
Learn Electronics
with Raspberry Pi

T E C H N O L O G Y I N A C T I O N ™

Physical Computing with Circuits, Sensors,
Outputs, and Projects
—
Stewart Watkiss

 Learn Electronics with
Raspberry Pi

Physical Computing with Circuits,
Sensors, Outputs, and Projects

 Stewart Watkiss

Learn Electronics with Raspberry Pi: Physical Computing with Circuits, Sensors, Outputs, and Projects

Stewart Watkiss
Redditch
United Kingdom

ISBN-13 (pbk): 978-1-4842-1897-6 ISBN-13 (electronic): 978-1-4842-1898-3
DOI 10.1007/978-1-4842-1898-3

Library of Congress Control Number: 2016943841

Copyright © 2016 by Stewart Watkiss

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Chaim Krause
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springeronline.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text is available to readers at
 www.apress.com/9781484218976 . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484218976
www.apress.com/source-code/

 For Amelia and Oliver

v

Contents at a Glance

About the Author ...xv

About the Technical Reviewer ...xvii

Acknowledgments ..xix

Introduction ..xxi

 ■Chapter 1: Getting Started with Electronic Circuits ... 1

 ■Chapter 2: All About Raspberry Pi ... 13

 ■Chapter 3: Starting with the Basics: Programming with Scratch 23

 ■Chapter 4: Using Python for Input and Output: GPIO Zero 55

 ■Chapter 5: More Input and Output: Infrared Sensors and LCD Displays 89

 ■Chapter 6: Adding Control in Python and Linux ... 127

 ■Chapter 7: Creating Video with a Pi Camera ... 167

 ■Chapter 8: Rolling Forward: Designing and Building a Robot 189

 ■Chapter 9: Customize Your Gameplay: Minecraft Hardware Programming 217

 ■Chapter 10: Making Your Circuits Permanent ... 235

 ■Chapter 11: Let the Innovation Begin: Designing Your Own Circuits 247

 ■Appendix A: Required Tools and Components ... 263

 ■Appendix B: Electronic Components Quick Reference 271

 ■Appendix C: Component Labeling .. 275

 ■Appendix D: GPIO Quick Reference .. 281

Index ... 285

vii

Contents

About the Author ...xv

About the Technical Reviewer ...xvii

Acknowledgments ..xix

Introduction ..xxi

 ■Chapter 1: Getting Started with Electronic Circuits ... 1

Voltage, Current, and Resistance .. 2

Ohm’s Law .. 3

Electrical Safety ... 4

Breadboard ... 5

A First Breadboard Circuit .. 8

Calculating the Resistor Value .. 10

Static-Sensitive Devices... 10

More Circuits .. 11

 ■Chapter 2: All About Raspberry Pi ... 13

Introduction to the Raspberry Pi .. 13

Raspberry Pi GPIO Ports ... 14

Serial Communications/UART ... 16

I2C: Inter-Integrated Circuit ... 16

SPI: Serial Peripheral Interface Bus .. 16

PWM: Pulse Width Modulation .. 17

Getting Started with Raspbian Linux .. 17

Connecting to the Raspberry Pi Using the Network ... 18

 ■ CONTENTS

viii

Secure Shell (ssh) ... 19

Remote Desktop Using VNC (TightVNC) .. 20

More Raspberry Pi .. 21

 ■Chapter 3: Starting with the Basics: Programming with Scratch 23

Introduction to Scratch ... 23

Scratch with GPIO Support ... 26

Controlling an LED Using Scratch GPIO Server ... 26

Light Emitting Diode (LED) .. 27

Resistor .. 27

Connecting the LED to the Raspberry Pi .. 28

Adding an Input to the Scratch GPIO Program ... 31

Using a Switch as a Digital Input .. 31

Adding the Switch to the Circuit ... 32

Robot Soccer .. 34

Playing Robot Soccer .. 42

Mars Lander Arcade Game ... 43

Making an Enclosure .. 43

Adding Joystick and Switches .. 44

Wiring the Switches .. 45

Creating the Game .. 46

Playing the Game .. 53

More Games ... 53

 ■Chapter 4: Using Python for Input and Output: GPIO Zero 55

Power Supplies .. 55

+5V from the Raspberry Pi GPIO... 56

Another USB Power Supply .. 56

Other External Power Supplies ... 57

Main Power Supply ... 59

Batteries ... 59

 ■ CONTENTS

ix

Brighter LEDs with a Transistor .. 59

Transistor .. 59

Calculating the Resistor Sizes .. 61

Introduction to Python .. 63

Getting Started with Python GPIO Zero ... 66

Using a While Loop ... 68

Circuit Diagram and Schematics .. 68

Brighter LEDs with Darlington Transistors .. 73

Reading a Switch Input with Python GPIO Zero .. 77

Disco Lights with MOSFETs .. 79

Light Sequence Using a Python List (Array) ... 84

Switching AC Lights Using a Thyristor and a TRIAC .. 85

More GPIO Zero .. 87

 ■Chapter 5: More Input and Output: Infrared Sensors and LCD Displays 89

PIR Sensor and Pi Camera .. 89

Controlling a Raspberry Pi Camera with picamera ... 89

Using a PIR Sensor as a Motion Sensor .. 92

Using the PIR Motion Sensor to Trigger the Camera ... 95

Infrared Transmitter and Receiver .. 96

Infrared Receiver .. 96

Infrared Transmitter .. 97

Infrared Transmitter and Receiver Circuit ... 98

Confi guring the Infrared Transmitter and Receiver Using LIRC... 99

Receiving Infrared Commands Using python-lirc ... 103

Sending an Infrared Code Using Python ... 105

More Infrared Devices .. 105

Changing Voltage with a Level Shifter .. 106

Voltage Divider Circuit to Reduce Input Voltage ... 106

Unidirectional Level-Shift Buffer .. 107

Bidirectional Level-Shifter .. 108

 ■ CONTENTS

x

I2C LCD Display: True or False Game ... 110

LCD Character Display .. 110

I2C ... 110

I2C Backpack for the LCD Character Display ... 111

True or False Game Circuit ... 112

Setting Up the I2C Connection and Adding the Code ... 114

SPI Analog to Digital Input .. 120

Creating an Analog Value Using a Potentiometer ... 120

Analog-to-Digital Conversion .. 121

SPI (Serial Peripheral Interface Bus) .. 121

Potentiometer SPI Circuit.. 123

Accessing the ADC Using Python .. 124

More Input and Output ... 126

 ■Chapter 6: Adding Control in Python and Linux ... 127

Taking the Next Steps in Python Programming .. 127

Creating Python Functions ... 130

Adding Disco Light Sequences Using Python Functions ... 130

Using a Python Main Function .. 133

Making Python Programs Executable ... 133

Handling Command-Line Arguments .. 134

Running Python Programs as a Service ... 136

Running Programs at Regular Intervals with Cron ... 137

Creating an Automated Lego Train Using Infrared .. 138

Dealing with Confl icts ... 142

Software to Control the Lego Train Using LIRC and GPIO Zero.. 143

Using the Internet of Things to Control the Model Train ... 144

Controlling Color Light Strips Using NeoPixels ... 151

Powering RGB LEDs .. 153

How the RGB LEDs Work ... 153

Installing the Python Module .. 153

 ■ CONTENTS

xi

Controlling RGB LEDs from Python ... 154

Creating a Graphical Application Using Pygame Zero ... 155

Adding an Icon to the Raspbian Desktop .. 163

More Linux and Programming .. 165

 ■Chapter 7: Creating Video with a Pi Camera ... 167

Infrared Shutter Release .. 167

Designing the Film ... 172

Filming the Scenes ... 174

Editing the Video .. 175

Creating the Video on a Raspberry Pi ... 175

Editing the Video on a PC Using OpenShot ... 176

Adding Effects to the Video .. 178

Adding Special Effects Using GIMP .. 179

Making Changes to Video Frames .. 180

Using Green Screen Special Effects ... 181

Adding Sounds to the Video ... 185

Recording Sounds with Audacity .. 186

Making Your Own Background Music with Sonic Pi ... 187

Adding Sounds to OpenShot ... 187

More Video Editing ... 188

 ■Chapter 8: Rolling Forward: Designing and Building a Robot 189

Selecting or Making a Robot Chassis ... 189

Two Motorized Wheels and Omnidirectional Wheel .. 190

Four Motorized Wheels ... 190

Caterpillar Tracks .. 190

Wheels that Steer ... 190

Buying a Kit or Making Your Own ... 190

Choosing a Raspberry Pi... 191

 ■ CONTENTS

xii

Controlling the Motors .. 192

DC Motors and Stepper Motors .. 192

H-Bridge Motor Control ... 194

Controlling the Speed with Pulse Width Modulation (PWM) ... 198

Powering the Motors and the Raspberry Pi .. 199

Building the Circuit on a Breadboard .. 200

Add-On Motor Controller Boards .. 201

Controlling the Robot Using Python .. 202

Measuring the Distance Using an Ultrasonic Range Sensor .. 206

Controlling the Robot Using a Wii Remote .. 210

More Robotics .. 216

 ■Chapter 9: Customize Your Gameplay: Minecraft Hardware Programming 217

Connecting to Minecraft with Python ... 217

Moving Around Using a Joystick .. 220

Building a House in Minecraft .. 223

Adding Status LEDs .. 227

Find the Glowstone Game .. 232

More Minecraft Hardware Programming .. 234

 ■Chapter 10: Making Your Circuits Permanent ... 235

Soldering Basics ... 235

Gathering the Essential Tools ... 235

Choosing Solder .. 237

Safety Tips When Soldering .. 238

Soldering to a Printed Circuit Board ... 239

Soldering Direct to Leads ... 240

Stripboard ... 241

Perfboard .. 241

Raspberry Pi Prototyping Boards .. 241

Cases and Enclosures .. 243

Testing Tools ... 243

 ■ CONTENTS

xiii

Multimeter .. 244

Oscilloscope ... 245

More Project Making .. 246

 ■Chapter 11: Let the Innovation Begin: Designing Your Own Circuits 247

The Design Process in a Nutshell ... 247

Looking at Manufacturer Datasheets ... 248

Designing with Fritzing .. 251

Designing a Circuit Diagram/Schematic ... 251

Design Conventions .. 254

Creating a Breadboard Layout .. 255

Creating a Stripboard Layout .. 256

Designing a Printed Circuit Board ... 256

Powering the Raspberry Pi ... 260

78xx Linear Voltage Regulator .. 260

Buck Converter ... 260

Designing More Circuits ... 261

 ■Appendix A: Required Tools and Components ... 263

Tools Required .. 263

Basic Breadboard Circuits .. 263

Crimping and Soldering Tools ... 263

Manufacturing Tools for Enclosures ... 264

Meters and Test Equipment .. 264

Components for Each Project ... 264

 ■Appendix B: Electronic Components Quick Reference 271

Resistors .. 271

Variable Resistors ... 271

Switches ... 271

Diode .. 272

Light Emitting Diode (LED) .. 272

 ■ CONTENTS

xiv

Multi-Colored LEDs ... 272

Bipolar Transistor ... 272

Darlington Transistor .. 273

MOSFET Transistor ... 273

Capacitor .. 273

Thyristor ... 273

Triac .. 273

 ■Appendix C: Component Labeling .. 275

Resistor Color Codes .. 275

SMD Resistors .. 277

Electrolytic Capacitors.. 277

Polyester Capacitors .. 278

Ceramic Capacitors .. 279

 ■Appendix D: GPIO Quick Reference .. 281

GPIO Pin Layouts .. 281

GPIO Ports with Alternative Functions .. 282

Index ... 285

xv

 About the Author

 Stewart Watkiss has been a keen electronics hobbyist since the early
1990s. He first studied electronic engineering at Huddersfield Technical
College and subsequently at the University of Hull, where he earned a
master’s degree in electronic engineering.

 He then became more involved in the software side, studying the
Linux operating system and programming. During this time he launched
a web site (www.penguintutor.com) to teach Linux and to help those
working toward Linux certification.

 His interest in electronics was revitalized thanks in part to the
Raspberry Pi. Stewart created a number of projects, some of which have
been featured on the Raspberry Pi blog and The MagPi magazine. Stewart
also volunteers as a STEM Ambassador, going into local schools to help
support teachers and teach programming and physical computing to
teachers and children.

http://www.penguintutor.com/

xvii

 About the Technical Reviewer

 Chaim Krause presently lives in Leavenworth, Kansas, where the U.S.
Army employs him as a simulation specialist. In his spare time, he likes to
play PC games and occasionally develops his own. He has recently taken
up the sport of golf to spend more time with his significant other, Ivana.
Although he holds a bachelor’s in political science from the University
of Chicago, Chaim is an autodidact when it comes to computers,
programming, and electronics. He wrote his first computer game in BASIC
on a Tandy Model I Level I and stored the program on a cassette tape.
Amateur radio introduced him to electronics, while the Arduino and the
Raspberry Pi provided a medium to combine computing, programming,
and electronics into one hobby.

xix

 Acknowledgments

 My family has been very supportive during the writing of this book. Thank you to my wife Sarah for her
support and especially to my children, Amelia and Oliver, who have been both a source of inspiration and
enthusiastic testers of the games and activities.

 I’d also like to thank the team behind the Raspberry Pi, including the Raspberry Pi foundation and the
community that has grown around it. The Raspberry Pi has reinvigorated my love of electronics, making it
possible to interact with hobby electronics projects in a way that I’d only dreamed about before. Raspberry
Jams and community events have been a great way to meet the team behind the Raspberry Pi as well as
other members of the community. All this has encouraged me to pursue it further.

 There have been many other people have helped in the making of this book. Special thanks to the
technical reviewer, Chaim Krause, who has tested all the projects. Michelle Lowman encouraged me to write
this book and Mark Powers ensured that the book moved forward. I’d also like to thank Corbin Collins for his
comments and suggestions and to the rest of the team at Apress.

xxi

 Introduction

 Learning computer programming is fun in itself, but when the computer is connected to external sensors
and outputs, your programs can interact with the real world. This is known as physical computing and it
opens up the opportunity to create some fun projects.

 I am a big fan of learning by doing. It’s much easier to learn when you get to make the projects rather
than just read about what other people have been done. It’s even better when those projects are fun. This
book covers simple projects that you can do at home to make games, control toys, create your own films,
or just have fun.

 The Raspberry Pi computer is great for learning physical computing, thanks to special pins that provide
access to ports on the processor. These 40 pins (26 on earlier versions) provide a simple way to extend
computing into the physical world. The circuits in this book are adding sensors, outputs, and electronic
circuits to a Raspberry Pi. With a little bit of programming, these can do some pretty amazing things.

 We will start with some simple circuits, which can be controlled from Scratch, and then move up to
Python and some more complicated circuits. By then end of the book, we will have covered enough so that
you can start designing your own circuits.

 Most of the circuits can be created by plugging wires into a solderless breadboard, but there are tips on
how to solder, which opens the possibilities further. You’ll learn how to design custom circuit boards and
look at how you can use some of the common Raspberry Pi add-on boards and HATs.

 Who Is This Book For?
 This book is for anyone who wants to learn about electronics and have fun in the process. This book focuses
on fun projects so is great for older children and young adults. My eight-year-old son helped with some
of the easier projects so young children could have a go with adult help. While the fun aspect appeals to
younger adults, there’s no maximum age for having fun, so this is just as useful to adults of any age who want
to learn about electronic circuits and connecting to the Raspberry Pi.

 You don’t need to know anything about electronic circuits before you start. Having a basic knowledge
about computers and computer programming will be useful, but is not required and will be explained
as we go. We’ll be using Scratch and Python, as they are good programming languages for those learning
programming, but the electronic circuits can be controlled using any programming language that can
communicate with the GPIO ports.

 How to Use This Book
 As with many books, you can read this book from cover to cover, or you can jump straight to the project that
you find most interesting. The book introduces new concepts and components in each chapter. The first few
chapters start with simple circuits and work through to more complicated circuits. There is an explanation
of each circuit as you go, so for the first few chapters you will find it most useful to follow in order, making
the circuits as you go. Most of the circuits in these first few chapters are based on low-cost components that
should be within the reach of most readers.

 ■ INTRODUCTION

xxii

 Most of the projects are within a single chapter, but a few need some of the concepts explained in later
chapters and so are split between the chapters. The notes explain which chapter you will need to refer to for
the rest of the project.

 Some of the later projects do use more expensive components or add-on boards for the Raspberry Pi or
are designed to interact with more expensive toys. Where possible, boards have been chosen to keep costs
as low as possible. You may want to just read about how the circuit works or look for the suggestions on how
these can be adapted for use with cheaper components or items you already own.

 Creating the examples in this book should not be considered the end. I hope that the information in
this book will provide you with the inspiration and knowledge to go on to learn more about electronics and
design your own circuits.

 After working through the projects, it’s useful to have a summary of the components so that you can
refer to the book when designing your own circuits. To make it easier to refer back, I’ve added a summary
of some of the components in the appendix along with some extra technical details that are useful when
designing your own circuits.

 Is Soldering Required?
 When I’ve talked to teachers and students about electronic projects, I often get asked the question of
whether soldering is required. Unfortunately, I think that this is something that puts some people off from
learning electronics. I don’t think it should.

 First, a lot can be learned through creating circuits that don’t need any soldering. Many of the projects
in the first few chapters, and in some of the subsequent chapters, are designed to be made without any
soldering. These are typically using solderless breadboards, but some can also be made using crocodile clips
or with an inexpensive crimp tool. There are, however, some components that are not suitable for use on
a breadboard, or that need a small amount of soldering so that they can be used with a breadboard. In fact
many “breadboard friendly” components may need headers to be soldered on to them first.

 The second point I’d like to make is that soldering is not as hard, expensive, or dangerous as some
people have been led to believe. Chapter 10 explains soldering and will hopefully dispel some of the myths
surrounding it. If you are still uncertain, see if you have a local maker club or Hackspace where you can
speak to someone experienced in soldering.

 Buying a Raspberry Pi
 If you are reading this book then there is a good chance that you already have a Raspberry Pi. Since the
Raspberry Pi was first released in 2012 there have been several versions. Some have had only minor
changes, but one of the bigger changes was increasing the size of the GPIO connectors from 26 to 40. This
was introduced in the Raspberry Pi B+ and the larger connector has been used on all new models since,
including the Pi Zero and Raspberry Pi 2 and 3 models. While most of the projects in this book use only
the first 26 pins, some of them do need the additional pins. If you don’t have a Raspberry Pi or only have
an original version with 26 pins on the connector, I recommend buying a Raspberry Pi 2, which includes a
quad-core processor, or a Raspberry Pi 3 with the 64-bit processor and built-in Wi-Fi and Bluetooth. You
don’t need the extra processor power for the projects in this book, but it does make it possible to use the
computer for other things. After all, nobody ever says, “This computer is too fast!”

 The official Raspberry Pi suppliers are listed on the Raspberry Pi web site, but they are also widely
stocked by various electronics and hobbyist suppliers, so you shouldn’t have a problem finding a supplier.

http://dx.doi.org/10.1007/978-1-4842-1898-3_10

 ■ INTRODUCTION

xxiii

 Buying the Components
 In order to follow the instructions, you will need some electronic components. There is no single kit that will
provide all the items required; it will depend on which circuits you decide to make as well as the suggested
variations. Details of the main components required for each project are listed in Appendix A. One thing
that is worth stocking up on is a variety of different resistors. You may want to buy either an E6 or E12 series
resistor multi-pack (see Appendix C for an explanation of the resistor series).

 Most of the components are fairly common and can be bought from any good electronics retailer. There
are several retailers that are specifically geared toward makers. In the United States, there are companies
such as Adafruit and Sparkfun, and in the UK, two popular suppliers are Maplin and CPC Farnell. You may
also want to look at Raspberry Pi retailers, many of whom have an increasing range of electronic sensors
and other components. In particular, Pimoroni has created several add-on boards and HATs specifically for
the Raspberry Pi. There are also international electronic retailers such as RS and Farnell or many smaller
independent suppliers located around the world.

 One thing about electronic components in particular is that a device with an almost identical name
may work differently. It may be possible to substitute a similar product, but when a specific component is
required, I’ve tried to list the specific part number to help find the correct one. Watch out for codes that are
almost the same but have different electrical properties.

 Installing Raspbian
 The official operating system for the Raspberry Pi is Raspbian. It is based on Debian Linux, but has
been customized for the Raspberry Pi and comes with some additional software. The operating system
needs to be loaded onto an SD card before it can run. The easiest way to install Raspbian is through the
NOOBs installer. More details on installing NOOBs are available on the Raspberry Pi web site at
https://www.raspberrypi.org/help/noobs-setup/ .

 The Raspbian image has been updated on a regular basis since the Raspberry Pi was launched. If you’ve
had your Raspberry Pi for some time and haven’t updated it for a while, now is a good time. For many of the
projects in this book, you need a version that was released from at least November 2015. If you downloaded
the image after November 2015, that is sufficient, but if you installed prior to that or used a pre-installed
image that may not have been updated to that version then you will need to perform an update.

 In the event of minor updates to the operating system, it is normally sufficient to run a dist-upgrade to
update to the latest version of the installed software. To do this, launch the terminal under the Accessories
category of the Start menu. Once you are in the terminal shell, enter the following commands:

 sudo apt-get update
 sudo apt-get dist-upgrade

 If the version is much older, or it has been a long time since your last update, then it is recommended
that you download a new version of NOOBs from the Raspberry Pi web site. The new image can then be
installed onto the SD card (this will involve formatting the SD card, so wipe off any data that is stored on it).

 If you are unsure of your version, you can run the following command from the terminal:

 uname -a

 This provides a date that indicates the date of the kernel. If no date is shown, assume it is an old version
and needs to be upgraded. To upgrade from an old version, you will first need to wipe the SD card using the
SD formatter tool https://www.sdcard.org/downloads/formatter_4/ and then copy the latest NOOBs files
to the SD card.

https://www.raspberrypi.org/help/noobs-setup/
https://www.raspberrypi.org/help/noobs-setup/
https://www.sdcard.org/downloads/formatter_4/

 ■ INTRODUCTION

xxiv

 Software Required
 All the software required in this book is available for free and mostly available as open source software. This
does include some libraries that have been created by others, and in those cases, links have been provided to
the original location.

 The source code used in the book can be typed in manually or downloaded from the Internet. For most
short examples, I believe you can learn more through typing and experimentation, although downloads can
be useful when trying to get a circuit working or when the amount of typing is enough to make your fingers
ache. You can download the source code and media files as a ZIP file at:

 https://github.com/penguintutor/learnelectronics/archive/master.zip

 Unzip the master.zip file using the following commands:

 unzip master.zip
 mv learnelectronics-master learnelectronics

 The first command unzips the file and the second command renames the directory to
 learnelectronics . The files are then contained in the relevant subdirectories.

 You are free to use the software source code and circuit designs that I have provided in your own
projects, but some of the accompanying files or suggested downloads may come under a different license.
In particular, some of the files are provided under a Creative Commons license. Any additional copyright
information is provided in the LICENSE file in the appropriate directory.

 Safety Information
 All the circuits in this book are designed to run at a low voltage and, as long as an appropriate power supply
is used, they are safe to touch. To make these projects permanent may involve the use of power tools where
the safety information related to the power tools needs to be followed.

 Some of the projects use bright LED lights. Some people may be sensitive to high-frequency flashing
lights, which in some circumstances may cause seizures. This is more likely if the flash rate is increased
beyond that used in the supplied code. Please take this into consideration when modifying the source code,
especially if you’re using the lights in a public space. You should also avoid looking directly into any bright
light, including the LED lights.

 More Electronics
 The projects in this book should be considered a starting point toward achieving more using electronics and
the Raspberry Pi. At the end of each chapter there is a section that provides a summary of the key points in
the chapter and suggestions on how the projects could be improved or ideas for related projects. These have
been left as an exercise for the reader. I hope that this will result in future projects inspired from this book
and I look forward to seeing some on the Internet in the future.

https://github.com/penguintutor/learnelectronics/archive/master.zip

1© Stewart Watkiss 2016
S. Watkiss, Learn Electronics with Raspberry Pi, DOI 10.1007/978-1-4842-1898-3_1

 CHAPTER 1

 Getting Started with Electronic
Circuits

 Most of this book involves connecting circuits to a Raspberry Pi, but before you actually plug anything into
the Raspberry Pi, you will need a basic understanding of electronic circuits. This is going to be a gentle
introduction, so if you already know how to build your own simple circuits and would like to jump straight in
to connecting into the Raspberry Pi, feel free to jump to Chapter 2 .

 An electronic circuit combines individual electronic components to perform a specific function. This
could be as simple as a light circuit in a torch/flashlight that turns on when the on switch is pressed or
incredibly complex such as the circuitry inside a laptop computer. Electronic circuits are all built around the
same principles.

 The most basic principle is the concept that an electronic circuit must make a complete physical circuit.
So for a circuit that includes a battery, there must be a complete path starting from the positive (+) side of the
battery, through any components (such as a switch and buzzer), and then back to the negative (-) side of the
battery. This is shown in the circuit in Figure 1-1 .

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-1898-3_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1898-3_2
http://dx.doi.org/10.1007/978-1-4842-1848-8_1

CHAPTER 1 ■ GETTING STARTED WITH ELECTRONIC CIRCUITS

2

 This is a simple circuit connected using crocodile clip leads. The circuit has a buzzer and a switch,
which can turn the buzzer on and off. When the switch is closed (turned on), the circuit is complete,
allowing current to flow around the circuit, and the buzzer will sound. When the switch is open (off), there is
a gap between the connections inside the switch preventing the current flow and causing the buzzer to stop.

 Obviously this is a very basic circuit, but it’s also the basis of almost all the circuits you’ll make. You will
replace the mechanical switch with an electronic component and use different sensors to turn the switch on
and off. You will also use different outputs, including LEDs and motors.

 Voltage, Current, and Resistance
 I’m going to keep the theory as simple as possible, but voltage, current, and resistance are some terms that I use
throughout the book. Understanding how the circuit works and the math involved is going to be important by
the time you get to the stage where you are designing your own circuits. I have avoided putting too much math
into the projects, but there are some worked examples that you may find useful in future.

 The voltage is the difference in energy between two terminals or points in a circuit. It is measured in
volts indicated by a letter V. For example, you could have a 9V PP3 battery such as the one used in the buzzer
circuit in Figure 1-1 . The battery has a difference of 9 volts between its positive and negative terminals. We
would consider the negative terminal to be at 0 volts and the positive terminal at 9 volts. The 0V connection
is considered the ground terminal with voltages relative to that point. Although the battery is designed for 9V,
the actual voltage may vary depending on how much charge is in the battery and what load is connected to it.

 The current is the flow of electric charge around a circuit. Current is measured in amperes . This is
normally abbreviated to amps and its value is indicated by a letter A. The current is related to the voltage: the
higher the voltage of the power supply, the more current is able to flow through the circuit, although it also
depends on what other components are in the circuit. Using conventional electric current, you say that the
current flows from the positive to the negative terminal. In the electronic circuits you’ll create, most currents
will be small and so will normally be measured in milliamps (mA), where 1mA = 0.001A.

 Figure 1-1. Switch and buzzer circuit

CHAPTER 1 ■ GETTING STARTED WITH ELECTRONIC CIRCUITS

3

 The electrical resistance is a measure of how difficult it is for the current to flow around a circuit. It is
measured in ohms . The value ohms is represented by the Greek omega character (Ω). There is resistance
in all components of a circuit, but you can normally disregard the small amount of resistance in a good
conductor such as a wire. The resistors you will be using normally range from around two hundred ohms to
several thousand ohms (kΩ).

 Ohm’s Law
 When creating advanced circuits, some of the math can get quite complicated; fortunately, you don’t need
to do many calculations for most of the circuits in this book. However, there are still some basic calculations
that you will need to do to. In particular for some of the circuits, you will need to work out a suitable resistor
size to ensure that the current cannot damage any components, but is sufficient to allow the circuit to work.

 To do this, you use a single formula that’s almost certainly the most important formula used in
electronics. It’s also one of the simplest. This relationship was discovered by German scientist Georg Ohm
and is known as Ohm’s Law. The basic formula is this:

 I = V/R

 As you may expect, V represents voltage and R represents resistance (measured in ohms), but I is not so
obvious. I is used to indicate current, based on the French phrase, “intensité de courant”. 1

 So this formula says that to find the current through a circuit, divide the voltage by the resistance. This
can be rearranged to find the voltage using this formula:

 V = I x R

 To calculate the required resistor size, use:

 R = V/I

 An easy way to remember this is using the Ohm’s Law triangle, shown in Figure 1-2 .

 Figure 1-2. Ohm’s Law triangle

 1 Much of the early research into electric current and magnetism was pioneered by the French scientist André-Marie
Ampère. His surname is also used for the measure of current known as an ampere, which is usually abbreviated to amps.

CHAPTER 1 ■ GETTING STARTED WITH ELECTRONIC CIRCUITS

4

 To use the triangle, hide the value you want to calculate and read the remaining entries. So to find the
voltage, you hide the letter V, leaving I and R. So multiply the current and resistance to find the voltage.
To find the required resistor size, hide the letter R which leaves V above I. So you divide the voltage by the
current to get the required resistor size.

 Electrical Safety
 Electricity can be dangerous. All the projects in this book are designed to work at low voltages up to 12V and,
as long as an appropriate safe power supply (such as a wall wart or plug-in power supply) is used, there is
little risk of electric shock. The same does not apply to the high voltage present in the main electricity supply.

 In fact it’s not the voltage that’s dangerous but the amount of current that can flow through the body.
Electric fences used for farm animals give a shock of several thousand volts, but although they give a nasty
shock, they are considered safe for use near people as they are limited to short bursts of very low current
(although should still be avoided particularly by children or those with heart conditions). The main electricity to
your house is between about 100V and 250V (depending on which country you live in) and is very dangerous—it
can supply enough current to be fatal. As a general rule to avoid any risk of electric shock, I recommend only
working with circuits designed for 24V or less, unless you are 100% sure you know what you are doing.

 It’s not only electric shock that poses a risk. Even at much lower voltages, too much current can create
a lot of heat and potentially start a fire. This is particularly important when using low voltage (12V) electrical
lighting or car batteries, which can provide very high currents in the event of a short-circuit. I recommend
only using power supplies with short-circuit and over-current protection and consider adding a fuse
(this is explained later during the disco lights project).

 ■ Caution Do not try to connect any of these circuits to the main electricity in your home, except using the
appropriate power supply adapter.

 ANALOG VS. DIGITAL

 The world we live in is varied. If we take sound as an example, we may use various words to describe
the amount of sound something is making, from saying that someone is very quiet, or that the MP3
player is very loud, or even that a pneumatic drill is deafening. We don't normally know or care about
the actual values of the sound (measured in decibels), but we do know if we want it to be louder or
quieter. A computer however does not understand these terms. It only deals in actual values. In fact, at
a most basic level, it only thinks of things being on and off, but it can compare against different levels to
interpret this as a more accurate value.

 An analog circuit can interpret any number of variations of the input. Perhaps one of the few remaining
purely analog circuits you will find at home today is a simple amplifier built into a set of speakers. Here,
as you turn the volume control clockwise, the volume smoothly increases compared to the input signal.
Compare this to a modern TV, where you press the volume button on the remote control and the volume
moves up a fixed amount, say between 1 and 40.

 Most electronic circuits are now digital and in fact most include some kind of micro-processor, either
a full computer such as a Raspberry Pi or a more basic micro-controller such as the ATMega micro-
controllers used in the Arduino. The real world continues to be analog, so there is often an analog sensor
or output and an element of conversion between analog and digital and vice versa.

CHAPTER 1 ■ GETTING STARTED WITH ELECTRONIC CIRCUITS

5

 Breadboard
 Many of the circuits in this book are built on a solderless breadboard, sometimes called a plugboard . A
breadboard is a good way of creating temporary circuits to allow testing prior to committing with solder.
They consist of a plastic board with a matrix of holes. The holes are then connected in small rows so that
components plugged into the same section are connected.

 Breadboards are very easy to use and don’t damage the components, so it’s easy to change the circuit
and experiment with different components. If you don’t want the circuit any more, then the components can
be removed and both the breadboard and the components can be used again for another circuit. Integrated
circuits (ICs) can be also be inserted and wired to other components. To connect wires to a breadboard,
you should use solid core wire or special jumper wires that have a solid end that can be plugged into the
breadboard. The alternative type of wire is known as multi-stranded wire and it’s more flexible and so more
popular with soldered circuits, but it doesn’t plug into the breadboard properly.

 Breadboards are available in a variety of sizes, from small ones with 170 holes to large boards with
multiple breadboards mounted onto a single panel. You can also connect multiple boards together, which
slot together. Unfortunately, there is no standard for how the boards slot together, so this may work only if
you’re using the same manufacturer. A selection of different breadboards is shown in Figure 1-3 .

 Figure 1-3. A selection of different breadboards

 Each size of breadboard has a set of circumstances in which it works best. The smallest can be included
in a small box, whereas the large one is great for larger circuits and includes connectors that are useful for
plugging banana plugs from an external power supply.

 For most of the circuits in this book, the half-size breadboard is an ideal size. It’s about the same size as
the Raspberry Pi and is a good compromise between the space taken up and the amount of space needed for
connecting circuits. An example of the half-size breadboard layout is shown in Figure 1-4 .

CHAPTER 1 ■ GETTING STARTED WITH ELECTRONIC CIRCUITS

6

 The main central area consists of columns numbered 1 to 30 and rows from a to l. Each of the
columns is connected with a break down the center. So for column 1 positions a to f are connected and
then positions g to l. There are then two rows at the top and bottom of the breadboard, which depending
on the manufacturer, may be included or as an optional extra. These rows are normally used for the main
power rails, with the blue row used as ground as the red row used for the positive rail. Also note that on this
example the red line covers 12 holes with there being a break in the line between the next 12. This indicates
that there is also a break in the track at that point, so if you’re using a single supply voltage, you may want
to use a short wire to connect these together. This very much depends on the manufacturer, so you should
check the ones that you have. It’s frustrating trying to understand why your circuit isn’t working and then
finding out it’s because that particular breadboard has a gap in the power rail. On the circuits in this book,
I have assumed that there is no break in the power rails.

 You may also notice that some breadboards have a slightly different number of pins (many have only
10 rows between a and j) and are numbered in a different direction. The actual positioning doesn’t matter as
long as the same pins are connected.

 A useful addition is a mounting plate that allows a Raspberry Pi and a half-size breadboard next to each
other. An example is shown in Figure 1-5 . The mounting plate make it easier to wire the Raspberry Pi and
breadboard together, as it means the wires are less likely to fall out. You could even make your own using an
appropriately sized piece of plastic or thin wood.

 Figure 1-4. A half-size breadboard

CHAPTER 1 ■ GETTING STARTED WITH ELECTRONIC CIRCUITS

7

 You also need a way to connect the Raspberry Pi and the breadboard. The Raspberry Pi has a male
connector for the GPIO connector (explained in the next chapter), so a female connector is required. These
are available as individual jumper wires, which go from male to female. A selection is shown in Figure 1-6 .

 Figure 1-5. Raspberry Pi and a breadboard mounted together

CHAPTER 1 ■ GETTING STARTED WITH ELECTRONIC CIRCUITS

8

 An alternative is to use a cobbler, which allows a multi-way cable to connect to a breakout board that
connects to the breadboard. This makes it easy to disconnect the Raspberry Pi if you need to use it for other
purposes. The cobbler also provides a label against each pin, thus making it easier to know which port to
connect to. It does however take up some of the space on the breadboard, especially if you’re using a 40pin
cobbler matching the larger GPIO connector on the newer versions of the Raspberry Pi. A typical cobbler
and cable are shown in Figure 1-7 .

 Figure 1-6. Jumper wires—male-to-male and male-to-female

 Figure 1-7. Raspberry Pi cobbler (40pin)

 One disadvantage of using a breadboard is that wires or parts can be accidentally pulled out, so they
are rarely used for a permanent circuit. Later, you will look at making more permanent circuits that can last
much longer.

 A First Breadboard Circuit
 Your first circuit is a standalone circuit to get used to a complete circuit and for a first practice at using a
breadboard. The breadboard layout is shown in Figure 1-8 .

CHAPTER 1 ■ GETTING STARTED WITH ELECTRONIC CIRCUITS

9

 Starting from the left in Figure 1-8 is a 9V PP3 battery. These can be connected using a push-on battery
connector with leads. These normally have stranded wire, which as I said earlier, doesn’t work so well with a
breadboard. Some have the ends of the wire coated, which should connect to the breadboard. If you are not
able to connect it to the breadboard directly, you can use wires with crocodile clips instead.

 The next component is a miniature pushbutton switch. This should be a single-pole, single-throw type
(often known by its initials, SPST). This means that there is a single switch inside and that switch can change
between two states (in this case, on and off). This is a push-to-make switch, which means that when the
button is pressed, the switch contacts are connected.

 Only two connections are needed for an SPST switch , but this particular switch has four. Each pair is
interconnected on the left and right of the switch, respectively. This is shown in Figure 1-9 .

 Figure 1-8. Simple LED circuit

 Figure 1-9. SPST push-to-make switch

 As you can see in Figure 1-9 , pins 1 and 2 are connected, as are pins 3 and 4. Each side is connected
when the button is pressed. In this circuit, we are connecting the positive supply to pin 1 and then taking the
output from pin 3.

 The next component is a resistor. This example uses a 470Ω, which is indicated by the different colored
strips around the body (yellow, violet, brown, and then gold). The resistor is used to reduce the amount of
current that can flow through the LED , which would otherwise almost certainly damage the LED.

 The final component is a light-emitting diode (LED) . This must be connected a specific way around.
The anode connects toward the positive end of the supply (connecting to the resistor) and the cathode to the
ground connection and on to the negative end of the battery.

CHAPTER 1 ■ GETTING STARTED WITH ELECTRONIC CIRCUITS

10

 You can tell which end is the anode (the positive terminal), as it normally has a longer lead. Failing that,
there is normally a flat area on the plastic casing that indicates the cathode (the negative terminal). If all else
fails, then this is a simple circuit where it would be safe to temporarily connect it either way around and if it
doesn’t work then try the other way around. This is one of the advantages to using the breadboard.

 Once you have connected the components and the wires, pressing the button should cause the LED to
light and releasing the button will turn it off again.

 Calculating the Resistor Value
 Earlier I said that the resistor value was 470Ω, but I did not explain how that value is determined.

 To calculate the resistor value , you first need to know the current you want through the LED, which is
usually available from the supplier or from a data sheet. In this case, you are looking at a current of around
15mA to light the LED. You also need to know the voltage dropped across the LED, which is typically around
2V for a red LED.

 Once you know these, you know that there will be 7V across the resistor (9V from the battery minus 2V
across the LED) and that you want to limit the current to around 15mA.

 Using Ohm’s Law, the resistance = V ÷ I, which works out to 7 ÷ 0.015 = 467Ω.
 The nearest value of resistor is 470Ω.

 Static-Sensitive Devices
 You may already know that you can create static electricity by rubbing a balloon through your hair, or
using a comb to pick up bits of paper. You can also create static electricity by walking on a carpeted floor.
Although harmless to us, that same static electricity can cause permanent damage to some electronic
components. Static-sensitive components are often supplied in special bags like the one shown in
Figure 1-10 , but not always.

 Figure 1-10. Warning symbol for a static-sensitive component

CHAPTER 1 ■ GETTING STARTED WITH ELECTRONIC CIRCUITS

11

 It is worth getting an anti-static wrist strap and connecting it to a suitable ground or earthing
connection. A wrist strap and ground plug are shown in Figure 1-11 . If you don’t have a wrist strap, you can
discharge static electricity by touching a metal object that is connected to an electrical ground connection.
This could be an earthed radiator or the outside case of the main electrical equipment. Obviously, you
should only touch the outside of the electrical equipment and never open up main electrical equipment in
search of a ground connection.

 Figure 1-11. Anti-static wrist strap

 More Circuits
 This chapter looked at what makes a circuit and the importance of connecting a complete circuit, which
goes from the positive end of the power supply all the way back to the negative side.

 You briefly looked at Ohm’s Law, which will come in useful later. You then built your first standalone
circuit using a breadboard and a few basic components.

 To experiment further, you could try increasing the size of the resistor and watch the effect it has on the
brightness of the LED or try swapping the LED and resistor with a buzzer (use the same voltage buzzer as the
battery) for a noisy circuit instead.

 In the next chapter, you will explore the Raspberry Pi and in particular the GPIO ports that allow you to
add electronic circuits to the Raspberry Pi.

13© Stewart Watkiss 2016
S. Watkiss, Learn Electronics with Raspberry Pi, DOI 10.1007/978-1-4842-1898-3_2

 CHAPTER 2

 All About Raspberry Pi

 It’s time to pull out the Raspberry Pi and get started. This chapter looks at the Raspberry Pi from both the
hardware and software points of view. This chapter concentrates on the GPIO ports and the programming
tools that will be useful for later chapters. It goes beyond the essentials, as a wider understanding of Linux
will help with future projects involving the Raspberry Pi.

 Introduction to the Raspberry Pi
 The Raspberry Pi is a low-cost computer designed as a way to learn programming. It also makes a great
platform for hobbyists looking for a computer to use with electronic projects. Although the price is obviously
appealing, arguably more important are the two rows of pins that can be used to connect electronics to
the Raspberry Pi. These pins are collectively known as the GPIO pins and provide a way to interface the
computer to homemade electronic circuits that wasn’t available before. As a result, there are just as many
adult makers who want a computer that can be used to create hardware projects.

 There are now several versions of the Raspberry Pi. The original model A and B versions included 26
GPIO pins (17 of which can be used for inputs and outputs), but the newer models (including the Pi Zero,
A+, B+, and the Raspberry Pi 2 and 3) increase the number of pins to 40 (28 of which can be used for inputs
and outputs). The extra pins allow for more complex circuits and additional add-on boards known as HATs
(Hardware Attached on Top). There is one more version, called the Raspberry Pi compute module . This is
designed to be incorporated directly into commercial circuits and is beyond the scope of this book.

 The photo in Figure 2-1 shows three models of the Raspberry Pi—The Pi Zero, a model A+, and a
Raspberry Pi 2. The Raspberry Pi 3 adds built-in wireless and Bluetooth connectivity.

CHAPTER 2 ■ ALL ABOUT RASPBERRY PI

14

 In Figure 2-1 , the GPIO connector is in the top-right of each of the computers. As you can see, the Pi
Zero (left) does not include the GPIO header pins, which are soldered on the other versions. You can solder
on your own headers, or wires can be soldered directly to the board. More details on learning to solder are in
Chapter 10 .

 If you have an older Raspberry Pi, such as a model A or model B, you will still be able to work through
most of the projects in the first few chapters, but you will need the additional pins if you want to try some
of the projects in the later chapters. You should also be aware that the pin layout for some of the pins is
different on the older models. More on this later in this chapter.

 Raspberry Pi GPIO Ports
 As mentioned previously, the GPIO ports on the Raspberry Pi are a real game-changer. They make it trivial to
connect simple electronic circuits to the Raspberry Pi.

 GPIO stands for General Purpose Input Output . It is a common term used to refer to ports on a
processor that can be used either as inputs or outputs. The GPIO pins on the Raspberry Pi are connected
directly to the GPIO ports on the processor. The processor runs at 3.3V and as such the GPIO ports are
designed for 3.3V. This is less than the 5V commonly used by some electronic circuits and a 5V connected
as an input to one of the GPIO pins could damage the Raspberry Pi. The output of the GPIO is only able to
provide a current of up to 16mA.

 ■ Caution The GPIO ports do not include any built-in protection. Giving an input that is above 3.3V,
or drawing too much current from an output, can permanently damage the Raspberry Pi.

 Most of the GPIO pins can be used for normal input/output as well as some having alternative
functions, such as I2C and PWM.

 Figure 2-1. Different models of the Raspberry Pi (from left): Pi Zero , A+ , and Raspberry Pi 2

http://dx.doi.org/10.1007/978-1-4842-1898-3_10

CHAPTER 2 ■ ALL ABOUT RASPBERRY PI

15

 There have been some changes to the GPIO port numbers used on the GPIO pins. In September 2012,
the revision 2 boards were released and they changed some of the pin allocations. The model B+ and A+
boards (released July 2014 and November 2014 respectively) added 14 new pins, thereby increasing the total
pins from 26 to 40. The Raspberry Pi 2 has the same port allocations as the A+ and B+ models, as does the
Pi Zero, although there are no header pins soldered on to the Pi Zero.

 To check which version of Raspberry Pi you have, you can run this command:

 cat /proc/cpuinfo

 The revision numbers are shown as hexadecimal values. These are 0002 and 0003 for Raspberry
Pi model B revision 1; 0004 to 000f for Raspberry Pi model A and B; 0010, 0012, and 0013 for A+ and B+; and
a01041 and upward for Raspberry Pi 2.

 A summary of the main pin allocations for the different versions is listed in Figure 2-2 .

 Figure 2-2. Pin layouts for the GPIO for various models of the Raspberry Pi

CHAPTER 2 ■ ALL ABOUT RASPBERRY PI

16

 The GPIO connector is in one corner of the Raspberry Pi. If you position the Raspberry Pi with the
SD card on the top edge, as shown in Figure 2-1 , the pins are numbered with 1 on the top left, reading left
to right, then top to bottom. This is shown in Figure 2-2 , which shows the GPIO number and alternative
function for many of the pins. The highlighted pins on the revision 1 boards are the ones that changed on the
more recent versions.

 A summary of the ports and common alternative functions is provided in the table in Appendix D. This
is based on the B+. These are the same for the Model B revision 2 and the model A (although only up to pin
26 for the model A and model B).

 You will look at some of the alternative functions in further details later in this book.

 Serial Communications/UART
 This is a way of sending information between two different devices. The data is sent one bit of data at time.
There are multiple ways of sending data serially, but this is specifically about using the Raspberry Pi as a
Linux serial device. This is how terminals were connected to computers in the “olden days” (common in
universities and libraries during the 1980s) and was used to log in to remote computers using modems
(and is still used in this way by some companies to provide remote access to networking equipment if the
main network connection stops working). It’s also used to communicate with the Arduino and with other
microprocessor platforms.

 There are two common ways that the Raspberry Pi can communicate as a serial device. One is to use
a device connected to the USB port using the Linux USB serial driver (such as an Arduino, micro:bit, or a
Bluetooth connection).

 The other is to use pins from the GPIO port that are connected to a UART (Universal Asynchronous
Receiver/ Transmitter) within the processor. The UART pins can be wired directly to another serial device,
which provides an alternative way to connect to an Arduino or similar device. The GPIO pins are physical
pins 8 and 10, and they connect to transmit (TXD) and receive (RXD). By default, these pins are used for the
Linux console, so they may periodically send error messages from the operating system. This can be useful
to identify problems when the Raspberry Pi is not connected to a screen, but the console may need to be
disabled or redirected if those pins are used for another purpose.

 I 2 C: Inter-Integrated Circuit
 Also known as I2C, this is another serial communication protocol that is used to communicate with
peripherals. It works as a master/slave relationship. Typically the Raspberry Pi will act as a master and
communicate with peripherals such as sensors or displays.

 The latter Raspberry Pi models use I2C channel 1, which use GPIO pins 3 and 5. These are the SDA1,
SCL1 ports, respectively. The earlier revision 1 model B Raspberry Pi computers used the same pins but with
I2C channel 0 instead.

 SPI: Serial Peripheral Interface Bus
 SPI is another form of serial communication for communicating with peripherals. It has a higher bandwidth
than I2C and is commonly used for connecting to SD cards and other peripherals. A physical difference between
SPI and I2C is that, while I2C uses only two connections, SPI needs at least four and in some cases more.

 The connections are SCLK (serial clock), MOSI (master output, slave input), MISO (master input, slave
output) and SS (slave select). These are pins 23, 19, 21, and 24. The slave select is labeled as CE0 on the GPIO
output, which means chip enable (and can be considered the same as slave select). This is used to determine
which of multiple slave devices the master is communicating with. There is also a second slave CE1 on port
26, which allows an additional slave device to be connected.

 There is also a second SPI connection on the more recent versions using pins 40, 38, 35, and 36.

CHAPTER 2 ■ ALL ABOUT RASPBERRY PI

17

 PWM: Pulse Width Modulation
 Pulse Width Modulation is a technique used to provide an analog output from a digital pin. This works by
turning the output on for a set period of time and then off for a period of time. By varying the “width” of the
on and off times, an equivalent average voltage can be calculated. This is useful for varying the brightness of
an LED connected to a digital pin or varying the speed of an analog motor.

 It also used as a way of sending information, which is popular with infrared remote controls that use
PWM to send the relevant codes to turn your TV on and off. You will see this in action in Chapter 5 when you
build an infrared transmitter and receiver.

 Other pins can be used for PWM by creating an equivalent signal from switching the appropriate pin
on and off at the right time using software, but the PWM output on pin 12 is supported by the hardware so
is more accurate and less taxing on the processor. This will be useful in Chapter 4 , where you will use the
hardware PWM output to control NeoPixels.

 Getting Started with Raspbian Linux
 The official operating system for the Raspberry Pi is Raspbian, based on Debian Linux. In the recent versions
of the Raspbian image, the Raspberry Pi boots straight into the desktop when started, shown in Figure 2-3 .
The desktop may look a little different from other operating systems you use, but whatever operating system
you normally use, it shouldn’t be too different.

 Figure 2-3. Screenshot of the Raspbian desktop

http://dx.doi.org/10.1007/978-1-4842-1898-3_5
http://dx.doi.org/10.1007/978-1-4842-1898-3_4

CHAPTER 2 ■ ALL ABOUT RASPBERRY PI

18

 Here are some of the key pointers to navigating around the desktop:

• The application menu is in the top-left, as indicated by the Raspberry Pi logo.

• There are lots of applications included. Here is a small selection:

• The programming menu includes a selection of different programming
languages, including Scratch and Python, which you will be using throughout
this book.

• There is no need to pay for a word processor or other office application because
LibreOffice is included.

• The Epiphany web browser has been specially tweaked for the Raspberry Pi and
works well even on the single-core versions.

• There is a special version of Minecraft for the Raspberry Pi with an easy-to-use
Python interface. You will be using it in Chapter 9 .

• You can adjust some of the desktop settings in the Preferences menu.

• The Raspberry Pi configuration application provides a graphical alternative to
 raspi-config . This provides a tool for changing some of the options for the
Raspberry Pi.

• The terminal application provides a way to issue commands using a text interface.
This provides a very efficient way to run commands and automate certain features of
the Raspberry Pi.

• Using the icons on the top-right of the screen, you can do the following:

• Configure the network connection (including WiFi).

• Change the volume.

• See how hard the processor is working (as a percentage).

• See the time.

• Safely remove removable storage devices.

 If you need more information about any of these, hover your mouse pointer above them to see any
hints, left-click for typical configuration changes, or right-click for further configuration options. For
example, hovering over the volume icon tells you the current setting, a left-click lets you to change the
volume, and a right-click lets you to change whether the audio is sent to the TV (HDMI output) or through
the audio connector (3.5mm jack).

 Connecting to the Raspberry Pi Using the Network
 Although it’s possible to follow the projects in this book using a screen, keyboard, and mouse connected to
the Raspberry Pi, it is often useful to connect from a remote computer. This could be another Raspberry Pi,
or a desktop or laptop computer. You will use two methods of connecting here: ssh and vnc.

 Before you can connect, you first need to know the IP address that has been allocated to the Raspberry
Pi. In most cases this will be a dynamic IP address provided by your home router, but it could be set
manually instead. If you have connected the Raspberry Pi to the router using an Ethernet cable, then this
should have been allocated already, but if you are using WiFi then you will need to enter your WiFi network
details through the WiFi configuration tool (top-right side of the screen).

http://dx.doi.org/10.1007/978-1-4842-1898-3_9

CHAPTER 2 ■ ALL ABOUT RASPBERRY PI

19

 Once you have connected to a network, hovering over the WiFi icon will display the IP address assigned.
Figure 2-4 shows the IP address allocated to my Raspberry Pi, which is 192.168.0.109 .

 Figure 2-4. Screenshot of WiFi status message

 Alternatively you can obtain the IP address on the command line by launching the Terminal application
and entering this command:

 ip addr

 Secure Shell (ssh)
 Secure Shell (often referred to as ssh) is a server that allows you to run instructions on the Raspberry Pi
from a remote computer. It doesn’t provide a graphical interface, but allows you to type instructions using a
keyboard and receive a response through a display terminal.

 The ssh server is installed by default on the Raspberry so it’s simply a case of entering the IP address
into an ssh client on the same network and it is possible to log in using the normal username and password
(by default, username pi and password raspberry).

 For Linux and Mac OS X, an ssh client is available directly from the command line. For Windows, you
need to download an ssh client, such as the open source PuTTY, available at http://www.chiark.greenend.
org.uk/~sgtatham/putty/ . Various graphical ssh clients, including PuTTY, are also available for Linux and
Mac OS, if preferred.

 To connect using a terminal client on a Mac or Linux, prefix the IP address with the username and the
 @ character.

 ssh pi@192.168.0.109

 From the graphical clients, such as PuTTY, enter the IP address and username in the appropriate fields,
as shown in Figure 2-5 .

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

CHAPTER 2 ■ ALL ABOUT RASPBERRY PI

20

 Remote Desktop Using VNC (TightVNC)
 Having access to a remote shell through ssh is a good way of running command-line programs, but a
graphical interface can be useful at times. In fact most of the screenshots in this book were taken by
connecting using VNC from my laptop.

 To achieve this, you need to install TightVNC on the Raspberry Pi. Rather than give access to the existing
screen, this starts a new instance of the desktop that you can control access remotely.

 Install the server software from the repositories:

 sudo apt-get install tightvncserver

 After installing, run tightvncserver to start the server as the current user. The first time you run the
server, it will prompt you to set a password. This is the password you use when connecting remotely. There is
no need to create a view only password.

 When the server starts, it will tell you which virtual desktop has been started. This will normally be
session 1:

 New 'X' desktop is raspberrypi:1

 Figure 2-5. PuTTY application, an ssh client

CHAPTER 2 ■ ALL ABOUT RASPBERRY PI

21

 You connect to this using :1 at the end of the IP address in the client.
 You can run multiple instances. Each time you start tightvncserver it uses the next available desktop,

but in most cases you will just need one. You can leave it as that, which means that the remote desktop will
only be available if you log in and start it first, or you can set it up to run whenever the Raspberry Pi is booted
by following the instructions at http://www.penguintutor.com/linux/tightvnc .

 You also need to install the TightVNC client (or one of the alternative VNC clients) on your local
computer. For Linux operating systems, a client may be installed already; for Windows, there is a
native client available; and for Mac OS X, the Java client can be used. These are available from
 http://www.tightvnc.com . Figure 2-6 shows how to connect using the TightVNC viewer on Windows 8.

 Figure 2-6. Connect remotely using TightVNC

 Once you’re connected, you can run most software through the client as though using a mouse and
keyboard on the Raspberry Pi. There are some limitations to what TightVNC can be used for—in particular,
it is not possible to run Minecraft over a TightVNC session. For most applications, though, TightVNC does
provide a useful way to run programs remotely.

 More Raspberry Pi
 This chapter looked at the different versions of the Raspberry Pi. You then looked at the GPIO interface pins
and read an introduction to Raspbian, the Linux-based operating system that runs on the Raspberry Pi.

 There are lots of other resources for learning Linux, including another Apress book entitled Learn
Raspberry Pi with Linux , written by Peter Membrey and David Hows.

 You may also want to spend some time exploring the installed software and games such as Minecraft.
 This is the end of the initial theory. The next chapters involve hands-on electronics connecting to the

Raspberry Pi. In Chapter 3 , you connect your first circuit to the Raspberry Pi and learn to access the GPIO
pins through the Scratch programming language.

http://www.penguintutor.com/linux/tightvnc
http://www.tightvnc.com/
http://dx.doi.org/10.1007/978-1-4842-1898-3_3

23© Stewart Watkiss 2016
S. Watkiss, Learn Electronics with Raspberry Pi, DOI 10.1007/978-1-4842-1898-3_3

 CHAPTER 3

 Starting with the Basics:
Programming with Scratch

 Scratch is a visual based programming language. It was designed at MIT for teaching programming to
children, but has become popular with young and old programmers. Some universities even use it as an
introductory language for new students.

 The latest version of Scratch, version 2, uses a web based interface. Unfortunately it is based on Adobe
Flash and as such will not run on the Raspberry Pi. The Raspberry Pi instead includes an older version,
based on version 1.4. The layout is a little different from version 2, but the functionality is mostly the same.

