
Studies in Computational Intelligence 720

Omid Bozorg-Haddad Editor

Advanced
Optimization by
Nature-Inspired
Algorithms

Studies in Computational Intelligence

Volume 720

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the worldwide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

Omid Bozorg-Haddad
Editor

Advanced Optimization
by Nature-Inspired
Algorithms

123

Editor
Omid Bozorg-Haddad
Department of Irrigation & Reclamation
Engineering

College of Agriculture & Natural Resources,
University of Tehran

Karaj
Iran

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-981-10-5220-0 ISBN 978-981-10-5221-7 (eBook)
DOI 10.1007/978-981-10-5221-7

Library of Congress Control Number: 2017943829

© Springer Nature Singapore Pte Ltd. 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

I like to dedicate this book to my loving
parents.

Omid Bozorg-Haddad

Preface

From the early 1990s, the introduction of the term “Computational Intelligence”
(CI) highlighted the potential applicability of this field. One of the preliminary
applications of the field was in the realm of optimization. Undoubtedly, the tasks of
design and operation of systems can be approached systematically by the application
of optimization. And while in most real-life problems, including engineering
problems, application of the classical optimization techniques were limited due to the
complex nature of the decision space and numerous variables, and the CI-based
optimization techniques, which imitated the nature as a source of inspiration, have
proven quite useful. Consequently, during the last passing decades, a considerable
number of novel nature-based optimization algorithms have been proposed in the
literature. While most of these algorithms hold considerable promise, a majority
of them are still in their infancy. For such algorithms to bloom and reach their full
potential, they should be implemented in numerous optimization problems, so that not
only their most suitable sets of optimization problems are recognized, but also
adaptive strategies need to be introduced to make themmore suitable for wider sets of
optimization problems. For that, this book specifically aimed to introduce some
of these potential nature-based algorithms that could be useful for multidisciplinary
students including those in aeronautic engineering, mechanical engineering, indus-
trial engineering, electrical and electronic engineering, chemical engineering, civil
engineering, computer science, applied mathematics, physics, economy, biology, and
social science, and particularly those pursuing postgraduate studies in advanced
subjects. Chapter 1 of the book is a review of the basic principles of optimization and
nature-based optimization algorithms. Chapters 2–15 are respectively dedicated to
Cat Swarm Optimization (CSO), League Championship Algorithm (LCA),
Anarchies Society Optimization (ASO), Cuckoo Optimization Algorithm (COA),
Teacher-Learning-Based Optimization (TLBO), Flower Pollination Algorithm
(FPA), Krill Herd Algorithm (KHA), Grey Wolf Optimization (GWO), Shark Smell
Optimization (SSO), Ant Lion Optimization (ALO), Gradient Evolution (GE),
Moth-Flame Optimization (MFO), Crow Search Algorithm (CSA), and Dragonfly
Algorithm (DA). The order of the chapters corresponds to the order of chronological
appearance of these algorithms, from earlier algorithms to newly introduced ones.

vii

Each chapter describes a specific algorithm and starts with a brief literature review of
its development and subsequent modification since the time of inception. This is
followed by the presentation of the basic concept on which the algorithm is based and
the steps of the algorithm. Each chapter closes with a pseudocode of the algorithm.

Karaj, Iran Omid Bozorg-Haddad

viii Preface

Contents

1 Introduction . 1
Babak Zolghadr-Asli, Omid Bozorg-Haddad and Xuefeng Chu

2 Cat Swarm Optimization (CSO) Algorithm. 9
Mahdi Bahrami, Omid Bozorg-Haddad and Xuefeng Chu

3 League Championship Algorithm (LCA) . 19
Hossein Rezaei, Omid Bozorg-Haddad and Xuefeng Chu

4 Anarchic Society Optimization (ASO) Algorithm 31
Atiyeh Bozorgi, Omid Bozorg-Haddad and Xuefeng Chu

5 Cuckoo Optimization Algorithm (COA) . 39
Saba Jafari, Omid Bozorg-Haddad and Xuefeng Chu

6 Teaching-Learning-Based Optimization (TLBO) Algorithm 51
Parisa Sarzaeim, Omid Bozorg-Haddad and Xuefeng Chu

7 Flower Pollination Algorithm (FPA) . 59
Marzie Azad, Omid Bozorg-Haddad and Xuefeng Chu

8 Krill Herd Algorithm (KHA) . 69
Babak Zolghadr-Asli, Omid Bozorg-Haddad and Xuefeng Chu

9 Grey Wolf Optimization (GWO) Algorithm 81
Hossein Rezaei, Omid Bozorg-Haddad and Xuefeng Chu

10 Shark Smell Optimization (SSO) Algorithm 93
Sahar Mohammad-Azari, Omid Bozorg-Haddad and Xuefeng Chu

11 Ant Lion Optimizer (ALO) Algorithm . 105
Melika Mani, Omid Bozorg-Haddad and Xuefeng Chu

12 Gradient Evolution (GE) Algorithm. 117
Mehri Abdi-Dehkordi, Omid Bozorg-Haddad and Xuefeng Chu

ix

13 Moth-Flame Optimization (MFO) Algorithm 131
Mahdi Bahrami, Omid Bozorg-Haddad and Xuefeng Chu

14 Crow Search Algorithm (CSA). 143
Babak Zolghadr-Asli, Omid Bozorg-Haddad and Xuefeng Chu

15 Dragonfly Algorithm (DA) . 151
Babak Zolghadr-Asli, Omid Bozorg-Haddad and Xuefeng Chu

x Contents

About the Editor

Omid Bozorg-Haddad is Professor in the Department of Irrigation and
Reclamation Engineering at the University of Tehran, Iran. His teaching and
research interests include water resources and environmental systems analysis,
planning, and management as well as application of optimization algorithms in
water related systems. He has published more than 100 articles in peer-reviewed
journals and 100 papers in conference proceedings. He has also supervised more
than 50 M.Sc. and Ph.D. students.

xi

List of Figures

Fig. 2.1 Flowchart of the CSO algorithm . 13
Fig. 3.1 Flowchart of the basic LCA . 23
Fig. 3.2 A simple example of league championship scheduling 24
Fig. 3.3 Procedure of the artificial match analysis in LCA 26
Fig. 4.1 Flowchart of the ASO algorithm . 33
Fig. 5.1 Flowchart of the COA . 43
Fig. 5.2 Random egg laying in ELR (the black circle is the cuckoo’s

initial habitat with three eggs; and the white circles are the
eggs at new positions) . 45

Fig. 5.3 Immigration of a sample cuckoo to the target habitat 46
Fig. 6.1 Flowchart of the TLBO algorithm . 54
Fig. 7.1 Flowchart of the FPA . 64
Fig. 8.1 Schematic representation of the sensing ambit around

a krill individual . 73
Fig. 8.2 Simplified flowchart of the KHA. 77
Fig. 9.1 Social hierarchy of grey wolves. 82
Fig. 9.2 Attacking toward prey versus searching for prey 85
Fig. 9.3 Updating of positions in the GWO algorithm 86
Fig. 9.4 Attacking toward prey and searching for prey 86
Fig. 9.5 Flowchart of the GWO algorithm . 89
Fig. 10.1 Schematic of shark’s movement toward the source

of the smell . 95
Fig. 10.2 Rotational movement of a shark . 99
Fig. 10.3 Flowchart of the SSO algorithm . 100
Fig. 11.1 Antlion hunting behavior . 107
Fig. 11.2 Flowchart of the ALO algorithm (It = iteration counter;

and IT = number of iterations). 108
Fig. 11.3 Three random walk curves in one dimension

started at zero . 112
Fig. 12.1 Gradient determination. 119
Fig. 12.2 Search direction for the original gradient-based method 122

xiii

Fig. 12.3 Search direction for the GE algorithm . 123
Fig. 12.4 Gradient approximation method modified from

individual-based search to population-based search:
a individual-based, b population-based 123

Fig. 12.5 Vector jumping operator . 126
Fig. 12.6 Flowchart of the GE algorithm . 127
Fig. 13.1 Moth’s spiral flying path around a light source 134
Fig. 13.2 Flowchart of the MFO algorithm. 135
Fig. 14.1 Flowchart of the standard CSA . 147
Fig. 15.1 Primitive corrective patterns of dragonfly individuals

in a swarm: a Separation; b Alignment; c Cohesion;
d Food Attraction; and e Predator distraction 153

Fig. 15.2 Flowchart of the DA . 157

xiv List of Figures

List of Tables

Table 2.1 Characteristics of the CSO algorithm. 12
Table 3.1 Characteristics of the LCA . 21
Table 3.2 Hypothetical SWOT analysis derived from the artificial

match analysis . 27
Table 4.1 Characteristics of the ASO algorithm. 34
Table 5.1 Characteristics of the COA . 44
Table 6.1 Characteristics of the TLBO algorithm 55
Table 7.1 Characteristics of the FPA . 63
Table 8.1 The characteristics of the KHA . 77
Table 9.1 Characteristics of the GWO algorithm . 87
Table 10.1 Characteristics of the SSO algorithm . 101
Table 11.1 Characteristics of the ALO algorithm . 108
Table 12.1 Characteristics of the GE algorithm . 128
Table 13.1 Characteristics of the MFO algorithm . 135
Table 14.1 Characteristics of the CSA. 147
Table 15.1 Characteristics of the DA. 157

xv

Chapter 1
Introduction

Babak Zolghadr-Asli , Omid Bozorg-Haddad and Xuefeng Chu

Abstract In this chapter, some general knowledge relative to the realm of
nature-inspired optimization algorithms (NIOA) is introduced. The desirable merits
of these intelligent algorithms and their initial successes in many fields have
inspired researchers to continuously develop such revolutionary algorithms and
implement them to solve various real-world problems. Such a truly interdisciplinary
environment of the research and development provides rewarding opportunities for
scientific breakthrough and technology innovation. After a brief introduction to
computational intelligence and its application in optimization problems, the history
of the NIOA was reviewed. The relevant algorithms were then categorized in
different manners. Finally, one the most groundbreaking theorems regarding the
nature-inspired optimization techniques was briefly discussed.

1.1 Introduction

Artificial intelligence (AI) refers to any sort of intelligence that is exhibited by
machines. The term of computational intelligence (CI), a branch of AI, was coined
by Bezdek in the early 1990s (Bezdek 1992), which inspired the development of a

B. Zolghadr-Asli � O. Bozorg-Haddad (&)
Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering
and Technology, College of Agriculture and Natural Resources, University of Tehran,
3158777871 Karaj, Iran
e-mail: obhaddad@ut.ac.ir

B. Zolghadr-Asli
e-mail: zolghadrbabak@ut.ac.ir

X. Chu
Department of Civil and Environmental Engineering, North Dakota State University,
Dept 2470, Fargo, ND 58108-6050, USA
e-mail: xuefeng.chu@ndsu.edu

© Springer Nature Singapore Pte Ltd. 2018
O. Bozorg-Haddad (ed.), Advanced Optimization by Nature-Inspired Algorithms,
Studies in Computational Intelligence 720, DOI 10.1007/978-981-10-5221-7_1

1

http://orcid.org/0000-0002-3392-2672

new field dedicated to computer-based intelligence. In principle, CI consists of any
science-supported approaches and technologies for analyzing, creating, and
developing intelligent systems (Xing and Gao 2014). Unlike AI that depends upon
the knowledge derived from human expertise, CI, however, mostly relies on the
collection of numerical data and a set of nature-inspired computational paradigms
(Du and Swamy 2016). As evidenced by numerous studies in various fields, CI was
able to flourish and achieve an unprecedented popularity during the past several
decades. While, once the CI’s primary focus was on artificial neural network
(ANN), fuzzy logic (FL), multi-agent system (MAS), and few optimization algo-
rithms including: evolutionary algorithms (EA) [e.g., genetic algorithm (GA),
genetic programming (GP), evolutionary programming (EP), and evolutionary
strategy (ES)], artificial immune systems (AIS), simulated annealing (SA), Tabu
search (TS), as well as two variants of swarm intelligence (SI) [i.e., ant colony
optimization (ACO) and particle swarm optimization (PSO)] (Xing and Gao 2014),
nowadays CI has expanded to a vast domain that covers almost every science and
engineering field.

One of the major subjects of CI is, as previously mentioned, the study of
unorthodox optimization techniques. It is no exaggeration to say that optimization
has surrounded our everyday life, from complex engineering problems to business
or even the holiday planning. What bonds these activities together is that essentially
they aim to utilize a finite commodity (say, a limited resource, finance, or even
time) to achieve certain goals or objectives. Mathematically speaking, optimization
searches the decision space in pursuit of an array of decision variables that could
produce the maximum acceptability considering the initial goal (objective function).
Since its introduction, CI has been able to make a considerable contribution to the
solving techniques of such optimization problems due to the development of var-
ious efficient search algorithms.

Traditionally, optimization problems were solved either using calculus-based
methods, random-based search, or in some cases enumerative searching techniques
(Du and Swamy 2016). Broadly speaking, such optimization techniques can gen-
erally be divided into derivative and nonderivative methods, depending on whether
or not the derivatives of the objective function(s) are required in the optimization
process. Derivative methods are calculus-based methods, which are based on a
gradient search (also known as the steepest search method). The Newton’s method,
Gauss–Newton method, quasi-Newton methods, the trust-region method, and
Levenberg–Marquardt method are a few examples of such techniques. These
classical methods used to dominate the field of optimization. While efficient in
solving a wide range of optimization problems, when the number of the decision
variables grow large enough, or even when the decision space is discreet, which is
the case in most if not all practical optimization problems, these techniques are
unable to illustrate acceptable performances. Indeed, the aforementioned describes
one of the major advantages of CI-based optimization techniques over traditional
ones.

2 B. Zolghadr-Asli et al.

1.2 Optimization: Core Principles and Technical Terms

Assume that a group of amateur climbers decide to summit the highest mountain in
a previously unknown and hilly territory. Indeed, searching for the summit is not
unlike searching for the optimal solution, for, in fact, the landscape represents the
decision space, while the highest mountain embodies the global optimum. But how
does one even begin to search such a vast area? One initial answer would be to map
out the entire landscape. However, this would be a both time- and
energy-consuming task. Perhaps, an alternative would be to search the area in a
random-based manner. While it would definitely help to save both time and energy,
ultimately as one can expect, it would not be an efficient strategy as well, for there
would be no guarantee to reach the highest mountain. A more intelligent alternative
would be to directly climb up the steepest cliff, assuming that the highest mountain
is more likely to have a steeper slope. Essentially, this strategy represents the core
principle of classical optimization techniques. While efficient in many cases, if the
climbers’ path would be interrupted by cliffs (discrete decision space), for instance,
this strategy would not be efficient to locate the highest mountain. Additionally, in a
hilly landscape, climbers could deceitfully climb to the top of a mountain which in
essential stands above the neighboring mountains, while in fact, it is not the highest
mountain in the entire area. This problem is known in technical terms as trapping in
local optima.

Alternatively, the climbers could do a random walk in the area, while looking for
some clues. Such hybrid strategies are formed using a combination of random-
based searching and an adaptive strategy, which is usually inspired by nature. In
fact, that is the description of CI-based optimization algorithms. Subsequently, such
searches could be conducted while the group maintains to stick with one another
(perform as an individual climber). The group members can also spread out and
share their gained information with each other, while the searching proceeds further
on. Technically speaking, the former strategy is better known as single-point
optimization technique, while the latter strategy represents population-based opti-
mization algorithms. The single-point strategies are also known as trajectory opti-
mization algorithms, for the optimization process would provide a path that could
lead to the optimum point, in this case, the highest mountain in the area.

Additionally, the climbers, either as one group or separate individuals, could
investigate the area only using the information currently at hand. An alternative
would be to take a record and map out some previously encountered locations. In a
technical term, the second strategy is called memory using algorithms. While such a
strategy is more efficient in most cases, if the population of the climbers increases or
the landscape is vast enough, storing such massive information could potentially
turn into a major problem.

Ultimately, the core principle of all CI-based optimization algorithms, which are
better known as metaheuristic algorithms, is a way of trial and error to produce an
acceptable solution to a complex problem in a reasonably practical time (Yang
2010). While the complexity of the practical optimization problem is in favor of

1 Introduction 3

implementing such optimization algorithms, there could also be no guarantee that
the best solution (global optimum) can be spotted using such techniques.

1.3 Brief History of CI-Based Optimization Algorithms

Despite their novel and ubiquitous nature, implementation of the CI-based opti-
mization algorithms is indeed a relatively new technique, though it is difficult to
pinpoint when the whole story began. Accordingly, Allen Turing was perhaps the
first person to implement the CI-based optimization algorithms (Yang 2010).
Evidently, during World War II, while trying to break the German-designed
encrypting machine called Enigma, Turing developed an optimization technique
which he later named heuristic search as it could be expected to work most of the
times, while there was no actual guarantee for a successful performance in each
trial. Turing was later recruited to the national physical laboratory, UK, where he
set out his design for the automatic computing engine. Later on, he outlined his
innovative idea of machine intelligence and learning neural networks and evolu-
tionary algorithms in an NPL report on intelligent machinery (Yang 2010).

The CI-based optimization techniques bloomed during the 1960s and 1970s. In
the early 1960s, John Holland and his collaborators at the University of Michigan
developed the genetic algorithms (GA) (Goldberg and Holland 1988). In essence, a
GA is a search method based on the abstraction of Darwin’s theory of evolution and
natural selection of biological systems, which are represented in the mathematical
operators. Holland’s preliminary studies were showing promising results, while he
continued to further develop his technique by introducing novel and efficient agents
to his algorithms which were named crossover and mutation, although his seminal
book summarizing the development of the genetic algorithm was not published
until 1975 (Yang 2010). Holland’s work inspired many to further develop and
adopt similar methods in their research, which benefited from a similar basic
principle in numerous and colorful fields. For instance, while Holland and his
collogues were trying to develop their revolutionary method, Ingo Rechenberg and
Hans-Paul Schwefel at the Technical University of Berlin introduced another novel
optimization technique for solving aerospace engineering problems, which they
later named evolutionary strategy (Back et al. 1997). In 1966, (Fogel et al. 1966)
developed an evolutionary programming technique by representing the solution as
finite state machines and randomly mutating one of these machines. The above
innovative idea and method have evolved into a wider area that became known as
evolutionary algorithms (EAs) (Yang 2010).

In the early 1990s and in another great leap forward in the field of CI-based
optimization algorithms, Marco Dorigo finished his Ph.D. thesis on optimization and
nature-inspired algorithms, in which he described his innovative work on ant colony
optimization (ACO) (Dorigo and Blum 2005). This search technique was inspired by
the swarm intelligence of social ants using the pheromone to trace the food sources.
Slightly later, in 1995, the particle swarm optimization (PSO) was proposed by an

4 B. Zolghadr-Asli et al.

American social physiologist James Kennedy, and engineered by Russell C.
Eberhart, which shall be considered as another significant progress in the field of
nature-inspired optimization techniques (Poli et al. 2007). In essence, PSO is an
optimization algorithm inspired by the swarm intelligence of the school of fish or
birds. Multiple agents or particles swarm around the search space starting from an
initial random guess. The swarm members communicate to one another by sharing
the current best answer, which in turn, enables the algorithm to find the optimum
solutions. Since then, many attempts have been made to mimic and imitate the
natural beings in the searching process of optimization techniques. During the past
decades, numerous novel nature-inspired optimization algorithms have been pro-
posed to advance the CI-based optimization techniques (Xing and Gao 2014).

1.4 Classification of CI-Based Optimization Algorithms

Perhaps, it could be beneficial for studding reasons to categorize and classify the
CI-based optimization techniques, although depending on specific viewpoints many
classifications are possible. While some of these classifications are quite technical
and in some cases, even based upon vague characteristics, more general classifi-
cations could help better understand the core principles behind such algorithms.

Intuitively, one can categorize the CI-based algorithms using the number of
searching agents. This characteristic would divide the algorithms into two major
categories: (1) population-based algorithms, and (2) single-point algorithms. The
algorithmsworkingwith a single agent are called trajectorymethods. The population-
based algorithms, on the other hand, perform search processes using several agents
simultaneously.

As stated in previous sections, some CI-based algorithms can keep a record of
previously inspected arrays of decision variable in the search space. Such algo-
rithms are known as the memory using algorithms. On the contrary, the algorithms,
known as memory-less algorithms, do not memorize the previously encountered
locations in the search space. The methods of making use of memory in a CI-based
optimization algorithm can be further divided into short term and long-term
memory using algorithms. The former usually keeps track of recently performed
moves, visited solutions or, in general, decisions taken, while the latter is usually an
accumulation of synthetic parameters about the search. The use of memory is
nowadays recognized as one of the fundamental elements of a powerful CI-based
optimization algorithm (Blum and Roli 2003).

As mentioned earlier on, one of the challenges in complex optimization prob-
lems is to avoid trapping in local optima, which has been a major problem for
classical optimization techniques. To overcome this problem, some CI-based
optimization algorithms would modify their objective function during the opti-
mization process. Such optimization techniques are known as dynamic algorithms.
The alternative would be to keep the objective function as is during the optimization
process. This is the characteristic of static algorithms.

1 Introduction 5

Finally, a more general, yet sometimes vague, classification of the CI-based
optimization algorithms is based on their sources of inspiration. Based on their ori-
gins, the CI-based optimization algorithms could be classified as nature-based and
non-nature-based optimization algorithms. While such a classification could be
confusing, for there are cases in which it is rather difficult to clearly attribute an
algorithm to one of the two classes, yet, such classification is themost widely accepted
classification for the CI-based algorithms. The subject of this book is nature-based
optimization algorithms. Generally speaking, any biological-, physical-, or even
chemical-based algorithm that somehow imitates the nature can be categorized as a
nature-based optimization algorithm. Also, it should be mentioned that such a cate-
gorizing method for the CI-based optimization algorithms has no contradiction with
any previously introduced categories. For instance, a nature-based optimization
algorithm could also be a population-based or single-point optimization algorithm.

It is advantageous to remember that two major components of any nature-based
algorithms are intensification and diversification. Diversification means to generate
diverse solutions so as to explore the search space, while intensification means to
focus on the search in a local region by exploiting the area surrounding the current
good solutions. While in most cases through a random-based component (diver-
sification), nature-based optimization algorithms attempt to thoroughly investigate
the decision space and divert the solutions to be trapped in local optima, the
intensification component ensures the convergence of the algorithm to what is more
likely to be the global optimum solution. The good combination of these two major
components will usually ensure that the global optimality is achievable (Yang
2010).

1.5 No Free Lunch Theorem: The Reason Behind New
Algorithms

In the late 1990s, (Wolpert and Macready 1997) proposed a controversial,
groundbreaking no free lunch theorem for optimization. Researchers intuitively
believed that there exist some universally beneficial robust algorithms for opti-
mization. However, the no free lunch theorem clearly states that if an algorithm
outperforms others for some optimization functions, there will be other optimization
functions in which the other algorithms shall be better than the aforementioned
algorithm. In other words, if all possible function spaces are to be considered, on
average, all CI-based algorithms, and subsequently all nature-based algorithms
should perform equally well. And thus, ultimately, there could be no universally
better algorithm.

While no free lunch theorem clearly dismisses the myth of an ultimate opti-
mization algorithm, there is a silver lining sub-layer to this theorem, as well.
Though all algorithms are to perform equally on the average over all possible

6 B. Zolghadr-Asli et al.

function space, yet as evidenced by numerous studies, such algorithms may and
will outperform one another in specific sets of optimization problems. In addition,
the algorithm developments are now focused on finding the best and efficient
algorithm for a specific set of optimization problems. Ultimately, instead of aiming
to design a perfect solver for all the problems, algorithms are developed to solve
most types of problems. As a result, during the last several decades, a considerable
number of novel nature-based optimization algorithms have been proposed. While
most of the algorithms hold considerable promise, a majority of them are still in
their infancy. For such algorithms to bloom and reach their full potential, they
should be applied to numerous optimization problems, so that not only they are
tested for their most suitable sets of optimization problems, but also adaptive
strategies are introduced to make them more suitable for wider sets of optimization
problems. For that, this book is specifically aimed to introduce some of the potential
nature-based algorithms that can be useful in multidisciplinary studies including
those in aeronautic engineering, mechanical engineering, industrial engineering,
electrical and electronic engineering, chemical engineering, civil and environmental
engineering, computer science and engineering, applied mathematics, physics,
economy, biology, and social science, and particularly the postgraduate studies in
advanced subjects.

1.6 Conclusion

In this chapter, a brief background of CI, which consists of any science-supported
approaches and technologies for analyzing, creating, and developing intelligent
systems has been discussed from an introductory perspective. A major subject of CI
is to develop nature-based optimization techniques. For decades the nature-based
optimization methods have proved their ability to solve complex practical opti-
mization problems. Nowadays there are many novel nature-based optimization
techniques. However, according to the no free lunch theorem such algorithms do
not have particular advantages over one another, but rather could outperform each
other for particular sets of optimization problems. As a result, this book aims to
introduce some of the potentially useful algorithms so that the right audience could
check their authentic outperformances in applications and perhaps modify or select
the best algorithm for any particular optimization problem in hand.

References

Back, T., Hammel, U., & Schwefel, H. P. (1997). Evolutionary computation: Comments on the
history and current state. IEEE Transactions on Evolutionary Computation, 1(1), 3–17.

Bezdek, J. C. (1992). On the relationship between neural networks, pattern recognition and
intelligence. International Journal of Approximate Reasoning, 6(2), 85–107.

1 Introduction 7

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys (CSUR), 35(3), 268–308.

Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer
Science, 344(2–3), 243–278.

Du, K. L., & Swamy, M. N. S. (2016). Search and optimization by metaheuristics. Switzerland:
Springer Publication.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Intelligent decision making through a simulation
of evolution. Behavioral Science, 11(4), 253–272.

Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine
Learning, 3(2), 95–99.

Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence,
1(1), 33–57.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1), 67–82.

Xing, B., & Gao, W. J. (2014). Innovative computational intelligence: A rough guide to 134 clever
algorithms. Cham, Switzerland: Springer Publication.

Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Frome, UK: Luniver Press.

8 B. Zolghadr-Asli et al.

Chapter 2
Cat Swarm Optimization (CSO)
Algorithm

Mahdi Bahrami, Omid Bozorg-Haddad and Xuefeng Chu

Abstract In this chapter, a brief literature review of the Cat Swarm Optimization
(CSO) algorithm is presented. Then the natural process, the basic CSO algorithm
iteration procedure, and the computational steps of the algorithm are detailed.
Finally, a pseudo code of CSO algorithm is also presented to demonstrate the
implementation of this optimization technique.

2.1 Introduction

Optimization algorithms based on the Swarm Intelligence (SI) were developed for
simulating the intelligent behavior of animals. In these modeling systems, a pop-
ulation of organisms such as ants, bees, birds, and fish are interacting with one
another and with their environment through sharing information, resulting in use of
their environment and resources. One of the more recent SI-based optimization
algorithms is the Cat Swarm Optimization (CSO) algorithm which is based on the
behavior of cats. Developed by Chu and Tsai (2007), the CSO algorithm and its
varieties have been implemented for different optimization problems. Different
variations of the algorithm have been developed by researchers. Tsai et al. (2008)

M. Bahrami � O. Bozorg-Haddad (&)
Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering
and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj,
Tehran 31587-77871, Iran
e-mail: obhaddad@ut.ac.ir

M. Bahrami
e-mail: m.bahrami9264@ut.ac.ir

X. Chu
Department of Civil and Environmental Engineering, North Dakota State University,
Dept 2470, Fargo, ND 58108-6050, USA
e-mail: xuefeng.chu@ndsu.edu

© Springer Nature Singapore Pte Ltd. 2018
O. Bozorg-Haddad (ed.), Advanced Optimization by Nature-Inspired Algorithms,
Studies in Computational Intelligence 720, DOI 10.1007/978-981-10-5221-7_2

9

presented a parallel structure of the algorithm (i.e., parallel CSO or PCSO). They
further developed an enhanced version of their PCSO (EPCSO) by incorporating
the Taguchi method into the tracing mode process of the algorithm (Tsai et al.
2012). The binary version of CSO (BCSO) was developed by Sharafi et al. (2013)
and applied to a number of benchmark optimization problems and the zero–one
knapsack problem. The chaotic cat swarm algorithm (CCSA) was developed by
Yang et al. (2013a). Using different chaotic maps, the seeking mode step of the
algorithm was improved. Based on the concept of homotopy, Yang et al. (2013b),
proposed the homotopy-inspired cat swarm algorithm (HCSA) in order to improve
the search efficiency. Lin et al. (2014a) proposed a method to improve CSO and
presented the Harmonious-CSO (HCSO). Lin et al. (2014b) introduced a modified
CSO (MCSO) algorithm capable of improving the search efficiency within the
problem space. The basic CSO algorithm was also integrated with a local search
procedure as well as the feature selection of support vector machines (SVMs). This
method changed the concept of cat alert surroundings in the seeking mode of CSO
algorithm. By dynamically adjusting the mixture ratio (MR) parameter of the CSO
algorithm, Wang (2015) enhanced CSO algorithm with an adaptive parameter
control. A hybrid cat swarm optimization method was developed by Ojha and
Naidu (2015) through adding the invasive weed optimization (IWO) algorithm to
the tracing mode of the CSO algorithm.

Several other authors have used CSO algorithm in different fields of research on
optimization problems. Lin and Chien (2009) constructed the CSO algorithm + SVM
model for data classification through integrating cat swam optimization into the SVM
classifier. Pradhan and Panda (2012) proposed a new multiobjective evolutionary
algorithm (MOEA) by extending CSO algorithm. The MOEA identified the non-
dominated solutions along the search process using the concept of Pareto dominance
and used an external archive for storing them. Xu and Hu (2012) presented a
CSO-based method for a resource-constrained project scheduling problem (RCPSP).
Saha et al. (2013) applied CSO algorithm to determine the optimal impulse response
coefficients of FIR low pass, high pass, bandpass, and band stop filters to meet the
respective ideal frequency response characteristics. So and Jenkins (2013) used CSO
for Infinite Impulse Response (IIR) system identification on a few benchmarked IIR
plants. Kumar et al. (2014) optimized the placement and sizing of multiple distributed
generators using CSO. Mohamadeen et al. (2014) compared the binary CSO with the
binary PSO in selecting the best transformer tests that were utilized to classify
transformer health, and thus to improve the reliability of identifying the transformer
condition within the power system. Guo et al. (2015) proposed an improved cat
swarm optimization algorithm and redefined some basic CSO concepts and opera-
tions according to the assembly sequence planning (ASP) characteristics. Bilgaiyan
et al. (2015) used the cat swarm-based multi-objective optimization approach to
schedule workflows in a cloud computing environment which showed better per-
formance, compared with the multi-objective particle swarm optimization (MOPSO)

10 M. Bahrami et al.

technique. Amara et al. (2015) solved the problem of wind power system design
reliability optimization using CSO, under the performance and cost constraints.
Meziane et al. (2015) optimized the electric power distribution of a solar system by
determining the optimal topology among various alternatives using CSO. The results
showed a better performance than the binary CSO. Ram et al. (2015) studied a 9-ring
time-modulated concentric circular antenna array (TMCCAA) with isotropic ele-
ments based on CSO, for reduction of side lobe level and improvement in the
directivity. Crawford et al. (2016) solved a bi-objective set covering problem using
the binary cat swarm optimization algorithm. In order to achieve higher overall
system reliability for a large-scale primary distribution network, Majumder and Eldho
(2016) examined the effectiveness of CSO for groundwater management problems,
by coupling it with the analytic element method (AEM) and the reverse particle
tracking (RPT) approach. The AEM-CSO model was applied to a hypothetical
unconfined aquifer considering two different objectives: maximization of the total
pumping of groundwater from the aquifer and minimization of the total pumping
costs. Mohapatra et al. (2016) used kernel ridge regression and a modified
CSO-based gene selection system for classification of microarray medical datasets.

2.2 Natural Process of the Cat Swarm
Optimization Algorithm

Despite spending most of their time in resting, cats have high alertness and curiosity
about their surroundings and moving objects in their environment. This behavior
helps cats in finding preys and hunting them down. Compared to the time dedicated
to their resting, they spend too little time on chasing preys to conserve their energy.
Inspired by this hunting pattern, Chu and Tsai (2007) developed CSO with two
modes: “seeking mode” for when cats are resting and “tracing mode” for when they
are chasing their prey. In CSO, a population of cats are created and randomly
distributed in the M-dimensional solution space, with each cat representing a
solution. This population is divided into two subgroups. The cats in the first sub-
group are resting and keeping an eye on their surroundings (i.e., seeking mode),
while the cats in the second subgroup start moving around and chasing their preys
(i.e., tracing mode). The mixture of these two modes helps CSO to move toward the
global solution in the M-dimensional solution space. Since the cats spend too little
time in the tracing mode, the number of the cats in the tracing subgroup should be
small. This number is defined by using the mixture ratio (MR) which has a small
value. After sorting the cats into these two modes, new positions and fitness
functions will be available, from which the cat with the best solution will be saved
in the memory. These steps are repeated until the stopping criteria are satisfied.

2 Cat Swarm Optimization (CSO) Algorithm 11

Following Chu and Tsai (2007), the computational procedures of CSO can be
described as follows:

Step 1: Create the initial population of cats and disperse them into the
M-dimensional solution space (Xi,d) and randomly assign each cat a
velocity in range of the maximum velocity value (ti,d).

Step 2: According to the value of MR, assign each cat a flag to sort them into the
seeking or tracing mode process.

Step 3: Evaluate the fitness value of each cat and save the cat with the best
fitness function. The position of the best cat (Xbest) represents the best
solution so far.

Step 4: Based on their flags, apply the cats into the seeking or tracing mode
process as described below.

Step 5: If the termination criteria are satisfied, terminate the process. Otherwise
repeat steps 2 through 5.

Table 2.1 lists the characteristics of the CSO and Fig. 2.1 illustrates the detailed
computational steps of the CSO algorithm.

2.2.1 Seeking Mode (Resting)

During this mode the cat is resting while keeping an eye on its environment. In case
of sensing a prey or danger, the cat decides its next move. If the cat decides to
move, it does that slowly and cautiously. Just like while resting, in the seeking
mode the cat observes into the M-dimensional solution space in order to decide its
next move. In this situation, the cat is aware of its own situation, its environment,
and the choices it can make for its movement. These are represented in the CSO
algorithm by using four parameters: seeking memory pool (SMP), seeking range of

Table 2.1 Characteristics of the CSO algorithm

General algorithm Cat swarm optimization

Decision variable Cat’s position in each dimension

Solution Cat’s position

Old solution Old position of cat

New solution New position of cat

Best solution Any cat with the best fitness

Fitness function Distance between cat and prey

Initial solution Random positions of cats

Selection –

Process of generating new solution Seeking and tracing a prey

12 M. Bahrami et al.

the selected dimension (SRD), counts of dimension to change (CDC), and
self-position consideration (SPC) (Chu and Tsai 2007). SMP is the number of the
copies made of each cat in the seeking process. SRD is the maximum difference
between the new and old values in the dimension selected for mutation. CDC tells
how many dimensions will be mutated. All these parameters define the seeking
process of the algorithm. SPC is the Boolean variable which indicates the current
position of the cat as a candidate position for movement. SPC cannot affect the
value of SMP.

Define the parameters of the algorithm

Generate initial cats and velocities randomly

Re-evaluate fitness functions and keep the cat with the best solution in the memory

Yes

End

No

Report the best position among the cats

Start

Distribute the cats into tracing or seeking mode

Is in seeking mode?catk

Start seeking modeStart tracing mode

Are termination criteria satisfied?
YesNo

Fig. 2.1 Flowchart of the CSO algorithm

2 Cat Swarm Optimization (CSO) Algorithm 13

Following Chu and Tsai (2007), the process of the seeking mode is described
below.

Step 1: Make SMP copies of each cati. If the value of SPC is true, SMP-1 copies
are made and the current position of the cat remains as one of the copies.

