≡ ^c, or more precisely by ^wr ≡ ^df and ^rd ≡ ^cs. In case of oversampling (Fig.
11.3b), the result of the action read_data must be written in the object node
early enough so that the first (for each q2-long hyper-cycle) execution of the action
control can use it. This is denoted by ^wr ≡ ^d and ^rd ≡ ^c filteredBy
(1.0q2-1). The latter constraint is stronger than Eq. 11.10, it implies it. In case of
undersampling (Fig. 11.3c), AADL specifies that the execution of the first (for each
q1-long hyper-cycle) execution of the action read_data must complete before
the execution of the action control. This is stated by ^rd ≡ ^c and ^wr ≡ ^d fil-
teredBy (1.0q1-1).

read_data

control

c undersampling
(q1= 3, q2=1)

b oversampling
(q1=1, q2=3)

a synchronous
(q1= q2=1)

wr (sample)

rd (sample)

Fig. 11.3 Immediate communications

11.3.4 Delayed Communication

A delayed communication means the result of the sending thread is made available
only at its next dispatch while the receiving thread only reads after its own dispatch

162 C. André et al.

and ultimately when the data is required. The dispatches of the sending and the
receiving threads are not necessarily all synchronous, even if there must synchro-
nize at some point. When the thread are synchronous (Fig. 11.4a), the constraint is
denoted by Eqs. 11.12, 11.13. Note that δ4 offers the possibility to delay the actual
execution of read_data. The thread t1 can either be idle or be executing another
action before starting to execute read_data. Eq. 11.12 states that
(∃d4∈�)("k∈�*)(^wr[k] ≡ ^t1[d4 + k]).

 (∃d4∈�))(^wr≡ ^t1 filteredBy 0d4 (1)) (11.12)

^rd≡ ^c (11.13)

For oversampling (Fig. 11.4b), the result is available for the first execution of the
action control of the next q2-long hyper-cycle. This leaves lots of freedom to
schedule the action read_data anywhere within the current hyper-cycle. We
keep the relation Eq. 11.12 while Eq. 11.13 is replaced by Eq. 11.14.

^rd≡ ^c filteredBy (1.0q2-1) (11.14)

For undersampling (Fig. 11.4c), the result of the last execution (for each q1-long
hyper-cycle) of the action read_data is available for the action control at the
next hyper-cycle. This is denoted by combining Eq. 11.15 with Eq. 11.13.

 (∃d4∈�)(^wr ≡ ^t1 filteredBy 0d4 (1.0q1-1)) (11.15)

Note that the relations are not fully symmetrical. This is due to the AADL seman-
tics that changes the rule depending on the kind of communication.

Up to here, we have only defined logical constraints. In some cases, these con-
straints are strong enough to get a total order, and thus a possible schedule, on all
instants belonging to the defined clocks. For instance, in the delayed synchronous
case, whenever the first execution of read_data occurs, the first significant writing
occurs at the very next dispatch. However, in some other cases, we need additional

read_data

control

c undersampling
(q1=3, q2=1)

b oversampling
(q1=1, q2=3)

a synchronous
(q1=q2=1)

rd

wr

Fig. 11.4 Delayed communications

11 Modeling AADL Data Communications with UML MARTE 163

stronger constraints to get a schedule. These constraints reflect additional choices
that are mainly implicit in the AADL semantics. Depending on these choices we get
different deterministic schedules. These cases are studied in the next section.

11.3.5 Getting a Schedule

Figure 11.3 shows that for immediate communications, the constraints given define
a total order between instants of ^d and ^c in both the synchronous and the over-
sampling cases. Combining our constraints we get the same result analytically. One
question remains whether or not both executions (read_data and control) can
be performed within the period of thread t2. If not, there is no possible schedule,
otherwise, the schedule is given by Fig. 11.5, assuming both threads are executed
on the same process.

For delayed communications, additional constraints are required to get a deter-
ministic schedule. Several criteria can be considered, for instance, the size of the
buffer used for the communication, or applying a well-known scheduling policy,
like Earliest Deadline First (EDF).

An apparent easy way to force a total order is to project the logical clocks onto
chronometric clocks. Logical clocks only give an order amongst instants (some-
times partial), while chronometric clocks give an absolute position in time. The use
of chronometric clocks is implied in AADL because of the units used to describe
either the frequency (Hz) or the period (s). In MARTE, we create models of
chronometric clocks by discretizing idealClk (Section 11.2.1).

For instance, we create three chronometric clocks c100, c10 and c30 of respective
frequency 100, 10 and 30 Hz (Eqs. 11.16–11.18). Note that these are relations,
whence the definition of the 30 Hz-clock from c10.

Fig. 11.5 Schedules with immediate communications

164 C. André et al.

Now, we replace the three equations (Eqs. 11.6–11.8) by the three following
constraints. ^t1 ≡ ̂t2 ≡ c10 (synchronous), ^t1 ≡ c10 and ^t2 ≡ c30 (oversam-
pling), ^t1 ≡ c30 and ^t2 ≡ c10 (undersampling). The only additional information
we have here is the distance (expressed in seconds) between two consecutive dis-
patches. This information is useful for comparing the duration of executions with
the period of the threads; however it does not change in any way the causality rela-
tions expressed.

 c
100

≡ idealClk discretizedBy 0.01 (11.16)

 c
10

≡ c
100

 filteredBy (1.09) (11.17)

 c
10

≡ c
30

 filteredBy (1.02) (11.18)

For the immediate undersampling, we can infer from the specified constraints that,
for each hyper-cycle, the first execution of read_data must complete before the
execution of control. However, we cannot decide when to execute control
relatively to other executions of read_data. We need another criterion. For instance,
we choose to minimize the actual size of the buffer used for the communication. To get
this buffer as small as possible (size = 1), we have to schedule control before the
second execution of read_data. Were we to schedule according to an EDF policy
we would get another schedule, see Fig. 11.5.

For a delayed communication, we just have partial orders and we need additional
criteria. For synchronous threads, the use of an EDF policy is of no help. However,
reducing the size of the communication buffer gives a schedule (top-most part of
Fig. 11.6). For oversampling, both criteria are compatible and we get the second
schedule on Fig. 11.6. For undersampling, we get two different schedules depending
on whether we apply an EDF policy or we attempt to reduce the buffer size.

Fig. 11.6 Schedules with delayed communications

11 Modeling AADL Data Communications with UML MARTE 165

11.3.6 Generalization

We can generalize the constraints to get only two sets of constraints, one for the
immediate communication and one for the delayed communication.

In this section we do not restrict to the three special cases addressed in the
AADL standard. This generalization does not assume that the frequencies of the
threads are natural numbers; it just assumes that they are rational numbers. It also
assumes that in the notation of our binary words Y.x0 = Y, for any binary word Y
and any bit x.

Let fd = nr/dr and fc = nc/dc, fd/fc = (nr*dc)/(nc*dr) with nr,nc,dr,dc
∈�*. Let r1 = nr*dc and r2 = nc*dr. We choose q1 and q2 such as q1 = r1/
gcd(r1, r2) and q2 = r2/gcd(r1, r2). Note, that we still have fd/fc = q1/q2
and that the constraints given by Eqs. 11.14 and 11.15 are general. However, Eqs.
11.6–11.8 are replaced by a single one, Eq. 11.19.

^t1 filteredBy (1.0q1−1) ≡ ^t2 filteredBy (1.0q2−1) (11.19)

Again, these constraints are purely logical. In the general case, these constraints are
not strong enough to identify deterministically the significant writings and readings.
If we take for instance, the case where q1 = 2 and q2 = 5 (Fig. 11.7). If we apply
the AADL semantics, we can only say that, within an hyper-cycle (of period
lcm(q1,q2)), the first execution of read_data produces the sample for the first
control, but we cannot know what sample is used by other executions of control.
In particular, there is no relation between t1[2*n+ 1] and t2[5*n+ 2].

To get a deterministic behavior, we need to give more constraints. For instance
we can project our clock to chronometric clocks and we model as an example the
case where fd = 10 Hz and fc = 25 Hz. We proceed by using the clock c100 defined
in Eq. 11.16 and we add two new constraints (Eq. 11.20-11.21).

read_data

control

general (q1=2, q2=5), immediate

wr (sample)

rd (sample)

t1[2*n] t1[2*n+1]

t2[5*n] t2[5*n+1] t2[5*n+2] t2[5*n+3] t2[5*n+4]

Fig. 11.7 Immediate communications and purely logical clocks (q1 = 2, q2 = 5)

166 C. André et al.

^t1 ≡ c
10

 (11.20)

^t2 ≡ c
100

 filteredBy (1.03) (11.21)

With such constraints, we get a total order (Fig. 11.8) and then there are two possi-
ble cases.

The first case appears when duration(read_data) + duration
(control) ≥ 0.02 s. Then, we exactly get the result presented in Fig. 11.8,
where, within a hyper-cycle, the third execution of control uses the sample com-
puted by the first execution of read_data and the fourth execution of control
uses the sample computed by the second execution of read_data.

In the second case, if duration(read_data) + duration(control)
<0.02 s, the third execution of control should use the sample computed by the
second execution of read_data. However, note that such systems that very much
depend on the exact duration of tasks are not very robust.

If we now take a look at the situation with a delayed communication (Fig. 11.9),
there are several possible interpretations of a generalized AADL semantics. The
simplest interpretation is that the data is made available (written in the object node)
at the first dispatch (of the sending thread) following the execution of the behavior
that has produced it (read_data). And the data is read at the first dispatch of the
receiving thread following the writing (see Fig. 11.10).

A second interpretation (see Fig. 11.11) could be that the data is read at the first
dispatch of the receiving thread following the actual production of the data (not
waiting for the following dispatch of the sending thread). This interpretation leads
to make the second significant reading synchronous with the third instant of
control (for each hyper-cycle) instead of the fourth as in Fig. 11.10. These cases
are studied in detail in [2].

Note these two interpretations can all be valid and deterministic. It is just a
matter of making explicit the semantics. The first interpretation is very simple to
implement and the second one requires being able to control very tightly the
 communication times.

read_data

control

wr (sample)

rd (sample)

0s 0.1s

0s 0.04s 0.08s 0.12s 0.16s

0.2s

0.2s

Fig. 11.8 Immediate communications and chronometric clocks (q1 = 2, q2 = 5)

11 Modeling AADL Data Communications with UML MARTE 167

Fig. 11.9 Logical clocks (q1 = 2, q2 = 5)

Fig. 11.10 First interpretation with delayed communications (q1 = 2, q2 = 5)

A UML object node has two interesting attributes: it has an upper bound, possibly
unlimited, and it can order events, by default according to a FIFO policy. Thus,
there is no reason to assume that the threads are in phase, the sending thread writes
(and possibly overwrites) tokens in the object node, while the receiving thread
reads them when required. Our definition of the significant writings and readings

Fig. 11.11 Second interpretation with delayed communications (q1 = 2, q2 = 5)

168 C. André et al.

helps defining when the token is the same – the content must be overwritten – and
when the token is different, which implies that a new token must be created.
Actually, the occurrence of ^wr should create a new token.

11.4 Conclusion

We have briefly introduced the Time model of MARTE and we have illustrated its
use on an example taken from AADL. We think that our clock constraint language
could be used to make formal the semantics of UML-like graphical representations
that is often partially implicit. In this language, we borrowed some notations on
binary words from the N-synchronous approach but in our case we do not limit our-
selves to synchronous relations. We have implemented a constraint parser that has
been made available with the XMI of the Time subprofile on the OMG website. This
parser can be used to parse constraints extracted from UML models. Some analytic
tools should reduce the constraints or compute new ones and put them back in the
models. For now, all these formal computations are manual but we intend to trans-
form our constraints into languages amenable to clock computations (time automata
or synchronous languages like Signal or Esterel). Ultimately, our constraint lan-
guage could be used to drive a UML simulator, in a constructive way, according to
the model time semantics rather than an untimed event-driven semantics.

References

1. Lee E.A., Sangiovanni-Vincentelli A.L. (1998): A framework for comparing models of com-
putation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
17(12):1217–1229.

2. André C., Mallet F., de Simone R. (2007): Modeling Time(s). Springer LNCS 4735:559–573.
3. Cohen A., Duranton M., Eisenbeis C., Pagetti C., Plateau F., Pouzet M. (2006): N-synchronous

Kahn Networks: A Relaxed Model of Synchrony for Real-time Systems. Conference Record of
the ACM Symposium on Principles of Programming Languages, pp.180–193.

4. Feiler P.H., Gluch D.P., Hudak J.J., Lewis B.A. (2004): Embedded System Architecture
Analysis Using SAE AADL. Carnegie Mellon University, Technical Note CMU/SEI-2004-
TN-005, June 2004. http://www.sei.cmu.edu/pub/documents/04.reports/pdf/04tn005.pdf.

5. OMG: UML profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE),
beta 1, August 2007, Document ptc/07-08-04. http://www.omg.org/docs/ptc/07-08-04.pdf

6. OMG: Object Constraint Language (OCL), OMG Available Specification, Version 2, May
2006, Document formal/06-05-01. http://www.omg.org/docs/formal/06-05-01.pdf

7. SAE: Architecture Analysis and Design Language (AADL). June 2006, Document AS5506/1.
http://www.sae.org/technical/standards/AS5506/1.

Chapter 12
Software Real-Time Resource Modeling

Frédéric Thomas1, Sébastien Gérard1, Jérôme Delatour2,
and François Terrier1

Abstract Setting up truly flexible design processes becomes an important chal-
lenge to face with the increasing complexity, the shorter time to market constraints
and the constant evolution of Real-Time Embedded (RTE) software requirements.
One promised solution is the model driven development (MDD) based on the princi-
ple of separating the application description from its platform specific implementa-
tion. Nowadays, this is often done through dedicated model transformations which
implicitly represent the platform model. Specific transformations have shown their
limits as soon as we want to optimize the implementation. In this context, a good
compromise could be to make explicit a platform model. This is one of the chal-
lenges addressed by the Object Management Group (OMG) through the definition
of the standard profile for Modeling and Analysis of Real-Time and Embedded sys-
tems (MARTE). In particular, the capabilities to model software real-time embedded
resources will allow describing explicitly the RTE software multitasking platform
characteristics. It will ease their integration in a flexible design process (both to pro-
duce implementation and to perform accurate scheduling of performance analysis).

Keywords Platform modeling, MARTE, UML profile, software modeling,
multitasking

12.1 Introduction

Real-time embedded (RTE) application design methodologies are classified under
two headings: sequential-based design (also called loop design) and multitasking-
based design. The first category calls for designing applications as a set of ordered

1CEA LIST, Boîte 94, Gif sur Yvette 91191, France
Email: {frederic.thomas, sebastien.gerard, francois.terrier}@cea.fr

2ESEO TRAME, 49000 Angers, France
Email: jerome.delatour@eseo.fr

E. Villar (ed.) Embedded Systems Specification and Design Languages, 169
© Springer Science + Business Media B.V. 2008

170 F. Thomas et al.

sequential actions, whereas the second category aims at designing applications as a
set of units that execute concurrently and interact (i.e. communicate and synchro-
nize) via specific mechanisms such as semaphores and messages. Our work falls
under the second heading. Most multitasking-based approaches rely on a specific
multitasking execution platform, called a real-time operating system (RTOS). This
latter runs on top of a hardware platform and offers to designers the well-suited
constructs needed to support both features, concurrency (e.g. task, thread and proc-
ess) and interactions (e.g. mailbox, shared memory and semaphore).

Like the software/system engineers, real-time embedded system (RTES) engi-
neers are faced with the challenge of developing more and more complex systems,
achieving higher quality at a lower cost, and in a shorter time. Within this context,
reusability, maintainability and portability become major issues in RTES design
processes. The usage of RTOS platforms was an initial, “architectural” response to
these problems by enabling the development of applications independently of their
hardware computing platforms. The RTES design community has made efforts for
standardizing application programming interfaces (APIs) of RTOS, as for example
POSIX Std 1003.1 [1], OSEK/VDX-OS [2] and ARINC-653 [3]. Usage of such
standards for designing multitasking-based applications has fostered reuse of appli-
cations in different software contexts. Nevertheless, they cannot answer all portabil-
ity problems. Platform is a great concern for RTE system designers since their
performances are passed directly on to the applications. A unique, standard and uni-
versal implementation is thus a dream. Few RTOS APIs are actually conformant to
a given standard. Moreover, standard APIs provide intentional degrees of freedom
for the implementation. Hence, systematic, standalone and syntax transformations
(e.g. code generation) based on standard APIs fail to deal with engineer needs.

For some years, the IT community has proposed a new development approach
said to be model-driven. This initiative places the model paradigm and the use of
model transformations at the center of the development process. One promised
solution is to separate the application description from its platform specific imple-
mentation. The most mature formulation of this vision at present is the Model-
Driven Architecture (MDA) approach [4]. This latter is promoted by the Object
Management Group (OMG). MDA involves a Y-chart design process in which a
platform-independent model (PIM) of the software is transformed into a platform
specific model (PSM); given a platform description model (PDM). All these mod-
els are described in the Unified Modelling Language (UML) [5]. We propose to
investigate the MDA approach to design RTE systems. Thus, we want to model
RTE multitasking execution platform with UML.

Due to its general purpose, UML lacks certain key native artifacts for describing
concrete and precise RTE multitasking concepts such as task, semaphore, and mail-
box. This lack has been full by a new OMG standard dedicated to modeling and
analysis of real-time and embedded systems, MARTE [6]. In that context, this
paper presents the Software Resource Model (SRM) UML profile dedicated to
characterize RTE multitasking execution platform.

After a quick tour around related work for software execution platform modeling
with UML, we show how to achieve this goal thanks to MARTE and how it can

12 Software Real-Time Resource Modeling 171

help application design in a model-driven style. Finally, we will give some conclu-
sions and will elaborate on some possible future work.

12.2 Related Work

Much work has already been done on platform modeling. This section is therefore
divided into two sub-sections: one dedicated to related research on characterizing
execution platforms and the other to model such platforms with UML.

12.2.1 Characterizing RTE Software Platforms

The MDA guide [4] provides the following generic definition of the platform con-
cept: “A platform is a set of subsystems and technologies that provide a coherent
set of functionalities through interfaces and specified usage patterns, which any
application supported by that platform can use without concern for the details of
how the functionality provided by the platform is implemented”. Although this is
a very broad and high-level definition which leaves a large scope for interpreta-
tion, it does make clear that the MDA guide considers a platform as a support for
the execution of software applications. This correlate well with the industrial intui-
tive definition of “platform” which refers to machines or systems such as frame-
works, middleware, virtual machines and RTOS, which are built to support an
execution process.

According to B.Selic in [7], this “enabling execution” concept consists of pro-
viding resources (i.e., mechanisms) and services (i.e., functionalities) to be used by
one or more software applications. Resources are structural entities offering serv-
ices that may be qualified by non-functional properties (e.g., latency, worst case
execution and pool size). These properties reflect the offered execution characteris-
tics and the platform performances.

A. Sangiovanni-Vincentelli emphasizes in [8] that resources and services are
provided by application programming interfaces (APIs). An API should provide a
complete and accurate description of the platform, so that any application that is
consistent with this interface is guaranteed to be processable via that platform.
Hence, the API may be considered as a representation of this “enabling execution”
concept.

We can thus summarize previous discussion on to characterizing execution plat-
forms as follows: an execution platform is “an abstraction layer in the design flow
which interfaces through its API a set of resources (i.e., types and instances) com-
posed of a set of services and a set of usage patterns, either with other platform
resources or with other client systems called applications”. The language used to
model such execution platforms must therefore allow modeling of specific RTE
types, along with predefined instances and usage patterns.

172 F. Thomas et al.

12.2.2 Execution Platform Modeling with UML

UML 2.0 [5] is now widely used for software development and is emerging as a
possible solution for enhancing RTE system development [9]. UML provides lin-
guistic concepts to describe types (i.e., resources), instance specifications (i.e.,
resource instances), and behavioral features (i.e., services). Moreover, UML pro-
vides means to describe usage patterns as “collaborations” and “collaboration uses”
within composite diagrams. Since explicit platform models can have an arbitrarily
complex structure, we can also use UML 2.0’s composite structures to break down
a complex design into smaller parts. In such a view, the concepts of connector and
port may be useful to describe the binding of applications with platforms [7].
Finally, state-machine and activity diagrams may be associated with encapsulated
classifiers to define their behaviours.

UML native concepts nevertheless need to be extended to cover the semantics of
RTE concepts. For that precise purpose, UML provides a lightweight extension
mechanism called profile (see Section 12.18 of [5]). A UML profile consists of
“stereotypes” and “constraints”. Stereotypes may have properties called “tags” and
are used to define extensions to existing UML language constructs (metaclasses).
They likewise enable use of platform/domain-specific terminology and notation.
Constraints are used to restrict or to specify the usage of the stereotypes within the
context of a UML model. When they are written in Object Constraint Language
(OCL) [5], constraints can be checked automatically on UML models applying a
profile. They then provide support for checking static semantic rules.

A large number of UML extensions for real-time and embedded designs have
already been proposed. In [10], the UML Profile for Schedulability, Performance and
Time (SPT), standardized by the OMG, proposes mainly concepts for two kinds of
analysis: RMA-based schedulability analysis, and performance analysis based on lay-
ered queuing theory. For platform modeling, SPT provides only high-level concepts.
This lack has been one of the OMG motivations for a new RTE profile, MARTE.

In [11], P. Kukkala proposes a model-driven methodology based on both UML
and a specific profile to describe applications and platforms. This methodology
does not only allow the description of platform structures but also the binding of
applications with platforms. The proposed profile does not, however, take into
account the operating system as a platform.

In [12], R. Chen proposes a UML profile for specification of embedded system
platforms. This profile provides domain-specific classifiers and relationships to sup-
plement the SPT approach. However, it does not include means to describe platform
services, and essentially enables to annotate resources. Such an approach may not
allow automating completely the binding of the application with the platform.

In [7], B. Selic describes a straightforward but relatively general UML profile
for platform modeling and deployment of relationships between platforms and
applications. Although this model enables a systematic approach to factor crucial
platform characteristics, the proposed profile does not provide specific concepts to
model RTE execution resources such as tasks and semaphores.

12 Software Real-Time Resource Modeling 173

Related work has resulted in UML extensions that make notation and semantics
more suitable for highly abstract real-time concept modeling with UML. But, all this
work does not provide enough detailed artifacts to describe both resources and serv-
ices provided by software execution platforms. A complete explicit model will facili-
tate and automate binding of an application with its RTOS execution platform. We
have consequently proposed a new UML 2.0 profile for that purpose, the UML profile
for Software Resource Modeling (SRM). This latter is part of the MARTE standard.

The MARTE specification consists of three main packages described in figure
12.1. The first package defines the foundational concepts of MARTE. It provides
basic model constructs for non-functional properties, time and time-related con-
cepts, allocation mechanisms and generic resources, including concurrent resources.
These foundational concepts are then refined in both other packages to respectively
comply with modelling and analyzing concerns of real-time embedded systems.

The second package provides a generic basis for different quantitative analysis sub-
domains. This Generic Quantitative Analysis Modeling package is further generalized
into two packages: one for schedulability analysis, to predict whether a set of software
tasks meets its timing constraints; and another for performance analysis, to determine
if a system with non-deterministic behaviour can provide adequate performance.

The third, “Real-Time Embedded Design modelling” package provides support
for modelling high-level model constructs to depict real-time embedded features of
applications, but also for enabling the description of detailed software and hardware
execution platforms. The SRM profile deals with the software execution part.

RTE analysis model

Foundations

GQAM
(Generic Quantitative Analysis)

SAM
(Schedulability

Analysis
Modeling)

PAM
(Performance

Analysis
Modeling)

RTE design model

« import »

Time
NFPs

(Non-FunctionalProperties)

Alloc
(Allocation)

GCM
(GeneralComponentModel)

GRM
(Generic Resource modeling)« import »

RTeMocc
(Real-Time Model of computation &

Communication)

HRM
(Hw Resource

Modeling)

SRM
(Sw Resource

Modeling)

« import »

« import »

« import »

import »« « import »

« import »

« import »

Fig. 12.1 Overview of the UML MARTE profile

174 F. Thomas et al.

12.3 Software Resource Modeling

There are currently no formal ways for designing UML profiles. We have designed
our profile in two stages. The first stage aims at defining all concepts required to
cover a specific domain. The output of this stage is called the “domain model” of
the profile. It is considered as a specification of the domain-specific language. The
second stage then consists in designing the previous language specification in terms
of UML extensions, i.e., defining UML stereotypes, their properties and additional
constraints. Thus, that section is organized as follows: the first subsection is an
outline of the SRM domain view, the second is an overview of the SRM UML pro-
file and the last two present some SRM Profile usage examples.

12.3.1 Outline of the SRM Domain View

The SRM profile is based on the “resource-service” modeling pattern proposed for
platform modelling in [7] and [10]. That pattern allows describing resources which
own properties and provide services. Some properties and services play roles. Such
roles are modelled as resources attributes. Figure 12.2 illustrates that pattern on a
software resource. A software resource owns some attributes. Among those
attributes some are used to identify the resource. Those are referenced by the “iden-
tifierElements” meta-property. A software resource provides also services. Some
may be used either to create or to delete the resource. Those are respectively refer-
enced either by the “createServices” or by the “deleteServices” meta-properties.

The whole domain model has been built on the basis of a detailed analysis of
main RTOS API standards [1–3], and certain industrial standards (e.g. [13, 14]).
An overview of domain resources is shown in Tables 12.1–12.3. Real-time embedded
software concepts may be classified according to following concerns:

● Concurrent execution (i.e., parallel execution) contexts such as an interrupt and
a task

● Interactions between concurrent contexts for either communication or synchro-
nization purposes (e.g., mailbox and semaphore mechanisms)

ResourceService

Resource

SwResource

createServices

0..*

providedServices1.*

deleteServices

0..*

ResourceProperty
identifierElements

0..*

0..* ownedProperties

Fig. 12.2 An example of the “resource-service” modeling pattern

12 Software Real-Time Resource Modeling 175

● Hardware and software resource brokering concepts, such as driver or memory
management

12.3.2 SRM Profile Overview

Figure 12.3 provides on overview of the profile architecture resulting from the
design of the previous SRM domain view in terms of UML extensions.