 Introduction to Scratch
 If you are not already familiar with Scratch, here is a quick introduction. Scratch is available from the
programming menu in Raspbian and, when running, looks like Figure 3-1 . If you have used version 2
already, it should look familiar, but you will notice that the stage area for Raspberry Pi is on the right,
whereas it is on the left in version 2.

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

24

 The application is split into four main sections. In Figure 3-2 , I shaded the main areas and labeled them
as A, B, C, and D.

 Figure 3-1. Scratch on the Raspberry Pi

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

25

 The most important part of the Scratch application is the stage area (section A). This is a representation
of the screen when the program is running. The look of the game will be designed on the stage area and
it’s also where you can see the program run. There is also a green flag, which is used to start the program
running, and a red stop sign, used to stop the program.

 If the screen is a stage, then the sprites are the actors, and props and lights are used to create the show.
These are stored in the sprite list area (section B). There are three icons for creating a new sprite, depending
on whether you want to draw your own sprite, choose an existing file (many are included with Scratch), or
get a random sprite. In Scratch, a sprite can have its own costumes, scripts, and sounds associated with it.
The stage is considered a special type of sprite and is always shown in the left part of the sprite’s list area.

 When you want to change a sprite, you load it into the sprite edit area (section C). Sprites are loaded
into this section by clicking on them in the sprite list, where they will then be shown with a border. There are
three tabs in the sprite area called Scripts, Costumes, and Sounds.

 In Scratch the program code is grouped together into a script and is edited on the Scripts tab. It is fairly
common to have several scripts associated with each sprite. The stage can also have its own scripts, which is
often used to control the sprites or the stage background.

 Figure 3-2. The four main areas of Scratch

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

26

 The Costumes tab is used to change the look of a sprite. It does not need to be a different form of
clothing (although that is one use of a costume), it could be used to represent a different object or a
completely different look, such as a firework rocket that changes to a burst of light when it explodes. When
editing the stage, the Costumes tab is replaced with a Background tab, which can be used to change the
scene. There’s also a Sound tab to add sound to the sprite.

 The code blocks area (D) holds the blocks of code that can be built together to make the scripts. Each
block of code is shaped with interlocking tabs, which can be connected with other appropriate blocks of code.

 The blocks of code are grouped into eight sections and are color-coded along with the code groups.
Drag the appropriate code block from this area to the scripts area for the sprite. If you position the block
close to another block then they will snap into place.

 Scratch with GPIO Support
 The version used on the Raspberry Pi has been modified to provide a way to control the GPIO pins through
a built-in GPIO server. This was added in September 2015. As you can see from the title on the screenshot
in Figure 3-1 that the date is included in the title bar (in ISO date format). If Scratch is showing an older
version, you may need to upgrade the version of Raspbian (see the Introduction).

 The GPIO server waits for broadcast messages from Scratch and turns output pins on and off
appropriately. It also handles input to appropriate pins on the GPIO port and sends broadcast signals to
Scratch when the status changes. You will need to start the GPIO server using the Start GPIO Server menu
option from the Edit menu, as shown in Figure 3-3 .

 Figure 3-3. Start GPIO Server option on recent versions of Scratch on the Raspberry Pi

 Controlling an LED Using Scratch GPIO Server
 Before creating your program in Scratch, you need to create your first Raspberry Pi electronic circuit. You
will start with a very simple LED circuit that allows you to turn a light on and off, depending on events in a
Scratch program. You’ll then expand this to make your first game.

 To understand the circuit, you first need to understand two components—the LED and the resistor.
You’ve read about these in Chapter 2 , but I’ve included a more detailed explanation here.

http://dx.doi.org/10.1007/978-1-4842-1898-3_2

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

27

 Light Emitting Diode (LED)
 An LED is a component that gives out a light when an electric current passes through it. The LED is very
efficient and so you will often see them used in battery-operated light-up toys. The fact that it doesn’t use
much energy is important because the amount of current you can supply from the GPIO pins is very small.
If you instead used a light bulb such as those you may have in an older flashlight, you would need a more
complex circuit or risk damage to the Raspberry Pi.

 An important thing about an LED is that it needs to be inserted the correct way around in the circuit.
This is due to the diode part of its name, which is a component that acts similar to a one-way valve, allowing
current to flow only in one direction. The diode has an anode, which should be connected to the positive
end of the connection, and a cathode, which goes to the other side.

 You can tell which end is the anode (the positive terminal) because it normally has a longer lead. If
that’s not obvious (such as if the lead has been cut short) then there is normally a flat area on the plastic
casing that indicates the cathode (negative terminal). This is shown in Figure 3-4 .

 Figure 3-4. A typical LED

 Figure 3-5. A 220Ω resistor

 Resistor
 A resistor acts to reduce the current flowing through a circuit. This is particularly important to protect a
component from being damaged because too much current is flowing through.

 The size of the resistor is measured in ohms (Ω), which is marked on the side of the resistor using a
color code. You can see a photo of a typical resistor in Figure 3-5 and details of the color-coded markings are
provided in Appendix C.

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

28

 In this circuit, the resistor is required to protect the GPIO port from too high an output current and
to protect the LED from excessive current. To calculate the value of the resistor, you first need to know the
voltage across the resistor and the current you want to limit it to.

 The voltage of the GPIO output is 3.3V. Approximately 2V of this is across the LED, so there is
approximately 1.3V across the resistor.

 Although the maximum current that the GPIO can provide is 16mA, around 8mA is sufficient to light
the LED to show whether something is on or off. To calculate the resistor, divide the voltage by the current
(see Chapter 1). The resistor size should therefore be 1.3 ÷ 0.008, which is 162Ω. Resistors come in standard
values. In this case I’ve selected the next highest in the E6 series of resistors, which is 220Ω. If you have a set
of E12 series resistors, you could use a 180Ω resistor, but either will do. The color of the resistor is:

• Red (2)

• Red (2)

• Brown (x 10)

• Gold

 Due to differences in manufacturing, the resistor is not necessarily going to be exactly the same as the
specified size. The fourth entry is shown as gold, which gives you the tolerance rating (how close the resistor
must be to the specified value)—in this case 5%. Taking the tolerance into consideration, the actual resistor
will be between 209Ω and 231Ω.

 Connecting the LED to the Raspberry Pi
 For this circuit, you will use GPIO port 22, which is physically pin 15 on the GPIO connector (see the GPIO
diagram in Chapter 2 for more details). The resistor connects to the GPIO port and it then connects through
the LED to the ground connection. The breadboard layout diagram is shown in Figure 3-6 .

http://dx.doi.org/10.1007/978-1-4842-1898-3_1
http://dx.doi.org/10.1007/978-1-4842-1898-3_2

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

29

 Remember to make sure that the LED is the correct way. Looking at the diagram in Figure 3-6 , the
longer wire should be the one nearest the top and in the same block as the resistor.

 Now move on to having Scratch turn the LED on and off. First start the GPIO server using the menu
option shown in Figure 3-3 . Using a new Scratch program, add the code blocks to the Scripts tab of the
default sprite (sprite1 , which is the Scratch cat). This is shown in Figure 3-7 .

 Figure 3-6. LED circuit for Scratch GPIO

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

30

 All the blocks are from the Control scripts. These are all orange-colored, the same as the Control scripts
tab. This indicates that these are all control commands, which control the flow of the program, or as in
the case of the broadcast messages, are used to send messages to another program (the GPIO server). The
broadcast tells the GPIO server when to turn the pins on and off.

 The green flag at the top of this script indicates that this script runs whenever the green flag is clicked to
start the program.

 The first broadcast command is a config command.

 This command can be split into three parts:

• config indicates that this is a configuration request

• 22 makes the changes to GPIO port 22

• out sets the port as an output

 Remember that GPIO port 22 is the port that is connected to GPIO 22 on the processor. This is not the
same as the physical pin number. The physical pin number that you have connected to is 15.

 You then have a forever loop, which as the name implies, runs the code forever. Within the forever
loop, there are broadcast commands that tell the GPIO server to turn the pin on and off and wait statements
that cause the program to pause for a period of time.

 Figure 3-7. Initial LED script

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

31

 The command to turn the GPIO port on, setting the output to +3.3V, is to broadcast gpio22on .

 To turn it off again, setting the output to 0V, use broadcast gpio22off .

 Again, there are three parts to this command:

• gpio indicates that this should be issued to the GPIO port

• 22 makes the changes to GPIO port 22

• on / off sets the port to +3.3V (on) or 0V (off)

 When you click on the green flag, the code will run. It will configure the port and then alternate between
the LED on and the LED off with a delay of one second between turning the LED on and off.

 Adding an Input to the Scratch GPIO Program
 Using the LED circuit (Figure 3-6) as a starting point, you will now add an input to the Raspberry Pi. Inputs
can take many different forms. In this case, you’ll be using a simple switch.

 A switch is used to create a break in a circuit or join two parts of a circuit together depending on the
position. There are different types of switches depending on how the switch is being used. The one you
will use here is known as a push-to-make pushbutton switch. When the button is pressed, it pushes the
conductors together inside the switch, thus completing the circuit. This is similar to a door bell push-switch,
which completes the circuit causing the door bell to sound.

 The type used here is designed to be installed onto a printed circuit board or a breadboard. It has four
pins, although the pins on each side are connected together with just a single switch in the package. The
ones I have used include clip-on button caps, which makes them stand out a bit more. The caps are not
necessary and only fit on certain switches.

 A photo of the switch along with its circuit symbol is shown in Figure 3-8 .

 Figure 3-8. Pushbutton switch and circuit symbol showing connections

 Using a Switch as a Digital Input
 The GPIO port needs to be sent a digital on or off signal, which should be +3.3V for on and 0V for off. At
first thought, you may consider using the switch to connect to the positive supply and rely on the pin being
disconnected for a low 0V signal. Unfortunately that is unlikely to work, as when the power is disconnected,

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

32

the input will be considered floating. When an input is floating, the state is unpredictable and will often
change between high and low.

 Instead you need to connect the input to the positive voltage so that the supply is high when the
switch is not pressed. The switch then connects the pin to the 0V supply to bring it low when pressed.
A fairly high value resistor (usually in the tens of kΩ) is required for the connection to the positive rail
to prevent a short-circuit. The Raspberry Pi has internal pull-up resistors that can be used rather than
needing to add an external resistor 1 . The pull-up resistors can be enabled using the broadcast message
 config<GPIOport>inpullup and inserting the appropriate GPIO port number.

 Adding the Switch to the Circuit
 The diagram in Figure 3-9 shows the LED circuit you used previously with the switch added. The switch is
connected to GPIO port 10 (physical pin 19) and to the 0V ground pin on the Raspberry Pi.

 1 It’s actually possible to use this the other way around, using a pull-down resistor to represent a low input when the
switch is not pressed and connecting to the positive supply when the switch is pressed. The use of a pull-up resistor is
more common and is the default for the Raspberry Pi.

 Figure 3-9. Switch and LED circuit

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

33

 Figure 3-10. Switch and LED Scratch code

 I added a new block at the start, which turns the GPIO server on rather than having to configure it
through the menu. GPIO port 10 has been configured as an input with a pull-up resistor.

 Within the forever loop, the sensor value block is used to check on the status of the switch. If it has
value 1 then the switch is not pressed and the internal pull-up resistor is pulling the value up high. When the
switch is pressed, the input is pulled low and the sensor value will be equal to 0.

 The sensor value block is found in the Sensing section, but it will not show the GPIO value until the port
has been enabled. You will therefore need to add the broadcast config10pullup entry to run that part of
the code before adding the sensing block. This can be achieved by running in the usual way with the green
flag to start and the red flag to stop, or by double-clicking on the relevant block of code.

 Next you need to add code to Sprite1 to configure the GPIO port and detect when the button is
pressed. The updated code is shown in Figure 3-10 .

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

34

 When the code has been entered and the program runs, the LED will be initially off, turning on when
the button switch is pressed and off when it’s released. This is effectively performing the same as the LED
circuit in Chapter 1 , but now using an entire computer where the switch was able to handle this on its own.
I have done this to introduce the way that inputs and outputs are handled in Scratch GPIO. You will now be
adding a few more components and creating a game in Scratch using this circuit.

 Robot Soccer
 The reason for creating the circuit so far is so you can use it to make your own game. This game is called
 Robot Soccer. The basic idea is to have a robot goalkeeper that can move from side to side to catch the ball.
This is a book about the electronics, so the programming is kept fairly simple with lots of opportunity for
improvement or to change to your favorite sport or other activity. The goal fills the full screen so if the robot
reaches the ball, that is a save, and if the robot misses it, that’s a goal. When complete, the game will look like
Figure 3-11 .

 Figure 3-11. Robot Soccer game

http://dx.doi.org/10.1007/978-1-4842-1898-3_1

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

35

 Figure 3-12. Circuit for Robot Soccer

 To be able to move left and right, you need to add a few more components. In fact, you are going to
duplicate the circuit so that instead of one switch and one LED, you have two switches and two LEDs. The
existing LED is red to signify that the robot missed the ball, so the new one you will add will be green to
signify that the robot reached the ball. The green LED needs to be connected through an appropriate resistor
to GPIO port 23 (physical pin 16) and the second switch connected to GPIO port 9 (physical pin 21). The
other connection from the switches and LEDs will connect to the ground, which will be used for circuits
going forward unless otherwise stated. This is shown in Figure 3-12 .

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

36

 Rather than editing the previous Scratch project, let’s start a new one. Clicking File ➤ New creates a new
project with the Scratch cat sprite. Right-click on the cat sprite and delete it. From the stage click, import and
find the playing-field in the Sports folder. This is shown in Figure 3-13 .

 Figure 3-13. Adding the background for Robot Soccer

 Add the setup code in Figure 3-14 to the Stage Scripts tab. The config commands are the same as you
used previously in the switch and LED circuits, but with extra entries for the additional switch and LED. It
includes the new broadcast for gpioserveron , which turns on the GPIO server rather than having to start it
from the menu.

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

37

 You now need to create the robot sprite. From the sprite section, choose New Sprite from a File. In the
 Fantasy folder, choose robot3 . This is shown in Figure 3-15 . You should then rename the sprite robot so that you
can access it later. This is done by clicking on the name in the top of the Sprite area and changing it to robot .

 Figure 3-14. Setup code for Robot Soccer game added to the Stage Scripts tab

 Figure 3-15. Adding a new sprite using the robot3 sprite file

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

38

 There are three code blocks that need to be added to the Scripts tab of the robot sprite, as shown in
Figure 3-16 .

 Figure 3-16. Code to add to the Scripts tab of the robot sprite

 The main part of the code on the robot sprite is a forever loop checking for the status of the two GPIO
pins 9 and 10. If the button is pressed then it increases or decreases the x position of the sprite, which makes
the robot move left and right as appropriate. One thing that you may notice is that based on Figure 3-12 , the
switches are the wrong way around. You will turn the circuit upside down when you come to play the game.
The other two code blocks receive a broadcast message and use the say command to show a message. The
broadcast message is sent by the final sprite, which handles the rest of the logic.

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

39

 Figure 3-17. Adding the ball sprite

 The final sprite that needs to be added is the ball. This can be added from the file soccer1 in the Things
folder, as shown in Figure 3-17 .

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

40

 This code is a little more complicated than the previous code snippets, so I’ll go into it in more detail.
The first thing the code does is set the size of the sprite to 1% and position it at the center back. This will
make the ball small so it looks like it’s off in the distance. The Set Size block comes from the Looks blocks
and the Go To block comes from the Motion blocks.

 Figure 3-18. Code for the ball sprite

 The code to add to the ball sprite is listed in Figure 3-18 .

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

41

 You now need to create a new variable called direction . The variable will hold a number that
determines how far to the left (negative number) or right (positive number) the ball will move. To add the
variable, select the Variables code blocks and then click Make a Variable (see Figure 3-19). When adding the
variable, click For this Sprite Only, as the variable relates to this particular ball sprite.

 Next you can set the variable to a random number by using the Pick Random option from the Operators
code blocks.

 The following block is a repeat block that will run the code to move and change the size of the ball ten
times. The x direction changes based on the direction variable. If the random number happened to be a
large number (up to the maximum of 20), the ball will go all the way over to the right; if it’s a small number
then it will be near the center of the screen. If it’s a large negative number then it will go to the left. The y
position has been changed slightly to make it appear as though the ball is rolling down the field. You can also
make the ball increase in size as though it is getting closer to the robot.

 There is also a Wait Code block from the Control blocks, which slows the game down. Otherwise the
ball shoot toward you as though it was blasted from a cannon.

 Once that has repeated 10 times then the repeat loop will be finished and it progresses to the if block.
This tests to see if the ball sprite is touching the robot sprite. If you renamed the robot sprite when you first
created it, then the robot option should be available on the pull-down; otherwise, it will be whatever your
sprite is called.

 The code then sends two broadcasts. If the ball was touching, the robot managed to get to the ball, so
it broadcasts gpio23on , which will turn the green LED and send a broadcast called “ won ” which will trigger
the robot to say “You won!” If the robot did not get to the ball, then it will turn the red led on (gpio22on) and
trigger the “You missed!” message.

 The code then waits for two seconds before switching the LEDs off again. Note that it turns off both
LEDs even though one is already off. Obviously turning something off when it’s already off will not do
anything. You can instead add a variable and an additional if statement so you only send the message to the
LED that is switched on; it’s a matter of personal choice which you prefer.

 Figure 3-19. Creating a variable in Scratch

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

42

 Playing Robot Soccer
 Now that it’s complete, you can play the game. The game has been designed to be mounted on a board that’s
turned around so that the breadboard and button are on the bottom. I used a Raspberry Pi breadboard
mount, but you could use a thin piece of wood or a thick card.

 The finished project is shown in Figure 3-20 .

 Click on the green flag in the top-right side of the Scratch stage to start. Press the left and right buttons
to move the robot from side to side to stop the ball. The green LED will light up if you win and the red LED
will light up if you lose. Click the green flag to start again.

 Figure 3-20. Finished controller for Scratch Robot Soccer

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

43

 Figure 3-21. Enclosure with joystick for the arcade game

 Mars Lander Arcade Game
 In this game, you are going to join the exploration of space by landing on Mars. This will be a arcade-style
game controlled by a joystick. This will provide further insight into how Scratch can be controlled using
GPIO inputs.

 Making an Enclosure
 In this project, you will create your own case with joystick and buttons. This is going to be something
in-between a games console and an arcade games machine. In electronics terms, a box that holds an
electronic circuits is known as an enclosure . You can go out and buy a mini-arcade game cabinet for the
Raspberry Pi, but they are very expensive. In this project, you will see how to make a cheaper version that
plugs into any HDMI TV.

 Even though you are not using a full arcade cabinet, you will still need a box to house this. I used a
Really Useful Box, which is a strong plastic box. You can use any suitably sized box, but it’s worth paying a
little extra for a strong box. As the box is made out of plastic, it’s easy to make holes for the switches and for
the connections to the Raspberry Pi. You will need a drill that matches the size of the switches and to file
down the holes for the HDMI output and the power connector. The joystick and buttons are mounted to the
top of the enclosure. The finished enclosure with joystick and buttons is shown in Figure 3-21 .

 Inside the enclosure, the Raspberry Pi should be mounted to one side of the box with a hole for the
power connector, HDMI connection, and audio output. The USB ports will be inside the box, which can be
used for wireless devices, but it’s also possible to mount a panel-mount USB connector to allow external
devices to be connected.

 The photo in Figure 3-22 shows the inside of the joystick enclosure. This is shown the opposite way
around compared to the previous photo, as the cable lengths of the switches make it difficult to open in the
other direction. I used a breadboard and cobbler to make it easier to connect the wiring, although the wires
could be connected directly to the GPIO port with an appropriate connector.

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

44

 Note that the wiring looks very messy. This is designed as an initial prototype using wires that are extra
long to make it easier to lift the lid and make changes to both the wiring and the Raspberry Pi. Even with
these long wires, it is very easy for the wire to get pulled out of the breadboard. For a more professional and
reliable connection, replace the solid core wires with a single ribbon cable or with flexible wires cable tied
together, which would run in a neat bundle.

 Adding Joystick and Switches
 For this game you need a four-way joystick controller. There are two kinds of joysticks: digital ones that
have a switch indicating which direction the joystick is pushed and analog ones, whose resistance changes
as the joystick moves. The one you need for this project is a digital one that has four micro-switches. The
micro- switches are pressed into the closed position as the joystick moves. This type of joystick can normally
be found by searching for micro-switch joysticks from your favorite electronics supplier.

 A micro-switch is a small switch similar in action to the pushbutton switches, but designed to be pushed
by a mechanical device. These are often found in safety guards on machines or incorporated into other
devices such as the joystick and the button switches.

 I also used a jumbo switch and five more arcade-style button switches . These all use micro-switches
with a plastic button to provide a large button to press. You will only be using one of the buttons for this
project, but more will be useful in Chapter 9 , when you will use the additional buttons to interact with
Minecraft.

 Figure 3-22. Inside the joystick enclosure

http://dx.doi.org/10.1007/978-1-4842-1898-3_9

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

45

 Wiring the Switches
 The circuit for this project is fairly simple. Each switch will be connected between a GPIO input port and
ground. This is the same way that the switches were connected in the previous project, using the pull-up
resistors within the Raspberry Pi.

 To make it easy to change in the future and to avoid the need to solder, I used a cobbler to take the pins
from the Raspberry Pi to a breadboard. I then used solid core wire, crimped together onto crimp female
spade connectors (the wire had to be doubled up to make a secure contact). This involves putting the wire
into a metal barrel and then squeezing the barrel using a crimp tool. The crimp squeezes the barrel, which
holds the wire in place and forms an electrical connection. The use of the crimps (which connect directly to
the switches) avoids the need for soldering and also make it easier to reuse the switches. The terminals are
connected using a crimp tool such as the one shown in Figure 3-23 .

 Figure 3-23. Crimp tool with female blade connectors

 All the switches need to have one side of the switch connected to ground. This is done by having a
wire from the ground connection on pin 6, which is then daisy-chained to one side of each switch. The
normally-open terminal of each switch is then connected to the appropriate GPIO port, as shown in
Figure 3-24 . The color in brackets is the color of the wire used to connect the switch back to the GPIO port;
this is for convenience to make it easier to identify each wire.

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

46

 Figure 3-24. Wiring details for the Joystick and arcade buttons

 One point to note about the wiring is that the switches on the joystick are physically located in the
opposite positions than those shown in the diagram. The diagram is based on the direction of the joystick.
When the joystick is pushed forward (JoyNorth), then the bottom of the joystick pushes in the opposite
direction. So looking at Figure 3-24 , the switch for JoyNorth is actually at the bottom of the joystick and
the switch for JoySouth is at the top of the joystick. The same applies for JoyEast and JoyWest, where the
direction of movement pushes the switch at the opposite side.

 Creating the Game
 You’ll now see how to create the game in Scratch. Start a new Scratch project and delete the default cat sprite
(right-click on the sprite and choose Delete). You will start by adding your own background and using that to
set the GPIO ports as inputs.

 Click on the Stage icon, then click on Backgrounds and Import. If you have downloaded the files to
accompany this book (see the Introduction), the background is located in /home/pi/learnelectronics/
scratch/media/mars.jpg . This is shown in Figure 3-25 . Alternatively, you can use the Moon background in
the Nature folder.

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

47

 Figure 3-25. Adding the Mars background in Scratch

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

48

 Now add the script listed in Figure 3-26 to the Scripts tab of the stage.

 The config broadcast messages are used to set the appropriate GPIO ports as outputs. The ports
configured are in order: the large red button (used to start the game) and the joystick buttons—North, East,
South, and West.

 The script then waits until the large red button is pressed. Pressing the button pulls the input down to
ground and hence changes the value of the sensor to 0. It then sends a broadcast to the marslander sprite to
tell it to start the game.

 After adding the code to the stage script, run it by clicking on the green flag on the top right of the
stage. You haven’t finished the game, so you won’t be able to play anything yet, but running the broadcast
messages will update the Scratch sensor blocks with the available inputs, making adding the controls easier.

 Next you will add the craft that is going to land on Mars. If you have downloaded the files to accompany
the book, it is available at: /home/pi/learnelectronics/scratch/media/marslander.jpg . Alternatively,
you can choose another sprite from those provided with Scratch.

 The image is of a basic lander that I created in the open source 3D modeling software called Blender.
 Use the Choose New Sprite from File option and add the sprite, then rename the sprite to marslander

using the sprite name box, as shown in the top of Figure 3-27 .

 Figure 3-26. Script for the Mars Lander stage

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

49

 Figure 3-27. Renaming the marslander sprite

 Now add the two scripts listed in Figure 3-28 to the Scripts tab of the marslander sprite.

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

50

 This is quite a page-full, but broken down it shouldn’t be too difficult to follow. The first script consists
of three blocks of code. It starts with the green flag, so this part of the code will run when the user presses
the green start program flag. It then positions the landing craft to the top center of the screen and gives a
message that the start button (big red button) needs to be pressed to start the game.

 The next script uses a “When I receive broadcast” block. This means that this block of code won’t start
running until after the start button switch has been pressed and sent its broadcast message. The say code
block has no text in it, which is used to remove the start button message from the sprite. Most of the code is
then within a loop, which continues running until the marslander sprite reaches the bottom of the screen.

 Figure 3-28. Scripts for the marslander sprite

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

51

 In the loop, the sprite is moved down by five pixels 2 and then it checks each of the buttons in turn to see
if any have been pressed. Depending on which switches are pressed, the lander moves in the appropriate
direction. If more than one button is pressed, such as if the joystick is between two positions. then both
buttons are pressed and the sprite will move appropriately. Once the lander reaches the bottom of the
screen, it exits the loop and notifies the landingpad sprite through a broadcast message.

 The final sprite is a landing pad for the lander to land on. The landing pad sprite will be created by
drawing it by hand. Use the Paint New Sprite option from the sprite area. This will launch the Sprite Editor
window, where you can create your own landing pad. As you can see in Figure 3-29 , I created a fairly plain
black rectangle, but feel free to add a bit more creativity and create your own personalized landing pad.

 Once you’ve completed your landing pad, click OK to add it to the stage. The landing pad should be
about the same size as the marslander sprite. You can use the grow and shrink buttons, near the top of the
screen, to change the size of the sprite if needed. This is shown in Figure 3-30 .

 Figure 3-29. Paint a new sprite for the landing pad

 2 I have used the word pixels to represent the virtual pixels used by the Scratch stage. The actual number of pixels on the
screen will be higher.

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

52

 Once you’ve created the landingpad sprite, you will need two scripts, which should be added to the
 landingpad scripts area. The first is to set the position of the landing pad and the second is to detect the
position of the lander. The first of these is shown in Figure 3-31 .

 Figure 3-30. Resizing the landing pad

 Figure 3-31. First script for the landingpad sprite

 This script runs when the game starts and positions the sprite at a random position near the bottom
of the screen. The y position is fixed at -173. It chooses a random x position. The x position is based on the
center of the sprite so the range (-175 to 175) is quite a bit less than the total width of the screen to allow for
the size of the landing pad. The second script is shown in Figure 3-32 .

CHAPTER 3 ■ STARTING WITH THE BASICS: PROGRAMMING WITH SCRATCH

53

 At first glance, this looks a bit scary. The if statement checks several different sensor variables and
forms a long line. If you break it down, it should be fairly straightforward to understand.

 This script is triggered by the marslander sprite, which sends a broadcast message called “landed”
when it is positioned at the bottom of the screen. The long if statement then checks the position of the
lander in relation to the landing pad. It’s not possible to check if the position is the same as the landing pad,
as that would match only if they were exactly the same, which is pretty unlikely. Instead, you need to check
within a reasonable range. The code therefore checks that both the following conditions are met:

 x position of marslander < x position of landingpad + 15

 and

 x position of marslander > x position of landingpad - 15

 The first line checks to see if it is at least far enough to the left. It does this by checking that the x position
of the marslander Scratch is to the left of landingpad , plus 15 , which provides a bit of leniency in the game.
The second comparison does the same for checking whether the lander is far enough to the right. If both of
these conditions are met, then the lander is in the middle of the landing pad, +/- 15 pixels.

 The appropriate message is shown on the sprite. It shows a success message if it landed on the pad;
otherwise, it sends a message that the landing pad was missed.

 Playing the Game
 To play the game, press the green flag on the top of the stage. Then press the big red button on the controller
to start the game. Move the joystick left and right to move the lander. Pushing the joystick up will cause the
lander to move up slowly and pushing it down will increase the speed that the lander moves down. Landing
the craft in the center of the landing pad is a win.

 The difficulty of the game is based on the speed and the accuracy of the landing pad position. The speed
can be changed by changing the value of the delay block. The accuracy that the lander needs to be positioned is
based on the value used in the if statement. In the default code this is 15, reducing this will require the lander to
be positioned more accurately. Increasing it will allow the lander to be farther from the center of the landing pad.

 More Games
 This chapter looked at simple circuits using LED outputs and switches as inputs to the Raspberry Pi. Both
circuits are a form of game controller used to create two games in Scratch.

 These games can be changed to create your own personal game. If you don’t like soccer then change it
into a tennis game, or if you prefer to remain within the earth’s atmosphere, change the space craft into a hot
air balloon landing in Central Park.

 You could also add some realism to the game by having the descent speed up as though gravity was
pulling it down. Or if you’re creating a hot air balloon game, you could add wind to blow the balloon off course.

 In the next chapter, you’ll look at using Python instead of Scratch and controlling some bigger and brighter
outputs. You will also reuse the arcade joystick in Chapter 9 when you learn to use it to control Minecraft.

 Figure 3-32. Second script for the landingpad sprite

http://dx.doi.org/10.1007/978-1-4842-1898-3_9

55© Stewart Watkiss 2016
S. Watkiss, Learn Electronics with Raspberry Pi, DOI 10.1007/978-1-4842-1898-3_4

 CHAPTER 4

 Using Python for Input
and Output: GPIO Zero

 This chapter is going to look at lights. Not just any old boring desk lamp, though, the chapter looks at how
lights can be controlled by the Raspberry Pi. You are going to connect some fun disco lights and projects
using bright LEDS. In the process, you will learn about the most important electronic component, the
transistor. You will use some different types of transistors to switch lights on that need more current than the
Raspberry Pi can provide.

 In Chapter 3 , the projects used the graphical programming environment Scratch, but from here on
you are going to be using Python, which is a text-based programming language. There are some rules about
writing programs that need to be followed, but once you get the hang of that, it’s not much more difficult
than using the code blocks from Scratch. Later in the book, you will create a graphical program for one of
the projects.

 In this chapter you will be using the Python GPIO Zero module. This is a fairly new module that greatly
simplifies controlling the GPIO ports using Python. You need a recent version of Raspbian installed on your
Raspberry Pi. For more details about upgrading, see the introduction.

 Power Supplies
 First let’s look at the power supply that you will use for this. So far, you have relied on the output from the
Raspberry Pi to drive the electronic circuits. This is okay for the simple low-power circuits you have used so
far, but is not sufficient for some of the brighter lights you are going to look at in this chapter.

 Next you will look at a few different options that can be used to provide power for more powerful LED
lights and for other circuits that may be connected to the Raspberry Pi. You will be looking at DC circuits at
first, but will learn about the AC power supplies later in the chapter. DC stands for direct current, which has a
positive and negative terminal and where the current flows in one direction, from the positive to the negative
terminal. AC power is alternating current, where the direction of the current changes so that half the time
it flows in one direction and the other half it flows in the other direction. In most AC supplies, the current
changes direction around 50 to 60 times per second. Almost all the electronic circuits in this book are based
on DC, but the main electricity coming into your home is AC. The power supplies in the following sections
assume that you want a DC current to power the circuit.

http://dx.doi.org/10.1007/978-1-4842-1898-3_3

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

56

 +5V from the Raspberry Pi GPIO
 If you look at the pin layout for the GPIO pins of the Raspberry Pi, then you will see that some of the pins are
labeled as 5V. As I have already said the outputs from the GPIO pins are 3.3V, so what’s this all about? The 5V
connection on the GPIO connector is a fixed 5V power supply that can be used to power a low-power circuit
from the Raspberry Pi. In fact, you could even connect an external 5V supply to that pin and use that to
power the Raspberry Pi. I won’t be using this 5V supply in this chapter as the amount of current that can be
taken from this supply is limited, especially on the older versions of the Raspberry Pi, but it could be used to
power low-power electronic circuits, which you will look at later in the book.

 Another USB Power Supply
 A good form of power is through another USB power supply/charger separate from the one used to
power the Raspberry Pi. A portable cell phone charger can be used—these are readily available and fairly
inexpensive. You can buy a USB power break-out connector, which allows you to connect power to a
breadboard. The one shown in Figure 4-1 is suitable for connecting to a micro-USB power supply. It is also
possible to get ones that connect to standard USB connectors.

 Figure 4-1. A USB power breakout connector

 You will need to check the labeling on the power supply to ensure it provides sufficient current for the
circuit. A good quality supply will provide around 1 to 1.5A at 5V. I recommend buying a good quality power
supply from a reputable supplier as there have been incidents of problems with supplies by less scrupulous
manufacturers. The official Raspberry Pi power supply (Figure 4-2) is a good quality power supply made by
Stontronics. The plug includes adapters for the power sockets in several different countries. It provides 5V up
to a maximum of 2A.

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

57

 Other External Power Supplies
 The USB power supplies are good if you have a 5V circuit with modest power requirements, but if you have a
circuit that runs at a different voltage or needs more power than the USB power supply can provide, you will
need to use a different power supply.

 These are available built into plugs (sometimes called wall warts) or as a power brick that connects to
the plug through a lead. Most of these have a fixed voltage output, although it is possible to get ones that
have a selector for different output voltages. I have a variety of power supplies for different purposes and will
be mainly using a 5V and a 12V power brick for projects in this book. A 5V power brick that will be useful for
some of the projects in this book is shown in Figure 4-3 .

 Figure 4-2. USB power supply

 Figure 4-3. 5V DC power adapter

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

58

 Power bricks normally come with barrel jack at the end for plugging into equipment. A common
connector is known a 2.1mm barrel jack and it has a 2.1mm pin and a 5.5mm sleeve. The center of the jack
(sometimes known as the pin or tip) is often connected to the positive supply and the outside of the barrel
(sometimes called the sleeve) is connected to the negative. This is not the case for all supplies though,
so check the manufacturer’s datasheet before connecting. The image in Figure 4-4 is a DC power supply
showing that it is a positive center supply.

 Figure 4-4. DC power adapter center positive indicator

 Figure 4-5. DC power adapter to screw terminal

 You also need to check that it is a DC supply, as they are also available as AC power supplies. When
choosing a power supply, you will need to ensure that the voltage matches the required voltage and that
it is capable of supplying at least as much current as is required. There is no harm in connecting a power
supply with a higher current rating than is required, as the power supply will only provide the current that
the circuit requires, but you should not use a power supply with a higher voltage unless you know that it is
within the tolerance of circuit power supply requirements.

 You can get a female connector for mounting into an equipment enclosure or to connect to a trailing
lead. These normally require soldering, but you can also buy a female connector to screw terminal, which is
particularly useful for connecting to a breadboard when testing a circuit. Figure 4-5 shows an example of a
DC power adapter to screw terminal.

 As with the USB power supply, I recommend only using a power brick from a reputable supplier that
meets the appropriate safety requirements. The output power supply from a power brick is normally low
voltage and safe from electric shock. (typically 5 to 12V). A good-quality power supply should also include
short-circuit overload protection, but you should not rely on this protection. Ensure that any circuits
connected to these supplies do not draw more than the specified maximum current. As an extra precaution
you may want to include a fuse in your circuit, which I will explain later with the disco lights.

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

59

 Main Power Supply
 It is possible to create your own low-voltage power supply by building a power supply circuit that connects
directly to the main supply. I do not recommend this unless you know what you are doing.

 The main power supply in your home is dangerous. If you come into contact with a bare connection,
it can kill you through electrocution, or overloading a supply or wire could cause a fire. Unless you know
what you are doing, you should only connect equipment to the main power supply that already includes the
appropriate insulation and protection (such as a wall wart).

 ■ Caution Do not attempt to connect a homemade circuit directly to the main electricity supply unless you
know what you are doing—it is not worth the risk!

 Batteries
 I discuss using batteries to power the Raspberry Pi in more detail in Chapter 8 . But if it’s just an external
circuit that is being used, and the power requirements are quite low, batteries can be a good way of powering
a circuit. An obvious advantage of batteries is that they are portable and so make it easier to move your
project around, but do make sure that the batteries have sufficient charge. If the circuit isn’t working or
behaves differently from how you expect, it could be because the batteries need replacing or recharging.

 Brighter LEDs with a Transistor
 In Chapter 3 , you created some simple circuits that had LEDs and a resistor connected directly to the
Raspberry Pi GPIO ports. This worked well with a standard LED that uses only a small current (around 10mA
is usually sufficient), but when swapping for larger or brighter LEDs, the current needed to light the LED is
going to be higher. The maximum current that can be drawn from an individual Raspberry Pi GPIO port is
around 16mA. It will be even less if you have lots of devices connected.

 The LED I am going to use first is a 10mm white LED. This is a bright LED that you want to drive at
around 20mA to give off a good amount of light. This is more than the GPIO port can supply, so now it’s time
to look at adding an electronic component that can increase the amount of current flowing (amplify the
output). The component you will use is a transistor.

 ■ Note When referring to digital signals, we won’t necessarily know the actual voltage, which depends on
the individual components and the voltage that the circuit is supplied with. Instead we use the terms high and
low. A high logic level indicates that the voltage would be near to the positive voltage of the circuit (3.3V for the
Raspberry Pi GPIO) and low logic level means that it is near to 0V or ground. These are also sometimes referred
to as on for a high signal and off for a low signal.

 Transistor
 The transistor is a semiconductor device, which means that under some conditions it allows current to flow
(acts as a conductor) and in other conditions restricts the flow of current. It is this property that is important
in electronics and is the basis of most electronic circuits, including computer processors.

http://dx.doi.org/10.1007/978-1-4842-1898-3_8
http://dx.doi.org/10.1007/978-1-4842-1898-3_3

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

60

 The first transistor you will look at is known as a bipolar transistor. Specifically this will be an NPN
bipolar transistor (the NPN relates to how the transistor is made and as a result how it operates). The
transistor has three connections known as the collector, base, and emitter (represented by the letters C,
B, and E on the figures). When a small current flows between the base and emitter, it allows a much larger
current to flow between the collector and the emitter. The transistor is an analog component, so varying
the base current changes the corresponding collector current. By providing an appropriate signal, the
transistor can act as a digital switch. This is achieved by working at the two extremes of the transistor. The
first condition is where it is switched off, not allowing any current to flow through the collector. The other
extreme is where it is switched fully on, allowing a large current to flow through the collector. This is referred
to as using it as a transistor switch. The full on condition of the transistor is called the saturation region.
A circuit diagram of the transistor switch is shown in Figure 4-6 .

 Figure 4-6. Circuit diagram for a transistor switch

 You will notice that Figure 4-6 looks very different from the earlier circuits. Previously, you had a
breadboard layout that showed the physical appearance of the components and wiring. This figure shows
the components as symbols rather than showing their physical appearance and shows the connecting wires
as straight lines. This is known as a circuit diagram or schematic. You will look at circuit diagrams in more
detail later in this chapter—for now we will use the figure to show how the components are connected.

 The circuit shows two resistors labeled RB and RL, an LED labeled LED1, and a transistor labeled Q1.
The connection from the Raspberry Pi GPIO port goes through a resistor RB and connects to the base of
the transistor. When the GPIO port is switched on, a current flows through that resistor and between the
base and emitter of the transistor. This current switches the transistor on, allowing a larger current to flow

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

61

through resistor RL, the LED, and then from the collector to the emitter of the transistor. The power supply
used for the LED is from a 5V supply independent of the Raspberry Pi power supply, although the ground
(0V connections) needs to be connected together.

 When using a transistor as a switch, the main characteristics of the transistor that need to be
considered are the maximum current that it can switch, which is referred to as the collector current (usually
provided as I

C
), and the current gain of the transistor, referred to as h

FE
 . You also need to know about the

voltage between the base and emitter to work out appropriate resistors, although that is not necessarily a
characteristic that is used to decide on which transistor to use. You can find out lots of information about
electronic components from their datasheets. A detailed explanation of datasheets is provided in Chapter 11 .

 You could use a number of different transistors for this circuit, but I am looking at two different types:
the 2N2222 (in particular, the P2N2222A 1) and the BC548. These are both common transistors used for
hobby projects. You will use only one of these for calculating the appropriate resistors, but it will be possible
to use either in the circuit depending on which component you are able to buy. It will also provide a useful
comparison of different transistors, which can be useful when designing your own circuits in the future.

 First, check the suitability of these transistors. The maximum collector current for the 2N2222 is 600mA
and the BC548 is 100mA. So both of these are easily able to support the 20mA that you need to control the
bright LED.

 The gain is a measure of how much more current can flow through the collector compared to the
current through the base of the transistor. The actual value depends on a number of factors and conditions
at the time of manufacture. In the case of the 2N2222, it is an amplification factor of about 75 and for the
BC548 about 110. If you take the lowest of these, it means that either transistor can switch 75 times the
current through the collector compared to the base current. The 2N2222A is used for the rest of these
calculations, but due to the similarity between these two transistors, either transistor can be used in this
particular circuit.

 Calculating the Resistor Sizes
 You need to calculate the size of the two resistors. First let’s look at RL, which will protect both the LED and
the transistor from having too much current through them. If too much current flows through the LED, not
only is it a waste of energy, it could result in permanent damage.

 To work out the resistor size, you need to know the voltage dropped across the resistor. The voltage will
be the supply voltage minus the voltage dropped across both the LED and the transistor. The voltage drop
across the transistor varies depending on the manufacture and the current flowing through it. The voltage
between the collector and the emitter is referred to as V

CE(sat)
 on the transistor specification. The value is

approximately 250mV, which is the value you will use.
 To summarize, you have the following values:

• Supply voltage: 5V

• Voltage across the LED: 3.3V

• Voltage across the transistor: 250mV

 The voltage across the resistor RL is therefore 5V – 3.55V = 1.45V.
 To calculate the resistor value, you use Ohm’s Law, which you saw in Chapter 1 . To calculate resistance

then, you use V/I:

 1.45V/0.02A = 72.5Ω

 1 I will refer to this as 2N2222, but there are differences between the versions of this transistor. The specifications of
P2N2222A has been used.

http://dx.doi.org/10.1007/978-1-4842-1898-3_11
http://dx.doi.org/10.1007/978-1-4842-1898-3_1

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

62

 Using the next value up in the E12 series of resistors is 82Ω.
 You can now work out the actual current using the selected resistor to check that the current is

appropriate. Using Ohm’s Law, the current is V/R. This works out as 1.45/82 = 18mA.
 Alternatively, you could have used a 68Ω resistor, which would have worked out to 21mA. Again this

would have been okay because it would still have been within the 30mA maximum that the LED could use.
This is a fairly common occurrence within digital circuits where it is possible to use components whose
values are near the desired value.

 To work out the size for RB, you need to work out the current you want to flow into the base of the
transistor and then choose an appropriate resistor. The current you need at the base is worked out using the
collector current divided by the gain (h

FE
). Use the h

FE
 from the 2N2222A as this has the lowest gain. This

gives 20mA/75 = 0.3mA.
 You normally use a factor of 10 to ensure that you are well above the required base current. This ensures

that you are in the saturation region where the power lost within the transistor will be at its minimum.
Multiplying by a factor of 10 gives you 3mA, which is the current you need at the base of the transistor.

 The following is now needed to calculate the value for the base resistor:

• Voltage from the GPIO pin: 3.3V

• Voltage drop across the transistor: (V
BE

) 0.7V

 Voltage across the resistor will be the GPIO on voltage minus the voltage dropped in the transistor.
3.3V – 0.7V = 2.6V.

 You require 3mA, so using Ohm’s Law to calculate the resistor gives 2.6V/0.003A = 866ohms. The
nearest value is 1kohm using the next higher value or 820ohm for the next lowest. I have used 1kohm, which
gives around 2.6mA to the base of the transistor. Although the desired value is 3mA, this included a factor of
10, so we will still be well within the saturation region.

 So the values used are:

• RL = 82Ω

• RB = 1kΩ

 The resulting circuit layout on a breadboard is shown in Figure 4-7 .

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

63

 You will see that I have used an external power connector in this circuit. You could use any of the other
power supplies discussed earlier. This needs to be connected the correct way, with the red wire going to the
top of the breadboard being from the positive supply of the power connector. Also note the orientation of the
transistor, which is connected with the flat part of the transistor facing forward in Figure 4-7 . The pin layout
for the 2N2222 and the BC548 is the same, although that is not the case for all transistors. You will also need
to ensure that the LED is connected correctly.

 This uses the same GPIO port that you used in the first Scratch LED circuit, which is GPIO port 22
(physical pin 15). If you want to try this as a brighter version of the LED circuit, you can run the code from
Chapter 3 (see Figure 3-7). Next, you will learn to develop some code in Python, which is a more powerful
programming language.

 Introduction to Python
 Python is a popular programming language that is used throughout education and industry. Python, a text-
based language, involves writing the code that is run by the Python interpreter. The examples used here will
be run from the command line, but you will create a GUI (graphical user interface) application in Chapter 6 .

 There isn’t room to provide a full guide to Python in this book, but this chapter covers some of the
basics to get you started. If you haven’t done any programming in Python, you may want to check out one of

 Figure 4-7. Breadboard layout for the bright LED circuit

http://dx.doi.org/10.1007/978-1-4842-1898-3_3
http://dx.doi.org/10.1007/978-1-4842-1898-3_6

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

64

the many books dedicated to teaching Python programming, such as Python Programming Fundamentals
by Kent D. Lee (Apress, 2015).

 There are two versions of Python installed on the Raspberry Pi. The first is version 2.7, which is that
last version of the “old” Python, and Python 3, a newer version that is not compatible with the earlier
version. There is a lot of software that has been written that will run with both versions, but code written
for one version may not work with the other. I encourage using Python 3 because that is clearly where the
future of Python lies and that’s what the examples in the majority of this book use. At the time of writing
the latest version on the Raspberry Pi is 3.4.2. Future versions are expected to maintain compatibility with
version 3 for the foreseeable future.

 As mentioned, Python is a text-based programming language. If you are used to a block-based
programming language like Scratch, this can be a big jump at first, but it shouldn’t take you long to get used to
it. Once you’ve learned the basic rules, the additional flexibility will increase the scope of what you can achieve.

 To get started with Python, I recommend using its IDLE (Integrated Development Environment). You
can then go on to develop using other editors in the future, but IDLE includes some features that let you run
your code directly. IDLE can be launched from the start menu, under Programming, as shown in Figure 4-8 .

 Figure 4-8. Launching Python 3 IDLE

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

65

 Launching IDLE for Python 3 opens the Python shell. This is an interactive environment where you can
enter commands that will run directly. This can be useful to test a short snippet of code or to understand
what a certain function does, but for most programs we will want to run the IDLE text editor. Choose
File ➤ New File to launch the text editor window. I suggest leaving both windows open and visible when
programming, as the shell window will be used to test your program. Figure 4-9 shows the Python shell on
the left and the programming text editor on the right.

 Figure 4-9. Python shell and text editor

 The advantage of having both of these open is that code can be entered into the text editor, saved, and
then tested by using Run Module from the Run menu. Any output or error messages will be displayed in the
Python shell window.

 You write commands in the text editor using a similar language to what you have already seen in
Scratch. There are a few syntax rules that need to be followed.

 The first is that indentation and white spaces count. This is one of the most noticeable things in Python
as very few other languages are as strict in enforcing rules about spaces. In most other languages, such as
C and Java, any spaces or tabs at the beginning of a line are ignored. In Python they are used to determine
whether you are inside an if statement, loop, or function. Python 3 is pretty fussy about whether they are
tabs or spaces as well. By default, IDLE replaces each tab with four spaces, which is a good way to deal with
the spaces. Python will ignore any completely blank lines (that have only whitespace characters).

 Another thing about Python (and most other programming languages) is that it is case-sensitive. This
means that if you call a variable MyVariable , but then refer to it later as myvariable , you will not be referring
to the same variable and will likely cause the application to give an error message or even crash.

 Any line that ends with backslash will continue to the next line. So a command like

 sum = value1 + \
 value2 + \
 value3

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

66

 will add all three entries together even though they are split across multiple lines. It is very rare that I use this
feature in the code I write, but it is useful in a book where there is a limited page width to fit the code in.

 Finally, for now, the # sign is used to mark something as a comment, which is ignored when the
program runs. This is very useful when you need to maintain your code in the future, because although it
may be fresh in your mind when writing, code without comments can be a challenge to understand if you
need to make changes to your code in the future.

 I introduce more elements of Python programming in Chapter 6 .

 Getting Started with Python GPIO Zero
 Controlling the GPIO ports involves some fairly complex code that is specific to the Raspberry Pi. Fortunately
this has already been written for you and made easy to use thanks to the GPIO Zero Python module. The module
actually uses another module called RPi.GPIO , which could be used by itself instead, but GPIO Zero makes it
much easier to use. The list of rules used to communicate with the GPIO Zero code is known as an Application
Program Interface or API. I won’t go into the full details, but a summary of the API is discussed next.

 The module needs to be loaded from within the Python programming using import gpiozero . To
import a specific set of instructions, use from gpiozero import < name > . The < name > should be replaced
with the name of the feature you want to import (such as LED) or with * to mean import everything in that
module. If the import uses the first format (without the from instruction), all references to the module need
to be prefixed with gpiozero . For example, to refer to an LED, you need to use gpiozero.LED . If the code
uses the latter from format, there is no need to include the reference to gpiozero .

 There is a list of supported devices at http://pythonhosted.org/gpiozero/ .
 Here is a simple program using GPIO Zero that will flash an LED on and off. Note that although the

name is LED, this will just turn a GPIO pin on and off. The LED function can therefore also be used to control
some other circuit that needs a simple on and off output and so will work with the transistor switch circuit.
You could instead replace LED with OutputDevice or GenericOutputDevice , but the code looks simpler if
you stick with LED:

 from gpiozero import LED
 import time

 LED_PIN = 22
 led = LED(LED_PIN)

 print ("on")
 led.on()
 time.sleep(1)
 print ("off")
 led.off()
 time.sleep(1)
 print ("on")
 led.on()
 time.sleep(1)
 print ("off")
 led.off()
 time.sleep(1)

http://dx.doi.org/10.1007/978-1-4842-1898-3_6
http://pythonhosted.org/gpiozero/

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

67

 In IDLE, create a new file and enter the previous code. Save it as a file called flashled.py and then
choose Run Module from the Run menu. This is shown in Figure 4-10 .

 This code is also available for downloading. The flashled.py file is in the gpiozero folder.
 In Figure 4-10 , the code is shown in the editor on the right. The output from running the program is

shown on the left. Obviously the main output is in the form of the LED flashing on and off, but I have also
included some print statements so that it shows the expected status on the screen. The LED should flash
twice, coming on for one second and then off for one second each time around the cycle. If the LED does not
flash as expected, check that the wiring matches Figure 4-7 and, in particular, check that the transistor and
LED are correctly connected.

 The code starts by importing two modules. The first is gpiozero and the second is the time module,
which is used to add a delay between the instructions. When gpiozero is imported, it uses the from format,
which means that whenever you want to refer to the LED, you can just call it LED. The time import just
uses the import time instruction and so whenever you want to use anything from within the time module,
it needs to be prefixed with time to tell Python to look in the time module. For example, you can use
time.sleep , which means use the sleep function inside the time module.

 The next entry creates a variable called LED_PIN and stores the value 22. This is to store the GPIO port
you are using. It’s usually a good idea to list the LED pin assignments at the beginning of a program so that if
at a later date you change which port the circuit is connected to then you only need to change it in one place.
You can then refer to LED_PIN throughout the code, which will be replaced by the value 22 when the program
runs. You will note that this is all in capital letters, which is a convention used for constant values that won’t
change during the program. It will still work if you don’t use capital letters, but this is a useful convention
that others will understand and will also act a reminder to not change the value, as it is a constant.

 You then create an LED object using LED from the gpiozero module. I have called it led (in lowercase),
which is how it will be referred to when you want to turn its output on and off. This will set the port, entered
within the brackets, as an output port and allow you to change the state of the output.

 Figure 4-10. Running the GPIO Zero LED code

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

68

 Next is the code that changes the status of the LED. First a print statement sends a message to the shell
where the program is running. This is not necessary but can be helpful when testing because it tells you
whether the LED should be on or off.

 The lines led.on() and led.off() turn the output pin on and off as appropriate, and time.sleep(1)
tells the computer to sleep (do nothing with this particular program) for one second.

 Using a While Loop
 The previous code relied on individual entries to turn the LED on and off each time. If you wanted the LED
to keep flashing for a reasonable length of time, this would need a lot of repeated code. So instead you can
change it to a while loop that will keep running. You will use a while True loop, which will run the loop
forever. This is similar to the forever loop in Scratch. Here is the updated code:

 from gpiozero import LED
 import time

 LED_PIN = 22

 led = LED(LED_PIN)

 while True:
 print ("on")
 led.on()
 time.sleep(1)
 print ("off")
 led.off()
 time.sleep(1)

 The text within the while loop is indented. This tells Python that those instructions are within the
 while loop. If they were not indented, they would not be within the loop and so would not run since Python
will never exit the loop. To stop the program from running, you need to be in the command shell and press
Ctrl+C. This code is also in the source code for the book; it’s called flashled2.py .

 Circuit Diagram and Schematics
 For most of the circuits so far, I have shown the breadboard layout. This is a good way to see how to wire up
the circuit, but can make it quite difficult to see how the circuit works. For example, in Figure 4-7 you had
a transistor on the breadboard but without knowing which pin of the transistor is the base, collector, and
emitter, it’s difficult to visualize how the transistor works within the circuit. It is also very difficult to show
larger circuits using a breadboard layout as the wires crossing each other could end up looking like a bowl
of spaghetti.

 Instead, you need a diagram that shows how the components fit together without showing the actual
physical positioning; as mentioned earlier, this is called a circuit diagram or a schematic. In a circuit
diagram, the components in the circuit don’t look like the physical components, but instead are replaced
with circuit symbols. The circuit diagram shows the components as symbols connected with straight lines.
These lines are generally replaced with wires or copper tracks on a PCB.

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

69

 The best way to understand circuit diagrams is to look at some. The first, in Figure 4-11 , shows the first
LED circuit from Chapter 1 both as a circuit diagram and as the breadboard layout you used previously.

 As you can see, these look very different, although if you follow the lines around the circuits, you will see
that the same components are used and that they are connected in the same order on both circuits.

 Unfortunately, different people use different symbols when creating their diagrams, although
sometimes there are only minor variations. There are a number of different standards that provide
recommended symbols. The two most common standards are an international standard IEC 60617,
commonly used in Europe, and the ANSI standard Y32.2, commonly used in the United States. One of
the biggest differences between these symbols is the resistor. Figure 4-12 shows two different symbols for
resistors—the one on the left is the U.S. ANSI symbol and the one on the right is from the international
standard IEC 60617.

 Figure 4-11. Simple LED circuit as circuit diagram and breadboard layout

 Figure 4-12. The resistor circuit symbol using the U.S. and international standards

 A selection of different symbols for the LED are shown in Figure 4-13 . Unlike the resistors, which are
very different, the differences between these are much more subtle.

 Figure 4-13. Different symbols for the LED

 The variations shown in the LEDs are fairly common, with a few other components which may or may
not be filled, or may have a circle around the symbol.

 For this book, most of the symbols are the ones used by the Fritzing application (explored more in
Chapter 8). The components in Fritzing are based on the U.S. circuit symbols, so we will be using the U.S.
resistor symbol. I have made a few deviations for some components. In particular I have opted to use a
specific symbol for a pushbutton switch, which differs from the generic switch symbol used by Fritzing.
Some of the most common symbols that are used in this book are shown in Figure 4-14 .

http://dx.doi.org/10.1007/978-1-4842-1898-3_1
https://en.wikipedia.org/wiki/American_National_Standards_Institute#American National Standards Institute
http://dx.doi.org/10.1007/978-1-4842-1898-3_8

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

70

 Figure 4-14. Common circuit symbols

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

71

 Each of the symbols is briefly explained in the following bullets, with more details of the actual
component provided in Appendix B.

• You have already seen the resistor throughout the book. The variable resistor adds a
third connector, which can be moved along the length of the resistor, thus providing
a different resistance value.

• A diode only allows current to flow in one direction. The symbol shows the direction
of the current going from the positive end of the component (anode) on the left to
the negative end (cathode), which is on the right. The LED (light emitting diode) is a
specific version of the diode that gives out light when the current flows.

• The switch symbol can be used for any type of switch, although sometimes different
symbols are used for different types of switches. The pushbutton switch symbol is
sometimes used for switches that are closed only when the button is being pressed
and then open when the button is released.

