
 123

LN
BI

P
23

8

8th International Conference, SWQD 2016
Vienna, Austria, January 18–21, 2016
Proceedings

Software Quality
The Future of Systems- and
Software Development

Dietmar Winkler
Stefan Biffl
Johannes Bergsmann (Eds.)

Lecture Notes
in Business Information Processing 238

Series Editors

Wil van der Aalst
Eindhoven Technical University, Eindhoven, The Netherlands

John Mylopoulos
University of Trento, Povo, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Dietmar Winkler • Stefan Biffl
Johannes Bergsmann (Eds.)

Software Quality

The Future of Systems- and
Software Development

8th International Conference, SWQD 2016
Vienna, Austria, January 18–21, 2016
Proceedings

123

Editors
Dietmar Winkler
Institute of Software Technology

and Interactive Systems
Vienna University of Technology
Vienna
Austria

Stefan Biffl
Institute of Software Technology

and Interactive Systems
Vienna University of Technology
Vienna
Austria

Johannes Bergsmann
Software Quality Lab GmbH
Linz
Austria

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-319-27032-6 ISBN 978-3-319-27033-3 (eBook)
DOI 10.1007/978-3-319-27033-3

Library of Congress Control Number: 2015955358

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Message from the General Chair

The Software Quality Days (SWQD) conference and tools fair started in 2009 and have
grown to be the biggest conferences on software quality in Europe with a strong
community. The program of the SWQD conference is designed to encompass a
stimulating mixture of practical presentations and new research topics in scientific
presentations as well as tutorials and an exhibition area for tool vendors and other
organizations in the area of software quality.

This professional symposium and conference offer a range of comprehensive and
valuable opportunities for advanced professional training, new ideas, and networking
with a series of keynote speeches, professional lectures, exhibits, and tutorials.

The SWQD conference is suitable for anyone with an interest in software quality,
such as software process and quality managers, test managers, software testers, product
managers, agile masters, project managers, software architects, software designers,
requirements engineers, user interface designers, software developers, IT managers,
release managers, development managers, application managers, and those in similar
roles.

January 2016 Johannes Bergsmann

Message from the Scientific Program Chair

The 8th Software Quality Days (SWQD) conference and tools fair brought together
researchers and practitioners from business, industry, and academia working on quality
assurance and quality management for software engineering and information tech-
nology. The SWQD conference is one of the largest software quality conferences in
Europe.

Over the past years a growing number of scientific contributions were submitted to
the SWQD symposium. Starting in 2012 the SWQD symposium included a dedicated
scientific program published in scientific proceedings. For the fifth year we received an
overall number of 25 high-quality submissions from researchers across Europe, which
were each peer-reviewed by three or more reviewers. Out of these submissions, the
editors selected five contributions as full papers, for an acceptance rate of 20 %.
Further, nine short papers, which represent promising research directions, were
accepted to spark discussions between researchers and practitioners at the conference.

The main topics from academia and industry focused on systems and software
quality management methods, improvements of software development methods and
processes, latest trends in software quality, and testing and software quality assurance.

This book is structured according to the sessions of the scientific program following
the guiding conference topic “The Future of Systems and Software Development”:

• Software Engineering Processes and Process Modelling
• Requirements Engineering
• Software Architecture
• Software Estimation and Development
• Software Testing
• E-Government Applications

January 2016 Stefan Biffl

Organization

SWQD 2016 was organized by the Software Quality Lab GmbH, the Vienna
University of Technology, Institute of Software Technology and Interactive Systems,
and the Christian Doppler Laboratory “Software Engineering Integration for Flexible
Automation Systems.”

Organizing Committee

General Chair

Johannes Bergsmann Software Quality Lab GmbH

Scientific Program Chair

Stefan Biffl Vienna University of Technology

Proceedings Chair

Dietmar Winkler Vienna University of Technology

Organizing and Publicity Chair

Petra Bergsmann Software Quality Lab GmbH

Program Committee

SWQD 2016 established an international committee of well-known experts in software
quality and process improvement to peer-review the scientific submissions.

Maria Teresa Baldassarre University of Bari, Italy
Mokhtar Beldjehem University of Ottawa, Canada
Miklos Biro Software Competence Center Hagenberg, Austria
Matthias Book University of Iceland, Iceland
Ruth Breu University of Innsbruck, Austria
Fabio Calefato University of Bari, Italy
Maya Daneva University of Twente, The Netherlands
Oscar Dieste Universidad Politécnica de Madrid, Spain
Frank Elberzhager Fraunhofer IESE, Germany
Michael Felderer University of Innsbruck, Austria
Gordon Fraser University of Sheffield, UK
Nauman Ghazi Blekinge Institute of Technology, Sweden
Volker Gruhn University of Duisburg-Essen, Germany
Jens Heidrich Fraunhofer IESE, Germany
Frank Houdek Daimler AG, Germany
Slinger Jansen Utrecht University, The Netherlands
Marcos Kalinowski Fluminense Federal University, Brazil

Petri Kettunen Helsinki University, Finland
Ricardo Machado CCG-Centro de Computação Gráfica, Portugal
Eda Marchetti ISTI-CNR, Italy
Paula Monteiro CCG-Centro de Computação Gráfica, Portugal
Juergen Muench University of Helsinki, Finland
Oscar Pastor Lopez Universitat Politècnica de València, Valencia, Spain
Mauro Pezzè University of Lugano, Switzerland
Dietmar Pfahl University of Tartu, Estonia
Rick Rabiser Johannes Kepler University Linz, Austria
Rudolf Ramler Software Competence Center Hagenberg, Austria
Andreas Rausch Technical University Clausthal, Germany
Barbara Russo Free University of Bozen-Bolzano, Italy
Ina Schieferdecker Fraunhofer Institute for Open Communication Systems,

FOKUS, Germany
Klaus Schmid University of Hildesheim, Germany
Rini Van Solingen Delft University of Technology, The Netherlands
Stefan Wagner University of Stuttgart, Germany
Dietmar Winkler Vienna University of Technology, Austria

Sub-reviewers

Johannes Gmeiner
Ravi Khadka

Marco Körner
Amir Saeidi

Martin Vogel
Phillip Wolter

X Organization

Contents

Keynote

The Disciplined Agile Process Decision Framework 3
Scott W. Ambler and Mark Lines

Software Engineering Processes and Process Modelling

How Scrum Tools May Change Your Agile Software
Development Approach . 17

Matthias Eckhart and Johannes Feiner

Towards Business Process Execution Adequacy Criteria 37
Antonia Bertolino, Antonello Calabró, Francesca Lonetti,
and Eda Marchetti

An Experience on Applying Process Mining Techniques to the Tuscan
Port Community System . 49

Giorgio O. Spagnolo, Eda Marchetti, Alessandro Coco,
Paolo Scarpellini, Antonella Querci, Fabrizio Fabbrini,
and Stefania Gnesi

Requirements Engineering

Preventing Incomplete/Hidden Requirements: Reflections on Survey
Data from Austria and Brazil . 63

Marcos Kalinowski, Michael Felderer, Tayana Conte, Rodrigo Spínola,
Rafael Prikladnicki, Dietmar Winkler, Daniel Méndez Fernández,
and Stefan Wagner

An Expert-Based Requirements Effort Estimation Model
Using Bayesian Networks . 79

Emilia Mendes, Veronica Taquete Vaz, and Fernando Muradas

Software Architecture

Experiences from Monitoring Effects of Architectural Changes 97
Ulf Asklund, Martin Höst, and Krzysztof Wnuk

Making the Case for Centralized Software Architecture Management. 109
Georg Buchgeher, Rainer Weinreich, and Thomas Kriechbaum

http://dx.doi.org/10.1007/978-3-319-27033-3_1
http://dx.doi.org/10.1007/978-3-319-27033-3_2
http://dx.doi.org/10.1007/978-3-319-27033-3_2
http://dx.doi.org/10.1007/978-3-319-27033-3_3
http://dx.doi.org/10.1007/978-3-319-27033-3_4
http://dx.doi.org/10.1007/978-3-319-27033-3_4
http://dx.doi.org/10.1007/978-3-319-27033-3_5
http://dx.doi.org/10.1007/978-3-319-27033-3_5
http://dx.doi.org/10.1007/978-3-319-27033-3_6
http://dx.doi.org/10.1007/978-3-319-27033-3_6
http://dx.doi.org/10.1007/978-3-319-27033-3_7
http://dx.doi.org/10.1007/978-3-319-27033-3_8

Software Estimation and Development

Preventing Composition Problems in Modular Java Applications. 125
Kamil Jezek, Lukas Holy, and Jakub Danek

Deriving Extract Method Refactoring Suggestions for Long Methods 144
Roman Haas and Benjamin Hummel

The Use of Precision of Software Development Effort Estimates
to Communicate Uncertainty . 156

Magne Jørgensen

Software Testing

Web Service Test Evolution . 171
Harry M. Sneed

Integrating a Lightweight Risk Assessment Approach into an Industrial
Development Process. 186

Viktor Pekar, Michael Felderer, Ruth Breu, Friederike Nickl,
Christian Roßik, and Franz Schwarcz

Fast Feedback from Automated Tests Executed with the Product Build 199
Martin Eyl, Clements Reichmann, and Klaus Müller-Glaser

E-Government Applications

Approach of a Signature Based Single Sign on Proxy Solution 213
Klaus John and Stefan Taber

Author Index . 229

XII Contents

http://dx.doi.org/10.1007/978-3-319-27033-3_9
http://dx.doi.org/10.1007/978-3-319-27033-3_10
http://dx.doi.org/10.1007/978-3-319-27033-3_11
http://dx.doi.org/10.1007/978-3-319-27033-3_11
http://dx.doi.org/10.1007/978-3-319-27033-3_12
http://dx.doi.org/10.1007/978-3-319-27033-3_13
http://dx.doi.org/10.1007/978-3-319-27033-3_13
http://dx.doi.org/10.1007/978-3-319-27033-3_14
http://dx.doi.org/10.1007/978-3-319-27033-3_15

Keynote

The Disciplined Agile Process Decision Framework

Scott W. Ambler1(✉) and Mark Lines2

1 Toronto, Canada
scott@scottambler.com

2 Calgary, Canada
mark@scottambler.com

Abstract. The Disciplined Agile 2.0 process decision framework [1] provides
light-weight guidance to help organizations streamline their information tech‐
nology (IT) processes in a context-sensitive manner. It does this by showing how
various activities such as solution delivery, operations, enterprise architecture,
portfolio management, and many others work together in a cohesive whole. The
framework also describes what these activities should address, provides a range
of options for doing so, and describes the tradeoffs associated with each option.
Every person, every team, and every organization is unique, therefore process
frameworks must provide choices, not prescribe answers.

Keywords: Agile · Disciplined · Kanban · Scrum · Agility at scale · DevOps ·
Information technology department

1 History

To date there have been three major release tiers of this framework:

1. Disciplined Agile Delivery 0.x. The framework was originally developed at IBM
Rational from early 2009 to June 2012. The IBM team worked closely with business
partners, including Mark Lines, and was led by Scott Ambler. IBM Rational Method
Composer (RMC) currently supports an early, 0.5 version of the DA framework.

2. Disciplined Agile Delivery 1.x. The DA 1.0 release occurred in June 2012 with
publication of the first DA book, Disciplined Agile Delivery [2]. Evolution and
publication of the DA framework continued at the Disciplined Agile site starting
in August 2012. Ownership of the DA framework intellectual property effec‐
tively passed over to the Disciplined Agile Consortium [3] in October 2012, a
fact that was legally recognized by IBM in June 2014. The focus was on the
software delivery process.

3. Disciplined Agile 2.x. This is the current version of the framework, initially released
in August 2015. The focus is on describing a flexible, context-sensitive approach to
the entire IT process.

© Springer International Publishing Switzerland 2016
D. Winkler et al. (Eds.): SWQD 2016, LNBIP 238, pp. 3–14, 2016.
DOI: 10.1007/978-3-319-27033-3_1

2 Why Disciplined Agile?

There are several reasons why an organization should consider adopting the Disciplined
Agile framework:

4. Enable Agile Delivery Teams to Succeed. The focus of Disciplined Agile Delivery
(DA) 1.x [4] was tactical scaling of agile software development strategies across the
delivery lifecycle in the range of situations that delivery teams find themselves in.
The DA 1.x framework described how agile/lean teams work from beginning to end,
showing how all the activities of solution delivery (analysis, design, testing, archi‐
tecture, management, programming, and so on) fit together in a cohesive, streamlined
whole. However, to succeed delivery teams must often work with people outside of
the team, such as enterprise architects, operations engineers, governance people, data
management people, and many others. For agile/lean delivery teams to be effective
these people must also work in an agile/lean manner.

5. Provide a Coherent Strategy for Agile IT. The focus of Disciplined Agile 2.x is
on strategic scaling of agile and lean strategies across the IT department. IT depart‐
ments are complex adaptive organizations. What we mean by that is that the actions
of one team will affect the actions of another team, and so on and so on. For example,
the way that your agile delivery team works will have an effect on, and be affected
by, any other team that you interact with. If you’re working with your operations
teams, perhaps as part of your overall Disciplined DevOps [5] strategy, then each of
those teams will need to adapt the way they work to collaborate effectively with one
another. Each team will hopefully learn from the other and improve the way that
they work. These improvements with ripple out to other teams. The challenge is that
every area within IT has one or more bodies of knowledge, and in some cases
published “books of knowledge”, that provide guidance for people working in those
areas. These industry groups and their corresponding bodies of knowledge contradict
one another, they are at different points on the agile/lean learning curve, and some‐
times they promote very non-agile/lean strategies. At the IT level this can be very
confusing, resulting in dysfunction. As you can see in Fig. 1, the DA frame‐
work shows how this all fits together in a flexible manner that supports the realities
faced in complex adaptive systems.

6. Support the Lean Enterprise. A lean enterprise [6] is able to anticipate and respond
swiftly to changes in the marketplace. It does this through an organizational culture
and structure that facilitates change within the context of the situation that it faces.
Lean enterprises require a learning mindset in the mainstream business and under‐
lying lean and agile processes to drive innovation. This includes an IT department
that is able to work in an agile/lean manner.

7. Context Counts. Every person, every team, and every organization is unique. The
implication is that you need a framework that provides you with choices so that you can
tailor, and later evolve, an approach to address the situation that you face in practice.
Although prescriptive, one-size-fits-all frameworks such as SAFe [7] or Nexus [8] may
seem like an attractive solution to your process-related needs at first, the reality is that
they often do more harm than good within the organizations that adopt them.

4 S.W. Ambler and M. Lines

Fig. 1. The Disciplined Agile 2.0 Framework.

3 Tactical Agility at Scale

Many organizations start their agile journey by adopting Scrum because it describes a
good strategy for leading agile software teams. However, Scrum is only a small part of
what is required to deliver sophisticated solutions to your stakeholders. Invariably, teams
need to look to other methods to fill in the process gaps that Scrum purposely ignores.
When looking at other methods, there is considerable overlap and conflicting termi‐
nology that can be confusing to practitioners as well as outside stakeholders. Worse yet,
people don’t always know where to look for advice or even know what issues they need
to consider. Then to compound the issue many teams find themselves in situations, such
as geographically distributed teams or regulatory compliance, which “pure agilists”
prefer to ignore.

To address these challenges, the Disciplined Agile (DA) process decision framework
provides a more cohesive approach to agile solution delivery. It does this via several
strategies.

Strategy #1: DA is a hybrid framework that builds upon the solid foundation of other
methods and software process frameworks. One of the great advantages of agile and
lean software development is the wealth of practices, techniques and strategies available
to you. This is also one of its greatest challenges because without something like the
DA framework, it’s difficult to know what to choose and how to fit them together. Worse
yet, many teams new to agile will adopt a method like Scrum or SAFe as if it’s a recipe,
ignoring advice from other sources and thereby getting into trouble. The DA framework

The Disciplined Agile Process Decision Framework 5

adopts practices and strategies from existing sources and provides advice for when and
how to apply them together. In one sense, methods such as Scrum, Extreme Program‐
ming (XP), Kanban, and Agile Modeling (AM) provide the process bricks and DA the
mortar to fit the bricks together effectively.

Strategy #2: DA supports a full delivery lifecycle. Figure 2 depicts a high-level view of
the system lifecycle. The full system/product lifecycle goes from the initial concept for
the product, through delivery, to operations and support and finally to retirement (not
shown). The inner three phases – Inception, Construction, and Transition – form the
delivery portion of the lifecycle. During this portion you incrementally build a consum‐
able solution over time. Most systems will go through the delivery lifecycle many times.

Fig. 2. A high-level view of the system lifecycle.

Fig. 3. Disciplined Agile’s Continuous Delivery lifecycle.

6 S.W. Ambler and M. Lines

Strategy #3: DA supports four delivery lifecycles. Because DA is not prescriptive and
strives to reflect reality as best it can, it supports four versions of a delivery lifecycle [9].
These lifecycles are: an agile/basic version that extends the Scrum Construction life‐
cycle; an advanced/lean lifecycle based on Kanban; a continuous delivery lifecycle (shown
in Fig. 3); and an exploratory lifecycle based upon a Lean Start-up approach [10]. DA
teams will adopt a lifecycle that is most appropriate for their situation and then tailor it
appropriately.

Strategy #4: DA is goal-driven, not prescriptive. The DA framework came about from
empirical observations of dozens of teams apply agile and lean strategies in dozens of
organizations working in different domains around the world. Although there were
similarities between how these teams worked every team worked in a unique manner,
and every team had spent considerable time and effort determining how to do so. And
every team still had improvements to make, and many were struggling with doing so
because they didn’t have the process background to identify candidate options. It was
clear to us that agile/lean teams could benefit from light-weight process guidance that
described the range of options available to them.

To do this DA adopted a goal-driven, or capability-based, approach. The delivery
goals are summarized in the mind map of Fig. 4. For example, the diagram indicates
that when a team is in Inception that they must address goals such as forming the initial
team, aligning with the enterprise direction (e.g. follow your corporate roadmaps and
guidelines), develop an initial release plan, and explore the initial scope amongst other
things. Although every team addresses these goals in some way, every team does so in
a different manner and are likely to evolve their approach over time as they learn from
experience.

Fig. 4. Delivery goals (capabilities).

To provide teams more detailed guidance as to the process choices they have to
address each goal the DA framework introduced the concept of process goal diagrams
[11]. A process goal diagram depicts the process factors that should be considered when

The Disciplined Agile Process Decision Framework 7

addressing the goal and then a representative list of options for those goals. Because
people around the world are constantly improving upon and identify new practices and
strategies the list of options presented in the goal diagrams cannot possibly be definitive.
Instead they represent the range of options available, letting people know that choices
do exist (regardless of what prescriptive methodologies imply) and that sometimes some
choices are distinctly better than others (again, regardless of what prescriptive method‐
ologies imply).

Let’s work through an example. Figure 5 depicts the goal diagram for Explore Initial
Scope, a goal that you should address at the beginning of a project during the Inception
phase. Where some agile methods will simply advise you to populate your product
backlog with some initial user stories, the goal diagram makes it clear that you might
want to be a bit more sophisticated in your approach. What level of detail should you
capture, if any (a light specification approach of writing up some index cards and a few
whiteboard sketches is just one option you should consider)? What view types should
you consider (user stories are one approach to usage modeling, but shouldn’t you
consider other views to explore the data or the UI)? Default techniques, or perhaps more
accurately suggested starting points, are shown in bold italics. Notice how we suggest
that you likely want to default to capturing usage in some way, basic domain concepts
(for example, via a high-level conceptual diagram) in some way, and non-functional
requirements in some way. There are different strategies you may want to consider for
modeling. You should also start thinking about your approach to managing your work.
In DA, we make it clear that agile teams do more than just implement new requirements,
hence our recommendation to default to a work item list over Scrum’s simplistic

Fig. 5. The process goal diagram for Explore Initial Scope.

8 S.W. Ambler and M. Lines

Requirements Backlog strategy. Work items may include new requirements to be imple‐
mented, defects to be fixed, training workshops, reviews of other teams’ work, and so
on. These are all things that need to be sized, prioritized, and planned for. Finally, the
goal diagram makes it clear that when you’re exploring the initial scope of your effort
that you should capture non-functional requirements – such as reliability, availability,
and security requirements (among many) – in some manner.

There are several fundamental advantages to taking a goal-driven approach to agile
solution delivery. First, a goal-driven approach supports process tailoring by making
process decisions explicit. Second, it enables effective scaling by guiding you through
tailoring your strategy to reflect the realities of the scaling factors that you face. Third,
it makes your process options very clear and thereby makes it easier to identify the
appropriate strategy for the situation you find yourself in. Fourth, it takes the guesswork
out of extending agile methods and thereby enables you to focus on your actual job,
which is to provide value to your stakeholders. Fifth, it makes it clear what risks you’re
taking on and thus enables you to increase the likelihood of project success. Sixth, and
this may not be a benefit, it hints at an agile maturity model.

Strategy #5: DA enables tactical scaling. When many people hear “scaling” they often
think about large teams that may be geographically distributed in some way. This clearly
happens, and people are clearly succeeding at applying agile in these sorts of situations,
but there’s often more to scaling than this. Organizations are also applying agile in
compliance situations, either regulatory compliance that is imposed upon them or self-
selected compliance (such as CMMI and ISO). They are also applying agile to a range

Fig. 6. Scaling factors faced by IT delivery teams.

The Disciplined Agile Process Decision Framework 9

of problem and solution complexities, and even when multiple organizations are
involved (as in outsourcing). Figure 6 summarizes the potential scaling factors that you
need to consider when tailoring your agile strategy [12].
Strategy #6: DA teams are enterprise aware. The observation is that DA teams work
within your organization’s enterprise ecosystem, as do all other teams. Often there are
existing systems currently in production, and minimally your solution shouldn’t impact
them. Better yet, your solution will hopefully leverage existing functionality and data
available in production. You will often have other teams working in parallel with your
team and you may wish to take advantage of a portion of what they’re doing and vice
versa. Your organization may be working towards business or technical visions to which
your team should contribute. A governance strategy exists which hopefully enhances
what your team is doing.

Enterprise awareness is an important aspect of self-discipline because as a profes‐
sional you should strive to do what’s right for your organization and not just what’s
interesting to you. Delivery teams developing in isolation may choose to build something
from scratch, or use different development tools, or create different data sources, when
perfectly good ones that have been successfully installed, tested, configured, and fine-
tuned already exist within the organization. Disciplined agile professionals will:

• Work closely with enterprise professionals, such as enterprise architects and portfolio
managers

• Adopt and follow enterprise guidance
• Leverage enterprise assets, including existing systems and data sources
• Enhance your organizational ecosystem via refactoring enterprise assets
• Adopt a DevOps culture
• Share learnings and knowledge with other teams
• Adopt appropriate governance strategies, including open and honest monitoring.

4 Strategic Agility at Scale: The Disciplined Agile IT Department

A disciplined agile IT department is a flexible learning organization that is responsive to
the needs of the organization(s) that it supports and is able to do so in a financially effec‐
tive manner. DA 2.x extends disciplined agile strategies to the entire IT department. The
development of DA 2.x began in the Spring of 2014 under the leadership of Scott and
Mark. DA 2.x is based on several important observations. First, every organization is
unique, and every IT department within each organization is also unique. Second, IT
departments are dynamic complex adaptive systems that evolve over time. Third, the
components of IT departments, teams and sub-departments, also evolve over time. Fourth,
these components, when left to their own devices, are often not well aligned with each
other or the enterprise. Worse yet, these groups may be working under their own locally
optimized “improvement strategies.” This misalignment is caused by competing leader‐
ship visions (or less delicately, by “politics”) and exacerbated by disparate bodies of
knowledge (BoKs) within our industry: The Agile Manifesto [13]; The Project Manage‐
ment Institute’s BoK [14]; The Data Management BoK [15]; The Business Analysis BoK

10 S.W. Ambler and M. Lines

[16]; The Open Group Architecture Framework (TOGAF) [17]; The Information Tech‐
nology Infrastructure Library (ITIL) [18]; The Control Objectives for Information and
Related Technology (COBIT) framework [19]; and many more.

Although all of these bodies of work provide valuable insight, they each provide
their own locally optimized view of how things should work. These views overlap, they
provide inconsistent advice, and they are often focused on a single specialty. For
example, the BABoK provides a business analyst-centric view, TOGAF provides an
architecture centric view, the DMBoK provides a data management centric view, and
so on. All great views, but when combined with one another, which is a common
approach in most organizations today looking for “best practices”, they prove to be an
ineffective mishmash. DA 2.x provides a coherent, integrated, high-level view of how
an IT department may address all of these key areas in a consistent, flexible, and evolu‐
tionary manner. Wherever possible DA 2.x references the effective ideas in these BoKs
and supplements them with strategies that are more consistent with modern agile
approaches. Figure 1 overviewed the DA 2.x framework.

DA 2.x has been arranged into components called “process blades.” Each process blade
focuses on a major IT activity, as you can see in the previous diagram. No blade is an island
unto itself – each one is involved in workflows with several other blades. The implication
is that a change in one area, such as a process improvement or a change in the organiza‐
tional structure of the people involved, will potentially affect the instantiation of the other
blades. This interconnection of processes and organization strategies is a reflection of the
fact that IT departments are complex adaptive systems. The process blades are:

• Agile/Basic. Describes the end-to-end solution delivery lifecycle for teams working
in an agile, or Scrum-based, manner. Project teams who are new to agile, or who find
themselves in situations where a regular work cadence is effective for them, will often
choose to adopt this lifecycle.

• Continuous Delivery. Describes the end-to-end solution delivery lifecycle for teams
working in a continuous delivery manner. Product teams who are working in a
DevOps environment often adopt this strategy.

• Continuous Improvement. Addresses how to support process and organizational
structure improvement across teams in a lightweight, collaborative manner; how to
support improvement experiments within teams; and how to govern process improve‐
ment with the IT department.

• Data Management. Addresses how to improve data quality, evolve data assets such
as master data and test data, and govern data activities within the organization.

• Enterprise Architecture. Addresses strategies for supporting stakeholders;
supporting delivery teams; resolving technical dependencies between solutions;
evolving the enterprise architecture; capturing the enterprise architecture; and
governing the enterprise architecture efforts.

• Exploratory/Lean Startup. Describes the end-to-end solution delivery lifecycle for
teams working in an exploratory, or “lean start up”, manner. Teams who find them‐
selves in situations where rapid innovation is called for often follow this lifecycle.

• IT Governance. Addresses strategies for consolidating various governance views,
defining metrics, taking measurements, monitoring and reporting on measurements,
developing and capturing guidance, defining roles and responsibilities, sharing

The Disciplined Agile Process Decision Framework 11

knowledge within the organization, managing IT risk, and coordinating the various
governance efforts (including EA governance).

• Lean/Advanced. Describes the end-to-end solution delivery lifecycle for teams
working in a lean, or Kanban-based, manner. Teams who have many small, relatively
independent requirements (be they change requests or potential defects) and who are
working on an existing solution will often adopt this lifecycle.

• Operations. Addresses how to run systems, evolve the IT infrastructure, manage
change within the operational ecosystem, mitigate disasters, and govern IT opera‐
tions.

• Portfolio Management. Addresses how to identify potential business value that could
be supported by IT endeavors, explore those potential endeavors to understand them
in greater detail, prioritize those potential endeavors, initiate the endeavors, manage
vendors, and govern the IT portfolio.

• Product Management. Addresses strategies for managing a product, including allo‐
cating features to a product, evolving the business vision for a product, managing
functional dependencies, and marketing the product line.

• Program Management. Addresses strategies for managing large product/project
teams, allocating requirements between sub teams, managing dependencies between
sub teams, coordinating the sub teams (via common or disparate cadences), and
governing a program.

• Release Management. Addresses strategies for planning the IT release schedule,
coordinating releases of solutions (such as release trains or release windows),
managing the release infrastructure, supporting delivery teams, and governing the
release management efforts.

• Reuse Management. Addresses how to identify and obtain reusable assets, publish
the assets so that they are available to be reused, support delivery teams in reusing
the assets, evolving those assets over time, and governing the reuse efforts.

• Support. Addresses how to adopt an IT support strategy, to escalate incidents, to
effectively address the incidents, and govern the IT support effort.

The business environment is only becoming more competitive over time, with small
nimble organizations competing in international marketplaces with large established
competitors. This puts increasing pressure on existing enterprises to respond swiftly and
effectively. They only way they can do this is if they have nimble IT departments that
are sufficiently responsive. To increase the challenge, IT departments must be able to
react to the changing needs of their organization while at the same time keep the existing
IT infrastructure running smoothly. The only way that they can do this is by taking a
flexible, holistic approach to the business of IT – This is exactly what Disciplined Agile
2.x is all about.

5 Principles for Effective Process Frameworks

The Disciplined Agile process decision framework is guided by the following principles:

• Choice is good, and making informed choices is better. Every team is a collec‐
tion of unique individuals that face a unique situation within the context of a

12 S.W. Ambler and M. Lines

unique organization. One process size does not fit all. To provide choice the DA
framework supports four delivery lifecycles and is process goal driven. Most
importantly the DA framework describes the tradeoffs involved with a myriad of
agile and non-agile practices enabling people to make intelligent decisions
regarding which practices to adopt given the current situation that they face.

• Optimize the whole. The DA framework addresses the full IT lifecycle, showing how
it all fits together. Without an understanding of the larger process environment teams
run the risk of locally optimizing their own processes to the detriment of the whole.
For example, your data management team may have their own streamlined process
based on traditional DAMA strategies, your delivery team may have their streamlined
process based on the principles of the Agile Manifesto, and your operations team
may have their streamlined process based on ITIL. Yet your overall process is inef‐
fective because these three locally optimized strategies contradict and degrade one
another when combined.

• Every team owns its process. Teams, and the individuals on them, must be free to
improve the way that they work based on their learnings over time. In agile parlance
we say that these teams “own their process”.

• Improve continuously. Individuals, teams, and organizations must strive to continu‐
ously learn and improve the way that they work. The DA framework includes the
process goal Improve Team Process and Environment which describes options for
doing exactly what its name implies. It also has an explicit process blade Continuous
Improvement that describes strategies for sharing improvements across teams,
thereby speeding up your organization’s process improvement efforts.

• Embrace process change. IT departments are complex adaptive systems. One impli‐
cation of this is that any improvements that a team makes is that they change that the
team works with other teams, motivating process improvements within those teams.
Those changes will motivate improvements on other teams and so on. Disciplined
agile teams are enterprise aware and understand that they will need to work with other
teams to help them to understand and adopt new innovations, and be prepared to be
helped by others to do the same.

• Repeatable results are far more important than repeatable processes. Effective teams
focus on producing repeatable results, such as delivering high-quality software that
meets stakeholder needs in a timely and cost effective manner. Because each team
finds themselves in a unique situation, to be most efficient they need to follow a
unique process tailored to reflect that situation. That “unique process” may be
comprised of a relatively standard lifecycle and common practices such as architec‐
ture envisioning, database regression testing, non-solo development, and many others
(granted, those practices may be tailored to reflect the situation too). Each team in
your organization must be allowed to follow their version of the process, ideally
sharing similar process components defined by a common process framework, to
achieve the results required of them.

• Empiricism is far more important than theory. Observing how well a technique works
in practice, and more importantly the context of the situations in which it (doesn’t)
work is far more valuable to practitioners than theories or prognostications about
what should work. Theory has its place, but it is a poor cousin to empiricism.

The Disciplined Agile Process Decision Framework 13

The DA framework was originally developed based on observations of dozens of
organizations worldwide, and has evolved since then based on learnings from many
more. Furthermore it is backed up by our ongoing industry research [20].

IT departments are unique, complex adaptive systems. Anyone working in such
environments needs a process framework that is sufficiently flexible to address the range
of situations faced by your teams. The Disciplined Agile process decision framework is
light-weight yet sufficiently flexible to support scaling at both the tactical and strategic
levels.

References

1. The Disciplined Agile site. http://DisciplinedAgileDelivery.com
2. Ambler, S.W., Lines, M.: Disciplined Agile Delivery: A Practitioner’s Guide to Agile

Software Delivery in the Enterprise. IBM Press, New York (2012)
3. Disciplined Agile Consortium. http://DisciplinedAgileConsortium.org
4. Introduction to Disciplined Agile Delivery (DAD) 1.x. http://DisciplinedAgileDelivery.com/

introduction-to-disciplined-agile-delivery/
5. Disciplined DevOps. http://DisciplinedAgileDelivery.com/disciplineddevops/
6. Jumbler, J., Molesky, J., O’Reilly, B.: Lean Enterprise: How High-Performance

Organizations Innovate at ScaleO’Reilly Media, Sebastopol (2015)
7. Scaled Agile Framework (SAFe). http://ScaledAgileFramework.com
8. The Scaled Scrum Framework. http://Scrum.org/Resources/What-is-Scaled-Scrum
9. Full Agile Delivery Lifecycles. http://DisciplinedAgileDelivery.com/lifecycle/

10. Ries, E.: The Lean Startup. How Today’s Entrepenuers Use Innovation To Create Radically
Successful Businesses. Crown Business, New York (2011)

11. Process Goals. http://DisciplinedAgileDelivery.com/process-goals/
12. Scaling Factors. http://DisciplinedAgileDelivery.com/agility-at-scale/scaling-factors/
13. The Agile Manifesto. http://AgileManifesto.org
14. PMBoK Guide and Standards. http://pmi.org/PMBOK-Guide-and-Standards.aspx
15. The Data Body of Knowledge. http://dama.org/content/body-knowledge
16. A Guide to the Business Body of Knowledge (BABoK). http://iiba.org/babok-guide.aspx
17. The Open Group Architecture Framework (TOGAF) v9.1. http://opengroup.org/togaf/
18. The Information Technology Infrastructure Library (ITIL). http://axelos.com/best-practice-

solutions/itil
19. The Control Objectives for Information and Related Technology (COBIT) framework. http://

isaca.org/COBIT/Pages/default.aspx
20. Surveys Exploring the Current State of Information Technology Practices. http://

ambysoft.com/surveys/

14 S.W. Ambler and M. Lines

http://DisciplinedAgileDelivery.com
http://DisciplinedAgileConsortium.org
http://DisciplinedAgileDelivery.com/introduction-to-disciplined-agile-delivery/
http://DisciplinedAgileDelivery.com/introduction-to-disciplined-agile-delivery/
http://DisciplinedAgileDelivery.com/disciplineddevops/
http://ScaledAgileFramework.com
http://Scrum.org/Resources/What-is-Scaled-Scrum
http://DisciplinedAgileDelivery.com/lifecycle/
http://DisciplinedAgileDelivery.com/process-goals/
http://DisciplinedAgileDelivery.com/agility-at-scale/scaling-factors/
http://AgileManifesto.org
http://pmi.org/PMBOK-Guide-and-Standards.aspx
http://dama.org/content/body-knowledge
http://iiba.org/babok-guide.aspx
http://opengroup.org/togaf/
http://axelos.com/best-practice-solutions/itil
http://axelos.com/best-practice-solutions/itil
http://isaca.org/COBIT/Pages/default.aspx
http://isaca.org/COBIT/Pages/default.aspx
http://ambysoft.com/surveys/
http://ambysoft.com/surveys/

Software Engineering Processes
and Process Modelling

How Scrum Tools May Change Your Agile
Software Development Approach

Matthias Eckhart(B) and Johannes Feiner

Internet Technologies and Applications, FH Joanneum, Werk-VI-Strasse 46,
8605 Kapfenberg, Austria

{matthias.eckhart,johannes.feiner}@fh-joanneum.at
http://www.fh-joanneum.at/itm

Abstract. A major problem for distributed Scrum teams is proper com-
munication between the involved parties to ensure the quality of the final
product. This is especially true for coordination issues such as sharing
requirements, time schedules, to-dos and code artefacts. Hence, Scrum-
Masters complain frequently about software tools not suiting their daily
needs when supporting agile teamwork, finally leading to the fact of not
using a Scrum tool at all. In this paper we describe the extensive inter-
views held with selected ScrumMasters in which they explained their
current tools and the existing gap to their real needs. Within this con-
text, they were able to define the features and aspects they really need.
After collecting those requirements for their daily work, we extracted
the most wanted ingredients, prioritised them and finally forged them
into an Open Source tool called Scrumpy, helping us to present a first
solution, which focuses on the agile philosophy of Scrum and the ele-
ments needed most by ScrumMasters. Features of Scrumpy include, for
example, web-based access to the task board with real-time updates,
advanced dashboard visualisation techniques and a sophisticated chat
system, which enables effortless communication for distributed teams.
Although we already have first anecdotal feedback from users, we plan
to improve the tool in a next step by adding more commodity features,
perform additional mobile usability tests and systematically evaluate
Scrumpy with a large number of end users.

Keywords: Scrum tools · Scrum · Agile software development ·
Distributed Scrum · Scrum task board

1 Introduction

Understanding potential benefits and risks of Scrum tools is crucial to the success
of Scrum in agile organisations, which prefer the use of a software-based tool to
assist participants of the Scrum process in handling their daily tasks. Since more
and more organisations decide to switch to the agile way of software development
[1], the need for a suitable Scrum tool grows substantially [2]. As a result, a
vast amount of new products enter the global market, leading to the fact that
c© Springer International Publishing Switzerland 2016
D. Winkler et al. (Eds.): SWQD 2016, LNBIP 238, pp. 17–36, 2016.
DOI: 10.1007/978-3-319-27033-3 2

18 M. Eckhart and J. Feiner

Scrum tool producers try to outsell each other. Although the product may fulfil
its brand-promise, there is no guarantee that participants involved in Scrum,
benefit from features offered by the Scrum tool in the end.

In the last few years there has been a growing interest in reorganising the
organisational structure by establishing remote teams at low-cost locations, in
order to reduce personnel expenses [3]. As a consequence, further issues in geo-
graphically distributed teams may emerge, such as time differences, technical
challenges and cross-cultural communication problems [4]. To overcome collabo-
ration barriers across remote teams, the proper use of Scrum tools may be vital
to the success of the company in the long run. This actually raises the question
what the essence of a valuable tool for supporting efficient agile development
is. The study at hand, therefore, aims at investigating flaws regarding the use
and development of Scrum tools that needed to be discussed, addressing the
correlation between software-based tools and Scrum.

This paper is structured as follows. The next section, Sect. 2, reviews related
work in the field. Section 3 describes the applied research methodology. In Sect. 4
we put forward several determined issues concerning the use of Scrum tools and
involved risks that might have a negative impact on the Scrum team’s produc-
tivity. Section 5 proposes concepts for using Scrum tools more effectively. Fur-
thermore, we present new useful features and potential enhancements that can
be implemented in existing Scrum tools. In addition, we provide in Sect. 6 a list
of minimum requirements that should be implemented to avoid dissatisfaction
among users — suggestions put forward by the interviewed ScrumMasters. In
Sect. 7, we introduce our developed Scrum tool based on the listed minimum
requirements. Finally, in Sect. 8, we draw some concluding remarks and discuss
future work concerning this study and the developed Scrum tool.

2 Related Work

Moe et al. [5] indicate that conflicts between team members may emerge when
making the switch to agile software development, since additional work can be
incurred, in order to foster self-managing teams. Compared to traditionally man-
aged teams, the characteristics of shared leadership embraces a joint decision-
making process which requires a strong team commitment. As a result the indi-
viduals’ ability to work collaboratively with other team members is fundamental
to a self-organising team. In addition, Moe et al. reinforce their doubts regarding
a team of specialists, because this culture may encourage an individual auton-
omy which can result in a lack of focus for the team’s goal. Furthermore, they
describe that this jeopardy may evolve if each software developer is responsible
for a separate module, as they may rarely be involved in other components of
the system and consequently tend to get side-tracked. According to their study,
developing software with Scrum in a remote setup is likely to exacerbate the
issues of an individual leadership. Moe et al. also describe that collocation facil-
itates communication within the team and fosters the ability to achieve a high
level of collaboration, which encourages a break of the hierarchical relationship

How Scrum Tools May Change Your Agile Software Development Approach 19

and as a consequence initiates to build trust and commitment. As stated by
Scissors et al. [6], distributed teams may face severe challenges when creating a
team culture among individuals from different nationalities. Furthermore, they
describe that distributed team members, who rely heavily on nonverbal commu-
nication, are particularly prone to conflicts, which may endanger social harmony.
In addition, previous research indicates that there is a strong coherence between
the communication efficiency and the used communication method. Rayhan and
Haque from Code 71, Inc. [7] state in their paper that the use of e-mail and
Microsoft Excel to manage their remote Scrum team has been proven to be
impractical, especially as the team size grew. They also reported that the com-
munication of the daily project status via e-mail posed a distraction for the
Scrum team. As a result, they decided to introduce the agile project manage-
ment software VersionOne. However, due to a lack of intuitive user experience
design and insufficient support for collaboration, they used VersionOne only for
time tracking purposes and introduced Basecamp, a tool which seemed to fit
their needs for managing backlogs. However, transferring artefacts from one tool
to another resulted in productivity decrease and consequently engendered the
desire to create a seamless process.

A different approach in implementing agile development has been reported by
Sarkan et al. [8] who used Scrum tools to support the agile requirements devel-
opment for software projects at the research and development centre MIMOS
Berhad in Malaysia. In the initial phase of introducing Scrum, they decided to
use Redmine for gathering user stories. Although the tool provided an exten-
sive issue tracking system, they recorded bugs in separate tools such as Rational
ClearQuest. Given that Redmine takes full effect of traditional project manage-
ment, rather than agile methodologies, they decided to substitute the tool with
JIRA. As a result they could benefit not only from its product backlog features,
but also from the task board to monitor the team’s progress. In addition, they
decided to track issues with JIRA which enabled them to link the reported prob-
lems to user stories. Furthermore, Sarkan et al. stated in their study that the
requirements management effort has been reduced to a minimum degree, owing
to the introduction of a Scrum tool. Yet, these findings point towards a tool
supported Scrum process, little is known about how ScrumMasters assess the
impact of Scrum tools on core Scrum values and principles.

Since there was a shortage in quantitative information related to the needs
of a company with regard to Scrum tools, Azizyan et al. [2] conducted a sur-
vey to identify the most important aspects of the tools used. They analysed the
responses to questions of 120 companies, including collocated as well as distrib-
uted team structures. According to their survey results, 65 % of collocated teams
and more than 80 % of distributed teams used agile project management tools
to support their processes. As a result, we imply that Scrum tools take on an
important role in agile software development. Although the study from Azizyan
et al. provides comprehensive results about the needs of agile software develop-
ment companies, further research to determine insights from the ScrumMaster’s
perspective is still required.

20 M. Eckhart and J. Feiner

Previous research has indicated that the use of a physical task board in collo-
cated teams is strongly recommended, while the use of its digital equivalent can
be regarded as negligible, unless there are substantial reasons which justify its
implementation [9]. In contrast, the use of a tool, to support distributed Scrum
teams in managing the product backlog, is considered as essential for coordi-
nating the teams at remote locations [10]. Furthermore, the results obtained in
[11,12] suggest that particular attention needs to be paid to the characteristics
of the Scrum tool’s digital task board, as well as to the implementation process
when migrating from other platforms such as SharePoint.

3 Methodology - A Case Study with Interviews

Since extensive research, for example, by Azizyan et al. [2] has addressed var-
ious tools used in 120 different companies, we chose a rather qualitative than
quantitative approach in which we identified the role of Scrum tools in agile
software development, by taking viewpoints of ScrumMasters into considera-
tion. Therefore, we conducted a case study, interviewing five selected Scrum
experts for an in-depth analysis of their experiences in (remote) Scrum teams
and their work with current Scrum tools. The male interviewees were acquired
via the Scrum User Group Graz (XING) and by directly contacting medium-
sized enterprises in Austria. At the time of the study, their average expertise
with Scrum was 6.2 years, as ScrumMasters 3.4 years and all of the participants
were Scrum Alliance R© certified. The average development team size was 8.2,
whereas two ScrumMasters out of five had to handle two teams at a time.

The scientific method of our empirical observation did not focus on quantita-
tive (online questionnaires, statistical results), but high qualitative data which
we received by means of detailed and thorough semi-structured interviews with
Scrum practitioners in winter 2014. We used a holistic approach to examine
the real-life context, by asking this small group to report about their positive
and negative experiences as well as their suggestions for future improvements.
Prior to the case study, we prepared a guideline for the interviews which was
split into three parts. The first part covered background information about the
participants and the company they are working for, such as experience with
Scrum, size of enterprise or the office cubicle (workspace) design. The second
part focused on a variety of aspects related to the implemented Scrum processes.
For instance, we wanted to examine their Scrum team structure, as well as the
Scrum activities carried out. To name a few examples, we asked them about the
applied effort estimation technique, the development team size or the iteration
planning, in order to achieve a broad range of questions. The last component
of our three-part interview primarily dealt with the introduced Scrum tool. To
encourage the interviewees to talk about the issues faced owing to the used
Scrum tool, we asked questions like “What are the key problems with digital task
board usage?”, “Did you configure different access permissions for artefacts in
the Scrum tool?” or “Which reports are generated for the management?”. As
suggested by Seaman [13], we avoided polar questions for collecting qualitative

How Scrum Tools May Change Your Agile Software Development Approach 21

data, in order to make it easier for participants to expound about the discussed
topics. Based on this, we asked 37 open-ended questions in total, within a time
frame of 20–60 min. To ensure qualitative research results, we collected data
by recording the semi-structured interviews. After the interview sessions were
held, we transcribed the recorded audio and subsequently coded our transcript
by labelling relevant sections. After we formed a set of codes, we examined the
assigned passages in our transcript with respect to repetitions and similarities
among the interviewees opinions. Finally, we grouped selected codes which we
thought were most important and created themed categories. To gain profound
insights into Scrum tools from the perspective of the interviewed ScrumMasters,
we interpreted the data.

The limitation of this case study is the small number of participants, which
does not really allow to extract statistically relevant data. Nevertheless, based on
these findings, we developed a real-time1 web-based Scrum tool named Scrumpy
(see Sect. 7) to examine the link between Scrum and Scrumpy further.

4 Identification of Critical Problem Areas

The following section is devoted to potential deficiencies with regard to Scrum
tools and its involved parties. Our aim in this chapter is to raise awareness of
several issues concerning the use of Scrum tools, as well as the introduction of
the tool in real projects.

4.1 The ScrumMaster’s Role as a Critical Success Factor

According to the interviewed experts, it is still prevalent that IT managers do
not acknowledge the ScrumMasters’ work, since they do not produce any code
by themselves. As a result, they often do not hire ScrumMasters, but rather
retrain existing project managers or developers. Unfortunately, this leads to
wrong organisational change, in which an individual occupies two roles simulta-
neously, e.g. ScrumMaster and software developer or ScrumMaster and Product
Owner. Although personnel cost may be saved, Scrum cannot be used to its full
extent and continual improvement may not be achieved in the long run, due to
the negligence of the ScrumMaster’s duties.

As stated in the agile manifesto, direct communication is the most efficient
and effective method of transferring information [14]. One issue that may emerge
in this context is the misuse of the Scrum tool as the main way of communi-
cating within a collocated team. Despite the fact that Scrum tools may simplify
the act of communicating, especially with distributed teams, they obviously can-
not substitute face-to-face communication. This issue is not limited to the live
chat features of a Scrum tool, because even the update of a task on the virtual
task board will result in a loss of nonverbal communication details such as body

1 Our application is capable of handling live updates, i.e. data changes will be pushed
to clients instantly, without the necessity to refresh the page manually.

22 M. Eckhart and J. Feiner

language or gestures. Findings of the research conducted by Segers [11] confirm
our study results that declare physical task boards as a gathering place for the
Scrum team which establishes open communication and subsequently improves
collaboration since individuals are able to perceive every single movement or
unconscious body signal. As a result, meeting participants should be encouraged
to start a discussion if discrepancies among the Scrum team members exist.
Therefore the ScrumMaster’s task and obligation is to raise awareness regard-
ing the importance of communication. The interviewees past experience suggests
that this task requires a lot of effort. For that reason, they prefer a strict obser-
vance of the roles, allowing the ScrumMaster to focus only on the tasks defined
in the Scrum framework, having no other burden with obligations outside his or
her remit.

Furthermore, the data obtained from the interviews indicate that ScrumMas-
ters need to take special care of conflicts caused by obsessive micromanagers. The
evaluation of the interviews shows that managers tend to check the progress of
the Scrum team based on the burn down chart on a daily basis, even though this
tool should be designed by and for the development team only. However, man-
agers should definitely have full access to the Scrum tool including the burn down
chart provided by the tool, otherwise the process will become non-transparent
and eventually will have a strong negative impact on the collaboration between
the Scrum team and other parties, due to feelings of anxiety as managers may
feel out of control.

4.2 Inflexible Scrum Tools Limit the Agility of Scrum

One of the major advantages of Scrum in comparison to traditional project
management is that the stated agile method offers a certain degree of flexibility
with regard to the defined processes. Because of this, the Scrum team is able to
maintain continuous improvement and consequently may increase efficiency over
time. Therefore, it is even worse if the introduced Scrum tool implicitly requires
certain parts of the Scrum process, which cannot be bypassed when using the
software.

One interviewed expert exemplified this issue by outlining a workaround
which allowed the Scrum team to keep up with the sprint rhythm of the Scrum
tool if the development team needed an extra sprint for fixing bugs, especially
shortly before a major release. Although all increments were finished according
to the Definition of Done (DoD), some builds failed after the integration of crit-
ical components. As a result, the Scrum team split the sprint of two weeks in
half and used one week for integration tests and one week for fixing bugs. Car-
rying out integrations multiple times during the sprint is certainly the best-case
scenario, but unfortunately this is often not attainable in real-world systems.

Another significant point about the inflexibility of Scrum tools concerns the
type of effort estimation, specified by the Scrum tool. Since the preferred effort
estimation method may vary from development team to development team, a
Scrum tool should not predefine the technique to estimate effort. According to

How Scrum Tools May Change Your Agile Software Development Approach 23

our interview results, a Scrum tool should provide a feature to record the esti-
mated effort, but any inputs related to the effort estimation should definitely not
be designed as mandatory. This request applies to the effort estimation of user
stories as well as tasks, because some development teams may skip the estima-
tion of tasks, due to the fact that this may be too time-consuming. Moreover, the
selected effort estimation technique affects also the visualisation method, for the
simple reason that the measurement of work progress is often deduced from
the estimated effort. For instance, the data unit to visualise the work progress
can be hours, story points, user stories or tasks completed. Furthermore, even an
overlay of multiple data units may be desired. As a result, the development team
should have the opportunity to choose the data unit for visualisation methods,
provided by the Scrum tool.

Further concerns stem from the fact that Scrum tools are considered to be
hard to adapt with regard to process changes. For instance, if the Scrum team
decides to record a new attribute for user stories on the digital task board, exten-
sive configurations may apply which could require reading the documentation.
In contrast, the physical task board can easily be changed and is not limited to
any settings.

Table 1. A comparison of supported characteristics by the physical task board and its
digital equivalent.

Criteria Physical task board Digital task board

Ease of change � Problematic

Remote capabilities ✗ �
Social aspects � Problematic

Versioning Problematic �
Haptic � ✗

Find in Table 1 a comparison of several physical and digital task board char-
acteristics.

4.3 Agile Organisational Structures Apart from the Traditional
Scrum Framework

The expert interviews revealed that there are tremendous discrepancies between
the roles which are specified by the Scrum tool and the roles defined in large-scale
organisations. One real-world example of a large-scale organisation is presented
in Fig. 1. This organisation type extends the typical Scrum roles by a project
manager, a Chief Product Owner (CPO), a Product Manager (PM) and the three
cross-divisional roles: Chief Software Architect (CSA), one person in charge of
writing the documentation (DOC) and the Quality Assurance Manager (QA).

24 M. Eckhart and J. Feiner

Fig. 1. Organigram of an extended agile organisational structure.

Especially when scaling Scrum in a large enterprise, while remaining agile is
desirable, a complete mapping of all the roles in a Scrum tool is often unachiev-
able. After all, the organisation should not be forced to adapt the roles, specified
by the Scrum tool but rather the tool should provide a sophisticated role manage-
ment feature, so that a straightforward mapping of the organisation is attainable
or further role separation for the use of the Scrum tool is not needed at all.

4.4 Insufficient Overview of the Digital Task Board Due to a Mass
Amount of Information to Display

All interviewed experts complained about an insufficient overview of the digital
task board. The main reason for their complaint was that meeting participants
may lose the overall context of the discussed tasks when scrolling to the next user
story, due to fact that not all of the tasks could be displayed at once, making
reading difficult. One interviewee took advantage of this issue by forcing the
development team to focus only on three user stories at a time. This way, all of
the user stories and corresponding tasks in process could be displayed at once
and as a consequence, scrolling was unnecessary. However, there is still a demand
for an improved design of the task board to display the entire content at once,
without compromising readability.

4.5 Scrum Tools Hosted in the Cloud

Numerous producers of web-based Scrum tools, such as Atlassian, sell cloud
hosting services in addition to the developed product to enable customers a fast

How Scrum Tools May Change Your Agile Software Development Approach 25

and easy launch of the Scrum tool in their organisation. Although cloud hosting
may be a more convenient way than deploying the Scrum tool on a self-hosted
server, there are a few things worth taking into consideration when using third-
party cloud services for hosting a Scrum tool.

First of all, Scrum tools are used to support the agile software develop-
ment process and therefore need to handle data which may betray customers’
privacy to a certain degree. Unfortunately, it cannot be guaranteed that the ser-
vice provider will not face any data privacy issues. In addition, they often have
their own privacy policies, which may exclude coverage for privacy and security
liabilities. Nevertheless, the cloud hosting provider should hold a valid industry-
standard security certification which verifies a safe hosting environment at a high
level.

Secondly, relying on a Scrum tool which is hosted by a cloud service provider
could have a huge negative impact on the productivity of the Scrum team, if
the tool is not available when needed. Even more attention should be paid to
this potential risk, if the Scrum tool is used as a central information system
and business relevant data must be accessible all time. Since hosting issues may
not be resolved immediately after occurrence, the web-based Scrum tool can be
offline for a longer period of time. However, the existence of this problem could
not be verified, since all interviewed experts host the Scrum tool in their internal
IT infrastructure, due to the previously stated potential risks.

Owing to both of the mentioned reasons, all of the interviewed ScrumMasters
recommend the self-hosted solution, because the use of a cloud hosted Scrum tool
will result in an undesirable dependency to the service provider. However, Scrum
teams in small companies may benefit more from cloud hosted Scrum tools, since
they do not have to care about the deployment of the server and the ongoing
periodic maintenance tasks.

4.6 Challenges in Introducing Scrum Tools in an Organisation

According to our study, organisations may face problems related to practicing
Scrum if the Scrum tool has been introduced at the same time as the agile
methodology itself. One of the main risks related to this approach is that the
Scrum team may deduce the Scrum process from the features of the Scrum tool.
In this way, they will lose all possibilities for continuously improving the Scrum
process from the very beginning. As the Scrum tool may provide ready-made
processes, the Scrum team often tends to carry out mindlessly instructions the
Scrum tool gives. Two interviewed ScrumMasters compared this pitfall to SAP
implementation failures due to massive internal organisational changes across
a variety of business segments in the company. As a result, it is highly recom-
mended to start introducing a Scrum tool after Scrum has been successfully
established in the organisation. Especially at an early stage, the use of a phys-
ical task board, to visualise the sprint backlog with sticky notes, may be more
effective when practicing Scrum. Only after the Scrum team has understood the
importance of face-to-face communication, they can try to make the switch to a
digital task board, provided by the Scrum tool. Nevertheless, the physical task

26 M. Eckhart and J. Feiner

board should be available at any time during the first sprint conducted with the
Scrum tool, allowing the team members to switch back to the old method easily.
Ideally, a part of the sprint retrospective meeting should be used to reflect on
how the Scrum tool was used during the sprint and if it should be used in future
sprints. As a consequence, the Scrum tool should provide features to perform a
fast migration, so that an implementation later on in the Scrum process is still
attainable.

5 Concepts for Success Regarding the use of Scrum Tools

In this section, we present examples for a better understanding of how to use
Scrum tools effectively and make suggestions how they could be improved.

5.1 Agile Software Development with Distributed Teams

The coordination of distributed teams requires a lot of effort to keep the collab-
oration among distributed team members vibrant, ensuring an ongoing produc-
tivity on a high level. Considering the economic aspects of distributing teams
globally, it may be worth the management effort. However, beside differences
in culture and language problems, also technical issues may emerge. One inter-
viewed ScrumMaster reported that they started to use Skype as a video confer-
encing tool for their daily Scrum meetings on both of the two locations. The
interviewee also pointed out that the use of a HD camcorder instead of an
off-the-shelf webcam for live streaming is beneficial in terms of video quality
and mobility. Furthermore, the ScrumMaster mentioned that the use of a pro-
fessional studio microphone is more qualified for the stand-up meeting than
a built-in microphone, because it can be passed along from person to person.
Although the quality of the video calls was acceptable for streaming the daily
Scrum meetings, a professional video conferencing system may be superior if
more than two distributed Scrum teams participate.

However, according to the interviewees, recording the physical task board is
useless, since meeting participants on other locations cannot read the streamed
content of the user stories and the corresponding tasks. Even transmitting high-
resolution photos of the physical task board has been proven as inefficient. This
issue has been resolved by using a Scrum tool and installing an additional mon-
itor on each location in order to view the digital task board and the video con-
ference simultaneously. In addition, meeting participants may benefit from the
use of a screen sharing software for mirroring the Scrum tool, because this way
they are able to keep track of the discussed topics. Despite that the proposed
solution may work to some extent, the ScrumMaster suggested that the Scrum
teams should meet at each others location on a rotating basis at the end, as well
as at the beginning of the consecutive sprint, if the project enters a critical stage
and the travel expenses are affordable.

How Scrum Tools May Change Your Agile Software Development Approach 27

5.2 Optimising the Digital Tool Landscape

Scattering documents across multiple tools is a known problem for IT compa-
nies in general. Especially in companies which specialise in the development of
software, this issue may be even more important since they may need a tool
to track down bugs. In addition, specifications for the implementation of the
developed product may also be managed on data storage systems or with web
content management systems such as MediaWiki or TWiki. In general, there
is a need for a revision control system specifically for documents, on the one
hand to prevent data inconsistencies, due to concurrent processing of the same
file by multiple users, and on the other hand to keep track of the changes made.
According to Møller et al. [15], there is also a requirement for an internal logging
feature, which tracks the project’s progress and in further consequence provides
historical data of everything that has happened during the sprint. Their find-
ings suggest that owing to a Scrum tool’s project history feature it would be no
longer necessary to review extensively the progress of tasks and ipso facto time
can be saved in discussions.