The SRM profile provides a broad range of modeling capabilities covering all
RTOS concerns and with a low-level of details to enable generative approaches
where models are used to generate parts of the application. Due to space limitations
of this paper, it is out of the scope of the paper to describe in very details the SRM
profile. Both next sections are therefore respectively dedicated to an overview of its
typical modeling capabilities and its main expected use cases.

Table 12.1 Concurrency resources

Resource Semantics

SchedulableResource Encapsulated sequences of actions which execute
 concurrently.

MemoryPartition Virtual address space.
InterruptResource A computing context to execute user-delivered

 routines (i.e., entry point) connected to asynchronous signals.
Alarm An executing context for a user routine, which must be
 connected to a timer.

Table 12.2 Interaction resources

Resource Semantics

MessageComResource Communication resource used to exchange messages.
SharedDataResource Resource used to share the same area of memory

 among concurrent resources.
NotificationResource Resource supporting control flow by notifying the

 occurrences of conditions to awaiting concurrent resources.
MutualExclusionResource Resource that synchronizes access to shared variables.

Table 12.3 Brokering resources

Resource Semantics

MemoryBroker Resource that manages memory allocation, memory
 protection and memory access.

Scheduler Resource that orchestrates the execution of multiple
 schedulable resources.

DeviceBroker Resource that enables interfacing of hardware peripheral
 devices with the software execution support.

176 F. Thomas et al.

12.3.3 Modeling Examples

SRM concepts mainly extend the Classifier metaclass of UML (Fig. 12.7 shows a
typical extension). Any UML “Classifier” submetaclass can thus be extended by
these stereotypes (e.g., “Class”, “Interface”, “Component” and “AssociationClass”).
Figures 12.4 and 12.5 illustrate the usage of “Class” and “Component” extensions.
Figure 12.6 illustrates the use of an “AssociationClass” to describe interactions
among concurrent resources. Since the “InteractionResource” stereotype extends the
UML Classifier metaclass, an UML “AssocationClass” may be stereotyped as
any “InteractionResource” substereotype (e.g., “NotificationResource”, “Message
ComResource”, and “MutualExclusionResource”). In this example, the execution support
provides concurrency resources (“Alarm” and “Task”) to compute instructions.

« profile »
SRM

« profile »
SW_Concurrency

« profile»
SW_Brokering

« profile »
SW_Interaction

« profile »
SW_ResourceCore

«

« import » « import »

import »

Fig. 12.3 SRM profile overview

+ yield()

Deadline : Integer

« SchedulableResource »
Task

« SchedulableResource »
deadlineElements = Task::Deadline
yieldService = Task::yield()

« SchedulableResource »
Task +yield()

« interface »
TaskService« SchedulableResource »

yieldService = TaskService::yield()

Fig. 12.4 Example of class extension

Fig. 12.5 Example of component extension

12 Software Real-Time Resource Modeling 177

These resources are described as UML classes and respectively stereotyped as
“Alarm” and “SchedulableRessource”. In this example, an “Alarm” resource may
interact with a “SchedulableResource” by mean of an event mechanism stereo-
typed “NotificationResource”.

Since predefined instances are associated with one or more classifiers in the
UML metamodel, platform providers must first define their classifiers. These clas-
sifiers should be stereotyped. This means that an extension of the UML
“InstanceSpecification” metaclass is not mandatory.

task

0..1

« SchedulableResource »
Task

« Alarm »
Alarm

« NotificationResource »
Event

VxWorks Platform

« profile »
SRM

+priorityElements : TypedElement [0..*]
+stackSizeElements : TypedElement [0..*]
+activateService : Operation [0..*]
+createService : Operation [0..*]

« stereotype »
SchedulableResouce

« metaclass »
UML::kernel::Classes::Classifier

+taskSpawn(initPriority: Integer)
+taskActivate()

+stackSize: Integer;
+priority: Integer;

« SchedulableResource »
VxWorksTask « SchedulableResource »

priorityElements = [priority, initPriority]
stacksizeElements = [stackSize]
createService = [taskSpawn]
activateService = [taskSpawn, taskActivate]

« apply »

Fig. 12.6 Example of an association class

Fig. 12.7 Examples of tagged values

178 F. Thomas et al.

Stereotype tags allow users to specify resource feature taxonomies. For example
in Fig. 12.4, the “Deadline” property is referenced by the “DeadlineElements”
stereotype property to clarify its taxonomy. It shows explicitly in the model that one
of the attributes of this class plays the role of a deadline. This is the attribute named
“Deadline”. Such a modeling approach allows tools to distinguish properties and to
permit automatic model transformations (e.g., code generation).

Note that there are no constraints on the tagged value owner. In the second part
of Fig. 12.5, the “TaskService” interface owns a “yield” operation. This operation
is tagged as a “yieldServices” via the “SchedulableResource” stereotype. But this
stereotype is not applied to the interface, which means that, within the context of a
“task”, the service to call to release the computing resource is the “yield” operation
of the “TaskService” interface.

Note also that both multiple tagged values for the same tag and multiple tags for
the same feature are allowed. With this approach, the user can formally express
multiple semantics for the same feature through multiple tags. Figure 12.6 describes
a “taskSpawn()” service as both task creating and task activating services. In the
same way, to activate a task, the user can either call the “taskSpawn()” service or the
“taskActivate()” service. This also allows users to express the same semantics for
multiple features through use of the same tag (see “priorityElements” in Fig. 12.7).

12.3.4 Main SRM Use Cases

Figure 12.8 shows the main use cases in which the SRM profile is likely to be
involved. Potential key users of this description include “software designers” engaged
in defining real-time system software architectures, “platform providers” who
develop and sell real-time operating systems, and “methodology providers” who
specify processes where platform modelling is important (e.g., an MDA Y-chart).

Software
Designer

Describe platform
model library

Bind application model with
platform model

« include »

SRM UML Profile

Execution Platform
Provider

Methodology
Provider

Describe
multitasking

model
Model

transformation

Code generation

« extend »

« include »

« extend »

« extend »

Fig. 12.8 Typical SRM use cases diagram

12 Software Real-Time Resource Modeling 179

« model »
RobotController

trajectoryControl()
odometry()

MotionController

setSpeed()
getSpeed()
getSonar()

RobotDriver

driver

0..1

« modelLibrary »
OSEK/VDX

priority : Integer

« SchedulableResource »
BasicTask

« model »
SpecificOSEKVDXApplication

priority = 10

t1 : BasicTask

« Profile »
SRM

« schedulableResource »
priorityElements = [priority]

c1 : MotionController

« entryPoint »
isReentrant = true
routine = trajectoryControl

« apply »

« instanceOf »

« import »

« entryPoint »

« import »

Fig. 12.9 An OSEK/VDX-OS design

Figure 12.9 depicts a specific example of a robotic application built to run on the
OSEK/VDX-OS RTOS [2]. This design is a basic robot motion controller. It is typi-
cal of the processes involved in RTES design. The example used here does not refer
to a specific methodology, but is intended to illustrate the previously described
SRM use cases.

In our example, the software designer describes the logical “RobotController”
model. This model does not use the SRM profile in order to be independent of the
target platform. Platform independence refers to the fact that a given design can be
ported without change, from one platform to another.

The SRM profile is normally used to describe the platform model library, as is
usually done by the platform provider. The platform model library includes
resources and resource instances provided by the execution platform. For instance,
the platform provider indicates that the “OSEK/VDX” RTOS provides a specific,
structured type named “BasicTask”. A UML class is used to show that the platform
provider stereotypes that class as a “SchedulableResource” to indicate that this
“BasicTask” concept owns the semantics of a concurrent execution resource man-
aged by a specific scheduler. The platform provider also specifies that the integer
attribute named “priority” is the priority property of that schedulable resource.

Finally, the application may be bound with the execution platform to produce a
multitasking model. To do that, the application design may import the previous
defined platform model library to instantiate predefined types and use predefined
instances. Binding is described via a UML 2.0 dependency stereotyped with a spe-
cific stereotype. In the case of a schedulable resource, the stereotype “entryPoint”

180 F. Thomas et al.

is used to specify that the “trajectoryControl” operation body is the code which has
to be executed in the context of that schedulable resource.

Based on this description, the methodology provider can define tools to auto-
matically generate the OSEK/VDX configuration file described in OIL language
[15]. For each UML “InstanceSpecification” whose classifier is stereotyped
“SchedulableResource”, an OIL Task declaration block can be generated. As the
priority is explicitly referenced, tools are able to give the task priority value. Figure
12.10 is an example of the possible generated code.

Moreover, a software designer may wish to reuse and port a part of an applica-
tion description to run on top of a new RTOS. Figure 12.11 illustrates such a use
case with an ARINC-653 RTOS [3]. In this example, methodology provider tools
must transform each UML “InstanceSpecification” of the OSEK/VDX “BasicTask”
into a UML “InstanceSpecification” of an ARINC-653 process. The transformation

01. OIL VERSION = “2.5” : “RobotController”;

02. …

03. CPU cpu{

04. TASK t1_trajectoryControl{

05. PRIORITY = 10;

06. };

07. }

08. …

Fig. 12.10 Extract from an OSEK/VDX configuration file

« model »
RobotController

trajectoryControl()
odometry()

MotionController

setSpeed()
getSpeed()
getSonar()

RobotDriver

driver

0..1

« modelLibrary »
Arinc-653

« MemoryPartition »
Partition

prio : Integer

« SchedulableResource »
Processprocess

0..1

« model»
SpecificArincApplication

p1 : Partition
prio = 10

t1 : Process

« instanceOf »

« Profile »
SRM

« schedulableResource »
priorityElements = [prio]

c1 : MotionController

« entryPoint »
isReentrant = true
routine = trajectoryControl

« import » « import » « instanceOf »

« apply »

« entryPoint »

Fig. 12.11 An ARINC-653 design

12 Software Real-Time Resource Modeling 181

pattern is generic, since both entities are described with the same
“SchedulableResource” stereotype. The methodology provider can thus write a
generic transformation rule to port an application from one platform to another:
Each UML “InstanceSpecification” whose classifier is stereotyped
“SchedulableResource” in the source RTOS must be transformed into a UML
“InstanceSpecification” whose classifier is stereotyped “SchedulableResource” in
the target RTOS. Such a rule can be easily written in any language for model trans-
formation as for example ATL [16]. Tagged attributes and tagged operations can be
transformed in the same way.

12.4 Conclusion and Future Work

In this paper, we have proposed a means for modeling software execution platforms
with UML. This is done within the scope of providing model-driven processes that
afford reusability, portability and maintainability of RTE applications. We have
focused on an application built on an RTOS. We have thus sought to provide mod-
eling artifacts for modeling existing standardized RTOS APIs, in order to be able
to automatically produce code for interfacing the application with these APIs.

In this paper, we firstly defined the platform concept and investigated the state
of the art related to UML-based platform modeling. This revealed that UML was
lacking in certain means for describing efficiently and precisely the software execu-
tion platforms. We therefore concluded that more concrete concepts were required
to enable automatic model transformations (e.g., through code generation). For this
reason, we have proposed within MARTE a UML profile, called Software Resource
Modeling (SRM). This profile provides both fine details and a broad range of mod-
eling capabilities. It also provides artifacts that can be used to write generic model
transformations. Such transformations can be used to generate code and assist for
porting RTE applications to several multitasking platforms.

The main advantage of using the SRM profile is that this is not a new RTE API
but instead a standard framework for modeling existing execution platform APIs.
While the execution platforms discussed in this paper work are mainly RTOS, the
SRM profile can also be used to describe APIs of other execution platforms such
as RTE frameworks or virtual machines.

The SRM profile is part of the new UML profile for Modeling and Analysis of
Real-Time Embedded systems (MARTE) adopted by the OMG consortium. Thus,
the SRM profile is a standardized framework for describing RTE execution
platforms.

Future research will deal with the transformations using the SRM profile. Efforts
will thus focus on usage pattern description and behavior modeling for the purpose
of obtaining an accurate description of the execution platform.

Acknowledgments The authors do thank J.P. Babau for its valuable contribution to the SRM
profile.

182 F. Thomas et al.

References

 1. The Open Group Base Specifications, Portable Operating System Interface (POSIX), ANSI/
IEEE Std 1003.1, 2004

 2. The OSEK/VDX Group, OSEK/VDX OS specification, Version 2.2.3, http://portal.osek-vdx.
org/files/pdf/specs/os223.pdf, 2005

 3. The Airlines electronic engineering committee, Avionics Application Software Standard
Interface, ARINC Specification 653–1, Aeronautical radio, Inc., Annapolis, MD, October
2003

 4. The Object Management Group, MDA guide version 1.1, http://www.omg.org/mda/, June
2003

 5. The Object Management Group, UML 2.1.1 OCL 2nd revised submission, 2007, OMG docu-
ment: ad/2007-02-03

 6. The Object Management Group, UML Profile for Modeling and Analysis of Real-Time and
Embedded systems (MARTE), RFP 2005, OMG document: realtime/05-02-06

 7. B. Selic (2005), On Software Platforms, Their Modeling with UML2, and Platform-
Independent Design, Eighth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’05), IEEE Computer Society, Washington, DC, pp.15–21

 8. A. Sangiovanni-Vincentelli, G. Martin (2001), Platform-based design and software design
methodology for embedded systems, Design & Test of Computers, Volume 18, Number 6,
November–December, IEEE Computer Society, Los Alamitos, CA, USA, pp.23–33

 9. Y. Tanguy, S. Gérard, A. Radermacher, F. Terrier (2006), Model Driven Engineering for Real
Time Embedded Systems, In 3rd European Congress Embedded Real Time Software (ERTS),
Toulouse, France

10. The Object Management Group, UML Profile for Schedulability, Performance, and Time,
Version 1.1, 2005. OMG document: formal/05-01-02

11. P. Kukkala, J. Riihimâki, M. Hämäläinen, K. Kronlöf (2005), UML 2.0 Profile for Embedded
System Design, Automation and Test in Europe Conference (DATE 2005), pp.710–715

12. R. Chen, M. Sgroi, L. Lavagno, Grant Martin, A. Sangiovanni-Vincentelli, J. Rabaey (2003),
UML and Platform-based Design, UML for Real: Design of Embedded Real-Time Systems,
Kluwer, Norwell, MA, USA, pp.107–126

13. VxWorks 5.5 Documentation Page, http://www.windriver.com
14. RTAI 3.1 Documentation Page, http://www.rtai.org/
15. The OSEK/VDX Group, OIL specification Version 2.5, http://portal.osek-vdx.org/files/pdf/

specs/oil25.pdf, 2004
16. F. Jouault and I. Kurtev (2005), Transforming Models with ATL, Proceedings of the Model

Transformations in Practice Workshop at MoDELS 2005, Montego Bay, Jamaica

Chapter 13
Model Transformations from a Data Parallel
Formalism Towards Synchronous Languages

Huafeng Yu1, Abdoulaye Gamatié2, Eric Rutten3, and Jean-Luc Dekeyser4

Abstract The increasing complexity of embedded system designs calls for
highlevel specification formalisms and for automated transformations towards
lowerlevel descriptions. In this paper, a metamodel and a transformation chain are
defined from a high-level modeling framework, Gaspard, for data-parallel systems
towards a formalism of synchronous equations. These equations are translated in
synchronous data-flow languages, such as Lustre, which provide designers with
formal techniques and tools for validation. In order to benefit from the meth-
odological advantages of re-usability and platform-independence, a Model-Driven
Engineering approach is applied.

Keywords MDE, model transformation, Gaspard, synchronous languages,
 embedded system

13.1 Context and Motivation

13.1.1 MDE and Data-Parallel Applications

Data-parallel applications, such as mobile multimedia processing, high-definition
TV and radar/sonar signal processing, play an increasingly important role in embed-
ded systems. These applications generally concern computations on multidimen-
sional data structures. But these applications become more and more complex. As a
result, their design and validation turn out to be dramatically complicated.
Furthermore, the productivity problem is a great constraint for the development of
these applications. More efficient modeling and design methods are highly needed.

1INRIA Futurs Lille-LIFL, France Email: huafeng.yu@inria.fr

2LIFL-CNRS (UMR 8022), France Email: abdoulaye.gamatie@lifl.fr

3INRIA Rhône-Alpes, France Email: eric.rutten@inrialpes.fr

4LIFL-USTL (UMR 8022), France Email: jean-luc.dekeyser@lifl.fr

E. Villar (ed.) Embedded Systems Specification and Design Languages, 183
© Springer Science + Business Media B.V. 2008

184 H. Yu et al.

Nowadays, among intensive research activities to address such problems,
Model-Driven Engineering (Mde) [17] based methods can be mentioned. Well-
defined modeling specifications lead to rapid design as well as concise and clear
documentation, and their automated transformations enable to generate Platform-
Specific Models (Psm) and even executable code conveniently. The re-usability and
modularity of their models, Intellectual Properties (IPs) and the hierarchical mode-
ling make the production of these applications more efficient and rapid.

13.1.2 The GASPARD Methodology for Data-Parallel Computing

Gaspard [15] is a Mde based development environment and methodology for data-
parallel applications. It proposes concepts, which feature high level data parallel-
ism, data flow and control flow mixing, hierarchical and repetitive application and
architecture modeling, etc. The inherent data-parallel formalism of Gaspard is
adopted by Marte (Modeling and Analysis of Real-Time and Embedded systems)
[16], which is an Omg (Object Management Group) standard for the modeling and
analysis of real-time embedded systems. Gaspard concerns software/hardware
co-modeling and model transformations. More precisely, it enables to model software
applications, hardware architectures, their association and IP deployment through
a predefined metamodel in a unique modeling environment. This modeling stays at
a high abstraction level and is platform independent. Gaspard enables as well
transformations from these models to Psm models.

Gaspard metamodel is partially based on the concept of the Y-chart (see Fig. 13.1
and [15]). Models for application and hardware architecture are defined separately.
Then, application models can be mapped on architecture models. The obtained
models are associated with software or hardware IPs during the deployment. All
these models are platform-independent, and in general they are not associated with
particular technologies, but they can still be associated with an execution, simula-
tion, validation or synthesis technology. Model transformations are performed from
deployed models to specific languages (synchronous languages and others, which
are not detailed here and are shadowed in the Fig. 13.1, such as Fortran, SystemC
and Vhdl). These characteristics of Gaspard help to reduce the system design
complexity.

In the following, we briefly present main features of the high-level metamodel
of Gaspard.

● Application focuses on the description of data dependencies between the appli-
cation components. These components and dependencies completely describe
the functional behaviour with potential data-parallelism.

● Architecture specifies the hardware architecture at a high abstraction level.
It enables to dimension hardware resources in the same way as in application.

● Association allows one to express how the application is projected on the
hardware architecture with the consideration of task and data parallelism.

13 Transformation of Data Parallel to Synchronous Programs 185

● Deployment (represented by the box tagged as “Deployed” in Fig. 13.1) enables
to chose a specific target platform for code generation from Gaspard models.
This is achieved by importing IPs.

13.1.3 Motivation: Connecting GASPARD to Validation Tools

The Gaspard methodology, dedicated to the data-parallel application design,
adopts a top-down approach, which goes from the high abstraction level to low
implementation levels. Moreover, the correctness of the design and implementation
is highly required as well. However, Gaspard Uml models are limited by formal
semantics, which is necessary for the formal validation of the system design. Hence
a map from these models on formal methods is needed. Synchronous languages are
well known for their formal aspects and their richness in terms of tools for validation,
verification and automatic code generation. Therefore, the connection of these two
technologies is encouraged because it offers the opportunity to benefit from the
capability of Gaspard in the specification of data-parallelism and also from the
power of formal aspects of synchronous languages. This paper presents how MDE
transformations contribute to bridge these different abstraction levels from Gaspard

Fig. 13.1 Y-chart according to Gaspard

186 H. Yu et al.

to synchronous languages (Lustre [9] is considered here for illustration).
Furthermore, the automated transformation reduces potential error occurrences
caused by the manual translation. Previous works ([1, 5]) have exploited the sim-
ulation of Gaspard specifications in Ptolemy II and also their projections into
Kahn process network for the distributed execution, but they were not imple-
mented with the Mde approach and did not aim at the formal validation and
verification.

13.2 Data Parallelism and Synchronous Approach

13.2.1 Data-Parallel Application Design: GASPARD

This paper only addresses software application modeling and its deployment. Basic
application models of Gaspard [3] can be summarized by the following
grammar:

Task ::= < Interface, Body > (r1)
Interface ::= < in : {Port}, out : {Port} > (r2)
Port ::= < type, size > (r3)
Body ::= Taskh | Taskr | Taske (r4)
Taske ::= < some function call > (r5)
Taskr ::= < {Tiler}, (r, Task), {Tiler} > (r6)
Tiler ::= < F, o, P > (r7)
Taskh ::= < {Task}, {(Task, array, Task)} > (r8)

All Gaspard tasks share a few common features (rule (r1)): an interface (rule (r2)
where {} denotes a set) that specifies input/output ports (typed by in or out in rule
(r2) and defined in rule (r3)) from which each task respectively receives and pro-
duces multidimensional arrays; and a body (rule (r4)), which depends on the type
of task as follows:

● Elementary task (rule (r5)). The body corresponds to an atomic computation
block. Typically, it consists of a function or an IP.

● Repetitive task (rule (r6)). It expresses the data-parallelism in a task. The instances
of the associated repeated task are assumed to be independent and schedulable
following any order, even in parallel. The attribute r (in the rule (r6)) denotes the
repetition space, which indicates the number of repetitions. It is defined itself as a
multidimensional array with a shape. Each dimension of this repetition space can
be seen as a parallel loop and the shape of the repetition space gives the bounds of
the loop indices of the nested parallel loops [3]. In addition, each task instance
consumes and produces sub-arrays with the same shape. These sub-arrays are
referred to as patterns. The way patterns are constructed is defined via tilers (rule
(r7)), which are associated with each array. A tiler extracts (resp. stores) patterns

13 Transformation of Data Parallel to Synchronous Programs 187

from (resp. in) an array based on certain information it contains: F: a fitting matrix
(how array elements fill patterns); o: the origin of the reference pattern; and P: a
paving matrix (how patterns cover arrays).

● Hierarchical task (rule (r8)). It is represented by a hierarchical acyclic graph in
which each node consists of a task, and edges are labeled by arrays exchanged
between task nodes.

An application is a hierarchical task in which the top-level of the hierarchy is com-
posed of a single task, which plays a similar role to “main” in a C program.

The Gaspard application metamodel is defined according to the above basic
concepts. The whole software application is modeled as an ApplicationModel, in
which ApplicationComponents model hierarchical tasks (see detailed examples in
[18]). Instances of other ApplicationComponent, called ApplicationComponentInst
ance, can be composed in it. These instances have PortInstances. Connectors are
used to connect PortInstances and/or Ports. Internal structures, such as Elementary,
Compound and Repetitive, are defined in an ApplicationComponent according to its
inside component instances.

● Elementary points out that the ApplicationComponent is an elementary task,
which is a black box in Gaspar d.

● Repetitive indicates that the ApplicationComponent is a repetitive task. The
Connectors which connect ApplicationComponent’s ports and PortInstances of
its internal instance are Tilers.

● Compound corresponds to a hierarchical task and expresses task parallelism. All
the ComponentInstances inside this component run in parallel.

13.2.2 The Synchronous Approach

The synchronous approach [2] proposes formal concepts that favor the trusted design
of embedded systems. Its basic assumption is that computation and communication are
instantaneous, referred to as synchrony hypothesis. There are different synchronous
languages, which have strong mathematical foundations, such as Lustre, Lucid
synchrone and Signal. These languages are well-adapted for data-flow-oriented
applications. All these languages are associated with tool-sets that have been success-
fully used in several critical domains (e.g. avionics, automotive, nuclear power plants).

In this paper, Lustre is taken as the example (see a segment of Lustre code in
Fig. 13.2) for the introduction of some basic concepts in synchronous languages.
A node is a basic functionality unit in Lustre. Each node gives the same results with
the same inputs thanks to its determinism. Nodes have modular declarations that
enable their reuse. Each node has an interface (input at line (l1) and output at
(l2)), local definition (l3), and equations (line (l5) and (l6)). Variables are
called signals in Lustre. Equations are signal assignments. Furthermore only
unique assignments are allowed for signals. In these equations, there are possibly
node invocations (l5) that are declared outside this node. Obviously, in Lustre,

188 H. Yu et al.

modularity and hierarchy are inbuilt. The composition of these equations, denoted
by “;”, means their parallel execution w.r.t. data-dependencies. The node has the
same meaning independent of the equation order.

13.3 A Synchronous Equational Metamodel

The metamodel proposed here aims at three synchronous data-flow languages at the
same time. These languages have considerable common aspects, which enable their
code generation with the help of only one metamodel. In addition, because of the
obvious differences between Gaspard and synchronous languages, an intermediate
model is necessary to bridge the gap between them as well. A synchronous model
is therefore proposed, which follows the synchronous modeling of data-intensive
applications [8]. It aims to be generic enough to target the synchronous data-flow
languages mentioned earlier and to be adequate to express data-parallel applica-
tions. So, it is not intended to have exactly the same expressivity as these languages.
But this is not the case of the Signalmeta metamodel [4], which is specifically
dedicated to the Signal language. This metamodel completely defines all program-
ming concepts in Signal. It has been specified in the Generic Modeling
Environment (Gme), developed at Vanderbilt University.