• You have already come across the NPN transistor in Figure 4-6 . There is another
variation, called the PNP transistor, which relies on the current flowing out of the
base rather than into the base. The base (B), collector (C), and emitter (E) are shown
on the symbol, but are not normally shown in a circuit diagram.

• The MOSFET is explained later in this chapter. The drain (D), gate (G), and source (S)
are shown on the symbol, although these are not normally shown on a circuit diagram.

• A battery symbol is shown. Many diagrams will just show this as a power supply
by indicating the voltage rather than specifically showing it as a battery. There is a
longer line for the positive terminal on the battery. The + symbol for the positive
terminal is sometimes included and sometimes not. The positive terminal will
normally be at the top of the diagram.

• The ground symbol is used to indicate the ground 0V connection of a power
supply. There may be multiple ground connections on a diagram. All the ground
connections are considered to be connected, which can reduce the number of lines
on the diagram.

• A capacitor is used to store electrical charge. They are available as non-polarized
capacitors, which can be connected either way around, or polarized capacitors,
which need to be connected the correct way around. It is important that polarized
capacitors are connected the correct way around as otherwise they can explode.

• Two different ways of showing an integrated circuit are shown. The first shows the
integrated circuit as a rectangle with each of the pins as connection into the symbol,
the model of the integrated circuit is shown in the center. Usually the pins are shown
in numerical order, although sometimes they are rearranged to fit in with the circuit.
The pin numbers are often shown especially when they are not in numerical order.
The pins function is shown inside the symbol using abbreviations. A common
abbreviation shown in the diagram is EN, which indicates an enable pin that turns
on the appropriate part of the circuit. For other abbreviations, you may need to look
in the specification to find the meaning of the pins.

• The other way for an integrated circuit to be shown is by its function. The non-inverting
buffer and inverting buffer are shown by their function. In this case, the power supply
connections to the integrated circuit are not shown, but will still need to be physically
connected. The circle at the end of the buffer indicates that it’s inverting, which means
that it will give a low output for a high input and a high output for a low input.

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

72

 Other circuits and boards, including the Raspberry Pi, are shown in a similar way to the integrated circuits.
 One more thing to be aware of is about how lines cross each other. In the past, it was common to have

a small bridge symbol indicating where a wire crossed another rather than joining. This was not so easy for
early CAD systems and so the convention changed and now two lines crossing are most commonly shown as
two lines crossing at 90 degrees to each other. Where wires are connected, they are shown with a filled circle
over the join, often referred to as a dot . The different types of crossing and connecting wires are shown in
Figure 4-15 . I have marked the first as my preferred style and the other as an alternative.

 Note that the two different styles use the same straight crossed line to mean the opposite. It is the
presence of either the dots or the bridge that indicates which style is being used.

 The circuit diagram for the robot soccer game is shown in Figure 4-16 . The Raspberry Pi is shown in the
center of the diagram with the components around it. The switches have been placed on the same side as
the GPIO ports that they connect to. The LEDs are both on the right even though the GPIO port that one of
them is connected to is on the left. This makes it easier to see that the inputs are on the left and the outputs
are on the right. The lines crossing at the top do not have a dot at the join, indicating that they cross and do
not join. The positive power supply is shown at the top and the ground connection at the bottom.

 Figure 4-15. Circuit diagram representation of crossing and connecting wires

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

73

 Brighter LEDs with Darlington Transistors
 The transistor switch is useful to switch loads that need more current than the Raspberry Pi GPIO ports can
provide, but it still has its limitations. For the next circuit, I have used a USB powered light, which provides
much more light than the single LED. Opening up the light, I can see that there are actually 10 LEDs and
their associated resistors, as shown in Figure 4-17 .

 Figure 4-16. Circuit diagram for the robot soccer game

 Figure 4-17. LED light with and without the top removed

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

74

 The USB light was bought from a discount retail shop rather than a specialist electronics supplier and as
such, no technical information was provided. Connecting to a 5V USB power supply the light draws around
500mA, although when it does the supply voltage also drops to around 4V.

 The BC548 is not able to switch to 500mA and so could not be used, but what about the 2N2222? The
transistor can supply the 500mA current you need, but you need to take into consideration the amount of
base current needed to switch the transistor into saturation.

 In the previous LED example, you needed around approximately 3mA to switch the 20mA required for
the bright LED, so to switch 500mA, you will need approximately 25 times that value, which is 75mA. That’s
much more than the 16mA that the GPIO port can provide.

 If a transistor can increase the current then perhaps you can just add a second transistor to increase the
current a second time. The combination of two transistors to increase the gain is known as a Darlington pair.
The collector for each transistor is connected and the emitter from the first stage is used to provide the input
to the second transistor’s base. This is shown in Figure 4-18 .

 Figure 4-18. Darlington pair

 You could make this up using two 2N2222 transistors, but a Darlington pair is also available in a single
package usually known as a Darlington transistor. The particular model used in this circuit is the BD681.
The specification of the BD681 gives the following values:

• V
BE

 is 1.5V

• V
CE

 (sat) is 1.5V

• h
FE

 (gain) is 750

• I
C
 (maximum collector current) is 4A

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

75

 These values can be used in the same way as a single transistor. Note that the voltage required at the
base and the voltage dropped across the collector and emitter are both noticeably higher than a single
transistor, but so is the gain. The maximum collector current is also much higher. Darlington transistors
typically do have a high maximum collector current, although you can also get power transistors that can
switch this amount of current as well.

 The circuit diagram for the Darlington transistor light is shown in Figure 4-19 .

 Figure 4-19. Darlington light circuit

 For this circuit, I have shown the LEDs and resistors that are inside the light, using a dashed box. This
is done to show which parts are within the USB light rather than in the circuit I created. Due to space, I have
only shown five LEDs but there are actually 10 within the light.

 There is a potential problem with this circuit. The resistors in the LED light will have been calculated
assuming a 5V power supply connected to the light. But assuming you stick with a 5V supply, with a 1.5V
drop across the Darlington transistor, you will be running the light at 3.5V for the total light. Let’s perform
some quick calculations to check this.

 The resistors in the light are labeled 180, which indicates that these are 18Ω resistors (18 x 10 0).
Assuming a 50mA current through each LED and associated resistor, this works out as 0.9V (18 x 0.05)
dropped across the resistor. There is also some resistance in the USB lead of a little over 3Ω. Although 3Ω
does not sound like it will make much difference, the lead carries the full 500mA total current, which works
out at about 1.5V dropped within the lead. After rounding the figures, you can work out that the forward
voltage of the LEDs is around 3A, which I verified using a multimeter. (Multimeters are explained in detail in
Chapter 10 .)

http://dx.doi.org/10.1007/978-1-4842-1898-3_10

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

76

 Based on the 1.5V voltage dropped across the Darlington transistor, will you still have enough to the
light the LEDs? If not, what can you do about it?

 It turns out that in practice this does still work, and there is only a small drop in the brightness. When
switched using the Darlington transistor, due to the voltage dropped across the transistor, the current
flowing through the LEDs is less than when it is connected direct to the power supply. This means that the
voltage dropped within the lead and resistors will be lower and there is still sufficient current to light the
LEDs. It appears that you can use the Darlington transistor. There is a risk that, due to the tolerance of the
components used, it may not work for every LED light.

 ■ Caution When designing circuits for your own pleasure, you can often “get away” with working outside
of the specified range. This is something you should be much more cautious of if you’re designing a circuit for
commercial purposes.

 So how do you ensure that it will work?
 You could remove the resistors altogether and replace them with a direct link or a zero ohm resistor,

which would help bring you closer to the original current, as you would just have the resistance within the
lead. This is generally a bad idea unless you are going to permanently attach the lights to the circuit. If you
leave the USB connector on the end, there is a risk that someone could plug it into a computer or other
power supply and without the resistors it could attempt to draw too much current, thus damaging either the
USB light or the power supply.

 The safe solution is to increase the power supply to accommodate for the voltage dropped in the
Darlington transistor. If you replaced the 5V power supply with a 6.5V power supply (if one was available),
this would allow the full 5V for the USB light. A more common power supply is 7.5V, but then you’d need to
add a further resistor to reduce that by the extra 1V, which would again be a waste of energy.

 As this works in practice using a 5V I’ve just worked all the calculations based on 5V. To calculate the
appropriate resistors, you can use the same calculations as for the standard transistor switch circuit, but
substitute the equivalent values for the Darlington transistor. As you already have the resistance for the
LEDs, it is just RB that you need to calculate.

 To work out the size for RB, you first need to work out the current you want to flow into the base of
the transistor. The current you need at the base is the collector current divided by the gain (h

FE
). This gives

500mA/750 = 0.7mA.
 It’s a good idea to use a factor of 10 to ensure that you are well above the required base current. This

ensures that you are in the saturation region where the power lost in the transistor will be at its minimum.
 Multiplying by a factor of 10 gives 7mA, which is the current you need at the base of the transistor. The

voltage dropped across the base to emitter is 1.5V. This gives 3.3V – 1.5V = 1.8V dropped across the resistor.
 Again using Ohm’s Law to work out the resistance from the voltage and the current, you have:

 R = V/I
 1.8/0.007 = 257Ω

 A suitable resistor value (using the E6 series) is therefore 220Ω.
 The BD681 Darlington Transistor comes in a different package than the transistors used previously.

The pins are also in a different order. Figure 4-20 shows the pin layout for the BD681, shown with the label to
the front.

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

77

 Figure 4-20. BD681 Darlington Transistor pinout

 This circuit uses the same GPIO port as used in the previous examples, so it will work with the existing
code. Remember that GPIO port 22 is physically pin 15 and that the ground needs to be connected to an
appropriate pin, such as pin 6.

 Such a bright light is more useful as a time-delay light. With an appropriate delay, it can be used as a
time delay nightlight or a really bright egg timer. The light will turn on when a switch is pressed and then off
again after a set delay; for that you need an input, which you will add next.

 Reading a Switch Input with Python GPIO Zero
 I’ve added a pushbutton to the circuit using the same switch configuration used in Chapter 3 . This gives the
updated circuit diagram shown in Figure 4-21 .

http://dx.doi.org/10.1007/978-1-4842-1898-3_3

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

78

 Detecting and handling the button is easy in the same way that Python GPIO Zero makes it easy to turn
an LED on and off. The first thing you need to do is import Button from the gpiozero library. This can be
done in the same was as done previously, with an additional line: from gpiozero import Button

 To save on typing and make the code a little shorter, you can combine these into a single line, as:

 from gpiozero import LED, Button

 You then create a button as button = Button(GPIO_Number) , which is very similar to what you did with
the LED. By default, GPIO Zero assumes that a button should have the pull-up resistors enabled, which is
exactly what you want. If you wanted to use pull-down instead, you would add pull_up=False as a second
parameter to the Button function.

 There are a few different ways to then detect whether the button is pressed or not. The first checks for
the is_pressed state of the button. If the button is pressed down, this gives a True value, if not then it gives
a value of False . The way that you will use it here though is a wait_for_press() method, which pauses the
execution of the code until the button has been pressed. You then turn on the LED and use time.sleep() to
wait for a set delay period. The LED is turned off again and the while loop starts again. I’ve also added some
comments (prefixed with a #) to explain what the constants are used for.

 Figure 4-21. Darlington light circuit with switch

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

79

 The complete code is as follows:

 from gpiozero import LED, Button
 import time

 # GPIO port numbers for the LED and Button
 LED_PIN = 22
 BUTTON_PIN = 10
 # Time to keep the light on in seconds
 DELAY = 30

 led = LED(LED_PIN)
 button = Button(BUTTON_PIN)

 while True:
 button.wait_for_press()
 led.on()
 time.sleep(DELAY)
 led.off()

 This code is also available in the source code to accompany the book. The file is called ledtimer and it
is stored in the gpiozero folder.

 When it runs, this will wait until the button is pressed, turn the LED on for the set period of time
(30 seconds), and then turn it back off again. If the button is held down or pressed again, it will turn the LED
back on again for a further period. Press Ctrl+C to cancel and stop the program from running.

 One of the disadvantages of the Darlington transistor is that the voltage drop between the collector and
emitter is fairly high. This results in quite a bit of wasted energy in the transistor. In the next example, you
will see an alternative that can be a more efficient way of switching bright lights.

 Disco Lights with MOSFETs
 Now to get even brighter! The LED light you used in the last project was around 2.5W (watts), but in this one
you are going to look at 5W LEDs. Not only that, you are going to have four of them with 20W of power being
controlled from the Raspberry Pi.

 First, I explain power , which is a measure of the amount of energy being used. Chapter 3 looked at
voltage, which indicates the amount of potential energy that available, and current, which is the flow of
electrical charge around the circuit. If you combine these, then you know how much energy is being used,
which is measured as a watt and denoted by the letter W. The formula for working out the amount of energy
used in a DC circuit is

 P = V x I

 where P is the amount of power in watts, V is the voltage in volts, and I is the current in amps.
 The LED used previously was designed for a 5V supply and used 500mA (0.5A), so this gives 5 x 0.5 = 2.5W.

This is the total power used by the light, which includes the power that is wasted in the resistors and the cable.
 The lights I am using here are PAR 16 theatre spotlights, which I use as disco lights for a mobile DJ setup.

The lights are shown in Figure 4-22 , and they include different colored gels in front of the lights so that each
light is a different color.

http://dx.doi.org/10.1007/978-1-4842-1898-3_3

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

80

 The PAR 16 spotlights are available as two different types. Some are designed for main electrical voltage
using GU10 light bulbs, and others are designed for low 12V operation using MR16 light bulbs. The following
circuit is intended for the 12V light bulbs only.

 ■ Caution The circuit used here is only suitable for low voltage (12V) bulbs. Do not attempt to use this circuit
to control bulbs that are designed to be connected to the main electricity.

 Besides choosing the correct spotlights, you will also need to ensure that you have appropriate bulbs.
The bulbs need to be MR16 LED bulbs that can be powered using 12V DC. These spotlights are normally
intended to be connected to a 12V AC (alternating current) supply rather than DC (direct current), but most
MR16 LED bulbs will work with either AC or DC. You may want to check with the technical information for
the LEDs that they are suitable for use with DC before purchasing them. The photo in Figure 4-23 shows
some of the bulbs I have tried, which clearly say 12V AC/DC on the packaging, indicating they can work
with either. You can’t power halogen bulbs using this circuit because they need a lot more power, typically
between 25W and 50W.

 Figure 4-22. PAR 16 spotlights used as multi-colored disco lights

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

81

 Figure 4-23. MR 16 LED bulbs which work with 12V AC/DC

 Figure 4-24. Power brick for the disco lights

 The one risk with using such a powerful power supply is what happens if there is a problem with the
circuit? Most good-quality power supplies should have some kind of overcurrent or short-circuit protection,
but it does mean that you are able to provide 120W of power into a circuit before that kicks in. I therefore
recommend adding your own fuse or protection into the circuit. This should be rated above the maximum
current that you expect to draw, but less than the total power output of the power supply. I use a polyfuse
in my own setup, which is a self-resetting fuse. Effectively the fuse will break the circuit when the current
is exceeded, but when left to cool will then reset and work again. The fuse is installed between the positive
connection on the power supply and the rest of the circuit.

 Another thing you are going to need is a fairly powerful 12V DC power supply. The one that I am using
is a replacement for an LCD monitor. It is a 12V DC power brick that’s able to provide up to 10A, which is
120W. This is more than enough power. The power brick is shown in Figure 4-24 .

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

82

 You now have the lights, the bulbs, and a power supply, so the next thing you need is an electronic
circuit. The first thing you need to look at is the amount of power you are going to control. The LED
packaging states 5W, but looking at the technical specification (which varies between manufacturers) then
the current draw is actually about 625mA, which is 7.5W. This looks like the rating on the packaging is based
on the amount of energy that is used to create the light and the rest is lost as heat energy. This is much less
energy wasted than with an incandescent or halogen bulb, but you need to use the actual power used.

 You could use the same Darlington transistor circuit used previously. At 625mA this is only a little more
than the previous example where you had a current of 500mA, but as I mentioned, the Darlington transistor
does have a relatively high voltage drop. Instead, you are going to see how to use a MOSFET transistor.

 Although earlier electronic circuits were based around bipolar transistors, MOSFETs are now more
commonly used. One of the main advantages of the MOSFET over the bipolar transistor is that it can be
controlled with much smaller currents, which is more efficient, particularly for use within integrated circuits.
In this case, the voltage drop is also lower and generally more efficient than the Darlington transistor. For
this particular MOSFET and 5W LEDs, you are looking at about 0.2V dropped across the MOSFET, which for
a 12V supply is negligible.

 The MOSFET switch circuit is shown in Figure 4-25 . This uses an IRL520 MOSFET transistor.

 Figure 4-25. MOSFET switch circuit

 You will see from the circuit diagram in Figure 4-25 that the terminals of the MOSFET are labeled G, D,
and S. This refers to the gate (like the base), drain (like the collector), and source (like the emitter). Whereas
the bipolar transistor was turned on by a current flowing into the base, the MOSFET instead needs a positive
voltage at the gate to turn it on and a low voltage at the gate to turn it off. The resistance between the gate
and source is very high and so only a tiny current will flow. You do not need to worry about any gain within
the MOSFET, as setting the output high is enough to turn the MOSFET on.

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

83

 Figure 4-26. Disco light circuit

 In theory, the high internal resistance within the MOSFET would mean that you didn’t need the resistor
RG at all, but in reality the MOSFET behaves differently when it is first switched on, allowing a larger initial
current to flow. You should provide a suitable resistor to reduce this rush of current.

 This resistor just needs to be enough to protect the Raspberry Pi GPIO port, so assuming 3.3V output
and 16mA maximum current, you have the resistance as 3.3/0.016 = 206Ω. So I have used a 220Ω resistor.

 As the LED unit is designed to be connected directly to a 12V supply, you don’t add your own resistor
for RL as that is already included within the LED. So there are only two components needed for each LED:
the switch and the resistor that goes between the GPIO port and the gate of the MOSFET.

 This completes a single LED, so you just need to choose the GPIO ports to use as outputs. I used the
following, which was mainly because I had an LED board that already used those ports so I could use that
board to test the code without needing to connect all my disco lights:

• GPIO 4 (pin 7)

• GPIO 17 (pin 11)

• GPIO 23 (pin 16)

• GPIO 24 (pin 18)

• Ground (pin 9)

 The completed circuit is shown in Figure 4-26 .

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

84

 There are a few things to note about this diagram. First, the device shown as Fuse1 is a self-resetting
polyfuse used to protect against someone connecting an inappropriate bulb such as a halogen bulb. For
simplicity I have only shown the LEDs as a single LED and ignored their internal resistance. This is designed
for use with 12V LEDs only and connecting a standard LED in this configuration would most likely result in
damage to the LED and possibly other components.

 You may also note that the circuit symbol of the MOSFET is slightly different from the one used
previously. This circuit symbol is the one used on some of the MOSFETs in Fritzing, which shows that there
is an internal reverse biased diode within the MOSFET. This is still the same component. This is another
example of how circuit symbols can vary slightly.

 Light Sequence Using a Python List (Array)
 Let’s now turn our attention to the code to make the lights flash in sequence. In this code, you will create a light
sequence that goes from left to right. To achieve this, you’ll track the GPIO ports and the update the lights using
arrays, or in this case a slightly simplified version known as a list. Python does also have support for a specific
module for an array, which can provide more efficient code for certain data, but a list is more versatile.

 A list is a data structure that can hold the value of multiple variables. So instead of having individual
variables called light1 , light2 , light3 , and light4 , you can have a single list called lights which has four
entries, one for each of the lights.

 Before you start, though, one thing to consider is that computers start counting from 0 and therefore the
first element in the list will be at address 0. Scratch does things a little differently as it is aimed at a younger
audience, so if you have used a list in Scratch then you may have started at 1, but in Python and just about all
other programming languages, you start at 0.

 You’ll now look at how to create the first list, which holds the GPIO port numbers for each of the LEDs:

 LIGHTGPIO = [4, 17, 23, 24]

 The square brackets are used to denote this as a list (although not strictly required by Python). This
creates a list called LIGHTGPIO (in uppercase to signify that these won’t change later in the code). Inside
this list are four values, one for each of the lights. These can be referred to in the code later by the address
position. So to access the GPIO number for the first entry which has value for, use the following:

 LIGHTGPIO[0]

 To access the second entry (counting from 0), you use LIGHTGPIO[1] . Python can store much more than
just numbers in a list. In fact, you can use a list to store all the instances of the GPIO Zero LEDs. So this give you:

 lights = [LED(LIGHTGPIO[0]), LED(LIGHTGPIO[1]), LED(LIGHTGPIO[2]), LED(LIGHTGPIO[3])]

 That code creates a list of instances of the LED object using the appropriate entry from the LIGHTGPIO
list for the port number.

 So now you can create some code that will flash each light in turn as a light chaser. Copy the following
code and save it in a file called disco-chaser.py . The file is also included in the source code for the book:

 from gpiozero import LED
 import time

 # GPIO port numbers for the light
 #9 = gnd, 7 = GPIO 4, 11 = GPIO 17, 16 = GPIO 23, 18 = GPIO 24
 LIGHTGPIO = [4, 17, 23, 24]

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

85

 Figure 4-27. AC main to 12V AC transformer

 # Time between each step in the sequence in seconds
 DELAY = 1

 lights = [LED(LIGHTGPIO[0]), LED(LIGHTGPIO[1]), LED(LIGHTGPIO[2]), LED(LIGHTGPIO[3])]

 # Track our position in the sequence
 seq_number = 0

 while True :
 if (seq_number > 3):
 seq_number = 0
 for x in range (4):
 lights[x].off()
 lights[seq_number].on()
 seq_number = seq_number + 1
 time.sleep(DELAY)

 Based on the previous description, you should be able to follow up to the while loop. The while loop is
a True loop that will run forever (as long as the program is running). The first step within the loop is to check
to see if you’ve reached the end of the sequence. There are four lights, so 3 is the last entry in the list. If it is, it
resets the sequence number to 0.

 You then have a for loop, which runs the next line four times. This works by using range(4) , which
expands to four entries 0, 1, 2, and 3. So it runs the loop the first time with x set to 0, and then with x set to 1,
until it reaches the end of the fourth loop (number 3), when it exits from the for loop.

 The line lights[x].off() turns the light off for each light. It then turns just the one light on using
 lights[x].on() . So if you were on sequence number 1, this would turn on the second light.

 Finally, you increment the sequence number and wait for the set delay (1 second) before turning on the
next light.

 If you run the code, you should now see each light turn on in turn.

 Switching AC Lights Using a Thyristor and a TRIAC
 So far all the lights you have been switching have been LEDs using a DC power supply. The bulbs used in the
disco lights would normally be powered using an AC power supply—I used a DC power supply as it’s easier
to get a DC power brick suitable for a portable disco light controller.

 The main electricity coming into your home is AC. One of the biggest advantages of AC is that it’s fairly
easy to step the voltage up and down using a transformer. An example of a transformer designed for running
12V AC halogen lights is shown in Figure 4-27 .

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

86

 The first device you will look at for switching AC power supplies is the thyristor. This device acts as
a switch that allows a current to pass in one direction only when it receives a positive signal to its gate
terminal. Once triggered, it will normally continue to conduct as long as there is a forward current passing
through it, even if the gate is subsequently taken low again. This has limited use in a DC circuit, as it’s
difficult to turn off, but in an AC circuit, the current will change direction each cycle and so will turn off
whenever the current changes direction. By controlling when thyristors switch on, you can use them as
dimmers in lighting circuits.

 The disadvantage of a regular thyristor is that it works in only one direction, so instead you will look at
the TRIAC, which is a bidirectional thyristor. Effectively this is like two thyristors connected back-to-back,
but they can be turned on with either a positive or negative voltage to the gate and (assuming AC) turned off
with 0V at the gate. The circuit symbol for a thyristor and a TRIAC is shown in Figure 4-28 . The symbol on the
left is a thyristor and it has an anode and cathode appropriate to the direction of current flow. The one on the
right is a TRIAC. It shows the terminals as A1 and A2 as it can be connected either way around.

 Figure 4-28. Thyristor and TRIAC circuit symbols

 You could connect the TRIAC directly to the GPIO of the Raspberry Pi (with a suitable resistor), but this
would involve connecting the DC circuit to a common connection on the AC circuit. Instead you will use an
opto-isolator, which provides a way of controlling one circuit from another without any form of electrical
connection between the two. This is achieved by using an infrared or similar light that is controlled at one
side of the device, which switches a current at the other side. This is best understood by looking at the circuit
symbol in Figure 4-29 , which shows an opto-isolator with a phototriac output. The opto-isolator is controlled
by providing a DC voltage to the (infrared) LED on the left, which switches on the photo TRIAC on the right.

 Figure 4-29. Circuit symbol for a TRIAC opto-isolator

CHAPTER 4 ■ USING PYTHON FOR INPUT AND OUTPUT: GPIO ZERO

87

 The complete circuit with the TRIAC and opto-isolator is shown in Figure 4-30 .

 Figure 4-30. Circuit diagram of an AC TRIAC circuit

 This circuit is intended for use with low-voltage 12V circuits. With appropriate components, this circuit
could be used to switch the main electricity, but heed the warning earlier—this can be very dangerous and
you should only consider it if you really know what you are doing. In particular the circuit needs to be fully
enclosed and the TRIAC itself can have live main electricity connected to its outer body.

 More GPIO Zero
 This chapter looked at different external power supplies and how you can increase the small signal from the
GPIO output to switch a much bigger load. This also provided a first introduction to the Python GPIO Zero
module and how lists can be used to track multiple variables. From an electronics perspective, you learned
about the transistor, a two-stage transistor known as a Darlington transistor, and a MOSFET, which you used
to switch increasingly large loads. You also briefly looked at a TRIAC, which is used to control AC rather than
DC circuits.

 This chapter introduced the concept of circuit diagrams, which you will be using instead of the
breadboard layouts from the previous projects. You should now be able to decide on an appropriate position
on the breadboard and wire up the circuit based on the diagram.

 If you’ve followed along with the practical circuits, the first LED should have been easy enough to
buy and the second one can use any suitable USB-powered light. The final project does use a more
specialist light and power supply, but this can be replaced with the LED from one of the previous two
projects (and resistor RL in the case of the first project). Alternatively, you can look at substituting the LEDs
for other outputs such as a buzzer. You should avoid motors for the moment, as anything using electrical
motors needs some extra protection, which you will learn about in Chapter 8 .

 You will leave the disco lights for a while, but revisit them in Chapter 6 , when you look a little more at
the software, and in Chapter 11 , when I discuss the disco light printed circuit board that I created.

 In the meantime, I suggest that you look at creating code to create different light sequences. Can you
make two of the lights come on during each cycle instead of just one? Think of some other sequences and
write code that makes them light up the appropriate lights.

http://dx.doi.org/10.1007/978-1-4842-1898-3_8
http://dx.doi.org/10.1007/978-1-4842-1898-3_6
http://dx.doi.org/10.1007/978-1-4842-1898-3_11

89© Stewart Watkiss 2016
S. Watkiss, Learn Electronics with Raspberry Pi, DOI 10.1007/978-1-4842-1898-3_5

 CHAPTER 5

 More Input and Output: Infrared
Sensors and LCD Displays

 The last chapter looked at some inputs and outputs using Python GPIO Zero. This chapter will look at
working with some more sensors and outputs. Some of these can be used with the GPIO Zero module and
others use other Python libraries. These include detecting people entering a room, sending and receiving
infrared signals, and displaying output on an LCD display.

 PIR Sensor and Pi Camera
 In this project, you will learn how to use a PIR (passive infrared) sensor to detect someone entering a room
and take a photo of people as they enter. This could be useful for protecting a private possession or for
catching a photo of a pet or garden visitor.

 The source code for the PIR sensor and the camera is included in the source code for the book, in the
 pircamera directory.

 Controlling a Raspberry Pi Camera with picamera
 You will start by looking at connecting a Raspberry Pi camera and controlling it using the Python picamera
module . The Raspberry Pi camera is an official accessory that hooks up to a special connector on the
Raspberry Pi. It can be used on any model of the Raspberry Pi except for the early Pi Zero (which doesn’t
include the camera connector).

 The camera is mounted on a small printed circuit board and connects through a ribbon cable. The
connector provides direct access between the camera and the processor, which is more efficient than using
a webcam, which needs to connect through the USB protocol. Figure 5-1 shows the camera connected to a
Raspberry Pi.

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

90

 There are two types of cameras: the standard Raspberry Pi camera and the Pi NOIR camera. The
standard camera is the one used for most purposes. The Pi NOIR camera is the same but without the
infrared filter that is useful for night photography using an infrared light source. Using the Pi NOIR camera in
normal daylight will result in unusual colors in the photos.

 To connect the camera, lift the tab on the connector next to the HDMI connector. Insert the ribbon
cable into the connector with the blue side facing away from the HDMI connector. Push the tab back down,
which should hold the camera cable firmly into place.

 The camera module needs to be enabled through the Raspberry Pi configuration tool. From the menu,
choose Preferences and then Raspberry Pi Configuration. The camera is enabled through the Interfaces tab,
as shown in Figure 5-2 . After enabling the camera, you will need to reboot before you can use it.

 Figure 5-1. Raspberry Pi camera

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

91

 If you are running the Raspberry Pi headless, this can also be achieved from the command line:

 sudo raspi-config

 You can test whether the camera is working correctly using the following code:

 raspistill -o photo1.jpg

 This will take a photo and store it as photo1.jpg . If you have a screen directly connected to the HDMI port,
you will see a preview prior to the photo being taken; otherwise, you will just notice a delay before the photo.

 Assuming this command works, you can now proceed to controlling the camera through Python. You’ll
start with a simple program that takes a photo and saves it to the local computer.

 import picamera

 camera = picamera.PiCamera()

 camera.capture('/home/pi/photo1.jpg')
 camera.close()

 This is a simple and straightforward program. The first line imports the picamera module using the
standard import command. This means when you create the object from the picamera module, you need to
prefix the instruction with picamera .

 Figure 5-2. Enable the Raspberry Pi camera

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

92

 You then create an instance of the picamera object called camera . You can then call the camera
functions. The first is called capture . As you can probably guess, this captures a photo and saves it in a file
called photo1.jpg . Finally, you call close to clean up the resources.

 You have used the same filename as the previous command, so this will overwrite the file created
previously. You need a way of giving each file a new name. There are two simple ways you can do this. The
first is to add a unique number that you increment for each new file, which would involve keeping track of
the number. The alternative is to add the date and time to each file, which is what this example shows. You
will use the time module and the strftime method , which formats the time into a readable date format.

 The date format you’ll use is the ISO 8601 date format, which formats the date in order of the most
significant part of the date first. This provides the date in the form of year - month - day T hour : minutes : seconds .
The advantages of this date format are that ordering the files by filename will put them into chronological
order and that it’s a date format that is recognized anywhere around the world. An issue with using the ISO
date format is that the colon character is not allowed on some other operating systems. I used a hyphen to
replace the colon to make transferring to another computer easier.

 The updated code is shown here:

 import picamera
 import time

 camera = picamera.PiCamera()
 timestring = time.strftime("%Y-%m-%dT%H-%M-%S", time.gmtime())

 camera.capture('/home/pi/photo_'+timestring+'.jpg')

 camera.close()

 time.gmtime() gives the current time, which is in seconds since the UNIX epoch (1970). This is
converted to a string that’s stored in timestring . It is then included in the filename.

 There is one potential problem with this solution. The Raspberry Pi does not include a real-time clock.
If the Raspberry Pi has a network connection (wired or wireless), it will update the time of the Raspberry
Pi using network time servers. If the Raspberry Pi does not have a network connection (such as an outdoor
sensor to monitor wildlife), then the date and time may not be correct. The files can be renamed when
they are transferred to another computer for later viewing. You can test this now by saving the file as
 cameratest.py and running the following:

 python cameratest.py

 It will create a single photo each time it is run.

 Using a PIR Sensor as a Motion Sensor
 To detect someone in the room, you will use a Passive Infrared (PIR) sensor, usually known as a PIR motion
sensor. The PIR sensor detects infrared radiation given off in the form of body heat. The sensor detects body
heat moving across its view, and that can be used to detect the presence of a person or animal. There are a
few different sensors that can be used with the Raspberry Pi. The sensor used here is the HC-SR501. On the
sensor board is a small circuit that detects the body heat and triggers a high signal. A photo of the sensor is
shown in Figure 5-3 .

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

93

 The motion sensor is powered by 5V, but gives a 3.3V output signal, which is just what you need for
connecting to the GPIO port. The sensor needs to be connected to the ground, the 5V power supply , and
then the output to any GPIO port. This example uses GPIO port 4 (physical pin 7).

 The circuit is very simple for this and does not even need to connect to a breadboard. Assuming that
the PIR sensor includes male pins, this can be connected to the Raspberry Pi using female-to-female jumper
leads, as shown in Figure 5-4 .

 Figure 5-3. PIR motion sensor

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

94

 The wire connections to the PIR sensor are based on the terminals being positioned at the top of the
sensor, with the sensitivity and delay adjustment variable resistors located at the bottom.

 This particular PIR sensor is supported directly by the GPIO Zero module as a MotionSensor . The GPIO
Zero module also includes two functions specifically for this sensor and they can cause the program to wait
until the sensor is triggered, or alternatively cause the program to wait when the sensor is triggered and then
continue running after no motion has been detected for a set period of time.

 Again, you can make this easier by using the from import function :

 from gpiozero import MotionSensor

 The MotionSensor object can then be created by using MotionSensor and the GPIO port as the parameter:

 pir = MotionSensor(4)

 The methods are then wait_for_ motion or wait_for_no_ motion . An alternative is for your own code
to check for the value of motion_detected . The method you want is wait_for_motion , which will cause
the program to wait until the sensor is triggered. By default, this will wait indefinitely if there is no motion,
but you can instead add a timeout, which means that the program will continue to execute after that
timeout period has been exceeded. I have not included a timeout, but that could be useful if you wanted
to periodically check that the Raspberry Pi is still running even if there is no motion detected. I have also
included a delay to prevent the sensor from constantly triggering if there is someone present in the room.

 Figure 5-4. PIR motion sensor connected directly to the Raspberry Pi

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

95

 Here’s a simple test script:

 pir.wait_for_motion()

 A simple program that can be used to test the motion sensor is provided here:

 from gpiozero import MotionSensor
 import time

 # PIR sensor on GPIO pin 4
 PIR_SENSOR_PIN = 4
 # Minimum time between captures
 DELAY = 5

 pir = MotionSensor(PIR_SENSOR_PIN)

 while True:
 pir.wait_for_motion()
 print ("Motion detected")
 time.sleep(DELAY)

 Enter this code and run it to test that the PIR sensor is working. You should try running the code and
leaving the room and then re-enter the room to ensure it is working correctly. You may need to adjust the
sensitivity variable resistor if the sensor is not triggering properly.

 Using the PIR Motion Sensor to Trigger the Camera
 You now have the motion sensor and camera working, so it’s just a case of combining both parts of the
program. The code will wait for motion to be detected and then capture a photo of whoever or whatever
triggered the sensor. The files will have the date and time included in the filename.

 Here’s the complete source code for this:

 from gpiozero import MotionSensor
 import picamera
 import time

 # PIR sensor on GPIO pin 4
 PIR_SENSOR_PIN = 4
 # Minimum time between captures
 DELAY = 5

 # Create pir and camera objects
 pir = MotionSensor(PIR_SENSOR_PIN)
 camera = picamera.PiCamera()

 while True:
 pir.wait_for_motion()
 timestring = time.strftime("%Y-%m-%dT%H:%M:%S", time.gmtime())
 print ("Taking photo " +timestring)
 camera.capture('/home/pi/photo_'+timestring+'.jpg')
 time.sleep(DELAY)

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

96

 This code is primarily a merge of the PIR and camera programs listed previously. The main change is
for the camera code to be included in the while loop. The camera.close entry has also been removed, as you
want to continue capturing photos. Ideally this should still be closed when the program is terminated, but as
you are relying on using Ctrl+C then the close has been removed.

 The print statement now shows the time that the photo is taken. This is useful during testing, but can
be removed once the program is proved to be working correctly.

 The code is saved as pir-camera.py , which can then be run from the command line as:
 pir-camera.py

 One thing that can be useful, particularly if you’re installing in a remote location, is to have the program
start automatically when the Raspberry Pi is booted. This is explained in Chapter 6 , when you look at
controlling programs within Linux.

 Infrared Transmitter and Receiver
 For the next pair of sensors, you will look at an infrared transmitter and receiver pair. This will use a sensor
that can send and receive infrared signals that are used by home entertainment remote controls. In this
chapter, you will use it to receive signals from a remote control, which can be used as a way to send messages
to the Raspberry Pi. You will use the receiver to control a light using a remote control and provide the ability
to send remote control signals to an existing infrared device. You will then use this same circuit in Chapter 6
to control a Lego train and in Chapter 7 as a camera trigger for creating stop frame animation.

 Infrared Receiver
 The infrared receiver used here is the TSOP2438. This is an infrared receiver with built-in pre-amplifier. The
sensor has three pins connected to the supply, ground, and a sensor output, which can be connected to a
GPIO port on the Raspberry Pi. The sensor can take a supply voltage of between 2.5 and 5.5V. As you need
the output from the sensor to work with the 3.3V GPIO ports you need to connect it to the Raspberry Pi 3.3V
supply. It is recommended that a 100Ω resistor be used between the 3.3V on the Raspberry Pi and the supply
for the sensor and that a 0.1 μF capacitor be used across the supply voltage, although it should still work
without these. Details of common capacitor labeling is provided in Appendix C.

 This is the first time you have come across the capacitor , which is a device that can hold an electronic
charge. A capacitor is similar to a very small rechargeable battery, but stores the energy as electrical charge
rather than converting it to chemical energy. The reason for including the capacitor in this circuit is to
smooth the input power supply, because even small spikes can affect the operation of the sensor. This is
quite common in electronic circuits.

 There are similar receivers that could be used instead. The same series of sensors has a number of
different versions, which are similar and different suppliers may only stock a subset of the range. The TSOP2238
is an older version that can be used a direct replacement and the TSOP2436 and TSOP2440 are designed for a
slightly different infrared frequency, but should still work for most remote controls. There are, however, some
other sensors such as TSOP4438 or TSOP4838 which, while very similar in operation, do have a different
pinout so you will need to adjust the circuit accordingly if using one of those. The pinout for the TSOP22xxxx
and TSOP24xxxx infrared modules is shown in Figure 5-5 .

http://dx.doi.org/10.1007/978-1-4842-1898-3_6
http://dx.doi.org/10.1007/978-1-4842-1898-3_6
http://dx.doi.org/10.1007/978-1-4842-1898-3_7

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

97

 Figure 5-5. Pinout for the TSOP2438 and similar infrared receivers

 The output from the sensor is connected to GPIO 18 (physical pin number 12).

 Infrared Transmitter
 The infrared transmitter you will use is essentially the same as an LED, but designed to give out infrared
rather than visible light. Infrared is part of the light spectrum similar to visible light but has a slightly longer
wavelength so is outside of the range of human vision. The particular emitter you will use is the TSAL6400
infrared emitting diode, which has a wavelength of 940nm. This particular one is designed for high-power
requirements and in practice can give a range of over 5 meters (15 feet) when it has a clear light of sight from
the top of the emitter. The circuit to drive the infrared emitting diode is the same one used for the brighter
LED in Chapter 4 ; see Figure 4-6.

http://dx.doi.org/10.1007/978-1-4842-1898-3_4

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

98

 Figure 5-6. Circuit diagram for the infrared transmitter and receiver circuit

 This will be powered from the 5V supply connection on the GPIO connector.
 The infrared emitter diode can operate with up to 100mA of current, but for this circuit I have based

the current flow around 60mA, which provides a good compromise between output strength and power
requirements. I used a 68Ω resistor for RL and 220Ω for RB.

 As with an LED, the infrared emitter diode needs to be connected to the correct pins. The longer lead is
the anode and it needs to be connected to the positive side.

 The signal for the transmitter circuit is connected to GPIO 17 (physical pin number 11).

 Infrared Transmitter and Receiver Circuit
 The complete circuit of the infrared transmitter and receiver is shown in Figure 5-6 . As mentioned
previously, you will see that the sensor is powered from the 3.3V power connection from the Raspberry Pi,
but the emitter is powered from the 5V power supply. They both use the same ground connection, although
these are shown differently as a way of reducing the number of crossing lines.

 In this case, I have shown a single circuit for the transmitter and receiver. This can be very useful as a
way of testing the received signal and if required generating the configuration files for the transmitter. If you
only need to receive signals to control a Raspberry Pi project then you don’t need the transmitter. Likewise,
if you only need to send signals to control other devices then you don’t need the receiver part.

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

99

 Configuring the Infrared Transmitter and Receiver Using LIRC
 You will use LIRC as a way to communicate with the remote control transmitter and receiver. LIRC stands for
Linux Infrared Remote Control and provides a way to send messages through an infrared transmitter and to
receive signals from an infrared receiver, which can then be sent to the appropriate application. There are
quite a few steps involved in setting up an LIRC, but don’t worry, I go through them in this section. You also
learn how to generate your own configuration file if you have a remote control for which you don’t know or
can’t find the appropriate codes.

 You will need a suitable infrared remote control for this section. You can use most infrared remote
controls, but avoid running the project in the same room as the device that the infrared is normally intended
for. In my case, I used a Crystallite color-changing LED bulb designed to replace a standard light bulb. This is
shown in Figure 5-7 .

 The first thing to do is to install the lirc package containing the software. To install this, you should first
run an update and perhaps even an upgrade using the following:

 sudo apt-get update
 sudo apt-get upgrade

 The apt-get tool is also used for installing lirc :

 sudo apt-get install lirc

 There is also another package called lirc-x that’s used if you want to use an infrared remote control to
control the mouse cursor on the desktop. You won’t be using it for any of the projects in this book though.

 The next stage is to enable the support in the kernel using the device tree overlay. This is a way in
Raspbian for enabling only specific hardware drivers to avoid potential conflicts between the hardware
drivers. You will need to edit the file /boot/config.txt as root.

 Figure 5-7. Infrared color-changing LED bulb and remote control

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

100

 You can use your preferred editor, which could be leafpad (gksudo leafpad /boot/config.txt), nano
(sudo nano /boot/config.txt), or any other text editor. Note that when using a graphical application,
 gksudo is used to run the application as root. When you’re using a command line application, it should be
just sudo .

 Find the entry

 #dtoverlay=lirc-rpi

 and remove the # , which is the first character on that line. The hash character is commonly used to indicate
a comment and, when used to prevent a command or instruction from being read, it is referred to as being
 commented out . This will cause the Raspberry Pi LIRC driver to be enabled.

 Then, as root, create a new file called /etc/modprobe.d/lirc and add the two lines:

 lirc_dev
 lirc_rpi gpio_in_pin=18 gpio_out_pin=17

 The input and output pin numbers can be changed if different ports are being used. These are
numbered using the GPIO pin numbering scheme.

 Now update the hardware configuration file /etc/lirc/hardware.conf . The following options need to
be updated to match the wording:

 LIRCD_ARGS="--uinput"
 DRIVER="default"
 DEVICE="/dev/lirc0"
 MODULES="lirc_rpi"

 All other lines in the hardware.conf file should be left at their default values.
 To load the driver, Raspberry Pi needs to be rebooted:

 sudo reboot

 The LIRC daemon (lircd) will fail during the reboot, which is fine, as you still need to add the details of
the remote controls you want to use. The easiest way to add a remote control is to look in the /usr/share/
lirc/remotes folder or download the appropriate LIRC configuration file from http://lirc-remotes.
sourceforge.net . Many hundreds of remote controls are available. If you do find a suitable remote control
entry, download it to the /etc/lirc/lirc.conf.d/ folder with the name of the remote control as the
filename. You may need to create that directory first:

 sudo mkdir /etc/lirc/lirc.conf.d

 Next add an entry in /etc/lircd.conf by importing the appropriate configuration file:

 include "/etc/lirc/lirc.conf.d/ remotename "

 Replace remotename with the name of the remote control file downloaded. You may also need to remove
the first line of the lircd.conf file if it says UNCONFIGURED .

 If you cannot find a suitable code for the infrared remote control, then you can discover the codes
using irrecord . The irrecord program provides a way to capture the codes by pressing the remote control
buttons. It works with most remote controls although it does not work with all, especially remote controls
with only a few buttons.

http://lirc-remotes.sourceforge.net/
http://lirc-remotes.sourceforge.net/

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

101

 To use irrecord , lircd must not be running. If you have not yet added a remote control, it won’t have
started anyway, but to make sure run the following command:

 sudo systemctl stop lirc

 Now run this command:

 irrecord -d /dev/lirc0 --disable-namespace ~/lightremote

 The disable-namespace option is used to allow you to use any names for the remote control buttons.
If you were adding a remote to control a media center then you will want to use the standard controls, but by
adding this you can use any appropriate name. I have used the name lightremote for the file so that I know
which remote control this refers to.

 You should then follow the instructions, which involve pressing various remote control buttons so that
 irrecord can determine how the remote control codes are created. It will then ask for you to name each
button followed by pressing that particular button.

 When the command is complete, you will end up with a file called lightremote , which in my case
contains the following:

 begin remote

 name /home/pi/lightremote
 bits 16
 flags SPACE_ENC|CONST_LENGTH
 eps 30
 aeps 100

 header 9116 4434
 one 637 1614
 zero 637 490
 ptrail 629
 repeat 9116 2193
 pre_data_bits 16
 pre_data 0xFF
 gap 108044
 toggle_bit_mask 0x0

 begin codes
 On 0xE01F
 Off 0x609F
 Brighter 0xA05F
 Dimmer 0x20DF
 Red 0x906F
 Green 0x10EF
 Blue 0x50AF
 White 0xD02F
 Yellow 0x8877
 Aqua 0x08F7
 Pink 0x48B7
 Flash 0xF00F
 Strobe 0xE817

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

102

 Fade 0xD827
 Smooth 0xC837
 end codes

 end remote

 I haven’t added codes for all the colors on the remote control, but there are enough for what you need.
Feel free to continue adding the other buttons if you would like more color choices.

 I made one change to the file manually, which is to replace the entry

 name /home/pi/lightremote

 with

 name lightremote

 The top part of this file has details of the type of remote control, such as the timing and sequence of the
codes. The section begin codes has the individual codes for each button.

 To add this to the LIRC configuration, first create a directory to store it in:

 sudo mkdir /etc/lirc/lircd.conf.d

 Copy the file into that directory:

 sudo cp ~/lightremote /etc/lirc/lircd.conf.d/

 Then edit the file called /etc/lirc/lircd.conf . First remove the line

 #UNCONFIGURED

 This is usually the first line of the file. Then add an include entry that references the remote control file:

 include "/etc/lirc/lircd.conf.d/lightremote"

 You should now be able to start lircd :

 sudo systemctl start lirc

 You can check that it started correctly:

 sudo systemctl status lirc

 You can now send remote control commands using the irsend command.
 To list all the configured remotes, use:

 irsend LIST "" ""

 This should show the lightremote added earlier. If it has the path in /home/pi , then you should edit the
remote control file as the root user and remove the path from the name field.

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

103

 To see more details of the remote control lightremote , use the following:

 irsend LIST "lightremote" ""

 This lists the buttons that have been configured, as shown here:

 irsend: 000000000000e01f On
 irsend: 000000000000609f Off
 irsend: 000000000000a05f Brighter
 irsend: 00000000000020df Dimmer
 irsend: 000000000000906f Red
 irsend: 00000000000010ef Green
 irsend: 00000000000050af Blue
 irsend: 000000000000d02f White
 irsend: 0000000000008877 Yellow
 irsend: 00000000000008f7 Aqua
 irsend: 00000000000048b7 Pink
 irsend: 000000000000f00f Flash
 irsend: 000000000000e817 Strobe
 irsend: 000000000000d827 Fade
 irsend: 000000000000c837 Smooth

 To send a button press, use irsend with the SEND_ONCE option followed by the name of the remote
control and the button name:

 irsend SEND_ONCE lightremote On

 Receiving Infrared Commands Using python-lirc
 Now that LIRC is configured you can use the Python module python- lirc to get details of the buttons
pressed and then perform the appropriate actions. First you need to edit one more file from LIRC so that the
messages are sent to your program. Edit (or create) the file /etc/lirc/lircrc using a text editor. Add the
following entries:

 begin
 prog = testlirc
 button = On
 config = On
 repeat = 0
 end

 begin
 prog = testlirc
 button = Off
 config = Off
 repeat = 0
 end

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

104

 This shows the first two buttons—On and Off—but you should repeat this for any other buttons you
also want to receive. This tells LIRC that when it receives a signal for one of these buttons then it sends the
appropriate message to a program listening for testlirc . This could be replaced with the name of your own
program as long as it matches the Python code you create.

 You should now restart lircd :

 sudo systemctl stop lirc
 sudo systemctl start lirc

 The python3-lirc library is not installed by default, so install it using

 sudo apt-get install python3-lirc

 Now create a Python program, which I have called testlirc. py :
 import lirc

 sockid = lirc.init("testlirc")

 while True:
 code = lirc.nextcode()
 if (len(code)>0):
 print ("Button pressed is "+code[0])
 else:
 print ("Unknown button")

 First the program imports the module lirc and then creates a socket connection to lirc using the
same name as you used in the prog entry in lircrc . The loop then gets the code from lirc.nextcode() ,
which represents the button. First check to make sure that you have the details of the button within the code.
For example, if the config option has not been entered for a particular button, you will get an empty entry.
Assuming you do have a valid button code, then it is stored in code[0] , which is printed to the screen. If the
On button is pressed then the output of the command will be:

 Button pressed is On

 This will continue until Ctrl+C is pressed.
 The code can be updated to run a particular Python action when the button is pressed.
 If you have an LED connected to GPIO 22, the following example will turn an LED on and off as the

relevant button is pressed on the remote control.

 import lirc
 from gpiozero import LED

 # GPIO port number for the LED
 LED_PIN = 22

 sockid = lirc.init("testlirc")
 led = LED(LED_PIN)

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

105

 while True:
 code = lirc.nextcode()
 if (len(code)>0):
 if (code[0] == "On"):
 led.on()
 if (code[0] == "Off"):
 led.off()

 The LED can be replaced with any of the light circuits in Chapter 4 , depending on how bright a light you
want to control.

 Sending an Infrared Code Using Python
 Previously you used the irsend command to send an infrared signal from the command line. You will use
the same command in the next example, but call it from within a Python program. This technique can be
used for many other command-line programs where a suitable Python module doesn’t exist.

 The following program is named sendir. py , and it will send the On command, followed by a delay, and
then the Off command to turn the device back off.

 import os
 import time

 REMOTE = "lightremote"
 DELAY = 20

 def send_ir_cmd (remote, op):
 os.system("irsend SEND_ONCE "+remote+" "+op);

 send_ir_cmd (REMOTE, "On")
 time.sleep(DELAY)
 send_ir_cmd (REMOTE, "Off")

 This works by having a function that issues the irsend command using os.system . You can then just call
this command with the name of the remote control and the name of the button for the code you want to send.

 More Infrared Devices
 You will look at infrared in other projects later in the book, including using it to control a Lego train in
the next chapter. It’s not too difficult to take the circuit apart and remake it, but if you do have a spare
breadboard then this may be a circuit that you want to keep. You will also look at making a more permanent
circuit in Chapter 10 . An alternative is to buy a pre-made add-on board for the Raspberry Pi; one such device
is the Energenie Pi-Mote IR control board (ENER314-IR) and it uses a similar circuit to the one you made
previously.

http://dx.doi.org/10.1007/978-1-4842-1898-3_4
http://dx.doi.org/10.1007/978-1-4842-1898-3_10

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

106

 Changing Voltage with a Level Shifter
 Before you move on to the next project, you will look at how you can change the voltage of an input or
output. Recall that the Raspberry Pi GPIO ports are designed for 3.3V inputs and outputs. In some cases,
you can just select sensors and other components that are also designed for 3.3V, but many components are
designed to operate at 5V. This includes certain protocols, such as I 2 C, which is commonly used for sensors
and output devices.

 There are three different approaches you can take depending on whether you need to reduce an
input voltage that you want to use as an input to the Raspberry Pi, if you need to increase the output of the
Raspberry Pi so that it is sufficient for connecting to an appropriate output device, or if you need to be able to
communicate in both directions.

 Voltage Divider Circuit to Reduce Input Voltage
 The first example you will look at is the most simple, but is also very useful. This is used if you have a sensor
that had a 5V output that you then want to use as an input to the Raspberry Pi. What you need is a way of
dropping the signal voltage from 5V to 3.3V. This can be used by using a voltage divider (also known as a
potential divider) circuit consisting of two resistors, as shown in Figure 5-8 .

 Figure 5-8. Voltage divider circuit

 The input signal is connected across both the resistors. When a voltage is present from the sensor, a
current flows through the two resistors. you take the voltage output from the top of R2, which is the just
voltage dropped across R2. This is the same as saying the output voltage is equal to the input voltage less
the voltage across R1. As the current is the same through both resistors then the voltage of the outputs is a
ratio based on the value of both resistors. If the values of the resistor are equal then the output will be half
the input, as 2.5V will be dropped across R1 and 2.5V dropped across R2. You need an output of 3.3V from a
5V input, so you need 3.3V across R2 and 1.7V across R1. This is approximately two thirds. So the value of R2
should be approximately twice as large as R1.

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

107

 Now you know the ratio but what actual value of resistors do you need? You need to consider the input
signal to the potential divider and what will be connected to the output of the voltage divider.

 For the sensor, you need to ensure that the current you are going to put through the potential divider
is not going to exceed the amount that the sensor can provide. For the output, you need to ensure that you
have sufficient current to turn on the device connected and to ensure that the load does not significantly
alter the output voltage.

 In the previous example, you assumed that all the current flows through the two resistors, but the
moment you add a device to the output then some current will flow through that instead of going through
R2, which can change the output. If you are using an MOSFET (and in this case you can consider the input to
the GPIO to be similar), that is triggered by voltage and very little current will flow into the load. If, however,
you connected it directly to a load, or even to a transistor that was switching a large load, then the output
current from the voltage divider could change the output. You could reduce this by choosing a low value in
the resistors as long as that doesn’t exceed the current that the sensor could provide, although that will waste
more energy.

 As this is going to the GPIO of the Raspberry Pi, which has a high input impedance, you don’t need to
worry about the amount of current. Therefore, you can just choose resistors that add up to a fairly high value,
such as 100kΩ. This results in a current of around 0.05mA (or 50nA). If you have a device that uses more
current, choose lower value resistors.

 Using the standard sizes, the following are suitable resistors:

 R1 = 39kΩ
 R2 = 68kΩ

 This should give around 3.2V, which is just below the maximum of 3.3V for the input to the GPIO port.

 Unidirectional Level-Shift Buffer
 Sometimes you may want to increase the 3.3V output from the Raspberry Pi so that it can drive another
circuit that expects a 5V input. This is something you will do later using RGB LED strips.

 The first thing to check is whether this is actually needed. While a circuit may be designed to operate
at a certain voltage, there is usually a range in which it will operate. Also there is a range of voltages that the
Raspberry Pi can provide as an output. In the case of the Raspberry Pi output, for a low (off) signal, it will be
less than or equal 0.8V. If it’s a high (on) signal then it will try to set the output to 3.3V. However, depending
on the current of that and other GPIO ports, it may be as low as 1.3V. Obviously 1.3V is very low, but in reality
unless there is a high load across the GPIO ports, it is likely to be near to the 3.3V output.

 In the case of the WS2812 RGB LEDs, they need a voltage within 0.5V of their supply voltage. So
assuming you connect them to a 5V supply for maximum brightness then even at a full 3.3V the output of
the GPIO port is going to be well below the 4.5V required. Even then it’s possible that the circuit will actually
work, but the problem is that when you are operating outside of the designed range for the components, they
become unpredictable. Having a circuit that is unreliable can be worse than having one that doesn’t work at
all; with a system that doesn't work you can track down the problem, but with one that works sometimes can
be very difficult to troubleshoot.

 There are integrated circuits designed specifically as buffers that are often used in these circumstances.
In particular, the 74HCT125 will accept input voltages as low as 1.6V to 2V and provide a high output close
to the supply voltage of 5V. Note that this is specifically for the TTL version of the chip denoted by the letter
T; the 74HC125 is designed for a higher voltage input and may not work with the Raspberry Pi GPIO under
certain conditions.

 In a real circuit you may prefer to use a 74HCT125, but as this book is about learning electronics,
I think it's useful to take a look at a simpler version that you can create using a MOSFET. The circuit shown in
Figure 5-9 shows a simple MOSFET voltage buffer.