As the software maintenance effort increases by every new tool that will be
integrated in the existing IT infrastructure, a Scrum tool which could eliminate
other tools currently being used in the organisation would be ideal. For instance,
a real-time collaborative editor feature like Etherpad could replace document
processing tools. Moreover, the interviewed experts confirmed the findings of
Sarkan et al. [8] that the integration of a bug tracker in the Scrum tool may sim-
plify the bug fixing process, owing to referenced bugs on the digital task board.
As a result, the establishment of the Scrum tool as a single environment like a
one-stop-shop would not only be cost and time efficient, but also may increase
the productivity of the Scrum team. Nevertheless, a Scrum tool capable of being
used for many purposes in the context of software development may exhibit an
undesirable strong dependence and consequently can become a potential single
point of failure.

5.3 Integrated Reporting Solution

If the Scrum team works with the Scrum tool on a regular basis, the tool has great
potential to increase efficiency by automating complex analysing and reporting
tasks. In particular, measured agile metrics are relevant to managers, so that
they can address problems and resolve incidents early enough. Typically, mea-
suring and tracking the velocity is significant to estimate the rate of progress of
the development team. In this way, managers can determine the project status
to make sure that the arranged delivery date can be met. Furthermore, an eval-
uation of past impediments may increase the team’s productivity if recurring
issues can be fixed permanently. As Scrum tools may offer features that are able
to extract data for reporting purposes or able to integrate a reporting system
seamlessly, they could provide support for analysing and evaluating the team’s
performance. However, as previously stated, the ScrumMaster should give par-
ticular attention to prevent the emergence of a command-and-control leadership
style by managers that may cause interferences in the development team’s work.

28 M. Eckhart and J. Feiner

5.4 Simulating the Look and Feel of a Physical Task Board

The design of the digital task board can have a huge impact on the usability
of the Scrum tool. According to our results of the expert interviews, the layout
of the digital task board should be based on an ordinary physical task board,
because the Scrum team members may recognise it as a familiar object to work
with. Typically, user stories and the corresponding tasks are displayed as vir-
tual sticky notes in a matrix view. Although the overall design of the digital
task board is important, the main focus should be put on the interaction with
tasks. The interviewed ScrumMasters emphasised that they prefer drag-and-drop
functionality for moving the virtual sticky notes to other task status columns,
because this way of interacting is more intuitive than updating the task’s sta-
tus by setting a specific value in a drop-down list, to mention one prominent
example. Consequently, users may get more engaged with using the Scrum tool.

In contrast to the capabilities of a physical task board, the digital task board
provided by the Scrum tool may also be able to display the user’s avatar on the
virtual sticky note, showing the responsible team member’s particular tasks. In
this way, social aspects of an online community can be integrated, increasing
the interpersonal trust in distributed teams [16]. In addition, the highlighting of
tasks, which remain more than one day in progress, is beneficial for identifying
problems or indicating that complex tasks should be broken down into sub-tasks.

5.5 Printable User Stories and Tasks

Scrum teams that want to take advantage of the physical, as well as the digital
task board should certainly choose a Scrum tool which provides an export feature
for user stories and tasks. In this way, the content of the digital task board can
be printed and subsequently attached to a whiteboard or wall. The status of the
tasks can then be synchronised manually with the digital task board periodically
or at the end of each sprint. One interviewed expert recommended the JIRA
plugin Agile Cards which enables an automated synchronisation by importing a
photograph of the physical task board to JIRA.

6 Minimum Requirements for Scrum Tools

In the following section, we present minimum requirements that a Scrum tool
must meet, as reported by the interviewed ScrumMasters. Not meeting these
requirements may cause dissatisfaction among Scrum team members. Since the
Scrum team’s needs may vary, our aim is to provide a brief overview of funda-
mental characteristics which a Scrum tool should have implemented to its full
extent.

As listed in Table 2, the suggested minimum requirements are deduced from
remarks of prior sections, but are not ordered by importance or any other criteria.

How Scrum Tools May Change Your Agile Software Development Approach 29

Table 2. Determined minimum requirements for Scrum tools, based on our study
results, including specific quotations made by the interviewed ScrumMasters.

Minimum
requirement

Description Extracts from the interviews

Information hub The Scrum tool must be
established as the primary
source for information
regarding the agile
development process, in
order to eliminate multiple
subject-specific tools like
Wikis and document
management systems

“Developers should use the
Scrum tool as a daily
companion, assisting users in
doing their work by providing
relevant information
concerning the project.”

Usability According to the
ScrumMasters’ opinions,
the management may
agree on a training for
eight hours at the
maximum, therefore the
Scrum tool must be easy
to use and consequently
require little or no need
for training

“As Scrum is easy to
understand, the initial
training phase for users of a
newly introduced Scrum tool
should have a similar learning
curve. In this particular
context, usability is definitely
a factor to consider.”

Availability The tool must be available
during working hours at
the minimum. In case
multiple teams are
employed globally at
different locations, the
availability of the Scrum
tool must be adapted
according to potential
time differences

“I have been informed that
iceScrum’s datacenter faced
network issues several times
which caused a downtime of
the Scrum tool and affected
customers of their cloud
service.”

Flexibility The Scrum tool must preset
roles which can be
mapped with enterprise
organisational structures.
Furthermore, the Scrum
tool must offer a variety of
effort estimation methods
and the specified sprint
duration must be
modifiable

“Whether a Scrum process or
any other activity in an
organisation is supported by
a tool, it should be able to
adapt to the given conditions
at all times and not vice
versa, in the manner of some
failed SAP implementations.”

(Continued)

30 M. Eckhart and J. Feiner

Table 2. (Continued.)

Minimum
requirement

Description Extracts from the interviews

Design of the
digital task
board

The look and feel of a typical
physical task board must
be simulated by designing
the structure of the digital
task board in a similar
way and by implementing
intuitive interactions for
handling virtual sticky
notes

“The implemented interaction
technique of a Scrum tool
which we used prior to
iceScrum provided a rather
inconvenient way of changing
the task’s status, because the
interaction with tasks was
based on basic GUI elements
like a drop-down menu. As
opposed to this way of
interacting with tasks,
dragging a virtual sticky note
from one column to another
seems more appealing to
me.”

Traceability Changes made to artefacts
with the Scrum tool must
be traceable via a version
control functionality, so
that modifications are
understandable at any
time

“A Scrum tool must provide
traceability features,
otherwise users are not able
to understand the changes
made to artefacts. Thus, the
artefact’s history is
fundamental to the
comprehension of information
involved in Scrum processes.”

Customisability The Scrum tool must provide
an interface to enable
adaptations, either by
customising the existing
code of the Scrum tool or
by being capable of
integrating third-party
plugins

“Since the implemented Scrum
processes often vary from
organisation to organisation,
it should be possible to
adjust the Scrum tool to
specific needs and different
environments.”

Transparency Artefacts, managed with the
Scrum tool, must be
visible for anyone involved
in the Scrum process

“The Scrum tool must not limit
the access to artefacts,
otherwise the implementation
of Scrum may be classified as
a sinking ship and will result
in a failed project or cost
overrun.”

(Continued)

How Scrum Tools May Change Your Agile Software Development Approach 31

Table 2. (Continued.)

Minimum
requirement

Description Extracts from the interviews

Reporting Managers must be able to
extract useful data
concerning the
performance of the Scrum
team, in order to get a
solid source of information
regarding the project
status

“For now we use an internal
website which provides a
status report based on
various sources of
information. Periodically, I
export this website as a PDF
file and send the document to
the management. Since this
manual processing is
time-consuming, a Scrum
tool, which is able to
automatically generate
detailed reports at regular
intervals would be extremely
helpful. Furthermore, in my
opinion, the Scrum tool’s
reporting feature should put
emphasis on simplicity, so
that the project’s status is
easy to grasp. This could be
implemented via a coloured
illustration of a traffic light
which indicates the current
status.”

Integrated com-
munication
solution

The Scrum tool must provide
an integrated real-time
one-to-one as well as a
group messaging system
to simplify communication
with distributed teams

“Managing distributed Scrum
teams is challenging.
However, a Scrum tool can
make a significant positive
contribution to the
collaboration among
distributed team members.”

7 Scrumpy – An Agile Project Management Tool
Designed to Skyrocket Your Team’s Productivity

The idea to develop a custom-built, Open Source Scrum tool [17] originated
from the need of a lightweight solution which is extensible and allows adjust-
ments which are specific to the environment at hand. Initially, the Institute
of Internet Technologies and Applications, a department of the University of
Applied Sciences JOANNEUM, used Scrumy for managing tasks, but the lack
of extensibility in terms of LDAP authentication led to the decision to develop a
new Scrum tool in-house. As a consequence, we created a web-based Scrum
tool named Scrumpy [18,19] based on the results obtained from the expert

32 M. Eckhart and J. Feiner

interviews. Scrumpy runs on Meteor, a JavaScript framework for building mod-
ern real-time web applications. Owing to the integrated real-time web function-
ality, using the Scrum tool leads to a more vibrant experience, since data changes
become immediately visible without refreshing the page.

Our main goal was to build a Scrum tool which can serve as an all-in-one
solution, as well as an auxiliary tool which is limited to the digital task board

Fig. 2. Users can drag and drop virtual notes in order to update the task’s status.

How Scrum Tools May Change Your Agile Software Development Approach 33

feature. Therefore we created an advanced and a basic mode2 to meet the user’s
needs. In contrast to the basic mode, the advanced mode also includes a prod-
uct management feature with detailed statistics on the progress of the product
development, an activity stream which enables Scrum team members to easily
track changes and a component for managing backlog items. Furthermore, we
integrated the library ShareJS into the advanced mode, in order to enable users
concurrent editing of documents in real-time. Regardless of the selected mode,
user stories and the corresponding tasks can be exported as a PDF document,
similar to the JIRA plugin Agile Cards.

According to the assessed needs concerning the usability of Scrum tools in
Sect. 4.4, we used a responsive web design approach to take advantage of high-
resolution monitors for displaying as much content as possible and not wasting
any empty space. Thus, the appearance of the web application is especially ben-
eficial for viewing the digital task board on a modern big-screen as many user
stories and tasks can be displayed at once without the need for zooming. Par-
ticular attention has also been paid to the design of interactions with tasks and
product backlog items. Since the interviewed experts prefer a natural, intuitive
way of handling the tasks, we decided to implement a drag-and-drop function-

Table 3. List of minimum requirements and the stage of development, indicating
whether the feature is implemented in Scrumpy.

Minimum requirement Supported by Scrumpy

Information hub Scrumpy provides a real-time editor which
enables multiple users to work
simultaneously on the same document. The
integration of a file management system in
Scrumpy is planned for future releases

Usability �
Availability Depends on the infrastructure of servers and

networks

Flexibility Scrumpy maps the traditional Scrum roles in
the advanced mode and provides two
different user levels (administrator and team
member) in the basic mode

Design of the digital task board �
Traceability ✗

Customisability �
Transparency �
Reporting �
Integrated communication solution �

2 The basic mode is not necessarily intended for Scrum teams, but rather for any
team, who wants to manage work visually via a task board.

34 M. Eckhart and J. Feiner

ality. As a result, users are able to prioritise the product backlog or update the
task’s status by dragging the backlog item or the virtual sticky note to specific
drop zones. Figure 2 shows the digital task board of Scrumpy’s basic mode and
the way how users interact with tasks.

Although Scrumpy is intended for professional use, we implemented features
which should integrate social aspects of a typical online community. For instance,
users are able to setup profile pages, upload avatars and chat with other regis-
tered members. In this way, the collaboration across globally distributed Scrum
teams may be strengthened.

In spite of Scrumpy’s huge feature set, we are planning to improve the exist-
ing components and continually implementing more functionality. For instance,
Scrumpy does not provide a feature to define acceptance criteria for user stories.
Furthermore, we plan to implement an internal calendar to schedule appoint-
ments and sync it with cloud services like iCloud. Last but not least, the inte-
gration of ownCloud would be desirable.

Find in Table 3 the implemented features according to the identified minimum
requirements from Sect. 6.

8 Conclusion and Future Work

The expert interviews revealed problem areas regarding Scrum tools that tend
to be crucial to the success of any agile Scrum project. Those issues are not
only related specifically to the improper use, but also to the implementation of a
Scrum tool in an organisation. For instance, we discovered that the ScrumMaster
may face challenging tasks in maintaining effective conversations among team
members, since chatting on a Scrum tool is a poor substitute for face-to-face
communication. Furthermore, Scrum tools may not be able to map various types
of enterprise agile organisational structures completely, which can cause a lack of
transparency. This study also investigated problems concerning the introduction
of Scrum tools and the hosting of the tool in the cloud, which should be used in
caution, since privacy and availability issues may be faced. In contrast, we also
analysed how Scrum tools can be used effectively and presented possible feature
concepts to improve them.

The practical implications of our study can be summed up as follows. Scrum-
Masters are sceptical towards the use of Scrum tools in collocated teams, because
they appreciate the benefits of face-to-face communication which may be harmed
due to the improper use of the tool. Although they think that Scrum tools can
be very helpful if they have been introduced in an organisation properly, they
certainly prefer a tool-free start of the first agile project, especially if Scrum team
members are not familiar with agile-oriented processes. After the first couple of
sprints have been successfully completed and the participants respect the agile
principles as well as values, they can try to make the shift to a tool-supported
Scrum workflow. However, according to the interviewed ScrumMasters, the use
of a Scrum tool in a remote setup is almost essential. In this context, we noticed
that ScrumMasters who work with distributed teams reconsider their toolset
with an emphasis on collaboration features.

How Scrum Tools May Change Your Agile Software Development Approach 35

Since Scrumpy has not been assessed in real-world contexts, the prototype
will be extensively evaluated in the next phase of the development process. This
procedure will be done in two steps. First, we want to introduce Scrumpy in
a Scrum-based software development course at our university and in further
consequence establish the tool as an information hub for students to manage their
project work. After that, we want to introduce Scrumpy in local agile software
development companies to examine the Scrum tool in a real-world example.
Based on this evaluation, we also intend to extend the functionality of Scrumpy
in our future research. In addition, future work will also involve usability tests in
a desktop and mobile setup, to improve the overall usability of the application
and determine if the application can be used on mobile devices.

References

1. The Standish Group International. CHAOS MANIFESTO 2013 - Think Big,
Act Small (2013). http://www.versionone.com/assets/img/files/CHAOSManifesto
2013.pdf

2. Azizyan, G., Magarian, M.K., Kajko-Mattson, M.: Survey of agile tool usage and
needs. In: Agile Conference 2011, AGILE 2011, pp. 29–38. IEEE Computer Society,
August 2011. doi:10.1109/AGILE.2011.30. ISBN: 978-0-7695-4370-3

3. Heller, R., Laurito, A., Johnson, K., Martin, M., Fitzpatrick, R., Sundin,
K.: Global teams: trends, challenges and solutions. In: Cornell Center for
Advanced Human Resource Studies. Partner Meeting, CAHRS 2010, May 2010.
https://est05.esalestrack.com/eSalesTrack/Content/Content.ashx?file=4578f59e-
21b3-4a2c-bbfe-63e53af3f5dc.pdf

4. Damian, D., Lassenius, C., Paasivaara, M., Borici, A., Schroter, A.: Teaching a
globally distributed project course using scrum practices. In: Proceedings of 2nd
Workshop on Collaborative Teaching of Globally Distributed Software Develop-
ment, CTGDSD 2012, pp. 30–34. IEEE Computer Society (2012). doi:10.1109/
CTGDSD.2012.6226947. ISBN: 978-1-4673-1818-1

5. Moe, N.B., Dingsoyr, T., Dyb̊a, T.: Overcoming barriers to self-management in
software teams. IEEE Softw. 26(6), 20–26 (2009). doi:10.1109/MS.2009.182

6. Scissors, L., Shami, N.S., Ishihara, T., Rohall, S., Saito, S.: Realtime collabora-
tive editing behavior in USA and Japanese distributed teams. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI 2011,
Vancouver, BC, Canada, pp. 1119–1128. ACM (2011). doi:10.1145/1978942.
1979109. ISBN: 978-1-4503-0228-9

7. Rayhan, S.H., Haque, N.: Incremental adoption of scrum for successful delivery of
an IT project in a remote setup. In: Melnik, G., Kruchten, P., Poppendieck, M.
(eds.) Agile 2008 Conference, AGILE 2008, pp. 351–355. IEEE Computer Society,
August 2008. doi:10.1109/Agile.2008.98

8. Sarkan, H., Ahmad, T., Bakar, A.: Using JIRA and redmine in requirement devel-
opment for agile methodology. In: 2011 5th Malaysian Conference Software Engi-
neering (MySEC), pp. 408–413, December 2011. doi:10.1109/MySEC.2011.6140707

9. Perry, T.: Drifting toward invisibility: the transition to the electronic task board.
In: Agile, AGILE 2008, Conference, pp. 496–500, August 2008. doi:10.1109/Agile.
2008.62

http://www.versionone.com/assets/img/files/CHAOSManifesto2013.pdf
http://www.versionone.com/assets/img/files/CHAOSManifesto2013.pdf
http://dx.doi.org/10.1109/AGILE.2011.30
https://est05.esalestrack.com/eSalesTrack/Content/Content.ashx?file=4578f59e-21b3-4a2c-bbfe-63e53af3f5dc.pdf
https://est05.esalestrack.com/eSalesTrack/Content/Content.ashx?file=4578f59e-21b3-4a2c-bbfe-63e53af3f5dc.pdf
http://dx.doi.org/10.1109/CTGDSD.2012.6226947
http://dx.doi.org/10.1109/CTGDSD.2012.6226947
http://dx.doi.org/10.1109/MS.2009.182
http://dx.doi.org/10.1145/1978942.1979109
http://dx.doi.org/10.1145/1978942.1979109
http://dx.doi.org/10.1109/Agile.2008.98
http://dx.doi.org/10.1109/MySEC.2011.6140707
http://dx.doi.org/10.1109/Agile.2008.62
http://dx.doi.org/10.1109/Agile.2008.62

36 M. Eckhart and J. Feiner

10. Berczuk, S.: Back to basics: the role of agile principles in success with an distributed
scrum team. In: Agile Conference (AGILE), pp. 382–388, August 2007. doi:10.1109/
AGILE.2007.17

11. Segers, J.: Analysis of a paper-and software-based scrum task board. M.A. thesis.
Universiteit Twente, September 2012. http://essay.utwente.nl/62136/

12. Uy, E., Rosendahl, R.: Migrating from SharePoint to a better scrum tool. In:
Melnik, G., Kruchten, P., Poppendieck, M. (eds.) Agile 2008 Conference,
AGILE 2008, pp. 506–512. IEEE Computer Society, August 2008. doi:10.1109/
Agile.2008.69. ISBN: 978-0-7695-3321-6

13. Seaman, C.: Qualitative methods in empirical studies of software engineering. IEEE
Trans. Softw. Eng. 25(4), 557–572 (1999). doi:10.1109/32.799955. ISSN: 0098-5589

14. Beck, K., Martin, R.C., Schwaber, K., Sutherland, J., Fowler, M.: Principles behind
the agile manifesto (2001). http://agilemanifesto.org. Accessed 12 January 2001

15. Møller, L.S., Nyboe, F.B., Jørgensen, T.B., Broe, J.J.: A scrum tool for improving
project management. In: Flirting with the Future, Prototyped Visions by the Next
Generation, Proceedings of the 5th Student Interaction Design Research Confer-
ence (SIDeR 2009), pp. 30–32 (2009)

16. Bente, G., Ruggenberg, S., Kramer, N.C., Eschenburg, F.: Avatar-mediated net-
working: increasing social presence and interpersonal trust in net-based collabora-
tions. Hum. Commun. Res. 34(2), 287–318 (2008). doi:10.1111/j.1468-2958.2008.
00322.x

17. Eckhart, M.: Scrumpy on GitHub, May 2015. https://github.com/Matthias
Eckhart/Scrumpy

18. Eckhart, M., da Silva, E.V.: Scrumpy – An Agile Project Management Tool
Designed to Skyrocket Your Team’s Productivity, May 2015. http://scrumpy.
meteor.com

19. Eckhart, M.: Product description of Scrumpy on KMU-goes-mobile, May 2015.
https://kmu.fh-joanneum.at/scrumpy

http://dx.doi.org/10.1109/AGILE.2007.17
http://dx.doi.org/10.1109/AGILE.2007.17
http://essay.utwente.nl/62136/
http://dx.doi.org/10.1109/Agile.2008.69
http://dx.doi.org/10.1109/Agile.2008.69
http://dx.doi.org/10.1109/32.799955
http://agilemanifesto.org
http://dx.doi.org/10.1111/j.1468-2958.2008.00322.x
http://dx.doi.org/10.1111/j.1468-2958.2008.00322.x
https://github.com/MatthiasEckhart/Scrumpy
https://github.com/MatthiasEckhart/Scrumpy
http://scrumpy.meteor.com
http://scrumpy.meteor.com
https://kmu.fh-joanneum.at/scrumpy

Towards Business Process Execution
Adequacy Criteria

Antonia Bertolino, Antonello Calabró(B), Francesca Lonetti,
and Eda Marchetti

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”,
Consiglio Nazionale delle Ricerche (CNR), via G. Moruzzi 1, 56124 Pisa, Italy

{antonia.bertolino,antonello.calabro,
francesca.lonetti,eda.marchetti}@isti.cnr.it

Abstract. Monitoring of business process execution has been proposed
for the evaluation of business process performance. An important aspect
to assess the thoroughness of the business process execution is to monitor
if some entities have not been observed for some time and timely check
if something is going wrong. We propose in this paper business process
execution adequacy criteria and provide a proof-of-concept monitoring
framework for their assessment. Similar to testing adequacy, the purpose
of our approach is to identify the main entities of the business process
that are covered during its execution and raise a warning if some entities
are not covered. We provide a first assessment of the proposed approach
on a case study in the learning context.

Keywords: Business process · Monitoring · Adequacy criteria ·
Learning assessment

1 Introduction

Nowadays, more and more industrial organizations are using Business Process
Model and Notation (BPMN) for process modeling. The main benefits of BPMN
commonly rely on the possibility of having a simple and standard notation for
creating a description of processes (in terms of participants and activities) and
develop executable frameworks for the overall management of the process itself.
Monitoring the business process execution represents a key aspect both for busi-
ness process management and business process validation. Existing works [1–3]
focus on monitoring and analysis of the factors that influence the performance of
business processes. Specific key performance indicators (KPIs), including time
based and cost based parameters, are defined together with their target values
based on business goals. In this paper, we focus on monitoring the adequacy
of the business process execution by defining coverage based adequacy criteria
and a proof-of concept framework able to assess the BPMN execution adequacy.
The main idea is to assess if a business process execution is adequate, i.e., if all
the main entities (activities, connection objects, swimlanes, etc.) of interest of
c© Springer International Publishing Switzerland 2016
D. Winkler et al. (Eds.): SWQD 2016, LNBIP 238, pp. 37–48, 2016.
DOI: 10.1007/978-3-319-27033-3 3

38 A. Bertolino et al.

the business process are covered during its execution or if the business process
execution misses some of them with consequent unexpected behaviour or secu-
rity flaw. Our proposal extends a more generic notion of adequacy criterion,
presented in our previous work [4], by defining and implementing an instan-
tiation of this adequacy criterion for the business process execution. However,
the goal of this paper is not to assess the monitor adequacy as in [4], but the
adequacy of the business process execution using monitoring facilities for mea-
suring the proposed adequacy criteria. The main idea is to define what are the
relevant entities that we would expect to observe during BPMN execution and
hence to set adequacy criteria on such entities, using monitoring facilities for
observing and reporting about the percentage of entities that have been covered
during business process execution. In such way we can become aware that some
expected entities (for instance activities or swimlanes) have not been covered for
some time, and then timely check whether this happens because something is
going wrong during business process execution or this is simply due to a tem-
porary decrease of users interest for those entities. This idea takes inspiration
from coverage-based test adequacy that have been extensively studied in soft-
ware testing, e.g. referring to coverage of entities in the program control-flow
or data-flow [5], and nowadays constitutes a fundamental instrument for test
suites evaluation. Similarly to testing adequacy, we introduce here the notion of
business process execution adequacy. A difference with the traditional notion of
testing adequacy is the concept of observation window, namely the period along
which the business process execution is assessed. It is out of scope in this paper
to address the problem of how to set the length of the observation window. We
refer to [4] for an overview of existing methodologies for properly setting the
length of such observation window.

The contribution of this paper can be summarized into: (i) the definition of
business process execution adequacy criteria; (ii) a proof-of-concept framework
able to measure the BPMN execution adequacy; (iii) a preliminary assessment
of the proposed proof-of-concept framework on a case study developed in the
learning context.

The remainder of this paper is structured as follows: Sect. 2 introduces busi-
ness process modeling notation and the notion of testing adequacy; Sect. 3 illus-
trates the business process execution adequacy criteria whereas Sect. 4 describes
the architecture of a proof-of-concept framework able to measure the BPMN
execution adequacy. Section 5 provides a preliminary assessment of the proposed
approach. Finally, Sect. 6 puts our work in context of related work whereas Sect. 7
concludes the paper also hinting at future work.

2 Background

This section introduces the background behind the proposed approach. Specifi-
cally, we first present some key concepts of the Business Process Modeling Nota-
tion and then we focus on test coverage as adequacy criterion in software testing.

Towards Business Process Execution Adequacy Criteria 39

Business Process Modeling Notation. Business Process Model and Notation
(BPMN) is a standard notation by the Object Management Group (OMG) [6]
for specifying business process. BPMN provides a graphical notation for support-
ing business process management that allows to fill the gap between technical
users and business users by providing a notation that is intuitive to business
users and able to represent complex process semantics. There are three basic
types of sub-models within an end-to-end BPMN model: Processes (Orchestra-
tion), Choreographies, and Collaborations. The five core notation elements of
BPMN are: (i) flow objects that allow to model event, activity, and gateway;
(ii) data items that model data within the process flow and are represented by
four elements: data objects, data inputs, data outputs, and data stores; (iii) con-
nection objects that connect the flow objects to each other and are: sequence
flow, message flow, and association; (iv) swimlanes to model process partici-
pants; (v) artifacts (group and text annotation) are used to provide additional
information about the process.

Testing Adequacy. In software testing, coverage of entities of program control-
flow or data-flow is a test adequacy criterion that has been proposed as an
indicator of testing effectiveness for selection and evaluation of different test
cases. Code coverage e.g. is measured as the fraction of program code that is
executed at least once during the test execution. Various code coverage criteria
have been suggested [7], including statement coverage, decision coverage, path
coverage, C-use coverage, P-use coverage, etc. whereas different coverage metrics
have been proposed for different languages and application domains. The corre-
lation between code coverage and fault detection capability has been extensively
studied but it remains nowadays a controversial issue. Some previous studies
[7,8] show that high code coverage implies high software reliability and low fault
rate. Experimental studies [9] focus on coverage testing and mutation testing in
order to investigate the relationship between code coverage and fault detection
capability of a test suite. Others studies [10] show that the relationship between
code coverage and fault detection varies under different testing profiles and it
is affected by the different code coverage metrics. In this paper we propose to
measure the adequacy of the business process execution by identifying what are
the relevant entities to be covered and by assessing if all of them, or otherwise
what percentage, have been covered. It is out of scope of this paper to investigate
the relationship between business process coverage and fault detection.

3 Defining Business Process Execution Adequacy

In this section we introduce the generic concept of business process execution
adequacy, without considering a specific coverage measure or application domain.

In test coverage criteria, a set of requirements that a test suite must fulfill
is established and it is mapped onto a set of entities that must be covered
when the test cases are executed, as for instance all statements or all branches
of a program control-flow. The coverage criterion is satisfied if all the entities

40 A. Bertolino et al.

are covered; otherwise, the percentage of covered entities represents a quality
measure of the test suite.

The intuitive motivation behind measuring test coverage is that if some entity
has never been tested, it might contain undetected faults. Obviously, the con-
verse reasoning does not apply: if we had covered all entities and detected no
failure, this does not necessarily imply that the program is correct. In a similar
way, we propose here to assess the adequacy of the business process execution
by identifying what are the relevant entities to be covered and by assessing if
all of them, or otherwise what percentage, have been executed. To do this, we
propose a proof-of-concept monitoring framework to observe and collect busi-
ness process execution traces and measure the coverage of the entities belonging
to these traces. As for test adequacy, the motivation behind assessing business
process execution adequacy is that if some entities are not covered, we cannot
exclude that these might hide some problem or security flaw. Similarly to the
notion of testing session, namely the period along which the test adequacy is
measured, we define the observation window as the length of a considered obser-
vation period associated to the business process execution coverage measure.
Intuitively, a sliding observation window over a time measurement unit can be
established, which could be either continuous (e.g. the execution traces collected
in the last 120 s) or discrete (e.g., the most recent 15 traces). The proposed busi-
ness process execution adequacy criteria extend a general monitoring adequacy
criterion presented in [4], by defining and implementing an instantiation of this
adequacy criterion for the business process execution.

In the rest of this section the generic concept of business process (BP) execu-
tion adequacy criterion, without binding its definition to a specific coverage mea-
sure, is introduced. In fact, the notion of business process execution adequacy is
neutral with respect to both the entities to be covered (i.e. activity, tasks, paths
and so on) and the application domain. In the next section the generic concept
of business process execution adequacy criterion is instantiated considering three
different entities of the business process (Activity Entity, Sequence Flow Entity,
Path Entity) and a set of coverage adequacy criteria is presented.

Definition 1. Denote ri ∈ R the i-th entity to be covered, and by δi ∈ Δ the
length of its associated observation window. The business process execution ade-
quacy criterion C dynamically measures the coverage on R for a given entity i
at each time unit t as follows:

C[R,Δ](t) =
∑|R|

i=1 λi(t)
|R|

where for ri ∈ R and δi ∈ Δ

λi(t) =
{

1 if ri is covered at least once in [t − δi, t]
0 otherwise.

According to this definition the length of δi could be different for each ri, or
could be the same for all entities. In summary the definition of business process
execution adequacy introduces the following concepts:

Towards Business Process Execution Adequacy Criteria 41

• an “adequate business process execution” is a business process execution on
which a set of entities ri to be covered in a window δi is defined (this is similar
to the instrumentation phase of coverage testing);

• a monitoring tool that, at every instant t, can provide a coverage measure as
in Definition 1 and, if this is less than 1, can provide a list of those entities
that have not been covered;

• an entity that is not covered is an entity of the business process that has not
been executed for some time. In such a case a warning message could be raised
by the monitoring tool.

3.1 Entity Definition

Inside a business process execution the definition of what is an entity to be
covered can be provided at different levels and with different targets. We consider
the following definitions:

Definition 2 (Activity Entity). Given a BP, an activity entity is one of the
activities specified in the BP that can be executed at least once.

Definition 3 (Activity Coverage Domain). Considering a BP, the activity
coverage domain is the set of all the activity entities of the BP.

Definition 4 (Percentage of Activity Coverage). With reference to
Definition 1, the percentage of activity coverage at time t is given by 100*C,
where R is the activity coverage domain.

Consequently, at a given instant a business process execution is adequate with
respect to the activity coverage criterion if the percentage of activity covered is
100 % (or greater than an established threshold level).

Definition 5 (Sequence Flow Entity). Given a BP, a sequence flow entity
is one of the sequence flow1 specified in the BP that can be executed at least once.

Definition 6 (Sequence Flow Domain). Considering a BP, the sequence
flow coverage domain is the set of all the sequence flows entities of the BP.

Definition 7 (Sequence Flow Coverage). With reference to Definition 1,
the percentage of sequence flow coverage at time t is given by 100*C, where R is
the sequence flow coverage domain.

Consequently, at a given instant a business process execution is adequate with
respect to the sequence flow coverage criterion if the percentage of sequence flow
entities covered is 100 % (or greater than an established threshold level).

Definition 8 (Path Entity). Given a BP, a path entity is one of the paths
specified in the BP that can be executed at least once.
1 Sequence Flow is used to show the order in which activities of a process will be

performed. A Sequence Flow connection is represented with a solid line and a solid
arrowhead in a Business Process Model.

42 A. Bertolino et al.

Definition 9 (Path Domain). Considering a BP, the path coverage domain
is the set of all the path entities of the BP.

Definition 10 (Path Coverage). With reference to Definition 1, the percent-
age of path coverage at time t is given by 100*C, where R is the path coverage
domain

Consequently, at a given instant a simulation is adequate with respect to the
path coverage criterion if the percentage of path entities covered is 100 % (or
greater than an established threshold level).

4 Framework

With reference to Fig. 1, we present in this section the components of a proof-
of-concept framework able to measure the business process execution adequacy,
we have implemented:

• BPMN Path Explorer. This component is in charge to explore and save all the
possible entities (Activity Entity, Sequence Flow Entity, Path Entity) reach-
able on a BPMN. The paths extraction is realized by an optimized unfolding
algorithm that exploits advantages provided by the use of BPMN 2.0. The
goal is to derive an acyclic graph, defining a partial order on its nodes. In
particular, the exploration reduces the required space and time thanks to a
more efficient management of the interleaving among different activities, tak-
ing into account the characteristics of a BPMN 2.0 model and of pools, parallel
and exclusive gateways, and tasks sending and receiving messages within the
model. More details about the BPMN exploration approach are in [11]. Once

Fig. 1. Framework components diagram.

Towards Business Process Execution Adequacy Criteria 43

extracted, the paths will be provided to the Rules Manager that through the
Rules Generator will create, using the templates of rules stored into the Tem-
plate Manager, a set of rules that aims to check the coverage of all the feasible
paths of the business process.

• Complex Event Processor (CEP). It is the rule engine which analyzes the
events, generated by the business process execution. Several rule engines can
be used for this task like Drools Fusion, VisiRule, RuleML. Our instance is
realized using Drools Fusion [12], that is able to detect patterns and monitor
the business process execution adequacy.

• Rules Generator. The Rules Generator is the component in charge to generate
the rules needed for the monitoring of the business process execution. It uses
the templates stored into the Rules Template Manager. These rules are gener-
ated according to the specific adequacy criterion to be assessed and the entities
to be covered. For each entity, the rule generator generates one corresponding
rule for the CEP. A generic rule consists of two main parts: in the first part
the events to be matched (the entities to be covered) are specified; the second
part includes the events/actions to be notified after the rules evaluation (the
covered attribute is set to true if the entity is covered).

• Rules Template Manager. This component is an archive of predetermined rules
templates that will be instantiated by the Rules Generator. A rule template is
a rule skeleton, the specification of which has to be completed by instantiating
a set of template-dependent placeholders. The instantiation will refer to appro-
priate values inferred from the specific adequacy criterion to be assessed. Once
the synthesis of the new set of rules is completed, the new rules are loaded by
the Rule Generator into the Rules Template Manager.

• Rules Manager. The complex event detection process depends directly from
the operation done by the Rules Manager component which is in charge to
load and unload set of rules into the complex event processor and fire it when
needed.

• Response Dispatcher. The Response Dispatcher is a registry that records the
business process execution adequacy monitoring requests. Once it receives the
advice of a rule firing or pattern completion from the CEP, it stores coverage
information. It elaborates statistics about the overall percentage of the covered
entities and raises warning messages for the entities that are not covered to
the consumer/requester of the business process adequacy evaluation.

5 Preliminary Assessment

In this session we present a preliminary assessment of the proof-of-concept frame-
work presented in Sect. 4 on a case study in the learning context, developed inside
the Learn PAd European project [13]. The main goal of the Learn PAd project
is to foster an innovative learning platform for Public Administrations, based on
enriched business process models, where the steps performed by the learner dur-
ing a learning session are associated to the execution of the entities of a business
process.

44 A. Bertolino et al.

Fig. 2. Overview of the student admission process (from [14]).

The proposed business process execution adequacy criterion can be applied
for providing some business process coverage measurements useful for assessing
the adequacy of a business process based learning session. The intuitive moti-
vation of using the proposed business process execution adequacy criterion for
evaluating a learning session is that if some part of the business process has never
been executed, the learner might have not exercised important steps of the busi-
ness process and therefore his/her acquired knowledge could not be completed.
To assess the adequacy of a learning session it is important to identifying what
are the relevant entities to be covered and monitoring if all of them, or otherwise
what percentage, have been observed. Through the analysis of data monitored
over the learning session, the learner from one side can become conscious of the
level of knowledge he/she acquired and can receive an evaluation/score of the
progress done. Form the other side he/she can have a clearer picture of his/her
exploration over a learning session, i.e. to know exactly the entities (either the
events, or message interactions, or business patterns) so far not executed, so
either to timely decide how to continue the learning activity or get his/her eval-
uation score.

The business process considered in this preliminary assessment, presented
in Fig. 2, is the mock-up of the real process “Student Admission” described in
[14], that refers to the process for regulating the admission of applicants to the
study program MSc in Business Information Systems (BIS) within the school of
business at FHNW.

In this section we applied the proposed business process execution adequacy
criteria and the implemented proof-of-concept framework described in Sect. 4, to
the business process presented in Fig. 2. The observation window for the assess-
ment of the business process execution adequacy criteria has been fixed to the

Towards Business Process Execution Adequacy Criteria 45

Fig. 3. Activity entities monitored over a learning session (Color figure online).

duration of a learning session because it coincides with a complete examination
process of a student.

In the performed learning session we varied the following independent vari-
ables:

• Coverage Criterion (CC): this parameter indicates the entities to be covered,
i.e., CC ∈ activity, path2. The activities for the BP of Fig. 2 are for instance:
Invite for interview, Make Interview, Send acceptance letter and so on. The
cardinality of activity coverage domain for the BP of Fig. 2 is 13, whereas that
of path coverage domain is 3;

• Coverage Threshold (CT): this parameter indicates the coverage threshold
according to which the business process execution is considered adequate.

In the fist step of our experiment the entity has been defined at the gran-
ularity of activity. The percentage of activity coverage within the established
observation window was 6/13 *100 = 46,15 where: 6 was the number of activity
entities monitored in the observation window (the activity entities marked with
a (blue) arrow in Fig. 3); 13 is the cardinality of the activity coverage domain.
Since the learning adequacy level established were 100 % of the activity entities,
the performed learning session were not adequate with respect to the activity
coverage criterion.

In a second step of the experiment, the entity has been defined at the gran-
ularity of path and the set of monitored (executed) path entities that have been
observed in the observation window was represented just by the one marked
with blue arrows in Fig. 4. In this case the percentage of path coverage within
2 Note that for this specific business process path entity coincides with sequence flow

entity.

46 A. Bertolino et al.

Fig. 4. Path entities monitored over a learning session (Color figure online).

the established observation windows is 1/3 *100 = 33 where: 1 is the number of
path entities monitored in the observation window, 3 is the cardinality of path
coverage domain. Since the learning adequacy level established in the observa-
tion window were 33 % of the path entities, the considered learning session is
adequate with respect to the path coverage criterion.

6 Related Work

The adoption of business process modeling promotes and makes easier the use
of model-based approaches for verifying the dynamic distributed systems. Moni-
toring is assuming a key role for tracking the states of a business process and for
evaluating its execution performance [1,15]. Particular interest has been ded-
icated to “smart” monitoring approaches, i.e., monitors enhanced beyond the
passive observation of system executions, with the aim of preventing or antici-
pating potential risks. As a trend, several researchers start to consider monitor-
ing a useful instrument to observe the behavior of business processes not only
to report about problems that have already occurred but also to predict likely
problems in the near future.

However, most of the predictive approaches remain limited to the elaboration
of the passively captured executions. A first attempt to provide a monitoring
approach also able to raise a warning of not having observed for some time
interesting behaviours or situations is presented in [4] where the general concept
of monitor adequacy and two adequacy criteria for service compositions are
provided. This approach takes inspiration from the passive testing approaches,

Towards Business Process Execution Adequacy Criteria 47

which refer to the observation of the input/output behavior of a system during
normal operation for the purpose of detecting faults [16]. Our proposal extends
the general adequacy criterion presented in [4] by providing the definition of a
business process execution adequacy criterion and a proof-of-concept monitoring
framework able to assess the business process execution adequacy. Differently
from existing approaches on monitoring of business process that focus on QoS
metrics and continuous evaluation of key performance indicators (KPI), our goal
is to measure the adequacy of business process execution by identifying what are
the relevant entities to be covered and by assessing if all of them, or otherwise
what percentage, have been covered. This idea is similar to testing adequacy
where coverage of entities of program control-flow or data-flow is a test adequacy
criterion for assessing the test effectiveness. We refer to [17] for an overview on
coverage measurements and coverage-based testing tools.

In the context of learning, that is the application domain of the proposed case
study, contemporary Learning Content Management Systems (LCMSs) provide
rather basic feedbacks about the learning process, such as simple statistics on
technology usage or low-level data on students activities (e.g., page view). Some
tools [18] have been developed for providing feedbacks on the learning activities
by the analysis of the user tracking data in order to propose customized learning
paths that learners can follow according to their knowledge and learning require-
ments. Our proposal applied to the model based learning allows to assess the
adequacy of a learning session by providing feedback on the executed learning
activities and identifying the learning paths that are not covered.

7 Conclusion and Future Work

In this paper we introduced the notion of business process execution adequacy
and provided a proof-of-concept monitoring framework able to measure the pro-
posed adequacy criteria. We presented a first assessment of the proposed app-
roach on a case study developed inside the Learn PAd European project [13].
Even if preliminary, the experimentation evidenced the effectiveness of the pro-
posed approach in providing some measures about the coverage of a business
process, useful for evaluating the adequacy of the associated learning session.

In future work we intend to perform a more extensive assessment of the app-
roach to evaluate its costs and benefits. We plan to refine and enhance the
proposed business process execution adequacy notion in order to consider the
adequacy relative to a specific role and/or level of the business process and pro-
vide the associated relative coverage measures. A further research direction deals
with investigating on the length of the observation window, namely the period
along which the business process execution is assessed.

Acknowledgements. This work has been partially funded by the Model-Based Social
Learning for Public Administrations project (EU FP7-ICT-2013-11/619583).

48 A. Bertolino et al.

References

1. Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Dustdar, S., Leymann, F.:
Monitoring and analyzing influential factors of business process performance. In:
Enterprise Distributed Object Computing Conference, pp. 141–150 (2009)

2. Bertoli, P., Dragoni, M., Ghidini, C., Martufi, E., Nori, M., Pistore, M., Di
Francescomarino, C.: Modeling and monitoring business process execution. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274,
pp. 683–687. Springer, Heidelberg (2013)

3. Calabró, A., Lonetti, F., Marchetti, E.: Monitoring of business process execution
based on performance indicators. In: The Euromicro Conference Series on Software
Engineering and Advanced Applications (SEAA) (2015)

4. Bertolino, A., Marchetti, E., Morichetta, A.: Adequate monitoring of service com-
positions. In: Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE 2013, pp. 59–69 (2013)

5. Rapps, S., Weyuker, E.: Selecting software test data using data flow information.
IEEE Trans. Softw. Eng. SE–11, 367–375 (1985)

6. OMG: business process model and notation (BPMN). In: 20th ed.: Object Man-
agement Group (2011)

7. Horgan, J.R., London, S., Lyu, M.R.: Achieving software quality with testing cov-
erage measures. Computer 27, 60–69 (1994)

8. Weyuker, E.: The cost of data flow testing: an empirical study. IEEE Trans. Softw.
Eng. 16, 121–128 (1990)

9. Lyu, M., Huang, Z., Sze, S., Cai, X.: An empirical study on testing and fault
tolerance for software reliability engineering. In: 14th International Symposium on
Software Reliability Engineering, pp. 119–130 (2003)

10. Cai, X., Lyu, M.R.: The effect of code coverage on fault detection under different
testing profiles. SIGSOFT Softw. Eng. Notes 30, 1–7 (2005)

11. Falcioni, D., Polini, A., Polzonetti, A., Re, B.: Direct verification of BPMN
processes through an optimized unfolding technique. In: 12th International Con-
ference on Quality Software (QSIC), pp. 179–188 (2012)

12. Drools, J.: Drools fusion: complex event processor. http://www.jboss.org/drools/
drools-fusion.html

13. Learn PAd project: model-based social learning for public administrations project.
http://www.learnpad.eu/

14. Thönssen, B., Hinkelmann, K., Witschel, F.: Models for setting the wiki. In:
Thönssen, B., Zhang, C. (eds.) Deliverable D5.1 (The Learn PAd Consortium)
(2015)

15. Koetter, F., Kochanowski, M.: A model-driven approach for event-based business
process monitoring. In: Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP,
vol. 132, pp. 378–389. Springer, Heidelberg (2013)

16. Lee, D., Netravali, A., Sabnani, K., Sugla, B., John, A.: Passive testing and appli-
cations to network management. In: Proceedings of International Conference on
Network Protocols, pp. 113–122 (1997)

17. Yang, Q., Li, J.J., Weiss, D.M.: A survey of coverage-based testing tools. Comput.
J. 52, 589–597 (2009)

18. Ali, L., Hatala, M., Gašević, D., Jovanović, J.: A qualitative evaluation of evolution
of a learning analytics tool. Comput. Edu. 58, 470–489 (2012)

http://www.jboss.org/drools/drools-fusion.html
http://www.jboss.org/drools/drools-fusion.html
http://www.learnpad.eu/

An Experience on Applying Process Mining
Techniques to the Tuscan Port Community

System

Giorgio O. Spagnolo1,2(B), Eda Marchetti1(B), Alessandro Coco1,
Paolo Scarpellini3, Antonella Querci3, Fabrizio Fabbrini1, and Stefania Gnesi1

1 ISTI CNR, Pisa, Italy
{spagnolo,eda.marchetti,alessandro.coco,fabrizio.fabbrini,

stefania.gnesi}@isti.cnr.it
2 Department of Information Engineering, University of Florence, Florence, Italy

3 Livorno Port Authority, Livorno, Italy
{scarpellini,a.querci}@porto.livorno.it

Abstract. [Context & Motivation] The Business Process Management
is an important and widespread adopted proposal for modelling process
specifications and developing an executable framework for the manage-
ment of the process itself. In particular the monitoring facilities asso-
ciated to the on-line process execution provide an important means to
the control of process evolution and quality. In this context, this paper
provides an experience on the application of business process modelling
techniques and process mining techniques to the TPCS, Tuscan Port
Community System. This is a web-services based platform with multi-
level access control and data recovery facilities, developed for supporting
and strengthening the Motorways of the Sea and Italian regulations.
The paper describes a storytelling approach applied to derive the TPCS
business process model and the conformance checking techniques used
to validate it and improve the overall TPCS software quality.

Keywords: Business process modelling · Storytelling · Process mining

1 Introduction

In recent years in many industrial contexts and application domains, the Business
Process Management has increased its spread. The success of this approach is
mainly due to the possibility to easily model process specifications, to provide
concise definitions and taxonomies, and to develop an executable framework for
the management of the process itself. Indeed, the business process modeling has
been recognized as an effective means for creating meaningful representations
of knowledge and formalized definitions of the various activities. It can be also
exploited for monitoring and controlling the on-line process execution and/or
evolution [1].

The generic and adaptable nature of this methodology makes easy its applica-
tion in many different environments, from the clinical one, managing the patient
c© Springer International Publishing Switzerland 2016
D. Winkler et al. (Eds.): SWQD 2016, LNBIP 238, pp. 49–60, 2016.
DOI: 10.1007/978-3-319-27033-3 4

50 G.O. Spagnolo et al.

treatment and diagnosing, to the financial one ruling the bank processes. In all
these environments the data collected during the business process execution are
a precious source of information for quality analysis and for demonstrating the
compliance to the specifications.

Usually Business Process Management relies on a Business Process Model
(BPM), specified by using one of the available Business Process Modeling Nota-
tion (BPMN) [2]. BPM represents the steps that can be performed by the dif-
ferent participants (people, teams or distributed organizations or IT systems)
during the process execution. The data collection is demanded to monitor and
log facilities that can be associated or integrated to the business process [3,4]
execution framework. These facilities exploit the formal specification of a BPM
and allow the logging of the activities evolution and information exchange and
let a posterior verification of the conformance of the implementation. The offline
analysis of the data collected can provide a precious means for discovering weak-
nesses between the specification and the implementation of the BPM.

In this paper we report an experience in the application of business process
modelling and process mining in a real word context. Thus the main purpose of
the BPM data analysis has been to find commonalities and discrepancies between
the modeled behaviour (Business Process Model) and the observed behaviour
(Logs) of the real implemented system. For this a storytelling approach has
been used to create the business process model for the Tuscan Port Commu-
nity System (TPCS), which is a web-services based on platform for supporting
Motorways of the Sea and the customs clearance process. Event logger has been
integrated into TPCS code system in order to monitor the information exchange
into the platform and between the different web-services, and to collect data
useful to assess the TPCS conformance to the BPM specification. In particular
conformance checking techniques have been used to relate events in the event
log to activities in the process model and compare them.

The experience highlights important challenges in the application of process
mining techniques and lets the detection of inconsistencies in the process execu-
tion promptly corrected during the current experience reports. In particular the
mining activity confirm to be an useful means both for quality assurance and
control of software in operation. However, this experiment reveals also that the
identification of the BPM elements can be a key factor for the final results. In
particular the identification of the rules, the policies, the roles, the responsibil-
ities, as well as the interactions between users and platform represent the main
criticalities both to derive a precise business processes model and to correctly
manage it.

In the following, an overview about the Business Process Management main
concepts and an introduction of the Port Community are provided. Subsequently,
the description of the process adopted in this paper for the Business Process
Model definition and the implemented monitoring activity are described. In
Sect. 5 the conformance checking results are presented and discussed while in
Sect. 6 related work are listed. Finally, the conclusions (Sect. 7) close the paper.

Applying Process Mining Techniques to the Tuscan Port Community System 51

2 Background

2.1 Business Process Management

Usually Business Process (BP) refers to any structured collection of related
activities or tasks that are carried out to accomplish the intended objectives
of an organization. Tasks within a business process may represent steps that
can be performed manually by a human or automatically by an IT system [5].
Thus Business Process Management consists of different phases, such as analy-
sis, design, implementation, deployment, monitoring, and evaluation. The main
focus is therefore in creating an abstract but meaningful representation of the real
business domains and sharing a formalized definition so to improve expressive-
ness and networked enterprises [6]. Usually in the industrial context the process
followed during the analysis and design phases of the Business Process Model,
that is known as externalization [7], involves direct requirements elicitation from
employees by means of meetings where the participants develop group stories [8].
The collected information are then translated into Business Model by using one
of the available Business Process Modeling Languages (BPML) [9]. The Business
Process Model and Notation (BPMN) [2] is the formalism chosen to represent
business models, which is the de facto standard for process modeling. It’s indeed
a rich and expressive but also complex language to be used for the tasks asso-
ciated with process modeling [10]. The model derived during the design phase
represents a formal means for capturing a significant portion of requirements
and specific knowledge and improving common understanding. During the sub-
sequent implementation and deployment phases the business model is executed
in an existing environment in order to control the business process evolution and
collect important data.

2.2 Port Community

The TPCS, Tuscan Port Community System, is a web-services based platform
with multilevel access control and data recovery facilities, realized with the aim
of developing technological tools for supporting and strengthening Motorways of
the Sea and Italian regulations. TPCS is designed by the Livorno Port Authority
as the institution in charge of managing and controlling the activities of the port
involved in the voyages of ships, goods arriving and departing from Livorno (Ital-
ian City). TPCS processes a huge amount of information allowing a reduction
in costs and streamlining bureaucratic procedures. TPCS provides the complete
management of the connected applications for handling Cargo Manifests, involv-
ing all the actors interested in the information flow related to import/export
operations like shipping agencies, custom forwarders, freight forwarders, termi-
nals, hauliers and, for checking purposes, Control Authorities.

In particular, during the export operations the users can generate and man-
age Cargo Manifests, while during the import operations users can generate and
manage Unloading Lists. In both those operations the users can also interact
with the platform in order to know the status of goods (e.g. loaded or unloaded,

52 G.O. Spagnolo et al.

Fig. 1. Actors of the Tuscan Port Community System

cleared for customs etc.). The users can request and receive goods checking
certificates and authorizations (e.g. phytosanitary authorization) for dangerous
goods by the SUD (Sportello Unico Doganale - Customs Single Window) inter-
face. Figure 1 summarizes the actors involved in the TPCS and interact the
among them.

3 Create the Model

In this section we explain the method used to derive the Business Process Models
of the TPCS platform.

In order to provide models of the TPCS we applied the storytelling method-
ology [11,12] based on collected stories of the Domain Experts using natural
language. The stories describe the critical activities for the management of the
ship voyages for the import and the export of the goods.

The method is summarized in Fig. 2, where three main stakeholders are in
charge of carrying out the tasks proposed by the storytelling methodology: the
Tellers, the Facilitator and the Modelers. The tellers are the individuals who
participate in the process and have therefore domain knowledge. They are asked
to describe their activities explicitly through a story. The facilitator is an expe-
rienced professional in the application domain who provides support to story
tellers for producing coherent stories and the first abstraction of the models.
The modelers are process analysts who refine the graphical model developed
based on abstractions extracted from the stories.

The method follows three phases, each one involving all the roles with the
purpose of transforming stories into models.

In the first phase meetings targeting the definition of the useful context of
the story are planned. This in order to guide the storytellers, and let them to
describe the activities for the management of the ship voyages. The meeting
team was composed by three Modelers, three Tellers and one Facilitator. Mod-
elers were five researchers from the ISTI (an institute of the Italian National
Research Council (CNR)) with strong background in BP modeling and software
engineering; tellers were Domain Expert of the Port Community; the facilitator

Applying Process Mining Techniques to the Tuscan Port Community System 53

was the Project manager of the Tuscan Port Community System of the Livorno
Port Authority. During the first phase, three meetings of two hours have been
necessary. To the end of this phase the stories were collected.

In the second phase the process elements are identified from the collected
stories. The examination of the stories produces activities, flow, events, business
rules, in order to extract the models elements of the process. In this phase, two
meetings of two hours have been necessary.

Finally, in the third phase, the elements of the identified processes have
been converted into BPMN models. The models have been presented to the
participants in order to consolidate them, to implement necessary corrections
and generate a final version. Therefore the quality assessment of the BPMN
model has been manually performed by domain experts. Also in this phase two
meetings of two hours have been necessary.

BPM
Experts

Port Community
Experts

Model of the
TPCS Platform

TPCS
Docs

Facilitator
I Phase

collect stories about TPCS

III Phase

II Phase
discuss and create abstraction

Fig. 2. Methodology to create the model

We have produced two high-level models that describe the processes of Import
and Export of the TPCS platform and two lower level models that describe the
sub-processes tasks “Packing List” and “Outward Cargo Manifest” of the Export
process. For space limitations we report in Fig. 3 just one of the models created
for the TPCS platform. This is the high-level model of the process representing
the exportation of the goods from the port. The actors interact through the
platform, according to the following procedure: (1) the agency forwarders insert
the ship’s data by an entry procedure (e.g. ship name, voyage, estimated time
of arrival etc.); (2) the terminal confirms if ship’s data entry operations are
correct or not; (3) Freights Forwarders submit loading lists to the platform; (4) in
parallel the shipping agents can begin to download the outward cargo manifest;
(5) shipping agents transmit the data flow generated (called IRISP) in response
to the TCPS; (6) the terminal sends confirmation of the completed loading
operation (the list of the goods effectively loaded aboard called COARRI), after
the ship sails.

54 G.O. Spagnolo et al.

Fig. 3. Export high-level Model of TPCS

Lesson Learned in this Steps. The crucial point during the models creation
was the definition of the context of the story, useful to properly guide the sto-
rytellers. An incremental approach in the storytelling, starting from a general
description to a detailed one, has been the solution adopted. This allows all the
critical aspects of the stories to be captured and reduces the possible inconsisten-
cies. Nevertheless, since real contexts can have situations where several degrees
of freedom can be possible, the models should abstract from not relevant details
and aspects, thus a compromise between models and reality must be found.

4 Monitoring the Application

The development of web-based technologies, such as the TPCS, allows the port
operators to better manage the procedures of the import and the export of
the goods. These platforms are very complex because they involve many agents.
Critical situation could be: What happens if the containers are not loaded on the
ship? or if the containers are not discharged in the terminal? Who was wrong in
applying the import/export procedures (e.g. the terminal operators, the agency
forwarders, the freights forwarders etc.)?

The log of the platform, like the one shown in this paper should answers to
the previous questions. In particular this information will help in the case of
disputes to identify which problems have prevented or delayed the movement of
the goods.

The log is a set of information collected in chronological order. There are
several log types that may be recorded: (1) message log: all messages at the
transport layer; (2) debugging log: messages of debugger or messages of devel-
oper; (3) application log: the transaction about the business processes. The logs
are further divided between structured logs and unstructured logs. The former
have no restrictions on how the events should be recorded (usually 1 and 2 of the
previous list). In structured logs, each event is reported according to a defined
set of rules.

In this paper we refer to structured logs, in which each event refers to an
activity (i.e., a well-defined step in some process) and is related to a particular

Applying Process Mining Techniques to the Tuscan Port Community System 55

case (i.e., a process instance). In particular each is established by means a “cor-
relation key” that is a unique identifier or a set of unique identifier, informally in
this experience the correlation key used is composed by the ship identifier num-
ber and the travel unique ID. The events belonging to a single case are ordered
and they represent one “execution” of the process (often referred to as a trace of
events). Event logs may store additional information such as the resource (i.e.,
person or device) executing or initiating the activity (lifecycle of the activity),
the timestamp of the event, and data elements recorded with the event [13].

Software

of the Log
Stories

Task

Task

TPCS

Event Logs

Tuscan Port
Community

System

Conformance

Fig. 4. Overview Software Specification of the Log

Log files were originally introduced in the TPCS platform as a means for
the developers to monitor system operation and to trace back errors. These logs
were essentially sequences of significant events which occurred in the system,
listed in chronological order. Successively the platform has been equipped with
a structured log to uniquely identify all system activities. The specification of the
log was extracted by the storytelling collected during the modelling of the TPCS
(see Fig. 4), according to the business models already derived. Then TPCS has
been enriched with a monitor facility that records significant events in a database
of the platform.

Figure 5 reports an extract of the log which details in each column the fol-
lowing info respectively: (1) the “case ID” that is the unique identifier of the
record; (2) “IMO” (International Maritime Organization numbers) that is a
unique ship identification number; (3) “Travel” that is a unique number of ship
travel; (4) “Time-stamp” that is data and hour when the event is registered;
(5)“Activity Name” that is the event that generated the record; (6) “Lifecycle”
that is the status of the activity that generated the record; (7) “Resource” that
is the person or system that generated the event. To identify the process instance
we have used, the correlation key descrited above in this section, i.e. the ship
number and the travel number (IMO+Travel).