13.3.1 Signal

In the proposed metamodel, all input, output or local variables are called
Signals(see Fig. 13.3). Each Signal is associated with a SignalDeclaration,
which declares the name and type of the Signal. It is associated with at least one
SignalUsage. The latter represents one operation on Signal. If the Signal
is an array, a SignalUsage can be an operation on a pattern of this array. Hence,
if the array has several patterns, the Signal is associated to the same number of
SignalUsage correspondingly. Each of these SignalUsages has an
IndexValueSet, which is a set of IndexValue of the associated Signal.
A SignalUsage is associated with at least one Argument of equations, which
indicates their inputs/outputs.

node node_name (A1:intˆ4) (l1)
returns(A3:intˆ4); (l2)
var A2:intˆ4; (l3)
let (l4)
A2 = a_function(A1); (l5)
A3 = A1+A2; (l6)

tel (l7)

Fig. 13.2 An example of Lustre code

13 Transformation of Data Parallel to Synchronous Programs 189

13.3.2 Equation

Equations (Fig. 13.4) indicate the relations between their inputs and outputs,
which are called Arguments here. An Equation has an EquationRightPart
and at most one EquationLeftPart. The latter has Arguments as Equation
outputs. EquationRightPart is either an Array Assignment or an
Invocation. Array Assignment has Arguments and indicates that the
Equation is an array assignment. Invocation is a call to another Node (see
the following subsection Node). In an Invocation, Function-Identifier
indicates the called function.

13.3.3 Node

Synchronous functionalities are modeled as Nodes (see Fig. 13.4). A Node has no
more than one Interface, LocalDeclaration, NodeVariables, an
EquationSystem and some Implementations and CodeFiles.
NodeVariables is the container of Signals and SignalUsages. Each
input/output Signal is associated with a SignalDeclaration, which belongs
to the Interface, while local Signals’ SignalDeclarations belong to

<<metaclass>>
NodeVariables

<<metaclass>>
Signal

<<metaclass>>
SignalDeclaration

<<metaclass>>
SignalInterDec

<<metaclass>>
SignalLocalDec

<<metaclass>>
IndexValueSet

<<metaclass>>
SignalUsage

<<metaclass>>
IndexValue

<<metaclass>>
Argument

<<metaclass>>
Local Declarations

<<metaclass>>
Interface

+owner +owner

+owner

+owner+interface +interface +interface

0..*
+signalUsage

+signalUsage+signalUsage

0..*
+arguments

+ parameters
0..*
{ordered}

+ outputs
0..*
{ordered}

+ inputs
0..*
{ordered}

1..*
+indexValues

{ordered}
+locals
1..*
{ordered}

+value : int [*]{ordered, nonunique}

 0..1
+indexValueSet

+signal

+declaration

+signal

1

1
1

1

0..*
+ signals

Fig. 13.3 Extract of the synchronous metamodel: Signal

190 H. Yu et al.

<<metaclass>>
Module

<<metaclass>>
Interface

<<metaclass>>
Equation

<<metaclass>>
LoacalDeclarations

<<metaclass>>
ArrayAssignment

<<metaclass>>
EquationRightPart

<<metaclass>>
Invocation

<<metaclass>>
Argument

<<metaclass>>
Functionldentifier

<<metaclass>>
EquationLeftPart

<<metaclass>>
NodeVariables

<<metaclass>>
CodeFile

<<metaclass>>
FunctionIdentifier

<<metaclass>>
EquationSystem

<<metaclass>>
Node

<<metaclass>>
Implementation

<<metaclass>>
PortImplementation

+name : String

0..*
+localNodes

+name : Str ing

 1
+mainInstance

+implementation

+portImplementation

+implementingFiles +codeFiles

0..*
+implementat ions

1..*
+nodes

+owner

+owner

0..1
+interface

+nodeVariables

+owner +owner

+owner

10..1 +left

+ equation Left Part

+ right

+ invocation

{ordered}
1..*
+ arguments

1..*
+ arguments

0..* {ordered}
+ arguments

1
+invocatedFunction

+ arrayAssignment + invocation

Lustre
Signal
LucidSynchrone

<<enumeration>>
ImplementationLanguage

+owner + owner

1..*
+equations

0..1
+localDefinitions

+owner +node
0..1

0..1

1..*

1
+equationSystem

0..* 0..*

+owner +owner

Fig. 13.4 Extract of the synchronous metamodel: Node, Equation

LocalDeclaration. EquationSystem is the node body that fulfills the
functionality through a composition of at least one synchronous Equation. All
Nodes are grouped in a Module, which represents the whole application. It con-
tains one Node as the main Node of the application. Each Node is either defined
in the Module or linked to an external function through IP deployment.

13 Transformation of Data Parallel to Synchronous Programs 191

13.3.4 Remarks

Nodes that are not defined in the Module should be deployed. The equiva-
lents of these nodes are Gaspard elementary tasks. An Implementation
associated with a Node contains the information of the external function.
Parameters of external function are represented by PortImplementations.
Their orders are defined in the Implementation so that parameters are
passed correctly to the application. An Implementation is associated with
at least one CodeFile, which represents the implementation of the external
function.

Synchronous models, which conform to this metamodel, act as intermediate
models between data-parallel applications and data-flow languages. Their parallel
compositions preserve the parallelism, and their modularity and re-usability ensure
hierarchical compositions of original Gaspard models. This modeling is also
generic enough so that it will not suffer from the complexity and particularity of
target languages. Moreover it enables potential improvements, for instance, the
integration of application control inspired by [13].

13.4 Model Transformations

Only Gaspard models with the infinite dimension at the highest hierarchy can be
transformed into synchronous models. The infinite dimension is translated by a
logical time in the reactive style of synchronous languages. So in synchronous
models, there are no more infinite dimensions. The multidimensional arrays are
translated into array-type signals. Parallelism in Gaspard can be easily modeled in
synchronous models with the help of the composition operator defined in synchro-
nous languages.

Transformations of Gaspard models into synchronous specifications (typically,
Lustre programs) consist of two steps: firstly, a transformation of Gaspard mod-
els into synchronous models; and then, the generation of synchronous code from
synchronous models obtained from the first step.

13.4.1 From GASPARD Models to Synchronous Models

Some basic transformations are first given. Componentsand Compon-
entInstances are transformed into Nodes and Equations respectively.
Ports, PortInstances and DefaultLink connectors in a Component are
transformed into Signals, whereas Tiler connectors are transformed into
Equations as well as Nodes.

192 H. Yu et al.

13.4.1.1 Transformation Rules

All the rules can be represented through a tree structure (see Fig. 13.5). The unique
initial (root) rule is GModel2SModel. It transforms a whole deployed Gaspard
application into a synchronous module. This rule then calls its sub-rules:

GTiler2SNode, GApplication2SNode, GACI2SNode, etc. GApplication2SNode has
also three sub-rules: GRepetitive2SEquationSystem, GCompound2SEquationSystem
and GElementary2SEquationSystem. Note that not all rules are given in the Fig. 13.5
due to lack of space (see [18] for details). In the following, only rules presented in the
Fig. 13.5 are described. Among them, GTiler2SNode and GRepetitive2SEquationSystem
are a little more detailed. The other rules are constructed in the same way.

● GTiler2SNode (see Fig. 13.6 in which each element is numbered). It is a rule for
the transformation of tiler connectors into synchronous input or output tiler
Nodes. An input tiler Node is taken as an example for the construction of a
synchronous node. First of all, the Node (numbered 1) is created and is associ-
ated with its Module. The Port and PortInstance connected by this tiler
are then transformed into input and output Signals respectively. One Port
corresponds to one input signal, and one PortInstance corresponds to sev-
eral output signals, whose quantity, n, is calculated from the repetition space
defined in its connected ComponentInstance. The input signal is associated
with n SignalUsages (4) and an output signal is associated with a
SignalUsage (8). Interface (2) is then created and associated with
SignalDeclarations (3, 9) that are associated with signals. Note that there
are no LocalDeclarations in this node. Next, an EquationSystem con-
tains n Equations (5). In each Equation, the EquationLeftPart has an
Argument (6) which is associated with a SignalUsage of an input signal.
EquationRightPart is directly an ArrayAssignment. Its Argument
(7) is associated with a SignalUsage (8) of a corresponding output.

Fig. 13.5 Hierarchy of the transformation rules

13 Transformation of Data Parallel to Synchronous Programs 193

● GApplication2SNode. It transforms application components into Nodes.
However, all the elements in these Nodes are generated by its three sub-rules,
which transform internal structures in the Component into an
EquationSystem.

● GACI2SNode. It transforms the unique main ApplicationComponentIns
tances into a synchronous Node. It is the main instance of the application.

● GRepetitive2SEquationSystem. (Fig. 13.7) In this rule, an EquationSystem is
first created. And then three types of Equation are created: input tiler
Equations, repeated task Equation and output tiler Equations. Tiler
connectors are transformed into input/output tiler Equations, which are invo-
cations to Nodes generated by GTiler2SNode, and the internal
ComponentInstance is transformed into repeated task Equation. A rele-
vant repeated task Node is then created, in which n equations invoke the task
node corresponding to the component that declares the internal component
instance. Note that hierarchical composition in Gaspard models is preserved in
synchronous models by node invocations.

● GCompound2SEquationSystem. Each internal ComponentInstance is trans-
formed into an equation. Connectors between these ComponentInstances
are transformed into local Signals.

● GElementary2SEquationSystem. No Equation is created because its owner
Node is implemented externally and Deployment models are used to import
its external declarations. However an Interface is created according to the
component’s ports.

Tiler

8 9

1

2

4

4

4

4

3

8

8

8 9

9

9

2
Node

5

5

5

5

6

6

6

6

7

7

7

7

Fig. 13.6 Transformation of the tiler

194 H. Yu et al.

13.4.1.2 Implementation of the Transformation Chain

Gaspard models are specified in the graphical environment MagicDraw, and are
exported as Eclipse Modeling Framework (Emf) [6] models. Emf is a modeling
framework and code generation facility. In the following transformation phase,
these models are transformed into Emf Gaspard models. These two previous trans-
formations will not be detailed here. Then Emf Gaspard models are transformed
into Emf synchronous equational models, which are finally used to generate syn-
chronous language code (e.g. Lustre code). An automated model transformation
chain is then defined through the concatenation of these transformations from
MagicDraw Uml models to data-flow languages (Fig. 13.8).

These transformations were implemented with the help of specifications, stand-
ards and transformation languages. Some of them are briefly presented in this
paper. Mof Qvt [14] is the Omg standard on model query and transformation,
which is respected in transformations presented here. Several other transformation
languages and tools, such as Atl [10] and Kermeta [12] already exist. Atl is a
model transformation language (a mixed style of declarative and imperative con-
structions) designed w.r.t. Qvt. Kermeta is a metaprogramming environment
based on an object-oriented Domain Specific Language. But these two languages
lack of extension capability especially when some external functions are needed to
be integrated into the transformation. Emft (Eclipse Modeling Framework
Technology) project was initiated to develop new technologies that extend or com-
plement Emf. Its query component offers capabilities to specify and execute queries
against EMF model elements and their contents. The MoMoTE tool (MOdel to
MOdel Transformation Engine), which is based on the Emft Query and is inte-
grated into Gaspard, is a Java framework that allows to perform model to model
transformations. It is composed of an Api and an engine. It takes input models that
conform to some metamodels and produces output models that conform to other
metamodels. A transformation by MoMoTE is composed of rules that may call
sub-rules. These rules are integrated into an Eclipse plugin. In general, one plugin
corresponds to one transformation. During model transformations, these plugins
are automatically invoked one by one.

TilerTiler

Node

...

Node Node Node

Repetitive task

Task

Fig. 13.7 Transformation of the repetitive task

13 Transformation of Data Parallel to Synchronous Programs 195

13.4.2 Synchronous Code Generation from Models

The implemented code generation from synchronous models is template based.
Emf Jet [7] and MoCodE are used to build code generators (three generators for
three data-flow languages). Jet is a template based code generation tool. User
defined templates in Jet are used to generate Java implementation classes. Then,
the latter can be called to generate target code. MoCodE (MOdels to CODe
Engine), which works with Jet, is also a tool integrated into Gaspard. It consists
of an Api with an engine that enables to perform model to text transformation. It
takes a set of models as inputs, and then its engine recursively takes out elements
from input models and executes a corresponding Java implementation class on
them. These Java classes finally generate target code.

13.5 An Application Example

Examples of matrix processing, which averages the patterns from inputs, are intui-
tive, but they are typical to show the transformation and the application domain.
One of the examples implemented is illustrated in Fig. 13.9, which takes a flow of
(4, 4)-array, and produces a flow of (2, 2)-array. For each step in the flow, the aver-
age computing block has four repetitions, each of which takes a (2, 2)-sub-arrays
from the input array, then carries out the computing, and produces a (1, 1)-sub-
array. Finally all of the (1, 1)-arrays from the four repetitions then construct the
output (2, 2)-array of the application.

The deployment of the matrix average IP (TASK) is illustrated in Fig. 13.10.
This deployment indicates where to find the Lustre code that implements this IP.
The physical Lustre code is represented by the CodeFile, and it is associated to
the elementary task by the component AbstractSoftwareImplementatio
n, which is composed of at least one SoftwareImplementations. This
means one elementary task may have several different implementations (in different
languages or through different algorithms). The SoftwareImplementation
contains the deployment information, for example, the elementary function name,

Model Transformation Code generation Code

UML model

Magic Draw

UML model Lustre

SynchronousEclipse EMF

Gaspard model Synchronous
equational model

Fig. 13.8 The detailed transformation chain

196 H. Yu et al.

the language of its implementation. Other deployment information, such as ports,
etc., can be found through the references (portImplementedBy, imple-
mentedBy) between AbstractSoftwareImplementation and
ElementaryComponent.

The transformation chain and the generated code is illustrated in the video
located in [11]. The extract of the generated code can also be found in [18].

<<Applicationcomponent>>
MatrixAverage

<<ElementaryComponent>>
<<ApplicationComponent>>

t : TASK [(2,2)]

[(2,2)]

[(2,2)]
[(4,4)]

<<Tiler>>
{fitting = “((1,0), (0,1))”,
origin = “(0,0)”,
paving = “((2,0), (0,2))”}

<<Tiler>>
{fitting = “((1,0), (0,1))”,
origin = “(0,0)”,
paving = “((1,0), (0,1))”}

[(1,1)]

Fig. 13.9 An example of matrix average computation

<<ElementaryComponent>>
<<ApplicationComponent>>

TASK

<<AbstractSoftwarelmplementation>>
asiTask

<<implementedBy>>

<<manifest>>

{functionName = “TASK1”,
language = Lustre}

<<SoftwareImplementation>>
siTask

<<CodeFile>>
cfTask

{filePath = “./eclipse/runtimeConfiguration/demo/exLustre/”}

<<portlmplementedBy>>

i1 : Integer [(2,2)] o1 : Integer [(1,1)]

i1

<<portlmplementedBy>>

o1

Fig. 13.10 The deployment of the matrix average IP

13 Transformation of Data Parallel to Synchronous Programs 197

13.6 Conclusions and Perspectives

In this paper, we proposed a synchronous metamodel and presented model transfor-
mations from data-intensive applications specified in Gaspard into synchronous
languages, particularly the Lustre language, through a Mde approach. The code
in java and rules of the implemented transformations adds up to about 5,000 lines
in Eclipse.

Some illustrative examples of the transformation have been implemented. Due
to space problem, only one is showed in this paper. Other more complicated exam-
ples can be found in [18].

Simulation and validation issues are also addressed with the generated code.
Functional simulation and verification of deadlock absence on the original design
have been carried out. Whereas the synchronizability analysis requires the introduc-
tion of clocks in Gaspard. One of the future work concerns the integration of con-
trol (inspired by [13]) in Gaspard models and their transformation into synchronous
languages for automatic verification. More analysis details can be found in [8, 18].
Finally, the way all these analysis results can be exploited by Gaspard users is a
challenging perspective from a practical point of view.

References

 1. Amar, A., Boulet, P., Dumont, P.: Projection of the Array-OL specification language onto
the kahn process network computation model. In: Proceedings of the International Symposium
on Parallel Architectures, Algorithms, and Networks, Las Vegas, NV (2005)

 2. Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P., de Simone, R.: The
synchronous languages twelve years later. In: Proceedings of the IEEE 91(1), 64–83 (2003)

 3. Boulet, P.: Array-OL revisited, multidimensional intensive signal processing specification.
Research Report RR-6113, INRIA, http://hal.inria.fr/inria-00128840/en/ (2007)

 4. Brunette, C., Talpin, J.-P., Besnard, L., Gauthier, T.: Modeling multi-clocked data-flow pro-
grams using the generic modeling environment. In: Synchronous Languages, Applications,
and Programming. Elsevier, Vienna Austria, (2006)

 5. Dumont, P., Boulet, P.: Another multidimensional synchronous dataflow: Simulating Array-
Ol in Ptolemy II. Tech. Rep. 5516, INRIA, www.inria.fr/rrrt/rr-5516.html (2005)

 6. Eclipse: Eclipse Modeling Framework. http://www.eclipse.org/emf
 7. Eclipse: EMFT JET. http://www.eclipse.org/emft/projects/jet
 8. Gamatié, A., Rutten, E., Yu, H., Boulet, P., Dekeyser, J.L.: Synchronous modeling of data inten-

sive applications. Research Rep. 5876, INRIA. http://hal.inria.fr/inria-00001216/en (2006)
 9. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow programming

language Lustre. In: Proceedings of the IEEE 79(9) (1991)
10. INRIA Atlas Project: Atl. http://www.sciences.univ-nantes.fr/lina/atl/
11. INRIA DaRT Project: Presentations and demonstrations: Gaspard2 towards Lustre. http://

www2.lifl.fr/west/DaRTShortPresentations
12. INRIA Triskell Project: Kermeta. http://www.kermeta.org/
13. Labbani, O., Dekeyser, J.L., Boulet, P., Rutten, E.: Advances in Design and Specification

Languages for SoCs, Selected contributions from FDL’06, chap. UML2 Profile for Modeling
Controlled Data Parallel Applications. Springer, TU Darmstadt, Germany (2007)

198 H. Yu et al.

14. Object Management Group (OMG): MOF Query/Views/Transformations (QVT). http://www.
omg.org/cgibin/doc?ptc/2005-11-01 (2005)

15. INRIA DaRT Project: Gaspard. http://www.lifl.fr/west/gaspard/
16. Rioux, L., Saunier, T., Gerard, S., Radermacher, A., de Simone, R., Gautier, T., Sorel, Y.,

Forget, J., Dekeyser, J.L., Cuccuru, A., Dumoulin, C., André, C.: MARTE: A new profile rfp
for the modeling and analysis of real-time embedded systems. In: UML-SoC’05, DAC 2005
Workshop Uml for SoC Design. Anaheim, CA (2005)

17. Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2) (2006)
18. Yu, H., Gamatié, A., Rutten, E., Dekeyser, J.L.: Model transformations from a data parallel

formalism towards synchronous languages. Research Report 6291, INRIA. http://hal.inria.fr/
inria-00172302/en/ (2007)

Chapter 14
UML and SystemC – A Comparison
and Mapping Rules for Automatic
Code Generation

Per Andersson and Martin Höst

Abstract Today embedded system development is a complex task. To aid the engi-
neers new methodologies and languages are emerging. During the development the
system is modeled using different tools and languages. Transformations between the
models are traditionally done manually. We investigate the automation of this proc-
ess, specifically we are looking at automatic UML to SystemC transformation. In this
paper we compare UML and SystemC, focusing on communication modeling. We
also present mapping rules for automatic SystemC code generation from UML. The
mapping has been implemented in our UML to SystemC code generator.

Keywords code generation, UML, systemC

14.1 Introduction

Today there is a never ending demand for new functionality to be included in
embedded systems such as mobile phones. This leads to increased design complex-
ity. To overcome the increased system complexity new design methodologies, such
as model driven architecture, have been introduced. In parallel with this, new lan-
guages, i.e. SystemC [2, 3], for system level modeling and simulation have also
emerged. Combining new methodologies and new languages is a promising
approach to manage the increasing system complexity. This is the focus of the
MARTES (Model-Based Approach for Real-Time Embedded Systems develop-
ment) project.1 In the project we investigate how UML and SystemC can be used
together when the ideas of Model Driven Architecture are applied. One of the tasks
of the project is to investigate how transformations from UML to SystemC can be

E. Villar (ed.) Embedded Systems Specification and Design Languages, 199
© Springer Science + Business Media B.V. 2008

Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
Email: Per.Andersson@cs.lth.se and Martin.Host@cs.lth.se

1 www.MARTES-ITEA.org

200 P. Andersson, M. Höst

automated and supported by tools. During this research we are developing a proto-
type tool, which manage the UML to SystemC transformations and code genera-
tion, as an add-in to the Telelogic TAU UML2 modeling tool.2 This part of the
MARTES project is carried out in close cooperation between Lund University and
Telelogic. In this research there are a number of decisions that needs to be taken
related to the detailed requirements on the developed tool. It is crucial to take the
right decisions concerning what functionality to include in the tool. This is achieved
by developing the tool iteratively. Different versions are developed after each other,
and every version is evaluated in order to decide what additional functionality to
include in the next version. Evaluations are a very important part of the develop-
ment of the tool. The evaluations are being carried out together with other partners
in the MARTES project, in the context of case studies in industrial projects. In this
paper we present the work and results from developing the first version of our UML to
SystemC code generator. We start with a summary of related work in Section 14.2.
We compare the constructs and semantics of UML and SystemC in Section 14.3.
Based on this comparison we have developed a set of mapping rules which are
detailed and motivated in Section 14.4. Our implementation of the mapping rules
is presented in Section 14.5 and practical experience can be found in Section 14.6.
Finally the paper is concluded in Section 14.7.

14.2 Related Work

Earlier publications on UML to SystemC mapping [4, 7] suggest that, to a large
extent, there is a one to one relation between concepts in the two languages. For
example a UML class is mapped to a SystemC module. This is not always desira-
ble, sometimes UML classes are used for data encapsulation and in these cases they
should remain as classes in the SystemC model. Only UML classes with ports,
and/or with architecture should be mapped to SystemC modules.

Riccobene et al. [7] address this by exposing all SystemC details in the UML
model through a SystemC profile. Their approach is to use UML as an implementa-
tion language for SystemC. In addition to making all standard SystemC types avail-
able at the UML level they also extend actions in state machines to handle
SC_THREAD and SC_METHOD synchronization. With their approach, the engi-
neers must tag their UML model by adding relations to the intended SystemC ele-
ments. This is similar to the last part in our design process. In our design process
engineers start with an abstract UML model, which is refined in three steps. This is
further explained in Section 14.5. One difference compared to their work is that we
intend to automate most of this part in our process, minimizing the design effort.
Another problem with bringing too many of the SystemC details into the UML
model is the semantic differences between the languages, as discussed in Section

2 www.telelogic.com

14 UML and SystemC 201

14.3. This will lead to problems during co-simulation of pure UML models with
models applying the SystemC profile. It will also be problematic to generate code
for different targets, i.e. hardware and software. As far as we know no one has pub-
lished a semantic comparison of these two languages.

14.3 Language Comparison

In this section we compare the UML and SystemC languages. The comparison is
based on UML 2 [1, 6] and SystemC 2.2 [2, 3]. The purpose of the comparison is
to find and motivate mapping rules for automatic SystemC code generation from
UML. The focus is on concepts which are equivalent in both languages as well as
concepts and constraints which are only present in one of the two languages. When
we refer to concepts which are similar in both languages we use the notation UML
name/SystemC name, for example class/module. Also we refer to a class which
inherits from sc_module as a SystemC module and any class inheriting from sc_
interface as a SystemC interface.

14.4 Composition

UML and SystemC are similar from a structural point of view. Both languages have
the concepts of package/name space which can be used to group most other lan-
guage constructs. In real models packages/name spaces are mainly used to group
declarations of classes/modules. A package/name space cannot be instantiated. Any
instantiations done in a package/name space will result in one instance in the sys-
tem, with limited visibility to the package/name space. In this paper we focus the
discussion around the small system shown in Figs. 14.1 and 14.2.

Game

Ping

p1p1

IPing

IPong

<<interface>>
IPing

signal Ping(Integer value)

Pong

p2p2

IPong

IPing

<<interface>>

IPong

signal Pong(Integer value)

Fig. 14.1 Structure in a UML design

202 P. Andersson, M. Höst

We will later show the SystemC code generated from it. In this system the pack-
age Game encapsulates the declarations of the classes Ping and Pong as well as the
interfaces IPing and IPong. A SystemC module is very similar to a UML class. In
fact a SystemC module is defined as a C++ class with some predefined methods
and attributes. Thus a SystemC module can have attributes and methods and also it
can inherit from one or more classes and/or modules. There are a few properties
which can be assigned to a UML class which cannot be expressed in the SystemC
language. One such is abstract, but this can be emulated by making one of the
methods in the class abstract. We believe the minor limitations of a SystemC mod-
ule are negligible in practical use, so we treat UML classes as equivalent to
SystemC modules. Both UML classes and SystemC modules can contain refer-
ences to other objects making it is possible to communicate between classes by
method calls. This is however not the intended means to model communication in
neither language. Instead communication should pass through ports connected
using connectors/channels. A port is part of an class/module and defines its com-
munication interface. In UML a port has a required and a realized interface indicat-
ing which signals it will send and receive. Both the required and realized interface
can be composed of a list of UML interfaces. Some tools also allow signal lists. In
SystemC a sc_port must have exactly one SystemC interface. The interface details
which methods the module will call on the connected channel. A SystemC port
corresponds to the required interface of a UML port. The equivalent of the UML
realized interface is a SystemC sc_export. A SystemC sc_export is part of a module
and has exactly one interface, which details the calls the module will implement.