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

108

 The circuit shown in Figure 5-9 is actually an inverting buffer that will produce a high output when
the input from the GPIO port is low and vice versa. It’s normally possible to change the software to send an
inverted signal to counteract this, or a second stage could be added to invert the signal back to its original
form. If you need non-inverting, it may be better to swap to a non-inverting IC rather than create your own.

 The circuit is essentially the same as the MOSFET switch you used in Chapter 4 , but replaces the
load (LED) with a pull-up resistor. When the input to the MOSFET is low, the MOSFET is open circuit
(switched-off) and the pull-up resistor RL will result in the output being HIGH. When the input to the
MOSFET goes high, the MOSFET will switch-on, pulling the output down toward 0V (there will still be the
voltage across the MOSFET V

DS
 , which depends on the MOSFET and current, but for this circuit will typically

be less than 0.5V).
 The value of RB was discussed in the earlier MOSFET switch circuit in Chapter 4 (220Ω), but recall the

value of the RL depends on the load and what current that needs to operate. Typically the resistors will be
between 1kΩ and 100kΩ, although I have used a lower value when creating an LED RGB circuit to allow for
loses in a long cable between the circuit and the LED strip.

 Bidirectional Level-Shifter
 Sometimes you need a voltage shift in both directions, so that two devices can communicate in both
directions across the same wire. In this case, you will look at how you can have an I 2 C signal go in both
directions from a low voltage (3.3V) Raspberry Pi to a higher voltage I 2 C device. This is slightly different
from the circuit used for some other communication protocols, as I 2 C uses pull-up resistors, which you
can take advantage of. The circuit you will look at is based on one used by Adafruit and SparkFun in their
bidirectional level shifters. These are based around surface mount MOSFETs on a small breakout board.
A photo of the board is shown in Figure 5-10 .

 Figure 5-9. MOSFET -based voltage shift buffer

http://dx.doi.org/10.1007/978-1-4842-1898-3_4
http://dx.doi.org/10.1007/978-1-4842-1898-3_4

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

109

 Figure 5-10. Adafruit bidirectional level-shifter

 PULL-UP RESISTORS

 Pull-up resistors are used to create a high signal where the input value is unknown which is the case if
there is no signal from a sensor. For example in the case of a simple switch then we can detect when
the switch is pressed as that gives a clear signal, but when it is not pressed then electrical noise can
trick the circuit into thinking it is pressed when it is not. When the switch is not pressed then the pull-up
resistor allows a small current to flow through it which gives a positive voltage (logic high). When the
switch is pressed then the bottom of the pull-up resistor is connected through the switch to ground. This
overrides the high signal by effectively connecting the input to ground.

 This board has four channels, each of which has the same circuit. The circuits use the BSS138 MOSFET.
As these use surface mount devices (SMDs), which are fiddly to use and the level-shifters are fairly inexpensive,
I recommend just buying a level-shifter. I still provide details of how the level-shifter works. The circuit diagram
of one of the channels is shown in Figure 5-11 .

 Figure 5-11. Circuit diagram for one channel of the bidirectional level-shifter

 The circuit uses an MOSFET in an unusual configuration. Don’t worry if you can’t understand this at
first—it should become clear when you have more experience with how electronic components behave.

 The drain and source from the MOSFET connect between the input and output. If the input and output
are both high, the MOSFET is switched off and the two pull-up resistors ensure that both sides are high using
their own supply voltages (the left at 3V, the right at 5V).

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

110

 If the left side goes low, the MOSFET will be in the forward configuration and thanks to the input to the
gate the MOSFET will turn on. This pulls the right hand sound down toward the ground as well.

 If the right side goes low, due to an internal characteristic of the MOSFET , it allows a small current to
flow in the reverse direction, going from left to right. As this happens, the voltage of the source connection
(left side) dips, causing the MOSFET to turn on and hence pull the source down further based on the low
signal connected through the MOSFET.

 An alternative bidirectional level shifter is to use an IC such as the 74LVC245. The 74LVC245 is not
compatible with I 2 C due to the requirement for pull-up resistors, but can be used with SPI and other sensors
that don’t required a pull-up resistor.

 I 2 C LCD Display: True or False Game
 In the next project you will look at I 2 C and use it to connect an LCD display to the Raspberry Pi in order to
create a True or False game.

 LCD Character Display
 The display you will be using is an LCD character display . These are commonly used when a simple text display
is required. These are perhaps most familiar as the display used for drink and snack vending machines.

 For this I have used a display with four rows and 20 characters per row (known as a 4x20 display).
Another popular configuration has two rows of 16 characters per row and you could use it instead, but you
will need to change some parts of the code and this display only allows short questions.

 The LCD character displays can normally operate between 3.3V and 5V, so as long as an appropriate
voltage is chosen then it can be connected direct to the GPIO port of the Raspberry Pi. The disadvantage
of this is that it needs to use at least six ports from the Raspberry Pi GPIO ports (plus two power supply
connections) and quite a bit of wiring. An alternative is to use I 2 C, which reduces the number of pins to only
2 I 2 C connections (plus two power supply connections). Even then the I 2 C connections can be shared with
other devices.

 I 2 C
 This is another serial communication protocol that is used to communicate with peripherals. It works
as a master/slave relationship. Typically the Raspberry Pi will act as the master and communicate with
peripherals such as sensors or displays.

 I 2 C is popular for connecting to fairly low-speed devices. It is bidirectional so can be used for input and
output devices. You may also see references to SMBus (System Management Bus), particularly in reference
to the device drivers. SMBus is a subset of I 2 C and uses a more strict set of criteria, including a restriction
supporting only the lower-speed devices. I will refer to I 2 C, but if you see SMBus in the software references,
that’s essentially the same thing.

 The main feature of I 2 C is that it uses only two ports for communication, which can be shared across
multiple devices. There are two connections—a data connection referred to as SDA and a clock signal
known as SCL. There is a downside to this in that, as multiple devices share the same connections, they also
have to share the bandwidth. This is not an issue for devices with low-bandwidth requirements, but some
I 2 C devices (such as cameras) do have high-bandwidth requirements. This is the reason for the Raspberry
Pi changing which I 2 C bus is connected to the GPIO connector. In earlier versions, channel 0 was connected
to GPIO pins 3 and 5, but that is also used by the Raspberry Pi camera, which uses a lot of the available
bandwidth. The more recent Raspberry Pi versions, including the Raspberry Pi 2, use I 2 C channel 1 for the
GPIO connector. Pins 3 and 5 are connected to SDA1 and SCL1, respectively.

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

111

 Figure 5-12. Example of I 2 C slave devices connected to a single I 2 C master

 I 2 C uses a master/slave relationship. The Raspberry Pi will normally be the master and it will
communicate with other devices on the bus, telling the slaves when they should send and receive data.

 This is shown in Figure 5-12 .

 The I 2 C connections are open drain. This means that an external pull-up resistor is required. There are
pull-up resistors on the Raspberry Pi that are enabled through the software, but the level-shifters and some
I 2 C devices also include pull-up resistors onboard.

 Although I 2 C can support a range of different voltages, it is recommended that you use the bidirectional
level-shifter when you’re connecting a Raspberry Pi to devices that are designed for a 5V.

 Each I 2 C device has an address that needs to be unique to all the devices connected to that bus. To allow
multiple devices of the same type to be connected, there are normally three pins on the circuit that can be
connected.

 I 2 C Backpack for the LCD Character Display
 You will use an I 2 C backpack as a way of sending the data to an LCD character display using the I 2 C bus. This
is a small circuit board module that can be mounted on to the back of the display, hence the name backpack .
The use of I 2 C greatly reduces the number of connections needed, thus leaving more ports free on the GPIO
for other components and circuitry. These backpacks are available as standalone modules or pre-soldered
onto a suitable LCD display. The backpack that I used is based around a PCF8574 8-bit I/O expander for
I 2 C-bus, which is fairly common. This uses the I 2 C connection to control up to eight ports, which is perfect
for the LCD display. A photo of the LCD display and the I 2 C backpack is shown in Figure 5-13 .

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

112

 Figure 5-13. Photo of the LCD character display and backpack mounted on the rear

 There is a trimmer (variable resistor) on the backpack that can be used to adjust the contrast of the
screen. If you find that you can’t see any characters, you may need to adjust this after wiring up the circuit.

 The links that can be used to change the I 2 C address are visible in Figure 5-13 , as pads just below the
trimmer. For some devices, the address is selected using jumpers or DIP switches, but in this case they
would need to have a link soldered across them to enable that pin. There is no need to add any links as long
as there are no further devices that use the same address.

 True or False Game Circuit
 In addition to the LCD display connected through a level-shifter, I also used three of the other GPIO ports
for pushbutton switches. These buttons are for Start, True, and False, which you can use to turn this into a
simple quiz game. The ports for the switches are GPIO 23 for the Start button, GPIO 22 for the True button,
and GPIO 4 for the False button.

 The complete circuit diagram is shown in Figure 5-14 .

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

113

 This circuit diagram shows the internal wiring of the backpack (shown in the hashed box), which makes
the diagram quite large. As a result, it is difficult to see. I have therefore split the circuit diagram in half.
Figure 5-15 shows the backpack and LCD display and Figure 5-16 shows the Raspberry Pi, the level-shifter,
and the switches.

 Figure 5-14. True or false game circuit diagram

 Figure 5-15. LCD display with I 2 C backpack

 As you can see, the PCF8574 IC is used to send the appropriate signal to the LCD display. The variable
resistor is used to adjust the contrast, which may need to be adjusted to ensure that the characters are clearly
visible. The PCF8574, the variable resistor and the transistor are all included on the backpack and so do not
need to be added separately.

 There are only four connections shown on the left, and two of them are for the I 2 C channel as well as a
connection to the ground and 5V power supply (which can be taken from the Raspberry Pi).

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

114

 Figure 5-16. Raspberry Pi with I 2 C level-shifter and button switches

 The ports A0 to A3 are the address-selection connections. By changing which of these is set to high
and low, that will change the address. You can leave these to their defaults and then perform a search of I 2 C
devices to identify which you need to use.

 In Figure 5-16 , you can see the level-shifter and the position of the buttons. The switches all connect to
the ground, so you will use the pull-up resistors within the Raspberry Pi to provide the high level when not
pressed. The part name for the level shifter in Fritzing circuit design software is Logic Level Converter . This
means the same thing, but refers to changing between different types of logic. The level-shifter is available
as a small PCB with headers that need to be soldered on. When they are soldered on, the level-shifter can be
inserted into a breadboard.

 Setting Up the I 2 C Connection and Adding the Code
 With the circuit in place, you can now switch to the software to make this work. First you need to enable I

2
 C

on the Raspberry Pi, then identify the port that you need to communicate with, and finally create some code
to put it all together.

 The first thing that is required is to enable I 2 C on the Raspberry Pi. This is needed as the drivers are
disabled by default. This can be enabled using the Raspberry Pi Configuration tool. Choose the Interfaces
tab and then enable the I 2 C entry. This is shown in Figure 5-17 .

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

115

 You’ll then need to reboot to ensure that the appropriate kernel module is loaded.
 Next, install the Python SMBus module using:

 sudo apt-get install python3-smbus

 Identify which address is being used by running sudo i2cdetect 1 . The option 1 is to scan for bus 1,
and it should be replaced with 0 for an original Raspberry Pi. This comes with a scary warning message, but
that’s fine if you are still trying to get this to work.

 sudo i2cdetect 1
 WARNING! This program can confuse your I2C bus, cause data loss and worse!
 I will probe file /dev/i2c-1.
 I will probe address range 0x03-0x77.
 Continue? [Y/n] y
 0 1 2 3 4 5 6 7 8 9 a b c d e f
 00: -- -- -- -- -- -- -- -- -- -- -- -- --
 10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 3f
 40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

 Figure 5-17. Enabling I 2 C through the Raspberry Pi Configuration tool

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

116

 50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 70: -- -- -- -- -- -- -- --

 As you can see from this output, a single I 2 C device has been found at address 3f .
 There are several libraries around for communicating with I 2 C devices and for the LCD character

display. I didn’t find one that met my requirements and was simple enough to use, so I created a slightly
modified version based on an existing project (more details are included in the source file).

 The code for the Python module is called I2CDisplay. py . This is included in the quiz folder in the
book’s source code or can be downloaded directly from GitHub at https://raw.githubusercontent.com/
penguintutor/learnelectronics/master/quiz/I2CDisplay.py .

 The module has been updated with the address of the backpack using I2C_ADDR = 0x3f and the number
of characters available on my LCD display using LCD_WIDTH = 20 . These can be changed to reflect the LCD
display if required. This file needs to be downloaded to the same directory as the code you will create.

 First you’ll create some test code that sends a message to the LCD display. This is called i2ctest.py and
it’s found in the quiz folder of the source code:

 from I2CDisplay import *
 import time

 # Initialise display
 lcd_init()

 # Send some test
 lcd_string("Learn Electronics",LCD_LINE_1)
 lcd_string("with Raspberry Pi",LCD_LINE_2)
 lcd_string("by",LCD_LINE_3)
 lcd_string("Stewart Watkiss",LCD_LINE_4)

 time.sleep(20)
 lcd_clear()

 The first line imports the I2CDisplay module . This is a local Python file, so it needs to be stored in the
same directory as the file. As all the functions are imported, it’s just a case of calling each function directly.

 The first function that is called is lcd_ init and it sets up the LCD display and clears the screen.
 The program will then send for lines to the screen, using LCD_LINE_1 to LCD_LINE_4 to determine

which line to send the output to. It then sleeps for 20 seconds before issuing the lcd_clear command to
clear the screen.

 Load this into IDLE3 and run it. You should see the message displayed on the LCD display. If it
doesn’t run, ensure that you have the I2CDisplay.py file in the same directory as the test file.

 You can now add the rest of the code to turn this into a full program:

 from I2CDisplay import *
 from gpiozero import Button
 import time

 # File holding questions
 # 4 lines are the question and then the
 # 5th is T for true or F for false
 # Repeat for Q 2 etc.
 quizfilename = "quiz.txt"

https://raw.githubusercontent.com/penguintutor/learnelectronics/master/quiz/I2CDisplay.py
https://raw.githubusercontent.com/penguintutor/learnelectronics/master/quiz/I2CDisplay.py

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

117

 start_button = Button(23)
 true_button = Button(22)
 false_button = Button(4)

 # Initialise display
 lcd_init()

 # Send some test
 lcd_string("Raspberry Pi",LCD_LINE_1)
 lcd_string("True or False quiz",LCD_LINE_2)
 lcd_string("",LCD_LINE_3)
 lcd_string("Press start",LCD_LINE_4)

 start_button.wait_for_press()

 # Note that there is no error handling of file not exist
 # Consider using a try except block
 # Open the file
 file = open(quizfilename)

 questions = 0
 score = 0
 answer = ''

 while True:
 # print 4 lines as the questions
 thisline = file.readline().rstrip("\n")
 if thisline == "" : break
 lcd_string(thisline,LCD_LINE_1)
 thisline = file.readline().rstrip("\n")
 if thisline == "" : break
 lcd_string(thisline,LCD_LINE_2)
 thisline = file.readline().rstrip("\n")
 if thisline == "" : break
 lcd_string(thisline,LCD_LINE_3)
 thisline = file.readline().rstrip("\n")
 if thisline == "" : break
 lcd_string(thisline,LCD_LINE_4)
 # Next line should be T for answer = True or F for False
 thisline = file.readline().rstrip("\n")
 if thisline == "" : break
 if (thisline == "T"):
 answer = "T"
 elif (thisline == "F"):
 answer = "F"
 # should not reach this unless the question file is invalid
 else : break

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

118

 # wait on True or False pressed
 while (true_button.is_pressed == False and \
 false_button.is_pressed == False):
 time.sleep (0.2)
 # Increment number of questions attempted
 questions = questions+1
 # Once one of the buttons is pressed
 # also check the other is not pressed to avoid cheating
 if (answer == "T" and true_button.is_pressed \
 and false_button.is_pressed == False):
 score = score+1
 lcd_string("Correct!",LCD_LINE_4)
 elif (answer == "F" and true_button.is_pressed == False \
 and false_button.is_pressed):
 score = score+1
 lcd_string("Correct!",LCD_LINE_4)
 else:
 lcd_string("Wrong.",LCD_LINE_4)
 # Wait 2 seconds before next questions
 time.sleep(2)
 # Finished this question return to the start
 # Outside of the quiz loop - give the score
 lcd_string("End",LCD_LINE_1)
 lcd_string("Score",LCD_LINE_2)
 lcd_string(str(score)+" out of "+str(questions),LCD_LINE_3)
 lcd_string("",LCD_LINE_4)
 time.sleep (5)
 file.close()

 Although that’s quite long, most of it is a combination of the LCD display test code previously and GPIO
Zero used to test for when the buttons are pressed. Something that is new is that you are reading in the
contents of a file to get the questions and expected answers. Details of the file format are explained later.

 The first thing you do is import the appropriate modules, add a variable with the filename for the quiz
file, and then set up the buttons using GPIO Zero. A message is then sent to the LCD display; you use
wait_for_press to wait until the Start button has been pressed.

 The file is opened using file = open(quizfilename) . After setting the number of questions and score
to 0, you enter a loop to read in each question in turn and get a response from the user. This has been created
as a while True loop, which is normally used when you don’t expect to exit out of the loop. You will instead
be exiting at the appropriate point in the loop using a break command when you reach the end of the file or
when you encounter a problem.

 Once in the loop, the first thing you do is to use readline to read the next line from the file. The readline
command will keep the terminating character, which is the newline character \n . You don’t want to send
that to the LCD display so you use rstrip to remove any new lines. The end value, which is the contents
of the line without the newline character, is stored in the variable this line. The code then checks if this is
an empty string, which will indicate that there are no more questions left. If the line is empty, the break
command is called and that will cause the execution of the while loop to stop and the control to move to the
next line outside of the loop.

 The first four lines are the question so these are sent directly to the lcd_string function . The next line
contains a letter T if the answer should be True and the letter F if the answer should be false. This is stored in
the variable answer so you can compare it against which button is pressed.

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

119

 The next thing is a while loop that waits for the True or False buttons to be pressed, which is as follows:

 while (true_button.is_pressed == False and \
 false_button.is_pressed == False):
 time.sleep (0.2)

 You cannot use the wait_for_press method as you did previously as this time you need to check for
the state of two different buttons. So you use another while loop that will continue to run until one of the
buttons is pressed. This while loop includes a sleep function to sleep for 0.2 of a second. This is added to
reduce the load on the Raspberry Pi. Without the sleep, the program will be constantly checking the status.
The time is set to be small enough that the user won’t notice a delay of 0.2 seconds between pressing the
button and the computer responding, but that length of time will allow another program on the system to do
some other work.

 You then need to check the status of both buttons to check to see if the button pressed matches the one
you expect. Even if it matches, you still need to check the other button is not pressed, as the user could cheat
by pressing both buttons at the same time.

 You then update the score if appropriate and show whether the answer was correct or not. The program
will then display the status for two seconds before moving on to the next question.

 When you reach the end of the file, the program will exit from the while loop and display the score, and
then wait for five seconds. It then calls the close on the file to ensure that the file is closed correctly. Note
that I didn’t include an lcd_clear function . This means that the display will continue to display the score
after it has finished running.

 Finally, you need a file containing the questions. Here is the file I used:

 The Raspberry Pi 2
 has 1GB of RAM

 True or False?
 T
 PiZero is the
 name of a Python
 electronics library
 True or False?
 F
 The Raspberry Pi has
 wifi on the main
 board.
 True or False?
 F
 The RPi model B+
 has 4 x USB2 ports

 True or False?
 T
 The HDMI Connector
 on the RPi 2
 is a mini-HDMI?
 True or False?
 F

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

120

 Notice that for each question there are four lines for the questions followed by the letter T or F as
appropriate. For blank lines where you don’t need all the lines, a space is included. Otherwise, the program
will think that you have reached the end of the file.

 One problem with the program is that it doesn’t include any error checking. So for instance if the
 quiz.txt file does not exist, you will get a rather ugly error message like this one:

 Traceback (most recent call last):
 File "quiz.py", line 28, in <module>
 file = open(quizfilename)
 FileNotFoundError: [Errno 2] No such file or directory: 'quiz.txt'

 Obviously, this is not a very user-friendly error message, so it is a good idea to add code to check for
conditions that have a high probability of happening, such as a missing file.

 SPI Analog to Digital Input
 So far you have used digital sensors and outputs with the Raspberry Pi. This works well with the digital
inputs on the Raspberry Pi, but not all sensors are digital. You will now look at how to connect an analog
sensor to the Raspberry Pi. You will use an analog-to-digital convertor (A-to-D convertor, also known as
ADC) that converts the analog signal into a digital signal. You will then use an SPI (Serial Peripheral Interface
Bus) to read the value from the analog-to-digital convertor.

 Creating an Analog Value Using a Potentiometer
 The analog sensor you will use is one that you can have control of. You will use a potentiometer , which is a
resistor whose value you can change. It is also known by other names such as a pot or a variable resistor.
These are often rotary devices such as volume controls on music players, although slide potentiometers are
also available. They are also available as small devices, and are often not accessible to the end users or they
are designed to be rarely changed; these are known as trimmers or trimmer pots.

 To use a potentiometer in order to provide an analog signal, you can connect it across the supply voltage
and use the variable pin as the analog value. This can then be used as the input to the analog-to-digital
convertor. This is shown in Figure 5-18 .

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

121

 There are a few different symbols for a potentiometer that show the arrow in a different way, but this
particular symbol is good at showing how this works. This uses the same voltage divider circuit you used
previously. With the potentiometer set to the center position then there is effectively half the resistance
above and below it giving half of the supply voltage as the output. If the potentiometer is moved toward the
top of the resistor, the voltage increases, and if it’s moved down, the voltage decreases.

 Analog-to-Digital Conversion
 The particular analog-to-digital convertor integrated circuit that you will use here is the MCP3008. This IC
uses an SPI interface to pass the digital value to the Raspberry Pi. Other integrated circuits are available,
including ones that you can connect to multiple pins of the Raspberry Pi GPIO connector (although
that would use a lot of pins) and I 2 C. The main reason for choosing SPI is to show an alternative serial
communication protocol that’s commonly used for various input and output devices.

 The way that this particular IC works is known as successive approximation analog-to-digital
conversion. It works by storing the input value and then comparing it against a varying signal until a match is
reached. This is then the digital value provided as the output.

 SPI (Serial Peripheral Interface Bus)
 SPI is the main alternative to I 2 C as a serial communication protocol for communicating with electronic
devices. It is a bidirectional communication protocol that allows full-duplex communication, whereby
information can be passed in both directions at the same time. This compares with I 2 C which, while still
allowing bidirectional communication, allows communication to go in only one direction at a time. The
downside is that SPI needs more connections with four wires required for the first device (in addition to
ground) and then one more connection for each subsequent device you add. This is shown in Figure 5-19 .

 Figure 5-18. Using a potentiometer to get an analog input

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

122

 The common connections are:

• SCLK—SPI Clock Signal

• MOSI—Master Out, Slave In

• MISO—Master In, Slave Out

 For each slave, a Slave Select (SS) connection is required. On the end device, this could be referred to
as Chip Enable (CE) or sometimes Chip Select (CS). The Slave Select is normally low to enable and a high to
disable, so it is often shown with a bar (line) above it.

 Another advantage of SPI is that it can be connected to a 3.3V power supply, which means no voltage
level shifting is required. This assumes that the sensor connected to the ADC can also operate at 3.3V, as the
reference voltage should not exceed the supply voltage.

 Figure 5-19. SPI bus connections

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

123

 Potentiometer SPI Circuit
 The final circuit is shown in Figure 5-20 .

 This shows the potentiometer connected to channel 0 of the MCP3008 and then the appropriate data
lines connected to the Raspberry Pi. Note also that there is a capacitor connected across the supply voltage.
This is known as a bypass capacitor (to remove noise on the power line) and should be connected as close to
the IC as possible. This is sometimes omitted but according to the datasheet should always be included.

 Figure 5-20. Variable control using a potentiometer and SPI ADC

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

124

 Accessing the ADC Using Python
 The first thing that is required is to enable the SPI kernel module. This can be achieved through the Raspberry
Pi configuration tool, as shown in Figure 5-21 . This will require a reboot before the changes take effect.

 The Python module also needs to be installed:

 sudo apt-get install python3-spidev

 Sending a request to the ADC using the spidev module involves combining several values into a single
number, which is done using the shift operator << . A similar process is required for extracting the value from the
response; you use the right shift operator >> . To make this easier, I’ve separated this into a function that creates
the request in the appropriate format and then returns a single value for the value of the ADC. Functions are
covered in the next chapter, but for now you just need to know that you can request the value of an analog port
using the readAnalog function followed by the channel number on the MCP3008 (in this case, 0).

 The test code is provided here and should be saved as spi-test.py :

 import spidev
 import time

 Figure 5-21. Enable the SPI kernel module

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

125

 # Sensor Port - where analog device is connected to
 sensorChannel = 0

 spi = spidev.SpiDev()
 # Open connection to SPI device: Bus 0, Device 0
 spi.open(0,0)

 # Read using SPI - A to D convertor
 # Has 0 to 7 inputs
 # Returns integer of value read 0 to 1023
 # or returns -1 on error
 def readAnalog(input):
 if (input < 0 or input > 7):
 return -1
 req = 8+input
 # shift to higher bits
 req = req << 4
 # 1 and 0 are start and stop values in tuple
 resp = spi.xfer2([1,req,0])
 # resp is split across two entries [1] and [2]
 # shift and merge these together
 high = resp[1]&3
 low = resp[2]
 return ((high<<8) + low)

 while True:
 analogValue = readAnalog(sensorChannel)
 print ("Value : " + str(analogValue))
 time.sleep(1)

 To communicate with the ADC using SPI, you first need to create an spidev object, which is called
spi here. The open command then specifies the bus and device numbers. This example uses SPI bus 0 and
the CE0 pin on the Raspberry Pi, so these are both set to 0.

 The function handles converting the request into a format that can be used with the spidev modules ,
so you just have a while loop that calls readAnalog , prints the output (converted from a number to a string),
and then sleeps for one second before taking another reading.

 The value returned will be between 0 and 1023 (or -1 if an error occurred). A useful way that this could
be used is to provide a way of adjusting the time delay on one of your existing programs. Replace the delay
with the value returned, divided by 1023 and then multiplied by the maximum delay that you want. One
problem with this is that it will see the first divide as being an integer operation, which will work out to the
nearest whole number. This will therefore give a value of either 1 or 0 which is not what you want. You can
use the float operation to convert one of the numbers to a floating point (number with a decimal point) or
just use 1023.0 for the division to tell Python to keep the value after the decimal place. So if you wanted to
have a delay that goes from 0 to 10 seconds, you would use:

 delay = readAnalog(sensorChannel) / 1023.0 * 10
 time.sleep(delay)

 or you could use:

 delay = float(readAnalog(sensorChannel)) / 1023 * 10
 time.sleep(delay)

CHAPTER 5 ■ MORE INPUT AND OUTPUT: INFRARED SENSORS AND LCD DISPLAYS

126

 If you need the value as an integer (a whole number), you should still have the division performed as a
float, but then convert to an integer afterward using int() .

 ■ Tip When performing a division, always make it clear to Python where you expect to get a decimal point.
This can be done by using float() around one of the values or for a fixed number by adding .0 to the end.

 This example used a potentiometer, but other analog sensors can be used such as a light dependent
resistor, a temperature sensor, and an analog joystick.

 More Input and Output
 This chapter looked at different inputs, including a PIR motion sensor camera, a way to communicate with
infrared devices using an infrared transmitter and receiver, and how to communicate with devices using
two popular serial protocols I 2 C and SPI. It also looked at how you can convert between different voltages
and how you can read an analog sensor using an analog-to-digital convertor (ADC). You also learned how
to add a different output using an LCD character display. With this knowledge, you can now add a variety of
different sensors and output devices that use one of the techniques you have used or something similar.

 With knowledge of these different sensors, you have now unlocked opportunities for many more
circuits and programs. For the PIR motion sensor, you could look at having the Raspberry Pi place a recorded
message through its audio output port, or even have it send a tweet whenever a photo is taken.

 For the infrared remote control, look at what other devices you have that could be controlled using
infrared. The obvious devices are TVs and media centers, but infrared is used in other devices, including
toys. You will look at how you can automate turning the light on and off in the next chapter and also see how
to use infrared to control a Lego train.

 For the LCD character display, you could look at adding scrolling text (particularly if you only have a
two-row LCD display) or adding another loop so that the game starts again without needing to restart it.

 In the next chapter, you will look at some of the programming techniques that will be useful for the
more adventurous projects.

127© Stewart Watkiss 2016
S. Watkiss, Learn Electronics with Raspberry Pi, DOI 10.1007/978-1-4842-1898-3_6

 CHAPTER 6

 Adding Control in Python and Linux

 This chapter covers the software side of the projects. This includes things you can do in the Python
programs, but also some of the features of Linux that will allow you to start your programs automatically.
This will provide some of the techniques you will need for projects in the later chapters. Some of
the techniques listed will help you add functionality to your disco lights, have your PIR camera start
automatically, and add a basic graphical interface for controlling electronics projects. The chapter also
introduces a reed-switch that will be used to have a Lego train automatically stop at the station and control
multi-colored LEDs.

 Computers receive information (data), process the data using stored instructions, and then provide
an output. The inputs could be a keyboard and mouse or could be some kind of sensor. Likewise, while
a computer screen is traditionally an output device, output could be turning on a light or controlling the
brakes on a car without any kind of visual screen. There are lots of devices that you have in the home that
you may not have considered to be a computer. For example, a programmable microwave oven could
be considered a computer, as could an MP3 player or a digital radio. Some modern cars have between
50 and 100 embedded computers controlling various things from the fuel mix and braking system to the
entertainment system and navigation system.

 The use of stored programs is the part that turns these electronic circuits into a computer. Sometimes
the programs are stored in firmware on the computer and sometimes these are programs that can be loaded
from disk.

 In the case of the Raspberry Pi, the programs are stored on the SD card. The operating system is a
Linux-based distribution known as Raspbian. Most of the software created for this book is written in Python,
which has lots of modules that making programming the hardware easy. It’s a great language for those
learning programming.

 Taking the Next Steps in Python Programming
 The Python programs that you have created so far have been fairly simple. One of the reasons that Python is
so simple to use is thanks to the code inside the Python interpreter, which hides a lot of the complexity that
other programming languages have. It’s also thanks to some of the Python modules that others have been
written that make interfacing with the hardware so easy.

 If you continued in the same style of programming then the code would become harder to follow and
would be a hindrance to what you want to achieve. You will therefore look at some techniques that will make
your programs easier to write and understand. This chapter therefore looks at creating functions to make the
program easier to follow.

 The programming style you will be using is mainly procedural programming, where the program runs
in sequence step-by-step. You will stop short of learning object oriented programming (OOP), which is also
supported by Python, but needs a different approach. This is not because of any faults of object oriented
programming, but more that the space in this book would not be sufficient to give it justice. After some

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

128

experience with OOP, I am now a big fan and think there are many examples where OOP is a much better
approach to tackling a programming task. It is however a bit more complicated when starting out.

 You’ll still use some OOP when you access modules that are written using object orientation, including
 GPIO Zero . As you get more experienced with programming, it will be useful to learn more about object
oriented programming.

 You have already used Python to make decisions, which could be moving a character based on the press
of a switch or changing the length of a time delay based on the value of an analog input. You’ve also made
decisions in the form of a loop that has repeated a certain number of times or until a certain condition is
met. These decisions are key to being able to handle the inputs and outputs from your electronic circuits.
Some of these are listed here as a recap, but there perhaps might also be some new ones that can make
programming a little easier.

 The first is the if statement , which performs an action depending on the result of a comparison.
It typically determines if a certain variable is equal to, greater than, or less than another value.

 if myvariable == 10 :
 print ("The value is equal to 10")

 This checks if the value of myvariable is equal to 10. Note that there are two equals characters used, and
only a single one will result in the value of 10 being stored into myvariable , which is not what you normally
want in an if statement. To test for being myvariable being higher than 10, use the greater-than symbol > .
Likewise, to test that it is lower than 10, use the less-than symbol < . If you want to check for something being
not equal to a certain value, use != in place of the double equals sign used previously.

 You can also use an if else statement , which will perform one action if the condition is met and
something else if the condition is not met:

 if myvariable == 10 :
 print ("The value is equal to 10")
 else :
 print ("The value is not equal to 10")

 In that example, as before, the first print statement is called if the value is equal, but if the value is not
equal, the print statement following the else statement will be called.

 Another useful method is to chain events together. While we could do this by nesting if statements
within the else statement, this is easier to follow using an elif statement (which is a contraction of else if).

 if myvariable == 10 :
 print ("The value is equal to 10")
 elif myvariable < 10 :
 print ("The value is less than 10")
 else :
 print ("The value is greater than 10")

 In this case, the elif statement checks for the value being less than 10. As you already know that it is
not equal to 10, you can deduce that anything that doesn’t meet the if and elif conditions must be greater
than 10.

 Another useful technique is to be able to put multiple conditions within a single if statement. This can
be achieved by using the words and or or between each clause.

 if ((button_pressed == True) and (myvariable > 10)) :
 print ("Well done score – you won")

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

129

 This example checks that both button_pressed is True and that myvariable is greater than 10. If you
wanted this to be run if either condition was met, you would use or instead. I added brackets around the
various parts of the if condition to make it clearer to understand, but these are not required. Brackets can
help with understanding what is happening and will avoid any problems due to operator precedence (where
certain operators are considered before others).

 Loops are another form of decision making. You have mostly used the while True loop , which keeps
on running forever, or at least as long as the program is running (as the program can be stopped by pressing
Ctrl+C or some other external call). Although I say this runs “forever,” there is one way you can exit it, which
is to include a break statement. This is often used in an if statement so that if a certain condition is met, it
“breaks” from the loop. It’s also possible to return to the start of the loop using a continue statement. The
following code shows both of these in use:

 myvariable = 0
 while True:
 myvariable = myvariable + 1
 print ("In loop")
 if (myvariable < 10) :
 continue
 break

 This will print the line " In loop " ten times. It starts by incrementing the value of myvariable , prints
" In loop ", and then checks to see if it’s been printed less than 10 times. If so, it continues back to the top of
the loop. Once it has looped 10 times, it will instead reach the break , which exits from the loop.

 An alternative to the while True loop is to use a condition in the while statement:

 myvariable = 0
 while myvariable < 10:
 myvariable = myvariable + 1
 print ("In loop")

 In this example, the program will run as long as myvariable is less than 10. This will work the same as
the previous example.

 Python also provides another way of doing this, which is usually easier to understanding using a
 for range loop :

 for i in range (0, 10) :
 print ("In loop")

 This example uses only two lines, which is much less than the previous examples. This is because
you no longer have to track your own variable. The range function creates a list of values, starting at 0 and
going up to 9. The for loop then iterates over each of these in turn by copying the value from range into the
variable i and then running that iteration of the loop. You’re not limited to using numbers in the for loop;
you could also iterate over any lists.

 mylist = ["Loop 0", "Loop 1","Loop 2","Loop 3","Loop 4","Loop 5"]
 for thisstring in mylist:
 print ("In "+thisstring)

 This example creates a list of five entries and then iterates over each one, putting the value into the
variable thisstring . Each entry is then printed out, one line at a time.

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

130

 Creating Python Functions
 Most of the software in this book so far has been written as a sequential block of code designed to be run
from the top to the bottom of the file. I include loops to avoid some repetition, but otherwise if you wanted
to do something multiple times, you just add that instruction to the code. This can create duplicate blocks of
code, result in very long code, and make it difficult to understand what the code is doing. The solution to this
is to move related parts of the code into a function. Then, instead of having to copy that same block of code
into multiple places, you can just call the function instead. This also helps with code reuse, where a function
can be called multiple times without needing to copy and paste blocks of code within the program.

 To create a function, the block of code starts with a def statement and includes the title of the function
and any parameters, followed by the code inside the function.

 For example, when reading the analog input from the SPI ADC, you can create the following function:

 def readAnalog(input):
 # Code for the function goes here

 This example defines a function called readAnalog , which has a single argument called input .
 If you want to return information to the calling function, you use return followed by the value to return

or the name of the variable. The following example shows how you can create a simple function that takes
two parameters— input1 and input2 —and returns whichever value is the largest (or if they are equal, then
the first input):

 def largestValue (input1, input2):
 if input1 > input2:
 return input1
 elif input2 > input1:
 return input2
 else:
 return input1

 This can then be called within the main program using:

 largestValue (3, 2)

 which will return the value 3.

 Adding Disco Light Sequences Using Python Functions
 As Python functions are so useful, it’s worth including a real example that controls electronics. This example
revisits the earlier disco lights and adds some different sequences that can be called from within functions.

 If you have created the circuit from Chapter 4 (Figure 4-26), you can use that, but if not, Figure 6-1
shows a simplified circuit that can be used for testing these functions.

http://dx.doi.org/10.1007/978-1-4842-1898-3_4
http://dx.doi.org/10.1007/978-1-4842-1898-3_4#Fig26

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

131

 This circuit has only four resistors and four standard LEDs. It uses the same layout as the disco light
project and so can be used for testing the different sequences.

 The following code should be saved as discolight-sequences.py :

 from gpiozero import LED
 import time

 # GPIO port numbers for the light
 #9 = gnd, 7 = GPIO 4, 11 = GPIO 17, 16 = GPIO 23, 18 = GPIO 24
 LIGHTGPIO = [4, 17, 23, 24]
 # Time between each step in the sequence in seconds
 DELAY = 1

 lights = [LED(LIGHTGPIO[0]), LED(LIGHTGPIO[1]), LED(LIGHTGPIO[2]), LED(LIGHTGPIO[3])]

 def allOn():
 for x in range (4):
 lights[x].on()

 Figure 6-1. Simplified LED disco light circuit

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

132

 def allOff():
 for x in range (4):
 lights[x].off()

 def sequence():
 for x in range (4):
 for y in range (4):
 lights[y].off()
 lights[x].on()
 time.sleep(DELAY)

 def repeatSequence(numsequences):
 for x in range (numsequences):
 sequence()

 # Main code starts here
 allOff()
 time.sleep(DELAY)
 allOn()
 time.sleep(DELAY)
 sequence()
 time.sleep(DELAY)
 repeatSequence(6)

 In this program, I created four functions. The allOn() function turns all the LEDs on, the allOff()
function turns all the LEDs off, sequence() lights the four LEDs in sequence, and repeatSequence() repeats
the sequence for a number of times as defined in the parameter for the function.

 The functions will not run until they are called in the section after the comment # Main code
starts here . Each function is then called individually with a delay between each one. The function
 repeatSequence() calls another function sequence() , which allows even further code reuse. Note that while
several of the functions reference the variable x , these are local variables that apply only within the function.
So even though repeatSequence calls sequence and both functions refer to the variable x , these values are
independent of each other. The list that holds the lights is created outside of the function and is visible to all
the functions without having to create a new copy for each function; this is known as a global variable .

 The allOn() and allOff() functions should be fairly self-explanatory.
 The sequence() function uses a nested loop. The first loop uses the variable x and will be called once

for each disco light. The first run within the loop will turn off all the LEDs and then turn the first LED on. The
second will turn off all the LEDs and then the second LED on, which repeats up to the fourth, which turns all
the LEDs off and then the fourth one back on. This gives the effect of showing a single LED being lit, shifting
from left to right. The inside loop turns all the LEDs off. This could have been replaced with a call to the
 allOff() function.

 The repeatSequence() function takes a parameter called numsequences , which should be an integer
number. The loop will then call Sequence() the number of times that numsequences was set to.

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

133

 Using a Python Main Function
 In addition to using functions for small parts of the code, you can create a special function around the main
part of the code. This is a requirement in many other programming languages, but is not actually required in
Python. You do this by creating a function called main() and calling it when the program is started:

 def main():
 #The main program code goes here

 #Run the main function when this program is run
 if __name__ == "__main__":
 main()

 This separates the main function from the rest of the file so that variables in main are local to main rather
than to the global variables. It is generally good practice to avoid using global variables when possible.
You can still include global variables in the file, where they are used as global functions in the start of the
program and can be created using the global keyword. This is a useful thing to know about, particularly
when looking at code that others have written.

 Another benefit of creating a main function is that it allows your code to be made into a module, but
still allows it to be executable. Again, this is considered a more advanced technique, so it won’t be discussed
further here.

 Making Python Programs Executable
 The programs you have created so far have been executed from within IDLE 3 or would need to been run on
the command line using:

 python3 myprogram.py

 It is useful to be able to run the program directly using its name. You can use this by adding a shebang
entry as the first line of the program. This takes the form of a hash character # , which is normally used
for comments, followed by an exclamation mark. This is a contraction of hash and bang, which is an old
nickname for the exclamation mark. To use Python 3, you put the following as the first line in your Python
program.

 #!/usr/bin/python3

 The program needs the full executable path, which can be found using the which command from the
command prompt as follows:

 $ which python3
 /usr/bin/python3

 The one downside of this is that it may not work across different UNIX-like operating systems, including
different Linux distributions. This is not going to be a problem for these programs, since they will only work
with the Raspberry Pi anyway, but you may see a slightly different entry, which is:

 #!/usr/bin/env python3

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

134

 This achieves the same thing, but instead of python3 having to be in a certain directory, the env
(environment) command will locate it for you.

 The next stage in making a program executable is to tell Linux that it has permission to run. By default,
Linux gives permission to read and write to the file but not execute it. The chmod command can be used to
add executable permissions using +x as shown:

 chmod +x myprogram.py

 After adding a shebang entry and making a program executable, you can run it directly from the command
line. The program should be prefixed with ./ (which means run it from the current folder) as shown:

 ./myprogram.py

 This makes the program a little easier to run and is a bit more professional than having to type python3
before it. It also makes it easier to run the program with command-line options and to run the program
automatically. You will look at these next.

 Handling Command-Line Arguments
 So far the programs have either run without any user control or have been dependent on interacting with
the user directly or through an electronic circuit. It is useful to be able to tell a program what you want it
to do without needing to interact with it in real time. This is particularly useful if you want the program to
act differently depending on how it runs. You can achieve this by adding command-line arguments. For
example, with the time delay light, you may want to change the length of time that the light stays on. You
could add an argument to the command that allows you to change the delay.

 The arguments to a Python program are provided as a list called sys.argv . If you only have a simple
requirement, you can just access the list directly, as shown in the following example. Enter the following text
and save it as ledtimer2.py .

 #!/usr/bin/python3
 from gpiozero import LED
 import time
 import sys

 # Time to keep the light on in seconds
 DEFAULTDELAY = 30

 # GPIO port numbers for the LED
 LED_PIN = 4

 if ((len(sys.argv) > 1) and (int(sys.argv[1]) > 0)):
 delay = int(sys.argv[1])
 else:
 delay = DEFAULTDELAY

 led = LED(LED_PIN)

 while True:
 input("Press enter to turn the light on for "+str(delay)+" seconds")
 led.on()
 time.sleep(delay)
 led.off()

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

135

 This is based on the LED timer code used in Chapter 4 , but there have been a few changes. First, so that
this can be used with the disco light circuit rather than needing the original LED timer circuit, I changed
 LED_PIN to reflect one of the LEDs used in the disco light and removed the need for the button instead of
using the keyboard. If you still have the LED timer circuit, you can change this to PIN 22 and reinsert the
button code.

 Instead of using a constant for the delay, I take the value from the argument and store it into a variable
called delay . Python doesn’t actually differentiate between the constant and the variable (both are in fact
just standard variables), but the convention is that variables written all in uppercase should not be changed
once set to an initial value.

 To run the program, first add permissions to execute it using:

 chmod +x ledtimer2.py

 You can then run the program using:

 ./ledtimer2.py

 Let’s look at the code in a bit more detail. First I’ve added the shebang entry so that this can be called as
though it’s an executable file.

 The module sys is imported and you can access the argv list containing the command-line arguments.
Within the if statement are two tests. The first is this:

 len(sys.argv) > 1

 It checks to see if you have more than one argument. The reason that this is more than one and not zero
is because the first argument is the name of the program you are running. Only if that test passes does it
perform the following test to see if it’s a number:

 int(sys.argv[1]) > 0

 This takes the argument number 1 (remember 0 is the name of the program) and tries to convert it to an
integer. If it’s a positive number greater than zero, it passes the test. If it’s not actually a number (including if
someone types four rather than the digit 4), it will show an error and the program will stop. It is possible to
add error handling using a try catch statement, but that’s going beyond the scope of this book. Whenever
your code reads in a value that the user provides, you should check that is a valid entry.

 Assuming that it is a valid entry, the code copies the value into the delay variable using the following:

 delay = int(sys.argv[1])

 If you don’t use a command-line argument, it uses the default from DEFAULTDELAY instead.
 You then have a while loop that turns the LED on for the amount of delay time. Note that I’ve replaced

the check for the button press with the input function, which asks the user to press the Enter key. When
you’re using the input function, the return value would normally allow the user to enter data that could be
provided into a variable, but in this case you just ignore any returned value and wait for the user to press the
Enter key.

 If you want to include multiple arguments, you could just read them in using the sys.argv list.
If you want to do something more complex like have different optional arguments that can be in different
positions, you may be better off using the argparse module.

http://dx.doi.org/10.1007/978-1-4842-1898-3_4

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

136

 Running Python Programs as a Service
 One issue with the PIR camera code created in Chapter 5 is that it needs to be started manually whenever
the computer restarts. This isn’t too bad if the Raspberry Pi is connected to a network because you can
connect using ssh, but this could be a real problem if it’s used for capturing photos of wildlife. For example,
you may want to position the PIR camera in a bird box with no network connectivity and no screen and
keyboard to login. In that case, it is much easier to have the program start automatically when you power
the Raspberry Pi on. This approach can also be useful for any other server type programs. This section
looks at setting the Internet of Things train program to run during startup, but this can equally apply for
other services.

 On recent versions of Raspbian, the startup and running processes are controlled using systemd . It
provides you a way to start, monitor, and manage background programs. It has a lot of features, which can
make it complex, but the part you are going to use is fairly straightforward.

 To register the program as a service, you need a special service file stored in the /etc/systemd/system/
directory; it must end with the suffix .service . I called this file pir-camera.service . It needs to be created
as the root user using sudo .

 If you’re creating it through a graphical screen, you can use:

 gksudo leafpad /etc/systemd/system/pir-camera.service

 Or if you prefer to use the command line, you use this:

 sudo nano /etc/systemd/system/iot-train.service

 Add the following details:

 [Unit]
 Description=PIR Camera program

 [Service]
 Type=simple
 ExecStart=/usr/bin/python3 /home/pi/learnelectronics/pircamera/pir-camera.py
 User=pi

 [Install]
 WantedBy=default.target

• The Unit section provides generic information that applies to the service. In this
case, it provides a user friendly description of the service. The Unit section may also
specify if a different service needs to start first.

• The Service section provides the options related to this service. The option
 Type= simple is used for a standard program that has not been specifically designed
as a server application.

• The ExecStart option specifies the command that runs for this service. In this case,
it calls the PIR program. It uses the Python command first, but if you updated the
 pir-camera.py file to include a shebang entry, as mentioned previously, you can just
use the pir-camera.py program. It should still have the full path to the program. In
this case it would be:

 ExecStart=/home/pi/learnelectronics/pircamera/pir-camera.py

http://dx.doi.org/10.1007/978-1-4842-1898-3_5

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

137

• The User option provides the username that the program will run under. In this case,
the user pi .

• The Install section includes the WantedBy=default.target entry. This indicates that
you want the service to start when the computer is running at the default run level.

 You can now start the service using this command:

 sudo systemctl start pir-camera

 To set it to start automatically, use this:

 sudo systemctl enable pir-camera

 You should now be able to reboot the computer and the service will start up automatically.

 Running Programs at Regular Intervals with Cron
 Another useful feature is being able to run a program at regular intervals. This enables you to run tasks at set
times of each day or to run a command the same day each week. The move to the new Systemd scheduling
provides another way to achieve this goal, but this section looks at the older and currently better known
method of cron.

 Cron is a scheduler that can run commands at regular intervals. It’s often referred to as crontab, which
is name of its configuration file and the tool used to edit the configuration file.

 Each user can have her own list of cron tasks to be run at set times. You can edit these tasks using
 crontab –e , which will load the current crontab entries into the default editor. If you have not yet set a
default editor, it will ask you which editor to use and will recommend nano. You should edit this file to
list any required tasks. Then save the file (Ctrl+O from within nano) and exit (Ctrl+X). When you exit, the
crontab will be loaded and will take effect whenever one of the conditions is met.

 Here’s an example of the crontab entry:

 # m h dom mon dow command
 0 9 * * 6,7 /home/pi/ledtimer.py
 30 15 * * 1-5 /home/pi/ledtimer.py
 0 11 * * * /home/pi/ledtimer.py

 This shows the relevant part of an example crontab edit session (there are a number of comments above
this entry). This example shows the same command being run on different days and times.

 Each line reflects a single entry, which has five time/date fields to specify when the commands are run
followed by the command to execute. Using the abbreviations, these are (in order):

 m - Minutes - 0 to 59
 h - Hours - 0 to 23
 dom - Days of Month - 1 to 31
 mon - Month - 1 to 12 or JAN-DEC
 dow - Day of week - 1 to 7 or MON-SUN (or 0 can be used for Sunday)

 The fields can have a single value, comma-separated values, ranges of values, or an asterisk for any value.
 To interpret the top entry in the previous example, it will run on the 0 minutes of the ninth hour (9:00 am)

on any day of the month and any month of the year, but only on days 6 and 7 (the weekend). The second entry
will run at 15:30 on each day of the month and any month of the year, but only on weekdays (1 to 5). The third
entry runs at 11:00 every day.

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

138

 As well as the time-based entries, there are other special commands that can be used, such as
 @weekly (midnight on Sunday morning), @hourly (once an hour), and @reboot (which runs when the system
is started).

 Creating an Automated Lego Train Using Infrared
 Let’s now create another project to practice some of the techniques covered so far. The first is automating a
Lego train. The Lego train uses an infrared receiver on the train with an infrared remote control shaped as
a controller. The same type of receiver is used on different Lego models, including remote control cars and
trains. The Lego train and infrared controller are shown in Figure 6-2 .

 Figure 6-2. Lego train with infrared controller

 For this, you are going to need the infrared circuit that you created in Chapter 5 , although you only need
the transmitter part. This needs only a few parts and so should be easy enough to put back together on the
breadboard.

 You are also going to add a reed switch so that you know when the train reaches the station. A magnet
controls a reed switch . It normally opens when there is no magnetic field nearby and closes when an
appropriate magnet comes close to it. If you have seen a burglar alarm sensor mounted on a door frame,
these use the same principle. A reed switch is shown in Figure 6-3 .

http://dx.doi.org/10.1007/978-1-4842-1898-3_5

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

139

 You will use the reed switch to pull one of the GPIO input pins down to 0V, the same as you did with the
Button GPIO Zero object.

 The circuit diagram of the infrared receiver and reed switch is shown in Figure 6-4 .

 Figure 6-3. A reed switch with magnet

 Figure 6-4. Circuit diagram of infrared transmitter with reed switch

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

140

 The infrared transmitter can be made on a breadboard again. I used a long jumper lead to take the
infrared emitter diode off the breadboard so that it could be closer to the train. I also found that in certain
positions the train could not see the infrared signal. If that is the case, you can add a second infrared emitter
diode in series so that two emitters can be pointed at the track from different angles.

 The reed switch will need to be positioned inside the train track so that the train goes over it, but so
that it doesn’t interfere with the train. The reed switch can be soldered to a long wire, as shown in Figure 6-5 .
(I haven’t covered soldering yet, so you could twist the wire against the reed switch lead, which will be
sufficient for testing the circuit.) The magnet needs to be stuck to the bottom of the train. In this case I’ve
used Blu-Tack (otherwise known as adhesive putty), but you could use self-adhesive pads instead.

 Figure 6-5. Reed switch mounted under the Lego train track and magnet on the train

 With the circuit in place, you now need to add details about the remote control to LIRC. This assumes
that the LIRC has already been configured; if not, refer to the section entitled “Configuring the Infrared
Transmitter and Receiver Using LIRC” in Chapter 5 .

 Although it is possible to teach LIRC the codes using an infrared receiver, these codes are already
available on the Internet. To download the codes, enter the following command:

 wget https://github.com/dspinellis/lego-lirc/archive/master.zip

 This will download the appropriate files to a file called master.zip (it may have a number appended to
the end if you already have a file called master.zip).

 Unzip the contents using:

 unzip master.zip

 This will extract into a directory called lego-lirc-master .
 Now copy the files to the lircd.conf.d directory created in the earlier setup:

 sudo cp ~/lego-lirc-master/Combo* /etc/lirc/lircd.conf.d/
 sudo cp ~/lego-lirc-master/Single* /etc/lirc/lircd.conf.d/

http://dx.doi.org/10.1007/978-1-4842-1898-3_5

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

141

 Add these to the lircd.conf file using your preferred text editor. For example:

 gksudo leafpad /etc/lirc/lircd.conf

 Add the following lines to the end of the file:

 include "/etc/lirc/lircd.conf.d/Single_Output"
 include "/etc/lirc/lircd.conf.d/Combo_Direct"
 include "/etc/lirc/lircd.conf.d/Combo_PWM"

 Finally, stop and start the lirc daemon using:

 sudo systemctl stop lirc
 sudo systemctl start lirc

 Check that the lirc started correctly using:

 sudo systemctl status lirc

 Now test that everything is configured correctly using:

 irsend --count=5 SEND_ONCE LEGO_Single_Output 1R_4

 This should start the train. Follow it with this command, which should stop it:

 irsend --count=5 SEND_ONCE LEGO_Single_Output 1R_0

 If this doesn’t work, don’t despair. The first thing to do is to make sure that there is line of sight between
the infrared transmitter and the Lego train. You may need to take the emitter diode off the breadboard using
a pair of male-to-female jumper leads, connect the male end to the breadboard, and push the LED into
the female end. Ensure that the diode is connected correctly of course. You may need to have the emitter
pointing out toward the track, which can be achieved using a Lego building, such as a train station.

 If that still doesn’t work, the train may be set for a different channel or using the wrong color channel.
 The irsend command sends infrared signals, using remote controls that are already configured within

 lirc . It uses several command-line options, which determine which code to send and how to send it. The
first option is --count=5 , which tells the irsend command to resend the command five times. This is useful
in case the first attempt isn’t received correctly. The SEND_ONCE argument tells it to send a single set of signals
to the device; this is normally required. The alternative to SEND_ONCE is to use SEND_START to start sending
signals and SEND_STOP when finished sending signals. This is sometimes used for volume control when you
want to keep sending signals for a set period of time. The next option is the name of the remote control, in
this case it’s Lego_Single_Output . These are the codes that can be used to send one action at a time, which
is what you will use here. There are also some combination remote control codes that can be used to send
multiple commands simultaneously, but the single output is fine this use. The final argument is which
particular remote control signal to send (typically the button press on a standard remote control).

 This code is made up of three parts. The first part determines which of the Lego channels to use. The
Lego receiver and transmitters have a selector that goes from 1 to 4. This is the channel number that you
need to use.

 The second character is R (red) or B (blue). These are the different positions that the motor can be
connected to on the Lego infrared receiver control. On the Lego remote controller, the Red channel is on the
left and the Blue channel is on the right.

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

142

 Finally, there is an underscore character followed by the specific command. The commands used here
are 0 to 7, where 0 is stopped and 7 is the fastest speed setting. BRAKE effectively applies the brake and brings
the train to a stop.

 For example, if you have a train on channel 2 connected to the blue side and you wanted it to go full speed,
you would use 2B_7 . The complete command would then be:

 irsend --count=5 SEND_ONCE LEGO_Single_Output 2B_7

 Dealing with Conflicts
 My initial idea was just to use the standard GPIOZero module for the reed switch alongside lirc for the
infrared transmitter. I created the software and set it running. Although the infrared transmitter worked fine,
I was unable to see any signals from the reed switch. Perhaps the reed switch was wired up wrong; perhaps
the magnet was not coming close enough; or perhaps there was a problem with that part of the code.

 I wrote a small test program to find out what was wrong with the reed switch, but when I ran that, it
detected the train correctly. The reed switch worked on its own; the infrared circuit and code worked as well,
but put them together and there was a problem.

 The issue is that different ports are used for the infrared transmitter and the reed switch, yet they use
different methods to access the same GPIO port. One conflicts with the other. This is something that you
do need to be aware of when creating electronic circuits, particularly when there is some kind of computer
involved. This is also one of the reasons that you have to enable certain modules in the Raspberry Pi, as
enabling them all by default can cause a problem. Fortunately, I was able to find a workaround for this.