Lesson Learned in this Step. The important aspect of this phase was the
quality of the event logs because it influenced the quality of the process mining.
Therefore, event logs should be treated as a mandatory requirement for the
information systems supporting the processes to be analyzed. Moreover a further
critical aspect, strictly connected with the event logs, is the definition of the
correlation keys to identify the process instance.

56 G.O. Spagnolo et al.

complete3423 23/12/2013 18:32:53:842 SEND OUTWARD CARGO MANIFEST Gamma srl16 9169873

complete15 SEND OUTWARD CARGO MANIFEST Ben s.r.l.4576 23/12/2013 18:32:42:6339372872

14 23/12/2013 18:31:21:795 Gamma srlstart34239169873 SEND OUTWARD CARGO MANIFEST

4576 SEND OUTWARD CARGO MANIFEST13 23/12/2013 18:30:33:321 Ben s.r.l.start9372872

23/12/2013 18:30:21:7483423 complete Beta s.p.a.12 9169873 RECEIVE PACKAGE LIST

Ship s.p.a.11 RECEIVE PACKAGE LIST4576 23/12/2013 18:29:45:2439372872 complete

start9169873 23/12/2013 18:29:21:623 RECEIVE PACKAGE LIST Beta s.p.a.10 3423

Ship s.p.a.9 9372872 4576 RECEIVE PACKAGE LIST start23/12/2013 18:25:38:128

Alpha s.r.l.8 3423 VALIDATION SHIP DATA9169873 complete23/12/2013 18:22:29:166

VALIDATION SHIP DATA23/12/2013 18:20:45:2137 TerBlu Snccomplete9372872 4576

4576

CREATE SHIP DATA

Resource

VALIDATION SHIP DATA

Activity

4

VALIDATION SHIP DATA start23/12/2013 18:19:28:231

23/12/2013 18:19:27:266

23/12/2013 18:19:29:1036

9372872

complete

IMO

Alpha s.r.l.

2

4576

startCREATE SHIP DATA

complete

Nat Group

TerBlu Snc

start

5

23/12/2013 18:19:25:635

Nat Group3

4576

3423

TimestampCase id

9372872

9169873 23/12/2013 18:19:25:203 start

9169873

3423 CREATE SHIP DATA Delta s.n.c.

3423

CREATE SHIP DATA

9372872

1

Travel Lifecycle

Delta s.n.c.

23/12/2013 18:19:26:032

9169873

1 2 3 4 5 6 7

Fig. 5. Structured Log

5 Conformance Checking

The goal in the conformance checking is to find commonalities and discrepancies
between the modeled behaviour (Business Model) and the observed behaviour
(Logs) [14]. Conformance checking relates events in the log to activities in the
process model and compares both.

In order to apply the conformance checking techniques we have used the most
popular process mining framework ProM1 [14,15]. The ProM framework provides
many process mining plugins using XES as input format to the logs [16,17]. The
logs extracted on the platform are in the CSV format, and to translate CSV-
files into XES logs we have used the “KeyValue” ProM plugins [18]. In particular
by using the “Activity Name” (as column 5 of Fig. 5) each event log has been
associated with the corresponding activity of the BPMN model, with same name.

For performing the conformance checking, we have selected “PNetReplayer”
[19,20], a plugin from ProM framework. This plugin is based on “Alignments
approach”: an alignment between a recorded process execution and a process
model is a pairwise comparison between the executed activities and the activities
allowed by the model. Such sequences of pairs are called movement sequences.
The movement sequences are: moves on log only, moves on model only, and
moves on both (synchronous moves) are considered as legal moves. A movement
sequence is a legal movement sequence if it contains only legal moves [20].

The metrics used in this work for conformance checking is the fitness. Fitness
measures the extent to which process models can reproduce the traces recorded
in the log. Many approaches in literature are related to this particular dimension,
for this work we have selected Cost-based fitness metric [21].

1 ProM is an extensible framework that provides a comprehensive set of tools/plug-
ins for the discovery and analysis of process models from event logs. See
www.processmining.org for more information and to download ProM.

www.processmining.org

Applying Process Mining Techniques to the Tuscan Port Community System 57

The plugin operates on a Petri Nets. A Petri net or P/T net is a directed
bipartite graph, in which the nodes represent transitions (events that may occur)
and places (i.e. conditions). A Petri net are used because it’s one of several
mathematical modeling languages for the description of distributed systems.

To translate BPMN into Petri nets we have used the “BPMNtoPN ” plugins
that use the mapping presented in Dijkman et al. [22] to translate BPMN mod-
els into Petri nets extended with the translation of BPMN task, for which we
generate a net with two transitions, to model the lifecycle of the activites [23].

Table 1. Log statistics

Time slot #Instances #Events #Originators #Event classes

Feb unfiltered 70 14888 83 12

Feb filtered 45 8930 78 12

Here we show the results produced by the analysis of the high-level model,
that describe the export process of the TPCS platform, shown in Fig. 3 and the
data collected to TPCS execution as shown in Fig. 5 shows as an extract.

We decided to analyse the log data considering a week as a unit of time
so to reduce the number of the events logged and to make easy the (manual)
inspection in the case of serious conformance problems.

The log used for the conformance analysis on the Export high-level Model
of TPCS refers to the period from 16 to 27 February 2015 and it’s divided in
unfiltered and filtered logs. The unfiltered log is the original log of TPCS plaform,
whereas in filtered log events of original log are filtered to extract only the
instances that started in the time-slot selected. The Unfiltered log is composed
of 12 events classes by 14888 events for a total of 70 process instances, generated
from 83 originators, whereas the filtered log is composed of 12 events classes by
8930 events for a total of 45 process instances, generated from 78 originators,
(see Table 1). The filtered log is ∼60 % of the unfiltered log.

Table 2. Conformance statistics

Log Alignment without penalize
completion statistics

Alignment with penalize
completion statistics

Time slot Average
fitness
trace

Min
fitness
trace

#Max
fitness
trace

Average
fitness
trace

Min
fitness
trace

#Max
fitness
trace

Feb unfiltered 0,971 0,60 38 0,951 0,77 7

Feb filtered 0,998 0,97 38 0,957 0,82 7

In Table 2 the results of the conformance analysis performed by the ProM
plugin are presented. The analysis is based on two algorithms to measure fitness
that differ from each other for the penalty considered for the completion of a
trace, if are present or not all event classes in the process instance. The table

58 G.O. Spagnolo et al.

shows for any log and for algorithms the average and the minimum fitness trace
and the number of trace that have the maximum fitness trace, that is one.

Table 2 reports the data collected: (1) there are six complete process instances
in both logs that fully conform to the model; (2) there are 31 incomplete process
instances in the logs that fully conform to the model. Finally seven process
instances in the log are the non-conformance instances, these were manually
investigated to explain the causes of non-conformance.

In order to investigate the non-conformances found, meetings have been
scheduled with Tellers and Facilitator (see Sect. 3). The detailed analysis high-
lighted problems in the practices put in place by the actors of the process. For
example some “Terminal” send the COARRI into different parts instead of a
unique document. Indeed the COARRI has been modeled in the BPM by a sin-
gle activity, but in the platform it is possible to upload it in separated parts,
because the platform does not know the number of the elements of COARRI.

Lesson Learned in this Step. A critical aspect using the process mining
techniques is that it requires high-quality event data logs, see Sect. 4. In order
to analyse and inspect the results of conformance analysis the process miner
must know the model very well. A further critical aspect is that the real world
is usually to complex to be faithfully represented by models therefore a certain
level of abstraction is necessary.

6 Related Work

Process mining has been successfully applied in a set of business areas such as
healthcare [24,25], insurance [26], auditing [27], tourism industry [28]. In this
paper we present a case study from a different application area, Port Commu-
nity System platform. The goal here was to understand, model and validate
the information flow and the actions performed by all the stakeholders of this
business domain, using process mining techniques. Due to the complexity of
this kind of system, we used the storytelling approach [7,29,30] of transmitting
knowledge. An evaluation of this approach is provided in [11] where the authors
emphasize, through experiments, the beneficial effects to collective knowledge
recall by means of group storytelling approach, comparing this technique to the
more traditional approach based on interviews.

The goal in our research was to validate the process model derived from
the storytelling approach. The structured logs provided us the main elements
of information to support the ProM analysis for the validation of the business
model. The opposite point of view was adopted in Rubin et al. [28] where they
start analysing the log to discovery the model of the touristic domain.

7 Conclusion and Future Works

In this paper, we presented an experience on applying conformance checking
techniques to the Tuscan Port Community System.

Applying Process Mining Techniques to the Tuscan Port Community System 59

We started with storytelling techniques to derive the business process of
the TPCS platform and then the platform has been equipped with the activity
process log. Next using process mining techniques on the log of the platform
with the process model derived we have performed the conformance analysis.
The results obtained were used to investigate the behaviour of the platform and
validate the process model.

For some sections we provided the lessons learned. As we expected the story-
telling approach helped in identifying flows, activities, events and business rules
allowing all the stakeholders to use natural language without any specific com-
petence in business process modelling. The most significant difficulties faced in
deriving the business process result from the complexity of the platform, from
the non homogeneous actors involved and from the too many detailed aspects
not relevant to the process, open issue remain to establish the granularity in
order of the data to be collected.

This work is a contribution to the industrial application of formal techniques
for the monitoring of the business processes.

Future research aims to apply performance analysis to measure execution
time, waiting time and synchronization time between activities to detect bottle-
necks in the process model.

References

1. vom Brocke, J., Rosemann, M.: Handbook on Business Process Management 1:
Introduction, Methods, and Information Systems. Springer, Berlin (2010)

2. Object Management Group (OMG): Business Process Model and Notation
(BPMN) Version 2.0. Technical report (2011)

3. Koetter, F., Kochanowski, M.: A model-driven approach for event-based business
process monitoring. Inf. Sys. E Bus. Manag. 13(1), 5–36 (2015)

4. Bertolino, A., Calabrò, A., Lonetti, F., Di Marco, A., Sabetta, A.: Towards a
model-driven infrastructure for runtime monitoring. In: Troubitsyna, E.A. (ed.)
SERENE 2011. LNCS, vol. 6968, pp. 130–144. Springer, Heidelberg (2011)

5. Gerth, C.: Introduction. In: Gerth, C. (ed.) Business Process Models (Dissertation).
LNCS, vol. 7849, pp. 1–12. Springer, Heidelberg (2013)

6. Jeston, J., Nelis, J.: Business Process Management. Routledge, London (2014)
7. Perret, R., Borges, M.R.S., Santoro, F.M.: Applying group storytelling in knowl-

edge management. In: de Vreede, G.-J., Guerrero, L.A., Maŕın Raventós, G. (eds.)
CRIWG 2004. LNCS, vol. 3198, pp. 34–41. Springer, Heidelberg (2004)

8. Carminatti, N., Borges, M.R.S., Gomes, J.O.: Analyzing approaches to collective
knowledge recall. Comput. Artif. Intell. 25(6), 547–570 (2006)

9. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process man-
agement: a survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.
(eds.) BPM 2003. LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

10. Recker, J.C.: Opportunities and constraints: the current struggle with BPMN. Bus.
Process Manag. J. 16(1), 181–201 (2010)

11. Santoro, F.M., Borges, M.R.S., Pino, J.A.: Acquiring knowledge on business
processes from stakeholders’ stories. Adv. Eng. Inform. 24(2), 138–148 (2010)

12. de A. R. Gonçalves, J.C., Santoro, F.M., Baião, F.A.: Business process mining
from group stories. In: CSCWD, pp. 161–166. IEEE (2009)

60 G.O. Spagnolo et al.

13. van der Aalst, W.M.P.: Mediating between modeled and observed behavior: The
quest for the “right” process: keynote. In: Research Challenges Information Science.
IEEE (2013)

14. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer, Heidelberg (2011)

15. Verbeek, H., Buijs, J., Dongen, B.V., Aalst, W.M.P.V.D.: ProM 6: the process
mining toolkit. In: BPM Demonstration Track, vol. 615, pp. 34–39 (2010)

16. Gnther, C.W., Verbeek, H.M.W.: XES Standard Definition. Technical report BPM-
14-09, Eindhoven University of Technology (2014)

17. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:
XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010.
LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011)

18. Westergaard, M.: KeyValue, ProM Plugins. Technical report, Eindhoven University
of Technology (2014)

19. van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process
models for conformance checking and performance analysis. Wiley Int. Rev. Data
Min. Knowl. Disc. 2(2), 182–192 (2012)

20. Adriansyah, A.: Aligning observed and modeled behavior. Master thesis, Eindhoven
University of Technology (2014)

21. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking
using cost-based fitness analysis. In: EDOC, pp. 55–64. IEEE (2011)

22. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

23. Bruni, R., Corradini, A., Ferrari, G., Flagella, T., Guanciale, R., Spagnolo, G.:
Applying process analysis to the italian egovernment enterprise architecture. In:
Carbone, M., Petit, J.-M. (eds.) WS-FM 2011. LNCS, vol. 7176, pp. 111–127.
Springer, Heidelberg (2012)

24. Mans, R., Schonenberg, M., Song, M., van der Aalst, W., Bakker, P.: Application
of process mining in healthcare – A case study in a dutch hospital. In: Fred, A.,
Filipe, J., Gamboa, H. (eds.) Biomedical Engineering Systems and Technologies.
CCSI, vol. 25, pp. 425–438. Springer, Heidelberg (2009)

25. Rebuge, A., Ferreira, D.R.: Business process analysis in healthcare environments:
a methodology based on process mining. Inf. Syst. 37(2), 99–116 (2012)

26. Suriadi, S., Wynn, M.T., Ouyang, C., ter Hofstede, A.H.M., van Dijk, N.J.: Under-
standing process behaviours in a large insurance company in australia: a case study.
In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp.
449–464. Springer, Heidelberg (2013)

27. Jans, M., Alles, M., Vasarhelyi, M.: The case for process mining in auditing: sources
of value added and areas of application. Int. J. Account. Inf. Syst. 14(1), 1–20
(2013)

28. Rubin, V., Mitsyuk, A., Lomazova, I., van der Aalst, W.M.P.: Process mining can
be applied to software too! In: Empirical Software Engineering and Measurement.
ACM (2014)

29. Schäfer, L., Valle, C., Prinz, W.: Group storytelling for team awareness and enter-
tainment. In: Nordic Conference on Human-computer Interaction, pp. 441–444.
ACM, New York (2004)

30. Valle, C., Prinz, W., Borges, M.: Generation of group storytelling in post-decision
implementation process. In: Computer Supported Cooperative Work in Design, pp.
361–367 (2002)

Requirements Engineering

Preventing Incomplete/Hidden Requirements:
Reflections on Survey Data from Austria

and Brazil

Marcos Kalinowski1(&), Michael Felderer2, Tayana Conte3,
Rodrigo Spínola4, Rafael Prikladnicki5, Dietmar Winkler6,

Daniel Méndez Fernández7, and Stefan Wagner8

1 Computing Institute, Universidade Federal Fluminense,
Av. Milton Tavares de Souza s/n, Campus Praia Vermelha,

Niterói 24210-346, Brazil
kalinowski@ic.uff.br

2 Institute of Computer Science, University of Innsbruck,
Technikerstr. 21a, 6020 Innsbruck, Austria
michael.felderer@uibk.ac.at

3 Computing Institute, Universidade Federal do Amazonas,
Av. Rodrigo Otávio 6200, Campus Universitário Senador Arthur Virgílio Filho,

Manaus 69077-000, Brazil
tayana@icomp.ufam.edu.br

4 Systems and Computing Graduate Programm, Universidade Salvador,
Alameda das Espatódias 912, Salvador 41.820-460, Brazil

rodrigo.spinola@pro.unifacs.br
5 Computer Science Graduate Programm, Pontifícia Universidade Católica do

Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre 90619-900, Brazil
rafael.prikladnicki@pucrs.br

6 Institute of Software Technology and Interactive Systems,
Vienna University of Technology, Favoritenstr. 9/188, 1040 Vienna, Austria

dietmar.winkler@tuwien.ac.at
7 Institut für Informatik, Technische Universität München,

Boltzmannstr. 3, 85748 Garching, Germany
daniel.mendez@tum.de

8 Institut für Softwaretechnologie, University of Stuttgart,
Universitätsstraße 38, 70569 Stuttgart, Germany

stefan.wagner@informatik.uni-stuttgart.de

Abstract. [Context] Many software projects fail due to problems in require-
ments engineering (RE). [Goal] The goal of this paper is analyzing a specific
and relevant RE problem in detail: incomplete/hidden requirements. [Method]
We replicated a global family of RE surveys with representatives of software
organizations in Austria and Brazil. We used the data to (a) characterize the
criticality of the selected RE problem, and to (b) analyze the reported main
causes and mitigation actions. Based on the analysis, we discuss how to prevent
the problem. [Results] The survey includes 14 different organizations in Austria
and 74 in Brazil, including small, medium and large sized companies, con-
ducting both, plan-driven and agile development processes. Respondents from
both countries cited the incomplete/hidden requirements problem as one of the

© Springer International Publishing Switzerland 2016
D. Winkler et al. (Eds.): SWQD 2016, LNBIP 238, pp. 63–78, 2016.
DOI: 10.1007/978-3-319-27033-3_5

most critical RE problems. We identified and graphically represented the main
causes and documented solution options to address these causes. Further, we
compiled a list of reported mitigation actions. [Conclusions] From a practical
point of view, this paper provides further insights into common causes of
incomplete/hidden requirements and on how to prevent this problem.

Keywords: Survey � Requirements engineering � NaPiRE � Incomplete
requirements � Hidden requirements � Implicit requirements � Causal analysis �
Defect prevention

1 Introduction

The importance of high-quality requirements engineering (RE) has been widely
accepted and well documented. RE constitutes a holistic key to successful development
projects [1]. However, industry is still struggling to apply high-quality RE practices [2]
and getting a further understanding on common RE problems and their causes is of
great interest to both, industry and academy.

Many researchers have addressed identifying and analyzing RE problems faced by
industry [3, 4]. More recently, a project called NaPiRE (Naming the Pain in
Requirements Engineering) comprises the design of a family of surveys on RE practice
and problems, and it is conducted in joint collaboration with various researchers from
different countries [5]. The main goal of this project is to provide an empirical foun-
dation on the state of the practice in RE to allow steering future research in a
problem-driven manner. The NaPiRE survey includes several countries around the
globe.1

From the perspective of practitioners, information on RE problems could be par-
ticularly useful to discuss how to prevent the occurrence of such problems in their
projects. An efficient means for preventing RE problems is the causal analysis [6],
which involves identifying causes of problems to address them through concrete
actions to prevent them in future projects. Kalinowski et al. [7] provide a compre-
hensive industrial experience report on conducting causal analysis on RE problems.
One of the main difficulties reported during causal analysis sessions concerns the
absence of a starting point for identifying potential causes [6], as there is no general
documented and empirically grounded knowledge on common causes of critical RE
problems usable as a starting point.

Data collected in the NaPiRE survey include information on critical RE problems
and their causes. An initial effort to organize knowledge on common causes of critical
RE problems has been recently undertaken based on NaPiRE data from the Brazilian
replication [8]. In this paper, we extend this research by further analyzing a specific and
critical selected RE problem: incomplete/hidden requirements, based on data from the
NaPiRE replications conducted in Austria and Brazil. We use the data to (a) charac-
terize the criticality of the selected RE problem, and to (b) analyze the main causes
reported for the problem. Based on this industrial feedback, we discuss actions for

1 NaPiRE: http://www.re-survey.org.

64 M. Kalinowski et al.

http://www.re-survey.org

preventing the problem. As a result of the replications, we received complete answers
from 14 different organizations in Austria and 74 in Brazil, including small, medium
and very large sized companies, conducting both, plan-driven and agile development.
Respondents from both countries cited the selected problem as one of the most critical
RE problems. We graphically represent the causes cited by the organizations and
discuss solution options for addressing the most common reported causes.

The remainder of this paper is organized as follows. Section 2 describes the
background on surveys on RE problems and on the NaPiRE project. Section 3
describes the NaPiRE survey replication in Austria and in Brazil. Section 4 presents the
survey results on the criticality of RE problems in both countries. Section 5 contains the
analysis of the selected problem including its main reported causes and the discussion
on solution options for addressing them. Finally, Sect. 6 presents the concluding
remarks and future work.

2 Background

As background for this paper, we describe related work on surveys on RE problems
and the required information on the NaPiRE project.

2.1 RE Surveys

A well-known survey on causes for project failure is the Chaos Report of the Standish
Group on cross-company root causes for project failures. While most of these causes
are related to RE, the survey has serious design flaws and the validity of its results is
questionable [9]. Additionally, it exclusively investigated failed projects and general
causes at the level of overall software projects. Thus, unfortunately it does not directly
support the investigation of RE problems in industry.

Some surveys have been focusing specifically on RE problems in industry. These
surveys include the one conducted by Hall et al. [3] in twelve software organizations.
Their findings, among others, suggest that most RE problems are organizational rather
than technical. Some country-specific RE problem investigations include the surveys
conducted by Solemon et al. [10] and Liu et al. [11], with Malaysian and Chinese
organizations, respectively. Khankaew and Riddle [12], report on a survey with focus
on more recently conducted semi-structured interviews with organizations from
Thailand. These investigations provide valuable insights into industrial environments.
However, as each of them focuses on specific aspects in RE, their results are isolated
and not generalizable. To address this issue, the NaPiRE project was launched in a joint
collaboration with researchers from different countries [5].

2.2 The NaPiRE Project

The NaPiRE project resulted in the design of a global family of surveys to overcome
the problem of isolated investigations in RE that are not representative [5]. Thus, a
long-term goal of the project is to establish an empirically sound basis for

Preventing Incomplete/Hidden Requirements 65

understanding trends and problems in RE [13]. Currently several surveys are going to
be replicated in several countries around the globe.

The design of the survey is aligned to a well-thought theory and its instruments
have been extensively reviewed by several researchers [5, 13]. In summary, the
NaPiRE survey contains 35 questions with focus on the following type of data from the
responding organizations: (a) general information, (b) RE status quo, (c) RE
improvement status quo, (d) RE problems faced in practice, and (e) RE problem
manifestation (e.g., causes and impact). Further information on the project is available
online1, including the target countries for survey replication and a sample of the
questionnaire. Up to now, initial results from Germany have already been published
[5, 13]. Currently, these initial results will now be updated by more recent trials in
Germany and in other countries, such as Austria and Brazil.

3 Replicating the NaPiRE Survey in Austria and Brazil

This section describes the collected data in context of this paper based on the Austrian
and Brazilian replication. Note that both replications apply the common design of the
NaPiRE survey, including all relevant instruments (see [5] for details). Therefore, in
this section we focus on the details on planning and execution aspects in both countries,
i.e. in Austria and Brazil. To enable proper interpretations of the results, we include a
description of the characterization of the responding organizations of both countries in
this section.

3.1 Survey Replication in Austria

The Austrian NaPiRE survey replication was planned in two meetings with the general
NaPiRE organizers from Germany. During these meetings, the online environment
(EFS survey tool2) was introduced and some guidelines for conducting the survey were
presented. For the survey in Austria, the questionnaire, applied in Germany, was
duplicated and hosted on the same online environment.

As the goal of the survey was to gain high quality feedback on topics related to RE,
the invitation to participate in the survey was sent – in coordination with the general
NaPiRE organizers – to selected experts in requirements and software quality engi-
neering of representative organizations in Austria. The organizations covered devel-
opment of embedded as well as information systems in different domains.

Invitation letters, including a link to the online survey and a password, were sent to
the list of experts via e-mail in June 2014 and July 2014. In total, 22 of 25 invited
experts logged into the online survey and provided answers between June and
September 2014. Out of these, we received 14 completed surveys; 8 experts dropped
the survey before completion. The median duration for completing the survey was
about 30 min.

2 EFS survey tool: www.unipark.com/en.

66 M. Kalinowski et al.

http://www.unipark.com/en

3.2 Survey Replication in Brazil

The planning of the survey replication in Brazil also involved two meetings with the
NaPiRE general organizers (see Footnote 1). Again, during these meetings, the online
environment (EFS survey tool (see Footnote 2)) was presented and some general
guidelines for conducting the survey were provided. For this replication we decided to
translate all instruments to Portuguese, the participants’ native language.

Given the geographic dimensions of Brazil, to reach organizations from different
regions and to collect representative data, the first author assembled a team of
industry-focused researchers spread across the country. The strategy consisted of
having researchers from the four main industry intensive regions of the country
involved. The resulting NaPiRE Brazil team (see Footnote 1) comprises a researcher
from the South of the country, one from the Southeast, one from the North and one
from the Northeast. Additionally, we contacted Softex,3 the association responsible for
the most widely adopted software process improvement reference model in Brazil, the
MPS-SW4 [14], with over 600 assessments in Brazil. They promptly trusted us contacts
of 254 organizations with currently valid MPS-SW assessments so that they could be
invited to take part in the survey. Including a set of 80 additional relevant industry
contacts from the authors (20 contacts per author on average), we created a list with
contacts of representatives from 334 software organizations. We believe this set to be
representative for the Brazilian software industry. Given the size of this industry
(thousands of software organizations [15]), an extensive survey to reach all of them
would be almost impossible. We then configured the environment and sent the invi-
tations with a link and password to the online survey to the list of contacts by e-mail.
The survey was sent in December 2014, with reminders in January 2015 and February
2015. In total, 118 of the 334 invited organization representatives logged into answer
the survey. Out of these, we received 74 completed questionnaires (9 only read
the initial instructions, 18 dropped at the first page of the questionnaire, and 17 dropped
the survey later without completing the questionnaire). The median time to answer the
survey completely was 29 min.

3.3 Characterization

To provide a summary of the characterization of the responding organizations in
Austria and Brazil, we will present information on their company size, used process
models, and RE standards. We will also present the roles of the participants within the
organizations and their experience in this role. While the data from Austria is more
representative to the European context and relies on carefully selected experts in
requirements and software quality engineering, we believe that the large data set from
Brazil serves as an interesting complement to enable further understanding the inves-
tigated phenomena. Concerning size, in Table 1 presents the data from Austria and
Table 2 presents the data from Brazil. It is possible to observe that, while in both

3 Softex: http://www.softex.br.
4 MPS-SW: http://www.softex.br/mpsbr.

Preventing Incomplete/Hidden Requirements 67

http://www.softex.br
http://www.softex.br/mpsbr

countries we have small and large organizations, in the Austrian set the medium-sized
organizations also play a relevant role representing 33 % (cf. 251–500 employees) of
the valid answers.

Regarding the process model, Tables 3 and 4 shows that most of the surveyed
organization adopt agile (mainly Scrum-based) process models, followed by iterative and
incremental processmodels and the traditional waterfall model. Note that the respondents
could nominate more than one process model typically applied in their organization.
A slight difference is that apparently the V-Model XT is more popular in Austria (men-
tioned by 20.00 % of the organizations) than in Brazil (mentioned by 5.41 % of the
organizations). It is noteworthy that some organizations reported to use more than one
process model to handle different types of projects. One explanation for changing process
models is that organizations might have to follow a waterfall like model during a bidding
procedure while adopting Scrum after formal project assignment.

Tables 5 and 6 presents the application of RE standards reported by the Austrian
and Brazilian respondents. We can observe that in Austria most organizations adopt
self-defined standards and few of them base their standards on external regulations
and/or software reference models. In Brazil, on the other hand, most of the surveyed

Table 1. Size of the organizations surveyed in Austria

Sizea No. of answers Share [%]

1–10 employees 2 16.68 %
11–50 employees 1 8.33 %
51–250 employees 1 8.33 %
251–500 employees 4 33.33 %
501–1000 employees 0 0.00 %
1001–2000 employees 1 8.33 %
More than 2000 employees 3 25.00 %
Invalid (missing) answers 2 n/a
Valid responses: 12 100.00 %
a Size including software and other areas

Table 2. Size of the organizations surveyed in Brazil

Sizea No. of answers Share [%]

1–10 employees 11 15.49 %
11–50 employees 15 21.13 %
51–250 employees 17 23.94 %
251–500 employees 5 7.04 %
501–1000 employees 3 4.23 %
1001–2000 employees 5 7.04 %
More than 2000 employees 15 21.13 %
Invalid (missing) answers 3 n/a
Valid responses: 71 100.00 %
a Size including software and other areas

68 M. Kalinowski et al.

organizations follow regulation/reference-model-based standards. This, of course, may
have been influenced by the strategy of also distributing the survey to the organizations
with valid MPS-SW assessments. Nevertheless, many organizations answered that they
follow the standards of the adopted development process and their own standards.

To characterize the participants, the NaPiRE survey collects their roles in the
organization and their experience. The roles in Austria and Brazil are shown in

Table 3. Process models used in Austria

Process model No. of answers Share [%]

Scrum 6 40.00 %
Waterfall 4 26.67 %
V-Model XT 3 20.00 %
Rational Unified Process (RUP) 1 6.67 %
Extreme Programming (XP) 0 0.00 %
Othersa 4 26.67 %
Organizations (multiple answers possible): 14 100.00 %
a Others includes project or customer dependent process (2), and other
process models based on agile (1) or plan-driven methods (1)

Table 4. Process models used in Brazil

Process model No. of answers Share [%]

Scrum 45 60.81 %
Waterfall 22 29.73 %
Rational Unified Process (RUP) 19 25.68 %
Extreme Programming (XP) 7 9.46 %
V-Model XT 4 5.41 %
Othersa 11 14.86 %
Organizations (multiple answers possible): 74 100.00 %
a Others includes self-adapted process models (4), other iterative and
incremental development process models (4) and other process models
based on agile methods (3)

Table 5. RE Standards used in Austria

RE standard No. of
answers

Share
[%]

Self-defined (including artefacts and templates) 7 50.00 %
Self-defined (including a process with roles and responsibilities) 6 42.86 %
Adopted development process (e.g., RUP, Scrum) 4 28.57 %
Self-defined (including a process with deliverables, milestones
and phases)

4 28.57 %

Regulation (e.g., ITIL) /SW ref. model (e.g., CMMI-Dev) 2 14.29 %
None 0 0.00 %
Othersa 1 7.14 %
Organizations (multiple answers possible): 14 100.00 %
a Others includes project or customer dependent standards (1)

Preventing Incomplete/Hidden Requirements 69

Tables 7 and 8. It can be seen that participants in both countries are mainly project
managers and business analysts. The main difference is that in Austria the answers are
more evenly distributed between the roles, while in Brazil about half of the answers
were provided by project managers.

Table 6. RE standards used in Brazil

RE standard No. of
answers

Share
[%]

Regulation (e.g. ITIL) /SW ref. model (e.g., CMMI-Dev, MPS-SW) 39 52.70 %
Adopted development process (e.g., RUP, Scrum) 25 33.78 %
Self-defined (including a process with deliverables, milestones and
phases)

19 25.68 %

Self-defined (including a process with roles and responsibilities) 18 24.32 %
Self-defined (including artefacts and templates) 18 24.32 %
None 1 1.35 %
Organizations (multiple answers possible): 74 100.00 %

Table 7. Roles of the participants in Austria

Role No. of answers Share [%]

Business analyst 3 25.00 %
Project manager 2 16.67 %
Requirements engineer 2 16.67 %
Test Manager/Tester 2 16.67 %
Architect 1 8.32 %
Othersa 2 16.67 %
Invalid (missing) answers 2 n/a
Valid responses: 12 100.00 %
a Others include trainer and test manager (1), and quality
assurance (1)

Table 8. Roles of the participants in Brazil

Role No. of Answers Share [%]

Project manager 32 45.07 %
Business analyst 8 11.27 %
Developer 4 5.63 %
Software architect 4 5.63 %
Test Manager/Tester 3 4.23 %
Requirements engineer 2 2.82 %
Othersa 18 25.35 %
Invalid (missing) 3 n/a
Valid responses: 71 100.00 %
a Other informed values include development directors,
program managers and portfolio managers (7), quality
assurance analysts (7), and people from the software
engineering process group (4)

70 M. Kalinowski et al.

Finally, Tables 9 and 10 show that participants of both countries are highly
experienced in their roles, with the majority having more than 3 years of experience.

4 Criticality of RE Problems in Austria and Brazil

During the NaPiRE survey, based on a set of 21 precompiled general RE problems
listed in the NaPiRE questionnaire [5], participants were asked – according to their
expertise – to rank the five most critical requirement issues. The outcomes in Austria
and Brazil are shown in Tables 11 and 12. In these tables, we present all issues that
were cited among the five most critical requirements issues by at least 20 % of the
participants. We also show how often each problem was cited and how often it was
ranked as the most critical. For instance, Table 11 shows that problem incomplete/
hidden requirements was cited as one of the five most critical by 9 of the 14 Austrian
participants (64.28 %) and this issues has been listed as the most critical one by five of
them (35.71 %).

It is possible to observe that in both countries the most critical reported RE
problems are related incomplete/hidden requirements, underspecified requirements,
communication flaws between the project team and the customer, and communication
flaws within the project team. Besides these problems, both tables also share the
moving targets and time boxing problems. We believe that this very similar reported
problem profile might be due to using similar process models (mainly Scrum-based, cf.
Tables 3 and 4). Differences in the criticality were observed in the “stakeholders with
difficulties in separating requirements from previously known solution designs prob-
lem”, which was cited by more than 20 % of the participants in Austria, but not in
Brazil. On the other hand, the problems “insufficient support by customer” and “in-
consistent requirements” were cited by more than 20 % of the participants in Brazil,
but not in Austria.

Table 9. Experience of the participants in Austria

Experience No. of Answers Share [%]

Expert (more than 3 years) 9 81.82 %
Experienced (1 to 3 years) 2 18.18 %
Novice (up to 1 year) 0 0.00 %
Invalid (missing) 3 n/a
Valid responses: 11 100.00 %

Table 10. Experience of the participants in Brazil

Experience No. of Answers Share [%]

Expert (more than 3 years) 52 73.24 %
Experienced (1 to 3 years) 15 21.13 %
Novice (up to 1 year) 4 5.63 %
Invalid (missing) 3 n/a
Valid responses: 71 100.00 %

Preventing Incomplete/Hidden Requirements 71

In this paper, we focus on the specific problem of incomplete/hidden requirements.
According to Tables 11 and 12 this issue is highly relevant for both contexts, being the
most cited problem in Austria and the second most cited problem in Brazil. Moreover,
the majority of respondents have cited this issue as the most critical one in both
countries (see the last columns of Tables 11 and 12).

5 Analyzing the Incomplete/Hidden Requirements Problem

Considering the specific problem of incomplete/hidden requirements, Tables 13 and 14
show how survey respondents from Austria and Brazil judge its applicability to their
own projects (participants were asked to judge the applicability of all the precompiled

Table 11. Most critical RE problems in Austria

RE problems and issues Citeda Ranked #1a

No. % No. %

1 Incomplete and/or hidden requirements 9 64.28 % 5 35.71 %
2 Underspecified requirements that are too

abstract and allow for various interpretations
4 26.67 % 1 7.14 %

3 Communication flaws within the project team 4 26.67 % 1 7.14 %
4 Communication flaws between the project

team and the customer
3 21.42 % 1 7.14 %

4 Moving targets (changing goals, business
processes and/or req.)

3 21.42 % 1 7.14 %

4 Stakeholders with difficulties in separating reqs
from previously known solution designs

3 21.42 % 3 21.43 %

4 Time boxing /Not enough time in general 3 21.42 % 1 7.14 %
a The probabilities were calculated based on the overall amount of 14 participants

Table 12. Most critical RE problems in Brazil

RE problems and issues Citeda Ranked #1a

No % No %

1 Communication flaws between the project team
and the customer

32 43.24 % 9 12.16 %

2 Incomplete and/or hidden requirements 31 41.89 % 12 16.22 %
2 Underspecified requirements that are too abstract

and allow for various interpretations
31 41.89 % 3 4.05 %

4 Communication flaws within the project team 26 35.14 % 5 6.67 %
5 Insufficient support by customer 21 28.38 % 5 6.76 %
6 Inconsistent requirements 18 24.32 % 2 2.70 %
7 Time boxing /Not enough time in general 17 22.97 % 1 1.35 %
8 Moving targets (changing goals, business

processes and/or req.)
15 20.27 % 5 6.67 %

a The probabilities were calculated based on the overall amount of 74 participants

72 M. Kalinowski et al.

RE problems). In this question, incomplete and hidden requirements were analyzed
separately, which would not make sense for the question to rank the most critical ones
discussed in the previous section, as these problems are often similar (requirements are
often incomplete because there are hidden requirements which were not specified) and
should therefore not be counted twice in a ranking.

It can be observed that in both countries most of the respondents consider the
problem applicable/relevant to their own projects, with more than 75 % and 65 %
agreeing or partially agreeing on its relevance in Austria and in Brazil, respectively. In
fact, the judgements for both items, incomplete and hidden, were almost similar in each
of the countries, which reinforces the decision of analyzing them together as
incomplete/hidden requirements when discussing the most relevant problems and their
causes.

After selecting the five most critical RE problems, respondents were asked to
provide what they believe of being the main causes for each of the problems. They
provided the causes in an open question format, with one open question for each of the
previously selected RE problems.

Six of the nine respondents from Austria that reported incomplete/hidden
requirements among the most critical ones also listed causes for this problem. We
analyzed their textual cause descriptions, using the coding terms used for the German
NaPiRE trial as a starting point and decided to add new terms only when strictly
needed. As a result, we identified 7 causes (each one cited once) and no new coding
terms were needed. Then, we represented these causes in a cause-effect diagram [16],
using the categories suggested in [6]: input, method, organization, people, and tools.
The resulting cause-effect diagram is shown in Fig. 1.

We repeated the same process for the Brazilian data, in which 27 out of the 31 that
reported incomplete/hidden requirements among the most critical ones also listed
causes for this problem. We identified 18 different causes in the textual descriptions (in
this case, the coding terms were slightly extended – adding four new terms – due to

Table 13. Applicability/relevance of incomplete and hidden requirements to projects of
Austrian respondents

Problem Disagree Partially
disagree

Neutral Partially
agree

Agree Valid
responses

Incomplete 0 (0.00 %) 1 (7.69 %) 2 (15.38 %) 7 (53.85 %) 3 (23.08 %) 13 (100 %)
Hidden
requirements

0 (0.00 %) 0 (0.00 %) 2 (15.38 %) 6 (46.15 %) 5 (38.46 %) 13 (100 %)

Table 14. Applicability/relevance of incomplete and hidden requirements to projects of
Brazilian respondents

Problem Disagree Partially
disagree

Neutral Partially
agree

Agree Valid
responses

Incomplete 8 (11.94 %) 2 (2.99 %) 12 (17.91 %) 17 (25.37 %) 28 (41.79 %) 67 (100 %)

Hidden
requirements

7 (10.45 %) 0 (0.00 %) 14 (20.90 %) 18 (26.87 %) 28 (41.79 %) 67 (100 %)

Preventing Incomplete/Hidden Requirements 73

textual descriptions that could not be mapped to the previously provided terms). Given
the size of this data set, we also counted the frequency in which each cause was cited
(at all we had 35 cause citations).

With this additional information on the frequency, we were able to build a prob-
abilistic cause-effect diagram [17, 18], which enables identifying the most common
causes based on probabilistic percentages (in this case, their frequencies). Figure 2
extends the traditional cause-effect diagram [16] by (a) showing the probabilities for

Fig. 1. Austrian cause-effect diagram for incomplete/hidden requirements.

Fig. 2. Brazilian probabilistic cause-effect diagram for incomplete/hidden requirements.

74 M. Kalinowski et al.

each possible cause to lead to the analyzed problem, and (b) representing the causes
using grey tones, where causes with higher probability are shown closer to the center
and in darker tones. The resulting probabilistic cause-effect diagram is shown in Fig. 2.
We believe that this representation complements the information on causes reported for
the problem in Austria. In fact, the causes reported in Austria are contained in the
causes reported in Brazil, with additional causes and information on their frequency
based on a larger sample. In fact, most of the most frequently cited causes in Brazil
shown in Fig. 2 were also identified in the results of the Austrian survey. According to
the survey responses we highlight the missing qualification of RE team members, lack
of experience, missing domain knowledge, unclear business needs and poor defined
requirements as the main causes.

To address the first three of these causes, related to the people category, aiming
prevention, we recommend training on best RE practices, selecting highly experienced
requirements analysts and involving domain experts and/or providing appropriate
training on the application domain. For cases were the lack of domain knowledge plays
a significant role, we also recommend some specific domain immersive elicitation
techniques, such as ethnography. Unclear business needs can be addressed by applying
business case analysis that helps fostering discussions and clarifying business objec-
tives and values and by facilitating a stronger involvement and clear communications
of the customer. In context of RE joint RE workshops in collaboration with the cus-
tomer might help to precisely identify the real business needs. Finally, the poor defined
requirements could be addressed by providing a detailed requirements specification
template and conducting peer reviews with appropriate inspection methods (e.g.,
checklists or reading techniques), ideally involving different stakeholders (e.g., users,
designers, and testers) in the verification and validation process. These counter mea-
sures represent a set of initial strategies based on the experience of the study team, i.e.,
the authors.

However, during the NaPiRE survey, candidate measures to address these issues
have been collected from survey participants. Tables 15 and 16 presents an overview
on risk and RE issue mitigation actions, reported by the participants in Austria and
Brazil. These mitigation action can serve as an additional input (from industry projects)
to investigate best practices to prevent the incomplete/hidden requirements problem.
However, more detailed analysis is required to investigate (a) which mitigation actions
are most promising to improve the incomplete/hidden requirements problem and
(b) how to support engineers in better addressing these issues.

Table 15. Mitigation actions for incomplete/hidden require-
ments reported in Austria

Mitigation cctions for incomplete/hidden requirements

Having testers testing requirements
Increased efforts during the review process
After project retrospective with project team
Checklists for requirements

Preventing Incomplete/Hidden Requirements 75

6 Concluding Remarks

Many projects fail due to problems in RE. In this paper, we further analyzed a specific
and relevant RE problem: incomplete/hidden requirements. Therefore, we used the data
of the NaPiRE survey replications we conducted in Austria and Brazil. We provided
the basic characterization of the responding organizations (14 in Austria and 74 in
Brazil), which include small, medium and large sized companies, conducting both,
plan-driven and agile development. Thereafter, we characterized the criticality of the
selected RE problem. Results showed that in both countries the survey respondents
considered it one of the most critical RE problems (#1 in Austria and #2 in Brazil) and
reported that it is applicable and relevant to their projects.

To provide further knowledge on the causes of this problem, we compiled all the
causes reported in Austria into a cause-effect diagram and the causes reported in the

Table 16. Mitigation actions for incomplete/hidden requirements reported in Brazil

Mitigation actions for incomplete/hidden requirements

Improve the documentation and conduct more meetings with the developers to detect analysis
defects

Hire or specialize a requirements analyst
Creating templates
Creation of a DoR (Definition of Readiness) for the team
Invest more time in requirements specification, using scenarios and prototypes to gather
requirements more completely

Peer reviews involving testes
Invest more effort in requirements validation using prototypes
Peer reviews involving developers
Provide training to the RE team
Process models
Avoiding including incomplete requirements, when already known to be incomplete, in
development sprints

Prototyping; technical reviews and consensus meetings
Improve the analysis to be more detailed
More frequent meetings with the customer to align expectations
Requirements reviews and frequent releases
Improving the quality of the requirements documentation, or improving elicitation methods
Developing requirements according to suggestions of the MPS-SW reference model
Improvement of the artefacts; adoption of software inspections
Standardizing the requirements specifications, using a validation checklist and peer reviews
Training, mentoring, selecting professionals with an adequate profile, a highly skilled team
Provide training to the RE team
Reviewing the RE processes
The customer should have a better understanding of the problem; requirements verification with
all stakeholders (applying Perspective-Based Reading)

76 M. Kalinowski et al.

large Brazilian sample into a probabilistic cause-effect diagram. Most commonly
reported causes were missing qualification of RE team members, lack of experience,
missing domain knowledge, unclear business needs and poor defined requirements.

Based on these causes, we discussed solution options on how to address them in
order to prevent incomplete/hidden requirements in future projects. Furthermore, we
compiled the lists of mitigation actions cited by the survey respondents from Austria
and Brazil, which may serve as additional input for preventing the problem.

We believe that, from a practical point of view, this paper provides further insights
into common causes of incomplete/hidden requirements and on how to prevent this
problem.

Future work includes a more detailed analysis of NaPiRE Austria and NaPiRE
Brazil surveys with regard to other RE problems, and to triangulate our results with
data from other countries where NaPiRE was performed to increase the validity and
reliability of the results achieved.

Acknowledgments. The authors would like to thank the NaPiRE community for their
support. Thanks also to the Brazilian research council (CNPq) for financial support
(grant #460627/2014-7). Part of this work was also supported by the Christian Doppler
Forschungsgesellschaft, the Federal Ministry of Economy, Family and Youth, and the
National Foundation for Research, Technology and Development, Austria.

References

1. Broy, M.: Requirements engineering as a key to holistic software quality. In: Levi, A.,
Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263,
pp. 24–34. Springer, Heidelberg (2006)

2. Méndez Fernández, D., Wagner, S., Lochmann, K., Baumann, A., de Carne, H.: Field study
on requirements engineering: investigation of artefacts, project parameters, and execution
strategies. Inf. Softw. Technol. 54, 162–178 (2012)

3. Hall, T., Beecham, S., Rainer, A.: Requirements problems in twelve software companies: an
empirical analysis. Empirical Softw. Eng. 8, 7–42 (2003)

4. Khankaew, S., Riddle, S.: A review of practice and problems in requirements engineering in
small and medium software enterprises in Thailand. In: International Workshop on
Empirical Requirements Engineering (EmpiRE), pp.1–8 (2014)

5. Méndez Fernández, D., Wagner, S.: Naming the pain in requirements engineering: a design
for a global family of surveys and first results from Germany. Inf. Softw. Technol. 57, 616–
643 (2015)

6. Kalinowski, M., Card, D.N., Travassos, G.H.: Evidence-based guidelines to defect causal
analysis. IEEE Softw. 29(4), 16–18 (2012)

7. Kalinowski, M., Mendes, E., Travassos, G.H.: An industry ready defect causal analysis
approach exploring bayesian networks. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.)
SWQD 2014. LNBIP, vol. 166, pp. 12–33. Springer, Heidelberg (2014)

8. Kalinowski, M., Spínola, R.O., Conte, T., Prickladnicki, R., Méndez Fernández, D.,
Wagner, S.: Towards building knowledge on causes of critical requirements engineering
problems. In: International Conference on Software Engineering and Knowledge
Engineering (SEKE), p. 6 (2015, accepted for publication)

Preventing Incomplete/Hidden Requirements 77

9. Eveleens, J., Verhoef, T.: The rise and fall of the chaos report figures. IEEE Softw. 27,
30–36 (2010)

10. Solemon, B., Sahibuddin, S., Ghani, A.A.A.: Requirements engineering problems and
practices in software companies: an industrial survey. In: Ślęzak, D., Kim, T.-h., Kiumi, A.,
Jiang, T., Verner, J., Abrahão, S. (eds.) ASEA 2009. CCIS, vol. 59, pp. 70–77. Springer,
Heidelberg (2009)

11. Liu, L., Li, T., Peng, F.: Why requirements engineering fails: a survey report from China. In:
International Conference on Requirements Engineering (RE), pp. 317–322 (2010)

12. Khankaew, S., Riddle, S.: A review of practice and problems in requirements engineering in
small and medium software enterprises in Thailand. In: International Workshop on
Empirical Requirements Engineering (EmpiRE), pp.1–8 (2014)

13. Méndez Fernández, D., Wagner, S.: Naming the pain in requirements engineering: design of
a global family of surveys and first results from Germany. In: International Conference on
Evaluation and Assessment in Software Engineering (EASE), pp. 183–194 (2013)

14. Kalinowski, M., Weber, K., Franco, N., Duarte, V., Santos, G., Travassos, G.: Results of 10
years of software process improvement in Brazil based on the MPS-SW Model. In:
International Conference on the Quality in Information and Communications Technology
(QUATIC), pp.28–37 (2014)

15. Softex: Software e Serviços de TI: A Indústria Brasileira em Perspectiva. Observatório
Softex (ISSN 1984-6797), vol. 2 (2012)

16. Ishikawa, K.: Guide to Quality Control. Asian Productivity Organization, Tokyo (1976)
17. Kalinowski, M., Travassos, G.H., Card, D.N.: Towards a defect prevention based process

improvement approach. In: Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pp. 199–206 (2008)

18. Kalinowski, M., Mendes, E., Travassos, G.H.: Automating and evaluating the use of
probabilistic cause-effect diagrams to improve defect causal analysis. In: Caivano, D.,
Oivo, M., Baldassarre, M.T., Visaggio, G. (eds.) International Conference on Product
Focused Software Development and Process Improvement (PROFES). Lecture Notes in
Computer Science, vol. 6759, pp. 232–246. Springer, Heidelberg (2011)

78 M. Kalinowski et al.

An Expert-Based Requirements Effort
Estimation Model Using Bayesian Networks

Emilia Mendes1,2(&), Veronica Taquete Vaz3,
and Fernando Muradas4

1 BTH – Blekinge Institute of Technology,
37179 Karlskrona, Sweden

emilia.mendes@bth.se
2 University of Oulu, Oulu, Finland

3 UFRJ – Federal University of Rio de Janeiro,
P.O. Box 68511, Rio de Janeiro, Brazil

veronica@cos.ufrj.br
4 Naval Systems Analysis Centre, San Diego 20091000, Brazil

muradas@casnav.mar.mil.br

Abstract. [Motivation]: There are numerous software companies worldwide
that split the software development life cycle into at least two separate projects –
an initial project where a requirements specification document is prepared; and a
follow-up project where the previously prepared requirements document is used
as input to developing a software application. These follow-up projects can also
be delegated to a third party, as occurs in numerous global software develop-
ment scenarios. Effort estimation is one of the cornerstones of any type of
project management; however, a systematic literature review on requirements
effort estimation found hardly any empirical study investigating this topic.
[Objective]: The goal of this paper is to describe an industrial case study where
an expert-based requirements effort estimation model was built and validated for
the Brazilian Navy. [Method]: A knowledge engineering of Bayesian networks
process was employed to build the requirements effort estimation model.
[Results]: The expert-based requirements effort estimation model was built with
the participation of seven software requirements analysts and project managers,
leading to 28 prediction factors and 30+ relationships. The model was validated
based on real data from 11 large requirements specification projects. The model
was incorporated into the Brazilian navy’s quality assurance process to be used
by their software requirements analysts and managers. [Conclusion]: This paper
details a case study where an expert-based requirements effort estimation model
based solely on knowledge from requirements analysts and project managers
was successfully built to help the Brazilian Navy estimate the requirements
effort for their projects.

Keywords: Requirements effort estimation � Bayesian networks � Require-
ments engineering � Cost estimation � Industrial case study

© Springer International Publishing Switzerland 2016
D. Winkler et al. (Eds.): SWQD 2016, LNBIP 238, pp. 79–93, 2015.
DOI: 10.1007/978-3-319-27033-3_6

1 Introduction

Reliable software effort estimates are the basis for project scheduling, cost estimation1

and sound resource allocation, thus contributing strongly to projects being completed
on time and within budget. Most studies in software effort estimation (e.g. [1, 7]) focus
on software development effort, rather than on effort estimation relating to only specific
phases of a software life cycle (e.g. requirements specification, testing). Therefore, their
estimation techniques take as input some measure(s) of software size and cost drivers
that relate to estimating the effort for the entire software development process, rather
than for a specific activity part of this process.

However, in practice there are also several software companies worldwide that
consider the specification of software requirements as a separate project, for which
effort also needs to be estimated. Some of the contexts within which such scenario may
likely occur are as follows:

– Companies who provide a detailed requirements specification document as part of
contracting out (outsource) the development of software applications to other ser-
vices suppliers. In such distributed projects, communication tends to be less frequent
and less effective, increasing the need to provide an explicit and complete software
requirements specification to support software development (e.g. [4, 5, 13]).

– Companies working with fixed price and scope projects. In this scenario it is
important to have a detailed understanding of requirements prior to project budget
and schedule agreements, as the company will be committed to a fixed scope from
the beginning. In this case, companies usually run a preliminary project to further
analyze and specify the requirements prior to developing the software.

When we focus upon the scenarios abovementioned, and relate them to the effort
estimation process, it is clear that the prediction factors that need to be taken into account
should only represent factors deemed relevant within the context of a requirements
specification process. In addition, we cannot assume that effort prediction factors that
have been proposed in the literature targeting at the entire software development process
can be readily applied to estimating effort for a requirements specification activity.
Therefore, the investigation of which factors are relevant to estimate effort for a software
requirements specification activity is a legitimate research agenda.

Recently, Vaz and Travassos conducted a systematic literature review (SLR) on the
state of the art in software requirements specification’s effort estimation [16]. This SLR
based its evidence on searches executed in three databases: EI Compendex2, IEEEX-
plore3 and Scopus4. A total of 559 papers were screened; however only 10 primary
studies were selected. Despite the practical need to estimate effort for the requirements

1 Project costs may include hardware costs, environment costs etc., but it is mostly influenced by the
cost of human resources. For this reason the majority of researchers in this field use the terms cost
and effort interchangeably [7].

2 http://www.engineeringvillage2.org/.
3 http://ieeexplore.ieee.org/.
4 http://www.scopus.com/.

80 E. Mendes et al.

http://www.engineeringvillage2.org/
http://ieeexplore.ieee.org/
http://www.scopus.com/

specification phase, one of the main findings from this SLR was the lack of effort
estimation models specifically targeted at that phase. Only one primary study inves-
tigated software requirements effort estimation [8]. In this study, Mao et al. propose an
artificial neural network model for predicting the effort spent on requirements changes
during the later stages of the software development (design, coding, testing, and
maintenance). This model uses a set of factors (representing some project character-
istics) as input and the output is the effort in person-days needed to tackle the
requirements changes. In addition, it only targets at the effort needed to handle future
changes in the specification of the requirements, and not the effort involved in eliciting,
analyzing and building the initial requirements specification.

Therefore, the goals and main contributions of this paper are twofold: (i) to detail
an industrial case study where Bayesian networks (BN) was used to build and validate
a requirements effort estimation model with the participation of seven requirements
analysts and project managers from a technology center part of the Brazilian Navy;
(ii) to present a set of requirements effort estimation predictors and their causal rela-
tionships that not only add to the existing body of knowledge in software effort esti-
mation, but also may be useful by other practitioners who estimate effort for the
requirements specification phase. BN was chosen because it has been previously used
successfully by the first author to build expert-based software effort estimation models
for a diverse range of companies [11].

The case study was conducted at a center part of the Brazilian Navy. This center is
called Centre for the Analysis of Naval Systems (CASNAV). The CASNAV is recog-
nized as a Brazilian Navy institution for Science and Technology with expertise in the
areas of Information Technology, Operational Research and Cryptology. It employs
around 350 employees, among military and civilians. The case study took place at
CASNAV’s Systems Engineering Department (SED), where close to 200 employees
work. This department is responsible for CASNAV‘s target activities and its productivity
has presented a continuous increase in serving all areas in the Navy and, as much as
possible, also to third party customers. One of the main activities carried out in SED is to
manage a large set of requirements specification projects. Their need to treat require-
ments as a separate project with its own effort estimates, is motivated by two of their
current scenarios: (i) a range of projects that have their development outsourced to other
companies; (ii) other projects that follow a waterfall process model, which means that the
requirements phase needs to be completed prior to estimating development effort.

SED estimates their requirements specification projects based on both project
managers’ experience and on comparisons with previous similar projects. In addition,
in order to obtain budget approval, project managers also need to provide their line
managers with a detailed rationale explaining how estimations are obtained; however,
this has been a very difficult issue for SED as estimations were often decided upon via
subjective means. Their need to improve their current requirements effort estimation
process prompted them to participate in this case study.

The remainder of this paper is structured as follows: Sect. 2 provides an overview
of BNs, followed by the description, in Sect. 3, of the general process used to build and
validate BNs. Section 4 details this process within the context of the model described
herein, followed by a discussion of the results & threats to validity in Sect. 5, and
finally conclusions in Sect. 6.

An Expert-Based Requirements Effort Estimation 81

2 Introduction to Bayesian Networks

A Bayesian Network (BN) is a model that supports reasoning with uncertainty due to
the way in which it incorporates existing knowledge of a complex domain [12]. This
knowledge is represented using two parts. The first, the qualitative part, represents the
structure of a BN as depicted by a directed acyclic graph (digraph) (see Fig. 1). The
digraph’s nodes represent the relevant variables (factors) in the domain being modeled.
The digraph’s arcs represent the causal relationships between variables, where rela-
tionships are quantified probabilistically [12].

The second, the quantitative part, associates a conditional probability table (CPT) to
each node, its probability distribution. A parent node’s CPT describes the relative
probability of each state (value) (Fig. 1, nodes ‘Stakeholders Knowledge about the
problem Domain’ and ‘Developers Technical Expertise’); a child node’s CPT describes
the relative probability of each state conditional on every combination of states of its
parents (Fig. 1, node ‘Total Requirements Specification Effort’). So, for example, the
relative probability of ‘Total Requirements Specification Effort’ being ‘Low’ condi-
tional on ‘Stakeholders Knowledge about the problem Domain’ and ‘Developers
Technical Expertise’ being both ‘Low’ is 0.7. Each row in a CPT represents a con-
ditional probability distribution and therefore its values sum up to 1 [12].

Once a BN is specified, evidence (e.g. values) can be entered into any node, and
probabilities for the remaining nodes automatically calculated using Bayes’ rule [12].
Therefore BNs can be used for different types of reasoning, such as predictive, diagnostic,
and “what-if” analyses to investigate the impact that changes on some nodes have on
others.

Fig. 1. Example bayesian network

82 E. Mendes et al.

3 Knowledge Engineering of Expert-Based Bayesian
Network Process

The BN model presented herein was built and validated using a process model called
the Knowledge Engineering of Expert-based Bayesian Network (EKEBN) process [10]
(see Fig. 2). In Fig. 2 arrows represent flows through the different processes, depicted
by rectangles. The three main steps within the EKEBN process are the Structure
Building, Uncertainty Quantification, and Model Validation. This process iterates over
these steps until a complete BN is built and validated. Each of these three steps is
detailed in the next Sub-sections.