14.5 Communication

The way communication is commonly modeled is quite different in UML and
SystemC. In UML communication is modeled using signals, asynchronous messages
that can carry data. The signals are sent through the ports of a class. The destination
of a signal is determined by the connectors of the model. In Fig. 14.2, any signal sent
from the object ping will be forwarded to the object pong. At the receiving object the
signal is stored in a queue, from where it later will be consumed by the behavior of
this class. A UML connector only provides routing information for signals, it does
not model the communication mechanism, i.e. a network or a bus. If this is to be
included in the model it must be done using classes. Note also that a UML connectors
are primarily a relation between two objects and not between classes. A UML port
can have several connectors, and a connector connects exactly two ports.

SystemC channels are a central part of communication modeling in SystemC.
They implement the behavior of the communication mechanism, as follows. During

ping:Ping
p1p1

pong:Pong
p2p2

Fig. 14.2 Communication in a UML design

14 UML and SystemC 203

initialization each port is connected to a channel. At this time the port saves a refer-
ence to the channel. Later during simulation the ports will be transparent, forward-
ing any operation to the channel (this is done by overriding the – > operation). This
design implies some constraints; a port may only connect to a channel which imple-
ment its interface, and also a port can only connect to one channel. By default there
is no limit to how many ports that can connect to a channel, but it is possible for a
channel to limit the number of ports connecting to it. Since a message sending is
realized as a method call in a channel, it is not possible for two modules to com-
municate without an intermediate channel. Also SystemC does not allow ports to
be used to make methods in a module available to other modules. For this purpose
sc_export was added to the language. Using sc_export a module can encapsulate a
channel and export its interface to other modules. This makes it possible for a
sc_port in one module to connect to a sc_export in another module without creating
any intermediate channel.

14.6 Mapping Rules

Considering the difference in communication modeling it is clear that there does
not exist a trivial, one to one mapping from UML to SystemC. Some UML con-
structs are however so similar to SystemC that we suggest that they should be
replaced with the corresponding SystemC construct during the mapping process.
Table 14.1 lists some of these constructs. We base our SystemC code generator to
a large extent on Telelogic’s C++ code generator [8]. This is possible since SystemC
is a library and a simulation engine implemented on top of C++. The implementa-
tion of our code generator is explained further in Section 14.5. In this section we
focus on the mapping rules that are unique for SystemC and refer to [8] for details
regarding mapping of the parts of the UML language not covered here.

The asynchronous communication of UML signals implies that there must exist
a message queue somewhere in the communication. In UML this is located in the
receiving class. When comparing to the predefined channels in SystemC, sc_fifo
comes closest. However, there are some limitations which make it less suitable.

First, in a UML state machine it is possible to wait for one of several signals,
i.e. several transitions, with different triggers, from the same state. When the state
machine is in such state, the triggering signals might arrive on different ports. This
leads to the need to do blocking reads on several fifo queues at the same time.

Table 14.1 Mapping rules for equivalent
concepts

UML SystemC

Package Name space
Active class sc_module
Class with ports sc_module
Other classes C++ class

204 P. Andersson, M. Höst

This is not possible. In SystemC it is possible to wait for one of several events to
occur, but when the call to wait returns it is not possible to determine which event
that actually occurred. The concept of events in SystemC is similar to the wait() and
notify() synchronization mechanism found in, for example, Java. The second prob-
lem with sc_fifo is its limitation to connect only one sender and one receiver. This
is the same constraint as a UML connector. The problem is that several UML con-
nectors can connect to the same port, but a SystemC port can only connect to one
channel. A UML connector does not provide any message queue; instead it con-
nects the sending port with the queue inside the receiving class. This has the same
semantic as connecting a SystemC port to a channel, assuming that the channel will
provide a message queue.

The observation that a UML connector has the same semantic as connecting a
SystemC port to a channel is one motivation for our mapping. We map a UML con-
nector to code which connects the sending modules port with the channel contain-
ing the message queue of the receiving module. For this to work, we need a channel
which implements a message queue and allows multiple connecting senders. Also,
to solve the first problem with sc_fifo, this queue should be shared among all ports
of the receiving module. There is no SystemC channel which meets these needs, so
we generate one for each generated SystemC module. The channel will handle all
incoming signals to the module.

The structure of a generated SystemC module is shown in Fig. 14.3. The module
is composed of one or more threads, one channel, and one or more ports and/or
exports. When a message arrives at a sc_export, a method in the channel will be
invoked and the message will be stored in the channels message queue. The threads
in the module will later consume the message using the channels blocking read()
method. The threads can also send messages through a sc_port. A message sent
through a sc_port will arrive at a sc_export of another module.

Table 14.2 lists the UML sources for different SystemC constructs. How we gener-
ate the components of the SystemC module will be detailed below. For each realised
interface of the UML class we generate one sc_export and connect it to the modules

sc_module

sc_channel

message
queue

SC_THREAD

read()

sc_port

..
.

sc_port

sc_export

..
.

sc_export

Fig. 14.3 The structure of a
generated SystemC module

14 UML and SystemC 205

channel. The channel implements all realized interfaces with one method for each
signal. The method stores the parameters of the signal in the channels message queue.
This queue is implemented using a C++ std::deque. The channel also provides an
blocking read, used by the modules threads, i.e. the methods generated from the state
machine of the active UML class. To clarify, let us look at an example. The UML
diagram in Fig. 14.2 will generate the SystemC code shown in Fig. 14.4.

In the first two lines the module instances are created. Lines three and four connect
the ports and exports of the generated module instances. Lines three and four are
generated from the UML connector. Commonly line one and two will be attributes in
a module and line three and four will be part of that modules constructor.

Next we will examine the SystemC declaration of module Ping, shown in Fig.
14.5. This originates from the UML view in. The UML port p1 is mapped to a
sc_port and a sc_export at line 3–4. The interfaces IPing and IPong are generated
from the UML interfaces. This mapping is detailed below. Lines 6–16 contain the
declaration of the SystemC channel, which contains the message queue of the Ping
module. The channel is instantiated at line 17. The method Ping at line 15 origi-
nates from the UML signal Ping and is part of the IPing interface inherited at
line 8. The implementation is on lines 21–26. At line 30, in the constructor of Ping,
p1_export is bound to the channel instance Ping_channel. With the generated code
Figs. 14.4 and 14.5, the module instance pong can send a Ping signal carrying the
value three, using the syntax p2_port- > Ping(3).

14.7 Interfaces and Signals

The mapping of UML classes, ports and channels detailed above is not enough to
generate code which compile. The SystemC interfaces and data structures for stor-
ing signals in the message queue are missing. These are generated from the UML

Table 14.2 The table lists SystemC parts and the UML constructs they are created from

SystemC part UML source

sc_port Port, required interface
sc_export Port, realized interface
sc_channel Interface, signal
sc_interface Interface, signal
constructor of sc_module Port, channel, state machine. Attribute initialization have

more sources
SC_THREAD State machine

1 Ping ping("Ping");
2 Pong pong("Pong");
3 ping.p1_port(pong.p2_export);
4 pong.p2_port(ping.p1_export);Fig. 14.4 Code generated from

Fig. 14.2

206 P. Andersson, M. Höst

interfaces and signal. For each UML interface a SystemC interface will begener-
ated. The generated interface will contain one method for each signal in the UML
interface. The method will have the same parameters as the original signal. In addi-
tion to the method each signal will also generate a class with one attribute for each
signal parameter. The code generated from the UML interface IPing in Fig. 14.1 is
shown in Fig. 14.6.

1 SC_MODULE(Ping){
2 public:
3 sc_export<IPing> p1_export;
4 sc_port<IPong> p1_port;
5 /*--- channel ---*/
6 class Channel_class:
7 public sc_channel,
8 public IPing{
9 private:

10 std::deque<UML_signal *> queue;
11 sc_event e;
12 public:
13 Channel_class(sc_module_name name);
14 UML_signal *read();
15 void Ping(int value);
16 };
17 Channel_class Ping_channel;
18 /*--- state machine behavior ---*/
19 void Ping_thread();
20 };
21 void Ping::Channel_class::Ping(int
22 value){
23 queue.push_back(new
24 Ping_signal(value));
25 e.notify();
26 }
27 Ping(sc_module_name name):
28 sc_module(name),
29 Ping_channel("Ping_channel"){
30 p1_export(Ping_channel);
31 SC_HAS_PROCESS(Ping);
32 SC_THREAD(Ping_thread);
33 }

Fig. 14.5 Code generated from Fig. 14.1

M2
pp

A, B
M3

pp

A, C

M1
pp A, B, CFig. 14.6 UML classes with

 interface lists

14 UML and SystemC 207

In SystemC a port and export can only have one interface and for a port to con-
nect to an export/channel its interface must be implemented by the channel. Now
look at Fig. 14.7.

UML port M1::p has three realised interfaces A, B, C. Ports M2::p and M3::p
have required interfaces A, B and A, C. Port M1::p will be mapped to an SystemnC
export while M2::p and M3::p will generate SystemC ports. The generated export
and ports need one interface each, here named if1, if2, and if3. A trivial attempt
would be for the generated interfaces to inherit directly from from A, B and C, i.e.
class if1:A, B, C{}, class if2:A, B{}, and class if3:A, C{}. Now neither if2 nor if3
is a subtype of if1 and the ports can not connect to the export. A working solution is
for if1 to inherit form if2 and if3. But now, due to the double inheritance, if1 will
contain two instances of A. Also, with this mapping an exports interface will change
as ports connect to it making it unpractical to generate code for parts of a system, or
to distribute IP-cores in binary form, since they need to be recompiled when used.

To solve this we suggest that one UML port should be mapped to several
SystemC ports, one for each interface it requires. The list of realized interfaces can
still be mapped to one export with one interface, i.e. class if1:A, B, C{}. With this
mapping M2 will have two ports, one for interface A and one for B. Both can con-
nect to M1::p. This solves the problems mentioned above while preserving the type
hierarchy among interfaces in the UML model.

14.8 Mapping Process

During initial system modeling, a pure UML model is used. Though it is possible
to define a set of mapping rules from a pure UML model directly into SytemsC
code, it would give the engineer little influence on the mapping and most likely a
less satisfactory result. Instead we divide the mapping into three steps, as depicted
in Fig. 14.8.

ll models are available and editable. This makes it possible for the engineer to
have full control over the relevant details for the system under development and
have the tool manage all remaining details.

1 class IPing: public sc_interface{
2 public:
3 virtual void Ping(int value)= 0;
4 class Ping_signal: public UML_signal{
5 public:
6 int value;
7 inline Ping_signal(int value):
8 value(value){}
9 };

10 };

Fig. 14.7 Code generated from Fig. 14.1

208 P. Andersson, M. Höst

Step 1, vertical refinement transformation: In this step an initial UML descrip-
tion is refined to a UML description, which follows a UML profile for SystemC.
This step will, at least partly, be carried out manually. To minimize the design effort
it should not be required to tag the whole model. This means that a set of default
values for the SystemC specific attributes of the UML profile, must be defined. The
default values will in most cases provide a satisfactory mapping in the following
transformation steps.

Step 2, vertical refinement transformation: In this step the model is transformed
into a new UML description that only includes UML constructs with direct represen-
tations in SystemC, i.e. classes, attributes, inheritance, etc. Other constructs such as
state machines are translated to the target language. During this step we transform
each state machine to a class with methods that implement the behavior of the states
and transitions. In the first version of the tool, the resulting model will be a un-timed
functional model. The mapping rules for UML classes, ports, channels, signals and
interfaces are given in Section 14.4. A complete list of UML constructs which are
removed during this transformation is beyond the scope of this paper. In addition to
removing UML only concepts, we also make all relations in the model explicit. When
a class is made active in UML it implies that the class will have its own thread of
execution. In SystemC this is realized using SC_THREAD or SC_METHOD which
implies that the class is an instance of the SystemC class sc_module. During this
transformation all such implicit relations are made explicit. For example, we add a
generalization relation to the SystemC class sc_module from all active UML classes.
In the first version of the tool the resulting model is a un-timed functional model.

Step 3, horizontal transformation: In this step the UML model resulting from
step 2 is transformed into a corresponding SystemC code. This transformation is a
one to one correspondence between the UML model to the resulting SystemC code,
i.e. this is a “pretty print” of the UML model. This step is implemented using the
existing C++ code generator from Telelogic and thus reuse its support for scope
rules, header-file inclusion and make file generation without any modifications. If
the generated code is to be read by humans it is desirable to use the common
SystemC macros when applicable. This requires a slight customization of the syn-
tax of the generated code. We do this using an agent, a mechanism which makes it
possible for third party executables to interact with the C++ Code generator in
Telelogic Tau G2. Our agent generates SystemC like module declarations, instead
of a C++ class declarations, SC_MODULE(MyModule){…} instead of class
MyModule:public sc_module{…}.

UML, pure

UML, SystemC profile

UML, SystemC explicit SystemC

 Fig. 14.8 Our three step code generation

14 UML and SystemC 209

14.9 Experimental Validation

The mapping rules and code generator presented in this paper have been use by
VTT to extend their workload-based performance simulation [5]. The automatic
mapping from UML to SystemC makes it possible to partially reuse existing UML
application models, removing the need for separate work load models. VTTs expe-
rience is that our SystemC code generator is useful in practice and simplifies the
engineers work in their model based design flow, see [5].

14.10 Conclusions

Combining new methodologies and new languages is a promising approach to over-
come the increased complexity of today’s embedded systems. This is the driving force
in the MARTES project. In this paper we compare UML and SystemC. The comparison
reveals that the communication is modeled quite different in the two languages. Based
on our observations we present mapping rules for automatic SystemC code generation
from a UML model. We also present our transformation technique, composed of two
vertical and one horizontal transformations. Using our transformation technique it is
possible to reuse large parts of a code generator for other target languages similar to the
target languages of the code generator, i.e. the implementation of our SystemC code
generator uses a large part of Telelogic’s C++ code generator.

References

1. Eriksson, H., Penker, M., Lyons, B., Fado, D.: UML 2 Toolkit. OMG Press, Indianapolis, IN
(2004)

2. Grötker, T., Liao, S., Marin, G., Swan, S.: System Design With SystemC. Kluwer, Norwell,
MA (2002)

3. IEEE: IEEE Standard SystemC Language Reference Manual. IEEE Standard 1666–2005
(2006)

4. Nguyen, K. D., Sun, Z., Thiagarajan, P. S., Wong, W.: System driven SoC Design Via
Executable UML to SystemC. Real-Time Systems Symposium (2004)

5. Kreku, J., Hoppari, M., Tiensyrjä, K., Andersson, P.: SystemC Workload Model Generation
from UML for Performance Simulation. Proceedings of Forum on specification and Design
Languages (FDL) (2007)

6. Piltone, D., Pitman, N.: UML 2.0 In a Nutshell. O’Reilly Media inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472 (2004)

7. Riccobene, E., Scandurra, P., Rosti A. Bocchio, S.: A SoC Design Methodology Involving a
UML 2.0 Profile for SystemC. Design Automation and Test Europe (DATE) (2005)

8. Telelogic, PO Box 4128, Kungsgatan 6, SE-203 12 Malmö, Sweden: C++ Application
Generator Reference

Chapter 15
An Enhanced SystemC UML Profile
for Modeling at Transaction-Level

S. Bocchio1, E. Riccobene2, A. Rosti1, and P. Scandurra2

Abstract This chapter describes a UML2 profile for the SystemC language,
which takes into account the language improvements as specified in the IEEE
1666 SystemC Standard and effectively provided in the SystemC 2.2 simulator as
foundation for Transaction-Level Modeling (TLM). The profile is a set of mod-
eling constructs which lift both the structural and behavioral features of SystemC
to UML level. It is part of a model-driven HW-SW co-design methodology based
on the UML2, a SystemC UML profile for the HW side, and a multi-threaded C
UML profile for the SW side, which allows modeling of the system at higher levels
of abstraction (from a functional executable level to Register Transfer Level) and
supports automatic code-generation/back-annotation from/to UML models.

Keywords Embedded systems, system-level design, SystemC, UML, UML profiles

15.1 Introduction

To increase the design productivity and tackle the ever growing system complexity,
the Electronic Design Automation (EDA) communities are pushing a shift in design
entry level for the Embedded Systems (ES) and Systems on Chip (SoC) develop-
ment. New more abstract design methodologies and languages – far beyond the
capabilities of existing HW description languages, like VHDL and Verilog, operat-
ing at the low Register-Transfer-level (RTL) – are needed in order to handle a
design task which should allow the convergence of both HW and SW facets, as well
as better reuse and integration of pre-designed components (the Intellectual
Properties).

1 STMicroelectronics R&I, Agrate Brianza, Italy; Email: {sara.bocchio,alberto.rosti}@st.com

2 University of Milan – DTI, Crema, Italy; Email: {riccobene, scandurra}@dti.unimi.it

E. Villar (ed.) Embedded Systems Specification and Design Languages, 211
© Springer Science + Business Media B.V. 2008

212 S. Bocchio et al.

Recently, the Unified Modeling Language (UML) [15] and its extension mecha-
nism is receiving significant interest in the hardware community, since it allows
UML customization towards the definition of a family of languages targeted to
specific application domains (telecommunications, aerospace, real time computing,
automotive, System-on-Chip, etc.) and levels of abstraction. This is confirmed by
several standardization activities controlled by the OMG, such as: the Schedulability,
Performance, and Timing Analysis (SPT) profile [17]; the recent UML for SoC
Forum (USoC) [18] in Japan founded by Fujitsu, IBM/Rational, and CATS to
define a set of UML extensions to be used for SoC design; the SysML proposal [24]
which extends UML towards the Systems Engineering domain, and the MARTE
(Modeling and Analysis of Real-Time Embedded systems) initiative [16].

Along the same research line, we can mention the recent model-driven HW-SW
co-design methodology in [2, 5]. According to the emerging Model Driven
Engineering (MDE) approach, a new design flow is proposed for ES development.
It is based on the UML 2.0 to be used in a platform-independent manner to provide
a first high-level functional specification of the whole system, a SystemC UML
profile to be used for the HW description at several abstraction levels on top of the
RTL level, and a multi-threaded C UML profile to specify the SW application.
Moreover, to foster this methodology in a systematic way and combine all the
involved notations together in a seamless manner, in [6] a design process, called
UPES (Unified Process for Embedded Systems), is defined by extending the con-
ventional Unified Process (UP) of UML, together with the UPES sub-process,
called UpSoC, for refining the HW platform model. Furthermore, a HW/SW
co-design environment [4] was developed on top of the UML visual modeling
Enterprise Architect (EA) tool [9], to assist the designer across the refinement steps
in the UML modeling activity regarding the HW part, from a high-level functional
model of the system down to the RTL level, and supports forward and reverse engi-
neering of C/C++/SystemC code.

The SystemC UML profile [6, 25] is the key point of this model-driven
co-design methodology for ES. It is a consistent set of modeling constructs which
lift both the structural and behavioral features (including processes, events and time
features) of SystemC to UML level, while providing unification in the overall UML
modeling activity. This last starts from the definition of an abstract UML model (or
PIM – platform independent model) describing the general functionality of the sys-
tem, and continues with subsequent refinements of the PIM (or of portions of it)
into platform specific models (or PSMs) through a sequence of model transforma-
tions. For the HW components, this sequence of PSMs goes from a high level
functional un-timed/timed model of the system down to a transaction-level model,
to a behavioral model, to a bus-cycle accurate (BCA) model, to a final RTL model
for the synthesis of an end-product integrated into a chip. The UML profile for
SystemC allows using UML at PSM level, provides unification between PIM and
PSMs, and allows automatic encoding of PSMs into final SystemC code.

The choice of SystemC as implementation language is intentional, and mainly
due to the fact that SystemC is becoming one of the most important system-level
languages for SoC design. In 2006, SystemC received a major revision (2.2) and

15 An Enhanced SystemC UML Profile for Modeling at Transaction-Level 213

became IEEE Standard [5]. This last revision includes new structural (sc_export
and sc_event_queue) and behavioral (dynamic processes, fork/join synchroni-
zation, etc.) features required for modeling at transaction-level according to the
OSCI [19] standard TLM 1.0 API.

To align the SystemC profile with the standard IEEE [25] and support refine-
ment towards implementation in SystemC 2.2 according to the OSCI TLM stand-
ard, the SystemC UML profile described in [1] has to be reviewed. In this chapter,
we present a UML2 profile for the SystemC 2.2 release. It extends the profile in [6,
25] with the new improvements specified in the IEEE 1666 SystemC Standard. The
structural features of the SystemC UML profile in [1] have been extended including
the new features of ports connection and event queue handling, while for the behav-
ioral part, we extend the SystemC Process State Machines (an extension of the
UML state machine formalism introduced as part of the SystemC profile to model
the reactive and concurrency behavior of SystemC processes) with the new
enhancements in SystemC 2.2 for dynamic processes, i.e. processes created at run-
time as children processes of running processes. This last extension required to fix
some UML state machines semantic variation points to capture the operational
semantics of the dynamic SystemC processes. This new profile allows for modeling
at Transaction-Level (TLM) of abstraction with the OSCI TLM 1.0 library.
Moreover, according to the reviewed version of the profile, the code generator of
the HW-SW co-design environment in [4] has been updated to guarantee straight-
forward generation of efficient SystemC 2.2 code from diagrammatical UML mod-
els developed by using the SystemC profile.

The remainder of this chapter is organized as follows. Section 15.2 sketches
some fundamentals of the SystemC 2.2 language assuming the reader familiar with
the SystemC language. Section 15.3 introduces basic concepts underlying the
SystemC UML profile along with the enhanced structural and behavioral features
of the profile. Section 15.4 describes the code generation facility for diagrammati-
cal models developed using the SystemC UML profile, while Section 15.5 presents
some case studies. Related work and conclusions are given in Sections 15.6 and
15.7, respectively.

15.2 SystemC Background

The SystemC language is an open standard that is imposing as the reference lan-
guage in ESL (Electronic System Level) design; it is controlled by the OSCI group
[19] made of different companies in the EDA area.

SystemC is defined in terms of a C++ class library for modeling in terms of C++
programs, and provides an event-based and discrete-timed simulation kernel.

SystemC provides constructs for modeling the system structure (sc_module
andsc_channel), the communication (sc_port,sc_interface,sc_event),
the concurrent behavior through processes (sc_method and sc_thread
processes) and a set of data types for hardware data.

214 S. Bocchio et al.

In 2006, SystemC received a major revision (2.2) and became IEEE Standard
[25]. This last revision includes new structural features (sc_export and sc_
event_queue) and behavioral features (dynamic processes, fork/join synchroni-
zation, etc.) required for modeling at transaction-level towards hardware-software
implementation according to the OSCI TLM standard.

SystemC has been involved into several SoC design flows at industrial level,
exceeding, for its expressivity, the capabilities of traditional Hardware Description
Languages (HDLs). It permits to design at system level supporting different
abstraction levels (un-timed/timed functional, TLM, behavioral, BCA, and RTL),
thus allowing design refinement in a unique modeling environment.

15.3 The SystemC UML Profile

A UML profile is to be intended as a dialect of the UML for a particular platform or
application domain. The UML profiles mechanism is a standard way of customizing
the UML by adding a set of stereotypes, tags and constraints. Stereotypes define how
the syntax and the semantics of an existing metaclass of the UML metamodel are
extended for a specific domain terminology or purpose. Tag values are user-defined
properties of a stereotype to add further attributes to the extended metaclass.
Constraints are expressed as formulas in the Object Constraint Language (OCL) and
serve to add static semantic restrictions to the extended UML modeling element.

For defining profiles, UML2 is endowed with a standard graphical notation
which is easily supported by UML visual modeling tools. A profile is denoted as a
package with the keyword «profile». Within the profile package, a class of the
UML metamodel that is extended by a stereotype is labeled as a conventional class
with the keyword «metaclass». A stereotype is denoted as a class with the key-
word «stereotype». The extension relationship between a stereotype and a
metaclass is depicted by an arrow with a solid black triangle pointing toward the
metaclass box. When applied to an element in a UML model, a stereotype is shown
as a keyword consisting in the name of the stereotype within a pair of guillemets,
near the symbol of the UML element or with a special icon defined for it (if any)
in place of the conventional symbol for the element.

A UML2 profile for SystemC 2.0 already exists [1]. In the next two sections, an
extension of this profile is presented (we assume the reader familiar with SystemC
2.0) in a lightweight manner by describing some new structural features (sc_
export and sc_event_queue) and behavioral features (dynamic processes
and fork/join synchronization) capturing the semantics as specified in the IEEE
1666 SystemC standard and implemented in the SystemC 2.2 execution engine [5].
This extension is dictated by the necessity to align the profile definition with the
standard IEEE [5] in order to include the new SystemC constructs for modeling
systems, communication, hardware and software at the transaction-level, and sup-
porting refinement towards hardware-software implementation according to the
OSCI TLM standard.

15 An Enhanced SystemC UML Profile for Modeling at Transaction-Level 215

15.3.1 Enhanced Structural Features

In SystemC 2.2, a port (sc_port) may be bound to a channel either directly, or
indirectly by being bound to another port (according to a parent-to-child module
relationship) or to a sc_export port (export, in brief). Figure 15.1 shows the
sc_port and sc_export stereotypes. Note that, a further tag policy (an element
of the enumeration type sc_port_policy) has been added to the sc_port stere-
otype; it is used to determine the rules for binding multi-ports and the rules for
unbound ports, as specified in the new SystemC version.

An export defines a set of services (as identified by the interface type of the
export) that are provided by the module exposing the export. Providing an interface
through an export is an alternative to a module which simply implements the inter-
face. The use of explicit exports exposed by a module instance allows a single
module to provide multiple interfaces in a structured manner: the underlying inter-
faces are implemented somewhere within the module, e.g. by a child channel
instance.