Step 2: For each copy, according to CDC calculate a new position by using
Eq. (2.1) (Majumder and Eldho 2016)

Xcn ¼ ð1� SRD� RÞ � Xc ð2:1Þ

in which

Xc current position;
Xcn new position; and
R a random number, which varies between 0 and 1.

Step 3: Compute the fitness values (FS) for new positions. If all FS values are
exactly equal, set the selecting probability to 1 for all candidate points.
Otherwise calculate the selecting probability of each candidate point by
using Eq. (2.2).

Step 4: Using the roulette wheel, randomly pick the point to move to from the
candidate points, and replace the position of cati.

Pi ¼ FSi � FSbj j
FSmax � FSminj j ; where 0\i\j ð2:2Þ

where

Pi probability of current candidate cati;
FSi fitness value of the cati;
FSmax maximum value of fitness function;
FSmin minimum value of fitness function; and
FSb = FSmax for minimization problems and
FSb = FSmin for maximization problems.

2.2.2 Tracing Mode (Movement)

The tracing mode simulates the cat chasing a prey. After finding a prey while
resting (seeking mode), the cat decides its movement speed and direction based on

14 M. Bahrami et al.

the prey’s position and speed. In CSO, the velocity of cat k in dimension d is
given by

vk;d ¼ vk;d þ r1 � c1ðXbest;d � Xk;dÞ ð2:3Þ

in which, vk;d = velocity of cat k in dimension d; Xbest;d = position of the cat with
the best solution; Xk;d = position of the catk; c1 = a constant; and r1 = a random
value in the range of [0,1]. Using this velocity, the cat moves in the M-dimensional
decision space and reports every new position it takes. If the velocity of the cat is
greater than the maximum velocity, its velocity is set to the maximum velocity. The
new position of each cat is calculated by

Xk;d;new ¼ Xk;d;old þ vk;d ð2:4Þ

in which

Xk;d;new new position of cat k in dimension d; and
Xk;d;old current position of cat k in dimension d.

2.3 Termination Criteria

The termination criterion determines when the algorithm is terminated. Selecting a
good termination criterion has an important role to ensure a correct convergence of
the algorithm. The number of iterations, the amount of improvement, and the
running time are common termination criteria for the CSO.

2.4 Performance of the CSO Algorithm

Chu and Tsai (2007) used six test functions to evaluate the CSO performance and
compared the results with the particle swarm optimization (PSO) algorithm and the
PSO with weighting factor (PSO-WF). According to the results CSO outperformed
PSO and PSO-WF in finding the global best solutions.

2 Cat Swarm Optimization (CSO) Algorithm 15

2.5 Pseudo Code of the CSO Algorithm

Begin

Input parameters of the algorithm and the initial data

Initialize the cat population Xi (i = 1, 2, ... , n), υ, and SPC

While (the stop criterion is not satisfied or I < Imax)

Calculate the fitness function values for all cats and sort them

Xg= cat with the best solution

For = 1:

If SPC = 1

Start seeking mode

Else

Start tracing mode

End if

End for i

End while

Post-processing the results and visualization

End

2.6 Conclusion

This chapter described cat swarm optimization (CSO) which is a new swarm-based
algorithm. CSO consists of two modes, seeking mode and tracing mode which
simulate the resting and hunting behaviors of cats. Each cat has a position in the
M-dimensional solution space. The cats’ movement toward the optimum solution is
based on a flag that sorts them into the seeking or tracing mode, the first one being a
slow movement around their environment and the latter being a fast movement
toward the global best.

A literature review of CSO was presented, showing the success of the algorithm
for different optimization problems, along with different variations of the code

16 M. Bahrami et al.

developed by other researchers. The flowchart of the CSO along with the pseudo
code was also presented in order to make different parts of the algorithm easier to
understand. These sources are a good reference point for further exploration of the
CSO algorithm.

References

Amara, M., Bouanane, A., Meziane, R., & Zeblah, A. (2015). Hybrid wind gas reliability
optimization using cat swarm approach under performance and cost constraints. 3rd
International Renewable and Sustainable Energy Conference (IRSEC), Marrakech and
Ouarzazate, Morocco, 10–13 December.

Bilgaiyan, S., Sagnika, S., & Das, M. (2015). A multi-objective cat swarm optimization algorithm
for workflow scheduling in cloud computing environment. Intelligent Computing,
Communication and Devices (pp. 73–84). New Delhi, India: Springer.

Chu, S. C., & Tsai, P. W. (2007). Computational intelligence based on the behavior of cats.
International Journal of Innovative Computing, Information and Control, 3(1), 163–173.

Crawford, B., Soto, R., Caballero, H., Olguín, E., & Misra, S. (2016). Solving biobjective set
covering problem using binary cat swarm optimization algorithm. The 16th International
Conference on Computational Science and Its Applications, Beijing, China, 4–7 July.

Guo, J., Sun, Z., Tang, H., Yin, L., & Zhang, Z. (2015). Improved cat swarm optimization
algorithm for assembly sequence planning. Open Automation and Control Systems Journal, 7,
792–799.

Kumar, D., Samantaray, S. R., Kamwa, I., & Sahoo, N. C. (2014). Reliability-constrained based
optimal placement and sizing of multiple distributed generators in power distribution network
using cat swarm optimization. Electric Power Components and Systems, 42(2), 149–164.

Lin, K. C., & Chien, H. Y. (2009). CSO-based feature selection and parameter optimization for
support vector machine. Joint Conferences on Pervasive Computing (JCPC), Taipei, Taiwan,
3–5 December.

Lin, K. C., Zhang, K. Y., & Hung, J. C. (2014a). Feature selection of support vector machine
based on harmonious cat swarm optimization. Ubi-Media Computing and Workshops
(UMEDIA), Ulaanbaatar, Mongolia, 12–14 July.

Lin, K. C., Huang, Y. H., Hung, J. C., & Lin, Y. T. (2014b). Modified cat swarm optimization
algorithm for feature selection of support vector machines. Frontier and Innovation in Future
Computing and Communications, 329–336.

Majumder, P., & Eldho, T. I. (2016). A new groundwater management model by coupling analytic
element method and reverse particle tracking with cat swarm optimization. Water Resources
Management, 30(6), 1953–1972.

Meziane, R., Boufala, S., Amara, M., & Hamzi, A. (2015). Cat swarm algorithm constructive
method for hybrid solar gas power system reconfiguration. 3rd International Renewable and
Sustainable Energy Conference (IRSEC), Marrakech and Ouarzazate, Morocco, 10–13
December.

Mohamadeen, K. I., Sharkawy, R. M., & Salama, M. M. (2014). Binary cat swarm optimization
versus binary particle swarm optimization for transformer health index determination. 2nd
International Conference on Engineering and Technology, Cairo, Egypt, 19–20 April.

Mohapatra, P., Chakravarty, S., & Dash, P. K. (2016). Microarray medical data classification using
kernel ridge regression and modified cat swarm optimization based gene selection system.
Swarm and Evolutionary Computation, 28, 144–160.

Naidu, Y. R., & Ojha, A. K. (2015). A hybrid version of invasive weed optimization with
quadratic approximation. Soft Computing, 19(12), 3581–3598.

2 Cat Swarm Optimization (CSO) Algorithm 17

Pradhan, P. M., & Panda, G. (2012). Solving multiobjective problems using cat swarm optimization.
Expert Systems with Applications, 39(3), 2956–2964.

Ram, G., Mandal, D., Kar, R., & Ghoshal, S. P. (2015). Cat swarm optimization as applied to
time-modulated concentric circular antenna array: Analysis and comparison with other
stochastic optimization methods. IEEE Transactions on Antennas and Propagation, 63(9),
4180–4183.

Saha, S. K., Ghoshal, S. P., Kar, R., & Mandal, D. (2013). Cat swarm optimization algorithm for
optimal linear phase FIR filter design. ISA Transactions, 52(6), 781–794.

Sharafi, Y., Khanesar, M. A., & Teshnehlab, M. (2013). Discrete binary cat swarm optimization
algorithm. In Computer, Control & Communication (IC4). 3rd IEEE International Conference
on Computer, Control & Communication (IC4), Karachi, Pakistan, 25–26 September.

So, J., & Jenkins, W. K. (2013). Comparison of cat swarm optimization with particle swarm
optimization for IIR system identification. Asilomar Conference on Signals, Systems and
Computers, Pacific Grove, CA, USA, 6–9 November.

Tsai, P. W., Pan, J. S., Chen, S. M., Liao, B. Y., & Hao, S. P. (2008). Parallel cat swarm
optimization. International Conference on Machine Learning and Cybernetics, Kunming,
China, 12–15 July.

Tsai, P. W., Pan, J. S., Chen, S. M., & Liao, B. Y. (2012). Enhanced parallel cat swarm
optimization based on the Taguchi method. Expert Systems with Applications, 39(7),
6309–6319.

Wang, J. (2015). A new cat swarm optimization with adaptive parameter control. Genetic and
Evolutionary Computing, 69–78.

Xu, L., & Hu, W. B. (2012). Cat swarm optimization-based schemes for resource-constrained
project scheduling. Applied Mechanics and Materials, 220, 251–258.

Yang, S. D., Yi, Y. L., & Shan, Z. Y. (2013a). Chaotic cat swarm algorithms for global numerical
optimization. Advanced Materials Research, 602, 1782–1786.

Yang, S. D., Yi, Y. L., & Lu, Y. P. (2013b). Homotopy-inspired cat swarm algorithm for global
optimization. Advanced Materials Research, 602, 1793–1797.

18 M. Bahrami et al.

Chapter 3
League Championship Algorithm (LCA)

Hossein Rezaei, Omid Bozorg-Haddad and Xuefeng Chu

Abstract This chapter briefly describes the league championship algorithm
(LCA) as one of the new evolutionary algorithms. In this chapter, a brief literature
review of LCA is first presented; and then the procedure of holding a common
league in sports and its rules are described. Finally, a pseudo code of LCA is
presented.

3.1 Introduction

The league championship algorithm (LCA) is one of the new evolutionary algo-
rithms (EA) for finding global optimum in a continuous search space first proposed
by Kashan (2009, 2011) developed the basic LCA for solving a constrained opti-
mization benchmark problem. The results demonstrated that LCA is a very com-
petitive algorithm for constrained optimization problems. Kashan et al. (2012)
modified the basic LCA by using two halves analysis, instead of the post-match
SWOT analysis. The performance of the more realistic modified LCA (RLCA) was
compared with those of the particle swarm optimization (PSO) and the basic LCA
in finding the global solutions of different benchmark problems. The results indi-
cated the better performance of RLCA in terms of the quality of final solutions and
the convergence speed. LCA has been applied to different optimization problems.

H. Rezaei � O. Bozorg-Haddad (&)
Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering
and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj,
Tehran 31587-77871, Iran
e-mail: OBHaddad@ut.ac.ir

H. Rezaei
e-mail: HosseinRezaie18@ut.ac.ir

X. Chu
Department of Civil and Environmental Engineering, North Dakota State University,
Dept 2470, Fargo, ND 58108-6050, USA
e-mail: Xuefeng.Chu@ndsu.edu

© Springer Nature Singapore Pte Ltd. 2018
O. Bozorg-Haddad (ed.), Advanced Optimization by Nature-Inspired Algorithms,
Studies in Computational Intelligence 720, DOI 10.1007/978-981-10-5221-7_3

19

Lenin et al. (2013) utilized LCA for solving a multi-objective dispatch problem.
Abdulhamid and Latiff (2014) used LCA based on job scheduling scheme for
optimization of infrastructure as a service cloud. Sajadi et al. (2014) applied LCA
for scheduling context. The scheduling considered in a permutation flow-shop
system with makespan criterion. Abdulhamid et al. (2015a, b, c) used LCA to
minimize makespan time scheduled tasks in IaaS cloud. Abdulhamid et al. (2015a,
b, c) proposed a job scheduling algorithm based on the enhanced LCA in order to
optimize the infrastructures as a service cloud. The performance of the proposed
algorithm was compared with three other algorithms. The results proved that the
LCA scheduling algorithm performed better than other algorithms. Xu et al. (2015)
presented an improved league championship algorithm with free search (LCAFS),
in which the novel match schedule was implemented to improve the capability of
competition for teams and by introducing the free search operation, the diversity of
league was also improved. The global search performance and convergence speed
of LCAFS were compared with those of the basic LCA, PSO, and genetic algorithm
(GA) in solving some benchmark functions. The results demonstrated that LCAFS
was able to describe complex relationships between key influence factors and
performance indexes. Jalili et al. (2016) introduced a new approach for optimizing
truss design based on LCA, which considered the concept of tie. The performance
of the proposed algorithm was evaluated by using five typical truss design examples
with different constraints. The results illustrated the effectiveness and robustness of
the proposed algorithm.

3.2 Review of LCA and Its Terminology

The basic idea of LCA was inspired by the concept of league championship in sport
competitions. Following terms related to the league, team and its structure are
commonly used in LCA.

League: ‘league’ means a group of sport teams that are organized to compete
with each other in a certain type of sport. A league championship can be held in
different ways. For example, the number of games that each team should play with
other teams may vary. At the end of the league championship, the champion is
determined based on the win, loss and tie records during the league’s competition
with other teams.

Formation: formation of a team refers to the specific structure of the team when
playing with other teams, such as the positions of players, and the rule of each player
during match. For any sport teams, coaches arrange their teams based on their
players’ abilities to achieve the best available formation to play with other teams.

Match analysis: match analysis refers to the examination of behavioral events
occurring during a match. The main goal of match analysis after determining the
performance of a team is to recognize the strengths and weaknesses and to improve.
The important part of the match analysis process is to send the feedback of last
matches (their own match and the opponent’s match) to players. The feedback

20 H. Rezaei et al.

should be given to the player, pre-match and post-match to build up team for next
match. One of these analyses is the strength/weakness/opportunity/threat (SWOT)
analysis which links the external (opportunities and threats) and internal (strengths
and weaknesses) factors of the team’s performance. Identification of SWOTs is
necessary because next planning step is based on the results of the SWOT analysis
to achieve the main objective. The SWOT analysis evaluates the interrelationships
between the internal and external factors of match in four basic categories:

S/T matches illustrate the strengths of a team and the threats of competitors. The
team should use its strengths to defuse threats.

S/O matches illustrate the strengths and opportunities of a team. The team should
use its strengths to take opportunities.

W/T matches illustrate the weaknesses and threats of a team. The team should
try to minimize its weaknesses and defuse threats.

W/O matches show the weaknesses coupled with opportunities of a team. The
team should attempt to overcome weaknesses by use of opportunities.

The SWOT analysis provides a structure for conducting gap analysis. A gap
refers to the space between the place where we are and the place where we want to
be. The identification process of a team’s gap contains an in-depth analysis of the
factors that express the current condition of the team and subsequently help to make
a plan for improvement of the team.

3.3 League Championship Algorithm

LCA is a population-based algorithm that is used for solving global optimization
problems with a continuous search space. Like other population-based algorithms,
LCA tries to move populations from possible areas to promising areas during
searching for the optimum in the whole decision space. Table 3.1 presents a list of
the characteristics of the LCA.

Table 3.1 Characteristics of the LCA

General algorithm League championship algorithm

Decision variable Player’s strength in each team’s formation

Solution Team’s formation

Old solution Old team’s formation

New solution New team’s formation

Best solution The winner of league championship

Fitness function Team’s playing strength

Initial solution Random formation for each team

Selection Match analysis process

Process of generating new solution SWOT matrix

3 League Championship Algorithm (LCA) 21

In the optimization process of LCA, a set of L (an even number) solutions are
first created randomly to build initial population. Then, they evolve gradually the
composition of the population in sequential iterations. In LCA, league refers to
population; formation of a team stands for solution; and week refers to iteration. So,
team i denotes the ith solution of the population. A fitness value is then calculated
for each team based on the team’s adaption to the objectives (determined by the
concepts of player strength and team’s formation). In LCA, new solutions are
generated for next week by applying operators to each team based on the results of
match analysis which are used by coaches to improve their team’s arrangements.
An evolutionary algorithm (EA) is a population-based one that uses the Darwin’s
evolution theory as selection mechanism. Based on a pseudo code of EA and
according to the selection process of LCA (greedy selection), in which the current
team’s formation is replaced by the best team’s formation, LCA can be classified as
an EA group of the population-based algorithms. LCA terminates after a certain
number of seasons (S), each of which is composed of ðL� 1Þ weeks. Note that the
number of iterations in LCA is equal to SðL� 1Þ.

LCA models an artificial championship during the optimization process of the
algorithm based on some idealized rule that can be expressed as follows:

(1) The team with better playing strength (ability of the team to defeat competitors)
has more chances to win the game.

(2) The weaker team can win the game but its chance to win the game is very low
(the playing strength does not determine the final outcome of the game exactly).

(3) The sum of the win’s probabilities of both teams that participate in a match is
equal to one.

(4) The outcome of the game only can be win or loss (tie is not acceptable as the
outcome of the game in the basic version of LCA).

(5) When teams i and j compete with each other and eventually team i wins the
match, any strength helps team i to win and dual weakness causes team j to lose
the match (weakness is a lack of specific strength).

(6) The teams just focus on their forthcoming match without consideration of other
future matches and the formation of team arranged only by previous week
results.

Figure 3.1 shows the flowchart of LCA, which illustrates the optimization
process of the basic LCA. As shown in Fig. 3.1, first of all a representation for
individuals must be chosen. Solutions (team’s formation) are represented with n
decision variables of real numbers. Each element of the solutions depends on one of
the team’s players and shows the corresponding values of the variables with the aim
of optimization. Changes in each value can be the effect of changes in the
responsibility of the corresponding player. f ðx1; x2; . . .; xnÞ denotes an n variable
function to be minimized during the optimization running of LCA over a decision
space (a subset of Rn). The solution of team i at week t can be represented by
Xt
i ¼ xti1; x

t
i2; . . .; x

t
in

� �
and the value of its fitness function (player strength) is ff ðxtiÞ.

Bt�1
i ¼ bt�1

i1 ; bt�1
i2 ; . . .; bt�1

in

� �
and ff ðBt�1

i Þ denote the best formation of team i before

22 H. Rezaei et al.

week t and its fitness function, respectively. The greedy selection in LCA can be
made between ff ðxtiÞ and ff ðBt�1

i Þ. The modules of LCA, generation of league
schedule, determination of the winner or loser, and setup of new formation are
detailed in the following section.

Fig. 3.1 Flowchart of the basic LCA

3 League Championship Algorithm (LCA) 23

3.4 Generating League Schedule

The common aspect of different sport leagues is the structure, in which teams can
compete with each other in a nonrandom schedule, named season. Therefore, the
first and the most important step in LCA, is to determine the match schedule in each
season. A single-round robin schedule can be applied in LCA to determine the
team’s schedule, in which each team competes against other teams just once in a
certain season. In a championship containing L teams with the single-round robin
schedule rule, there are LðL� 1Þ=2 matches in a certain season. In each of ðL� 1Þ
weeks, ðL=2Þ matches will be held in parallel (if L is odd, in each week ðL� 1Þ=2
matches will be held and one team has to rest).

The procedure of scheduling of the algorithm can be illustrated by a simple
example of league championship of 8 teams. The teams have named from a to h.
In the first week, the competitors are identified randomly. Figure 3.2a shows
the competitors in the first week. For example, team a competes with team d and
team b competes with team g. In the second week, in order to identify the pairs of
competitors, one of the teams (team a) is fixed in its own place and all other teams
turn round clockwise. Figure 3.2b indicates the procedure of identifying the pairs of
competitors for week 2. This process continues until the last week (week 7) shown
Fig. 3.2c. In LCA, the single-round robin tournament is applied for scheduling
L teams in SðL� 1Þ weeks.

3.5 Determining the Winner or Loser

During the league championship, teams compete with each other in every week.
The outcome of each match can be loss, tie, or win. The scoring rules for the
outcome of the matches can be different for different sports. For instance, in soccer
the winner gets three, and the loser gets a zero score. By the end of the match, both
teams get one if the outcome is tie. According to the idealized rule 1, the chance of
a stronger team to win the match is higher than its competitor, but occasionally a
weaker team may win the match. Therefore, the outcome of the match is associated
with different reasons. The most important one is the playing strengths of the teams.
So we can consider a linear relationship between the playing strengths and the
outcome of the match (idealized rule 2).

Fig. 3.2 A simple example of league championship scheduling

24 H. Rezaei et al.

In LCA, a stochastic criterion of playing strength, which depends on the degree
of fit of a team, is utilized to determine the winner or loser of the match. Note that in
the basic version of LCA the outcome of the matches can only be win or loss
(no tie). The teams’ degree of fit refers to the proportion of playing strength, which
is calculated based on the distance between the playing strength and the ideal
reference point (the lower bound of the optimization problem).

Assuming that team i competes with team j at week t, the chance of each team to
defeat another team can be expressed as (Kashan 2009) follows:

f ðxtiÞ � f̂

f ðxtjÞ � f̂
¼ ptj

pti
ð3:1Þ

where xti and xtj ¼ formation of teams i and j at week t; f ðxtiÞ and f ðxtjÞ ¼ playing

strength of teams i and j at week t; f̂ ¼ ideal reference point; pti ¼ chance of team
i to defeat team j at week t; and ptj ¼ chance of team j to defeat team i at week t.

Because the chances of both teams to win the match are evaluated based on the
specific point, the ratio of distance is identified as the team’s winning portion.
According to idealized rule 3, the relationship of the chances of teams i and j at
week t can be expressed as follows:

pti þ ptj ¼ 1 ð3:2Þ

Based on Eqs. (3.1) and (3.2), the chance of team i to defeat team j at week t is
given by (Kashan 2014):

pti ¼
f xtj
� �

� f̂

f ðxtiÞþ f xtÞj
� �

� 2f̂
ð3:3Þ

In LCA, in order to specify the winner of the match, a random number between
[0,1] is generated randomly. If the generated number is equal to or less than pti, team
i defeats team j at week t. Otherwise, team j defeats team i at week t.

3.6 Setting Up a New Team Formation

Before applying any strategy to team i, in order to change the formation of team i at
next week, coaches should identify strengths and weaknesses of the team and
players (individuals). Based on these strengths and weaknesses, coaches determine
the formation of the team in next week to enhance the performance of the team. An
artificial match analysis can be performed to specify the opportunities and threats.
Strengths and weaknesses are internal factors while opportunities and threats are
external factors. In LCA, the internal factors are evaluated based on the team’s

3 League Championship Algorithm (LCA) 25

performance at the last week (week t), while evaluating the external factors is based
on the opponent’s performance at week t. The artificial match analysis helps prepare
team i for next week (week t + 1). In the modeling process, if team i wins (loses)
the match at week t, it is assumed that the success (failure) is directly related to the
strengths (weaknesses) of team i or weaknesses (strengths) of its opponent team
j (idealized rule 5). The procedure of modeling and evaluating the artificial match
analysis for team i at week t is displayed in Fig. 3.3. The left side in Fig. 3.3 shows
the evaluation of hypothetical internal factors and the right side shows the way of
evaluating the external factors.

According to the results of the artificial match analysis applied to team i in order
to determine its performance, the coach should take some possible actions to
improve the team’s performance. The possible actions (SWOT analysis) are shown
in Table 3.2. The SWOT analysis is adjusted based on idealized rule 6. Table 3.2
shows different strategies (S/T, S/O, W/T, and W/O) that can be adopted for
team i in different situations. For instances, if team i has won the last match and
team l has lost its match at the last week, it is reasonable for team i to focus on
strengths which give it more chance to win team l at next match. Therefore,
adopting the S/O strategy for team i is efficient. Table 3.2 also displays,

Fig. 3.3 Procedure of the artificial match analysis in LCA

26 H. Rezaei et al.

in a metaphorical way, the SWOT analysis matrix which is used for planning in the
future matches.

The aforementioned analysis must be performed by all participants at week t to
plan for next match and choose a suitable formation for upcoming match. After
adopting a suitable strategy for team i based on the SWOT matrix, all teams should
fill their gaps. For instance, assume that in a soccer match team i has lost the match
at week t to team j and the results of the match analysis process have specified that
the type of defensive state (man-to-man defensive state) is the reason of loss
Therefore, a gap exists between the current sensitive defensive state and the state
which ensures a man-to-man pressure defense at week tþ 1.

According to the league schedule, team l is the competitor of team i (i = 1, 2,…, L)
at week tþ 1; team j is the competitor of team i at week t; and team k is the competitor
of team l at week t. As aforementioned, Xt

i ; X
t
j and Xt

k, respectively, denote the
formations of teams i, j, and k at week t. ðXt

k � Xt
i Þ defines the gap between playing

styles of teams i and k, which highlights the strengths of team k. This case applies
when team i wants to play with team l at week t + 1 and team k wins team l at week t
byXt

k’s formation. Therefore, if team i uses the playing style of team k at week t (Xt
k) to

compete with team l at week tþ 1, it is highly possible for team i to win team l at
week tþ 1. Similarly, ðXt

i � Xt
kÞ is used if we want to ‘focus on the weaknesses

of team k’. In this case, team i should not use the playing style of team k at week t
against team l. ðXt

i � Xt
j Þ and ðXt

j � Xt
i Þ also can be defined. Due to the principle that

each team should play with the best formation that is selected from playing experi-
ence up to now and by considering the results of the artificial match analysis in last
week, new formation of team i at week tþ 1 ðXtþ 1

i ¼ xtþ 1
i1 ; xtþ 1

i2 ; . . .; xtþ 1
in

� �� �
can be

set up by one of the following equations:
If teams i and l have won the match at week t, the new formation of team i will

be generated based on the S/T strategy:

Table 3.2 Hypothetical SWOT analysis derived from the artificial match analysis

Adopt S/T strategy Adopt S/O strategy Adopt W/T strategy Adopt W/O strategy

Team i has won Team i has won Team i has lost Team i has lost

Team l has won Team l has lost Team l has won Team l has lost

Focusing on Focusing on Focusing on focusing on

S Own strengths or
weaknesses of
team j

Own strengths or
weaknesses of
team j

– –

W – – Own weaknesses or
strengths of team j

Own weaknesses or
strengths of team j

O – Weaknesses of team
l or strengths of
team k

– Weaknesses of team
l or strengths of
team k

T Strengths of team
l or weaknesses of
team k

– Strengths of team
l or weaknesses of
team k

–

3 League Championship Algorithm (LCA) 27

S=T strategyð Þ : xtþ 1
im ¼ btim þ ytimðx1r1imðxtim � xtkmÞþx1r2imðxtim � xtjmÞ

8m ¼ 1; 2; . . .; n
ð3:4Þ

If team i has won and team l has lost at week t, the new formation of team i will
be generated based on the S/O strategy:

S=O strategyð Þ : xtþ 1
im ¼ btim þ ytimðx2r1imðxtKm � xtimÞþx1r2imðxtim � xtjmÞ

8m ¼ 1; 2; . . .; n
ð3:5Þ

If team i has lost and team l has won at week t, the new formation of team i will
be generated based on the W/T strategy:

W=T strategyð Þ : xtþ 1
im ¼ btim þ ytimðx1r1imðxtim � xtkmÞþx2r2imðxtjm � xtimÞ

8m ¼ 1; 2; . . .; n
ð3:6Þ

If teams i and l have lost the match at week t, the new formation of team i will be
generated based on the W/O strategy:

W=O strategyð Þ : xtþ 1
im ¼ btim þ ytimðx2r1imðxtkm � xtimÞþx2r2imðxtjm � xtimÞ

8m ¼ 1; 2; . . .; n
ð3:7Þ

where m ¼ number of team members; r1im and r2im ¼ random numbers between
[0,1]; x1 and x2 ¼ coefficients used to scale the contribution of approach or retreat
components; and ytim ¼ binary variable that specifies whether or not the mth player
must change in the new formation (only ytim ¼ 1 allows to change). Note that
different signs in the parentheses are the consequence of acceleration towards the
winner or recess from the loser. Yt

i ¼ ðyti1; yti2; . . .; ytinÞ denotes a binary change
variable. The summation of the changes needed for next match ðyti ¼ 1Þ is equal to
qti. Changes in all aspects of the team (players and styles) by coaches are not
common (just a few changes in the team can be required). In order to calculate the
number of changes in the team’s formation for next match, a truncated geometric
distribution is applied in LCA. The truncated geometric distribution lets LCA to
control the number of changes with emphasis on the smaller rates of changes in Bt

i.
The truncated geometric distribution can be expressed as follows:

qti ¼
lnð1� ð1� pcÞn�q0 þ 1Þr

lnð1� pcÞ

" #
þ q0 � 1 : qti 2 q0; q0 þ 1; . . .; q0 þ nf g ð3:8Þ

where r ¼ random number between [0,1]; pC ¼ control parameter pc\1; pc 6¼ 0½ �;
and q0 ¼ the least number of changes. If pc\0, the situation is reversed so that by a
more negative value of pc, The emphasis in LCA is placed on a greater rate of change
in the team’s formation. q0 is determined during the match analysis (note that the
minimum value of q0 is equal to zero). pc in the truncated geometric distribution is
the probability of success. In LCA, after calculating the value of qti by using Eq. (3.8),
the players of Bt

i are randomly selected and changed based on Eqs. (3.4)–(3.7).

28 H. Rezaei et al.

3.7 Pseudo Code of LCA

Begin

Generate initial teams’ formation randomly [),...,,((21
t
in

t
i

t
i

t
i xxxX], i 1, 2, …,L]

Generate league schedule for L teams

For m=1:)1(SL

Evaluate the strengths for all teams

Calculate the chance of each team to defeat its competitors in next match (t
ip)

Generate a random number between [0,1] (Rn)

If t
in pR

Team i wins the match

Else

Team j wins the match

End if

Generate a random number between [0,1] (r)

Calculate the number of changes in teams’ best formation (t
iB) for next match

based on the truncated geometric distribution (t
iq)

t
iq players are selected randomly from t

iB and changed by the SWOT matrix

If team i and team l have won

Select the S/T strategy

Else if team i has won and team l has lost

Select the S/O strategy

Else if team i has lost and team l has won

 Select the W/T strategy

 Else if team i has lost and team l has lost

 Select the W/O strategy

 End if

 End for m

 End

3 League Championship Algorithm (LCA) 29

3.8 Conclusions

This chapter described the league championship algorithm (LCA), which stemmed
from the concept of league championship in sport. This chapter also presented a
literature review of LCA, and its algorithmic fundamental and pseudo code.

References

Abdulhamid, S. M., & Latiff, S. A. (2014). League championship algorithm (LCA) based job
scheduling scheme for infrastructure as a service cloud. 5th International Graduate Conference
on Engineering, Science and Humanities, UTM Postgraduate Student Societies, Johor,
Malaysia, 19–21 August.

Abdulhamid, S. M., Latiff, M. S., & Abdullahi, M. (2015a). Job scheduling technique for
infrastructure as a service cloud using an enhanced championship algorithm. 2nd International
Conference on Advanced Data and Information Engineering, Lecture Notes in Electrical
Engineering, Bali, Indonesia, 25–26 April.

Abdulhamid, S. M., Latiff, M. S., & Idris, I. (2015b). Tasks scheduling technique using league
championship algorithm for makespan minimization in IaaS cloud. ARPN Journal of
Engineering and Applied Sciences., 9(12), 2528–2533.

Abdulhamid, S. M., Lattif, M. S. A., Madni, S. H. H., & Oluwafemi, O. (2015c). A survey of
league championship algorithm: prospects and challenges. Indian Journal of Science and
Technology.

Jalili, S., Kashan, A. H., & Husseinzadeh, Y. (2016). League championship algorithms for
optimization design of pin-jointed structures. Journal of Computing in Civil Engineering.
doi:10.1061/(ASCE)CP.1943-5487.0000617

Kashan, A. H. (2009). League championship algorithm: A new algorithm for numerical function
optimization. International Conference on Soft Computing and Pattern Recognition, IEEE
Computer Society, Malacca, Malaysia, 4–7 December.

Kashan, A. H. (2011). An efficient algorithm for constrained global optimization and application to
mechanical engineering design: League championship algorithm (LCA). Computer-Aided
Design, 43(2011), 1769–1792.

Kashan, A. H. (2014). League championship algorithm (LCA): an algorithm for global
optimization inspired by sport championships. Applied Soft Computing, 16(2014), 171–200.

Kashn, A. H., Karimiyan, S., Karimiyan, M., & Kashan, M. H. (2012). A modified League
Championship Algorithm for numerical function optimization via artificial modeling of the
“between two halves analysis. The 6th International Conference on Soft Computing and
Intelligent Systems, and the 13th International Symposium on Advanced Intelligence Systems,
University of Aizu, Kobe, Japan, 20–24 November.

Lenin, K., Reddy, B. R., & Kalavati, M. S. (2013). League championship algorithm (LCA) for
solving optimal reactive power dispatch problem. International Journal of Computer and
Information Technologies., 1(3), 254–272.

Sajadi, S. M., Kashan, A. H., & Khaledan, S. (2014). A new approach for permutation flow-shop
scheduling problem using league championship algorithm. In Proceedings of CIE44 and
IMSS’14, 2014.

Xu, W., Wang, R., & Yang, J. (2015). An improved league championship algorithm with free
search and its application on production scheduling. Journal of Intelligent Manufacturing.
doi:10.1007/s10845-015-1099-4

30 H. Rezaei et al.

http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000617
http://dx.doi.org/10.1007/s10845-015-1099-4

Chapter 4
Anarchic Society Optimization
(ASO) Algorithm

Atiyeh Bozorgi, Omid Bozorg-Haddad and Xuefeng Chu

Abstract Due to limited resources and equipment in most engineering projects, it
is necessary to use optimization techniques. Older optimization techniques,
including derivative and other mathematical methods may not be practical to new
complex problems. Therefore new optimization algorithms are needed. In the past
decades many algorithms were developed and used for different optimization
problems, which can be divided into three categories including classic, evolutionary
and heuristic algorithms. The evolutionary and heuristic algorithms which are used
widely in recent years are based on animals’ life. In this chapter, one of the heuristic
algorithms named Anarchic Society Optimization (ASO) algorithm based on
human societies, is introduced. After a brief literature review of the ASO algorithm,
more technical details on this method and its performance are described.

4.1 Introduction

Anarchic is derived from the Greek word anarkos meaning “no boss” and Anarchia
means “lack of government”. The term Anarchism refers to a political opinion and
movement believing that any political power and authority are obscene and
unnecessary and that any government should be overthrown and replaced with free
associations and volunteer groups. Because the Anarchism believes that the gov-
ernment causes a nation’s social miseries. Overall, Anarchists are opposed to any

A. Bozorgi � O. Bozorg-Haddad (&)
Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering
and Technology, College of Agriculture and Natural Resources, University of Tehran,
31587-77871 Karaj, Tehran, Iran
e-mail: OBHaddad@ut.ac.ir

A. Bozorgi
e-mail: Bozorgi.Atiyeh@ut.ac.ir

X. Chu
Department of Civil and Environmental Engineering, North Dakota State University,
Dept 2470, Fargo, ND 58108-6050, USA
e-mail: Xuefeng.Chu@ndsu.edu

© Springer Nature Singapore Pte Ltd. 2018
O. Bozorg-Haddad (ed.), Advanced Optimization by Nature-Inspired Algorithms,
Studies in Computational Intelligence 720, DOI 10.1007/978-981-10-5221-7_4

31

government authority and consider the democracy as the Tyranny of the majority.
They emphasize individual freedom. This emphasis results in opposition to any
external authority, especially government, which is construed as a barrier for free
individual growth and excellence.

The Anarchist thought is based on a variety of principles including individual-
ism, humanism, libertarians, lawlessness, anarchic, and absolute freedom.
According to these principles, Anarchism opposes any religious or non-religious
social institutions and considers the human as an absolute free creature. At the heart
of Anarchism, there is a reckless utopia orientation, believing in natural wellness, or
at least mankind potential wellness (Nettlau 2000).