 By default, the GPIOZero module uses the RPi.GPIO module . This is the module that many programmers
were using prior to GPIOZero and it normally works well. It doesn’t appear to work when lirc is being used
to send infrared codes. I therefore had to change to using NativePins for GPIOZero , which is a pure Python
method of communicating with the GPIO pins. To use NativePin , you need to insert the following code d
before the GPIOZero module is imported (using either import or from).

 ■ Caution The use of NativePin comes with a warning. It is considered experimental and may stop working
in the future. Also, while it appears to work with the newer models of the Raspberry Pi, it did not work on all of
them. Using a Raspberry Pi 2, it did allow my code to communicate with the reed switch as well as use lirc
to send infrared signals. With this warning and potential problems, I suggest you avoid using this method for
critical applications used in industrial settings, but it’s fine for controlling a toy train.

 from gpiozero.pins.native import NativePin
 import gpiozero.devices
 # Force the default pin implementation to be NativePin
 gpiozero.devices.DefaultPin = NativePin

 One other down side of the NativePin implementation is that it doesn’t support PWM (Pulse Width
Modulation), although you don’t need that here, so it’s not an immediate problem.

 I did sometimes get a message that the kernel disabled one of the interrupts, but this should not stop
the code from controlling the Lego train or from detecting the state of the reed switch. The risk of conflicts is
something that you should be aware of, as you could otherwise spend a lot of time looking for errors in the
wrong places. A good testing schedule should help catch any errors with conflicts.

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

143

 Software to Control the Lego Train Using LIRC and GPIO Zero
 I created a Python program that starts the train, waits until the train reaches the station, and then slows the
train down to a stop. It then pauses before starting again. Rather than just jumping straight to the full speed,
I made the train accelerate slowly up to speed and then decelerate slowly back down again. On a short track,
the train may trigger the sensor while it’s still accelerating, but that is ignored.

 The best way to understand this process is to start looking at the code:

 #!/usr/bin/python3
 import os
 import time
 from gpiozero.pins.native import NativePin
 import gpiozero.devices
 # Force the default pin implementation to be NativePin
 gpiozero.devices.DefaultPin = NativePin
 from gpiozero import Button

 LEGO_CH = "1"
 LEGO_COL = "R"

 REED_PIN = 4
 ACC_DELAY = 0.5

 rswitch = Button(REED_PIN)

 MAX_SPEED = 5
 STATION_DELAY = 10

 def send_lego_cmd (lego_ch, lego_col, op):
 os.system("irsend --count=5 SEND_ONCE LEGO_Single_Output " +lego_ch+lego_
col+"_"+op);

 # Go from stop to max speed
 def train_speed_up (maxspeed):
 speed = 0
 while speed < maxspeed:
 speed = speed + 1
 send_lego_cmd (LEGO_CH, LEGO_COL, str(speed))
 time.sleep(ACC_DELAY)

 def train_slow_down (currentspeed):
 speed = currentspeed
 while speed > 0:
 speed = speed - 1
 send_lego_cmd (LEGO_CH, LEGO_COL, str(speed))
 time.sleep(ACC_DELAY)

 while True:
 print ("Leaving the station")
 # Accelerate up to full speed
 train_speed_up(MAX_SPEED)

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

144

 # wait until it triggers reed switch
 print ("Going to station")
 rswitch.wait_for_press()
 print ("Stopping at station")
 train_slow_down(MAX_SPEED)
 time.sleep(STATION_DELAY)

 I already explained the reason for the extra import requirements at the top of the code. First, note that
the channel number is entered as a string (with quote marks around it), which is required when you merge it
to form the command. The pin number for the reed switch is then included as the acceleration delay, which
is how long you wait between each speed increase.

 A maximum speed is then set, as while the motor can go up to seven, the train has a tendency to jump
off the track at that speed. There is also a station delay, which is how long the train waits at the station before
departing again.

 The send_lego_cmd() function is similar to the remote control function you defined in Chapter 5 , but
with the code changed so that it is specific to the Lego train. There are two more functions— train_speed_
up() and train_slow_down() —both of which call the send_lego_cmd() function.

 The main part of the program is contained in the while loop, and it calls the functions you already
defined and uses the GPIO Zero Button object to wait for the reed switch to be triggered. I included some
 print statements, which are once again very useful to understand what the program is doing.

 Using the Internet of Things to Control the Model Train
 You’ve no doubt heard about the Internet of Things (IoT), which is all about controlling electronic devices
from the Internet. This section looks at using IoT to control the Lego train.

 You are going to create your own mini-web server in Python, which is easy thanks to the Bottle
module. You will also need to use HTML to build the web site and a bit of JavaScript to make it more
responsive. Both of these are beyond the scope of this book, so I just concentrate on the Python aspects and
how it can send an infrared signal. If you want to take your IoT projects further, it is worth learning more
about HTML and JavaScript.

 This discussion assumes that you already have the Lego train working with Raspberry Pi, at least as far
as being able to use the irsend command , as I won’t be using the reed switch for this project.

 The Python Bottle module is effectively an entire web server in a Python module. You simply need to
install the module, import it into an application, and then run the appropriate commands.

 To get started, you need the module and another file required for the JavaScript. First install the Python
module using:

 sudo apt-get install python3-bottle

 Now create a directory to hold the program and, inside that, create a public folder that holds the files
that you will make available through the web server.

 mkdir ~/iot-train
 mkdir ~/iot-train/public

 Now change to this directory and download the jQuery file using the following:

 cd ~/iot-train/public
 wget http://code.jquery.com/jquery-2.1.3.min.js

http://dx.doi.org/10.1007/978-1-4842-1898-3_5

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

145

 Now change to the iot-train directory , which is where the program needs to be stored.

 cd ~/iot-train

 Rather than rewrite all the code for sending the infrared signals, you will use existing code. To make
it so that you can use the code in the file for running as a standalone program and for inclusion in the web
application, you use the special Python Main Function code explained earlier. This is shown in the following
code, which should be saved as the legotrain.py file :

 #!/usr/bin/python3
 import os
 import time
 from gpiozero.pins.native import NativePin
 import gpiozero.devices
 # Force the default pin implementation to be NativePin
 gpiozero.devices.DefaultPin = NativePin
 from gpiozero import Button

 LEGO_CH = "1"
 LEGO_COL = "R"

 REED_PIN = 4
 ACC_DELAY = 0.5

 rswitch = Button(REED_PIN)

 MAX_SPEED = 5
 STATION_DELAY = 10

 def send_lego_cmd (lego_ch, lego_col, op):

 os.system("irsend --count=5 SEND_ONCE LEGO_Single_Output " +lego_ch+lego_
col+"_"+op);

 # Go from stop to max speed
 def train_speed_up (maxspeed):
 speed = 0
 while speed < maxspeed:
 speed = speed + 1
 send_lego_cmd (LEGO_CH, LEGO_COL, str(speed))
 time.sleep(ACC_DELAY)

 def train_slow_down (currentspeed):
 speed = currentspeed
 while speed > 0:
 speed = speed - 1
 send_lego_cmd (LEGO_CH, LEGO_COL, str(speed))
 time.sleep(ACC_DELAY)

 def train_set_speed (speed):
 send_lego_cmd (LEGO_CH, LEGO_COL, str(speed))

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

146

 def main() :
 while True:
 print ("Leaving the station")
 # Accelerate up to full speed
 train_speed_up(MAX_SPEED)
 # wait until it trigger reed switch
 print ("Going to station")
 rswitch.wait_for_press()
 print ("Stopping at station")
 train_slow_down(MAX_SPEED)
 time.sleep(STATION_DELAY)

 #Run the main function when this program is run
 if __name__ == "__main__":
 main()

 I’ve also added a new function called train_set_speed() , which takes the train straight to that speed
without any gradual acceleration or deceleration.

 You can give this file executable permission using:

 chmod +x legotrain.py

 This will allow you to run it the same as the previous example. The clever thing now is that you can also
import it into another program, which enables you to use the functions you want without running the main
part of the code. So, to set the speed to three, you can use the following short piece of code.

 #!/usr/bin/python3
 from legotrain import *

 train_set_speed(3)

 As long as this is in the same directory as legotrain.py , it will load the existing program as a module
and run the train_set_speed() function .

 The code to run the Bottle web server and to handle the appropriate requests should be called
iot-train.py and be saved in the /home/pi/iot-train directory. The code is shown here:

 #!/usr/bin/python3
 from legotrain import *
 import sys
 from bottle import Bottle, route, request, response, template, static_file

 app = Bottle()

 # Change IPADDRESS if access is required from another computer
 IPADDRESS = 'localhost'
 # Where the files are stored
 DOCUMENT_ROOT = '/home/pi/iot-train'

 # public files
 # *** WARNING ANYTHING STORED IN THE PUBLIC FOLDER WILL BE AVAILABLE TO DOWNLOAD
 @app.route ('/public/<filename>')

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

147

 def server_public (filename):
 return static_file (filename, root=DOCUMENT_ROOT+"/public")

 @app.route ('/')
 def server_home ():
 return static_file ('index.html', root=DOCUMENT_ROOT+"/public")

 @app.route ('/control')
 def control_train():
 getvar_dict = request.query.decode()
 speed = int(request.query.speed)
 if (speed >=0 and speed <= 7):
 train_set_speed(speed)
 return 'Speed changed to '+str(speed)
 else:
 return 'Invalid command'

 app.run(host=IPADDRESS)

 First it imports the relevant modules, including the legotrain.py file . When importing the bottle
module I have included a few functions that we won’t actually be using in this program, but they can be
useful for other programs so I’ve left them in.

 The app is created as a Bottle , which is in effect the web server. Next is the entry IPADDRESS =
'localhost' , which sets the IP address that the web server listens on. With this set to localhost, it will be
possible to access the server only from a web browser running on the Raspberry Pi. If you want to be able to
access this from anywhere on the local network (and depending on your router configuration, potentially the
Internet) change this to 0.0.0.0 , which means all addresses.

 The Bottle module then uses the @app.route entries to determine what to do with incoming requests.
The first entry says that if you get a request for a file in the /public folder, then return a static_file
(a normal file) from the public directory.

 The second @app.route entry relates to / , which is the web server root directory where you return the
default file index.html . The final @app.route directive is where the real work happens. This says that if an
entry begins with /control , run the control_train() function. That function then gets the value of the
 speed argument from the get request and converts it to an integer using the following lines:

 getvar_dict = request.query.decode()
 speed = int(request.query.speed)

 You then check that it’s a valid request by making sure it is a number larger than or equal to 0 and
smaller than or equal to 7. This is an important step as you should never accept information provided from a
web request unless it has been checked first. If this was not the case, someone could try to insert something
inappropriate, which could compromise the security of the web server or the computer.

 You can then use the speed value to call train_set_speed() and send the infrared command to the train.
 That function then returns a status message to confirm whether the command was successful. In this

case it’s just a single line of text, which you can handle in the web browser using JavaScript.
 The final step is to start the web server:

 app.run(host=IPADDRESS)

 I included the host parameter to change the address; otherwise, it will only listen on the localhost. You
can also specify a port parameter, but this example leaves it set at the default port of 8080 .

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

148

 That is the entire web server code. This is in my opinion one of the great things about Python. Thanks to
the use of modules that others have created, you can include an entire web server in less than 40 lines of code.

 With the web server part complete, you need the HTML code and some JavaScript to send the
appropriate requests to the web server. This will all be contained in a single file called index.html . The
following should be saved in the /home/pi/iot-train/public directory as the index.html file :

 <!doctype html>
 <html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>Lego Train Control</title>
 <!-- Add Jquery -->
 <script type="text/javascript" src="/public/jquery-2.1.3.min.js"></script>
 </head>
 <body>
 <h1>Lego Train Control</h1>

 <div id="status">…</div>

 <select id="speed">
 <option selected="selected">0</option>
 <option>1</option>
 <option>2</option>
 <option>3</option>
 <option>4</option>
 <option>5</option>
 <option>6</option>
 <option>7</option>
 </select>

 <script>
 // call back function from ajax code
 function updateStatus (data) {
 // Update screen with new status
 $('#status').html(data);
 }

 function changeSpeed (speed) {
 $.get('/control', 'speed='+speed, updateStatus);
 }

 $("#speed").change(function() {
 changeSpeed($("#speed").val())
 });

 </script>
 </body>
 </html>

 As mentioned, it’s beyond the scope of this book to teach HTML and JavaScript as well, but I will still give
you a few pointers as to how the code works. You must first load the JavaScript jQuery library using the following:

 <script type="text/javascript" src="/public/jquery-2.1.3.min.js"></script>

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

149

 This library makes programming in JavaScript much easier and helps you write portable JavaScript that
can work across different web browsers.

 The next part is very basic HTML, which is not going to look particularly nice (best achieved using CSS)
but provides a title, a text position that you will use for status messages, and an option allowing the users to
select the speed.

 The rest is a block of inline JavaScript. In more advanced programs, this would normally be broken
into a separate JavaScript file, but I’ve just kept it in the HTML file for this example. There are two regular
functions— updatestatus receives the response from the web server and updates the status text and
 changeSpeed sends a get request to the web server.

 The last block of JavaScript code overrides the change function of the select element so that whenever
it changes, it calls the changeSpeed() function .

 To start the server, give it executable permissions using:

 chmod +x iot-train.py

 Start the application using:

 ./iot-train.py

 You will see a status message that informs you which address and port the server is listening on.
Whenever a new request is received, it will also show a line of text about what’s being requested and the
status code.

 To access the page, point the web browser at the address of the site followed by :8080 for the port
number. This is shown using the default localhost in Figure 6-6 .

 Figure 6-6. Screenshot of the web page of the IoT train control

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

150

 There is no validation or other security checking used in this program. This means that if you allow this
on the normal IP address, anyone else on the same network can control your Lego train. For a toy, this might
be not a concern, but if you are looking at using this to control something more important, you should add
more code to restrict who can use the program.

 ■ Caution If you’re using Python Bottle to control something more important than a toy, ensure that you add
the appropriate controls so only authorized people have access.

 The program works, but it’s not particularly great to see or use. You may want to look at improving this
program using graphical buttons or Cascading Style Sheets (CSS) .

 The program can now be set to run automatically by creating a new service file. The service file needs to be
stored in the /etc/systemd/system/ directory and end with the .service suffix. I called it iot-train.service .
The file needs to be created as the root user using sudo .

 If you’re creating it through a graphical screen, you can use:

 gksudo leafpad /etc/systemd/system/iot-train.service

 Or if you prefer to use the command line, then you use:

 sudo nano /etc/systemd/system/iot-train.service

 Add the following details:

 [Unit]
 Description=IOT Lego Train Control
 Wants=network-online.target
 After=network-online.target

 [Service]
 Type=simple
 ExecStart=/home/pi/iot-train/iot-train.py
 User=pi

 [Install]
 WantedBy=default.target

 This is similar to the one you created previously, but also includes the Wants and After entries. The
 Wants entry ensures that the network is started and the After entry means that the code won’t start this until
after the network is online. It’s a good idea to include these with most network applications. If there is a need
to wait until another service starts, you need to enter the name of that service in the After entry instead.

 The service can now be started using this command:

 sudo systemctl start iot-train

 To set it to start automatically, use:

 sudo systemctl enable iot-train

 You should now be able to reboot the computer and the service will start up automatically. You just
need to point your web browser at the page to control the Lego train.

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

151

 Controlling Color Light Strips Using NeoPixels
 Another fun project is using NeoPixel-colored LEDs . NeoPixels is a named used by Adafruit, and these are
also known as individually addressable RGB LEDs, or by the codes WS2811, WS2812, or WS28xx.

 These LEDs can be connected into a long string. I have a flexible strip, which has 150 of these LEDs
mounted, all of which are controlled by a single data connection, plus the power supply. A picture of a
slightly shorter strip of these LEDs in action is shown in Figure 6-7 .

 Figure 6-8. MOSFET level shift circuit for controlling RGB LEDs

 Figure 6-7. Color light strip using RGB LEDs

 The LEDs are available in a variety of shapes and configurations. These vary from single LEDs designed
to be soldered onto a circuit board, to circles, strips, and a matrixes able to create simple pictures.

 The circuit that you will create to control these is incredibly simple, but it’s the hardware built into the
LEDs and the software used to control them that does all the clever work. In fact, you’ve already come across
it in Chapter 5 . It’s a level-shifter circuit.

 The Raspberry Pi GPIO port is 3.3V, but these RGB LEDs work at their brightest when powered from a
5V power supply. You therefore just need to increase the output voltage from the GPIO port to 5V. The basic
 MOSFET circuit is shown in Figure 6-8 .

http://dx.doi.org/10.1007/978-1-4842-1898-3_5

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

152

 You may recall that this circuit is an inverting buffer, and it gives a low output when the input is high and
vice versa. This is something you can resolve by changing a setting in the software. An alternative is to use a
 74HCT125 non-inverting buffer IC . This is the approach used by the MyPiFi.net NeoPixel Controller Board,
which was a successful Kickstarter project. You could use a level-shifter such as the one used for the I 2 C LCD
display in Chapter 5 .

 The input to the level-shifter must be connected to GPIO port 18 on the Raspberry Pi, which is the
output that supports hardware PWM.

 The components I used for this circuit are as follows:

• RL—2.2kΩ

• RB—470Ω

• Q1—2N70000

 An example of the circuit using breadboard-mounted NeoPixels in shown in Figure 6-9 . This is a good
way to get started using NeoPixels. I created different circuits using similar components for controlling the
LED strips.

 Figure 6-9. Breadboard version of the NeoPixel circuit

http://dx.doi.org/10.1007/978-1-4842-1898-3_5

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

153

 Note that I used an external power supply in the form of a micro-USB connector, which is the same type
of connector used to power the Raspberry Pi. This is not required when using only two LEDs, but a more
powerful power supply is required for larger LED strips.

 Also note that there are two power supply connections from the same power supply to each of the
NeoPixels. This is not actually required either, because there are two +V and two Gnd connections to make
daisy-chaining easier. They are included here so that you can see which pins are available for connecting
to the power supply. You just need to ensure that one +V and one Gnd connection for each NeoPixel is
connected to the 5V power supply.

 The data pins are labeled as DI for data in and DO for data out. The signal from the MOSFET connects
to the data in of the first NeoPixel. The data out from the first pixel then connects to the data in of the second.
Normally, there will be multiple LEDs connected in a series, often on a long LED strip.

 ■ Tip Check that the labels on the pins match those on the diagram. If they don’t, the circuit should be
adjusted accordingly, as some NeoPixels may have a different pin layout.

 Powering RGB LEDs
 According to the datasheet for the WS2812, each RGB LED actually consists of three different LEDs in a
single package. Each of these LEDs can use up to 20mA when fully lit. So with the color set to white and
maximum brightness, you need to be able to provide 60mA per LED. If you have 150 LEDs, this requires a
9A power supply. In reality, I found the LEDs that I used actually ran at around half that, but you do need to
ensure that you have a fairly substantial power supply to provide sufficient current to all the LEDs without
overheating.

 The ground connection of the power supply should be connected to the ground of the Raspberry Pi, but
the 5V connection from the power supply should not be directly connected to the Raspberry Pi.

 How the RGB LEDs Work
 The LEDs are all wired together in a series with the data output from one LED becoming the data input of
the next one in the chain.

 Each of the LEDs is mounted on top of a built-in controller. This controller IC includes a data input
and a data output. The IC receives instructions for all the LEDs on the strip as a long serial string. It strips
off the information required from one end to set its own LEDs brightness and then forwards the rest of the
information to the next LED in the chain. When the signal reaches the last LED controller, it should only
have the information for its own LEDs.

 For this to work, the signal needs a very specific timing so that the controller knows when it’s the start of
a new sequence. To achieve this timing, the Raspberry Pi needs to use the PWM port.

 Installing the Python Module
 You will be using a version of the Adafruit NeoPixel library that has been modified so that it works on the
Raspberry Pi 2 and older models. The Python module is not included in the Raspberry Pi repositories and
needs to be compiled from the source code.

 The first you need is the developer libraries that allow you to compile the software. These are installed
using the normal Raspberry Pi installer:

 sudo apt-get install build-essential python3-dev git scons swig

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

154

 Next, download the NeoPixel code from GitHub using the clone command, which copies all the source
code to your local computer.

 git clone https://github.com/jgarff/rpi_ws281x.git

 Change to that directory and run scons to compile the software.

 cd rpi_ws281x
 scons

 You then need to change to the Python directory and install the Python module from there:

 cd python

 Next, install the Python 3 library file using the following:

 sudo python3 setup.py install

 There are some test programs in that directory, but you can also create your own simple test script
using Python 3.

 Controlling RGB LEDs from Python
 You will now use the NeoPixel module to control the RGB LEDs. In this case, I created a simple program
to test the circuit and to show how to change the color of the LEDs. As this is designed for the circuit in
Figure 6-9 , it is written for only two LEDs.

 #!/usr/bin/python3
 from neopixel import *
 import time

 LEDCOUNT = 2 # Number of LEDs
 GPIOPIN = 18
 FREQ = 800000
 DMA = 5
 INVERT = True # Invert required when using inverting buffer
 BRIGHTNESS = 255

 strip = Adafruit_NeoPixel(LEDCOUNT, GPIOPIN, FREQ, DMA, INVERT, BRIGHTNESS)
 # Initialize the library (must be called once before other functions).
 strip.begin()

 while True:
 # First LED white
 strip.setPixelColor(0, Color(255,255,255))
 strip.setPixelColor(1, Color(0,0,0))
 strip.show()
 time.sleep(0.5)
 # Second LED white
 strip.setPixelColor(0, Color(0,0,0))
 strip.setPixelColor(1, Color(255,255,255))

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

155

 strip.show()
 time.sleep(1)
 # LEDs Red
 strip.setPixelColor(0, Color(255,0,0))
 strip.setPixelColor(1, Color(255,0,0))
 strip.show()
 time.sleep(0.5)
 # LEDs Green
 strip.setPixelColor(0, Color(0,255,0))
 strip.setPixelColor(1, Color(0,255,0))
 strip.show()
 time.sleep(0.5)
 # LEDs Blue
 strip.setPixelColor(0, Color(0,0,255))
 strip.setPixelColor(1, Color(0,0,255))
 strip.show()
 time.sleep(1)

 The settings are defined at the top of the file, which among other things, define the number of LEDs and
brightness. This code also sets the invert option, which counteracts the inverting nature of the MOSFET
circuit. These values are passed to Adafruit_Neopixel when creating the strip object.

 After creating the strip object, the begin method needs to be run before setting the color of each LED.
The LEDs are considered to be a pixel, so the method to set the color is setPixelColor , which takes the pixel
number and a color value.

 The color value is created using red, green, and blue, with values between 0 and 255. Turning them all
on (255, 255, 255) turns the LED white and setting them all to zero (0, 0, 0) turns it off. You then turn only the
red, green, and blue parts in turn. Combining these in different amounts can give different colors.

 After setting the color for each pixel, strip.show() needs to be called to send the update to the strip.
 The NeoPixel library needs to have administrator privileges to access the GPIO ports. The program

should therefore be run using sudo , which runs it under the root user. I called the file neopixel1.py so this
would be run as:

 sudo ./neopixel1.py

 Creating a Graphical Application Using Pygame Zero
 The final stage of the LED project is to create a graphical application, also known as a Graphical User
Interface (GUI). Many programmers think creating graphical programs is difficult and requires a lot of code.
Unfortunately, this reputation is often well deserved, as the very nature of graphical applications means a
lot of code to create the graphical windows, to handle mouse clicks, and to keep the program running in the
background. Some programming languages are designed to make this easier for beginners, but they don’t
have access to the hardware that you need for controlling electronics.

 Fortunately, Pygame Zero has come to the rescue. In much the same way that GPIO Zero makes
programming the GPIO port easier, Pygame Zero is built on top of the Pygame games programming module
and makes it easier to create a graphical application. It’s still based on Python, so you can use it along with
all the GPIO Zero code you’ve already created. Pygame Zero is still quite new (the first release was in 2015),
but is showing a lot of promise. It is installed on the Raspberry Pi.

 Pygame Zero is useful for creating games, but in this example, I have created a very basic program using
rectangular buttons to select one of the sequences. This is designed for controlling a number of LEDs and,
while most of it will work with the two LEDs on the breadboard, it is really designed for connecting to a string
of LEDs or perhaps to a NeoPixel ring. The basic graphical interface is shown in Figure 6-10 .

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

156

 A suitable Adafruit NeoPixel ring and strip is shown in Figure 6-11 . If you want to use one of these, you
need to solder wires on to the appropriate terminals for the 5V power, ground, and data in connections. The
soldering is not particularly difficult and you will learn about soldering in Chapter 10 .

 Figure 6-10. Graphical application for RGB LED control

 Figure 6-11. Adafruit NeoPixel ring and strip

http://dx.doi.org/10.1007/978-1-4842-1898-3_10

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

157

 I saved the code in the neopixel-gui.py file . The code is provided here:

 #!/usr/bin/pgzrun
 from neopixel import *
 import time

 LEDCOUNT = 10
 GPIOPIN = 18
 FREQ = 800000
 DMA = 5
 INVERT = True # Invert required when using inverting buffer
 BRIGHTNESS = 255

 WIDTH = 760
 HEIGHT = 380

 BUTTON_COLOR = 40,40,200
 WHITE = 255, 255, 255

 buttonText = (
 u"All On",
 u"All Off",
 u"Flash Alt",
 u"Chaser",
 u"Multi Chaser",
 u"Color Cycle"
)
 buttonRect = (
 Rect(50, 100, 120, 40),
 Rect(300, 100, 120, 40),
 Rect(550, 100, 120, 40),
 Rect(50, 200, 120, 40),
 Rect(300, 200, 120, 40),
 Rect(550, 200, 120, 40)
)
 minusRect = Rect(150, 300, 40, 40)
 plusRect = Rect(210, 300, 40, 40)

 # Delay counts is number of updates before change in 60th of a second
 delay_counts = 30
 seq_number = 0
 sequence = "All On" # Start with all lights on
 timer = 0

 # Set up NeoPixel Strip
 strip = Adafruit_NeoPixel(LEDCOUNT, GPIOPIN, FREQ, DMA, INVERT, BRIGHTNESS)
 # Initialize the library (must be called once before other functions).
 strip.begin()

 def draw():

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

158

 screen.fill((80,80,80))

 screen.draw.text(
 "Neopixel Control",
 centerx = 360, top = 30,
 fontsize=40,
 color= WHITE
)

 box = []
 for i in range(len(buttonRect)):
 box.append(buttonRect[i].inflate (-1, -1))
 screen.draw.filled_rect(box[i], BUTTON_COLOR)
 screen.draw.text(
 buttonText[i],
 centerx = box[i][0] + 60, centery = box[i][1] + 20,
 fontsize=28,
 color=WHITE
)

 screen.draw.text(
 "Speed",
 (50, 310),
 fontsize=28,
 color=WHITE
)

 boxMinus = minusRect.inflate(-1, -1)
 screen.draw.filled_rect(boxMinus, BUTTON_COLOR)
 screen.draw.text(
 "-",
 centerx = boxMinus[0] + 20, centery = boxMinus[1] + 20,
 fontsize=32,
 color=WHITE
)

 boxPlus = plusRect.inflate(-1, -1)
 screen.draw.filled_rect(boxPlus, BUTTON_COLOR)
 screen.draw.text(
 "+",
 centerx = boxPlus[0] + 20, centery = boxPlus[1] + 20,
 fontsize=32,
 color=WHITE
)

 def on_mouse_down(button, pos):
 global seq_changed, sequence, delay_counts
 x, y = pos
 # Check position of main buttons
 for i in range(len(buttonRect)):
 if buttonRect[i].collidepoint(x,y) :

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

159

 sequence = buttonText[i]
 # Check position of speed buttons
 if minusRect.collidepoint(x,y) :
 delay_counts = delay_counts + 5
 if plusRect.collidepoint(x,y) :
 delay_counts = delay_counts - 5

 def update():
 global timer
 global delay_counts
 global seq_number
 timer = timer +1
 if (timer > delay_counts) :
 seq_number += 1
 updseq ()
 timer = 0

 def updseq () :
 global sequence
 if (sequence == "All On"):
 seq_all_on()
 if (sequence == "All Off"):
 seq_all_off()
 if (sequence == "Flash Alt"):
 seq_flash_alt ()
 if (sequence == "Chaser"):
 seq_chaser ()
 if (sequence == "Multi Chaser"):
 seq_multi_chaser ()
 if (sequence == "Color Cycle"):
 seq_color_cycle()

 ###### Sequences
 def seq_all_on():
 for x in range (LEDCOUNT):
 strip.setPixelColor(x, Color(255,255,255))
 strip.show()

 def seq_all_off():
 for x in range (LEDCOUNT):
 strip.setPixelColor(x, Color(0,0,0))
 strip.show()

 # Uses 2 seq numbers for odd and even
 def seq_flash_alt ():
 global seq_number
 if (seq_number > 1):
 seq_number = 0
 colors = [Color(255, 255, 255), Color(0,0,0)]

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

160

 for x in range (LEDCOUNT):
 if (x %2 == 1):
 strip.setPixelColor(x, colors[seq_number])
 else:
 strip.setPixelColor(x, colors[1-seq_number])
 strip.show()

 def seq_chaser ():
 global seq_number
 if (seq_number >= LEDCOUNT):
 seq_number = 0
 for x in range (LEDCOUNT):
 strip.setPixelColor(x, Color(0,0,0))
 strip.setPixelColor(seq_number, Color(255,255,255))
 strip.show()

 # Needs at least 6 pixels preferably more for this to look correct
 def seq_multi_chaser ():
 global seq_number
 if (seq_number >= LEDCOUNT):
 seq_number = 0
 colors = [Color(255, 0, 0), Color(0,255,0), Color(0,0,255)]
 for x in range (LEDCOUNT):
 strip.setPixelColor(x, Color(0,0,0))
 # Set current, one before and one after
 # seq number is always valid
 strip.setPixelColor(seq_number, colors[1])
 # Ensure there is one before - if not put it at the end of the row
 if (seq_number > 0) :
 strip.setPixelColor(seq_number-1, colors[0])
 else:
 strip.setPixelColor(LEDCOUNT-1, colors[0])
 # Ensure there is one after - if not put it at the start of the row
 if (seq_number < LEDCOUNT-1) :
 strip.setPixelColor(seq_number+1, colors[2])
 else:
 strip.setPixelColor(0, colors[2])

 strip.show()

 def seq_color_cycle():
 global seq_number
 colors = [Color(248,12,18), Color(255,51,17), Color(255,102,68), \
 Color(254,174,45), Color(208,195,16), Color(105,208,37), \
 Color(18,189,185), Color(68,68,221), Color(59,12,189)]
 if (seq_number >= len(colors)):
 seq_number = 0

 # seq number is used to define the first color then we increment through the colors
 this_color = seq_number
 for x in range(LEDCOUNT):

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

161

 strip.setPixelColor(x, colors[this_color])
 this_color = this_color + 1;
 if (this_color >= len(colors)):
 this_color = 0
 strip.show()

 Despite this code being much shorter than many other GUI programs, it’s still quite long, although
some of this is needed for the LED sequences rather than the GUI program itself. I will not go through the
code in detail, but will pick out the important things, especially in how they relate to Pygame Zero.

 A first thing to note is that the shebang entry does not call the python3 interpreter, but instead
calls pgzrun :

 #!/usr/bin/pgzrun

 This still uses Python, but running through pgzrun will perform the steps required to set up the
GUI environment.

 You then have the usual NeoPixel configuration details. These are the same as used previously, although
the LEDCOUNT has been increased to 10. I recommend having an LED strip with at least eight LEDs, such as
the strip shown in Figure 6-11 , or 16, as shown in the NeoPixel ring.

 The next part is the WIDTH and HEIGHT constants , which determine the size of the graphical window.

 WIDTH = 760
 HEIGHT = 380

 This is one of the special features of Pygame Zero. These two lines are enough to define the dimensions
of the application. In this case, this size was chosen because it fits nicely on the official Raspberry Pi touch
screen , as shown in Figure 6-12 .

 Figure 6-12. Raspberry Pi touch screen running neopixel-gui application

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

162

 Next are two lists: buttonText provides the texts for the buttons and buttonRect provides a rectangle
that will be used for creating the buttons. The Rect object is created using x and y as the first two parameters
and then the size along the x and y axis for the next two parameters. There are then two more rectangles
used for buttons to change the speed.

 After setting up a few more variables (which will be used as global variables that can be accessed from
the other functions), the NeoPixel strip is created and initialized. This is the end of the main part of the code
and the rest of the code is all in functions. In a normal Python program, you would need some more code to
trigger these functions, but this is handled by Pygame Zero, which calls the draw() , on_mouse_down() , and
 update() functions as appropriate.

 The draw() function sets up the layout on the screen. You will see screen.draw.text() , which puts
some text on the application, and screen.draw.filled_rect() , which draws a rectangle for the buttons.

 The on_mouse_down() function is called whenever the mouse button is pressed. The code checks
whether the mouse is over a button at the time (using collidepoint) and, if so, it updates the sequence
global variable or the speed of the sequence using the delay_counts variable.

 Pygame Zero calls the update() function periodically and it is this function that you’ll use to update the
sequence. This function is normally called 60 times each second, which is why the delay_counts variable
uses 60th of a second for each delay count. If the code is within the current cycle, it just increments the timer,
but once the timer is larger than delay_counts , the code updates the sequence.

 The updseq() function is not directly related to Pygame Zero; it is instead one I added myself. It is
called once each time you update the pixels. It calls the appropriate sequence function, which is in the
section after the line:

 ###### Sequences

 The functions below the sequences update the LED strip based on the sequence number. The
seq_all_on() and seq_all_off() functions are fairly self-explanatory. The seq_flash_alt() function uses
the modulo operation %. This performs a division operation and provides the remainder as the result of
the operation. In this case, by performing a modulo of two, you get a 0 for an even number and a 1 for an
odd number.

 The chaser functions turn all the LEDs off and then turn the appropriate LEDs on. The final function is
a color-cycle function. Rather than calculate the individual colors using sine waves and other mathematical
functions, I stored the colors into a list to make this easier to understand.

 I saved the file as neopixel-gui.py .
 Add executable permissions using:

 chmod +x neopixel-gui.py

 The program is then launched using:

 gksudo ./neopixel-gui.py

 There may be a warning message, as shown in Figure 6-13 , which you can dismiss. This is to warn that
the program is running as the root user.

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

163

 Assuming there are no problems, the program will run with root permissions. This does, however, mean
that if there is a problem, the error messages will not be shown. If you want to see the error messages, first
run this:

 gksudo lxterminal

 Then, from the new window that opens, run this:

 ./neopixel-gui.py

 You may notice that most of the sequences are white. This is just to keep the program simple. You need
some kind of color selection in order to allow changing colors as well as selecting the sequences.

 Adding an Icon to the Raspbian Desktop
 You will now add an icon to the Raspbian Desktop to start the program from the Application menu. The
latest version of Raspbian includes a menu editor that can be used to add the program to the Start menu.

 Launch the Configuration tool from the Preferences menu and Main Menu Editor (shown in Figure 6-14).

 Figure 6-13. Warning message from gksudo

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

164

 The menu item can be added to one of the existing menus, or you can create a new category using the
New Menu button. Some of the menus may not be displayed initially, as they appear only if they have an
active item in the menu. After choosing a menu from the left, choose the New Item button on the right. This
is shown in Figure 6-15 .

 Figure 6-14. Raspberry Pi Main Menu Editor

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

165

 Give the application a name that is used on the menu. Enter the full command as it would be executed
from the terminal, including the gksudo command. You can add a comment if you want. To change the icon,
click on the box on the left side and then find an appropriate icon image from your computer. A suitably
sized .png file works well. After you click on the OK, the menu should update to show the new application.

 There does appear to be a bug in the Configuration tool. If the new item or menu doesn’t show, you
can try rebooting. If it still doesn’t show up, try removing the menu item using the Delete button and then
reading the application using these same steps. Any items added subsequently should then work.

 More Linux and Programming
 This chapter looked at some aspects of the operating system that you can use with your applications. This
includes how to add software, how to register it as a service, having the software start up at boot time,
running it at set times, and adding a menu entry for a GUI application.

 From the programming side, you learned how to make decisions within your programs and how
to create functions to make coding easier and facilitate code reuse. You then went on to create a GUI
application using Pygame Zero.

 This now gives you the skills to create bigger and more complex programs. You already expanded an
existing project by adding more features to the disco lights and used the infrared transmitter to control a
Lego train. You also created a new project that incorporated programmable RGB LEDs, which you wrote a
simple GUI application for.

 Figure 6-15. Adding a new application icon in Raspberry Pi

CHAPTER 6 ■ ADDING CONTROL IN PYTHON AND LINUX

166

 This should now give you plenty of opportunity for improving these and other programs. Some
suggestions are to use cron to set the infrared light to change colors at different times of the day, add more
sequences to the disco and NeoPixel lights, or even write a graphical program to control the Lego train using
a touch screen.

 In the next chapter, you’ll be using the Raspberry Pi camera and taking on the role of director in the next
blockbuster movie created using Lego actors.

167© Stewart Watkiss 2016
S. Watkiss, Learn Electronics with Raspberry Pi, DOI 10.1007/978-1-4842-1898-3_7

 CHAPTER 7

 Creating Video with a Pi Camera

 This chapter looks at creating a video using the Raspberry Pi camera. You will control the camera using an
infrared transmitter to make it easier to use. This will then be used to create a stop frame animation using
Lego characters.

 You will start by setting up the Raspberry Pi camera by connecting it to the camera connector directly
on the Raspberry Pi. This camera connector has been included on all versions of the Raspberry Pi, except for
the Pi Zero.

 As a quick recap, the camera needs to be connected by ribbon to the connector located next to the
HDMI connector. The camera then needs to be enabled using the Raspberry Pi Configuration tool.

 Once it’s connected, you can test the camera using the raspistill command.

 raspistill -o photo1.jpg

 Infrared Shutter Release
 You can control the camera from the command line, but when you’re creating a stop frame animation, you
may not want to or be able to move far from the action. It’s easier to use an infrared remote control that can
be targeted at the Raspberry Pi infrared receiver whenever a photo is required.

 Rather than use a TV remote control (which could end up changing the channel each time I take a
photo), I have found an old digital photo frame remote control. If you don’t have any spare remote controls,
you can use any standard remote control, but preferably in a different room than the appliance it is designed
to control. For example, you could use a bedroom TV remote to create a video downstairs or vice versa.

 You need an infrared receiver circuit to receive the signal and use it to trigger the camera. If you
still have the full transmitter and receiver circuit from Chapter 5 , shown in Figure 5-6 , you can use that.
Alternatively, Figure 7-1 shows a simplified circuit with only the receiver part of the circuit.

http://dx.doi.org/10.1007/978-1-4842-1898-3_5
http://dx.doi.org/10.1007/978-1-4842-1898-3_5# Fig6

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

168

 This uses the same pin numbers and parts from the previous circuit.
 Assuming that lirc is still installed as described in Chapter 6 , you can now add details of this remote

control. The list of remote control codes was created using the same irrecord tool used previously, but
saving it to a different file.

 First stop lirc using:

 sudo systemctl stop lirc

 Then add the new remote control using:

 irrecord -d /dev/lirc0 --disable-namespace ~/photoremote

 The disable-namespace option allows you to use any names for the remote control buttons. Follow the
prompts to save this to a new file.

 I used the name photoremote for the file so that I know which remote control this refers to. First edit the
name parameter in the photoremote file to remove the path information.

 The entry should match the following:

 name photoremote

 Figure 7-1. Circuit diagram for the infrared receiver circuit

http://dx.doi.org/10.1007/978-1-4842-1898-3_6

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

169

 Then copy the file to the lircd.conf.d directory:

 sudo cp ~/photoremote /etc/lirc/lircd.conf.d/photoremote

 Edit the /etc/lirc.conf file, adding this file alongside the others you already defined. This is done by
adding the following line to the end of the file:

 include "/etc/lirc/lircd.conf.d/photoremote"

 You should now be able to restart lircd using:

 sudo systemctl stop lirc
 sudo systemctl start lirc

 You can check that it started correctly without any errors using:

 sudo systemctl status lirc

 A copy of the photoremote file is similar to the one created previously, but with the appropriate buttons
for this remote. The following code shows the details, although depending on your remote control, you will
most likely have different codes:

 begin remote

 name photoremote
 bits 16
 flags SPACE_ENC|CONST_LENGTH
 eps 30
 aeps 100

 header 8942 4524
 one 521 1723
 zero 521 602
 ptrail 520
 repeat 8944 2281
 pre_data_bits 16
 pre_data 0x827D
 gap 107758
 toggle_bit_mask 0x0

 begin codes
 Power 0x58A7
 Menu 0xD827
 Up 0xF20D
 Down 0xA857
 Left 0x48B7
 Right 0xC837
 Enter 0xCA35
 Random 0x40BF
 Play 0x807F

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

170

 Repeat 0xC03F
 VolumeDown 0x7887
 VolumeUp 0xF807
 end codes

 end remote

 The lircrc file will now need to be changed to direct the commands to the video capture program.
 Edit (or create) the /etc/lirc/lircrc file using a text editor. Remove the previous entries, as they are

no longer required, and instead use:

 begin
 prog = ircamera
 button = Power
 config = Power
 repeat = 0
 end

 begin
 prog = ircamera
 button = Enter
 config = Enter
 repeat = 0
 end

 I just provided two entries for this. I am using the Enter button for capturing photos and the Power
button to exit when I’ve completed that series of photos.

 You will need to restart the lirc daemon again using:

 sudo systemctl stop lirc
 sudo systemctl start lirc

 Assuming the camera is still enabled (if not, see Chapter 5) you need to combine the code from
the infrared test code, replacing the relevant part in the camera code. I created this as a new file called
 infrared-camera. py :

 #!/usr/bin/python3
 import picamera, lirc, time, os.path

 # Minimum time between captures
 DELAY = 0.5

 # Directory for photos
 photodir = '/home/pi/film';

 # Create lirc socket
 sockid = lirc.init("ircamera")

http://dx.doi.org/10.1007/978-1-4842-1898-3_5

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

171

 # Create camera object
 camera = picamera.PiCamera(resolution=(720,576))
 camera.hflip=True
 camera.vflip=True

 imagenum = 1

 while True:
 image_string = u'%04d' % imagenum
 filename = photodir+'/photo-'+image_string+'.jpg'
 # Loop to ensure that filename is unique
 while os.path.isfile(filename):
 imagenum = imagenum + 1
 image_string = u'%04d' % imagenum
 filename = photodir+'/photo-'+image_string+'.jpg'

 camera.start_preview()
 code = lirc.nextcode()
 if (len(code)>0):
 if (code[0] == "Enter"):
 print ("Taking photo " +filename)
 camera.capture(filename)
 time.sleep(DELAY)
 imagenum = imagenum + 1
 elif (code[0] == "Power"):
 break
 camera.close()

 The code uses a sequential number of the files, which makes it easier for combining these into a video.
To prevent overwriting an existing file, check that the file doesn’t exist before overwriting.

 The first part of the code imports the relevant libraries, which have been combined into a single entry.
A new one here is os.path and it will be used to check if the file already exists.

 The DELAY constant is now used to create a delay so that holding the remote control button down will
not result in lots of photos being taken immediately. Store the files in the photodir directory, which you
need to create before you run it using:

 mkdir /home/pi/film

 It then connects to the infrared socket and creates the camera object using picamera.PiCamera .
I added a resolution setting to call to the PiCamera method , which reduces the resolution of the photos taken
by the camera. This will provide smaller files that are easier to work with, but feel free to let it default to a
higher resolution if you want a HD quality film.

 The mount that I’ve used holds the camera in the upside down position (with the cable entering from
the top), so I’ve use hflip and vflip to turn the camera the correct way around. This is required only if the
cable to the camera is coming from above.

 The imagenum variable is used to track the number of the photo. It is initially set to 1, but if there are
existing files in the directory, it will be increased.

 There there is a loop that will loop through and take a new photo each time the appropriate remote
control button is pressed.

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

172

 The first line in the loop may look a bit unusual at first:

 image_string = u'%04d' % imagenum

 The u character indicates that you want to format this as a unicode string (a string of text). The %d
signifies an integer number. Note the %04d , which specifies that this is an integer number and will be four
digits long. The number 1 will then be rewritten as 0001. The % sign indicates that the following are the
variables to include in the string. So effectively this will convert the variable number into a four-digit string
and store it in image_string . You can then use that in your filename, which combines the directory, photo- ,
the formatted number, and the suffix .jpg for a JPEG image file.

 Next there is another loop that will only run if the filename you have chosen already exists. In that case,
the number is incremented and the filename is updated. This will continue to count up until the code finds a
filename that doesn’t already exist.

 Then the start_preview() method of the camera shows a preview on the screen. This is so that you can
ensure that the camera will take a photo of what you are expecting and give you an opportunity to change
the scene. One restriction for the preview is that it will only show on a screen physically attached to the
Raspberry Pi (for example through the HDMI port or if using a Raspberry Pi screen connected to the display
adapter). It will not be possible to preview the camera through tightvnc or other screen-sharing programs.

 It then looks for the appropriate codes from the infrared receiver. Pressing the Enter key will take a
photo and increment the number ready for the next photo, or pressing the Power button will close the
program. Finally, exiting from the while loop by pressing the Power button will result in the camera.close()
being run, which turns off the camera and cleans up the resources used.

 After entering the code, save it as infrared-camera.py and make it executable by using:

 chmod +x infrared-camera.py

 Then run it using:

 ./infrared-camera.py

 The program will start by displaying a preview on the screen. Each time the Enter button is pressed a
new photo is taken. You can exit using the Power button.

 Designing the Film
 Now that you have the hardware ready, it’s time to focus on the story that it will tell. Professional stop frame
animation normally uses expensive flexible models. A good example of this is the Wallace and Gromit
films, which use models made partly out of clay. If you are good with modeling, then feel free to make your
own clay models, but a good way of creating a simple animation on a small budget is to use existing toys
such as Lego models. I have used a combination of Lego City and some Lego Friends, and although these
are not quite to the same scale they are close enough, especially if you use the Lego Friends model in the
background. You can use any other kinds of models or toys, such as action figures, dolls, puppets, or plastic
monsters.

 I’ve made some backdrops using photos of places that I’ve visited and different colored paper and card
for the base. You could also look into creating models and landscapes using craft materials.

 Before taking the photos, it’s a good idea to plan the video. This can be a written story, but it’s also a
good idea to make a storyboard showing approximately where the characters and props will be. This can
be drawn by hand and should provide enough to show the main scenes in your film. A storyboard for my
mini-film is shown in Figure 7-2 .

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

173

 The film I am making is about a foiled robbery. In my film, I show the following scenes:

• Starts by showing the cake shop, which is the scene of the crime.

• The thieves run away from the shop with the stolen money.

• They hide the money in a case by the river.

• The police are in pursuit.

• Two of the thieves get into motor boats and speed off.

• There are no boats left for the remaining thief.

• A large tractor tire floats past.

• The thief gets in the tire and paddles away using an oar.

• The thieves come across a waterfall.

• The first thief gives himself up and is arrested.

 Figure 7-2. Storyboard for making a film

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

174

• The second thief gives himself up and is arrested.

• The third thief goes over the waterfall in the tire.

• He falls out of the tire and is splashing in the water.

• A police officer arrives in a police speed boat and rescues the third thief.

• All the thieves have been arrested. The police officer from the boat finds the box with
the money.

• She lifts the lid and takes the money out.

• The end.

 Filming the Scenes
 To take the photos, you need to create a mini-studio setup . This can be on a table or, if you don’t have
sufficient space on a table, you can use the floor in the corner of a room. You will need something sturdy to
support the backdrops, so a table that is pushed up against a wall is ideal.

 You will need the Raspberry Pi connected to a screen so that you can see the preview. The camera
should also be mounted on something sturdy. I used a Pimoroni camera stand, which is mounted on top of
a mini Gorilla Pod tripod. I also used an extra-long 30cm (12 inch) ribbon cable to attach the camera to the
Raspberry Pi, as that provides flexibility. A photo of my setup is shown in Figure 7-3 .

 Figure 7-3. Mini-studio for stop frame animation

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

175

 I used a large roll of colored paper for a background and then attached a photo for each scene.
My backgrounds were printed on a standard size printer, but if you have access to a larger printer, that would
make it easier to fit the entire background across the scene.

 Depending on the lighting in the room, you may need to add lighting. Ideally, use a daylight bulb as
different bulbs can distort the colors. A standard energy-saving bulb will change the color of the scene, with
an LED bulb often making the colors appear bluer than they really are.

 With the scene set, you can add your figures and start the program as infrared-camera.py . Take your
photos by pressing the Enter button on the remote control. There should only be a very small difference in
each frame, which is achieved by taking a photo, moving the characters a tiny amount (in my case, moving
one leg position at a time), and then taking another photo. The smaller the movement, the more frames
can be included per second, and the more realistic the movement. I used a frame rate of around 10 frames
per second, which is not particularly smooth but good enough for this video. The standard TV frame rate is
normally 24 or 25 frames per second, depending on the country.

 Editing the Video
 You should now have a series of files starting with photo-0001.jpg up to whatever number of photos that
you have taken. These still photos can be combined into a video using a script on the Raspberry Pi or by
transferring them to another computer first. I will show you how these can be combined into a video on the
Raspberry Pi, which is useful if you want to automate the creation of a video, but most likely you will want to
transfer this to a PC or laptop, which will provide more flexibility.

 This book is about the hardware and software used to capture the photos, and not a guide to video
editing, but I will provide some of the basics to get you started and offer some suggestions for special effects.

 Creating the Video on a Raspberry Pi
 First you will learn how you can combine the photos into a video using the Raspberry Pi .

 You will use the avconv tool , which can be run from the command line. As its name suggests, it is
designed for converting between different video formats, but it also has the ability to take a series of photos
and combine them into a video.

 First you may want to install some additional codecs. This are not actually required for the basic
video creation using avconv , but it may be useful to have them installed if you want to do something more
advanced. These are installed using:

 sudo apt-get install libavcodec-extra*

 Then to install avconv , use the following command to install the libav-tools package:

 sudo apt-get install libav-tools

 You will also need a player to play back your video. I used vlc , which can be installed using:

 sudo apt-get install vlc

 There are other video players that can be used, such as mplayer . If you do install mplayer , note that it
runs from the command line, whereas vlc can be launched from the Applications menu.

 Change to the directory containing the photos:

 cd ~/film

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

176

 Run the following command:

 avconv -r 10 -i photo-%04d.jpg -qscale 2 video.mp4

 This command converts the still photos to a video file. It uses a frame rate of 10 and a qscale (quality
value) of 2, which should give a fairly good quality that can be processed in a reasonable time on a Raspberry
Pi. If you have a lot of files, or captured them at a higher resolution, this could take some time to process.

 One thing that looks odd at first is the way that the filename is entered photo-%04d.jpg . This shows
the filename as beginning with photo- , followed by four digits (prefixed with zeros), followed by .jpg . This
ensures that the files are converted using the same numerical order that you used in the Python program.

 After this finishes, you can launch video.mp4 to play the video.

 Editing the Video on a PC Using OpenShot
 The command-line tools such as avconv are okay for automatically combining videos into a sequence, but
they don’t offer the same flexibility as a non-linear editor. You will therefore take a look at using OpenShot to
perform the editing.

 OpenShot is primarily written for Linux, but as open source software, it’s also available for Apple OS
X and Microsoft Windows. You can even run OpenShot on the Raspberry Pi, although, due to the limited
memory and performance of the Raspberry Pi, it is very slow and prone to crashing. I recommend trying it
only on a Raspberry Pi 2 or 3 and even then only for simple projects.

 To install OpenShot on the Raspberry Pi (or Debian/Ubuntu-based Linux), use:

 sudo apt-get install openshot

 For OS X or Windows, you can download the program from www.openshot.org/download/ .
 For the following example, I run OpenShot on a laptop running Linux. If you are using a different

computer to edit the files, you need to copy the files onto your computer either over the network (using scp
or similar) or by transferring these using a USB memory stick.

 If you have already converted your photos to a video, after launching OpenShot, you can import the
video using the Import Files option on the File menu, or by dragging the file into the Project Files area.
The video can then be dragged from the Project Files area onto one of the tracks in the timeline area at the
bottom of the screen. This is shown in Figure 7-4 .

http://www.openshot.org/download/

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

177

 You can combine this video with other video files or photos and then export it in a suitable format.
 If you only have the still photos and haven’t yet converted them to a video file, you can import them

directly into OpenShot. On the Linux version of OpenShot, this is achieved using the Import Image Sequence
option. On other operating systems multiple files can be imported by choosing Import Files ➤ Selecting
Multiple Images and then answering Yes from the Import Image Sequence window. On Linux, choosing
Import Image Sequence will open the import option shown in Figure 7-5 .

 Figure 7-4. OpenShot with a simple video file

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

178

 The File Name Pattern field should use a similar file pattern to the one provided with the explanation for
 avconv . This example uses photo-%04d.jpg , which looks for files with four digits in the filename. Frames per
image is the number of frames that each image will span and this should be set to 2 or 3 to achieve a similar
speed to the one you created through avconv .

 It will then create the video clip from the files and add the clip to the project files in addition to the
image files. You will then need to change the frame rate through the video clip’s properties.

 Adding Effects to the Video
 One of the great things about using a computer for video editing is that it is easy to add special effects. You
will look at simple special effects using the GIMP video editor and see how you can use green-screen filming
to superimpose photos onto a different background.

 Figure 7-5. Import a still image sequence into Openshot

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

179

 Adding Special Effects Using GIMP
 To add special effects, you need a photo editor. I demonstrate this example using GIMP (GNU Image
Manipulation Program), which is available as open source on many computer platforms. On the Raspberry
Pi and some Linux distributions, GIMP can be installed using:

 sudo apt-get install gimp

 For other platforms, download the program from www.gimp.org/downloads/ .
 GIMP is a powerful program that is good for editing photos, but as with other powerful programs, it can

make it a bit daunting at first. You can of course use a different photo editor if you prefer.
 One of the things that can make GIMP difficult for new users is that it launches in multiple windows

mode by default. This is shown in Figure 7-6 , where there are three windows. The center window is the main
editing window where images can be loaded. The left window has the various tools and their options, and
the right window provides the Layers and Brushes tools.

 Figure 7-6. GIMP in multi-window mode

 To change to single-window mode, which for most users will look more familiar, choose Single-Window
Mode from the Windows menu. I will be using Single-Window Mode in all the following examples.

 Although GIMP is quite usable on the Raspberry Pi, I have done all the editing on my laptop, as that
makes it easier to import the edited files directly into OpenShot.

http://www.gimp.org/downloads/

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

180

 Making Changes to Video Frames
 You can now use GIMP to make changes to each of the frames. If you are going for a high frame rate, this can
involve making changes to a lot of frames, but it’s possible to copy and paste across the images or apply the
same image across multiple layers.

 For this example, I’ve made the blue light on the police boat flash. I will just show a small part of the
image to make it easier to see.

 The picture of the unedited boat is shown in Figure 7-7 . This is the frame showing the light when it is off.

 Figure 7-7. Adding a flashing light, unedited image

 Figure 7-8. Adding a flashing light, edited image

 I then made the light part of the Lego brighter and added some lines showing the light shining away
from the boat, as shown in Figure 7-8 .

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

181

 The drawing looks basic, but this is in keeping with the Lego animation, which is very blocky. If you
were making a more realistic film, you could make it look more natural and might want to add frames with
different levels of brightness.

 The updated image would be loaded into OpenShot, with alternate frames having the light off in one
frame and on in the next. I’ve also created this as an animated .GIF, which is included in the source code for
the book in the makingvideo directory.

 Using Green Screen Special Effects
 A popular technique in professional film production involves using a green screen background, which can
be removed and replaced with a different video in post-production. I have referred to this as green screen
special effects, although it is officially known as chroma keying or chroma key compositing. Although I’ve
called it green screen, different color backgrounds can be used. The reason for green being used is partly due
to technical reasons as green is an easy color for cameras to identify and also because it is a color less likely
to conflict with actors features (such as eye color) and clothing.

 This technique allows weather forecasters to have a map behind them that can change, for broomsticks
to fly across the sky, or for invisibility cloaks to hide the body of a character but leave their head showing. It
works by having a single color that is deleted from the film and then having a different video or picture used
in the background.

 In this case, I used this technique to have a Lego person fall over a waterfall.
 First I took pictures of the Lego person against a green background. As he is falling, I used green cotton

so that I could lower the figure without the string being visible. One of the photos from this sequence is
shown in Figure 7-9 .