Structure Building: This step represents the qualitative component of a BN, which
results in a graphical structure comprised of, in our case, the factors and causal

Structure Building

Uncertainty Quantification

Identify
Relationships

Yes

No

Yes

Begin

Model Validation

Identify
Factors

Identify
Categories

Evaluation

Data?

Further
Elicitation

No

No

Yes

Accept?

Domain expert
Model

Walkthrough

Data-driven
Predictive
Accuracy

Accept?

Expert
Elicitation

Automated
Learning

Next
Stage

Fig. 2. EKEBN process

An Expert-Based Requirements Effort Estimation 83

relationships identified as fundamental for requirements specification effort estimation.
In addition to identifying variables and causal relationships, this step also comprises the
identification of the states (values) that each variable should take. The BN’s structure is
refined through an iterative process. This structure construction process has been
validated in previous studies (e.g. [11]) and uses the principles of problem solving
employed in data modeling and software development [14]. As will be detailed later,
knowledge from the domain experts were employed to elicit the BN’s structure.
Throughout this step the BN’s structure was also evaluated to check whether variables
and their values had a clear meaning; all relevant variables have been included; vari-
ables are named conveniently; all states are appropriate (exhaustive and exclusive).
Sometimes a BN’s structure may also need to be optimized to reduce the number of
probabilities that need to be elicited or learnt for the network. As will be detailed later,
this was the case herein.

Uncertainty Quantification: This step represents the quantitative component of a BN,
where conditional probabilities corresponding to the quantification of the relationships
between variables are obtained. Such probabilities can be attained via expert elicitation,
automatically from data, from existing literature, or using a combination of these. As
will be explained later on, within the context of this case study, all the probabilities
were obtained via expert elicitation.

Model Validation: This step checks the BN that resulted from the two previous steps,
and determines whether it is necessary to re-visit any of those steps. Two different
validation methods are generally used - Model Walkthrough and Predictive Accuracy.

Model walkthrough represents the use of real case scenarios that are prepared and
used by domain experts to assess if the predictions provided by the BN model cor-
respond to the predictions experts would have chosen based on their own expertise.
Success is measured as the frequency with which the BN’s predicted value for a target
variable (e.g. quality, effort) that has the highest probability corresponds to the experts’
own assessment. Predictive Accuracy uses past data (e.g. past project data), rather than
scenarios, to obtain predictions. Data (evidence) is entered on the BN model, and
success is measured as the frequency with which the BN’s predicted value for a target
variable (e.g. quality, effort) that has the highest probability corresponds to the actual
past data. Prediction accuracy was the only method chosen by CASNAV to validate the
model.

4 Revisiting the EKEBN Process – Our Case Study

Herein we revisit the EKEBN process (see Fig. 2), detailing the tasks carried out for
each of the three main steps, within the context of the requirements effort estimation
BN model focus of this paper. Before starting the model elicitation, preliminary
interviews, using an adapted questionnaire from [9], were carried out with several
company members, including requirements analysts and project managers. The
objective of such interviews was twofold: (i) to select participants for the study; and
(ii) to identify the initial set of factors identified as relevant for requirements effort

84 E. Mendes et al.

estimation. This initial set of factors was used as input during the knowledge elicitation
meetings, since our previous experience eliciting BNs in other domains (e.g. ecology)
suggested that it was best to start the elicitation with a few factors, rather than to use a
“blank canvas” as a starting point. We interviewed a total of 10 requirements analysts
and five project managers. Each interview was conducted individually, with one
company member and the first author. All interviews started with an explanation about
the interview’s objective, followed by open-ended questions aimed to identify the
factors the interviewee believed to drive the effort needed during a requirements
elicitation process. Once all the interviews were carried out we selected five require-
ments analysts and two project managers to take part in the model elicitation and
validation. Selection was based on subjects’ expertise and experience with require-
ments analysis, effort estimation, project management and availability to participate.
The requirements analysts and the project managers had respectively 4 and 8 years of
experience on average. Table 1 details the effort involved in each phase of the EKEBN
process. Every session lasted for three hours.

Detailed Structure Building and Uncertainty Quantification: In order to identify
the initial set of factors considered important by the requirements analysts and project
managers when estimating requirements effort, the second author analyzed the inter-
views using principles from Grounded Theory (GT) [14] method, in which she has a lot
of experience. The GT method provides a viable way of conducting qualitative
research, whether with the intention of generating a basic theory or simply to make a
conceptual classification [2]. Following the principles defined by Strauss and Corbin
[14], this method is based on coding – the analytic processes through which data are
fractured, conceptualized, and integrated, and in addition contains three data analysis
steps: open coding, where concepts are identified, categorized, and their properties and
dimensions are discovered in the data; axial coding, where connections between the
categories (and sub-categories) are identified; and selective coding, where the core
category (that integrates the theory) is identified and described.

In the context of this case study we only executed the open coding activities as they
were sufficient to provide us with the initial set of factors needed as a starting point for
the EKEBN process.

Details on the Open Coding: The data analysis began with the open coding of the
transcribed interviews. The objective of the open coding activity was to analyze the
data collected and allocate codes to the text. We did not use “seed categories” (an initial
set of codes); rather, started coding directly from the text, creating in-vivo codes. The
open coding procedures stimulate the constant creation of new codes and merging of

Table 1. Effort involved in the EKEBN process

Phase Effort (person hours)

Structure building 114
Uncertainty quantification 136
Model validation 16
Total 266

An Expert-Based Requirements Effort Estimation 85

existing codes as new evidence and interpretations emerge. Whenever two or more
interviewees were talking about the same influence factor we combined them into a
single code representing both statements. This is the process described by the
methodology as the incident-incident comparison [2]. The final step in the open coding
phase is to group codes into categories. Categories are clusters of concepts joined in a
higher degree of abstraction. They are useful to reduce the number of units the
researcher will work with and to make the results easier to visualize. As Banks et al. [3]
(see Strauss and Corbin 1990, p. 67) note, categories have to be analytically developed
by the researcher. Table 2 presents the categories identified and the complete results of
the coding from the preliminary interviews. Each row also presents an identifier (e.g.
SD1), which is used to relate the Factor to the set of factors that were ultimately
included in the BN model (see Table 3). Note that within the context of this work the
different types of Customers are identified jointly as Stakeholders; a Representative is a
Stakeholder who interfaces between CASNAV and the other Stakeholders.

Each code represented a factor to be used as part of the Structure building step. All
the factors were displayed in a white board, and explained to the participants. The next
step was to remove all the factors considered irrelevant to the requirements analysts and
project managers participating in the model elicitation, followed by adding to the white
board any additional factors deemed relevant. We also documented descriptions for
each of the factors suggested. Next, we identified the states that each factor would take,

Table 2. Results from initial interviews.

Category Requirements Effort Influence Factor
Solution Domain Solution size and complexity (SD1)
Problem Domain Processes followed within the Stakeholders’ organization are documented

(PD1)
Stability of the business environment (PD2)
Discrepancies between documented procedures and actual processes (PD3)
The need to adhere strictly to existing standards (defined by an external entity)
that are subject to audit (PD4)

Environment for RE Existence of tools to support the specification (ERE1)
Technical Team CASNAV’s requirements team’s knowledge about the problem domain (TT1)

CASNAV’s requirements team knowledge of requirements engineering (TT2)
Turnover in requirements team (TT3)

Stakeholders Stakeholders knowledge about the problem domain (ST1)
Stakeholders’ availability to work in activities related to the project (ST2)
Existence of divergences or conflicts of interest between the information
received from various stakeholders (ST3)
Stakeholders’ understanding about requirements specification notations (ST4)
Number of stakeholders participating in the project (ST5)
Hierarchical differences between stakeholders (ST6)
Stakeholders turnover (ST7)
Percentage of key stakeholders involved in the project (ST8)

Interaction between
Stakeholders and Technical
Team

Geographical distance between stakeholders and CASNAV’s requirements team
(IST1)

Effort involved in
requirements activities

Requirements elicitation effort (ERA1)
Requirements specification effort (ERA2)
Requirements validation effort (ERA3)
Requirements maintenance effort

86 E. Mendes et al.

i.e., how each factor was to be measured. All states were discrete. Whenever a factor
represented a measure of effort (e.g. Total Requirements Effort), we also documented
the effort range corresponding to each state, to avoid any future ambiguity. For
example, ‘low’ Total Requirements Effort corresponded to 0 + to 180 person hours, etc.

Table 3. Results from initial interviews.

BN)
Hierarchical differences between
the Representative and other
Stakeholders

One rank, two+ ranks

Indicates the existence of differences in
military rank between the Representative and
other stakeholders

Representative’s participatory style

Authoritarian, Good coordination
capability, limited coordination
capability

Indicates whether the Representative wants to
be the sole provider of the requirements, or to
also share the elicitation of requirements with
other stakeholders.

Stakeholders’ and Representative’s
availability (ST2)

Low, High

Stakeholders’ and Representative’s availability
to discuss the project

Stakeholders’ level of commitment Negative, Low, Medium, High Stakeholders’ level of commitment towards
project success.

Hierarchical differences between
Stakeholders (ST6)

One rank, 2+ ranks

The highest rank difference between
Stakeholders

Number of Stakeholders (ST5) Up to 4, from 5 to 8, 9+ Number of Stakeholders participating in the
project

Number of Military Sectors and
Organizations

1 sector in 1 MO, N sectors in 1
MO, 2+ MOs

The number of military organizations (MO)
and sectors (sub-division within a MO) that
have Stakeholders who are participating in the
project

Representative’s commitment to the
project

Negative, Low, Medium, High The Representative’s level of commitment to
project success

Stakeholders and Representative
turnover (ST7)

Low, Medium, High

The number of Stakeholders who leave the
project within a period of one year

System type

Operative, Administrative Indicates whether the system under
specification will support operational or
administrative activities

Stakeholders’ and Representative’s
knowledge about the problem
domain (ST1)

None, Basic, Average, Good,
Expert

The amount of knowledge/experience that
Stakeholders and Representative have
regarding the problem domain

Amount of divergences or conflicts
of interest amongst the
requirements elicited from various
Stakeholders (ST3)

Low, Medium, High

The amount of divergences and/or conflicts of
interest relating to the requirements that were
elicited amongst all the Stakeholders, including
the Representative.

Representative’s Personality factors Easy going, Slightly Difficult, Very
Difficult

The degree of difficulty in dealing with the
Representative due to their personality

Stakeholders’ understanding about
requirements specification notations
(ST4)

None, Conversant, High

Level of familiarity of Stakeholders with
requirements specification notations (e.g. use
case descriptions)

Geographical distance between the
Stakeholders and CASNAV’s
requirements team (IST1)

Within the same military district,
requires a car, requires an airplane
but videoconference is also
available, requires an airplane and
videoconference is not available

Rough indicator of the geographical distance
between the Stakeholders and CASNAV’s
Requirements team

Hierarchical differences between
the Representative and CASNAV’s
Representative

One rank, 2+ ranks

The difference in military rank between the
Representative and those representing
CASNAV in the project

Stakeholders’ MO processes
(PD1+PD3)

Not documented, documented but
not followed, documented and
followed

Identifies the sort of processes followed within
the Stakeholders’ Military organization(s)

Problem domain’s complexity Low, Medium, High

The degree of complexity of the problem
domain, as perceived by CASNAV’s
requirements team

The need to adhere strictly to
existing standards (PD4)

Yes, No

The need to adhere strictly to existing
standards (defined by an external entity) that
are subject to audit (e.g. accessibility
standards)

Factor (How it is shown in the BN) Categories (How it is shown in the Description

(Continued)

An Expert-Based Requirements Effort Estimation 87

Once all states were identified and documented, it was time to elicit the cause and
effect relationships. As a starting point to this task we used the same example used in
Mendes et al. [10] - a simple medical example from [6] (see Fig. 3).

This example introduces one of the most important points to consider when
identifying cause and effect relationships – timeline of events. If smoking is to be a
cause of lung cancer, it is important that the cause precedes the effect. This may sound
obvious with regard to the example used; however, it is our view that the use of this
simple example significantly helped the project managers and requirements analysts
understand the notion of cause and effect, and how this related to requirements effort
estimation and the BN being elicited.

Once the cause and effect relationships were identified, and after some minor
changes to the original structure, the final Requirements Effort BN’s causal structure

(ERA1) Medium (60+ a 120)
High (120+)

requirements elicitation activities

Requirements’ Approval Effort
(ERA3)

Low (0+ a 60)
Medium (60+ a 120)
High (120+)

Effort in person hours needed to obtain the
approval and the required signatures within
CASNAV and also at the Stakeholders’
organization(s)

Total requirements Effort Low (0+ a 180)
Medium (180+ a 400)
High (400+)

Total effort spent by CASNAV’s requirements
team on requirements activities

Requirements specification and
modelling Effort (ERA2)

Low (0+ a 60)
Medium (60+ a 160)
High (160+)

Effort spent by the CASNAV’s requirements
team on requirements specification and
modelling activities

CASNAV’s requirements team’s
knowledge about the problem
domain (TT1)

None, Basic, Average, Good,
Expert

The level of knowledge/experience that the
CASNAV’s requirements team has regarding
the problem domain

CASNAV’s requirements team
knowledge of requirements
engineering (TT2)

None, Basic, Average, Good The level of knowledge that the CASNAV’s
requirements team has relating to requirements
engineering techniques

Stakeholders’ Degree of
participation

None, Low, Medium, High The overall level of commitment with and
availability for the project by all Stakeholders

Complexity of the Stakeholders’
MO(s)

Low, Medium, High A subjective measure of how complex
CASNAV’s requirements team perceives the
Stakeholders’ Military organization(s) to be

Problem Solution’s complexity
(SD1)

Low, Medium High The perceived complexity of the solution, as
perceived by CASNAV’s requirements team

Suitability of CASNAV’s
requirements team to the project at
hand

None, Low, Medium, High The level of appropriateness of CASNAV’s
requirements team to the project’s needs

Clients Interaction Effort Low, Medium, High, Very High Amount of effort required to interact with
Clients

Requirements Elicitation Effort Low (0+ a 60) Effort in person hours spent by CASNAV on

Fig. 3. A simple medical example from (Jensen, 1996)

Table 3. (Continued)

88 E. Mendes et al.

was as follows (see Fig. 4). Note that Fig. 4 is not a BN based directly on Table 2.
Some of the factors in Fig. 4 have a ‘(I)’ at the end of their names; this means that these
factors were artificially introduced (I) in order to reduce the amount of probabilities to
be elicited. The final version of the BN, including its probabilities, is shown in Fig. 5;

Problem domain’s complexity

Representative’s

par tic ipatory style

Hierar. diffs bt. Repres. and

other Stakehs

Stakes’ level of commitment
Number of Stakehs

Requirements spec ification and modelling Effor t

Complexity of the Stakehs' MO(s) (I)

Amount of divergences or

conflic ts of interest

amongst the requirements
elic ited from var ious Stakeholders

Representative’s Personality factors

Stakeholders and

Representative turnover

Stakes' and Repres's knowledge about

the problem domain

Problem

Solution's complexity (I)

System type

Total Requirements Effor t

Stakes' understanding about

requirements specification
notations

Requirements Approval Effort

The need to adhere str ic tly to existing standards

Representative’s commitment to the projec t

Stakehs' Degree of partic ipation (I)

Requirements Elic itation Effort

Suitability of CASNAV's requirements

team to the project at hand (I)
Stakeholders’ MO processes

Hierarchical diffs bt. Stakehs

CASNAV’s requirements team’s knowledge about the problem domain

CASNAV’s requirements team knowledge of requirements engineer ing

Geogr. dist. bt. Stakehs and CASNAV’s requirements team

Number of Military Sectors
and Organizations

Stakehs' and Repres' availability

Clients Interaction Effort (I)

Hierar . diff. bt. Repres. and CASNAV’s Representative

Fig. 4. Final BN structure of the requirements effort estimation model

Fig. 5. Final requirements effort estimation model

An Expert-Based Requirements Effort Estimation 89

the BN model is displayed using belief bars rather than labelled factors, so readers can
see the probabilities that were elicited. The description of each factor and how they are
measured is given in Table 3.5

5 Detailed Model Validation

Predictive accuracy was the activity used to validate the Requirements Effort Predic-
tion BN model. A validation set containing data on 11 projects was used. These
projects were characterized by different sizes and levels of complexity, where all 11
projects were representative of the types and sizes of the requirements specification
projects developed by CASNAV.

For each project, evidence was entered in the BN model (an example is given in
Fig. 6, where evidence is characterized by dark grey nodes with probabilities equal to
100 % (1…)), and the effort range corresponding to the highest probability provided for
‘Total Requirements Effort’ was compared to that project’s actual requirements effort.
Note that the CASNAV had also defined how to measure each of the factors part of
their model. Whenever actual effort did not fall within the effort range associated with
the category with the highest probability, there was a mismatch; this meant that some

Fig. 6. Example of a ‘what-if’ scenario being used to validate the BN model

5 Note that all the BN models herein will be translated to English in case the manuscript is selected for
publication.

90 E. Mendes et al.

probabilities needed to be adjusted. In order to know which nodes to target first we
used a Sensitivity Analysis report, which provided the effect of each parent node upon a
given query node. Within our context, the query node was ‘Total Requirements Effort’.
Whenever probabilities were adjusted, we re-entered the evidence for each of the
projects in the validation set that had already been used in the validation step to ensure
that the calibration already carried out had not affected. This was done to ensure that
each calibration would always be an improved upon the previous one.

Within the context of this work, some calibration was needed; in addition, the
requirements project managers decided that all the factors related to effort should have
an additional category, and also that the model could be simplified further. This
resulted in the model shown in Fig. 5.

The changes to the model are detailed in Table 4 below.

All probabilities were created from scratch, and the probabilities elicitation, con-
sidering the original and the revisited model, took 136 h (the three authors and one
requirements analyst).

6 Discussion

In terms of the use of this BN model, CASNAV’s main goal is to use the model via its
‘what’if’ scenarios to support their decision-making relating to estimating effort for all
of their requirements projects.

The second round of validations was finalized early 2014, and was carried out using
the same 11 projects used in the first validation phase. The model was presented to the

Table 4. New/modified factors, categories and descriptions.

etaC rotcaF gories Description
Requirements Elicitation Effort Low (0+ to/a 60)

Medium (60+ to/a 120)
High (120+ to/a 300)
Very High (300+)

Already part of original BN model
(see Table III)

Requirements’ Approval Effort Low (0+ to/a 60)
Medium (60+ to/a 120)
High (120+ to/a 300)
Very High (300+)

Already part of original BN model
(see Table III)

Total requirements effort Low (0+ to/a 180)
Medium (180+ to/a 400)
High (400+ to/a 1000)
Very High (1000+)

Already part of original BN model
(see Table III)

Requirements specification and
modelling effort

Low (0+ to/a 60)
Medium (60+ to/a 160)
High (160+ to/a 400)
Very High (400+)

Already part of original BN model
(see Table III)

Level of Complexity dealing with
Stakeholders (Replaced
Stakeholders’ Degree of
participation)

Low, Medium, High, Very
High

Level of complexity dealing with
the Stakeholders, as perceived by
CASNAV’s requirements team

An Expert-Based Requirements Effort Estimation 91

entire SED department in April 2014, as part of CASNAV’s plan to incorporate it into
SED’s requirements projects. The third author is managing CASNAV’s quality control
Sector, and was the person responsible to lead the uptake of the BN model into SED.

The changes that took place as the result of developing the BN model are as follows:

– Introduction and Detailing of the model to the entire SED Department;
– All the estimations provided by any of the requirements analysts and project

managers would start to be based on the factors that are part of the BN model. This
means that they will use the factors that have been elicited, as well as the BN model,
as basis for decision-making during their requirements effort estimation sessions.

– Whenever there are changes to the types of projects been managed, the BN model
will be revisited.

– With regard to lessons learned we believe that the successful development of this
Requirements Effort estimation BN model was greatly influenced by a number of
factors, such as:

– CASNAV’s commitment to providing their time and expertise.
– The use of a process where project managers’ and requirements analysts’ partici-

pation was fundamental. This approach was seen as extremely positive by CAS-
NAV as they could implicitly understand the value from building a model that was
totally geared towards their needs.

The project managers’ and requirement analysts’ experience in managing and
estimating effort for SED’s requirements specification projects.

7 Conclusions

This paper has presented a case study where a Bayesian Model for requirements
specification effort estimation was built using solely knowledge of five requirements
analysts and two project managers from the Systems Engineering Department from the
Brazilian Navy’s Centre for the Analysis of Naval Systems (CASNAV). This model
was developed using the expert knowledge engineering for Bayesian Networks process
(see Fig. 2). Each session with the project managers and requirements analysts lasted
for 3 h. The final BN model was calibrated using data on 11 past projects. These
projects represented typical projects developed by CASNAV, and believed by the
experts to provide enough data for model calibration.

The model is about to be adopted by SED, and the entire process used to build and
validate the BN model took 266 person hours.

As part of our future work, we plan to compare our model to that from other related
research using BNs within the context of software effort estimation.

References

1. Azhar, D., Mendes, E., Riddle, P.: A systematic review of web resource estimation. In:
Proceedings of the 8th Promise Conference, pp. 49−58 (2012)

92 E. Mendes et al.

2. Bandeira-de-Mello, R., Cunha, C.J.: “Operationalizing the Grounded Theory methodology
in strategy research: Techniques and analysis procedures with support of the Atlas/IT Tool”
(original title: “Operacionalizando o método da Grounded Theory nas pesquisas em
estratégia: técnicas e procedimento de análise com apoio do software Atlas/TI”), I Encontro
de Estudos em Estratégia (2003)

3. Banks, S., Louie, E., Einerson, M.: Constructing personal identities in holiday letters. J. Soc.
Pers. Relat. 17(3), 299–327 (2000)

4. Cusumano, M.A.: Managing software development in globally distributed teams. Commun.
ACM 51(2), 15–17 (2008)

5. Herbsleb, J.D.: Global software engineering: the future of socio-technical coordination. In:
Future of Software Engineering, FOSE 2007, pp. 188–198 (2007)

6. Jensen, F.V.: An introduction to Bayesian networks. UCL Press, London (1996)
7. Jorgensen, M., Shepperd, M.: A systematic review of software development cost estimation

studies. IEEE Trans. Softw. Eng. 33, 33–53 (2007)
8. Mao, C., Lu, Y.S., Wang, X.: A study on the distribution and cost prediction of requirements

changes in the software life-cycle. In: Li, M., Boehm, B., Osterweil, L.J. (eds.) SPW 2005.
LNCS, vol. 3840, pp. 136–150. Springer, Heidelberg (2006)

9. Matos, O., Fortaleza, l., Conte, T., Mendes, E.: Realising web effort estimation: a qualitative
investigation. In: Proceedings of the 17th EASE Conference, pp. 12–23 (2013)

10. Mendes, E., Polino, C., Mosley, N.: Building an expert-based web effort estimation model
using bayesian networks. In: Proceedings of the 13th International Conference on Evaluation
& Assessment in Software Engineering, pp. 41–50 (2009)

11. Mendes, E.: Using knowledge elicitation to improve Web effort estimation: Lessons from six
industrial case studies. In: Proceedings of ICSE 2012, pp. 1112–1121 (2012)

12. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo
(1988)

13. Prikladnicki, R., Audy, J.L.N., Evaristo, R.: Global software development in practice lessons
learned. Softw. Process Improv. Pract. 8(4), 267–281 (2004). doi:10.1002/spip.188

14. Strauss, A., Corbin, J.: Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory, 2nd edn. SAGE Publications, London (1998)

15. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods.
Data Knowl. Eng. 25, 161–197 (1998)

16. Vaz, V.T.: Effort estimation in software requirements specification projects. MSc thesis
COPPE/UFRJ (2013)

An Expert-Based Requirements Effort Estimation 93

http://dx.doi.org/10.1002/spip.188

Software Architecture

Experiences from Monitoring Effects
of Architectural Changes

Ulf Asklund(B), Martin Höst, and Krzysztof Wnuk

Department of Computer Science, Lund University, Lund, Sweden
{ulf.asklund,martin.host,krzysztof.wnuk}@cs.lth.se

Abstract. A common situation is that an initial architecture has been
sufficient in the initial phases of a project, but when the size and com-
plexity of the product increases the architecture must be changed. In
this paper experiences are presented from changing an architecture into
independent units, providing basic reuse of main functionality although
giving higher priority to independence than reuse. An objective was also
to introduce metrics in order to monitor the architectural changes. The
change was studied in a case-study through weekly meetings with the
team, collected metrics, and questionnaires. The new architecture was
well received by the development team, who found it to be less frag-
ile. Concerning the metrics for monitoring it was concluded that a high
abstraction level was useful for the purpose.

Keywords: Software architecture · Software metrics

1 Introduction

Architectural changes are often introduced to improve some aspects of a software
product or a software development project. The selection of changes and their
introduction need to be systematic and well planned [1], followed by a follow-up
analysis if the applied changes resulted in the desired improvements. Software
metrics can support both change planning and evaluation [2]. These metrics need
to accurately describe the principles behind the changes and the main objects
of these changes.

Developing software products via prototyping is nowadays widely used. The
first prototype version is usually rather small, and then the product and the num-
ber of included functions grow. However, during such incremental development
a problem can occur that the changes made to the product affect many parts of
the product, resulting in that changes can result in unpredictable software faults.
This is typically the effect of an immature architecture for the purpose and/or
because of a development process with insufficient quality assurance practices.
The result is a suboptimal architecture that needs refactoring to bring its qual-
ity to an acceptable level. However, architecture changes can not be carried out
in isolation. There is a relationship between the business, the architecture, the
process, and the organization, as described by the BAPO model, e.g. [3], and
c© Springer International Publishing Switzerland 2016
D. Winkler et al. (Eds.): SWQD 2016, LNBIP 238, pp. 97–108, 2016.
DOI: 10.1007/978-3-319-27033-3 7

98 U. Asklund et al.

currently further analyzed in the ITEA project SCALARE.1 This means that,
for example, the development process and the organization also might need to
be changed at the same time as the architecture.

This paper presents a case study where requirements changes and a more
large scale usage of the product triggered an architectural change. The introduc-
tion of the architecture change and a related process change is monitored with
a set of object oriented design metrics, inspired by Martin [4]. Versions of these
metrics are available in several metrics collection tools, and the objectives of this
study include evaluating to what extent they can be useful in the context of an
architectural change.

2 Related Work

Software refactoring is an integral and important part of software maintenance
and evolution and often associated with restructuring [5]. It is a way to restore
quality after frequent changes [6], improve extensibility, modularity, reusability,
complexity, maintainability and efficiency [6] or transform centralized software
components into distributed [7]. Software restructuring is a form of “perfective
maintenance” with the goal to modify the structure of the source code and facili-
tate correctly previously undetected errors [8]. Moreover, it is rather straightfor-
ward to estimate the payoffs of restructuring in terms of time and money saved,
and shorter development cycles [9]. Refactoring can be achieved with the help
of assertions (pre-conditions, post-conditions and invariants), graph transforma-
tions, model transformations with semantic annotations [10], aspect oriented
concepts [11]. However, these methods are rarely empirically evaluated.

Several authors focused on software architecture stability. Among them,
Aversano et al. proposed a set of instability metrics combined with thresholds
when the architecture can be considered fully stable, leveling, improving, fully
unstable [12]. Tony et al. suggested a metric-based approach for evaluating archi-
tecture stability based on: growth rate, change rate, cohesion and coupling and
evaluated them on several open source projects [13]. Interestingly, Bahsoon and
Wolfgand suggested using real options theory for evaluating architectural sta-
bility and estimating volatility, exemplified on ten architectural changes [14].
Figueiredo et al. focused on design stability of software product lines in terms of
modularity, change propagation and feature dependency identifying a number of
positive and negative scenarios [15]. However, they analyzed two small product
lines with 10 KLOC and 3 KLOC.

3 Case Description

3.1 Overall Architecture

The case system is a client system for server software, intermediate software,
specifically developed hardware, and other units. The system architecture is
depicted in Fig. 1.
1 http://scalare.org.

http://scalare.org

Experiences from Monitoring Effects of Architectural Changes 99

Users

Company
Information
System(s)

(A)

Layer(s)
provided
by other

companies
(B)

Developed
system,
Android

(C)

Developed
system,

iOS

Developed
system,

web

Fig. 1. High level architecture of the whole system

The overall project is managed by Company A and includes a large customer
base. Company A has a number of Information Systems (marked A in Fig. 2)
in order to manage the customer and user data. Other companies, marked as B
in Fig. 2 access this data in different ways in their applications. The customers
receive a number of functions for observing, and taking actions upon the data in
the Company Information System (A). The application is developed in three ver-
sions, one for iOS, one for the web and one for Android. We studied the Android
application in this paper, further called “developed system” in this paper (C).
Other companies (B) can influence and extend the functionality provided by
the system using the benefits of the layered design. Often, the new functionality
development is done in both layers.

The layered design combined with the interaction between the development
company and other companies impose several requirements and constraints.
Firstly, many companies are involved in the project with some significantly influ-
encing the project scope (Company A). Secondly, the division of the work to be
done between the layers is not always straightforward. Thirdly, development
cycles should be short since users expect new functionality frequently deliv-
ered. Fourthly, reliability requirements are high due to a large amount of users.
Finally, the company wants to keep the current maintainability and lead-time
levels. The result of high release frequency is limited functionality and complex-
ity of the early versions. Therefore, the case company does not see the initial
architecture of the developed system as good as it should be and they are trying
to obtain a better architecture which will provide better maintainability.

3.2 Organization and Process at the Case Company

On average, 2–3 developers work full time on the system. About the same number
of developers work on the web version and the iOS version of the developed
system, and the development must of course be synchronized. Since the project
has existed for rather long time there has been some change of personnel, which
also puts requirements on maintainability.

100 U. Asklund et al.

core core

)c)b)a

app

Fig. 2. Architecture change of application

The project followed an agile approach, mainly based on Scrum with collec-
tive code ownership where the developers assign the tasks to themselves to the
next task independent of what it is and what part of the system it affects.

There were two main reasons for the company to make a change. There was
a negative trend of quality issues like old bugs being re-introduced and too many
errors found late in testing. There were also several future development activities
planned in a near future, including new usage scenarios, targeting new market
segments, and developing new business models.

Based on the overall system architecture, the development time requirements
remained high and considered together with the business drivers (Extended func-
tionality). The detailed analysis of the change drivers revealed that the develop-
ers spend too much time browsing, for them uninteresting, files and documents.
Moreover, the developers struggled to find the relevant parts of the system to add
new functionality. Finally, extensive dependencies make the developed product
quite fragile, i.e. a change to one part of the system has non intuitive dependen-
cies to other parts, which are not always considered by the developers.

3.3 Introduced Architectural Changes to the Developed System

The architecture was designed with focus on reuse, i.e. when new functionality is
added, existing classes are reused as much as possible. Extensive reuse may lead
to an architecture with many dependencies resulting in a, more or less, monolithic
system. This was identified as the major reason to the problems mentioned above,
and in order to better structure the dependencies and make the design less
fragile, the architecture was divided into modules. Each module implemented
one specific function provided to the user, implemented as separate projects
in the development environment (Eclipse). Functional decoupling allowed the
developers to make corrections or updates of existing functions, e.g. only the code
valid for the function was browsed, understood, and updated, which makes the
change fast and with high quality. It also allowed for parallel updates of different
functions, and new functionality can be added independent of the existing.

The architecture guidelines were changed to focus on independent modules
and how to manage them individually. Previously, all developers worked on the
whole code base when changes were implemented, which often required changes

Experiences from Monitoring Effects of Architectural Changes 101

to a large part of the system. The new process allows developers to avoid change
request in modules they have not yet know - but also to deliberately choose to
work in a module for the first time in order to increase system knowledge. From
an organizational perspective, the new architecture makes it is easier to scale,
letting new developers joining the project to start work on one function in one
module, learning the system function-by-function.

The drawback of the new architecture is less reuse and more double-
maintenance of “similar” code in different modules. However, the case company
believed that changes in the new architecture can be limited to one module
and therefore better fulfill the architecture maintainability requirements. Both
architectural and process changes were gradually introduced by the case com-
pany. This was done by adding one module after another to the initial codebase.
This means that there were different versions of the system during the research
project.

The gradual changes that were made to the application architecture are
sketched in Fig. 2. In the beginning, there was a monolithic architecture (Fig. 2.a).
The objective of the changes was to achieve an architecture with separate mod-
ules and a limited of common functionality, as shown in Fig. 2.c. The main
common layer in Fig. 2.c is marked “core” and handles parts of the product that
is common to all modules. It also serves as the interface to layers provided by
other companies (B). There is also a small common part marked “app” which
is the Android application, which, for example, is responsible for configuring
and launching the modules. The other parts of the architecture is made up of
separate and independent modules. The current situation is that a bottom layer
has been formed, and a few independent modules introduced as described above
(Fig. 2.b). In the current version of the architecture there are still parts of the
old architecture remaining.

3.4 Selected Metrics for Monitoring the Changes

Several metrics are available in the literature for monitoring stability and
abstractness of a design. Martin has presented a number of metrics based on the
coupling between classes and packages (code categories) (e.g. [4,16]) as described
below. One aspect that is of interest for a package is to what extent it depends
on other packages. The fewer other packages it depends on, the more stable it
is (does not break due to changes outside the package). Martin [4,16] defines
a metric for efferent coupling (Ce) as the number of classes in a package that
depend on classes outside the package. We make an alternative definition of
efferent coupling of a code segment as the number of other code segments that
it depends on, where a code segment can be a package or a project. This level
we found sufficient for our purpose in order to measure how dependent a code
segment is of other code segments. It can also be noticed that it is the same def-
inition of efferent coupling as is used in the JDepend metrics tool2 for analysis
of coupling between java packages.

2 http://clarkware.com/software/JDepend.html.

http://clarkware.com/software/JDepend.html

102 U. Asklund et al.

Another aspect that is of interest for a package is its responsibility. The
more other packages are dependent on it the more responsible it is, and the
more responsible it is the more stable it is forced to be. Martin [4,16] defines a
measure of afferent coupling (Ca) as the number of classes outside the package
that depend on classes inside the package. In this study we define this metric as
the number of code segments outside a code segment that depend on the code
segment, where a code segment can be a java package or a project in Eclipse.

We use Martin’s [4,16] definition of instability I = Ce/(Ca + Ce), but with
our definition of Ce and Ca. I = 0 indicates a maximally stable segment, and
I=1 indicates a maximally unstable segment. I.e. instability, I, can be seen as
a measure of to what extent changes that are made in other parts of the code
affects the code and to what extent it is likely to be changed based on new
requirements, etc.

An interesting question to discuss is on what abstraction level the metrics
for coupling and instability should be collected on. This can either be between
classes, between packages, or between projects in Eclipse. Since the goal of the
organization in the study was to get independent “pipes”, which are implemented
as projects in Eclipse we choose to measure the coupling between projects. How-
ever, this means that the metrics can only be collected for the latest version
where a division into different projects has been made.

4 Research Methodology

The research methodology follows a case study approach (e.g. [17]), i.e. it is a
flexible research approach [18] where some detailed are left undecided before all
data collection is performed. The high-level goal of the research was to under-
stand how to monitor the architectural transformation and to be able to provide
objective evidence regarding the positive impact of the suggested changes. The
main research questions are:

1. What are the motivations for introducing the changes described in Sect. 3.3,
and what are the experiences of introducing them?

2. What are the experiences of using the set of metrics as described in Sect. 3.4
for the purpose of monitoring (and keeping) this kind of change?

4.1 Data Collection

The data collection steps are outlined in Fig. 3. The data was continuously
collected during the architectural changes. To the left of Fig. 3, the “normal
improvement work” of the case company is shown, i.e. how the company goes
from an initial version of the architecture to a “final version”, i.e. the last version
during this case study. The data collection started when the change process had
been initiated and some changes were already introduced. Thus, the authors
were not involved in the decisions or selecting the goals of the architectural
transformations. During the data collection, information that is the basis for

Experiences from Monitoring Effects of Architectural Changes 103

Work in case company Data collection in research Data analysis

ss
ec

or
p

eg
na

h
C

Architecture,
initial version

Architecture,
final version

Weekly
meetings

Metrics collection

Questionnaire:
- about difference
between versions
and the changes

- Identification of important
issues
- Understanding of change
process
- Experience collection

Comparison

Fig. 3. Main steps of data collection and analysis

understanding the background, the type of changes and the introduced changes
as presented in Sects. 3.1, 3.2 and 3.3 were gathered.

Weekly Meetings. The researchers held approximately every week, or at least
bi-weekly, meetings with a case company contact person of the project. The
objectives of the meetings were to understand what happened in the project
and what decisions are taken at different points in time. The meetings were
also held in order to understand more about why different decisions were taken.
During the meetings questions about the business, architecture, process, and
organization were asked. The meetings were informal and held either in the
company premises or over skype/telephone. The following list of questions were
used to guide the meetings:

– What has happened since the last meeting?
– What important events or decisions have been taken, with respect to (i) busi-

ness, (ii) architecture, (iii) process, (iv) organization?
– What are your plans, with respect to (i) business, (ii) architecture, (iii) process,

(iv) organization?

Since the meetings were held informal, not all questions were asked every
time. However, they were used to ensure that no important dimension was missed
but the discussions always covered these aspects. During the meetings, notes were
taken by the researchers. No audio recordings were carried out. There were also a
few meetings with the person in charge of collecting the metrics at the company
where different metrics were discussed. This is further discussed in Sect. 3.4.

104 U. Asklund et al.

Metrics Collection. Metrics were collected using the Eclipse plugin CodePro
AnalytiX.3 After some initial analysis, it became clear that collecting metrics on
the class and package levels is unfeasible. Firstly, the main objective of the case
company was to have a clear separation between the projects (i.e. the “pipes”
in Fig. 2). Therefore, package separation was not necessary since this would not
show the difference between the projects. Secondly, the metrics are only collected
for the latest version, since in the previous versions there was no division into
projects in this way.

Questionnaires. A questionnaire was also sent to developers in the Android
project. The questions were in most cases formulated as open questions where
the participants answers in free-text, while in a few pre-decided answer questions.
The questionnaire included the following questions:

1. General questions, e.g. name, experience, and role
2. Characteristics about the team, e.g. collaboration approach, division of tasks
3. Questions concerning the architecture changes, e.g. perceived motivation for

change, and observed benefits and drawbacks
4. Questions concerning the development process, with sub-questions about

noticed change in product quality, noticed change in how easily the code can
be browsed and searched, and perceived change regarding how much code a
developer must be able to work with

5. Questions about testing, e.g. how the architectural change affected test-case
selection and the number of faults found

6. Question about how changes negatively affect other parts of the system,
before and after the architectural change

7. Question about how the amount of duplicate code has changed after the
architectural change.

Analysis. The metrics analysis was carried out by collecting the metrics on the
last available version of the system and analyzing them, see Sect. 5.1. Qualitative
data analysis included summarizing the answers to each major question category.

5 Results

5.1 Metrics Collection

Since the study focused on the relations between the different projects, the met-
rics were collected on the higher abstraction looking at the separation of projects.
The results are presented in Table 1. The calculation of Ce was based on the num-
ber of the referenced projects. Figure 4 extends the general sketch in Fig. 2.b with
some more details. The figure consists of a number of parts:

3 https://marketplace.eclipse.org/content/codepro-analytix.

https://marketplace.eclipse.org/content/codepro-analytix

Experiences from Monitoring Effects of Architectural Changes 105

Table 1. Metrics results

Project Referenced projects Ce Referencing projects Ca I

P1 P2, P4, P6 33 P2, P4, P6 3 0.5

P2 P1, P3 2 P1 1 0.67

P3 – 0 P2, P4, P5, P6 4 0

P4 P1, P3 2 P1 2 0.5

P5 P3 1 – 0 1

P6 P1, P3 2 P1 1 0.67

– P1: This part denotes the “original project”, i.e. the architecture according
to Fig. 2.a. This part has evolved by breaking out some of the functionality
of the large architecture in Fig. 2.a when developing other parts, and it has
been improved in general.

– P3: This part denotes the “core” functionality that is intended to be used by
the other projects. It is intended to be stable, which is also reflected in the
value of I = 0.

– P2, P4, P5, P6: These parts are individual “pipes” which are dependent on
P3, but not on each other. Since they are dependent on P3 they are not stable
in respect to I.

P3

P1

P2 P4 P5 P6

Fig. 4. Architecture of the current version

5.2 Interviews/Questionnaires

The questionnaire was answered by five persons with different types of roles.
The answers to the questions can be summarized as follows:

1. Two developers, one architect, are customer representative and one manager
(core reviewer) answered the survey. Their experience in the project was
between 4 and 19 months (median 8) and industrial experience between 1
and 10 years (median 9).

106 U. Asklund et al.

2. The team consisted of 6–7 persons working as a cohesive team and physically
in the same location. The development methodology is agile and based on
Scrum with work allocation performed by the developers. Developers worked
together with the same feature, i.e. they take a feature “together” and work
with that until it was done. The feature work is divided into tasks that take
1–8 h to develop. Sometimes, front-end and back-end development efforts are
split.

3. The studied architectural change is considered as an improvement. The under-
standing of the necessity and the detailed of the changes among the partici-
pants is high. The benefits of the changes include that changes will not spread
to other parts of the code, it is easier to get an overview, which means that
the maintainability is better, and unit test is easier. One participant also
highlighted better discussions about the code and the architecture as a ben-
efit. The drawbacks that are seen include that some code may be duplicated
since the focus is so much on independent architectural parts. One person
also thought that the setup process of the projects were more complicated.

4. The developed code consists fewer faults and it is easier to find what changes
have been made to the code.

5. The participants think that it is easier to formulate the right tests. This may
however be due to an overall code improvements.

6. Some of the introduced changes may actually negatively impact other parts
of the software. The participants think that this problem has decreased in
the current version.

7. The participants admitted that the amount of duplicate code has increased,
however they found it challenging to accurately estimate the amount of it
due to the lack of reliable estimates.

6 Discussion

The architectural changes were considered positive since no participant was
clearly negative to the changes, despite additional duplicate code. One expla-
nation could be that the potential negative effects are yet to be discovered. It
can also be that this type of project is suitable for this kind of architectural
changes and therefore no negative effects occur. The studied code focuses on
providing outputs based on input without complicated algorithms, which may
be one reason the solution is suitable.

The organizational set up in this case made it possible to move the logic
to the server (implemented in decoupled “modules”) and focus on thin clients,
allowing for decoupled implementation of new features. The clients got thicker
than needed, which also may be the reason there is still different teams for iOS
and Android, something that can be avoided by having a pure feature oriented
organization cross different OS. This fits well the studied context, see B in Fig. 1,
since different companies are responsible for client applications and the server
layers. Moreover, canonical data forced the client code to process data not valid

Experiences from Monitoring Effects of Architectural Changes 107

for them. To summarize, other contexts can also benefit from this type of archi-
tectural changes, e.g. in a telecom service provider (corresponding to company
A) with customers who have outsourced information systems management to
other companies (corresponding to layers here).

The used metrics were suitable for a rather high level of abstraction (between
Eclipse projects and not on one specific project). They successfully measured if
the architectural changes were achieved. Once in place, these metrics can also
serve as continuous verification of the quality of the architecture.

Validity can, for example, be discussed with the respect to construct validity,
internal validity, external validity, and reliability, e.g. [17]. Construct validity
was strengthened by having a long time contact with weekly meetings, which
can reduce the risk of misunderstandings. Internal validity threats in terms of
other factors affecting the values of the architectural measures were minimized by
studying the whole change and trying to understand what was actually changed,
e.g. the way of working was changed somewhat at the same time. However, a
risk remains that the changes were made as a result of positive attitude and just
because the participants were not happy with the old architecture. Moreover,
the study was conducted with a rather small team for an Android application
threatening external validity. Thus, further replications are needed for this type
of projects, and if other types of projects are consider additional research is prob-
ably needed. Finally, we address reliability threats by having regular meetings
with the team and recording all research steps in the case study protocol.

7 Conclusions

Concerning the motivation for introducing the changes described in Sect. 3.3,
the main motivations are that it can decrease the risk of making changes that
negatively affect other parts of the system, and that it makes it possible to
divide the work between different people in natural way. There was also a need
to refactor the architecture since the software has grown and future anticipated
requirements include further growth of the software and increased differentiation
between customer segments. The experiences of introducing the changes are in
general positive, which indicates that it in this case was correct to prioritize
modularization over the avoidance of code duplication. If the same change is
made in another project, conclusions from this study may be relevant if the
project is similar in e.g. size and the type of code (e.g. with respect to how
complicated algorithms etc. it involves).

One conclusion that can be drawn concerns the level of abstraction of the
metrics. Even if this is only one study it seems like it is reasonable to study the
metric on a high level of abstraction, since the focus is on the whole project and
not on a specific part when this change is made.

Acknowledgement. This work was funded by Vinnova in the ITEA2 project 12018
SCALARE.

108 U. Asklund et al.

References

1. Bergman, B., Klevsjö, B.: Quality, from Customer Needs to Customer Satisfaction,
3rd edn. Studentlitteratur, Lund (2010)

2. Fenton, N., Pfleeger, S.L.: Software Metrics, a Rigorous and Practical Approach,
2nd edn. PWS Publishing Company, Boston (1997)

3. Betz, S., Wohlin, C.: Alignment of business, architecture, process, and organisation
in a software development context. In: Proceedings of the International Symposium
on Empirical Software Engineering and Measurement (ESEM), pp. 239–242 (2012)

4. Martin, R.C.: Agile Software Development Principles, Patterns, and Practices, 2nd
edn. Prentice-Hall, Upper Saddle River (2003)

5. Chikofsky, E., Cross II, J.H.: Reverse engineering and design recovery: a taxonomy.
IEEE Softw. 7(1), 13–17 (1990)

6. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. Eng.
30(2), 126–139 (2004)

7. Seriai, A., Bastide, G., Oussalah, M.: Transformation of centralized software com-
ponents into distributed ones by code refactoring. In: Eliassen, F., Montresor, A.
(eds.) DAIS 2006. LNCS, vol. 4025, pp. 332–346. Springer, Heidelberg (2006)

8. Eloff, J.: Software restructuring: implementing a code abstraction transformation.
In: Proceedings of the 2002 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists on Enablement
Through Technology, SAICSIT 2002, Republic of South Africa, pp. 83–92 (2002)

9. Arnold, R.: Software restructuring. IEEE Softw. 77(4), 607–617 (1989)
10. Ivkovic, I., Kontogiannis, K.: A framework for software architecture refactoring

using model transformations and semantic annotations. In: 10th European Con-
ference on Software Maintenance and Reengineering (CSMR), March 2006

11. Rizvi, S., Khanam, Z.: A methodology for refactoring legacy code. In: Interna-
tional Conference on Electronics Computer Technology (ICECT 2011), pp. 198–200
(2011)

12. Aversano, L., Molfetta, M., Tortorella, M.: Evaluating architecture stability of
software projects. In: Working Conference on Reverse Engineering, pp. 417–424
(2013)

13. Tonu, S.A., Ashkan, A., Tahvildari, L.: Evaluating architectural stability using a
metric-based approach. In: Proceedings of the European Conference on Software
Maintenance and Reengineering, (CSMR), Bari, Italy, pp. 261–270 (2006)

14. Bahsoon, R., Emmerich, W.: Evaluating architectural stability with real options
theory. In: IEEE International Conference on Software Maintenance, ICSM,
Chicago, IL, United States, pp. 443–447 (2004)

15. Figueiredo, E., Cacho, N., Garcia, A., Ferrari, F., Khan, S., Sant’Anna, C.,
Monteiro, M., Soares, S., Filho, F.C., Kulesza, U., Dantas, F.: Evolving software
product lines with aspects: an empirical study on design stability. In: International
Conference on Software Engineering, Leipzig, Germany, pp. 261–270 (2008)

16. Martin, R.C.: OO design quality metrics. Technical report, Object Mentor (1994)
17. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software

Engineering - Guidelines and Examples. Wiley, Hoboken (2012)
18. Robson, C.: Real World Research, 2nd edn. Blackwell, Oxford (2002)

Making the Case for Centralized Software
Architecture Management

Georg Buchgeher1(B), Rainer Weinreich2, and Thomas Kriechbaum3

1 Software Competence Center Hagenberg, Hagenberg im Mühlkreis, Austria
georg.buchgeher@scch.at

2 Johannes Kepler University, Linz, Austria
rainer.weinreich@jku.at

3 Racon Software GmbH, Linz, Austria
thomas.kriechbaum@racon.at

Abstract. Architectural knowledge is an important artifact for many
software development and quality control activities. Examples for qual-
ity control activities based on architectural information are architecture
reviews, dependency analyses, and conformance analyses. Architecture is
also an important artifact for understanding, reuse, evolution, and main-
tenance. Unfortunately, in many projects architectural knowledge often
remains implicit and is not available for a particular system stakeholder
or outdated when it is actually needed. To address this problem, we pro-
pose to manage semi-formal software architecture knowledge in a central
repository, where it is accessible to all stakeholders and where it can be
automatically and continuously updated and analyzed by different tools.
In this paper we discuss important elements and use cases of such an
approach, and present an example for an architecture knowledge and
information repository in the context of an enterprise service-oriented
architecture (SOA).

Keywords: Software architecture management · Software architecture
knowledge management · Software architecture information reposito-
ries · Software architecture as a service · Software architecture models ·
Software architecture views · Software architecture use cases

1 Motivation

Architectural knowledge is required for a variety of activities in the software
development process by many different stakeholders [1]. Stakeholders have differ-
ent concerns and require different kinds of knowledge [2]. Despite much progress
in software architecture research in areas like software architecture documenta-
tion and software architecture knowledge management (SAKM) during the last
few years, making architectural knowledge explicit, and having it available, when
and where it is actually needed, remains a fundamental problem [3].

The unavailability of correct and up-to-date architectural information is
also the root cause of many other problems in software development. Exam-
ples include costly architecture evaluations that require architecture knowledge
c© Springer International Publishing Switzerland 2016
D. Winkler et al. (Eds.): SWQD 2016, LNBIP 238, pp. 109–121, 2016.
DOI: 10.1007/978-3-319-27033-3 8

110 G. Buchgeher et al.

to be documented or recovered [4], higher maintenance and system evolution
costs resulting from the high resource demand required for understanding a sys-
tem’s architecture [5], architecture erosion [6], redundant development of already
existing functionality/components because developers are not aware of existing
assets, missing reuse of architecture knowledge across projects, and last but not
least architectural knowledge vaporization - the loss of architectural knowledge
over time [7].

But even if software architecture knowledge is made explicit, it is often hidden
in documents and artifacts that are not accessible for all stakeholders, or it is
scattered over multiple different documents [3]. This situation is unsatisfying,
especially when looking into other areas of software engineering. For example,
in requirements-, bug and issue-, test-, source-code-, and project-management
it has become industrial practice to store information in central repositories,
where it can be easily accessed by stakeholders and automatically processed
by development tools like quality dashboards, test tools, static code analysis
tools, build tools, and configuration tools. For architectural knowledge, such
repositories have not yet found their way into mainstream software development
(except for isolated use cases) and are still missing.

We propose such a central repository and associated services for managing
structured and semi-formally defined architectural knowledge. Aside from sup-
porting different stakeholders with a central access point but different views on
architectural information, it is important that architectural information can be
integrated with different tools in a continuous build and development process,
and also synchronized with other information resources.

The main contributions of this paper are (1) the presentation of main ele-
ments, use cases, and benefits of a central architecture information repository
(AIR), and (2) an example for such a repository that is currently being estab-
lished in the context of an enterprise service-oriented architecture (SOA).

The remainder of this paper is organized as follows: In Sect. 2 we characterize
the concept of architecture information repositories. Section 3 discusses use cases,
benefits, and perspectives of establishing an AIR. In Sect. 4 we present views,
knowledge types, and tools of an AIR for an enterprise SOA and reflect on its
development history. Related work is discussed in Sect. 5. The paper is concluded
in Sect. 6 with a summary and an outlook of future work.

2 Architecture Information Repository (AIR)

In the following we discuss some consequences of providing architecture infor-
mation in a central repository and give an overview of the different types of
architectural knowledge such a repository may contain.

Central Access and Management. By managing architectural knowledge in a cen-
tral repository and providing central access through networked connections, all
stakeholders and tools operate on the same data, which eliminates problems

Making the Case for Centralized Software Architecture Management 111

like scattered information sources, redundant definition of data, and inconsis-
tencies between models. The repository also lays the foundation for stakeholder
collaboration and provides means for versioning architectural knowledge.

Support of different stakeholders and multiple views. Architectural knowledge
contained in the repository can be accessed by different stakeholders via different
clients and views as proposed by ISO/IEC/IEEE 42010:2011 [2].

Integration and synchronization with other information sources. An AIR can also
be integrated with existing information sources constituting a project infrastruc-
ture (e.g., code repositories, requirements, bug, and issue management systems,
etc.). For example, architecture structures contained in the system implementation
can be extracted from code repositories, and architecturally significant require-
ments (ASRs) can be synchronized with requirement management systems.

Integration with processes and automatic processing. Knowledge contained in the
AIR is not only accessed by stakeholders but also used by automated tools. Such
tools casn perform different kinds of analysis and synchronize (import, export,
transform) architectural information with other information sources. Automated
processing keeps architectural information up-to-date and helps to support other
development and management activities based on current architecture informa-
tion (e.g., test and service governance activities).

Types of Knowledge. Architectural knowledge managed in an AIR can be project-
specific and project-generic [8]. Aside from architectural structures on different
abstraction levels (class, component, system), an AIR may contain design deci-
sions and their rationale, ASRs (used for evaluation), generic knowledge (e.g.,
patterns, styles, and reference architectures), constraints representing company-
wide restrictions on an architecture, and process data representing results of
already performed architecture analyses and evaluations. Storing all informa-
tion in one place also enables extensive tracing between the different knowledge
entities.

3 Use Cases, Benefits and Perspectives

An AIR provides the foundation for a variety of architecture knowledge man-
agement (AKM) activities not only in the software architecture life cycle [9], but
also beyond. In the following, we present common examples of how architecture
knowledge may be produced and consumed by different stakeholders and tools
in the software architecture life cycle.

Design Support. Software architects store architecture solution structures includ-
ing their rationale in the repository, which serves as a blueprint for developers.
They can search the repository for architecture styles and reference architectures
related to their project including references to other projects where styles and
reference architectures have been applied.

Development Support. Architecture solution structures can be used for generat-
ing (parts of) the system implementation by means of model-driven development

112 G. Buchgeher et al.

(MDD). Code and component solution structures can be automatically analyzed
for conformance with the system implementation. Developers can be immedi-
ately informed about deviations between planned and implemented architecture
preventing architectural drift and erosion [6].

Quality Control. Reviewers can evaluate architecture design models located in
the AIR for conformance to ASRs. Further architectural knowledge in the AIR
can be subject to automated quality control. For example, architecture models
can be analyzed for model completeness and consistency, and for compatibil-
ity with reference architectures, architectural styles, and patterns. Architecture
metrics can also be calculated from the architectural knowledge contained in
the AIR. Results of architecture evaluations and analyses can be stored in the
AIR and are accessible to software architects, quality managers, and developers.
Quality managers can view aggregated quality data along with other quality
data in quality dashboards, where they can perform trend analyses and plan
countermeasures in the case of quality problems.

Test Support. Since the AIR supports versioning of architectural knowledge,
testers can detect modified system parts that need to be considered during sys-
tem testing. Evolution analysis permits focusing the testing process on new and
modified system parts as well as on system parts using the modified parts.

Maintenance Support. Maintainers can browse architecture models created by
software architects in the AIR to become familiar with the system under mainte-
nance. They can trace where a requirement to be modified is currently addressed
in architecture design and implementation, and determine which requirements
might be affected when modifying a system. They can perform change impact
analysis and virtual refactoring [10] before actually modifying a system’s archi-
tecture and/or implementation.

Governance Support. System governance activities can be planned, analyzed,
and monitored based on architecture models stored in the repository, provided
the stored models resemble the currently implemented architecture.

Reuse Support. Architectural knowledge can be reused across project bound-
aries. Architecture designs and also review results can act as reference and input
for new architecture designs. Reusable system components and libraries can be
identified.

In addition to software architecture life-cycle-related activities, AIRs will also
open new perspectives on AKM activities. For example, the widespread use of
AIRs could lead to establishing AIR mining as a new research field. Mining archi-
tecture knowledge repositories would provide valuable feedback on how AKM is
performed in practice. Potential use cases are the analysis of how architectural
knowledge evolves over time, the analysis of the kinds of architectural knowledge
that are actually used/documented, and the analysis of the kinds of architectural
knowledge that are consumed and produced by specific stakeholders.

Making the Case for Centralized Software Architecture Management 113

4 An AIR for an Enterprise SOA

In this section we report on our experiences on establishing an AIR (LISA AIR)
in a company in the banking domain [11]. Figure 1 provides an overview of the
approach, including the supported stakeholders, the provided (sub)models and
views, and the currently developed/used tools working on the repository and
related data sources. The elements shown in the figure are described in more
detail in the following subsections.

Stakeholders

Automated
Tasks

Data Stores

Views

Architecture
Information
Repository

Source Code
Repository

Architecture
Extraction

Service
Registry

Quality
Dashboard

<Sonarqube>

Architecture
Analysis

Synchronization

Component &
Configuration View

Test
View

Review
View

Service Registry
View

System of System
View

Reference
Architecture View

Software
Architect

Reviewer Developer
Solution
Architect

Tester
Quality

Manager

Fig. 1. LISA AIR overview

4.1 Supported Types of Architectural Knowledge

The different types of architectural knowledge provided by our approach are rep-
resented by different integrated submodels of a general architecture information
model in the AIR. The models are integrated to eliminate redundancies, prevent
inconsistencies, and enable cross-model traceability. Therefore, views may be
based on several different submodels (see Fig. 2), which can be accessed through
one general model API. The main models are the code model, the component
and configuration model, the review model, and the constraint model. Elements
of the models can be provided to external clients and tools though the provided
service API. Additional models can be contributed as needed.

114 G. Buchgeher et al.

Code Model. The code model reflects the system implementation in terms of
implementation artifacts (i.e., classes, methods, functions, fields), their organi-
zation (i.e., namespaces), and their dependencies. This model not only permits
dependency analysis and management at the code level, but is also used for
extracting architectural information from the system implementation, which is
then used to derive the component model (see [12]).

Component and Configuration Model. The component and configuration model
describes a system as a configuration of components (providing and using ser-
vices) and connectors at a higher level of abstraction than the code model.
Components interact with each other via provided and required ports.

Review Model. The review model contains the results of conducted architecture
evaluations.