The sc_export stereotype maps the notion of SystemC export port directly to
the notion of UML port, plus some constraints. An export port can have exactly one
provided interface – the type of the export – and no required interfaces. An export
can only be bound to a channel derived from the type of the export or to another
export (provided that this export itself is directly or indirectly bound to a channel)
with a type derived from the type of the export. Similarly to the sc_port notation,
an export port is shown as a small square symbol with the port name and the key-
word «sc_export» nearby. Alternatively, an export can also be shown as a small
triangle icon with the port name. In both cases, the provided interface is shown by
a circle or ball, labeled with the name of the interface, attached by a solid line to
the export port.

In the new profile definition, the semantics of connectors sc_connector and
sc_relay_connector has been extended in order to represent three new pos-
sible bindings: port-to-export, export-to-channel, and export-to-export. To be precise,
the sc_connector stereotype, originally provided as extension of the UML
connector to explicitly bind a port to a channel (port-to-channel), now can be used
to directly bind a port to an export provided that the export exposes the interface

Fig. 15.1 sc_export and sc_port stereotypes

216 S. Bocchio et al.

required by the port. Similarly, a sc_relay_connector, originally defined to
represent the parent-to-child port binding, now is also used to bind an export to a
channel, and also to bind an export to another export. Both connectors are binary,
i.e. a connector specifies a link that enables communication between two instances
only. All connectivity rules are provided in terms of OCL constraints defined over
the involved classes of the UML metamodel. Figure 15.2 shows an example of
application of these stereotypes in a UML class diagram to model the hierarchical
structure of a Top module made of two sub-modules, Caller and Middle, con-
nected via a port-to-export binding.

Figure 15.3 shows the sc_event_queue stereotype definition together with
the one for the sc_event stereotype. They represent SystemC events in terms of
special UML signals whose notification generates signal events (instances of the

Fig. 15.2 Example of structural modeling with sc_esport

«sc_module»
Bottomp i_f

xp

xp

p

xp

xp

i_f

i_f

«sc_module»
Caller

«sc_module»
Middle

«sc_module»
Top

ch : Chan

b : Bottom

c : Caller

m : Middle

«sc_port»

«sc_port»

«sc_export»

«sc_relay_connector»

«sc_relay_connector»

«sc_connector»

«sc_export»

«sc_export»

«sc_export»

15 An Enhanced SystemC UML Profile for Modeling at Transaction-Level 217

class SignalEvent in the UML metamodel) to be put in the input pool of the
processes to be activated/resumed. In particular, the sc_event_queue stereo-
type denotes a structured signal, namely, an event queue which can have multiple
notifications pending. For an event queue only delta-cycle delayed and timed noti-
fications are allowed. A sc_event_queue cannot be used in most contexts
requiring a sc_event but can be used to define the static sensitivity of processes.
The mechanism used to queue event notifications shall be implementation-defined,
with the proviso that an event queue must provide a single default event that is
notified once for every notify action for the event queue. Effective user-named
signal instances are declared with the stereotype keyword «sc_event» within the
attribute compartment of a module’s class or a channel’s class. The label for a
trigger on a state machine transition denoting a sc_event signal may explicitly
indicates the name of the specific sc_event instance whose notification causes
the triggering of the transition. The same notation is used for a sc_event_queue
structured signal.

15.3.2 Enhanced Behavioral Features

Processes are the basic mechanism in SystemC for representing concurrent behavior.
Two kinds of processes are available: methods and threads. Clocked threads are a
specialization of threads. Each kind of process has a slight different behavior, but
basically all processes: run concurrently, are sequential, and are activated (if termi-
nated or simply suspended) on the base of their own sensitivity, which consists of
an initial list of zero, one or more events – the static sensitivity of a process – and
can dynamically change at run time realizing the so called dynamic sensitivity
mechanism.

The SystemC UML profile defines two processes stereotype «sc_method»
and «sc_thread» (see [1] for details); both extend the Operation and the
StateMachine UML metaclasses. This double extension allows us to associate
an operation to its behavior specified in terms of a (method) state machine. Special
state and action stereotypes are added to support the behavioral features mentioned

Fig. 15.3 sc_event_queue stereotype

‹‹metaclass››
Signal (from Communications)

‹‹stereotype››
SC_event

‹‹stereotype››
SC_event_queue

basesignal 1 basesignal
1

218 S. Bocchio et al.

above. These stereotypes and their associated OCL constraints lead to a variation
of the UML state machine formalism: the SystemC Process State Machines. This
formalism allows modeling the control flow and the reactive behavior of processes
(methods and threads) within modules, dealing with concurrency, synchronization
and timing aspects.

A process state machine can contain the definition of local variables. Two particular
states (initial and final) are used to model start and termination of the process behavior.
The behavior is modeled by states, transitions, and actions. States can contain simple
actions or activity which must obey the syntactic rules and take the semantics of the
C++/SystemC language (the action or surface language). The semantics of basic
C/C++ control structures, like if conditions, while loops, etc., is captured in terms
of stereotyped choice pseudostates (see for example the while loop in Fig. 15.4).

The example in Fig. 15.4 also shows a static_wait-stereotyped state.
It captures the SystemC semantic of a wait() statement with no arguments.

Fig. 15.4 Example of thread process state machine

«dont_initialize»

«white»

«if»

«endif»

«static_wait»

RUNNING

do/ load = true; din = 0;

do/ load = true;
din = 0;

[else]

[else]

do/ load = false;

[dout = _maxcount−1]

[true]

15 An Enhanced SystemC UML Profile for Modeling at Transaction-Level 219

In general, to model the dynamic sensitivity mechanism of a thread process two
possible wait-stereotyped states are available (see Fig. 15.5): the first one is a wait on
the static sensitivity list, the second is a wait on a dynamic sensitivity list character-
ized by an event condition e*. Figure 15.6 shows how a wait(e*) call is
modeled in UML for all possible forms of the event e*: a single timed event, a
single signal event, a single event with timeout, an AND-list of signal events, an

Fig. 15.5 Static and dynamic wait

Fig. 15.6 Dynamic sensitivity of a thread process

‹‹static_wait››
WAIT ON STATIC
SENSITIVITY LIST

‹‹wait››
WAIT ON DYNAMIC
SENSITIVITY LIST

e*

220 S. Bocchio et al.

OR-list of signal events, AND-list of signal events with timeout, and OR-list of
signal events with timeout. Similar constructs have been defined to model the
dynamic sensitivity mechanism of a method process.

We choose to use the state machines with respect to other UML behavioral dia-
grams (like the activity diagrams) because this kind of diagram provides a behavio-
ral pattern appropriate for modeling the reactive and hierarchical behavior of
SystemC processes, which can be activated by triggering external synchronization
events. Moreover, according to the OMG specification [15], state machines are
sequential as far as their internal behavior is concerned, but any state machine is
concurrent with respect to the other state machines of the system. Indeed, UML
state machines can be used for modeling simple functions that execute under the
control of processes, and it is also possible to represent the SystemC synchroniza-
tion mechanism for suspending/resuming a process in terms of stereotyped states
and events.

We extend here the SystemC process state machines by adding specialized
submachine states and orthogonal regions within a state machine to model the
notion of process hierarchy expressed in SystemC in terms of dynamic processes.
A dynamic process is a process created at run-time during execution, as child proc-
ess of a method process or a thread process, or a clocked thread process. A dynamic
process can in turn create other processes dynamically. The SystemC 2.2 release
supports the notion of dynamic process by introducing the concept of spawned
process, i.e. a process (a child process) created by another process (the parent proc-
ess) by invoking the predefined function sc_spawn. In the Systemc UML profile,
the dynamic creation of such a process – a dynamic spawned process- is denoted in
the state machine diagram associated to the parent process by means of a subma-
chine state1 labeled with the stereotype «sc_spawn» (see Fig. 15.7 for the
stereotype definition). The state machine referenced by the submachine state
specifies the functionality of that dynamic process.

After the creation of a spawned process, the parent process and the new child
process proceed in parallel, unless a specific synchronization schema is explicitly
provided by the designer by means of notification of events. This natural asynchro-
nism is reflected at UML level in the state machine diagram of the parent process
by the use of orthogonal regions. To be precise, a process state machine which
dynamically creates processes is represented by a state machine with two or more
regions (see Fig. 15.8). One region contains the behavior specification of the parent
process, while the others contain exactly one «sc_spawn» submachine state each.
The overall process creation (i.e. the invocation of the SystemC sc_spawn
function) is denoted by a fork vertex in the parent region with two outgoing transi-
tions: one entering in the «sc_spawn» submachine state of the child process, and
one entering in some state of the parent region to continue the specification of the
parent process behavior after the process creation. Therefore, the submachine state

1 In UML, a submachine state specifies the insertion of the specification of a submachine state
machine. The state machine that contains the submachine state is the container.

15 An Enhanced SystemC UML Profile for Modeling at Transaction-Level 221

(and therefore its reference process state machine) is exclusively entered via a fork
vertex departing from the parent region, and can be exited either as a result of
reaching its final state (normal case) or via a join vertex in the parent region (in the
case of a fork/join schema, see the last paragraph below). No entry/exit points can
be defined for a «sc_spawn» submachine state.

A special case of synchronism for thread processes is when the parent process
wants to wait for the termination of a child process, for example, to get any return

Fig. 15.7 sc_spawn stereotype

 «metaclass»
State (from BehaviorStateMachines)

0..1 baseState

sensitive : String
dont_initialize : Boolean = false
spawn_method : Boolean = false

«stereotype»
sc_spawn

Fig. 15.8 A thread process spawning dynamically two processes within an infinite loop

sm «thread» my_thread

do init
do

something

[true]

[else]
«while»

«sc_spawn»
child_p1:
chils_p1SM

«sc_spawn»
child_p2:
chils_p2SM

222 S. Bocchio et al.

values from the child process execution and then resumes and continues its own
execution. In this case, the parent process has to wait for the terminated_
event of the underlying child process instance that is automatically notified when
the child process terminates.

The sc_spawn’s tagged values are used to specify some spawn options which
determine certain properties of the spawned process instance. In particular, as for
thread and method processes, the sensitive and dont_initialize (false, by
default) tags are used to declare the static sensitivity list (if any) and the initializa-
tion status of the spawn process, respectively. The boolean tag spawn_method
being set to true indicates that the spawned process is a method process, and there-
fore the associated process state machine shall be a method state machine. By
default, this tag is set to false, i.e. by default a spawned process is a thread process.
It is not possible to spawn a dynamic clocked thread process.

A spawned process, in contrast to ordinary processes, allows the passing of argu-
ments and a return value to and from it. UML2 supports the concept of parameter-
ized behavior for all the kinds of behavior in UML (activities, state machines, etc.);
this means that when a process state machine is invoked as behavior of a spawned
process, its parameters (if any) are created and appropriately initialized (by the
caller process) according to their direction in and inout. When the state machine
of the spawned completes its execution, a value or set of values is returned corre-
sponding to each parameter with direction out, inout, or return.

SystemC 2.2 introduces also the macros SC_FORK and SC_JOIN to be used in
pairs within a thread process to enclose a set of calls to the function sc_spawn.
The parent thread control leaves the fork-join construct when all the spawned proc-
esses are terminated; this means that during the execution of the spawned processes
the parent process is not running. We use the UML fork/join pseudo-states to model
these macros, as shown in Fig. 15.9: a pair of fork/join for two spawned processes;

Fig. 15.9 sc_fork and sc_join

«sc thread»
sm my_thread

«sc_spawn»
process_2 : process_2SM

«sc_spawn»
process_1 : process_1SM

.

15 An Enhanced SystemC UML Profile for Modeling at Transaction-Level 223

both the fork/join bars are within the region of the parent (thread) process. After
termination of the two spawned processes, the parent thread continues to execute.

15.4 Generating SystemC Code from Model Patterns

We developed a prototype tool based on the EA [9] UML visual modeling tool as
front-end for consolidated lower level co-design tools (see [4]). This tool consists
of two major parts: a development kit (DK) with design and development compo-
nents, and a runtime environment (RE) represented by the SystemC execution
engine. The DK consists of a UML2 modeler supporting the UML profile for
SystemC and a UML profile for multi-thread C, and translators for forward/reverse
engineering to/from C/C++/SystemC.

We further extended the SystemC code generator by including new code genera-
tion rules for the enhanced structural and behavioral features of the profile. The task
of the generator is to inspect the elements in the UML model via their connections
and create the corresponding modules structures and processes behavior in
SystemC. In particular, from the process state machines, the generator follows and
combines specific model patterns. The result is a complete working code, without
the need for post-generation code modifications or additions.

15.5 Case Studies

We have developed several different case studies, some taken from the SystemC
distribution like the Simple Bus design, and some of industrial interest. The Simple
Bus case study is a well-known transaction-level example, designed to perform also
cycle-accurate simulation. It is made of about 1,200 lines of code that implement a
high performance, abstract bus model. We modeled the Simple Bus system in a
forward engineering flow in order to test the code generator. The UML description
using our SystemC profile consists of about 15 diagrams among class diagrams and
process state machines.

To test the expressive power of the profile in representing a variety of architec-
tural and behavioral aspects, we modeled the On Chip Communication Network
(OCCN) API [13], a parameterized and configurable SystemC library of about
14,000 lines of code. The OCCN design has been imported automatically from the
C++/SystemC code into the EA-based modeler by the reverse engineering facility,
then refined using the modeling constructs of the SystemC UML profile. We have
used this example to test the reverse engineering flow.

In [3], we present an example related to a system composed of a VLIW proces-
sor developed in ST, called LX, with some dedicated hardware for an 802.11b
physical layer transmitter and receiver described at instruction level. The UML
model of this application is a function library encapsulated in a UML class which

224 S. Bocchio et al.

provides, through ports, the I/O interface of the SW layer to the HW system. This
class is then translated to C/C++ code and the resulting code is executed by the LX
ISS wrapped in SystemC for HW/SW co-simulation at cycle accurate level. The
UML wrapper of the LX ISS is modeled with the SystemC UML profile, in order
to generate a SystemC wrapper for the ISS and to allow a HW/SW co-simulation
at transaction or cycle-accurate level.

15.6 Related Work

The possibility to use UML 1.x for system design started in 1999 [11, 12]. The
general opinion, at that time, was that UML was not mature enough as a system
design language. Nevertheless significant industrial experiences and research
developments on how to use UML within a system design process started, trying to
solve the limitations of the language. As part the OMG profile initiatives mentioned
in the introduction, we here reference some relevant works for UML modeling and
code generation in the area of embedded systems and SoC design.

YAML [23] is one the first tool based on UML which provides a skeleton-based
generation of SystemC code. In [10] an extension of UML 1.x is presented to
design embedded real-time applications. UML is conceived as a specification lan-
guage that allows describing different facets of the system. The proposed approach
relies on the concept of platform based design. The fundamental idea is to adapt
UML for the design of embedded software, providing a proper notation and an
associated semantics to use UML diagrams for modeling different facets of the
system. The methodology specifies a set of UML diagrams to capture the function-
ality (use cases, class, state machines, activity and sequence diagrams) and to refine
it by adding proper MOCs. However, no code generation facility is provided.
Another approach to the unification of UML and SoC design is the HASoC
(Hardware and Software Objects on Chip) [8] methodology based on the UML-RT
profile [17, 21]. The design process starts with an uncommitted model and after a
committed model is derived by partitioning the system into software and hardware,
and then mapped onto a system platform. From these models a SystemC skeleton
code can be also generated, but to provide a finer degree of behavioral validation,
detailed C++ code must be added by hand to the skeleton code. All the works
mentioned above could greatly benefit from the use of new constructs available in
the UML2.

A Model Driven Architecture (MDA) [14] approach for SoC design is presented
in [7] in the specific context of Intensive Signal Processing. The application and the
architecture are specified in UML as separate platform independent models;
according to the Y chart diagram concept, it is then possible to apply model trans-
formations and deploy platform specific models, among which SystemC.

SysML [24] is a conservative extension of UML2 for a domain- neutral repre-
sentation (i.e. a PIM model as in MDA [14]) of system engineering applications.
It can be involved at the beginning of the design process, in place of the UML, for

15 An Enhanced SystemC UML Profile for Modeling at Transaction-Level 225

the requirements, analysis, and functional design workflows. So it is in agreement
with our UML profile for SystemC, which can be thought (and effectively made) a
customization of SysML rather than UML. Similar considerations also apply to the
MARTE proposal [16]. The standardization proposal [18] by Fujitsu, in collaboration
with IBM and NEC, has evident similarities with our SystemC UML profile, like
the choice of SystemC as a target implementation language. However, their profile
support neither constructs for modeling behavior nor a time model.

Recently, a set of papers deal again with the issue of SystemC code generation
from UML diagrams. In [22], for example, the authors propose the use of UML
activity diagrams to model data flows. This approach is similar to our one with the
difference of using activities diagrams instead of state machines for modeling the
system behavior. Code generation is supported for the Handel-C language. In [20],
a mapping from SysML to SystemC is proposed. Their aim is to obtain a SystemC
code that resembles the behaviour of the original UML model, whereas we extend
the UML accordingly to the SystemC execution semantics.

15.7 Conclusions

We extend the UML2 profile for SystemC [1] in order to capture the advanced fea-
tures of the SystemC IEEE Std [25] concerning ports connection, event queue han-
dling and concurrent aspects of dynamic and hierarchical processes. The main
target of this UML profile is to provide a means for SW and HW engineers to
improve the current industrial SoC design flow joining the capabilities of UML and
SystemC to operate at system-level. This enhanced SystemC UML profile allows
modeling at TLM level and, specifically, at a certain number of TLM sub-lev-
els through the OSCI TLM 1.0 API, as well as the new TLM 2.0 proposal. As
future work, we are exploring the possibility to define a formal refinement methodol-
ogy with precise abstraction/refinement patterns for modeling at transaction-level,
thus enabling users to efficiently develop SoC virtual prototypes at UML level
before physical implementation and making the UML-based environment the ideal
framework for high-level system modeling and validation.

References

1. Bocchio S., Riccobene E., Rosti A., Scandurra P. (2005) A UML 2.0 Profile for SystemC.
STMicroelectronics TR, AST-AGR-2005-3.

2. Bocchio S., Riccobene E., Rosti A., Scandurra P. (2005) A SoC Design Methodology Based on
a UML 2.0 Profile for SystemC. In: Proceedings of Design, Automation and Test in Europe
(DATE’05).

3. Bocchio S., Riccobene E., Rosti A., Scandurra P. (2005) A SoC Design Flow Based on UML
2.0 and SystemC. In: Workshop UML-SoC’05 at DAC’05.

4. Bocchio S., Riccobene E., Rosti A., Scandurra P. (2006) A Model-driven Design Environment
for Embedded Systems. In: Proceedings of Design Automation Conference (DAC’06).

226 S. Bocchio et al.

 5. Bocchio S., Riccobene E., Rosti A., Scandurra P. (2007). A Model-driven Co-design Flow for
Embedded Systems. In: Advances in Design and Specification Languages for Embedded
Systems (Best of FDL’06), Springer. Netherlands

 6. Bocchio S., Riccobene E., Rosti A., Scandurra P. (2007) Designing a Unified Process for
Embedded Systems. In: Proceedings of International Workshop on Model-Based Methodologies
for Pervasive and Embedded Software (MOMPES’07).

 7. Dumoulin C. P., Boulet M. P., Dekeiser J. L. (2003) MDA for SoC Embedded System Design,
Intensive Signal Processing Experiment. In: Proceedings of SIVOES-MDA’03.

 8. Edwards M. D., Green P. (2003) UML for Hardware and Software Object Modeling. In: UML
for real design of embedded real-time systems, pages 127–147.

 9. The Enterprise Architect Tool. www.sparxsystems.com.au.
10. Rong Chen. et al. (2003) UML and platform-based Design. In: UML for Real design of

Embedded Real-Time Systems, Kluwer, Norwell, MA, USA.
11. Martin G. (1999). UML and VCC. Cadence Design Systems, Inc., White Paper.
12. Martin G., Lavagno L., Guerin J. L. (2001) Embedded UML: A Merger of Real-time UML and

Co-design. In: Proceedings of CODES’01.
13. The OCCN Project: http://occn.sourceforge.net/.
14. OMG, Model Driven Architecture (MDA). http://www.omg.org/mda/.
15. OMG. UML 2.1.1 Superstructure Specification. www.uml.org.
16. OMG. UML Profile for Modeling and Analysis of Real-time and Embedded Systems

(MARTE), ptc/07-08-04 (Beta 1).
17. OMG. UML profile for Schedulability, Performance, and Time, formal/03-09-01.
18. OMG. UML Profile for System on a Chip (SoC), formal/06-08-01, v1.0.1
19. The Open SystemC Initiative. www.systemc.org.
20. Raslam W., Sameh A. (2007) Mapping SysML to SystemC. In: Proceedings of the Forum on

Specification and Design Languages (FDL’07).
21. Selic B., Rumbaugh J. (1998) Using UML for Modelling Complex Real-Time Systems.

ObjecTime Limited/Rational Software White Paper.
22. Schattkowsky T., Hausmann J. H., Engels G. (2006) Using UML Activities for System-on-

Chip Design and Synthesis. In: Proc. of the ACM/IEEE International Conference on Model-
driven Engineering Languages and Systems (MoDELS’06). Genova, Italy.

23. Sinha V. et al. (2000) YAML: A Tool for Hardware Design Visualization and Capture. In: Proc.
of the 13th International Symposium on System Synthesis, IEEE Press. Madrid, Spain.

24. SysML. http://www.sysml.org/.
25. SystemC Language Reference Manual. IEEE Std 1666–2005, 31 March 2006.

Chapter 16
SC2 StateCharts to SystemC: Automatic
Executable Models Generation

Marcello Mura and Marco Paolieri

Abstract The recent development of embedded systems calls for the necessity of a
complete framework for design and simulation of applications that span through all
levels of system design. Desirable characteristics of such a framework are rapidity
of use, simplicity and reusability. For this purpose we already introduced a genera-
tor that converts specifications written with a subset of StateCharts to behavioral
SystemC [16, 17]. We present here the new version of our tool: most of the limita-
tions of the previous versions have been overcome, the considered subset of the
StateCharts formalism has been extended and the target has been changed from
behavioral to Register Transfer Level (RTL) SystemC. A major enhancement of this
new version is the possibility of obtaining various module instances starting from a
single specification, which is vital in some contexts (e.g. Wireless Sensors Networks
simulation). The semantics chosen for our StateCharts diagrams is clearly described.
The generation of executable models, as well as the kernel template of the generated
code, are discussed in detail.

16.1 Introduction

The possibility of generating customized simulators to model a relevant subset of
systems in a very effective way could open interesting scenarios in early design
phases (even before Hardware/Software partitioning [12]), especially when intrin-
sic complexity related to the projects is such that people with different expertise
need to cooperate. In fact within this kind of framework it is possible to design, in
a very short time, virtual prototypes that can be used for requirements formalization
and validation. Moreover systems under development could be extensively tested
from the very beginning up to advanced design stages with the same tool, incre-
mentally integrating the model level of definition. Functional and non-functional

ALaRI, Faculty of Informatics, University of Lugano, Switzerland;
Email: muram@alari.ch

E. Villar (ed.) Embedded Systems Specification and Design Languages, 227
© Springer Science + Business Media B.V. 2008

228 M. Mura, M. Paolieri

properties can be analyzed, e.g. using such kind of instruments we analyzed power
consumption of a networking protocol in [14, 15] and of the cache memory of a
microprocessor in [16].

In our work the emphasis is on the model: our main contribution is in fact a
model-based generator of simulators that – starting from dynamic information
about a system expressed with a convenient subset of the StateCharts formalism –
generates well structured RTL SystemC code for simulation. The framework is
organized in a way that it is possible to iteratively refine models up to a point that
the generated code is very near to the synthesizable level. During this process
results can be compared, allowing for an easier development process.

In Section 16.2 related work is described. The semantics of the StateCharts dia-
lect we use are presented in Section 16.3 and compared with the most important
variants. The methodology for extracting information from UML diagrams and
using it to create SystemC models is briefly outlined in Section 16.4. Section 16.5
presents a major innovation of our work: the possibility of performing multi-
instance simulation. A small example showing the most noticeable features of our
framework as well as the introduction of a shell console is illustrated in Section
16.6. Conclusions and further work are outlined in Section 16.7.

16.2 Related Work

In the past ten years there has been a consistent research effort on this subject, lead-
ing also to commercial software products. I-Logix StateMate [1] generates execut-
able models starting from UML diagrams, MATLAB Stateflow [2], does the same
starting from a concurrent FSM formalism similar to that of StateCharts. In [4] the
translation of StateCharts into Hierarchical Finite State Machines (HFSMs) is
explored in order to build test cases for the corresponding VHDL realization.
StateCharts formalism is also very appropriate for the formal validation of models.
In particular, automatic translation into Promela/SPIN, a language used for auto-
matic model checking, was presented in [5, 10, 13]; recently an interesting approach
to this problem was reported in [9]. The present research effort aims at building a
framework for the generation of simulators. It differs from the commercial products
([1, 2]) first of all for the choice of SystemC as a target language for the generated
models [11] so that they can be inserted in already existing SystemC simulation
frameworks. It has simpler semantics allowing for an easier customization. As a
result the simulator code is clearly structured and easy to understand and manage.
Moreover it is possible to use the generated model as an entry point for successive
refinement phases leading possibly to HW synthesis. The output can be reduced to
a minimum, therefore simulations are quicker and this greatly extends the range of
applicability (i.e. contexts in which simulations for long periods of time are neces-
sary). The use of SystemC is particularly indicated for modeling purposes, e.g. in
[18] and in [20] SystemC code is generated starting from UML representations,
with the final purpose of creating a hardware synthesis. Differences between these

16 SC2 StateCharts to SystemC: Automatic Executable Models Generation 229

works and our generator are evident. In [18] Transaction Level Modeling (TLM)
SystemC code is generated; in [20] a simple one-to-one binding between specifica-
tions and generated code is studied. As a result the expressiveness of the modeling
language is reduced and models need to be conceived in a way that is very near to
SystemC generated code. We started from the concepts explained in our previous
work [16, 17] but the tool has been completely modified. The template of the gener-
ated code is very different (from behavioral to RTL SystemC) and this has a clear
impact on the performance of generated code. The subset of StateCharts semantics
represented is extended with insertion of hierarchical states, history and interlevel
transitions. Moreover the possibility of generating multiple interacting instances
from a single model is provided. This innovative contribution represents a major
enhancement as it allows easy generation of executable models for a wide range of
multi-instances domain (e.g. networking where a lot of indistinguishable devices
may operate).