Anarchism contains a variety of branches and anarchism theorists follow one of
them. According to the view of the Communist Anarchism, human is inherently
social, and a society and its individuals benefit each other. Human and society
conformity is possible when negating the powerful social institutions especially
government. The Syndicate-oriented Anarchism looks for the salvation in economic
strife not in the political strife of proletariat. Followers of this faction organize labor
unions and syndicates to quarrel with the power structure. According to their point
of view, the current government will be eventually annihilated as a result of a
revolution and the new economic order will be formed based on syndicates.
Nowadays, such thoughts have become a mass movement in some South American
and European countries. The followers of Individualist Anarchism believe that the
human has the right to do whatever he/she will and whatever deprive him/her from
freedom must be destroyed (Woodcook 2004).

In general, there are three major insufficiencies that Anarchism suffers from.
First, Anarchism has the unrealistic goal that is related to collapse of government
and all other forms of political authority, while economic and social development
has been always accompanied with government roles. Second, the Anarchism
objects to powerful institutions like parties that can play an effective and efficient
role in development of a society. Third, Anarchism lacks a series of distinct and
coherent political beliefs, which causes many disputes.

During the recent centuries, many countries have undergone certain types of
anarchy, including France (The revolution period), Jamaica (1720), Russia (during
Civil Wars), Spain (1936), Albania (1997), and Somali (1991–2006). According to
the view of Anarchists, a society can be managed without the need of the central
government and only based on individuals or volunteer groups. In this case, indi-
viduals or groups will be able to determine the right direction without being ordered
by a ruling power and only based on their or others’ previous experiences.
Although this viewpoint has not been prosperous in stable management of a society
so far, it can be used as a basis for developing optimization methods in engineering
sciences.

In this method, each individual selects his/her next position according to the
personal experiences, group or syndicate experiences, and historical experiences.
Finally, after a number of moves, at least one of the group members would reach a
near-optimal answer. Employing this algorithm causes the total decision space to be
fully searched and prevents being stuck at local optima.

32 A. Bozorgi et al.

The ASO algorithm was first introduced by Ahmadi-Javid (2011). He compared
the answers obtained from the ASO algorithm with those from the Genetic
Algorithm (GA) and the particle swarm optimization (PSO) algorithm and proved
that the ASO algorithm resulted in better answers. The author also claimed that the
anarchy community algorithm converged to the global optimum with the proba-
bility of 100%. Shayeghi and Dadashpour (2012) compared ASO with PSO, vector
evaluated particle swarm optimization (VEPSO) and craziness based particle swarm
optimization (CRPSO) algorithm for voltage oscillation damping problem and the
best results were obtained from the ASO algorithm. Ahmadi-Javid and
Hooshangi-Tabrizi (2012) expanded the ASO algorithm to two objective functions
and the comparison between ASO and PSO algorithms showed that ASO provided
much better results. Ahmadi Javid and Hooshangi-Tabrizi (2015) expanded and
applied the ASO algorithm for permutation flow-shop scheduling problem with
integer and linear objective functions namely ASO(I) and ASO(II). The numerical
results obtained showed that the ASO algorithm had higher efficiency for that
problem.

4.2 Formulation

The detailed procedures of the ASO algorithm are shown in Fig. 4.1.
For a solution space S, f : S ! R is a function that should be minimized in

S. Consider that a community, consisting of N member(s), is being searched in an

Start

Generating the initial
population

Evaluating the objective
function

Sorting of Solutions

Determining the values of iK*,
Pbest and Gbest

Updating position of each
member based on current

Computing fickleness index

Determining MpCurrent

Updating position of each
member based on other position

Computing external
irregularity index

Determining MpSociety

Updating position of each
member based on past position

Computing internal
irregularity index

Determining MpPast

Combining movement policies

Satisfy stopping
criteria

End

Yes

No

Fig. 4.1 Flowchart of the ASO algorithm

4 Anarchic Society Optimization (ASO) Algorithm 33

unknown territory (the solution space) for discovering the best place to live (i.e., the
overall minimum of f on S). Xi(k) presents the position of the ith member in the kth
iteration; X*(k) denotes the best position experienced by all members in the kth
iteration; and Gbest is the best position experienced by the ith member during the
first k iterations.

4.3 Algorithm Procedure

As shown in Fig. 4.1, first, a number of community members are selected randomly
within the solution space. Then, the fitness of every member is determined.
According to the calculated fitness value and comparison with X*(k), Pbest

i and Gbest,
the movement policy and a new position of the member will be determined. After
an adequate number of iterations, at least one of the members will reach the optimal
position. Table 4.1 lists the characteristics of the ASO.

4.4 Movement Policy Based on Current Positions

The first movement policy for the ith member in the kth iteration [MPi
current(k)] is

adopted based on the current position. The Fickleness Index FIi(k) for member i in
iteration k is used to select this movement policy (Ahmadi-Javid 2011). This index
measures the satisfaction of the current position of the ith member compared with
other members’ positions. If the objective function is positive in S, the Fickleness
Index can be expressed as one of the following forms (Ahmadi-Javid 2011):

FIi kð Þ ¼ 1� ai
f X� kð Þð Þ
f Xi kð Þð Þ � 1� aið Þ f Pi kð Þð Þ

f Xi kð Þð Þ ð4:1Þ

Table 4.1 Characteristics of the ASO algorithm

General algorithm Anarchic society optimization

Decision variable Society members’ positions in each dimension

Solution Society members’ positions

Old solution Old positions of society members

New solution New positions of society members

Best solution Best position

Fitness function Desirability of members’ positions

Initial solution Random positions

Selection –

Process of generating new solution Combination of movement policy

34 A. Bozorgi et al.

FIi kð Þ ¼ 1� ai
f G kð Þð Þ
f Xi kð Þð Þ � 1� aið Þ f Pi kð Þð Þ

f Xi kð Þð Þ ð4:2Þ

where ai is a non-negative number in [0,1]. Thus, the Fickleness Index is a number
in the range of [0,1]. According to the values of Fickleness Index, the ith member
would select his/her next position. If FIi kð Þ is smallest, the ith member has the best
position among all members. So it is better to select the movement policy based on
X� kð Þ. Otherwise, the ith member has a totally unpredictable movement. Therefore
the movement policy for the ith member according to the value of FIi kð Þ can be
expressed as:

MPcurrent
i kð Þ ¼ moving towards X� kð Þ 0�FIi kð Þ� ai

moving towards a randomXi kð Þ ai �FIi kð Þ� 1

�
ð4:3Þ

4.5 Movement Policy Based on Positions of Other
Members

The second movement policy for the ith member in the kth iteration [MPi
society(k)] is

adopted based on the positions of other members. Although each member should
move in the direction of Gbest logically, the movement of the member is not pre-
dictable due to the anarchist nature of the member and may move toward another
community member. Therefore, the external irregularity index EIi(k) for the ith
member in the kth iteration can be calculated by (Ahmadi-Javid 2011):

EIi kð Þ ¼ 1� e�hi f Xi kð Þð Þ�f G kð Þð Þ½ � ð4:4Þ

EIi kð Þ ¼ 1� e�di D kð Þ ð4:5Þ

in which hi and di are positive numbers and D kð Þ is an appropriate dispersion
measure like coefficient of variation CV kð Þ. Equation (4.4) defines the distance of
community member i from Gbest. If the community member is close to Gbest, it will
have a more logic behavior. Otherwise, it shows an anarchic behavior based on
anarchy. Equation (4.5) defines a diversity index in community which has a direct
relationship with the diversity of the community members. In the case that this
index is selected, the community members are supposed to behave more logically
and they are less diversified. Thus, with consideration of a threshold for EIi kð Þ, it is
possible to define the movement policy based on the positions of other members as
follows:

4 Anarchic Society Optimization (ASO) Algorithm 35

MPsociety
i (k) ¼ moving towardsGbest 0�EIi(k)� threshold

moving towards a randomXi(k) thereshold�EIi(k)� 1

�
ð4:6Þ

The closer the threshold is to zero, the more illogical the member movements
would be. As the threshold converges to one, the members would behave more
logically.

4.6 Movement Policy Based on Previous Positions

The third movement policy for the ith member in the kth iteration [MPi
past(k)] is

adopted based on the previous positions of the individual member. In order to select
this movement policy, the position of the ith member in the kth iteration is com-
pared to Pbest

i . If the position of the member is close to Pbest
i , the member behaves

more logically. Otherwise, the member shows illogical behavior. To determine the
movement policy based on previous positions, the internal irregularity index
IIi(k) for the ith member in the kth iteration is defined as follows:

IIi kð Þ ¼ 1� e�bi f Xi kð Þð Þ�f Pi kð Þð Þ½ � ð4:7Þ

where bi is a positive number. Like the previous policy, with selection of a
threshold for IIi kð Þ, the movement policy can be defined based on previous posi-
tions as follows:

MPpast
i (k) ¼ moving towardsPbest

i 0� IIi(k)� threshold
moving towards a randomXi(k) thereshold� IIi(k)� 1

�
ð4:8Þ

The closer the threshold is to zero, the more illogical the member movements
would be. As the threshold converges to one, the members would behave more
logically.

4.7 Combination of Movement Policies

In order to select the final movement policy, the three policies discussed above are
combined with each other. After the movement policies are calculated, each
member should combine these policies with a method and move toward a new
position. One of the simplest methods is to select the policy with the best answer.
The next alternative is to combine the movement policies with each other
sequentially which is referred to as the sequential combination rule. The crossover
method can either be used for continuous problems coded as chromosomes, or used
in a sequential way to combine the movement policies. Ahmadi Javid (2011)
demonstrated that the ASO algorithm is a more general state of the PSO algorithm.

36 A. Bozorgi et al.

4.8 Pseudo Code of the ASO

4 Anarchic Society Optimization (ASO) Algorithm 37

4.9 Conclusion

The evolutionary and heuristic algorithms are widely used for solving optimization
problems in the engineering and science fields. In the last few decades, various
algorithms have been introduced mostly based on insects, animal lives, and bio-
logical concepts. In this chapter, the Anarchic Society Optimization algorithm, first
introduced by Ahmadi-Javid (2011), was described.

This algorithm has been investigated for solving electrical and industrial engi-
neering problems (e.g., power) and optimizing water networks and reservoir
operation. The ASO algorithm has some advantages such as its relatively simple
structure and its potential to achieve better performance. In definition of the ASO
algorithm three indices are used. It seems that changing the use of these indices to
reach a new position for each member or even defining a new index can lead to
superior convergence.

The ASO algorithm was adopted from the life of human communities. Since
human societies are more complicated than animal or insect groupings, it is
expected that ASO as the first algorithm based on human societies is a turning point
of the performance and capabilities of optimization algorithms.

References

Ahmadi-Javid, A. (2011). Anarchic Society Optimization: A human-inspired method. In IEEE
Congress on Evolutionary Computation (CEC) (pp. 2586–2592), New Orleans, LA.

Ahmadi-Javid, A., & Hooshangi-Tabrizi, P. (2012). An Anarchic Society Optimization Algorithm
for a flow-shop scheduling problem with multiple transporters between successive machines.
International Conference on Industrial Engineering and Operations Management (ICIEOM),
Istanbul, Turkey, 3–6 July.

Ahmadi-Javid, A., & Hooshangi-Tabrizi, P. (2015). A mathematical formulation and anarchic
society optimisation algorithms for integrated scheduling of processing and transportation
operations in a flow-shop environment. International Journal of Production Research, 53(19),
5988–6006.

Nettlau, M. (2000). A short history of anarchism (1st ed.). Freedom Press. ISBN-13: 978-
0900384899.

Shayeghi, H., & Dadashpour, J. (2012). Anarchic society optimization based PID control of an
Automatic Voltage Regulator (AVR) system. Electrical and Electronic Engineering, 2(4),
199–207.

Woodcook, G. (2004). Anarchism. Toronto: Higher Education Division, University of Toronto
Press. ISBN 13: 978-1551116297.

38 A. Bozorgi et al.

Chapter 5
Cuckoo Optimization Algorithm (COA)

Saba Jafari, Omid Bozorg-Haddad and Xuefeng Chu

Abstract The cuckoo optimization algorithm (COA) is used for continuous
non-linear optimization. COA is inspired by the life style of a family of birds called
cuckoo. These birds’ life style, egg laying features, and breeding are the basis of the
development of this optimization algorithm. Like other evolutionary approaches,
COA is started by an initial population. There are two types of the population of
cuckoos in different societies: mature cuckoos and eggs. The basis of the algorithm
is made by the attempt to survive. While competing for being survived, some of
them are demised. The survived cuckoos immigrate to better areas and start
reproducing and laying eggs. Finally, the survived cuckoos are converged in a way
that there is a cuckoo society with the same profit rate.

5.1 Introduction

Rajabioun (2011) proposed a new evolutionary algorithm called cuckoo opti-
mization algorithm (COA), which was inspired by the life of cuckoos. Kahramanli
(2012) developed a modified cuckoo optimization algorithm (MCOA) and used it to
solve two constrained continuous engineering optimization problems. The results
showed that MCOA was a powerful optimization method that yielded better
solutions to engineering problems. Rabiee and Sajedi (2013) used COA for solving

S. Jafari � O. Bozorg-Haddad (&)
Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering
and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj,
Tehran 31587-77871, Iran
e-mail: OBHaddad@ut.ac.ir

S. Jafari
e-mail: Saba.Jafari@ut.ac.ir

X. Chu
Department of Civil and Environmental Engineering, North Dakota State University,
Dept 2470, Fargo, ND 58108-6050, USA
e-mail: Xuefeng.Chu@ndsu.edu

© Springer Nature Singapore Pte Ltd. 2018
O. Bozorg-Haddad (ed.), Advanced Optimization by Nature-Inspired Algorithms,
Studies in Computational Intelligence 720, DOI 10.1007/978-981-10-5221-7_5

39

job scheduling in a grid computational design. The disadvantages of the evolu-
tionary techniques such as genetic algorithm (GA), simulated annealing (SA),
particle swarm optimization (PSO), and ant colony optimization (ACO) to solve the
problems in the grid schedule, are early convergence and trapping in local optima in
large-scale problems. Their results showed that the proposed method was more
efficient and had better performance than GA and PSO. Balochian and Ebrahimi
(2013) optimized parameters for Sugeno-type fuzzy logic controllers (S-FLCs) that
were applied for liquid level control. A programmable logic controller (PLC) was
used with fuzzy controller. The results indicated that the optimized FLC by COA
had better performance than the one with manual setting of the system parameters
for different datasets. Khajeh and Jahanbin (2014) developed a solid phase
extraction method using a new sorbent (zinc oxide nanoparticles-chitosan) for
pre-concentration and determination of uranium from water samples. A coupled
cuckoo optimization algorithm–artificial neural network (COA–ANN) model was
developed for simulation and optimization. The optimum limit of detection and the
enrichment factor of uranium were 0.5 lg L−1 and 125, respectively. Mellal and
Williams (2015a) studied the multipass turning process, one of the widely used
machining methods in manufacturing industry. They considered minimization of
the unit production cost as a key objective of the operation. In their work, cutting
parameters were optimized by using COA. The results showed that COA was better
than a wide range of other optimization algorithms. Singh and Rattan (2014)
employed the COA for the optimization of linear and non-uniform circular antenna
arrays. COA was used to ascertain a set of parameters of antenna elements that
provided a required radiation pattern. The effectiveness of COA for design of
antenna arrays was confirmed by their numerical results. The results showed the
superior performance of COA compared to other methods for designing linear and
circular antenna arrays. Shadkam and Bijari (2014) evaluated the performance of
COA with the Rastrigin function, a continuous non-linear function that was used for
evaluating optimization algorithms. The aforementioned function was solved with
artificial bee colony (ABC) and the firefly algorithm (FA). Comparison of the
results showed that COA had better performance than other algorithms.
Shokri-Ghaleh and Alfi (2014) designed an optimal controller for synchronization
of bilateral teleoperation systems with the aim of reducing factors such as time
delay in communication channels and modeling uncertainties. A novel
meta-heuristic algorithm named COA was used. Comparative simulations were
performed to determine the feasibility of the proposed control method. The results
showed that CO yielder better solutions to the problem than other algorithms
including biogeography-based optimization, imperialist competition, and artificial
bee colony. Khajeh and Golzary (2014) developed the zinc oxide
nanoparticles-chitosan based on extraction of the solid phase for separation and
pre-concentration of a trace amount of methyl orange from water samples. The
COA-ANN model was used for optimization and simulation. The optimum limit of
detections factor of methyl orange was 0.7 lg L−1. Mellal and Williams (2015b)
studied a complex engineering optimization problem called CHPED (combined
heat and power economic dispatch). The aim was to minimize the system

40 S. Jafari et al.

production costs by taking different constraints into consideration. In their study,
COA was employed by a penalty function (PFCOA) to solve the CHPED problem.
Two case studies of CHPED were presented and the results were compared with
those obtained by several other optimization methods, which proved the superior
performance of PFCOA. Moezi et al. (2015) determined the location and depth of a
crack by measuring its natural frequency changes and used the MCOA numerical
method for open edge-crack detection in an Euler–Bernoulli cantilever beam. The
crack was modeled by a torsional spring and the coefficient was calculated by using
the crack dimensions. The objective function was the weighted squared difference
between the calculated and measured natural frequencies. The results of the
numerical simulations and experimental tests showed the high accuracy in finding
the location and depth of the crack. Mellal and Williams (2016) considered
parameter optimization of advanced machining processes to produce complex
profiles and high quality products. COA and the Hoopoe heuristic algorithm were
used for optimization of the parameters for two conventional machining processes
(drilling process and grinding process) and four advanced machining processes
(abrasive jet machining, abrasive water jet machining, ultrasonic machining, and
water jet machining). Finally, the results were compared with those from other
optimization algorithms.

5.2 Cuckoo Life Style

All the 9000 existing birds in the world have the same reproduction way: egg
laying. None of the birds give birth. They lay eggs and raise the baby birds outside
their bodies. The larger the eggs are, the less the probability is for a female bird to
have more than one egg in her body simultaneously, because on one hand, bigger
eggs make flying tough and require more energy to fly. On the other hand, eggs are
a rich source of protein for the predators, so it is necessary for birds to find a secure
place for egg laying and hatching their eggs. Finding a secure place for egg laying,
hatching, and raising the birds until being independent of their parents is of vital
importance, which is intellectually solved by birds. They use an artistry and a
complicated engineering to do this. The variety of nest-making and the architecture
of the nests are absolutely stunning. Most birds make their nests segregated and
hidden to prevent being detected by the predators. Some of them hide their nests so
skillfully that human beings are not able to recognize and see them.

There are some birds that detached themselves from the challenge of
nest-making and use a cunning way to raise their families. These birds are called
“Brood Parasites” that never build a nest. They lay their eggs in other species’ nests
and wait for them to take care of their young. Cuckoo is the most famous “Brood
Parasite” that is an expert in deceiving cruelly. The strategy of cuckoos includes
their speed, being stealthy and surprising. A mother cuckoo destroys the host’s eggs
and lay her own eggs among others in the nest and flies away from the location fast
and lays caring on the host bird. This process is hardly more than 10 s. Cuckoos

5 Cuckoo Optimization Algorithm (COA) 41

make other nests parasitized by their eggs and mimic the color and the patterns of
existing eggs carefully so that new eggs in the nest look like the previous eggs.
Each female cuckoo is specialized on specific species of birds. This is one of the
main secrets of nature about how female cuckoos imitate a special kind of other
birds’ eggs accurately. Some of the birds recognize cuckoos’ eggs and sometimes
they even throw the eggs out of the nest. Some of them completely leave the nest
and build a new one. In fact, cuckoos continuously improve their mimicry from the
eggs in the target nests and host birds learn new ways to recognize the strange eggs
as well. This struggle for survival among different birds and cuckoos is a constant
and continuous process.

A suitable habitat for cuckoos should provide food sources (specially insects)
and locations for laying eggs, so the main necessity of brood parasites will be the
habitats of the host species. Cuckoos are found in a variety of places. Most of the
species are found in forests, especially evergreen rain forests. Some of the cuckoo
species select a wider range of places to live, which can even include dry areas and
deserts. Immigrant species select vast environments to make maximum misuse of
the host birds. Most of the cuckoo species are non-immigrant but there are several
ones that have seasonal immigration as well. Some of the species have partial
immigrations in their habitat range. Some species (e.g., channel-billed cuckoos)
have diurnal immigration, while others (e.g., yellow-billed cuckoo) have nocturnal
immigration. For those cuckoos that live in mountainous areas, availability of the
foods necessitates to immigrate to tropical areas. Long-tailed Koel cuckoos which
live and lay eggs in New Zealand, immigrate to Micrones, Melanesia, and
Polynesia in winters. Yellow-billed species and black-billed species that breed in
North America, pass the Caribbean Sea in a non-stop 4000-km flight. Other
long-distance immigrations include lesser cuckoos that fly over Indian Ocean from
India to Kenya (about 3000 km). Ten types of cuckoos perform polarized
intra-continental migration in a way that they spend non-breeding seasons in
tropical areas of the continent and then immigrate to dry and desert areas for egg
laying.

About 52 old species and 3 new species are brood parasite. They lay their eggs
in other birds’ nests. These species are obligate brood parasites since this is the only
way to their reproduction. Cuckoo eggs hatch earlier than their host’s eggs. In most
cases, a cuckoo chick throws the host’s eggs or the host’s chicks out of the nest.
This is completely instinctive and the cuckoo chick has no time to learn it.
A cuckoo chick makes the host provide a food suitable to its growth and beg for
food again and again. The cuckoo chick announces its need for food by an open
mouth because an open mouth to the mother is an indication for hunger.

Female cuckoos are skillful and expert in producing eggs similar to their host’s
eggs due to natural selection. Some birds recognize the eggs and throw them out
though. Parasite cuckoos are divided into different categories and each category is
expert in a special host. It is proved that the cuckoos in one category are genetically
different from those in another category. Specialization in imitating the host’s eggs
gradually improves and evolves.

42 S. Jafari et al.

5.3 Details of COA

Figure 5.1 shows the flowchart of COA. Like other evolutionary algorithms, COA
starts with an initial population (population of cuckoos). These cuckoos have got
some eggs that will be laid in other species’ nests. Some of these eggs that look like
the host’s eggs are more probable to be raised and turned into cuckoos. Other eggs
are detected by the host and are demised. The rate of the raised eggs shows the
suitability of the area. If there are more eggs to be survived in an area, there is more
profits to that area. Thus the situation in which more eggs are survived will be a
parameter for the cuckoos to be optimized.

Cuckoos search for the best area to maximize their eggs’ life lengths. After
hatching and turning into mature cuckoos, they form societies and communities.
Each community has its habitat to live. The best habitat of all communities will be
the next destination for cuckoos in other groups. All groups immigrate to the best
current existing area. Each group will be the resident in an area near the best current
existing area. An egg laying radius (ELR) will be calculated regarding the number
of eggs each cuckoo lays and its distance from the current optimized area.

Start

Determine parameters and inputs

Put eggs in various nests

Recognize some eggs and destroy them

Whether the population is lower than max value?

Calculate benefit (check probability of eggs life)

Whether stop condition is confirmed?

End

yes

yes

Grow eggs

Find the nests with best rate of life

Determine cuckoos societies

Move all cuckoos toward best local

Find the radius of laying egg for each
cuckoo

No

Destroy cuckoos in
unsuitable areas

No

Fig. 5.1 Flowchart of the COA

5 Cuckoo Optimization Algorithm (COA) 43

Afterwards, cuckoos start laying eggs randomly in the nests within their egg
laying radii. This process continues until reaching the best place for egg laying
(a zone with the most profit). This optimized zone is the place in which the maximum
number of cuckoos gathers together. Table 5.1 lists the characteristics of the COA.

5.4 Cuckoos’ Initial Residence Locations

It is necessary to form variables as an array so that an optimization problem can be
solved. In GA and Particle Swarm Optimization, these arrays are identified by
“chromosome” and “particles’ positions”, but in COA, this array is called “habitat”.

In a one-dimensional Nvar optimization problem, habitat is a 1 � Nvar array
that shows the current position of cuckoos’ life. It is defined as:

Habitat ¼ ½x1; x2; . . .; xNvar� ð5:1Þ

The amount of profit or suitability rate for the current habitat can be obtained by
profit function evaluation. Thus

Porofit ¼ fpðhabitatÞ ¼ fp x1; x2; . . .; xNvarð Þ ð5:2Þ

COA is an algorithm that maximizes the profit function. To use COA, the cost
function should be multiplied by a minus sign so that the problem could be solved.

To start optimization, a habitat matrix sized Npop � Nvar is generated.
Afterwards, a number of random eggs are specified for each habitat matrix. Each
cuckoo lays 5–20 eggs in nature. These numbers are used as the maximum and
minimum limits in the egg specification of each cuckoo in different iterations. Each
real cuckoo lays eggs in a specific range. Thus, the maximum range of egg laying is

Table 5.1 Characteristics of the COA

General algorithm Cuckoo optimization algorithm

Decision variable Cuckoo habitat

Solution Habitat

Old solution Old habitat

New solution New habitat

Best solution Habitat with best rate of life

Fitness function Distance between best habitat and recent habitat

Initial solution Random eggs for all cuckoos

Selection –

Process of generating new solution Emigration cuckoos toward best area

44 S. Jafari et al.

the ELR. In an optimization problem, with the upper and lower limits of varhi and
varlow, each cuckoo has an ELR which is proportionate to the total number of eggs,
current number of eggs, and the upper/lower limits of variables of the problem.

So ELR is defined as (Rajabioun 2011):

ELR ¼ a� Number of current cuckoos eggs
Total number of eggs

� ðvarhi � varlowÞ ð5:3Þ

in which a is a variable, by which the maximum ELR is set.

5.5 Cuckoos’ Egg Laying Approach

Each cuckoo randomly lays eggs in its host bird’s nest within its ELR. Figure 5.2
shows the egg laying radius or the maximum range of egg laying.

After all of the cuckoos lay their eggs, some of the eggs which are less similar to
the host’s eggs are recognized and thrown out. Thus after each egg laying process, p
% of all eggs (usually 10%) whose profit function value is less will be destroyed.
The rest of chicks in the host’s nest are fed and raised.

Another interesting point about cuckoo chicks is that only one egg has the
opportunity to be raised in each nest. Because when cuckoo chicks hatch, they
throw out the host’s eggs. If the host’s chicks hatch earlier, the cuckoo chick has
eaten the largest amount of food (because its body is three times larger and it knocks
other chicks over) and after several days the host’s own chicks will die from hunger
and only cuckoo chick will survive.

Fig. 5.2 Random egg laying
in ELR (the black circle is the
cuckoo’s initial habitat with
three eggs; and the white
circles are the eggs at new
positions)

5 Cuckoo Optimization Algorithm (COA) 45

5.6 Cuckoos Immigration

When cuckoo chicks grow up and become mature, they live in the surrounding
environment and in their communities for a while. But when the egg laying time is
close, they immigrate to better habitats in which the chances for the survival of their
eggs are higher. After forming cuckoo groups in various environments (search
space of the problem), the group with the best position will be selected as the target
group for other cuckoos for immigration.

It is difficult to recognize which group each cuckoo belongs when mature
cuckoos live in several environment zones. To solve this problem, classification of
cuckoos is done by K-means clustering (a number of K between 3 and 5 suffices).

The average profit of a group is calculated after all groups are formed to obtain
the relative optimality of the living area of each group. Afterwards, the group with
the highest value of average optimization will be selected as the target group and all
others will immigrate toward this group. While immigrating toward the target point,
cuckoos will not fly the whole way to the target place. They just pass a portion of
the distance and they may even digress from the target too. This movement is
shown in Fig. 5.3.

As shown in Fig. 5.3, each cuckoo only flies k% of the entire distance toward
the current ideal target and has a deviation of u too. These two parameters help
cuckoos search more space. k is a random number between 0 and 1 and u is a
number from p/6 to p/6. When all cuckoos immigrate to the target point and their
habitat points are determined, each cuckoo has a number of eggs. An ELR is
determined for each cuckoo and then egg laying is started.

Fig. 5.3 Immigration of a sample cuckoo to the target habitat

46 S. Jafari et al.

5.7 Demising Cuckoos Laid in Inappropriate Positions

According to the fact that there is always a balance among the populations of birds
in nature, a number Nmax is used to control the maximum number of cuckoos that
can live in a place. This balance is due to competing for limited foods, being hunted
by predators, and finding improper nests for eggs.

5.8 Pseudo Code for COA

After several repetitions, all cuckoos will attain a point of optimization with the
maximum similarity of their eggs to the host’s eggs and with the maximum food
sources. This location has the most total profit and the least chance for the eggs to
be ruined. Convergence of more than 95% of all cuckoos toward one point will
finalize the optimization process. The main steps of COA are shown in the fol-
lowing pseudo code:

5 Cuckoo Optimization Algorithm (COA) 47

5.9 Capabilities of COA

The capabilities of COA in different fields can be summarized as follows:

1. Solving complicated non-linear optimization problems accurately;
2. Teaching artificial neuron networks, considering the fact that other approaches

of optimization cannot provide an assured optimized solution due to the high
number of parameters;

3. Using for easy and assured design of PID controllers for MIMO systems;
4. Finding the balance point in games quickly;
5. Optimizing the antenna design;
6. Optimizing the segmentation of pictures; and
7. Using for optimization problems that can be formulated as a target function.

5.10 Conclusion

The cuckoo optimization algorithm inspired by the life style of cuckoos was
explained. The cuckoos’ specific and unique feature in egg laying and raising is the
basis of this algorithm. In COA, each cuckoo has a habitat in which eggs are laid. If
the eggs survive, they are raised and become mature. Afterwards, they immigrate to
the best habitat found for reproduction. The variety associated with cuckoos’
movement toward the target habitat, provides more space for search. This algorithm
is considered as a successful imitation of nature and is suitable for optimization
problems in different fields.

References

Balochian, S., & Ebrahimi, E. (2013). Parameter optimization via cuckoo optimization algorithm
of fuzzy controller for liquid level control. Journal of Engineering, 2013.

Kahramanli, H. (2012). A modified cuckoo optimization algorithm for engineering optimization.
International Journal of Future Computer and Communication, 1(2), 199.

Khajeh, M., & Golzary, A. R. (2014). Synthesis of zinc oxide nanoparticles–chitosan for
extraction of methyl orange from water samples: Cuckoo optimization algorithm–artificial
neural network. Spectrochimica Acta Part A, 131, 189–194.

Khajeh, M., & Jahanbin, E. (2014). Application of cuckoo optimization algorithm–artificial neural
network method of zinc oxide nanoparticles–chitosan for extraction of uranium from water
samples. Chemometrics and Intelligent Laboratory Systems, 135, 70–75.

Mellal, M. A., & Williams, E. J. (2015a). Cuckoo optimization algorithm for unit production cost
in multi-pass turning operations. The International Journal of Advanced Manufacturing
Technology, 76(1–4), 647–656.

Mellal, M. A., & Williams, E. J. (2015b). Cuckoo optimization algorithm with penalty function for
combined heat and power economic dispatch problem. Energy, 93, 1711–1718.

48 S. Jafari et al.

Mellal, M. A., & Williams, E. J. (2016). Parameter optimization of advanced machining processes
using cuckoo optimization algorithm and hoopoe heuristic. Journal of Intelligent
Manufacturing, 27(5), 927–942.

Moezi, S. A., Zakeri, E., Zare, A., & Nedaei, M. (2015). On the application of modified cuckoo
optimization algorithm to the crack detection problem of cantilever Euler-Bernoulli beam.
Computers & Structures, 157, 42–50.

Rabiee, M. and Sajedi, H. (2013). “Job scheduling in grid computing with cuckoo optimization
algorithm.” International Journal of Computer Applications, 62(16).

Rajabioun, R. (2011). Cuckoo optimization algorithm. Elsevier, 11(8), 5508–5518.
Singh, U., & Rattan, M. (2014). Design of linear and circular antenna arrays using cuckoo

optimization algorithm. Progress in Electromagnetics Research C, 46, 1–11.
Shadkam, E., & Bijari, M. (2014). Evaluation the efficiency of cuckoo optimization algorithm.

International Journal on Computational Sciences and Applications (IJCSA), 4, 39–47.
Shokri-Ghaleh, H., & Alfi, A. (2014). Optimal synchronization of teleoperation systems via

cuckoo optimization algorithm. Nonlinear Dynamics, 78(4), 2359–2376.

5 Cuckoo Optimization Algorithm (COA) 49

Chapter 6
Teaching-Learning-Based Optimization
(TLBO) Algorithm

Parisa Sarzaeim, Omid Bozorg-Haddad and Xuefeng Chu

Abstract This chapter is prepared to describe the Teaching-Learning-Based
Optimization (TLBO) algorithm, a novel metaheuristic optimization method
inspired by an educational classroom environment. It has an interesting exclusivity
which may facilitate the solution process of optimization problems. In this chapter,
a brief literature review of the TLBO algorithm is first presented. Then, the working
process and two phases of TLBO (teacher phase and learner phase) are depicted.
Eventually, a pseudocode of TLBO is presented.

6.1 Introduction

The Teaching-Learning-Based Optimization (TLBO) algorithm was first proposed
by Rao et al. (2011). The elitist version of the TLBO algorithm, in which the worst
individuals were replaced by elite individuals for the next generation, was devel-
oped by Rao and Patel (2012). The modified version of TLBO for multi-objective
optimization problems was also developed by Rao and Patel (2013a, b). Despite the
fact that the TLBO algorithm is a new metaheuristic optimization method, it has
been applied to various engineering and science fields such as mechanical, civil,

P. Sarzaeim � O. Bozorg-Haddad (&)
Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering
and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj,
Tehran 31587-77871, Iran
e-mail: OBHaddad@ut.ac.ir

P. Sarzaeim
e-mail: Parisa.Sarzaeim@ut.ac.ir

X. Chu
Department of Civil and Environmental Engineering, North Dakota State University,
Dept 2470, Fargo, ND 58108-6050, USA
e-mail: Xuefeng.Chu@ndsu.edu

© Springer Nature Singapore Pte Ltd. 2018
O. Bozorg-Haddad (ed.), Advanced Optimization by Nature-Inspired Algorithms,
Studies in Computational Intelligence 720, DOI 10.1007/978-981-10-5221-7_6

51

electrical, and environmental engineering. For example, Rao and Kalyankar (2012)
used the TLBO algorithm for mechanical design optimization problems. Toğan
(2012) optimized the design of planar steel frames by using the TLBO algorithm.
Baghlani and Makiabadi (2013) used the TLBO algorithm to optimize the design of
truss structures. García and Mena (2013) presented an optimum design of dis-
tributed generation by using a modified version of the TLBO algorithm. Roy (2013)
and Roy et al. (2013) obtained an optimum solution to a hydrothermal scheduling
problem for hydropower plants by the TLBO algorithm. Sultana and Roy (2014)
applied the TLBO algorithm to minimize power loss and energy cost in power
distribution systems. Bouchekara et al. (2014) applied the TLBO algorithm to solve
the power flow problem. Ji et al. (2014) applied a modified TLBO algorithm to
improve the forecast accuracy of water supply system operation. Bayram et al.
(2015) used the TLBO algorithm to predict the concentrations of dissolved oxygen
in surface water. Thus, the TLBO algorithm has a variety of applications because it
is easy to use and convenient to be adapted for different problems.

6.2 Mapping a Classroom
into the Teaching-Learning-Based Optimization
Algorithm

All evolutionary and metaheuristic algorithms need some controlling parameters
which vary in different problems. These controlling parameters are divided into two
general groups: (1) general parameters such as population size, and number of
generations or number of iterations, and (2) specific parameters which depend on
the type of the algorithm. For instance, the Genetic Algorithm (GA) requires
crossover rate and mutation rate. In the GA algorithms, proper selection of specific
parameters has a significant effect on their performance, computation time, and
modeling outputs. On the other hand, if the specific controlling parameters are
selected improperly, the solution may be stuck in a local optimum or the improper
parameters may lead to reduction of the solution quality. In such a situation, sen-
sitivity analysis should be performed by user to identify the best measures of the
specific parameters though it needs more time. Compared with other optimization
algorithms, the TLBO algorithm does not require any of such specific parameters. It
only requires general parameters such as population size and number of genera-
tions. It seems to be an interesting property which simplifies the application of the
algorithm. Thus, TLBO algorithm is self-regulating.