 Figure 7-9. Using a green screen for the background

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

182

 This is then opened in GIMP and the green background is removed. First go to the Colors menu and
choose Color to Alpha. Choose the green background for the color. This will identify what color to use as a
transparent color channel. This should make the background go partially transparent, but not completely, as
there are differences in the color. In film production, they have uniform lighting and better processing, but
you can achieve a similar effect using manual selection for the rest of the background. Figure 7-10 shows the
Color to Alpha option being used to turn the background invisible.

 You can remove the rest of the background. Figure 7-11 shows the GIMP toolbox. You’ll be using the
first four tools on the top row.

 Figure 7-10. GIMP Color to Alpha tool

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

183

 These selection tools are, from left to right, the Rectangle Select tool, the Ellipse Select tool, the
Free Select tool, and the Fuzzy Select tool. The Fuzzy Select tool is the most useful for removing a single
background color, although the others are useful for selecting specific parts of the picture. Select any
remaining green parts of the background and press the Delete key. When it’s finished, there should be a
checkerboard background indicating the areas that have been removed.

 You now need a picture to replace the background. The picture needs to be loaded into GIMP, cropped,
and scaled to be the same size as the video footage, which in this case is 720 x 576 pixels. The background
image is shown in Figure 7-12 , with the Rectangle Select tool set to the correct ratio (see the Rectangle Select
box in the bottom-left corner).

 Figure 7-11. GIMP toolbox

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

184

 Choose Crop to Selection and then Image ➤ Scale Image to resize the background picture.
 The first image (with the green background removed) is then copied and pasted as a new layer on top of

the background image, as shown in Figure 7-13 .

 Figure 7-12. Choosing a background

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

185

 You can resize and move the new layer if required.
 The picture is then exported as a new file, which is the one you will need to include in your video in

place of the original frame taken with the Raspberry Pi camera. Repeat these steps for the other images in
the sequence.

 Adding Sounds to the Video
 The video you have created so far does not have any sound, which is fine, but most videos benefit from some
kind of sound, whether it’s someone talking, sound effects, or background music. Subject to appropriate
copyrights, you can find sounds from a variety of different sources and add them to the video using
OpenShot. I will briefly mention two techniques for creating your own sound effects and background music.

 ■ Tip If you are interested in finding music that can be included in your videos, consider music licensed
under a Creative Commons license. You can find out more about the Creative Commons license and files that
are available at creativecommons.org .

 Figure 7-13. Adding an image over the background

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

186

 Recording Sounds with Audacity
 I am once again going to use my laptop rather than my Raspberry Pi to record the audio. This is because of
the lack of audio input to the Raspberry Pi. It is possible to buy add-on boards or use a USB microphone
input if you would rather use the Raspberry Pi.

 Although you may already have a sound recording tool on your computer, the one that I normally use is
an open source tool called Audacity. It’s a powerful tool with lots of features, but is not difficult to use if you
stick with the main options.

 For Linux, Audacity is normally in the standard repositories. On systems that use the Debian package
tools, you can just use:

 sudo apt-get install audacity

 For other operating systems, follow the download instructions at www.audacityteam.org/download/ .
 A screenshot of Audacity in action is shown in Figure 7-14 .

 Figure 7-14. Audacity sound recording and editing tool

 In its simplest form, you click the red circular record button to start recording, the beige square button
to stop when you are finished, and then choose File ➤ Export Audio to save the results as a .WAV file.

 As well as recording dialogue (talking), you can also create sound effects such as running water,
footsteps on gravel, or popping a balloon for the sound of an explosion.

http://www.audacityteam.org/download/

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

187

 Making Your Own Background Music with Sonic Pi
 Sonic Pi is a program for programming sounds. Using a Ruby-based programming language, sound samples
can be combined to make great sounds. As well as creating files that can be saved, the music can be changed
in real-time, thus providing a live coding experience. If you ever get an opportunity to see live coding in
action, it’s something I’d recommend.

 Sonic Pi is installed by default on the Raspberry Pi Raspbian image. For other operating systems,
see http://sonic-pi.net/ . The Sonic Pi program is shown in Figure 7-15 .

 Figure 7-15. Sonic Pi music as a code application

 The program is written in the main part of the screen and the status is shown on the right. To save it as a
.WAV file, click the Rec button.

 Learning to program for Sonic Pi is beyond the scope of this book, but there are some basic tutorials on
the Sonic Pi web site, and a good help system is included in the program.

 Adding Sounds to OpenShot
 Now that you have the sounds to go with the video, you can import them into OpenShot . This can be added to
the Project Files along with the photos and any other video files, and then dragged onto a free track. Figure 7-16
shows the photo sequence on Track 2 with a short audio track called voiceover.wav placed on Track 1.

http://sonic-pi.net/

CHAPTER 7 ■ CREATING VIDEO WITH A PI CAMERA

188

 Figure 7-16. OpenShot with photo sequence on Track 2 and short audio track on Track 1

 Once you’ve finished adding any photos, music, and sound tracks, you can export it as a video suitable
for including on a DVD, or you can upload it onto YouTube or your favorite social media site.

 More Video Editing
 This chapter provided only a quick overview of some of the things that can be done in terms of creating
your own videos. You looked at using infrared to trigger the Raspberry Pi camera and then merging the still
photos into a video, using both the command line and OpenShot, which is a visual video editor that can
run on a separate PC. You then looked at adding some special effects using GIMP for editing the photos,
recording sounds using Audacity, and creating backing tracks with Sonic Pi.

 Although these techniques have all been applied to static shots taken with a still camera, these special
effects techniques can also be used to apply to live-action footage created using a video camera.

 Once you have made your first video, it can be fun to try different techniques and see how they look.
You can find that it takes up a lot of time, as hand-editing individual frames can be quite time consuming,
but the results can be very rewarding.

 In the next chapter, you are going to look at creating your own robot that can be controlled using a
web browser.

189© Stewart Watkiss 2016
S. Watkiss, Learn Electronics with Raspberry Pi, DOI 10.1007/978-1-4842-1898-3_8

 CHAPTER 8

 Rolling Forward: Designing and
Building a Robot

 This chapter looks at creating a robot vehicle. This process involves selecting and making a chassis, adding
motor controls, and writing some software that makes it all work. This is mainly based on one of my first
homemade robot vehicles, affectionately named the Ruby Robot, although I’ll be looking at some alternative
chassis and motor controllers. Rather than following it step-by-step, consider this chapter a general guide
to how the process works and treat it as an inspiration for creating your own personalized robot to suit your
budget, time, and equipment.

 Selecting or Making a Robot Chassis
 The first thing you are going to need is a chassis on which you can build your robot. There are a variety of
robot chassis that can be used, with more coming out all the time. These chassis can vary greatly in cost,
from nothing if you recycle junk parts to over $100 for just the base and wheels. This example uses ones at
the lower end of the price range.

 A robot chassis I have used for some time is the Magician Robot Chassis. It’s a two-tier plastic chassis
with two powered motors and an omnidirectional third wheel. Although it’s been around for a while, it
appears to have been recently discontinued. The good news is that there are many other chassis that work in
a similar way. The Magician Robot Chassis is shown in Figure 8-1 .

 Figure 8-1. Magician Robot Chassis

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

190

 The main feature that I like about the magician chassis is that it has two tiers, which provides lots of
space of adding electronics and batteries in a small space. This is also its bad point, as anything you install
on the bottom tier (in my case batteries) is inaccessible except if you remove the top tier. Most of the other
similar chassis have a single tier, but tend to be a bit bigger to compensate.

 There are different wheel configurations for different robots. I have listed some of these here, along with
some advantages and disadvantages of each model.

 Two Motorized Wheels and Omnidirectional Wheel
 This configuration is used in this chapter. There are typically two motors connected directly to large wheels,
with an unpowered omnidirectional wheel (at the front or rear). The omnidirectional wheel often uses a
large ball bearing, although this could also be a caster-based wheel.

 The main advantages of having two motorized wheels is the cost is typically quite low and the control
circuit and software is easier to implement. The main disadvantage is that it’s suitable for driving only on flat,
smooth surfaces.

 Four Motorized Wheels
 To overcome the problems with the omnidirectional wheel, it’s also possible to have four wheels with one
at each corner. This can make negotiating gentle slopes easier, but does require some additional circuitry.
It also goes against the principle of car steering, as it means that some of the motors are going against the
direction of travel. This makes it more difficult to control.

 Caterpillar Tracks
 Vehicles with caterpillar tracks can usually negotiate rough terrain more easily. They are often controlled by
a motor on each side, so the control circuitry is the same as the two-motor circuit. The main disadvantage
is that these tend to be more expensive than the simpler chassis.

 Wheels that Steer
 Another alternative is to design a robot whose wheels can move similarly to how car wheels move. This
is useful if you want to experiment with self-driving cars. This approach requires a complex mechanical
mechanism to turn the wheels.

 There are other wheel configurations, which are often a variation on the ones discussed here.

 Buying a Kit or Making Your Own
 There are a variety of robot kits available. I’ve listed a few examples here, but there are lots of other kits available:

• The Magician Robot provides the chassis and wheels, but no way to control them.

• The CamJam Robotics kit provides the motors and controller circuit, but no chassis
(unless you use the supplied box).

• The Ryanteck Robotics kit provides the chassis and motor controllers, and essentially
you just need a Raspberry Pi and some batteries.

• PiBorg also provides a variety of comprehensive kits including the chassis, motors,
and the controller. These are more robust and as a result are a bit more expensive.

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

191

 As well as other robot chassis kits that you can buy, you could make your own. If you have access to
a laser cutter or 3D printer, you can build a robot to whatever design you can imagine. If you don’t have
access to that kind of equipment, you could make your own using a sturdy cardboard box or wood. The main
criteria is to have somewhere that the motors and wheels can be mounted that won’t buckle when used.

 Although the CamJam kit doesn’t include a chassis, the box that it comes in is quite sturdy and can be
used to create a complete robot. The photo in Figure 8-2 shows the CamJam box used as the chassis, with the
two motors mounted at one end and an omnidirectional wheel at the other end. This box is big enough to
house the motors, a AA battery pack of four, and a Pi Zero with the add-on motor controller board.

 Figure 8-2. CamJam robot kit , with the box used as the robot chassis

 Choosing a Raspberry Pi
 At the start of this book, I advised against buying a Raspberry Pi model A/A+. The model A and A+ is a
cut-down version of the full Raspberry Pi; it doesn’t include wired networking and has fewer USB ports.
Normally this is a disadvantage as it likely means that you need to connect to an external USB hub for
general computing. It does have some advantages over the bigger model. It is slightly cheaper, uses less
power, and is smaller. The power consumption is the main reason that the model A/A+ is probably a more
appropriate for use in a robot. The Pi Zero is also good for robots, although you are likely to need an adapter
for adding some form of connectivity and the Pi Zero will need a GPIO header soldered on before it can be
connected to the motor controller.

 ■ Tip When using a Raspberry Pi with only a single USB connector, you should connect to a USB hub when
configuring the wireless connection. Once the wireless connection is established, you can remove the hub and
connect through the wireless network.

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

192

 Controlling the Motors
 The main thing you will be looking at is how to control the motors that are used to drive the robot vehicle.

 DC Motors and Stepper Motors
 Most robots kits use standard DC motors, although if you require more accurate control, you can use
stepper motors.

 DC motors rely on the magnetic field, which is induced when a current flows through a wire. The wire is
wrapped around many times to create a magnetic field that interacts with fixed magnets positioned around
the motor. The direction of the electrical current determines the direction of the magnetic field. To reverse
the direction of rotation, the motor needs to be connected to the opposite polarity. A DC electric motor will
typically spin very fast, much too quickly to drive a wheel directly, so many include an integrated gearbox.
The motor in Figure 8-3 shows a DC motor mounted with a configurable gearbox. In this particular motor,
it is possible to change the gears to provide a different gear ratio and alter the speed of the drive shaft.

 Figure 8-3. DC motor with adjustable gearbox

 Figure 8-4. DC motor with fixed ratio gearbox

 The adjustable gearbox in this motor is useful for understanding how the gears work, but it’s a bit too
bulky for most robots. In reality, you are more likely to use a motor similar to the one shown in Figure 8-4
(which is from the CamJam robotics kit). This has a fixed-ratio gearbox that is set at the typical speed for a
robot vehicle.

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

193

 One disadvantage of the DC motor is that while it’s possible to vary the speed of the motor (which will be
explained later), it is difficult to accurately position the vehicle with any degree of accuracy. You could make a
guess based on the length of time the motor has been running, or it is possible to add a rotary-encoder, which
can approximately measure the rotations of the motor, but it is far from the accuracy that you need to have a
robot visit an exact position in a repeatable way.

 There is a different motor called a stepper motor , which is specifically designed to allow accurate
positioning. It uses the same principle of creating a magnetic field using a DC current, but instead of the
motor in a spin, the stepper motor just moves along a small amount. The magnetic field then needs to be
applied to the next coil, which moves the motor along the next step. If the appropriate magnetic coils can be
turned on in the correct order, the motor will turn. The rotation distance is much more accurately controlled
than the standard DC motor. Stepper motors are used in a variety of applications, including moving the
printhead on a printer and adjusting the focus on a digital camera.

 An example stepper motor , known as the Mercury Motor , is shown in Figure 8-5 .

 Figure 8-5. Stepper motor

 This particular stepper is a bipolar stepper motor, which means that it has single pair of windings per
phase. In this motor, there are two fields that are connected to four wires: Red (A) and Green (C) for one
pair and Yellow (B) and Blue (D) for the other pair. The control circuitry and programming is a little more
complicated for a stepper motor, as it needs to apply power to the appropriate coils in order.

 Stepper motors are good if you need accurate positioning, although even then, you should be aware
that they cannot guarantee against the wheels slipping, which can indicate movement that may not have
happened.

 For the robot in this chapter, you will use standard DC motors, each with a built-in gearbox.

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

194

 The next setting is shown in Figure 8-7 . This shows switches S1 and S4 closed, which allows the current
to flow through the motor in one direction .

 H-Bridge Motor Control
 Before you read about the actual circuit that you will build, it is important to understand how to make the
circuit work. As you need to be able to reverse the current across the motor, you need to use an H-bridge
motor controller.

 The H-bridge configuration is a common way to change the direction of the power supply. The H-bridge
is named because it is shaped a little like a letter H and uses two pairs of switches that need to be switched
together. It is easiest explained using diagrams.

 Figure 8-6 shows the H-bridge controller in the off position . There are four switches, labeled S1 to S4,
and all are in the open position. There is no electrical connection to the motor.

 Figure 8-6. H-bridge motor controller in the off position

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

195

 Figure 8-7. H-bridge motor controller in one direction

 Figure 8-8. H-bridge motor controller in the opposite direction

 The other configuration is with S1 and S4 open and S2 and S3 closed. This causes the current to travel
in the opposite direction across the motor and so the motor moves in the opposite direction. This is shown
in Figure 8-8 .

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

196

 These three are the only valid configuration options . It is important that the two switches on the same
side are never turned on together. For example, if S1 and S3 were ever closed together (even for a short time),
it would cause a short-circuit, which could cause physical damage to the circuit or power supply.

 ■ Caution Never allow the two switches on the same side to be closed together. If possible, this should be
prevented using the physical control circuit.

 You can make an H-bridge using MOSFETs and a similar circuit to the one you saw in Chapter 4 . The
one difference is that you need to use P-channel MOSFETs for those that are on the positive side of the
power supply (switches S1 and S2). The P-channel MOSFET is similar to the N-channel MOSFET you have
used so far, but works on the voltage at the gate being less than that at the drain to turn it on.

 One problem with this approach is the risk of accidentally switching the wrong pairs of MOSFETs,
which could create a short-circuit. It is therefore often better to use an integrated circuit, which takes care of
all this for you. In this case I am using an SN754410 quad half H-bridge driver IC . As its name suggests, it has
four half H-bridge circuits. These are normally grouped into two pairs, which make two full H-bridge drivers,
as shown in Figure 8-9 .

 Figure 8-9. Circuit diagram using SN754410 quad half H-bridge driver IC

http://dx.doi.org/10.1007/978-1-4842-1898-3_4

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

197

 As you can see, there are four half H-bridges in the circuit. These have been grouped such that half
H-bridge circuits 1a and 1b form the first full H-bridge and 1c and 1d form the second. In terms of the pin
labeling, these are 1A and 2A for the first H-bridge and 3A and 4A for the second. The output is supplied as
1Y and 2Y for the first H-bridge and 3Y and 4Y for the second.

 Notice that the diagram in Figure 8-9 is different from the others provided in this book. That is because
sometimes it is easier to show a diagram in terms of its functionality rather than the pin layout that Fritzing
provides. The Fritzing diagram is shown in Figure 8-10 .

 Figure 8-10. Fritzing circuit diagram using SN754410 quad half H-bridge driver IC

 As you can see, the two diagrams show the same circuit, but the diagram in Figure 8-9 is easier to
understand than the more formal style circuit diagram in Figure 8-10 .

 A few things worth noting on the diagram so far. There are two distinct 5V power supplies shown. This
shows that the motors do not have to be connected to the same power supply as is used for the Raspberry
Pi and the H-bridge IC. These could be connected to the same supply if you want (which is what I did with
my robot), but—due to the noise from driving an inductive load (motors) and the high initial current and
potential current draw if the motors stall—there are advantages to keeping these separate.

 The enable pins (EN) are connected directly to the 5V power supply. This is one technique and it means
that the output of the motor will be enabled whenever the appropriate input is received. With the enable
pin set high, the first motor output will be turned on whenever the appropriate inputs are set on 1A and
2A, and likewise for the second motor. An alternative is to connect the enable as another connection to the
Raspberry Pi, but as that needs an additional two ports on the GPIO, that has not been used here.

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

198

 There are no external protection diodes in this circuit. Normally when a magnetic load is used, such as
a motor or a relay, as the power is disconnected, there can be a reverse voltage generated from the magnetic
device (in effect it becomes an electrical generator). This can be sufficient to damage some electrical
components. It is therefore often advisable to include a flyback diode to allow any reverse voltage to be
absorbed within the circuit. The SN754410 IC already includes a protection diode in each output, but older
versions of the datasheet suggest connecting additional external diodes. The external diode requirement has
been dropped on the Texas Instruments 2015 revision of the datasheet and, as this IC only supports small
motors, there does not appear to be any problems when they are not included.

 Controlling the Speed with Pulse Width Modulation (PWM)
 Using an H-bridge motor controller you can change direction, but you also need some way of changing the
speed of the motors. For a DC motor this can be achieved by varying the voltage; a higher voltage will allow
more current to flow and hence a stronger magnetic field pushes the motor around faster. As with almost all
computers, the Raspberry Pi is digital so it can output only in terms of on or off. There are, however, a few
techniques that can be used to make it appear to give an analog output with a varying voltage. The one you
will use here is known as Pulse Width Modulation (PWM).

 PWM works by turning the supply on and off quickly. When connected to an appropriate device, this can
be equivalent to providing it with a varying voltage. This doesn’t work with all devices, as some devices don’t
tolerate the constant switching or consider it to be multiple requests. This does work well with motors, as the
momentum allows the motor to continue rotating while waiting for the next pulse to push it farther. It also
works with LEDs, as they turn on and off so fast that the human eye sees it as a constant, but dimmer, light.

 Each of the on states is considered a pulse, and as its name suggests, you vary the width of the pulses
to change the equivalent voltage output. This is shown in Figure 8-11 , which illustrates the output from the
GPIO pin on the top trace and the effective voltage output on the bottom trace.

 Figure 8-11. Analog output voltage using PWM

 On this trace, the y-axis represents the output voltage and the x-axis represents time. The time is
measured in milliseconds with all this happening very quickly. Starting on the left, it shows the GPIO output
completely off which is effectively 0V output. The first four pulses shown have a ratio of 3:7, with the pulse
lasting for three-tenths of a cycle, followed by an off period of seven-tenths of a second. Assuming a 3.3V
output, this will give you approximately 1V of equivalent output. The next four traces are twice as wide and
provide an output for six-tenths of the cycle time, which is an effective output of around 2V. Finally, the last
part on the right is fully on, which is 3.3V.

 These voltages are based on the output voltage of the Raspberry Pi GPIO port. The voltage supplied to
the motor will be relative to the 5V power supply, resulting in 0V, 1.5V, 3V, and 5V, respectively.

 The varying output will vary the speed of the motor, but it does not necessarily mean that the
relationship between the voltage and the speed of the motor is linear. In particular, there will be a range of
low voltages that won’t provide enough power to move the motor.

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

199

 It is possible to provide PWM using both hardware and software. Using hardware, the signal is created
using electronics included in the processor, but this can also be achieved using software. In general,
hardware PWM is preferred as software PWM makes the CPU work harder. However, earlier versions of the
Raspberry Pi had only one PWM port. The newer versions have three hardware PWM ports, although one of
those is normally used for the audio driver to generate sound. In practice, unless you need to connect a lot of
motors, the impact of performance is acceptable and so I have used software-based PWM.

 Powering the Motors and the Raspberry Pi
 The circuit diagram in Figure 8-10 shows a separate power supply for the motors and the Raspberry Pi,
although it is possible to power these from the same source. There are advantages and disadvantages to both
options.

 One advantage to having separate power supplies is that it would then be possible to run the motors at a
higher voltage. The Raspberry Pi needs a stable 5V power supply. The motors are actually designed for up to
6V and, with the losses in the H-Bridge, you could go up to 7V. Although this works well with the 5V supply,
you could potentially get a little more speed out of the motors if you use an extra AA battery or a different
power supply. Another advantage to a separate power supply is that motors can introduce electrical noise,
which can cause problems with sensitive electronics such as the Raspberry Pi.

 The advantages to using a single power supply are the cost, space, and the convenience of not needing
to charge/replace two different sets of batteries. I decided to use a single power supply for the Raspberry Pi
and the motors. If you do come across power-related problems with the robot, you may want to consider
different power supplies.

 I used four AA batteries to power the Raspberry Pi and the motors. High-capacity NiMH rechargeable
batteries have a nominal voltage of 1.2V, which gives 4.8V. This is just enough to power the Raspberry Pi. It
does mean that if the voltage dips a little when the motors are in use, the supply voltage to the Raspberry Pi
may dip. Using high-capacity rechargeable batteries appears to work well, but when I tried cheaper batteries,
I did find that during a motor stall (when the robot crashed), the power would drop and the wireless network
connection would disconnect.

 I used a 2.5mm DC socket-to-terminal connector to connect the supplied battery holder to a
breadboard used for the electronic circuit. I then connected from the output of the external power supply
through a micro-USB cable into the Raspberry Pi. An alternative is that you could supply power from the
breadboard into the GPIO port through one of the 5V ports on the GPIO connector.

 ■ Caution Be careful if you’re connecting power through the GPIO port, as it bypasses the polyfuse used to
protect the power coming from the micro-USB port. Using four AA batteries should work fine with this setup, but
consider additional protection if you’re using different batteries.

 Figure 8-12 shows a micro-USB connector that can be used to take power from a terminal connector
to the Raspberry Pi power supply. There are four wires in a USB cable; it is only the power wires that are
required and are normally colored red (+5V) and black.

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

200

 Figure 8-13. Robot motor control circuit on a breadboard

 Figure 8-12. Micro-USB connector with bare wires for connecting to a power supply

 Building the Circuit on a Breadboard
 In my first version of the robot, I created the circuit on a breadboard so that I could test that it worked as
expected. The breadboard layout is shown in Figure 8-13 . The connector shown in the diagram is a 26-way
Raspberry Pi cobbler, which makes it easier to connect between the Raspberry Pi and the breadboard using
a ribbon cable. This can be replaced with long male-to-female jumpers connecting from the Raspberry Pi
to the breadboard. It is also possible to get 36-way cobblers for the newer models, but that would require a
bigger breadboard because it would take up the whole of the breadboard.

 One thing to be aware of is that the position of the motor wires may need to change to ensure that they
are going in the right direction. This will depend on the motors and the direction that they are facing when
mounted inside the robot. It is also possible to change this around in the code, although that depends on the
way the motors are defined.

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

201

 Add-On Motor Controller Boards
 Creating the circuit on a breadboard is a good way to learn how the electronics work, but it’s more
convenient to have it on a printed circuit board that can be mounted directly onto the Raspberry Pi. There
are a number of these available, but this section looks only at two: the Ryanteck Motor Control Board and the
one supplied in the CamJam Robotics Kit, made by 4tronix.

 The Ryanteck board is available as part of a complete robotics kit or as just the motor controller.
The controller board is normally supplied as a PCB and components that need to be soldered together,
although you may also be able to buy one pre-soldered. The main appeal of this controller board is that it is
identical to the breadboard circuit used previously. So the same code can be used for the robot whether it is
connected to the breadboard circuit or the Ryanteck board.

 I originally created the breadboard circuit using the same circuit but different port numbers. When the
Ryanteck board came out, coincidentally using the same circuit, I simply changed the port numbers on my
breadboard to match the Ryanteck board so that the same code could be used. This board includes pins
for the I2C port so that can be used or a tall connector can be soldered onto the 26-way connector, thereby
allowing the other GPIO ports to be used. Figure 8-14 shows the Ryanteck Motor Control Board.

 Figure 8-14. Ryanteck Motor Control Board

 The CamJam robotics kit includes a small add-on printed circuit board, which is pre-soldered. The
board uses a different integrated circuit than the one used previously, although essentially it works in the
same way. The control board uses GPIO pins 7, 8, 9, and 10 for controlling the motors, with some of the other
GPIO ports provided on a female header on top of the circuit. The pins are some of the ports used for SPI but
there is still I2C and several other GPIO pins available. Figure 8-15 shows the board mounted on a Pi Zero.

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

202

 Figure 8-15. CamJam Robotics motor control board

 Both of these motor controllers are designed for the original 26-way Raspberry Pi, so if you’re using one
of the more recent Raspberry Pi models that has a 40-way GPIO connector, there is scope for adding sensors
to the remaining ports. You will learn about those ports in some of the modifications later in this chapter.

 There are other motor controller boards, such as the Gertduino and boards from PiBorg. These are a
little more expensive than the two boards discussed here, but they do have more functionality if you want to
go beyond the basic motors used in this example.

 Controlling the Robot Using Python
 You will look at a few different ways to control the robot. The first way is using a simple program that runs
on the command line. The program will look for certain keys being pressed and act accordingly. For the
direction control, I used the numbers from the numeric keypad on a keyboard as they are arranged in a
convenient grid. If you are using a compact keyboard that doesn’t include a numeric keypad, you may want
to change these to use appropriate letters instead. The numeric keypad and the directions are shown in
Figure 8-16 .

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

203

 The number 0 is also used to instruct the camera take a photo, and Q is used to exit (quit) the program.
 You will be using GPIO Zero to control the robot. The code will set the speed and direction and then wait

for a key to be pressed, which will be used to update the speed or direction as appropriate. The code for this is
included in the source files in the robot directory in a file called robotcontrol.py and is included here:

 #!/usr/bin/python3
 import sys, tty, termios
 import picamera, time
 from gpiozero import Robot

 robot = Robot(left=(17, 18), right=(22, 23))
 camera_enable = False
 try:
 camera = picamera.PiCamera()
 camera.hflip=True
 camera.vflip=True
 camera_enable=True
 except:
 print ("Camera not found - disabled");

 photo_dir = "/home/pi/photos"

 # get a character from the command line
 def getch() :
 fd = sys.stdin.fileno()
 old_settings = termios.tcgetattr(fd)
 try:
 tty.setraw(sys.stdin.fileno())
 ch = sys.stdin.read(1)
 finally:
 termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
 return ch

 # list to convert key presses into motor on/off values to correspond with the direction
 # direction based on number keypad
 # 8 = fwd, 4 = left, 5 = stop, 6 = right, 2 = rev
 # the key for the list is the character

 Figure 8-16. Direction keys for the robot

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

204

 direction = {
 # number keys
 '2' : "backward",
 '4' : "left",
 '5' : "stop",
 '6' : "right",
 '8' : "forward"
 }

 current_direction = "stop"
 # speed is as a percentage (ie. 100 = top speed)
 # start speed is 50% which is fairly slow on a flat surface
 speed = 50

 print ("Robot control - use number keys to control direction")

 print ("Speed " + str(speed) +"% - use +/- to change speed")

 while True:
 # Convert speed from percentage to float (0 to 1)
 float_speed = speed / 100
 if (current_direction == "forward") :
 robot.forward(float_speed)
 # rev
 elif (current_direction == "backward") :
 robot.backward(float_speed)
 elif (current_direction == "left") :
 robot.left(float_speed)
 elif (current_direction == "right") :
 robot.right(float_speed)
 # stop
 else :
 robot.stop()

 # Get next key pressed

 ch = getch()

 # q = quit
 if (ch == 'q') :
 break
 elif (ch == '+') :
 speed += 10
 if speed > 100 :
 speed = 100
 print ("Speed : "+str(speed))
 elif (ch == '-') :
 speed -= 10
 if speed < 0 :
 speed = 0
 print ("Speed : "+str(speed))

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

205

 elif (ch in direction.keys()) :
 current_direction = direction[ch]
 print ("Direction "+current_direction)
 elif (ch == '0' and camera_enable == True) :
 timestring = time.strftime("%Y-%m-%dT%H.%M,%S", time.gmtime())
 print ("Taking photo " +timestring)
 camera.capture(photo_dir+'/photo_'+timestring+'.jpg')
 robot.close()

 The code uses a Robot object from the gpiozero library. This takes the GPIO pins for the left and right
motors. These are the pins that go to the appropriate inputs on the H-bridge integrated circuit.

 You can also use the Raspberry Pi camera so that it can take still photos when requested. A potential
problem is that you may want to run this on a robot that doesn’t have a camera. To handle this, the camera
is added using a try statement to gracefully handle any errors. If this was not in the try statement—if the
camera was not found—the program will give an error message and stop. The camera is mounted upside
down on my robot (with the cable coming from the top), so it is flipped horizontally and vertically after
creating the camera object.

 The name of the getch() function stands for the get character, which is taken from the name of a
similar function in C. The reason this function is required is that Python normally reads keypresses from
the standard input device. This is a buffered device that will hold all the characters until Enter is pressed
and then send them all the program as a line. That would mean you would have to press Enter after each
command, which wouldn’t be so easy. This function sets the input to raw mode so that each keypress can
be read individually. After the key is read, it resets the terminal back to standard mode; otherwise, this may
mess up the terminal when you exit the program.

 The direction keys are then stored as a list. If you want to add more keys to this list, you can do so as
long as they have the same value as the existing ones. The current_direction is set to stop and the speed to
50%. This speed was chosen as it’s the minimum speed for my particular robot to be able to move forward.
You may need to change this up or down depending on your particular robot. Although this is stored as
a percentage in the speed variable, GPIO Zero expects a number between 0 and 1, so this is stored as a
floating-point number in the float_speed variable.

 Setting the robot in motion is as simple as calling robot.forward() , robot.backward() , robot.left()
and robot.right() . The optional parameter is the speed that sets the PWM ratio. There is also robot.
stop() , which stops both motors. Upon exiting , robot.close() is called to clean up.

 The code should be saved onto the Raspberry Pi on the robot. It could be controlled directly using a
 wireless keyboard on the robot, but that would need the program to be started whenever the robot was
powered on, and without a screen performing a clean shutdown or restarting the program, that would be
difficult. It is perhaps more convenient to run this over a wireless network connection using ssh. If you
find that the wrong motor turns when the appropriate key is pressed, or that the robot moves in the wrong
direction, you can fix it by swapping the wires going to the motors, or by changing the pin settings when the
robot object is created toward the start of the code.

 The previous code uses the generic robot within the GPIO Zero library. It also includes two other robot
types for the Ryanteck and CamJam robots. These are used in the same way, but as the pin numbers are
fixed for these controllers, they are pre-set when the object is created. To use one of these boards, replace the
 import and robot creation entries with the following:

 from gpiozero import RyanteckRobot
 robot = RyanteckRobot()

 or

 from gpiozero import CamJamKitRobot
 robot = CamJamKitRobot()

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

206

 The only thing about using the specific robot controllers rather than the generic “robot” one is that the
pins cannot be changed in the code. So if the motors don’t go in the right direction, the only way to change
that is to change the physical wiring. You can always use the generic robot for either of these robot controller
boards, which gives you the ability to change the pin numbers as required.

 Measuring the Distance Using an Ultrasonic Range Sensor
 Once you have the robot working, you can add other sensors to make the robot a bit more autonomous. The
example you will look at is an ultrasonic range sensor, which can be used to measure the distance from an
object. In this case, you will use it to determine when the robot is getting close to a wall or other obstacle.
The ultrasonic range sensor is shown in Figure 8-17 . It works in a similar way to the parking sensors on cars.
It sends out an ultrasonic signal and then times how long it takes to get a signal reflected back.

 Figure 8-17. Ultrasonic range sensor

 There are four connections to the sensor. Two of these are for a 5V power supply and ground. The other
two connections are for the Trigger signal and the Echo response. The sensor is designed for a 5V signal.
In the case of the input to the ultrasonic sensor, the 3.3V from the Raspberry Pi is sufficient to trigger the
outgoing signal, but connecting the sensor output direct to a GPIO pin could damage the Raspberry Pi.
You learned about the voltage divider circuit in Chapter 5 , which reduces the voltage to a safe level for the
Raspberry Pi. This is shown in the circuit diagram in Figure 8-18 .

http://dx.doi.org/10.1007/978-1-4842-1898-3_5

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

207

 The circuit diagram shows the ultrasonic range sensor part, assuming that the motor control circuit is
still in place. The trigger pin is connected to GPIO 13 and the echo response to GPIO 26. These have been
used because they are on the extra pins used in the later models of the Raspberry Pi and are not covered by
the 26-pin motor control circuit board if you’re using the PCB. If you’re using a version 1 Raspberry Pi, you
will need to change the pin number for the wiring and in the code.

 Before you create the full program to control the robot, it’s useful to test that the ultrasonic circuit is
working correctly. First I created this code in the distance.py file :

 #!/usr/bin/python3
 import time
 import RPi.GPIO as GPIO

 # Ultrasonic range sensor (distance)
 pin_trig = 13
 pin_echo = 26

 Figure 8-18. Circuit diagram for ultrasonic range sensor

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

208

 # Set up GPIO input/output and disable warnings
 GPIO.setmode(GPIO.BCM)
 GPIO.setwarnings (False)
 GPIO.setup(pin_trig, GPIO.OUT)
 GPIO.setup(pin_echo, GPIO.IN)

 # Set ultrasonic sensor off and wait to settle
 GPIO.output(pin_trig, 0)
 time.sleep(0.5)

 while True:
 # sleep to ensure we don't try to recalc distance before it's settled
 time.sleep(0.5)

 # Check for distance in front
 # Send 10micro sec pulse
 GPIO.output(pin_trig, 1)
 time.sleep(0.000001)
 GPIO.output(pin_trig, 0)

 # Wait until input goes high - then wait for it to do low
 while (GPIO.input(pin_echo)==0):
 pass
 # Start timer
 start_time = time.time()

 # wait until it goes low again
 while (GPIO.input (pin_echo)==1):
 current_time = time.time()
 # If no response in reasonable time then not working (perhaps too close to an object

- or too far)
 if ((current_time - start_time)>0.05):
 # print dot so we know it's happening
 print (".")
 break

 # Calculate response time
 response_time = current_time - start_time;

 #distance is time * speed sound (34029cm/s) - divide by 2 for return journey
 distance = response_time * 34029 / 2

 print ("Distance is "+str(distance));

 The ultrasonic sensor is not included in the GPIO Zero library, so this is written using the classic
RPi.GPIO library . This uses a bit more code to set the mode and configure each of the ports, which can then
be turned on and off using GPIO.output and read using GPIO.input .

 The code works by first turning the trigger off and waiting for the sensor to settle. A 10μs pulse sends
an ultrasonic signal. It waits for the echo to go high before starting a timer and then waits in a loop until the
response is received. The ultrasonic signal travels at the speed of sound, the time taken is for the outgoing
signal and the response. The calculated value is then printed in centimeters (there are approximately 2.5cm
in 1 inch).

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

209

 The values shown on the screen were crucial in establishing how to use this to control the robot. The
first observation is that having an object either too close or too far away gives the same value of around
850cm (which is down to the timeout of the wait loop). This is the case for obstacles up to 3mm away from
the sensor, which is pretty close to touching. Then there is an area up to about 5cm where the reading is not
particularly reliable, giving a fairly random reading of between 3.5 and 5cm. After 5cm, the sensor is fairly
accurate up to about 3 meters (10 feet); then it jumps to the 850cm mentioned previously.

 As long as you are looking to measure a distance of between 5cm and 300cm, this method should work.
I wrote a program (called robot-distance.py) that drives the robot forward until gets within 13cm of an
obstacle and then turns right. If the robot then has space to move, it will move forward again—otherwise,
it will move right some more. The value of 13cm is based on experimentation and allows for the motor
continuing to move forward for a short while after reading the distance. This is enough to prevent the robot
from getting stuck into a corner. The distance and the speed of the robot may need to be adjusted for different
robots and motor configurations. The full code to control the robot using the distance sensor is here:

 #!/usr/bin/python3
 import time
 from gpiozero import Robot
 import RPi.GPIO as GPIO

 robot = Robot(left=(17, 18), right=(22, 23))

 # Ultrasonic range sensor (pins)
 pin_trig = 13
 pin_echo = 26

 ## These may need to be adjusted depending upon the size of the robot and the speed of the
motors
 # minimum distance before we turn in cm
 min_distance = 13
 # speed when moving forward (between 0 and 1)
 speed_forward = 0.8
 # speed when turning (between 0 and 1)
 speed_turn = 0.6

 # Set up GPIO input/output and disable warnings
 GPIO.setmode(GPIO.BCM)
 GPIO.setwarnings (False)
 GPIO.setup(pin_trig, GPIO.OUT)
 GPIO.setup(pin_echo, GPIO.IN)

 # Set ultrasonic sensor off and wait to settle
 GPIO.output(pin_trig, 0)
 time.sleep(0.5)

 while True:
 # sleep to ensure we don't try to recalc distance before it's settled
 time.sleep(0.5)

 # Check for distance in front
 # Send 10micro sec pulse
 GPIO.output(pin_trig, 1)

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

210

 time.sleep(0.000001)
 GPIO.output(pin_trig, 0)

 # Wait until input goes high - then wait for it to do low
 while (GPIO.input(pin_echo)==0):
 pass
 # Start timer
 start_time = time.time()

 # wait until it goes low again
 while (GPIO.input (pin_echo)==1):
 current_time = time.time()
 # If no response in reasonable time then not received a response (either too close

to an object - or too far)
 if ((current_time - start_time)>0.05):
 break

 # Calculate response time
 response_time = current_time - start_time;

 #distance is time * speed sound (34029cm/s) - divide by 2 for return journey
 distance = response_time * 34029 / 2

 # if we are close to a wall then turn right
 if (distance < min_distance) :
 print ("Too close " + str(distance) + " turning")
 robot.right(speed_turn)
 else :
 robot.forward(speed_forward)

 robot.close()
 restore_terminal()
 GPIO.cleanup()

 As you can see, this code uses the GPIO Zero robot library to control the motors and the RPi.GPIO
library to send and receive the appropriate details from the ultrasonic range finder. In practice, the range
finder works well on walls and large objects, but can’t see certain obstacles that are too high or low
compared to the position of the sensor.

 Controlling the Robot Using a Wii Remote
 Previously you used Python to control the robot using keyboard presses from another computer (using ssh)
or a wireless keyboard. This works if you have a laptop, but it is often more convenient to control the robot
using a wireless controller. This section looks at how to control the robot using a Wii Remote controller. The
Wii Remote is a popular way to control a robot and it uses Bluetooth, which is now included on the board
for the Raspberry Pi 3 or available as a low-cost USB dongle for the other models. For this example, I am
assuming a Raspberry Pi A+ is being used, which does not include the Bluetooth and has only a single USB
port for the Bluetooth dongle.

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

211

 You will be using existing software libraries for this. Unfortunately, this has not yet been updated to run
with Python 3, so you will instead be using Python 2.7. The existing robot code does work with Python 2.7,
so it’s just a case of changing the code to call python instead of python3 . If you’re using IDLE , you should run
the version titled Python 2 (IDLE).

 Assuming you have only a single USB port on the Raspberry Pi, you will find it easier to use a USB hub,
as you will need to download some new software from over the network and they program will need the
USB Bluetooth dongle. After you have finished, you can set this up so that the network connection is no
longer required.

 First update the operating system on the Raspberry Pi to include the latest updates. This is a good idea
any time, but it’s worth checking as Bluetooth hardware is a recent addition and there may have been some
useful updates since. Assuming the Raspberry Pi is connected to the network, it can be updated using:

 sudo apt-get update
 sudo apt-get dist-upgrade

 Now insert the USB Bluetooth dongle.
 Check the status of the Bluetooth service:

 sudo service bluetooth status

 Be sure it shows as being active. If it doesn’t, you may need to check that the Bluetooth dongle is
supported on the Raspberry Pi. Next check that it’s possible to see the Wii Remote:

 hcitool scan

 Once you’ve entered the command, press the remote control buttons 1 and 2 simultaneously so that it
is visible. You should now see an entry identifying itself as a Nintendo controller. I used a Wii Remote with
MotionPlus, so I got an entry that read Nintendo RVL-CNT-01 .

 Assuming that you do see this (don’t worry if you see some other devices such as a tablet or phone as
well), you can move on to adding some Python code to listen for instructions. You will use the cwiid library ,
which you need to install:

 sudo apt-get install python-cwiid

 As before when you were using the ultrasonic distance sensor, I provided some test code prior to
including this into the program to control the robot. This program is called wii-remote. py in the book’s
source code:

 #!/usr/bin/python
 import cwiid
 import time

 delay = 0.2

 print ("Press 1 + 2 on the Wii Remote")
 time.sleep(1)

 wii = cwiid.Wiimote()
 print ("Connected\n")

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

212

 # Testing button mode
 wii.rpt_mode = cwiid.RPT_BTN

 while True :
 buttons = wii.state["buttons"]
 button_string = ""

 # The value of each button is added together so use a
 # 'bitwise and' to test each button
 if (buttons & cwiid.BTN_1):
 button_string += " 1"
 if (buttons & cwiid.BTN_2):
 button_string += " 2"
 if (buttons & cwiid.BTN_A):
 button_string += " A"
 if (buttons & cwiid.BTN_B):
 button_string += " B"
 if (buttons & cwiid.BTN_UP):
 button_string += " up"
 if (buttons & cwiid.BTN_RIGHT):
 button_string += " right"
 if (buttons & cwiid.BTN_DOWN):
 button_string += " down"
 if (buttons & cwiid.BTN_LEFT):
 button_string += " left"
 if (buttons & cwiid.BTN_PLUS):
 button_string += " plus"
 if (buttons & cwiid.BTN_MINUS):
 button_string += " minus"
 if (buttons & cwiid.BTN_HOME):
 button_string += " home"

 if (button_string != ""):
 print ("Buttons pressed :" + button_string)
 time.sleep(delay)

 Most of this code checks for each button to see which is pressed. Start by loading the Python library
and attempting to connect to the remote control. During this time, buttons 1 and 2 on the remote need to
be pressed simultaneously. If it fails to connect, the program will stop, but assuming that works, you can
enable the button mode and then enter a while loop, where you can constantly check and print out the
status of the buttons.

 The value received from the wii.state command is a sum of the different buttons. To see if a button
is pressed, perform a bitwise and against the appropriate mask value, which is defined as a constant in the
 cwiid library . This way, you can check for multiple buttons pressed simultaneously. Each of the buttons that
is pressed is added to a string, which is then printed to the screen. Pressing one or more buttons prints a list
of the buttons that are pressed.

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

213

 Assuming this test program works, you can update the previous program by replacing the code to
monitor for keypresses from the keyboard to watch for button presses from the Wii Remote. This is saved as
 wii-robotcontrol. py :

 #!/usr/bin/python
 import sys, tty, termios
 import picamera, time
 import cwiid
 from gpiozero import Robot

 robot = Robot(left=(17, 18), right=(22, 23))
 camera_enable = False
 try:
 camera = picamera.PiCamera()
 camera.hflip=True
 camera.vflip=True
 camera_enable=True
 except:
 print ("Camera not found - disabled");

 photo_dir = "/home/pi/photos"

 # delay between button presses
 delay = 0.2

 current_direction = "stop"
 # speed is as a percentage (ie. 100 = top speed)
 # start speed is 50% which is fairly slow on a flat surface
 speed = 100

 print ("Press 1 + 2 on the Wii Remote")
 time.sleep(1)

 # Keep trying to connect to the remote
 while True:
 try:
 wii=cwiid.Wiimote()
 break
 except RuntimeError:
 print ("Unable to connect to remote - trying again")
 print ("Press 1 + 2 on the Wii Remote")

 print ("Robot control - use arrow buttons to control direction")
 print ("Speed " + str(speed) +"% - use +/- to change speed")

 wii.rumble = 1
 time.sleep(0.5)
 wii.rumble = 0

 wii.rpt_mode = cwiid.RPT_BTN

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

214

 while True:
 last_direction = current_direction
 # Convert speed from percentage to float (0 to 1)
 float_speed = speed / 100
 if (current_direction == "forward") :
 robot.forward(float_speed)
 # rev
 elif (current_direction == "backward") :
 robot.backward(float_speed)
 elif (current_direction == "left") :
 robot.left(float_speed)
 elif (current_direction == "right") :
 robot.right(float_speed)
 # stop
 else :
 robot.stop()

 time.sleep(delay)

 # Get next key pressed
 buttons = wii.state["buttons"]

 # set button to stop so that if no buttons pressed we stop
 current_direction = "stop"

 # + and - = quit
 if ((buttons & cwiid.BTN_PLUS) and (buttons & cwiid.BTN_MINUS)) :
 break
 if (buttons & cwiid.BTN_PLUS):
 speed += 10
 if speed > 100 :
 speed = 100
 print ("Speed : "+str(speed))
 if (buttons & cwiid.BTN_MINUS):
 speed -= 10
 if speed < 0 :
 speed = 0
 print ("Speed : "+str(speed))
 if (buttons & cwiid.BTN_UP):
 current_direction = "forward"
 if (buttons & cwiid.BTN_DOWN):
 current_direction = "backward"
 if (buttons & cwiid.BTN_LEFT):
 current_direction = "left"
 if (buttons & cwiid.BTN_RIGHT):
 current_direction = "right"
 if (buttons & cwiid.BTN_A and camera_enable == True):
 timestring = time.strftime("%Y-%m-%dT%H.%M.%S", time.gmtime())
 print ("Taking photo " +timestring)
 camera.capture(photo_dir+'/photo_'+timestring+'.jpg')

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

215

 # Only print direction if it's changed from previous
 if (current_direction != last_direction) :
 print ("Direction "+current_direction)

 robot.close()

 I added a few more changes to this so that you can have this running continuously. First, when you try
to connect to the Wii Remote, this is now done in a loop using a try statement, which means you can keep
trying if the first attempt fails. It also tells the Wii Remote to vibrate when it connects so that the user knows
that the pairing was successful.

 I’ve also set the speed to 100%. Previously, you used a slower speed for the robot as you didn’t want it to
get out of control when you pressed a key. The remote control is far more responsive than trying to control
the robot using a keyboard, so running at full speed isn’t an issue.

 You now just need to be able to remote the USB hub so that the robot can move freely. As you can only
have the Bluetooth or the WiFi dongle connected, you will no longer be able to connect through ssh to start the
program. You can instead add the program to the startup, which is something you did for the Internet-controlled
train in Chapter 6 .

 To make the program start automatically, first create a service file called /etc/systemd/system/
wii-robot.service . Create the file as the root user (using sudo); it should contain the following:

 [Unit]
 Description=Wii Remote Robot Control
 Wants=bluetooth.target
 After=bluetooth.target

 [Service]
 Type=simple
 ExecStart=/home/pi/robot/wii-robotcontrol.py
 User=pi

 [Install]
 WantedBy=default.target

 You already read about the features of the service file. The main new thing here is that this code
instructs it to start after the Bluetooth service using the Wants and After entries.

 You can test the service by starting it and verifying that it starts correctly:

 sudo service wii-robot start
 sudo service wii-robot status

 Assuming these work correctly, issue this command to have it start automatically:

 sudo systemctl enable wii-robot

 It should now be possible to reboot the server without the WiFi, but with the Bluetooth dongle
connected. The service will run in the background, waiting until it detects a Wii Remote, which it will then
connect to and respond to the appropriate button presses. For me, this is a much more natural way to
control the robot compared to using the keyboard.

http://dx.doi.org/10.1007/978-1-4842-1898-3_6

CHAPTER 8 ■ ROLLING FORWARD: DESIGNING AND BUILDING A ROBOT

216

 More Robotics
 In this chapter, you chose a suitable robot chassis and added motor control. You first used a breadboard
and then swapped for a PCB-based motor controller. Two controllers were used in the example. These
motor control boards are both supported by GPIO Zero, although other boards can be used by adding the
appropriate pin numbers to the generic GPIO Zero robot library. You also looked at how the speed of the
motor can be changed by using Pulse Width Modulation (PWM). You then looked at how to automate the
robot using a distance sensor and how the robot can be controlled using a Wii Remote controller.

 This is just a small taste of what you can achieve with a Raspberry Pi-powered robot. An alternative
interface would be to create a web interface using the Bottle framework covered in Chapter 6 . For a
different type of automation, the CamJam robot includes a line-follower sensor that could be used to follow
a black line.

 In the next chapter, you look at how the physical world and the virtual world can interact using a
joystick to navigate around Minecraft.

http://dx.doi.org/10.1007/978-1-4842-1898-3_6

217© Stewart Watkiss 2016
S. Watkiss, Learn Electronics with Raspberry Pi, DOI 10.1007/978-1-4842-1898-3_9

 CHAPTER 9

 Customize Your Gameplay:
Minecraft Hardware Programming

 Minecraft is a block-based construction game in which you can make buildings and other objects. It is a
wildly popular game available for the PC, gaming consoles, and as the Minecraft Pocket edition for tablets
and phones. It’s also available as a special Minecraft Pi edition, which is provided for free with the Raspberry
Pi Raspbian image. Using the Raspberry Pi edition, you can communicate with Minecraft using Python,
which means that you can interface with the electronics sensors and outputs that you have used.

 This chapter will use the joystick controller from Chapter 3 . The joystick can be used to move the
Minecraft character, Steve, around the world. The buttons will provide a specific function in the Minecraft
game and you will code some LEDs to light up to show some useful information about the game.

 The standard version of Minecraft includes a survival mode that has creatures that you have to defend
against. The Pi edition is a more basic version and only has creative mode.

 ■ Tip While Minecraft will run on any of the Raspberry Pi models, it is processor intensive so a Raspberry
Pi 2 or higher is recommended for performance reasons. You will also be using GPIO ports on the more recent
models (B+ and later).

 Connecting to Minecraft with Python
 You will start by creating a new Minecraft world and connecting to it with Python . There is an Application
Program Interface (API) provided that makes it easy to interact with Minecraft.

 Minecraft needs to be running first and can be found under Games on the Start menu. Choose Start
Game and then Create New to build your first world. You will notice that the game starts above a terminal
window. Use the terminal window when you want to move the screen around or maximize it. You can pause
the game using the Esc key, which will allow you to move the screen or switch to your Python program.
Clicking on Back to Game will return you into the game mode. To switch from Minecraft to another program
without pausing, use the Tab key.

 ■ Tip Minecraft Pi edition draws directly to the screen memory. It is not possible to run the game through
most remote desktop clients such as TightVNC.

http://dx.doi.org/10.1007/978-1-4842-1898-3_3

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

218

 You will be in the game controlling the Steve character, who is carrying a sword. In the game you can
move around using the WASD keys (W for forward, A for left, S for backward, and D for right). The space
key is used to jump, and a double press of the space key will allow Steve to fly. The E key will bring up the
inventory allowing you to change the tool/weapon or use another item from the inventory. The mouse
allows you to look around and the mouse button uses the current tool.

 Once you familiarize yourself with moving around Minecraft, you can create your first program. This
can be written using IDLE for Python 3. Add the following code and then choose Run Module from the IDLE
Run menu:

 from mcpi.minecraft import Minecraft
 mc = Minecraft.create()
 mc.postToChat("Hello Minecraft World")

 After you import the Minecraft library, a Minecraft object is created named mc . The postToChat displays
a message on the screen, as shown in Figure 9-1 .

 Figure 9-1. Hello Minecraft World message

 As well as sending information to Minecraft, you can get the status of your position in the Minecraft
world. The following script will get information about Steve and his environment:

 from mcpi.minecraft import Minecraft

 mc = Minecraft.create()

 position = mc.player.getTilePos()

 print ("X position :"+str(position.x)+", Y position :"+str(position.y)+", Z position:"+str(position.z))

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

219

 When this is run, it displays your position within the Minecraft world. Minecraft is a 3D environment
and so there are three values needed to show the position.

• The X position is the longitude (east-west position). As the character moves farther
east, the x position increases and, as the character moves west, the x position
decreases. The position is relative to the starting position so goes negative when
you’re moving west compared to the starting position.

• The Y position is the altitude (height relative to sea level). As the character moves
upward (up a hill or into the sky), y increases and as the character moves down, it
decreases. As the character goes underground, the y position goes negative.

• The Z position is the latitude (north-south position). As the character moves north,
z decreases. Moving south causes the value of z to increase. This is relative to the
starting position of the character. The output to the print statement is shown in the
IDLE run window, as shown in Figure 9-2 .

 Figure 9-2. Finding your location in Minecraft

 As well as reading the position, you can change the position of the character using setPos . The
following program will return to the start position:

 from mcpi.minecraft import Minecraft
 mc = Minecraft.create()
 mc.player.setPos(0, 0, 0)

 If you run this, you may find a problem. The character always starts with X = 0 and Z = 0, but it starts at
the normal ground level for that position. Unless the start position happened to be at sea level (Y = 0) or in a
valley, Steve will most likely be trapped underground and won’t be able to move. So you need a way to check
what kind of block is at that position.

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

220

 The next bit of code will check to see what kind of block is at that position. If it’s an air block, it
decreases Y to find the first solid block to stand on. If it’s a solid block, it increases Y to find the nearest air
block. This uses the getBlock from the mcpi.block module to find the type of block at a particular position.
This has been put into a function as you will need this later.

 from mcpi.minecraft import Minecraft
 import mcpi.block as block

 # Find nearest empty block based on an x, z position
 def getSafePos(x_pos, y_pos, z_pos):
 block_id = mc.getBlock(x_pos, y_pos, z_pos)
 # If y position is in the air then move down to find the first non-air block
 if (block_id == block.AIR.id):
 while (block_id == block.AIR.id):
 y_pos = y_pos - 1
 block_id = mc.getBlock(x_pos, y_pos, z_pos)
 # we have found the first solid block - we want to go one above that on the first air block
 y_pos = y_pos + 1
 # If y position is underground then count up to find the first air block
 else :
 while (block_id != block.AIR.id):
 y_pos = y_pos + 1
 block_id = mc.getBlock(x_pos, y_pos, z_pos)
 # Return full address
 return (x_pos, y_pos, z_pos)

 mc = Minecraft.create()
 mc.player.setPos(getSafePos(0, 0, 0))

 This tests to see if the block is of type block.AIR.id , which indicates that it is free space. There is a
constant of each type of block, such as block.WOOD.id , block.COBBLESTONE.id , and block.GLASS.id .

 Moving Around Using a Joystick
 You should now have an idea of how you can use Python to talk to Minecraft. You can add some electronics
to interact with Minecraft. You already created most of what you need when you made the arcade game in
Chapter 3 . You will add some LEDs to show certain information later in this chapter, but for now, you’ll focus
on the buttons and on controlling Steve with the joystick.

 You need to think of what you’ll do if there is a block in the way of where the character will move. You
therefore need a button to act as a jump button. I have also provided two other buttons. Auto-jump will
automatically move Steve up one block and long-jump will cause Steve to climb or safely fall any number of
blocks in a single move. The long-jump button depends on a suitable position, and the joystick needs to be
held down at the same time as it’s pressed.