16.3 Statecharts Semantics Overview

StateCharts are a formalism introduced more than twenty years ago [7] and represent
a very powerful instrument for the design of systems. They are derived from FSMs
with some extensions such as the concept of hierarchy, the possibility of modeling
concurrency, of broadcasting communication to all the concurrently running machines
and of adding code to complete behavioral description of states. In particular code
may be inserted such that it is executed when a transition triggers (action), when
entering a state (entry-activity), while in a state (do-activity) or when exiting a state
(exit-activity). Since their introduction there have been many attempts to give well
defined semantics to StateCharts. The main issue was to define declarative semantics
(e.g. [19]) – possibly a denotational one with a compositional approach – corresponding
to the operational one that was firstly proposed. Given that StateCharts are not an
official language, in a short time a large number of variants were developed. In [3]
the possible different aspects were analyzed and a summary of more than 20 different
semantics developed for the formalism was given. Even later some more approaches
were taken, the most remarkable one being the semantics behind StateMate [1] that
was clearly exposed in [6].

When dealing with StateCharts it is therefore necessary to explicitly specify the
semantical choices that have been adopted. We decide to focus on clarity and on
usability of the formalism. For this reason only a subset of the semantics defined in
[6] has been chosen. The basic idea that has been followed is that of using
StateCharts in order to facilitate the notation of Concurrent FSMs and to make it
more readable. Therefore every operation defined in StateCharts has its immediate
counterpart in terms of concurrent state machines. While this on one side reduces
the expressivity of the formalism, on the other keeps a strict contact with possible
implementations and allows to use diagrams created for the simulator in later phase
of development as a reference point or even – once the framework will be completed

230 M. Mura, M. Paolieri

– for HW synthesis. With reference to the possible options summarized in [3] we
have decided not to use Perfect Synchrony Hypothesis; therefore events happening
in a time instant are accounted for in the following one. This in order to maintain
Causality, to avoid Self-Triggering, Instantaneous States and consequently multi-
ple entrance or exits to/from states and infinite sequence of transitions in a single
time instant. It is easy to notice that because of this decision transitions happening
simultaneously are constrained to be in different parallel components of the
StateCharts. The effect of a transition can also be contradictory to its cause without
any problem as the two refer to two different time instants. This approach (in
accordance with [6] and in opposition to [19]) is particularly suited to the HW con-
text as confirmed by the fact that a similar approach is found in HDLs (e.g. VHDL).
Another central point is that of Interlevel Transitions and the use of History. On
one side semantics comprising these aspects tend to have problems in terms of
compositionality, because information regarding internal states needs to be
exported. On the other side they allow to model in an intuitive way complex sys-
tems reducing the number of states. Therefore we have decided to support these
characteristics in our model, the designer is free to use them or not depending on
the kind of model and the level of the design procedure.

Negated Triggers and in general Logical Composition of Triggers are sup-
ported by our semantics, reverse polish notation is used. We do not use any
implicit State Reference: if the entrance, presence in a state and exit needs to be
usable by other parts of the StateCharts, explicit events should be put respectively
in entry, do and exit activities. This choice allows quicker simulations as a lot of
redundancies are removed. Discrete Events are used, i.e., events are valid only in
the instant they appear; given that Instantaneous States are not allowed in our
semantics, duration of events is not an issue. The only priority scheme we have is
that ancestor states transitions have priority over descendant states ones; non
preemptive interrupt is used to this end. Transitions happen in null time, time can
pass only within states. A timer has been used with the keyword timer(t) with the
obvious meaning that after time t elapsed while in a given state the transition hav-
ing the timer as a trigger executes.

Determinism of the model is left to the designer. In our formalism it is possible
to specify non-deterministic behavior (e.g. two different events triggering two
 different transitions happen in the same instant). Whereas non-determinism is
 considered by some one of the main drawbacks of the formalism, it allows
 representing several aspects of complex systems. The increase in complexity
(possible exponential explosion of states) is well compensated by the extended
expressiveness. A central aspect is the injection of external code by means of
Actions and Activities. This may involve adding complex behavior and complex
processing of variables. Given that a full concurrent environment is provided, racing
condition on variables may appear. Blocking racing is not hard, but may not be the
best solution, in particular when the order of execution of the accesses to variables
does not influence its final value. In our semantics different accesses to the same
variable in the same instant are put in sequence (in random order). There is the pos-
sibility – for debugging purposes – of detecting racing conditions.

16 SC2 StateCharts to SystemC: Automatic Executable Models Generation 231

16.4 Generation of Simulators

The overall framework has been developed exploiting a compiler like structure: it
can be seen as composed of a front-end in charge of extracting all the useful infor-
mation from the XMI – exported from the Poseidon1 UML suite – and turning it
into an Intermediate Representation (IR), and a back-end part where the IR is trans-
formed in the SystemC code of the simulator. This kind of approach guarantees the
possibility to easily adapt SC2 to different XMI dialects just by modifying the front-
end or obtaining the simulator’s source code in another programming language just
changing the back-end. Whereas the compiler-like structure has been inherited
from [17] both the IR and the final template are deeply different and represent
innovative contributions as will be detailed in the following sections.

16.4.1 Front End and Intermediate Representation

We decided to define IR through an XML-grammar, for the following reasons:

● It is easier to make transformation between different XML representations.
● Tools for parsing, syntax checking and translation of XML are available and free

(e.g. we used Saxon2).
● XML Schema Definition (XSD) makes it possible to define a well-structured

XML grammar and to validate it against any input XML file.

Whereas in our previous tools the IR was represented in Graph eXchange Language
(GXL), we now decided to radically change approach. Taking into strict considera-
tion the fact that no standard XML format for Statecharts exists we defined our own
grammar – able to fully describe the Statecharts formalism – fitting the complete
semantics. Moreover we provide – using XML Schema – debugging features, giv-
ing the possibility to validate a StateCharts model before the code generation proc-
ess starts. As a first step we defined the grammar in the Backus-Naur Form (BNF)
as shown in Fig. 16.1. Grammar definition was performed taking into consideration
the compilation process. The StateCharts diagrams are seen as composed by a list
of FSMs and additional information. Additional information consists of the varia-
bles used inside the FSMs and the events triggered – that must be declared before-
hand. FSMs are considered as a list of states and a list of transitions. A state can be
either a simple state, a FSM – in case of hierarchical states – or a parallel execution
of multiple states. It is apparent that the symbol < andstate > in Fig. 16.1 is ines-
sential, but it has been inserted in order to export some redundant information and
make the automatic generation easier. Simple states and transitions are further

1 http://www.gentleware.com
2 http://saxon.sourceforge.net/

232 M. Mura, M. Paolieri

decomposed into atomic components as clearly shown. It is possible to use logical
combination of events – expressed in reverse polish notation – as triggers.

The structure described above has been directly defined in terms of XSD rules.
Having an XML Schema of the IR it is possible to validate syntactical and gram-
matical correctness of any instance through an already existing XML Schema vali-
dator (e.g. we used Saxon). This is a key feature – and represents an enhancement
with respect to our previous releases and available solutions – as it allows early
identification of a wide class of mistakes before compilation of SystemC code
speeding up the debugging process. Whereas in previous versions information was
only gathered from StateCharts diagram and variables were automatically recog-
nized, in order to enhance capabilities of our models we use also Class diagrams.
They serve for separating different parts of the model and give the possibility to
have more details in declaration of variables and events. Information from Class
Diagrams is collected in the < additionalInfo > element of the BNF grammar.

16.4.2 Back End and Generated Code

The previously described IR contains information for generation of all SystemC
code. The process happens through a series of Extensible Stylesheet Language
Transformation(XSLT) [8] passes that represents the most natural way to translate
an XML format. The simulator is coded at RTL level. In Fig. 16.2 a piece of pseu-
docode illustrating the template of each < fsm > is shown. There is a one-to-one
mapping between the number of < fsm > instances in the grammar in Fig. 16.1 and
the number of such SC METHODs in the executable model. In case the StateCharts
have a flat structure (i.e. without hierarchy) the number of < fsm > s is equal to the
number of concurrent machines. In case hierarchy is used there is one more < fsm >
for each substate – i.e. simple state or machine – in the model. This greatly reduces
the number of SC METHODs running concurrently as on our first release there

<statecharts> ::= <fsmList><additionalInfo>
<additionalInfo> ::= <varList><eventList>

<fsmList> ::= <fsm>|<fsmList><fsm>
<varList> ::= var|<varList>var
<eventList> ::= event|<eventList>event

<fsm> ::= <stateList><transitionList>
<stateList> ::= <state>|<stateList><state>
<transList> ::= <trans>|<transList><trans>

<state> ::= <fsm>|<andstate>|<simplestate>
<andstate> ::= <fsmList>

<simplestate> ::= entry_act do_act exit_act
<trans> ::= source destination trigger guards action

Fig. 16.1 StateCharts Backus Naur Form grammar

were as many SC THREADs as states. Reduction in complexity is even more robust
as in [16] we found that it is possible to create a better performing system using two
SC METHODs instead of each SC THREAD.

The SystemC model code is organized in SC MODULEs. Each SC MODULE
corresponds to an Independent Concurrent State Machine (i.e. not forming an

Fig. 16.2 Pseudo-Code template for each < fsm > in the StateCharts. timer blocks (1), events
blocks (2), internal signals to propagate across substates (3) are the main sections of code devoted
to management of states. The switches for selecting the appropriate exit activity (4), action (5) and
entry activity (6) corresponding to a transition are highlighted in the bottom part

234 M. Mura, M. Paolieri

ANDSTATE). Inputs and Outputs – i.e. variables and events – of these SC
MODULEs are accurately defined, reducing therefore the number of ports (i.e. high
simulation efficiency). The code is split into two parts (A and B in Fig. 16.2), the
first one describes behavior while inside a state, the other during transitions. The
operations inside the states are executed at the rising edge of the clock. At every
clock cycle all the do activities are executed. Timer blocks – one per each outgoing
transition triggered by a timer (t) – and events blocks – one per each outgoing tran-
sition triggered by an event – are checked. If conditions for a transition hold, the
appropriate signal is toggled and it causes in the following cycle the execution of
the code managing the transition. This code is very clear: a group of switches evalu-
ates current state, transition code and next state in order to execute the right exit
activity – dependent on current state –, action – dependent on transition code – and
entry activity – dependent on next state. This ensures that transitions happen in null
time and all the related code is executed in the same instant according to StateCharts
semantics.

Hierarchy is treated with the use of multiple FSM SC METHODs in the same
SC MODULE. There is no theoretical limitation on the depth of hierarchy. Anyway
abuse of this possibility will slow down performance (as the number of concurrent
SC METHODs increases). The clock is used by the first level of hierarchy, then
each other level is sensitive to an “internal clock” triggered by the immediately
lower hierarchical level. With this solution if a state has multiple hierarchy levels,
all the levels are executed in consecutive cycles in the same time instant. This is not
possible using only one clock. Restoring the initial state on exiting hierarchical
machines is performed only if no history is present otherwise the last valid state is
kept for the next entrance.

Management of events and variables is complicated by the presence of hierar-
chy. Even though we found a mechanism that ensures no time instants are lost in
taking execution across the hierarchical levels, elapsing of cycles can cause errone-
ous processing of events. For dealing with such issue we designed a generic module
that needs to be instantiated for each event. Events are represented by a logic one
on the corresponding signal. Modules sample on the clock negative edge – so that
elapsing of cycles does not have any impact – the OR of signals from all the FSMs
that can fire the corresponding event.

This solution has a price in terms of higher complexity as every instantiated
module for management of events costs one more SC METHOD. As long as
variables are concerned there is the problem of multiple writing accesses to the
same variable. Therefore a generic module (working as a bus arbiter) is neces-
sary to take care of updating the variable value whenever a modification is
required. If more modifications are required at the same instant only one can be
performed (non deterministically chosen). Given that the application for our
tools started from power estimation of complex systems – i.e. multiple states can
give a contribute to power consumption in the same instant – there is the possi-
bility of using a different kind of variable that can accept multiple inputs in the
same clock cycle, resulting in the sum of the inputs. A module (i.e. a multi input
adder) manages these of variables.

16 SC2 StateCharts to SystemC: Automatic Executable Models Generation 235

16.5 Multi-instantiation

We found that an important requirement that was not met by our previous versions
[16, 17] and similar works [18, 20] is the possibility of creating multiple instances
starting from a single model. This same exigence holds for many environments
(e.g. systems following the client-server paradigm). Variables and events should
be divided into two groups, those that are global and serve all the simulator and
those that are only used by the instance that includes them. This way it is possible
to make the instances work autonomously one to the other and interact only when
they share access to global fields. As an example – in the context of wireless com-
munication – all the devices wake up and listen when a beacon event is triggered,
but in case of a single device communication the event that triggers its change of
state should not trigger any other device. Our modular template allows for easy
generation of multiple instances. In fact the issue is reduced to a routing problem,
as the proper signals must be routed to the proper modules.

Global signals (variables) are routed everywhere therefore they are easily man-
aged. Such a division requires the user to separate the variables/events inside the
classes. The variables and the events that are declared public have global scope in
the simulator, whereas those private are only visible inside the particular instance.
On the other hand variables and events that are declared public can be accessed by
all the machines. In the case of wireless communication systems – as an example –
the channel and the synchronization signals are public, events causing a radio to
transmit a message (or variables that indicate the length of the message) are obvi-
ously local to the instance that generates them. Classes are linked to StateCharts
representing their behavior, in this way it is possible to group multiple instances
functionalities just representing their behavior once. This is a major enhancement
as in our previous works it was necessary to replicate StateCharts to have more
instances, and moreover the management of events and variables of these replicas
was cumbersome.

When generating the simulator it is possible to give one or more UML files as
input. Each file contains a class diagram with the declaration of events/variables
and the corresponding StateCharts diagrams. The framework creates an instantiata-
ble object per file and it is possible to create as many instances of each one as
needed. The variables/events in the class diagrams are checked per name, public
variables/events of different files that have the same name are all grouped as a sin-
gle variable. The main limitation of this scheme is that for the moment it is not
possible to define relationships between single instances when the sharing of varia-
bles is involved. It is possible, e.g., to define a public channel variable that can be
used by all the instances, but it is not possible to decide that two particular instances
share a variable, whereas four others share another one. In order to obtain such
behavior it is necessary to create a complex StateCharts that through some guard
condition can decide in which way to operate. This is of course not optimal as it
causes a noticeable increase in the number of events and variables, and complicates
the design phase. We are planning to improve this aspect in the future.

236 M. Mura, M. Paolieri

16.6 A Simple Example

It is also useful to illustrate another new feature of our tool: the console shell.
Whereas in previous versions it was necessary to create State Machines on top to
pass events and act on variables, now it is possible to do these operations from the
console line. This enhances usability of the tools specially when models are created
as inserting various debugging patterns is much quicker (does not require modifying
diagrams, creating the model and compiling it). The console is an interface between
the user and the SystemC simulation engine. In order to illustrate all the concepts
explained above we show a simple example (see Figs. 16.3 and 16.4). The scenario
is that of pressure and temperature monitors. The environment is represented as a
global machine. We just introduced an exemplary simple machine that changes tem-
perature and pressure parameters following a simple pattern.

Monitors can access the pressure and temperature variables and have visibility over
the events fired by the global machine, but they work independently one to the other.
It is possible to instantiate as many monitors as desired. The number of < fsm > for
this example is three for the environment (global) and five for each instance of the
monitors. Therefore 3 + 5 × #instances SC METHODs are necessary. It is necessary
to add one SC METHOD per distinct variable and event.

Enter Command:
fire on_signal[1] 10
added firing event on_signal[1] time 10
LIST COMMAND INSERT EVT: on_signal[1]
Enter Command:
fire sample_evt[2] 10
added firing event sample_evt[2] time 10
LIST COMMAND INSERT EVT: sample_evt[2]
Enter Command:
fire read_evt[1] 11
added firing event read_evt[1] time 11
LIST COMMAND INSERT EVT: read_evt[1]
Enter Command:
go 15
...
...
fsm: device[1] ENTRY state: IDLE time: 10
fsm: device[2] ENTRY state: READING time: 10
...
...
time :10 THE PRESSURE IS 10
time :10 THE TEMPERATURE IS 0
...
...
fsm: device[1] ENTRY state: READING time: 11
...

...

Fig. 16.3 A brief example showing the use of the console shell is shown. Means of firing events
(fire command) for the various instances and running the simulator (go command) are illustrated.
Important lines have been extracted from output

16 SC2 StateCharts to SystemC: Automatic Executable Models Generation 237

It is very difficult to give an accurate performance comparison between this tool
and older versions, as they operate in distinct way, and they can deal with a different
subset of the formalism. Using flat hierarchy machines (the only ones manageable
by our previous version) simplified events management is possible, but clarity of
the models is underpinned. Moreover performance of the resulting simulator
depends also on the kind of model. Therefore we give some general indication sug-
gesting that the new approach is very beneficial in terms of performance. In Fig.
16.5 reduction in number of concurrent processes running is clearly shown. As far
as execution time is involved the weight of a SC METHOD is about one third that
of a SC THREAD.

16.7 Conclusions and Future Work

In this paper we discussed the new version of our tool. A lot of innovations have
been introduced in the whole process and as a result the representable subset of
StateChart is greatly extended (e.g. hierarchical states, history, interlevel transi-
tions). Moreover an XML grammar for StateCharts has been designed and used as
Intermediate Representation in the process of model generation. Resulting models
are more powerful and new interesting features have been inserted as the possibility
of instantiating multiple objects from a single model and the creation of a shell
internal to the model for improving its easy of use.

Future work will involve refinement of template in order to map it to a VHDL
synthesizable code, optimization to improve performance and improvement of the

Fig. 16.4 StateCharts of an example. Monitoring devices can be instantiated, whereas the envi-
ronment has global scope

238 M. Mura, M. Paolieri

mechanism for multiinstantiation. In particular we will work on finding a mecha-
nism for minimizing the concurrent SC METHODs running in case of StateCharts
with hierarchy and on overcoming the limitation in model instantiation.

Acknowledgement The authors would like to thank Professor Marc Engels for his precious
advices, his kind support and his valuable feedback.

Fig. 16.5 Comparison in the number of generated concurrent processes per state in the model.
The line has been drawn considering multi-instantiation in an average case

16 SC2 StateCharts to SystemC: Automatic Executable Models Generation 239

References

 1. http://www.ilogix.com/sublevel.aspx?id = 74.
 2. http://www.mathworks.com/products/stateflow/.
 3. M. Von Der Beek. A comparison of StateChart variants. In Formal Techniques in Real-Time

and Fault tolerant Systems, 1994.
 4. F. Fummi, M. G. Sami, and F. Tartarini. Use of Statecharts-Related description to achieve test-

able design of control subsystems. In Proc. GLSVLSI, 1997.
 5. S. Gnesi, D. Latella, and M. Massink. Modular semantics for a UML statechart diagrams ker-

nel and its extension to multicharts and branching time model-checking. Journal of Formal
Aspects of Computing, 51, 2002.

 6. D. Harel and A. Naamad. The STATEMATE semantics of StateCharts. ACM Transactions on
Software Engineering and Methodologies, 1995.

 7. D. Harel. Statecharts: A visual formulation for complex systems. Science of Computer
Programming, 1987.

 8. M. Kay. XSLT 2.0 Programmer’s Reference (Programmer to Programmer). WROX, 3 edition,
Aug. 2004.

 9. D. Latella, I. Majzik, and M. Massink. Automatic verification of a behavioural subset of UML
statechart diagrams using the spin model-checker. Journal of Logic and Algebraic Programming,
11, 1999.

10. J. Lilius and I. P. Paltor. vUML: A tool for verifying UML models. ase.
11. Grant Martin. SystemC and the future of design languages: Opportunities for users and

research. In Proc. SBCCI, 2003.
12. G. De Micheli and R. K. Gupta. Hardware/Software co-design. In IEEE Proceedings, Mar.

1997.
13. E. Mikk, Y. Lakhnech, M. Siegel, and G. J. Holzmann. Implementing statecharts in promela/

spin. In Proc. WIFT, 1998.
14. M. Mura. Ultra-low power optimizations for the ieee 802.15.4 networking protocol. In Proc.

MASS, 2007.
15. M. Mura, M. Paolieri, F. Fabbri, L. Negri, and M. G. Sami. Power modeling and power analy-

sis for IEEE 802.15.4: a concurrent state machine approach. In Proc. CCNC, 2007.
16. M. Mura, M. Paolieri, L. Negri, and M. G. Sami. Statecharts to SystemC: a high level hardware

simulation approach. In Proc. GLVLSI, 2007.
17. L. Negri and A. Chiarini. StateC: a power modeling and simulation flow for communication

protocols. In Proc. FDL, Sept. 2005.
18. K. D. Nguyen, Z. Sun, P. Thiagarajan, and W. Wong. Model-driven SoC design via executable

UML to SystemC. In Proc. RTSS.
19. A. Pnueli and M. Shalev. What is in a step: on the semantics of StateCharts. In Proc. TACS,

1991.
20. Chen Xi, Lu JianHua, Zhou ZuCheng, and Shang YaoHui. Modeling SystemC design in UML

and automatic code generation. In Proc. ASP-DAC, 2005.

Part IV
Formalisms for Property-Driven Design

Chapter 17
Asynchronous On-Line Monitoring of Logical
and Temporal Assertions

K. Morin-Allory1, L. Fesquet1, B. Roustan2, and D. Borrione1

Abstract PSL is a standard formal language to specify logical and temporal
properties under the form of assertions. This paper presents the synthesis of PSL
assertions into asynchronous hardware monitors that can be linked to the circuit
under monitoring. The checker synthesis is based on a systematic interconnection
of asynchronous primitive monitors corresponding to PSL operators. The asyn-
chronous monitors are implemented with quasi delay insensitive logic which gives
reliable and robust monitors in the case of truly asynchronous events, temperature
or voltage variations. These monitors are applicable to a wider range of verification
tasks such as the communications among globally asynchronous modules or in safe
or secure applications.

Keywords PSL, SVA, hardware monitors, asynchronous circuits

17.1 Application Context

New design paradigms are required for large systems on a chip, among which the
systematic use of software and hardware “platforms”, and rigorous specification,
verification and test methods. In this context, the use of declarative assertions, to
specify the expected functional and temporal properties of modules and/or their
environment, is recognized as a valuable, time saving technique [12] that can be
carried across description levels and serve a wide range of usages. Assertions are
useful for specifying constraints for correct IP utilization, the results delivered by
IPs, the correct expected design behaviors, etc. As a Boolean property expected to

1TIMA Laboratory, 46 avenue F. Viallet, 38031 Grenoble, France;
Email: {name.surname}@imag.fr

2ENSERG/INPG, 3 parvis L. Néel, 38016 Grenoble, France; Email: roustanb@enserg.fr

E. Villar (ed.) Embedded Systems Specification and Design Languages, 243
© Springer Science + Business Media B.V. 2008

244 K. Morin-Allory et al.

be true, an assertion can be evaluated by simulation, emulation or formal verifica-
tion. An assertion can also be seen as a high level functional specification for a
 circuit primarily intended for snooping on events over time.

Several formalisms have been developed to ease writing temporal and logical
properties, among which SystemVerilog Assertions and PSL are IEEE standards
[13, 14]. Synthesizing an asserted property as a monitor, and interconnecting the
design and the monitor, is a common technique to design validation and online cir-
cuit testing that promises to become increasingly useful for large embedded
systems.

The on-going work reported in this paper aims at automatically generating truly
asynchronous and synthesizable monitors from PSL assertions, for online checking
of circuits in normal operation. Moreover, the monitors can easily be simulated and
emulated on a hardware platform. The design debugging on a FPGA board is also
an obvious application of our method, with the advantage of permitting full opera-
tion speed.

In this context, many applications are foreseen. Some examples are given
below:

● Monitoring large systems built from synchronous IP’s: one difficulty in debug-
ging “globally asynchronous locally synchronous” systems is the correctness of
communications. Asynchronous monitors are needed to pinpoint erroneous
transactions between modules that belong to different clock domains.

● Monitoring inherently asynchronous events, guaranteeing that an appropriate
response is given, irrespective of the events delay.

● Safely monitoring circuits in harsh environments thanks to the intrinsic robust-
ness of asynchronous logic.

● Monitoring secure chips, such as cryptoprocessors, in order to detect side-
 channel attacks using fault injections.

17.2 State of Art

FOCS from IBM [1, 6] was, to our knowledge, the first tool to automate the genera-
tion of register-transfer level (RTL) monitors from PSL, producing VHDL or
Verilog code that can be linked to the design at hand for checking on a clock cycle
basis. Although primarily intended for on-line simulation, including mixed signal
simulation by other parties [2], monitors produced by FOCS are synthesizable, and
can be fed to a model checker. The principles for building syntax directed monitors
for clock synchronized “foundation language” PSL expression [7] and SERE’s
[9, 15] have been disclosed with a particular emphasis on debugging feature [8, 15].
A more formal automata theoretic construction of monitors, the so-called “temporal
testers”, are also built in a compositional way [17]. Cimatti et al. [10] propose
another modular encoding to turn PSL properties into nondeterministic Büchi
automata. Other tools are now provided by the main CAD companies, that interface

17 Asynchronous On-Line Monitoring of Logical and Temporal Assertions 245

several verification engines (simulation, emulation, formal verification); various
libraries of predefined checkers (CheckerWare [3], OVL [4]) are supported in addi-
tion to the standard assertion languages.