The principle of the TLBO algorithm is inspired by the teacher–students relation
in an educational classroom environment, the influence of teacher on learners or
students, and the interactions of learners and their effects on each other. Teacher and
learners are two main sectors of the algorithm which are named teacher phase and
learner phase, respectively.

52 P. Sarzaeim et al.

6.2.1 Teacher Phase

Imagine a classroom where there are two major groups: a teacher who teaches the
class and some students who are learning. The responsibility of the teacher is to
improve the knowledge level of the whole class to lead to better performance of
students in exams. In the teacher phase, the teacher tries to transfer the knowledge
to the learners. Thus, the teacher has a high knowledge level in the classroom and
endeavors to raise the level of class. Suppose that there are n students (j = 1, 2, …,
n) in a classroom whose average grade in exam i is Mi and the best learner who
achieves the best grade XT,i is supposed to be the teacher. The difference between
the classroom average grade (Mi) and the best grade (XT,i) can be computed by

Diff i ¼ riðXT ;i � TF MiÞ ð6:1Þ

where Diff i = difference between the average grade and the best grade; ri = random
number in ½0; 1� in iteration i; XT ;i = grade of the best learner (teacher) in iteration i;
TF = teacher factor which depends on teaching quality and is either 1 or 2; and
Mi = average of learners’ grades in iteration i.

TF is also a random number which is given

TF ¼ round½1þ randð0; 1Þf2� 1g� ð6:2Þ

Then, by using Diff i, the new grade of student j in iteration i can be expressed as

X 0
j;i ¼ Xj;i þDiffi ð6:3Þ

where X 0
j;i = new grade of student j in iteration i and Xj;i = old grade of student j in

iteration i. If X 0
j;i is better than Xj;i, X 0

j;i will go through to the learner phase.
Otherwise, Xj;i will go through to the learner phase.

6.2.2 Learner Phase

In a classroom, successful students try to help other students in order to increase
their level of knowledge. In other words, the students help each other in some ways,
for instance doing assignments in a group, to learn course materials better than the
teacher teaches them only. Suppose that two students, students A and B, are selected
randomly among the students in a classroom. The way that they help each other can
be expressed as

6 Teaching-Learning-Based Optimization (TLBO) Algorithm 53

start

Initializing randomly for population size (Xj)

Computing and evaluating the objective function

Teacher phase

Teacher selection and computation of Diff

Computing of

Which one is better, or

Random selection of two students and computation
of

Comparison with before amount

Are stop criteria acceptable?

Yes

Report the final population

No

X'j

X'jXj

Learner phase

X''j

X''j

Fig. 6.1 Flowchart of the TLBO algorithm

54 P. Sarzaeim et al.

X 00
A;i ¼

X 0
A;i þ riðX 0

A;i � X 0
B;iÞ if X 0

A;i [X 0
B;i

X 0
A;i þ riðX 0

B;i � X 0
A;iÞ if X 0

B;i [X 0
A;i

�
ð6:4Þ

If X 00
A;i is better than X 0

A;i, X
00
A;i will go through the next iteration. Otherwise, X 0

A;i

will go through the next iteration.
The steps of the working method of TLBO are summarized as follows:

(1) Initialize the grades (Xj;i) of n students (population size) randomly for iteration i.
(2) Evaluate the objective function for n students.
(3) Select the best objective function (teacher) and compute Diff i by using

Eq. (6.1).
(4) Compute X 0

j;i for n students and iteration i by using Eq. (6.3).
(5) Compare Xj;i with X 0

j;i. The better one goes to next step and the other one is
removed.

(6) Select pairs of the students randomly and compare with each other. Then X 00
j;i is

computed for every student by using Eq. (6.4).
(7) Compare X 00

j;i with X 0
j;i. The better one goes to next step and the other one is

removed.
(8) Evaluate the objective function for n students. Check if the stop criteria are

satisfied. If yes, the best solution is achieved; otherwise, go back to Step (3).

The flowchart of the TLBO algorithm is shown in Fig. 6.1 to comprehend the
working process of TLBO better and the algorithm’s characteristics are shown in
Table 6.1.

Table 6.1 Characteristics of the TLBO algorithm

General algorithm Teaching-learning-based optimization

Decision variable Grades of learners

Solution Evaluating the grades of learners

Old solution Old grades of learners

New solution New grades of learners

Best solution Best grade of learners

Fitness function The grade is better than the one before

Initial solution Randomly selected grades

Selection –

Process of generating new solution Comparison of the old and new grades of learners

6 Teaching-Learning-Based Optimization (TLBO) Algorithm 55

6.3 Pseudo Code of the TLBO Algorithm

56 P. Sarzaeim et al.

6.4 Conclusion

In this chapter, the teaching-learning-based optimization algorithm, a novel meta-
heuristic optimization method, was described. First, a brief literature review of
development and applications of the TLBO algorithm was presented. Then, fun-
damental details on the TLBO algorithm, including the two main phases (teacher
phase and learner phase), all computational steps, and the optimization process
were described. Finally, a pseudocode of TLBO was presented to demonstrate the
implementation of this optimization approach. As aforementioned, the TLBO
algorithm is a new user-friendly optimization algorithm that can be applied in
different fields. As aforementioned, the TLBO algorithm does not require any
specific parameters, and thus it is a valuable method that can achieve the final
optimization solution, without the need to specify any parameters.

References

Baghlani, A., & Makiabadi, M. H. (2013). Teaching-learning-based optimization algorithm for
shape and size optimization of truss structures with dynamic frequency constraints. IJST,
Transactions of Civil Engineering, 37, 409–421.

Bayram, A., Uzlu, E., Kankal, M., & Dede, T. (2015). Modeling stream dissolved oxygen
concentration using teaching-learning based optimization algorithm. Environmental Earth
Sciences, 73(10), 6565–6576.

Bouchekara, H. R. E. H., Abido, M. A., & Boucherma, M. (2014). Optimal power flow using
teaching-learning-based optimization technique. Electric Power Systems Research, 114, 49–59.

García, J. A. M., & Mena, A. J. G. (2013). Optimal distributed generation location and size using a
modified teaching-learning based optimization algorithm. Electrical Power and Energy
Systems, 50, 65–75.

Ji, G., Wang, J., Ge, Y., & Liu, H. (2014). Urban water demand forecasting by LS-SVM with
tuning based on elitist teaching-learning-based optimization. In Proceeding of 26th Chinese
Control and Decision Conference, Changsha, China, May 31–June 2.

Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching-learning-based optimization: A
novel method for constrained mechanical design optimization problems. Computer-Aided
Design, 43(3), 303–315.

Rao, R. V., & Patel, V. (2012). An elitist teaching-learners-based optimization algorithm for
solving complex constrained optimization problems. International Journal of Industrial
Computations, 3(4), 535–560.

Rao, R. V., & Patel, V. (2013a). Multi-objective optimization of heat exchangers using a modified
teaching-learning-based optimization algorithm. Applied Mathematical Modelling, 37(3),
1147–1162.

Rao, R. V., & Patel, V. (2013b). Multi-objective optimization of two stage thermoelectric cooler
using a modified teaching-learning-based optimization algorithm. Engineering Applications of
Artificial Intelligence, 26(1), 430–445.

Rao, R. V., & Kalyankar, V. D. (2012). Parameters optimization of machining process using a new
optimization algorithm. Materials and Manufacturing Processes, 27(9), 978–985.

Roy, P. K. (2013). Teaching learning based optimization for short-term hydrothermal scheduling
problem considering valve point effect. Electrical Power and Energy systems, 53, 10–19.

6 Teaching-Learning-Based Optimization (TLBO) Algorithm 57

Roy, P. K., Sur, A., & Pradhan, D. K. (2013). Optimal short-term hydro-thermal scheduling using
quasi-oppositional teaching learning based optimization. Engineering Applications of Artificial
Intelligence, 26(10), 2516–2524.

Sultana, S., & Roy, P. K. (2014). Optimal capacitor placement in radial distribution systems using
teaching learning based optimization. Electrical Power and energy systems, 54, 387–398.

Toğan, V. (2012). Design of planar steel frames using teaching-learning based optimization.
Engineering Structures, 34, 225–232.

58 P. Sarzaeim et al.

Chapter 7
Flower Pollination Algorithm (FPA)

Marzie Azad, Omid Bozorg-Haddad and Xuefeng Chu

Abstract This chapter is designed to describe the flower pollination algorithm
(FPA) which is a new metaheuristic algorithm. First, the FPA applications in dif-
ferent problems are summarized. Then, the natural pollination process and the
flower pollination algorithm are described. Finally, a pseudocode of the FPA is
presented.

7.1 Introduction

The flower pollination algorithm (FPA) was proposed by Yang (2012) for global
optimization. This new metaheuristic algorithm is inspired by the pollination
phenomenon of flowing plants in nature. Yang et al. (2013) used the eagle strategy
with FPA to balance exploration and exploitation. Sharawi et al. (2014) employed
FPA in a wireless sensor network for efficient selection cluster heads and compared
with the Low-Energy Adaptive Clustering Hierarchy (LEACH). The results indi-
cated that FPA outperformed the LEACH. Sakib et al. (2014) used FPA and the bat

M. Azad � O. Bozorg-Haddad (&)
Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering
and Technology, College of Agriculture and Natural Resources, University of Tehran,
31587-77871 Karaj, Tehran, Iran
e-mail: OBHaddad@ut.ac.ir

M. Azad
e-mail: M.Azad.71@ut.ac.ir

X. Chu
Department of Civil and Environmental Engineering, North Dakota State University,
Dept 2470, Fargo, ND 58108-6050, USA
e-mail: Xuefeng.Chu@ndsu.edu

© Springer Nature Singapore Pte Ltd. 2018
O. Bozorg-Haddad (ed.), Advanced Optimization by Nature-Inspired Algorithms,
Studies in Computational Intelligence 720, DOI 10.1007/978-981-10-5221-7_7

59

algorithm (BA) to solve continuous optimization problems. They tested and com-
pared the two algorithms on the benchmark functions. Emary et al. (2014) applied
FPA to a retinal vessel segmentation optimization problem. Platt (2014) used FPA
in the calculation of dew point pressure in a system that exhibited double retrograde
vaporization. El-henawy and Ismail (2014) combined FPA with the particle swarm
optimization (PSO) algorithm to solve large integer programming problems and
demonstrated that FPA was useful for betterment searching accuracy. Abdel-Raouf
et al. (2014) formulated Sudoku puzzles as an optimization problem, and then
employed a hybrid optimization method, flower pollination algorithm with the
Chaotic Harmony Search (FPCHS) to obtain the optimal solutions. Yang et al.
(2014) used a novel version of FPA to solve several multi-objective test functions.
Trivedi et al. (2015) used FPA for optimization of relay coordination in a wide
electrical network with the aim of increasing the selectivity and at the same time
reducing the fault clearing time to improve reliability of the system. Bensouyad and
Saidouni (2015) applied the discrete flower pollination algorithm (DFPA) for
solving a graph coloring problem. Lukasik and Kowalski (2015) tested FPA for a
number of continuous benchmark problems. Dubey et al. (2015) applied a modified
flower pollination algorithm in the modern power systems to find out the solutions
to economic dispatch problems solutions. They added a scaling factor to control the
local pollination and compression of the exploitation stage to achieve the best
solution. Bibiks et al. (2015) used DFPA in order to solve combinatorial opti-
mization problems. Alam et al. (2015) applied the FPA technique for determining
optimal parameters of a single diode and two diodes that were used to describe
photovoltaic systems. In the design of a structural system, the optimal values of
design variables cannot be obtained analytically and a structural engineering
problem has different design constraints, so optimization is an important part of the
structural design process. For this purpose Nigdeli et al. (2016) used FPA to solve
structural engineering problems related to pin-jointed plane frames, truss systems,
deflection minimization of I-beams, tubular columns, and cantilever beams. Nabil
(2016) developed a Modified Flower Pollination Algorithm (MFPA) from the
hybridization FPA with the Clonal Selection Algorithm (CSA) and performed tests
on 23 optimization benchmark problems to investigate the efficiency of the new
algorithm. Then, the results of MFPA were compared with those of Simulated
Annealing (SA), Genetic Algorithm (GA), FPA, Bat Algorithm (BA), and Firefly
Algorithm (FA). The results showed that the proposed MFPA was able to find more
accurate solutions than FPA and the four other algorithms. Abdelaziz et al. (2016)
applied FPA to drive the optimal sizing and allocations of the capacitors in different
water distribution systems.

60 M. Azad et al.

7.2 Flower Pollination Process

Pollination is a natural mechanism for the reproduction of flowering plants and is
defined as transfer of pollen from one flower flag to the pistil stigma of the same
flower or another flower of the same plant species. Pollen has both vegetative and
reproductive cells. After sitting pollen on the pistil stigma, the vegetative cell
multiplies and forms a pollen tube. A reproductive cell can be divided into two cells
along its patch, reaching the ovary by a pollen tube. One of the reproductive cells is
fertilized by an egg cell, forming a zygote. Thus, a new plant forms whit growth
zygote. There are two types of pollination according to pollen transfer methods:
(1) biotic pollination, and (2) abiotic pollination. For most flowering plants, biotic
pollination is done by pollinators such as insects or animals. But abiotic pollination
does not require the transfer of pollen by living organisms. Instead, it is done by
water, wind, or gravity as pollinators. When pollens are delivered from one plant to
another of the same type, such pollination is called cross-pollination and
self-pollination occurs when pollen is delivered to the same flower or flowers of the
same plant.

Almost 90% of flowering plants have biotic pollination in which the pollens are
transferred by pollinators such as insects or animals. Pollination by insects is more
relevant among plants. Flowers that pollinated with aim of insects attract insects by
their colors, odors, and nectars. Generally, the size of flowers is consistent with the
insects’ bodies so that the insects can enter the flowers and their bodies are in
contact with the pollen and pistil. Approximately 10% of flowering plants perform
abiotic pollination that does not need pollinators and the pollens are transferred by
wind or water. Most of the bush plants and trees do not need insects for pollination.
Pollens of these plants are spread in air and transferred by wind. Although most of
the pollens are being lost, some of them can be trapped by ripen stigma of female
flowers. Wind pollination takes place in the plants that have female and male
flowers and these flowers exist in separate trees. In such flowers, their pollens are
released by shaking the stamens by wind. Numerous fine pollens of these flowers
can travel long distances with wind. The stigma of a flower has feathery ramifi-
cations and is outside of the flower, which increases the chance of the stigma to trap
pollen transferred by wind. For the flowers that are pollinated by wind, their
petioles are absent or very small and they have no nectar. Pollinator insects are
often associated with a specific flower type, which is defined as flower constancy.
That is, the pollinators tend to sit on certain flower species. Therefore, flower
constancy helps quantify the cost of searching for each of pollinators. For biotic
pollination, the pollinators such as flies, birds, and bats can fly long distances. Thus,
they can be considered as global pollination. Likewise, step-jump or flying of birds
or bees can be described as levy flight.

7 Flower Pollination Algorithm (FPA) 61

7.3 Flower Pollination Algorithm

The biotic pollination, cross-pollination, abiotic pollination and self-pollination
strategies are defined in domain optimization and embedded in the flower polli-
nation algorithm. The pollination process includes a series of complex mechanisms
in plant production strategies. A flower and its pollen gametes form a solution of the
optimization problem. Flower constancy as a fitted solution is perceptible. In global
pollination, the pollinators transfer pollen in long distances towards high fitting. On
the other hand, local pollination within a limited area of a unique flower takes place
under shading by wind or water. Global pollination occurs with a probability that is
called switch probability. If this step is removed, local pollination replaces it. In the
FPA algorithm four rules are followed: (1) live pollination and cross-pollination are
considered as global pollination and the carriers or pollen pollinators move in a way
that follows levy fight; (2) abiotic and self-pollination are considered as local
pollination; (3) pollinators including insects can develop flower constancy. Flower
constancy is production probability that is proportional to the similarity of two
involved flowers; and (4) the interaction of global and local pollination can be
controlled by switch probability. The first and third rules can be expressed as (Yang
2012):

xtþ 1
i ¼ xti þ c� LðkÞ � ðg� � xtiÞ ð7:1Þ

where xti = pollen or solution vector at iteration t; g� = the current best solution
among all current generation solutions; c = a scale factor for controlling step size;
and L = strength of pollination, which is a step size related to the levy distribution.
Levy flight is a bunch of random processes where the length of each jump follows
the levy probability distribution function and has infinite variance. Following Yang
(2012), L for a levy distribution is given by:

L� k � CðkÞ � sin pk
2

p
� 1
S1þ k

S � S0 0; ð7:2Þ

where CðkÞ = standard gamma function.
For local pollination, the second and third rules are given by:

xtþ 1
i ¼ xti þ e xtj � xtk

� �
ð7:3Þ

62 M. Azad et al.

where xtj and xtk = two pollens from different flowers of the same plant.
Mathematically, if xtj and xtk come from the same species or are selected from the
same population, this becomes a local random walk if ɛ has a uniform distribution
in [0,1].

Table 7.1 lists the characteristics of the FPA and Fig. 7.1 shows the flowchart of
the FPA.

7.4 User-Defined Parameters of the FPA

The size of the population of solutions (n), the scale factor for controlling step size
cð Þ, the levy distribution parameter LðkÞ½ �, and the switch probability (P) are
user-defined parameters in the FPA. Determining the optimal parameters of the
FPA is a time-consuming work and needs to run the algorithm many times. It
should be noted that the optimal parameters of the algorithm for one problem are
different from those of other problems. Considering a mixture of parameters is an
appropriate method for finding the suitable values of the algorithm parameters. The
algorithm can be done for several times for one mixture of parameters, and the
similar process can be repeated for other mixtures of parameters. Finally, the results
for different sets of parameters can be compared and the best value can be deter-
mined. Yang (2012) suggested to start the modeling with P = 0.5 and k = 1.5.

Table 7.1 Characteristics of the FPA

General algorithm Flower pollination algorithm

Decision variable Flowers or pollen gametes in each dimension

Solution Flowers or pollen gametes

Old solution Old flower or old pollen gamete

New solution New flower or new pollen gamete

Best solution Current best solution

Fitness function –

Initial solution Selection Random selection

Process of generating new solution Flying and local random walk

7 Flower Pollination Algorithm (FPA) 63

start

Determination parameters FPA: the size initial population and the
maximum number of iteration and the amount of p

Construction initial population with random solution

Calculation the objective function corresponding to random
solutions and selection the best solution in current population

For each iteration t

Rand > p

Do global pollination using the
Levy distribution and create a
new population

Do local pollination

Calculate the objective function corresponding to new solutions

Update the best current solution

t > maximum number of
iteration

Display the best solution

End

Yes

t=t+1
No

YesNo

Fig. 7.1 Flowchart of the FPA

64 M. Azad et al.

7.5 Pseudo Code of FPA

7 Flower Pollination Algorithm (FPA) 65

7.6 Conclusion

This chapter described the flower pollination algorithm (FPA), which is based on
the pollination phenomenon of flowing plants in nature. The chapter presented a
summary of the FPA applications in different problems. Then, the natural process of
pollination, and the flower pollination algorithm and a pseudocode of the FPA are
presented.

References

Abdelaziz, A. Y., Ali, E. S., & Abd Elazim, S. M. (2016). Optimal sizing and locations of
capacitors in radial distribution systems via flower pollination optimization algorithm and
power loss index. Engineering Science and Technology, 19(1), 610–618.

Abdel-Raouf, O., & Abdel-Baset, M. (2014). A new hybrid flower pollination algorithm for
solving constrained global optimization problems. International Journal of Applied
Operational Research-An Open Access Journal, 4(2), 1–13.

Abdel-Raouf, O., El-Henawy, I., & Abdel-Baset, M. (2014). A novel hybrid flower pollination
algorithm with chaotic harmony search for solving sudoku puzzles. International Journal of
Modern Education and Computer Science, 6(3), 38.

Alam, D. F., Yousri, D. A., & Eteiba, M. B. (2015). Flower pollination algorithm based solar PV
parameter estimation. Energy Conversion and Management, 101, 410–422.

Bekdaş, G., Nigdeli, S. M., & Yang, X. S. (2015). Sizing optimization of truss structures using
flower pollination algorithm. Applied Soft Computing, 37, 322–331.

Bibiks, K., Li, J. P., & Hu, F. (2015). Discrete flower pollination algorithm for resource
constrained project scheduling problem. International Journal of Computer Science and
Information Security, 13(7), 8.

Dubey, H. M., Pandit, M., & Panigrahi, B. K. (2015). A biologically inspired modified flower
pollination algorithm for solving economic dispatch problems in modern power systems.
Cognitive Computation, 7(5), 594–608.

El-henawy, I., & Ismail, M. (2014). An improved chaotic flower pollination algorithm for solving
large integer programming problems. International Journal of Digital Content Technology and
its Applications, 8(3).

Emary, E., Zawbaa, H. M., Hassanien, A. E., Tolba, M. F., & Snášel, V. (2014). Retinal vessel
segmentation based on flower pollination search algorithm. In Proceedings of the Fifth
International Conference on Innovations in Bio-Inspired Computing and Applications IBICA,
2014 (pp. 93–100). Springer International Publishing.

Łukasik, S., & Kowalski, P. A. (2015). Study of flower pollination algorithm for continuous
optimization. In Intelligent Systems, 2014 (pp. 451–459). Springer International Publishing.

Nabil, E. (2016). A modified flower pollination algorithm for global optimization. Expert Systems
with Applications, 57, 192–203.

Nigdeli, S. M., Bekdaş, G., & Yang, X. S. (2016). Application of the flower pollination algorithm
in structural engineering. In Metaheuristics and optimization in civil engineering (pp. 25–42).
Springer International Publishing.

Platt, G. M. (2014). Computational experiments with flower pollination algorithm in the
calculation of double retrograde dew points. International Review of Chemical Engineering, 6
(2), 95–99.

Sakib, N., Kabir, M. W. U., Subbir, M., & Alam, S. (2014). A comparative study of flower
pollination algorithm and bat algorithm on continuous optimization problems. International
Journal of Soft Computing and Engineering, 4(2014), 13–19.

66 M. Azad et al.

Sharawi, M., Emary, E., Saroit, I. A., & El-Mahdy, H. (2014). Flower pollination optimization
algorithm for wireless sensor network lifetime global optimization. International Journal of
Soft Computing and Engineering, 4(3), 54–59.

Trivedi, I. N., Purani, S. V., & Jangir, P. K. (2015). Optimized over-current relay coordination
using Flower Pollination Algorithm. In Advance Computing Conference (IACC), 2015 IEEE
International (pp. 72–77). IEEE.

Yang, X. S. (2012). Flower pollination algorithm for global optimization. In International
Conference on Unconventional Computing and Natural Computation (pp. 240–249). Berlin:
Springer.

Yang, X. S., Karamanoglu, M., & He, X. (2014). Flower pollination algorithm: A novel approach
for multiobjective optimization. Engineering Optimization, 46(9), 1222–1237.

Yang, X. S., Deb, S., & He, X. (2013). Eagle strategy with flower algorithm. In 2013 International
Conference on Advances in Computing, Communications and Informatics (ICACCI)
(pp. 1213–1217). IEEE.

7 Flower Pollination Algorithm (FPA) 67

Chapter 8
Krill Herd Algorithm (KHA)

Babak Zolghadr-Asli , Omid Bozorg-Haddad and Xuefeng Chu

Abstract The krill herd algorithm (KHA) is a new metaheuristic search algorithm
based on simulating the herding behavior of krill individuals using a Lagrangian
model. This algorithm was developed by Gandomi and Alavi (2012) and the pre-
liminary studies illustrated its potential in solving numerous complex engineering
optimization problems. In this chapter, the natural process behind a standard KHA
is described.

8.1 Introduction

In the past decades, metaheuristic optimization techniques have been widely
employed in many fields to solve complex optimization problems, due to their
advantages over the conventional optimization techniques. Generally, these algo-
rithms have two main features: (1) intensification and (2) diversification (Gandomi
et al. 2013c). The former denotes searching through the current candidates for the
optimal solution, while the latter indicates expanding the searching horizon to
ensure that the final result is a global optimum, instead of a local one. Each newly
proposed algorithm attempts to improve these two main features, either by
decreasing the distance of the reported solutions and the actual global optima or by
reducing the solution searching time.

B. Zolghadr-Asli � O. Bozorg-Haddad (&)
Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering
and Technology, College of Agriculture and Natural Resources, University of Tehran,
3158777871 Karaj, Iran
e-mail: OBHaddad@ut.ac.ir

B. Zolghadr-Asli
e-mail: ZolghadrBabak@ut.ac.ir

X. Chu
Department of Civil and Environmental Engineering, North Dakota State University,
Dept 2470, Fargo, ND 58108-6050, USA
e-mail: Xuefeng.Chu@ndsu.edu

© Springer Nature Singapore Pte Ltd. 2018
O. Bozorg-Haddad (ed.), Advanced Optimization by Nature-Inspired Algorithms,
Studies in Computational Intelligence 720, DOI 10.1007/978-981-10-5221-7_8

69

http://orcid.org/0000-0002-3392-2672

Although the basic principles of these algorithms are similar and contain an
iterative mechanism, the iteration process differs in each algorithm. The main
objective of such a process is to search through the decision space for arrays of
decision variables that produce an optimum result. This process is usually inspired
by the natural phenomena, and is intended to imitate a natural feature that has been
evolved over millions of years (Gandomi and Alavi 2012). Consequently, there is
no limitation to the source of inspiration for these bio-inspired algorithms, and they
can imitate a vast domain of features, from the genetic evolution process of a
species to the foraging mechanism of bacteria. Swarm intelligence, which is an
imitation of an animal group’s behavior, could serve as an inspiration source to
develop such algorithms.

Many studies have focused on capturing the underlying mechanism that governs
the development of formation grouping of various species of marine animals,
including the Antarctic krill (Flierl et al. 1999). The krill herds are aggregations
with no parallel orientation in both temporal and spatial scales (Brierley and Cox
2010). These creatures that can form large swamps are the source of inspiration for
the krill herd algorithm (KHA). The herding of the krill individuals is a
multi-objective process, including two main goals: (1) increasing krill density, and
(2) reaching the food. Density-dependent attraction of krill (increasing density) and
finding food (areas of high food concentration) are used as objectives, which finally
cause krill to herd around the global optima. In this process, an individual krill
moves toward the best solution when it searches for the highest density and food.
The imaginary distance of krill individuals serve as objective functions, and min-
imizing them is the priority of the optimization process. Hence the closer the
distance to the high density and food, the less the objective function (better)
(Gandomi and Alavi 2012).

The engineering optimization problems, which mostly have a nonlinear decision
space, are complicated, due to their numerous decision variables and complex
constraints. Such conditions can be regarded as an advantage for the metaheuristic
algorithms over the conventional optimization techniques. KHA is a new and novel
metaheuristic search algorithm based on the herding behavior of krill individuals,
using a Lagrangian model at its core. This algorithm was first introduced by
Gandomi and Alavi (2012), and the preliminary studies have demonstrated its
potential to outperform the existing algorithms for solving the complicated engi-
neering problems (Gandomi et al. 2013a, b). Additionally, KHA was further vali-
dated for various engineering problems, including optimal design of civil structures
(Gandomi et al. 2013a, b; Gandomi and Alavi 2016), power flow optimization
(Mukherjee and Mukherjee 2015), and optimum operation of power plants (Mandal
et al. 2014). Similarly, studies have illustrated that the power of the classical KHA
tends towards global exploration (Bolaji et al. 2016). Some modifications have been
made to the standard KHA, and the modified algorithms include: chaotic-particle
swarm krill herd (CPKH) (Wang et al. 2013), fuzzy krill herd algorithm
(FKH) (Fattahi et al. 2016), and discrete-based krill herd algorithm (DKH) (Bolaji
et al. 2016). As a compatible and efficient algorithm, KHA can be a promising
alternative for solving engineering optimization problems.

70 B. Zolghadr-Asli et al.

8.2 Krill Swarms’ Herding Pattern

The basic core of a standard KHA is its krill herding simulator. The krill herd
defuses after a hypothetical attack from a predator. This is the initial step in the
standard KHA. Each krill after such an event has two priorities, which are
decreasing its distance from both the food source and the highest density of the krill
swarm. These imaginary distances are acting as the objective function, and mini-
mizing these distances is considered as the goal of each krill individual.
Consequently, the time-dependent position of an individual krill is governed by the
motion induced by other krill individuals (Ni), foraging motion (Fi), and physical
diffusion (Di). As any efficient optimization algorithm should be compatible with
arbitrary dimensions, since each arbitrary dimension is to represent a decision
variable, the following Lagrangian model is generalized for an n-dimensional
decision space (Gandomi and Alavi 2012):

dXi

dt
¼ Ni þFi þDi ð8:1Þ

in which Xi = location of the ith krill individual in the decision space.
Equation (8.1), which simulates the movement of each individual krill, implies

that the movement of each krill is affected by three factors: (1) the behavior of the
group, (2) the location of food, and (3) a random factor.

8.3 Motion Induced by the Krill Herd

Theoretically speaking, the krill herd has a tendency to move in a group. In other
words, forming a high-density swarm is considered as an advantage for the krill
community. Thus, krill individuals try to maintain a high density and move due to
their mutual effects. The motion induced by the krill herd can be expressed as
(Gandomi and Alavi 2012):

Nnew
i ¼ Nmax � ai þxn � Nold

i ð8:2Þ

in which Nnew
i = motion of the ith krill individual induced by the krill herd at the

current iteration; Nmax = maximum induced speed (according to the measured
values, it is around 0.01 m/s) (Hofmann et al. 2004); ai = direction of motion of the
ith krill individual induced by the krill swamp; wn = inertia weight of the motion
induced in the range [0,1]; and Nold

i = motion of the ith krill individual induced by
the krill herd in the previous iteration. wn is one of the model parameters and it acts
as a weight for the previously calculated motion induced by the krill herd. A lower
value of wn decreases the influence of the Nold

i .

8 Krill Herd Algorithm (KHA) 71

The direction of motion of the ith krill individual induced by the krill swamp
(ai), however, is influenced by both the nearby krill individuals (local effect) and the
target swarm density (target effect), and it is given by Gandomi and Alavi (2012):

ai ¼ alocali þ atargeti ð8:3Þ

alocali ¼
XNN
j¼1

bKði;jÞ � bXði;jÞ ð8:4Þ

bXði;jÞ ¼ Xj � Xi

Xj � Xi

�� ��þ e
ð8:5Þ

bKði;jÞ ¼ Ki � Kj

Kworst � Kbest ð8:6Þ

in which bXði;jÞ = local effect induced by the jth neighboring krill individual for the

ith krill individual; bKði;jÞ = target direction effect provided by the best krill indi-
vidual; Ki and Kj = fitness values of the ith and jth krill individuals, respectively;
Kbest and Kworst = best and worst fitness values for krill individuals, respectively;
and NN = number of neighboring krill individuals for the ith krill.

Equation (8.5) represents the unit vector that connects the ith krill to the jth krill,
while Eq. (8.6) calculates the normalized fitness value, which plays the role of a
weight for the unit vector in Eq. (8.5). In fact, each calculated bXði;jÞ � bKði;jÞ char-
acterizes the effect of the jth neighboring krill. This influence can be (1) an

attractive one bKði;jÞ [0
� �

, which indicates that both krill individuals are moving

toward one another; (2) a repulsive one bKði;jÞ\0
� �

, which refers to a situation

where both krill individuals are moving away from each other; and (3) a futile one
bKði;jÞ ¼ 0

� �
, which suggests that both krill individuals are incurious toward one

another. The summation of these weighted vectors shows the influence of the
neighboring krill individuals on the motion induced by the ith krill.

To choose the number of neighboring krill individuals for any given krill, dif-
ferent strategies can be implemented. For instance, a neighboring ratio can be
simply defined to find the number of the closest krill individuals. Reportedly, using
the actual behavior of the krill individuals suggests that a sensing distance (ds) is a
proper value to determine the neighboring krill individuals (Fig. 8.1). The sensing
distance for each krill individual in each iteration can be determined by Gandomi
and Alavi (2012):

dðs;iÞ ¼ 1
5N

XN
j¼1

Xi � Xj

�� �� ð8:7Þ

72 B. Zolghadr-Asli et al.

in which N = number of krill individuals. It should be noted that this is merely a
suggestion and other techniques could be used, instead. In fact, the number of
neighboring krill individuals (NN) is also one of the algorithm’s parameters.

Equation (8.7) suggests that if the distance between two krill individuals is less
than the calculated ds, they should be considered as neighbors, and thus, they could
influence the movement of one another in a direct manner. An analytical review of
Eq. (8.7) also reveals that this formula has a tendency to calculate higher ratios of ds
for those krill individuals that are separated from the herd (placed in a low-density
position). In this way there is a better chance that the neighbors of such a krill could
make a greater impact on its motion so that it could decrease its distance from the
herd.

The known target vector of each krill swarm has the lowest fitness of an indi-
vidual krill in that herd. The effect of the individual krill with the best fitness on the
ith individual krill is taken into account using Eq. (8.8). Such an effect can increase
the chance of finding the global optima (Gandomi and Alavi 2012).

atargeti ¼ Cbest � bKði;bestÞ � bXði;bestÞ ð8:8Þ

in which atargeti = effective coefficient of the krill individuals with the best fitness to
the ith krill individual. atargeti leads the solution to the probable location of global
optima and hence it should be more effective than other krill individuals such as
neighboring krill individuals. Herein, Cbest in Eq. (8.8) is defined as (Gandomi and
Alavi 2012):

Fig. 8.1 Schematic representation of the sensing ambit around a krill individual

8 Krill Herd Algorithm (KHA) 73

Cbest ¼ 2 randþ I
Imax

� �
ð8:9Þ

where rand = a random value in the range of [0,1] and it has a uniform distribution;
I = current iteration number; and Imax = maximum number of iterations.
Equation (8.9) suggests that the effect of the target krill is enhanced in each
iteration.

8.4 Foraging Motion

The foraging motion, which is centered around the krill herd’s tendency to find
nutrition, has two terms in its structure: (1) the location of food, and (2) the previous
experiences about the food location encountered by each individual krill. The above
mechanism can be formulated for each individual krill as follows (Gandomi and
Alavi 2012):

Fi ¼ Vf � bi þxf � Fold
i ð8:10Þ

where

bi ¼ bfoodi þ bbesti ð8:11Þ

in which Vf = foraging speed (according to the measured values, it is 0.02 m/s)
(Price 1989); wf = inertia for the foraging motion in the range of [0,1]; bfoodi = food
attraction parameter; and bbesti = effect value of the best fitness of the ith krill.

Equations (8.10) and (8.11) encourage each individual krill to decrease its dis-
tance from the location of food, which is the probable location of the global optima
in the decision space. However, the location of food and its attraction are, in fact,
the result of the optimization process. In each iteration, the location of food and its
attraction for the krill herd can only be estimated. While the estimation process can
also influence the KHA efficacy, the following formula can be adapted to
approximate the virtual center of the food concentration, using the fitness distri-
bution of krill individuals. This approach, inspired by the “center of the mass”
notion, can be expressed as (Gandomi and Alavi 2012):

Xfood ¼
PN
i¼1

1
Ki
� Xi

PN
i¼1

1
Ki

ð8:12Þ

in which Xfood = estimated location of the food.