Constraint Model. The constraint model supports the definition of reference
architecture conformance rules that can be checked automatically.

4.2 Provided Views, Supported Stakeholders, and Concerns

Several views are provided based on information contained in the AIR. Views
are visualized in different clients, which differ from each other in the presented
views and the used implementation technologies. Figure 2 shows how the different
views are related to the different architectural models described in the previous
subsection.

LISA Air Views

LISA Air (integrated) sub models

Quality
Dashboard

<Sonarqube>

Component &
Configuration

View

Test
View

Review
View

Service
Registry

View

System of
System View

Reference
Architecture

View

Code Model
Component

Model
Review
Model

Constraint
Model

Fig. 2. Model - view relationships

Component and Configuration View. The component view visualizes the archi-
tecture of SOA subsystems at the component/service abstraction level. This view
provides a higher abstraction level than code views. Main use cases are architec-
ture/implementation conformance analyses performed during the development
process (developers) and as part of quality gate reviews (reviewers, software
architects), impact analysis during system evolution (solution architects, soft-
ware architects), as well as impact analysis during system integration testing
(testers).

Making the Case for Centralized Software Architecture Management 115

System View. The system view provides an overview of the complete enter-
prise SOA consisting of different kinds of SOA subsystems (i.e., service mod-
ules, clients, backend services) and their dependencies. This view is also used
for impact analysis during system evolution (solution architects, software archi-
tects), for architecture evaluations (reviewers, software architects), as well as
for impact analysis across SOA subsystem boundaries during system integration
testing (testers).

Reference Architecture View. The reference architecture view supports the defi-
nition and checking of company-wide reference architecture rules (see [13]). Ref-
erence architecture rules are defined and analyzed by the software architect as
part of quality control activities.

Review View. The review view is used for performing architecture evaluations
(reviewers) that are performed as part of quality gate reviews. It is also possible
to define reusable questionnaires (software architect) that need to be answered
during evaluations. During an evaluation the review view is typically used along
with the component and system view.

Test View. The test view provides a dedicated view for the test team for system
integration testing. This view provides specific information relevant for the test-
ing process. This includes ‘hot spots’ in terms of performance and scalability,
system components/services that have been modified since the last release, and
components/services that are affected by a modification. The test view assists
the test team in focusing their testing efforts.

Quality Dashboard View. The quality dashboard is a gathering place for all kinds
of quality data. In addition to information on code quality the dashboard also
contains information about architecture quality. In our case we extend an existing
quality dashboard (Sonarqube1) and integrate information about violations of
reference architecture rules. This view is used by the quality manager as well as
by developers for assessing the quality of the enterprise SOA.

Service Registry View. The service registry view contains information about the
provided services of a SOA subsystem as well as current service usage dependen-
cies. The service registry plays an essential role for SOA governance activities
along the entire system life cycle and is used by solution architects, developers,
and testers. The service registry is not directly connected with the AIR, but uses
its own repository data. However, information between the AIR and the service
registry is automatically synchronized.

4.3 Tools for Automation

In addition to the provided architectural views used for stakeholder interaction
(see above), a set of automated tools also operates on the AIR. In the following
we provide an overview of the currently used tools:

1 http://www.sonarqube.org.

http://www.sonarqube.org

116 G. Buchgeher et al.

Architecture Extraction. This tool extracts architecture models (i.e., code and
component models) from the system implementation and stores them in the AIR.

Synchronization. This tool updates the service registry with information from
the AIR to keep the service registry up-to-date and to eliminate the redundant
maintenance of the service registry.

Reference Architecture Analysis. This tool automatically analyzes architecture
models for compatibility with defined company-wide reference architectures.

All aforementioned tools can either be invoked manually or as part of a
continuous build process to completely automate the process of updating archi-
tectural knowledge in the AIR.

4.4 Development History and Experiences

The establishment of an AIR is the result of years of research on software
architecture management and analysis, and particularly a long-term research
cooperation with our current industrial partner. We started with developing
tools for software architecture visualization and analysis. Originally these tools
were intended for individual stakeholders, particularly developers and architects
within a small development team. For this reason, the tools were originally inte-
grated within an IDE (Eclipse) and we focused on keeping architecture represen-
tation and implementation in sync, particularly in a continuous software devel-
opment setting. The available tools supported mainly a code (module) view and
a component view and were eventually merged to one integrated, still tool-based
solution [9]. Aside from architecture/implementation conformance we supported
dependency analysis as provided by architecture management tools like Lattix
[14] and Structure 101 [15]. We further extended the toolset by supporting dif-
ferent component models and by integrating features for AKM [16], tracing [17],
aspect-oriented programming, feature management and variability management
[18] over the following years.

Continuous synchronization of architecture and implementation required con-
tinuous extraction of architecture from code, which was one of the main reasons
for entering a long-term research collaboration with our current industrial part-
ner. When working with our partner it became evident that architectural knowl-
edge was required by different stakeholders and that there was also a need to
synchronize this information with other information resources within the enter-
prise. For this reason we completely reengineered our approach and moved to a
repository-based solution.2

Stakeholders now include software architects, solution architects, test man-
agers, developers, reviewers, and quality managers. Our efforts initially focused
on software architecture knowledge that can be extracted from the system imple-
mentation (see [12]). It is possible to keep this kind of architectural knowledge
2 We should note that we were not able to move all features we had implemented in

the original toolset to the reengineered version. For example, currently feature and
design decision management are not part of the repository-based solution.

Making the Case for Centralized Software Architecture Management 117

(i.e., module dependencies, components, configurations) up-to-date over time
nearly automatically. Humans are only required for enriching the system imple-
mentation with a small set of metadata to facilitate the extraction of the com-
ponents and configurations. This pays off, because the component and system
view are central views that are used by many different stakeholders since they
represent the system at the abstraction level where system design, analysis, and
evolution are discussed.

The automatic analysis of reference architecture compatibility rules (see [13])
and the synchronization with the service registry are based on the component
and configuration model. This means that the complete process of extracting
the code, component, and system models from the system implementation, ana-
lyzing these models for compatibility with reference architectures, and updating
information in the service registry can be performed automatically.

Architecture reviews and reference architecture rules are currently the only
types of architectural knowledge stored in the repository that need to be defined
manually. Dealing with architecture reviews is still in an early stage. The deci-
sion to add the results of architecture reviews to the AIR was made to raise the
awareness of review results - especially with regard to detected problems. Stor-
ing review results along with other architecture models facilitates bidirectional
tracing between review comments and affected model elements. For example, a
solution architect also sees all review remarks when selecting a component in the
component view. In the long term, we plan to analyze the evolution (detection
and resolution) of issues in the enterprise SOA.

A major advantage of the central AIR is that it facilitates architecture knowl-
edge sharing - not only between different stakeholders within a project team but
also across project boundaries. For example, at our industrial partner different
SOA subsystems are developed by different project teams that are also geograph-
ically distributed. Services developed by other teams are typically black boxes
for the project team. A global system view on services and service dependen-
cies is an important information for evolution, testing, and deployment. Testers
can determine clients affected by a service change that need to be retested. In
the future, we also plan to augment the repository with runtime information so
that developers and testers can analyze how expensive services are in terms of
runtime performance.

5 Related Work

Application lifecycle management (ALM) tools share the central characteristics
of managing architectural information in a central repository, i.e., the central
management of development artifacts, support for different stakeholders, inte-
gration and synchronization with other information sources, and integration with
processes and tools. While ALM tools provide support for many development
activities (i.e., project planning and controlling, issue management, test execu-
tion, source code versioning, code quality analysis, and collaboration), support
for AKM processes has been neglected so far. Most tools provide no explicit sup-
port for AKM at all, although some provide support for UML modeling. Explicit

118 G. Buchgeher et al.

support for multiple architectural views and stakeholder concerns is typically not
provided. However, ALM tools are typically extensible, which permits the inte-
gration of architectural models, views, and tools with ALM platforms.

Wikis are a common way for managing architectural knowledge in companies
[19]. Wikis store architectural information on a central server where it can be
accessed by all stakeholders via the web browser. Semantic wikis are an extension
of the wiki concept where information can be put in relation to each other based
on defined ontologies [20,21]. A major disadvantage of wikis is that information
in them is informally defined, and thus needs to be created and maintained
manually. This hinders the use of automated tools to support the development
process.

SAKM tools often store architecture knowledge in a central repository. Exam-
ples are ADDSS [22], CADDMS [23], the Knowledge Architect [24], and PAKME
[25,26]. However, the focus of these tools is often decisions and their rationale,
as well as generic knowledge like patterns. They usually lack the management of
solution structures and also typically do not provide explicit APIs for accessing
the information from other tools.

In [27], Eloranta and Koskimies present an approach for creating topical
documents from a central architecture knowledge base, which resembles the idea
of different views for different stakeholders on architectural information. In [28]
they argue for the need of a central place for storing and accessing architectural
information in the context of agile software development, so that architectural
information can be recorded immediately when it emerges. In the same article,
they also mention the need for automatically populating the AIR.

Ghezzi and Gall [29] present a platform supporting software analysis as a
service. Software analyses are offered as RESTful services that can be accessed
over the Internet. Analysis services can be accessed by stakeholders through a
software analysis catalog, where stakeholders can pick a specific analysis depend-
ing on their interests. The approach also supports the composition of analysis
services through a dedicated UI and thus only for human users. A simple ad-
hoc composition language for integrating analysis in programmatic work flow is
listed as future work. The central idea of Ghezzi and Gall is similar to what is
outlined in this paper, albeit restricted to software architecture analysis. The
approach has not been developed to be a central hub for architectural knowl-
edge within an enterprise and thus does not propose a central AIR as the basis
for architecture-related services. Integration into a development landscape and
processes through dedicated APIs is listed as future work.

6 Conclusion

In this paper we argued for central architecture management based on an AIR.
We have established an AIR in the context of an enterprise SOA in the banking
domain, which facilitates multiple views for different stakeholders, extracting
architectural information from the system implementation, automatic analysis,
and automatic synchronization with other information sources like a quality
dashboard and a service registry.

Making the Case for Centralized Software Architecture Management 119

Currently we are working specifically with the test team to provide them with
architectural information that would allow them to create targeted tests, specif-
ically for system parts that have been changed recently. Future work includes
integrating runtime information as part of the repository and we are also working
on restructuring the service itself towards a micro service architecture to indi-
vidually develop different architecture management and analysis features based
on the repository by different teams and based on different technologies.

Acknowledgements. The research reported in this paper has been partly supported
by the Austrian Ministry for Transport, Innovation and Technology, the Federal Min-
istry of Science, Research and Economy, and the Province of Upper Austria in the
frame of the COMET center SCCH.

The authors would like to thank Hermann Lischka from Racon Software GmbH
for supporting the project, and Gernot Binder, and Heinz Huber (also Racon Software
GmbH) for their cooperation.

References

1. van der Ven, J.S., Jansen, A., Avgeriou, P., Hammer, D.K.: Using architectural
decisions. In: Hofmeister, C., Crnkovic, I., Reussner, R., Becker, S. (eds.) Perspec-
tives in Software Architecture Quality, pp. 1–10. Universitaet Karlsruhe, Fakultaet
fuer Informatik, Germany (2006)

2. ISO, IEC, IEEE: 42010:2011 systems and software engineering, architecture
description. International Standard (2011)

3. Tang, A., Liang, P., van Vliet, H.: Software architecture documentation: the road
ahead. In: Working IEEE/IFIP Conference on Software Architecture, pp. 252–255
(2011)

4. Maranzano, J.F., Rozsypal, S.A., Zimmerman, G.H., Warnken, G.W., Wirth, P.E.,
Weiss, D.M.: Architecture reviews: practice and experience. IEEE Softw. 22(2),
34–43 (2005)

5. Glass, R.L.: Frequently forgotten fundamental facts about software engineering.
IEEE Softw. 18(3), 111–112 (2001)

6. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Softw. Eng. Notes 17(4), 40–52 (1992)

7. Bosch, J.: Software architecture: the next step. In: Oquendo, F., Warboys,
B.C., Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer,
Heidelberg (2004)

8. Farenhorst, R., de Boer, R.C.: Knowledge management in software architecture:
state of the art. In: Ali Babar, M., Dingsøyr, T., Lago, P., van Vliet, H. (eds.)
Software Architecture Knowledge Management, pp. 21–38. Springer, Heidelberg
(2009)

9. Weinreich, R., Buchgeher, G.: Towards supporting the software architecture life
cycle. J. Syst. Softw. 85(3), 546–561 (2012)

10. Merkle, B.: Stop the software architecture erosion. In: Proceedings of the ACM
International Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion, SPLASH 2010, pp. 295–297. ACM,
New York (2010)

120 G. Buchgeher et al.

11. Kriechbaum, T., Buchgeher, G., Weinreich, R.: Service development and architec-
ture management for an enterprise SOA. In: Avgeriou, P., Zdun, U. (eds.) ECSA
2014. LNCS, vol. 8627, pp. 186–201. Springer, Heidelberg (2014)

12. Weinreich, R., Miesbauer, C., Buchgeher, G., Kriechbaum, T.: Extracting and facil-
itating architecture in service-oriented software systems. In: 2012 Joint Working
IEEE/IFIP Conference on Software Architecture & European Conference on Soft-
ware Architecture. IEEE (2012)

13. Weinreich, R., Buchgeher, G.: Automatic reference architecture conformance
checking for SOA-based software systems. In: 11th Working IEEE/IFIP Conference
on Software Architecture. IEEE Computer Society Press (2014)

14. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage
complex software architecture. SIGPLAN Not. 40(10), 167–176 (2005)

15. Sangwan, R.S., Vercellone-Smith, P., Laplante, P.A.: Structural epochs in the com-
plexity of software over time. IEEE Softw. 25(4), 66–73 (2008)

16. Weinreich, R., Buchgeher, G.: Integrating requirements and design decisions in
architecture representation. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS,
vol. 6285, pp. 86–101. Springer, Heidelberg (2010)

17. Buchgeher, G., Weinreich, R.: Automatic tracing of decisions to architecture and
implementation. In: 2011 9th Working IEEE/IFIP Conference on Software Archi-
tecture, pp. 46–55 (2011)

18. Groher, I., Weinreich, R.: Supporting variability management in architecture
design and implementation. In: 2013 46th Hawaii International Conference on Sys-
tem Sciences (HICSS), pp. 4995–5004, January 2013

19. Clerc, V., de Vries, E., Lago, P.: Using wikis to support architectural knowledge
management in global software development. In: Proceedings of the 2010 ICSE
Workshop on Sharing and Reusing Architectural Knowledge, SHARK 2010, pp.
37–43. ACM, New York (2010)

20. de Boer, R.C., van Vliet, H.: Experiences with semantic wikis for architectural
knowledge management. In: 2011 Ninth Working IEEE/IFIP Conference on Soft-
ware Architecture, pp. 32–41. IEEE (2011)

21. de Graaf, K.A., Tang, A., Liang, P., van Vliet, H.: Ontology-based software archi-
tecture documentation. In: 2012 Joint Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software Architecture, WICSA-ECSA
2012, pp. 121–130. IEEE Computer Society, Washington, DC (2012)

22. Capilla, R., Nava, F., Prez, S., Dueas, J.C.: A web-based tool for managing archi-
tectural design decisions. ACM SIGSOFT Softw. Eng. Notes 31(5), 20–27 (2006)

23. Chen, L., Babar, M.A., Liang, H.: Model-centered customizable architectural
design decisions management. In: Proceedings of the 2010 21st Australian Soft-
ware Engineering Conference, ASWEC 2010, pp. 23–32. IEEE Computer Society,
Washington, DC (2010)

24. Jansen, A., Avgeriou, P., van der Ven, J.S.: Enriching software architecture docu-
mentation. J. Syst. Softw. 82(8), 1232–1248 (2009)

25. Babar, M.A., Wang, X., Gorton, I.: Pakme: a tool for capturing and using architec-
ture design knowledge. In: IEEE INMIC 2005 9th International Multitopic Con-
ference on Empirical Software Engineering. National ICT Australia Ltd., IEEE
(2005)

26. Babar, M.A., Gorton, I.: A tool for managing software architecture knowledge.
In: Proceedings of the Second Workshop on SHAring and Reusing architectural
Knowledge Architecture, Rationale, and Design Intent, SHARK-ADI 2007, p. 11.
IEEE Computer Society, Washington, DC (2007)

Making the Case for Centralized Software Architecture Management 121

27. Eloranta, V.P.P., Hylli, O., Vepsalainen, T., Koskimies, K.: Topdocs: using soft-
ware architecture knowledge base for generating topical documents. In: 2012 Joint
Working IEEE/IFIP Conference on Software Architecture and European Confer-
ence on Software Architecture, pp. 191–195. IEEE (2012)

28. Eloranta, V.P., Koskimies, K.: Lightweight architecture knowledge management
for agile software development. In: Babar, M.A.A., Brown, A.W., Mistrik, I. (eds.)
Agile Software Architecture: Aligning Agile Processes and Software Architectures.
Morgen Kaufmann (2013)

29. Ghezzi, G., Gall, H.C.: Sofas: a lightweight architecture for software analysis as
a service. In: 9th Working IEEE/IFIP Conference on Software Architecture, pp.
93–102 (2011)

Software Estimation and Development

Preventing Composition Problems in Modular
Java Applications

Kamil Jezek1(B), Lukas Holy1, and Jakub Danek2

1 NTIS – New Technologies for the Information Society, University of West Bohemia,
Univerzitni 8, 306 14 Pilsen, Czech Republic

{kjezek,lholy}@kiv.zcu.cz
2 Department of Computer Science and Engineering, Faculty of Applied Sciences,

University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic
danekja@kiv.zcu.cz

Abstract. Java JAR files have become a common means to bring
reusability into Java programming. While they allow developers to eas-
ily share and use third-party libraries, they bring new challenges as well.
This paper addresses the problem of Linkage Errors that occur when
a type incompatibility or a missing dependency between two libraries
is detected at runtime. This is a direct impact of composing applica-
tions from pre-existing binary libraries as the problem would be nor-
mally detected during compilation. A problem may occur relatively easily
as rules of source and binary compatibility in Java differ and may be
counter-intuitive. To deal with this problem, we offer a set of tools that
analyse existing binaries and discover problems normally leading to run-
time errors. The tools work automatically, may complement existing test-
ing, and find problems effectively from the start of development. Their
additional features such as detection of redundant or duplicated libraries
are usually not provided by standard testing tools.

Keywords: Java · Linkage Errors · Libraries · Modules · Testing

1 Introduction

In the modern software development, not all of the code is written anew. Instead,
modules in the form of components, units, or libraries are used. Although they
increase the level of reusability, they also reveal the need to update develop-
ment process as well. The reason is that functionality implementation is not the
only challenge anymore as correct composition of applications becomes more
and more challenging. In consequence, there is a need for innovative testing
approaches, focused not only on functional testing but also on application com-
position verification.

Correct composition is to date ensured by integration testing, oriented to
program invocation and validation of actual outputs against the expected ones.
This is typically implemented in the form of test cases where either humans
exercise the program, or automatic tests, which were prepared by humans in
advance.
c© Springer International Publishing Switzerland 2016
D. Winkler et al. (Eds.): SWQD 2016, LNBIP 238, pp. 125–143, 2016.
DOI: 10.1007/978-3-319-27033-3 9

126 K. Jezek et al.

One of the less explored areas is analytical validation of software, which
enables automation of the process and reduces human effort. Testing supported
by analytic methods may complement current manually oriented human testing
and perhaps decrease its amount.

This paper targets Java environment where modularisation is reached by JAR
files, which represent third party reusable libraries. We propose early detection of
incorrect composition of JAR files that normally results in runtime exceptions in
the form of so called Java Linkage Errors1. Java produces them when its runtime,
Java Virtual Machine, cannot instantiate a class, invoke a method, access a field,
etc. because the respective element does not exist or is of a wrong type (e.g. a
method is invoked with an incorrect signature).

The mentioned errors are a direct result of modularisation. If software is
developed as a monolith, correctness and existence of all required types is assured
by the compiler. In contrast, when compiled classes are re-used in another
project, their mutual inconsistencies are discovered at runtime by the linker.
We are motivated by problems of current Java, sometimes referred to as “JAR
hell”, where applications easily consist of thousands of libraries (JAR files) that
may be potentially incompatible.

The Linkage Errors are dangerous because they may present themselves only
under certain conditions, i.e. when a program flow reaches the problematic code.
Existing integration testing may find them, but it highly depends on test cover-
age. When it proves insufficient, the errors leak to the production environment.
However, they can be to some degree detected automatically by analysis of the
whole software, which eliminates the possibility of undiscovered program flows.

This work proposes a set of tools that are able to detect the aforemen-
tioned Linkage Errors. The tools have a common core that reverse-engineers
Java binaries into in-memory models and performs model checking to find possi-
ble inconsistent API usages. Tools may be attached to different phases of project
life-cycle, most noticeably to the phases preceding the deployment and include
several project roles such as tester, developer or designer. Our current experi-
ence shows that the tools may improve practice in software testing and detect
possible failures early during development and testing.

The remainder of this paper is organised as follows: Sect. 2 shows related
work, followed by wider introduction to the problem addressed in this paper
in Sect. 3. Section 4 details our tools providing several innovative approaches to
testing. It is followed by Sect. 5 that link our tools with typical project life-cycle.
Before concluding, applicability of the approach is demonstrated on example in
Sect. 6 while Sect. 7 discusses experience with the tools we have gained so far.

2 Related Work

There are several types of contracts collaborating software components have to
comply with in order to collaborate successfully. Belguidoum et al. suggested the

1 http://docs.oracle.com/javase/7/docs/api/java/lang/LinkageError.html (Jun 2015).

http://docs.oracle.com/javase/7/docs/api/java/lang/LinkageError.html

Preventing Composition Problems 127

notions of horizontal and vertical compatibility [1]. This work focuses mainly on
horizontal compatibility, i.e. the dependency of provided and required API of
collaborating components.

Fluri [2] proposed a taxonomy of code changes to differentiate among types
of changes and assess types of their impact on other source code entities. Con-
sequently, it allows for deciding between functionality modifying or preserving
changes. His work is useful for assessing backward compatibility of components
but less relevant for API conformance of current application. Similar is work [3]
by Kawrykow on detecting essential and non-essential changes of a Java source
code. These works are important, because a full backward compatibility is diffi-
cult to assess if even possible. For that reason, it is meaningful to differentiate
between dangerous and harmless changes. Ponomarenko [4] studied the backward
compatibility of libraries by analysing signatures and type definitions obtained
from C/C++ header files.

The notion of binary compatibility goes back to Forman et al. [5], who inves-
tigated this phenomenon in the context of IBM’s SOM object model. In the con-
text of Java, binary compatibility is defined in the Java Language Specification
[6, Chap. 13]. Drossopoulou et al. [7] have proposed a formal model of binary
compatibility. A comprehensive catalogue of binary compatibility problems in
Java has been provided by des Rivières [8]. We extend his work by pointing at
difference of source and binary compatibility. De Francesco et al. [9] proposed
improved static analysis for Java interface types to avoid certain types of run-
time errors, Kastner et al. [10] have used static analysis of modular applications
in product lines to reduce the number of tests needed. These works analyse the
system under development, but do not target problems of third-party libraries.
Moreover, Rivières and Ponomarenko target only backwards compatibility.

Several authors have investigated the relationship between dynamic system
updates and compatibility rules. For instance, Gregersen et al. [11] describes
integration points for safe dynamic upgrades. They also proposed a framework
for dynamic updates that guarantees both type and thread safety [12]. A similar
approach is taken by JavAdaptor [13] enabling on-the-fly Java bytecode hot-
swaps. While their work may overcome shortcomings of the current Java Linker,
we prefer to find similar bugs during the testing and keep the original byte-code.

There are many tools to check Java programs. For us, the most related are
the tools that verify binary compatibility from reverse-engineered binaries. They
include: Japitools2, Clirr3, or Java ACC4. These tools check backward compati-
bility of two given binaries (commonly JAR files). Another set of tools contains
DepFinder5 or Joops6. This set checks compositions of developed application.
These tools are light-weighted and open-source, but usually simple or outdated.
For instance, industry popular Clirr does not support Java generics as Clirr was

2 http://sab39.netreach.com/Software/Japitools/42/.
3 http://clirr.sourceforge.net/.
4 http://ispras.linuxbase.org/index.php/Java API Compliance Checker.
5 http://depfind.sourceforge.net/.
6 https://code.google.com/p/joops/.

http://sab39.netreach.com/Software/Japitools/42/
http://clirr.sourceforge.net/
http://ispras.linuxbase.org/index.php/Java_API_Compliance_Checker
http://depfind.sourceforge.net/
https://code.google.com/p/joops/

128 K. Jezek et al.

developed before the generics were added to Java and newer versions were not
released.

There have been attempts to deal with application composition in develop-
ment tools. The modern approach is automatic dependency resolution, imple-
mented for instance in Maven7 or Gradle8. While they are widely adopted by
industry, they have shortcomings as well, which we will demonstrate on Maven
in this paper.

3 Problem Discussion and Examples

Incorrect application composition is usually a result of library evolution, where
various versions of one library exist. In this environment, clients may use a wrong
version that is not compatible with other libraries in their application, resulting
in runtime linkage errors.

The selection of right libraries is not easy especially in situations when a
library needs another library to work with. It creates an environment where
a client must compose its application so that requirements of all libraries are
fulfilled even if the libraries were developed by someone else.

Let us show Fig. 1. It depicts an example inspired by a popular Java open-
source library for easy I/O operations, Apache Commons-IO9. This library used
to provide the method next from LineIterator returning Object. Its new ver-
sion, however, contains a method returning String as a result of adding generics
to Java in version 1.5. Depending on other circumstances, this may or may not
be a compatible change.

It is compatible when the client code is compiled directly against the library.
Surprisingly, this is incompatible when a client is already compiled and the
(binary) library is only switched in the target environment. This points to the less
known feature of Java that the compiler performs type reasoning and generates
correct method invocation when the types are not exactly the same as in the
example but their conversion is possible. When the type reasoning is not possible,
it produces a compilation error (for instance a String type cannot be converted
to Number, while String can be converted to Object). On the other hand, the
type reasoning is not performed by the Java Linker and exact type matching
is required instead. As a consequence, the change from String to Object is not
valid, i.e. binary compatible, and such a call results in a linkage error. In our
previous work, we had discovered that these facts are unknown to developers [14]
and thus may cause more problems when organisations use more pre-compiled
libraries.

The situation may be difficult to handle when the number of libraries
increases to tens or thousands, which is common in the current software. It
is possible that two libraries within the application require two different ver-
sions of another library. This is shown in Fig. 2. Both Library-A and Library-B
7 https://maven.apache.org/.
8 https://gradle.org/.
9 https://commons.apache.org/proper/commons-io/.

https://maven.apache.org/
https://gradle.org/
https://commons.apache.org/proper/commons-io/

Preventing Composition Problems 129

Fig. 1. Example: Commons-IO

work with Commons-IO, but they require different versions. These libraries were
compiled against respective versions of Commons-IO. The problem arises when
the application is complex and both libraries are used by the client. Then, the
discrepancy between libraries may be missed and both accidentally included on
the Java Classpath. Existing tools for automatic dependency resolution, such as
Maven, produces these problems easily. Java will, in this situation, use sole class
from one of the libraries. Even if the client notices the problem, the solution is
not straightforward.

The natural way seems to use only the newest library, but it requires that
they are backward compatible. We have, however, discovered that this is not a
common practise [15]. The term backward compatibility may be also misunder-
stood. The presented libraries may be seen as backward compatible as a client
compiling against the old one keeps compilable against the new one. The problem
will arise when libraries are switched without recompilation due to mentioned
inability of the Java Linker to convert types. From this point of view, the libraries
are not backward compatible. To our best knowledge, the distinction between
source and binary compatibility is not properly considered when libraries evolve.
Although the solution of the issue is not trivial, at least tools to discover such
problems should exist. We provide them in the next sections.

4 Our Tools for Linkage Errors Detections

This work summarises a set of tools that we have developed to assess composition
of modular Java applications. The tools contain a common core that we call
Java Compatibility Checker (JaCC) and a set of client tools on this core. Its
main feature is reverse engineering of existing binaries into memory models and
their checking. Figure 3 reveals the main idea. When the models are created and
checked, detected problems are reported to the user. The following sections will
overview fundamental ideas behind each step of this workflow and shows tools
built on top of it.

There are several use-cases where the tools can be used. Generally speak-
ing, they are useful in software development, testing or verification. Users may

130 K. Jezek et al.

commons-io
2.1

commons-io
1.3.2

library-A

client

Usage Ambiguous

library-B

Fig. 2. Example: libraries composition

Fig. 3. Workflow

involve them in phases from design, through development and testing, to deploy-
ment. Some of the typical usages can be:

– Quality assurance – the tools may be used in any phases of software test-
ing and quality assurance to detect inconsistencies in API usage. It includes
verification of in-house developed modules as well as third-party ones.

– Integration projects – they usually involve a lot of third party code, whose
internals are hidden. This makes testing cumbersome when API is not well
documented and cross module dependencies are not known. In this situation,
API may be reconstructed by the reverse-engineering and problematic parts
discovered.

– Software certification – apart from incorrect API, software should not contain
additional problems such as code smells or usage of discouraged, obsolete or
prohibited API. In some domains, software may need to be certified as free
of such problems. In this case, a certification authority may us the tools to
reverse analyse the binaries and discover code flaws.

4.1 The Core Module

As mentioned, core part consists of a byte-code analyser and verifier. The input
point of the analyser is a stream of byte-code from classes unpacked from JAR
files. The byte-code is parsed by the ASM library10 and API elements are
reconstructed in the form resembling structure of Java classes from the orig-
inal source-code. This process reconstructs provided and required elements in
one walk-through of the byte-code.

Provided elements of the API are reconstructed by reading accessible classes
with their accessible methods, constructors and fields included in the respective
JAR file. Private parts are omitted because they cannot be accessed from the
outside of a JAR file.
10 http://asm.ow2.org/.

http://asm.ow2.org/

Preventing Composition Problems 131

Fig. 4. Reverse engineering

On the other hand, the required elements are reconstructed by analysis
of class and method bodies, including private ones. They are obtained from:
(1) types used in generics, (2) super classes, (3) types of class fields, (4) types
used in method signature (arguments, return types, type variable and declared
exceptions), (5) types of implemented interfaces, (6) types of manipulated fields,
(7) local variables including arrays, (8) types used in try-catch blocks.

The result of the analysis is illustrated by the Fig. 4. It shows the source-
code only for the sake of clarity as we work with the byte-code. The bottom
part of the illustration shows representation of real LineIteration class with
its method returning the String type. The top part shows the actual invocation
of this class and method. Since the method is invoked with the Object type, it
is stored as Object in the memory data models. At the end, the analyser returns
pairs of provided and required classes for each JAR file.

When the models are created, pairs representing provided and required
classes are matched by name and their inner structure checked. Simplified illus-
tration of the performed model checking is depicted in the Fig. 5. In general the
tool detects situations when the types are mutated (incompatible types), gener-
alised, specialised, or a type is missing, in sense of work by Brada [16]. We have
described more details about this process in [17]. The verification is complex
as the same rules enforced by the Java Linker, described in the Java Virtual
Machine Specification [18], had to be implemented.

In addition, the analysis is able to assess if a type change is source compatible
due to having information about generalised or specialised types. For instance,
specialisation of method parameters is an allowed conversion. In such situations,
discrepancy between binary and source compatibility can be detected and the
user will be informed that the Linkage Error may be avoided by recompiling
respective libraries (if the source code is available). This verification is not trivial.
For instance, mentioned specialisation of method parameters is a valid conversion
only when the method is not overridden as parameter of overridden methods

132 K. Jezek et al.

must exactly match. We implemented the rules to comply with the Java compiler
as described in the Java Language Specification [6].

Let us note that the tool cannot determine incompatibility that is not stored
in the permanent byte-code. Most noticeably the usage of Java Reflection or
on-the-fly manipulation of byte-code is out of reach.

Fig. 5. Model checking

The tool does not construct only isolated required-provided pairs, but puts
them into a graph of dependencies as introduced in [19]. This is a useful feature
for the tools built on top of the core module giving them space for additional
analysis. We had already presented detection of duplicated classes coming from
various JAR files [20], which may cause problems when an unexpected version
of a class is loaded by the Java Linker. Another application is a visualisation of
program dependencies helping users comprehend complex systems. This will be
shown later in this paper.

4.2 Modular Architecture

As it has been already revealed, the tool is designed as a set of modules. The Fig. 6
shows its architecture. The bottom part is the byte-code analyser while the middle
part is the model checker. This paper describes mainly features related to verifica-
tion of application composition, but the middle part is also able to assess backward
compatibility of evolving libraries with respect to source and binary compatibility
and usage scenario. In brief, we can decide if a library is backward compatible for
extension (implementation of its interfaces and extension of its classes) or invoca-
tion only (invocation of methods, references to public fields) only.

Fig. 6. Architecture

Preventing Composition Problems 133

Two bottom layers are then used by a set of client tools shown on the top. We
have developed integration with Maven, Eclipse IDE11, our own visualisation tool
CoCAEx and other ones may follow up. The next section provides an overview
of our client tools and describes their involvement in typical project development
life-cycle.

4.3 Maven Plugin

Maven is a popular build tool that uses declarative dependencies definition.
This tool makes management of third-party libraries easier as users only have
to define required libraries by the triplet: groupId, artifactId and version and
Maven downloads libraries from the Internet. Additionally, Maven also fetches
recursive dependencies of the directly defined libraries. A user needs to consider
only the libraries he or she specifically works with and the rest of dependencies
are managed automatically.

Since a lot of libraries are resolved and downloaded without direct involve-
ment of user, the resulting Java Classpath may contain incompatible versions,
duplicated and redundant libraries. In case this remains unnoticed by the devel-
oper, an incompatible library may be invoked at runtime and cause runtime
Linkage Errors. We have already discovered that this problem exists on a set of
open source projects and may lead to runtime failures [20].

Fig. 7. Maven plugin

To deal with this problem, we have developed a Maven plugin. Its architecture
is shown in Fig. 7. The top part refers to the standard Maven build process, where
the build is started and several steps of project life-cycle are invoked. The build
may be successful or fail when one of the phases fails. Standard phases include
compilation, testing, packaging deployment and a few more. They are managed
by built-in plugins and users may develop their own ones. Ours is depicted in
the bottom part of the figure.

11 https://eclipse.org/.

https://eclipse.org/

134 K. Jezek et al.

Plugin’s main task is to collect all JAR files that are linked to the project
under development. We hook to Maven dependency resolving process to fetch
JARs. The next step is the verification by JaCC. The report is written to the
Maven console and the plugin fails the build when a problem is detected. The
collected libraries include recursive ones (i.e. transitive dependencies) and users
may configure scope of collected libraries (e.g. compile, runtime, or test ones).

The plugin’s basic feature is to find missing or incompatible elements (classes,
methods, fields, ...). Since clashes of library versions are relatively frequent for
Maven, the plugin can in addition detect situations where the project may be
fixed simply by excluding one of the libraries.

Fig. 8. Maven plugin, example report (Colour figure online)

Figure 8 shows an example report of the plugin (the example is simplified
and colours added for brevity) produced to the console. First line shows a class
RatingLoader that requires a class LineIterator. This example is based on
the example from Sect. 3 with incompatible Commons-IO and shows mentioned
specialisation of method return types. Errors are numbered (see #4) and linked
from details below. In this example, duplicated libraries have been detected (see
#5 and #6) and the incompatible library is referring to the particular problem
by “ref #4”. Since the other library is compatible, the incompatible one must
be removed from the system as shown by the line starting with “must remove”
and referring to the problematic library by “ref #5”. Usually the outputs are
long and this numbering and references help users investigate the report.

4.4 Eclipse Plugin

Another integration embeds JaCC into Eclipse, which allows developers trans-
parently use verifications provided by JaCC directly from their IDE.

The plugin works similarly as the one for Maven shown in the previous
section, but integrates the report directly into Eclipse views. The Fig. 9 illus-
trates the plugin on the example taken also from the previous section.

Preventing Composition Problems 135

Fig. 9. Eclipse plugin, example report (Colour figure online)

The plugin provides two new Eclipse views, one shown on the left (1) and the
other one at bottom (3) of the figure. When an incompatible library is detected,
a warning marker (yellow triangle) is put to the editor (2) of pom.xml (Maven
configuration) file and the two views show details. The bottom view shows an
inline overview while the left side view shows a detail tree about the line selected
from the bottom view.

4.5 CoCAEx

Besides showing results in the text form, we also provide a graphical output
in a web application. We use the tool called CoCAEx, which is described in
our previous papers [21,22]. It is primarily designed for exploring large software
diagrams.

CoCAEx is able to show node-link graph of particular JAR files including
incompatibilities among them. It is designed to handle large diagrams, which
enables a user to quickly explore incompatibilities, even if the diagram contains
many components and incompatibilities. It shows details on demand to explore
particular incompatibilities and bundles dependencies between two JARs into
one edge. All details are hidden and a red cross icon is shown on an incompatible
edge. To further simplify the graph, we show only connections which contain a
problem. Details of problems can be expanded in the tree structure from the
classes down to the methods, fields, constructors, etc. Figure 10 shows problems
that we can detect and draft of their visual look in CoCAEx. Following image
visualises the problem drawn in previous sections as it looks directly in CoCAEx,
see in Fig. 11.

Experimenting with our tools, we have discovered that the number of incom-
patibilities in real applications may be high. On the other hand, they often come
from a few places. For instance, a library is refactored so that classes are moved
into a different package. Then the text output may contain overwhelming num-
ber of incompatibilities, but deeper examination reveals only several problematic
points, i.e. two or three packages. In such cases helps CoCAEx with its interactive

136 K. Jezek et al.

Fig. 10. Incompatibility exploration and visualization (Colour figure online)

approach and dependency bundling to comprehend incompatibility problems as
they are bundled to edges and interactively discovered in tree structures.

5 Employment in Project Life-Cycle

Software quality can be monitored and improved at all phases of software
development life-cycle, starting from requirements definition and management,
through design, development, builds, testing itself to deployment, run and main-
tenance. In each phase a particular role uses various practices and tools for assur-
ing quality. The roles are dependent on a methodology used in particular project,
but in most of the projects a traditional set of software disciplines preserves its
presence and order as in the traditional waterfall model [23], only the number
and length of iterations (sprints or similar) varies.

Preventing Composition Problems 137

Fig. 11. Incompatibility visualization in CoCAEx (Colour figure online)

In this paper, we offer a solution for finding particular type of errors. These
problems can be found in various phases of software development. Our solution
is mostly useful in design, development, build, testing and release phases of the
product development life-cycle. For each of these phases a particular role needs
an appropriate tool implementing described problem detection.

We summarize a mapping among particular roles, project phases and appro-
priate variant of our tool in Fig. 12. We use particular roles representing appro-
priate phases of software development life-cycle for simplification. We can see
that in earlier stages of the life-cycle, where the design and architecture is made
by an architect or designer, the CoCAEx tool can be useful for choosing support-
ing libraries, analysing their dependencies and selecting correct versions. When it
comes to the development phase, the Eclipse plugin can be used by the developer.
The Maven plugin is mainly expected to be used by a tester, quality assurance
engineer, release engineer and other roles involved in the later phases of software
life-cycle. We expect that the plugin is integrated into modern integration tools
such as open-source Jenkins12 or proprietary uDeploy or uRelease13. Let us also
point that the tools are loosely coupled to particular phase and therefore may
be used in other phases as well. For instance, CoCAEx may be used by testers
when they see it appropriate, and the Maven plugin may fit developers well.

In the worst case scenario, the problem is not detected before the actual
deployment and is encountered by users at runtime. Generally, we need to find
potential problems as soon as possible, because it is well known that the later
we find a problem, the more effort needs to be wasted on producing potentially
useless software product and more effort is spent on its fixing. The cost of fixing
such defect is higher due to all necessary actions, communication overhead and
usually a need to go through all of the phases of the software development life-
cycle with a product modified only by the particular problem fix. The fact is
illustrated by the blue curve in the top part of Fig. 12. As the image also shows,

12 https://jenkins-ci.org/.
13 https://developer.ibm.com/urbancode/products/urbancode-release/.

https://jenkins-ci.org/
https://developer.ibm.com/urbancode/products/urbancode-release/

138 K. Jezek et al.

our tools cover areas from the beginning of the development to the later phases
of release and deployment. For this reason, they have potential to cut price of
development by detecting potential runtime issues in early phases of the cycle.

Fig. 12. Tools mapping to lifecycle phases with indicated cost of problems fixing
(Colour figure online)

6 Practical Demonstration

The risk of problem caused by libraries from Sect. 3 is relatively high. There
are 394 projects using Commons-IO 1.3.2 and 483 projects using Commons-IO
2.1 in the Maven Central Repository14. If a client combines any libraries from
these two groups in an application, he or she may be in risk of encountering the
problem described above.

We will demonstrate possible problem on a web application15. While the
application is relatively simple, it shows a real problem with real libraries. The
application is a simple web portal for accommodation booking. The application
displays list of available booking options and for each item shows user rating of
the place.

The implementation consists of a Java server and a JavaScript front-end.
The server contains business logic and handles data persistence. Additionally,
it exposes its functionality via web service API. The JavaScript front-end is
implemented as a single-page application and fetches data from the server’s web
service API using AJAX calls.

14 http://mvnrepository.com/artifact/org.apache.commons/commons-io (Jun 2015),
http://mvnrepository.com/artifact/commons-io/commons-io (Jun 2015).

15 https://github.com/kjezek/simple-booking-study.

http://mvnrepository.com/artifact/org.apache.commons/commons-io
http://mvnrepository.com/artifact/commons-io/commons-io
https://github.com/kjezek/simple-booking-study

Preventing Composition Problems 139

The server part is modularised and uses two independent modules – one for
the main application logic and web service endpoints (the server module) and
the other one for management of customer ratings (the ratings module). The
problem is that each module imports different version of the Apache Commons-
IO, connected as shown in the Fig. 2 (Library-B as server and Library-A as
ratings).

This particular issue would be detected if the developer discovered mismatch
of the libraries and compiled the modules against the correct one. However, the
problem is likely to remain undetected when ratings is a third-party library or
developed by an independent team and the number of libraries is high. Therefore
we believe that the current set-up does not lower the study’s generality.

Due to the version conflict, the application does not function properly and
users can see the value 0 % as rating of all accommodation offers. Figure 13 is
provided to show the application when the bug occurs (see arrow 1). Whether
the problem is discovered depends highly on preciseness of standard testing. The
following paragraphs compare approaches developers can use to debug such issue
using traditional methods and our tools.

Traditional Debug. Runtime nature of the problem makes it rather cumbersome
to debug and locate the issue. Since the front-end application is separated from
the server, the debug steps would look similar to:

(a) Debug JavaScript and network connection of the web application using Fire-
bug, Chrome Developer Tools or similar. It is found that the ratings endpoint
returns an error (see Fig. 13, arrow 2).

(b) Check server logs for errors (or use Java Debugger to trace the respective end-
point call) – java.lang.NoSuchMethodError is found (see Fig. 13, arrow 3).

(c) Find the conflicting libraries and replace them with a single working version.

Fig. 13. Case study – accommodation booking application

140 K. Jezek et al.

The last step is not trivial in systems where number of modules and libraries
grows to tens or hundreds. Finding a library version compatible with the appli-
cation is trial and error process – even when the developer finds a version which
works in the particular case, he or she can introduce new runtime errors into the
application.

JaCC Based Tools. JaCC allows developers to reliably locate and remove the
presented type of errors during the build process. When it is used in the form of
either Maven or IDE plugin, JaCC would report the issue before deploying the
application, thus preventing the error from being presented to the users. The
Figs. 8 and 9 plus discussion above should already give an insight of this process.
At this phase, we are able to show the users that the problem exists and provide
a solution within the set of application libraries.

7 Evaluation

7.1 Implementation

We have already implemented a pilot project for our industry partner in automo-
tive. They use the tool to verify third-party applications using their platform.
Each time a new version of the platform is released, they may verify that no
third-party application is negatively influenced. They also use the tool for inter-
nal development of the platform, which is composed of several independently
developed modules.

According to their report, financial saving is high when they discover a bug
early in the development. In particular, when the bug used to leak to production,
they would invest approximately 2 h to locate the bug, 3 h to release a fix, 3 h
to deliver a test application and 10 h to functional testing in the field. It sums
up to 18 h they must invest. They reported expenses to one developer currently
as high as 60e, requiring more than 1000e to be approximately paid for each
such a lately discovered bug. In contrast, our tool allows for instant detection of
bugs and their fixing directly in the development time.

We are now communicating with another subject in the bank sector to use the
tools for internal development of internet banking. Their environment contains
several web application modules with shared libraries developed by distinguished
teams. Each team may contribute with its libraries and provide a part of the
banking. Since each part develops independently and has its own life-cycle, they
need to check that the final mixture contains mutually compatible libraries.

7.2 Performance

The tools have been tested for performance. The data contain 661 open-source
programs (about 120 GB of binary code) from the qualitas corpus [24] (version
20120401 evolution release). A small testing program has been written to auto-
matically get JAR files from programs and run the JaCC core modules on them.

Preventing Composition Problems 141

Other interactive tools built on top of the core were tested manually on subset
of programs.

The machine for experiment was Intel Core i5 CPU, 1.90 GHz, 8 GB RAM lap-
top with Ubuntu 14.04. The time to verify all data oscillated from 40 to 50 min.
However, the time to verify one project varied widely depending on its size. Big-
ger applications such as JBoss-5.1.0 (566 MB) needed about 2 min, netbeans-6.9.1
(1.2 GB) needed slightly above 30 s, compiere-330 (529 MB) needed almost 50 s.
Other smaller applications required from several seconds up to 1/2 min each.
These numbers gave us confidence that the time needed by the tools is accept-
able.

Since the tools need to load all data representation into memory, we have
detected high memory consumption. Almost all laptop memory was taken when
evaluating JBoss. For other middle size applications (about 300 MB) the tools
needed about 4 GB of Java heap. In this aspect, we see room for improvement.
As current algorithm is based on memory models checking, memory reduction
is not straightforward. We have profiled the tool and detected that millions of
objects are loaded into the memory. Since each object is relatively small and
their number cannot be easily decreased, there is no room for memory saving.
For this reason, the only possible reduction is to load and verify data by parts. It
may however slow down computation as some data must be repeatedly loaded.
This must be considered and decided in the future. For that reason, our future
work is to propose, implement and test an algorithm that allows processing the
data by parts to save memory.

8 Conclusions

This paper has provided an overview of the set of tools that assess correct com-
position of current Java applications. The main feature is detection of incom-
patibilities that would normally lead to runtime Linkage Errors.

Since the tool builds on reverse-engineering of existing binaries, it fits into
the current development where a lot of third-party libraries are used and the
developers use them as black-boxes. The tool automatically builds representation
of library dependencies and verifies its correctness. For this reason, its usage is
cheap in sense of saving manual effort.

The proposed tools may complement current integration and functional test-
ing. Since they analyse all libraries used in the project, they keep no room for
untested parts. A feature that is not to our best knowledge provided by someone
else is detection of duplicated classes, which have the same names but different
content. This is especially dangerous as an existing integration test may pass on
one class, while the other class is invoked at runtime.

We have already collected some feedback from our partners and extended
client tools with a few features. We were for instance asked for a Sonar16 plugin
from several sources. In our future work, we would like to analyse yet more

16 http://www.sonarqube.org/.

http://www.sonarqube.org/

142 K. Jezek et al.

industry needs in sense of integration to development process and propose new
or extend existing tools.

Our work is currently able to show a problem in an application and provide
a solution within the set of application libraries. In the future, we would like to
connect our tools to existing repositories to find a solution from the wider set of
data. It will, however, require additional research as big repositories cannot be
fully loaded into the memory as mentioned above.

Acknowledgement. This publication was supported by the project LO1506 of the
Czech Ministry of Education, Youth and Sports, and by the UWB grant SGS-2013-029
Advanced Computer and Information Systems.

References

1. Belguidoum, M., Dagnat, F.: Formalization of component substitutability. Elec-
tron. Notes Theoret. Comput. Sci. 215, 75–92 (2008)

2. Fluri, B., Gall, H.C.: Classifying change types for qualifying change couplings. In:
Proceedings of the 14th IEEE International Conference on Program Comprehen-
sion, ICPC 2006, pp. 35–45. IEEE Computer Society, Washington, DC (2006)

3. Kawrykow, D., Robillard, M.P.: Non-essential changes in version histories. In: Pro-
ceedings of the 33rd International Conference on Software Engineering, ICSE 2011,
pp. 351–360. ACM, New York (2011)

4. Ponomarenko, A., Rubanov, V.: Backward compatibility of software interfaces:
steps towards automatic verification. Program. Comput. Softw. 38(5), 257–267
(2012)

5. Forman, I.R., Conner, M.H., Danforth, S.H., Raper, L.K.: Release-to-release
binary compatibility in SOM. In: Proceedings OOPSLA 1995, pp. 426–438. ACM,
New York (1995)

6. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The Java Language Spec-
ification, Java SE 7th edn. Addison-Wesley, USA (2012). (3rd edn. 2005)

7. Drossopoulou, S., Wragg, D., Eisenbach, S.: What is Java binary compatibility?
In: ACM SIGPLAN Notices, vol. 33, pp. 341–361. ACM (1998)

8. des Rivières, J.: Evolving Java-based APIs (2007). http://wiki.eclipse.org/
Evolving Java-based APIs. Accessed 1 December 2014

9. De Francesco, N., Lettieri, G., Martini, L.: Using abstract interpretation to add
type checking for interfaces in java bytecode verification. Theor. Comput. Sci.
411(22–24), 2174–2201 (2010)

10. Kästner, C., Apel, S., Thüm, T., Saake, G.: Type checking annotation-based prod-
uct lines. ACM Trans. Softw. Eng. Methodol. 21(3), 14:1–14:39 (2012)

11. Gregersen, A.R.: Implications of modular systems on dynamic updating. In: Pro-
ceedings of the 14th International ACM Sigsoft Symposium on Component Based
Software Engineering, CBSE 2011, pp. 169–178. ACM, New York (2011)

12. Gregersen, A.R., Jørgensen, B.N.: Dynamic update of java applications-balancing
change flexibility vs programming transparency. J. Softw. Maint. Evol. 21(2), 81–
112 (2009)

13. Pukall, M., Grebhahn, A., Schröter, R., Kästner, C., Cazzola, W., Götz, S.:
JavAdaptor: unrestricted dynamic software updates for Java. In: Proceedings of
the 33rd International Conference on Software Engineering, ICSE 2011, pp. 989–
991. ACM, New York (2011)

http://wiki.eclipse.org/Evolving_Java-based_APIs
http://wiki.eclipse.org/Evolving_Java-based_APIs

Preventing Composition Problems 143

14. Dietrich, J., Jezek, K., Brada, P.: What Java Developers Know About Compati-
bility. And Why This Matters, ArXiv e-prints, August 2014

15. Jezek, K., Dietrich, J., Brada, P.: How java apis break - an empirical study. J. IST
65, 129–146 (2015)

16. Brada, P.: Enhanced type-based component compatibility using deployment con-
text information. Electron. Notes Theor. Comput. Sci. 279(2), 17–31 (2011)

17. Jezek, K., Holy, L., Slezacek, A., Brada, P.: Software components compatibility
verification based on static byte-code analysis. In: SEAA, 39th EUROMICRO, pp.
145–152. IEEE Computer Society (2013)

18. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The Java Virtual Machine Spec-
ification. Java SE 7 Edition. Oracle America Inc., California (2012)

19. Jezek, K., Ambroz, J.: Detecting incompatibilities concealed in duplicated software
libraries. In: SEAA 2015 (2015) inprint

20. Jezek, K., Dietrich, J.: On the use of static analysis to safeguard recursive depen-
dency resolution. In: SEAA 2014, pp. 166–173. IEEE Computer Society (2014)

21. Holy, L., Snajberk, J., Brada, P.: Visual clutter reduction for UML component
diagrams: a tool presentation. In: 2012 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pp. 253–254, September 2012

22. Holy, L., Snajberk, J., Brada, P., Jezek, K.: A visualization tool for reverse engi-
neering of complex component applications. In: 2013 29th IEEE International Con-
ference on Software Maintenance (ICSM), pp. 500–503, September 2013

23. Petersen, K., Wohlin, C., Baca, D.: The waterfall model in large-scale development.
In: Bomarius, F., Oivo, M., Jaring, P., Abrahamsson, P. (eds.) PROFES 2009.
LNBIP, vol. 32, pp. 386–400. Springer, Heidelberg (2009)

24. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,
Noble, J.: The qualitas corpus: a curated collection of Java code for empirical
studies. In: Proceedings APSEC 2010, pp. 336–345. IEEE (2010)

Deriving Extract Method Refactoring
Suggestions for Long Methods

Roman Haas1(B) and Benjamin Hummel2

1 Technical University of Munich, Munich, Germany
haas@in.tum.de

2 CQSE GmbH, Garching near Munich, Germany
hummel@cqse.eu

Abstract. The extract method is a common way to shorten long meth-
ods in software development. Before developers can use tools that sup-
port the extract method, they need to invest time in identifying a suitable
refactoring candidate. This paper addresses the problem of finding the
most appropriate refactoring candidate for long methods written in Java.
The approach determines valid refactoring candidates and ranks them
using a scoring function that aims to improve readability and reduce code
complexity. We use length and nesting reduction as complexity indica-
tors. The number of parameters needed by the candidate influences the
score. To suggest candidates that are consistent with the structure of the
code, information such as comments and blank lines are also considered
by the scoring function. We evaluate our approach to three open source
systems using a user study with ten experienced developers. Our results
show that they would actually apply 86 % of suggestions for an extract
method refactoring.

Keywords: Refactoring suggestion · Long method · Extract method

1 Introduction

Long methods are a bad smell in software systems [1]. This means that they do
not influence the behavior of the code directly, but make it harder to understand
and therefore harder to maintain [11].

A common way to treat long methods is to apply extract method refactorings,
where parts of the long method are extracted and put into a new method. In
practice, this is one of the most often applied refactorings [14].

The refactoring process using a modern IDE like Eclipse, NetBeans or
IntelliJ IDEA [3] consists of the following steps. First, developers need to
identify a sequence of statements that should be extracted. Second, they need
to select the statements. Third, they call a tool that will, if possible, execute

This work was partially funded by the German Federal Ministry of Education and
Research (BMBF), grant “Q-Effekt, 01IS15003A”. The responsibility for this article
lies with the authors.

c© Springer International Publishing Switzerland 2016
D. Winkler et al. (Eds.): SWQD 2016, LNBIP 238, pp. 144–155, 2016.
DOI: 10.1007/978-3-319-27033-3 10

Deriving Extract Method Refactoring Suggestions for Long Methods 145

the refactoring. Fourth, before the refactoring can be applied by the tool, the
developer needs to specify a name for the new method. Finally, the refactoring
is executed.

Tool support makes refactorings much easier, but a developer still needs to
select some source code within the method that they would like to extract. This
can be complicated, time-intensive, tedious, and error-prone [8].

Problem Statement. Developers need to invest a considerable amount of time in
finding the sequence of statements best suited for an extract method refactoring.

The majority of development tools only provide support to execute refac-
torings that are specified by the developer. In the context of long methods this
means that the most time consuming step in shortening a method still needs to
be done by developers themselves, which is a reason refactoring tools are not
used as much as they could be [6].

Sometimes, even experienced developers select invalid refactoring candidates
because they have overlooked a violation of preconditions that must hold for the
extract method. In such cases, current tools give poor information on why no
refactoring is possible [7].

Extract method refactoring suggestions are helpful for developers because
they save time and make fewer mistakes during the candidate selection.

Contribution. We present an approach to automatically finding extract method
refactoring suggestions for long methods in Java projects. The approach gen-
erates a list of possible refactorings and ranks those using a scoring function.
The ranking focuses on readability improvement and reduction of code complex-
ity. The scoring function uses structural information given by the developer to
reward bonus points. Additionally, it takes into account the number of parame-
ters needed by the new method. We evaluate our approach on three open source
systems using a user study with ten experienced developers.

2 Related Work

There are several ways to suggest extract method refactorings which can be
divided into four categories. Some use program slicing techniques to find rec-
ommendations for extract method, while others try to find suitable suggestions
from graph representations of the code. Some rely on scoring functions to find
the most appropriate refactoring candidate. Refactoring prioritization tries to
identify methods that are actually worth for refactoring.

Program Slicing Based Approaches. Maruyama [5] presents a semi-automated
mechanism for refactoring suggestions. It decomposes the control flow graph
using block-based program slicing. The approach is adapted and implemented
by the tool JDeodorant by Tsantalis and Chatzigeorgiou [13] that improves
behavior preservation. According to Sharma [9], approaches that use program
slicing techniques cannot be fully automated as the user has to select a slicing
criterion for every method that should be refactored. In addition, the suggestions
depend heavily on the user’s input. As we wanted to have an approach that is

146 R. Haas and B. Hummel

able to find extract method refactorings automatically, we did not rely on a
program slicer.

Graph Based Approaches. Sharma [9] provides a mechanism to propose extract
method candidates based on a data and structure dependency graph. Their sug-
gestions are obtained by deleting the longest dependency edge in the graph. The
resulting two disconnected subgraphs represent the statements that stay within
the original method or which will be extracted to a new method, respectively.
They are able to suggest non-continuous statements for extract method. We use
a control and data flow graph to represent methods. We do not obtain sug-
gestions from operations on the graph but determine valid candidates that are
ranked using a scoring function.

Kanemitsu et al. [2] use a program dependency graph and recommend that
users extract all nodes that are connected via edges not longer than a user-
defined maximal length. Their approach was led by the design principle that one
method should process only one thing. We consider the same design principle
by rewarding bonus points to candidates that have comments or blank lines at
the beginning or the end because they are often indicators that something new
has been processed by the preceding or following lines. Our scoring function also
considers code complexity reduction and the number of needed parameters.

Score Based Approaches. Silva et al. [10] suggest an approach to automatically
generate candidates for method extraction. Their scoring function ranks candi-
dates with respect to static dependencies between variables, types, and packages.
Our approach was inspired by Silva et al. as the general procedure of candidate
generation is similar and we were also not able to suggest candidates with non-
continuous statements. The scoring function of our approach does not consider
dependencies but mainly the reduction of length and nesting with the aim of
reducing code complexity and increasing maintainability.