To the best of our knowledge, all synthesized checkers are clock synchronized.
Checkers that pretend crossing multiple clock domains, e.g. [5], appear to be hard-
wired special purpose modules rather than generated from general assertions. Yet, at
system level, one needs to write properties that are triggered by asynchronous events,
such as interrupts, or that check communication protocols among globally asynchro-
nous modules. The early published solutions generate software checkers linked to
design models in C++ or in SystemC, that are verified by simulation [11].

17.2.1 A Modular Construction

The method we propose is modular. We started with the method initially developed
in [7] for synchronous designs. We thus created a completely new library of primi-
tive digital asynchronous components for the basic PSL temporal operators, and an
interconnection technique based on hand-shaking protocols. The novelty of our
approach lies in the fact that the advancement of time is seen as a sequence of
events on arbitrary signals instead of occurrences of a single master clock ticks.
Signal changes, rather than clock ticks, are thus considered the points in time when
PSL formulas are to be evaluated. This paper is an extension of an early article [16]
with some experimental results.

17.2.2 Asynchronous Logic Benefits for Monitoring

While in synchronous circuits a clock globally controls activity, asynchronous cir-
cuits activity is locally controlled using communicating channels able to detect the
presence of data at their inputs and outputs. This is consistent with the so-called
handshaking or request/acknowledge protocol. One transition on a request signal
activates another module connected to it. Therefore, signals must be valid at all
times. Asynchronous circuit synthesis must be more strict, i.e. hazard-free. In order
to have very reliable monitors, we choose to implement Quasi-Delay Insensitive
(QDI) circuits [18]. Indeed, these circuits are very robust to Process, Temperature
and (strong) Voltage variations. Moreover, they offer nice properties such as modu-
larity or low-power consumption.

In contrast to synchronous circuits, the QDI circuit synchronization is made
locally with two asynchronous signals: a request signal and an acknowledge signal.
This is done with a Muller gate which implements a “rendezvous” between these
two signals. When all inputs of a Muller gate (Fig. 17.1) are equal, the output takes
the input value. When inputs are different, the output holds its previous value (see
Table below).

246 K. Morin-Allory et al.

17.3 Property Specification Language

We briefly recall how properties are written, to underline the subtle differences
between the synchronous and asynchronous interpretation of PSL formulas.
A property is built on three types of building blocks: the Boolean expressions, the
sequential expressions (SERE) that define finite-length regular patterns (called
sequences) of Boolean expressions and subordinate properties that express
 relationship among Boolean or SERE expressions. Various operators called
Foundation Language (FL) operators express temporal relationships: until,
always, before, … In this paper we focus on the FL operators. Our work is
based on the formal semantics of the operators, defined on traces, and given in
[13]. To make this paper self contained, and understandable, we briefly give an
intuitive definition on a small example.

Consider the following property P1.
PSL property P1 is
 Always A → next(B until C);

Property P1 means that for each evaluation cycle such that ‘A’ holds, at the fol-
lowing evaluation cycle B must remain ‘1’ until C holds.

The PSL semantics are defined on a trace, and some evaluation cycle. In a syn-
chronous design, the evaluation cycle can be clock driven (@ clock’event
and clk=‘1’), but in an asynchronous design, the evaluation cycle may be event
driven. Thus, for a same trace a property can hold or fail. The two waveforms on
Fig. 17.2 illustrate two evaluations on a same trace for property P1.

Top waveform: At clock edge #2 and #7, A holds. Starting from the next evalu-
ation cycle (#3 and #8) B must hold until C is‘1’. The property is not verified since
B does not hold at #8: the second evaluation fails and the whole assertion is not
verified.

Bottom waveform: For this waveform, the evaluation cycle is event driven: each
time there is an event on one of the signals involved in the property, the property is

A 0 0 1 1
B 0 1 0 1
Z 0 Z−1 Z−1 1

Fig. 17.1 A Muller gate

17 Asynchronous On-Line Monitoring of Logical and Temporal Assertions 247

evaluated. At event #7, A is asserted, and on the next event B is ‘1’ and remains ‘1’
until the end of the trace. Since C is ‘0’, the property is pending: an extension of
the trace may lead to an error or not.

The asynchronous solution we propose supports both evaluation cycles.

17.4 Monitor Generation

The monitors we build reflect the four satisfaction levels for a property : hold
strongly, hold, pending and fail [13]. When implemented in hardware, the monitor
outputs display the property satisfaction level, and the indication that the answer is
no longer pending may be used as an interrupt to trigger further actions.

A monitor for a property P is built as a module that takes as inputs the reset, the
synchronization signals (clock, hand-shake, etc.), a signal Start that triggers the
evaluation, and the signals of the design under verification (DUV) that are operands
of the temporal operators in P (see Fig. 17.3). The three monitor outputs have the
following significance:

● Checking: a 1 indicates that output Valid is effective at the next synchronization
time;

● Valid: provides the evaluation result (1 means absence of error, 0 means error);
● Pending: a 1 indicates that the monitor has been started and that the satisfaction

result is pending; this is significant for strong operators.

A

B

C

A

B

C

1

1 2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9 10

fail

Pending

Fig. 17.2 A synchronous and an asynchronous evaluation of P1

248 K. Morin-Allory et al.

The synthesis method relies on:

● A library of primitive monitors, one for each PSL operator of the “foundation
language”.

● A systematic connection procedure to build complex monitors from primitive
ones, based on the PSL expression syntax tree.

Operators that take one or two integer parameters, such as next or next_a, have
 corresponding generic monitors with the same parameters. In addition some
 operators have several variants: weak or strong, overlapping or non overlapping
(e.g. before), in effect corresponding to several primitive monitors. All primitive
monitors have, maximally, the interface shown on Fig. 17.3: there may be 1 or 2
operand inputs, there may be a pending output or not.

Figure 17.4 illustrates the construction of the monitor for property. In this monitor,
we have chosen to add an event driven synchronization block. For each primitive
monitor, this block takes as input the operand of the primitive monitor and all the
signals involved in the sub-formula as synchronization signals: e.g. the operator
“next” takes no operand as input (connected to ‘1’), and B, C as synchronization
signals since they are involved in the subformula of P1: next(B until C). This
synchronization block can be substituted by any synchronization block even by a
clock driven synchronization block.

Fig. 17.3 Interface of a monitor

Gen_Init Always Imply Next Until

ack_start
ack_start

ack_start ack_start
ack_start

ack_checkout
ack_in ack_in

checking checking
start

start

valid valid

btmp ack ctmpack_black blacktmpack_btmp
ack_a

ack_in ack_in ack_checkout

checkout

checkout

ack_starttmp
CHECKINGalways

ack_start_always
re set

start start
start

ack_a

checking checking

a a

b
ack_b validvalid

ack_a
ack_atmpack_black blacktmp

Synchro Synchro Synchro Synchro Synchro

a ack_a a ack_b b

ctmpatmp

Reset

A 11
A,B,CA,B,C B,C

B C

Checking

Valid

Fig. 17.4 Property monitor for P1

17 Asynchronous On-Line Monitoring of Logical and Temporal Assertions 249

As an example of library primitives, the imply operator is presented. The
 property semantics are first expressed as a Petri Net (see Fig. 17.5). The primitive
monitor is then synthesized from this Petri Net description into a gate netlist includ-
ing standard logical gates and Muller gates. This approach fits naturally with
 asynchronous logic, where an arbitrary number of modules can be assembled by
means of the handshake protocol, preserving delay insensitivity.

Figure 17.6 shows the sub-circuits (identified with dashed lines) corresponding
to the places in the Petri net. The three boxes contain a very simple structure which

C1
C2

C3

Started

CSA

CSBn

CSBn

START

ACK_START

A

A

CHECKING
CSB

ACK_A

ACK_A
_

_

lost

ack_csb

ack_csb

recognized

Fig. 17.5 Petri net of the imply operator

Fig. 17.6 Monitor of the imply operator

250 K. Morin-Allory et al.

implements a rendezvous between a state signal (similar to a token in a Petri Net)
and a condition signal allowing a transition between two states. This is realized
with a 3-input Muller gate and an inverter. For instance, the 3-input Muller gate,
located in the Started box, is set to 1 when the current state is Started. The transition
to states recognized and lost is conditioned by the value of signal A.

Assume that all the Muller gate outputs are set to 0, except the output of C1 (the
monitor is in state Started). Assume that A is ‘1’. All the inputs of C2 are 1 (the
acknowledgment signal of the following state is also 1) and the output of gate C2
goes up. The acknowledgment signal, connected to the inverted value of the Muller
gate output, resets the preceding Started state. This is interpreted as a state change
from Started to Recognized.

Last, the monitor output Checking is directly computed with the gate C2.

17.5 FPGA Implementation

17.5.1 Implementation of Assertion Monitors

To implement PSL assertions in a digital system, the designer follows the standard
design flow (HDL description, synthesis, place and route) as illustrated on Fig.
17.7. The PSL assertions are extracted from the system specification. Once the PSL
assertions have been extracted, the monitors are automatically generated by our
dedicated platform HORUS, resulting in a netlist of property monitors. This
checker netlist is then merged with the IP to be monitored using HORUS. The next
steps follow the standard design flow and target FPGAs as well as ASICs.

Monitors implemented in ASIC are primarily devoted to on-line testing of the
circuit in operation. In FPGA, the monitors can be used to detect design errors at
the hardware or software level, the primary interest being several orders of magni-
tude in the verification speed compared to a simulation execution.

17.5.2 A Bus Snoop-System for Software Verification

To demonstrate the hardware asynchronous monitor principles on a real system, an
experimental platform, based on an Altera FPGA (a Stratix 1s40), has been
designed. The implemented architecture is described in Fig. 17.7. The Nios-Avalon
architecture is based on a standard Avalon bus and has an UART serial interface, a
Nios processor with a RAM and a boot ROM. The hardware monitors are connected
to the bus through a small interface in order to snoop the data transactions about
which the PSL properties are written. The interface also allows the Nios processor
to scan the state (Pending, Hold, Fail) of the monitors. Figure 17.7 displays an
experiment with one asynchronous monitor.

17 Asynchronous On-Line Monitoring of Logical and Temporal Assertions 251

A host computer is used to load the hardware on the FPGA (with a JTAG link
not represented on Fig. 17.8). Then, the software is downloaded through the UART
link and executed on the Nios processor.

Each monitor snoops its own set of signals on the Avalon Bus, and evaluates a
particular property. After monitors are started, as long as all hardware monitors are
in pending state, the Nios executes its program normally. When a monitor detects a
Hold or Fail condition, an interrupt is generated and the Nios processor executes an
exception handler. The interrupt routine performs appropriate actions for debug,
e.g. read the state of the implied monitor and display it on the host computer.

17.6 Conclusion

This article aims to synthesize asynchronous checkers, described in an assertion
language such as PSL or SVA, not only for debugging during simulation or emula-
tion but also for ASIC online monitoring. The main advantages of asynchronous
checkers are their intrinsic robustness to process, temperature and voltage variations

Simulation

Simulation

Synthesis

Place & route

Simulation

Emulation

Embedded property
assert Correctness

result

Behavioural

RTL

Netlist

Prototype

PS
L

m
onitors

Netlist

ASIC

HDL model

Fig. 17.7 Design flow of the Horus platform

252 K. Morin-Allory et al.

thanks to the QDI logic. In these conditions, an abnormal behavior of the monitored
circuit can be detected even if its power supply voltage is not high enough to ensure
a correct functioning. Indeed, the asynchronous monitor functional correctness is
warranted in a large voltage range (typically from 1.2 to 0.4 V for a 130 nm CMOS
process). This can be used for monitoring critical IPs in safe or secure applications.
Moreover, the delay insensitivity allows a reliable verification of transactions
between modules that belong to different clock domains. The monitor generation is
based on a systematic interconnection of asynchronous primitive monitors corre-
sponding to PSL operators of the “foundation language”. This approach has been
successfully prototyped on standard FPGA platforms. Further works will address
the monitor generation of SEREs.

References

 1. www.haifa.il.ibm.com/projects/verification/Formal_Methods-Home/index.html.
 2. www.dolphin.fr/medal/smash/flash/smash_flash.html.
 3. www.mentor.com/products/fv/abv/0-in/index.cfm.
 4. www.accellera.org/activities/ovl/.
 5. www.mentor.com/products/fv/abv/0-in-cdc/index.cfm.
 6. Y. Abarbanel et al. FoCs: Automatic Generation of Simulation Checkers from Formal

Specifications. In Computer Aided Verification, volume 1855 of LNCS, ISBN:3-540-67770-4,
pages 538–542, Springer, London, 2000.

 7. D. Borrione, M. Liu, P. Ostier, and L. Fesquet. PSL-based online monitoring of digital sys-
tems. In Advances in Design and Specification Languages for SoCs – Selected Contributions
from FDL’05. Springer, London, 2006.

 8. M. Boulé, J.-S. Chenard, and Z. Zilic. Adding debug enhancements to assertion checkers for
hardware emulation and silicon debug. In 24th IEEE International Conference on Computer
Design (ICCD’06), 2006.

 9. M. Boulé and Z. Zilic. Efficient automata-based assertion-checker synthesis of psl properties.
In Proceedings of IEEE International High Level Design Validation and Test Workshop
(HLDVT’06), Nov. 2006.

10. A. Cimatti, M. Roveri, S. Semprini, and S. Tonetta. From PSL to NBA: a Modular Symbolic
Encoding. In Formal Methods in Computer Aided Design, FMCAD’06, ISBN 0-7695-2707-8,
pages 125–133, IEEE Computer Society, San Jose, CA, Nov. 2006.

11. A. Dahan, D. Geist, L. Gluhovsky, D. Pidan, G. Shapir, Y. Wolfsthal, L. Benalycherif,
R. Kamdem, and Y. Lahbib. Combining system level modeling with assertion based verifica-
tion. In ISQED. IEEE Computer Society, 2005.

Fig. 17.8 The Nios architecture connected to one asynchronous monitor

17 Asynchronous On-Line Monitoring of Logical and Temporal Assertions 253

12. H. Foster, A. Krolnik, and D. Lacey. Assertion-Based Design. Kluwer, Dordrecht, The
Netherlands, June 2003.

13. IEEE Computer Society. IEEE Standard for Property Specification Language Reference
Manual, (PSL), Oct. 2005.

14. IEEE Computer Society. SystemVerilog IEEE Std 1800–2005, 2005.
15. K. Morin-Allory and D. Borrione. On-line monitoring of properties built on regular expres-

sions sequences. In Forum on specification & Design Languages (FDL’06), Sept. 2006.
16. K. Morin-Allory, L. Fesquet, and D. Borrione. Asynchronous assertion monitors for multi-

clock domain system verification. In IEEE International Workshop on Rapid System
Prototyping, pages 98–102. IEEE Computer Society, Chania, Crete, 2006.

17. A. Pnueli and A. Zaks. PSL model checking and run-time verification via testers. In J. Misra,
T. Nipkow, and Emil Sekerinski, editors, FM 2006: Formal Methods, 14th International
Symposium on Formal Methods, Proceedings, volume 4085 of Lecture Notes in Computer
Science, pages 573–586. Springer, Hamilton, Canada, August 21–27, 2006.

18. J. Sparsø and S. Furber, editors. Principles of Asynchronous Circuit Design: A Systems
Perspective. Kluwer, Dordrecht, The Netherlands, 2001.

Chapter 18
Transactor-Based Formal Verification
of Real-Time Embedded Systems

D. Karlsson, P. Eles, and Z. Peng

Abstract With the increasing complexity of today’s embedded systems, there is
a need to formally verify such designs at mixed abstraction levels. This is needed
if some components are described at high levels of abstraction, whereas others are
described at low levels. Components in single abstraction level designs commu-
nicate through channels, which capture essential features of the communication.
If the connected components communicate at different abstraction levels, then
these channels are replaced with transactors that translate requests back and forth
between the abstraction levels. It is important that the transactor still preserves the
external characteristics, e.g. timing, of the original channel. This chapter proposes a
technique to generate such transactors. According to this technique, transactors are
specified in a single formal language, which is capable of capturing timing aspects.
The approach is especially targeted to formal verification.

Keywords Transactor, formal verification, petri-net, regular expressions,
 embedded systems

18.1 Introduction

Developers of embedded systems face an ever-increasing complexity of their
designs. At the same time, they also face an ever-decreasing time-to-market.
A common way to deal with this challenge is to divide the design into several
 components, each component with its own responsibilities and functionality.

This divide-and-conquer technique is usually combined with an iterative top-
down approach, where the system is initially defined at a high level of abstraction,
leaving out most low-level details. The design is then gradually refined and more
and more details are put into place. During this process, some parts of the system
will be described at high level and other parts at low level.

Department of Computer and Information Science, Linköpings universitet,
58183 Linköping, Sweden; Email: {danka, petel, zebpe}@ida.liu.se

E. Villar (ed.) Embedded Systems Specification and Design Languages, 255
© Springer Science + Business Media B.V. 2008

256 D. Karlsson et al.

This situation, together with the fact that verification and test consume a signifi-
cant part of the total development cost, stresses the need for efficient verification
methods that target systems described at mixed abstraction levels.

The above-mentioned problem is traditionally solved in an unsystematic manner,
where developers rewrite properties and modify the system in an ad hoc manner in
order to match the mixed level model. Lately, a more systematic approach, involv-
ing transactors, has been proposed [4, 5].

The key issue of the problem lies in the fact that two (or more) components
described at different abstraction levels cannot communicate with each other, since
they, in principle, use different protocols. One component uses a more high-level
protocol than the other. A transactor is a mechanism that bridges this gap by trans-
lating the high-level requests into their low-level ditto and vice versa. Moreover,
evaluations have shown that using a transactor-based verification approach is more
effective than a traditional RTL verification flow with respect to both fault and
assertion coverage [1]. Using transactors moreover helps in reusing testbenches as
well as assertions in the refinement process.

A few works have been performed in the area of automatically generating this
type of transactors, based on protocol conversion techniques [2, 3]. Bombieri et al.
[4] start from a master-bus-slave communication framework that contains informa-
tion on how communication is carried out at different abstraction levels on the
specified infrastructure (bus). From this framework, the authors extract a master,
bus or a slave transactor from a high to low level or vice versa. Their extraction
algorithm is based on Extended Finite State Machines. It does, however, not handle
timing aspects explicitly and is only applicable on bus-based protocols.

Balarin et al. [5] use Sequential Extended Regular Expressions (SERE) to spec-
ify the relation between the two interfaces of the transactor and to automatically
generate the corresponding transactor. The transactors are generated in a program-
ming language such as C++, Verilog or SCE-MI, in order to facilitate integration
with existing simulation tools. The approach supports to a lesser extent formal
methods, and it completely lacks the support for time.

Protocols are often described using various kinds of regular expression-like lan-
guages. Although SEREs [5] in principle are sufficiently expressive, they do not
support the notion of time. Timed Regular Expressions [6], on the other hand, lack
several useful features, such as variables and conditions.

The approach proposed in this chapter combines SEREs with timed regular
expressions by adding a timing feature on top of SEREs. We call the resulting lan-
guage Timed SERE (TSERE). By doing this, we are able to create transactors suit-
able for formal verification in a component-based real-time setting with mixed
abstraction levels. The approach moreover widens the scope of responsibility of
transactors from a pure protocol converter to a semirefined communication
channel.

The chapter is organised into seven sections. Section 18.1 introduces and moti-
vates transactor-based verification. Next, Section 18.2 provides an overview of the
proposed approach. Section 18.3 presents the Petri-net based design representation
that is used throughout the chapter, and Section 18.4 defines the Timed Sequential

18 Transactor-Based Formal Verification of Real-Time Embedded Systems 257

Extended Regular Expression language that is used for specifying transactors.
Section 18.5 describes the mechanism to generate timed Petrinets from the formal
description and Section 18.6 presents a few case studies. Section 18.7 concludes the
chapter.

18.2 Overview

In the proposed approach, a system consists of several communicating components,
as indicated in Fig. 18.1. Each component implements a well-defined functionality,
and they interact with other components and the rest of the system through ports,
depicted in the figure with circles at the edges of the component.

Channels are inserted between communicating components. The channels
model the protocol, delays, noise and other peculiarities that can occur in the com-
munication. They are hence only an artefact for high-level models, that will not
occur or be synthesised in the final implementation. Channels can, from a model-
ling point of view, be regarded as a special type of components, and are depicted
with dotted lines.

During the development phase, it is often desirable to check if certain temporal
logic properties are satisfied in the system. Such analysis can be obtained by feed-
ing a model of the system into a model checking tool together with properties to be
verified. This procedure gives a formal proof whether the properties are satisfied in
the system or not [7].

At the same time, the components are iteratively refined and more and more
details are added to the system. This naturally leads to a situation where some parts
of the system are more refined than others. However, it is still desirable to occasion-
ally verify the system to ensure that the recently performed refinement steps did not
violate any, possibly critical, properties.

When refining the components, the interfaces of those components are simulta-
neously refined. However, the interfaces are shared or connected with other com-
ponents, that are not yet refined. This creates an incompatibility of interfaces
between the involved components and channels. In order to overcome this problem,
the channel is replaced by a transactor between the incompatible interfaces, as

Fig. 18.1 Targeted system topology

258 D. Karlsson et al.

demonstrated in Fig. 18.2. A transactor can thus be seen as a channel connecting
components at different levels of abstraction, or a semi-refined channel. The trans-
actor shall encapsulate the same external behaviour as the channel it replaces with
respect to delays, noise, etc.

The transactor takes high-level requests and translates them into low-level ones,
and vice versa. It is described in Timed Sequential Extended Regular Expressions
(TSERE), which is both intuitive and sufficiently expressive for this purpose. The
TSEREs (and thereby also the transactors) are given either by the designer himself,
or, in a standardised context, by a third-party provider.

The example in Fig. 18.3 will be used to explain the approach in more detail.
A sender repeatedly sends messages to a receiver over a channel. At a high level of
abstraction (Fig. 18.3(a)), it takes 2 time units for the message to be transported

Fig. 18.2 System at mixed abstraction level with transactor

(a) Both components
at high level

(b) Both components
at low level

(c) Sender at high
level, Receiver at low

level

Fig. 18.3 Explanatory example

18 Transactor-Based Formal Verification of Real-Time Embedded Systems 259

between the two components. This delay is implemented in the channel intercon-
necting the components.

At a low level of abstraction (Fig. 18.3(b)), the message is refined into two:
address and data. The protocol that the sender and receiver have agreed upon states
that these messages should be sent sequentially with 1 time unit in between.
It moreover takes 1 time unit for each message to reach the receiver. The sender
thus sends the data at the same time as the address reaches the receiver. It should
be noted that the total timeframe for sending a message in the two abstraction levels
is the same. In both cases, this takes 2 time units. Thus, the channel preserves its
external behaviour between abstraction levels.

At one moment, during the refinement phase, only one of the components is
refined. Assume that this component is the receiver (Fig. 18.3 (c)). At this stage,
the sender and receiver adhere to different protocols and cannot communicate with
either of the high-level or low-level channels. Instead, the channel is replaced with
a transactor that translates the high-level message into the stipulated sequence of
low-level ones. The transactor consequently has to analyse the message from the
sender and divide it into two. The first message should contain the destination
address, whereas the second one should contain the data. The transactor then
 forwards the two pieces to the receiver with 1 time unit difference.

The transactor can be said to be a mix of the two versions of the channel. It,
however, also contains additional protocol information not explicit in the channels,
e.g. how to split the high-level message and the time separation between the address
and data transmission. Therefore, the information captured in the channels is not
sufficient for formulating the TSEREs. In addition, the transactor respects the
 external timing behaviour of the channels.

18.3 Verification Flow and Design Representation

This section introduces the verification flow and the Petri-net based design repre-
sentation used in this chapter.

18.3.1 Verification Flow

Figure 18.4 presents the overall verification flow where the work described in this
chapter is put into context. The flow centers around a component-based verification
methodology [7], which accepts three entities as input: a mixed-level model, trans-
actor and Timed Computation Tree Logic (TCTL) properties [8].

The mixed-level model is obtained from traditional refinement steps of a high-
level model. The designer then writes TSEREs describing the communication dis-
crepancies arisen from the mixed abstraction levels in the semirefined design and
generates a transactor out of them (the focus of this chapter). The TCTL formulas
express the real-time properties to be verified.

260 D. Karlsson et al.

In the verification methodology, an abstraction of the model is first obtained
with respect to the components and channels referred to by the properties. The
abstracted model is then input to the UPPAAL model checker [9], by first translat-
ing the Petri-net model [10] into Timed Automata [11], the input language of
UPPAAL. If the result of the model checking was false, the model might need to
be refined (relative to the abstraction done in the verification methodology, not the
design itself) based on diagnostic information obtained from the model checker. In
case the refinement of the abstraction fails, the properties are concluded not to
be satisfied. If, on the other hand, the model checking result was true, it can be
 concluded that the properties hold in the model.

18.3.2 The Design Representation: PRES+

The components as well as the system as a whole are assumed to be modelled in a
design representation called Petri-net based Representation for Embedded Systems
(PRES+) [10]. It is a Petri-net based representation with the extensions listed
below. Figure 18.5 shows an example of a PRES+ model.

1. Each token has a value and a timestamp associated to it.
2. Each transition has a function and a time delay interval associated to it. When a

transition fires, the value of the new token is computed by the function, using the
values of the tokens which enabled the transition as arguments. The timestamp
is increased by an arbitrary value from the time delay interval. If the time delay
interval is not explicitly stated, it is assumed to be [0..0]. In Fig. 18.5, the func-
tions are marked on the outgoing edges from the transitions.