74 B. Zolghadr-Asli et al.

Thus, the attraction of the food is given by

bfoodi ¼ Cfood � bKði;foodÞ � bXði;foodÞ ð8:13Þ

in which Cfood = food concentration. To ensure that the food attraction is
decreasing for the krill herd during the iteration procedure, this food concentration
term is added to the food attraction calculation process, and it is given by Gandomi
and Alavi (2012):

Cfood ¼ 2 1� I
Imax

� �
ð8:14Þ

The main reason behind the food attraction is to ensure that the krill swarm finds
the global optima. As a result, when the krill herd is randomly spread through the
decision space, this motion can help the herd to gather around the plausible location
of the food (global optima). However, as the searching process advances in each
iteration, the herd must be able to spread in a limited space, to locate the best
solution. Thus, as shown in the formula, this motion decreases with time. This can
be considered as an efficient global optimization strategy that helps improve the
efficiency of KHA.

Each individual krill is also moving due to its visited memory of the previously
spotted locations of food. The effect of the best fitness of the ith krill individual can
also be expressed as (Gandomi and Alavi 2012):

bbesti ¼ bKði;bestÞ � bXði;bestÞ ð8:15Þ

in which K(i,best) = best previously encountered position of the ith krill individual.

8.5 Physical Diffusion

The two mechanisms behind inducing motion to each individual krill (motion
induced by the krill herd and foraging motion) are to ensure that after the initial
separation of the krill herd throughout the decision space, the herd gathers around
what is considered to be the global optima. Yet, to ensure that the decision space is
inspected thoroughly by the krill herd, a random process is required to spread an
enough number of krill individuals in the decision space, in a random-based manner.
If the random process is too strong, the herd will not gather around a center location;
yet, lack of such a mechanism could interrupt a proper search throughout the
decision space. The physical diffusion term is introduced in the KHA as a random
process. This motion can be expressed in terms of maximum diffusion speed, a
random direction vector, and a mathematical mechanism to ensure the decreasing
effects of this term as searching for the global optimal solution continues. Thus, the
physical diffusion term can be formulated as follows (Gandomi and Alavi 2012):

8 Krill Herd Algorithm (KHA) 75

Di ¼ Dmax � 1� I
Imax

� �
� d ð8:16Þ

in which Dmax = maximum diffusion speed, which has the range of [0.002, 0.010]
(m/s) (Gandomi and Alavi 2012); and d = random directional vector and its arrays
are random values between −1 and 1. A random selection can also be employed to
determine the value of Dmax. The physical diffusion motion introduced in Eq. (8.16)
works on the basis of a geometrical annealing schedule, and the random speed
linearly decreases with time.

8.6 Motion Process of the KHA

The above three mechanisms allow one to calculate the direction and speed of
relocation for each individual krill at any given iteration. In other words, the defined
motions frequently change the position of a krill individual toward the position that
is expected to be the best one. The motion induced by other krill individuals and the
foraging motion are working in parallel, which resultantly makes the KHA a
potentially powerful algorithm for solving complex optimization problems.
The KHA formulation suggests that if any of Kj, K

best, Kfood, and Kfood
i can illustrate

a better performance than the ith krill individual, they can have an attractive effect,
which can inspire this krill to move toward any of these locations, in the hope that
such an action would improve its fitness value. Such a mechanism can also have a
negative effect. The Kj, K

best, Kfood, and Kfood
i can repulse the ith krill individual,

causing it to move away from the aforementioned locations. Additionally, the
physical diffusion can spread the krill herd throughout the decision space for a
comprehensive search of the plausible arrays of decision variables. After calculating
the motion for every krill in the herd, the position vector of the ith krill individual
during the time interval from t to t + Dt is given by

XiðtþDtÞ ¼ XiðtÞþDt � dXi

dt
ð8:17Þ

It should be noted that Δt is one of the most important model parameters since it
works as a scale factor for the speed vector. Thus, it should be carefully set for the
optimization problem. Suggestively, Δt, which completely depends on the search
space, can be estimated by Gandomi and Alavi (2012):

Dt ¼ Ct �
XNV
j¼1

UBj � LBj
� � ð8:18Þ

in which NV = number of variables; and LBj and UBj = lower and upper bounds of
the jth variable, respectively. It is empirically found that Ct is a constant within

76 B. Zolghadr-Asli et al.

(0,2]. It is also obvious that the low values of Ct let the krill individual search the
space in a slower, yet more careful pace. One should bear in mind that, this
parameter is the most important parameter of the model, and thus, needs to be
carefully adapted to each optimization problem.

Finally, it should be pointed out that although the above-mentioned mechanisms
are the core concept of a standard KHA, this algorithm is compatible to implement
a few external searching operators, including but not limited to genetic operators

Fig. 8.2 Simplified flowchart of the KHA

Table 8.1 The characteristics of the KHA

General algorithm Krill herd algorithm

Decision variable Krill individual’s position in each dimension

Solution Krill individual’s position

Old solution Old position of the krill individual

New solution New position of the krill individual

Best solution Any krill with the best fitness

Fitness function Distance between krill individual and food and the densest
location in the herd

Initial solution Randomly

Selection –

Process of generating new
solution

Motion induced by krill herd, foraging activity, and physical
diffusion

8 Krill Herd Algorithm (KHA) 77

such as crossover and mutation. While this capability surely enhances the perfor-
mance of the standard KHA, their presence is not obligatory (Gandomi and Alavi
2012). A basic representation of the KHA is shown in Fig. 8.2. Additionally,
Table 8.1 summarizes the characteristics of the standard KHA.

8.7 Pseudo Code of KHA

Begin

 Define population size (N) and maximum iteration number (Imax)

 Set the iteration counter I=1

 Initialize the population by generating Xi for i = 1, 2, 3…, N

 Set the inertia weight of the motion induced (n) and foraging motion (f)

 Define t

 Evaluate each krill individual according to its position

 While (the stop criterion is not satisfied or I < Imax)

 For i = 1: N

 Perform the following motion calculation:

 Movement induced by other krill individuals

 Foraging activity

 Physical diffusion

 Update the krill individual position in the search space

 Evaluate each krill individual according to its position

 End for i

 Sort the population/krill from best to worst and find the current best

 End while

 Post-processing the results and visualization.

End

78 B. Zolghadr-Asli et al.

8.8 Conclusion

This chapter described the krill herd algorithm (KHA), which is a novel, yet rel-
atively newly introduced metaheuristic optimization algorithm. After a brief review
of the vast applications of KHA, including complex engineering optimization
problems, the standard KHA and its mechanism were described. In the final section,
a pseudo code of the standard KHA was also presented.

References

Bolaji, A. L. A., Al-Betar, M. A., Awadallah, M. A., Khader, A. T., & Abualigah, L. M. (2016).
A comprehensive review: Krill Herd algorithm (KH) and its applications. Applied Soft
Computing, 49, 437–446.

Brierley, A. S., & Cox, M. J. (2010). Shapes of krill swarms and fish schools emerge as aggregation
members avoid predators and access oxygen. Current Biology, 20(19), 1758–1762.

Fattahi, E., Bidar, M., & Kanan, H. R. (2016). Fuzzy krill herd (FKH): An improved optimization
algorithm. Intelligent Data Analysis, 20(1), 153–165.

Flierl, G., Grünbaum, D., Levins, S., & Olson, D. (1999). From individuals to aggregations: The
interplay between behavior and physics. Journal of Theoretical Biology, 196(4), 397–454.

Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm.
Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831–4845.

Gandomi, A. H., & Alavi, A. H. (2016). An introduction of krill herd algorithm for engineering
optimization. Journal of Civil Engineering and Management, 22(3), 302–310.

Gandomi, A. H., Alavi, A. H., & Talatahari, S. (2013a). Structural optimization using krill herd
algorithm. Chapter 15 in swarm intelligence and bio-inspired computation: Theory and
applications. London, UK: Elsevier Publication.

Gandomi, A. H., Talatahari, S., Tadbiri, F., & Alavi, A. H. (2013b). Krill herd algorithm for
optimum design of truss structures. International Journal of Bio-Inspired Computation, 5(5),
281–288.

Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013c). Cuckoo search algorithm: A metaheuristic
approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.

Hofmann, E. E., Haskell, A. E., Klinck, J. M., & Lascara, C. M. (2004). Lagrangian modelling
studies of Antarctic krill (Euphausia superba) swarm formation. ICES Journal of Marine
Science, 61(4), 617–631.

Mandal, B., Roy, P. K., & Mandal, S. (2014). Economic load dispatch using krill herd algorithm.
International Journal of Electrical Power & Energy Systems, 57, 1–10.

Mukherjee, A., & Mukherjee, V. (2015). Solution of optimal power flow using chaotic krill herd
algorithm. Chaos, Solitons & Fractals, 78, 10–21.

Price, H. J. (1989). Swimming behavior of krill in response to algal patches: A mesocosm study.
Limnology and Oceanography, 34(4), 649–659.

Wang, G. G., Gandomi, A. H., & Alavi, A. H. (2013). A chaotic particle-swarm krill herd
algorithm for global numerical optimization. Kybernetes, 42(6), 962–978.

8 Krill Herd Algorithm (KHA) 79

Chapter 9
Grey Wolf Optimization
(GWO) Algorithm

Hossein Rezaei, Omid Bozorg-Haddad and Xuefeng Chu

Abstract This chapter describes the grey wolf optimization (GWO) algorithm as
one of the new meta-heuristic algorithms. First, a brief literature review is presented
and then the natural process of the GWO algorithm is described. Also, the opti-
mization process and a pseudo code of the GWO algorithm are presented in this
chapter.

9.1 Introduction

Grey wolf optimization (GWO) is one of the new meta-heuristic optimization
algorithms, which was introduced by Mirjalili et al. (2014). Gholizadeh (2015)
developed the GWO algorithm to solve an optimization problem of double-layer
grids considering the nonlinear behavior. The results illustrated that GWO had a
better performance than other algorithms in finding the optimal design of nonlinear
double-layer grids. Mirjalili (2015) used the GWO algorithm to learn multi-layer
perceptron (MLP) for the first time. In the study, the results of GWO were com-
pared with those from particle swarm optimization (PSO), genetic algorithm (GA),
ant colony optimization (ACO), and evolution strategy (EA), and indicated the
higher performance of GWO. Saremi et al. (2015) coupled GWO with the evolu-
tionary population dynamic (EPD) to improve the performance of the basic GWO

H. Rezaei � O. Bozorg-Haddad (&)
Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering
and Technology, College of Agriculture and Natural Resources, University of Tehran,
31587-77871 Karaj, Tehran, Iran
e-mail: OBHaddad@ut.ac.ir

H. Rezaei
e-mail: HosseinRezaie18@ut.ac.ir

X. Chu
Department of Civil and Environmental Engineering, North Dakota State University,
Dept 2470, Fargo, ND 58108-6050, USA
e-mail: Xuefeng.Chu@ndsu.edu

© Springer Nature Singapore Pte Ltd. 2018
O. Bozorg-Haddad (ed.), Advanced Optimization by Nature-Inspired Algorithms,
Studies in Computational Intelligence 720, DOI 10.1007/978-981-10-5221-7_9

81

algorithm by removing weak individuals from the society. Comparison with the
basic GWO illustrated that the proposed algorithm had a better performance in
conversion rate and exploration, and also avoided trapping into local optima.
Sulaiman et al. (2015) used GWO to solve an optimal reactive power dispatch
(ORPD) problem and compared with swarm intelligence (SI), evolutionary com-
putation (EC), PSO, harmony search algorithm (HAS), gravity search algorithm
(GSA), invasive weed optimization, and modified imperialist competitive algorithm
with invasive weed optimization (MICA-IWO). The results demonstrated that
GWO had more desirable optimal solution than others.

9.2 Natural Process of the GWO Algorithm

GWO is inspired by social hierarchy and the intelligent hunting method of grey
wolves. Usually, grey wolves are at the top of the food chain in their life areas. Grey
wolves mostly live in a pack of 5–12 individuals. In particular, in grey wolves’ life
there is a strict social hierarchy. As shown in Fig. 9.1, the leaders of a pack of grey
wolves (alpha) are a male and female wolves that often are responsible for making
decisions for their pack such as sleep place, hunting, and wake-up time. Mostly,
other individuals of the pack must obey the decision made by alpha. However,
some democratic behaviors in the social hierarchy of grey wolves can be observed
(alpha may follow other individuals of the pack). In gatherings, individuals confirm
the alpha’s decision by holding their tails down. It is also interesting to know that it

α

β

δ

ω

Fig. 9.1 Social hierarchy of
grey wolves

82 H. Rezaei et al.

is not necessary for the alpha to be the strongest ones in the pack. Managing the
pack is the main role of the alpha. In a pack of grey wolves, discipline and orga-
nization are the most important. The level next to alpha in the social hierarchy of
grey wolves is beta and the role of beta is to help alpha in making decisions. Beta
can be either male or female wolves and beta can be the best candidate of substi-
tution for alpha when one of them becomes old or dies. The beta must respect alpha,
but he/she can command other individuals. Beta is the consultant of alpha and
responsible for disciplining the pack. The beta reinforces the orders of alpha and
gives alpha the feedbacks. The weakest level in a pack of grey wolves is omega that
plays a role of scapegoat. The wolves at the level of omega have to obey other
individuals’ orders and they are the last wolves that are allowed to eat food. Omega
seems to be the least important individuals in the pack, but without omega, internal
fight and other problems can be observed. This can be attributed to the omega’s
venting role of violence and frustration of other wolves, which helps satisfy other
individuals and maintain the dominant structure of grey wolves. Sometimes, omega
plays the role of babysitter in the pack. The remaining wolves, other than alpha,
beta, and omega, are called subordinate (delta). The wolves at the level of delta
obey the alpha and beta wolves and dominate the omega wolves. They act as
scouts, sentinels, elders, hunters, and caretakers in the pack. Scouts are responsible
for looking after boundaries and territory and also they should alarm the pack in
facing to danger. Sentinels are in charge of security establishment. Elders are the
experienced wolves that are candidates for alpha and beta. Hunters help alpha and
beta in hunting and preparing food for the pack, while caretakers should look after
the weak, ill, and wounded wolves.

In addition to the social hierarchy in a pack of grey wolves, group hunting is one
of the interesting social behaviors of grey wolves too. According to Muro et al.
(2011) grey wolves’ hunting includes the following three main parts:

(1) Tracking, chasing, and approaching the prey.
(2) Pursuing, encircling, and harassing the prey till it stops moving.
(3) Attacking the prey.

These two social behaviors of grey wolves’ pack (social hierarchy and hunting
technique) are modeled in the GWO algorithm.

9.3 Mathematical Model of the GWO Algorithm

In this section, mathematical modeling of the social hierarchy of grey wolves, and
their hunting technique (tracking, encircling, and attacking prey) in the GWO
algorithm is detailed.

9 Grey Wolf Optimization (GWO) Algorithm 83

9.3.1 Social Hierarchy

In order to mathematically model the social hierarchy of grey wolves in the GWO
algorithm, the best solution is considered as alpha ðaÞ. Therefore, the second and
third best solutions are respectively considered as beta ðbÞ and delta ðdÞ, and other
solution is assumed to be omega ðxÞ. In the GWO algorithm, hunting (optimiza-
tion) is guided by a, b, and d, and x wolves follow them.

9.3.2 Encircling the Prey

As aforementioned, grey wolves in the process of hunting, encircle the prey. The
grey wolves’ encircling behavior to hunt for a prey can be expressed as (Mirjalili
et al. 2014):

D
!¼ C

!
:X
!

pðtÞ � XðtÞ
���

��� ð9:1Þ

X
!ðtþ 1Þ ¼ X

!
pðtÞ � A

!
:D
! ð9:2Þ

where t ¼ iteration number; A
!

and C
!¼ coefficient vectors; X

!
P ¼ vector of the

prey’s positions; X
!¼ vector of the grey wolf’s positions; and D

!¼ calculated

vector used to specify a new position of the grey wolf. A
!

and C
!

can be calculated
by Mirjalili et al. (2014):

A
!¼ 2 a!:r1

!� a! ð9:3Þ

C
!¼ 2:r2! ð9:4Þ

where a!¼ vector set to decrease linearly from 2 to 0 over the iterations; and
r1
! and r!2 ¼ random vectors in [0,1]. As shown in Fig. 9.2, a grey wolf at ðx; yÞ
can change its position based on the position of prey at ðx0; y0Þ. Different places to
the best agent can be achieved with respect to the current position by regulating the

A
!

and C
!
. For instance, by setting A

!¼ ½1; 0� and C
!¼ ½1; 1�, the position of the

grey wolf is updated to ðx0 � x; y0Þ.
Note that the random r1

! and r2
! vectors let the grey wolf select any

positions/nodes in Fig. 9.2. Therefore, a grey wolf can be placed in each random
position around the prey that is calculated by using Eqs. (9.1) and (9.2). Following
the same way, in an n-dimensional decision space grey wolves can move to any
nodes of a hypercube around the best solution (position of the prey). They can
distinguish the position of the prey from others and encircle it. Usually, hunting
operation is guided by a, and b and d provide support for a. In a decision space of
an optimization problem we do not have any idea about the optimum solution.

84 H. Rezaei et al.

Thus, in order to simulate the hunting behavior of grey wolves, we assume that a
(best candidate for the solution), b, and d have more knowledge about the potential
position of the prey. Therefore, the algorithm saves three best solutions achieved so
far and forces others (i.e., omega wolves) to update their positions to achieve the
best place in the decision space. In the optimization algorithm, such a hunting
behavior can be modeled by Mirjalili et al. (2014):

D
!

a ¼ C
!

1:X
!

a � X
!���
���; D!b ¼ C

!
2:X
!

b � X
!���
���; D!d ¼ C

!
3:X
!

d � X
!���
��� ð9:5Þ

X
!

1 ¼ X
!

a � A1:ðD!aÞ; X
!

2 ¼ X
!

b � A2:ðD!bÞ; X
!

3 ¼ X
!

d � A2:ðD!dÞ ð9:6Þ

X
!

1 ¼ X
!

a � A1:ðD!aÞ ð9:7Þ

Figure 9.3 shows how the search agent updates the positions of a, b, and d in a
2D search space. As shown in Fig. 9.3, the final position (solution) is inside a circle
that is specified based on the positions of a, b, and d in the decision space. In other
words, a, b, and d estimate the positions of prey and other wolves and then update
their new positions, randomly around the prey.

9.3.3 Attacking the Prey

As aforementioned, grey wolves finish the hunting process by attacking the prey
until it stops moving. In order to model the attacking process, the value of a! can be

Fig. 9.2 Attacking toward
prey versus searching for prey

9 Grey Wolf Optimization (GWO) Algorithm 85

decreased in different iterations. Note that as a! decreases the fluctuation rate of A
!

decreases too. In other words, A
!

is a random value in the range of ½�2a; 2a� where
a decreases from 2 to 0 over iterations. When the random value of A

!
is being in the

range of ½�1; 1�. The next position of a wolf can be between the current position
and the prey position. As illustrated in Fig. 9.4, when Aj j\1 grey wolves will
attack the prey.

Fig. 9.3 Updating of positions in the GWO algorithm

Fig. 9.4 Attacking toward prey and searching for prey

86 H. Rezaei et al.

By using the operators provided so far, the GWO algorithm lets the search agent
to update its position based on the positions of a, b, and d(move toward the prey). It
is true that the encircling process provided as an operator in the GWO algorithm
limits the solutions around local optima, but GWO also has many other operators to
discover new solutions.

9.3.4 Searching for the Prey (Exploration)

Grey wolves often search for the prey according to the positions of a, b, and d.
They diverge from each other to explore the position of prey and then converge to

attack the prey. In order to mathematically model the divergence of grey wolves, A
!

can be utilized. A
!

is a random vector that is greater than 1 or less than −1 to force
the search agent to diverge from the prey, which emphasizes the global search in

GWO. Figure 9.4 illustrates that when A
!���
���[1, the grey wolf is forced to move

away from the prey (local optimum) to search for better solutions in the decision
space.

The GWO algorithm has another component C
!� �

that assists the algorithm to

discover new solutions. As shown in Eq. (9.4), the elements of vector C
!

are within
the range of ½0; 2�. This component provides random weights for the prey to ran-
domly emphasize C[1ð Þ or deemphasize C\1ð Þ the impact of the prey in
defining the distance in Eq. (9.1). This component helps the GWO algorithm to
behave more randomly and in favor of exploration, and keep the search agent away
from local optima during the optimization process. Note that unlike A, C decreases
nonlinearly. C is required in the GWO algorithm because not only in the initial
iteration but also in the final iteration, it provides a global search in the decision
space. This component is very useful in avoidance of local optima, especially in the

Table 9.1 Characteristics of the GWO algorithm

General algorithm Grey wolf optimization algorithm

Decision variable Grey wolf

Solution Position of grey wolf

Old solution Old position of grey wolf

New solution New position of grey wolf

Best solution Position of prey

Fitness function Distance between grey wolf and prey

Initial solution Initial random position of grey wolf

Selection –

Process of generating new solution Hunting operators (encircling and attacking prey)

9 Grey Wolf Optimization (GWO) Algorithm 87

final iteration. The C vector can be used as a hedge of approaching the prey in
nature. Generally, the hedge can be seen in a nature hunting process of grey wolves.
This hunting technique prevents grey wolves from quickly approaching the prey
(this is truly what C does in the optimization process of the GWO algorithm).
Table 9.1 presents the characteristics of the GWO algorithm.

9.4 Optimization Process in GWO Algorithm

The optimization process of GWO starts with creating random population of grey
wolves (candidate solutions). Over the iterations, a, b, and d wolves estimate the
probable position of the prey (optimum solution). Grey wolves update their posi-
tions based on their distances from the prey. In order to emphasize exploration and
exploitation during the search process, parameter a should decrease from 2 to 0. If

A
!���
���[1, the candidate solutions diverge from the prey; and if Aj j\1, the candidate

solutions converge to the prey. This process continues and the GWO algorithm is
terminated if the stopping criteria are satisfied. To understand how the GWO
algorithm solves optimization problems theatrically, some notes can be summarized
as follows:

• The concept of social hierarchy in the GWO algorithm helps grade the solutions
and save the best solutions up to the current iteration.

• The encircling mechanism defines a 2D circle-shaped neighbor and the solution
(in higher dimensions, the 2D circle can be extended to a 3D hyper-sphere).

• The random parameters (A and C) help grey wolves (candidate solutions) to
define different hyper-spheres with random radii.

• The hunting approach implemented in the GWO algorithm allows grey wolves
(candidate solutions) to locate the probable position of the prey (optimum
solution).

• The adaptive values of parameters A and a guarantee exploration and
exploitation in the GWO algorithm and also allow it to easily transfer between
exploration and exploitation.

• By decreasing the values of A, a half of iterations are assigned to exploration

A
!���
���[1

� �
and the other half of iterations are assigned to exploitation Aj j\1ð Þ.

• a and C are two main parameters of the GWO algorithm.

Figure 9.5 shows the flowchart of the GWO algorithm with details on the
optimization process.

88 H. Rezaei et al.

Fig. 9.5 Flowchart of the
GWO algorithm

9 Grey Wolf Optimization (GWO) Algorithm 89

9.5 Pseudocode of GWO

Begin

Initialize the population of grey wolves Xi (i = 1, 2, ... , n)

Initialize a, A, and C

Calculate the fitness values of search agents and grade them. (Xα= the best solution in

the search agent, Xβ= the second best solution in the search agent, and Xδ= the third

best solution in the search agent)

t= 0

While (t < Max number of iterations)

For each search agent

Update the position of the current search agent by Equation (9.7)

End for

Update a, A, and C

Calculate the fitness values of all search agents and grade them

Update the positions of Xα, Xβ, and Xδ

t= t+1

End while

End

9.6 Conclusions

This chapter described the grey wolf optimization (GWO) algorithm as one of the
new meta-heuristic algorithms. The GWO algorithm was inspired by the lift style of
the pack of grey wolves (social hierarchy and hunting mechanism). Also, this
chapter presented a brief literature review of GWO, described the natural process of
grey wolves’ life style and the mathematical equations of GWO, and finally pre-
sented a pseudocode of GWO.

90 H. Rezaei et al.

References

Gholizadeh, S. (2015). Optimal design of double layer grids considering nonlinear behaviour by
sequential grey wolf algorithm. Journal of Optimization in Civil Engineering, 5(4), 511–523.

Mech, L. D. (1999). Alpha status, dominance, and division of labor in wolf packs. Canadian
Journal of Zoology, 77(8), 1196–1203.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering
Software, 69(2014), 46–61.

Mirjalili, S. (2015). How effective is the grey wolf optimizer in training multi-layer perceptron.
Applied Intelligence, 43(1), 150–161.

Mirjalili, S. M., & Mirjalili, S. Z. (2015). Full optimizer for designing photonic crystal
waveguides: IMoMIR framework. IEEE Photonics Technology Letters, 27(16), 1776–1779.

Mirjalili, S. M., Mirjalili, S., & Mirjalili, S. Z. (2015). How to design photonic crystal LEDs with
artificial intelligence techniques. Electronics Letters, 51(18), 1437–1439.

Muro, C., Escobedo, R., Spector, L., & Coppinger, R. (2011). Wolf-pack (Canis Lupus) hunting
strategies emerge from simple rules in computational simulations. Behavioral Processes, 88(3),
192–197.

Naderizadeh, M., & Baygi, S. J. M. (2015). Statcom with grey wolf optimizer algorithm based pi
controller for a grid Connected wind energy system. International Research Journal of Applied
and Basic Sciences, 9(8), 14–21.

Noshadi, A., Shi, J., Lee, W. S., Shi, P., & Kalam, A. (2015). Optimal PID-type fuzzy logic
controller for a multi-input multi-output active magnetic bearing system. Neural Computing
and Applications, 27(7), 1–16.

Saremi, S., Mirjalili, S. Z., & Mirjalili, S. M. (2015). Evolutionary population dynamics and grey
wolf optimizer. Neural Computing and Applications, 26(5), 1257–1263.

Sulaiman, M. H., Mustaffa, Z., Mohamed, M. R., & Aliman, O. (2015). Using the grey wolf
optimizer for solving optimal reactive power dispatch problem. Applied Soft Computing, 32
(2015), 286–292.

Wong, L. I., Sulaiman, M. H., & Mohamed, M. R. (2015). Solving economic dispatch problems
with practical constraints utilizing grey wolf optimizer. Applied Mechanics and Materials, 785
(2015), 511–515. Trans Tech Publications.

Yusof, Y., & Mustaffa, Z. (2015). Time series forecasting of energy commodity using grey wolf
optimizer. In Proceedings of the international multiconference of engineers and computer
scientists (IMECS 2015), Hong Kong, 18–20 March.

9 Grey Wolf Optimization (GWO) Algorithm 91

Chapter 10
Shark Smell Optimization (SSO)
Algorithm

Sahar Mohammad-Azari, Omid Bozorg-Haddad and Xuefeng Chu

Abstract In this chapter, the shark smell optimization (SSO) algorithm is pre-
sented, which is inspired by the shark’s ability to hunt based on its strong smell
sense. In Sect. 10.1, an overview of the implementations of SSO is presented. The
underlying idea of the algorithm is discussed in Sect. 10.2. The mathematical
formulation and a pseudo-code are presented in Sects. 10.3 and 10.4, respectively.
Section 10.5 is devoted to conclusion.

10.1 Introduction

Generally, all animals have abilities that ensure their survival in the nature. Some
species have special abilities which distinguish them from others (Costa and
Sinervo 2004). Finding the prey and the movement of hunter toward the prey are
two important factors in the hunting process. Animals that are able to find the prey
in a short time with a correct movement, are a successful hunter. Shark is one of the
most well-known and superior hunter in the nature. The reason of this superiority is
the shark’s ability to find the prey in a short time based on its strong smell sense in a
large search space.

Based on this shark’s ability, Abedinia et al. (2014) developed a meta-heuristic
algorithm named shark smell optimization (SSO), and evaluated its efficiency based

S. Mohammad-Azari � O. Bozorg-Haddad (&)
Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering
and Technology, College of Agriculture and Natural Resources, University of Tehran,
3158777871 Karaj, Iran
e-mail: OBHaddad@ut.ac.ir

S. Mohammad-Azari
e-mail: sahar.mazari@ut.ac.ir

X. Chu
Department of Civil and Environmental Engineering, North Dakota State University,
Dept 2470, Fargo, ND 58108-6050, USA
e-mail: Xuefeng.Chu@ndsu.edu

© Springer Nature Singapore Pte Ltd. 2018
O. Bozorg-Haddad (ed.), Advanced Optimization by Nature-Inspired Algorithms,
Studies in Computational Intelligence 720, DOI 10.1007/978-981-10-5221-7_10

93

on some standard benchmark functions and compared with other meta-heuristic
algorithms. Then, they investigated the performance of SSO in a real frequency
control engineering problem in the electric power systems.

Abedinia and Amjadi (2015) applied a hybrid prediction model based on the
neural network and chaotic SSO for wind power forecasting. The number of hidden
nodes in a neural network was optimized by using the chaotic SSO model. In order
to evaluate the efficiency of their proposed model, two case studies were considered
and the results were compared with 14 other prediction methods. The results
demonstrated the capability of their proposed model to cope with the variability and
intermittency of wind power time series for providing accurate predictions.

Gnanaskaran et al. (2016) applied the SSO algorithm as an efficient method for
finding the optimal size and location of shunt capacitors to minimize the cost due to
energy loss and reactive power compensation of a distribution system. The results
indicated the superiority of SSO compared with other classical algorithms. The
reason of this superiority was that acquiring optimal solutions through simple
formulation satisfied the problem constraints.

Ghaffari et al. (2016) investigated optimal economic load dispatch using the SSO
algorithm. In their problem, risk constraints for unpredictable and uncertain
behavior of wind were considered. In fact, they investigated the balance between
cost and risk over a 30-bus power system with SSO and compared the results with
those from other conventional methods.

Ehteram et al. (2016) evaluated the capability of SSO as a meta-heuristic opti-
mization algorithm for operation of the single-reservoir (Bazoft) and multi-reservoir
(Larson) systems. Then, the obtained results were compared with those from GA
and the PSO algorithm based on certain performance criteria. The results indicated
the superiority of SSO over two other algorithms due to the higher reliability and
lower vulnerability. In addition, the application of the SSO algorithm was suggested
for complex multi-objective reservoir systems with several operators.

10.2 Underlying Idea of SSO

The olfactory system in each animal is the primary sensory system which responds
to the chemical signal from a remote source. In fishes, the smell receptors are
located in the olfactory pits which are positioned on the sides of their heads. Each
pit has two outside openings through which water flows in and out. The mechanism
of water movement inside the pit is formed through the wave motion of tiny hair on
the cells lining the pit and the force caused by the movement of fish in water.
Dissolved chemicals connect to a pleated surface in the olfactory nerve endings
(Abedinia et al. 2014). In vertebrates, unlike other sensory nerves, the olfactory
receptors are directly connected to their brains without any nerve intermediaries.

94 S. Mohammad-Azari et al.

The smell impulses are received by the portion in the front of the brain called
olfactory bulb. Fishes have two olfactory bulbs, each of which is located in an
olfactory pit. The allocation of the larger surface of olfactory pits to smell nerves
and larger smell information centers in the brain make the fishes’ smell sense
stronger (Magnuson 1979). Eels and sharks have the largest olfactory bulbs for
smell information processing. About 400 million years ago, the first sharks
appeared in the oceans as the superior hunters in the nature. One of the reasons of
shark survival in the nature is its ability to capture the prey with its strong smell
sense.

The shark’s smell sense is one of its most effective senses. When a shark swims
in water, the water flows through its nostrils which are located along the sides of its
snout. After the water enters the olfactory pits, it flows through the folds of skin
which is covered with sensory cells. Some sharks have this ability to detect the
slightest trace of blood due to the sensory cells (Sfakiotakis et al. 1999). For
example, a shark can detect one drop of blood in a large swimming pool.
Accordingly, the shark can smell an injured fish from up to one kilometer away
(Abedinia et al. 2014).

The shark’s smell sense can consider as a guide for it. The smell that comes from
the left side of the shark passes the left pit before entering the right pit. This process
helps shark to find the source of the smell (Wu and Yao-Tsu 1971). The schematic
of shark’s movement toward the source of the smell is shown in Fig. 10.1.

In this movement, concentration plays an important role to guide the shark to its
prey. In other words, a higher concentration results in a true movement of the shark.
This characteristic is the base of development of an optimization algorithm to find
the optimal solution of a problem.

Fig. 10.1 Schematic of shark’s movement toward the source of the smell

10 Shark Smell Optimization (SSO) Algorithm 95

10.3 Formulation of the SSO Algorithm

Some assumptions are considered to construct the mathematical formulation. They
include:

(1) Fish is injured and this occurrence leads to blood injection into the sea (the
search space). As a result, the velocity of the injured fish can be neglected
compared against the shark movement velocity. In other words, the source
(prey) is assumed to be fixed.

(2) Blood injection to sea water occurs regularly. The effect of water flow on
distorting particles of odor is neglected. It is obvious that the odor particles are
stronger near the injured fish. Consequently, following the odor particles helps
shark to approach the prey.

(3) One injured fish results in one odor source in the search environment of the
shark (Abedinia et al. 2014).

10.3.1 Initialization of SSO: Finding Initial Odor Particles

The search process begins when the shark smells odor. In fact, the particles of odor
have a weak diffusion from an injured fish (prey). In order to model this process, a
population of initial solutions are randomly generated for an optimization problem
in the feasible search space. Each of these solutions represents a particle of odor
which shows a possible position of the shark at the beginning of the search process.

x11; x
1
2; . . .; x

1
NP

� �
; ð10:1Þ

where x1i = ith initial position of the population vector or ith initial solution; and
NP = population size. The related optimization problem can be expressed as:

x1i ¼ x1i; 1; x
1
i; 2; . . .; x

1
i;ND

h i
i ¼ 1; 2; . . .;NP, ð10:2Þ

where x1i; j = jth dimension of the shark’s ith position or jth decision variable of ith

position of the shark x1i
� �

; and ND = number of decision variables in the opti-
mization problem.

The odor intensity at each position reflects its closeness to the prey. This process
is modeled in the SSO algorithm through an objective function. Assuming a
maximization problem and considering the general principle, a higher value of the

96 S. Mohammad-Azari et al.

objective function represents stronger odor (or more odor particles). Consequently,
this process represents a closer position of the shark to its prey. The SSO algorithm
initiates according to this view (Abedinia et al. 2014).

10.3.2 Shark Movement Toward the Prey

The shark at each position moves with a velocity to become closer to the prey.
Based on the position vectors, the initial velocity vector can be expressed as:

V1
1 ;V

1
2 ; . . .;V

1
NP

� � ð10:3Þ

In Eq. (10.3), the velocity vectors have components in each dimension.

V1
i ¼ V1

i;1;V
1
i;2; . . .;V

1
i;ND

h i
i ¼ 1; . . .;ND ð10:4Þ

The shark follows the odor and the direction of its movement is determined
based on the intensity of odor. The velocity of the shark is increased due to the
increased concentration of odor. From the optimization point of view, this move-
ment is modeled mathematically by the gradient of the objective function. The
gradient indicates the direction in which the function increases with the highest rate.
Equation (10.5) shows this process (Abedinia et al. 2014):

Vk
i ¼ gk:R1:r OFð Þjxki i ¼ 1; . . .;NP k ¼ 1; . . .; kmax; ð10:5Þ

where Vk
i = velocity of the shark which is approximately constant; OF = objective

function; r = gradient of the objective function; kmax = maximum number of
stages for forward movement of the shark; k = number of stages; gk = a value in
the interval [0,1]; and R1 = a random value which is uniformly distributed in the
interval [0,1].

gk is in the interval [0,1] as it may be impossible for a shark to reach the velocity
determined by the gradient function. The parameter R1 gives more random search
inherent to the SSO algorithm. The idea of considering R1 has been taken from the
gravitational search algorithm (GSA). The velocity in each dimension can be cal-
culated by Eq. (10.6) (Abedinia et al. 2014):

Vk
i;j ¼ gk:R1:

@ OFð Þ
@xj

����
xki;j

i ¼ 1; . . .;NP j ¼ 1; . . .;ND k ¼ 1; . . .; kmax ð10:6Þ

10 Shark Smell Optimization (SSO) Algorithm 97

Due to the existence of inertia, acceleration of the shark is limited and its
velocity depends on its previous velocity. This process is modeled by a modified
Eq. (10.6) as follows:

Vk
i;j ¼ gk:R1:

@ OFð Þ
@xj

����
xki;j

þ ak :R2:V
k�1
i;j

i ¼ 1; . . .;NP j ¼ 1; . . .;ND k ¼ 1; . . .; kmax;

ð10:7Þ

where ak = rate of momentum or inertia coefficient that has a value in the interval of
[0,1] and becomes a constant for stage k; and R2 = random number generator with a
uniform distribution on the interval [0,1], which is intended for the momentum
term. A larger value of ak indicates higher inertia and hence the current velocity is
more dependent on the previous velocity. From the mathematical point of view, the
application of momentum leads to smoother search paths in the solution space. R2
increases the diversity of the search in the algorithm. For the velocity in the first

stage V1
i;j

� �
, it is possible to neglect the initial velocity of the shark before starting

the search process V0
i;j

� �
or allocate a very small value to it.