 # Move around in Minecraft using a joystick
 from mcpi.minecraft import Minecraft
 import mcpi.block as block
 from gpiozero import Button
 import time

http://dx.doi.org/10.1007/978-1-4842-1898-3_3

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

221

 # Set up various buttons and connect to minecraft
 mc = Minecraft.create()

 JOY_NORTH = 23
 JOY_EAST = 17
 JOY_SOUTH = 4
 JOY_WEST = 25

 BTN_JMP = 22
 # use to enable automatic jump by a single block
 BTN_AUTOJMP = 9
 # Jump, or safely fall any number of blocks
 BTN_LGEJMP = 11

 # Time to wait before moves
 DELAY = 0.2

 # Main loop to monitor buttons
 def main():

 joy_north = Button(JOY_NORTH)
 joy_east = Button(JOY_EAST)
 joy_south = Button(JOY_SOUTH)
 joy_west = Button(JOY_WEST)

 btn_jmp = Button(BTN_JMP)
 btn_autojmp = Button(BTN_AUTOJMP)
 btn_lgejmp = Button(BTN_LGEJMP)

 # Autojump setting
 auto_jump = False

 while True:
 # jump status can be 0 = no jump, 1 = jump now, 2 = autojump, 3 = long_jump
 jump = 0
 # check for each button and set appropriate status
 if (btn_jmp.is_pressed) :
 jump = 1
 # toggle auto jump status
 if (btn_autojmp.is_pressed) :
 if (auto_jump == True):
 auto_jump = False
 mc.postToChat("Auto jump disabled")
 else :
 auto_jump = True
 mc.postToChat("Auto jump enabled")
 if (auto_jump == True):
 jump = 2
 if (btn_lgejmp.is_pressed):
 jump = 3

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

222

 # Don't check it's a safe position to move to - we test that later
 # Get current position and apply joystick movement
 position = mc.player.getTilePos()
 if (joy_north.is_pressed):
 position.z = position.z - 1
 if (joy_south.is_pressed):
 position.z = position.z + 1
 if (joy_east.is_pressed):
 position.x = position.x + 1
 if (joy_west.is_pressed):
 position.x = position.x - 1

 if (jump == 2):
 # Jump only if next position is solid
 block_id = mc.getBlock(position)
 if (block_id != block.AIR.id):
 position.y = position.y + 1
 # Now apply appropriate jump to new position
 if (jump == 1):
 # Jump regardless
 position.y = position.y + 1
 # auto jump uses getSafePos
 if (jump == 3):
 position = getSafePos(position.x, position.y, position.z)

 # Now we have the position to move to, check it's not a solid block
 block_id = mc.getBlock(position)
 if (block_id == block.AIR.id):
 mc.player.setTilePos(position)
 # Otherwise not a valid move so ignore

 # Delay before next instruction
 time.sleep(DELAY)

 # Find nearest empty block based on an x, z position
 def getSafePos(x_pos, y_pos, z_pos):
 block_id = mc.getBlock(x_pos, y_pos, z_pos)
 # If y position is in the air then move down to find the first non-air block
 if (block_id == block.AIR.id):
 while (block_id == block.AIR.id):
 y_pos = y_pos - 1
 block_id = mc.getBlock(x_pos, y_pos, z_pos)
 # we have found the first solid block - we want to go one above that on the first air block
 y_pos = y_pos + 1
 # If y position is underground then count up to find the first air block
 else :
 while (block_id != block.AIR.id):
 y_pos = y_pos + 1
 block_id = mc.getBlock(x_pos, y_pos, z_pos)
 # Return full address
 return (x_pos, y_pos, z_pos)

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

223

 #Run the main function when this program is run
 if __name__ == "__main__":
 main()

 This code uses a combination of GPIO Zero and the Minecraft API.
 One issue with the joystick is that it always moves according to the compass directions. If Steve is facing

north, this works well, but if he’s not, it may not feel natural. This is a limitation of Minecraft Pi edition as
unfortunately there is no way to determine which direction Steve is facing.

 There are three more buttons on the console. You’ll use one to show the current location, the second
to create a new house, and the third (the big button) to transport you to the most recent house. These are all
useful when you are in survival mode and want to escape from a danger.

 The complete console will then look as shown in Figure 9-3 .

 Figure 9-3. Joystick and button positions for use in Minecraft

 Building a House in Minecraft
 One of the good things about writing code is that you can use it to automate things that would otherwise take
much longer to do manually. Building a house is a good example of this, as you can create some simple for
loops to place the blocks for the walls. Using code, this can be done much quicker than if you had to position
them all manually.

 Before creating the walls, you need to create the space for the house; otherwise, you could end up with
the ground coming up inside of the house. It would take extra code to do this a layer at a time, but fortunately
there is a quicker way. You’ll use setBlocks , which allows you to select an area of blocks to change to a
particular block type.

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

224

 You then create four walls and a roof. Initially the walls will be plain, but you will add a door and
windows afterward. Here’s the code to build the house:

 # Build a house in Minecraft
 import mcpi.minecraft as minecraft
 import mcpi.block as block
 from mcpi.minecraft import Minecraft
 from gpiozero import Button
 import time

 # Set up various buttons and connect to minecraft
 mc = Minecraft.create()

 BTN_HOUSE = 18

 # House size
 house_size_x = 16
 house_size_y = 6
 house_size_z = 10

 # Save position of house here
 # allows us to go to it later
 # if not defined then leave at 0,0,0
 # vec3 allows us to create a position vector
 house_position = minecraft.Vec3(0,0,0)

 # Time to wait before moves
 DELAY = 1

 # Main loop to monitor buttons
 def main():
 btn_house = Button(BTN_HOUSE)

 while True:
 if (btn_house.is_pressed) :
 # Set position to current location
 # This will be the center of the house
 house_position = mc.player.getTilePos()
 build_house(house_position, house_size_x, house_size_y, house_size_z)
 # Delay before next instruction
 time.sleep(DELAY)
 time.sleep (0.2)

 def build_house (house_position, house_size_x, house_size_y, house_size_z):
 # clear blocks where the house is to be built
 mc.setBlocks (\
 house_position.x - (house_size_x / 2), \
 house_position.y, \
 house_position.z - (house_size_z / 2), \
 house_position.x + (house_size_x / 2), \
 house_position.y + house_size_y, \

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

225

 house_position.z + (house_size_z / 2), \
 block.AIR.id)
 # Build floor
 mc.setBlocks (\
 house_position.x - (house_size_x / 2), \
 house_position.y - 1, \
 house_position.z - (house_size_z / 2), \
 house_position.x + (house_size_x / 2), \
 house_position.y - 1, \
 house_position.z + (house_size_z / 2), \
 block.COBBLESTONE.id)
 # build front wall - north wall
 mc.setBlocks (\
 house_position.x - (house_size_x / 2), \
 house_position.y, \
 house_position.z - (house_size_z / 2), \
 house_position.x + (house_size_x / 2), \
 house_position.y + house_size_y, \
 house_position.z - (house_size_z / 2), \
 block.BRICK_BLOCK.id)
 # build rear wall - south wall
 mc.setBlocks (\
 house_position.x - (house_size_x / 2), \
 house_position.y, \
 house_position.z + (house_size_z / 2), \
 house_position.x + (house_size_x / 2), \
 house_position.y + house_size_y, \
 house_position.z + (house_size_z / 2), \
 block.BRICK_BLOCK.id)
 # build side wall - east wall
 mc.setBlocks (\
 house_position.x + (house_size_x / 2), \
 house_position.y, \
 house_position.z - (house_size_z / 2), \
 house_position.x + (house_size_x / 2), \
 house_position.y + house_size_y, \
 house_position.z + (house_size_z / 2), \
 block.BRICK_BLOCK.id)
 # build side wall - west wall
 mc.setBlocks (\
 house_position.x - (house_size_x / 2), \
 house_position.y, \
 house_position.z - (house_size_z / 2), \
 house_position.x - (house_size_x / 2), \
 house_position.y + house_size_y, \
 house_position.z + (house_size_z / 2), \
 block.BRICK_BLOCK.id)
 # Build roof
 mc.setBlocks (\
 house_position.x - (house_size_x / 2), \
 house_position.y + house_size_y + 1, \

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

226

 house_position.z - (house_size_z / 2), \
 house_position.x + (house_size_x / 2), \
 house_position.y + house_size_y + 1, \
 house_position.z + (house_size_z / 2), \
 block.WOOD.id)

 # Frame of house now built - add doors and windows
 # Make doorway out of air block
 mc.setBlocks (\
 house_position.x, \
 house_position.y, \
 house_position.z - (house_size_z / 2), \
 house_position.x + 1, \
 house_position.y + 2, \
 house_position.z - (house_size_z / 2), \
 block.AIR.id)

 # Add 2 windows
 mc.setBlocks (\
 house_position.x + (house_size_x / 4), \
 house_position.y + (house_size_y / 2), \
 house_position.z - (house_size_z / 2), \
 house_position.x + (house_size_x / 4) + 2, \
 house_position.y + (house_size_y / 2) + 2, \
 house_position.z - (house_size_z / 2), \
 block.GLASS.id)

 mc.setBlocks (\
 house_position.x - (house_size_x / 4), \
 house_position.y + (house_size_y / 2), \
 house_position.z - (house_size_z / 2), \
 house_position.x - (house_size_x / 4) - 2, \
 house_position.y + (house_size_y / 2) + 2, \
 house_position.z - (house_size_z / 2), \
 block.GLASS.id)

 #Run the main function when this program is run
 if __name__ == "__main__":
 main()

 This looks a lot of code. That is partly because each setBlocks command uses eight lines, as it’s split
across multiple lines using the \ continuation character. This is not required but makes it easier to see how
each of the X, Y, and Z positions are calculated.

 You need to be careful when deciding where to position the house in the Minecraft world. While the
code will carve out the space needed for the house, it would look odd if much of the house was in the air or
if the door is inaccessible. Ideally the house should be on a fairly level area. Also if the wall with the door is
positioned on the side of a hill, you may need to dig yourself out.

 If you want to teleport yourself to the house in future (I saved the big button for this), the house’s
position is saved in house_position and can be used with setTilePos() .

 The finished house is shown in Figure 9-4 .

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

227

 Adding Status LEDs
 So far we’ve been using buttons and a joystick to interact with Minecraft, but you can also use Minecraft as
an input to your electronic circuits. One thing that you’ll find yourself doing a lot in Minecraft is mining for
resources buried underground. What would be easier is if there were some way that you could detect if there
were useful resources underneath. It’s also useful to know if there could be lava underneath to stop you
from accidentally falling into it. You’ll build code that can look at the blocks underneath you and use that
information to show the status using LEDs. You’ll use tri-color LEDs for some of these, which as the name
suggests, can show three different colors.

 The tri-color LEDs consists of two LEDs in a single package. One of the LEDs is green and the other is
red. Turning both on together provides the third color, which is orange. The LEDs share the same negative
connection, known as a common cathode. There are other multi-colored LEDs available, but the advantage
of these is that they needs only two GPIO outputs and can provide three status colors.

 ■ Tip If you are unable to find tri-color LEDs (also known as duo-LEDS), you can use an RGB LED instead.
The RGB LED has an extra terminal for blue which is not required. The RGB LEDs are available as common
cathode or common anode. The common cathode type can be used as a direct replacement, leaving the
terminal for the blue LED disconnected.

 You’ll use these LEDs to indicate the amount of a material available—red for none, orange for a small
amount, and green for a larger quantity. One standard red LED will warn that lava present.

 Figure 9-4. Minecraft house built using code

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

228

 I mounted the LEDs on some cardboard Minecraft blocks, but these could be mounted into a cardboard
box with labels indicating what each LED refers to. The blocks you are looking for are:

• COAL_ORE (lit furnace)

• IRON_ORE (unlit furnace)

• DIAMOND_ORE (glass)

• LAVA (flashing LED on wood)

 The label in brackets is the cardboard block where you mount the LEDs. You can see the layout in
Figure 9-5 . The LED mounted on the wooden block will flash.

 Figure 9-5. Minecraft blocks with tri-color status LEDs

 These are useful things to know in the standard Minecraft, although LAVA and DIAMOND_ORE blocks don’t
appear to occur naturally in the Pi edition. Instead, the LAVA LED will come on when you dig too deep. In
the standard edition, you normally hit bedrock first, but digging too deep in the Pi edition will result in Steve
falling to his death. To make up for the lack of diamonds, you will write another program to add some later.

 Each of the LEDs is wired back to the breadboard, where it is connected through a resistor to the
Raspberry Pi GPIO port. This has been done using male-to-female jumper leads, although some of these
needed to be joined together as a single wire was too short.

 The circuit diagram showing how these connect to the GPIO ports is shown in Figure 9-6 .

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

229

 This circuit diagram shows just the connections to the LEDs, which have been added to some of
the GPIO ports included in the Raspberry Pi B+ and later. The buttons and joystick can therefore remain
connected. You won’t actually be using the joystick and the LEDs at the same time, but it’s something
you may want to look at adding yourself later. Details of the ports used for the buttons and joystick are in
Chapter 3 , Figure 3-24.

 Here’s the code to find the relevant blocks and light the LEDs:

 # Scan underground blocks and light LEDs to show status
 from mcpi.minecraft import Minecraft
 import mcpi.block as block
 from gpiozero import Button, LED
 import time

 # Connect to minecraft
 mc = Minecraft.create()

 DELAY = 0.2

 # Number of blocks to scan for
 DEPTH = 50

 COAL_RED = 12
 COAL_GREEN = 16
 IRON_RED = 20
 IRON_GREEN = 21
 DIAMOND_RED = 26
 DIAMOND_GREEN = 19
 LAVA_RED = 13

 Figure 9-6. Circuit diagram showing tri-color status LEDs

http://dx.doi.org/10.1007/978-1-4842-1898-3_3

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

230

 coal_red = LED(COAL_RED)
 coal_green = LED(COAL_GREEN)
 iron_red = LED(IRON_RED)
 iron_green = LED(IRON_GREEN)
 diamond_red = LED(DIAMOND_RED)
 diamond_green = LED(DIAMOND_GREEN)
 lava_red = LED(LAVA_RED)

 # track current status of lava - so we can make it flash
 lava_flash = 0

 while True:
 # variables to identify the number of blocks we have found
 coal_found = 0
 iron_found = 0
 diamond_found = 0
 lava_found = 0

 # Get position
 position = mc.player.getTilePos()

 for i in range (0, DEPTH):
 # Get ID of next block
 block_id = mc.getBlock(position.x, position.y - i, position.z)
 if (block_id == block.COAL_ORE.id):
 coal_found = coal_found + 1
 elif (block_id == block.IRON_ORE.id):
 iron_found = iron_found + 1
 elif (block_id == block.DIAMOND_ORE.id):
 diamond_found = diamond_found + 1
 elif (block_id == block.LAVA.id):
 lava_found = lava_found + 1

 # Update LEDs based on what found - 0 = red, 1 = orange, s+ = green
 if (coal_found < 1):
 coal_red.on()
 coal_green.off()
 elif (coal_found < 2):
 coal_red.on()
 coal_green.on()
 else: # 2 or more
 coal_red.off()
 coal_green.on()

 if (iron_found < 1):
 iron_red.on()
 iron_green.off()
 elif (iron_found < 2):
 iron_red.on()
 iron_green.on()

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

231

 else: # 2 or more
 iron_red.off()
 iron_green.on()

 if (diamond_found < 1):
 diamond_red.on()
 diamond_green.off()
 elif (diamond_found < 2):
 diamond_red.on()
 diamond_green.on()
 else: # 2 or more
 diamond_red.off()
 diamond_green.on()

 # different with lava - instead flash LED
 # toggle status on each iteration around the loop
 if (lava_found > 0 or position.y < -50) :
 lava_flash = 1 - lava_flash
 if (lava_flash == 1) :
 lava_red.on()
 else :
 lava_red.off()
 else:
 lava_red.off()

 This code looks at the blocks that match the position of the player for the X and z positions, searching
from y=0 to y=-50 . It counts any of the matching blocks and then uses these to determine whether the red,
green, or both LEDs should be on. The LAVA LED is different, as it is just a standard LED. The LAVA LED
toggles by checking the status of lava_flash . Subtracting the current status from 1 will result in the status
toggling from 1 to 0 on each turn around the loop, and hence flashing on and off.

 Here’s the code to place diamond blocks at random locations:

 # Scatter some diamond ore in random positions underground
 from mcpi.minecraft import Minecraft
 import mcpi.block as block
 import random

 mc = Minecraft.create()

 # We may not end up with quite this many if we get any
 # duplicate positions
 num_diamonds = 50

 # min depth and max depth should both be positive (relative to 0)
 max_depth = 30
 min_depth = 5
 max_distance = 100

 for i in range (0, num_diamonds):
 x_pos = random.randrange(0, max_distance * 2)
 x_pos = x_pos - max_distance
 z_pos = random.randrange(0, max_distance * 2)
 z_pos = z_pos - max_distance

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

232

 y_pos = random.randrange(min_depth, max_depth,1)
 y_pos = y_pos * -1

 # set the appropriate block to a diamond
 mc.setBlock (x_pos, y_pos, z_pos, block.DIAMOND_ORE.id)

 This uses random.randrange to get a number in a certain range. It only provides positive numbers so
for the X and Z positions, you get a range between 0 and 200 and then subtract 100. This will give a number
between -100 and 100 (actually it goes up to 99 as the top number in the range is never returned). For the Y
position, a positive random number is provided and it’s multiplied by -1 to change it into a negative number.
The setBlock function is then used to set that block to a diamond.

 You now have some LEDs showing the status of the various blocks. It makes it a little easier to find the
blocks you require, although it still requires some searching. You will need to move fairly slowly to avoid
missing any blocks. You could make the loop run faster by reducing the delay, but that may reduce the
performance of Minecraft and slow the computer down when you’re trying to dig.

 Find the Glowstone Game
 You are going to finish this chapter with a game inside Minecraft—a game within a game.

 When the game runs, a glowstone block is hidden somewhere, and it’s your job to find it as quickly as
possible. The stone will be buried underground and the only help is a single LED that indicates whether you
are getting closer (green), are the same distance away (orange), or are moving farther away (red). A catch is
that only a single LED is used for all three directions (X, Y, and Z). If you move a step in the right horizontal
direction, but in doing so move higher and hence farther away, this will count as neither closer nor farther
away. A glowstone is used as it is normally only found in the Nether, so there is no risk of coming across one
naturally. If you come across it underground, it should light up the area so you can see it.

 The best way to understand this is to play the game. Here’s the source code:

 # Find the Glowstone
 from mcpi.minecraft import Minecraft
 import mcpi.block as block
 from gpiozero import LED
 import time, random

 mc = Minecraft.create()

 RED_LED = 12
 GREEN_LED = 16

 red_led = LED(RED_LED)
 green_led = LED(GREEN_LED)

 # min depth and max depth should both be positive (relative to 0)
 max_depth = 30
 min_depth = 5
 max_distance = 100

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

233

 # Hide the Glowstone
 x_pos = random.randrange(0, max_distance * 2)
 x_pos = x_pos - max_distance
 z_pos = random.randrange(0, max_distance * 2)
 z_pos = z_pos - max_distance
 y_pos = random.randrange(min_depth, max_depth,1)
 y_pos = y_pos * -1
 mc.setBlock (x_pos, y_pos, z_pos, block.GLOWSTONE_BLOCK.id)

 start_time = time.time()

 last_position = mc.player.getTilePos()

 while True:
 position_difference = 0
 current_position = mc.player.getTilePos()
 # Diff in x direction
 old_diff = abs(x_pos - last_position.x)
 new_diff = abs(x_pos - current_position.x)
 position_difference = position_difference + new_diff - old_diff
 print_string = print_string + " X diff:"+str(new_diff-old_diff)
 # Diff in y direction
 old_diff = abs(y_pos - last_position.y)
 new_diff = abs(y_pos - current_position.y)
 position_difference = position_difference + new_diff - old_diff
 print_string = print_string + " Y diff:"+str(new_diff-old_diff)
 # Diff in z direction
 old_diff = abs(z_pos - last_position.z)
 new_diff = abs(z_pos - current_position.z)
 position_difference = position_difference + new_diff - old_diff
 print_string = print_string + " Z diff:"+str(new_diff-old_diff)

 if (last_position.x != current_position.x or \
 last_position.y != current_position.y or \
 last_position.z != current_position.z):
 print (print_string+" Total:"+str(position_difference))

 if (position_difference > 0) :
 red_led.on()
 green_led.off()
 elif (position_difference < 0) :
 red_led.off()
 green_led.on()
 else :
 red_led.on()
 green_led.on()

 last_position = current_position

CHAPTER 9 ■ CUSTOMIZE YOUR GAMEPLAY: MINECRAFT HARDWARE PROGRAMMING

234

 # check to see if the block has been destroyed
 block_id = mc.getBlock(x_pos, y_pos, z_pos)
 if (block_id != block.GLOWSTONE_BLOCK.id):
 break

 time.sleep (0.1)

 end_time = time.time()
 timetaken = int(end_time - start_time)
 mc.postToChat("Well done - it took you "+str(timetaken)+" seconds")

 Save this as minecraft-game.py . Start a new game in Minecraft then run minecraft-game.py from IDLE
or by running the following:

 python3 minecraft-game.py

 Once you’ve started the program, the clock is ticking. Move around watching the LED and try to find
the glowstone. Whenever the LED is green you are getting closer and red means you are getting farther
way. Orange means that you are neither farther away nor closer, but that will show only if you move in two
different directions at the same time.

 More Minecraft Hardware Programming
 This chapter showed you how software and hardware can come together using the popular game Minecraft.
You used a joystick and switches to send commands to Minecraft, which even included building a house at
the press of a single button. You then turned the tables and had status LEDs light up in response to finding
certain blocks in Minecraft. You finished by creating a game that used an LED to give additional feedback on
your position relative to the glowstone.

 The electronics are simple in this chapter so as to focus on the interaction with Minecraft, but
that doesn’t need to be the case. You can use any of the other sensors from earlier chapters or use your
movement in Minecraft to send instructions to the robot.

 I left the large button for teleporting back home. I have however left this as an activity for the reader. You
will need to save the position when the house is created and then use setTilePos() . If you are interested in
doing more in Minecraft Pi, there is more information on the API at http://www.stuffaboutcode.com/p/
minecraft-api-reference.html .

 In the next chapter, you will be looking at moving from the breadboard to create more permanent
circuits using a soldering iron and you’ll learn how to perform testing on electronic circuits.

http://www.stuffaboutcode.com/p/minecraft-api-reference.html
http://www.stuffaboutcode.com/p/minecraft-api-reference.html

235© Stewart Watkiss 2016
S. Watkiss, Learn Electronics with Raspberry Pi, DOI 10.1007/978-1-4842-1898-3_10

 CHAPTER 10

 Making Your Circuits Permanent

 Most of the circuits you have made so far were built using a breadboard. Creating circuits on a breadboard
is particularly useful when you’re designing a new circuit, as it allows for easy modifications to the design
and reuse of the components. It does not work so well for permanent circuits, as components and wires
can get accidentally pulled out of the breadboard. In this chapter you will look at how you can make your
circuits permanent so that they can survive a reasonable amount of use without the wires falling out. This
configuration will also allow you to use components that cannot be connected directly to a breadboard or
components that need header pins to be soldered on before they can be connected to a breadboard. This
includes many of the NeoPixels that you looked at in Chapter 6 .

 This will involve soldering, which can sound daunting if you haven’t done any before, but it’s a useful
skill and not as difficult as you may think.

 You’ll also take a brief look at how to create a more professional-looking product by placing the circuit into
an enclosure and you’ll look at some simple diagnostic tools for when the circuit doesn’t behave as it should.

 Soldering Basics
 Soldering is a technique that joins two metal objects by adding a metal filler. In the case of electronic circuits,
this is a process commonly used to join an electronic component to a layer of copper on a printed circuit
board or to join a wire to the lead of a component.

 The metal used to form the join is known as solder . It has a lower melting point than the components
you want to join, which allows you to melt the solder, which then flows around the joint. The solder then sets
hard when it’s allowed to cool. A good way to practice soldering is with a simple electronic kit. These don’t
need to be Raspberry Pi based, although there are some good ones that can be used with the Raspberry
Pi, including the Ryanteck motor control board and a GPIO cobbler, which makes it easier to connect the
Raspberry Pi to a breadboard. An electronics kit will often include a printed circuit board (PCB) along with
some components that need to be soldered into place.

 In addition to the kit, you are going to need a few tools to get started. The minimum is a soldering iron
with a stand, a pair of wire cutters (preferably side-cutters), and a reel of solder, although there are other
tools that can make soldering a little easier.

 Gathering the Essential Tools
 While it is possible to buy a basic soldering iron that is connected directly to a main electrical plug, it
is useful to buy one with some kind of temperature adjustment. The one that I use includes a digital
temperature control, as shown in Figure 10-1 . The digital display is a nice luxury, but when starting out, a
less expensive one with a simple temperature control knob is adequate.

http://dx.doi.org/10.1007/978-1-4842-1898-3_6

CHAPTER 10 ■ MAKING YOUR CIRCUITS PERMANENT

236

 Soldering irons also have a power rating. This does not necessarily mean that a soldering iron with a
higher power rating will be at a higher temperature than one with a lower power rating. A soldering iron with
a higher power rating (such as 50W or higher) will heat up quicker and maintain the temperature better. This
is most important when soldering to a thick gauge wire, which can absorb a lot of heat from the soldering
iron. For soldering on a PCB, the power rating is usually less important.

 Most soldering irons have interchangeable tips with different shaped tips for different types of
soldering. I normally use a chisel shaped tip because that makes it easier to get a good contact with the
component and PCB. See Figure 10-4 later in this chapter for an example of the tip that I normally use. An
alternative is a pointed tip, which can be useful for soldering small components.

 A soldering iron stand is essential to store the soldering iron when it’s not in use. These usually include
a sponge that should be kept moist for cleaning the tip between each use. An alternative to using a sponge is
to use a tip cleaner made of brass shavings, which also avoids the need to regularly moisten the sponge.

 A pair of wire cutters is essential for cutting wires and removing the excess from component leads. They
can also be used for stripping the insulation from wires if you don’t have dedicated wire strippers. A sharp
pair of wire cutters makes it much easier to strip the insulation from the wire.

 ■ Tip Don’t be tempted to use your teeth as wire strippers. A pair of wire strippers is much cheaper to
replace than the potential damage you could do to your teeth.

 Side-cutters such as the ones shown in Figure 10-2 are most useful, as they have a flat side allowing you
to cut close to the joint.

 Figure 10-1. Temperature controlled soldering iron

CHAPTER 10 ■ MAKING YOUR CIRCUITS PERMANENT

237

 Choosing Solder
 A good quality solder intended for hobby electronic circuits is normally an alloy made up of a mix of
silver, copper, and tin. It normally includes a non-corrosive flux often made from rosin. The flux prevents
oxidization during soldering and helps form a clean joint.

 In the past, solder often contained lead, but due to concerns about health and the environment, these
have become less popular. Some countries have imposed restrictions on the use of lead in commercial
products. While some people prefer to use a lead-based solder, a good quality lead-free solder is easy
enough to use for most purposes.

 Although there is no lead in lead-free solder there are still many other toxins can cause serious health
problems. Those involved in soldering on a regular basis should use a fume extraction system, which may be
mandatory in some work environments. A proper fume extraction system may be prohibitively expensive for
hobby use. I have a simple fume disperser (sometimes referred to as a fume absorber), shown in Figure 10-3 .
These fume dispersers will not remove the toxins in a rosin-based flux. They instead draw the fumes away
from the person soldering and disperse them around the room. These should only be used occasionally and
in a well-ventilated area where the fumes will be able to disperse outside and where other people will not
breathe the air coming out the rear.

 Figure 10-2. Pair of side-cutters

CHAPTER 10 ■ MAKING YOUR CIRCUITS PERMANENT

238

 Safety Tips When Soldering
 While the idea of holding a hot soldering iron may sound dangerous, as long as you follow the basic safety
precautions it is a relatively safe activity. The following are some basic precautions you should take when
you’re soldering:

• Hot soldering iron— It goes without saying that an iron that is hot enough to melt solder
could easily burn skin. Accidentally touching your finger to a soldering iron can leave a
small burn with no long lasting effects, but grabbing the end of the soldering iron could
cause a more substantial burn. For this reason, it's important to place the soldering
iron into a holder and ensure that the wire is not going to get pulled by mistake. Also
remember that a soldering iron will remain hot for a long time after it's unplugged. If you
do burn yourself, flood the area with water and leave it under running cold water for at
least 10 minutes. If you have any concerns seek professional medical advice.

• Soldering iron stand— Always place the soldering iron in a suitable stand when not
in use.

• Solder fumes— Breathing in solder fumes regularly can cause serious health problems.
Always solder in a well-ventilated area or use an appropriate fume extraction.

• Protect your eyes— When cutting leads from components, beware of any ends that
may fly off and go into your eyes. This can be avoided by holding the loose end leads
in one hand when snipping them off, or by wearing the appropriate eye protection.

• Never solder a live circuit— Always remove power from a circuit board prior to any
soldering. This is important to protect the power supply (or battery), components,
and from a safety point of view.

• Adult supervision— Soldering is not a difficult activity and can be undertaken by
children of an appropriate age as long as it is under appropriate adult supervision.

 Figure 10-3. Bench-top fume disperser

CHAPTER 10 ■ MAKING YOUR CIRCUITS PERMANENT

239

 Soldering to a Printed Circuit Board
 One of the easiest ways to start soldering is using a printed circuit board (PCB). These often have the
component positions marked on the top so that the component can be easily inserted and then soldered
on the bottom of the board. When soldering, you usually want the component to be as close to the PCB as
possible. Perhaps the biggest challenge is keeping the circuit board still and ensuring that the component
stays in the right place when soldering. This can be tricky, particularly with large components. To make
this easier, start with the smallest components first and support the rest of the PCB with padding. I will
sometimes use a piece of Lego or something similar to support the PCB.

 Once you have the component in place, follow these steps:

 1. Place the tip of the hot soldering iron so it is in contact with the pad on the PCB
and the lead of the component.

 2. Bring the solder in and allow sufficient solder to melt to form the joint.

 3. Remove the solder, but leave the soldering iron in place for a few seconds to
allow the solder to flow around the pad and the component’s lead.

 4. Remove the soldering iron and allow the joint to cool.

 5. Ensure that the solder makes a good joint (if not, repeat this process).

 6. Check that the solder does not expand beyond the pad, thus causing a bridge to
any other components or pads.

 7. Snip off the excess wire from the component.

 Figure 10-4 shows the soldering iron touching both the PCB pad and the component lead.

 Figure 10-4. Soldering iron just before making a solder joint

CHAPTER 10 ■ MAKING YOUR CIRCUITS PERMANENT

240

 Soldering is a skill best learned through practice. Don’t get too disheartened if your first solder joint
looks a bit untidy. Try again and your skills will improve over time.

 ■ Tip Always check for any stray bits of solder and short-circuits before connecting the circuit to your
Raspberry Pi or power supply.

 Here are a few additional hints and tips when soldering:

• Regularly clean the tip by wiping it on a damp sponge or using a brass tip cleaner.

• Tin the tip of the soldering iron using a small amount of solder on the tip.

• Avoid using too much solder.

 Soldering Direct to Leads
 Soldering leads and wires directly together can be a little more difficult, but only because the wires don’t
stay where you need them to. This is where a set of helping hands can be very useful. A traditional way to
do this is with two crocodile clips mounted on a stand, often with a magnifying glass attached. I personally
prefer the SparkFun Third Hand, which comes with two crocodile clips on flexible stands. I have added two
additional crocodile clips to mine, two of which are padded with heat-shrink tubing and the other two are
bare crocodile clips. Figure 10-5 shows my setup with a wire ready to be soldered to an LED.

 Figure 10-5. SparkFun Third Hand used to solder a wire to an LED

 With careful positioning, it should be possible to touch the soldering iron to both the LED and wire and
then apply the soldering along the two to form a joint. If you need to insulate the leads, some heat-shrink
tubing can be placed over the wire before soldering and then moved into position.

 Heat-shrink tubing is hollow tubing that can be placed over a wire and will shrink when heated. A hot
air gun (such as the ones used as paint strippers) should be used to shrink the tubing.

CHAPTER 10 ■ MAKING YOUR CIRCUITS PERMANENT

241

 Stripboard
 You will look at making a custom PCB in the next chapter, but when you’re getting started, stripboard is
often cheaper and easier. Stripboard (also known by the brand name Veroboard) is a circuit board with
copper strips or pads on one side. These are a permanent equivalent of the breadboard. In fact, stripboard
is available that follows a similar layout to the breadboard you have been using. Figure 10-6 shows some
stripboard in a variety of shapes and sizes.

 Figure 10-6. Stripboard

 The components are positioned across the rows much like you would create your breadboard circuit,
but with soldering required to join each component to the copper strip. Some designs of stripboard have
strips that are broken in a central row, which is good for mounting integrated circuits. Otherwise, you can
use a stripboard cutter. A stripboard cutter is a hand tool that sometimes looks like a drill with a screwdriver
handle. These can be twisted against the track to remove the copper strip over one position at a time.

 Perfboard
 Perfboard is similar to stripboard, but without any of the copper pads joined together. The copper pads
can be used to hold the components in position, but then wires need to be added to join the components.
I personally recommend stripboard over perfboard, as I find it can be difficult to get tidy joints when using
perfboard.

 Raspberry Pi Prototyping Boards
 One drawback of stripboard and perfboard is that they don’t lend themselves to mounting on top of the
Raspberry Pi. One problem is that the connector to fit on the GPIO connecting needs to be mounted on the
underside, but it’s also difficult to get it positioned just right. They are useful for circuits that are mounted
away from the Raspberry Pi and can still be connected to the Raspberry Pi using wires or a cobbler.

 A better solution is a prototyping board designed to connect on top of the Raspberry Pi. I have taken two
of the circuits you used previously and mounted them on top of a prototyping board. The first uses a Slice
of Pi, which is a perfboard-like add-on. I used this to create a version of the NeoPixel MOSFET-based circuit
from Chapter 6 . This is shown in Figure 10-7 and the underside shows why I am not such a fan of perfboards.

http://dx.doi.org/10.1007/978-1-4842-1898-3_6

CHAPTER 10 ■ MAKING YOUR CIRCUITS PERMANENT

242

 My preferred prototyping board is the Adafruit Perma-Proto Pi HAT. This is designed specifically for the
Raspberry Pi B+ or later and includes an EEPROM, which the Raspberry Pi can use to set the appropriate
input and outputs on the GPIO ports. Figure 10-8 shows the infrared receiver and transmitter circuit from
Chapter 5 . You will see that I have squeezed the components up to one end as I plan to add some sensors to
the rest of the board in the future, but if you want to build a similar circuit, I suggest spacing the components
out more similar to the breadboard layout.

 Figure 10-7. NeoPixel MOSFET circuit on a Slice of Pi add-on board

 Figure 10-8. Perma-Proto Pi HAT with infrared transmitter and receiver circuit

http://dx.doi.org/10.1007/978-1-4842-1898-3_5

CHAPTER 10 ■ MAKING YOUR CIRCUITS PERMANENT

243

 Cases and Enclosures
 Once you have your permanent circuit, it is often a good idea to put it in a box or enclosure to protect the
circuit and make it look a little more professional. If you have access to a 3D printer, you can print your own
case, but many people need to make use of what is readily available. Usually that involves a simple box
shape, although I’ve also used a metal rack-mounted enclosure for my own version of the disco lights project
from Chapter 4 .

 The easiest material to use for an enclosure is plastic, as it can be easily cut and shaped to fit the
required components. I created an enclosure for the True or False game from Chapter 5 , which is shown
in Figure 10-9 .

 Figure 10-9. Finished True or False game

 This is based on a cuboid box with a Pi Zero inside with the level shifter wired directly to the GPIO
connector. The Pi Zero is attached inside the case using double-sided sticky pads and holes made into the
box for the power lead as well as the HDMI connector (if required). I replaced the mini buttons from the
breadboard circuit with panel-mounted pushbuttons, which fit into holes I drilled into the front panel. The
hole for the LCD display was cut using an electric rotary tool. It has been finished off with labels from a
Brother labeling machine.

 Testing Tools
 So far we’ve been assuming that everything works first time. While that is the aim, sometimes things go
wrong and you’ll need to run some tests. This is the electronics equivalent of debugging software. There
are two tools that you will look at. The most important tool is the multimeter, which is an essential piece
of equipment for an electronics toolkit. The second is a bit more advanced, which is a Raspberry Pi based
digital oscilloscope.

http://dx.doi.org/10.1007/978-1-4842-1898-3_4
http://dx.doi.org/10.1007/978-1-4842-1898-3_5

CHAPTER 10 ■ MAKING YOUR CIRCUITS PERMANENT

244

 Multimeter
 A multimeter is a test tool that can take a number of different measurements on an electronic circuit.
These can vary in price considerably depending on the required functionality and accuracy. My primary
multimeter is a reasonable quality meter shown in Figure 10-10 . A less expensive meter should be sufficient
for most purposes, although I recommend looking for one with an audible connectivity tester (sometimes
missing from the cheaper ones). It’s not essential but can make it a little easier when you don’t have to look
at the screen when testing for a broken connection.

 Figure 10-10. Multimeter

 Across the bottom of the meter are three connectors for connecting the test leads. Two of these have
test leads connected, which is the most common setting. The black lead is connected to the central common
connector and the red lead is connected to the VΩmA (voltage resistance and milliamps). Most of the testing
can be done with the probes in the positions, with the red wire being moved to the left connector when
you’re measuring large currents.

 The rotary selector is then used to choose the appropriate measurement. The most common settings are:

• Voltage—Connect the black lead to the ground of a circuit and then use the red lead
to measure the voltage at a certain point. The circuit needs to be connected to a
power supply when testing the voltage.

• Current — Measuring the current involves making a break in the circuit and
connecting the red and black leads across the break. The current will then flow
through the ammeter where it is measured. For small currents, the leads are used in
the normal positions, but for larger currents (above 200mA for this model), the other
lead position should be used. There is often a fuse that may blow if you exceed the
current rating.

CHAPTER 10 ■ MAKING YOUR CIRCUITS PERMANENT

245

• Resistance — To measure the resistance of a particular component or wire, first
disconnect the power and place the probes across the component. If the component
is in a circuit then other components may affect the measured value. Do not use the
resistance setting on a live circuit.

• Continuity — On many multimeters, the lowest resistance range (typically 200Ω)
often includes an audible connectivity tester. This can be useful for testing for short-
circuits or breaks in a connection, as you don’t need to watch the display.

• Other measurements — Some multimeters also include additional features. The one
shown in Figure 10-10 includes a transistor tester, capacitor measurement, and
frequency setting.

 Some of the measurements have several different positions with the maximum rating on them. When
measuring voltage and current, you should not exceed the value selected. If you are not sure, start with a
higher value and then move the selector to a lower setting until you are in the correct range.

 On this particular multimeter, there is a separate switch for use on AC and DC circuits, although for
other multimeters this may be part of the rotary selector.

 Oscilloscope
 A limitation of a multimeter is that it can only show a single value for the voltage and cannot show how that
changes over time. An oscilloscope (scope for short) is a measurement tool that can be used to show how the
voltage at a point in the circuit changes over time. It used to be that these were too expensive for electronic
hobbyists, but computer-based scopes have been introduced that are more affordable. In particular,
the BitScope Micro is a low-cost scope that can be connected directly to a Raspberry Pi. The BitScope
connects to a USB port, thus providing a way to connect two standard oscilloscope channels or up to eight
connections when used as a logic analyzer. The BitScope is shown in Figure 10-11 .

 Figure 10-11. BitScope Micro with test leads

CHAPTER 10 ■ MAKING YOUR CIRCUITS PERMANENT

246

 More Project Making
 This chapter looked at how you can use soldering to turn your temporary breadboard circuits into a
permanent circuit. When getting started, stripboard is a good way to build circuits without the expense of
a custom printed circuit board. In particular, the Perma-Proto Pi HAT is useful for creating circuits that can
be mounted on top of the Raspberry Pi. You can find more information about soldering, including a video
guide, at www.penguintutor.com/electronics/soldering .

 You then looked at how to make the circuit look more professional by putting it in an enclosure. Finally,
you looked at some test tools that are useful when the circuit doesn’t work as expected.

 In the next chapter, you will look at how you can design and make your own circuits, including how to
design a circuit in Fritzing that could be made into a customer printed circuit board.

 Figure 10-12. BitScope DSO running on a Raspberry Pi

 The software that runs on the Raspberry Pi is shown in Figure 10-12 . In this case, it shows a square
wave signal.

http://www.penguintutor.com/electronics/soldering

247© Stewart Watkiss 2016
S. Watkiss, Learn Electronics with Raspberry Pi, DOI 10.1007/978-1-4842-1898-3_11

 CHAPTER 11

 Let the Innovation Begin:
Designing Your Own Circuits

 In this chapter, you will look at how you would go about designing your own circuits. Designing your first
circuit may sound like a big jump compared to following existing designs, but you have already learned
many of the basic elements used in many electronic circuits. Many electronic circuits are built from
the basic building blocks you have read about, and many are modular with larger circuits designed by
combining these small circuits into a larger one. This is also how integrated circuits are designed, and in
fact a computer processor with millions of transistors starts with a switch circuit similar to the MOSFET
switch you created in Chapter 4 .

 There is a good chance that there is already an integrated circuit that includes some of the functionality
that you are looking to implement. Searching a component supplier’s web site or a general Internet search
may lead you to an integrated circuit that you can use in your own design.

 This chapter will show you where to find information about components and circuits, will explain some
tools for designing circuits, and will describe how they can be used to create circuits, including custom
printed circuit boards (PCBs). Finally, you will see how to create a power supply suitable for powering a
Raspberry Pi.

 The Design Process in a Nutshell
 Designing a circuit is usually a multi-step process. First you start with the idea, then you research the
available components, and then, having decided on the components, you design it into a circuit showing
how they will be connected. You can then prototype the circuit by making a temporary circuit before
creating the final finished one. The final circuit could be built on an off-the-shelf board such as stripboard or
made into a complete printed circuit board, depending on your budget and the complexity of the circuit.

 Each of these stages can be repeated as necessary until you come to the final design. As you move
through the stages, the potential cost increases both in terms of money and the time, so the earlier you
identify any potential problems the less it will cost. Don’t be afraid to go back to the start rather than trying
to continue with a design that isn’t working.

 The prototyping stage is useful, as this is when you get to see if the circuit you designed works. This is
often done using a breadboard. You don’t necessarily need to test every single component at this level, but you
should test all the basic blocks. For example, when designing the disco lights in Chapter 4 , I tested only one of
the MOSFET switches. The other three followed the same design, so I did not need to test them separately. The
more comprehensive your testing, the better your chance of identifying any potential problems.

http://dx.doi.org/10.1007/978-1-4842-1898-3_4
http://dx.doi.org/10.1007/978-1-4842-1898-3_4

CHAPTER 11 ■ LET THE INNOVATION BEGIN: DESIGNING YOUR OWN CIRCUITS

248

 There is one additional step that is used in professional circuit design and that’s to perform a circuit
simulation . Circuit simulation involves computer modeling of the behavior between components to see how
they will work together. It can be a complicated process and should not be required for the type of circuits
you will be making at this stage.

 The idea is something you can come up with yourself, although hopefully some of the ideas in this book
may help inspire you. This chapter therefore looks at some of the sources of information and the tools you
can use to design a circuit.

 Looking at Manufacturer Datasheets
 When designing circuits, you need to understand the particular characteristics of the components you use.
Components that look similar to each behave in different ways when used in practice. To get this information,
manufacturers provide a datasheet that explains the characteristics of their components. Interpreting the
information from a datasheet is one of the key skills you need when designing your own circuit.

 Datasheets for different types of components may be completely different, but there are a number of
sections that are often included. Rather than covering just one type, I have created a few examples of the sort
of thing that you may see on a datasheet. I suggest you download some real datasheets so that you can get
familiar with their content. The best place to download datasheets is from the component supplier. Some
companies, such as Farnell/Element 14, provide links to the datasheets in the component listings, others
include practical examples and tutorials, and some don’t provide any information. If you don’t find what you
are looking for, search the Internet for datasheet followed by the component name.

 The datasheet includes a descriptive title, the component model number, and the name of the
manufacturer. This is normally followed by a paragraph explaining what the component is and where it is
useful. In some cases, a single datasheet may include multiple components (for example, the TSOP2438
infrared receiver shares a single datasheet with 23 other similar receivers).

 There is often a diagram showing the pin layout. Obviously this will look different for a discrete
component such as a transistor than for an integrated circuit. For a transistor or something similar, it may be
a 3D picture with labels on the leads. In the case of an integrated circuit, it may look like the example shown
in Figure 11-1 .

 Figure 11-1. Pin layout for the MCP3004

CHAPTER 11 ■ LET THE INNOVATION BEGIN: DESIGNING YOUR OWN CIRCUITS

249

 This is the MCP3004 analog -to-digital integrated circuit that you used in Chapter 5 . This is a good
example of the different types of pin labels that you may come across.

 The numbers on the inside of the IC are the pin numbers. Pin 1 is indicated at the top right and it’s
normally identified on the chip by a semicircle or small dot on the side with pin 1. CH0 to CH3 are the
input channels (analog inputs). NC means not connected. This normally means that it is not used at the
moment and so the pin should be left without physically connecting to the rest of the circuit. Normally GND
is used to signify the pin that needs to be connected to the 0V ground part of the circuit. In this case, it has
a separate ground connection for the digital and analog parts of the circuit indicated by DGND and AGND,
respectively. An alternative is V

SS
 , which is used by some manufacturers to refer to the ground instead.

 The pin marked CS/SHDN is used for chip select or to shut down the input. An alternative that you
may see on some components is EN, which stands for enable and normally means the same as chip select.
You will see that there is a line above CS. This indicates that it is inverted, so a high input has the opposite
meaning as the wording. In this case, “chip select” happens when it receives a low signal rather than a high
signal.

 The pins labeled D
IN

 and D
OUT

 are the data in and out pins that are used to communicate with the
Raspberry Pi using I2C. CLK stands for clock, where a timing signal is required. The V

REF
 pin is used for the

analog part of the circuit as a reference voltage that the input is compared against. Finally, the V
DD

 pin is
connected to the positive power supply, and on some circuits this may be V

CC
 instead.

 The pin layout may also show different variants of the component. This may include an option for
a surface mounted device (SMD) or through the hole device. You will normally want to avoid the SMD
components when making the circuit by hand, as they can be difficult to solder.

 The next part of the datasheet is normally a table of absolute maximum ratings, which means you
should not exceed these values. Going outside of these ranges can cause the component to operate
incorrectly or may cause permanent damage to the component.

 Figure 11-2 shows part of the information for the IRL520 MOSFET.

 Figure 11-2. Absolute maximum ratings for the IRL520 MOSFET

 This shows the maximum voltages between different pairs of pins as well as the continuous and pulsed
currents. Exceeding these values is likely to damage the MOSFET. Also note that some values may depend on
certain conditions and in this case the maximum drain current is less as the temperature increases.

 There are then often several tables that provide more information about the behavior of the component
under certain conditions. For logic circuits, this will include the valid voltage ranges for a signal to be
considered as a true or false; for a transistor, this includes the typical gain; and for an LED, it may include
the luminous intensity. There may be other information that is useful under certain circumstances, such as
timing information or effective capacitance.

 Some information may vary depending on the input, temperature, or other characteristics. In this case,
the information may be presented as graphs or timing diagrams.

http://dx.doi.org/10.1007/978-1-4842-1898-3_5

CHAPTER 11 ■ LET THE INNOVATION BEGIN: DESIGNING YOUR OWN CIRCUITS

250

 Another common section is a circuit diagram that shows the internal characteristics of the inputs or
outputs. Use these when you’re deciding what additional components may be needed to connect the circuit
to another component. For instance, if a circuit has an open collector output, as shown in Figure 11-3 , if
you’re connecting to a logic circuit, it would need a pull-up resistor to ensure that the input to the next stage
was not floating when the transistor was switched off.

 Figure 11-3. Open collector used on certain ICs

 Figure 11-4 shows the SN754410 H-Bridge IC, which includes the effective output circuit from the chip
and the protection diodes.

CHAPTER 11 ■ LET THE INNOVATION BEGIN: DESIGNING YOUR OWN CIRCUITS

251

 The datasheet may also include examples of how the component can be used in a circuit and often
includes the dimensions of the component and how it connects to a printed circuit board.

 Some datasheets will be more useful than others, but as you can see, it can be an invaluable source of
information when designing a circuit.

 Designing with Fritzing
 Having read this far, you may be wondering how the circuit diagrams and breadboard images were created.
The majority of these were created using a program called Fritzing. Fritzing is open source software available
for Linux, Mac OS X, and Windows and can help you create circuit diagrams (schematics), breadboard layouts,
and printed circuit board designs. You can download Fritzing from http://fritzing.org/download/ . The
site requests a donation to support the further development of the software, but you can download without
giving a donation. It should be possible to download the source code and compile the program to run on a
Raspberry Pi 2 or Pi 3, although it is easier if you choose one of the pre-compiled programs instead.

 Designing a Circuit Diagram/Schematic
 Although the breadboard view is the first tab in Fritzing, I recommend starting with a circuit diagram, which
is called a schematic in Fritzing. This allows you to design the circuit as you would like it to connect logically
and it will then guide you to creating the physical layout for a breadboard or PCB. The initial schematic view is
shown in Figure 11-5 .

 Figure 11-4. Datasheet representation of output from SN754410 H-Bridge IC

http://fritzing.org/download/

CHAPTER 11 ■ LET THE INNOVATION BEGIN: DESIGNING YOUR OWN CIRCUITS

252

 The main part of the screen contains an editor area, which is a white background with a grid for laying
out the circuit design. The Parts area in the top right contains the available components and circuit boards
and the Inspector area at the bottom right allows you to change any of the parameters relating to the current
component.

 In the Parts selector, most of the standard components are included under the CORE tab. This includes
common components such as a resistor and PCB, but also labels, wires, and even an entire computer in
the form of the Raspberry Pi. The components can be dragged across to the Edit area. If the component has
some options available, you can select these in the Inspector area. This can be used to select values such
as resistor values and different component types such as THT (through-hole technology) or SMD (surface
mount devices). When presented with the choice of THT and SMD, you will usually want to choose the THT
components. They have leads that can pass through a printed circuit board or mounted into a breadboard.
SMD are very small components that are mounted to only one side of a PCB and are very difficult to solder
by hand without additional tools. The inspector panel for a resistor is shown in Figure 11-6 .

 Figure 11-5. Fritzing schematic view

CHAPTER 11 ■ LET THE INNOVATION BEGIN: DESIGNING YOUR OWN CIRCUITS

253

 You then connect the components by dragging the mouse from the lead of one component to the
other. Each time you create a connection between the components, it is called a net. You can connect more
components to the same net by right-clicking on a connection and choosing Add Bendpoint. You can also
connect to a net label (under the core components), at which point any other net labels with the same name
are also connected. A complete circuit for the basic transistor LED circuit is included in Figure 11-7 .

 Figure 11-6. Fritzing inspector panel for a resistor

CHAPTER 11 ■ LET THE INNOVATION BEGIN: DESIGNING YOUR OWN CIRCUITS

254

 I haven’t included the Raspberry Pi on this diagram, although you can include one by dragging it from
the core components. In this case, I used a net label at the point where the circuit connects to the GPIO,
instead of showing the Raspberry Pi on the diagram.

 Design Conventions
 When creating a c ircuit diagram (in Fritzing or otherwise), there are a few standard conventions that are
followed when possible. These are not fixed rules, but should be followed when possible. Some common
rules are:

• The positive supply is usually placed at the top of the diagram.

• The ground (0V) supply is normally placed at the bottom of the diagram.

• Inputs are normally positioned toward the left and outputs toward the right. As a
result, the data signals normally flow from left to right.

• If a battery is being used, this may be displayed using the battery symbol, but often
the supply is shown by marking the appropriate lines instead.

• Lines are normally drawn horizontally or vertically straight. A change in direction is
normally through a 90-degree turn. In Fritzing, the connections will normally take
the shortest path, but can be dragged out to form 90-degree turns.

 Figure 11-7. Transistor LED circuit schematic view

CHAPTER 11 ■ LET THE INNOVATION BEGIN: DESIGNING YOUR OWN CIRCUITS

255

• Avoid crossing lines where possible. When lines join, a dot (filled circle) is used to
indicate a join. When lines cross but don’t join, they normally pass in a straight line.

• Each component is normally given a reference. This is prefixed with a letter or few
letters to denote the type of component. Examples include:

• R for resistor

• D for diode

• Q for transistor

• BT for battery

• C for capacitor

 Creating a Breadboard Layout
 Now that you have a circuit diagram you can convert it to a breadboard layout by switching to the
 Breadboard tab. If you do so, it will likely look a bit of a mess, such as the diagram in Figure 11-8 .

 Figure 11-8. Fritzing initial breadboard view

 Not only does this look a mess, but for some circuits, components will be on top of each other, thereby
hiding those below them. First you should click on the breadboard and use the inspector to set it to the
appropriate type of breadboard. The most common type is the half+ breadboard.

CHAPTER 11 ■ LET THE INNOVATION BEGIN: DESIGNING YOUR OWN CIRCUITS

256

 You can now drag the components to an appropriate position, rotating them as necessary. When
you place a component onto the breadboard, the row of pins that it will connect to will change to green.
The dashed lines represent the nets that you created in the circuit diagram. Clicking on one of these will
turn it into a wire that you can place as appropriate. You also need to add connections for the positive and
ground power supplies, which are normally connected to one of the appropriate red or blue strips along the
breadboard (not all breadboards include the colored lines). The final layout is shown in Figure 11-9 .

 Figure 11-9. Fritzing updated breadboard view

 The resistor that goes to the base of the transistor normally connects to the Raspberry Pi, but I have not
shown the Raspberry Pi in this view.

 Creating a Stripboard Layout
 If you want to create a layout for a stripboard (see Chapter 10), you do that using the same breadboard view.
You will lose the view of the breadboard so you may want to save it with a different name first. Click on
the breadboard and choose Delete and then drag the stripboard part from the core parts. There are only a
couple of different types of stripboard included, but you can adjust the number of columns and rows. You
can also create breaks in the rows by clicking on the stripboard between a pair of holes.

 Designing a Printed Circuit Board
 The final part you will look at is creating a professional printed circuit board (PCB). This is not something
you should consider lightly as, creating custom PCBs can unfortunately be expensive, but it can provide a
professional look for your project. The price for PCBs varies depending on manufacturer, lead-time, and
quantity. The quantity is an important factor, as producing only one or two copies of a PCB is very expensive,
but if you want to create hundreds, the cost per board is significantly less.

 While I don’t recommend you have a PCB made for this simple circuit, I will still use it to illustrate the
process of designing a PCB. Clicking on the PCB tab will show a grey area for the PCB board. You will find all
your components stacked up on the top corner and they will need to be moved around.

http://dx.doi.org/10.1007/978-1-4842-1898-3_10

CHAPTER 11 ■ LET THE INNOVATION BEGIN: DESIGNING YOUR OWN CIRCUITS

257

 First set the size of the PCB and move the components to appropriate positions on the board. Before
you go about working out how the copper will be laid out you need to add some way of connecting to
the power supply and to the Raspberry Pi. For the power supply, you can use one of the included power
connectors and for the Raspberry Pi you may want to include a 30-way connector. However, these would be
overkill for such a simple design, so I am instead just going to add three terminals—two for the power supply
and one for the GPIO connection. I will use the part for a terminal connector, but you could just solder wires
directly to the pins rather than using a physical connector.

 Under the core parts, look for connections and for Generic Female Header—2 pins. The number of pins
can then be changed in the Inspector tab. The PCB so far is shown in Figure 11-10 .

 Figure 11-10. Initial PCB layout without routing

 The next stage is to add the copper tracks that go between each component. There is an Autoroute
option, but you can just do this manually as you did in the breadboard layout using the dotted lines as a
guide. There will be no connections shown to the connector terminal so you will need to add these as well.

 Before you start dragging out the connections, you may want to specify which layer to run the
connections on. While it technically doesn’t matter whether these are on the top or the bottom, I prefer
to put as many on the bottom as possible. This is more due to my experience creating single layer boards
in the past. To do this, look for the icon on the bottom that says Both Layers and choose Set Bottom Layer
Clickable. Any tracks you draw will be orange, which indicates that they are on the bottom. If you change it to
the top layer, they will be colored yellow.

 While you could have the tracks going diagonally directly to the components, I prefer to lay the tracks in
straight lines and at 90-degree bends when possible.

 Once the tracks are connected, you should have something looking similar to Figure 11-11 .

CHAPTER 11 ■ LET THE INNOVATION BEGIN: DESIGNING YOUR OWN CIRCUITS

258

 If you now switch to the schematic view, you will see that the connector component has been added
and that it has dashed connections to the power supply and resistor RB. This is one of the features of
Fritzing, as you can add a component in any of the different views and it is added to all the others. You may
want to tidy the other diagrams up by repositioning the connector and wires. Alternatively, if you didn’t want
to show the wires, you can use the Delete Ratsnest Line option to hide the dashed line. Take care when using
this option, as it is a useful way to check that you have connected your circuits correctly.