Yang et al. [15] consider long methods and suggest an approach to recom-
mending refactorings that lead to as small a coupling as possible, automatically.
Their scoring function is the benefit-cost ratio of the length of the extracted
method and the numbers of needed input and output parameters. In contrast
to Yang et al. we do not move variable declarations as far back as possible. Our
scoring function also considers the number of parameters needed and we reward
bonus points for comments or blank lines (which are a splitting criterion for Yang
et al. to obtain their candidates). Additionally, reduction of code complexity has
a high impact on the ranking.

Prioritization. Steidl and Eder [11] focus on the question of which findings should
actually be resolved first. The question how to solve a given finding, i.e. a specific
suggestion, is not addressed by their approach. They suggest a prioritization of
quality defects that were found during a software quality analysis to maximize
the developer’s expected return of invest.

Steidl and Eder’s approach is not appropriate for automated refactorings as
it only gives a hint of where a developer should start refactoring.

Deriving Extract Method Refactoring Suggestions for Long Methods 147

3 Approach

We present an approach to finding extract method refactorings for long methods
automatically. There are two fundamental steps: first, the generation of all possi-
ble refactoring candidates (i.e. all sequences of statements that can be extracted).
Second, ranking all of them by applying a scoring function that considers reduc-
tion of complexity and structural information of the candidates. The candidates
with the highest ranking will be suggested for an extract method refactoring.

3.1 Candidate Generation

The procedure of generating all possible candidates is quite similar to the one
that Silva et al. [10] presented. They introduced a minimal number of statements,
K, that ensures suggestions do actually have some benefit. In their evaluation
they found that K = 3 is optimal and therefore, our approach also sets a minimal
number of statements K = 3, which must hold for the number of statements of
a candidate and the corresponding remainder of the long method.

To obtain valid refactoring candidates we use the software quality analysis
tool ConQAT1 and Streitel’s implementation of control and data flow graphs [12]
to check that several preconditions hold. Most importantly, an extract method
candidate may not need more than one return parameter (see [7] for details).

3.2 Scoring Function

All valid extract method refactoring candidates obtained in the first step are
ranked using a scoring function that focuses on code complexity reduction. We
rely on length and nesting metrics as complexity indicators. The scoring function
also takes structural information, like blank lines or lines with comments, and
the number of parameters into account. For each scoring element (see Fig. 1) a
score value is determined and all score values summed up lead to the total score
of a candidate. The candidate with the highest score will be our first suggestion.

Length. We aim at suggestions that reduce complexity and consider length as
an complexity indicator. Therefore, the length of a refactoring candidate influ-
ences its ranking. To avoid the effect of recommending nearly the whole method,
the length score Slength depends on the length of the candidate Lc and the
remainder Lr. For each line a constant number of points cl is awarded, up to the
upper bound MAXscoreLength. This upper bound ensures that very long candi-
dates are not ranked higher just because they are extraordinarily long. We set

Slength = min (cl · min (Lc, Lr),MAXscoreLength),

where in our prototype cl = 0.1 and MAXscoreLength is set to 3, i.e. the maximal
length score is achieved by a length reduction of 30 or more lines of code.
1 www.conqat.org.

www.conqat.org

148 R. Haas and B. Hummel

Input Return

 depends on

Depth Area

ParametersNestingLength

EndBegin

CommentOr-
BlankLines

Score

Fig. 1. Score elements

Nesting Depth. We use nesting depth as another indicator of code complexity.
Let Dm be the nesting depth of the original method, Dr the nesting depth of
the remainder, and Dc the nesting depth of the refactoring candidate. The score
of a candidate obtained for reducing the nesting depth is set to

SnestDepth = min (Dm − Dr,Dm − Dc),

which means that (theoretically) there is no upper bound for SnestDepth. But
note that given a method with a nesting depth Dm the maximal reduction of
nesting depth is

⌊
Dm

2

⌋
and so, SnestDepth ≤ ⌊

Dm

2

⌋
always holds.

Unfortunately, nesting depth often cannot be reduced by extract method if
one considers both the remaining method and the candidate. It is often the case
that there are several deeply nested statements that cannot be extracted at once
without extracting the whole nesting structure: either one suggests a candidate
that includes only some of these statements (which will not reduce nesting depth
of the original method) or one chooses a candidate that extracts the whole deeply
nested structure, leading to a new candidate which is as deeply nested as the
original method was.

Nesting Area. To have a measure for nesting reduction that is more often
applicable we consider the reduction of nesting area.

In formal terms, the nesting area of a sequence of statements S1 to Sn, each
having a nesting depth of dSi

, is defined as
∑n

i=1 dSi
. Intuitively spoken, it is

the area under the single statements of pretty printed code.
As shown in the previous section, nesting depth is not always a suitable

criterion to determine reduction of complexity as it might be complicated or even
impossible to extract all deeply nested statements at once to reduce the maximal
nesting depth of the remainder and the candidate. But even if nesting depth
is not reduced, reduction of code complexity is possible by extracting nested
statements. That is why we consider the reduction of nesting area. If nesting
structure is simplified by extracting parts of it, we claim that complexity is
reduced. The deeper the extracted statements are nested, the bigger the benefit is

Deriving Extract Method Refactoring Suggestions for Long Methods 149

in terms of complexity reduction. We aim for maximizing nesting area reduction
(Areduction). That is the maximal nesting area of the remainder (Ar) and the
candidate (Ac) is minimized: Areduction = min (Am − Ac, Am − Ar), where Am

is the nesting area of the original method. For a given method with nesting area
Am an optimal candidate can achieve a reduction of at most

⌊
Am

2

⌋
, similar to

the maximal nesting depth reduction.
We assume that reducing the nesting area becomes more important as the

nesting depth of the original method Dm becomes higher. Therefore, the upper
bound of the score achievable for reducing the nesting area depends on Dm:

SnestArea = 2 · Dm · Areduction

Am

The factor 2 is taken into account to obtain a score for the nesting area that
is at most as high as Dm. As reduction of nesting area is nearly always possible,
the achievable score for nesting area reduction is higher than the achievable
score for reducing nesting depth. Remark that if nesting depth (i.e. complexity)
is high, the other criteria have less relevance for the scoring of the candidates as
nesting scores are not bounded while the other scoring criteria are bounded.

Parameters. To obtain the most independent candidates with respect to
coupling, we consider the number of parameters that are needed for each can-
didate. The more parameters are needed to extract the candidate from the
original method, the higher is the data dependency between the original and
the extracted method. For the parameter score Sparam there is an upper bound
MAXscoreParam. The number of needed parameters (nin and nout, where nout ≤
1) will reduce the score, and each parameter decreases the score by one:

Sparam = MAXscoreParam − nin − nout

Fowler [1] claims that having a long parameter list is a bad smell. He proposes
to not have more than three input parameters. As we have in Java at most one
return parameter, we set MAXscoreParam = 4.

Comments and Blank Lines. To capture additional developer’s knowledge,
we award bonus points for comments and blank lines. Developers often have
comments that give information about the next source code line(s), especially if
these perform something different than the previous ones. In other cases, blank
lines separate such different tasks. But this is a violation of the design principle
that one method should process only one thing (see [4]) and therefore, the fol-
lowing lines might be a good candidate for an extract method refactoring. The
bonus we award for candidates that have such lines with comments or blank lines
at the beginning or the end is as follows: for each such line (and the fact that
these lines exist) cp many points are obtained. In our experiments we saw that
blank lines and comments at the beginning of a candidate are more relevant to
identify the most suitable extract method refactoring candidate than the ones at

150 R. Haas and B. Hummel

the end because they give more information about itself. In the score formula the
higher relevance is represented by the factor fb > 1. In addition, several lines of
comments before a sequence of statements indicate a more complex explanation
which is more likely to describe a new functionality and therefore, more lines
with comments or blank lines get more points.

The score depends on four variables: the existence of blank lines or comments
(1) at the beginning (eb) and (2) at the end (ee) of a refactoring candidate. (3) the
number of blank lines or comments at the beginning (nb) and (4) at the end of
a candidate (ne), where ex ∈ {0, 1}, nx ∈ {0, 1, 2, 3} and x ∈ {b, e}. If there are
more than three blank lines or comments the same amount of points is awarded
as if there were only three blank lines or comments. We set

ScommentsBlankLines = fb · cp · (eb + nb) + cp · (ee + ne)

For our prototype fb = 2 holds, i.e. preceding comments result in twice as
many points as comments at the end. cp was set to 0.25 such that a candidate
may get up to 2 points for having at least three comment or blank lines at the
beginning, and up to 1 point for having at least three of such lines at the end.

Scoring Elements Intervals. The previous subsections gave detailed infor-
mation about the single criteria for the score of a refactoring candidate. Table 1
shows the intervals of the single scoring elements. Dm stands for the nesting
depth of the original method.

Table 1. Scoring elements and their intervals

Score element Max score

Slength 3

SnestDepth

⌊
Dm
2

⌋

SnestArea Dm

Sparam 4

ScommentsBlankLines 3

Total Score. The candidates will be compared using the total score S. For each
candidate the total score is the sum of all single scoring elements:

S = Slength + SnestDepth + SnestArea + Sparam + ScommentsBlankLines.

3.3 Pruning

At the end of our suggestion algorithm, the list of candidates is optimized. As all
possible candidates are generated, there are several ones that differ only in one
or two statements at the beginning or the end. Those often have similar scores

Deriving Extract Method Refactoring Suggestions for Long Methods 151

because they refer to nearly the same piece of code and the differing statements
do not change the score that much. To obtain a wide range of suggestions,
candidates are removed from the list if there is another candidate containing all
of their statements, having the same input and return parameters, and having
a better score.

4 Evaluation

This section evaluates our approach using a prototype that is implemented as
a ConQAT analysis for Java projects. We constructed an online survey that
presented ten long methods from open source Java projects with extract method
refactoring suggestions.

RQ1: Are Suggestions Better than a Random (valid) Refactoring Can-
didate? This question considers a first criterion to have a useful scoring function.
If random candidates are not significantly less preferred by developers than the
suggestions of this approach, the approach with its scoring function would be
useless.

RQ2: Do Developers Follow the Suggestions of this Approach? This
question considers a much stronger criterion of usefulness than RQ1. The eval-
uation of this paper tries to find out, whether (and how often) this approach is
able to suggest candidates that are taken as refactoring candidate from devel-
opers. The more often developers follow the suggestions of the prototype, the
closer is the scoring function on their intuition.

RQ3: Should Several Suggestions be Made? This question addresses a
result of Silva et al. [10]. They claimed that an implementation of their approach
should preferably suggest only the best candidate. As the approach of this paper
is structurally similar to their approach, we try to find out whether their result
also holds for our prototype.

4.1 Design

For the survey, all participants received an HTML file that contained ten meth-
ods (survey object) that were considered during the survey. All these methods
had between 48 and 73 lines. For each survey object there were three highlighted
candidates. One of the candidates was always the first suggestion of the proto-
type, called TOP1. Another one was the second or third suggestion of the proto-
type (which one was determined randomly during the analysis but then was the
same for each participant), called TOP2/3. The third candidate was a randomly
selected valid candidate that was not one of the TOP3 candidates determined by
the scoring function, called Random. All suggested candidates were highlighted
in the same way such that the participants could not differentiate them.

Table 2 shows the study objects from which ten long methods were presented
in the survey. We consider a method as long if it counts more than 40 lines. All
study objects are Java open source projects. They all have long methods but

152 R. Haas and B. Hummel

Table 2. Study objects

Name Domain Size (LoC) # Methods # Long
methods

LoC of longest
method

Agilefant Backlog tool 36,116 2,841 31 (1.09 %) 143

JabRef Reference manager 128,145 5,665 428 (7.56 %) 1,305

JChart2D Charting library 50,728 1,849 72 (3.89 %) 641

some have – in relative terms – more long methods than others. All projects
were selected for the evaluation because they are well-known Java open source
systems and have a five star ranking (based on voluntary feedback from the
users) on the open source distribution platform sourceforge2.

Our online survey asked for each survey object the following questions:

1. Which candidate would you use more likely for an extract method refactor-
ing? The participants could select exactly one suggestion.

2. Would you use the selected candidate for an extract method refactoring? In
addition to “Yes” and “No”, the participants could select “Yes, with slight
modification (of 1–2 lines)”.

3. Would you have applied an extract method refactoring on this method?
Answering options were “Yes” and “No”.

4.2 Results

Ten experienced developers participated in the survey that is used to answer
RQ1–RQ3. All of them have between 6 and 24 (on average 12) years of develop-
ment experience.

Are Suggestions Better than a Random (valid) Refactoring Candidate? (RQ1).
74 % of the selected candidates in the first survey question were the one that
was ranked top most by the scoring function. The other 26 % were the TOP2/3
candidate. The random candidate was never selected by any of the participants
and therefore one can assume that for the ten survey objects the suggestions
generated by the prototype are much better than the selection of a valid random
candidate.

Do Developers Follow the Suggestions of this Approach? (RQ2). 74 % of the
selected candidates would have been applied without modifications (according
to the answers to the second survey question). For other 12 % a quite similar
refactoring would be applied (by only shifting the selected candidate about one
or two lines). For the remaining 14 % the developers claimed that they would not
have applied the selected refactoring. For 93 % of the survey objects developers
would apply an extract method refactoring on the presented method. Five of the

2 http://sourceforge.net/.

http://sourceforge.net/

Deriving Extract Method Refactoring Suggestions for Long Methods 153

seven “No” answers concerned the last survey object, which was a method that
contained a test case.

Should Several Suggestions be Made? (RQ3). 74 % of the selected candidates
were the best one with respect to the order determined by the scoring function
of this approach. The other 26 % were the TOP2/3 candidate. These values of
course do only represent the average distribution. For none of the survey objects
a similar distribution appeared: for half of them nearly all participants (nine out
of ten) selected the TOP1 candidate and for the other half of survey objects the
distribution was quite mixed, i.e. five participants selected TOP1 and the other
five selected TOP2/3 or six selected TOP1 and four TOP2/3 (or vice versa).

4.3 Discussion

This section discusses the results of the analysis of the survey objects and the
survey itself. Many participants gave additional and individual feedback and
reasons for their answers which will also be included in the discussions.

Do Developers Follow the Suggestions of this Approach? (RQ2). For the survey
objects, 86 % of the selected candidates (maybe slightly shifted) would have been
chosen for an extract method refactoring. All of them were suggestions of the
prototype. Nevertheless, several participants claimed (in their individual feed-
back) that for some survey objects there were redundancies in the code such that
they would first try to eliminate those and then refactor the resulting method.
But as they would not start with an extract method refactoring, they answered
in such cases the third survey question with “No”. As already mentioned, half
of participants would not have refactored the last survey object because that
method covered a test case. Thus, the participants claimed that it was better to
keep the whole test case in the same method to have a better overview about
the functionality that is tested by the given test case.

This means that not all methods that are considered lengthy by our prototype
are candidates for developers for extract method refactorings. In general, the
suggestions are helpful: if developers want to refactor a given method using an
extract method refactoring, they often follow the suggestions of the prototype.

Should Several Suggestions be Made? (RQ3). Many participants mentioned in
their feedback that there were some methods where they were quite sure which
of the suggested candidates is the best one and that they would apply only this
one extract method refactoring on the given method. For other survey objects,
they would have applied both suggestions, the TOP1 and the TOP2/3 candidate
for extract method refactorings. So, to answer the question in the survey, where
they could select only one option, they had to select their answer more or less
randomly between those two candidates. That might be an explanation for the
mixed answers.

In practice, of course, several refactorings can be applied and often it is the
best solution to refactor a long method by extracting several pieces of code
into new methods. Hence, in some cases it really makes sense to suggest several
candidates, at least the TOP3 candidates with respect to the ordering of the
scoring function.

154 R. Haas and B. Hummel

4.4 Threats to Validity

There are some threats to validity of the evaluation, which are summarized in
the following.

Resolution of long methods is subjective (see [15]). First, there is no consensus
in science when a method is actually long. This means that some may treat
a given method as long where others do not. Second, there is no commonly
accepted algorithm that splits a long method into suitable smaller ones. That
actually is a threat to validity of this evaluation as several participants were
asked which candidate according to their opinion is best for an extract method
refactoring. Other participants might have selected other candidates. To handle
this risk, ten experienced developers took part in the survey.

A threat of external validity is, as usual in software engineering topics, that
the results of the evaluation need not necessarily hold for other software systems.

Ten survey objects do not represent the whole spectrum of methods that
should be refactored using an extract method refactoring. They all covered (for
long methods) only a few lines of code and did not represent all possible ways
of designing a method. To have a fair overview the survey objects were selected
from several open source systems and there from different packages. They have
quite different code structures such that a wide range of ways how methods can
be structured are covered by the evaluation.

5 Conclusion and Future Work

We proposed an approach to derive extract method refactoring suggestions for
long methods in Java to improve maintainability and reduce code complexity.
The approach determines extractable candidates from the control and data flow
graph of a method. A refactoring candidate needs to fulfill syntactical precon-
ditions, have an equivalent data flow and a minimal length. Each candidate is
ranked using a scoring function that considers the following criteria: length, nest-
ing depth and area reduction, and the number of input and return parameters.
Bonus points are awarded for candidates having comments or blank lines at their
beginning or end.

We used a prototype to evaluate our work in a survey. It showed that the
suggestions of the approach for the survey objects are always better than a
random candidate (RQ1). For 86 % of the suggestions for the study objects, the
developers follow the suggestions made by the prototype (RQ2). This means
that, at least for the study objects, the suggestions of the prototype are usually
useful. We also addressed the question whether several candidates should be
recommended (RQ3). For one half of the survey objects, nearly all participants
selected the same candidate and claimed that they would use it for an extract
method refactoring – in these cases one suggestion might be sufficient. But for
the other half of survey objects, the participants would apply several extract
method refactorings that were suggested by the prototype. So, for 50 % of the
survey objects, at least the three best candidates should be suggested.

Deriving Extract Method Refactoring Suggestions for Long Methods 155

We think that our approach also works for methods with a high nesting depth
(which is another code smell). In the future, we want to conduct another case
study to test the validity of this hypothesis. We plan to do further research on
the choice and weights of our scoring parameter.

Instead of suggesting several candidates from which developers can choose at
least one, one could suggest a set of disjoint extract method refactorings. The
scoring function then could consider the benefit of applying all these refactorings
instead of ranking single suggestions.

References

1. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Reading (1999)

2. Kanemitsu, T., Higo, Y., Kusumoto, S.: A visualization method of program depen-
dency graph for identifying extract method opportunity. In: Proceedings of the 4th
Workshop on Refactoring Tools, pp. 8–14. ACM (2011)

3. Marticorena, R., Lpez, C., Crespo, Y., Prez, F.J.: Refactoring generics in JAVA: a
case study on extract method. In: 14th European Conference on Software Mainte-
nance and Reengineering (CSMR), pp. 212–221. IEEE (2010)

4. Martin, R.C.: Clean Code: A Handbook of Agile Software Craftsmanship. Prentice
Hall, Upper Saddle River (2009)

5. Maruyama, K.: Automated method-extraction refactoring by using block-based
slicing. In: ACM SIGSOFT Software Engineering Notes, vol. 26, pp. 31–40. ACM
(2001)

6. Murphy-Hill, E., Black, A.P.: Why don’t people use refactoring tools?. In: Pro-
ceedings of the 1st Workshop on Refactoring Tools, pp. 60–61 (2007)

7. Murphy-Hill, E., Black, A.P.: Breaking the barriers to successful refactoring: obser-
vations and tools for extract method. In: Proceedings of the 30th International
Conference on Software Engineering, pp. 421–430. IEEE (2008)

8. Opdyke, W.F.: Refactoring object-oriented frameworks. Ph.D. thesis. University
of Illinois at Urbana-Champaign (1992)

9. Sharma, T.: Identifying extract-method refactoring candidates automatically. In:
Proceedings of the 5th Workshop on Refactoring Tools, pp. 50–53. ACM (2012)

10. Silva, D., Terra, R., Valente, M.T.: Recommending automated extract method
refactorings. In: Proceedings of the 22nd International Conference on Program
Comprehension, pp. 146–156. ACM (2014)

11. Steidl, D., Eder, S.: Prioritizing maintainability defects based on refactoring rec-
ommendations. In: Proceedings of the 22nd International Conference on Program
Comprehension, pp. 168–176. ACM (2014)

12. Streitel, F.: Incremental language independent static data flow analysis. Master’s
thesis, Technical University of Munich (2014)

13. Tsantalis, N. Chatzigeorgiou, A.: Identification of extract method refactoring
opportunities. In: 13th European Conference on Software Maintenance and Reengi-
neering, pp. 119–128. IEEE (2009)

14. Wilking, D., Kahn, U.F., Kowalewski, S.: An empirical evaluation of refactoring.
e-Informatica 1(1), 27–42 (2007)

15. Yang, L., Liu, H., Niu, Z.: Identifying fragments to be extracted from long methods.
In: Asia-Pacific Software Engineering Conference, pp. 43–49. IEEE (2009)

The Use of Precision of Software Development
Effort Estimates to Communicate Uncertainty

Magne Jørgensen(&)

Simula Research Laboratory, Fornebu, Norway
magnej@simula.no

Abstract. The precision of estimates may be applied to communicate the
uncertainty of required software development effort. The effort estimates 1000
and 975 work-hours, for example, communicate different levels of expected
estimation accuracy. Through observational and experimental studies we found
that software professionals (i) sometimes, but not in the majority of the exam-
ined projects, used estimate precision to convey effort uncertainty, (ii) tended to
interpret overly precise, inaccurate effort estimates as indicating low developer
competence and low trustworthiness of the estimates, while too narrow effort
prediction intervals had the opposite effect. This difference remained even when
the actual effort was known to be outside the narrow effort prediction interval.
We identified several challenges related to the use of the precision of single
value estimates to communicate effort uncertainty and recommend that software
professionals use effort prediction intervals, and not the preciseness of single
value estimates, to communicate effort uncertainty.

Keywords: Software cost estimation � Estimation uncertainty � Estimate
precision � Human judgment

1 Introduction

There is a substantial uncertainty in required effort of software development projects,
which is reflected in a high average estimation error. A review of seven surveys on
software projects gave that the median effort overrun was 21 % [1]. Not only is the
average error high, the proportion of projects with very high estimation error is sub-
stantial. A study of 3.650 software projects found that 12.8 % of the projects had a
effort overrun of more than 105.9 % [2].

The sometimes very high effort uncertainty makes it essential to realistically assess
and properly communicate the level of uncertainty of the produced effort estimates. The
level of uncertainty may, amongst others, affect the pricing, cost-benefit analyses,
prioritization, budgeting and planning of software projects [3–6], i.e., most of the
different types of usages of effort estimates involves judgment of the uncertainty of the
estimate. A client may, as an illustration, find a project worthwhile to invest in only if
the effort uncertainty, and consequently the risk of high cost overrun, is low. Similarly,
a software development company may choose not to bid for a project or to add high
cost contingency when the effort uncertainty is high.

© Springer International Publishing Switzerland 2016
D. Winkler et al. (Eds.): SWQD 2016, LNBIP 238, pp. 156–168, 2016.
DOI: 10.1007/978-3-319-27033-3_11

More recently introduced software development approaches, such as incremental or
continuous delivery or other elements of agile development, may give the perception
that there is no more need for effort estimates, which would invalidate the need for
communicating the uncertainty of estimates as well. The “no estimates”-movement
(zuill.us/WoodyZuill/beyond-estimates/) seems to argue in this direction. This move-
ment provides good arguments in favour of that there are several situations where we
do not need effort estimates and where effort estimates can be harmful (see our own
study on negative effect of too low effort estimates on software quality in [7]). Few, if
any, of those within the movement do, however, claim that we never need to or should
estimate, see for example ronjeffries.com/xprog/articles/the-noestimates-movement/.
The “no estimates”-movement may also be accused of not being clear about of what is
meant by an estimate. It seems, for example, that estimates of production capacity, e.g.
answers to questions like “How much can be delivered in the next increment?” and
“Is it likely that we will be able to deliver a certain amount of features within the
client’s budget?” are frequently not counted as estimates. Clearly, answers on these
questions are based on estimates of effort and would benefit from assessing and
communicating the estimation uncertainty. Even when applying a continuous delivery
model there will frequently be a need for the client and/or provider to know the
approximate need for effort before starting the development of new features. Also of
interest is that the most successful agile projects, but not the less successful agile
projects, seem to carry out as much up-front estimation and planning as the non-agile
projects [8]. Finally, hardly any client, given that they have the choice not to build the
software, is likely to start a software project without any knowledge about how much it
will cost to meet their business needs. The value of such cost (and benefit) estimates
would be limited if there was no communication of the uncertainty of them.

One possible means of communicating the estimation uncertainty in software
projects is through the precision of the estimate, e.g., through the number of significant
digits or trailing zeros of an effort estimate. For example, an estimate with low pre-
cision, such as 1000 work-hours (three trailing zeros), is likely to indicate a much
higher effort uncertainty than an estimate with higher precision, such as 1075
work-hours (no trailing zeros). This paper examines the following topics: (i) To what
degree the estimation precision is actually used to communicate estimation uncertainty,
(ii) Challenges by using the estimation precision to communicate uncertainty, and
(iii) How the estimation precision affects the assessments of the competence of the
estimator, the trustworthiness of the estimate and, after the actual effort is known, the
perceived accuracy of the estimate. If the actual effort is 1200 work-hours we may, for
example, assess an estimate of 1000 work-hours to be more accurate, given the low
precision which implied a large estimation interval, than the much more precise and
clearly incorrect estimate of 1075 work-hours.

Research from many contexts [9–12], including software engineering contexts
[13–15], reports a strong tendency towards over-confidence in the accuracy of one’s
estimates. As an illustration, in [16] the authors found that most software developers
assessed it to be likely (at least 60 % likely) that the actual effort would be within +/–
10 % of the estimated effort. In reality, however, only 15 % of the project efforts fell
within this narrow effort interval.

The Use of Precision of Software Development Effort Estimates 157

Research on answers given to so-called “almanac questions”, such as the question
“How long is the Nile?” suggests that more precise answers, e.g., that the Nile is
6180 km compared to that the less precise answer that it is about 7000 km, are
interpreted as indicating increased confidence in the answer and more competence in
the topic. The research also finds that more precise answers have larger influence on
other people’s decisions [17].

The only study on the use and effect of single value precision in a software
development estimation context is, as far as we know, the study reported in [18]. That
study failed to replicate previous result that more precise suggestions (estimation
anchors) were more influential for subsequent predictions. An effort suggestion (esti-
mation anchor) of 998 work-hours did not have more impact on the subsequent effort
estimate than an effort suggestion of 1000 work-hours. A potential explanation for this
difference in results is that an overly precise suggestion, such as 998 work-hours for a
complex project, may be seen as indicating incompetence, rather than higher compe-
tence in a software development context. There may consequently be domain and
context differences in the interpretation and judgmental effect of more precise
predictions.

This paper aims at extending previous research by:

• Examining the use of the estimation precision to indicate software development
effort estimation uncertainty (Sects. 2 and 3).

• Examining how the estimation precision is interpreted as indicator of estimator
competence and estimate trustworthiness, and how estimation accuracy of overly
precise effort estimates is evaluated (Sect. 4).

We discuss the findings and conclude in Sect. 5.

2 Measuring Single Value Effort Precision

The measurement of the precision of a single value effort estimate, in connection with
the potential use of it to communicate estimate uncertainty, is not straightforward.
It may be easy to agree on that precision and estimate uncertainty is, or at least should
be, connected. An estimate of 1000 work-hours is for example expected to be less
accurate, i.e., more uncertain, than an estimate of 830 work-hours. It is however not
easy to formalize this connection in an effort estimation context. What is, for example,
a reasonable interpretation of the uncertainty of an estimate of 830 work-hours? Should
it be interpreted to communicate that the expected actual effort is in the interval [825,
835], in the interval [820, 840], or some other interval? How should a belief in that the
actual effort is likely to be in the interval [810, 850] be communicated? An estimate of
800 work-hours indicates less precision than intended and an estimate of 830
work-hours may indicate too high precision. Also, the implied effort intervals have no
obvious connected confidence level. We may argue that the estimator believes that it is
likely that the actual effort will be inside the interval, but it is not clear whether that
corresponds to, for example, 70 %, 80 % or 90 % confidence. In addition, the number
of significant digits does not say anything about trailing value of 5, which may also be
used to indicate uncertainty.

158 M. Jørgensen

The use of the Fibonacci numbers in agile estimation of software development
effort, see for example [19], may be argued to assume that the intended precision of
user story-based estimates, typically in story points, is about +/-30 %, assuming
non-overlapping uncertainty intervals. This is so, because the ratio of two succeeding
Fibonacci numbers is always approximately 1.6. The estimated numbers themselves,
however, do not necessarily communicate that level of uncertainty.

There may also be precision measurement challenges connected with the choice of
units. Estimating values connected with work effort or calendar time means that the
value 10 is not always the natural unit. Indicating that a task takes about one day of
work may, for example, result in the seemingly very precise estimate of 8 work-hours.

From the above discussion, see also [20] for elaboration on several of the above
challenges, we see that the precision of a single point estimate may not be an optimal
method of communicating clearly about effort estimation uncertainty.

For the purpose of our studies, trying to address some of the above measurement
challenges, we apply the following measures:

• NumbTrailZero: Number of trailing zeros. If there is at least one trailing zero, this
indicates (but do not guarantee, since a trailing zero may be a significant digit) that
some rounding has been taken place, or that the estimate has a high granularity.

• RelPrec: The relative precision (uncertainty) of an estimate measured as a function
of trailing zeros and the estimate. We include the factor w to enable different
precision interpretation and assume that all estimates are integer number. The need
for the w-factor is motivated by the lack of commonly accepted precision inter-
pretation in effort estimation. The interpretation of the meaning of, for example,
8000 work-hours could be 8000 +/- 500, 8000 +/- 1000 or something else.

RelPrec wð Þ ¼ w � 10NumbTrailZero=Estimate ð1Þ

Example: Assume that we observe the estimates 3000 work-hours and 3020
work-hours, where the first estimate has three and the second has one trailing zero. We
then have that the relative precision, for the interpretation w = 1.0, is 103/3000 = 33 %
(corresponding to the interval 3000 +/– 1000 work-hours, assuming symmetric inter-
vals) for the first estimate and 0.3 % (3020 +/–10 work-hours) for the second.
Changing the w-value to be 2.0 gives a relative precision of 67 % (3000 +/– 2000
work-hours) and 0.7 % (3020 +/–20 work-hours). If the actual effort, for example, turns
out to be 3655 work-hours we have that the implied effort interval, by assuming w = 1,
of the estimate 3000 +/–1000 work-hours includes the actual effort (estimation error of
22 % and RelPrec of 33 %), while the assumed implied interval estimate 3020 +/–10
work-hours does not (estimation error of 21 % and RelPrec of 0.7 %). Notice that the
number precision interpretation commonly applied in physics would be the one with
w = 0.5 and is related to the reliability of measurement rather then expected accuracy of
estimates. We are unaware of other studies applying the RelPrec measure for studies on
numerical precision. This does not mean that the proposed measure in any way is
innovative. If there had been a normative interpretation of how trailing zeros in soft-
ware development effort estimates should be connected with effort estimation uncer-
tainty, we would not need the w-factor and the measure would be trivial.

The Use of Precision of Software Development Effort Estimates 159

If the trailing zeros of estimates are successfully applied to indicate estimation
uncertainty, with the interpretation indicated by the w-factor, we would expect that the
average RelPrec is similar to the average absolute value of the relative error. In par-
ticular, if the average error tends to be much higher than RelPrec, then the effort
estimate is likely to have been too precise to reflect the effort uncertainty. The lack of
standardized precision interpretations in software effort estimates means, however, that
we will examine different w-factors and also analyse which precision interpretation
(which w-factor) that would give a good correspondence between precision and
accuracy.

3 Effort Uncertainty Indicated by Estimate Precision

Table 1 summarizes our examination of the effort estimates of three different software
project datasets. The datasets were selected based on availability and we do not make
any claim that they will be representative for the software development industry as a
whole. The purpose is mainly to indicate the existence and degree of systematic of use
of precision of cost or effort estimates to indicate estimation uncertainty in software
projects.

An important reason for high precision in software professionals’ effort estimates is,
based on our experience from several organizations, that the estimate of the total
project effort is based on adding the effort of many activities, i.e., based on bottom-up
based estimation processes. Consequently, adding one activity of about 2 work-hours
with one with about 100 gives the sum of 102 work-hours, which is not likely reflect
the total uncertainty given the presumably high uncertainty of the activity estimated to
take 100 work-hours.

Trailing zeros may not always be a result of estimate rounding based on uncertainty
considerations. They may also be a result of request for early, rough, perhaps
analogy-based, estimates. We can, however, exclude this reason for trailing zeros in the
examined data sets, since all estimates were based on bottom-up estimation processes
where effort of many activities were added to find the total effort. Trailing zeros can, of
course, also be significant digits.

Our analysis of the three data sets may be summarized to say that some software
projects used estimate precision to communicate the effort uncertainty, but that most
software projects communicated estimates with a precision much higher than warranted
by the actual effort usage uncertainty. The variance in the w-factors that would lead to
good correspondence between precision and uncertainty suggest that, even when
trailing zeros are used, that there are various interpretations of what they mean in terms
of estimate precision.

4 Competence, Trustworthiness and Accuracy

The precision of an effort estimate may not only be read as an indication of the
estimation uncertainty. It may also be read as indication of competence of the source
(the estimator) and/or the trustworthiness of the estimate. Our hypothesis was that

160 M. Jørgensen

Table 1. Use of estimate precision in three data sets

Data set description Precision indicated by trailing zeros

Data set 1: Seven very large (larger than 440
mill NOK, corresponding to larger than
about 50 mill Euro) Norwegian software
development projects with governmental
client. Data set found at www.nrk.no/
fordypning/tvilsomt-om-kvalitetssikring-
virker-1.11936733. Median estimation
error of 21 %.

Only one project estimate (which were in
mill. NOK) had trailing zeros. The other
estimates were presented to the nearest
million NOK. The only project estimate
using trailing zeros to indicate relative
precision (two trailing zeros,
RelPrec = 29 %) had corresponding
relative accuracy (31 %) for w = 2, but
were seemingly over-precise, i.e., not
reflecting the cost estimation inaccuracy of
the software projects, for precision
interpretations based on lower w-factors.
For all other projects the estimates were
too precise to reflect the observed
estimation uncertainty.

Data set 2: Fifty-two medium large and
small software development projects
(average estimated effort of 850
work-hours) carried out by a Norwegian
software provider for various clients.
Median estimation error of 14 % (sixteen
of the projects were not completed at the
time of data collection). We asked the
project leaders, at time of estimation, to
assess the expected accuracy of the
estimates, with the alternatives +/-10 %,
+/-25 %, +/-50 % and more than +/-50 %
error of estimates. Data set is available
upon request to the author.

Twenty-one (40 %) of the project estimates
had trailing zeros. The project estimates
that used trailing zeros to indicate relative
precision (median RelPrec of 18 % for
w = 1) had corresponding relative median
estimation accuracy (20 %).

Seventeen of the twenty-one projects with
trailing zeros of the estimates provided
informed about the expected precision of
the estimates. The relative precision of
these estimates, with w = 1, corresponded
well with the projects’ expected precision.
The +/-10 % estimation error category
(n = 11) had a median relative precision of
6 %, the +/-25 % category (n = 5) had a
median relative precision of 17 %, and the
+/-50 % category (n = 1) had a relative
precision of 50 %. This suggests that the
project managers in these projects actually
used the precision of the estimate to
communicate the expected accuracy of the
estimates.

Data set 3: Thirty Medium large projects
(average estimated effort of 2300
work-hours) carried out in-house in a large
Norwegian company. Median estimation
error of 11 %. Data set is available upon
request to the author.

Twelve (40 %) of the project estimates had
trailing zeros. The project estimates using
trailing zeros to indicate relative precision
(median precision of 3 %, for w = 1) had
not corresponding relative median
estimation accuracy (9 %). Only two of the
project estimates used two trailing zeros or
more. These two projects were the only
ones with correspondence between
estimate precision and accuracy.

The Use of Precision of Software Development Effort Estimates 161

http://www.nrk.no/fordypning/tvilsomt-om-kvalitetssikring-virker-1.11936733
http://www.nrk.no/fordypning/tvilsomt-om-kvalitetssikring-virker-1.11936733
http://www.nrk.no/fordypning/tvilsomt-om-kvalitetssikring-virker-1.11936733

estimate precision, both in terms of less trailing zeros and narrower intervals, would be
interpreted as increased competence of the source and increased trustworthiness of the
estimate.

To test this we invited 236 project managers and software developers from six
different software providers located in Poland, Romania and Ukraine. The mean length
of experience was 6 years, varying from 0.5 to 35 years of experience. Twenty-four per
cent were project managers. Eight per cent were female. The participants were asked to
describe how they would interpret varying degrees and types of precision of effort
estimates.

First, we gave the participants the following scenario and questions:

Four different developers (Developer A, B, C and D) are estimating the same project
and spend about the same time to read and understand the requirement specification.

Developer A says: "I think I will need 1020 work-hours to complete the project"
Developer B says: "I think I will need 1000 work-hours to complete the project"
Developer C says: "I think I will need between 900 and 1100 work-hours to complete
the project"
Developer D says: "I think I will need between 500 and 1500 work-hours to complete
the project"

Assume that this is the only information you have about the four developers.

Question 1: Which of the developers would you think is the most and the least
competent?
Question 2: Which of the estimate would you trust the most and the least?

The rationale behind the chosen estimates and estimation intervals were as follows:

• The precision of 1000 and 500–1500 work-hour estimates may be said to be similar
in precision, assuming the precision interpretation corresponding to w = 0.5. Both
represent a situation where the estimation uncertainty is high.

• The estimate of 1020 work-hours represents a situation with very precise estimate.
Given that the other developers, especially B and D, communicate high estimation
uncertainty, the participants have to choose between believing that the high pre-
cision is a consequence of high competence, i.e., low estimation uncertainty, or
over-precision. If they believe that the estimate is likely to be over-precise, i.e., that
the estimate precision does not reflect the actual effort usage uncertainty, they have
to assess to what degree this is likely to be an indicator of low competence.

• The interval 900-1100 work-hours is a situation with very precise (narrow interval)
estimate. Similarly to the situation with the 1020 work-hours estimate, the partic-
ipants have to decide to what extent this indicates high competence and, if not,
whether an overly narrow effort interval indicates low competence or not.

We suspected that the software professionals’ responses on Question 1 and 2 would
be strongly correlated, in spite of Question 1 requesting judgment of the developer and
Question 2 requesting judgment of the estimate. If you, for example, do not think a

162 M. Jørgensen

developer is competent, you will hardly trust his/her estimate. The inclusion of both
questions was mainly to see if they respondents tended to think that a developer with
precise estimates would be the most competent, and at the same time not trusting
his/her estimates. This may happen if, for example, the respondents thought that
over-confident software developers are the most competent, but their estimates are
usually less trustworthy.

There are several threats to the external validity of the results of this experiment.
The above situation with four estimates on the same projects is not a typical situation
for software professionals. Similarly, software professionals are not typically asked to
evaluate competence and trustworthiness of the estimates based on characteristics of
the estimates alone. Usually, they will know more about the context and the software
professionals providing the estimates. These threats means that we should be careful
about using the results to make claims about of what will happen in more realistic
situations, e.g., situations where only one estimate is received and where the receiver
knows much more about the context and the estimator. It is however our belief that we,
in spite of these limitations, may get a first indication of how the precision of the
estimate affects how software professionals think about those who provide the esti-
mates and the estimate itself in situations with little context information. To what extent
more context information in more realistic situations will over-ride the observed effects
we will not be able to make claims about.

There are also threats to the internal validity of the results of this experiment. The
software professionals were only allowed to select one developer as the most/least
competent or having the most/least trustworthy estimate. This means that if, for
example, one developer were judgment to be just slightly better by most respondents,
this developer will turn up as the significantly most competent in our study. This is a
limitation of just asking for the ranking and not allowing selecting more than one
alternative. The direction of the results (the ranking) should, however, not be affected
by this design choice.

When the participants had completed the first two questions, they were randomly
divided into two groups and given a scenario where they were informed about the
actual effort. For one group the actual effort was described to be 800 work-hours and
for the other 1200 work-hours. We wanted to know how the estimate precision affected
the participants’ assessment of the accuracy of the estimate. For this purpose we asked
them the following question:

Question 3: Assume that all four developers completed this project and that all of
them used close to 800 (Group 1)/1200 (Group 2) work-hours to complete the
project. Which of the developers do you think had the most and the least accurate
estimate?

We had no prior expectation about which of the four estimates the participants
would chose as the most and the least accurate. The actual effort values of 800 and
1200 work-hours are both outside the narrow interval of 900–1100 work-hours, i.e.,
Developer C may be said to be wrong about his/her estimate. The precise estimate of
1020 work-hours may also be said to be wrong, since it deviates quite much from both

The Use of Precision of Software Development Effort Estimates 163

800 and 1200 work-hours. The estimate of 1000 work-hours may be interpreted as less
wrong if, for example, it is interpreted (w = 2) as 1000 +/– 200. The interval 500–1500
work-hours is clearly correct, but may be viewed as not informative enough to qualify
for an accurate estimate.

The responses from the two first questions are displayed in Table 2 and for the last
question in Table 3.

Table 2 shows that the narrow interval of Developer C was assessed to indicate the
highest competence of the source and the highest trustworthiness of the estimate by
most participants. The least competent and trustworthy were assessed to be the wide
interval by Developer D and, interestingly, the very precise estimate of Developer A.
The results, consequently, suggest that precision in the format of narrow effort intervals
makes an estimator look more competent and the estimate more trustworthy, while high
precision of single value estimates has the opposite effect. We discuss limitations and
possible explanations of this observation in Sect. 5.

We found no large differences in responses dependent on role (project manager or
developer), gender, length of experience, or company.

Table 3 reports the same tendency found in Table 2. There is again a positive
evaluation of the narrow interval of 900–1100 work-hours. This was the case in spite of
that the narrower effort interval did not include the actual effort, while the wider effort
interval of 500–1500 work-hours did. The result corresponds with earlier research that
reports that people tend to emphasize and reward informativeness rather than cor-
rectness [13, 21, 22]. While 500–1500 work-hours is a “correct” interval, it may be felt
to give less useful information than the “incorrect” interval of 900–1100 work-hours.

Table 2. Competence and trustworthiness

Estimate Most
competent

Least
competent

Most
trustworthy

Least
trustworthy

Developer A (1020) 6 % 31 % 7 % 49 %
Developer B (1000) 11 % 13 % 7 % 14 %
Developer C (900–1100) 74 % 1 % 70 % 1 %
Developer D (500–1500) 9 % 55 % 16 % 36 %

Table 3. Accuracy (answers of the project managers in brackets)

Estimate Most accurate
when
Act = 800

Least accurate
when
Act = 800

Most
accurate
when
Act = 1200

Least
accurate
when
Act = 1200

Developer A (1020) 1 % (0 %) 41 % (45 %) 9 % (12 %) 24 % (32 %)
Developer B (1000) 13 % (13 %) 7 % (10 %) 21 % (16 %) 18 % (16 %)

Developer C (900–1100) 69 % (68 %) 0 % (0 %) 55 % (60 %) 6 % (8 %)
Developer D (500–1500) 17 % (19 %) 52 % (45 %) 15 % (12 %) 52 % (44 %)

164 M. Jørgensen

The situation for the precise (1020 work-hours) and the less precise (1000
work-hours) single value estimate was, similar to the situation in Table 2, the opposite.
Here the more precise estimate was considered by more participants to be the least
accurate. This was the case even for the group with actual effort of 1200 work-hours,
i.e., even in the situation when the precise estimate was closer to the actual effort than
the less precise.

A limitation of the single value estimate comparison is that an estimate 1020
work-hours may be said to be clearly over-precise. The interval 900–1100 work-hours
may also be said to be over-precise, but less over-precise than 1020 work-hours.

Another limitation is that our results may have been different if we had a pairwise
comparison of estimates. The difference in responses for the 1020 and the 1000
work-hour estimate may, for example, be different if not the two other, effort interval
alternatives were present.

In spite of the described limitations and threats, we believe that the observation that
over-precise intervals but not over-precise single estimate are rewarded in terms of
competence and trustworthiness points at challenges when it comes to communicating
estimation uncertainty through estimate precision.

5 Discussion and Conclusion

Previous research, such as the study reported in [23] and the studies referred to in the
introduction of this paper, tend to find that people with more precise estimates are, on
average, more confident and more accurate. Previous research also suggests that people
in many situations tend to convey the expected accuracy of their estimates by use of
trailing zeros, i.e., by estimate precision. It is therefore not unreasonable to expect that
less trailing zeros of an effort estimate and more narrow effort prediction intervals are
interpreted as coming from a more competent and accurate source.

Our results only partly correspond with those of the previous research. We did, in
accordance with previous research, find that more precise (more narrow) prediction
intervals were interpreted as coming from a more competent source and to be more
trustworthy. We did, however, not find the same effects for more precise single value
effort estimates. Neither did we find that most software projects, but instead only a
minority, tried to convey the expected uncertainty through the precision of single
valued effort estimates.

The difference between our and the previous results may have been caused by
differences in context, e.g., that software professionals know based on previous
experience that people with overly precise single value effort estimates tend to be less
competent than those with estimates with more trailing zeros or effort intervals. Then,
however, we should perhaps expect to find the same effect for the more narrow effort
prediction interval. In an earlier study, see [16], we found that software professionals
with the high confidence and narrow effort prediction intervals did not give the most
accurate effort estimates.

The differences between our and previous results may also be a result of the
particular numbers and effort intervals selected for the scenario used in our study.
A more precise effort interval than 900–1100 work-hours, e.g., the interval 950–1050,

The Use of Precision of Software Development Effort Estimates 165

or a less precise single value estimate than 1050 work-hours, e.g., the value 1100, may
have led to different results. More research is needed to get more insight into how
different contexts affect the precision-related interpretations. (We conducted a
follow-up study on with 83 software developers where we observed that very narrow
intervals, such as 1100–1020 work-hours were considered to come from low confi-
dence source. This study confirmed the finding that intervals are perceived to come
from more confidence sources than single estimates with similar precision. The interval
1000–1200 work-hours was for example considered to come from a much more
confidence source than the estimate 1100 work-hours).

Finally, the difference in results may also be a result of that the participants
assumed different underlying estimation processes in the interval and the single value
estimation context. The estimate 1050 work-hours may be interpreted as coming from a
process with addition of most likely effort values without any uncertainty analysis. The
effort interval 900–1100 work-hours may, on the other hand, be interpreted as coming
from a more thorough, and consequently more competent and trustworthy, process
where both minimum, most likely and maximum efforts have been considered.

The perhaps most surprising result is that the participants, including the project
managers, even after knowing that the effort interval of 900–1100 work-hours was
overly narrow, i.e., did not include the actual effort of 800 or 1200 work-hours, still
thought that this was the most accurate interval. This suggests that effort prediction
intervals are not interpreted as wrong or inaccurate when the actual effort is close,
although not inside the interval. One possible reason for this result is that trailing zeros
of the minimum and maximum values communicate that that these boundary values
also have uncertainty. Our effort interval, where the boundary values have two trailing
zeros, may consequently have been interpreted, for example, as the interval from
800 +/-100 to 1100 +/-100 or as “between around 900 to around 1100 work-hours”.
Another potential reason is that, in spite of not being able to include the actual effort,
they expected that the prediction interval 900–1100 work-hours to be the most useful,
i.e., a result in correspondence with the informativeness findings reported earlier.
Estimation accuracy measurement by software professionals is then not a mechanical
calculation of deviations, but also affected by the usefulness of the estimate.

The findings of our study and their practical implications (recommendations)
include the following:

• The observed challenges related to the measurement and interpretation of different
levels of precision of single value effort estimates suggest that uncertainty com-
munication by use of estimate precision is, at best, unclear. Which level of effort
usage uncertainty does, for example, an estimate of 1100 work-hours intend to
communicate? Is it 1050–1150 work-hours (w = 0.5), is it 1000–1200 (w = 1)
work-hours, or is it something else? In addition, how do an estimator convey that
he/she expects the effort to be between 1300 and 1700 work-hours by the use of the
precision of a single estimate? How should a group of software professionals
proceed to agree on a proper w-value (interpretation of trailing zeros) and com-
municate this interpretation to other parties? While we, for the above reasons, would
not recommend single value estimate precision to communicate effort uncertainty,
we believe that the common practice of high precision (none or few trailing zeros)

166 M. Jørgensen

of highly uncertain effort estimates should be avoided to avoid communicating a
higher certainty that is warranted. This is in particular the case when no other
means, such as effort prediction intervals, are used to communicate the uncertainty.
– Recommendation 1: Do not use or rely on the precision of single effort esti-

mates to communicate estimation uncertainty.
– Recommendation 2: Avoid high precision estimates in situations where the

estimation accuracy is low. This also applies for the values used as minimum
and maximum effort values in prediction intervals.

• The uncertainty communicated by use of effort prediction intervals also seems to
have interpretation challenges, but perhaps less than the challenges connected with
single value estimates. To enable reasonable clear communication of expected
uncertainty of effort estimates, we therefore believe that effort prediction intervals,
preferably including confidence levels, is to be recommended.
– Recommendation 3: Use prediction intervals to derive and communicate esti-

mation uncertainty, i.e., use minimum-maximum effort intervals with connected
confidence levels. Examples of how to do this can be found in [24, 25].

• Our results on the assessment of competence and trustworthiness suggest that
software professionals, when providing effort estimates, will be more positively
evaluated by those receiving the estimates when communicating narrow effort
intervals rather than highly precise single value estimates.
– Recommendation 4: Be aware your tendency to interpret narrow effort intervals

(but not highly precise numbers) as indicating high competence and trustwor-
thiness, even when it is demonstrated to be over-confident. Use other means that
the effort prediction interval itself, such as the estimation process and the rele-
vant experience of the developer [16], to evaluate estimator competence and
estimate trustworthiness.

References

1. Halkjelsvik, T., Jørgensen, M.: From origami to software development: a review of studies
on judgment-based predictions of performance time. Psychol. Bull. 138(2), 238–271 (2012)

2. Budzier, A., Flyvbjerg, B.: Making-sense of the impact and importance of outliers in project
management through the use of power laws. In: Proceedings of IRNOP (International
Research Network on Organizing by Projects), At Oslo, 11 (2013)

3. Little, T.: Schedule estimation and uncertainty surrounding the cone of uncertainty. Softw.
IEEE 23(3), 48–54 (2006)

4. Jørgensen, M.: Evidence-based guidelines for assessment of software development cost
uncertainty. Softw. Eng., IEEE Trans. 31(11), 942–954 (2005)

5. Moses, J.: Measuring effort estimation uncertainty to improve client confidence. Softw.
Qual. J. 10, 135–148 (2002)

6. Kitchenham, B., Linkman, S.: Estimates, uncertainty, and risk. IEEE Softw. 14(3), 69–74
(1997)

7. Jørgensen, M., Sjøberg, D.I.K.: Impact of effort estimates on software project work. Inf.
Softw. Technol. 43(15), 939–948 (2001)

The Use of Precision of Software Development Effort Estimates 167

8. Serrador, P., Pinto, J.K.: Does agile work?—a quantitative analysis of agile project success.
Int. J. Project Manag. 33(5), 1040–1051 (2015)

9. McKenzie, C.R.M., Liersch, M., Yaniv, I.: Overconfidence in interval estimates: what does
expertise buy you? Organ. Behav. Hum. Decis. Process. 107, 179–191 (2008)

10. Cesarini, D., Sandewall, Ö., Johannsesson, M.: Confidence interval estimation tasks and the
economics of overconfidence. J. Ecnomic Behav. Organ. 61, 453–470 (2006)

11. Winman, A., Hanson, P., Jusling, P.: Subjective probability intervals: how to reduce
overconfidence by interval evaluation. J. Exp. Psychol. Learn. Mem. Cogn. 30(6), 1167–
1175 (2004)

12. Klayman, J., et al.: Overconfidence: it depends on how, what and whom you ask. Organ.
Behav. Hum. Decis. Process. 79(3), 216–247 (1999)

13. Jørgensen, M., Teigen, K.H., Moløkken, K.: Better sure than safe? Over-confidence in
judgement based software development effort prediction intervals. J. Syst. Softw. 70(1–2),
79–93 (2004)

14. Jørgensen, M., Teigen, K.H.: Uncertainty intervals versus interval uncertainty: an alternative
method for eliciting effort prediction intervals in software development projects. In:
International Conference on Project Management (ProMAC), Singapore (2002)

15. Teigen, K.H., Jørgensen, M.: When 90 % confidence intervals are 50 % certain: on the
credibility of credible intervals. Appl. Cogn. Psychol. 19(4), 455–475 (2005)

16. Jørgensen, M., Faugli, B., Gruschke, T.: Characteristics of software engineers with
optimistic predictions. J. Syst. Softw. 80(9), 1472–1482 (2007)

17. Jerez-Fernandez, A., Angulo, A.N., Oppenheimer, D.M.: Show me the numbers precision as
a cue to others confidence. Psychol. Sci. 25(2), 633–635 (2014)

18. Løhre, E., Jørgensen, M.: Numerical anchors and their strong effects on software
development effort estimates. submitted for publication (2014)

19. Cohn, M.: Agile estimation. Prentice Hall, Upper Saddle River (2006)
20. Ferson, S., et al.: Natural language of uncertainty: numeric hedge words. Int. J. Approximate

Reasoning 57, 19–39 (2014)
21. Yaniv, I., Foster, D.P.: Graininess of judgment under uncertainty: an accuracy-

informativeness trade-off. J. Exp. Psychol. Gen. 124(4), 424 (1995)
22. Yaniv, I., Foster, D.P.: Precision and accuracy of judgmental estimation. J. Behav. Decis.

Making 10(1), 21–32 (1997)
23. Welsh, M.B., Navarro,D.J., Begg, S.H.: Number preference, precision and implicity

confidence. In: 33rd Annual Meeting of the Cognitive Science Society (CogSci 2011),
Boston, USA (2011)

24. Briand, L.C., El Emam, K. Bomarius, F.: COBRA: a hybrid method for software cost
estimation, benchmarking, and risk assessment. In: International Conference on Software
Engineering, Kyoto, Japan. IEEE Computer Society, Los Alamitos (1998)

25. Jørgensen, M.: Realism in assessment of effort estimation uncertainty: it matters how you
ask. IEEE Trans. Softw. Eng. 30(4), 209–217 (2004)

168 M. Jørgensen

Software Testing

Web Service Test Evolution

Harry M. Sneed1,2,3(✉)

1 SoRing Kft., Budapest, Hungary
Harry.Sneed@T-Online.de

2 Fachhochschule Technikum, Vienna, Austria
3 Fachhochschule Hagenberg, Hagenberg, Upper Austria, Austria

Abstract. In order to remain useful test scripts must evolve parallel to the test
objects they are intended to test. In the approach described here the test objects
are web services whose test script is derived from the web service interface
definition. The test script structure is automatically generated from the WSDL
structure with tags and attributes, however, the content, i.e. the test data has to be
inserted by hand. From this script service requests are automatically generated
and service responses automatically validated. As with other generated software
artifacts, once the structure of the interface or the logic of the targeted service is
changed, the content of the test script is no longer valid. It has to be altered and/
or enhanced to fit the new interface structure and/or the altered service logic. In
this paper the author proposes a semi-automated approach to solving this test
maintenance problem and explains how it has been implemented in a web service
testing tool by employing data reverse engineering techniques. The author also
report on his experience with the approach when maintaining a test in the field.

Keywords: Web services · Automated web service testing · Test-driven
development · Requirement-based testing · Test automation · Regression testing ·
Test maintenance · Test script evolution · Data reverse engineering

1 Background of this Work

Testing has become an essential part of the software development and maintenance
process. Testers produce test models, test cases, test procedures, test scripts and test
documents to supplement the models, documents and code produced by the developers
[1]. These artifacts, referred to as testware, are part of the overall software product. When
the software evolves, the testware has to be evolved along with it. When the requirement
document is changed, the test cases based on that document have to be changed too. The
same applies to the design model. In system testing, test cases and the scripts which
implement them refer to functions and data contained in the system interfaces or data‐
bases. If these are altered, the test cases used to test them have to be changed in parallel
to keep the system test synchronized with the system under test. This is an essential part
of the maintenance process.

If the testware is developed manually it will also be maintained manually. It is only
a question of cost and quality. Manual processes are known to be expensive and error

© Springer International Publishing Switzerland 2016
D. Winkler et al. (Eds.): SWQD 2016, LNBIP 238, pp. 171–185, 2016.
DOI: 10.1007/978-3-319-27033-3_12

prone. That is why in today’s world more and more of the testware is generated auto‐
matically from the other software artifacts. In particular, test cases are often generated
either from the design model, the interface descriptions, the GUIs, the database schemas
or from the original requirements document [2].

The goal of the research presented here is to implement requirement-based testing
in the testing of web services. However, as with code generated from a higher level
design model, generated tests are not complete. Unless the data domains are specifically
specified in the requirement document, the tester will have to assign test data values
manually. A simple automat will not know what names are representative of a particular
group of customers. Those names have to be assigned by the tester based on his knowl‐
edge of the application. Thus, automated test cases are really the result of an automated
generation process combined with a manual enhancement process. When the automated
process is repeated in regression testing, the manual enhancement process has to be
repeated as well. The problem is that in regenerating the test cases, the manual enhance‐
ments made before are lost. If there are several thousand test cases involved, the costs
of updating them become prohibitive. This is the main reason for not using test auto‐
mation as pointed out in the literature on that subject [3].

2 Perennial Maintenance Problem

The maintenance problem is not new. It came up before in connection with code gener‐
ation. Time and time again we have been promised that both code and test will be
generated and that maintenance will take place only at the model level. This was the
goal of the automatic programming project at M.I.T. in the 1970’s, the goal of the CASE
tools in the 1980’s and the goal of UML modeling in the 1990’s [4]. When the M.I.T.
automatic programming project was finally terminated in 1980, Rich and Waters sadly
conceded that any specification language from which complete code can be automati‐
cally generated, must be at the same semantic level as the code itself, i.e. it must contain
all of the details down to the if condition level. This way, it inevitably becomes yet
another programming language, only in a different syntax [5]. As noted by Swartout and
Balzer back in the early 1980s specification and implementation are highly inter‐
twined [6].