The velocity of the shark can be increased up to a specified limit. Unlike most
fishes, sharks do not have swim bladders to help them stay afloat. So, they cannot
be static and must swim upward in a direction even with a low velocity. This
process occurs using the strong tail fin which acts as a propulsion (Wu and Yao-Tsu
1971). The normal velocity of a shark is about 20 km/h which is increased up to
80 km/h when the shark tends to attack. The ratio of the highest to lowest velocities
of the sharks is limited (For example, 80

20 ¼ 4). The velocity limiter used for each
stage of the SSO algorithm can be expressed as (Abedinia et al. 2014):

Vk
i;j

��� ��� ¼ min gk:R1:
@ OFð Þ
@xj

����
xki;j

þ ak:R2:Vk�1
i;j

�����
�����; bk:V

k�1
i;j

��� ���
" #

;

i ¼ 1; . . .;NP; j ¼ 1; . . .;ND; k ¼ 1; . . .; kmax

ð10:8Þ

where bk = velocity limiter ratio for stage k. The value of Vk
i;j is calculated by

Eq. (10.8) and it has the same sign as the term selected by the minimum operator in
Eq. (10.8). Due to forward movement of the shark, its new position Ykþ 1

i is
determined based on its previous position and velocity:

Ykþ 1
i ¼ Xk

i þVk
i :Dtk i ¼ 1; . . .;NP k ¼ 1; . . .; kmax; ð10:9Þ

where Dtk = time interval of stage k. Dtk is assumed one for all stages for the
purpose of simplicity. Each component of Vk

i;j j ¼ 1; . . .;NDð Þ of vector Vk
i is

obtained by Eq. (10.8).

98 S. Mohammad-Azari et al.

In addition to forward movement, the shark also has a rotational movement in its
direction to find stronger odor particles. In fact, this improves its progress (Yao-Tsu
1971). The simulation of this movement is shown in Fig. 10.2.

As shown in Fig. 10.2, the rotational movement of the shark takes place along a
closed contour which is not necessarily a circle. From the optimization view, in
order to find better solutions the shark does a local search in each stage. This local
search in the SSO algorithm is modeled by Abedinia et al. (2014):

Zkþ 1;m
i ¼ Ykþ 1

i þR3:Ykþ 1
i m ¼ 1; . . .;M i ¼ 1; . . .;NP k ¼ 1; . . .; kmax;

ð10:10Þ

where Zkþ 1; m
i ¼ position of point m in the local search; R3 = a random number

with a uniform distribution in the interval [−1, 1]; and M = number of points in the
local search of each stage.

Since this operator does a local search around Ykþ 1
i , the limit of R3 can be

considered in the interval [−1, 1]. M points of the local search Zkþ 1; m
i are in the

vicinity of Ykþ 1
i (If the random number generator generates zero, Ykþ 1

i is obtained).
A closed contour is obtained by the connections of M points, which is similar to the
rotational movement of the shark. During the rotational movement, if the shark
finds a point with a stronger odor it follows the search from that point. This process
is shown in Fig. 10.2. This characteristic in the SSO algorithm can be expressed as
(Abedinia et al. 2014):

xkþ 1
i ¼ argmaxfOF Ykþ 1

i

� �
;OF Zkþ 1; i

i

� �
; . . .;OF Zkþ 1; M

i

� �
i ¼ 1; 2; . . .;NP

ð10:11Þ

Fig. 10.2 Rotational movement of a shark

10 Shark Smell Optimization (SSO) Algorithm 99

?maxkk =

Yes

No

Start

Determine SSO algorithm’s parameters

Generate initial population for SSO

Initialize the stage counter
1=k

Calculate each component of velocity vector

Determine the new position of shark based on
the forward movement.

.

Determine the new position of shark based on
the raotational movement.

Select the next position of shark

Select the best position of shark in last stage

End

k= k+1

Fig. 10.3 Flowchart of the SSO algorithm

100 S. Mohammad-Azari et al.

In Eq. (10.11), the objective function (OF) must be maximized. In other words,
among Ykþ 1

i obtained from forward movement and Zkþ 1; m
i (m = 1, 2, …,

M) obtained from the rotational movement, a solution with the highest objective
function is selected as the next position of the shark (xkþ 1

i). The cycle of forward
and rotational movement will continue until k is equal to kmax.

Like other meta-heuristic optimization methods, the SSO algorithm also has a
number of parameters that must be defined by users, including NP, kmax, g, a, and b
in each stage. Changing these parameters during the SSO evolution based on an
adaptive mechanism is an effective method in the applications. For example, such a
mechanism may start adaptively from larger values of g and b and a smaller value
of a, and then the values of g and b will be decreased and the value of a will be
increased. So, in the initial stage of the evolution process, the algorithm will
continue with large steps in order to enhance the search ability and for the last stage
(when the algorithm approaches the optimal solution) the steps will be smaller to
increase the resolution of search around the optimal solution. After setting the
parameters, the population and the stage counter of the SSO are initialized.

Population will be evolved by the operators of forward and rotational move-
ments. Finally, the best solution in the final stage is selected for the optimization
problem. The search operators in the SSO algorithm including the gradient-based
forward movement and local search based rotational movement are not used in any
other meta-heuristic algorithms (Abedinia et al. 2014).

The flowchart of the SSO algorithm is shown in Fig. 10.3, and the parameters
and variables used in the SSO algorithm are listed in Table 10.1.

Table 10.1 Characteristics of the SSO algorithm

General algorithm Gradient evolution algorithm

Decision variable Odor particle which shows possible position of shark

Solution Odor intensity

Old solution Old position of shark

New solution New position of shark

Best solution Position of shark with the best fitness function

Fitness function Odor particle intensity which represents the closer position of
shark to prey

Initial solution Randomly generated position of shark

Selection Select shark’s position based on the forward and rotational
movements

Process of generating new
solution

Forward movement and rotational movement

10 Shark Smell Optimization (SSO) Algorithm 101

10.4 Pseudo-Code of SSO

Select next position of shark based on the two movements i , ,... PNk
iX 11

End for k

Set k = k+1

Select the best position of shark in the last stage which has the highest OF value

End

Begin

Step 1. Initialization

Set parameters NP, maxk , k , k , and maxk k , , ,... k21

Generate initial population with all individuals

Generate each decision randomly within the allowable range

Initialize the stage counter k = 1

For k = 1 : maxk

Step 2. Forward movement

Calculate each component of the velocity

vector, i , ,... PN , j ,..., DNj,iv 11

Obtain new position of shark based on forward movement, i , ,... PNk
iY 11

Step 3. Rotational movement

Obtain position of shark based on rotational movement, m , ,.. Mm,k
iZ 11

10.5 Conclusion

In this chapter, the shark smell optimization (SSO) algorithm was introduced as one
of the new meta-heuristic optimization methods. This algorithm was developed
based on the hunting ability of sharks to use their smell sense. This is a stochastic
search optimization algorithm which initiates with a sets of random solutions and

102 S. Mohammad-Azari et al.

continues the search to find the optimal solution. In fact, this algorithm applies a
gradient-based forward movement and a local search based rotational movement
during the optimization process. In this chapter, the SSO algorithm was introduced
and its mathematical formulation was presented.

References

Abedinia, O., & Amjadi, N. (2015). Short-Term wind power prediction based on hybrid neural
network and chaotic shark smell optimization. International Journal of Precision Engineering
and Manufacturing-Green Technology, 2(3), 245–254.

Abedinia, O., Amjady, N., & Ghasemi, A. (2014). A new metaheuristic algorithm based on shark
smell optimization. Complexity. doi:10.1002/cplx.21634

Costa, D. P., & Sinervo, B. (2004). Field physiology: physiological insights from animals in
nature. Annual Review of Physiology, 66, 209–238.

Ehteram, M., Karimi, H., Musavi, S. F., & EL-Shafie, A. (2017). Optimizing dam and reservoirs
operation based model utilizing shark algorithm approach. Knowledge-Based Systems
(In Press). doi:10.1016/j.knosys.2017.01.026

Ghaffari, S., Aghajani, Gh, Noruzi, A., & Hedayati-Mehr, H. (2016). Optimal economic load
dispatch based on wind energy and risk constrains through an intelligent algorithm.
Complexity, 21(S2), 494–506.

Gnanasekaran, N., Chandramohan, S., Sathish Kumar, P., & Mohamed Imran, A. (2016). Optimal
placement of capacitors in radial distribution system using shark smell optimization algorithm.
Ain Shams Engineering Journal, 7, 907–916.

Magnuson, J. J. (1979). 4 Locomotion by Scombrid fishes: hydromechanics, morphology and
behavior. Fish Physiology, 7, 239–313.

Sfakiotakis, M., Lane, D. M., & Davies, J. B. C. (1999). Review of fish swimming modes for
aquatic locomotion. IEEE Journal of Oceanic Engineering, 24, 237–252.

Wu, T. Yao-Tsu. (1971). Hydromechanics of swimming propulsion. Part 1. Swimming of a
two-dimensional flexible plate at variable forward speeds in an inviscid fluid. Journal of Fluid
Mechanics, 46(2), 337–355.

10 Shark Smell Optimization (SSO) Algorithm 103

http://dx.doi.org/10.1002/cplx.21634
http://dx.doi.org/10.1016/j.knosys.2017.01.026

Chapter 11
Ant Lion Optimizer (ALO) Algorithm

Melika Mani, Omid Bozorg-Haddad and Xuefeng Chu

Abstract This chapter introduces the ant lion optimizer (ALO), which mimics the
hunting behavior of antlions in the larvae stage. Specifically, this chapter includes
literature review, details of the ALO algorithm, and a pseudo-code for its
implementation.

11.1 Introduction

Mirjalili (2015) introduced the ant lion optimizer (ALO) algorithm and proved its
capability by solving 19 different mathematical benchmark problems and three
classical engineering problems including three-bar truss design, cantilever beam
design, and gear train design. In addition, ALO was used for optimizing the shape
of two ship propeller as a challenging constrained problem with a diverse search
space, which showed the ability of the ALO algorithm for solving real complex
problems. Yamany et al. (2015) used ALO for determining weights and biases in a
training process of multilayer perceptron (MLP) for having a minimum error and an
appropriate classification rate. In the research, the performance of ALO was
compared with those of genetic algorithm (GA), particle swarm optimization
(PSO) algorithm, and ant colony optimization (ACO) algorithm to show its capa-
bility. Zawbaa et al. (2015) applied ALO to an optimization problem of feature

M. Mani � O. Bozorg-Haddad (&)
Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering
and Technology, College of Agriculture and Natural Resources, University of Tehran,
31587-77871 Karaj, Tehran, Iran
e-mail: OBHaddad@ut.ac.ir

M. Mani
e-mail: Melika.Mani@ut.ac.ir

X. Chu
Department of Civil and Environmental Engineering, North Dakota State University,
Dept 2470, 58108-6050 Fargo, ND, USA
e-mail: Xuefeng.Chu@ndsu.edu

© Springer Nature Singapore Pte Ltd. 2018
O. Bozorg-Haddad (ed.), Advanced Optimization by Nature-Inspired Algorithms,
Studies in Computational Intelligence 720, DOI 10.1007/978-981-10-5221-7_11

105

selection to maximize the classification performance. They compared ALO with
PSO and GA, and demonstrated the better performance of ALO. Ali et al. (2016)
employed ALO to optimize allocation and sizing of distributed generation (DG),
which contained photovoltaic and wind turbines. The results showed the superiority
of ALO over several other optimization algorithms such as GA and PSO. Dubey
et al. (2016) applied ALO for solving a hydrothermal power generation scheduling
(HTPGS) problem with wind integration, which was a nonlinear, non-convex, and
highly complex optimization problem. The results showed high ability of ALO for
finding powerful solutions in a complex decision space.

Talatahari (2016) implemented ALO for an optimal design of skeletal structures.
The efficiency of ALO was illustrated by comparing with various classical opti-
mization algorithms. Zawbaa et al. (2016) enhanced the performance of ALO for a
feature selection problem by developing a “chaotic” version of ALO. Kamboj et al.
(2016) used ALO for a non-convex optimization problem of economic load dis-
patch of electric power systems. Petrović et al. (2016) employed ALO for solving a
combinatorial optimization problem of integrated planning and scheduling. Raju
et al. (2016) presented an application of ALO for simultaneous optimization of
different controllers. Saxena and Kothari (2016) used ALO for solving antenna
array synthesis and other electromagnetic optimization problems. Yao and Wang
(2016) developed the dynamic adaptive ant lion optimizer (DAALO) by replacing
random walk of ants with levy flight and adjusting size of traps. The results from
the unmanned aerial vehicle (UAV) route planning problem showed high efficiency,
robustness, and feasibility of DAALO. Mirjalili et al. (2017) developed
multi-objective ALO (MOALO) and used standard unconstrained and constraint
test functions to show the efficiency of the algorithm. Also, MOALO was applied to
solve several engineering design problems including cantilever beam design,
brushless dc wheel motor design, disk brake design, 4-bar truss design, safety
isolating transformer design, speed reduced design, and welded beam design. The
results showed the capability of the algorithm in solving challenging real-world
engineering problems. Kaur and Mahajan (2016) applied ALO for optimization of
the communities in large networks. Rajan et al. (2017) applied ALO to determine
optimal reactive power dispatch of systems, which was a highly nonlinear,
non-convex challenging optimization problem. They modified ALO by introducing
a noble weighted elitism concept in the elitism phase of the original ALO. Kaushal
and Singh (2017) used ALO to optimize the allocation of stocks in portfolio and
compared with GA, showing that ALO outperformed GA for portfolio designing.

11.2 Mapping Antlions Hunting Mechanism into the ALO

Antlions are in the family of Myrmeleontidae and belong to the order of
Neuroptera. The life cycle of antlions includes two main phases, larva and adult,
which takes 2 to 3 years. The antlions’ life cycle mostly occurs in larvae and
adulthood has only 3 to 5 weeks. The larvae of antlions are also known as

106 M. Mani et al.

doodlebugs, which have a predatory habit. Adult antlions, which are less well
known, can fly and maybe are mistakenly identified as dragonflies or damselflies.
The name of “antlions” best describes their unique hunting behavior and their
favorite prey which is ants. The larvae of some antlions species dig cone-shaped
pits with different sizes and wait at the bottom of the pits for ants or other insects to
slip on the loose sands and fall in, as shown in Fig. 11.1a.

When an insect is in a trap, the antlion will try to catch it while the trapped insect
will try to escape. The antlion intelligently tries to slide the prey into the bottom of
the pit by throwing sands toward the edge of the pit. After catching the prey, the
antlion pulls it under the soil and consumes it (Fig. 11.1b). After feeding is com-
pleted, the antlion flicks the leftovers of the prey out of the pit and prepares the pit
for next hunting.

It should be noted that the size of the antlion’s trap depends on the level of antlion
hunger and the shape of the moon. Antlions dig larger pits when they become hungry
and also when the moon is full (Goodenough 2009). For larger pits, the chance of
successful hunting increases. The ALO algorithm is inspired by this intelligent
hunting behavior of antlions and the interaction with their favorite prey, ants. So the
main steps of antlions’ hunting are mathematically modeled in the ALO algorithm.

In the ALO algorithm, ants are search agents and move over the decision space,
and antlions are allowed to hunt them and become fitter. In each iteration, the
position of each ant is updated with respect to the selected antlion based on roulette
wheel and elite (best antlion obtained so far). By the roulette wheel selection
operator, solutions with the better fitness function have more chance to be selected
as the antlion with a larger trap has more chance to hunt more ants. Table 11.1 lists
the characteristics of the ALO algorithm.

In the ALO algorithm, the first positions of antlions and ants are initialized ran-
domly and their fitness functions are calculated. Then, the elite antlion is determined.
In each iteration for each ant, one antlion is selected by the roulette wheel operator and
its position is updated with the aid of two random walk around the roulette selected
antlion and elite. The new positions of ants are evaluated by calculating their fitness
functions and comparing with those of antlions. If an ant becomes fitter than its
corresponding antlion, its position is considered as a new position for the antlion in the

Fig. 11.1 Antlion hunting behavior

11 Ant Lion Optimizer (ALO) Algorithm 107

next iteration. Also, the elite will be updated if the best antlion achieved in the current
iteration becomes fitter than the elite. These steps are repeated until the end of itera-
tions. The flowchart of the ALO algorithm is illustrated in Fig. 11.2.

Table 11.1 Characteristics of the ALO algorithm

General algorithm Antlion optimizer

Decision variable Antlion’s and Ant’s positions in each dimension

Solution Antlion’s position

Old solution Old position of antlion

New solution New position of antlion

Best solution Elite antlion

Fitness function Desirability of elite

Initial solution Random antlion

Selection Roulette wheel

Process of generating new solution Random walk over the decision space

Fig. 11.2 Flowchart of the ALO algorithm (It = iteration counter; and IT = number of iterations)

108 M. Mani et al.

11.2.1 Initialization of Positions of Ants and Antlions
and Evaluation of Their Fitness Functions

In the ALO algorithm, there are two populations, ants and antlions. As afore-
mentioned, ants are the search agents in the decision space and antlions which hide
somewhere in the decision space, can hunt them, and catch their positions to
become fitter. In an optimization problem with N decision variables (N-dimensional
optimization problem), the ants/antlions’ positions in an N-dimensional space are
the decision variables. So each dimension of the ant/antlion’s position belongs to
one of the decision variables which can be expressed as:

Ant's location ¼ A1;A2; . . .;An; . . .;AN½ � ð11:1Þ

Antlion's location ¼ Al1;Al2; . . .;ALn; . . .;AlN½ �; ð11:2Þ

where An/ALn = nth decision variable; and N = number of decision variables.
The ALO algorithm starts with randomly generated matrices of the positions of

ants and antlions within their specified ranges as follow:

Pant ¼

A1;1 A1;2 . . . A1;n . . . A1;N

A2;1 A2;2 . . . A2;n . . . A1;N

..

. ..
. ..

. ..
. ..

. ..
.

Am;1 Am;2
..
.

Am;n
..
.

Am;N

..

. ..
. ..

. ..
. ..

. ..
.

AM;1 AM;2 . . . AM;n . . . AM;N

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

; ð11:3Þ

where Pant = matrix of ants’ positions; Am,n = nth decision variable of the mth ant;
and M = number of ants.

Pantlion ¼

Al1;1 Al1;2 . . . Al1;n . . . Al1;N
Al2;1 Al2;2 . . . Al2;n . . . Al1;N
..
. ..

. ..
. ..

. ..
. ..

.

Alm;1 Alm;2 ..
.

Alm;n ..
.

Alm;N
..
. ..

. ..
. ..

. ..
. ..

.

AlM;1 AlM;2 . . . AlM;n . . . AlM;N

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

; ð11:4Þ

where Pantlion = matrix of antlions’ positions; and Alm,n = nth decision variable of
the mth antlion.

For evaluating the ants and antlions, a fitness function is utilized and their fitness
values are calculated during optimization and saved in the following matrices. In
this process, the best antlion (antlion with the best fitness) is selected as elite.

11 Ant Lion Optimizer (ALO) Algorithm 109

Fant ¼

f ð½A1;1 A1;2 . . . A1;n . . . A1;N �Þ
f ð½A2;1 A2;2 . . . A2;n . . . A1;N �Þ
..
. ..

. ..
. ..

. ..
. ..

.

f ð½Am;1 Am;2
..
.

Am;n
..
.

Am;N �Þ
..
. ..

. ..
. ..

. ..
. ..

.

f ð½AM;1 AM;2 . . . AM;n . . . AM;NÞ�

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

; ð11:5Þ

where Fant = matrix of the ants’ fitness functions; and f = fitness function.

Fantlion ¼

f ðAl1;1 Al1;2 . . . Al1;n . . . Al1;NÞ
f ðAl2;1 Al2;2 . . . Al2;n . . . Al1;NÞ
..
. ..

. ..
. ..

. ..
. ..

.

f ðAlm;1 Alm;2 ..
.

Alm;n ..
.

Alm;NÞ
..
. ..

. ..
. ..

. ..
. ..

.

f ðAlM;1 AlM;2 . . . AlM;n . . . AlM;NÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

; ð11:6Þ

where Fantlion = matrix of the antlions’ fitness functions.

11.2.2 Digging Trap

In this step, by using the roulette wheel operator for each ant, an antlion is selected.
It should be noted that in the ALO algorithm each ant can fall into only one antlion
trap in each iteration. The roulette wheel selected antlion for each ant is the one that
has trapped the ant. By using the roulette wheel operator, the solution with a better
fitness function has more chance to be selected, as an antlion with a larger trap can
hunt more ants.

11.2.3 Sliding Ants Toward Antlion

When an ant falls into the trap, the antlion starts shooting sand outward the center of
the pit for sliding down the ant which is trying to escape. This behavior is math-
ematically modeled by shrinking the radius of the ant’s random walk. So the range
of boundary for all decision variables is decreased and updated, as expressed in
Eqs. (11.7) and (11.8) (Mirjalili 2015).

110 M. Mani et al.

cðItÞ ¼ cðItÞ
R

ð11:7Þ

dðItÞ ¼ dðItÞ
R

; ð11:8Þ

where c(It) = modified vector including the minimum of all decision variables at
the Itth iteration; c(It) = vector including the minimum of all decision variables at
the Itth iteration; R = a ratio given by Eq. (11.9); d(It) = modified vector including
the maximum of all decision variables at the Itth iteration; and d(It) = vector
including the maximum of all decision variables at the Itth iteration (Mirjalili 2015).

R ¼ 10w
It
IT

; ð11:9Þ

where w = a constant defined based on the iteration number given by:

w ¼

2 If It[0:1IT
3 If It[0:5IT
4 If It[0:75IT
5 If It[0:9IT
6 If It[0:95IT

8>>>><
>>>>:

ð11:10Þ

When the iteration number in Eq. (11.10) increases, the radius of random walk
decreases, which guarantees convergence of the ALO algorithm.

11.2.4 Entrapping Ants Inside Pits

Antlion traps affect the random walk of ants. In order to mathematically model this
behavior, the boundary of ant random walk is adjusted in each iteration so that the
ant moves in a hyper-sphere around the selected antlion trap. The lower and upper
bounds of the ant random walk for each dimension in each iteration can be cal-
culated by the following equations (Mirjalili 2015):

cmðItÞ ¼ AntlionlðItÞþ cðItÞ ð11:11Þ

dmðItÞ ¼ AntlionlðItÞþ dðItÞ; ð11:12Þ

where cmðItÞ = vector including the minimum of all decision variables for the mth
ant in the Itth iteration; AntlionlðItÞ = position of the selected lth antlion in the Itth
iteration; and dmðItÞ = vector including the minimum of all decision variables for
the mth ant. Equations (11.11) and (11.12) show that ants’ random walk is in the
hyper-sphere, which is defined by vectors c and d around the roulette wheel selected
antlion.

11 Ant Lion Optimizer (ALO) Algorithm 111

11.2.5 Random Walk of Ants

As ants move randomly in the nature for food, random walk is used for modeling
their movement, which can be expressed as the following equation (Mirjalili 2015):

X ¼ ½0; cumsumð2rð1Þ � 1Þ; cumsumð2rð2Þ � 1Þ; . . .; cumsumð2rðItÞ
� 1Þ; . . .; cumsumð2rðITÞ � 1Þ�; ð11:13Þ

where X = vector of random walk positions; cumsum = cumulative sum; and
r (It) = stochastic function which is calculated by:

rðItÞ ¼ 1 if rand[0:5
0 otherwise

�
; ð11:14Þ

where rand = random value generated with a uniform distribution between 0 and 1.
Figure 11.3 shows three random walks in 100 iterations. From Fig. 11.3,

completely different behaviors of random walk can be observed.
To keep the random walks within the decision space, they are normalized by the

min-max normalization method (Mirjalili 2015):

ZnðItÞ ¼ ðXnðItÞ � anÞþ ðdnðItÞ � cnðItÞÞ
ðbn � anÞ ; ð11:15Þ

where Zn(It) = normalized random walk position of the nth decision variable at the
Itth iteration; Xn(It) = random walk position of the nth decision variable at the Itth
iteration before normalization; an = minimum of random walks for the nth decision
variable; bn = maximum of random walks for the nth decision variable;
cn(It) = minimum of the nth decision variable at the Itth iteration; and
dn(It) = maximum of the nth decision variable at the Itth iteration.

Fig. 11.3 Three random walk curves in one dimension started at zero

112 M. Mani et al.

11.2.6 Elitism

Elitism is an important aspect of the evolutionary algorithms which allows them to
keep the best solution during the optimization process. In the ALO algorithm, the
best antlion in each iteration is saved as the elite antlion and the average of both
random walks around the roulette wheel selected antlion and the elite is considered
for generating new positions of ants, as expressed in Eq. (11.16).

AntItm ¼ RIt
l þRIt

e

2
; ð11:16Þ

where AntItm = position of the selected mth antlion in the Itth iteration; RIt
l = random

walk around the lth roulette wheel selected antlion at the Itth iteration; and
RIt
e = random walk around the elite antlion at the Itth iteration.

11.2.7 Catching Prey and Reconstruct the Trap

At the final step of antlion hunting, an ant falls into the bottom of the trap and is
caught by the antlion’s jaw. The antlion pulls the ant into sand and consumes it. In
the ALO algorithm, catching the prey occurs when an ant’s fitness function
becomes better than its corresponding antlion. In this situation, the antlion changes
its position to the position of the hunted ant. This process can be mathematically
expressed as:

AntlionItl ¼ AntItm If f ðAntItmÞ[f ðAntlionItl Þ: ð11:17Þ

11.3 Termination Criteria

In the evolutionary algorithms, at the end of each iteration the termination criterion
is applied to decide if the algorithm is to be stopped or continues the next iteration.
A good termination criterion should guarantee convergence of the algorithm. To
meet this purpose in the ALO algorithm by increasing the iteration number, the
radius of random walk decreases and the maximum number of iterations is con-
sidered as a termination criterion.

11.4 User-Defined Parameters of the ALO Algorithm

In the ALO algorithm, only the number of search agents and the number of iter-
ations are user-defined parameters. So, one of the main advantages of the ALO
algorithm is that it has very few parameters to be adjusted. Generally, the

11 Ant Lion Optimizer (ALO) Algorithm 113

evolutionary algorithms require a large number of user-defined parameters and the
optimal settings of these parameters (to find an appropriate solution in a reasonable
time) are different for each problem. Determining a good parameter setting often
requires numerous careful, time-consuming experiments. For the ALO algorithm,
however, only two user-defined parameters are required.

11.5 Pseudo-Code of the ALO Algorithm

Begin

Input parameters of the algorithm and initial data

Generate the initial population of ants and antlions randomly

Calculate the fitness function values for ants and antlions

Select the fittest antlion as the elite

While the iteration number is smaller than the maximum iteration number

For each ant

Select an antlion by utilizing the roulette wheel operator

Update the lower and upper bounds by using Equations (11.7) and (11.8)

Update γ and δ using Equations (11.11) and (11.12)

Generate two random walks around the roulette selected antlion and the elite
and normalize them by Equation (11.15)

Update the ant positions by Equation (11.16)

End for

Calculate the fitness function values for all ants and replace them in the
corresponding matrix

Replace an antlion with its corresponding ant if it becomes fitter [Equation (11.17)]

Update the elite value if an antlion’s fitness function value becomes better than the
elite

End while

Report the best solution (elite)

End

114 M. Mani et al.

11.6 Conclusion

This chapter introduced the antlion optimizer (ALO), which is inspired by the
hunting behavior of antlions. In this chapter, after a brief literature review of the
ALO algorithm and an explanation of the hunting behavior of antlions, the algo-
rithmic fundamentals of the ALO algorithm are detailed and a pseudo-code is also
presented.

References

Ali, E. S., Elazim, S. A., & Abdelaziz, A. Y. (2016). Optimal allocation and sizing of renewable
distributed generation using Antlion optimization algorithm. Electrical Engineering. doi:10.
1007/s00202-016-0477-z

Dubey, H. M., Pandit, M., & Panigrahi, B. K. (2016). Antlion optimization for short-term wind
integrated hydrothermal power generation scheduling. International Journal of Electrical
Power & Energy Systems, 83(1), 158–174.

Goodenough, J., McGuire, B., & Jakob, E. (2009). Perspectives on animal behavior (3rd ed.).
New York, USA: John Wiley and Sons.

Kamboj, V. K., Bhadoria, A., & Bath, S. K. (2016). Solution of non-convex economic load
dispatch problem for small-scale power systems using Antlion optimizer. Neural Computing
and Applications, 25(5), 1–12.

Kaur, M. & Mahajan, A. (2016). Community Detection in Complex Networks: A Novel Approach
Based on Antlion Optimizer. Sixth International Conference on Soft Computing for Problem
Solving, Punjab, India. December 23–24.

Kaushal, K., & Singh, S. (2017). Allocation of stocks in a portfolio using Antlion algorithm:
Investor’s perspective. IUP Journal of Applied Economics, 6(1), 34–49.

Mirjalili, S. (2015). The Ant lion optimizer. Advances in Engineering Software, 83(1), 80–98.
Mirjalili, S., Jangir, P., & Saremi, S. (2017). Multi-objective Antlion optimizer: a multi-objective

optimization algorithm for solving engineering problems. Applied Intelligence, 46(1), 79–95.
Petrović, M., Petronijević, J., Mitić, M., Vuković, N., Miljković, Z., & Babić, B. (2016). The

Antlion optimization algorithm for integrated process planning and scheduling. Applied
Mechanics and Materials, 834(1), 187–192.

Rajan, A., Jeevan, K., & Malakar, T. (2017). Weighted elitism based Antlion optimizer to solve
optimum VAr planning problem. Applied Soft Computing, 55(1), 352–370.

Raju, M., Saikia, L. C., & Sinha, N. (2016). Automatic generation control of a multi-area system
using Antlion optimizer algorithm based PID plus second order derivative controller.
International Journal of Electrical Power & Energy Systems, 80(1), 52–63.

Saxena, P., & Kothari, A. (2016). Antlion optimization algorithm to control side lobe level and
null depths in linear antenna arrays. AEU-International Journal of Electronics and
Communications, 70(9), 1339–1349.

Talatahari, S. (2016). Optimum design of skeletal structures using Antlion optimizer. International
Journal of Optimization in Civil Engineering, 6(1), 13–25.

Yamany, W. et al. (2015, September 20–22). A new multi-layer perceptrons trainer based on
Antlion optimization algorithm. Fourth International Conference on Information Science and
Industrial Applications, Beijing, China.

11 Ant Lion Optimizer (ALO) Algorithm 115

http://dx.doi.org/10.1007/s00202-016-0477-z
http://dx.doi.org/10.1007/s00202-016-0477-z

Yao, P., & Wang, H. (2016). Dynamic adaptive Antlion optimizer applied to route planning for
unmanned aerial vehicle. Soft Computing. doi:10.1007/s00500-016-2138-6

Zawbaa, H. M., Emary, E., & Grosan, C. (2016). Feature selection via chaotic antlion
optimization. PLoS ONE, 11(3), e0150652.

Zawbaa, H. M., Emary, E., & Parv, B. (2015, November 23–25). “Feature selection based on
antlion optimization algorithm.” Third World Conference on Complex Systems, Marrakech,
Morocco.

116 M. Mani et al.

http://dx.doi.org/10.1007/s00500-016-2138-6

Chapter 12
Gradient Evolution (GE) Algorithm

Mehri Abdi-Dehkordi, Omid Bozorg-Haddad and Xuefeng Chu

Abstract In this chapter, a meta-heuristic optimization algorithm named gradient
evolution (GE) is discussed, which is based on a gradient search method. First, the
GE algorithm and the underlying idea are introduced and its applications in some
studies are reviewed. Then, the mathematical formulation and a pseudo-code of GE
are discussed. Finally, the conclusion is presented.

12.1 Introduction

The gradient evolution (GE) algorithm is a meta-heuristic optimization algorithm
which is derived from a gradient-based optimization method. A gradient defines the
curve of a function at each point. Negative, zero, and positive gradients indicate the
decreasing, flat, and increasing functions, respectively. Accordingly, the optimal
solution is located at certain extreme point. This concept is the basis of the
gradient-based search methods including Newton, quasi-Newton, and conjugate
direction methods. Many researchers have applied the gradient-based methods or
their combinations with other methods in solving optimization problems. The
non-differentiable functions in complex problems often limit the application of the
gradient-based methods. Kuo and Zulvia (2015) developed the GE algorithm, a novel
meta-heuristic optimization algorithm which applied a modified gradient-based

M. Abdi-Dehkordi � O. Bozorg-Haddad (&)
Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering
and Technology, College of Agriculture and Natural Resources, University of Tehran,
3158777871 Karaj, Iran
e-mail: OBHaddad@ut.ac.ir

M. Abdi-Dehkordi
e-mail: abdi.dehkordi@ut.ac.ir

X. Chu
Department of Civil and Environmental Engineering, North Dakota State University,
Dept 2470, Fargo, ND 58108-6050, USA
e-mail: Xuefeng.Chu@ndsu.edu

© Springer Nature Singapore Pte Ltd. 2018
O. Bozorg-Haddad (ed.), Advanced Optimization by Nature-Inspired Algorithms,
Studies in Computational Intelligence 720, DOI 10.1007/978-981-10-5221-7_12

117

method as the main updating rule. The GE algorithm explored the search space of an
optimization problem using a set of vectors. Kuo and Zulvia also considered a set of
operators in order to enhance the ability of their model in finding the optimal solution.
They further evaluated the performance of the GE algorithm by using 15 benchmark
test functions in three stages. In the first stage, the effects of changing parameters on
the obtained results of the GE algorithm were investigated and the best parameter
setting was determined. Then, the results of the GE algorithm were compared with
those from other meta-heuristic algorithms including particle swarm optimization
(PSO), differential evolution (DE), continuous genetic algorithm (GA), and artificial
bee colony (ABC). The results indicated the better performance of the GE algorithm
than those of the other meta-heuristic algorithms.

Kuo and Zulvia (2016) also proposed a K-means clustering algorithm based on
the GE algorithm in order to derive the hidden stored information in data sets. The
reason of development of this new algorithm was the dependency of the K-means
algorithm on the initial centroids of clusters. In the proposed algorithm, the GE
algorithm was utilized to find a good center for the K-means algorithm. The
algorithm was validated by a number of benchmark datasets and the obtained
results were compared with those from other meta-heuristic based K-means algo-
rithms, indicating the superiority of the GE based K-means algorithm over the other
meta-heuristic algorithms. Kuo and Zulvia (2016) finally proposed to consider the
similarities between clusters as well as the similarities within clusters in a
multi-objective structure.

12.2 Underlying Idea of the GE Algorithm

The GE algorithm is a population-based optimization method and its main rule is
updated by the gradient search methods (including the Newton–Raphson method
and Taylor series expansion), so it can be considered as a center differencing
approach. Consequently, this algorithm can be applied to different optimization
problems with differentiable and non-differentiable functions (Kuo and Zulvia
2015).