 It’s a good idea to rearrange the text labels for the components at this point and then label the
connections for J1. You can add text using the logo part, which can be used for adding any kind of text, not
just logos. The updated PCB is shown in Figure 11-12 .

 Figure 11-11. PCB layout with copper tracks between the components

 Figure 11-12. PCB layout with added text information

CHAPTER 11 ■ LET THE INNOVATION BEGIN: DESIGNING YOUR OWN CIRCUITS

259

 This is almost ready to be made up as a printed circuit board. The final thing you should do to the
design is add a ground or copper fill. This will fill most of the PCB with copper. In the case of a ground fill,
that will be connected to the ground which helps avoid electromagnetic interference. Some manufacturers,
including Fritzing, automatically apply a copper fill, as it saves on the amount of copper that needs to be
etched, but it’s a good idea to do so yourself.

 To add a ground fill, right-click on the Gnd Connection and choose Set Ground Fill Seed. Then from
the Routing menu, choose to apply a ground fill. The entire board will then be filled in with copper except
for gaps around each of the connections. If you look at the bottom layer, you should see that the ground
connection from the connector to Q1 is merged into the ground fill.

 The PCB is now ready to be sent for manufacturing. Before you send it off, it is a good idea to perform
some checks on the finished layout. First run the Design Rules Check (DRC) from the Routing menu, which
will check for any common problems. Then export the PCB layout using File ä Export for Production
and choosing PDF. Print the component layout and check that the components fit. Double-check that all the
components are orientated correctly on the PCB layout.

 Once you’ve checked everything twice, check the PCB once more before you send the files to the
manufacturer. Remember the extra cost and time if there is a mistake. If you want to use the Fritzing lab
(which funds the development of Fritzing software), you can use the Fabricate button to load a web page for
submission. There are a couple of advantages to using Fritzing. The first is that you can just send the Fritzing
file as it is and the second is that they will perform some additional checks.

 If you would rather send the PCB to a different manufacturer, you can export it for production as
Extended Gerber files. In this case, you may need to fine-tune some of these files. Check the submission
rules, especially for what .TXT files they expect to receive.

 As I have said, it is not worth the cost of sending this particular circuit to manufacturing, but I created
a more complex PCB that I used in one of my own projects. Figure 11-13 is a circuit that combines the disco
lights and NeoPixel circuits onto a single board. I used this circuit at a real disco.

 Figure 11-13. Manufactured PCB for disco lights and NeoPixels

CHAPTER 11 ■ LET THE INNOVATION BEGIN: DESIGNING YOUR OWN CIRCUITS

260

 Powering the Raspberry Pi
 The Raspberry Pi is normally powered from a dedicated power supply through the micro-USB connector.
This is fine for normal use, but what if you want to include the Raspberry Pi in a complete project that
already has a power supply? In particular, when I created the disco light project which runs on 12V, I
didn’t want to have to add a second power supply for the 5V needed by the Raspberry Pi. First, I will show
you a circuit that you can make yourself so that you can understand how to add a power supply directly
into your own circuit. Then I will show you a more efficient solution where you can buy a converter and
connect it to the circuit.

 78xx Linear Voltage Regulator
 The 78xx series of voltage regulars are small components that can be easily included directly onto a PCB
or stripboard circuit. The regulators take a higher voltage on their input and provide a constant lower
voltage for their output. In this case, 12V for the input and 5V for the output. The only extra components are
capacitors at the input and output, which are there to smooth out any noise. The circuit diagram is shown
in Figure 11-14 .

 Figure 11-14. 7805 voltage regulator circuit

 The voltage regulator comes with a variety of output voltages, which are denoted by the last two digits.
For example, the 5V regulator suitable for the Raspberry Pi is the 7805. The input voltage needs to be higher
than the output voltage, so in the case of the 7805, it needs to be at least 7.3V.

 One disadvantage of a linear regulator is that the voltage difference between the input and output is
turned into heat, wasting power. If this is supplying 600mA (a typical current draw for a Raspberry Pi) using
a 12V power supply then the amount of power lost would be 4.2 watts (7V dropped x 0.6A). This is quite a
significant amount of heat and a heatsink would be required to prevent the regulator from overheating.

 Buck Converter
 A more efficient way of powering the Raspberry Pi from a 12V power supply is by using a buck converter ,
also known as a DC-DC converter or a DC switching regulator. I used one of these to power the Raspberry
Pi in the disco light project. The buck convertor is normally bought pre-built on a printed circuit board. The
output voltage can usually be changed with a trimmer built onto the PCB. You need to use a multimeter to
check the output voltage. A buck converter is shown in Figure 11-15 .

CHAPTER 11 ■ LET THE INNOVATION BEGIN: DESIGNING YOUR OWN CIRCUITS

261

 Buck convertors are available through various suppliers such as Amazon and eBay. These are more
expensive than the linear voltage regulator and they take up more space, but they are better when it comes
to power efficiency.

 Designing More Circuits
 This chapter discussed the information needed to design your own circuits. You saw how datasheets provide
the information needed when designing a circuit and how to extract the relevant information. You then
looked at Fritzing and how it can be used to design circuits, including creating a schematic layout, designing
a breadboard and stripboard layout, and finally creating a professional printed circuit board.

 This chapter provides the basics for getting started with Fritzing, but only scratches the surface of what
Fritzing is. I encourage you to spend more time learning about Fritzing. There are also other circuit design
software programs, including KiCAD (which is open source software) and Eagle PCB design software (which
is a commercial product but free to use for small circuits). Neither of these provide the ease of use and
breadboard layouts that Fritzing does.

 Through this book you have learned about electronic circuits, about how to connect them to the
Raspberry Pi, and the steps involved in designing your own circuit. With this information, you can now
design your own electronic circuits to have the Raspberry Pi interact with the real world.

 Look around at what others have made, come up with your own ideas, and design your own
electronic circuits.

 Figure 11-15. Buck converter

263© Stewart Watkiss 2016
S. Watkiss, Learn Electronics with Raspberry Pi, DOI 10.1007/978-1-4842-1898-3

 APPENDIX A

 Required Tools and Components

 This appendix includes the most common components and tools you will need for each of the projects in
the book. There are suggested design alternatives for some of the projects so you may want to explore other
components. I also list suggested sizes or types for some of the tools, which should be considered only as
a guide. It’s often a good idea to start with a small set of basic tools and then expand that collection or add
better-quality tools as you gain more experience.

 I’ve listed the tools in a few groups, which will allow you to add to your tools as you progress. I’ve listed
the components for each of the projects, some of which may have already been used by other projects.

 Tools Required
 When getting started then only a few basic tools are required. This includes a breadboard to build the
circuits on and a pair of side cutters to cut and strip wires.

 When making permanent circuits then the number of tools required does increase, although some of
these are normal DIY tools that you may already have or that you may find useful around the home.

 Basic Breadboard Circuits
 These are the recommended tools in Chapters 1 to 7 (and later):

• Raspberry Pi (preferably Raspberry Pi 2)

• Breadboard (half size)

• Side cutters (small wire cutters)

• Crocodile clips with wires

• Jumper wires and/or solid core wire

• Small screwdriver (cross-head and straight, or multi-head)

• Cobbler (optional)

• Board to mount the Raspberry Pi and breadboard (optional)

 Crimping and Soldering Tools
 A crimping tool is useful in Chapter 3 ; the rest of the tools are used in Chapters 10 and 11 .

• Combined crimp tool and wire strippers

• Soldering iron with suitable tip (usually a fairly small chisel tip)

http://dx.doi.org/10.1007/978-1-4842-1898-3_1
http://dx.doi.org/10.1007/978-1-4842-1898-3_7
http://dx.doi.org/10.1007/978-1-4842-1898-3_3
http://dx.doi.org/10.1007/978-1-4842-1898-3_10
http://dx.doi.org/10.1007/978-1-4842-1898-3_11

APPENDIX A ■ REQUIRED TOOLS AND COMPONENTS

264

• Soldering iron stand and cleaner

• Solder (normally lead-free)

• Stranded wire (not essential, but more flexible than the solid core used
for breadboards)

• Heatshrink tubing

• Stripboard

• Spot face/stripboard cutter

 Manufacturing Tools for Enclosures
 Most of these circuits are designed to be made up and then taken apart. The exception is the arcade game
in Chapter 3 . You may also find that you do want to make a permanent version of some of the projects, such
as the True or False game in Chapter 5 . Ultimately, these will be useful when you go on to create your own
projects in future.

• Safety glasses or goggles

• Electric drill

• Small hacksaw

• Small files (needle files)

• Permanent marker pen

• Rotary tool (optional)

 Meters and Test Equipment
 While not essential, an inexpensive multimeter can be very useful for all types of circuits. A BitScope would
be a luxury at this stage, but may be useful in future. Chapter 10 includes the use of these tools.

• Multimeter

• BitScope (optional)

 Components for Each Project
As with the tools the number of components can start small and then increase as you create the more
ambitious projects. The components are listed against the project names they are used in, but you may
also want to consider building up a stock of components for future projects. A set of resistors is a good start
(either the E6 or E12 series listed in Appendix C) along with a few spare transistors and LEDs. You can then
expand the collection by buying a few extra spares when you order components for your next project.

 Chapter 1 : Simple LED Circuit
• 9V PP3 battery

• 9V battery clip (with wires)

• LED (5mm any color)

http://dx.doi.org/10.1007/978-1-4842-1898-3_3
http://dx.doi.org/10.1007/978-1-4842-1898-3_5
http://dx.doi.org/10.1007/978-1-4842-1898-3_10
http://dx.doi.org/10.1007/978-1-4842-1898-3_App3
http://dx.doi.org/10.1007/978-1-4842-1898-3_1

APPENDIX A ■ REQUIRED TOOLS AND COMPONENTS

265

• Miniature pushbutton switch (SPST)

• 470Ω resistor

 Chapter 3 : LED Circuit
• 5mm red LED

• 220Ω resistor

 Chapter 3 : Switch Input Circuit
 These are required in addition to the parts in the LED circuit.

• 12mm push-to-make pushbutton switch.

• Optional switch cap

 Chapter 3 : Robot Soccer
 These are a list of all the components needed, excluding those listed in the breadboard list, at the start of
this appendix.

• 5mm red LED

• 5mm green LED

• 220Ω resistors (2)

• 12mm push-to-make pushbutton switches (2)

• Optional switch caps (2)

 Chapter 3 : Mars Lander
 These are the parts required, excluding the Raspberry Pi.

• Box to mount the switches to (Really Useful Box 4 Litres)

• Joystick (micro-switch)

• Large button switch

• Arcade button switches (5 are used in example)

• Breadboard (optional)

• 26 or 40 way Raspberry Pi Cobbler (optional)

• Crimp terminals (red, female).

http://dx.doi.org/10.1007/978-1-4842-1898-3_3
http://dx.doi.org/10.1007/978-1-4842-1898-3_3
http://dx.doi.org/10.1007/978-1-4842-1898-3_3
http://dx.doi.org/10.1007/978-1-4842-1898-3_3

APPENDIX A ■ REQUIRED TOOLS AND COMPONENTS

266

 Chapter 4 : Brighter LED
• 10mm white LED

• Transistor, 2n2222 or BC548

• 82Ω resistor

• 1kΩ resistor

 Chapter 4 : Brighter LEDs with Darlington Transistors
• USB LED light

• 5V USB power supply with suitable connector

• BD681 Darlington transistor

• 220Ω resistor

• 12mm push-to-make pushbutton switch

 Chapter 4 : Disco Lights
• PAR 16 theatre lights (4)

• MR 16 LED bulbs (4)

• 12V power brick with suitable connector

• IRL520 MOSFET transistors (4)

• 470Ω resistors (4)

• 5A fuse with holder or polyfuse

 Chapter 5 : PIR Sensor and Pi Camera
• Raspberry Pi camera

• PIR motion sensor (HC-SR501)

 Chapter 5 : Infrared Transmitter and Receiver
• TSOP2438 infrared receiver

• TSAL6400 infrared emitter

• 2N2222 transistor

• 68Ω resistor

• 100Ω resistor

• 220Ω resistor

• 0.1μF capacitor

• Infrared color-changing LED and remote control

http://dx.doi.org/10.1007/978-1-4842-1898-3_4
http://dx.doi.org/10.1007/978-1-4842-1898-3_4
http://dx.doi.org/10.1007/978-1-4842-1898-3_4
http://dx.doi.org/10.1007/978-1-4842-1898-3_5
http://dx.doi.org/10.1007/978-1-4842-1898-3_5

APPENDIX A ■ REQUIRED TOOLS AND COMPONENTS

267

 Chapter 5 : I 2 C LCD Display True or False Game
• Bidirectional level shifter (Adafruit/Sparkfun)

• LCD display

• I 2 C LCD display backpack

• Push-to-make switches (3)

 Chapter 5 : SPI Analog to Digital Input
• MCP3008 SPI ADC

• 1μF capacitor

• Potentiometer (variable resistor), 10kΩ or similar

 Chapter 6 : Automated Lego Train
 The parts for the infrared transmitter are the same as those used in the infrared transmitter circuit in Chapter 5 .

• Lego train or similar infrared device

• 68Ω resistor

• 220Ω resistor

• 2N2222 transistor

• TSAL6400 infrared emitter

• Reed switch and magnet

 Chapter 6 : NeoPixels
• 5V power supply and connector

• 470Ω resistor

• 2.2kΩ resistor

• 2N70000 MOSFET

• NeoPixels (2 breadboard NeoPixels or strip of NeoPixels)

 Chapter 7 : Video Capture
 The infrared receiver components are the same as those used in Chapter 5 .

• TSOP238 infrared receiver

• 100Ω resistor

• 0.1μF capacitor

• Selection of Lego figures or similar characters

• Background pictures

http://dx.doi.org/10.1007/978-1-4842-1898-3_5
http://dx.doi.org/10.1007/978-1-4842-1898-3_5
http://dx.doi.org/10.1007/978-1-4842-1898-3_6
http://dx.doi.org/10.1007/978-1-4842-1898-3_5
http://dx.doi.org/10.1007/978-1-4842-1898-3_6
http://dx.doi.org/10.1007/978-1-4842-1898-3_7
http://dx.doi.org/10.1007/978-1-4842-1898-3_5

APPENDIX A ■ REQUIRED TOOLS AND COMPONENTS

268

 Chapter 8 : Breadboard Based Robot
• Magician robot chassis with motors

• SN754410 H-Bridge IC

• Cobbler (optional)

• Battery power supply (four AA batteries or alternative 5V power supply)

• WiFi dongle for the Raspberry Pi

 Chapter 8 : Robot Using Ryanteck Motor Control Board
 As with the breadboard-based robot, but with a Ryanteck Motor Control Board instead of the SN754410
and no cobbler.

 Chapter 8 : CamJam Robot
• CamJam Education Kit 3 (Robotics)

• WiFi dongle for the Raspberry Pi

 Chapter 8 : Robot with Ultrasonic Range Sensor
• Any of the robot kits listed previously

• Ultrasonic Range Sensor

• 39kΩ resistor

• 68kΩ resistor

 Chapter 9 : Minecraft Hardware
 The Minecraft projects use the same enclosure, joystick controller, and switches as used in the 3 Mars
Lander project in Chapter 3 .

• 220Ω resistors (7)

• Tri-color common cathode LEDs; also known as duo-LEDs (3)

• Red LED

• Minecraft blocks (optional)

 If you are unable to buy tri-color LEDs, you can use common cathode RGB LEDs instead.

 Chapter 10 : Permanent Circuits
 The additional tools required are listed at the top of this appendix.

• Perma-Proto Pi HAT or Slice of Pi prototyping board

• PCB terminal connectors (optional)

http://dx.doi.org/10.1007/978-1-4842-1898-3_8
http://dx.doi.org/10.1007/978-1-4842-1898-3_8
http://dx.doi.org/10.1007/978-1-4842-1898-3_8
http://dx.doi.org/10.1007/978-1-4842-1898-3_8
http://dx.doi.org/10.1007/978-1-4842-1898-3_9
http://dx.doi.org/10.1007/978-1-4842-1898-3_3
http://dx.doi.org/10.1007/978-1-4842-1898-3_10

APPENDIX A ■ REQUIRED TOOLS AND COMPONENTS

269

 To create a permanent circuit also requires the components listed in any appropriate project earlier in
the book. Good examples are the NeoPixel controller and the infrared transmitter and receiver circuits.

 Chapter 10 : True or False Game
 The following tools are in addition to the components from the True or False game in Chapter 5 .

• Enclosure/box

• PCB mounting screws and spacers

 Chapter 11 : Powering the Raspberry Pi
• 7805 voltage regulator

• 330nF capacitor (also known as an 0.33μF)

• 100nF capacitor (also known as an 0.1μF)

• Heat sink (depending on the power requirements)

 or

• Buck converter

http://dx.doi.org/10.1007/978-1-4842-1898-3_10
http://dx.doi.org/10.1007/978-1-4842-1898-3_5
http://dx.doi.org/10.1007/978-1-4842-1898-3_11

271© Stewart Watkiss 2016
S. Watkiss, Learn Electronics with Raspberry Pi, DOI 10.1007/978-1-4842-1898-3

 APPENDIX B

 Electronic Components
Quick Reference

 These are some of the common electronic components provided as a quick reference. Some technical details
have been included for the common components, but these depend on the particular model. Check the
datasheets for more details.

 Resistors
 A resistor is normally used to reduce the amount of current that can flow through a circuit. This protects
a component from being damaged due to too much current. Resistors can also be used for dropping the
voltage at a point in the circuit by creating a voltage divider.

 The size of the resistor is measure in ohms, Ω, which is marked on the side of the resistor using a color
code (see Appendix C). The resistors are available in certain values (depending on the resistor series) and so
you should select the nearest common value.

 Variable Resistors
 As its name suggests, a variable resistor is a resistor whose value can change. They normally have three
terminals, two providing the specified value of the resistance and a third that can be adjusted to provide a
resistance value between the other two.

 The variable resistors can be accessible to the user, such as the volume control buttons on a speaker,
or can be small components that are hidden inside an enclosure away from the user. The ones that are
accessible to the user often have control knobs and are often called potentiometers . The smaller variable
resistors that are not accessible to the user are often used to calibrate a particular circuit are commonly
called trimmers .

 Switches
 Switches create a break in a circuit or join two parts of a circuit together. This can be used to turn a circuit off
by creating a break in the circuit or to direct the current through a different part of the circuit.

 These are most commonly available as pushbutton switches, toggle or rocker switches, rotary switches
(such as a key switch), or micro-switches.

APPENDIX B ■ ELECTRONIC COMPONENTS QUICK REFERENCE

272

 The switches are known by the number of number of poles (individual switches within the package)
and the number of throws (number of positions switched by each pole). Common examples are:

• SPST single pole single throw: On/off

• SPDT single pole double throw: Switch between A and B outputs

• DPST double pole double throw: Two on/off switches

 Pushbutton switches are also known by whether the switch makes or breaks the circuit. The most
common form is the momentary push-to-make, where the switch closes (completing the circuit) when it
is pressed and then opens when the button is released. This is how a door bell switch works. They are also
available as push-to-break, which is the opposite or locking/latching, where one press closes the switch and
a second opens the switch.

 Diode
 A diode is a component that allows current to flow in one direction, but not in the other. It effectively acts
like a one-way valve. There is normally a white line around the body of the diode positioned nearest to the
negative end (cathode), and the other end (anode) should be connected to the positive end of the circuit.

 Light Emitting Diode (LED)
 An LED is a specific type of diode that gives out a light when an electric current passes through it. An
important thing about an LED is that like any other diode it needs to be inserted the correct way in the
circuit. The diode has an anode, which should be connected to the more positive end of the connection and
a cathode, which goes to the other side.

 You can tell which end is the anode (the positive terminal), as it normally has a longer lead. There is
often a flat area on the plastic casing that indicates the cathode (negative terminal).

 An LED does not limit the current flowing through, so a resistor is normally required to protect the LED.

 Multi-Colored LEDs
 Most LEDs emit only a single color of light. To allow them to provide different colors, two or three LEDs
may be combined into a single package. They can be made to show a range of different colors depending
on how much current is allowed to flow through each of the LEDs. The multi-colored LEDs usually have
a common connection where all the LEDs connect to a single lead. These are known as common anode,
where the positive end of the LEDs are connected and a common cathode, where the negative end of the
LEDs are connected.

 For a common anode-type LED, the LEDs are normally connected to a common positive power supply
and by switching the other end down to ground the LEDs light. For a common cathode, the cathode is
normally connected to ground and a positive voltage applied to the appropriate color anode connection.

 Sometimes the LEDs are connected to a controller circuit such as the WS2812 used in Chapter 6 . The
built-in controller circuit turns on the appropriate LED based on a digital signal sent to it.

 Bipolar Transistor
 A transistor is an electronic component that is used to switch a larger current compared to its input. The
bipolar transistor has three connections, known as the collector, base, and emitter (represented by the letters
C, B, and E on diagrams). When a small current flows between the base and emitter, it allows a much larger

http://dx.doi.org/10.1007/978-1-4842-1898-3_6

APPENDIX B ■ ELECTRONIC COMPONENTS QUICK REFERENCE

273

current to flow between the collector and the emitter. The transistor is an analog component, so varying the
base current changes the corresponding collector current.

 The bipolar transistor comes in two types: one is called NPN and the other is PNP. The name is based on
the way that the transistor is made. The NPN needs an input voltage that is higher than the emitter voltage to
allow it to conduct, whereas the PNP needs an input voltage that is lower than the base voltage for it to conduct.

 Darlington Transistor
 A bipolar transistor increases the amount of current that can flow, but sometimes a second stage is required
to increase the current even more. This could be achieved by connecting two transistors with the output of
the first stage used to drive the input of the second stage. This is known as a Darlington pair .

 It is also possible to have both of these inside a single component and that’s usually known as a
Darlington transistor. This can be used in place of a standard transistor, but with a much higher gain.

 MOSFET Transistor
 A MOSFET transistor is different type of transistor that increases the signal based on the input voltage rather
than the input current. They have three connections known as the drain, gate, and source (represented
by the letters d, g, and s). MOSFETs are available as N-channels and as a P-channel component. For the
N-channel MOSFET, a small voltage at the gate will allow a current to flow from the drain to the source. A
P-channel MOSFET works in an opposite manner. When a negative voltage is applied to the gate, a current
can flow from the source to the drain.

 Capacitor
 A capacitor is a device for storing electrical charge. It’s a bit like a small rechargeable battery that can charge
and discharge while connected in a circuit. The capacitor has a variety of uses in analog circuits, including
acting as a filter to remove signals outside a specific frequency.

 In digital circuits, capacitors are often used to smooth a power supply or signal, thereby removing any
stray electrical noise.

 Capacitance is measured in farads (F), but a farad is a really large value, so they are often denoted
in micro-farads (μF, which is 0.000001 of a farad), nano-farads (0.000000001 of a farad), or pico-farads
(0.000000000001 of a farad).

 Thyristor
 A thyristor is a component that allows current to flow in only one direction and only then when it receives a
signal on the gate terminal. It is rather like a diode that needs to be turned on first. Once it has been turned on,
it stays on until the power supply is removed or goes negative. They are suitable for use in AC circuits. Whereas
a large reverse voltage would damage a MOSFET or transistor, a thyristor will work with a high reverse voltage.
It does only allow for one half of the AC cycle to pass through, which you can overcome using a triac.

 Triac
 A triac is effectively two thyristors connected in the opposite polarity, but sharing the same three terminals.
If a signal is applied to the gate, it will switch on and allow current to flow. If the signal is removed, it will stop
conducting once the supply voltage reverses (on the opposite phase of the cycle).

275© Stewart Watkiss 2016
S. Watkiss, Learn Electronics with Raspberry Pi, DOI 10.1007/978-1-4842-1898-3

 APPENDIX C

 Component Labeling

 While many components include a part number on them, some components instead use specific colors or
special codes to denote their values. The use of a code is often used on small components such as resistors in
cases where it would be very difficult to read the value if it was printed in words. Some common component
labels are explained in this appendix.

 Resistor Color Codes
 Resistors are normally labeled using four colored bands across the body of the resistor. This consists of three
bands together indicating the resistance value of the resistor (ohms) and the fourth band, is used to indicate
the tolerance (accuracy) of the resistor. The tolerance band is usually silver or gold which makes it easy to
identify, although on some resistors the fourth band may be the same as the standard colors. In the case that
the fourth color code is one of the standard colors then there will normally be a larger gap between the third
and fourth bands. This is shown in Figure C-1 .

 Figure C-1. Resistor showing the color codes

 The bands relate to the resistance as follows:

• First band: First significant figure of resistor value

• Second band: Second significant figure of resistor value

• Third band: Decimal multiplier (applied against the first two bands)

• Fourth band: Tolerance (if not present, tolerance is 20%)

 The first three bands can be one of 10 colors representing digits from 0 to 9. The tolerance is normally
gold or silver, although other colors are sometimes used. The different colors and their meanings are listed
in Table C-1 .

APPENDIX C ■ COMPONENT LABELING

276

 The resistor in Figure C-1 has the colors green, blue, black, and gold.
 This translates to 5 (green), 6 (blue), x10 0 (black), with a tolerance of 5%. This works out at 56Ω.
 The tolerance is not normally a major consideration in most digital circuits, but if the exact value of the

resistor is required, that band should be considered as well.
 Resistors are made in certain sizes. Normally you can select the nearest size, but in some circumstances

you may need to choose the nearest higher or lower as appropriate. For example, if you are calculating a
resistor for the maximum current that can flow, you should choose the next size up, rather than a lower value.

 The commonly-used E12 series uses 12 equally spaced values across every multiple of 10. A
common alternative is the E6 series (Table C-2), which has six values per multiple of 10. If you intend
to have some resistors in stock, it is useful to have the E6 series as a minimum and then just buy other
specific sizes as required.

 Table C-1. Resistor Color-Code Meanings

 Color Significant Figures Multiplier Tolerance

 Black 0 x10 0 -

 Brown 1 x10 1 ±1%

 Red 2 x10 2 ±2%

 Orange 3 x10 3 -

 Yellow 4 x10 4 -

 Green 5 x10 5 ±0.5%

 Blue 6 x10 6 ±0.25%

 Violet 7 x10 7 ±0.1%

 Grey 8 x10 8 ±0.05%

 White 9 x10 9 -

 Gold - x10 -1 ±5%

 Silver - x10 -2 ±10%

 Table C-2. E6 Resistor Series

 10Ω 15Ω 22Ω 33Ω 47Ω 68Ω

 100Ω 150Ω 220Ω 330Ω 470Ω 680Ω

 1kΩ 1.5kΩ 2.2kΩ 3.3kΩ 4.7kΩ 6.8kΩ

 10kΩ 15kΩ 22kΩ 33kΩ 47kΩ 68kΩ

 100kΩ 150kΩ 220kΩ 330kΩ 470kΩ 680kΩ

 1MΩ

APPENDIX C ■ COMPONENT LABELING

277

 SMD Resistors
 While color codes are used for standard through-hole-technology resistors, surface-mount resistors
normally have a numeric code instead. The most common code is a three-digit number code. The first two
digits indicate the first and second significant figures and the third digit indicates the multiplier.

 A resistor marked as 180 will be 18Ω and a resistor marked 221 will be 220Ω.

 Electrolytic Capacitors
 Electrolytic capacitors are usually quite large, both in physical size and in their capacitance. They normally
have the value of the capacitor written on them in micro-farads (μF). An example of an electrolytic capacitor
is shown in Figure C-2 .

 Table C-3. E12 Resistor Series

 10Ω 12Ω 15Ω 18Ω 22Ω 27Ω 33Ω 39Ω 47Ω 56Ω 68Ω 82Ω

 100Ω 120Ω 150Ω 180Ω 220Ω 270Ω 330Ω 390Ω 470Ω 560Ω 680Ω 820Ω

 1kΩ 1.2kΩ 1.5kΩ 1.8kΩ 2.2kΩ 2.7kΩ 3.3kΩ 3.9kΩ 4.7kΩ 5.6kΩ 6.8kΩ 8.2kΩ

 10kΩ 12kΩ 15kΩ 18kΩ 22kΩ 27kΩ 33kΩ 39kΩ 47kΩ 56kΩ 68kΩ 82kΩ

 100kΩ 120kΩ 150kΩ 180kΩ 220kΩ 270kΩ 330kΩ 390kΩ 470kΩ 560kΩ 680kΩ 820kΩ

 1MΩ

 The E12 resistors series has more resistor values, as shown in Table C-3 .

 Figure C-2. Electrolytic capacitor

APPENDIX C ■ COMPONENT LABELING

278

 As well as showing the capacitance, the capacitor will also have the maximum voltage written on the
body, which sometimes merges with the capacitance value. For example, a capacitor labeled:

 63V1000μF

 can be used up to 63V and has a capacitance of 1000μF. Electrolytic capacitors are polarized and need to
be connected the right way around. The negative terminals are normally denoted by an arrow marked with
a 0 pointing toward it.

 Polyester Capacitors
 Polyester capacitors , such as the one in Figure C-3 , normally have the value written directly on them. These
may be missing the units, in which case they are normally in μF.

 Figure C-3. Polyester capacito r

 For example, a capacitor labeled as

 0.01

 will be 0.01μF, which is 10nF.

APPENDIX C ■ COMPONENT LABELING

279

 Ceramic Capacitors
 Ceramic capacitors are normally the smallest in physical size, so often have a code instead of showing the
actual value, as seen in Figure C-4 .

 The most common code is usually three digits. These give the value in pF (pico-farads). The first two
digits are the significant digits and the third digit is a factor of 10 multiplier.

 The 104 capacitor is 10 x 10 4 = 100,000pF, which is 100nF.
 Some other capacitors are labeled with the letter n or p to denote nano-farads or pico-farads,

respectively. A capacitor labeled:

 1n0

 has value of 1nF.

 Figure C-4. Ceramic capacitor

281© Stewart Watkiss 2016
S. Watkiss, Learn Electronics with Raspberry Pi, DOI 10.1007/978-1-4842-1898-3

 APPENDIX D

 GPIO Quick Reference

 This is a summary of the information about the GPIO pin layouts, provided for easy reference. For more
details, see the explanation in Chapter 2 .

 GPIO Pin Layouts
 The GPIO pin layouts have changed between different versions of the Raspberry Pi. The first Raspberry Pi
had 26 pins with some changes in the port allocations between revision 1 and revision 2. The B+ and later
models were then expanded to 40 pins. A diagram showing the pin allocations is shown in Figure D-1 .

 Figure D-1. GPIO port numbers

http://dx.doi.org/10.1007/978-1-4842-1898-3_2

APPENDIX D ■ GPIO QUICK REFERENCE

282

 GPIO Ports with Alternative Functions
 A summary of the ports and common alternative functions is provided in Table D-1 . This is based on the
B+ and later.

 Table D-1. GPIO Pin Reference

 Pin Number GPIO Port Alternative Function Comments

 1 3.3V power supply

 2 5V power supply

 3 GPIO 2 SDA1 (I2C data) Changed from revision 1 boards

 4 5V power supply

 5 GPIO 3 SCL1 (I2C clock) Changed from revision 1 boards

 6 Ground

 7 GPIO 4

 8 GPIO 14 Serial/console TXD Serial transmit

 9 Ground

 10 GPIO 15 Serial/console RXD Serial receive

 11 GPIO 17

 12 GPIO 18 PWM Pulse Width Modulation

 13 GPIO 27 Changed from revision 1 boards

 14 Ground

 15 GPIO 22

 16 GPIO 23

 17 3.3V

 18 GPIO 24

 19 GPIO 10 MOSI (SPI) SPI Master Output, Slave Input

 20 Ground

 21 GPIO 9 MISO (SPI) SPI Master Input, Slave Output

 22 GPIO 25

 23 GPIO 11 SCLK (SPI) SPI clock

 24 GPIO 8 CE0 (SPI) Chip Enable (slave select)

 25 Ground

 26 GPIO 7 CE1 (SPI) Chip Enable (slave select)

 27 ID_SD For HAT EEPROM

 28 ID_SC For HAT EEPROM

(continued)

APPENDIX D ■ GPIO QUICK REFERENCE

283

Table D-1. (continued)

 Pin Number GPIO Port Alternative Function Comments

 29 GPIO 5

 30 Ground

 31 GPIO 6

 32 GPIO 12

 33 GPIO 13

 34 Ground

 35 GPIO 19 SPI1_MISO

 36 GPIO 16 CE2 (SPI) Chip enable (slave select)

 37 PIO 26

 38 GPIO 20 SPI1_MOSI

 39 Ground

 40 GPIO 21 SPI1_CLK

 For more details, see the schematics of the Raspberry Pi and related documentation at
 www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/README.md .

285© Stewart Watkiss 2016
S. Watkiss, Learn Electronics with Raspberry Pi, DOI 10.1007/978-1-4842-1898-3

 A
 AC Lights

 12V AC transformer , 85
 thyristor , 86
 TRIAC , 86–87

 allOff () function , 132
 allOn() function , 132
 Analog-to-digital convertor , 121
 Application Program Interface (API) , 66, 217
 Audacity sound recording , 186
 Avconv tool , 175

 B
 Bidirectional level-shifter , 109
 Bipolar transistor , 272
 Breadboard based robot , 268
 Breadboard circuits , 263
 Brighter LED

 components , 266
 with Darlington transistors , 266
 transistor , 59–61
 resistors , 61–63

 Buck converter , 260
 Button function , 78

 C
 CamJam robot , 268
 Capacitor , 273
 Cascading Style Sheets (CSS) , 150
 Ceramic capacitors , 279
 Circuit designing

 circuit simulation , 248
 design conventions , 254
 Fritzing

 breadboard layout , 255
 inspector panel , 253
 LED circuit , 254
 PCB , 256

 schematic view , 252
 stripboard layout , 256

 internal characteristics , 250
 IRL520 MOSFET , 249
 MCP3004 analog , 249
 SMD components , 249
 SN754410 H-Bridge IC , 251

 Circuit diagrams
 battery symbol , 71
 capacitor , 71
 crossing and connecting wires , 72
 diode , 71
 ground symbol , 71
 integrated circuit , 71
 inverting buff er , 71
 LED circuit , 69
 LED symbols , 69
 MOSFET , 71
 non-inverting buff er , 71
 NPN transistor , 71
 resistor circuit symbol , 69
 robot soccer game, 72–73
 switch symbol , 71

 Component labeling
 ceramic capacitors , 279
 electrolytic capacitors , 277
 polyester capacitors , 278
 polyester capacitors , 278
 resistor color codes , 275
 SMD resistors , 277

 Crimping and soldering tools , 263

 D
 Darlington transistor , 273
 DC motor

 with adjustable gearbox , 192
 with fi xed ratio gearbox , 192

 Design Rules Check (DRC) , 259
 Diode , 272
 Disable-namespace option , 101

 Index

■ INDEX

286

 Disco Lights
 12V AC/DC bulbs , 80–81
 circuit , 83
 components , 266
 MOSFET switch circuit , 82
 PAR 16 spotlights , 80
 power brick , 81

 disco-chaser.py fi le , 84–85
 draw() function , 162

 E
 Electrolytic capacitors , 277
 Electronic circuit

 analog vs . digital , 4
 anode , 10
 breadboards , 5
 cathode , 10
 current , 2
 defi nition , 1
 LED circuit , 9
 resistance , 3
 resistor value , 10
 safe power supply , 4
 SPST switch , 9
 static-sensitive devices , 10
 switch and buzzer , 2
 voltage , 2

 Enable pins (EN) , 197
 Enclosures , 264
 Energenie Pi-Mote IR control board

(ENER314-IR) , 105

 F
 Film designing , 172
 Fritzing

 breadboard layout , 255
 inspector panel , 253
 LED circuit , 254
 PCB , 256
 schematic view , 252
 stripboard layout , 256

 from import function , 94

 G
 General Purpose Input Output (GPIO) , 14

 batteries , 59
 DC power adapter center

positive indicator , 58
 DC power adapter to screw terminal , 58
 5V connection , 56
 5V DC power adapter , 57
 pin reference , 282
 port numbers , 281

 USB power breakout connector , 56
 USB power supply , 57

 getch() function , 205
 GNU Image Manipulation Program (GIMP)

 alpha tool , 182
 background image , 184
 edited image , 180
 green screen background , 181
 multi-window mode , 179
 selection tools , 183
 toolbox , 183
 unedited image , 180

 Graphical application
 draw() function , 162
 on_mouse_down() function , 162
 Raspberry Pi touch screen , 161
 RGB LED control , 156
 seq_all_on() and seq_all_off () functions , 162
 update() function , 162
 updseq() function , 162
 warning message , 162–163
 WIDTH and HEIGHT constants , 161

 Graphical applicationAdafruit NeoPixel
ring and strip , 156

 Graphical applicationneopixel-gui.py fi le , 157–161

 H
 Hardware Attached on Top (HATs) , 13
 H-bridge motor control

 EN , 197
 external diode requirement , 198
 in off position , 194
 in one direction , 194–195
 in opposite direction , 195
 P-channel MOSFET , 196
 SN754410 quad half H-bridge

driver IC , 196–197
 valid confi guration options , 196

 I, J
 I 2 C LCD display , 110, 113
 I 2 C LCD display true or false game , 267
 I 2 C level-shifter , 114
 I 2 C, Raspberry Pi

 I2CDisplay module , 116
 I2CDisplay.py fi le , 116
 I2CDisplay.py module , 116
 lcd_clear function , 119
 lcd_init function , 116
 lcd_string function , 118
 Python SMBus module , 115
 sudo i2cdetect 1 , 115
 while loop , 119

 I2CDisplay module , 116

■ INDEX

287

 I2CDisplay.py module , 116
 imagenum variable , 171
 Integrated Development Environment

(IDLE) , 64–65, 67, 211, 218–219
 Infrared receiver circuit , 96, 168

 DELAY constant , 171
 disable-namespace option , 168
 imagenum variable , 171
 infrared-camera.py fi le , 170
 irrecord tool , 168
 lircrc fi le , 170
 photoremote fi le , 168
 PiCamera method , 171
 start_preview() method , 172

 Infrared transmitter , 97
 Adafruit bidirectional level-shifter , 109
 components , 266
 ENER314-IR , 105
 LIRC , 99
 python-lirc module , 103
 receiver circuit , 98
 sendir.py program , 105

 Internet of Th ings (IoT)
 @app.route , 147
 changeSpeed() function , 149
 graphical buttons/CSS , 150
 implementation code , 146
 index.html fi le , 148
 iot-train directory , 145
 irsend command , 144
 JavaScript jQuery library , 148
 jQuery fi le , 144
 legotrain.py fi le , 145, 147
 Python Bottle module , 144
 Python SMBus module , 115
 train control , 149
 train_set_speed() function , 146–147

 irrecord program , 100

 K
 KiCAD software , 261

 L
 LCD character display , 110
 lcd_clear function , 119
 lcd_init function , 116
 lcd_string function , 118
 LED circuit

 components , 265
 fritzing , 254
 electronic circuit , 9
 Robot Soccer , 35
 scratch , 32

 Lego Train
 components , 267
 infrared controller , 138
 infrared transmitter , 139–140
 irsend command , 141
 lego-lirc-master , 140
 LIRC and GPIO Zero , 143
 lircd.conf fi le , 141
 master.zip , 140
 reed switch , 138, 140
 reed switch, with magnet , 139
 RPi.GPIO module , 142

 Light emitting diode (LED) , 9, 27, 272
 BD681 Darlington Transistor , 76–77
 Button function , 78
 Darlington light circuit , 75
 Darlington light circuit, switch

confi gration , 78
 Darlington pair , 74
 multimeter , 75
 resistors , 75
 wait_for_press() method , 78

 78xx Linear Voltage Regulator , 260
 Linux , 165
 Linux Infrared Remote Control (LIRC) , 99
 LIRC daemon (lircd) , 100
 Logic Level Converter , 114

 M
 Magician Robot Chassis , 189
 Mars Lander Arcade Game

 components , 265
 enclosure , 44
 joystick , 44
 landingpad sprite , 53
 Mars background , 47
 marslander sprite , 49–50
 Mars Lander stage , 48
 new sprite , 51
 switches , 44
 wiring switches , 45

 Master output, slave input (MOSI) , 16
 mcpi.block module , 220
 Mercury motor . See Stepper motor
 Meters and test equipment , 264
 Minecraft hardware

 build_house , 223
 components , 268
 glowstone game , 232
 joystick , 220
 LEDs , 227
 Python , 217

 Mini-studio , 174
 MOSFET transistor , 107–110, 273

■ INDEX

288

 Multi-colored LEDs , 272
 Multimeter , 244

 N
 NeoPixels , 267

 O
 Ohm’s Law , 3
 on_mouse_down() function , 162
 OpenShot , 187
 Oscilloscope , 245

 P, Q
 Permanent circuits , 268
 PiCamera module , 91
 Python PiCamera module , 89
 PiCamera method , 171, 266
 PIR sensor

 components , 266
 motion sensor , 93

 5V power supply , 93
 GPIO Zero module , 94
 from import function , 94
 pir.wait_for_motion() , 95
 Raspberry Pi , 94
 trigger , 95
 wait_for_motion method , 94
 wait_for_no_motion method , 94

 PiCamera module , 91
 Raspberry Pi camera , 90–91
 strftime method , 92
 time module , 92
 time.gmtime() , 92
 timestring , 92

 Polyester capacitors , 278
 Printed circuit board (PCB) , 239, 256
 Pull-up resistors , 109
 Pulse Width Modulation (PWM) , 17, 198
 Python programs

 color light strips
 breadboard-mounted NeoPixels , 152
 components I , 152
 external power supply , 153
 graphical application, Pygame Zero (see

 Graphical application)
 74HCT125 non-inverting buff er IC , 152
 MOSFET circuit , 151
 NeoPixel-colored LEDs , 151
 Python module installation , 153
 Raspberry Pi GPIO port , 151
 Raspbian Desktop , 163

 RGB LEDs , 151, 153–154
 two +V and Gnd connections , 153

 command-line arguments , 134
 defi nition, 63
 disco light sequences , 130
 elif statement , 128
 env (environment) command , 134
 ExecStart option , 136
 GPIO Zero , 128
 IDLE , 63–64
 if statement , 128
 if else statement , 128
 Install section , 137
 IoT

 @app.route , 147
 Python Bottle module , 144
 changeSpeed() function , 149
 implementation code , 146
 index.html fi le , 148
 iot-train directory , 145
 irsend command , 144
 JavaScript jQuery library , 148
 jQuery fi le , 144
 legotrain.py fi le , 145, 147
 train control , 149
 train_set_speed() function , 146–147

 LED code , 67
 light sequence , 84–85
 for loop , 129
 for range loop , 129
 Lego train

 infrared transmitter , 139–140
 irsend command , 141
 lego-lirc-master , 140
 LIRC and GPIO Zero , 143
 lircd.conf fi le , 141
 master.zip , 140
 reed switch , 138, 140
 reed switch, with magnet , 139
 RPi.GPIO module , 142
 with infrared controller , 138

 main() , 133
 print statement , 128
 readAnalog , 130
 regular intervals , 137
 service section , 136
 shell and text editor , 65
 time module , 67
 Type=simple option , 136
 Unit section , 136
 User option , 137
 version 2.7 , 64
 while True loop , 68, 129

 Python SMBus module , 115

■ INDEX

289

 R
 Raspberry Pi

 components , 269
 defi nition , 13
 GPIO ports

 I 2 C, Inter-Integrated Circuit , 16
 Pin layouts , 15
 PWM , 17
 serial communications/UART , 16
 SPI , 16

 model A+ , 14
 Pi Zero , 14
 Raspberry Pi 2 , 14
 Raspbian desktop , 17
 ssh , 19
 WiFi status message , 19

 Raspberry Pi compute module , 13
 readAnalog function , 124, 130
 repeatSequence() function , 132
 Resistor color codes , 275
 Resistors , 271
 Robot

 breadboard layout , 200
 CamJam Robotics motor control

board , 201–202
 DC motor

 with adjustable gearbox , 192
 with fi xed ratio gearbox , 192

 getch() function , 205
 GPIO Zero , 203
 H-bridge motor control

 EN , 197
 external diode requirement , 198
 in off position , 194
 in one direction , 194–195
 in opposite direction , 195
 P-channel MOSFET , 196
 SN754410 quad half H-bridge

driver IC , 196–197
 valid confi guration options , 196

 numeric keypad and directions , 202
 omnidirectional wheel , 190
 optional parameter , 205
 PWM , 198
 Raspberry Pi and motors , 199
 Robot Chassis

 CamJam Robotics kit , 190–191
 caterpillar tracks , 190
 complex mechanical mechanism , 190
 four motorized wheels , 190
 Magician Robot , 189–190
 PiBorg , 190
 Raspberry Pi , 191
 Ryanteck Robotics kit , 190

 two motorized wheels , 190
 robotcontrol.py fi le , 203
 Ryanteck motor control board , 201
 stepper motor , 193
 try statement , 205
 ultrasonic range sensor

 calculated value , 208
 circuit diagram , 206–207
 distance.py fi le , 207
 classic RPi.GPIO library , 208
 motors and the RPi.GPIO library , 210

 Wii Remote controller
 Bluetooth service , 215
 cwiid library , 211–212
 IDLE , 211
 Raspberry Pi A+ , 210
 wii-remote.py fi le , 211
 wii-robotcontrol.py fi le , 213
 wii.state command , 212

 wireless keyboard , 205
 Robot Soccer , 34

 background , 36
 ball sprite , 40
 components , 265
 fi nished project , 42
 LED circuit , 35
 repeat loop , 41
 robot3 sprite fi le , 37
 Scripts tab , 38
 setup code , 37
 variable creation , 41

 Ryanteck motor control board , 268

 S
 Scratch

 A,B,C,D sections , 25
 defi nition , 23
 LED circuit , 27, 29
 port GPIO , 26
 Raspberry Pi , 24
 resistor , 27
 switch , 31

 circuit symbol , 31
 digital input , 31
 LED circuit , 32
 LED Scratch code , 33

 Secure Shell (ssh) , 19
 send_lego_cmd() function , 144
 seq_all_off () function , 162
 seq_all_on() function , 162
 sequence() function , 132
 Serial Peripheral Interface Bus (SPI) , 16, 121
 setBlock function , 232
 Simple LED circuit , 9, 26, 69, 264

■ INDEX

290

 SMD resistors , 277
 SN754410 quad half H-bridge driver IC , 196
 Soldering

 defi nition , 235
 fume disperser , 238
 LED , 240
 NeoPixel MOSFET circuit , 242
 PCB , 239
 perfboard , 241
 Perma-Proto Pi HAT , 242
 safety tips , 238
 side-cutters , 237
 stripboard , 241
 temperature control , 236

 Sonic Pi program , 187
 SPI Analog

 analog-to-digital convertor , 121
 components , 267
 potentiometer , 121, 123
 readAnalog function , 124–125
 spidev module , 124–125
 SPI kernel module , 124

 spidev module , 124–125
 SPI kernel module , 124
 start_preview() method , 172
 Static-sensitive devices , 10
 Stepper motor , 193
 strftime method , 92
 Surface mounted device (SMD) , 109, 249, 252
 Switches , 271
 Switch input circuit , 265

 T
 testlirc.py program , 104
 Th rough-hole technology (THT) , 252
 Th yristor , 273
 timestring , 92
 train_set_speed() function , 146
 Triac , 273
 True or false game , 113, 243, 269

 U
 Ultrasonic range sensor

 calculated value , 208
 circuit diagram , 206–207
 components , 268
 distance.py fi le , 207
 implementation code , 209
 classic RPi.GPIO library , 208
 motors and the

RPi.GPIO library , 210
 schematic diagram , 206

 Universal Asynchronous Receiver/
Transmitter (UART) , 16

 update() function , 162
 updseq() function , 162

 V
 Variable resistors , 271
 Video capture , 267
 Video creation

 OpenShot , 176
 Raspberry Pi , 175

 Voltage divider circuit , 106
 Voltage shift buff er , 108

 W, X, Y, Z
 wait_for_motion method , 94
 wait_for_no_motion method , 94
 wait_for_press method , 78, 119
 Wii Remote controller

 Bluetooth service , 215
 cwiid library , 211–212
 IDLE , 211
 Raspberry Pi A+ , 210
 wii-remote.py fi le , 211
 wii-robotcontrol.py fi le , 213
 wii.state command , 212

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started with Electronic Circuits
	Voltage, Current, and Resistance
	Ohm’s Law
	Electrical Safety
	Breadboard
	A First Breadboard Circuit
	Calculating the Resistor Value

	Static-Sensitive Devices
	More Circuits

	Chapter 2: All About Raspberry Pi
	Introduction to the Raspberry Pi
	Raspberry Pi GPIO Ports
	Serial Communications/UART
	I2C: Inter-Integrated Circuit
	SPI: Serial Peripheral Interface Bus
	PWM: Pulse Width Modulation

	Getting Started with Raspbian Linux
	Connecting to the Raspberry Pi Using the Network
	Secure Shell (ssh)
	Remote Desktop Using VNC (TightVNC)

	More Raspberry Pi

	Chapter 3: Starting with the Basics: Programming with Scratch
	Introduction to Scratch
	Scratch with GPIO Support
	Controlling an LED Using Scratch GPIO Server
	Light Emitting Diode (LED)
	Resistor

	Connecting the LED to the Raspberry Pi
	Adding an Input to the Scratch GPIO Program
	Using a Switch as a Digital Input
	Adding the Switch to the Circuit

	Robot Soccer
	Playing Robot Soccer

	Mars Lander Arcade Game
	Making an Enclosure
	Adding Joystick and Switches
	Wiring the Switches
	Creating the Game
	Playing the Game

	More Games

	Chapter 4: Using Python for Input and Output: GPIO Zero
	Power Supplies
	+5V from the Raspberry Pi GPIO
	Another USB Power Supply
	Other External Power Supplies
	Main Power Supply
	Batteries

	Brighter LEDs with a Transistor
	Transistor
	Calculating the Resistor Sizes

	Introduction to Python
	Getting Started with Python GPIO Zero
	Using a While Loop

	Circuit Diagram and Schematics
	Brighter LEDs with Darlington Transistors
	Reading a Switch Input with Python GPIO Zero

	Disco Lights with MOSFETs
	Light Sequence Using a Python List (Array)
	Switching AC Lights Using a Thyristor and a TRIAC
	More GPIO Zero

	Chapter 5: More Input and Output: Infrared Sensors and LCD Displays
	PIR Sensor and Pi Camera
	Controlling a Raspberry Pi Camera with picamera
	Using a PIR Sensor as a Motion Sensor
	Using the PIR Motion Sensor to Trigger the Camera

	Infrared Transmitter and Receiver
	Infrared Receiver
	Infrared Transmitter
	Infrared Transmitter and Receiver Circuit
	Configuring the Infrared Transmitter and Receiver Using LIRC
	Receiving Infrared Commands Using python-lirc
	Sending an Infrared Code Using Python
	More Infrared Devices

	Changing Voltage with a Level Shifter
	Voltage Divider Circuit to Reduce Input Voltage
	Unidirectional Level-Shift Buffer
	Bidirectional Level-Shifter

	I2C LCD Display: True or False Game
	LCD Character Display
	I2C
	I2C Backpack for the LCD Character Display
	True or False Game Circuit
	Setting Up the I2C Connection and Adding the Code

	SPI Analog to Digital Input
	Creating an Analog Value Using a Potentiometer
	Analog-to-Digital Conversion
	SPI (Serial Peripheral Interface Bus)
	Potentiometer SPI Circuit
	Accessing the ADC Using Python

	More Input and Output

	Chapter 6: Adding Control in Python and Linux
	Taking the Next Steps in Python Programming
	Creating Python Functions
	Adding Disco Light Sequences Using Python Functions
	Using a Python Main Function

	Making Python Programs Executable
	Handling Command-Line Arguments
	Running Python Programs as a Service
	Running Programs at Regular Intervals with Cron

	Creating an Automated Lego Train Using Infrared
	Dealing with Conflicts
	Software to Control the Lego Train Using LIRC and GPIO Zero

	Using the Internet of Things to Control the Model Train
	Controlling Color Light Strips Using NeoPixels
	Powering RGB LEDs
	How the RGB LEDs Work
	Installing the Python Module
	Controlling RGB LEDs from Python
	Creating a Graphical Application Using Pygame Zero
	Adding an Icon to the Raspbian Desktop

	More Linux and Programming

	Chapter 7: Creating Video with a Pi Camera
	Infrared Shutter Release
	Designing the Film
	Filming the Scenes
	Editing the Video
	Creating the Video on a Raspberry Pi
	Editing the Video on a PC Using OpenShot

	Adding Effects to the Video
	Adding Special Effects Using GIMP
	Making Changes to Video Frames
	Using Green Screen Special Effects

	Adding Sounds to the Video
	Recording Sounds with Audacity
	Making Your Own Background Music with Sonic Pi
	Adding Sounds to OpenShot

	More Video Editing

	Chapter 8: Rolling Forward: Designing and Building a Robot
	Selecting or Making a Robot Chassis
	Two Motorized Wheels and Omnidirectional Wheel
	Four Motorized Wheels
	Caterpillar Tracks
	Wheels that Steer
	Buying a Kit or Making Your Own
	Choosing a Raspberry Pi

	Controlling the Motors
	DC Motors and Stepper Motors
	H-Bridge Motor Control
	Controlling the Speed with Pulse Width Modulation (PWM)
	Powering the Motors and the Raspberry Pi
	Building the Circuit on a Breadboard
	Add-On Motor Controller Boards

	Controlling the Robot Using Python
	Measuring the Distance Using an Ultrasonic Range Sensor
	Controlling the Robot Using a Wii Remote
	More Robotics

	Chapter 9: Customize Your Gameplay: Minecraft Hardware Programming
	Connecting to Minecraft with Python
	Moving Around Using a Joystick
	Building a House in Minecraft
	Adding Status LEDs
	Find the Glowstone Game
	More Minecraft Hardware Programming

	Chapter 10: Making Your Circuits Permanent
	Soldering Basics
	Gathering the Essential Tools
	Choosing Solder
	Safety Tips When Soldering
	Soldering to a Printed Circuit Board
	Soldering Direct to Leads
	Stripboard
	Perfboard
	Raspberry Pi Prototyping Boards

	Cases and Enclosures
	Testing Tools
	Multimeter
	Oscilloscope

	More Project Making

	Chapter 11: Let the Innovation Begin: Designing Your Own Circuits
	The Design Process in a Nutshell
	Looking at Manufacturer Datasheets
	Designing with Fritzing
	Designing a Circuit Diagram/Schematic
	Design Conventions
	Creating a Breadboard Layout
	Creating a Stripboard Layout
	Designing a Printed Circuit Board

	Powering the Raspberry Pi
	78xx Linear Voltage Regulator
	Buck Converter

	Designing More Circuits

	Appendix A: Required Tools and Components
	Tools Required
	Basic Breadboard Circuits
	Crimping and Soldering Tools
	Manufacturing Tools for Enclosures
	Meters and Test Equipment

	Components for Each Project
	Chapter 1: Simple LED Circuit
	Chapter 3: LED Circuit
	Chapter 3: Switch Input Circuit
	Chapter 3: Robot Soccer
	Chapter 3: Mars Lander
	Chapter 4: Brighter LED
	Chapter 4: Brighter LEDs with Darlington Transistors
	Chapter 4: Disco Lights
	Chapter 5: PIR Sensor and Pi Camera
	Chapter 5: Infrared Transmitter and Receiver
	Chapter 5: I2C LCD Display True or False Game
	Chapter 5: SPI Analog to Digital Input
	Chapter 6: Automated Lego Train
	Chapter 6: NeoPixels
	Chapter 7: Video Capture
	Chapter 8: Breadboard Based Robot
	Chapter 8: Robot Using Ryanteck Motor Control Board
	Chapter 8: CamJam Robot
	Chapter 8: Robot with Ultrasonic Range Sensor
	Chapter 9: Minecraft Hardware
	Chapter 10: Permanent Circuits
	Chapter 10: True or False Game
	Chapter 11: Powering the Raspberry Pi

	Appendix B: Electronic Components Quick Reference
	Resistors
	Variable Resistors
	Switches
	Diode
	Light Emitting Diode (LED)
	Multi-Colored LEDs
	Bipolar Transistor
	Darlington Transistor
	MOSFET Transistor
	Capacitor
	Thyristor
	Triac

	Appendix C: Component Labeling
	Resistor Color Codes
	SMD Resistors
	Electrolytic Capacitors
	Polyester Capacitors
	Ceramic Capacitors

	Appendix D: GPIO Quick Reference
	GPIO Pin Layouts
	GPIO Ports with Alternative Functions

	Index