This fact also sealed the fate of the highly promised CASE tools of the 1980’s. They
were expected to revolutionize software development. The user need only to create a
model of his application and that model would be transformed into executable code. The
maintenance personnel would no longer deal with the code but only with the model
expressed in terms of diagrams and decision trees. However there existed a tremendous
gap between the abstract, logical model of an application and the physical environment
in which the application should run. To bridge this gap, manual adjustment had to be
made to the code. It was an illusion to believe that a complete and correct application
could be automatically generated from a CASE model [7].

The author remembers well his attempt to automate software development at several
large German users in the second half of the 1980’s. The result was always the same.
Up to 95 % or more of the code could be generated out of the model, depending on how

172 H.M. Sneed

diligent the users were in filling out the model, but no matter how complete this model
was, there still remained the last 5 % which had to be hand coded. When the model was
altered, as it always was, the code had to be regenerated. In regenerating the code the
manual adjustments were lost. Of course, those could be saved and reinserted but this
was an error prone process which often caused delay. So in the end the model was
discarded and only the code remained. The elaborate CASE tools became useless and
disappeared from the market. Obviously, it was easier to maintain the code manually
than to start over each time from the model [8].

One would have thought that the IT community would have learned from this experi‐
ence, but they did not. In the 1990’s, object technology and UML were the big hope. Ivar
Jacobson promised “UML all the way down” from the use cases to the executable code
[9]. Tools were constructed to transform UML models into executable C++ and Java code.
UML has no means of expressing decision logic, so the OCL language was added to the
diagrams. By including OCL and ready-made patterns certain types of code can be gener‐
ated, but here too, manual optimizations are required. And, when the model is altered, the
code has to be regenerated, which means that the optimizations are lost. In the end the
developers wind up maintaining the code directly and the model is left aside. For this
reason there are hardly any maintenance shops with an up-to-date UML model. If they
want to know, what is going on in the code they have to read the code or to reverse engi‐
neer a new model from the code. That is the solution most frequently used. This author
knows of no single case where a system is actually maintained at the model level.

Now the exact same problem comes up with testware. Tests which are generated from
requirement documents or from design models are only valid if they remain consistent with
those sources. If those sources evolve, the test has to evolve along with them [10].

3 The Dilemma of Test Automation

Just as with generated code, generated tests are never 100 % automated. The test tool used
here can extract the logical test cases from the requirements, from the system model, or from
the data input structure, but it cannot assign specific test values to the data [11]. The infor‐
mation for doing this is missing unless the user has assigned predefined domains for all
data used. As a rule only data relationships can be generated without any specific values.
The test case generator can generate the assertion that variable CurrentDate must be greater
than variable LastDate, but it cannot generate the assertion CurrentDate = “01.01.2010”
since to do that it must know the significance of that date. Such values have to be added by
the tester based on what the test case should achieve. For instance, if the credit rating of a
customer is to be checked, then it should be tested with

– a good credit rating
– a bad credit raging and
– an undecidable credit rating.

In other words, the human tester has to finish off what the test case generator has
started. Based on the requirement “check customer rating, reject customer if the credit
rating is insufficient”– the test analysis tool will generate two test cases.

Web Service Test Evolution 173

“Test when customer rating is sufficient” and
“Test when customer rating is not sufficient”.

Unless the analyst has defined what sufficient is somewhere in the requirement
documentation, the tool will not know what values to generate. It will only assign the
symbolic values “sufficient”, “not sufficient” and “undecidable”.

assert input.CreditRating = “sufficient”, “not sufficient”, “undecidable”;

It is left to the user to assign the actual representative values like

assert input.CreditRating = “2”, “1”, “0”;

When the requirements are changed to add another rating class, for instance “excel‐
lent”, the test case generator will generate the assertion:

assert input.CreditRating = “excellent”, “sufficient”, “not sufficient”, “undecidable”;

In so doing, it overwrites the previous values assigned by the tester. The tester will
have to insert the new value along with the other old values.

assert input.CreditRating = “3”, “2”, “1”, “0”;

Not only that but all the other assertions he has assigned real values to will be over‐
written by the newly generated symbolic values. He would have to go back and redo all
of his assertions.

3.1 Changes to a Web Service Test

In the work described here, the test tool involved is a tool for testing web services. Test
cases are generated from the requirement text by parsing the sentences to recognize
actions, states and conditions. A test case is generated for each action such as “Add a
customer to the customer file.”, for each state such as “The customer credit rating is
sufficient.” and for each condition such as “Delete the customer if his credit rating is
insufficient”. The technique for extracting test cases from natural language text has been
described in previous papers [12]. Once the test case table has been created, the tester
has the possibility of editing and enhancing the test data contained therein. This is
necessary because the test cases generated from the requirements are incomplete. They
contain the operations and their parameter names, but not the test data values and the
expected results. These have to be assigned by the tester [13]. Once that is done, the test
scripts are generated from the edited test case table. Here again, the tester has the possi‐
bility of editing the test scripts.

Thus, there are three levels at which the tester can edit the test cases:

• At the level of the excel table produced from the requirement document.
• At the level of the test case database loaded from the excel table.
• At the level of the test scripts generated from the test case database.

If the requirement or business rule text is changed, such shown above, the test cases
have to be regenerated (Fig. 1).

174 H.M. Sneed

Fig. 1. Generating test cases top-down

There are two ways in which a web service test can change

• the service interface definition can change
• the requirements on the use of the service change.

In the first case the structure of the WSDL definition changes. Most often additional
parameters are added or existing ones deleted. In the sample given above it could be that
a new input parameter “CustAge” is added to the customer data input.

Less often, but also possible is that the data types change. The preconditions of the
unchanged data remain valid but there are no preconditions for the new data. The
preconditions of the deleted parameters are no longer needed and the values of data
whose type is changed may no longer be valid. The test script is based on the structure
of the WSDL. Therefore it has to be restructured. In the sample given above, the new
WSDL with the parameter has to be copied into the requirement document so that the
data “CustAge” will be added to the test case table.

In the second case, the use case using the web service is changed. Additional steps
may be added or existing ones deleted. The text describing the steps can also be altered.

Web Service Test Evolution 175

In this case, additional test data values are required. This is achieved by mutating the
existing test data. Data values are copied and altered by the tool using progression or
regression analysis techniques [14].

The requirements fulfilled by a use case may also change. New requirements are
added and existing ones deleted. The wording of the requirements can change. The same
applies to the business rules which are implemented by use cases. If a business rule or
a requirement changes, this may have an impact on several use cases. The business rule
addressed by the sample is changed to “Delete the customer if his credit rating is insuf‐
ficient and he is over 60 years old”. Since the test cases are derived from the use cases
and the use cases refer to the requirements and rules, the test cases have to be regenerated
based on the revised use case specification, but then the previous test data definitions
are no longer valid. Here we will get a new text case with the purpose “Delete the
customer if his credit rating is insufficient and he is over 60 years old.” This requires a
new assertion using boundary analysis [15]:

assert input.CustAge = {18:60};

3.2 Adapting Service Test Cases

If the structure of the interface changes, the pre-and post-conditions of the unchanged
parameters remain valid but do not fit to the new interface structure [16]. A new test case
table has to be generated based on the new interface structure but the old pre- and post-
conditions can be reused. When a revised WSDL definition is taken over by the test tool
user, the tool will generate a new test data table, but in doing so, it will check if a previous
test data table exists. If so it will compare the names of the parameters. If a parameter
existed before, it’s pre- and post-conditions will be copied over into the new test data table.
In this way all of the previous test data assignments are preserved within the new interface
structure. For the new parameters the user will have to insert new pre- and post-condi‐
tions. This is the same as is done with the capture/replay tools for testing user interfaces.

assert input.CustNo = “100000” + 10;
assert input.CustName = “Jones”, “Smith” “Wally”;
assert input.CustCreditRating = “2”, “1”, “0”;
assert input.CustAge = {18:60};

assert CustAge is added, all other assertions remain as they are.

<element name = “Orders” type = “ns1:ArrayofOrderItem”/>

A change to the requirement text is more difficult to handle and the solution is the
actual essence of this paper. The automated generation of test cases is based on the
requirement text [17]. If that text changes the test cases must change with it. The easiest
solution is to generate a whole new set of test cases based on the altered requirement
text, but in so doing the test data added or overwritten by the tester to the previous test
cases, is lost. The pre- and post-condition columns will be empty again.

This is a common problem to all automated testing solutions which are less than
100 % complete. The human tester must fill in the missing details. The same applies to

176 H.M. Sneed

generated code which is not 100 %. The developer must complete the job. If the speci‐
fication changes, which it will evitable do, the details supplied by the human tester are
lost when the test cases are regenerated. With test cases it is the definition of the test
case pre- and post-states which can only be defined in terms of real data values supplied
by the user. The assignment of the pre-condition states and the corresponding post-
condition states is dependent on the goal of the test. If, for instance, the goal is to test
the withdrawal of money from an account the pre-condition is a valid account number,
a valid pin number and an account balance greater or equal to the amount desired. This
information should be in the account data base somewhere, but it is not automatically
recognizable from the requirement text.

The names used in the requirement text do not match to the names in the database
schema. Human interpolation is required to select the proper account with the fitting pin
number and the desired amount. If their requirement specification were to be written
using the correct database names and the same names as in the code, the problem would
be partially solved but there still remains the problem of interpreting the natural language
description of what is done with the data.

The semantics of the natural language text must be understood in order to assign
proper values to the action defined and to assign the correct output values. For instance,
if the state of an account balance is 1000 before the withdrawal action and the amount
withdrawn is 400, then the account balance after the withdrawal should be 600. This
could be expressed as a formal rule from which test data can be generated.

However, if written in natural language such as:

“Deduct the withdrawal amount from the account balance if the action is withdrawal and the
withdrawal amount is greater than zero”,

it becomes a challenge to convert that text into a rule from which test data can be
derived [18].

Natural language processing is becoming increasingly sophisticated but it is still not
able to bridge the gap between an informally defined requirement and a formally defined
test case. The human tester is needed to act as an interpreter.

This being the case, it is necessary for the human actor to complete the partially
generated test cases as depicted in Fig. 2. The test case generator recognizes that the
withdrawal is an action with three conditions and will generate four test cases to test it,
but it will not know exactly what data is used and what the state of that data should be.
Therefore it can only generate random test data values based on the data type. The tester
must replace those values with the values required for each particular test case. If the
test cases are regenerated then the values assigned by the tester are lost.

Web Service Test Evolution 177

Fig. 2. Generating the test case table

Every time the requirement document changes the test cases have to be regenerated.
That means, the tester will have to reassign all of the pre- and post-conditions. If the
requirements change frequently, the tester will become frustrated and go back to making
his test manually. This is the main reason for not using test automation.

The solution to the second problem is to save the test cases and to compare the new
test case descriptions with the old ones. The test case description is a natural language
sentence cut out of the requirement text. This sentence is assigned to a unique test case-
ID. The nouns used in that sentence are extracted and placed in a separate column. The
type of the test case is also added to the test case description as well as the requirement,
the rule or the use case step targeted by this test case. A use case uses one or more
operations of a web service. This is included in the use case specification. Thus a use
case

• fulfills one or more requirements
• implements one or more rules
• uses one or more data objects
• invokes one or more service operations.

Besides a use case has, itself, several steps, each of which is described by the user.
A test case is generated for each and every requirement fulfilled, for each rule imple‐

mented and for each step of the use case. The text of that requirement – rule or step – is
inserted in the test case description. Together with the Use Case-ID it makes the test
case unique. The names of the input and output data are taken from the operations

178 H.M. Sneed

invoked by the use case. The result of the automated test case generation is a table with
the

• use case id
• test case id
• test case type
• test data objects
• operations invoked
• input parameters of those operations
• predecessor test case
• data generation.

Missing are the input and output parameter values which must be filled in by the
tester. Once that is done, the test case table is complete and is used together with the
WSDL interface definition to generate the service test script.

3.3 Updating the Test Case Table

The solution presented here is a two level reverse engineering process. At the top level
the newly generated test case table is updated from the previous test case database. At
the bottom level the test case database is updated from the previous test script. Thus the
user can alter both the test script and the test case database and still keep his test cases
consistent. He can also regenerate new test cases and still preserve his old test data
(Fig. 3).

Fig. 3. Updating the test cases bottom-up

When generating a new test case table from an altered requirement text, the test tool
looks to see if there already exists a test case table for that service. If so, it compares
each test case it creates new against the existing table. If the use case-id, the operation,

Web Service Test Evolution 179

the input/output parameters and the test case description match to an existing test case,
it takes over the existing test case with its pre- and post-conditions. If not, it marks the
test case as being new. Then it is up to the tester to fill in the pre- and post-conditions
of the new test cases. This requires much less effort than having to resubmit all of pre-
post-conditions again. Besides, the new test cases are marked and only those have to be
retested.

This solution also works for changes to the structure of the service interface defini‐
tion. If the interface definition changes, new parameters are introduced and older ones
deleted. The tool will add test cases for the new parameters and delete those which
address the deleted parameters. In this way the test case table will always be consistent
with the actual service interface definition.

4 Alternate Solutions to Service Test Maintenance

Other possible solution would be to use the design model as a basis of the test and discard
the requirement document. In that case the change requests would have to be targeted
at the entities in the UML model, e.g. the different design diagrams. Changes are made
first to the UML diagrams and then carried over into the code. The model-based test
cases which were generated from the different model types have to be regenerated from
the altered model types. If these test cases have been enhanced by the testers, e.g. data
values have been added, then that information will be lost, unless the case have been
saved. Then it can be reinserted back into the new test cases. In this respect, there is no
essential difference between test cases generated from a UML model and test cases
generated from a requirements document [19]. Both have to be saved and restored.

A third solution is that what is widely practiced already and that is to maintain the
test cases manually. If the requirements or the model changes, the test cases are updated
by the tester parallel to the changing of the code. The problem with this solution is that
it is then not worth generating the test cases in the first place. If the test cases are to be
maintained manually then they might as well be created manually in such a way as to
ease their manual updating. This solution is labor intensive and error prone, especially
if a large number of test cases are involved [20].

In agile testing it is the task of the testers in the team to test the services used by the
team before they are bound into a release, i.e., they are working ahead of the developers
as members of a special system testing team preparing the way [21]. They are also
responsible for running the regression tests prior to each release, which means they have
to maintain the tests. This can be done either at the level of the test scripts, at the level
of the test cases, or at the level of the requirement specification. The solution presented
here allows the service test to be maintained at all three levels and still ensures the
consistency of the semantic levels.

It is up to the user representatives, i.e. the product owners, to direct an agile devel‐
opment by means of stories. The stories are the basis not only for the development, but
also for the test. Therefore they have to be carefully reviewed and converted into a
testable form. The review of the stories is concerned with discussing and analyzing the
stories with the view of enhancing and improving them. They should also be checked

180 H.M. Sneed

for testability. The user representative might overlook something or fail to cover all the
functions adequately. It is up to the testers in the team to point this out and to clear the
missing and unclear issues with him. Special attention should be paid by the testers to
the non-functional aspects of the stories like security and usability. In any case the stories
need to be purified before the developers start to implement them. Testers need stories
they can interpret and test.

In order to establish a testing baseline, the testers should convert the informally
defined user stories into an, at least semi-formal, requirement specification. A significant
portion of what is referred to as technical debt is caused by missing functions, but who
is to know that they are missing when they are not specified anywhere. All of the excep‐
tion conditions, security checks and other quality assuring functions of a system should
be noted down as non-functional requirements or as business rules. They should be
specified in such a way as to be recognizable, for instance with key words and to be
convertible into test cases. For every business rule and non-functional requirement at
least one test case should be generated to ensure that the possible exceptions and security
threats are tested. In this way the requirements can be used as an oracle for measuring
test coverage. The key feature of the test approach presented here is that the service test
is based on the service requirements document as suggested by Canfora and DiPenta.

5 Experience with Web Service Testing

The WebsTest test tool has been in use for more than two years now to test web services,
based on their requirement specifications [23]. Experience with the first testing projects
has shown that the service interfaces change only slightly but that requirement changes
are more frequent. In the one project for the order entry web service there were six
requirement changes within an 8 month period. All six requirement changes resulted in
new test cases, altogether some 19 additional test cases. Each time the requirement
document was changed, the test cases were regenerated. At the beginning there were
215 test cases, after the six changes there were 234. Each time the test case table was
recreated, the previous table was secured and the existing data value assignments copied
over into the new table. If this had not been done, the tester would have had to edit the
test data for all 234 test cases. That would have cost at least 8 person hours for each of
the six changes at 30 test cases per hour. By having the tool restore the pervious test
data, the tester only had to assign data to the new test cases. For the 19 additional test
cases only 1,5 person hours were needed, resulting in a net savings of 6,5 person hours
per change, or 39 person hours in all. Instead of 48 h for updating the test cases, only
12 were needed. This underlines how important it is for a testing tool to be able to
preserve existing test cases [24].

It is difficult to pass judgement on the usability of the web service test tool. As it stands
now the tool is not easy to use, but that has more to do with the complexity of the process
than with the way the tool is implemented in Delphi using a Paradox database. It may be
that the goal of the tool is too ambitious, going from a free text service requirement docu‐
ment to a validated service test. There are currently too many steps in the process. For the
future the process has to first be simplified and then the tool re-implemented.

Web Service Test Evolution 181

6 Related Work

There are many other tools for testing web services, both in academia and in industry.
Already in 2007 Bokzurt, Harman and Hassoun from Kings College of London
published a survey on testing web services, in which they listed out more than 150 tools
[25]. SOAP-UI is one of the tools that have been around the longest. It is an open source
tool and can be easily used [26]. Like most of the other web service testing tools, it
generates a GUI interface from the WSDL schema – the form editor and allows the user
to edit the requests. Storm is another open source tool for testing web services. It allows
testers to test web services written using the dynamic invocation of web service opera‐
tions, even those with complex data types. The GUI is simple and easy to use [27].
JMeter from Apache, although developed for testing web applications, can also be used
for testing web services. Like WebsTest it facilitates the creation of test scripts with
assertions [28]. Another tool which deals with the test of evolving web services is
QuickCheck presented by Li, Thompson, Lamela Seijas and Francisco at the last ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation. The key compo‐
nents include the automatic generation of initial test code, the inference of web service
interface changes between versions, the provision of a number of domain specific refac‐
torings and the automatic generation of refactoring scripts for evolving the test code.
The main motivation of that tool is very much in line with that of WebsTest, but it is
not based on a natural language requirement specification [29].

Unlike these tools that are all running in dialog mode with the user via a GUI inter‐
face, WebsTest runs in the background. The user only generates the service requests and
starts the test. The rest is fully automated. The requests are dispatched to the server and
the responses are automatically collected and validated. The degree of automation is in
the case of WebsTest much higher since there in no user interaction during the test.

7 Conclusion

WebsTest is a tool for automatically generating test cases from a service requirement spec‐
ification. There is no exact empirical data on the effect of automated testing on test produc‐
tivity when testing services in industry, at least as far as WebsTest is concerned. To get that
data it would be necessary to test the same services both manually and automatically.
However, there is some comparative data on the service testing exercises made at the
Vienna-Fachhochschule. Students there were able to finish the same test exercises with a
tool within an hour, which when done manually required more than three hours to do. That
is a test cost savings of 67 %. This is good as long as the test specification does not change.
If it changes, the test cases have to be regenerated, thus losing information added to the test
cases after their generation. The paper has proposed a solution for solving that problem by
saving the manual enhancements and reinserting them back into the test case table. This
solution has been demonstrated on an existing web service to order articles from an online
store. The solution is acceptable, but still not optimal. The optimal solution is to generate
the test cases 100 % from the beginning so that manual enhancement is no longer neces‐
sary. To attain that goal the service interface definitions have to first be extended to include

182 H.M. Sneed

sample data values with assertions as to their possible use. This should become a goal for
the web service provider community.

The perennial problem of test automation is that of keeping the test synchronized
with changing data structures and evolving requirements. This problem came up with
the first capture/replay tools. Adapting existing test cases to changing data structures
has become simplified by generating and validating data at the level of elementary data
types. It doesn’t matter in what superstructure the data is embedded, it can be identified
by name and type.

Adapting existing test cases to evolving requirements is not so simple. When the
requirement document is altered it is best to regenerate new test cases from it and then
to compare those with the test cases from the previous version. For those use cases, types
and target condition are still the same, the asserted pre- and post-conditions are taken
over from the previous test cases. For those that do not match, i.e. the new cases, the
tester has to write new assertions. These are highlighted in the requirement text. That
means that the newly generated test case table has to be recycled back into the require‐
ment text so that the enhancements can be made there. The intention here is to maintain
only one document as a basis for the test. It should be possible to create a new test at
any time from that one document. It may be that the code is handwritten or generated
from some model, but the test is always generated from the requirement specification.
For this reason, the requirement document must always reflect the current state of what
the software should be. It is the test oracle.

As a consequence of this approach all change requests must point to the requirement
document. The users who fill out the change request forms must identify which section,
requirement, rule, object or use-case is targeted by the change. If a new requirement,
rule or use-case is introduced then the responsible analyst must decide where to insert
it in the document. Since the requirement document is the basis of the test, it must always
be up to date.

8 Further Work

The current solution of the test case update problem is to compare the old and new test
cases when the test case table is generated and to copy over the manual enhancements to the
old test cases into the new ones. This way, the tester only has to enhance those test cases
which have been added to the test case table as a result of changes to the service require‐
ment specification. To improve this solution it would be necessary to extend the service
interface schemas to include value domains within the data type definitions. The providers
of web services should at least prescribe sample values – metrics or strings – for each input
type. This would give a starting point for the generation of additional data. As far as the
outputs are concerned, boundary values should be given to limit the scope of what the
outputs could be. This too would give the tester a starting point as to what results are valid.

The Schematron convention for extending WSDL interface definitions by XML
notations provides syntax for adding such additional semantic information. It should be
exploited to define test cases build into the service interface [30]. That would make the
testing of the service much easier.

Web Service Test Evolution 183

References

1. Everett, G., McLeod, R.: Software Testing – Testing Across the Entire Software Development
Life Cycle, p. 29. IEEE Press, Wiley, Hoboken (2007)

2. Polo, M., Reales, P., Piattini, M., Ebert, C.: Test automation. IEEE Soft. 30(1), 84 (2013)
3. Sneed, H.: Bridging the concept to implementation gap in software testing. In: 8th

International Conference on Software Quality (QSIC 2008), Oxford (2008)
4. Eriksson, H.-E., Penker, M.: Business Modelling with UML. Wiley, New York (2000)
5. Rich, C., Waters, R.: The programmer’s apprentice. IEEE Comput. 21(11), 10–25 (1988)
6. Swartout, V., Balzer, R.: On the inevitable intertwining of specification and implementation.

Commun. ACM 25(7), 112 (1982)
7. Fetzer, J.: Program verification – the very idea. Commun. ACM 31(9), 479 (1988)
8. Sneed, H.: The myth of top-down software development. In: Proceedings of ICSM-1989,

Miami, p. 22, October 1989
9. Jacobson, I.: UML – all the way down. In: Keynote Speech, ICSM-2001, Florence, November

2001
10. Reiss, S.: Incremental maintenance of software artifacts. IEEE Trans. SE 32(9), 682 (2006)
11. Sneed, H.: Testing against natural language requirements. In: 7th IEEE International

Conference on Software Quality (QSIC2007), Portland, p. 380, October 2007
12. Sneed, H.M.: Testing web services in the cloud. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.)

SWQD 2013. LNBIP, vol. 133, pp. 70–88. Springer, Heidelberg (2013)
13. Sneed, H., Verhoef, C.: Natural language requirement specification for web service testing.

In: IEEE Proceedings of MESOCA-2013, Eindhoven, p. 19, September 2013
14. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE

Trans. SE 37(2), 649 (2011)
15. DeMillo, R., Offutt, J.: Constraint-based automatic test data generation. IEEE Trans. SE

17(9), 900 (1991)
16. Andrikopoulos, V., Benbernou, S., Papazoglou, M.: On the evolution of services. IEEE Trans.

SE 38(3), 609 (2012)
17. Martin, R., Melnik, G.: Tests and requirements, and tests – a mobius strip. IEEE Softw. 25,

54 (2008)
18. Meservy, T., Zhang, C., Lee, E.T.: The business rules approach and its effect on software

testing. IEEE Softw. Mag. 29(4), 60 (2012)
19. Mesbah, A., Deursen, A., Roest, D.: Invariant-based automatic testing of modern web

applications. IEEE Trans. SE 38(1), 35 (2012)
20. Mens, T.: State of the art survey on software merging. Trans. SE 28(5), 449 (2002)
21. Linz, T.: Testing in Scrum Projects, p. 11. dpunkt, Heidelberg (2013)
22. Canfora, G., DiPenta, M.: Testing services and service-centric systems – challenges and

opportunities. IT Prof. 8, 10 (2006)
23. Sneed, H., Huang, S.: The design and use of WSDLTest – a tool for testing web services. J.

Softw. Maintenance Evol. 19(5), 297 (2007)
24. Sneed, H., Verhoef, C.: Cloud service testing. Prof. Tester Mag. 5, 36 (2014)
25. Bozkurt, M., Harman, M., Hassoun, Y.: Testing Web Services – A Survey, Software Test

Verification and Reliability, vol. 18, no. 2. Wiley Interscience (2007). doi: 10.1002/000
26. Soap-UI – the home of functional testing. http://www.soapui.org
27. Storm. http://storm.codeplex.com
28. Apache apache JMeter. http://jmeter.apache.org/

184 H.M. Sneed

http://dx.doi.org/10.1002/000
http://www.soapui.org
http://storm.codeplex.com
http://jmeter.apache.org/

29. Li, H., Thompson, S., Lamela Seijas, P., Francisco, M.A.: Automating property-based testing
of evolving web services. In: Proceedings of the ACM SIGPLAN 2014 Workshop on Partial
Evaluation and Program Manipulation, pp. 169–180, January 2014

30. International standard organization (2006). ISO/IEC-19757-3 Document Schema Definition
Languages (DSDL) - Rule-based validation — Schematron, Geneve (2006)

Web Service Test Evolution 185

Integrating a Lightweight Risk Assessment
Approach into an Industrial Development

Process

Viktor Pekar1, Michael Felderer1(B), Ruth Breu1, Friederike Nickl2,
Christian Roßik2, and Franz Schwarcz2

1 Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
{viktor.pekar,michael.felderer,ruth.breu}@uibk.ac.at

2 Swiss Life Group, Munich, Germany
{friederike.nickl,christian.rossik,franz.schwarcz}@swisslife.de

Abstract. Risk assessment is dependent on its application domain. Risk
values consist of probability and impact factors, but there is no fixed,
unique guideline for the determination of these two factors. For a precise
risk-value calculation, an adequate collection of factors is crucial. In this
paper, we show the evolution from the first phase until the application
of a risk assessment approach in the area of an international insurance
company. In such a risk-aware field we have to systematically determine
relevant factors and their severity. The final results are melted into a
calculation tool that is embedded in the companies development process
and used for decision support system. This paper shows the results and
observations for the whole implementation process achieved via action
research.

Keywords: Risk assessment · Risk-based testing · Risk management ·
Test process improvement · Software process improvement · Software
process · Action research

1 Introduction

Risk assessment helps to support decisions during development and testing. For
instance, risk assessment is a key activity in every risk-based testing (RBT) process
because it determines the significance of the risk values assigned to tests and there-
fore the quality of the overall process [1,2]. Also for development activities, risk
assessment helps to decide which activities to prioritize and where to invest effort.
In this paper, we present a risk assessment approach that has the goal to sup-
port stakeholder decisions on whether projects are worth the effort and in which
sequence tasks should be performed. According to Boehm [3], risk assessment com-
prises the activities of risk identification, analysis and prioritization.

The contribution of this paper is twofold. On the one hand we present an ini-
tial case study in form of action research and on the other hand we provide guide-
line proposals for researchers and practitioners to perform similar lightweight risk
c© Springer International Publishing Switzerland 2016
D. Winkler et al. (Eds.): SWQD 2016, LNBIP 238, pp. 186–198, 2016.
DOI: 10.1007/978-3-319-27033-3 13

Integrating a Lightweight Risk Assessment Approach 187

assessment implementations in different contexts. We follow the action research
concept because of our active involvement while implementing the risk assess-
ment approach. Moreover, the project goals changed over time, which requires
a dynamic research method that can be adapted throughout the process. The
action research takes place at the insurance company Swiss Life Germany.

Our risk assessment is connected to artifacts, called use case specifications.
These specifications are the sub-parts for a system specification and their imple-
mentation order is flexible. Until now, the ordering decision is based on expert
opinions and this process needs to be supported by risk assessments based on
use case specifications. Furthermore, we provided tool support, which we will
discuss in detail.

Such a tool needs to be based on a properly chosen set of criteria to determine
impact and probability. It is crucial that such factors are chosen according to
the current environment, otherwise the risk assessment will fail. We show how
to perform such a selection process and explain its threats.

In the following Sect. 2 we present related action research. Section 3 describes
the industrial context at Swiss Life Germany. The applied research method and
research questions are stated in Sect. 4. In Sect. 5 we explain the steps for the
implementation of the risk assessment approach, which might be used as guide-
lines for alternative domains. Our results are presented in Sect. 6 and threats to
validity are discussed in Sect. 7. Finally, in Sect. 8 we conclude our work.

2 Related Work

Although several studies on risk assessment are available [4–6], only a few of
these perform action research.

Iversen et al. [7] perform action research on software process improvement.
One goal of the paper is to contribute knowledge on risk management to soft-
ware engineering activities. Differing from our work, requirements engineering
(RE) is not specifically addressed in the paper. The improvement takes place in
form of advices and a framework, which can be used by practitioners as well as
researchers. Furthermore, the author pursue the alternative collaborative action
research, which also differs from our approach.

Lindholm et al. [8] conduct action research in the domain of medical device
development. The authors present their experiences from performing risk man-
agement with an organization. The paper focuses on risk identification, whereas
we focus on the actual risk assessment. Another difference is the domain of the
study.

Felderer and Ramler perform a case study [9,10] as well as a multiple case
study [11] on risk-based testing, especially also taking risk assessment aspects
into account. The authors investigate risk assessment and risk-based testing in
one and three industrial cases, respectively, but do not consider action or change,
which distinguishes action research from case studies [12].

188 V. Pekar et al.

Demand
Management

Requirement
Engineering

Concept &
Implementation

Acceptance &
Production

Client request

New product
New

functionality

Project/Business plan

Change
request

Bug report

Requirement
specification

Classic concept

SCRUM concept

Kanban concept

Acceptance test

Production

Risk-assessment
study

Fig. 1. Development process

3 Context

In this section, we provide the context of our study. It takes place at the inter-
national insurance company Swiss Life Germany. Approximately fifty employees
are directly involved with the risk assessment approach as authors of artifacts.
Furthermore, about a hundred persons are affected by the risk assessment within
project management or quality assurance.

Figure 1 shows an overview of the applied development process. It consists
of the following three stages: (1) demand management, (2) requirements engi-
neering as well as concept and implementation, and finally (3) acceptance and
production. After successful completion of one stage, the next stage is entered.
Demand management describes the process of receiving an order by a client. The
procedures can be activities like a client request for a new product or changes
in functionality. Furthermore, collection of information (like cost-profit proba-
bilities) and business plans conceptualization is performed in this stage. Then,
the process enters the critical stage of requirements engineering (RE), concept
and implementation. Even though this is basically one stage, we distinguish the
RE part from the concept and implementation part. The reason is a variety
of different software development procedures, which can be classic, SCRUM or
Kanban-based. The RE process may slightly differ according to the chosen con-
cept, but always is a inherent part of this stage. When we talk about concept,
we simply mean one of the three mentioned software development methods. The
decision about what concept is applied depends on several criteria, which are for
example human resources, state of requirements specifications or project type.

The last stage is independent of its predecessor stages. It consists of the
necessary steps for the product acceptance and final production. In this paper,
these steps are not relevant and therefore not considered further.

Integrating a Lightweight Risk Assessment Approach 189

Our risk assessment approach is part of the concept and implementation
stage for classic software development projects. The classic concept is in use
for a longer period of time than the two agile alternatives and therefore more
suitable for experimental approaches. The classic concept basically follows the
V-Model XT [13] starting with the product requirements specification (see Fig. 2).
Based on that, the IT specification consists of the specifications for single or mul-
tiple systems. The implementation is performed due to technical specifications.
The first testing stage comprises system tests that take place on the layer of
the system specification. In the next test stage, system integration tests are per-
formed according to the IT specification. The last test stage comprises the user
acceptance test.

Product Requirement
Specification

IT-Specification

Specification for
Systems

Technical
Specification

Implementation

System Tests

System Integration
Tests

User Acceptance
Tests

Business cases

Test cases across systems

Test cases,
Regression tests

Fig. 2. Optimization method classification

Approximately, there are 25 new system specifications per year. Each system
specification comprises several use case specifications, which is the artifact type
we use as basis for risk assessment. Use case specifications describe functionality
with considerably varying effort. The project manager decides which use cases
have the highest priority and in which order they are implemented. It is possible
that the implementation of use cases is canceled due to limited resources or
business policy reasons. The risk assessment shall support this decision.

4 Research Method

We make use of the canonical action research (CAR) method proposed by
Easterbrook et al. [14]. Easterbrook et al. state that “most empirical research
methods attempt to observe the world as it currently exists, action researchers
aim to intervene in the studied situations for the explicit purpose of improv-
ing the situation”. Action research is the right research method in our context
since the authors from the University of Innsbruck were directly involved in the
improvement process. Direct involvement includes the introduction and explana-
tion of approaches, organizing and moderating workshops and finally providing

190 V. Pekar et al.

the tool support. The actual action research approach is defined by Davison et al.
[15] and states five principles: (1) The principle of the researcher-client agreement
(RCA); (2) the principle of the cyclical process model (CPM); (3) the principle
of theory; (4) the principle of change through action; and finally (5) the principle
of learning through reflection. We do not discuss details about the first princi-
ple since it contains confidential information about our industry partner. The
CPM consists of the steps diagnosis, action planning, intervention, evaluation
and reflection. The third principle of theory is slightly based on the risk-based
testing procedure proposed by Black et al. [16] meaning that we do not follow
all guidelines of risk-based testing, since our risk assessments shall not influence
the test management in the first place. Besides Black’s guidelines, we refer to
the risk management standard ISO 31000 [17], which defines a vocabulary and
factor set for the risk management domain. Even Davison et al. state that the
Principle of Theory is considered problematic in AR, as Cunningham et al. [18]
states that it is highly improbable that theory can be exactly known before
a project takes place. The fourth principle Change through Action is essential
for our research, since the final goal becomes visible during the process. The
research and client side was motivated to improve the situation right from the
beginning, but proposals were denied, which lead to direction changes, which are
described in Sect. 6. Related to the fifth principle of learning through reflection
we only reflect on one cycle. The establishment of our approach is nothing that
is possible to be reviewed in a cyclic way. We plan to review the usage of the
new approach for multiple cycles in further research.

Davison shows 31 criteria according to the five CAR principles but addition-
ally states that it is unlikely to follow these steps in a statical way. We do not refer
specifically to the criteria but use them as non-committal guideline. This paper
addresses the following research questions: (1) How to determine important fac-
tors for risk probability and impact?, (2) How to integrate risk assessment into
an existing industrial product development procedure?, and (3) What tooling is
necessary for a risk assessment implementation?

The ultimate research goal is to show the process of establishing a risk assess-
ment procedure into an existing software development environment. For that, the
first and most important requirement is a specific collection of factors related
to risk impact and probability. This issue is addressed with the first research
question discussed in Sect. 6.1. The actual integration procedure is in focus of
the second research question. The third question addresses the tool support for
the previously mentioned goals and is a key element for the overall success. In
Sect. 6.2 we cover the second and third research question. As a basis for discussing
the research questions, Sect. 5 provides background on guidelines for lightweight
risk assessment.

5 Guidelines for Lightweight Risk Assessment

In this section, we describe the generic implementation procedure of the light-
weight risk assessment approach for no specific environment. The steps might

Integrating a Lightweight Risk Assessment Approach 191

be used by practitioners for other domains than the insurance area. We use this
sequence of events for our action research and present our results in Sect. 6. We
consider the approach as lightweight, since the assessment is performed manu-
ally and based on expert opinions. It can flexibly be integrated into an existing
requirements engineering process and does not have notable impact on exist-
ing infrastructure. An alternative lightweight approach for risk assessment is
presented by Rapp et al. [19].

5.1 Factor Determination

The first phase in establishing the new risk assessment procedure is to determine
the relevant factors for the respective organization and domain, i.e., Swiss Life
Germany and insurance, respectively. As factor basis for impact and probability
we suggest the proposal of Black et al. in [16] for assessments that take place
on higher levels, like product specifications. Alternatively, the ISO 31000 [17]
standard provides factor proposals, which are more adequate for artifacts closer
to the software level, like software requirements specifications. Basically, the
standard defines a vocabulary and factor set for risk management. This original
set needs to be adapted, which is done in several iterations and consists of two
phases shown in Fig. 3. In the first phase, decisions are discussed with one expert
(for instance, an IT analyst) and re-factored according to his feedback. There is
no fixed limit for the iteration-repetitions and it is up to the experts to decide
whether the modified set is appropriate or not. The second phase is a council
consisting of all experts. The session can be moderated by a person with no
related business expertise. The previously adapted set of factors needs to be
discussed factor-by-factor. A transcriber needs to note the decisions, which are
the basis for the re-factoring that takes place after the council. It is crucial that
every factor is discussed so that every attendee has the same understanding of
the factor meaning. Since factors are written in natural language there is the risk
of ambiguity and misinterpretation. Examples and clearly defined explanations
reduce the risk of misunderstanding during the council. If controversies appear,
it might become necessary to return to the first phase and prepare a new council-
meeting. The final step is an approval by all experts after the final re-factoring.

Phase 1:
Expert consultation iterations

Phase 2:
Expert council

Fig. 3. Factor determination phases

192 V. Pekar et al.

5.2 Risk Assessment Procedure

The risk assessment procedure is dependent on the following factors: (a) tooling,
(b) frequency of risk assessment, (c) related artifacts and (d) expert know-how.
The goal of risk assessment is to find representative values for a given artifact in a
specified time range. The decision about what tool is used for collecting risk assess-
ment data is mostly restricted to organization policies. Basically, any system, i.e.,
from a manual approach to an automated survey tool, can be used. Depending on
the frequency, the assessment procedure should be adjusted according to effort.
An assessment that takes place every six months can require more effort than a
monthly-triggered procedure. Related artifacts can be static or dynamic. Quickly
changing artifacts need to be assessed more often than more stable specifications.
The experts who assess the risk may differ with regard to their know-how which
becomes a problem if somebody cannot assess certain factors accordingly. There-
fore, it is important to have the adequate set of factors for the right experts. This
aspect has to be considered in the factor determination phase.

6 Results

In this section, we present the results of factor determination and risk assessment.

6.1 Factor Determination

We describe the procedure for determining factors for impact and probability
in Sect. 5.1. In the following, we present our experience and results from imple-
menting the procedure at Swiss Life Germany. For the first phase and iteration
we needed to decide what factor types to choose. We considered ISO 31000
[17] and the factor proposal of Black et al. [16] as two possible starting points.
The standard is based on the software quality criteria aligned with the ISO/IEC
25010:2011 standard on software product quality [20]: functional suitability, per-
formance efficiency, compatibility, usability, reliability, security, maintainability
and portability. Since this factor selection is partially close to code-aspects, for
instance, portability is taken into account, it is not suitable in our case. It is
necessary to use factors that assess the risk for a whole product development
process instead of just the software development part. Black et al. proposes
these risk factors for likelihood: complexity of technology and teams, personnel
training, team conflicts, contractual problems, geographical distribution, legacy,
quality of used technology, bad management, time and resource pressure, lack
of earlier quality assurance, high rates of artifacts, high defect rates and com-
plex interfaces. Furthermore, he proposes the following factors for risk impact:
feature usage-frequency, potential image, financial or social damage, loss of cus-
tomers, legal sanctions, license loss and lack of reasonable workarounds. We used
this set as starting point. During several iterations in the first phase the set of
factors changed to the following probability factors: complexity of technology,
new functionality, poor maintainability, system size, complexity of interfaces,

Integrating a Lightweight Risk Assessment Approach 193

insecure code, deadline pressure, pressure due to limited resources, poor qual-
ity of previous test management; and impact factors: usage frequency, risk for
corporation image-damage, risk for financial loss, risk for efficiency deficit, legal
issues, performance, security, data privacy, compliance violation. The decisions
for changes are purely based on expert opinions, which are highly dependent on
the environment. We consider this fact as threat to the research validity, because
the applicability to other scenarios is decreased. We discuss this issue in more
detail in Sect. 7.

The last phase includes the council of experts and the goal to finalize the pre-
vious factor set. The sequence of events in the meeting is a moderated discussion
that iterates through all factors. First, every factor is explained until all atten-
dees agree to have the same understanding. The researchers from University of
Innsbruck took the role of moderators and explained each factor, which was then
discussed by all attendees of the discussion. Afterwards, the attending experts,
consisting of project managers, process owners, enterprise architects as well as
business and IT analysts, discussed for each factor whether it is important in
the context of Swiss Life Germany and how it should actually be defined. The
finally selected set of factors is presented in Table 1.

Table 1. Final factor collection

Probability factors

Business complexity

Technical complexity

New functionality

Maintainability

Pressure due to deadlines

Limited resources

Existing test infrastructure

Level of requirement-detail

Impact factors

Usage frequency

Potential damage for image of organization

Potential financial loss

Potential efficiency loss

Performance

Compliance

6.2 Risk Assessment Procedure

After a final agreement on the set of factors was achieved, a tool for risk assess-
ment was implemented (see Fig. 4 for a screenshot) that enabled a user to esti-
mate the risk. It is essential that such tool support is accepted by the users who

194 V. Pekar et al.

will have to deal with it besides their everyday work. Approximately fifty employ-
ees are directly involved with the risk assessment tool as authors from IT- and
business-domains. Additionally, another hundred employees, for instance from
project management or quality assurance, are affected as readers. We assume 25
new system specifications per year; each of them with several use case specifica-
tions. A single risk assessment should require an effort of 5 to 10 min.

The factor assessment is based on several Likert scales. It means that fac-
tors can have different Likert scales depending on their meaning. In the end a
calculation that aggregates all assessments is required. This is why the intuitive
Likert scales are the upper layer visible to assessing experts. The used numeri-
cal scale ranges from one to hundred. After an expert chooses a value from the
Likert scale it is transformed into a numerical value that is consistent across
all factors. For instance, the factor existing test infrastructure needs a scale like
extensive, regular, poor. On the other hand, the factor usage frequency has to
be assessed with very rare, rare, normal, frequent and very frequent. The two
scale examples show that the quantity of rating levels may vary. The decision
for different quantities is based on expert opinions.

The calculation procedure is purely based on numerical values that are
mapped from the Likert scale. The mapping is performed according to a quadratic
function, i.e., x2, depending on the risk criticality. In our case, very low is mapped
to 12 (= 1), low to 2.752 (= 7.5625), normal to 5.52(= 30.25), high to 7.252 (=
52.5625), and very high to 102 (= 100). The reason for this decision is

Author ID:

Date of assessment:

Comment:

Business complexity

Technical complexity

New functionality

Maintainability

Pressure due deadlines

Pressure due resources

Existing test infrastructure

Probability:

Usage frequency for features

Possible damage for organization

Possible financial loss

Performance

Security

Compliance

Impact:

Risk Assessment

5.1

Artifact ID:

Risk Value:

23.3

21.8

Impact

 Probability

Fig. 4. Risk assessment tool

Integrating a Lightweight Risk Assessment Approach 195

simply to assign more critical weights to factors with higher risk. Prototype tests
with experts showed that x2 weighting has a intuitively correct effect on the risk
assessment compared to higher exponent values. The reason for this effect is the
severity of high risk ratings. For instance, an artifact that has only one very high
risk while the rest is very low, should have a higher overall risk value than an arti-
fact with some intermediate risk rating and no high risk. It requires more research
to test different settings and adaptations for alternative environments.

The overall risk value consists of the two parts probability and impact factors.
The median over the factor values is calculated for both categories each. Finally,
the probability and impact values are aggregated to the final risk value.

Figure 4 shows the tool that we used for the actual risk assessment proce-
dure, which is based on an Excel spreadsheet. It consists of meta data fields
where information about the related artifact and the expert has to be entered.
Furthermore, the factor fields are built as drop-down menus and offer different
Likert scales depending on the actual factor. The factors are analog to the pre-
sented final set, shown in Table 1. We decided to use the following constraints for
the assessment: (1) The user is not allowed to skip a factor. This means that only
after all factors are estimated, an overall risk value is calculated. Until then, a
message is shown that informs the user about missing informations. (2) There is
no option to select a neutral value. The reason for both constraints is to achieve
comparability between all assessed artifacts.

The calculated risk values are entered and linked to the assessed use case
specification. In Sect. 3, we explained the workflow process and we assume that
all use case specifications have risk assessments. It enables to make and justify
decisions based on the comparable risk values. At this point, we do not consider
the priority of use case specifications, so this information needs to be combined
with the risk values by the decision maker. In future, the risk assessments should
be used to compare the criticality across several projects.

In the following, we present the results from the first risk assessment iteration.
On the one hand, we (1) consider the usability of the tool and (2) the precision
of the assessed risk values. For the usability aspect, we performed tests with
experts and surveyed them for their experience. The precision aspect is hard to
evaluate, as no regular assessment results were available to us at the time the
paper was written. A sample set of six use case specifications was assessed by
several experts. The previously mentioned expert council had the task to judge
these estimations according to the intuitive perception of risk related to the use
case specification. The overall feedback was positive, which is why we can say
that the tool provides useful risk calculations. Nevertheless, to provide certainty,
more and long-term evaluation is required as future work.

We define the tool usability according to the following criteria: (1) easy to use,
time-effort for (2) initial and (3) regular usage, (4) functionality, (5) usefulness
of risk values. We collected the data with a survey, measured time and noted
observations. Overall, we performed tests with six experts, of which three took
place remotely and three on site. The time effort range was between 5 to 10 min,
except in one case, which took slightly more time than 10 min. The reason were

196 V. Pekar et al.

misunderstandings related to the meaning of factors. The understandability was
also a problem for the other attendees, because of ambiguous or unclear meaning
of the factors. The even greater threat than not-understanding the meaning of
a factor are wrong assumptions. We therefore included a list with explanations
and examples to avoid this threat. The usage itself did not bring any problems
and was considered as easy and not error-prone. The tester did not miss any
functionality or factors to perform the risk assessment. Two of six testers did
not see any purpose in the risk assessment; one attendee even described it as
“waste of time”. The rest of testers understood the meaning and value of the
process. The fact that risk assessment does not need to be self-explanatory led
us to adding an explanation about the purpose. The description is now shown
to the expert in the workflow before one can fill in the spreadsheet.

7 Threats to Validity

A major threat is the tight dependency on the industrial case. Even though we
consider our results as valuable beyond the insurance domain, the procedure
needs to be adjusted when used in different environments.

We describe the factor determination process in Sect. 5.1. The decisions
for the factor modification and selection are purely based on expert decisions.
Obviously, the changes are specific for the Swiss Life Germany environment
and project context. The authors, from the University of Innsbruck, hold the
observers position and analyzed the decisions from a research point of view. We
believe that those changes are applicable in other environments as well, but the
lack of proof is a major threat to validity.

In Sect. 6, we showed the results for the first prototype tests considering
six persons. Even though it is a valuable input for the evaluation of the risk
assessment tool, the small number of test persons can be considered as threat.

Baskerville states in [21] that “action research processes and typical organi-
zational consulting processes contain substantial similarities”. Even though our
motivation is to help our client, the main focus remains on scientific prospects.

8 Conclusion

In this paper, we explained how a new risk assessment approach was embedded
into the existing product development process of the insurance company Swiss
Life Germany. The evaluation showed that the method is usable and easy to
integrate beside other workflows. Yet, it is necessary to observe the application
for a longer period of time and to evaluate the benefit in a long-term. During the
process we learned that the factor determination is the most fundamental step,
which requires experts who have a good overview about the product. It is likely
that developers and tester choose different factors than project managers and
quality assurance employees. The right choice of experts depends on the level
where the risk assessment takes place. In our case, the risk of the product or
sub-parts of the product are in scope, therefore the experts have their expertise

Integrating a Lightweight Risk Assessment Approach 197

mainly on business level. The provision of tool support for assessing the risk for
artifacts was important in terms of user acceptance. Disapproval would be fatal
for the risk assessment approach, even with the most perfect set of factors. There-
fore, we performed user tests during the prototype development and afterwards
to assure a good usability. Our first results show promising assessment results
for product risk that match with the intuitive estimation of business experts. In
future, the effect and usage quality of the introduced risk assessment needs to
be evaluated further, especially in a long term context, where the precision and
quality of risk assessments becomes measurable. Additionally, we plan to elab-
orate a fully developed risk-based testing method [22] at Swiss Life Germany
based on a refined version of the actual risk assessment approach.

Acknowledgements. This research was partially funded by the research projects
MOBSTECO (FWF P 26194-N15) and QE LaB - Living Models for Open Systems
(FFG 822740).

References

1. Felderer, M., Haisjackl, C., Breu, R., Motz, J.: Integrating manual and automatic
risk assessment for risk-based testing. In: Biffl, S., Winkler, D., Bergsmann, J.
(eds.) SWQD 2012. LNBIP, vol. 94, pp. 159–180. Springer, Heidelberg (2012)

2. Felderer, M., Haisjackl, C., Pekar, V., Breu, R.: A risk assessment framework for
software testing. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS,
vol. 8803, pp. 292–308. Springer, Heidelberg (2014)

3. Boehm, B.W.: Software risk management: principles and practices. Softw. IEEE
8(1), 32–41 (1991)

4. Sulaman, S.M., Weyns, K., Höst, M.: A review of research on risk analysis methods
for it systems. In: Proceedings of the 17th International Conference on Evaluation
and Assessment in Software Engineering, EASE 2013, pp. 86–96. ACM, New York
(2013)

5. Erdogan, G., Li, Y., Runde, R.K., Seehusen, F., Stølen, K.: Approaches for the
combined use of risk analysis and testing: a systematic literature review. Int. J.
Softw. Tools Technol. Transf. 16(5), 627–642 (2014)

6. Felderer, M., Haisjackl, C., Pekar, V., Breu, R.: An exploratory study on risk
estimation in risk-based testing approaches. In: Winkler, D., Biffl, S., Bergsmann,
J. (eds.) SWQD 2015. LNBIP, vol. 200, pp. 32–43. Springer, Heidelberg (2015)

7. Iversen, J.H., Mathiassen, L., Nielsen, P.A.: Managing risk in software process
improvement: an action research approach. Mis Quart. 28(3), 395–433 (2004)

8. Lindholm, C., Notander, J.P., Höst, M.: A case study on software risk analysis in
medical device development. In: Biffl, S., Winkler, D., Bergsmann, J. (eds.) SWQD
2012. LNBIP, vol. 94, pp. 143–158. Springer, Heidelberg (2012)

9. Felderer, M., Ramler, R.: Experiences and challenges of introducing risk-based
testing in an industrial project. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.)
SWQD 2013. LNBIP, vol. 133, pp. 10–29. Springer, Heidelberg (2013)

10. Felderer, M., Ramler, R.: Integrating risk-based testing in industrial test processes.
Softw. Qual. J. 22(3), 543–575 (2014)

11. Felderer, M., Ramler, R.: A multiple case study on risk-based testing in industry.
Int. J. Softw. Tools Technol. Transf. 16(5), 609–625 (2014)

198 V. Pekar et al.

12. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, Hoboken (2012)

13. Rausch, A., Bartelt, C., Ternité, T., Kuhrmann, M.: The v-modell xt applied-
model-driven and document-centric development. In: 3rd World Congress for Soft-
ware Quality, vol. 3, pp. 131–138. Citeseer (2005)

14. Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting empirical methods
for software engineering research. Guide to Advanced Empirical Software Engi-
neering, pp. 285–311. Springer, London (2008)

15. Davison, R., Martinsons, M.G., Kock, N.: Principles of canonical action research.
Inf. Syst. J. 14(1), 65–86 (2004)

16. Black, R., Mitchell, J.L.: Advanced Software Testing-vol. 3: Guide to the ISTQB
Advanced Certification as an Advanced Technical Test Analyst. Rocky Nook, Santa
Barbara (2011)

17. ISO: ISO 31000 - risk management
18. Cunningham, J.B.: Action Research and Organizational Development. Praeger,

Westport (1993)
19. Rapp, D., Hess, A., Seyff, N., Peter Spoerri, E.F., Glinz, M.: Lightweight require-

ments engineering assessments in software projects. In: RE 2014. IEEE (2014)
20. ISO/IEC: ISO/IEC 25010:2011 systems and software engineering-systems and soft-

ware quality requirements and evaluation (square)-system and software quality
models (2011)

21. Baskerville, R.L.: Investigating information systems with action research. Com-
mun. AIS, 2(3es) (1999)

22. Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing. Int. J. Softw.
Tools Technol. Transf. 16(5), 559–568 (2014)

Fast Feedback from Automated Tests Executed
with the Product Build

Martin Eyl1(✉), Clements Reichmann1, and Klaus Müller-Glaser2

1 Vector Informatik GmbH, Ingersheimer Straße 24, 70499 Stuttgart, Germany
martin.eyl@vector.com

2 Institute for Information Processing Technology, KIT, Karlsruhe, Germany

Abstract. Nowadays Continuous Integration (CI) is a very common practice
with many advantages and it is used in many software projects. For large software
projects checking out the source code, building the product and testing the product
build via automated tests during CI can take a long time (e.g. many hours). So
the software developers do not get fast feedback about their changes. Often the
test report contains the results of many changes from several software developers
or the feedback is not accurate enough according to the developer’s source code
changes. This paper describes a novel approach to reduce the feedback time and
to provide test results for only these changes the developer has committed.

Keywords: Continuous integration · Automated testing · Test case prioritization

1 Introduction

One software development practice of Extreme Programming is to provide small
releases of the software product in short, regular intervals during the development of a
new product release [1]. The demand on the quality for these releases is high. Also the
overall quality of the software shall stay high from the start of the development until the
final release. One reason for this practice is that the customer or product manager should
always be able to validate the new developed features of the software. If a false imple‐
mented requirement is detected by a customer during the validation on the verge of a
final release, the rework of the software can cause the release to be postponed for weeks
or even be cancelled by the customer because the customer lost his confidence in the
skills of the supplier [2].

Another reason for this practice is that the later a defect or failure is detected, the
higher the effort to fix it [3]. All defects found during the development by the developer
who caused the defect can be fixed with a little effort. At this very moment the developer
knows the source code very well. There is no documentation for the bug necessary and
no involvement of other people. If other people especially product manager and tester
are confronted with the defect, the effort to solve the defect will increase significantly:
A ticket has to be created in a bug tracking system. The defect has to be described in
detail so that it can be reproduced. A product manager has to review the ticket and decide
when to fix the bug. A project manager has to plan the ticket and assign it to a developer.

© Springer International Publishing Switzerland 2016
D. Winkler et al. (Eds.): SWQD 2016, LNBIP 238, pp. 199–210, 2016.
DOI: 10.1007/978-3-319-27033-3_14

The developer has to reproduce the bug, learn the source code and then resolve the
problem in the source code. The solution has to be verified by a tester and if necessary
it has to be reworked.

If the defect becomes relevant for the customer, there are even more problems. A
service pack might be necessary and often this also entails a considerable damage to the
supplier’s image.

To avoid all these problems, defects should be detected and solved as early as
possible during development. The developers should receive hints about new created
defects shortly after making their changed or new source code available to all project
members.

Contributions. The contribution of this paper is a novel approach based on continuous
integration to provide the developers with valuable and fast feedback (in minutes or
hours) on their changed source code.

Fast and accurate feedback for the software developer is essential for identifying the
source of the problem and fixing the defect immediately before the developer is
distracted with other work and before other people get involved with the bug.

2 Continuous Integration

Continuous Integration (CI) [4–6] is one step towards solving the problems described
above. Depending on the size of the software product and the number of configured tests,
a complete CI run can take a long time. Without any optimization and for large software
products a complete check out and build of all source code can take hours [7] and the
execution of all tests several days or even weeks [8]. To get fast feedback and to have
a reasonable number of CI servers optimizations are necessary. The build time and test
execution time has to be minimized.

There are several possibilities to reduce the build time: Incremental build, build
parallelization, distributing builds [9]. Maven [10] is one possibility to implement an
incremental build with dependency management. Maven allows you to define a project
object model with the dependencies between the projects. By changing the source code
of one project only the project itself and all direct and indirect dependent projects have
to be rebuilt. In the worst case scenario all projects have to be rebuilt because of changes
in projects with many dependent projects. Therefor the build time can still be substan‐
tially large for the CI run and possibly only a few binaries have been changed with the
build.

The following modifications regarding the test execution are useful to have a reason‐
able number of CI servers and to get fast feedback:

1. All tests are executed overnight using several servers instead of triggering the test
execution with every commit of source code. The disadvantage is that it is not clear
which code changes caused which failed tests because all changes of the complete
day are input for the tests. Another disadvantage is that the developer has to wait for
the feedback a whole day.

200 M. Eyl et al.

2. A build pipeline is used [4]. The commit build is executed when someone commits
source code. During this build only a few tests are executed and only tests are used
with short execution time. The secondary build is not triggered with every commit
of source code but from time to time and more and longer running tests are executed.
The drawback of the commit build is that only some general tests can be executed
which might not test the changed source code at all. The secondary build is very
similar to the overnight build and has the same disadvantages.

The following goals shall be achieved by the solution described in this paper:

1. Reduce the feedback time for the developer
a. Minimize the build time
b. Lower the test execution time

2. Improve the quality of the feedback with the test results
a. Execute tests with the product build in an environment which is similar to the

production environment
b. Provide only test results for the changed code of the developer
c. Provide information whether a test has failed because of the last change of the

developer or because of a previous change

3 Overview

The solution described in this paper is based on Continuous Integration with automated
test execution whereby each commit of source code triggers its own continuous inte‐
gration run. This ensures that the test results belong only to changes of one developer.
Also the automated tests are executed with the product build in an environment which
is similar to the production environment. The execution of automated tests on the
developer’s computer in the Integrated Development Environment (IDE) is not good
enough for a reliable statement about the quality.

A fast product build is achieved by storing binary files in the Source Code Config‐
uration Management (SCM) repository and automated test execution time is reduced by
an elaborated selection of automated tests which are relevant for the changed source
code. After the continuous integration run the developer gets per email feedback about
the test results and can then fix the defects before the defects cause more problems.