12.2.1 Gradient

If f(x) is a differentiable function at point x, changing x causes a change in f
(x) (Larson et al. 2007). In a single-variable function, the derivative is defined as the
slope of the tangent or zero gradient at point x. The gradient of function f(x) at a
point like x0 is determined by a secant line between f x0ð Þ and f x0 þDxð Þ
(Fig. 12.1).

118 M. Abdi-Dehkordi et al.

Thus, the gradient is determined by:

m ¼ Dy
Dx

¼ f ðx0 þDxÞ � f x0ð Þ
Dx

ð12:1Þ

where m = gradient; and Dy = change of f(x) between points x0 and x0 þDx.
The values of f ðx0 þDxÞ and f x0ð Þ become closer for a smaller value of Dx,

which increases the accuracy of calculation. So if Dx approaches zero, the secant
line is tangent of f(x) at point x0. The derivative of f(x), which is the gradient at the
point x0, is defined by:

m ¼ Lim
f ðx0 þDxÞ � f x0ð Þ

Dx
x ! 0

ð12:2Þ

The information about the function contour or gradient can be obtained based on
the correlation between the derivative and the slope of the tangent (Miller 2011). An
optimization is defined as finding the optimal solution which maximizes or mini-
mizes an objective function. If f(x) is not strongly convex or concave, there will be
several stationary points xð Þ.

In addition, there is a maximum or minimum point in a flat part, which indicates
that the optimal solution is located at a stationary point. In fact, the optimal solution
of an optimization problem is located at a point with a zero gradient. So, the optimal
solution can be obtained by determination of the function contour. Accordingly, the
derivative, which is based on the limit [Eq. (12.2)], is an important concept in
optimization problems. Although many real-world problems have discrete vari-
ables, the limit concept just applies in continuous functions. Furthermore, for some
continuous functions, the calculation of limit is so difficult because of the com-
plexity of functions. In this case, derivative is calculated using numerical methods
such as Newton interpolation, Lagrange and cubic spine (Patil and Verma 2006).
The GE algorithm was developed using the following Taylor-series-based first- and
second-order derivatives:

Fig. 12.1 Gradient
determination

12 Gradient Evolution (GE) Algorithm 119

f 0 xð Þ ¼ f ðxþDxÞ � f x� Dxð Þ
2 :Dx

ð12:3Þ

f 00 xð Þ ¼ f ðxþDxÞ � 2 f ðxÞþ f x� Dxð Þ
Dxð Þ2 ð12:4Þ

where f 0 xð Þ and f 00 xð Þ = first and second order derivatives of f(x), respectively (Kuo
and Zulvia 2015).

12.2.2 Gradient-Based Algorithm

Optimization methods can be divided into two main groups: direct search and
gradient-based search methods. Both groups start the search from a point and
evaluate the other points in order to find an optimal solution till the stopping
criterion is satisfied. In the direct search methods (region eliminating), the contour
of a function is determined based on two or more points. Then, the search direction
is limited to the search space which has a better initial point. The search space is
decreased iteratively in different successful iterations in order to achieve the optimal
solution. Golden search and Fibonacci search are two direct search methods
(Bazaraa et al. 2013). The first- and second-order derivatives are applied in the
function analysis using the gradient-based methods such as Newton–Raphson
(Ypma 1995). The concept of this method applied in the GE algorithm is presented
as follows.

In the Newton–Raphson method, the search process starts from an initial point
and continues its movement to the point with a zero gradient. If the search is located
at point xt in iteration t, in next iteration it will be at point xtþ 1 which is located Dxt

from xt. Since finding an extreme point is considered, the first derivative must be
equal to zero. The Taylor series expansion is applied in order to estimate the first-
and second-order derivatives [Eqs. (12.3) and (12.4)]. Furthermore, xtþ 1 is deter-
mined by:

xtþ 1 ¼ xt � Dxt

2
:

f xt þDxtð Þ � f xt � Dxtð Þ
f xt þDxtð Þ � f xtð Þþ f xt � Dxtð Þ ð12:5Þ

The gradient-based methods apply numerical methods, instead of direct
derivation, due to non-differentiability of the functions of optimization problems.

The global gradient of point xt
! can be determined based on the sets of exper-

imental candidates ti
! i ¼ 1; 2; . . .; kð Þ in iteration t (Salomon 1998). In order to

achieve ti
!, a random mutation, zi!, is applied at current point xt!. et! includes all the

information related to the experimental candidates and points in the gradient esti-
mation direction.

120 M. Abdi-Dehkordi et al.

et
!¼ gt

!
gtk k ð12:6Þ

gt
!¼

Xk
i¼1

f ti
!� �

� f xt
!� �� �

ti
!� xt

!� �
; ð12:7Þ

where gt = gradient direction in each iteration.
This method is improved in the evolutionary gradient search method (EGS). In

this regard, the concept of central differencing is applied, instead of forward dif-
ferencing (Salomon 1998). In the pseudo-code of GE, a simpler method is applied
for gradient estimation (Wen et al. 2003). In the method, modification in direction
from xi

! to xj
! in Rn; dirði; jÞ is defined by:

dirði; jÞ ¼
1 if xik � xjk
0 if xik ¼ xjk
�1 if xik � xjk

8<
: 8 k ¼ 1; 2; . . .; n ð12:8Þ

Although the GE algorithm applied a central differencing approach-based gra-
dient estimation method as well as EGS, the formulations of these two methods are
completely different (Kuo and Zulvia 2015).

12.3 Mathematical Formulation of the GE Algorithm

As aforementioned, the GE algorithm applies a gradient-based method to determine
the search direction. It is also based on population. This population includes a
number of vectors which indicate the possible solutions. All vectors are updated by
three operators: updating, jumping, and refreshing. Description of the application of
the GE algorithm is presented for a minimization optimization problem in RD as
follows.

12.3.1 Solution Representation and Algorithm Initialization

In an optimization problem with D variables, the GE algorithm encodes the initial
solution as a vector with D dimensions. Population Pt in iteration t is represented by

Pt ¼ Xt
i

��i ¼ 1; . . .;N
� �

which includes n vectors. Xt
i ¼ xtij

��� i ¼ 1; . . .;N
j ¼ 1; . . .;D

	

is the

ith vector in iteration t which corresponds a feasible solution for the problem. In the
initial step, it is necessary to determine six parameters including number of

12 Gradient Evolution (GE) Algorithm 121

iterations T, number of vectors N, size of initial step k, rate of jump Jr, rate of
refreshing Sr, and rate of reduction e.

Determining the number of iterations and vectors depends on the complexity of
the problem. In complex problems, more iterations and more vectors are consid-
ered. Jr, Sr, and e are in the interval [0, 1]. Jr is used when there is considerable
modification in the vector direction. Sr and e also manage vector regeneration and
refreshing. Moreover, the value of e is effective for acceleration of vector
refreshing. It is necessary to determine the initial points for all vectors in the GE
algorithm. In this regard, a simplest method is employed to generate random
numbers.

12.3.2 Vector Updating

The updating rule, which controls the vector movement in order to reach a better
position, includes two gradient-based and acceleration factor parts. The first part is
the core of updating rule and is derived from the gradient-based methods, which are
started from an arbitrary initial point and move gradually to the next point in a
certain direction determined by the gradient.

Movement to the points with better values of objective function in the search
direction is illustrated in Fig. 12.2. The GE algorithm also determines the search
space which has better solutions. Due to the complexity of the problem, the gradient
is not considered as the first-order derivative of the objective function and the GE
algorithm applies central differencing instead. The search process of the GE algo-
rithm is shown in Fig. 12.3.

As shown in Fig. 12.3a, the GE algorithm explores the search space to achieve a
better area. If all the vectors in population move simultaneously to the same area,
the search space becomes narrow. If there is a distraction direction for vector
movement, the search process of the algorithm is performed in a wider range
(Fig. 12.3b). The gradient-based updating rule applies the Newton–Raphson
equation [Eq. (12.5)]. Since the main updating rule is individual-based, in order to

Search direction

Fig. 12.2 Search direction
for the original gradient-based
method

122 M. Abdi-Dehkordi et al.

apply this method in the GE algorithm, which is population-based, some modifi-
cations are required. The updating rule in Eq. (12.5) includes the neighboring
points of Xt which are Xt � DX and Xt þDX. It is necessary to evaluate the
neighboring points in order to reach the next point Xtþ 1. This evaluation is time
consuming in population-based search for each vector. So, the GE algorithm
replaces points Xt � DX and Xt þDX with the positions of two other vectors in
population.

The transformation from the individual-based updating rule to the
population-based updating rule is shown in Fig. 12.4. In individual-based search,
Xt
i has two neighboring points Xt

i þDXt
i and Xt

i � DXt
i . If f Xt

i

� �
is a minimization

problem, f Xt
i � DXt

i

� �� f Xt
i

� �� f Xt
i þDXt

i

� �
, which implies that point Xt

i � DXt
i is

better than point Xt
i and point Xt

i þDXt
i is worse than point Xt

i . Since the GE

Search direction

Search direction

(a) (b)

Fig. 12.3 Search direction for the GE algorithm

(a) (b)

Fig. 12.4 Gradient approximation method modified from individual-based search to
population-based search: a individual-based, b population-based

12 Gradient Evolution (GE) Algorithm 123

algorithm is based on the population-based search method, there are many possible
solutions in population. In fact, in addition to the worst and best vectors, there is a
vector Xt

i which may have a neighboring with a worse or better position.
To update Xt

i in the GE algorithm, point Xt
i � DXt

i is replaced with vector
XB
i [XB

i 2 Pt; f XB
i

� �� f Xt
i

� �
] and Xt

i þDXt
i is replaced with XW

i

[XW
i 2 Pt; f XW

i

� �� f Xt
i

� �
]. So, points Xt

i � DXt
i and Xt

i þDXt
i are substituted by

vectors XB
i and XW

i , respectively. The GE algorithm also applies position Xt
i instead

of the fitness of position f Xt
i

� �
because applying a fitness value is time consuming.

In order to expand the search, a random number rg � N 0; 1ð Þ is added to the
updating rule. Considering rg ensures the distribution of vector movement in the GE
algorithm. The updating rule in Eq. (12.5) can be transformed to GradientMove by:

Gradient Move ¼ rg:
Dxtij
2

� �
:

xWij � xBij
xWij � xtij þ xBij

 !
; 8j ¼ 1; . . .;D ð12:9Þ

Dxtij ¼
xtij � xBij

��� ���þ xWij � xtij

��� ���
2

; 8j ¼ 1; . . .;D ð12:10Þ

The acceleration factor Acc is used to accelerate the convergence of each vector.
This process uses the best vector of a direction which is expressed by Eq. (12.11).
In the GE algorithm, it is assumed that the best vector is the vector closest to the
optimal solution. So, all other vectors will move in a better direction by considering
the position of the best vector. Similar to the gradient updating rule, the acceleration
factor in Eq. (12.11) is also multiplied by a random number ra � N 0; 1ð Þ, which
ensures different sizes of steps for each vector (Kuo and Zulvia 2015).

Acc ¼ ra: yi � xtij
� �

; 8j ¼ 1; . . .;D; ð12:11Þ

where Y ¼ yijj ¼ 1; 2; . . .;Df g, the best vector. Finally, the vector updating is
conducted by (Kuo and Zulvia 2015):

utij ¼ xtij � GradientMoveþAcc

utij ¼ xtij � rg:
Dxtij
2

� �
:

xWij � xBij
xWij � xtij þ xBij

 !
þ ra yi � xtij

� �
8j ¼ 1; . . .;D

ð12:12Þ

where utij 2 Ut
i = transition vector which is obtained by updating Xt

i . Since vector
Xt
i includes worse and better vectors, an additional process is necessary in order to

determine the worst and best vectors in Pt because the main updating rule includes
the neighboring vectors which have a worse or better fitness value. The worst and
best vectors do not have any neighboring vector which is worse or better than
themselves. In this regard, an additional process is required to determine the gra-
dient of the objective function.

124 M. Abdi-Dehkordi et al.

If Wt and Bt are the worst and best vectors of Xt
i , respectively, the values of x

W
ij

and xBij can be replaced with wj and bj, respectively by Eqs. (12.13)–(12.16) (Kuo
and Zulvia 2015):

bj ¼ xtij � Dxtij 8j ¼ 1; . . .;D ð12:13Þ

Dxtij ¼
rþ xWij � xtij

��� ���
2

8j ¼ 1; . . .;D ð12:14Þ

wj ¼ xtij þDxtij 8j ¼ 1; . . .;D ð12:15Þ

Dxtij ¼
xtij � xBij

��� ���þ c

2
8j ¼ 1; . . .;D ð12:16Þ

where c = size of the initial step which is predefined. c can be a static or dynamic
number. It can be decreased by increasing the number of iterations if it is a dynamic
number. There are two ways for solving a maximization problem: (1) switching
worse and better neighbors and (2) transforming into a minimization problem.

12.3.3 Vector Jumping

An appropriate search method must be able to explore the search space widely and
deeply. The vector updating and vector jumping operators focus on deep and wide
search, respectively. In the GE algorithm, the vector jumping operator is applied to
avoid local optima. This operator just performs on a selective vector and modifies
the movement direction. In the GE algorithm, Jr is considered for determining
whether or not the vector must jump. If rj� Jr rj � N 0; 1ð Þ� �

, vector jumping to a
transition vector Ut

i is given by (Kuo and Zulvia 2015):

utij ¼ �utij þ rm: utij � xtkj
� �

8j ¼ 1; . . .;D; ð12:17Þ

where xtkj 2 Xt
kj in each random neighboring vector Pt; 8i 6¼ k, and rm = random

number in the interval (0, 1). The process of vector jumping is schematically shown
in Fig. 12.5.

12 Gradient Evolution (GE) Algorithm 125

12.3.4 Vector Refreshing

The GE algorithm uses an elitist strategy. In iteration t, the transition vector Ut
i

records the updated results and the jumped vector Xt
i . The next position of vector i,

Xtþ 1
i , is replaced by Ut

i when the fitness value f Ut
i

� �
is better than fitness value

f xti
� �

. Otherwise, it remains at Xt
i in next iteration (i.e., Xtþ 1

i ¼ Xt
i). Using the elitist

strategy, the GE algorithm ensures that each vector always moves to a better
position. If the determination of a better position is difficult, problem arises. This
situation takes place in the complex problems and the problems with many local
optima. In this case, vector refreshing is performed for such a problematic vector.
The GE algorithm records the position of vector Xt

i and the history of vector
updating. The history of vector i which is si 2 0; 1½ �, provides information about the
number of iterations that the vector cannot move to a better position. The newly
generated vector si is set to one. When vector i is stuck in the same position, si is
reduced by:

si ¼ si � e:si; ð12:18Þ

where e = rate of reduction. The predefined parameters Sr and e are continuous
numbers in the interval [0, 1]. They will be set when vector regeneration is required.
If si is less than Sr, vector i must be regenerated (Kuo and Zulvia 2015). The
flowchart of the GE algorithm is shown in Fig. 12.6. The parameters and variables
used in the GE algorithm are presented in Table 12.1.

t
kX

t
kX

t
iX

t
iX

t
k

X
t
iX

 t
kX

t
iXmr

t
kXt

iXmrt
iX

Fig. 12.5 Vector jumping
operator

126 M. Abdi-Dehkordi et al.

t
iUt

iX =

No

Yes

?)t
iX(f)tiU(f 1−≤

?rJjr ≤

Vector updating t
iU

No Is stopping criterion
satisfied?

?rSis =

i

=t
iU vector jumping

Vector refreshing

Yes

Yes

No

Calculate fitness t
iU

1−= t
iX

t
iX

is.isis ε−=

Yes

No

Start

Set GE algorithm parameters

Select best vector

End

For each vector t
iX

Fig. 12.6 Flowchart of the GE algorithm

12 Gradient Evolution (GE) Algorithm 127

12.4 Pseudo-Code of GE

Table 12.1 Characteristics of the GE algorithm

General algorithm Gradient Evolution Algorithm

Decision variable Vector which indicates the possible solutions

Solution Movement to the point with a zero gradient

Old solution Old vector of possible solutions

New solution New vector of possible solutions

Best solution Vector with the best fitness function

Fitness function Gradient obtained by a gradient-based method

Initial solution Randomly generated vector

Selection –

Process of generating new solution Vector updating, vector jumping, and vector refreshing

128 M. Abdi-Dehkordi et al.

12 Gradient Evolution (GE) Algorithm 129

12.5 Conclusion

This chapter introduced the gradient evolution (GE) algorithm, a population-based
meta-heuristic algorithm based on the concept of gradient. The gradient-based
optimization methods evaluate the search space based on an individual-based
approach. In order to apply these methods in the population-based algorithms,
considerable modifications must be performed. The GE algorithm explores the
search space based on a set of vectors in optimization problems and applies three
main operators including vector updating, vector jumping, and vector refreshing.
The vector updating operator based on the Tylor series expansion theorem trans-
forms the updating rule for population-based search. The vector jumping operator
avoids local optima and the vector refreshing operator is applied when a vector
cannot move to another position in several iterations. This chapter detailed the
underlying idea and the mathematical formulation of the GE algorithm.

References

Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2013). Nonlinear programming: Theory and
algorithms (3rd ed.). New Jersey, USA: Wiley.

Kuo, R. J., & Zulvia, F. E. (2015). The gradient evolution algorithm: A new metaheuristic.
Information Sciences, 316, 246–265.

Kuo, R. J., & Zulvia, F. E. (2016, July 25–29). Cluster analysis using a gradient evolution-based
k-means algorithm. In IEEE congress on evolutionary computation (CEC). Beijing, China:
Peking University.

Larson, R., Hostetler, R. P., & Edwards, B. H. (2007). Essential Calculus: Early Transcendental
Functions (1st ed.). New York, USA: Houghton Mifflin Company.

Miller, H. R. (2011). Optimization: Foundations and applications (1st ed.) New York, USA:
Wiley.

Patil, P. B., & Verma, U. P. (2006). Numerical computational methods (1st ed.). Oxford, UK:
Alpha Science International.

Salomon, R. (1998). Evolutionary algorithms and gradient search: Similarities and differences.
IEEE Transactions on Evolutionary Computation, 2(2), 45–55.

Wen, J. Y., Wu, Q. H., Jiang, L., & Cheng, S. J. (2003). Pseudo-gradient based evolutionary
programming. Electronics Letters, 39(7), 631–632.

Ypma, T. J. (1995). Historical development of the Newton-Raphson method. SIAM Review, 37(4),
531–551.

130 M. Abdi-Dehkordi et al.

Chapter 13
Moth-Flame Optimization
(MFO) Algorithm

Mahdi Bahrami, Omid Bozorg-Haddad and Xuefeng Chu

Abstract This chapter introduces the Moth-Flame Optimization (MFO) algorithm,
along with its applications and variations. The basic steps of the algorithm are
explained in detail and a flowchart is represented. In order to better understand the
algorithm, a pseudocode of the MFO is also included.

13.1 Introduction

The MFO is a novel nature-inspired optimization algorithm based on the navigation
method of moths through night by maintaining a fixed angle with respect to the
Moon. Introduced by Mirjalili (2015) and tested on 29 benchmark functions and
seven real engineering problems, MFO showed promising results in comparison to
other nature-inspired algorithms. Since being introduced, MFO has been applied to
real engineering problems in different fields of research.

Yamany et al. (2015) trained a multi-layer perceptron (MLP) using MFO.
MFO-MLP was used to search for the weights and biases of the MLP to achieve the
minimum error and the highest classification rate. Li et al. (2016a) proposed a new
hybrid annual power load forecasting model based on the least squares support
vector machine (LSSVM) and the MFO algorithm to forecast the annual power load
essential for the planning, operation, and maintenance of an electric power system.

M. Bahrami � O. Bozorg-Haddad (&)
Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering
and Technology, College of Agriculture and Natural Resources, University of Tehran,
31587-77871 Karaj, Tehran, Iran
e-mail: OBHaddad@ut.ac.ir

M. Bahrami
e-mail: M.Bahrami9264@ut.ac.ir

X. Chu
Department of Civil and Environmental Engineering, North Dakota State University,
Dept 2470, Fargo, ND 58108-6050, USA
e-mail: Xuefeng.Chu@ndsu.edu

© Springer Nature Singapore Pte Ltd. 2018
O. Bozorg-Haddad (ed.), Advanced Optimization by Nature-Inspired Algorithms,
Studies in Computational Intelligence 720, DOI 10.1007/978-981-10-5221-7_13

131

The parameters for LSSVM were optimally determined using the MFO algorithm.
Raju et al. (2016) used MFO for simultaneous optimization of secondary controller
gains in a cascade controller proposed for automatic generation control of a
two-area hydro-thermal system under a deregulated scenario. Zawbaa et al. (2016)
proposed a feature selection algorithm based on MFO and applied it to machine
learning for feature selection to find the optimal feature combination using the
wrapper-based feature selection mode. MFO was exploited as a searching method
to find the optimal feature set, maximizing classification performance. Ceylan
(2016) used MFO to solve the harmonic elimination problem and minimize the total
harmonic distortion. The simulation results showed that the MFO model solved the
harmonic elimination problem and the total harmonic distortion minimization
problem efficiently. Lal and Barisal (2016) applied MFO to evaluate the optimal
gains of the fuzzy-based proportional, integral and derivative (PID) controllers in a
microgird power generation system interconnected with a single area reheat thermal
power system. Gope et al. (2016) used MFO to obtain an optimal bidding strategy
of supplier considering double sided bidding under a congested power system.
Jangir et al. (2016) solved five constrained benchmark functions of engineering
problems using MFO and compared the results with other recognized optimization
algorithms. MFO provided better results in various design problems in comparison
to other optimization algorithms. Parmar et al. (2016) solved the optimal power
flow (OPF) problem using MFO involving fuel cost reduction, active power loss
minimization, and reactive power loss minimization. Comparing with other tech-
niques such as flower pollination algorithm (FPA) and particle swarm optimization
(PSO), MFO showed a better performance. Bentouati et al. (2016) applied MFO to
solve the problem of OPF in the interconnected power system for the Algerian
power system network with different objective functions. The results were com-
pared with those obtained by artificial bee colony (ABC) and other metaheuristics.
Allam et al. (2016) utilized MFO for the parameter extraction process of the
three-diode model for the multi-crystalline solar cell\module, with the results being
compared with those obtained by FPA and hybrid evolutionary (DEIM) algorithms.
The results showed that MFO achieved the least root mean square error (RMSE),
mean bias error (MBE), absolute error at the maximum power point (AEMPP), and
best coefficient of determination. Buch et al. (2017) applied MFO to various
nonconvex, nonlinear optimum power flow objective functions with five single
objective functions. Comparing MFO with other stochastic methods showed that
MFO obtained the optimum value with rapid and smooth convergence. Garg and
Gupta (2017) used MFO to optimize the performance of open shortest path first
(OSPF) algorithm which is the widely used, efficient algorithm to select the shortest
path between the source and destination. The results for different scenarios showed
the reduction in delay and energy consumption in the optimized OSPF compared to
the traditional OSPF. Khalilpourazari and Pasandideh (2017) solved a
multi-constrained Economic Order Quantity (EOQ) model using MFO and the
interior-point method. To compare the results of the two methods, three measures,
including objective function value, computation time, and the number of function
evaluations were used. The results indicated that there was no significant difference

132 M. Bahrami et al.

between the average objective function values of MFO and the interior-point
method, but MFO required significantly less computation time and fewer function
evaluations.

Different versions of the MFO algorithm have been developed by other
researchers in order to improve the performance of the algorithm in different fields
of research. Bhesdadiya et al. (2016) developed a hybrid optimization algorithm
based on PSO and MFO. PSO was used for the exploitation and MFO was utilized
for the exploration phase. The proposed algorithm was tested on some unconstraint
benchmark test functions along with some constrained/complex design problems
and the obtained results demonstrated its effectiveness comparing to the standard
PSO and MFO algorithms. Nanda (2016) modified the original MFO to handle
multi-objective optimization problems. The proposed MOMFO used concepts such
as the archive grid, coordinate based distance for sorting and non-dominance of
solutions. In the tests of six benchmark mathematical functions, MOMFO achieved
better accuracy and shorter computational time than non-dominated Sorting Genetic
Algorithm-II (NSGA-II) and Multi-objective PSO (MOPSO). Muangkote et al.
(2016) proposed an improved version of MFO for image segmentation to enhance
the optimal multilevel thresholding of satellite images. The proposed multilevel
thresholding moth-flame optimization algorithm (MTMFO) was tested for various
satellite images. MTMFO provided more effective results with better accuracy than
MFO.

Soliman et al. (2016) proposed two modified versions of MFO and used as a
prediction tool for terrorist groups, and compared with the original MFO as well as
ant lion optimizer (ALO), grey wolf optimization (GWO), PSO, and genetic
algorithm (GA). The results proved that the modified versions of MFO achieved an
advance over the original MFO algorithm. Li et al. (2016b) proposed an improved
version of MFO based on the Lévy-flight strategy (LMFO) to improve the con-
vergence and precision of MFO. The new LMFO algorithm increased the diversity
of the population against premature convergence and made the algorithm jump out
of local optimum more effectively. Compared with MFO and other heuristic
methods, LMFO demonstrated its superior performance. Trivedi et al. (2016)
applied MFO to economic load dispatch problems. They integrated MFO with Lévy
flights to achieve the competitive results in case of both discrete and continuous
control parameters.

13.2 Mapping the Navigation Method of Moths
into Moth-Flame Optimization

MFO is a nature-inspired optimization algorithm based on the moths’ navigation
mechanism in the night, known as the transverse orientation. Moths can travel long
distances in a straight line by maintaining a fixed angle with the Moon (Frank 2006).

13 Moth-Flame Optimization (MFO) Algorithm 133

When encountered artificial lights, moths try to maintain a similar angle to the light
source and because of the close distance they get caught in a spiral path (Fig. 13.1).

The MFO assigns moths to different solutions in the solution space of the
optimization problem with each moth having its own fitness function value. Each
moth also has a flame which stores the best solution found by that moth. In each
iteration, the moths search the solution space by flying through a spiral path toward
their flames and update their positions.

MFO starts with the positions of moths randomly initialized within the solution
space. The fitness values of the moths are calculated which are the best individual
fitness values so far. The flame tags the best individual position for each moth. In
the next iteration, the moths’ positions are updated based on a spiral movement
function toward their best individual positions tagged by a flame and the positions
of the flames are updated with new best individual positions. The MFO algorithm
continues updating the positions of the moths and flames and generating new
positions until the termination criteria are met. Table 13.1 lists the characteristics of
the MFO. Figure 13.2 shows the flowchart of the MFO.

Fig. 13.1 Moth’s spiral
flying path around a light
source

134 M. Bahrami et al.

Table 13.1 Characteristics of the MFO algorithm

General algorithm Moth-flame optimization

Decision variable Moths’ positions in each dimension

Solution Moths’ positions

Old solution Old positions of moths

New solution New positions of moths

Best solution Positions of flames

Fitness function Distance between moth and flame

Initial solution Random positions of moths

Selection _

Process of generating new solution Flying in a spiral path toward a flame

Define the parameters of the algorithm

Generate initial moths randomly

Update flame number, t, and r

Calculate D for the corresponding moth

Update M(i, j) for the corresponding moth

Yes

End

No

Report the best position among the moths

Start

Calculate the fitness functions and tag the best positions by flames

Are termination criteria satisfied?

Fig. 13.2 Flowchart of the MFO algorithm

13 Moth-Flame Optimization (MFO) Algorithm 135

13.3 Creating the Initial Population of Moths

In MFO, each moth is assumed to have a position in a D-dimensional solution
space. The set of moths can be expressed as (Mirjalili 2015):

M ¼

m1;1 m1;2 m1;d

m2;1 m2;2 m2;d

: : : : :
: : : : :

mn;1 mn;2 mn;d

2
66664

3
77775 ð13:1Þ

in which n = number of moths; and d = number of dimensions in the solution
space. The corresponding fitness function values for the moths are sorted in an array
as follows (Mirjalili 2015):

OM ¼

OM1

OM2

:
:

OMn

2
66664

3
77775 ð13:2Þ

Two other components of the MFO are the flame matrix representing the flames
in the D-dimensional space and their corresponding fitness function vector, which
can be respectively expressed as (Mirjalili 2015):

F ¼

F1;1 F1;2 F1;d

F2;1 F2;2 F2;d

: : : : :
: : : : :

Fn;1 Fn;2 Fn;d

2
66664

3
77775 ð13:3Þ

OF ¼

OF1

OF2

:
:

OFn

2
66664

3
77775 ð13:4Þ

In MFO, moths and flames represent solutions, with moths searching the solu-
tion space in each iteration to find the optimal solution and the flames representing
the best solution found by each moth. In other words, each moth searches the space
around its flame and each time it finds a better solution. The position of the flame is
then updated.

136 M. Bahrami et al.

13.4 Updating the Moths’ Positions

MFO uses three functions to initialize the random positions of the moths (I), move
the moths in the solution space (P), and terminate the search operation (T):

MFO ¼ ðI;P; TÞ ð13:5Þ

Any random distribution can be used to initialize the moths’ positions in the
solution space. The implementation of the I function can be written as (Mirjalili
2015):

Mði; jÞ ¼ ðubðiÞ � lbðjÞÞ � randðÞþ lbðiÞ ð13:6Þ

in which ub and lb = arrays that respectively define the upper and lower bounds of
variables.

The movement of moths in the solution space is based on the transverse ori-
entation and modeled by using a logarithmic spiral subjected to the following
conditions (Mirjalili 2015):

• Spiral’s initial point should start from the moth
• Spiral’s final point should be the position of the flame
• Fluctuation of the range of spiral should not exceed the search space.

Hence, the P function for the movement is defined as:

SðMi;FjÞ ¼ Di:e
bt: cosð2p tÞþFj ð13:7Þ

in which b = a constant to define the shape of the logarithmic spiral; t = a random
number between [−1, 1]; and Di = distance between the i-th moth and the j-th
flame, which is defined as (Mirjalili 2015):

Di ¼ Fj �Mi

�� �� ð13:8Þ

The spiral movement of the moth around the flame guarantees the exploration
and exploitation of the solution space. In order to prevent the moths getting trapped
in local optima, the best solutions (flames) are sorted in each iteration and each
moth flies around its corresponding flame based on the OF and OM matrices. In
other words, the first moth flies around the best obtained solution, while the last
moth flies around the worst obtained solution.

13 Moth-Flame Optimization (MFO) Algorithm 137

13.5 Updating the Number of Flames

In order to improve the exploitation of the MFO algorithm, Eq. (13.9) is used to
decrease the number of the flames, and hence the moths only fly around the best
solution in the final steps of the algorithm (Mirjalili 2015):

Flame no ¼ round N � l � N � l
T

� �
ð13:9Þ

in which l = current number of iterations; N = maximum number of flames; and
T = maximum number of iterations. The decrease in the number of the flames
balances the exploration and exploitation of the solution space.

13.6 Termination Criteria

The termination criterion determines when the algorithm is terminated. Selecting a
good termination criterion has an important role to ensure a correct convergence of
the algorithm. The number of iterations, the amount of improvement, and the
running time are common termination criteria for the MFO.

13.7 Performance of the MFO

Mirjalili (2015) tested MFO on 29 benchmark functions and seven real engineering
problems, and compared the results with those obtained by other well-known
nature-inspired algorithms such as PSO, gravitational search algorithm (GSA), bat
algorithm (BA), FPA, states of matter search (SMS), firefly algorithm (FA), and
GA. MFO showed promising and competitive results for the benchmark test
functions and the results of the real problems demonstrated the MFO’s ability in
dealing with challenging problems with constrained and unknown search spaces.

138 M. Bahrami et al.

13.8 Pseudocode of the MFO

Begin

Input parameters of the algorithm and the initial data

Initialize the positions of moths and evaluate their fitness values

While (the stop criterion is not satisfied or I < Imax)

Update flame no.

 = Fitness Function()

If iteration = 1

 = sort()

 = sort()

Else

 = sort(− 1,)

 = sort(−1,)

End if

For = 1: N
For = 1: D

Update and

Calculate with respect to the corresponding moth

Update (,) with respect to the corresponding moth

End for j
End for i

End While

Post-processing the results and visualization.

End

13 Moth-Flame Optimization (MFO) Algorithm 139

13.9 Conclusion

This chapter described moth-flame optimization (MFO), a new nature-inspired
algorithm based on the transverse orientation method used by moths. MFO searches
the decision space using a set of moths which report the fitness functions at each
time step and tag the best solution by a flame. The movement of moths is based on
the flames in a spiral path around their flames. In this chapter, a literature review of
MFO was presented, showing the success of the algorithm for different optimization
problems, along with different variations of the MFO algorithm developed by
researchers. The flowchart and the pseudocode of MFO were also presented to help
understand the detailed computational procedures of the algorithm.

References

Allam, D., Yousri, D. A., & Eteiba, M. B. (2016). Parameters extraction of the three diode model
for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm. Energy
Conversion and Management, 123, 535–548.

Bentouati, B., Chaib, L., & Chettih, S. (2016). Optimal Power Flow using the Moth Flam
Optimizer: A case study of the Algerian power system. Indonesian Journal of Electrical
Engineering and Computer Science, 1(3), 431–445.

Bhesdadiya, R. H., Trivedi, I. N., Jangir, P., Kumar, A., Jangir, N., & Totlani, R. (2016, August
12–13). A novel hybrid approach particle swarm optimizer with moth flame optimizer
algorithm. In International Conference on Computer, Communication and Computational
Sciences (ICCCCS), Advances in Intelligent Systems and Computing. Ajmer, India.

Buch, H., Trivedi, I. N., & Jangir, P. (2017). Moth flame optimization to solve optimal power flow
with non-parametric statistical evaluation validation. Cogent Engineering, 4(1).

Ceylan, O. (2016, November 3–5). Harmonic elimination of multilevel inverters by moth-flame
optimization algorithm. In International Symposium on Industrial Electronics (INDEL).
Republic of Srpska, Bosnia and Herzegovina: IEEE.

Frank, K. D. (2006). Effects of artificial night lighting on moths. In C. Rich & T. Longcore (Eds.),
Ecological consequences of artificial night lighting (pp. 305–344). Washington, DC: Island
Press.

Garg, P., & Gupta, A. (2017). Optimized open shortest path first algorithm based on moth flame
optimization. Indian Journal of Science and Technology, 9(48).

Gope, S., Dawn, S., Goswami, A. K., & Tiwari, P. K. (2016, November 22–25). Moth Flame
Optimization based optimal bidding strategy under transmission congestion in deregulated
power market. In Region 10 Conference (TENCON). Marina Bay Sands, Singapore: IEEE.

Jangir, N., Pandya, M. H., Trivedi, I. N., Bhesdadiya, R. H., Jangir, P., & Kumar, A. (2016, March
5–6). Moth-Flame Optimization algorithm for solving real challenging constrained engineering
optimization problems. In Students’ Conference on Electrical, Electronics and Computer
Science (SCEECS). Bhopal, India: IEEE.

Khalilpourazari, S., & Pasandideh, S. H. R. (2017). Multi-item EOQ model with nonlinear unit
holding cost and partial backordering: Moth-flame optimization algorithm. Journal of
Industrial and Production Engineering, 34(1), 42–51.

Lal, D. K., & Barisal, A. K. (2016, December 27–28). Load frequency control of AC microgrid
interconnected thermal power system. In International Conference on Advanced Material
Technologies (ICAMT). Andhra Pradesh, India.

140 M. Bahrami et al.

Li, C., Li, S., & Liu, Y. (2016a). A least squares support vector machine model optimized by
moth-flame optimization algorithm for annual power load forecasting. Applied Intelligence, 45
(4), 1166–1178.

Li, Z., Zhou, Y., Zhang, S., & Song, J. (2016b). Lévy-flight moth-flame algorithm for function
optimization and engineering design problems. Mathematical Problems in Engineering.
doi:10.1155/2016/1423930.

Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic
paradigm. Knowledge-Based Systems, 89, 228–249.