3. The PRES+ net is forced to be safe, i.e. one place can at most accommodate one
token. A token in an output place of a transition disables the transition.

4. The transitions may have guards. A transition can only be enabled if the value
of its guard is true (transitions t

4
 and t

5
).

Fig. 18.4 Verification flow

18 Transactor-Based Formal Verification of Real-Time Embedded Systems 261

Places without incoming arcs are called in-ports, and places without outgoing arcs
are called out-ports. A common name for in-ports and out-ports respectively, is
ports. Components are subnets of the whole model, delimited by ports.

18.4 Timed Sequential Extended Regular Expressions

The proposed approach introduces Timed Sequential Extended Regular Expressions
(TSEREs) for the specification of transactors. TSEREs consist of three types of
entities: basic entities, terms and operators.

18.4.1 Basic Entities

Basic entities cannot be standalone TSEREs, but constitute a part of terms. They are
used as building blocks for storage, communication and computation. The three
categories of basic entities are shown below:

1. Variables: a, b, c

Variables are used to store and retrieve values. Variables are associated to a
datatype. Unless explicitly stated otherwise, the datatype used in all examples is
integer. The scope of a variable stretches from its first occurrence to the end of
the sequence (see the sequence operator below) of that first occurrence.

2. Port labels: !send, ?rec

Port labels are used to define the interaction with other components. ! denotes
the sending of a (possibly empty) message on the subsequent out-port, and ?
denotes receiving of a message from the specified in-port.

3. Arithmetic expressions: (a + b) · 3

Arithmetic expressions perform a computation on other basic entities, following
standard syntax. This entity allows expressing data processing.

Fig. 18.5 A simple PRES+ net

262 D. Karlsson et al.

18.4.2 Terms

Terms describe an action by combining basic entities. There are three different
types of terms, listed below:

1. Assignments: a ← 3, !send ← 0, b ← ?rec

The variable or out-port on the left-hand side of the arrow is updated to the value
of the variable, in-port or arithmetic expression on the right-hand side.

2. Guards: a = 4, ?rec > 10

Guards compare the value of a variable or in-port with the evaluation of an
arithmetic expression. If the guard evaluates to true, nothing happens. Otherwise,
the TSERE fails (or, loosely speaking, reaches a dead end).

3. Delays: [0..0], [3..5]

Delays denote the passing of time. They are expressed as intervals, with the
connotation that an arbitrary amount of time from the interval may elapse. This
feature is crucial in the context of real-time systems.

18.4.3 Operators

In addition to terms, TSEREs can be recursively combined to express more com-
plex behaviour with the following operators. Assume α and β being arbitrary
TSEREs.

1. Sequence: α; β

α occurs immediately before β.

2. Choice: α + β

Either α or β occurs.

3. Concurrency: α | β, α|n

α and β occur concurrently. The concurrency operator is not considered to have
occurred until both α and β have fully occurred. α|n denotes n concurrent copies
of α.

4. Iteration: αn, α∞, α*, α+

The iteration operators denote a sequence of recurring α. The length of that
sequence depends on the type of iteration. αn denotes a sequence of length n
and n = ∞ signifies an infinitely long sequence. Such a sequence can only be
escaped if placed inside the choice operator. α* denotes a sequence where n
is arbitrarily chosen between 0 ≤ n ≤ ∞, and in the case of α+, n is arbitrarily
chosen from 1 ≤ n ≤ ∞.

18 Transactor-Based Formal Verification of Real-Time Embedded Systems 263

18.4.4 Example

Returning to the example introduced in Fig. 18.3, the high-level and low-level
channels and the transactor can be expressed with the following TSEREs:

1. High-level channel: (m ← ?send; [2..2]; !rec ← m)∞

2. Low-level channel: (a ← ?sndaddr; [1..1]; !recaddr ← a; d ← ?snddata; [1..1];
!recdata ← d)∞

3. Transactor: (m ← ?send; [1..1]; !recaddr ← m.addr; [1..1]; !recdata ←
m.data)∞

The infinite iteration on the whole expression is necessary to enable the transactor
to process several requests. Without the iteration, the transactor and channels would
stop working after the first request.

As another example, consider a variant of the low-level channel where either the
address and data are sent simultaneously, or we receive a reset request. Equation
18.1 shows the corresponding TSERE.

(((a ← ?sndaddr; [1..1]; !recaddr ← a) | (d ← ?snddata; [1..1];
 !recdata ← d)) + ?reset)∞ (18.1)

If statements can be expressed using guards together with the choice operator. In
combination with iteration, this structure allows formulating bounded loops, as
demonstrated in Eq. 18.2.

 αn ⇔ i ← 0; ((i < n; α; i ← i + 1)∞ + (i = n)) (18.2)

18.5 Transactor Generation

To generate a transactor is a two-step process. First, the behaviour of the transactor must
be described with TSEREs. This must be done in such a way that each highlevel request
is mapped onto low-level ones, while preserving the external behaviour, e.g. timing.
Once a TSERE for the transactor is developed, that TSERE is automatically translated
into an equivalent PRES+ model. This section provides details on how this is done.

Regular expression based languages have a very strong relation with finite
automata (and therefore also with PRES+), which makes such conversion relatively
straight-forward [12]. Each basic entity, term and operator is mapped onto a PRES+
pattern, which directly reflects the semantics of that entity. The patterns have one
entry place and one exit place, indicated in figures by a loose incoming and out-
going arc respectively. A token arriving in the entry place of a pattern enables the
execution of that pattern, i.e. the occurrence of its corresponding TSERE. After
executing the pattern/expression, a token should, by convention, be put in the exit
place to indicate its completion. Figure 18.6 presents the patterns corresponding to
basic entities, Fig. 18.7 the patterns corresponding to the terms and Fig. 18.8 the
patterns corresponding to the operators.

264 D. Karlsson et al.

(a) Variables: a

(c) Arithmetic expressions: (a + b) · 3

(b) Port labels: !send, ?rec

Fig. 18.6 PRES+ patterns for TSERE basic entities

(a) Assignments: a ← 3, !send ← 0, b ← ?rec

(b) Guards: a = 4, ?rec > 10 (c) Delays: [3..5]

Fig. 18.7 PRES+ patterns for TSERE terms

18.5.1 Patterns for Basic Entities

Variables are represented by a place (Fig. 18.6(a)), initially without a token. When
the variable is assigned a value for the first time, and the variable enters its scope,
a token containing the initial value is put in the place. From that point on, a token
shall always reside in that place during the whole lifetime of the variable. The last
term in the sequence, where the scope of possibly several variables ends, should
consume the tokens in the places corresponding to those variables. Not storing val-
ues when not needed reduces statespace, and therefore mitigates the effects of
statespace explosion. This is important for efficient model checking.

18 Transactor-Based Formal Verification of Real-Time Embedded Systems 265

Port labels are also modelled with a single place (Fig. 18.6(b)). These places
will serve as ports of the transactor. ? labels serve as in-ports and ! labels as out-
ports. Therefore, the transactor can only consume tokens from ? label ports, and
analogously only put tokens in ! label ports.

Arithmetic expressions are modelled in two stages: fetching variable values and
computation (Fig. 18.6(c)). The value of each variable involved in the expression
must be explicitly fetched and stored in a temporary place. This arrangement is
due to the fact that PRES+ transitions only are associated to one function. Without
the fetching steps, the involved variables would change values to the value of the
expression, which is not the desired behaviour.

The fetching of variable values is realised by transitions t
1
 and t

2
 in Fig.

18.6(c), for variables a and b respectively. The transitions consume the token
from the variable place and immediately put it back with the same value. In the
case of ? port labels, the token is never put back. A copy of the value is moreo-
ver stored in a temporary place, a’ and b’ respectively. These tokens are then
used in the final computation stage, transition t

3
, instead of directly accessing

the variable places. The fetching stages and the final computation stage are
connected in a sequence with the help of intermediate places, p

1
 to p

4
. The

result of the expression is located in the exit place of the arithmetic
expression.

(a) Sequence: α; β

(b) Choice: α + β

(c) Concurrency: α ⏐ β, α⏐n

(d) Possibly infinite
iteration: α∞ α∗, α+

Fig. 18.8 PRES+ patterns for TSERE operators

266 D. Karlsson et al.

18.5.2 Patterns for Terms

Assignments are realised in a similar way as variable fetching, with the difference that
the value of the token is updated (Fig. 18.7(a)). The new value is located in the entry
place in the case of arithmetic expression, or, in the case of a constant, the transition
function is set to that constant. Attention must be paid to if the assignment denotes
the initial assignment to the variable in question or not. If it is, there is no token in the
variable place to be consumed and consequently there shall not be an arc from the
place to the transition. If the assignment is an update of an already initialised variable,
the token must, on the contrary, be consumed before the update is actuated. In the case
of ! port labels, tokens are never consumed from within the transactor. As an optimi-
zation when the new value is an arithmetic expression, the assignment can be merged
with the computation stage of the arithmetic expression.

Guards are implemented as variable fetching without creating a temporary copy,
with the addition that the transition guard is set to the TSERE guard expression
(Fig. 18.7(b)).

Delays are modelled with a transition with the time delay interval stipulated by
the TSERE delay expression (Fig. 18.7(c)). The modelling of delays is preferably
optimised by moving the time delay interval to the first transition of the subsequent
TSERE, if such exists.

18.5.3 Patterns for Operators

The operator patterns combine several subpatterns to form a more complex behav-
iour. In Fig. 18.8, the subpatterns are drawn as clouds with arrows from/to its entry
and exit places. The resulting complex pattern is also assigned entry and exit places,
indicated in the figures in the same way as with the terms.

Sequences are realised by merging the exit place of the first subpattern with the
entry place of the second (Fig. 18.8(a)). The entry place of the first subpattern
becomes the entry place of the whole sequence, and the exit place of the second
subpattern becomes the exit place of the whole sequence. In this way, when the
first subpattern has finished executing, a token is put in the shared middle place,
which enables the execution of the second subpattern.

In the pattern for the choice operator (Fig. 18.8(b)), the entry and exit places of
the subpatterns are merged, so that all subpatterns share the same entry place and the
same exit place. When a token appears in the entry place, this leads to the enabling
of all subpatterns, out of which one is chosen randomly. If the first term of a subpat-
tern is a guard that evaluates to false, that subpattern can naturally not be chosen.

When a token arrives in the entry place of the concurrency pattern (Fig. 18.8(c)), the
entry places of each subpattern must also be marked to enable the execution of each
corresponding subpattern. This is achieved by introducing an additional transition (t

1
)

with the entry places of all subpatterns as output and the entry place of the whole pattern
as input. A similar, but contrary, construct is also inserted at the exit places (t

2
),

18 Transactor-Based Formal Verification of Real-Time Embedded Systems 267

implementing the synchronisation of the subpatterns upon their completion. The con-
currency operator is not considered completed until all subexpressions are completed.

Iteration is accomplished by connecting the exit place of the subpattern to its
entry place via a transition (t

1
 in Fig. 18.8(d)). This procedure can, in the case of

α∞ and α*, be optimised by instead merging the entry and exit places of the subpat-
tern. The entry place of the subpattern is also the entry place of the iteration. For α*

iterations, the exit place is the same as the entry place, whereas for α+ the exit place
of the iteration is the exit place of the subpattern. α∞ iterations do not have an exit
place due to their infinite nature. Finite loops are implemented based on Eq. 18.2.

When a PRES+ model has been generated for the whole TSERE, an initial token
is put in the entry place of the final model, to indicate the first term.

18.5.4 Examples

Let us continue the sender and receiver example introduced in Fig. 18.3, and where
the TSEREs for the channels were listed in Section 18.4.4. Figure 18.9 provides the

(a) The generated transactor from Fig. 18.3 (c)

(b) The PRESS+ model corresponding to Eq. 18.1

Fig. 18.9 Examples of PRES+ models generated from TSEREs

268 D. Karlsson et al.

PRES+ models resulting from the presented approach, including certain
optimizations.

The core of the transactor is a sequence of reading and writing on ports com-
bined with simple arithmetic expressions (Fig. 18.9(a)). Transitions t

2
 and t

4
 model

the variable fetching stages of the arithmetic expressions, while transitions t
3
 and t

5

combine the computation stages with the assignment on ports recaddr and recdata
respectively (optimization). The delays are moreover added to the first transitions
in the subsequent terms, in this case t

2
 and t

4
. It should moreover be noted how the

scope of variable m is modelled. Transition t
1
 realises the first assignment to m,

therefore it only puts a token with the initial value in place m. As transition t
5
 is the

last transition in its scope, it consumes the token, no matter it needs the value or
not. Transition t

6
 models the infinite loop.

Figure 18.9(b) presents the PRES+ model corresponding to Eq. 18.1. Inside the
iteration, there is a choice between either two concurrent statements or a single
reading of reset. If the reset is not immediately present, the two concurrent
sequences are launched. If the reset is present, there is a non-deterministic choice
between the two options. The loop is in this figure optimised in the sense that the
exit place of the choice operator is merged with its entry place.

18.6 Case Studies

The proposed approach has been applied on two examples: the example from Fig.
18.3 and an AMBA-based protocol. The models were formally verified on high,
low and mixed levels of abstraction using a Linux machine with an Intel Pentium
4, 2.8 GHz processor and 2 GB of memory. The AMBA example was moreover
verified with different configurations on the number of masters (M) and slaves (S).
Both examples were checked for the same two properties: no deadlock and that sent
messages will arrive at their destinations.

Tables 18.1 and 18.2 present the verification times in seconds for the respective
example. The tables moreover indicate the sizes of the TSEREs, which define the
channels/transactors, as the number of terms and operators in the expression. The
size of the entire verified PRES+ model is indicated by the number of transitions.
These numbers only give a hint to the size of the examples and are not directly
related to verification time. These results indicate the reasonableness of the
proposed approach.

Table 18.1 Results from the example given in Fig. 18.3

Abstraction level No deadlock Sent will arrive

High 0.12 s 0.13 s
Low 0.06 s 0.09 s
Sender high – receiver low 0.11 s 0.06 s

18 Transactor-Based Formal Verification of Real-Time Embedded Systems 269

18.7 Conclusions

This chapter has presented an approach to generate transactors for real-time
embedded systems, suitable for formal verification. The approach assumes a
design where components communicate over channels, and that those channels
capture all the characteristics of the communication. During the development,
more and more components are refined leading to a model with mixed abstraction
levels. In such models, the components cannot directly communicate due to
 protocol discrepancies. In order to overcome these discrepancies, the channels
interfacing components of different abstraction levels are replaced with transac-
tors. The behaviour of the transactors, i.e. the mapping of requests between
abstraction levels, is described using TSEREs, which are automatically converted
into the design representation used, PRES+. The resulting PRES+ model can then
be analysed by a formal verification tool.

References

1. Bombieri N, Fummi F, Pravadelli G (2006) On the Evaluation of Transactor-based Verification
for Reusing TLM Assertions and Testbenches at RTL. Proc. ACM/IEEE Design and Test in
Europe, Munich, Germany, 6–10 March

2. Akella J, McMillan K (1991) Synthesizing Converters between Finite State Protocols. Proc.
International Conference on Computer Design, Cambridge, MA, Oct. 15–15, pp. 410–413

3. Passerone R, Rowson JA, Sangiovanni-Vincentelli, A (1998) Automatic Synthesis of Interfaces
between Incompatible Protocols. Proc. Design Automation Conference, San Francisco, CA,
June, pp. 8–13

4. Bombieri N, Fummi F, Pravadelli G (2006) A TLM Design for Verification Methodology. IEEE
Ph.D. Research in Microelectronics and Electronics, Otranto (LE), Italy, 11–15 June, 337–340

Table 18.2 Results from the AMBA example

M–S Abstraction level No deadlock Sent will arrive

1–1 High 0.33 s 0.12 s
 Low 0.19 s 0.22 s
 M high – S low 0.19 s 0.17 s
 M low – S high 0.30 s 0.40 s
1–2 High 0.50 s 0.46 s
 Low 0.80 s 1.68 s
 M high – S low 0.24 s 0.35 s
 M low – S high 1.44 s 3.57 s
2–1 High 0.19 s 0.43 s
 Low 0.48 s 1.53 s
 M high – S low 0.38 s 0.84 s
 M low – S high 1.43 s 6.59 s
2–2 High 5.01 s 18.99 s
 Low 5.43 s 22.57 s
 M high – S low 5.39 s 17.77 s
 M low – S high 42.06 s 200.5 s

270 D. Karlsson et al.

 5. Balarin F, Passerone R (2006) Functional Verification Methodology Based on Formal
Interface Specification and Transactor Generation. Proc. Design and Test in Europe, Munich,
Germany, pp. 1013–1018

 6. Asarin E, Caspi P, Maler O (1997) A Kleene Theorem for Timed Automata. Proc. Logic in
Computer Science, Warsaw, Poland, June, pp. 160–171

 7. Karlsson D, Eles P, Peng Z (2007) Formal Verification of Component-based Designs. Journal
of Design Automation for Embedded Systems 11(1):49–90

 8. Alur R, Courcoubetis C, Dill DL (1990) Model Checking for Real-time Systems. Theoretical
Computer Science 414–425

 9. UPPAAL homepage: http://www.uppaal.com/
10. Cortés LA, Eles P, Peng Z (2000) Verification of Embedded Systems Using a Petri Net Based

Representation. Proc. International Symposium on System Synthesis, Madrid, Spain,
pp. 149–155

11. Alur R, Dill DL (1994) A Theory of Timed Automata. Theoretical Computer Science
126:183–235

12. Kozen DC (1997) Automata and Computability. Springer, New York.

Chapter 19
A Case-Study in Property-Based Synthesis:
Generating a Cache Controller from
a Property-Set

Martin Schickel, Martin Oberkönig, Martin Schweikert, and Hans Eveking

Abstract Property-based synthesis has become a more prominent topic during
the last years, being used in multiple areas like, e.g. formal verification and design
automation. We will show how a property-based formal specification of a cache
controller for a MIPS core can be used to automatically generate a functional
implementation of that controller and how additional performance information
about the complete system can be gained from doing so.

Keywords Property Based Design, Synthesis, Formal Verification, Cando-Objects

19.1 Introduction

The integration of design and verification effort has strongly improved during the
last decade. Many EDA companies require their designers to include assertions into
the hardware descriptions – a technique known as assertion-based design (ABD).
Also, formal specifications, consisting of properties and assertions, are no longer
only developed during the verification of a design, but also before and during its
creation. Looking at this development, the obvious question is whether those for-
mal specifications used to verify designs can also be used to automatically generate
hardware implementing the properties, thereby assuring a golden model which is
correct by construction.

In the last years, some significant progress has been made in this area, enabling
the automatic generation of prototype models from ever larger and more complex
sets of properties. In using this approach, we can assure that a design verified using

Computer Systems Lab, Darmstadt University of Technology Darmstadt, Germany;
Email: {schickel,oberkoenig,schweikert,eveking}@rs.tu-darmstadt.de

E. Villar (ed.) Embedded Systems Specification and Design Languages, 271
© Springer Science + Business Media B.V. 2008

272 M. Schickel et al.

a complete set of properties will be working exactly as the golden model generated
from them, thereby formally relating the until now unrelated specification lan-
guages for models and verification.

In the following sections we will discuss the results of our experiments with a
set of properties describing the functionality of a cache controller for a MIPS.
Using these properties we wanted to reach two different goals:

Firstly, we wanted to know whether it was possible to generate a functioning
simulation model of the cache controller and simulate it together with a MIPS core.
Secondly, we wanted to see whether we would be able to derive information about
the behavior of a system consisting of a MIPS core and a cache controller adhering
to the property-set we had.

We used the CandoGen-tool [1] from Darmstadt University described, e.g. in
[2] by Schickel et al. This tool is capable of generating VHDL-descriptions of so-
called Cando-Objects from sets of finite properties written in PSL [3, 4] or ITL
[5]. These Cando-Objects are in essence black-boxed designs whose behavior is
restricted by the properties they were generated from (hence their name: “Can do
anything not disallowed”).

However, there have been other efforts to automatically synthesize executable
hardware from properties: the ProSyd project and BlueSpec.

The ProSyd project was founded to research possible improvements in property-
based system design. One of the deliverables was a tool capable of synthesizing
functioning hardware from arbitrary PSL properties. The tool first constructs a
finite state machine from the properties, and then translates the machine into a
hardware description language. While the results are very good when the properties
only describe a system’s control path, the used methods’ complexity is unsuitable
for the generation of data paths [6]. Since our properties include the data path, this
tool is unsuitable for us.

BlueSpec is a company founded by Arvind Mithal from MIT. It utilizes the
patented term-rewriting-system [7] to translate properties written in BlueSpec-
SystemVerilog into functioning hardware. This method is known to be highly
 efficient and often produces results better than human designers, but it requires the
user to write properties in a different style than that used when writing verification
properties. Therefore verification properties cannot be used for synthesis using
this method. Since our properties were verification properties written in another
language (i.e. PSL and ITL), this tool was also unsuitable.

19.2 The Cache Controller Properties

For our experiment we had obtained a MIPS core from opencores.org [8] and a set
of properties describing the functionality of a simple cache controller, which had to
be transparent in order to use the non-modified MIPS design. The set of cache
properties describes a fully associative cache model (i.e. the definition of cache-hit
was basically ‘any cache-cell has valid data for a given address’). A least recently

19 A Case-Study in Property-Based Synthesis 273

used (LRU) policy was specified as well as a write-through technique. The size of
the cache was determined to be eight cache lines of eight 32 bit-instructions (8 ×
256 bit), but could not only be used to cache instructions, but also to cache data
needed during the pipeline’s execution step.

The properties for the cache can be categorized in five functional groups:

● Manager &- Cacheline validity correct?
● WriteData &- Write Instructions handled correctly?
● Replacement &- LRU algorithm working correctly?
● Instruction &- Read Instruction handled correctly?
● Memory &- Read Data handled correctly?

One example property is illustrated in Fig. 19.1. It describes the reset behavior
of the memory group. It is written in VHDL-flavored ITL.

19.3 Experimental Results

All the properties could be transformed into VHDL descriptions of a working
 circuit model incorporating all the described functionality. The transformation
runtimes are listed in Table 19.1.

The time spent on the properties in the manager group was fairly long. This can
be explained by CandoGen’s current internal use of BDDs which may become
rather complex when the number of variables grows larger than 300 as is the case
when checking whether a cache-hit has occurred. This is due to the BDD-explosion
which occurs prominently when shift- and multiplication operations are concerned.
The effects might be countered by using AIGs [9] to replace or complement the
BDD-representation of the circuits. A hybrid AIG/BDD-system might combine the
strengths of both representation methods.

property reset is
assume: at t: reset=’1’;
prove: at t+1: wait_for_mem=’0’;
 at t+1: update_least_recent_mem=’0’;
 at t+1: update_cache_info_mem=’0’;
 at t+1: mem_req_read=’0’;
end property;

Table 19.1 Model generation data

Module #Props Lines of code Runtime (min)

Manager 4 93 321
WriteData 4 89 5
Replacement 5 135 2
Instruction 5 239 46
Memory 6 134 13

Fig. 19.1 Sample property

274 M. Schickel et al.

The generated VHDL models could then be connected to form the complete
cache controller and be simulated together with the MIPS core. To do so, the cache
controller was connected to the core’s memory interface as shown in Fig. 19.2. The
dotted lines mark the original connections.

The simulation of small precompiled and preloaded programs during the course
of directed testing worked well and showed a full functionality of the cache,
 reducing the average memory access latency.

The last step was the verification or formal deduction of system level properties.
Since one of the most prominent properties of a cache is the acceleration of memory
accesses, we decided to write properties to examine the memory access speedup.
On the original design, it can be proven, that any memory access has the same
latency as was specified within the memory description.

When the cache controller is attached to the design, this property does not hold
anymore. A counter-example shows that when consecutive areas of memory are
addressed the memory access may be completed more quickly. By relaxing the
property to allow for completion within a certain timeframe we can quickly deter-
mine the effect of the cache to be between −3 to +1 cycles latency. The latter results
from the cache’s property to read complete cache lines, which may prove proble-
matic when memory accesses are sufficiently random. The proof of these properties
was completed within negligible time (less than 1 min per property).

19.4 Conclusion

We have shown that it is possible to automatically generate hardware from proper-
ties and used the generated model during simulation and to prove system properties.
Future research will include synthesizability of complete processor cores from
 verification properties.

Cache Register

Cache Controller

DataAccess

Bus Ctrl. InstrFetch

Fig. 19.2 Connection of controller to MIPS core

19 A Case-Study in Property-Based Synthesis 275

Acknowledgments The research leading to this publication was conducted within the scope of
the FEST project jointly funded by the German ministry of research and education and industry
partners.

References

1. M. Schickel, V. Nimbler, M. Braun and H. Eveking: CandoGen – A Property-Based Model
Generator, University Booth, Nice, France, Date’07.

2. M. Schickel, V. Nimbler, M. Braun and H. Eveking: On Consistency and Completeness:
Exploiting the Property-Based Design Process, Proc. of FDL’06.

3. Property Specification Language, Reference Manual, Version 1.1, Accellera, 2004, http://www.
eda.org/vfv/docs/PSL-v1.1.pdf.

4. C. Eisner and D. Fisman: A Practical Introduction to PSL, Springer, New York, 2006.
5. User Documentation: OneSpin MV 360 – Version 4.1, OneSpin Solutions GmbH, 2006.
6. ProSyd Project Deliverable 2.3/1: Evaluation of tools and methodologyfor property-based logic

synthesis, www.prosyd.org.
7. A. Mithal, J. Hoe. Digital Circuit Synthesis System, U.S. Patent U.S. 6,597,664 B1, 7/2003.
8. http://www.opencores.org/projects.cgi/web/minimips/overview
9. V. Paruthi and A. Kuehlmann: Equivalence checking combining a structural SAT-solver,

BDDs, and simulation, in ICCD’2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