The solution was developed and implemented for Java and the Eclipse IDE [11] and
is called Morpheus. Morpheus is currently used in a team of about 30 developers for the
development of a 3-tier application on base of Eclipse with more than 1000 plugins and
about 4 million source lines of code.

4 Fast Build

Eclipse provides the feature “Continuous Build”, which means that every save of a
source file triggers a build1. During the build a Java compiler translates the Java source

1 When the option “Build Automatically” is activated in the Eclipse IDE.

Fast Feedback from Automated Tests 201

file to a class file (the binary file). So, the developed application can be started at any
time (e.g. for debugging purpose). When the developers update their source code from
the Source Code Configuration Management (SCM) repository to retrieve changes of
other developers, all updated source code files are immediately built.

After the developer has committed the changed source file into the SCM repository,
the source file is again translated during the Continuous Integration (CI) build and again
on every computer of all developers when the source code is updated. There is actually
no reason to compile the same file again and again. Instead the class file could be
committed along with its Java source file in the SCM repository. Then the class file from
the repository can be used to update the product build before the execution of the auto‐
mated tests. All other developers can also take over the class files during updating their
source code to avoid a local build. The commit and update of class files does not cause
additional effort for the developer.

The following modifications and extensions are necessary to benefit from storing the
class files in the SCM repository for a fast product build and no local build in the Inte‐
grated Development Environment (IDE).

4.1 Eclipse IDE Integration

There are several SCM integrations for the Eclipse IDE available for different SCM
repositories. SCM integration allows committing and updating of source code inside the
IDE very comfortable. The developer can select which changed files shall be committed
and which plugins shall be updated. For our development Subversion [12] with the
Eclipse IDE integration Subclipse [13] have been used. The following features have
been developed in a Subclipse/Eclipse extension which is part of Morpheus.

Force Commit of Class Files and Depended Class Files: Binary Files are usually
ignored by Subclipse. But it is of course essential for our feature that for each Java source
file the corresponding class file will be committed. The developer should not be respon‐
sible for selecting the correct class files during commit. So, Morpheus ensures that for
each committed source file also the class file will be committed.

In some situations the compiler creates a changed class file although the corresponding
source file has not been changed. For example in the source file “Const.java” the
following constant value has been defined:
public static final int LOCKED = 428;

The constant value is used in a second source file “Class.java”.
int errorCode = Const.LOCKED;

Let’s assume that the constant value has been changed from 428 to 429, then the
compiler creates two new class files “Const.class” and “Class.class” although only one
source file (“Const.java”) has been changed. The reason is that the value 429 is directly
included in the class file “Class.class”. A second example is the change of the data type
of a method parameter. If the method parameter changes from “int” to “double”, the
source file where this method is called does not need to be updated but the corresponding
class file will change.

202 M. Eyl et al.

The Eclipse IDE knows the dependencies between the source code plugins. If the
user selects a source file which shall be committed, Morpheus search for all depended
and changed class files and adds those files to the commit set automatically.

If the source file of the depended and changed class file has also been changed and
the developer has not selected the source file for commitment, there is a conflict situation
which has to be made aware to the developer. Sometimes the developer works in parallel
on two different bugs and the developer wants to commit only the changed source code
for one bug. In these situations this conflict can occur and the developer will be requested
to commit a larger set of files to keep the source files and class files consistent. The
dependencies analysis is not that detailed and fine granular enough so that conflicts are
signaled which really should not prevent the separate commitment of different source
and class files. Here is potential for improvement for Morpheus.

The conflict errors can help the developer to detect a false selected set of files to be
committed. If the developer selects not all depended changes for a bug fix and commits
this incomplete set into the SCM repository, possibly the SCM repository contains
source code which has syntax errors and the CI build will fail. For example the developer
has added a new parameter to a method but not all source code files with the corrected
method call with the additional parameter have been selected for the commit. All these
not committed source files will have a syntax error in the SCM repository because the
method signature is not correct. So the conflict detection can help to prevent these kinds
of errors.

Prevent a Build After Update: Source files and class files are updated from SCM
repository and so for each source file the translated class file is instantly available. There
is no reason for a build and so Morpheus suppresses the build in Eclipse but with two
exceptions:

1. With every update, merge conflicts are possible. If the incoming changes from the
SCM repository affect the source files which have also been changed locally, those
conflicted source files have to be merged. Of course the class files will have merge
conflicts, too. But a merge of a class file would be very difficult. Therefore Morpheus
resolves the merge conflict for the class file by taking over the class file from SCM
repository and marking the plugin where the file belongs to. The build of these
marked plugins will not be suppressed and the compiler creates a new class file from
the merged source file.

2. Eclipse shows all currently present syntax errors in a separate view. The list of syntax
errors will be updated during the build. If there is no build, the list will not be updated
and so possibly solved syntax errors are still displayed to the developer. Therefore
Morpheus will rebuild all plugins with syntax errors after the update to update the
error list. This problem is only relevant for syntax errors which existed in the source
code loaded from the SCM repository and this should be an exception.

If the developer wants to update source code, all plugins have to be updated because
the above explained potential dependencies between the files. So it is ensured that all
source and class files are consistent. This is not really a drawback because updating only

Fast Feedback from Automated Tests 203

parts of the source code can always lead to syntax errors because not all dependent
changes could have been updated.

Prevent a Commit or Update During a Build: The execution of a build indicates that
not all source files are yet compiled and some class files are not consistent with their
source files. So, Morpheus prevents the commitment of source files during a build
because possibly not compiled class files would be committed. Morpheus also ensures
that the option “Build Automatically” (Continuous Build) is activated in the Eclipse
IDE.

If the developer tries to update the source code during a build, the developer can
decide whether to continue or to wait for the build to be finish. If the developer wants
to continue with the update, the build after the update will not be suppressed and the
class files will be updated via the build. If the developer decides to wait for the build to
be finished, a new build after the update is not necessary. So, any conflicts between
updating the class files and creating the class files via the build are prevented.

4.2 Creating the Product Build

For a fast feedback during CI we need a really fast product build which can be achieved
by using the class files stored in the SCM repository. The class files can only be used to
update an existing product build. So, at the very beginning a product build is created via
a “normal” automated build.

When the developer commits some source and class files, Morpheus is triggered to
provide a new product build. Therefore, Morpheus retrieves the change sets from
Subversion which contains information about all committed files since the last product
build update and analyses these change sets. It identifies the affected plugins and searches
for the plugins in the product build. Then the class files are retrieved from Subversion
and Morpheus replaces the class files in the plugins with the new class files from
Subversion. If the plugin is a Java Archive (Jar), the plugin has to be unpacked before
the replacement can be done. Then the updated product build can be used for the execu‐
tion of automated tests.

In some cases Morpheus will find out that an update of the product build is not
possible, for example when a new plugin has been created or an existing plugin has been
deleted. Then a new product build has to be created from scratch and the execution of
the automated tests is delayed. But very often change sets contain only changed source
and class files and then the fast product build can be used.

We lose one big advantage of CI with this approach creating the product build:
Potentially existing syntax errors in the source code in the SCM repository cannot be
detected because a build is not really executed. So we need two kinds of CI runs: CI
builds for detecting syntax errors and CI runs for automated test execution with the fast
build. The later CI runs should be executed with every commit of source code so that
the developers only get feedback for their changes.

If a CI build fails because of syntax errors, the execution of the automated tests with
the fast build might also fail. So, what we really need is a mechanism which prevents
any syntax error in the SCM repository in the first place. We are currently working on
a solution for this problem.

204 M. Eyl et al.

4.3 Results

The above described approach has been validated in the development of an application
based on Eclipse with 1000 plugins and 4 million source lines of code.

Without any optimization the update of source code in the Eclipse IDE varies very
much depending on how many plugins and which plugins have been changed. If the
update contains several changed plugins which have many dependent plugins, the local
build can take up to ½ h2 because Eclipse has to rebuild many depending plugins. The
Eclipse IDE build is an incremental build with dependency management and so the build
time is comparable with a product incremental build. With Morpheus no build at all is
necessary. Of course the update time of the local workspace is higher than without the
class files but usually the update time is within the range of few minutes.

The build time for a complete product build for continuous integration is about 1 ½ h
without Morpheus and by using the fast product build provided by Morpheus within the
range of few minutes of course depending on the number of changes.

5 Selection of Automated Test

After lowering the build time we have to bring down the automated test execution time.
A significant improvement can be achieved by reducing the number of tests to be
executed. Only tests which test the changed source code should be selected. Then the
developer retrieves only test results which are directly connected to his or her changed
source code. Four different strategies have been implemented to find and select the most
appropriate tests.

Requirement Oriented Test Selection Strategy: There is always a specific reason
why a source code has to be changed. For example a new requirement has to be imple‐
mented or a bug has to be fixed. To ensure that the implemented functionality for the
requirement will still work in the next releases and the bug will not reappear, automated
tests should be created to test the requirement or the solution of the bug.

All this information can be linked together: the changed source code can be linked
with the reason for change (requirement or ticket) [14] which again can be linked with
test cases [15] (e.g. requirement A is tested by test case X). The test cases can again be
linked with the source code of the automated tests. This information is very valuable
and should therefore be permanently stored for example in a data base. Among others
we can use those linked artifacts to determine the right tests for source code changes.

We use an Application Lifecycle Management (ALM) tool (in our project we use
PREEvision [16]) to store requirements, tickets and test data and the links between these
artifacts in one data backbone. Besides these artifacts the links into the source code also
have to be stored permanently. The link between changed source code and the reason
for change is created by entering a unique id of the requirement or ticket into the change
log during the commit of the source code. This unique id allows us to uniquely identify
the artifact in the ALM repository. By viewing the history log of a source file the

2 Depending on the hardware of the developer’s computer.

Fast Feedback from Automated Tests 205

developer can find all the ids of the requirements and tickets which are the reasons for
the changes of the source code. The link between test case and the source code of the
automated test is created by storing the full qualified name of the class plus the name of
the method in a property of the test case.

How can this information be used to determine the automated test for a source code
change? Before the developers commit their changes, they create a new test case with
the method name of the automated test or they use an existing test case. They link the
test case with the requirement or ticket. Then the developers commit the source code
changes with the id of the requirement or ticket in the change log. Morpheus retrieves
the change log of the change set and searches for the requirement or ticket in the ALM
repository via the unique id. Then Morpheus only has to follow the links from the
requirement or ticket via the test cases to the source code of the automated tests.

With the help of the history of the changed source file it is possible to ensure that
already existing functionality is not broken by the last change. Therefore, Morpheus
identifies all requirements and tickets of previous changes in the source file and selects
the according tests for execution.

Software Architecture Oriented Test Selection Strategy: There is the common
practice in Eclipse to separate the automated tests from the productive source code into
their own test plugins. For each product plugin one test plugin should be created with
automated tests verifying the code of the product plugin. By using a naming conven‐
tion3 Morpheus can find the test plugin for a product plugin. When the developer changes
the source code of a plugin, Morpheus considers all tests of the according test plugin.

Side-Effect Test Selection Strategy: Sometimes code is executed for a certain func‐
tionality which is not obvious and surprising for the developers. For example a developer
is changing a class for a certain requirement and suddenly a completely different func‐
tionality is broken. The measurement of the code coverage can be used to find tests for
this kind of defects [17].

There are several tools available which analyze the code coverage during the execu‐
tion of a test. For the Morpheus project JaCoCo [18] has been used to measure the code
coverage. During the execution of a test JaCoCo stores all visited classes for a certain
test class in an execution file. Morpheus uses these files to find for a changed class the
test classes and adds those test classes to the list of tests to be executed.

Changed Test Code Selection Strategy: New automated test code is created or
existing automated test code is changed during the product development. In the contin‐
uous integration run Morpheus selects all changed or new test code automatically for
execution.

One could argue that the Side Effect Test Selection Strategy should be the only
selection strategy. But the combination of all selection strategies is useful because of
the following reasons. At the very beginning there is no information available about the
executed code of a test class until the first run. Also the list of all visited classes is just

3
For example the test plugin could be named as the product plugin plus the postfix “.test”.

206 M. Eyl et al.

a snapshot and can change significantly with every code change. For very basic func‐
tionality (e.g. database access layer) the selection strategy will deliver a large number
of tests but there might be only a few test classes which test the functionality very
thoroughly in a short period of time.

The strategies can provide a large or only a small number of automated tests
depending on how many tests are available. If the number is too large, the feedback for
the developer takes too long. In this case the number of tests has to be reduced by
prioritizing the tests so that test execution time does not exceed a defined maximum.
This can be done for example by favoring one test selection strategy over the other. The
number of executed tests is a compromise between extensive testing and detecting and
fixing problems in the changed source code at a very early stage. Because not all tests
might be executed the continuous integration run with the execution of all tests cannot
be omitted and is still necessary (e.g. a continuous integration run overnight).

6 Feedback for the Developer

A continuous integration run is triggered by committing the changed source code and
the according class files. The developer provides the reason for the change by entering
the id of a requirement or ticket in the change log. Then in parallel in two threads
Morpheus creates the product build and determines the automated tests to be executed
by using the selection strategies. In our case (the development of a 3-tier application)
the database is set up, the middleware and the client is created and started. The selected
automated tests are executed and the results are summarized in a report. Then Morpheus
sends this report back to the developer via email. The report contains following infor‐
mation:

• Information is provided about the change set of the commitment which triggered the
test run (change log, time of commitment, committed files).

• The report contains an overview about all found and executed tests with the results
(success or failure). Also in the case of a failure the information is provided how
often the test has already failed. The test can fail because of other changes in the past
or the test fails the first time because of the last change of the developer.

• The report contains URLs to web pages with detailed information about the failed
tests (which exception has been thrown and the stack trace).

• A code coverage report of all executed tests is provided. This report allows the
developer to verify whether the tests have really executed the changed source code
and whether the code coverage of the written test is good enough.

7 Results

In our Eclipse based development project with 1000 plugins and 4 million source lines
of code we started with the following procedure: The developer commits the source code
and was supposed to check the results of the automated tests after the test executions
had been finished during the course of the next day. The developer has to guess which

Fast Feedback from Automated Tests 207

test results are relevant and whether a test has failed because of his/her changes or the
changes of someone else. After implementing Morpheus the developer gets automatic
feedback via email about the committed source code within a period of 10 min up to 3 h
depending on the number of executed tests. The test results are related directly to the
developer’s code changes.

One goal was to minimize the feedback time. The build time is now so short that the
feedback time is substantially determined by the number of executed tests and the time
needed to execute a test. For the system tests the test execution time has to be further
optimized. The setup and tear down time of the tests are too long (e.g. starting the
application, creating test data and deleting the test data after test execution).

We introduced Morpheus for the development of service packs of an already released
version of our product and in the middle of the current trunk based development. For
the service pack development the developers get very good feedback from Morpheus
because almost all automated tests are green and newly created defects are becoming
often visible by one or more failing tests. For the trunk based development there are
currently several automated tests failing because of larger modifications in the source
code. If an automated test has already failed before committing the source code, new
created defects cannot be recognized. Therefore the number of failing tests should
always be very low. Our expectation is that using Morpheus from the beginning of a
new release the number of failing tests should remain low because failing tests and the
cause for the failure can be early detected and solved.

Another problem is that Morpheus sometimes cannot find any automated tests to
execute because of legacy source code without any automated tests. To improve this
situation the developer can only close a bug found in legacy source code when auto‐
mated tests have been created and connected to the bug in the Application Lifecycle
Management repository or the developer gives a reason why an automated test is not
possible.

8 Related Work

Continuous Testing (CT) [19] provides fast feedback about the quality of the code by
automatically running regression tests in the background while the developer is changing
the source code. There are a couple of commercial products available. One product is
NCrunch [20] which provides several interesting features. NChrunch uses among others
the code coverage for the selection of tests to be executed. The tests can be executed in
the Integrated Development Environment (IDE) on the computer of the developer or on
a server.

CT is very well suited for unit and component tests which test e.g. a method or a
class. The developer can detect local problems, e.g. the method does not function as
before and the method or the test has to be corrected. Although NCrunch also supports
the execution of integration tests it seems not useful to execute integration or system
tests during the development of source code because the probability that these tests will
fail is quite high and not particularly bad because the developer has not yet finished. CT
provides test results about the current change rather than test results about all done

208 M. Eyl et al.

changes because already executed tests are not necessarily executed again. Source code
of other developers which is developed at the same time is also not considered.

Van der Storm [9] introduced a concept for an incremental build for Continuous
Integration. By considering the dependencies between the software components only
the changed and the dependent components have to be rebuilt instead of building all
components.

The application CompilerCache for C/C ++ compilers [21] caches the binaries to
avoid rebuilds. The cache is used only locally and is not shared with other developers.

Test case prioritization (TCP) has received quite a lot attention from the research
community [8, 15, 17, 22, 23] because it can help to reduce the costs for regression tests.
Most of those suggested techniques are code coverage based. PORT [15] also considers
the customer assigned priority of requirements, the implementation complexity, the
requirements volatility and fault proneness of requirements.

9 Conclusion and Future Work

The subject of this paper is to provide valuable, precise and fast feedback about the
quality of the source code, which has been committed into the Source Code Configura‐
tion Management (SCM) repository, so that defects can be found and fixed as early as
possible. This can be achieved by testing the product build with automated tests which
test only the changed source code. Four different selection strategies for the automated
tests have been implemented. To reduce the build time we store the binaries along with
the source code in the SCM repository and so, the compiling of source files over and
over again is avoided.

We are currently working on the following improvements: Firstly, syntax errors in
the source code of an SCM repository shall be prevented. So that, there is always a
product build available. Secondly, the links from the artifacts in the Application Life‐
cycle Management repository into the source code has to be improved. The artifacts and
the source code are very loosely coupled and the link can break by refactoring the source
code (e.g. rename or move methods and classes). Thirdly, we plan to reduce or to avoid
the effort for merging source code. When several developers change the same code, they
have to merge their changes and this is costly and error-prone.

References

1. Lindstrom, L., Jeffries, R.: Extreme programming and agile software development
methodologies. Inf. Syst. Manag. 21(3), 41–52 (2004)

2. Mogyorodi, G.: Requirements-based testing: an overview. In: International Conference on
Technology of Object-Oriented Languages. IEEE Computer Society (2001)

3. Building a better bug-trap. Economist Magazine, June 2003
4. Fowler, M., Foemmel, M.: Continuous integration. (Thought-Works) (2006). https://

www.thoughtworks.com/continuous-integration
5. Duvall, P.M., Matyas, S., Glover, A.: Continuous Integration: Improving Software Quality

and Reducing Risk. Pearson Education, United States (2007)
6. Beck, K.: Embracing change with extreme programming. Computer 32(10), 70–77 (1999)

Fast Feedback from Automated Tests 209

https://www.thoughtworks.com/continuous-integration
https://www.thoughtworks.com/continuous-integration

7. McConnell, S.: Daily build and smoke test. IEEE Softw. 13(4), 144 (1996)
8. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Prioritizing test cases for regression testing,

vol. 25(5). ACM (2000)
9. van der Storm, T.: Backtracking incremental continuous integration. In: 12th European

Conference on Software Maintenance and Reengineering, 2008, CSMR 2008. IEEE (2008)
10. Maven. https://maven.apache.org/index.html
11. Eclipse Foundation. http://eclipse.org
12. Collins-Sussman, B., Fitzpatrick, B., Pilato, M.: Version Control with Subversion. O’Reilly

Media, Inc., Sebastopol (2004)
13. Subclipse. http://subclipse.tigris.org/
14. Asklund, U., Bendix, L., Ekman, T.: Software configuration management practices for

eXtreme programming teams (2004)
15. Srikanth, H., Williams, L., Osborne, J.: System test case prioritization of new and regression

test cases. In: 2005 International Symposium on Empirical Software Engineering. IEEE
(2005)

16. PREEvision. https://vector.com/vi_preevision_en.html
17. Beena, R., Sarala, S.: Code Coverage Based Test Case Selection and Prioritization (2013).

arXiv preprint arXiv:1312.2083
18. JaCoCo. http://www.eclemma.org/jacoco/
19. Saff, D., Ernst, M.D.: Continuous testing in Eclipse. In: Proceedings of the 27th International

Conference on Software Engineering. ACM (2005)
20. NCrunch. http://www.ncrunch.net/
21. Thiele, E.: CompilerCache. http://www.erikyyy.de/compilercache/
22. Yoon, M., et al.: A test case prioritization through correlation of requirement and risk. J.

Softw. Eng. Appl. 5(10), 823–835 (2012)
23. Rothermel, G., et al.: Test case prioritization: an empirical study. In: Proceedings of the IEEE

International Conference on Software Maintenance, 1999 (ICSM 1999). EEE (1999)

210 M. Eyl et al.

https://maven.apache.org/index.html
http://eclipse.org
http://subclipse.tigris.org/
https://vector.com/vi_preevision_en.html
http://arxiv.org/abs/1312.2083
http://www.eclemma.org/jacoco/
http://www.ncrunch.net/
http://www.erikyyy.de/compilercache/

E-Government Applications

Approach of a Signature Based Single Sign
on Proxy Solution

Klaus John(&) and Stefan Taber

Research Group for Industrial Software (INSO),
Vienna University of Technology, Vienna, Austria

{Klaus.John,Stefan.Taber}@inso.tuwien.ac.at

Abstract. Many e-government applications need certificates, which are stored
in the client’s browser certificate store to gain access into a service. The prob-
lems of such an authentication methodology at first are, a client has to store all
certificates on every device, with whom access will be gained into e-government
services and secondly, if the client lost such a device (e.g. notebook etc.) than all
involved certificates have to be exchanged, otherwise it exist the danger to be
compromised. To phase such a problem and to provide a secure single sign on
solution, we implemented a secure proxy solution with integrated encrypted
certificate storage, where citizens can store all their certificates to use
e-government services. Our solution – we call “proxy authenticator” – enabled
us to omit any alteration of existing protocol structure or amending of software
architecture for all Austrian e-government applications. This saved time, effort,
and costs, by connecting the existing e-delivery services in Austria into the
myHelp portal through the proxy authenticator.

Keywords: e-government � Quality management � Test � IT-strategy � Single
sign on

1 Introduction

In recent years, the use of Information and Communication Technology (ICT) in
administrative procedures (e-government) has gained much attention in efforts to
modernise government. Within the framework of the STORK1 [1] EU project an
electronic e-delivery service has been implemented for the Austrian government. At the
beginning, citizens who wanted to access this service in Austria were required to install
a certificate and private key into the client browser, through which citizens were
enabled to authenticate themselves to an e-delivery service and been enabled to
download delivered documents from this service. This solution has come under criti-
cism because of the possibility of unauthorised occupance onto the client’s browser and
in particular onto the certificate and private key. If the certificate and private key is not
protected by a password, which can only be set personally by the citizen, the citizen
risks unauthorised access to an e-government application e.g. the client’s e-delivery
inbox.

© Springer International Publishing Switzerland 2016
D. Winkler et al. (Eds.): SWQD 2016, LNBIP 238, pp. 213–228, 2016.
DOI: 10.1007/978-3-319-27033-3_15

S. J. Leonetti has summarised the security issues as followed: “If the government is
unable to protect information collected through electronic channels there will be a loss
in public confidence towards government and worse yet, could contribute to crimes
related to identity fraud. Privacy protection must explore a balance between privacy
and service delivery” [10].

This paper describes the technical concept of a proxy based solution; we call it
proxy authenticator, to move the storage of the certificate and private key from the
client’s browser into a trusted centralised authority service and for security purposes.
The proxy authenticator is embedded in the myHelp1 service and as a typical
e-government application this e.g. enables citizens to download a document from
various external e-delivery services via myHelp. This trusted centralised authority
enables a single sign on (SSO) at e-government services, without requiring further
login by employment of the citizen card. The SSO solution is in accordance with the
Austrian law (Sect. 35 ZustG [2]) and has been implemented in myHelp or in the
business service portal (“Unternehmens Service Portal (USP2)”).

The citizen logs into the web portal – myHelp.gv.at – which operates as a proxy
service. After logging into the myHelp portal an additional automatic login into the
e-delivery service will be passed on and executed. There is no legal relationship
between them two – the myHelp portal functions as a proxy service, whereas the
e-delivery service operates as an e-government service that transfers documents
between citizens and government administration.

The remainder of this paper is structured as follows. A description of the technical
background is given in Sect. 2. In Sect. 3 we descript the legal and technical back-
ground. Section 4 descripts the technical architecture of the proxy authenticator. Details
about the implemented solution and its usage are given in Sect. 5. The paper finishes
with a conclusion and ideas for further work in Sect. 6.

1.1 Methodology

This paper will commence by introducing the legal and technical aspects of the proxy
authenticator. Furthermore, this paper intends to illustrate secure methodology in
Austria with focus on legal requirements for document transmission from e-delivery
services via the proxy authenticator. To emphasise the importance of security, the
authors of this paper created a table of mayor security leaks, which have been collected
in the IT security architecture list over the past years. A comparison of all security
requirements with the ICT secure architecture list was then conducted by listing only
those security patterns necessary for running the proxy authenticator. Furthermore,
only best practices and industrial standards were used to meet security requirements.
The proxy authenticator’s use cases are described in detail, with focus on the com-
munication sequences. Finally, the proxy authenticator is evaluated in relation to the
list of possible security leaks.

1 http://www.myhelp.gv.at/.
2 https://www.usp.gv.at/.

214 K. John and S. Taber

http://www.myhelp.gv.at/
https://www.usp.gv.at/

We used for IT security the ISO/IEC 27001 standard, which is available for
different domains in industry. In our case we concentrated on three domains in the
ISO/EEC standard (a) to formulate requirements and objectives for IT security, (b) to
consider cost efficiency management of security risks and (c) to secure conformity with
laws and provisions. These base domains have been transferred as IT security
requirements into the table, which enabled us to create a checklist through which we
have been enabled to categorise our measurements against hacking attacks. This is a
similar structure as D. P. Gilliam et al. developed. [11] We analysed the whole live
cycle as D. P. Gilliam et al. states. We started with security risk analysis and
requirements gathering, through design and development, testing and integration. This
included operations and maintenance. Decommissioning was not in our focus yet but a
modular structure in Java allows us an easy and smooth decommission of the proxy
authenticator from the myHelp service when its running time is over.

We put huge efforts into security measures to protect the proxy authenticator in the
myHelp service in the internet. H. Ki introduces a best practice approach of security
violation processing. [12] It defines best practices, for prompt and accurate response to
physical, logical and performance security violations. We also took into consideration
in our architecture internet security violations, resulting from hacking and viruses [12].

2 Related Work

In Austria e-government applications are starting to employ Security Assertion
Mark-up Language 2.0 (SAML V2.0) [6] in the Portal Group Protocol (PVP3).
The SAML standard is used for exchanging authentication and authorisation data
between security domains.

In Austrian e-government services the Portal Group Protocol (PVP) is used.
Austria’s government portals team up with each other to form a portal group and share
the existing infrastructure. The advantage of the portal group concept is that many
applications are available from a single entry point but this was not the case for the
e-delivery services in Austria. The goal is that citizens as users only need to identify
once when they first log on to the myHelp portal in order to access an e-delivery or
other services.

Pashalidis and Mitchell [7] describe different methods to receive a SSO. They also
exhibit pseudo architecture for SSO. The architecture is similar to the architecture
illustrated in this paper. However, Pashalidis and Mitchell do not combine different
techniques like SSO component, reverse proxy and certificate storage.

Participation of the portal group in Austria, who offers e-government services, is
governed by a Portal Group Agreement, between the application providers and the base
portal providers, who take care of user management. This agreement creates an envi-
ronment of trust and allows communication within the portal group is managed, both
technically and organisationally, by the portal group protocol (PVP) and the use of
security classes. Application providers determine over which portals their applications
will be available.

3 https://www.digitales.oesterreich.gv.at/site/6568/default.aspx 28.08.2015.

Approach of a Signature Based Single Sign on Proxy Solution 215

https://www.digitales.oesterreich.gv.at/site/6568/default.aspx

SAML V2.0 is a protocol using XML. SAML V2.0 also uses security tokens
containing assertions to pass information about a principal (in this case the citizen)
between a SAML authority (the a-trust authority in Austria), which is an identity
provider, and a SAML consumer (the myHelp-service), which is an e-government
service provider. SAML V2.0 enables web-based authentication and authorisation
scenarios including cross-domain single sign-on.

In this approach the possibility to use SAML V2.0 protocol [6] as a technical
solution for SSO after Austrian law Sect. 35 Abs.3 ZustG was assessed. However, it
turned out that the applications did not support SAML V2.0 and an adaption was
impractical. That is why a solution had to be developed providing SSO functionality –

just as SAML – though without any changes, neither in the architecture nor in the
application layer.

Therefore, the certificate and the private key are stored encrypted in the proxy
authenticator. If the citizen is authenticated and the certificate and the private key are
necessary to perform the citizen request (e.g. collect the documents from the e-delivery
service) only then the certificate and the private key will be decrypted during this
request. To meet such high security requirements several security mechanisms were
implemented (see Sect. 5.4).

A citizen card from a European member state using a qualified electronic signature,
after Directive 1999/93/EC of the European Parliament [15] – in STORK it equals to
QAA level 4 [16], can be used to ensure European citizen authentication in Austria for
to gain access into an e-government portal. Both, citizen card and mobile signature are
utilised by myHelp. The Austrian mobile signature works similar to the mobile TAN
system in online banking and is a two-factor authentication [3].

3 Legal and Technical Background

Another solution is similar to the one of M. Dyrda et al. to set up a security layer were
the credential from the user’s wallet are used to authenticate and to create a delegated
credential in a deployed service [9].

In Austrian law article Sect. 35 ZustG controls the document collection from
existing e-delivery services (a) BRZ-Zustelldienst4, (b) meinBrief and5 (c) Postserver6.
Authorised citizens who have registered to one or more of these e-delivery services
have to verify their identity and authenticity by usage of their citizen card [8] or mobile
signature (mobile signature card). Instead of using the citizen card, which requires a
card reader, it is possible to use mobile signature, which only requires a mobile phone.
In comparison to any other hardware platform, the mobile phone is the most frequently
accessed technology in Austria with about 88 mobile phone contracts per 100 citizen in
use in 2005 [13]. Since then the number of mobile contracts was rising in Austria.
Verification of the identity is carried out by the citizen card or mobile signature.

4 https://www.brz-zustelldienst.at/.
5 https://www.meinbrief.at/.
6 https://www.postserver.at/.

216 K. John and S. Taber

https://www.brz-zustelldienst.at/
https://www.meinbrief.at/
https://www.postserver.at/

The verification of the authenticity will be achieved through adjustment with the central
population register (ZMR) and generation of an area specific personal identifier in
Austria (“bereichsspezifisches Personenkennzeichen (bPK)”).

In accordance with the Austrian law ZustG, identification and authenticity can be
executed through a special agreement by usage of a secure technology called “auto-
mated triggered signature”. The article Sect. 35 Abs. 3 ZustG in Austria specifies that
the verification of both elements, identification and authenticity, is necessary. The
verification of only one element, e.g. bPK, is inappropriate after Austrian law.

To correlate with the Austrian law, the following conversion took place.

1. Implementation of a data base instance to enable encrypted storage of certificates
and the appertaining keys.

2. Development of a key encryption process (e.g. PKCS12 key), [17] for key gener-
ation and storage in the data base as a replacement of a Hardware Security Model
(HSM) [18] to maintain security, to assure trust into e-government services and
assure trust in data protection in Austria.

3. Development of interfaces and a configuration of a generic encryption respectively
decryption based on Java classes.

4. Development of an upload procedure via form, to upload the e-delivery certificate
including hash value validity check, user interaction, error handling, and delete
functionality.

5. Integration of a Single-Sign-On (SSO) [7] between myHelp portal and other
e-government services e.g. e-delivery services, without repeatedly using of the
citizen card for an additional login. This includes all calls to any e-government
services from myHelp portal. All calls have to include now all necessary header
information which includes the decrypted certificate and key to gain access e.g. to
pieces of correspondence at an e-delivery service.

6. Development of proxy authenticator server, in which the previous enumerations 1 to
5 described methodologies are integrated as a secure private citizen certificate and
key storage, which enables the citizens, when changing the hardware equipment e.g.
notebook that all certificates and keys for e-government services do not have to be
transferred into the new hardware.

4 Technical Architecture

Figure 1 shows the technical architecture of the proxy authenticator in the myHelp
portal. The initial registration process (marked by ① in Fig. 1) is comprised of the
establishment of secure connection to the e-delivery service and the download of a
certificate and private key.

The citizen opens the browser and sets up a TLS encrypted connection to myHelp
portal. The small doted grey lines mark communication with MOA-ID (this equals to
MOA-ID STORK) and MOCCA server (online citizen card environment) for
authentication and validation. [4, 5] To gain access to the myHelp portal, the citizen
can use the citizen card or mobile signature. In the e-delivery service the citizen has to
generate a certificate and private key, which enables the citizen to download documents

Approach of a Signature Based Single Sign on Proxy Solution 217

from an e-delivery service in Austria. In order to enable citizens to download docu-
ments from the e-delivery service, the certificate and private key at first needs to be
uploaded into myHelp portal. In the past the certificate and private key was uploaded
into the citizen’s browser (see grey arrows) - crossed of in the browser in customer
layer.

The registration or re-entry process (marked by ② in Fig. 1) comprises the
establishment of secure connection to pieces of correspondence at the e-delivery
service.

5 Proxy Authenticator Solution

Basically the proxy authenticator solution can be divided into three domains: citizen
(Private User Domain), provider (myHelp Domain) and administration (Administration
Domain). These three domains are displayed in Figs. 2 and 3 represents a re-entry into
myHelp and an e-delivery service in Austria. The Certificates and keys are created and
downloaded into myHelp proxy authenticator.

The Administration Domain represents independent e-delivery services, where our
descripted solution has no control. The e-delivery services are hosting all documents
for the citizens. In order to collect these documents, the citizens have to use their
certificates and his private keys. The myHelp Domain represents our solution and it

Fig. 1. Storage of a certificate and private key in myHelp portal including first registration and
re-entry

218 K. John and S. Taber

includes the secure certificate storage. It includes also myHelp (the frontend), the proxy
authenticator (the backend) and the key share holder.

Between all components and therefore between the domains, only TLS connections
are implemented. The key shareholder is used to store parts of the shared key, which is
used to encrypt and decrypt the uploaded certificate and private key, of the citizen. The
private key will be stored encrypted. Each citizen has a unique constructed shared key.

To collect documents from any e-delivery service in Austria, the citizen uploads the
certificate and private key into the trusted myHelp Domain. Afterwards the citizen can
download the documents using the proxy authenticator. The proxy authenticator loads
the certificate of the authenticated citizen and establishes a secure connection to the
e-delivery service7. The citizen is always connected with the proxy authenticator and
under no circumstances connected directly with the e-delivery service. Therefore, the
proxy authenticator works like a reverse proxy to the e-delivery service.

As a project requirement, security was one of the highest priorities. Not only that
the solution should be secured from outside attacks but also from inside intrusion.
Further, the privacy of citizens is particularly worth protecting. Nobody except the
citizens them self are allowed to get access to their own certificate or private key.

In the following selection the processes of the certificate and key upload (Sect. 5.1),
the deletion/modification of certificates and keys (Sect. 5.2) and the retrieval of doc-
uments from e-Delivery services (Sect. 5.3) are described in detail. Further in Sect. 5.4
the used security mechanisms are listed.

Fig. 2. e-Delivery service and its three Domains: Private User, MyHelp and Administration

7 The proxy authenticator authenticates the on myHelp authenticated citizen to the e-delivery service.

Approach of a Signature Based Single Sign on Proxy Solution 219

5.1 Upload of the Certificate and Private Key

Upload of the certificate and private key is one of the main functionality of the proxy
authenticator. As already mentioned the proxy authenticator acts as a single sign one
component in the e-government system. In order to collect documents from existing
e-delivery systems the citizen has to upload his certificate and private key to the proxy
authenticator. The proxy authenticator stores the certificate and the private key
encrypted in the internal storages of MyHelp domain. Figure 4 shows how citizens save
their certificates and private keys.

Basically, the citizen sets-up a HTTPS secure connection between their client and
the frontend of the proxy authenticator in myHelp domain. In the frontend the citizen
will be authenticated using his citizen card or mobile signature and the request will be
validated.

Validated certificate upload requests will be transferred to the backend (myHelp
Domain) of the proxy authenticator. The shared key is reconstructed by combining
several key shares retrieved from the key shareholders and used to encrypt symmet-
rically the uploaded certificate and private key. Finally the encrypted certificate and
private key will be stored in the database.

5.2 Delete, Change of the Certificate and Private Key

In the section Delete, Change of the Certificate and Private Key, the limitations of
certificates are pictured primarily as limited validity. For the Austrian e-delivery ser-
vices it is a maximum of six months. Therefore a function has to be enabled that can
automatically erase an active certificate after six month or change an expired certificate

Fig. 3. Domain and component overview of the system

220 K. John and S. Taber

in the proxy authenticator. Also a message has to be sent out in such a way that there
are two options of message retrieval is possible. Either an error message in a pop-up
window in myHelp portal is displayed or an e-mail or SMS with information about the
expiration date of the certificate is mailed.

To change the certificate and private key, a citizen goes to the proxy authenticator
in myHelp domain and generates a new certificate including the private key. After-
wards the citizen deletes the current registered certificate and private key on the proxy
authenticator. Finally the citizen uploads the new generated certificate and private key
using the upload function, described in Sect. 5.

5.3 Retrieval of Documents from e-Delivery Services

To collect the citizen’s documents from an e-Delivery service a secure (TLS) connec-
tion to myHelp will be established. Citizens authenticate themselves using the citizen
card or mobile signature. This includes their area specific personal identifier (“bere-
ichsspezifisches Personenkennzeichen (bPK)”) as an identifier. Afterwards, they are
allowed to collect their documents using the proxy authenticator. After authentication
the proxy authenticator is able to reconstruct the shared key (the parts of the shared
keys are located for security reason on independent shared key holder).

Then the certificate and private key (PKCS12 container) are loaded decrypted from
the proxy authenticator database by using the area specific personal identifier from then
citizen. There is no key installed at the client’s browser. The decryption is necessary to
prevent attackers from stealing private keys. All requests to the frontend are validated
before they are transferred to the backend. Following decryption, the backend establish
a connection to the e-delivery service to retrieve data (e.g. to collect the waiting
documents). For the TLS connection the certificate and private key of the citizen is
used for client authentication. All messages between citizen and e-delivery service are
transferred through the proxy authenticator. A direct connection between citizen and
e-delivery service is prohibited because it would result in an unauthenticated request
due to the fact that the citizen does not have the private key installed in his browser.
Therefore, the proxy authenticator has to modify all URLs in the e-delivery provider
response before transmitting documents to the user to guarantee that the citizen does
not leave the proxy domain.

5.4 Quality Management: Security Mechanism

Under the circumstances of quality management and security mechanisms, all citizen
data needs to be protected by the data protection legislation in Austria (Sect. 12Abs. 2 des
Datenschutzgesetzes 2000). [14] This is the reason why the proxy authenticator solution
includes various security solutions from the below-mentioned best practice table (see
Table 1) to guarantee an adequate data protection. The measures are listed and explained
in detail. The table includes different strategies and methodologies in protecting data
in internet. It is a paradigm to reduce all risk to zero. To find an acceptable solution,

Approach of a Signature Based Single Sign on Proxy Solution 221

Table 1. Implemented security measures

Measures Description Advantage

Encrypted database Database will be encrypted This guarantees that a
possible attacker, who
gains access to the
database, cannot read or
interpret any data in the
database. It will be set up
as an extra hurdle for the
attacker

Shared key concept to
encrypt and decrypt the
certificate and the private
key of the citizen

To encrypt and decrypt the
certificate and private key
of a citizen, it is necessary
to possess all parts of the
shared key. The different
parts of the key are stored
on different machines.
Further a secure share key
is reconstructed which
means that information
about parts of the keys
does not help to
reconstruct the final key

Through the assembled key
it is guaranteed that data
can be read only if all parts
of the shared key are
available. This raises the
security of the data
protection and reduces any
abuse through
administration personal

Secure end-to-end
connection

A connection between two
components will be
adjusted via HTTPS

This intends to prevent a
Man-in-the-middle attack

System structure (1):
Fragmentation of
components

Proxy authenticator will be
divided into two
components. The frontend
validates requests and
filters all corrupt requests.
The backend manages
sessions and de- or
encryption of the
certificate and private key.
Both the shared key and
private key of the citizen
never leave the backend.
The backend builds ups a
HTTPS connection with
the e-delivery service, by
using the certificate and
the private key of the
citizen

This architecture should
prevent an attacker to
retrieve confidential data
of any citizen. For
outsiders only the frontend
is visible. If an attack was
successful and an attacker
reaches the backend, then
the attacker would not
have any possibility to
sniff or recalculate the
shared key. Furthermore,
all certificate and private
keys of all existing citizens
are stored in the secure
area DMZ of the backend

(Continued)

222 K. John and S. Taber

Table 1. (Continued)

Measures Description Advantage

System structure (2):
Fragmentation of
Modules

The Frontend and the
backend are fragmented
into modules

This fragmentation does not
only create more flexibility
of the system, it also
contributes to higher
security. Through the
fragmentation of the
modules it refines a more
secure access right model.
During data delivery the
backend module only
requires reading rights,
whereas the module for
key-upload requires access
rights for writing in the
database

Encryption certificate and
private key

Certificate and private key is
encrypted by the prior
reconstructed shared key
and is saved encrypted in
the database

Protection is guaranteed
through encryption of all
certificate and private
keys, which are securely
stored in the database. In
case an attacker gains
access to the database
account, the attacker needs
the individual shared key
for every saved certificate
and private key

Secured configuration Important configuration files
are encrypted, as for
example, database
implementation

Due to the encryption, an
attacker cannot read any
database password and
therefore cannot gain
access to the database

Code Scramble All Jar files are obfuscated This prevents any binary
analyses or reverse
engineering of an attacker.
Otherwise an attacker
could gain access onto
internal processes

Hash To reconstruct the shared
key, hashes are used. The
hash algorithm is
SHA-256 to fulfil actual
security standards

SHA-96 for high security
application is still usable
but SHA-256 provides a
higher security level

(Continued)

Approach of a Signature Based Single Sign on Proxy Solution 223

we concentrated at risk mitigation. This helped us to reduce risks by choosing certain
security measures to a minimum. The Table 1 includes all relevant measure, which we
used for our risk mitigation.

6 Conclusion

This paper assesses the issue of a secure certificate proxy authenticator, which requires
a strong security solution. The necessity derives from the proxy, which is accessible via
the myHelp portal. This paper has exhibited that the challenge of quality assurance,
such as supported ICT secure architecture (see Sect. 5), lies not only in fulfilling
various security standards or technical security aspects of software, but also in
IT-security strategies within all IT-processes of the secure proxy authenticator, e.g.
separating the system into frontend, backend and data base. In the frontend all request
are validated against unauthorised requests and only the frontend communicates with
e-government services, i.e. BRZ e-delivery service. All relevant access data to gain
communication with an e-government service via certificate and private key, this secure
information is stored encrypted in the data base and scrambled by different parts to join
the relevant key. When using certificate and private key, they never leave the backend.
Bearing this in mind, a new combined SSO solution for e-government portals in
Austria has been established, using for identification citizen card technology or mobile
signature, which is a strong alternative to SAML V2.X for secure login into any
Austrian portal service. All workflow changes that needed to be considered required a
detailed evaluation with strong focus on security and quality aspects as well as sub-
sequent intensive testing. The IT strategy advocates in this paper a combination of
security measures that allows for our predefined security requirements to be met. These
predefined best practices of measure keep the quality high. As a result, a mechanism
similar to SAML V2.0 was created. This allows citizens to download any document
from any e-delivery service in Austria, e.g. meinBrief or BRZ-Zustelldienst etc.
without saving a certificate and private key into the citizen’s browser.

Table 1. (Continued)

Measures Description Advantage

Separate saving of private
keys and certificates

The private keys and the
certificates are saved
separately, i.e. instead of a
single container

There is not only a
performance increase, but
also enhanced security. If
only the certificate is
needed, the whole
container does not need to
be decrypted. This implies
less decrypting and avoids
that the private key is
unprotected as visible text
in the code readable

224 K. John and S. Taber

The previous solution saved the certificate and private key in the citizen’s browser.
This relied on the citizen’s understanding of security to protect the data with a strong
password. The architecture of the previous solution furthermore leads to a limitation
when a certificate and private key is saved in the citizen’s browser; only this browser is
allowed to download documents from an e-delivery service in Austria.

The here presented solution does not compromise the citizen’s online security when
using an Austrian e-delivery service provided by myHelp. All citizens’ certificate and
private keys are saved within the myHelp portal. This is an extended private secure data
store to gain access to e-government service for citizens. The new solution furthermore
enables all citizens to download documents from any computer they wish, e.g. Internet
café, computer at work etc., thereby significantly increasing accessibility. A citizen will
gain access to myHelp by using a citizen card or mobile signature, using a mobile
phone.

The developed technology is a smart technology and directs e-government towards
a more citizen friendly usability. The future success of Austrian e-government 2.0 lies
upon an increased comprehension of citizen requirements in order to raise user
friendliness. Naturally, this is not limited to Austria, but the success of e-government
globally.

Appendix

Appendix A: Sequence Diagram of Certificate Upload.

Approach of a Signature Based Single Sign on Proxy Solution 225

Appendix B: Sequence Diagram of e-delivery Message Retrieval (Fig. 5).

Fig. 4. Sequence diagram of certificate upload

226 K. John and S. Taber

References

1. STORK: Secure electronic identity across Europe. https://www.eid-stork.eu/pilots/index.htm,
24 March 2013

2. Austrian Government (no Date): Bundesgesetz über die Zustellung behördlicher Dokumente
(Zustellgesetz - ZustG) StF: BGBl. Nr. 200/1982 (NR: GP XV RV 162 AB 1050 S. 110.
BR: S. 421.) Sect. 35 Ab. 1 bis Abs. 9

3. E-Government Innovationszentrum: Two Factor Authentication (2012). http://demo.egiz.
gv.at/plain/projekte/signatur_im_e_government/webservice_schnittstelle_fuer_das_signatur
pruefservice

4. E-Government Innovationszentrum: MOA-Modules for signature check-up (2013). http://
demo.egiz.gv.at/plain/projekte/signatur_im_e_government

5. E-Government Innovationszentrum: MOAModules, Pre-Screencast-Dokumentation (2013).
http://screencasts.exthex.com/exthex-EGIZ-Screencast-Indroduction.pdf

Fig. 5. Sequence diagram of e-delivery message retrieval

Approach of a Signature Based Single Sign on Proxy Solution 227

https://www.eid-stork.eu/pilots/index.htm
http://demo.egiz.gv.at/plain/projekte/signatur_im_e_government/webservice_schnittstelle_fuer_das_signaturpruefservice
http://demo.egiz.gv.at/plain/projekte/signatur_im_e_government/webservice_schnittstelle_fuer_das_signaturpruefservice
http://demo.egiz.gv.at/plain/projekte/signatur_im_e_government/webservice_schnittstelle_fuer_das_signaturpruefservice
http://demo.egiz.gv.at/plain/projekte/signatur_im_e_government
http://demo.egiz.gv.at/plain/projekte/signatur_im_e_government
http://screencasts.exthex.com/exthex-EGIZ-Screencast-Indroduction.pdf

6. OASIS: Assertions and Protocols for the OASIS Security Assertion Mark-up Language
(SAML) V2.0, OASIS Standard (2005)

7. Pashalidis, A., Mitchell, C.J.: A taxonomy of single sign-on systems. In: Safavi-Naini, R.,
Seberry, J. (eds.) Information Security and Privacy. LNCS, vol. 2727, pp. 249–264.
Springer, Heidelberg (2003)

8. Hollosi, A., et al.: Einführung in die österreichische Bürgerkarte (2004). http://www.
buergerkarte.at/konzept/securitylayer/spezifikation/aktuell/introduction/introduction.html

9. Dyrda, M., et al.: Providing security for MOCCA component environment. In: IPDPS,
International Symposium IEEE (2009)

10. Leonetti, S.J.: Government Electronic Service Delivery (ESD) and privacy in Ontario. In:
Fifth International Conference on Digital Information Management, ICDIM 2010 (2010)

11. Gilliam, D.P., et al.: Software security checklist for the software life cycle. In: Twelfth IEEE
International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE 2003) (2003)

12. Ki, H., et al.: Study on developing a security violation response checklist for the
improvement of internet security management systems. In: International Conference on
Multimedia and Ubiquitous Engineering (MUE 2007) (2007)

13. Die Presse: Die meisten Handyverträge gibt es mit 120 Verträgen je 100 Einwohner in
Luxemburg. Österreich liegt leicht über dem EU-Schnitt, 07 February 2005

14. Datenschutzgesetzes: Sect. 12 Abs. 2 des Datenschutzgesetzes 2000 (DSG 2000), BGBl.
I Nr. 165/1999

15. Directive 1999/93/EC of the European Parliament and of the Council of 13 December 1999
on a Community framework for electronic signatures. http://eur-lex.europa.eu/legal-content/
DE/TXT/?uri=CELEX:31999L0093

16. Timmermans, J., et al.: Competitiveness and Innovation Framework Programme, ICT Policy
Support Programme (ICT PSP) – STORK - D2.3 - Quality Authenticator Scheme (2009).
https://www.eid-stork.eu/

17. Peng, Y.: The application of PKCS#12 digital certificate in user identity authentication
system. In: IEEE World Congress on Software Engineering, WCSE 2009 (2009)

18. Williams, C.K.: Configuring enterprise public key infrastructures to permit integrated
deployment of signature, encryption and access control systems. In: IEEE Military
Communications Conference, MILCOM 2005 (2005)

228 K. John and S. Taber

http://www.buergerkarte.at/konzept/securitylayer/spezifikation/aktuell/introduction/introduction.html
http://www.buergerkarte.at/konzept/securitylayer/spezifikation/aktuell/introduction/introduction.html
http://eur-lex.europa.eu/legal-content/DE/TXT/%3furi%3dCELEX:31999L0093
http://eur-lex.europa.eu/legal-content/DE/TXT/%3furi%3dCELEX:31999L0093
https://www.eid-stork.eu/

Author Index

Ambler, Scott W. 3
Asklund, Ulf 97

Bertolino, Antonia 37
Breu, Ruth 186
Buchgeher, Georg 109

Calabró, Antonello 37
Coco, Alessandro 49
Conte, Tayana 63

Danek, Jakub 125

Eckhart, Matthias 17
Eyl, Martin 199

Fabbrini, Fabrizio 49
Feiner, Johannes 17
Felderer, Michael 63, 186
Fernández, Daniel Méndez 63

Gnesi, Stefania 49

Haas, Roman 144
Holy, Lukas 125
Höst, Martin 97
Hummel, Benjamin 144

Jezek, Kamil 125
John, Klaus 213
Jørgensen, Magne 156

Kalinowski, Marcos 63
Kriechbaum, Thomas 109

Lines, Mark 3
Lonetti, Francesca 37

Marchetti, Eda 37, 49
Mendes, Emilia 79
Müller-Glaser, Klaus 199
Muradas, Fernando 79

Nickl, Friederike 186

Pekar, Viktor 186
Prikladnicki, Rafael 63

Querci, Antonella 49

Reichmann, Clements 199
Roßik, Christian 186

Scarpellini, Paolo 49
Schwarcz, Franz 186
Sneed, Harry M. 171
Spagnolo, Giorgio O. 49
Spínola, Rodrigo 63

Taber, Stefan 213

Vaz, Veronica Taquete 79

Wagner, Stefan 63
Weinreich, Rainer 109
Winkler, Dietmar 63
Wnuk, Krzysztof 97

	Message from the General Chair
	Message from the Scientific Program Chair
	Organization
	Contents
	Keynote
	The Disciplined Agile Process Decision Framework
	Abstract
	1 History
	2 Why Disciplined Agile?
	3 Tactical Agility at Scale
	4 Strategic Agility at Scale: The Disciplined Agile IT Department
	5 Principles for Effective Process Frameworks
	References

	Software Engineering Processes and Process Modelling
	How Scrum Tools May Change Your Agile Software Development Approach
	1 Introduction
	2 Related Work
	3 Methodology - A Case Study with Interviews
	4 Identification of Critical Problem Areas
	4.1 The ScrumMaster's Role as a Critical Success Factor
	4.2 Inflexible Scrum Tools Limit the Agility of Scrum
	4.3 Agile Organisational Structures Apart from the Traditional Scrum Framework
	4.4 Insufficient Overview of the Digital Task Board Due to a Mass Amount of Information to Display
	4.5 Scrum Tools Hosted in the Cloud
	4.6 Challenges in Introducing Scrum Tools in an Organisation

	5 Concepts for Success Regarding the use of Scrum Tools
	5.1 Agile Software Development with Distributed Teams
	5.2 Optimising the Digital Tool Landscape
	5.3 Integrated Reporting Solution
	5.4 Simulating the Look and Feel of a Physical Task Board
	5.5 Printable User Stories and Tasks

	6 Minimum Requirements for Scrum Tools
	7 Scrumpy -- An Agile Project Management Tool Designed to Skyrocket Your Team's Productivity
	8 Conclusion and Future Work
	References

	Towards Business Process Execution Adequacy Criteria
	1 Introduction
	2 Background
	3 Defining Business Process Execution Adequacy
	3.1 Entity Definition

	4 Framework
	5 Preliminary Assessment
	6 Related Work
	7 Conclusion and Future Work
	References

	An Experience on Applying Process Mining Techniques to the Tuscan Port Community System
	1 Introduction
	2 Background
	2.1 Business Process Management
	2.2 Port Community

	3 Create the Model
	4 Monitoring the Application
	5 Conformance Checking
	6 Related Work
	7 Conclusion and Future Works
	References

	Requirements Engineering
	Preventing Incomplete/Hidden Requirements: Reflections on Survey Data from Austria and Brazil
	Abstract
	1 Introduction
	2 Background
	2.1 RE Surveys
	2.2 The NaPiRE Project

	3 Replicating the NaPiRE Survey in Austria and Brazil
	3.1 Survey Replication in Austria
	3.2 Survey Replication in Brazil
	3.3 Characterization

	4 Criticality of RE Problems in Austria and Brazil
	5 Analyzing the Incomplete/Hidden Requirements Problem
	6 Concluding Remarks
	References

	An Expert-Based Requirements Effort Estimation Model Using Bayesian Networks
	Abstract
	1 Introduction
	2 Introduction to Bayesian Networks
	3 Knowledge Engineering of Expert-Based Bayesian Network Process
	4 Revisiting the EKEBN Process -- Our Case Study
	5 Detailed Model Validation
	6 Discussion
	7 Conclusions
	References

	Software Architecture
	Experiences from Monitoring Effects of Architectural Changes
	1 Introduction
	2 Related Work
	3 Case Description
	3.1 Overall Architecture
	3.2 Organization and Process at the Case Company
	3.3 Introduced Architectural Changes to the Developed System
	3.4 Selected Metrics for Monitoring the Changes

	4 Research Methodology
	4.1 Data Collection

	5 Results
	5.1 Metrics Collection
	5.2 Interviews/Questionnaires

	6 Discussion
	7 Conclusions
	References

	Making the Case for Centralized Software Architecture Management
	1 Motivation
	2 Architecture Information Repository (AIR)
	3 Use Cases, Benefits and Perspectives
	4 An AIR for an Enterprise SOA
	4.1 Supported Types of Architectural Knowledge
	4.2 Provided Views, Supported Stakeholders, and Concerns
	4.3 Tools for Automation
	4.4 Development History and Experiences

	5 Related Work
	6 Conclusion
	References

	Software Estimation and Development
	Preventing Composition Problems in Modular Java Applications
	1 Introduction
	2 Related Work
	3 Problem Discussion and Examples
	4 Our Tools for Linkage Errors Detections
	4.1 The Core Module
	4.2 Modular Architecture
	4.3 Maven Plugin
	4.4 Eclipse Plugin
	4.5 CoCAEx

	5 Employment in Project Life-Cycle
	6 Practical Demonstration
	7 Evaluation
	7.1 Implementation
	7.2 Performance

	8 Conclusions
	References

	Deriving Extract Method Refactoring Suggestions for Long Methods
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Candidate Generation
	3.2 Scoring Function
	3.3 Pruning

	4 Evaluation
	4.1 Design
	4.2 Results
	4.3 Discussion
	4.4 Threats to Validity

	5 Conclusion and Future Work
	References

	The Use of Precision of Software Development Effort Estimates to Communicate Uncertainty
	Abstract
	1 Introduction
	2 Measuring Single Value Effort Precision
	3 Effort Uncertainty Indicated by Estimate Precision
	4 Competence, Trustworthiness and Accuracy
	5 Discussion and Conclusion
	References

	Software Testing
	Web Service Test Evolution
	Abstract
	1 Background of this Work
	2 Perennial Maintenance Problem
	3 The Dilemma of Test Automation
	3.1 Changes to a Web Service Test
	3.2 Adapting Service Test Cases
	3.3 Updating the Test Case Table

	4 Alternate Solutions to Service Test Maintenance
	5 Experience with Web Service Testing
	6 Related Work
	7 Conclusion
	8 Further Work
	References

	Integrating a Lightweight Risk Assessment Approach into an Industrial Development Process
	1 Introduction
	2 Related Work
	3 Context
	4 Research Method
	5 Guidelines for Lightweight Risk Assessment
	5.1 Factor Determination
	5.2 Risk Assessment Procedure

	6 Results
	6.1 Factor Determination
	6.2 Risk Assessment Procedure

	7 Threats to Validity
	8 Conclusion
	References

	Fast Feedback from Automated Tests Executed with the Product Build
	Abstract
	1 Introduction
	2 Continuous Integration
	3 Overview
	4 Fast Build
	4.1 Eclipse IDE Integration
	4.2 Creating the Product Build
	4.3 Results

	5 Selection of Automated Test
	6 Feedback for the Developer
	7 Results
	8 Related Work
	9 Conclusion and Future Work
	References

	E-Government Applications
	Approach of a Signature Based Single Sign on Proxy Solution
	Abstract
	1 Introduction
	1.1 Methodology

	2 Related Work
	3 Legal and Technical Background
	4 Technical Architecture
	5 Proxy Authenticator Solution
	5.1 Upload of the Certificate and Private Key
	5.2 Delete, Change of the Certificate and Private Key
	5.3 Retrieval of Documents from e-Delivery Services
	5.4 Quality Management: Security Mechanism

	6 Conclusion
	Appendix
	References

	Author Index