Muangkote, N., Sunat, K., & Chiewchanwattana, S. (2016, July 13–15). Multilevel thresholding
for satellite image segmentation with moth-flame based optimization. In The 13th International
Joint Conference on Computer Science and Software Engineering. Khon Kaen, Thailand.

Nanda, S. J. (2016, September 21–24). Multi-objective Moth Flame Optimization. In Advances in
Computing, Communications and Informatics (ICACCI). Jaipur, India: IEEE.

Parmar, S. A., Pandya, M. H., Bhoye, M., Trivedi, I. N., Jangir, P., & Ladumor, D. (2016, April 7–
8). Optimal active and Reactive Power dispatch problem solution using Moth-Flame Optimizer
algorithm. In International Conference on Energy Efficient Technologies for Sustainability
(ICEETS). Nagercoil, India: IEEE.

Raju, M., Saikia, L. C., & Saha, D. (2016, November 22–25). Automatic generation control in
competitive market conditions with moth-flame optimization based cascade controller. In
Region 10 Conference (TENCON). Marina Bay Sands, Singapore: IEEE.

Soliman, G. M. A., Khorshid, M. M. H., & Abou-El-Enien, T. H. M. (2016, July). Modified
moth-flame optimization algorithms for terrorism prediction. International Journal of
Application or Innovation in Engineering and Management, 5, 47–58.

Trivedi, I. N., Kumar, A., Ranpariya, A. H., & Jangir, P. (2016, April 7–8). Economic Load
Dispatch problem with ramp rate limits and prohibited operating zones solve using Levy Flight
Moth-Flame optimizer. In International Conference on Energy Efficient Technologies for
Sustainability (ICEETS). Nagercoil, India.

Yamany, W., Fawzy, M., Tharwat, A., & Hassanien, A. E. (2015, December 29–30). Moth-flame
optimization for training multi-layer perceptrons. In 11th International Computer Engineering
Conference (ICENCO). Giza, Egypt: IEEE.

Zawbaa, H. M., Emary, E., Parv, B., & Sharawi, M. (2016, July 24–29). Feature selection
approach based on moth-flame optimization algorithm. In Evolutionary Computation (CEC).
IEEE.

13 Moth-Flame Optimization (MFO) Algorithm 141

http://dx.doi.org/10.1155/2016/1423930

Chapter 14
Crow Search Algorithm (CSA)

Babak Zolghadr-Asli , Omid Bozorg-Haddad and Xuefeng Chu

Abstract The crow search algorithm (CSA) is novel metaheuristic optimization
algorithm, which is based on simulating the intelligent behavior of crow flocks.
This algorithm was introduced by Askarzadeh (2016) and the preliminary results
illustrated its potential to solve numerous complex engineering-related optimization
problems. In this chapter, the natural process behind a standard CSA is described at
length.

14.1 Introduction

In the last several decades, optimization played a crucial role in many aspects of
various problems, including but not limited to engineering problems. Often, such
problems include complicated objective functions, numerous decision variables,
and a considerable number of constraints, which adds complexity to an already
complicated optimization problem. The aforementioned characteristics limit the
efficiency of traditional optimization techniques. Consequently, the search for an
alternative method leads to a new field of study—swarm intelligence (SI), which
was introduced by Beni and Wang in the late 1980s (Bei and Wang 1993). SI,
ultimately, aims to imitate the social intelligence of the nature’s group living
creatures (Bonabeau et al. 1999). Each newly proposed algorithm attempts to

B. Zolghadr-Asli � O. Bozorg-Haddad (&)
Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering
and Technology, College of Agriculture and Natural Resources, University of Tehran,
3158777871 Karaj, Iran
e-mail: OBHaddad@ut.ac.ir

B. Zolghadr-Asli
e-mail: ZolghadrBabak@ut.ac.ir

X. Chu
Department of Civil and Environmental Engineering, North Dakota State University,
Dept 2470, Fargo, ND 58108-6050, USA
e-mail: Xuefeng.Chu@ndsu.edu

© Springer Nature Singapore Pte Ltd. 2018
O. Bozorg-Haddad (ed.), Advanced Optimization by Nature-Inspired Algorithms,
Studies in Computational Intelligence 720, DOI 10.1007/978-981-10-5221-7_14

143

http://orcid.org/0000-0002-3392-2672

improve two main features: (1) decreasing the distance between the reported
solutions and the actual global optima; and/or (2) reducing the solution searching
time. Although each proposed optimization algorithm has its unique characteristics,
with both merits and drawbacks, it has been proven that there is no single algorithm
that could outperform all its rivals (Wolpert and Macready 1997). Subsequently, a
wide range of alternative novel optimization algorithms have been proposed, each
of which has its exclusive advantages.

One of these newly proposed algorithms is the crow search algorithm (CSA),
which was initially introduced by Askarzadeh (2016). CSA attempts to imitate the
social intelligence of crow flock and their food gathering process. The primary
results illustrated the improved efficiency of CSA over many conventional opti-
mization algorithms, such as genetic algorithm (GA), particle swarm optimization
(PSO), and harmony search (HS), in both convergence time and the accuracy of the
results (Askarzadeh 2016). Ultimately, it can be concluded that CSA is a proper
alternative method for solving complex engineering optimization problems.

14.2 Crow Flock’s Food Gathering Imitation

Crows are a widely distributed genus of birds, which have been credited with
intelligence throughout folklore. Recent experiments investigating the cognitive
abilities of crows have begun to reveal the intelligence capability of these species
(Emery and Clayton 2004, 2005; Prior et al. 2008). The studies have demonstrated
that some species of crows are not only superior in intelligence to other birds but
also rival many nonhuman primates. Observations of the crows’ tool use in the wild
are an example of their complex cognition (Emery and Clayton 2004). Further
studies have also revealed their self-awareness, face recognition capabilities,
sophisticated communication techniques, and food storing and retrieving skills
across seasons (Emery and Clayton 2005; Prior et al. 2008).

Interestingly, a crow individual has a tendency to tap into the food resources of
other species, including the other crow members of the flock. In fact, each crow
attempts to hide its excess food in a hideout spot and retrieve the stored food in the
time of need. However, the other members of the flock, which have their own food
reservation spots as well, try to tail one another to find these hiding spots and
plunder the stored food. Nevertheless, if a crow senses that it has been pursuited by
other members of the flock, in order to lose the tail and deceive the plunderer, it
maneuvers its path into a fallacious hideout spot (Clayton and Emery 2005).
Plainly, the aforementioned is the core principles of the CSA, in which each crow
individual searches the decision space for hideouts with the best food resources
(i.e., the global optima from the point of view of optimization). Thus, each crow
individual’s motion is induced by two main features: (1) finding the hideout spots
of the other members of the flock; and (2) protecting its own hideout spots.

In the standard CSA, the flock of crows spread and search throughout the
decision space for the perfect hideout spots (global optima). Since any efficient

144 B. Zolghadr-Asli et al.

optimization algorithm should be compatible with arbitrary dimensions and each
arbitrary dimension is to represent a decision variable, a d-dimensional environment
is assumed for the search space. Initially, it is assumed that N crow individuals (the
flock size) occupy a position in the d-dimensional space, randomly. The position of
the ith crow individual at the tth iteration in the search space is represented by x(i,t),
which is, in fact, a feasible array of the decision variables. Additionally, each crow
individual can memorize the location of the best encountered hideout spot. At the
tth iteration, the position of the hideout spot of the ith crow individual is represented
by m(i,t), which is the best position that the ith crow individual has spotted, so far.

Subsequently, each crow individual shall make a motion based on the two basic
principles of the CSA: (1) protecting its own hideout spot; and (2) detecting the
other members’ hideout spots. Assume that at the tth iteration, the jth crow indi-
vidual attempts to retrieve food from its hideout spot [m(j,t)], while the ith crow
decides to tail the jth crow individual, in order to plunder its stored food. In such
circumstances, two situations may occur: (1) the jth crow individual could not
detect that it has been tailed leading to the reveal of the hideout spot to the ith crow
individual; or (2) the jth crow individual senses the presence of a plunderer, which
leads to a deceiving maneuver by the jth crow.

In the first case, the lack of attention of the jth crow individual would enable the
ith crow to spot and plunder the jth crow’s hideout spot. In such a case, the
repositioning of the ith crow can be obtained as follows (Askarzadeh 2016):

xði;tþ 1Þ ¼ xði;tÞ þ ri � flði;tÞ � mðj;tÞ � xði;tÞ
� � ð14:1Þ

in which ri = a random number with the uniform distribution and the range of [0,1];
and fl(i,t) = flight length of the ith crow individual at the tth iteration.

It is worth to be mentioned that fl(i,t) is one of the algorithm’s parameters and it
can affect the searching capability of the algorithm. Assume that smaller values of fl
lead to the local search at the vicinity of x(i,t), while larger values of fl would widen
the searching space. In terms of optimization, smaller values of fl would help
intensify the results, while larger values of fl would diversify the results. Both
well-intensification and -diversification are the characteristics of an efficient opti-
mization algorithm (Gandomi et al. 2013).

There could also be the case, in which the jth crow individual would sense that it
had been tailed by one of the members of the flock (say the ith crow). As a result, in
order to protect its food supply from the plunderer, the jth crow would deceitfully
fly over a non-hideout spot. To imitate such an action in the CSA, a random place in
the d-dimensional decision space would be assumed for the ith crow.

In summary, the tailing motion of crow individuals for the aforementioned two
cases can be expressed as (Askarzadeh 2016)

xði;tþ 1Þ ¼ xði;tÞ þ ri � flði;tÞ � mðj;tÞ � xði;tÞ
� �

rj �APðj;tÞ
a random position otherwise

�
ð14:2Þ

14 Crow Search Algorithm (CSA) 145

in which rj = a random number with the uniform distribution and the range of [0,1];
and AP(j,t) = the awareness probability of the jth crow at the tth iteration.

As mentioned previously, an efficient metaheuristic algorithm should provide a
good balance between diversification and intensification (Yang 2010). In the CSA,
intensification and diversification are mainly controlled by two parameters: the
flight length (fl) and the awareness probability (AP). By decreasing the awareness
probability, the chance of detecting the hideout spots by the members of the crow
flock would increase. As a result, CSA tends to focus the search on the vicinity of
the hideout spots. Thus, it can be assumed that smaller values of AP would amplify
the intensification aspect of the algorithm. On the other hand, by increasing the
awareness probability, the flock of crows is more likely to search the decision space
in a random manner for, in fact, such an action would decrease the chance of
discovering the real hideout spots by the plunderers. As a result, larger values of AP
would amplify the diversification aspect of the algorithm.

14.3 CSA Implementation for Optimization

For an efficient implementation of a metaheuristic algorithm, one needs to tune the
parameters of the algorithm. Parameter setting, however, is a time-consuming
process. Thus, the algorithms with a limited number of parameters are easier to be
implemented in different optimization problems. The aforementioned addresses one
of the major advantages of the CSA over many conventional metaheuristic algo-
rithms, since it has only two major parameters that require tuning (i.e., fl and AP).
After the parameter adjustment, the flock size (N) and the maximum number of
iterations (T) are assumed, as well.

The first step is to locate N crows, randomly, in a d-dimensional decision space.
Since the crows have no experiences at the initial iteration, it is assumed that they
have hidden their foods at their initial positions. After the initial step, the CSA
relocates each crow individual, say the ith crow, as follows: the ith crow individual
would assume the role of a plunderer for a randomly selected member of the flock,
say the jth crow. Using Eq. (14.2), the new position of the ith crow is calculated.

To avoid unfeasible answers, it is suggested in the standard CSA to check the
feasibility of the new location in the decision space. If an unfeasible location is
generated in the latter process, the crow must stay still. An alternative for such a
procedure is the implementation of a penalty function for unfeasible answers. In any
case, the crow updates its memory as follows (Askarzadeh 2016):

mði;tÞ ¼ xði;tþ 1Þ if f xði;tþ 1Þ
� �

is better than f ½mði;tÞ�
mði;tÞ otherwise

�
ð14:3Þ

146 B. Zolghadr-Asli et al.

in which f[] = objective function. These steps are repeated until the termination
criterion is satisfied. At that point, the best position that is memorized by the
members of the crow flock is reported as the optimum solution. Figure 14.1
illustrates the flowchart of the standard CSA. Additionally, Table 14.1 summarizes
the characteristics of the CSA.

Fig. 14.1 Flowchart of the standard CSA

Table 14.1 Characteristics of the CSA

General algorithm Crow search algorithm

Decision variable Crow’s position in each dimension

Solution Crow’s position

Old solution Old position of a crow

New solution New position of a crow

Best solution Any crow with the best fitness

Fitness function The value of discovered hideout spots

Initial solution Randomly selected position of a crow

Selection –

Process of generating new solution Locating the flock members’ hideout spots

14 Crow Search Algorithm (CSA) 147

14.4 Pseudo Code of the CSA

148 B. Zolghadr-Asli et al.

14.5 Conclusion

This chapter described the crow search algorithm (CSA), which is a novel, yet
relatively new metaheuristic optimization algorithm, based on the intelligent
behavior of crows. CSA is a population-based optimization algorithm, with mainly
two adjustable parameters (flight length and awareness probability). Such charac-
teristics make CSA a viable option for complex engineering optimization problems.
In the final section, a pseudocode of the standard CSA was also presented.

References

Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering
optimization problems: Crow search algorithm. Computers & Structures, 169, 1–12.

Beni, G., & Wang, J. (1993). Swarm intelligence in cellular robotic systems. In P. Dario,
G. Sandini, & P. Aebischer (Eds.), Robots and Biological Systems: Towards a New Bionics?
Berlin, New York, NY: Springer.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial
systems. New York, NY: Oxford University Press.

Clayton, N., & Emery, N. (2005). Corvid cognition. Current Biology, 15(3), R80–R81.
Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: Convergent evolution of

intelligence in corvids and apes. Science, 306(5703), 1903–1907.
Emery, N. J., & Clayton, N. S. (2005). Evolution of the avian brain and intelligence. Current

Biology, 15(23), R946–R950.
Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic

approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.
Prior, H., Schwarz, A., & Güntürkün, O. (2008). Mirror-induced behavior in the magpie (Pica

pica): Evidence of self-recognition. PLoS Biology, 6(8), e202.
Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1(1), 67–82.
Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Frome, UK: Luniver press.

14 Crow Search Algorithm (CSA) 149

Chapter 15
Dragonfly Algorithm (DA)

Babak Zolghadr-Asli , Omid Bozorg-Haddad and Xuefeng Chu

Abstract The dragonfly algorithm (DA) is a new metaheuristic optimization
algorithm, which is based on simulating the swarming behavior of dragonfly
individuals. This algorithm was developed by Mirjalili (2016) and the preliminary
studies illustrated its potential in solving numerous benchmark optimization
problems and complex computational fluid dynamics (CFD) optimization problems.
In this chapter, the natural process behind a standard DA is described at length.

15.1 Introduction

In the past decades, the natural swarming behavior of species has been the source of
inspiration for a wide range of metaheuristic optimization algorithms. In fact, the
aforementioned is the fundamental basis of swarm intelligence (SI), which was first
proposed by Beni and Wang in the late 1980s (Beni and Wang 1993). SI, ulti-
mately, aims to simulate the collective and social intelligence of nature’s group
living creatures (Bonabeau et al. 1999). Although both SI and traditional evolu-
tionary algorithms (EAs), such as genetic algorithm (GA), have undeniable

B. Zolghadr-Asli � O. Bozorg-Haddad (&)
Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering
and Technology, College of Agriculture and Natural Resources, University of Tehran,
3158777871 Karaj, Iran
e-mail: OBHaddad@ut.ac.ir

B. Zolghadr-Asli
e-mail: ZolghadrBabak@ut.ac.ir

X. Chu
Department of Civil and Environmental Engineering, North Dakota State University,
Dept 2470, Fargo, ND 58108-6050, USA
e-mail: Xuefeng.Chu@ndsu.edu

© Springer Nature Singapore Pte Ltd. 2018
O. Bozorg-Haddad (ed.), Advanced Optimization by Nature-Inspired Algorithms,
Studies in Computational Intelligence 720, DOI 10.1007/978-981-10-5221-7_15

151

http://orcid.org/0000-0002-3392-2672

advantages over traditional optimization methods in dealing with complex opti-
mization problems, some may prefer the SI-based algorithms over EAs. First, there
are fewer controlling parameters in the SI-based algorithms. Second, the SI-based
algorithms are equipped with fewer operators than most traditional EAs (Mirjalili
2016).

The basic principles of the SI-based algorithms are centered around an iterative
process, in which the SI searches through the decision space for arrays of decision
variables, resulting in an optimum solution. This nature-inspired process is intended
to imitate a natural feature that has been evolved over millions of years (Gandomi
and Alavi 2012). Since the introduction of the SI-based algorithms, many promising
metaheuristic algorithms have been proposed. These algorithms intend to increase
the pace and accuracy of the searching process of the decision space, making them
more suitable to solve complicated optimization problems.

Dragonfly algorithm (DA) is a newly proposed SI-based optimization algorithm.
Dragonflies are majestic creatures. According to the discovered fossils, they may
have evolved for more than 300 million years. Accordingly, there are up to 3000
different species of this insect around the world (Thorp and Rogers 2014).
Dragonflies are considered as small carnivorous predators, eating a wide variety of
insects ranging from small midges and mosquitoes to butterflies, moths, and
damselflies. Although dragonflies are swift and agile fliers, some predators, such as
swallows, are fast enough to hunt them as preys. A fascinating fact about dra-
gonflies is perhaps their unique swarming behavior. They may swarm only for
hunting or migration purposes (Mirjalili 2016). The former is referred to as the
static (feeding) swarm (SS), and the latter is known as the dynamic (migratory)
swarm (DS).

In the static swarm, dragonflies form small groups and maneuver over small
areas. In this swarming behavior, which can be characterized by the local move-
ments and swift changes in the flying orientation, each dragonfly individual tends to
hunt flying preys. In a dynamic swarm, however, a massive number of dragonfly
individuals form a migrating swarm, which would travel in one direction, and over
long distances (Russell et al. 1998; Wikelski et al. 2006).

The aforementioned swarming behaviors of dragonflies are the main source of
inspiration for the DA, for in fact, these behaviors are in line with the two main
characteristics of a metaheuristic optimization algorithm: intensification (also
known as exploitation) and diversification (also known as exploration) (Gandomi
et al. 2013). The static swarming behavior enables dragonflies to create sub-swarms
and investigate the presence of promising optima in numerous, yet small areas of
the decision space (diversification). In a dynamic swarm, however, dragonflies will
migrate in massive swarms toward what are the most promising locations for the
global optimum, which in other words is a description of the intensification phase of
an optimization algorithm. These are, in fact, the basic mechanism behind the DA.

152 B. Zolghadr-Asli et al.

The DA was initially proposed by Mirjalili (2016), and the preliminary studies
have demonstrated its potential to outperform existing algorithms in solving both
benchmark test problems and complicated engineering problems of computational
fluid dynamics (CFD). The DA was also modified to better deal with binary [binary
dragonfly algorithm (BDA)], and multi-objective optimization problems
[multi-objective dragonfly algorithm (MODA)] (Mirjalili 2016). As a compatible
and efficient algorithm, the DA can be an already promising alternative for solving
complex engineering optimization problems. The following sections will focus on
the basic principles of a standard DA.

15.2 Dragonflies’ Swarming Patterns

The behavior of swarms follows three primitive principals (Reynolds 1987):

• Separation: The static collision avoidance of the dragonfly individuals in a
neighborhood.

• Alignment: The velocity matching of dragonfly individuals in a neighborhood.
• Cohesion: The tendency of dragonfly individuals toward a neighborhood’s

center of the mass.

Additionally, any swarms of living creatures would also follow their survival
instincts. Hence, all of the dragonfly individuals should be attracted toward food
sources (food attraction) and distracted outward predators (predator distraction). In
result, the swarming behavior of the dragonfly community can be explained by
these five main factors (Fig. 15.1).

Fig. 15.1 Primitive corrective patterns of dragonfly individuals in a swarm: a Separation;
b Alignment; c Cohesion; d Food Attraction; and e Predator distraction

15 Dragonfly Algorithm (DA) 153

In order to simulate the swarming behavior of dragonflies, the aforementioned
characteristics must be mathematically modeled as follows:

The separation motion can be expressed as Reynolds (1987):

Sði;tÞ ¼ �
XN
j¼1

Xði;tÞ � Xðj;tÞ ð15:1Þ

in which X(i,t) = position of the ith dragonfly individual in the tth iteration; X(j,

t) = position of the jth neighboring dragonfly individual in the tth iteration;
N = number of neighboring dragonfly individuals; and S(i,t) = separation motion for
the ith dragonfly individual in the tth iteration.

The alignment motion is calculated by Mirjalili (2016):

Aði;tÞ ¼
PN

j¼1 Vðj;tÞ
N

ð15:2Þ

in which V(j,t) = velocity of the jth neighboring dragonfly individual in the tth
iteration; and A(i,t) = alignment motion for the ith dragonfly individual in the tth
iteration.

The cohesion motion can be measured by Mirjalili (2016):

Cði;tÞ ¼
PN

j¼1 Xðj;tÞ
N

� Xði;tÞ ð15:3Þ

in which C(i,t) = cohesion motion for the ith dragonfly individual in the tth iteration.
The food attraction motion is calculated by Mirjalili (2016):

Fði;tÞ ¼ Xðfood;tÞ � Xði;tÞ ð15:4Þ

in which X(food,t) = position of the food source in the tth iteration; and F(i,t) = food
attraction motion for the ith dragonfly individual in the tth iteration. The food is
considered as the dragonfly individual with the best objective function observed so
far.

The predator distraction is quantified by Mirjalili (2016):

Eði;tÞ ¼ Xðenemy;tÞ þXði;tÞ ð15:5Þ

in which X(enemy,t) = position of the predator in the tth iteration; and E(i,t) = predator
distraction motion for the ith dragonfly individual in the tth iteration. The predator
is considered as the dragonfly individual with the worst objective function observed
so far.

The combination of the aforementioned motions can predict the corrective
pattern of dragonfly individuals in each iteration. The positions of dragonflies

154 B. Zolghadr-Asli et al.

individuals are updated in each iteration using the current position of the dragonfly
individual [X(i,t)] and a step vector [DX(i,t)]. In fact, the introduced step vector is
analogous to the velocity vector in the particle swamps optimization
(PSO) algorithm, and the procedure for updating the positions of dragonfly indi-
viduals in the DA is based on the framework of the PSO algorithm. The step vector,
which demonstrates the motion orientation for each dragonfly individual, is defined
as Mirjalili (2016):

DXði;tþ 1Þ ¼ ðs� Sði;tÞ þ a� Aði;tÞ þ c� Cði;tÞ þ f � Fði;tÞ þ e� Eði;tÞÞ þw� DXði;tÞ
ð15:6Þ

in which s = separation weight; a = alignment weight; c = cohesion weight;
f = food attraction weight; e = predator distraction weight; and w = inertia weight.

After calculating the step vector, the updated position vectors are calculated by:

Xði;tþ 1Þ ¼ Xði;tÞ þDXði;tÞ ð15:7Þ

By tampering the separation, alignment, cohesion, food attraction, and predator
weights (s, a, c, f, e, and w), different diversification and intensification behaviors
can be achieved by the optimization. The aforementioned weights are, in fact, the
DA’s parameters and should be modified for each set of optimization problems in
order to achieve preferable results. Additionally, neighboring of dragonfly indi-
viduals is crucial to the performance of the DA. In fact, an improper neighboring
detecting mechanism could interfere with the convergence of the DA’s results. This
is due to the fact that in each algorithm, to detect the potential location of global
optima, the searching mechanism should initially investigate the entire decision
space thoroughly. This phase, which is better known as the desperation, requires the
dragonfly individuals to spread through the search space. Yet, to locate the global
optima, these individual dragonflies are required to converge and move toward the
plausible locations of the global optima. This phase is known as the intensification.
As discussed earlier, the swarming behavior of dragonflies can be categorized into
two general motions: static swarming and dynamic swarming. Dragonflies tend to
align their flying while maintaining proper separation and cohesion in a dynamic
swarming (intensification). In a static swarm, however, alignments are very low
while cohesion is high to attract prey. Therefore, we assign dragonflies with high
alignment and low cohesion weights when exploring the search space. For tran-
scending between diversification to intensification, the radii of neighborhoods are to
increase proportionally to the number of iterations. This way, as the optimization
proceeds, more dragonfly individuals can induce the motion of one another, causing
the swarm to converge toward the possible location of the global optimum. Another
way to balance diversification and intensification is to adaptively tune the DA’s
parameters (i.e., s, a, c, f, e, and w) during the optimization.

15 Dragonfly Algorithm (DA) 155

However, in order to increase the odds of investigating the entire decision space
by any optimization algorithm, a random motion needs to be introduced to the
searching mechanism. As a result, to improve the randomness, stochastic behavior,
and exploration of the dragonfly individuals, they are required to fly around the
search space using random walk (Lévy flight) when no neighboring solutions in the
vicinity are detected. In this case, the positions of dragonflies are updated by
Mirjalili (2016):

Xði;tþ 1Þ ¼ Xði;tÞ þL�evyðdÞ � Xði;tÞ ð15:8Þ

in which d = number of decision variables; and Lévy(d) = Lévy flight function that
is given by Yang (2010):

L�evyðdÞ ¼ 0:01� r1 � r

r2j j1b
ð15:9Þ

in which r1 and r2 = two random numbers in the range of [0,1]; b = constant,
which is equal to 1.5 according to the measured values of the dragonfly individuals’
movement (Mirjalili 2016); and r is calculated by Yang (2010):

r ¼
Cð1þ bÞ � sin pb

2

� �

C 1þb
2

� �
� b� 2

b�1
2ð Þ

0
@

1
A

1
b

ð15:10Þ

in which C(x) = (x − 1)!.

15.3 Optimization Procedure of the DA

Like most SI-based optimization algorithms, the DA starts the optimization process
by creating a set of random solutions for a given optimization problem. Naturally,
the number of initial dragonfly individuals (M) can influence the performance of the
DA. The bigger populations increase the chance of finding the global optima, while
increasing the calculation time for each iteration, and in turn the entire optimization
problem. After determining the positions of dragonflies within the lower and upper
boundaries of any given variable, the position of each dragonfly individual is
updated in each iteration by calculating the step position vector for each individual
dragonfly, using the motions induced by separation, alignment, cohesion, food
attraction, and predator distraction. The position updating process is continued
iteratively until the termination criterion is satisfied. Table 15.1 lists the charac-
teristics of the DA. Additionally, the flowchart of the DA is shown in Fig. 15.2.

156 B. Zolghadr-Asli et al.

Table 15.1 Characteristics of the DA

General algorithm Dragonfly algorithm

Decision variable Dragonfly’s position in each dimension

Solution Dragonfly’s position

Old solution Old position of a dragonfly

New solution New position of a dragonfly

Best solution Any dragonfly with the best fitness

Fitness function Distance from the food source, the predator, center of the swarm,
velocity matching, and collision avoidance

Initial solution Randomly selected position of a dragonfly

Selection –

Process of generating
new solution

Flying with a specific velocity and direction

Fig. 15.2 Flowchart of the DA

15 Dragonfly Algorithm (DA) 157

15.4 Pseudo-Code of the DA

Begin

Define population size (M)

Set the iteration counter t=1

Initialize the population by generating Xi for i = 1, 2, 3…, M

Calculate the objective function values of all dragonflies

Update the food and the predator’s location

While (the stop criterion is not satisfied)

For i=1:M

Update neighborhood radii (or update w, s, a, c, f, and e)

If a dragonfly has at least one neighborhood dragonfly

Calculate

Separation motion

Alignment motion

Cohesion motion

Food attraction motion

Predator distraction motion

Update position vector

Else

Update position vector using the Lévy flight function

End if

End for i

Sort the population/dragonflies from best to worst and find the current best

End while

Post-process and visualize the results
End

158 B. Zolghadr-Asli et al.

15.5 Conclusion

This chapter described the dragonfly algorithm (DA) which is a novel, yet newly
introduced metaheuristic optimization algorithm. After a brief review of the pre-
vious applications of the DA, the standard DA and its mechanism were described.
In the final section, a pseudo-code of the standard DA was also presented.

References

Beni, G., & Wang, J. (1993). Swarm intelligence in cellular robotic systems. In: P. Dario, G.
Sandini, & P. Aebischer (Eds.), Robots and biological systems: Towards a new bionics?
Berlin, Heidelberg, New York, NY: Springer.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial
systems. New York, NY: Oxford University Press.

Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm.
Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831–4845.

Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic
approach to solve structural optimization problems. Engineering with Computers, 29(1),
17–35.

Mirjalili, S. (2016). Dragonfly algorithm: A new meta-heuristic optimization technique for solving
single-objective, discrete, and multi-objective problems. Neural Computing and Applications,
27(4), 1053–1073.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In
Proceedings of the 14th annual conference on computer graphics and interactive techniques,
New York, NY, July 27–31.

Russell, R. W., May, M. L., Soltesz, K. L., & Fitzpatrick, J. W. (1998). Massive swarm migrations
of dragonflies (Odonata) in eastern North America. The American Midland Naturalist, 140(2),
325–342.

Thorp, J. H., & Rogers, D. C. (Eds.). (2014). Thorp and Covish’s freshwater invertebrates:
Ecology and general biology (Vol. 1). Amsterdam, Netherland: Elsevier.

Wikelski, M., Moskowitz, D., Adelman, J. S., Cochran, J., Wilcove, D. S., & May, M. L. (2006).
Simple rules guide dragonfly migration. Biology Letters, 2(3), 325–329.

Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Frome, UK: Luniver Press.

15 Dragonfly Algorithm (DA) 159

	Preface
	Contents
	About the Editor
	List of Figures
	List of Tables
	1 Introduction
	Abstract
	1.1 Introduction
	1.2 Optimization: Core Principles and Technical Terms
	1.3 Brief History of CI-Based Optimization Algorithms
	1.4 Classification of CI-Based Optimization Algorithms
	1.5 No Free Lunch Theorem: The Reason Behind New Algorithms
	1.6 Conclusion
	References

	2 Cat Swarm Optimization (CSO) Algorithm
	Abstract
	2.1 Introduction
	2.2 Natural Process of the Cat Swarm Optimization Algorithm
	2.2.1 Seeking Mode (Resting)
	2.2.2 Tracing Mode (Movement)

	2.3 Termination Criteria
	2.4 Performance of the CSO Algorithm
	2.5 Pseudo Code of the CSO Algorithm
	2.6 Conclusion
	References

	3 League Championship Algorithm (LCA)
	Abstract
	3.1 Introduction
	3.2 Review of LCA and Its Terminology
	3.3 League Championship Algorithm
	3.4 Generating League Schedule
	3.5 Determining the Winner or Loser
	3.6 Setting Up a New Team Formation
	3.7 Pseudo Code of LCA
	3.8 Conclusions
	References

	4 Anarchic Society Optimization (ASO) Algorithm
	Abstract
	4.1 Introduction
	4.2 Formulation
	4.3 Algorithm Procedure
	4.4 Movement Policy Based on Current Positions
	4.5 Movement Policy Based on Positions of Other Members
	4.6 Movement Policy Based on Previous Positions
	4.7 Combination of Movement Policies
	4.8 Pseudo Code of the ASO
	4.9 Conclusion
	References

	5 Cuckoo Optimization Algorithm (COA)
	Abstract
	5.1 Introduction
	5.2 Cuckoo Life Style
	5.3 Details of COA
	5.4 Cuckoos’ Initial Residence Locations
	5.5 Cuckoos’ Egg Laying Approach
	5.6 Cuckoos Immigration
	5.7 Demising Cuckoos Laid in Inappropriate Positions
	5.8 Pseudo Code for COA
	5.9 Capabilities of COA
	5.10 Conclusion
	References

	6 Teaching-Learning-Based Optimization (TLBO) Algorithm
	Abstract
	6.1 Introduction
	6.2 Mapping a Classroom into the Teaching-Learning-Based Optimization Algorithm
	6.2.1 Teacher Phase
	6.2.2 Learner Phase

	6.3 Pseudo Code of the TLBO Algorithm
	6.4 Conclusion
	References

	7 Flower Pollination Algorithm (FPA)
	Abstract
	7.1 Introduction
	7.2 Flower Pollination Process
	7.3 Flower Pollination Algorithm
	7.4 User-Defined Parameters of the FPA
	7.5 Pseudo Code of FPA
	7.6 Conclusion
	References

	8 Krill Herd Algorithm (KHA)
	Abstract
	8.1 Introduction
	8.2 Krill Swarms’ Herding Pattern
	8.3 Motion Induced by the Krill Herd
	8.4 Foraging Motion
	8.5 Physical Diffusion
	8.6 Motion Process of the KHA
	8.7 Pseudo Code of KHA
	8.8 Conclusion
	References

	9 Grey Wolf Optimization (GWO) Algorithm
	Abstract
	9.1 Introduction
	9.2 Natural Process of the GWO Algorithm
	9.3 Mathematical Model of the GWO Algorithm
	9.3.1 Social Hierarchy
	9.3.2 Encircling the Prey
	9.3.3 Attacking the Prey
	9.3.4 Searching for the Prey (Exploration)

	9.4 Optimization Process in GWO Algorithm
	9.5 Pseudocode of GWO
	9.6 Conclusions
	References

	10 Shark Smell Optimization (SSO) Algorithm
	Abstract
	10.1 Introduction
	10.2 Underlying Idea of SSO
	10.3 Formulation of the SSO Algorithm
	10.3.1 Initialization of SSO: Finding Initial Odor Particles
	10.3.2 Shark Movement Toward the Prey

	10.4 Pseudo-Code of SSO
	10.5 Conclusion
	References

	11 Ant Lion Optimizer (ALO) Algorithm
	Abstract
	11.1 Introduction
	11.2 Mapping Antlions Hunting Mechanism into the ALO
	11.2.1 Initialization of Positions of Ants and Antlions and Evaluation of Their Fitness Functions
	11.2.2 Digging Trap
	11.2.3 Sliding Ants Toward Antlion
	11.2.4 Entrapping Ants Inside Pits
	11.2.5 Random Walk of Ants
	11.2.6 Elitism
	11.2.7 Catching Prey and Reconstruct the Trap

	11.3 Termination Criteria
	11.4 User-Defined Parameters of the ALO Algorithm
	11.5 Pseudo-Code of the ALO Algorithm
	11.6 Conclusion
	References

	12 Gradient Evolution (GE) Algorithm
	Abstract
	12.1 Introduction
	12.2 Underlying Idea of the GE Algorithm
	12.2.1 Gradient
	12.2.2 Gradient-Based Algorithm

	12.3 Mathematical Formulation of the GE Algorithm
	12.3.1 Solution Representation and Algorithm Initialization
	12.3.2 Vector Updating
	12.3.3 Vector Jumping
	12.3.4 Vector Refreshing

	12.4 Pseudo-Code of GE
	12.5 Conclusion
	References

	13 Moth-Flame Optimization (MFO) Algorithm
	Abstract
	13.1 Introduction
	13.2 Mapping the Navigation Method of Moths into Moth-Flame Optimization
	13.3 Creating the Initial Population of Moths
	13.4 Updating the Moths’ Positions
	13.5 Updating the Number of Flames
	13.6 Termination Criteria
	13.7 Performance of the MFO
	13.8 Pseudocode of the MFO
	13.9 Conclusion
	References

	14 Crow Search Algorithm (CSA)
	Abstract
	14.1 Introduction
	14.2 Crow Flock’s Food Gathering Imitation
	14.3 CSA Implementation for Optimization
	14.4 Pseudo Code of the CSA
	14.5 Conclusion
	References

	15 Dragonfly Algorithm (DA)
	Abstract
	15.1 Introduction
	15.2 Dragonflies’ Swarming Patterns
	15.3 Optimization Procedure of the DA
	15.4 Pseudo-Code of the DA
	15.5 Conclusion
	References

